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Glossary 
 
 
Avirulent 
A pathogen strain that carries an avirulence (Avr) gene and cannot multiply in a resistant host 
plant cultivar expressing a complementary resistance (R) gene. 
 
Induced Systemic Resistance (ISR) 
The phenomenon that plants acquire an enhanced level of resistance against subsequent 
pathogen attack following root colonization by selected strains of non-pathogenic rhizobacteria. 
 
Systemic Acquired Resistance (SAR) 
The phenomenon that plants acquire an enhanced defensive capacity against future pathogen 
attack as a result of a primary, limited infection with a necrotizing pathogen. 
 
Hypersensitive response (HR) 
Rapid collapse (programmed cell death) of cells after attack by an avirulent pathogen. 
 
Oxidative burst 
Rapid accumulation of reactive oxygen species (e.g. O2

-, H2O2) with direct antimicrobial activity, 
but also implicated in plant signaling. 
 
Elicitor 
Compound inducing defense responses in plants. 
 
Potentiated 
Augmented induction of pathogen- or elicitor-induced plant defense responses. 
 
Primed 
State of enhanced ability to mobilize pathogen- or elicitor-induced cellular defense responses. 
 
Biotroph 
A pathogen that establishes a long-term feeding relationship with the living cells of the host, 
rather than killing the host cells as part of the infection process. Typically, biotrophic pathogens 
grow between the host cells, invading only a few of the cells to produce nutrient-absorbing 
structures termed haustoria. By their feeding activities, they create a nutrient sink to the 
infection site, so that the host is disadvantaged but is not killed. 
  
Necrotroph 
A pathogen that kills living host tissues and feeds on the remains. Necrotrophic pathogens are 
typically characterized by having a broad host range and are considered insensitive to R gene-
triggered plant defense responses. 
 
Hemibiotroph 
Pathogens that are characterized by an initial period of biotrophy before switching to a 
necrotrophic growth stage. 
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1.1 Problem Statement 
 

ice is the world’s most important staple food grain, providing the bulk of the caloric intake 

of no less than two billion people living in the rural and urban areas of tropical and 

subtropical Asia (Leung et al., 2003). During the last few decades, major progress has been made 

in increasing rice productivity. As a result, world rice production has more than doubled, from a 

mere 257 million tons in 1996 to over 600 million tons in 2006 (FAO, 2007). This stunning yet 

much needed rise in production has primarily been achieved through the adoption of modern 

high-yielding varieties, adequate irrigation, use of fertilizers and other complementary inputs. 

However, in recent years, population growth has outpaced rice production (Hossain, 1999). 

Whereas the annual population growth in rice-producing and rice-consuming nations continues 

to swell, rice yields have stuck fast at approximately 6 tons per hectare in the countries 

accounting for 75% of the global rice output. If these trends continue, demand for rice in many 

parts of Asia will outstrip supply within a few years. Such lag in production will disproportionally 

affect the low-income countries where people consume more rice and the population grows 

faster. 

 R

 Diseases caused by pathogenic microbes have always had a significant impact on rice supply. 

Historically, severe epidemics have led to serious food shortages, claiming the lives of millions. 

For instance, the great Bengal famine in 1942 was, in part, attributed to an outbreak of brown 

spot disease (Cochliobolus miyabeanus), while rice blast (Magnaporthe oryzae) epidemics caused a major 

food crisis in Korea in the 1970s (Ou, 1985). Nowadays, diseases are still among the major 

constraints on high rice productivity. Considering the staggering 150 millions of global rice 
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plantings, even a conservative estimate of 1 to 5% annual yield loss translates into thousands of 

tons of rice and billions of dollars lost (Mew et al., 2004). For decades, rice disease management 

systems have relied primarily on the release of new resistant varieties and the application of 

pesticides. However, whilst the use of hazardous chemicals is environmentally undesirable as well 

as economically costly, particularly in less-affluent regions of the world, resistant rice cultivars 

often do not withstand more than one or two years of cultivation before succumbing to diseases, 

due to either breakdown or gradual erosion of the resistance in face of the high variability of the 

pathogen population (Mew et al., 2004). Hence, there is considerable incentive to develop new 

disease control strategies providing durable, environmentally sound, and broad-spectrum 

pathogen protection. Among such strategies, approaches capitalizing on the plant’s own 

defensive repertoire seem very promising for sustainable rice production in the future (Song and 

Goodman, 2001). 

To resist their potential colonization by microbial pathogens and parasites, plants have 

evolved a plethora of sophisticated mechanisms to perceive attack by these deleterious 

microorganisms and to respond adequately by activating an appropriate set of defense responses 

(Koornneef and Pieterse, 2008). Apart from reacting locally, plants can also establish immunity in 

systemic tissues, thereby augmenting their defensive capacity against future attack (Van der Ent et 

al., 2008a). Depending on the organism interacting with the plant, plants are able to activate 

several types of this so-called induced resistance, including systemic acquired resistance (SAR), 

which is triggered upon a localized infection with a necrotizing pathogen (Durrant and Dong, 

2004), and induced systemic resistance (ISR), which is activated following colonization of the 

plant roots by selected strains of nonpathogenic rhizobacteria (Van Loon et al., 1998). Contrary 

to the attacker-specific primary immune response, induced resistance is typically effective against 

a broad spectrum of otherwise virulent pathogens. Moreover, induced resistance often spreads 

systemically throughout the plant, thereby protecting the entire plant against subsequent invaders. 

Unfortunately, compared to the wealth of information on inducible defense responses in dicot 

plant species, in the class of the Monocotyledoneae, including the most important agronomic cereals, 

molecular information on induced defense mechanisms is still largely missing, this knowledge 

being key to optimal deployment and commercial acceptance of induced resistance in an 

agricultural setting. In view of aforementioned knowledge gap, the primary objective of this work 

was to expand our knowledge on the mechanistic basis of microbially and chemically induced 

pathogen resistance in rice, a central monocot plant model. In particular, we sought to: 

 2 
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• assess whether rhizobacteria known to elicit resistance in dicots are also capable of 

triggering resistance in rice against various pathogens exhibiting different modes of 

infection 

• elucidate the bacterial determinants and host effector responses governing the 

induced resistance phenotype  

• explore the tapestry of signaling networks underlying rhizobacteria-mediated systemic 

resistance in rice 

• gain insight into the specificity and compatibility of hormonal signal transduction 

systems leading to the induced defense state in rice and elucidate if, and how, 

crosstalk among these signaling conduits affects the interaction of rice with the brown 

spot pathogen Cochliobolus miyabeanus. 

 

 

 

1.2. Thesis Outline 

 This dissertation starts with a comprehensive literature review summarizing our current 

knowledge on the basic mechanisms and regulation of rice innate immunity (Chapter 2). In 

addition to providing an overview of the various effector mechanisms associated with the 

establishment and/or maintenance of the induced defense state, we survey recent advances in our 

understanding of the signaling circuitry orchestrating basal, R-gene-mediated and induced 

pathogen resistance in rice, thereby focusing on the connections and crosstalk between the 

different phytohormonal networks involved and the role played by such pathway crosstalk in 

shaping the outcome of rice-pathogen interactions.  

 Chapters 3, 4 and 5 are dedicated to the phenomenon of rhizobacteria-mediated ISR. In 

Chapter 3, we investigate the bacterial traits and host immune responses associated with 

induction of ISR by the well-characterized rhizobacterium Pseudomonas aeruginosa 7NSK2. Using a 

set of bacterial mutants defective in the production of several biocontrol-associated metabolites, 

we pinpoint the redox-active pigment pyocyanin as a two-faced ISR elicitor capable of inducing 

resistance against the hemibiotrophic rice blast pathogen Magnaporthe oryzae while promoting 

infection by the necrotrophic pathogen Rhizoctonia solani, causal agent of rice sheath blight. In 

addition, evidence is brought forward demonstrating that the differential effectiveness of 

pyocyanin with respect to 7NSK2-mediated ISR is due to its ability to modulate the plant’s 

oxidative machinery.   
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 In Chapter 4, we discuss the resistance mechanisms underlying ISR triggered by the 

biocontrol bacterium Serratia plymuthica IC1270. Pursuing a combined histochemical and 

pharmacological approach, we show that, like 7NSK2, root colonization by IC1270 locks plant 

into a pathogen-inducible program of boosted ROS generation, culminating in the prompt 

expression of hypersensitive response-like cell death at sites of attempted pathogen entry. Highly 

effective against M. oryzae, blocking the pathogen in its hemibiotrophic stage, this H2O2-fueled 

resistance response appears to act as a double-edged sword in the rice induced resistance 

program as IC1270-colonized plants are rendered hypersusceptible to the necrotrophic 

pathogens R. solani and Cochliobolus miyabeanus. As an addendum to this chapter, a review paper 

dealing with the use or potential use of S. plymuthica strains as low-input practical agents of plant 

protection against fungal pathogens is included as well.   

 Aiming to further dissect the rhizobacteria-induced ISR response, we progress through 

Chapter 5 exploring the bacterial determinants and host effector mechanisms underpinning ISR 

elicited by the Pseudomonas fluorescens strain WCS374r. The cumulative results presented in this 

chapter favor a model in which WCS374r bacteria trigger ISR against Magnaporthe oryzae through 

the secretion of pseudobactin-type siderophores, thereby sensitizing naïve leaves for potentiated 

expression of a salicylic acid-repressible yet jasmonate/ethylene-dependent multifaceted defense 

response. In addition to unraveling the signaling circuitry governing WCS374r-induced resistance, 

this chapter addresses the differences and similarities between WCS374r-mediated ISR and blast 

resistance induced by the salicylic acid analog benzothiadiazole (BTH). 

  In the second part of this work, covering Chapters 6 and 7, the focus is shifted to the role of 

the phytohormone abscisic acid (ABA) in modulating plant pathogen defense. Most 

comprehensively studied as a key endogenous signal functioning in abiotic stress adaptation, 

ABA has only recently been implicated in the response to biotic challenges. Introducing this topic 

in Chapter 6 with a literature review focusing on the principles and mechanisms of ABA’s broad 

and divergent impact on plant disease resistance, we show in Chapter 7 that pretreatment of rice 

with ABA confers enhanced resistance against the fungal pathogen Cochliobolus miyabeanus, causal 

agent of the devastating rice brown spot disease. Using a multidisciplinary approach, evidence is 

provided supporting ABA-mediated repression of pathogen-induced ethylene (ET) signaling as a 

core resistance mechanism. In addition, we present a novel role for the ABA-inducible mitogen-

activated protein kinase gene OsMPK5 as a critical modulator of this ABA/ET crosstalk, and 

describe how ABA might interfere with the postulated fungal manipulation of the plant. 

 Finally, in Chapter 8, we briefly recapitulate the main findings and discuss the practical 
implications and future prospects of the research conducted.  
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Chapter 2 

2.1. Introduction 

 Plant innate immunity is based on a surprisingly complex response that is highly flexible in its 

capacity to recognize and counteract different invaders. To effectively combat invasion by 

microbial pathogens, plants have evolved a plethora of sophisticated mechanisms providing 

several strategic layers of coordinated defenses. Pre-formed structural and physical barriers, as 

well as inducible plant responses triggered by invariant pathogen- or microbe-associated 

molecular patterns (MAMPs/PAMPs) constitute the first line of defense and result in a basal 

level of resistance (Schwessinger and Zipfel, 2008). To achieve their full virulent potential, 

successful pathogens need to suppress this basal resistance by injecting effector proteins into the 

host cells that intercept MAMP-triggered defense signals. However, if a plant possesses cognate 

resistance (R) proteins competent to directly or indirectly recognize these pathogen-secreted 

effectors, an alternative suite of signaling pathways is activated, culminating in the programmed 

execution of challenged host cells and rapid containment of the pathogen (Dangl and Jones, 

2006).  

 Triggering of local responses can also mount systemic immunity that primes naïve tissues 

against subsequent attack. Once initiated, this so-called induced resistance is generally durable 

and broad-spectrum. Effective induced resistance requires amplification of the primary inducing 

signal through the generation of secondary messengers such as reactive oxygen and nitrogen 

species and a range of phytohormones, including salicylic acid, jasmonic acid and ethylene. 

Rapidly accumulating evidence indicates that the signaling conduits modulated by these 

endogenous signal molecules do not constitute simple, linear cascades but rather consist of 

elaborate regulatory networks with frequent crosstalk, allowing the plant to activate an 

appropriate spectrum of responses depending on the type of intruder encountered (Koornneef 

et al., 2008).     

 Historically, research aimed at elucidating the molecular mechanisms underpinning plant 

immune responses has been polarized towards the use of experimentally tractable dicotyledons, 

such as Arabidopsis and tobacco. However, the use of rice as an alternative system for studying 

innate plant immunity is now gaining momentum (Zhou et al., 2006). Primarily fueling this keen 

interest is the emergence of rice as a pivotal model for cereal crops, many of which are among 

the world’s most important staple foods. This new-born status of rice as a central plant model 

arises from several key features, including its relatively small genome (430 Mb approximately; 

Bennetzen, 2002; Goff et al., 2002; Yu et al., 2002), ease of transformation (Kathuria et al., 

2007), full genome sequences for both indica and japonica cultivars, and the availability of myriad 

tools for reverse genetics such as transposon- and T-DNA-tagged populations (Miyao et al., 
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2007; Piffanelli et al., 2007). Furthermore, rice shares extensive synteny and collinearity with 

other cereal species, further increasing the utility of this system (Devos and Gale, 2000). The use 

of rice as a model plant therefore offers an unprecedented opportunity to identify and 

characterize the signaling circuitry and biochemical defenses underpinning biotic stress 

adaptation in a staple food of world significance, while providing a foundation for comparison 

with other commercially important crops, such as maize, barley, and wheat. Furthermore, 

profound knowledge of the mechanistic basis and regulation of inducible immune responses in 

rice not only promises to offer fundamental insights into the genetic architecture and crosstalk of 

disease resistance pathways in crop species, but also may guide novel strategies to translate the 

value of information emerging from such fundamental research for effective utilization of basal 

and induced resistance phenomena in an agricultural context. 

 Here, we survey recent progress in our understanding of pathogen-induced defense signaling 

in rice, with a focus on the main hormonal signaling conduits operative in the rice signaling 

infrastructure. We also aim to highlight the molecular players that orchestrate the regulatory 

crosstalk between these conduits and pay special attention to the role of pathway crosstalk in 

shaping the outcome of rice-pathogen interactions. A thorough overview of the various effector 

responses associated with the establishment and/or maintenance of the induced defense state is 

provided as well. For additional background, the reader is referred to some excellent recent 

reviews (Bostock, 2005; Koornneef and Pieterse, 2008, Angel-Lopez et al., 2008; Van Wees et al., 

2008) and book chapters (Van der Ent et al., 2008a), and the concepts and references herein that 

deal with induced disease resistance and pathogen defense signaling in plants.  

 

2.2. Hormonal signaling cascades involved in the rice defense 

response 

 Not more than 15 years ago, it was generally accepted that pathogen-inducible defense 

mechanisms were steered through a central signaling conduit controlling a multicomponent 

defense response. Much progress has since been made in understanding plant defense signaling 

and it is now firmly established that both basal and induced disease resistance are regulated by 

multiple signal transduction pathways in which phytohormones, such as salicylic acid (SA), 

jasmonic acid (JA) or ethylene (ET), function as key signaling molecules. In this section, we 

outline the latest discoveries dealing with hormonal regulation of rice pathogen defense and 

highlight interactions between hormone signaling, plant defense and microbial virulence. 
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2.2.1. SA-dependent defense signaling 

 Salicylic acid is a natural phenolic compound present in many plant species at various levels. 

In dicots, the role of SA as a key defense signal controlling a variety of inducible immune 

responses is widely documented (Durrant and Dong, 2004). Following pathogen infection, 

endogenous levels of SA and its conjugates increase dramatically, immediately preceding the 

induction of pathogenesis-related (PR) proteins and the onset of local and systemic acquired 

resistance (Malamy et al., 1990; Metraux et al., 1990; Rasmussen et al., 1991). In rice, however, 

the role of SA in the signaling network regulating disease resistance is still poorly understood, 

and even a matter of debate. 

 Rice plants normally accumulate high levels of free endogenous SA. Under noninducing 

conditions, SA concentrations in rice leaves (up to 37 µg g-1 fresh weight ) are at least two orders 

of magnitude higher than those found in healthy tobacco or Arabidopsis (< 0.1 µg g-1 fresh 

weight) (Silverman et al., 1995; Chen et al., 1997). Notwithstanding such high basal SA content, 

rice plants are not insensitive to exogenously administered SA. For instance, SA is capable of 

quickly inducing activation of SA-glucosyl transferase, an enzyme that converts free SA into ß-

O-D-glucosyl SA (Silverman et al., 1995). In addition, exogenous SA treatment can also induce 

H2O2 accumulation in the veins and interveinal regions of rice leaves, suggesting that SA may 

promote oxidative stress through the production of reactive oxygen species (ROS; Ganesan and 

Thomas, 2001).   

 Another layer of complexity in developing a coherent view of the role of SA in innate rice 

immunity is added by a series of recent studies demonstrating that rice is endowed with an SA 

signaling pathway that shares downstream components with the systemic acquired resistance 

(SAR) pathway in Arabidopsis. SAR refers to a pathogen-inducible plant defense response that 

involves a cascade of transcriptional events induced by SA through the master regulatory protein 

NPR1 (Durrant and Dong, 2004). To date, five NPR1-like genes have been identified in the rice 

genome, among which OsNH1 is the closest rice NPR1 homolog, sharing 60% similarity with 

Arabidopsis NPR1 (Chern et al., 2005a; Yuan et al., 2007). As is the case with AtNPR1 (Chern et 

al., 2001), ectopic expression of OsNH1 in transgenic rice conditions resistance to the bacterial 

pathogen Xanthomonas oryzae pv. oryzae (Xoo), suggesting that rice shares a resistance route similar 

to the NPR1-mediated pathway (Chern et al., 2005b; Yuan et al., 2007b). However, 

interpretation of the experiments utilizing NPR1/NH1-modified transgenics is not without 

complication, particularly in light of peculiar phenotypes in certain backgrounds. Although most 

of the evidence indicates exquisite sensitivity in the plant to respond rapidly to changes in the 

cellular NPR1/NH1 levels, the data also suggest that there are impacts on yet-ill defined 
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response pathways when NPR1/NH1 levels are severely altered as in the overexpression 

transgenics. For example, ectopic expression of OsNH1 not only confers high levels of resistance 

to Xoo, but also leads to constitutive accumulation of PR transcripts and hypersensitivity to light 

(Chern et al., 2005b). In contrast, defense genes are significantly expressed in rice overexpressing 

AtNPR1 only when lesion-mimic spots are visible, a phenotype potentiated by SA and low-light 

intensities (Fitzgerald et al., 2004). Moreover, in Arabidopsis overexpressing AtNPR1, defense 

genes are not activated until induction by chemical or pathogen treatment (Cao et al., 1998). 

These conflicting observations suggest a marked difference between rice and Arabidopsis in the 

regulation of NPR1/NH1-controlled defense gene expression, possibly due to the fact that the 

endogenous SA levels in rice are several hundred-fold higher than those in Arabidopsis 

(Silverman et al., 1995; Kogel and Langen, 2005). 

 Notwithstanding these apparent discrepancies at the level of defense gene induction, several 

lines of evidence suggest that the core molecular mechanisms underlying NPR1-dependent SA 

signaling are conserved in rice. For instance, using yeast-two-hybrid assays, Chern et al. (2005b) 

showed that, analogous to the situation in Arabidopsis, wild-type OsNH1, but not a point 

mutant corresponding to npr1-1, interacts strongly with rTGA2.2, a rice bZIP transcription 

factor (TF) homolog. In addition, rTGA2.2 was shown to bind to a cis-element required 

sequence-specifically for SA responsiveness of PR gene promoters, implicating a role for this TF 

in activation of SA-regulated gene expression in rice (Chern et al., 2001; Fitzgerald et al., 2004).  

 The fact that NPR1/NH1 function in rice is fairly similar to that in Arabidopsis begs the 

question of whether SA has a central role in the induced resistance program of rice. In support 

of such a role, some studies claim that exogenous SA application can induce partial resistance 

against the rice blast pathogen Magnaporthe oryzae, albeit to a much lesser extent than its 

functional analogs BTH, dichloroisonicotinic acid (DCINA) and probenazole (Sakamoto et al., 

1999; Manandhar et al., 2000; Kogel and Langen, 2005; Iwai et al., 2007). On the other hand, SA 

levels do not change significantly after infection with either compatible or incompatible rice 

pathogens, which suggests that SA is not a limiting factor in the signaling circuitry leading to 

disease resistance in rice (Silverman et al., 1995). This view is corroborated by the finding that 

depletion of high levels of endogenous SA in transgenic NahG rice expressing the SA-degrading 

salicylate hydroxylase gene does not measurably affect PR transcript accumulation (Yang et al., 

2004). Interestingly, SA-deficient NahG rice contains elevated levels of reactive oxygen species 

(ROS) and exhibits spontaneous lesion formation in an age- and light-dependent manner. 

Moreover, SA-deficient rice is hypersusceptible to avirulent but not virulent blast isolates, an 

effect that the investigators attribute to the reduced capacity of the NahG transgenics to cope 
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with the strong oxidative burst elicited by avirulent pathogens (Yang et al., 2004). Therefore, 

rather than being an effective signal for activation of defense genes and induced resistance, the 

high-level endogenous SA in rice may act as a preformed antioxidant, regulating cellular redox 

balance and protecting rice plants from oxidative stress (Yang et al., 2004). 

 

 2.2.2. JA-dependent defense signaling  

 Jasmonic acid and its metabolites, collectively known as jasmonates (JAs), are important 

lipid-derived regulators that modulate a number of vital physiological processes, including 

wound responses, secondary metabolite biosynthesis, and defense against herbivorous insects 

(Cheong and Choi, 2003; Dombrecht et al., 2007). Although the role of JA in disease resistance 

has been comprehensively studied in dicotyledoneous plants (Pozo et al., 2005; Kazan and 

Manners, 2008), surprisingly little is known about its function in the defense response of rice and 

other economically important monocot plants. To date, most of the information comes from 

studies investigating the effect of exogenous JA or methyl jasmonate (MeJA) treatments on the 

induction of defense-related host effector responses. Early experiments showed that addition of 

JA or MeJA to rice cell suspension cultures induced multiple stress- or defense-associated 

transcripts and elicited the accumulation of the phytoalexins momilactone A and sakuranetin 

(Nojiri et al., 1996; Tamogami et al., 1997, 2000; Jwa et al., 2006). Moreover, the activity of 

lipoxygenase, a key enzyme in the octadecanoid pathway leading to the synthesis of JA, was 

activated earlier and to a higher extent in incompatible interactions between rice and M. oryzae 

than in compatible interactions (Ohta et al., 1991; Peng et al., 1994), while transcripts of RCI-1, a 

chloroplastic lipoxygenase, were found to be specifically upregulated upon plant treatments with 

chemical inducers of acquired resistance, such as BTH, INA and probenazole (Schaffrath et al., 

2000). Corroborating these findings, Mei et al. (2006) recently demonstrated that pathogen-

inducible overexpression of a rice allene oxide synthase gene, encoding a key JA biosynthetic 

enzyme, results in elevated JA levels, increased PR gene transcript accumulation, and significantly 

enhanced resistance to M. oryzae infection. Increased levels of JA, followed by induction of 

defense-related genes and enhanced blast resistance was also observed in rice leaves exogenously 

treated with INA or wounding (Schweizer et al., 1997a,b; Schweizer et al., 1998). Together these 

observations constitute a large body of circumstantial evidence supporting a role for the 

octadecanoid signaling pathway and, hence, JA action, in defense gene activation and disease 

resistance responses in rice.  
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 Yet, a major challenge in finding coherence among models for JA-responsive defense 

signaling is that individual investigators may obtain seemingly different results with the same or 

similar system. The example of JA-induced resistance to M. oryzae is a case in point. Whereas 

Schweizer et al. (1998) found that exogenous application of JA was able to induce resistance to 

M. oryzae in systemic, but not in local, treated leaves, Mei et al. (2006) observed the opposite 

phenomenon, with clear induction of PR1 and induced resistance in local, JA-treated tissues, 

rather than in systemic, naïve plant parts. Moreover, another recent study found little evidence of 

JA-conditioned blast resistance in either local or systemic leaves (Ahn et al., 2005), indicating that 

conditions for expression of JA-inducible resistance are critical. Further complexity in the 

signaling network controlling JA-responsive defenses in rice is evident from the observation that 

pathogen-induced activation of jasmonate-responsive PR genes is not associated with an increase 

in endogenous JA levels, whereas reduction of endogenous JA levels with tetcyclacis, an inhibitor 

of JA biosynthesis, significantly reduces infection-triggered PR transcription (Schweizer et al., 

1997b; Mei et al., 2006). However, these apparently contradictory results may be reconciled by 

assuming that JA is embedded in an interactive regulatory signaling network, resulting in the 

cooperative induction of PR genes upon pathogen attack. In this model, JA may not need to 

accumulate but be required at a certain minimal level for activation of a specific subset of JA-

responsive PR genes. In other words, it is not unlikely that the octadecanoid pathway may 

function as an enhancer of pathogen-induced defense reactions in rice. This view is consistent 

with other findings reporting a role for JA in priming defense gene expression and plant 

protection induced by physiologically relevant, non-toxic doses of the synthetic blast resistance 

inducer dichloroisonicotinic acid (INA) (Schweizer et al., 1997a). Nevertheless, owing to the 

inherent complexity of biotic stress-response signaling, assays using mutant or transgenic rice 

lines impaired in JA biosynthesis or signal perception are imperative to unequivocally delineate 

the role of JA and its position within the signal transduction paths leading to the expression of 

rice disease resistance in various contexts. 

 

2.2.3. Ethylene-dependent signaling  

 Rice farmers and researchers have long observed the phenomenon of partial resistance to 

blast in rice growing in anaerobic conditions such as moisture-saturated soils or flooded paddies. 

Drought stress and upland culture conditions increase severity of rice blast in disease-susceptible 

cultivars (Singh et al., 2004), whereas flood conditions reduce the number of blast lesions and 

flatten disease gradients (Kim et al., 1985; Lai et al., 1999). However, until recently, the 

mechanism behind this phenomenon remained elusive.  

 13



Chapter 2 

 Biotic and abiotic stresses, including pathogen infection and anaerobic conditions caused by 

water submergence, induce the biosynthesis of the simple gaseous hormone, ethylene (ET). For 

instance, submergence leads to activation of OsACS1 and OsACS5, two rice ET biosynthetic 

genes, culminating in rapid ET accumulation (Zarembinski et al., 1997; Van der Straeten et al., 

2001). In addition, topical application of Ethephon (2-chloroethylphosphonic acid), an ethylene-

releasing chemical, was shown to increase resistance in blast-susceptible rice cultivars (Singh et 

al., 2004), indicating a circumstantial association between ET accumulation and disease 

resistance. Further evidence for the involvement of ET biosynthesis in rice resistance to M. 

oryzae comes from Iwai and associates (2006), who demonstrated that accumulation of ET and 

its coproduct, cyanide, are indispensable for R-gene-mediated resistance to blast in young rice 

plants. 

 During the past decade, several key components of the ET signal transduction pathway have 

been successfully identified and characterized in Arabidopsis and tomato using various genetic 

approaches (Broekaert et al., 2006). Orthologs have also been found in other plants species, 

including rice (Chen et al., 2005). Furthermore, a dominant negative mutant of the Arabidopsis 

ET receptor gene ETR1 confers ethylene insensitivity in heterologous plants, including tobacco 

(Knoester et al., 1998), tomato and petunia (Wilkinson et al., 1997), suggesting the universal 

existence of the ET signaling pathway throughout the plant kingdom (van Loon et al., 2006a). In 

addition to the ETR1 receptor gene, EIN2 encodes an integral membrane protein that plays a 

central regulatory role in ET signaling. Recessive loss-of-function mutations in the Arabidopsis 

EIN2 gene block ethylene responses completely (Alonso and Stepanova, 2004; van Loon et al., 

2006a). Based primarily on sequence similarity, two EIN2 orthologs, which share, respectively, 

57 and 32% sequence identity with AtEIN2, were isolated from rice (Jun et al., 2004; Zhou et al., 

2004). OsEIN2 antisense lines and OsEIN2-2 RNAi lines exhibit ethylene insensitivity as 

reflected by reduced shoot elongation and a decreased expression of ethylene-responsive genes, 

suggesting that both genes are integral to ethylene signaling in rice. Interestingly, silencing of 

OsEIN2-2 results in increased susceptibility of the RNAi lines to M. oryzae and Burkholderia glumae 

(Zhou et al., 2006), whereas antisense suppression of OsEIN2 was recently shown to have a 

positive effect on basal resistance of rice to the fungal brown spot pathogen Cochliobolus 

miyabeanus (Chapter 7). Taken together with the opposite effects of Ethephon application on 

blast and brown spot development (Singh et al., 2004; Chapter 7), these data support a model in 

which ET acts as a two-faced defense regulator that alleviates stress caused by M. oryzae and B. 

glumae while suppressing basal resistance to C. miyabeanus. 
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2.2.4. Abscisic acid signaling pathway 

 Abscisic acid not only governs a variety of growth and developmental processes, including 

seed development and regulation of stomatal aperture, but also plays a crucial role in the 

initiation of adaptive responses to salt, drought, osmotic and cold stress (Fujita et al., 2006). In 

addition to this well-documented function in the response to abiotic stress, a fast-growing 

number of reports indicate that ABA is also prominently involved in regulating and integrating 

biotic stress-response signaling networks. Although both positive and negative effects of ABA 

on plant immune responses have been reported, ABA predominantly behaves as a negative 

regulator of disease resistance, with ABA deficiency resulting in enhanced resistance to an array 

of pathogens in several plant species (Chapter 6; Mauch-Mani and Mauch, 2005). Moreover, 

elegant research by de Torres-Zabala et al. (2007) recently revealed that Pseudomonas syringae 

specifically targets the ABA signaling pathway to cause disease in Arabidopsis, suggesting that 

ABA is a susceptibility factor for this bacterium. Curiously, this finding echoes a previous report 

in rice where foliar application of ABA or abiotic stress treatment was shown to enhance 

susceptibility to M. oryzae through suppression of the so-called ‘whole-plant-specific resistance’, 

an age-related resistance phenomenon that is observed exclusively in intact rice seedlings (Koga 

et al., 2004). Consonant with this is the finding that exogenous ABA, when applied to young rice 

seedlings, antagonizes transcription of the defense-related Rir1b gene and attenuates 

probenazole-induced resistance to M. oryzae (Schaffrath et al., 2000; Cooper et al., 2003). 

Additional data supporting the notion that ABA plays a negative role in the rice defense signaling 

network comes from some intriguing work by the Yang lab, demonstrating that RNAi 

suppression of OsMPK5, an ABA-inducible mitogen-activated protein kinase, leads to 

constitutive PR gene expression and enhancement of resistance to M. oryzae and the bacterial 

pathogen Burkholderia glumae (Xiong and Yang, 2003; Zhou et al., 2006). However, ABA does not 

appear to condition susceptibility against all rice pathogens, as the same RNAi lines were found 

to be compromised in the expression of ABA-inducible resistance to C. miyabeanus (Chapter 7). 

Like ethylene, ABA thus seems to play an ambivalent and widespread role in modulating rice 

defenses, acting as either a positive or negative regulator of disease resistance by interfering at 

multiple levels with biotic and abiotic stress signaling cascades.  

 

2.2.5. Gibberellin signaling pathway 

 Gibberellins (GAs) are diterpenoid plant hormones that act at all stages in the plant life cycle 

by promoting germination, hypocotyl elongation, root, leaf, stem, and fruit growth, greening of 

leaves, flowering, and flower and seed development. The origin of research into GAs can be 
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traced back to Japanese plant pathologists in the late 1800’s who were studying a devastating rice 

disease referred to as ‘bakanae’ (foolish seedling). Symptoms of the disease included 

exceptionally tall seedlings that toppled over before they had a chance to mature and flower, 

slender leaves, and stunted roots. In 1926, Eicchi Kurosawa tied the elongation of bakanae-

infected rice seedlings to a stimulus derived from the fungus Gibberella fujikuroi (=Fusarium 

moniliforme). Later on, the stimulus was crystallized and named ‘gibberellin’ after the fungus it was 

isolated from. However, it was not until the mid 1950s that researchers became aware of 

gibberellins as naturally occurring substances in higher plants.  

 Research over the past few years has uncovered the principal steps associated with GA 

perception and signal transduction in rice and Arabidopsis (Fig. 2.1.). Current concepts suggest 

that GA promotes plant growth by inducing the degradation of DELLAs, a group of nuclear 

growth-repressing proteins belonging to the plant-specific GRAS superfamily (Harberd, 2003). 

In rice, binding of bioactive GA to the soluble GA receptor GID1 induces interaction with the 

only DELLA protein present, SLR1 (Hartweck and Olszewski, 2006; Ueguchi-Tanaka et al., 

2007). The stabilized trio-complex consisting of GA, GID1, and SLR1 is then targeted for 

ubiquitination by the F-box protein GID2, resulting in rapid degradation of SLR1 by the 26S 

proteasome, thereby relieving the DELLA-mediated growth restraint (Eckardt, 2007). The same 

pathway is operative in Arabidopsis with three GA receptors (GIDa, GIDb, and GIDc), five 

DELLA proteins (RGA, GAI, RGL1, RLG2, and RLG3), and the F-box protein SLY1 (for 

review see Jiang and Fu, 2007). 

 

 
 
 
Figure 2.1. Model depicting the various 
interactions among the established GA 
signaling components (Schwechheimer, 
2007). GA, when bound to the GID1 GA 
receptor, induces the interaction of the GA 
receptor with the DELLA proteins. This is 
followed by DELLA ubiquitylation via 
SCFDELLA/GID2 and DELLA degradation by 
the 26S proteasome (UBI, ubiquitin). How 
SCFDELLA/GID2 gains its DELLA protein 
specificity in response to GA binding is not 
yet understood.  
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 In contrast to its well-documented role as a plant growth regulator, GA has only recently 

been implicated in biotic stress-response signaling (Smirnoff and Grant, 2008). In some elegant 

work, Navarro et al. (2008) demonstrated that loss-of-function mutations in DELLA proteins 

render Arabidopsis more resistant to the bacterial speck pathogen P. syringae pv. tomato (Pst) 

through priming of the SA-dependent defense pathway. By contrast, the same set of mutants 

proved to be enhanced susceptible to the necrotrophic pathogen Alternaria brassicicola, a 

phenomenon which correlated with attenuated induction of the JA-reporter gene PDF1.2. On 

the basis of these and other findings, the authors contemplated that DELLAs promote resistance 

to necrotrophs and susceptibility to biotrophs, partly by modulating the SA/JA balance (Navarro 

et al., 2008). In rice, there are currently no published reports exploring the involvement of GAs 

or DELLA in the context of plant-pathogen interactions. However, a series of studies by Day 

and colleagues (2003, 2004) marks the first identification of two other members of the GRAS 

gene family, i.e. CIGR1 and CIGR2, as having a possible involvement in attacker-induced 

defense responses. Both genes, which are rapidly inducible by bio-active GA, were shown to be 

dramatically upregulated upon exposure of rice cells to a M. oryzae-derived chitin elicitor, but not 

following challenge with bacterial pathogens, implicating the necessity for a fungal-specific factor 

in the signaling pathway leading to induction of CIGR1 and CIGR2 expression. Interestingly, 

localization experiments using GFP-fusions of both CIGR1 and CIGR2 in a transient onion 

assay confirmed the nuclear localization of both proteins, supporting a possible role of each as 

transcriptional regulators in elicitor-induced defense responses. As GA-induced activation of 

CIGR1/2 is impaired in slr1-1 mutant plants (Day et al., 2004), it will be interesting to assess 

whether SLR1 in turn acts as a transcriptional activator of CIGR1 and CIGR2 prior to its 

degradation in response to GA.  

 

2.2.6. Auxin signaling pathway 

 Like gibberellins, auxin regulates almost every aspect of plant development. At the molecular 

level, auxin induces gene expression through direct physical interaction with TIR1-like F-box 

receptor proteins (Quint and Gray, 2006). These interactions catalyze the destruction of 

members of the AUX/IAA family of transcriptional repressor proteins via the SCF (Skp1-

Cullin-F-box) E3-ubiquitin ligase proteasome pathway (Gray et al., 2001; Dharmasiri et al., 2005; 

Kepinski and Leyser, 2005). The degradation of AUX/IAA proteins in turn allows activation of 

Auxin Response Factors (ARFs), leading to expression of auxin-responsive genes (Hagen and 

Guilfoyle, 2002). Interestingly, a growing body of evidence indicates that some pathogens either 

produce auxin themselves or increase plant auxin biosynthesis upon infection to manipulate the 
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host’s defensive and developmental machinery (Glickmann et al., 1998; Maor et al., 2004; Valls et 

al., 2006). Deregulation of auxin-responsive genes also occurs upon treatment with the PAMP 

surrogate flg22 (Navarro et al., 2006). Flg22 recognition by the plant triggers the upregulation of 

a canonical microRNA (miR393) that hampers the formation of F-box proteins, thereby 

contributing to the downregulation of auxin signaling (Navarro et al., 2006). Moreover, 

augmenting auxin signaling through overexpression of a TIR1 paralog that is partially refractory 

to miR393 renders Arabidopsis more susceptible to Pseudomonas syringae, while attenuation of 

auxin signaling through miR393 overexpression increases resistance to the latter pathogen. These 

findings indicate that repression of auxin signaling is an integral component of the bacterial-

induced plant immune response (Navarro et al., 2006). Notably, in some interesting work using 

whole-genome transcription profiling, Wang et al. (2007) recently reported that plant treatment 

with SA causes a stabilization of AUX/IAA repressor proteins and inhibition of auxin responses, 

suggesting that SA antagonizes the auxin signaling pathway as part of the plant defense 

mechanism. 

 Consistent with auxin promoting disease susceptibility in dicots, Ding et al. (2008) recently 

uncovered auxin as an important virulence factor in Xoo-induced disease on rice. Xoo infection 

was found to induce expression of several auxin biosynthesis-related genes, leading to local 

accumulation of the main auxin indole-3-acetic acid (IAA). Curiously, Xoo-induced IAA 

accumulation triggered the induction of several expansins, a highly conserved multigene family 

of cell wall proteins that mediate pH-dependent wall loosening (Humphrey et al., 2007). 

Although loosening the cell wall is a vital process during auxin-regulated plant growth and 

development, it may also render the plant more vulnerable to biotic intruders by facilitating 

pathogen entry or allowing enhanced nutrient leakage. Indeed, disease tests with expansin-

overexpressing rice plants revealed enhanced susceptibility, suggesting that Xoo-induced auxin-

stimulated expansin production may be one of the mechanisms used by this pathogen to weaken 

the rice cell wall and, hence, inflict disease. In line with this assumption, comparative analysis of 

the defense mechanisms in compatible and incompatible rice-Xoo interactions demonstrated that 

resistant rice plants counteract Xoo-induced cell wall disturbance by suppressing attacker-induced 

auxin signaling through hyperactivation of the IAA-conjugating amido synthetase GH3-8 (Ding 

et al., 2008). Whether the auxin response pathway also impacts rice resistance to necrotrophic 

pathogen attack, as was recently shown in Arabidopsis (Llorente et al., 2008), remains to be 

explored.  
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2.2.7. Brassinosteroid signaling pathway 

 About a decade ago, the discovery of brassinosteroid-deficient Arabidopsis mutants 

uncovered brassinosteroids (BRs) as a novel class of polyhydroxylated phytohormones with 

important roles in regulating various cellular and developmental processes (Clouse and Sasse, 

1998). Since then, molecular genetic studies in both Arabidopsis and rice have established a 

detailed model of the BR signaling pathway leading from BR perception at the cell surface to 

regulation of transcription in the nucleus (Fig. 2.2). According to current concepts, BRs directly 

bind to the extracellular domain of the receptor kinase BRI1 to activate its kinase activity and 

promote heterodimerization with, and phosphorylation of, another receptor kinase, BAK1 

(Kinoshita et al., 2005; Nakamura et al., 2006). Downstream of these receptor kinases, the BIN2 

kinase and BSU1 phosphatase regulate the phosphorylation status of the homologous 

transcription factors BZR1 and BZR2. BRs activate BZR1 and BZR2 by inducing their 

dephosphorylation, possibly by inhibiting BIN2 or activating BSU1. Finally, activated BZR1 and 

BZR2 directly bind BR-responsive promoters, causing transcriptional changes that ultimately 

increase plant growth and reduce BR biosynthesis (Gendron and Wang, 2007). Recently, 14-3-3 

proteins joined the list of signaling components with a role in BR signaling (Gampala et al., 

2007). 14-3-3s are highly conserved phosphopeptide-binding proteins that interact with a vast 

array of cellular proteins in a sequence-specific and phosphorylation-dependent manner. By 

using yeast-two-hybrid screens and a range of protein-protein interaction assays, Bai et al. (2007) 

recently demonstrated that all eight rice 14-3-3 proteins modulate BR signaling by specifically 

inhibiting the function of phosphorylated BZR1 through cytoplasmic retention. Interestingly, 

evidence is accumulating that the same set of 14-3-3 proteins is also prominently involved in the 

response to pathogens, thereby providing a potential functional interface between BR signaling 

and rice defense. For example, at least four 14-3-3 proteins were reported to be differentially 

regulated in interactions of rice with Xoo and M. oryzae, with the corresponding genes being 

expressed faster and/or to a higher extent in incompatible interactions versus compatible ones 

(Cooper et al., 2003; Chen et al., 2006). Moreover, recent findings demonstrate that silencing of 

the 14-3-3 protein gene GF14e induces susceptibility to R. solani and resistance to Xoo (Bruce et 

al., 2008). A more direct link between BRs and rice innate immunity, however, is provided by 

Nakashita et al. (2003), who showed that treatment of tobacco or rice with BRs induces 

resistance against a variety of hemibiotrophic pathogens, among which M. oryzae and Xoo. 

Interestingly, this increase in resistance was independent of SA accumulation and PR gene 

expression, suggesting that BRs regulate rice disease resistance through an SA-independent 

pathway. One explanation for this SA-independency may lie in the particularly complex interplay 
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of BRs with other plant hormones, such as JA, ET, ABA and auxin (Krishna, 2003). Of 

particular interest in this regard is that some fungal pathogens are known to synthesize toxins 

that closely resemble steroid hormones such as zealarenone (Robert-Seillaniantz et al., 2007). 

Analogous to the situation with ABA and auxin, it is not unlikely that pathogenic microbes 

employ such BR mimicry as a virulence strategy to tap into the plant’s signaling infrastructure to 

interfere with host defense. 

 
Figure 2.2. Model describing BR signaling (source http://www.ProteinLounge.com).  

In the absence of BRs, the kinase domains of the BRI1 homodimer are inhibited by both their own C-terminal 
domain and by an interaction with BKI1. This allows BIN2 to phosphorylate and inactivate the brassinosteroid 
response transcription factors (BRFs), including BZR1. Direct binding of BL to BRI1 results in conformational 
changes of the kinase domain, leading to the phosphorylation of the C-terminal domain of BRI1 and 
phosphorylation of BIK1, which causes displacement of BKI1 from the plasma membrane and the release of 
autoinhibition of BRI1. These events lead to BRI1’s association with BAK1 and consequent activation of the 
receptor. The active signaling receptor complex inhibits the activity of BIN2, allowing dephosphorylation of the 
BRFs by BSU1 and activation or repression of their target genes.  
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2.3. Additional circuit makers: a role for defense-related MAP 

kinases, transcription factors and small GTPases 

2.3.1. The MAPK signaling paradigm 

 Integration of the vast array of cellular processes that enable plants to grow, reproduce and 

fend off microbial pathogens requires the coordinated activity of an elaborate matrix of signal 

transduction proteins, within which one of the most prominent super-families consists of the 

protein kinases (Hamel et al., 2006). Within this superfamily, the mitogen-activated protein 

kinases (MAPKs) form a distinctive and highly conserved subfamily. A particular MAPK cascade 

minimally consists of three functionally interlinked protein kinases: a MAPK, a MAPK kinase 

(MAPKK), and a MAPK kinase kinase (MAPKKK). This hierarchical organization allows 

MAPK cascades to operate as core signal transmission modules capable of efficiently amplifying, 

integrating and channeling information between the cellular environment and the metabolic and 

transcriptional response centers (Hamel et al., 2006). Interestingly, mounting biochemical and 

genetic evidence points to a complex network organization in which kinases at one level can 

harmonize input signals from more than one upstream effector and can, in turn, act upon more 

than one target, thereby creating a remarkably versatile matrix of signaling capacities (Cardinale 

et al., 2002; Nakagami et al., 2005). To date, a total of 20 rice genes encoding MAPK cascade 

components have been isolated and partially characterized. These include one MAPKKK 

(OsEDR1) (Kim et al., 2003), two MAPKKs (OsMEK1) (Kim et al., 2000; Wen et al., 2002), and 

17 MAPKs (Rohila and Yang, 2007). Most are activated by defense signal molecules and/or 

pathogen infection and are, directly or indirectly, implicated in the rice defense response (for a 

comprehensive review see Rohila and Yang, 2007).  

In 1999, He et al. isolated the first MAPK in rice as a M. oryzae- and wound-inducible 

protein, and accordingly designated it as OsBWMK1 (blast- and wound-induced MAP kinase). 

More recently, OsBWMK1 was shown to target and phosphorylate OsEREBP1, an ethylene 

responsive element binding protein transcription factor (Cheong et al., 2003). Interestingly, the 

resulting phosphorylated OsEREBP1 exhibited enhanced DNA-binding capacity to the GCC 

box element (AGCCGCC) present in the promoters of several basic PR genes. Moreover, 

ectopic expression of OsBMWK1 in tobacco resulted in enhanced PR transcript accumulation 

and significantly enhanced resistance to the oomycete Phytophthora parasitica var. nicotianae and the 

bacterial pathogen Pseudomonas syringae pv. tabacci. These findings suggest that OsBWMK1 

modulates defense gene activation and disease resistance through phosphorylation of one or 

more EREPB-like transcription factors (Cheong et al., 2003). However, considering the fact that 
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the OsBWMK1 promoter contains several cis-acting regulatory elements known to be involved 

in biotic and abiotic stress adaptation (Hong et al., 2007), it is tempting to speculate that 

OsBWMK1 may exert a more versatile role in governing rice responses to a variety of 

environmental cues, thereby possibly serving as a node of convergence. Consistent with this 

hypothesis, OsBWMK1 expression was recently shown to be differentially regulated by cold, 

drought, dark and JA, in addition to other signaling molecules, including SA, BTH, and fungal 

elicitors (Hong et al., 2007).  

Presumably the most extensively studied among all of the rice MAPKs, OsMPK5 (also 

known as OsMSRMK2, OsMAPK2, OsMAPK5, OsBIMK1, or OsMAP1) has been 

independently isolated by at least five research groups and was shown to be induced at the 

mRNA level by a variety of biotic and abiotic stresses (Xiong et al., 2001; Agrawal et al., 2002; 

Huang et al., 2002; Song and Goodman, 2002; Wen et al., 2002). Recently, OsMPK5 was also 

linked with spontaneous cell death in the Sekiguchi lesion-mimic mutant (Reyna and Yang, 

2006). Interestingly, OsMPK5 seems to function at the intersection of a few different signaling 

pathways, as suppression of OsMPK5 expression and its kinase activity abates abiotic stress 

tolerance while increasing resistance to M. oryzae and Burkholderia glumae (Xiong and Yang, 2003). 

Another well-studied rice MAPK with respect to pathogen-induced defense signaling is 

OsMPK1. In some elegant work, Lieberherr et al. (2005) reported this kinase to be central to 

PAMP signaling activated upon perception of a M. oryzae-derived sphingolipid elicitor. One 

interesting finding in this study is that RNAi suppression of OsMPK1 culminates in enhanced 

expression of OsMPK5, suggesting a potential crosstalk and possible functional redundancy 

between these evolutionary-related MAPKs. The authors also demonstrated that OsMPK1 

functions downstream of the small GTPase OsRac1 and heterotrimeric G-protein, both of 

which are master regulatory proteins in the rice defense response (Suharsono et al., 2002; Thao 

et al., 2007). In this context, it is worth noting that OsMPK1 is the closest homolog of MPK6, 

which has recently been identified as a positive regulator of broad-spectrum disease resistance in 

Arabidopsis (Menke et al., 2004). However attractive, a similar role for OsMPK1 in the rice 

defense network is rather unlikely since silencing of OsMPK1 had no marked effect on the 

response of the silenced plants to either virulent or avirulent isolates of M. oryzae (Lieberherr et 

al., 2005). Most recently, OsMPK6 was added to the list of MAPKs with a putative role in rice 

innate immunity. Yuan et al. (2007a) reported that inactivation of OsMPK6 in mutant mpk6 

plants resulted in elevated levels of SA, constitutive expression of OsWRKY03- and OsNH1-

dependent defense genes, and spontaneous development of a lesion-mimic/cell death 

phenotype. Moreover, both mpk6 knockout and MPK6 RNAi plants displayed an enhanced 
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resistance to different races of Xoo, suggesting that OsMPK6 functions as a negative regulator of 

resistance to Xoo, possibly via repression of the OsNH1-dependent SA response. In addition to 

aforementioned MAPKs, various other MAPK cascade components have been shown to be 

differentially regulated in response to wounding and/or pathogen infection, including 

interactions with avirulent pathogens (Rohila and Yang, 2007). However, additional research is 

needed to determine if and how these kinases operate in connection with induced defense 

pathway regulation and signal crosstalk.  

2.3.2. Transcription factors and regulation of defense 

 Proper context-dependent transcriptional activation of host defense genes is integral to plant 

defense in response to pathogen infection. Genome-wide transcript profiling has revealed that 

up to 25% of all Arabidopsis genes respond to pathogen attack by altering their transcript levels 

(Maleck et al., 2000; Tao et al., 2003). Such comprehensive reprogramming implies the existence 

of a sophisticated regulatory system. Indeed, accumulating evidence indicates that regulation of 

the defense transcriptome is mediated by a complex network of interconnected circuits linking 

signaling and gene regulation through well-defined changes in the levels and/or activities of a 

large number of sequence-specific transcription factors (Eulgem, 2005). Transcription factors 

(TFs) are divided into several families based upon the characteristics of their respective DNA-

binding domains. Out of the more than 45 different TF gene families (Jalali et al., 2006), at least 

six have been implicated in rice disease resistance, including the comprehensively studied 

AP2/ERFs, WRKYs, MYBs and bZIPs.  

 Originally identified as binding factors of ET-responsive GCC box elements, AP2/ERFs 

(ethylene response factors) have emerged as important regulators of plant responses to various 

environmental signals, including abiotic stresses (Fujimoto et al., 2001; Park et al., 2001) and 

pathogen infection (Lorenzo et al., 2003; Gutterson and Reuber, 2004, McGrath et al., 2005, Pre 

et al, 2008). Rice is estimated to possess at least 139 ERF genes (Nakano et al., 2006; 

http:/ricetfdb.bio.uni-potsdam.de). Among these, several have been claimed to be involved in 

the regulation of disease resistance and abiotic stress tolerance on the basis of altered transcript 

abundance in response to various biotic or abiotic stress treatments (Yang et al., 2002; Cao et al., 

2006; Nakano et al., 2006; Lin et al., 2007). However, in many cases, robust genetic evidence 

supporting these claims is still lacking. One exception, however, is the ethylene-response-element 

binding protein OsEREBP1 (Cheong et al., 2003). Using an mRNA differential display 

approach, Kim et al. (2000) originally isolated OsEREBP1 from suspension-cultured rice cells 

treated with a M. oryzae-derived elicitor. In a more comprehensive study, Cheong et al. (2003) 

subsequently demonstrated that in vitro phosphorylation of OsEREBP1 by the MAP kinase 

 23



Chapter 2 

BWMK1 enhances the ability of the former to bind to the cognate GCC-box motif present in 

the promoter of various rice PR genes, thereby highlighting this TF as important for rice 

pathogen defense.  

 Besides AP2/ERF TFs, considerable attention was given in recent years to the participation 

of WRKY proteins in the plant’s transcriptional machinery (Eulgem and Somssich, 2007). As is 

the case in Arabidopsis, rice WRKY TFs form a superfamily consisting of an estimated 102 

members that fall into three major groups on a structural basis (Ross et al., 2007). Several 

OsWRKY genes are reported to be activated in response to a plethora of biotic and abiotic stress 

factors, including exogenously administered SA or JA (Ryu et al., 2006), benzothiadiazole 

(Shimono et al., 2007), fungal elicitors (Akimoto-Tomiyama et al., 2003; Zhang et al., 2008), 

mechanical wounding (Guo et al., 2004; Zhang et al., 2008), UV-B radiation (Wang et al., 2007) 

and infection with M. oryzae or Xoo (Wen et al., 2003; Ryu et al., 2006). Moreover, OsWRKY03 

(Liu et al., 2005) and OsWRKY71 (Liu et al., 2007; Chujo et al., 2008) have been functionally 

characterized and placed upstream of OsNH1 similar to OsWRKY13, which functions as a 

molecular switch between the SA and JA signaling pathways (Qiu et al., 2007; Cai et al., 2008). 

OsWRKY31, on the other hand, appears to be positioned at the crossroads of the auxin 

signaling pathway and a yet ill-defined disease resistance conduit (Zhang et al., 2008), while 

plants with reduced amounts of OsWRKY45 failed to develop BTH-inducible resistance to M. 

oryzae (Shimono et al., 2007). Despite these intriguing results, few upstream regulators of rice 

WRKY factors in defense signaling pathways have yet been characterized, and no WRKY factor 

had been shown to function directly downstream of a rice receptor-like kinase until Peng et al. 

(2008) identified OsWRKY62 in a yeast-two-hybrid screen for proteins that interact with the Xoo 

resistance gene Xa21. In this study, it was shown that OsWRKY62 gene encodes two splice 

variants, OsWRKY62.1 and OsWRKY62.2, both of which partially localize to the nucleus. 

Interestingly, transgenic plants overexpressing OsWRKY62.1 were compromised in basal defense 

and Xa21-mediated resistance to Xoo, while overexpression of OsWRKY62.1 resulted in a 

significantly reduced accumulation of pathogen defense-related transcripts upon bacterial 

infection. This implies that OsWRKY62 functions as a negative regulator of innate immunity in 

rice, modulating both basal and race-specific defense responses. Other rice TFs with a reported 

regulatory role in rice defense against microbial pathogens include the MYB-like TF JAmyb, the 

bZIP protein RF2b, and several members of the BELL and NAC TF families (Lee et al., 2001; 

Dai et al., 2004; Fitzgerald et al., 2005; Luo et al., 2005; Nakashima et al., 2007; Hijhawan et al., 

2008).  
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 In conclusion, TFs are widely implicated in the modulation of numerous rice defense 

responses. Along with additional signaling components, they form the core of a complex 

transcriptional circuitry that consists of both positive and negative control elements, possibly 

allowing for an efficient yet balanced amplification and diversification of defense signals. 

Continued research in this area is predicated on the notion that effective utilization of TF-based 

technologies in the next generation of biotechnology crops will require a thorough 

understanding of the various transcriptional networks governing the plant’s major biological 

processes (Century et al., 2008).  

 

2.3.3. The small GTPase OsRAC1: a molecular hub for signal integration and 

diversification  

 In addition to MAP kinases and TFs, a number of other regulatory genes controlling 

downstream defense gene expression have been identified in rice, including OsEDS5, OsDR8, 

NRR, OsNDR1, Pti1a, OsSGT1, OsCOI1 and OsRAR1 (Fitzgerald et al., 2005; Wang et al., 

2006b; Takahashi et al., 2007; Thao et al., 2007; Vergne et al., 2007; Wang et al., 2008b). 

Moreover, an extensive series of studies by Shimamoto’s group have provided fascinating 

insights into the myriad cellular responses regulated by the small GTPase OsRac1. One of the 

better studied master regulators in the rice defense response, OsRac1 belongs to the plant-

specific family of RAC/ROP GTPases, which have recently emerged as a class of versatile 

signaling molecules orchestrating numerous cellular responses in different plant species (Nibau 

et al., 2006; Yang and Fu, 2007). Initial studies showed that OsRac1, which is localized in the 

plasma membrane, transiently stimulates ROS production through activation of an NAPDH 

oxidase with resultant enhancement of resistance to M. oryzae and Xoo (Kawasaki et al., 1999; 

Ono et al., 2001). Interestingly, OsRac1 also suppresses expression of a metallothionein gene 

that scavenges ROS, thereby further enhancing the ROS-signaled defense response (Wong et al., 

2004). Moreover, in concert with the heterotrimeric G-protein subunit RGA1, OsRac1 controls 

the stability and elicitor-induced activation of the rice MAP kinase OsMPK1 (Lieberherr et al., 

2005; Fujiwara et al., 2006). Another target of OsRac1 is cinnamoyl-CoA reductase (CCR), a key 

enzyme involved in lignin biosynthesis (Wong et al., 2006). Lignin, which is a heterogeneous 

tridimensional phenolics polymer resulting from the oxidative polymerization of monolignols, is 

an important factor in plant defense responses, as it presents an undegradable physical barrier to 

most pathogens (Boerjan et al., 2003). Interestingly, transgenic cell cultures constitutively 

expressing OsRac1 exhibited enhanced lignin accumulation, which correlated with both 

increased CCR activity and elevated ROS production. It is therefore not unlikely that OsRac1 
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has a dual function in lignin biosynthesis to regulate both NAPDH oxidase and CCRs (Wong et 

al., 2006). Recent evidence connects OsRac1 with yet another range of effector proteins, 

including the molecular chaperones OsRAR1 and OsSGT1, the scaffolding protein OsRACK1 

and the heat shock proteins OsHSP70 and OsHSP90, all of which are well-conserved 

components of plant innate immunity (Thao et al., 2007; Fujiwara et al., 2008; Nakashima et al., 

2008). Emerging from this extensive series of studies is the view that OsRac1 encodes a master 

switch for activation of inducible defense responses in rice, functioning at the crossroads of 

multiple defense-signaling pathways, as well as controlling a vast array of effector proteins 

involved in various cellular and physiological processes. Manipulation of regulatory genes like 

these can potentially provide broad-spectrum induced resistance in transgenic plants. Indeed, 

constitutive overexpression of OsRac1 provides increased resistance to rice blast and bacterial 

blight infections, whereas a dominant-negative version of OsRac1 compromises basal and R-

gene-mediated resistance to both these pathogens (Ono et al., 2001; Suharsono et al., 2002). It 

should be noted, however, that not all studies point to a stimulatory effect of OsRac proteins on 

rice resistance. Thus, transgenic rice plants overexpressing OsRacB showed enhanced disease 

symptoms upon infection with M. oryzae, implicating OsRacB as a negative regulator of basal 

disease resistance in rice (Jung et al., 2006). 

 

2.4. Collaboration and antagonism: cross-talk in rice defense 

signaling  

 Genetic and molecular analyses have so far identified many important components involved 

in different defense signaling pathways. However, rapidly accumulating evidence indicates that 

defense signaling is not merely mediated by parallel, linear pathways but rather consists of a 

complex regulatory network that connects the different pathways enabling each to assist or 

antagonize the others through a cohort of positive and negative interactions (Kunkel and 

Brooks, 2002; Pieterse and Dicke, 2007). Such ‘crosstalk’ between individual pathways is thought 

to provide the plant with a powerful regulatory potential, which helps the plant to ‘decide’ on the 

most appropriate and cost-efficient defensive strategy, depending on the type of attacker it is 

encountering (Bostock, 2005; Koornneef and Pieterse, 2008). Yet, it may also allow successful 

pathogens to manipulate the plant’s defensive machinery to their own benefit by shutting down 

biologically effectual defenses through negative crosstalk (for review see Spoel and Dong, 2008). 
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2.4.1. Crosstalk between SA and JA signaling  

 Generally speaking, JA signaling contributes to plant resistance against herbivorous insects 

and necrotrophic pathogens, whereas SA signaling is predominantly associated with resistance 

against biotrophic pathogens. Although there is evidence for both positive and negative 

relationships between these pathways in many plant species (Van Wees et al., 2000; Mur et al., 

2006; Truman et al., 2007), the primary mode of interaction appears to be mutual antagonism 

with corresponding trade-offs between biotroph resistance on the one hand, and resistance to 

necrotrophic pathogens and insect herbivores on the other hand (Bostock, 2005; Pieterse and 

Dicke, 2007). In rice, crosstalk between SA and JA signaling can be inferred from expression 

analysis of some defense genes and alterations in endogenous JA and SA levels in response to 

wounding. For instance, transcript levels of SalT, OsPR1b, and OsIRL genes are upregulated in 

response to blast infection, JA, or fungal elicitor treatment, but this effect appears to be negated 

when plants are treated with both SA and JA or fungal elicitors (Agrawal et al., 2001; Kim et al., 

2003, 2004). Moreover, during the early response to wounding, an inverse kinetic pattern is 

observed in terms of accumulation of endogenous SA and JA, raising the prospect of negative 

crosstalk in the direction of JA damping SA action (Lee et al., 2004). Additional evidence 

supporting negative network connections between SA and JA comes from several gene 

expression studies demonstrating enhanced transcript accumulation of the JA biosynthetic gene 

OsAOS2 and the JA-regulated TF gene JaMYB in SA-deficient NahG transgenics (Lee et al., 

2001; Mei et al., 2006). 

 Over the past few years, various regulatory components involved in SA/JA crosstalk have 

been identified (Spoel et al., 2003; Li et al., 2004; Brodersen et al., 2006; Mao et al., 2007; 

Ndamukong et al., 2007; Koornneef and Pieterse, 2008). These include proteins with stimulatory 

and repressive functions in both SA-dependent and JA-dependent responses. One of the key 

players in cross-communication between SA and JA in dicots is NPR1, a master regulator of SA-

mediated gene expression and pathogen-induced systemic acquired resistance (SAR). Current 

models in dicots indicate that upon SAR activation, SA-induced redox perturbation reduces the 

intermolecular disulphide bonds that normally keep NPR1 in an inactive oligomeric state in the 

cytosol. This reduction in turn releases monomeric NPR1, which is subsequently translocated to 

the nucleus, where it interacts with members of the TGA subfamily of bZIP TFs to activate PR 

gene expression (Pieterse and van Loon, 2004; Kesarwani et al., 2007). However, NPR1 not only 

plays a role in the activation of SA-responsive PR genes, but is also required to prioritize SA-

dependent responses over JA-dependent responses, as mutants in this protein are impaired in the 

SA-mediated suppression of JA-marker genes such as PDF1.2 and LOX2 (Spoel et al., 2003). 
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Notably, the function of NPR1 in cross-talk between SA and JA signaling does not require 

nuclear localization, which is suggestive of a novel function for this master regulatory protein in 

the cytosol (Spoel et al., 2003).  

 Interestingly, there is strong evidence for a similar NPR1-mediated mechanism operative in 

rice. Analogous to the situation in dicots, OsNH1, the closest rice homolog of NPR1, is 

constitutively present in the cytosol and only migrates to the nucleus following attacker-induced 

cellular redox changes (Yuan et al., 2007b). Activation of SA-responsive PR genes in OsNH1-

overexpressing plants requires OsNH1 to be targeted to the nucleus, whereas repression of JA-

inducible genes in the latter plants only occurs when OsNH1 is localized in the cytoplasm. 

Moreover, constitutive localization of a site-mutated OsNH1 protein in the nucleus abolishes the 

enhanced herbivore susceptibility associated with OsNH1-conditioned pathogen resistance 

(Yuan et al., 2007b), a phenomenon most likely due to de-repression of JA signaling under these 

conditions. These data elegantly illustrate the importance of OsNH1 in regulating and 

intertwining the SA- and JA-dependent signaling pathways and underscore the potential of site-

mutated OsNH1 as a workable target for engineering broad-spectrum disease resistance in rice 

without disturbing the JA-regulated insect resistance machinery. 

 A role in the crosstalk between SA- and JA-signaling also is suggested for the plant-specific 

transcription factor OsWRKY13 (Qiu et al., 2007). Expression of OsWRKY13 is induced by each 

hormone, as well as a range of other signaling molecules including BTH, INA and Ethephon. 

When ectopically expressed, OsWRKY13 confers enhanced resistance to bacterial blight and 

fungal blast, accompanied by activation of SA biosynthesis-related genes and concomitant 

suppression of genes implicated in JA biosynthesis. This trade-off manifest at the level of 

hormone synthesis is also apparent at the level of defense gene induction, with OsWRKY13-

overexpressing lines displaying enhanced accumulation of SA-responsive PR transcripts coupled 

to a dramatic downregulation of JA-controlled genes. OsWRKY13 may thus serve as a point for 

crosstalk and signal integration – an activator of SA-mediated defense responses and repressor of 

JA-induced responses. 
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2.4.2. Crosstalk between ET and ABA signaling  

 Mounting evidence indicates that ABA and ET function antagonistically during the rice 

defense response. For instance, exogenous application of ET has been shown to increase the 

level of resistance to M. oryzae, whereas treatment of rice plants with ABA lowers endogenous 

ET levels and, as a consequence, increases disease susceptibility to M. oryzae (Zhou et al., 2006). 

Remarkably, the ABA- and ET-provoked effects against M. oryzae are reverse of those observed 

against C. miyabeanus, tagging ET and ABA as critical modulators of antagonistic defense 

mechanisms (Koga et al., 2004a; Singh et al., 2004; Chapter 7). A mechanistic understanding of 

defense-related ABA/ET crosstalk in rice has derived largely from a limited number of studies 

where, as with SA/JA interactions, mutant and transgenic lines have identified the roles of key 

transcription factors and effector proteins controlling the possible nodes of convergence 

between these mutually antagonistic pathways. Elegant work by the Yang lab revealed that RNAi 

suppression of an ABA-inducible MAP kinase, OsMPK5, results in increased levels of 

endogenous ET, constitutive activation of PR genes, and enhanced resistance to M. oryzae and B. 

glumae (Xiong and Yang, 2003; Yang, 2007). The same RNAi lines, however, exhibit reduced 

tolerance to drought, salt, and cold treatments, and are impaired in the ability to develop ABA-

inducible resistance to C. miyabeanus (Xiong and Yang, 2003; Zhou et al., 2007; Chapter 7). On 

the other hand, work by Zhou et al. (2006) revealed that suppression of the ET-responsive 

transcription factor gene OsEIN2-2 leads to reduced sensitivity to ET and hypersensitivity to 

ABA. Compared to wild-type rice, the OsEIN2-2 suppression lines are diminished in their 

resistance to attack by M. oryzae and B. glumae but exhibit an enhanced tolerance to abiotic stress 

treatment (Zhou et al., 2007). Furthermore, consistent with ET inversely regulating blast and 

brown spot resistance, disease tests with OsEIN2 antisense plants revealed enhanced resistance 

to brown spot (Chapter 7). Collectively, these data suggest that OsMPK5, OsEIN2 and OsEIN2-2 

may mediate the antagonistic crosstalk between the ET and ABA pathways, thereby inversely 

regulating resistance to M. oryzae and B. glumae on the one hand, and abiotic stress tolerance as 

well as C. miyabeanus resistance on the other hand. 

2.4.3. Crosstalk between JA and ABA signaling  

 In dicotyledoneous plants, the interaction between JA and ABA signaling is rather complex, 

and both synergistic and antagonistic interactions have been reported, depending on the stress 

conditions examined. For instance, using PDF1.2, b-CHI and HEL transcript accumulation as 

markers for JA/ET-responsive gene expression in Arabidopsis, Anderson et al. (2004) 

demonstrated that both basal and JA/ET-induced defense gene expression was suppressed by 

exogenous ABA treatment but enhanced in the ABA-deficient aba1 and aba2 mutants, the latter 
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resulting in heightened resistance to the necrotroph Fusarium oxysporium. On the other hand, 

induction of JA synthesis by ABA has been widely documented (Adie et al., 2007; Asselbergh et 

al., 2008) and ABA and JA have been found to cooperate during the wound response through 

the concerted activation of the transcription factor AtMYC2 (Abe et al., 2003; Lorenzo et al., 

2004). In rice, Moons et al. (1997) reported endogenous ABA and JA levels to increase 

differentially with the dose and duration of salt stress. They also showed that ABA and JA 

regulate different sets of rice genes. For instance, while ABA treatment was not accompanied by 

activation of a cationic peroxidase, PR1a, PR10, and SalT, all of which are markedly induced by 

JA and salt stress, JA proved unable to induce expression of the ABA-responsive OsLEA3 

protein. Moreover, when applied together, ABA and JA inversely affected SalT and OsLEA3 

transcript levels, leading the authors to suggest that ABA and JA antagonistically regulate the 

expression of salt-stress inducible proteins associated with plant response to water deficit or 

pathogen challenge (Moons et al., 1997). However intriguing, the functional ramifications of 

such antagonistic ABA/JA crosstalk with respect to pathogen resistance are not clear nor have 

they been examined. Therefore, further experiments are needed to unequivocally delineate the 

role, if any, of the ABA-JA connection in regulating gene expression and pathogen defense 

responses in rice. 

 

 

2.5. Defense responses underpinning induced defense in rice

 Pathogen recognition and consequent signal transduction eventually culminates in the 

activation of a diverse array of sophisticated effector mechanisms that are instrumental in 

impeding further pathogen ingress. Direct assessment of the biochemical, cytomolecular, genetic, 

and physiological alterations during disease development has led to the identification of several 

defense responses that contribute to the establishment and/or maintenance of the induced 

defense state in rice. These include production of antimicrobial metabolites and pathogenesis-

related proteins, physical reinforcement of the cell walls through production of lignin, and the 

concerted expression of a battery of defense-related genes, including those involved in rapid and 

localized cell death. Although the antimicrobial properties of some of these effectors can and 

have been tested against pathogens in vitro, it has been difficult to assess the efficacy of single 

effectors during rice-pathogen interactions owing to the general lack of mutant and transgenic 

lines with defects in specific resistance traits. Another impediment to elucidating the causal roles 

of individual effector responses arises from the interplay that commonly occurs among defense-

related traits in plants.  
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2.5.1. The hypersensitive response 
 

2.5.1.1. Induced resistance and cell death regulation 

 One of the most efficient and immediate components of the plant´s inducible defensive 

repertoire is the hypersensitive response (HR), a form of programmed cell death (PCD) 

characterized by the rapid collapse and death of a limited number of cells in the vicinity of the 

invading pathogen (Heath, 2000). This HR cell death, which bears some of the morphological 

features of the apoptotic cell death processes in other metazoan organisms, primarily occurs in 

response to avirulent pathogens, in interactions involving race-specific resistance, and in many 

examples of nonhost resistance (Mysore and Ryu, 2004; Greenberg and Yao, 2004). In addition, 

HR cell death can also be activated, either directly or indirectly, in genetically susceptible rice 

plants in response to treatment with resistance-inducing agents (Zhang et al., 2004; Koga et al., 

2006; Tanabe et al., 2006; Ahn et al., 2005a,b; Chapter 3). For example, cholic acid, a bile acid 

elicitor, has been shown to act as a bona fide elicitor, while application of BTH, at least in intact 

plants, primes rice for higher frequencies of HR-like cell death responses at sites of attempted 

pathogen entry (Schweizer et al., 1999; Ahn et al., 2005b).  

 Despite the widespread interest, very little is known about the molecular mechanisms 

underlying HR and PCD in plants (Lam, 2004). Most of the structural orthologs of the key 

regulatory proteins of mammalian apoptosis are not encoded by the plant genome, except for 

BAX-INHIBITOR-1 (BI-1) and DEFENDER AGAINST APOPTOTIC DEATH-1 

(Greenberg and Yao, 2004). In rice, Matsumura et al. (2003) identified BI-1 as a key regulator of 

elicitor-triggered PCD in suspension-cultured rice cells. Cells treated with a cerebroside elicitor 

from M. oryzae showed a dramatic reduction in BI-1 transcript accumulation with concomitant 

progress of cell death, whereas over-expression of BI-1 severely attenuated cerebroside-conferred 

cell death. Taken together with the ability of cerebroside elicitors to induce HR cell death and 

increase M. oryzae resistance in rice leaves (Koga et al., 1998), these findings raise the possibility 

that BI-1-modulated cell death control may constitute an important facet of the cerebroside-

induced resistance response to the latter pathogen. A potential role for BI-1 and cell death 

control in induced plant resistance is further substantiated by studies of Hückelhoven et al. 

(2003, 2004), who found that downregulation of BI-1 expression closely correlated with the 

onset of chemical-induced resistance of barley to the powdery mildew Blumeria graminnis. 

Furthermore, over-expression of barley BI-1 at a single-cell level induced hyper-susceptibility and 

could reverse the fungal resistance conferred by the loss of MLO, a negative regulator of 

resistance and HR-like cell death. In Arabidopsis, Watanabe and Lam (2006, 2008) recently 

provided direct genetic evidence of a role for BI-1 as a critical modulator of biotic and abiotic 
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stress-induced cell death, suggesting that BI-1-mediated cell death control may be a conserved 

mechanism underlying induced defense in monocot and dicot plants.   

 

2.5.1.2. HR cell death in rice-pathogen interactions: A double-edged sword? 

 Most of the aforementioned studies relate to the HR induced by hemibiotrophic pathogens, 

such as the rice blast pathogen, M. oryzae. In fact, exciting new data suggest that rice blast defines 

a novel paradigm for hemibiotrophic plant infection, one in which each successive plant cell 

invasion is biotrophic but invidual invaded cells are no longer viable by the time the fungus 

moves into the next cell (Kankanala et al., 2007; Ribot et al., 2008). In contrast, the sheath blight 

pathogen, Rhizoctonia solani, and the brown spot pathogen, Cochliobolus miyabeanus, are considered 

necrotrophs. Both of these fungi kill host cells at very early stages in the infection and cause 

extensive damage (Ou, 1985). They also produce a variety of phytotoxins that likely promote 

host cell death (Xiao et al., 1991; Vidhyasekaran et al., 1997; Brooks, 2007). While it is easy to 

imagine that the HR could result in resistance against (hemi)biotrophic pathogens by restricting 

pathogen access to water and nutrients, the role of the HR in defense against necrotrophs, which 

kill host tissues and feed on the remains, is questionable. Indeed, hydroponic feeding of HR-

eliciting pyocyanin, a phenazine antibiotic implicated in P. aeruginosa-induced systemic resistance 

to rice blast, promotes susceptibility to R. solani and resistance to M. oryzae (Chapter 3). In a 

similar vein, Ahn et al. (2005b) showed a contrasting role of the HR in rice defense against M. 

oryzae and C. miyabeanus. In their study, they demonstrated that rapid induction of HR-associated 

cell death, resulting from either an incompatible gene-for-gene interaction, pre-treatment with 

conidial germination fluid from C. miyabeanus or application of BTH, dramatically increases 

resistance to M. oryzae but fails to protect rice against C. miyabeanus. Overall, these findings 

support the notion that rice requires distinct mechanisms for defense against M. oryzae, C. 

miyabeanus and R. solani and strengthen the contention that HR cell death can cascade either to 

the detriment or benefit of the plant depending on the type of host tissues and pathogenic 

lifestyle of the invading pathogen (Govrin and Levine, 2000; Van Baarlen et al., 2004; 

Glazebrook, 2005; Spoel and Dong, 2008).  

 

2.5.1.3. The role of reactive oxygen species 

The source: a plasma membrane NADPH oxidase 

 Over the years, data has accumulated indicating that the HR is correlated with a number of 

physical, physiological and molecular alterations, including deposition of lignin and callose into 

the plant cell wall (Garcion et al., 2007), and the production of phytoalexins, hydrolytic enzymes 
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and pathogenesis-related proteins (Greenberg and Yao, 2004). In a range of plant-pathogen 

interactions, the HR is also intimately associated with a rapid production and accumulation of 

reactive oxygen species (ROS) during the so-called oxidative burst. The term ROS describes 

radicals and other nonradical but reactive species derived from molecular oxygen, including the 

superoxide anion (O2
-) and hydrogen peroxide (H2O2). In addition to orchestrating HR cell 

death, ROS can perform multiple other functions in early plant defense responses. For instance, 

ROS can be directly toxic to pathogens but can also trigger phytoalexin biosynthesis and 

strengthen plant cell walls through the oxidative cross-linking of cell wall structural proteins. 

Moreover, ROS can induce arrays of cellular protectant and defense genes and may function as 

secondary messengers in the induction of systemic acquired resistance (Lamb and Dixon, 1997; 

Apel and Hirt, 2004). Although alternative mechanisms of ROS production have been described 

as well (Bolwell et al., 2002), most studies point to a plasma membrane NADPH oxidase as the 

dominant source of ROS derived from the oxidative burst (Van Breuseghem et al., 2008).   

  In mammalian phagocytes, NAPDH oxidase forms a multisubunit complex consisting of 

the cytosolic regulatory components Rac2, p67phox, p47phox, p40phox, and the integral membrane 

protein flavocytochrome b558, comprising the catalytic subunits gp91phox
 and p22phox (Babior, 

2004). The first plant NADPH oxidase gene to be identified was the rice gene OsrbohA, encoding 

a homolog of the mammalian catalytic subunit gp91phox (Groom et al., 1996). Subsequent studies 

documented Rboh genes (for respiratory burst oxidase homolog) in numerous plant species 

including Arabidopsis, tomato, tobacco and potato (Keller et al., 1998; Torres et al., 1998; 

Amicucci et al., 1999; Yoshioka et al., 2001, 2003; Simon-Plas et al., 2002). Arabidopsis, for 

instance, encodes 10 Atrboh isoforms involved in a diverse range of plant processes. Among 

these, AtrbohD and AtrbohF were shown to fine-tune the spatial control of ROS production and 

the HR during pathogen infection (Torres et al., 2002, 2005). However, rather then driving 

programmed cell death as originally thought, ROS generated by AtRboh proteins may actually 

prevent the relay of salicylic acid-dependent pro-death signals to cells surrounding an infection 

site (Torres et al., 2005). Rice Rbohs are encoded by a nine-member gene family. In an 

interesting study using RNAi-based knockdown lines, Yoshie et al. (2005) recently provided 

genetic evidence of a role for OsrbohA and OsrbohE in pathogen-triggered ROS production in 

rice cells. Curiously, HR-like cell death was decreased only in the OsrbohA knockdown lines and 

several defense-related genes displayed differential expression patterns in the OsrbohA and 

OsrbohE transformants upon inoculation with an avirulent strain of Acidovorax avenae. Thus, 

although the OsRboh proteins are required for ROS production following successful pathogen 
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recognition, these ROS might serve different signaling functions in rice disease resistance and 

HR.  

 Interactions with other plant defense regulators might account for the divergent outcomes in 

Osrboh-mediated ROS signaling. For example, mounting evidence suggests that coordinated 

levels of ROS and nitric oxide (NO) are a prerequisite for HR manifestation (Delledonne et al., 

2001; Zago et al., 2006; Zaninotto et al., 2006). In line with this, Hu et al. (2003) demonstrated 

that NO and ROS act in concert to mediate HR responses in elicitor-treated rice cell suspension 

cultures. Calcium metabolism is also intimately related to ROS signaling. Ca2+ fluxes appear to 

function both upstream and downstream of ROS production, indicating a complex 

spatiotemporal Ca2+ regulation of these signaling networks (Levine et al., 1996; Kurusu et al., 

2004, 2005; Torres and Dangl, 2005). Other possible signaling intermediates that may decode the 

ROS signals are kinases and the MAPK module, as well as the phytohormones SA, JA, ABA and 

ET (Ganesan and Thomas, 2001; Del Pozo et al., 2004; Yang et al., 2004; Torres et al., 2005; 

Desikan et al., 2005; Love et al., 2005; Mur et al., 2006; Asselbergh et al., 2007).   

 

Regulation of rice NAPDH oxidase: a role for Rac GTPase  

 Despite the accumulating evidence that Rboh proteins have a diversified functional portfolio, 

mediating the production of apoplastic ROS that operate in various elaborate signaling networks, 

the regulation of plant Rbohs remains largely unknown (Apel and Hirt, 2004; Torres and Dangl, 

2005). Unlike the mammalian gp91phox, all plant Rboh proteins carry an extended N terminus that 

contains two Ca2+ binding EF-hands, which could account for the direct activation of these 

oxidases by Ca2+ (Keller et al., 1998; Sagi and Fluhr, 2001). Although required, calcium-

dependent protein kinase (CDPK)-mediated phosphorylation is not sufficient for full activation 

of Rboh, indicating that other signaling components are needed as well (Nuhse et al., 2007; 

Kobayashi et al., 2007). In the absence of other homologs of mammalian NAPDH oxidase 

polypeptides, the small GTPase Rac/Rop is a likely candidate for being a regulator of plant 

NAPDH oxidases. Indeed, a recent breakthrough suggests that rice RbohB activation is 

mediated by binding of its N-terminal extension to the small GTPase OsRac1 (Wong et al., 

2007). Shimamoto’s group originally identified OsRac1 as a positive regulator of cell death and 

ROS production in transformed rice cells and plants (Kawasaki et al., 1999; Ono et al., 2001; 

Suharsono et al., 2002). Using yeast two-hybrid screens and a range of protein-protein 

interaction assays, they further demonstrated that direct interaction between Rac GTPase and 

the N-terminal region of Rboh is ubiquitous and that a substantial part of the N-terminal region, 

including the two EF-hand motifs, is needed for the interaction. Unexpectedly, Ca2+ binding by 
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the EF-hand motifs was not required for the Rac-Rboh interaction and cytosolic Ca2+ was even 

found to negatively modulate Rboh regulation. An intriguing model integrates the positive role 

of Ca2+ and CDPKs in the initiation of Rboh-mediated ROS production with the suppression of 

Rac-Rboh interaction by cytosolic Ca2+ (Wong et al., 2007; Fig. 2.3). First, the initial cytosolic 

Ca2+ influx activates CDPK, which phosphorylates the N-terminal region of Rboh, leading to a 

conformational change. In the second stage, the conformational change facilitates Rac GTPase 

binding of Rboh, leading to induction of ROS formation. Finally, the ROS produced induces a 

second phase of cytosolic Ca2+ accumulation, which abolishes Rac binding, indicating a negative 

feedback loop that allows for termination of the oxidative burst. Collectively, these results 

delineate that cytosolic Ca2+ transients control Rboh activity by modulating the interaction 

between Rac GTPase and Rboh in a subtle yet dynamic manner.  

 

 
 
 
 
 
Figure 2.3. Model of plant NAPDH 
oxidase regulation (Wong et al., 
2007). 
 
Initial cytosolic Ca2+-influx activates 
CDPK (calcium-dependent protein 
kinase), which phosphorylates the N-
terminal region of Rboh, leading to a 
conformation change that facilitates Rac 
GTPase binding of Rboh, culminating 
in activation of ROS production. 
Subsequently, the ROS produced may 
induce cytosolic Ca2+ elevation, which 
inhibits Rac binding, thereby 
terminating the oxidative burst. 
 

 

 

 

Significance of the oxidative burst in rice pathogen defense 

 There is ample evidence indicating that rapid and extensive generation of ROS during the 

oxidative burst is a supreme defense response against the hemibiotrophs M. oryzae and Xoo. 

Analysis of superoxide and H2O2 in compatible and incompatible rice-M. oryzae interactions 

revealed that a rapid and profound oxidative burst specifically occurs in the incompatible 

interaction (Ganesan and Thomas, 2001; Vergne et al., 2007). A role for H2O2 generation in 

gene-for-gene resistance to Xoo was implied by experiments using transgenic cell lines harboring 

a fusion gene that comprised the extracellular LRR (Leucine Rich Repeats) and transmembrane 
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domains of the Arabidopsis receptor kinase BRI1 and the serine/threonine kinase domain of the 

bacterial leaf blight resistance gene Xa21 (He et al., 2000). Treatment with BRs resulted in 

accumulation of H2O2, demonstrating the involvement of the oxidative burst, and probably 

H2O2 itself, in the Xa21-mediated signal transduction pathway. Consonant with this is the finding 

that induction of H2O2 in transgenic rice plants expressing a fungal glucose oxidase gene leads to 

the concerted induction of defense-related gene expression, HR-like cell death and increased 

resistance to M. oryzae and Xoo (Kachroo et al., 2003a). Analysis of transgenic plants 

constitutively expressing OsSBP, a cerebroside elicitor-responsive gene homologous to 

mammalian selenium-binding proteins, further strengthened the link between ROS formation 

and (hemi)biotroph resistance in rice (Sawada et al., 2004). Overexpression of OsSBP led to 

suppression of the plant’s antioxidant machinery, with resultant accumulation of Rboh-generated 

ROS, HR-like cell death and resistance to blast, whereas plants expressing an OsSBP antisense 

construct were rendered more disease-sensitive. Rboh-controlled ROS formation preceding HR 

cell death has also been described in rice seedlings treated with the blast resistance elicitors 

alpha-picolinic acid and N-acetylchitooligosaccharide (Zhang et al., 2004; Ning et al., 2004), 

while BTH and probenazole, two of the most potent elicitors of resistance to both blast and leaf 

blight, were shown to prime for enhanced ROS accumulation following pathogen infection 

(Iwata et al., 2004; Chen et al., 2007). Taken together, these findings strongly suggest that a 

timely and localized production of ROS may be a crucial early signal leading to activation of 

defense responses and associated pathogen resistance in rice.    

 In addition to the above, there is evidence for an indirect role of ROS in rice defense as 

priming agents (Chapter 3). Root colonization with the rhizobacterium Pseudomonas aeruginosa 

7NSK2 reduces blast disease in foliar tissues through induction of a defense state that is 

commonly referred to as induced systemic resistance or ISR (van Loon et al., 1998; Bakker et al., 

2007). Extensive bacterial mutant analysis revealed that 7NSK2 mounts ISR via secretion of the 

redox-active pigment pyocyanin, which in turn induces local H2O2 generation on the root 

surface. Curiously, this root-localized primary oxidative burst was shown to cue the formation of 

low-frequency reiterative H2O2 microbursts in naïve leaves, the latter being indispensable for the 

onset of pyocyanin-mediated ISR. Given the apparent intimacy between redox sensing and 

signaling leading to SAR expression (Alvarez et al., 1998; Choi et al., 2007), and the role of 

cellular redox in the control of many physiological processes, including the response to 

pathogens (Foyer and Noctor, 2005a,b; Pavet et al., 2005; Ge et al., 2007; Koornneef et al., 2008; 

Van Breusegem et al., 2008), one may hypothesize that pyocyanin-induced H2O2 microbursts may 

contribute to the ISR-induced state by priming the plant for potentiated activation of cellular 
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defense responses following challenge infection. In support of this assumption, microscopic 

analysis of the early infection events in pyocyanin-supplied plants revealed a hyperactivation of 

HR-like cell death at sites of fungal attack, leading to rapid containment of the invading 

pathogen (Chapter 3). 

 Notwithstanding the compelling evidence demonstrating the central importance of plant-

produced ROS in rice resistance to hemibiotrophic pathogens such as M. oryzae, Egan et al. 

(2007) recently brought to the fore that M. oryzae undergoes an oxidative burst of its own during 

plant infection. In this fascinating work, the authors demonstrate that generation of superoxide 

by the fungal NADPH oxidase-encoding genes Nox1 and Nox2 is a prerequisite for 

appressorium-mediated cuticle penetration. This Nox-derived superoxide is believed to 

accumulate within the appressorium to facilitate oxidative cross-linking of proteins, thereby 

strengthening the appressorium cell wall. Although hitherto unsuspected, these findings 

demonstrate that initiation of rice blast disease requires ROS production by the invading 

pathogen and underscore how ROS produced during the early phase of plant-pathogen 

interactions can mediate multiple responses, sometimes with opposite effects, in different cellular 

and spatial contexts or in response to different pathogens. 

 

 

2.5.2. Pathogenesis-related (PR) proteins 

2.5.2.1. PRs in rice: current status 

 The seminal experiments performed in the 1970s on tobacco plants reacting hypersensitively 

to Tobacco mosaic virus (TMV) first demonstrated the appearance of novel proteins accumulating in 

response to the infection (Van Loon and Strien, 1999 and reviews therein). In the years to 

follow, a large number of so-called pathogenesis-related (PR) proteins were shown to occur in 

plant species from at least 13 families upon infection with oomycetes, bacteria, fungi, viruses, 

viroids, as well as insect or nematode attack (Van Loon et al., 2006b). The recognized PRs, 

which are functionally defined as host-encoded proteins induced in infected tissues as well as 

systemically, have been extensively reviewed and currently comprise 17 families of induced 

proteins (Van Loon and Strien, 1999; Van Loon et al., 2006b). To date, a number of PR-like 

genes have been cloned from rice and a role of several of these in restricting pathogen activity, 

growth, and spread fits with the identification of the PR-2 and PR-3 families as antifungal ß-1,3-

endoglucanases and chitinases, respectively, and the PR-13 family as thionins, known to have 

broad antifungal and antibacterial properties (see Jwa et al., 2006 for a recent and detailed 

review).  
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 During the past seven years, differential display, DNA microarrays, and other high-

throughput approaches have considerably broadened our knowledge on rice genes induced upon 

pathogen infection or treatment with resistance-eliciting agents (M. oryzae: Kim et al., 2001; Lu et 

al., 2004; Jantasuriyarat et al., 2005; Vergne et al., 2007; Gowda et al., 2007; Xoo: Chu et al., 2004; 

Li et al., 2006; R. solani: Venu et al., 2007; Zhao et al., 2008; Rice Yellow Mottle Virus: Ventelon-

Debout et al., 2008; Rice dwarf virus: Shimizu et al., 2007; BTH: Shimono et al., 2007; 

probenazole: Nishiguchi et al., 2004; chitin elicitor: Akimoto-Tomiyama et al., 2003). Whilst 

being informative about the complexity of signaling networks, identifying subsets of genes that 

are coregulated to a given stress or phytohormone and often revealing unexpected or previously 

uncharacterized interactions in signal-response coupling and associated metabolic pathways, all 

of these approaches have invariantly shown large numbers of induced genes that often do not fit 

the classical list of PRs. These genes can be broadly assigned to the following processes: 

secondary metabolism, cell-wall metabolism, oxidative burst, transport, protein metabolism, 

antimicrobial proteins, activators of defense reactions and photosynthesis. The advent of reverse 

genetic tools in rice with, amongst others, sequence-indexed populations of T-DNA, Ac/Ds and 

Tos17-tagged lines (An et al., 2005; Miyao et al., 2007; Hsing et al., 2007; Jung et al., 2008) has 

opened new doors for large-scale assessment of the importance of such candidate genes in 

disease resistance. Given its commercial potential, there is considerable interest in this area. 

 

2.5.2.2. Induced PR genes: evidence from transgenic plants 

 The importance of antimicrobial PR proteins in rice resistance has been repeatedly tested by 

over-expression of the corresponding genes in transgenic plants. A recent example includes the 

over-expression of the stress-inducible 1,3;1,4-ß-glucanase gene Gns1 resulting in increased 

resistance to a virulent strain of M. oryzae. This protection was speculated to result from a 

combined action of the over-expressed Gns and the earlier activation of the defense-related 

genes PR1 and PBZ1 in transgenic plants compared to control plants (Nishizawa et al., 2003). 

Previously, several groups already demonstrated that transgenic plants constitutively expressing 

infection-related chitinases, ß-1,3-glucanases, or thaumatin-like protein genes, alone or in 

combination, are rendered more resistant to  M. oryzae, R. solani, and Sarocladium grisea (Nishizawa 

et al., 1999; Datta et al., 1999, 2001; Kalpana et al., 2006). Enhanced resistance to M. oryzae has 

also been reported in transgenic rice transformed with genes encoding antifungal proteins of 

bacterial or fungal origin (Krishnamurthy et al., 2001; Moreno et al., 2005). Furthermore, in some 

interesting recent work, Shao et al. (2008) demonstrated that ectopic expression of a Xoo-derived 

harpin-encoding gene (hrf1) not only triggers enhanced accumulation of several PR-protein 
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transcripts, but also results in elevated silicon levels. Most importantly, hrf1-transformed plants 

and their progenies were highly resistant to all major M. oryzae races in rice-growing areas along 

the Yangtze River, an area with arguably the highest diversity of the blast pathogen in the world. 

The enormous potential of bioengineering for sustainable, broad-spectrum disease protection of 

rice is also evident from the work of Gomez et al. (2007). In this study, the authors demonstrate 

that ectopic expression of the maize PRms gene, encoding a fungal-inducible PR protein, confers 

heritable resistance against a fairly broad range of bacterial and fungal pathogens, with examples 

of the latter representing various parasitic habits (i.e. biotrophs, hemibiotrophs and necrotrophs). 

Intriguingly, PRms plants were found to be primed for potentiated expression of M. oryzae-

inducible defense genes, an effect that the investigators attribute to the heightened levels of 

sucrose associated with the transgenic phenotype. Implicit here is the view that these plants use 

altered sucrose levels as a molecular sensor to activate pathogen defense mechanisms. This 

concept is corroborated by a large body of work in Arabidopsis suggesting extensive crosstalk 

between sugar signaling, PR gene expression and induced resistance pathways (Yoshida et al., 

2002; Cartieaux et al., 2003; Thibaud et al., 2004; Cartieaux et al., 2008). Although the exact 

mechanism(s) by which altered sugar sensitivity and/or increased sugar signaling leads to 

activation of biotic stress responses and subsequent enhancement of disease resistance is (are) 

unresolved, these studies draw important inferences connecting sugar sensing and pathogen-

induced defense signaling in both monocot and dicot plants. 

 

2.5.3. Phytoalexins 

 Phytoalexins are plant defensive compounds of low molecular weight that are synthesized de 

novo in response to microbial infection (van Etten et al., 1994). Extensive phytochemical 

investigation has demonstrated that rice produces up to 15 distinct phytoalexins (Peters, 2006). 

With exception of the flavonoid sakuranetin, all of these fall into the large family of labdane-

related diterpenoids. According to their carbon skeletons, diterpenoid phytoalexins have been 

classified into four groups: phytocassanes A-E (Koga et al., 1995, 1997; Yajima and Mori, 2000), 

oryzalexins A-F (Akatsuka et al., 1985; Kato et al., 1993, 1994), momilactones A and B (Kato et 

al., 1973; Cartwright et al., 1981), and the stemarane-type oryzalexin S (Tamogami et al., 1993). 

Over the past decade, a number of laboratories have devoted considerable effort towards 

elucidation of the complex metabolic networks underlying diterpenoid phytoalexin biosynthesis 

and all of the genes encoding the diterpene synthases/cyclases responsible for the various rice 

diterpenoid phytoalexins have now been identified (Cho et al., 2004; Prisic et al., 2004; Peters, 

2006; Shimura et al., 2007). In contrast, relatively little work has been carried out on sakuranetin, 
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which is thought to derive in a single step from the core flavonoid intermediate (2S)-naringenin 

by an as yet undefined 7-O-methyltransferase (Rakwal et al., 1996, 2000). 

 There is a vast amount of correlative evidence suggesting that phytoalexin accumulation may 

be a key component of the rice defensive machinery. Most tellingly, phytoalexin biosynthesis is 

activated in response to treatment with a variety of biotic and abiotic resistance-inducing agents 

including fungal cell wall elicitors (Koga et al., 1998; Umemura et al., 2002), cholic acid (Koga et 

al., 2006), methionine (Nakazato et al., 2000), jasmonic acid (Nojiri et al., 1996; Tamogami and 

Kodama, 2000), and UV-B irradiation (Kodama et al., 1992; Dillon et al., 1997). Furthermore, 

phytoalexins generally accumulate more rapidly and to larger quantities in R gene-mediated 

incompatible interactions when compared to compatible ones (Koga et al., 1995). Likewise, 

consistent qualitative and quantitative differences in phytoalexin production were found among 

rice cultivars of different susceptibility to blast and there was a strong correlation between the 

accumulation of sakuranetin, momilactone A and oryzalexin S, and resistance to M. oryzae (Dillon 

et al., 1997). Critically, in the course of these studies production of phytoalexins was found to be 

localized to the blast disease lesions, rather then being systemic, which is consistent with the 

observed direct antifungal activity of these compounds (Koga et al., 1995). Elevated levels of 

phytoalexins have also been found in silicon-induced resistant rice plants (Rodrigues et al., 2003) 

and various lesion mimic mutants that exhibit improved disease resistance (Takahashi et al., 

1999; Jung et al., 2005). Another illustration of a possible role for phytoalexins in disease 

resistance of rice comes from studies on ATP-binding cassette (ABC) transporter genes in M. 

oryzae. ABC transporters are transmembrane proteins that play important roles as energy-

dependent efflux pumps, providing resistance to a variety of metabolic poisons including 

phytoalexins (Sipos and Kuchler, 2006). Based on mutational analysis of ABC1, ABC2 and 

ABC4 genes, several groups have suggested that these multidrug extrusion systems contribute 

significantly to M. oryzae pathogenesis, providing the fungus with a powerful tool to withstand 

the host-specific adverse environment (Urban et al., 1999; Sun et al., 2006; Gupta and Chattoo, 

2008). In line with this assumption, multidrug efflux pumps are now emerging as a major 

phytoalexin tolerance mechanism in various microbes, similar to antibiotic multi-resistance in 

human pathogens (Garcion et al., 2007).  
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2.6. Conclusions and prospects 

 Rice diseases are among the major constraints for rice production worldwide. Although 

significant progress has been made in cloning rice disease resistance genes and functional 

genomics in general, still relatively little is known about the signaling pathways and defense 

effector responses involved in determining rice disease resistance, especially compared to the 

relative wealth of information available in dicots. Employing a holistic approach comprising 

genomics, proteomics and metabolomics, future studies should not only focus on analyzing 

individual signaling components and specific defense effectors, but also emphasize elucidation of 

the large and complex interplay among various defense pathways. From a practical point of view, 

such conceptual advances will eventually serve in the development of resistant rice varieties, 

should it be by genetic engineering, classical breeding or through improvement of cultural 

practices for effective utilization of chemically and biologically induced resistance in certain 

agricultural contexts. 
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seudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of 
the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of 
the monocot model rice with 7NSK2 partially protected leaves against blast disease 

(Magnaporthe oryzae) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only 
mutations interfering with pyocyanin production led to a significant decrease in induced systemic 
resistance (ISR) to M. oryzae, and in trans complementation for pyocyanin production restored the 
ability to elicit ISR. Intriguingly, pyocyanin-deficient mutants, unlike the wild-type, triggered ISR 
against R. solani. Hence, bacterial pyocyanin plays a differential role in 7NSK2-mediated ISR in 
rice. Application of purified pyocyanin to hydroponically grown rice seedlings resulted in 
significantly increased H2O2 levels on the root surface, which in turn cued the formation of 
reiterative H2O2 microbursts in naïve leaves. Co-application of pyocyanin and the antioxidant 
sodium ascorbate alleviated the opposite effects of pyocyanin on rice blast and sheath blight 
pathogenesis, suggesting that the differential effectiveness of pyocyanin with respect to 7NSK2-
triggered ISR is mediated by transiently elevated H2O2 levels in planta. The cumulative results 
suggest that reactive oxygen species act as a double-edged sword in the interaction of rice with 
the hemibiotroph M. oryzae and the necrotroph R. solani.  

P 
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Introduction 

Rice is the most important staple food grain for more than two billion people living in the 

rural and urban areas of humid and subhumid Asia. Diseases are among the most important 

limiting factors that affect rice production, causing annual yield loss conservatively estimated at 

5% (Mew et al., 2004). More than 70 diseases caused by fungi, bacteria, viruses or nematodes 

have been recorded on rice (Ou, 1985), among which rice blast (Magnaporthe oryzae) and sheath 

blight (Rhizoctonia solani) are the most serious fungal constraints on high productivity. 

The filamentous ascomycete Magnaporthe oryzae (Hebert) Barr (anamorph Pyricularia oryzae 

(Cooke) Sacc.) is the most devastating pathogen of rice worldwide due to its widespread 

distribution and destructiveness (Talbot, 2003). The rice- M. oryzae interaction is a well-

documented gene-for-gene system (Jia et al., 2000; Silue et al., 1992), and the fungus is a 

hemibiotroph since successful infection requires an initial biotrophic phase in which the 

pathogen forms bulbous invasive hyphae within apparently healthy plant cells (Koga, 1994). 

Once established in the plant, the fungus switches to necrotrophic growth, killing plant cells and 

ramifying throughout the tissue. Rice sheath blight is caused by Rhizoctonia solani Kühn (sexual 

stage: Thanetophorus cucumeris (Frank) Donk), a soil- and water-borne fungal pathogen enjoying a 

very wide host range. The pathogen has a necrotrophic lifestyle and is able to produce a host-

specific carbohydrate-based phytotoxin (Vidhyasekaran et al., 1997).  

Resistant cultivars and application of pesticides have been used for disease control. However, 

the useful life span of most blast resistant cultivars is only a few years, due to the breakdown of 

the resistance in face of the high pathogenic variability of the pathogen population (Song and 

Goodman, 2001). Though partial genetic resistance to sheath blight has been reported, no major 

gene-governed resistance has been found so far despite screening of more than 3000 accessions 

of germplasm worldwide (Mew et al., 2004). As chemical means of management are often 

expensive, currently no economically viable or sustainable control measures are available to tackle 

the diseases. 

Thus, there is a need to develop alternative disease control strategies providing durable, 

broad-spectrum resistance. Among such new strategies, induced resistance has emerged as a 

potential supplement in international crop protection measures. Induced resistance can be 

defined as the phenomenon by which plants exhibit increased levels of resistance to a broad 

spectrum of pathogens by prior activation of genetically programmed defense pathways. The 

most extensively studied type of induced resistance is systemic acquired resistance (SAR). SAR is 

expressed locally and systemically after a localized infection by a necrotizing pathogen and is 

characterized by the accumulation of salicylic acid and pathogenesis-related (PR) proteins 
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(Durrant and Dong, 2004). Colonization of roots with selected plant growth-promoting 

rhizobacteria (PGPR) can also lead to a type of systemic resistance, commonly denoted as 

induced systemic resistance (ISR) (Bakker et al., 2003; Van Loon et al., 1998). Generally, the 

onset of ISR, unlike SAR, is not accompanied by the concomitant activation of PR genes (Van 

Wees et al., 1999). Instead, recent research revealed that ISR-expressing plants are primed to 

react faster to pathogen attack (Verhagen et al., 2004).  

Bacterial determinants of ISR that have been identified are cell surface components, such as 

outer membrane lipopolysaccharides (LPS) or flagella, iron-regulated metabolites with 

siderophore activity, benzylamine derivatives, volatile compounds and certain antibiotics (Bakker 

et al., 2003; Iavicoli et al., 2003; Meziane et al., 2005; Ongena et al., 2005; Ryu et al., 2004). In 

general, most rhizobacteria show redundancy in ISR-triggering traits and their effects can be 

complementary or additive. Moreover, the mechanisms involved in rhizobacteria-mediated ISR 

tend to vary among bacterial strains and pathosystems, indicating a great degree of flexibility in 

the molecular processes leading to ISR, which makes it difficult to derive a general model for 

PGPR-induced ISR.  

To date, molecular biology research aimed towards understanding induced resistance 

mechanisms has focused mainly on dicotyledoneous model plant species such as Arabidopsis 

thaliana and tobacco. Conversely, in the class of Monocotyledoneae, including the most important 

agronomic cereals, molecular information on chemically and biologically induced resistance 

mechanisms is largely missing (Kogel and Langen, 2005). One of the most compelling examples 

of a rice SAR-like response is the enhanced resistance to M. oryzae that was demonstrated in 

response to an infection with the non-host pathogen Pseudomonas syringae pv. syringae (Smith and 

Metraux, 1991). However, Reimmann et al. (1995) failed to reproduce these results indicating that 

conditions for SAR are critical. Although the synthetic salicylic acid analogue benzo(1,2,3)-

thiadiazole-7-carbothioc acid (BTH) has been shown to induce SAR in wheat (Görlach et al., 

1996) and disease resistance in rice (Rohilla et al., 2002; Schweizer et al., 1999) and maize (Morris 

et al., 1998), reports about the induction of systemic resistance in monocots using beneficial 

microorganisms are scarce. These include one in barley, where pre-inoculation with the root-

colonizing fungus Piriformospora indica induced systemic resistance to several fungal diseases 

(Waller et al., 2005). In rice, colonization of the rhizosphere with the PGPR strains Pseudomonas 

fluorescens PF1 and FP7 enhanced resistance against sheath blight disease (Nandakumar et al., 

2001). Someya et al. (2002, 2005) reported induced resistance to rice blast and sheath blight by 

the antagonistic bacterium Serratia marcescens B2.   
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In the present study, we assessed the PGPR strain Pseudomonas aeruginosa 7NSK2 for its 

capacity to elicit systemic resistance to M. oryzae and R. solani in a rice-based model system. 

Previously, 7NSK2 was shown to induce resistance in several dicot plant species such as bean, 

tobacco and tomato (Audenaert et al., 2002b; Bigirimana and Höfte 2002; De Meyer and Höfte, 

1997; De Meyer et al., 1999a,b). Its ability to trigger ISR has been linked to the production of 

salicylic acid (Bigirimana and Höfte 2002; De Meyer and Höfte, 1997; De Meyer et al., 1999a). 

Furthermore, 7NSK2-mediated ISR was shown to be dependent on a functional salicylic acid 

(SA) response in the plant as 7NSK2 no longer induced resistance in transgenic NahG tomato or 

tobacco plants which are unable to accumulate SA (Audenaert et al., 2002b; De Meyer et al., 

1999a). However, recent evidence indicates that, at least for the wild-type, the phenazine pigment 

pyocyanin and the SA-derived siderophore pyochelin, rather than SA itself, are the essential 

determinants responsible for ISR elicitation (Audenaert et al., 2002b).  

Here, we demonstrate that root treatment of rice seedlings with P. aeruginosa 7NSK2 

significantly reduces rice blast but fails to mount ISR against sheath blight and provide evidence 

that this differential effectiveness is due to the production of the phenazine compound 

pyocyanin. Furthermore, our results provide new insight into the role of reactive oxygen species 

in the interaction of rice with hemibiotrophic and necrotrophic pathogens.  

 

 

Results 

 

Pseudomonas aeruginosa 7NSK2 triggers ISR in rice to Magnaporthe oryzae but not to 

Rhizoctonia solani 

We first tested if root colonization by Pseudomonas aeruginosa 7NSK2 could be consistently 

obtained with the combined seed- and root-inoculation assay used in this study. The amount of 

bacteria recovered from root surfaces was determined 17 days after the last soil drench (i.e. one 

week after challenge inoculation). Pooled over three independent experiments, colonization of 

the roots was reflected by a bacterial titer of 1.43 x 105 CFU per g of root fresh weight (± 3.4 x 

104; n = 12). This population density, which is well above the threshold density of 105 CFU per g 

of root for P. fluorescens WCS374-mediated ISR in radish (Raaijmakers et al., 1995), was 

consistently obtained throughout all experiments performed in this study. 

Next, we investigated whether colonization of the rhizosphere of rice seedlings with P. 

aeruginosa 7NSK2 had a protective effect against leaf blast disease, caused by the ascomycete 

Magnaporthe oryzae. In several preliminary experiments, P. aeruginosa 7NSK2 significantly reduced 

leaf blast symptoms, producing a resistance phenotype resembling this of genetically determined, 
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intermediate resistance. This type of resistance is characterized by the formation of many small 

dark-brown spots (diameter < 2 mm) 2 to 3 days after inoculation (Fig. 3.1B). In contrast, on 

non-treated control leaves, large susceptible-type lesions (diameter 3 tot 6 mm) with a gray centre 

appeared, often surrounded by chlorotic or necrotic tissue (Fig. 3.1A). These susceptible-type 

lesions appeared no earlier than 4 days post inoculation. As colonization of the rhizosphere by P. 

aeruginosa 7NSK2 did not completely abolish the formation of susceptible-type lesions, we 

quantified the disease by counting the number of susceptible-type lesions 6 to 7 days post 

inoculation. This method is both rapid and quantitative. In general, variation in disease severity 

between independent inoculation experiments, ranging from approximately 20 to 75 lesions per 

control leaf, is a phenomenon inherent in the rice-M. oryzae pathosystem (Schweizer et al., 1998). 

Therefore, and since no clear correlation between disease severity and the level of induced 

resistance could be observed, inoculation data are presented as relative infection values compared 

to non-treated controls. Pooled over five independent experiments, 7NSK2 reduced rice blast 

severity by 37.19% (± 6.64; n = 81).  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A BA B

Figure 3.1. Phenotype of Pseudomonas aeruginosa 7NSK2-mediated induced systemic resistance in rice to 
Magnaporthe oryzae.  
 
A, Control plants were treated with water. B, P. aeruginosa 7NSK2 was grown on King’s medium B (KB) and applied 
to rice seeds, roots and soil. Four-week-old plants (5-leaf stage) were challenge-inoculated by spraying a spore 
suspension of virulent M. oryzae VT5M1 at 1 x 104 spores per ml. Photographs depicting representative symptoms 
were taken six days after fungal inoculation. 
 

To test the spectrum of 7NSK2-mediated ISR in rice, we then assayed for induction of 

resistance against sheath blight, which ranks next to blast in causing yield losses, especially in 

intensified production systems. Although small protective effects were observed in single 

experiments, 7NSK2 proved unable to consistently reduce the length of lesions caused by the 

sheath blight fungus Rhizoctonia solani (data not shown).      
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In vitro dual culture experiments revealed a clear antagonistic potential of P. aeruginosa 7NSK2 

to both M. oryzae and R. solani (data not shown). To exclude direct antagonism between the 

inducing agent P. aeruginosa 7NSK2 and the challenging leaf pathogens M. oryzae and R. solani, 

possible systemic plant colonization by the bacterium was checked. However, 7NSK2 and the 

derived mutants were never detected in sheath and leaf extracts of root-treated rice seedlings at 

distinct time points, indicating that bacterial plant colonization remained confined to the root 

zone (data not shown). The detection limit of this assay is about 10 CFU per stem or leaf. Given 

the spatial separation between the inducing bacterium (root) and the challenging pathogen (leaf 

or leaf sheath), the observed disease reduction can be attributed to induced systemic resistance.   
 
 

The phenazine compound pyocyanin is an essential determinant of 7NSK2-mediated ISR 

to Magnaporthe oryzae in rice 

Preliminary experiments with 7NSK2 inoculum prepared from iron-rich medium revealed 

that 7NSK2-triggered resistance to M. oryzae is not dependent on the iron nutritional state of the 

inoculum, suggesting that siderophores such as pyochelin do not play a crucial role in ISR to M. 

oryzae (data not shown). In order to identify the bacterial factors operative in triggering systemic 

resistance to M. oryzae, the potency of P. aeruginosa 7NSK2 to induce ISR was compared with that 

of a collection of mutants deficient in the production of pyocyanin and/or pyochelin. All 

bacterial strains were routinely grown on iron-poor KB medium. Figure 3.2A shows that the 

pyochelin-negative mutant KMPCH (also pyoverdin deficient) induced resistance to an extent 

similar to that induced by the wild type, hereby excluding an essential role of the siderophores 

pyoverdin and pyochelin in ISR in rice to M. oryzae. Treatment with the newly generated 

pyocyanin-negative mutants 7NSK2-phzM and KMPCH-phzM no longer caused disease 

reduction, indicating the involvement of the phenazine antibiotic pyocyanin in ISR. Both mutant 

strains were constructed by gene replacement of the phzM gene, encoding an O-methyl 

transferase which is necessary for the conversion of phenazine-1-carboxylate to the pyocyanin 

precursor 5-methylphenazine-1-carboxylic acid betaine (Mavrodi et al., 2001). A deficiency in 

root colonization could be ruled out, since bacterial counts in the rhizosphere of plants 

inoculated with strains 7NSK2-phzM and KMPCH-phzM were similar to those of 7NSK2-

treated plants (data not shown). In trans complementation of 7NSK2-phzM for pyocyanin 

production (strain 7NSK2-phzMc) restored the capacity to induce resistance to M. oryzae, 

confirming the essential role of pyocyanin in 7NSK2-mediated ISR (Fig. 3.2B). Root colonization 

with the pyocyanin-overproducing strain 7NSK2-phz2, which is mutated in the regulatory gene 

retS, encoding a hybrid sensor kinase, yielded variable results. A significant reduction in the 
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number of susceptible-type lesions was observed in one experiment [relative infection (RI) value 

= 76%], whereas treatment with 7NSK2-phz2 generated a higher infection rate (RI = 129%) in 

another trial.  In the remaining two experiments no statistically significant differences could be 

observed between control plants and plants colonized with 7NSK2-phz2 (RI = 92% and 106%). 

In vitro experiments monitoring production of pyocyanin by 7NSK2 and respective mutant strains 

revealed that 109 CFU 7NSK2-phz2 produces about 25.05 µg pyocyanin per ml culture 

supernatant (± 1.166; n = 7), thereby showing a 5-fold increase compared to the wild type.  
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Figure 3.2. Influence of root treatment with Pseudomonas aerug nosa 7NSK2 and various mutants on rice 
blast (Magnaporthe oryzae) severity.  

i

 
P. aeruginosa 7NSK2 and derived mutants were grown on King’s medium B (KB) and applied to rice seeds, roots and 
soil. Control plants were treated with water. Four-week-old plants (5-leaf stage) were challenge-inoculated by 
spraying a spore suspension of virulent M. oryzae VT5M1 at 1 x 104 spores per ml. Six days after challenge infection, 
disease was rated by counting the number of susceptible-type lesions per leaf 4 and expressed relative to challenged 
control plants. Statistical analysis was performed on pooled data, as interaction between treatment and experiment 
was not significant at α = 0.05 by analysis of variance. Different letters indicate statistically significant differences 
between treatments according to Kruskal-Wallis followed by Mann-Whitney comparison tests (P = 0.05). Mutants 
derived from strain 7NSK2 have the following characteristics: KMPCH (pyoverdin and pyochelin deficient), 
7NSK2-phzM (phzM-, nonproducing pyocyanin), KMPCH-phzM (pyoverdin and pyochelin deficient; phzM-, 
nonproducing pyocyanin) and 7NSK2-phzMc = strain 7NSK2-phzM complemented with functional phzM gene of 
7NSK2, restoring pyocyanin production. 

 

Pyocyanin-negative mutants of 7NSK2 trigger ISR in rice to R. solani 

In spite of its resistance-inducing potential against M. oryzae, P. aeruginosa 7NSK2 proved 

unable to consistently mount ISR to the sheath blight fungus R. solani in several preliminary 

experiments. These data notwithstanding, we tested the same set of mutant strains as described 

before in a series of infection assays with R. solani as challenging pathogen. All strains were 

routinely grown on KB medium. Pooled over three independent experiments, neither the wild-

type strain 7NSK2 nor the pyochelin-negative mutant KMPCH significantly reduced sheath 

blight severity (Fig. 3.3). However, inoculation of the rhizosphere of rice seedlings with the 
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corresponding pyocyanin-deficient strains (7NSK2-phzM and KMPCH-phzM) resulted in 

significantly higher protection levels to R. solani compared to wild type-treated and control plants. 

Conversely, no statistically significant differences could be observed between treatment with the 

pyocyanin-overproducing strain 7NSK2-phz2 and control plants. The inability of the pyocyanin-

positive strains to mount ISR to R. solani was not due to insufficient root colonization of the rice 

seedlings, since bacterial counts in the rhizosphere of plants inoculated with the respective strains 

showed no marked differences (data not shown).  
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Figure 3.3. Influence of root treatment with Pseudomonas aeruginosa 7NSK2 and various mutants on 
sheath blight (Rhizoctonia solani) severity.  
 
P. aeruginosa 7NSK2 and derived mutants were grown on King’s medium B (KB) and applied to rice seeds, roots and 
soil. Control plants were treated with water. Four-week-old plants (5-leaf stage) were challenge-inoculated by placing 
a 1-cm toothpick colonized by R. solani inside the sheath of the second youngest fully developed leaf. Disease 
severity was assessed by measuring the length of R. solani lesions four days after challenge infection. Data presented 
are means from at least three independent experiments with 12 replications per treatment in each experiment. 
Statistical analysis was performed on pooled data, as interaction between treatment and experiment was not 
significant at α = 0.05 by analysis of variance. Bars with the same letter are not significantly different by non-
parametric Kruskal-Wallis and Mann-Whitney comparisons at P = 0.05. Mutants derived from strain 7NSK2 have 
the following characteristics: KMPCH (pyoverdin and pyochelin deficient), 7NSK2-phz2 (overproducing pyocyanin), 
7NSK2-phzM (phzM-, nonproducing pyocyanin) and KMPCH-phzM (pyoverdin and pyochelin deficient, phzM-, 
nonproducing pyocyanin). 
  

Pyocyanin induces resistance to Magnaporthe oryzae but enhances infection by 

Rhizoctonia solani 

The observation that pyocyanin-deficient mutants, unlike wild-type strains, triggered 

resistance to R. solani, whereas the same mutants lost their ability to mount ISR to M. oryzae (Figs. 

3.2A and 3.3), suggested that the secretion of pyocyanin might account for the differential 

effectiveness of 7NSK2-mediated ISR to the latter pathogens. Therefore, and since it has been 

reported before that high concentrations of purified pyocyanin can induce resistance to Botrytis 

cinerea in bean (Abeysinghe, 1999), we wanted to further explore the role of bacterially produced 

pyocyanin in 7NSK2-mediated ISR in rice. To this purpose, we isolated pyocyanin from the 
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pyocyanin-overproducing strain 7NSK2-phz2 using a chloroform-based extraction assay (Kanner 

et al., 1978) and applied the purified compound to the roots of rice seedlings. To avoid excessive 

immobilization of the metabolite through adsorption on soil particles and/or spontaneous 

degradation or bio-degradation in soil, a soil-less gnotobiotic rice-growing system was developed. 

In this system, 24-day-old rice seedlings were hydroponically fed with a dilution series of 

pyocyanin by adding the desired concentration to the nutrient solution. In order to include a 

pyocyanin concentration in the experimental set-up that is equivalent to the production by P. 

aeruginosa 7NSK2, we spectrophotometrically quantified the in vitro pyocyanin production by the 

latter strain. Pooled over two independent experiments, 109 CFU 7NSK2 produced 4.958 µg of 

pyocyanin per ml culture supernatant (± 0.483 µg; n = 7). Provided that pyocyanin production by 

7NSK2 is proportional to the amount of 7NSK2, 105 CFU 7NSK2 should produce about 0.5 ng 

of pyocyanin. This is similar to the amount of pyocyanin applied in a 25 pM pyocyanin solution 

(1000 ml of 25 pM pyocyanin ≈ 5.2 ng of pyocyanin per tray or 0.43 ng per seedling). Thus, 

feeding a 25 pM pyocyanin solution in the hydroponic system resembles the production of 

pyocyanin in the rhizosphere of soil-grown rice plants colonized by 7NSK2. No signs of 

phytotoxicity were observed in leaves of plants after pyocyanin feeding at any of the 

concentrations tested. In the 25 pM to 100 nM pyocyanin range, ISR to M. oryzae was evident for 

all concentrations tested. However, no significant protection could be observed at 50 µM 

pyocyanin (Fig. 3.4A). Furthermore, pyocyanin did not reduce the number of virulent lesions to 

the same extent as treatment of the roots with 7NSK2. Taken together, these results indicate that 

P. aeruginosa 7NSK2-mediated ISR to M. oryzae can be partially mimicked by application of 

pyocyanin to roots. Conversely, pyocyanin feeding favored subsequent infection by R. solani, 

irrespective of the applied concentration (Fig. 3.4B). Since pyocyanin is known for its antibiotic 

properties (Hassan and Fridovich, 1980), we checked whether pyocyanin-feeding leads to 

translocation of the compound to distal plant tissues such as leaves. However, pyocyanin 

remained undetected in leaves of root-feeded plants using HPLC analyses (detection limit: 13 ng 

per g of FW). Summarized, these data suggest a dual role of pyocyanin in 7NSK2-mediated ISR 

and corroborate the results obtained in the ISR assays with the pyocyanin-negative mutants 

7NSK2-phzM and KMPCH-phzM. 
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Redox-active pyocyanin: two-faced ISR elicitor 

Since regulation of H2O2 levels in plant tissue is brought about by the coordinated activities of 

H2O2 generating and degrading enzymes, we sought to extend our analysis of the ROS generating 

potential of pyocyanin in the gnotobiotic system by monitoring the level of various antioxidant 

enzymes in response to pyocyanin feeding. Changes in total superoxide dismutase (EC 1.15.1.1) 

activity were concomitant with the biphasic generation pattern of H2O2, reaching 1.8 fold higher 

levels after 48 h of incubation, suggesting that pyocyanin-induced H2O2 accumulates sequentially 

from superoxide as the primary origin (Fig. 3.6B). Comparative analysis of the kinetics of several 

H2O2 degrading enzymes such as catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11) and 

guiacol peroxidase (EC 1.11.1.7) revealed distinct enzyme-specific activity patterns (Figs. 3.6C, D 

and E). For instance, the first phase of H2O2 accumulation coincided with declined activities of 

catalase and guiacol peroxidase, while no significant alteration of ascorbate peroxidase activity 

could be observed. In addition, catalase activity showed a declining trend between 24 h and 72 h 

of incubation, whereas both ascorbate and guiacol peroxidase activity progressively increased 

within this timeframe, indicating a balanced interplay between H2O2 detoxifying enzymes in 

response to pyocyanin feeding. Taken together, these data clearly demonstrate the ability of 

bacterial pyocyanin to generate ROS on the root surface of rice seedlings as well as in systemic 

leaves.  

 

 

A B C D 

 
Figure 3.5. Detection of pyocyanin-derived H2O2 by 3,3´-diaminobenzidine (DAB) staining.  
 
Roots of hydroponically grown rice seedlings were immersed for 2 h in nutrient solution A, with or B, without 
pyocyanin (1 nM), rinsed several times with distilled water and subsequently incubated in DAB solution (1 mg/ml) 
for 12 h at room temperature. The specificity of the staining was verified by adding 10 mM ascorbic acid to the DAB 
solution (C and D, respectively). 
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Figure 3.6. Effect of pyocyanin on A, H2O2 levels, and the activities of B, superoxide dismutase C, catalase 
D, guiacol and E, ascorbate peroxidase in the fourth leaf of hydroponically grown rice seedlings.  
 
Pyocyanin was purified from P. aeruginosa 7NSK2-phz2 cultures and added to the half-strength Hoagland nutrient 
solution to a concentration of 100 nM. Data are means (± SE) of four replicates of a representative experiment. 
Each replicate consisted of one pooled sample from six individual plants. Two series of independent experiments 
were carried out giving reproducible results. 
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Ascorbic acid attenuates the M. oryzae resistance-inducing and R. solani infection-

promoting potential of pyocyanin 

The observation that application of purified pyocyanin to the roots of hydroponically grown 

rice seedlings triggers enhanced levels of H2O2 and antioxidant enzymes in distal leaves, 

prompted us to test whether ROS generated by pyocyanin in planta account for the dual role of 

the latter compound in 7NSK2-mediated ISR. To this end, we investigated the effect of adding 

ascorbate, which is one of the major natural quenching agents, to the pyocyanin solution on the 

subsequent challenge with M. oryzae and R. solani. Figure 3.7A shows clearly that co-application of 

50 µM sodium ascorbate and 100 nM pyocyanin attenuated the pyocyanin-triggered resistance to 

M. oryzae. Similarly, addition of 50 µM ascorbate to the pyocyanin feeding solution alleviated the 

stimulation of R. solani infection by pyocyanin (Fig. 3.7B). Ascorbate itself at this concentration 

had no detectable effect on disease development. However, application of higher concentrations 

of ascorbate (2.5 mM to 10 mM) to the roots reduced sheath blight severity (data not shown).  
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Figure 3.7. Effect of adding ascorbate (Asc) to the pyocyanin feeding solution on A, the blast resistance-
inducing potential and B, the R. so ani infection-promoting ability of pyocyanin.  
 
Pyocyanin (P) was purified from P. aeruginosa 7NSK2-phz2 cultures and added to the half-strength Hoagland nutrient 
solution containing 50 µM sodium ascorbate (Asc); 4 days later, plants were inoculated by A, spraying a spore 
suspension of virulent M. oryzae VT5M1 at 1 x 104 spores per ml or B, placing a 1-cm toothpick colonized by R. 
solani inside the sheath of the second youngest fully developed leaf. Six and four days after pathogen inoculation 
respectively, disease was rated by A, counting the number of susceptible-type blast lesions per leaf 4 or B, measuring 
the total length of sheath blight lesions. In the case of M. oryzae infections, results were expressed as relative infection 
values compared to control plants. The values presented are from representative experiments that were repeated 
three times with similar results. Bars with the same letter are not significantly different by A, non-parametric Kruskal-
Wallis and Mann-Whitney comparisons at P = 0.05 or B, Fisher’s least significant difference test (α  = 0.05). 
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Cytological comparison of fungal infection and host cellular reactions between control 

and pyocyanin-treated plants 

To further elucidate the mechanisms of pyocyanin-mediated ISR, cytological studies 

combining differential interference contrast (DIC) and incident fluorescence microscopy were 

conducted. To establish compatibility, it appears important for M. oryzae to keep the invaded 

epidermal cell of a susceptible rice line alive in the early stages of infection before switching to 

necrotrophic growth (Koga, 1994). Since the evidence placing reactive oxygen species as central 

signals in the elicitation of certain types of cell death is compelling (Van Breusegem and Dat, 

2006), we first investigated whether pyocyanin feeding provokes cell death before challenge 

infection. However, pyocyanin alone did not cause any cell death, neither in local nor in systemic 

tissue (data not shown). Nevertheless, pyocyanin-treated plants expressed potentiated HR-like 

cell death in response to infection with M. oryzae. In control plants, fungal hyphae grew 

vigorously within penetrated epidermal cells (Fig. 3.8A). In pyocyanin-treated plants, 43.6%       

(± 8.7%; n = 200) of attacked epidermal cells reacted to fungal ingress through the development 

of HR-like cell death as indicated by the granulation of the cytoplasm and a bright 

autofluorescence of epidermal cell walls (Figs. 3.8B and 8E). These reactions were not observed 

in control plants up to 36 hai (Figs. 3.8A and 8D). Addition of ascorbate to the pyocyanin 

feeding solution attenuated the above-mentioned effects (Fig. 3.8C), while ascorbate feeding 

alone did not significantly interfere with the infection process (data not shown). 

In both control and pyocyanin-treated plants, germinated sclerotia of R. solani colonized the 

inner surface of the leaf sheath within 12h of inoculation. Penetration of the sheath surface was 

observed 24 hai regardless of pyocyanin treatment. The most frequent penetration was by hyphal 

tips (Figs. 3.8G and 8H), although other infection structures such as lobate appressoria (Fig. 3.8I) 

and infection cushions (Fig. 3.8J) were also observed. Hyphal tips or infection pegs produced 

from lobate appressoria either penetrated directly into the epidermis, or first colonized sub-

cuticularly before entering epidermal cells. Colonization of epidermal and mesophyll cells 

occurred both inter- and intra-cellular, and was often associated with intense browning of 

penetrated and neighboring cells. In control plants, discrete groups of epidermal cells showing 

intense browning were commonly observed 5-15 cell layers ahead of fungal invasion, presumably 

due to secretion of phytotoxins by R. solani (Fig. 3.8K). By contrast, in sheaths of pyocyanin-

treated plants, enlarged zones of dying cells preceding fungal colonization, were frequently 

observed (Fig. 3.8L). Ascorbate largely abrogated this pyocyanin-provoked runaway cell death in 

response to challenge with R. solani (data not shown).      
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Figure 3.8. Interaction phenotypes of pyocyanin-mediated cytological responses of Oryza sativa line CO-39 to 
Magnaporthe oryzae and Rhizoctonia solani.  
 
A through F, Infection sites inoculated with M. oryzae. Scale bars represent 10 µm. A, Vigorous invasion of living tissues in 
control plants. Upon penetration by a dome-shaped appressorium (black arrow), the fungus colonizes the first penetrated 
epidermal cell as well as neighboring cells by 36 hours after infection (hai) producing primary (white arrowheads) and secondary 
invading hyphae (black arrowheads), respectively. B, Expression of HR-like cell death blocks M. oryzae in hydroponically grown 
rice plants amended with 100 nM pyocyanin (36 hai). Intracellular hyphae (white arrowheads) originating from an appressorium 
(arrow) are restricted to the initially penetrated epidermal cell and stopped from infecting adjacent plant tissue. Note the 
granulation of the cytoplasm in both first invaded and neighboring epidermal cells. C, Addition of 50 µM ascorbate to the 
pyocyanin feeding solution abrogates pyocyanin-induced HR-like cell death. By consequence, fungal growth is not arrested and 
invading hyphae form an extensively branched mycelium both in the first invaded (white arrowheads) and surrounding epidermal 
cells (black arrowheads). Arrow points to the site of fungal penetration. D, Faint autofluorescent halo surrounding point of 
penetration (white arrow) as well as weak local autofluorescence in control plants under blue light excitation (24 hai). E, 
Epifluorescence image of epidermal cells of pyocyanin-feeded plants responding to M. oryzae infection (24 hai). The penetrated 
epidermal cell and the cell walls of three surrounding cells exhibit bright autofluorescence under blue light excitation. White arrow 
indicates position of the fungal appressorium. F, Symptoms of M. oryzae on the fourth leaf of control plants (left, 7 days post 
inoculation [dpi]) and pyocyanin-treated plants (right, 7 dpi). G through J, Micrographs of infection sites of control plants 
inoculated with R. solani (similar observations were made in pyocyanin-treated plants). G, Direct penetration by hyphae of R. solani 
and associated browning of epidermal cell walls at the site of contact (24 hai). Bar = 10 µm. H, Browning of epidermal cells 
underlying R. solani hyphae as observed by 24 hai. Fungal hyphae were stained using trypan blue dye. Bar = 10 µm. I, Penetration 
attempt by a lobate appressoria-like structure of R. solani and associated host cell death. Extracellular mycelium is stained with 
trypan blue. Bar = 10 µm. J, Colonization of sheath surface by hyphae and formation of infection cushions by 40 hai. Fungal 
mycelium was stained with trypan blue. Bar = 30 µm. K and L, Browning of non-penetrated epidermal cells preceding fungal 
invasion as observed in control plants (K) and pyocyanin-treated plants (L) respectively by 32 hai. Bars = 20 µm. 
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Discussion 
 

In this study, we have analyzed Pseudomonas aeruginosa 7NSK2-mediated ISR in the monocot 

model plant rice against leaf blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani). In a 

standardized assay, root treatment with P. aeruginosa 7NSK2 effectively protected rice against blast 

but failed to consistently reduce sheath blight severity. Because inducing bacteria and challenging 

pathogens remained spatially separated throughout the experiment, antagonism by direct 

interactions could be ruled out, demonstrating that 7NSK2-induced protection is plant mediated. 

ISR against M. oryzae was phenotypically manifested by a reduction in the number of susceptible-

type blast lesions (Fig. 3.1), thereby resembling the resistance phenotype of quantitative trait loci-

governed partial resistance (Zahirul et al., 2005).  

Recent evidence by Audenaert et al. (2002b) suggests that, whereas ISR elicited by P. 

aeruginosa 7NSK2 in dicots requires the SA signaling pathway, the bacterial trigger of ISR is the 

combination of the SA-derived siderophore pyochelin and the phenazine pyocyanin, rather than 

SA itself. In view of pharmacological studies demonstrating that ferripyochelin-catalyzed 

hydroxyl generation from pyocyanin-derived O2
-./H2O2 contributes to microvasculature injury 

which occurs as a consequence of pulmonary infections with P. aeruginosa (Britigan et al., 1992, 

1997), the authors proposed that the generation of hydroxyl radicals by the Fe-pyochelin-

pyocyanin interaction might constitute the basis of 7NSK2-mediated ISR. In this work, however, 

we found no evidence for the involvement of iron-regulated pyochelin in 7NSK2-mediated ISR 

in rice. This pyochelin-independency of 7NSK2-triggered ISR was borne out by the observation 

that bacterial inoculum prepared from iron-rich medium was as effective as inoculum prepared 

from iron-poor KB in controlling rice blast disease, and was further confirmed by the ISR-

inducing potential of the pyochelin-negative mutant KMPCH (also pyoverdin-deficient) (Fig. 

3.2A). At inoculation, 7NSK2 grown on iron-rich medium had an internal iron pool that was 

visible in the red color of the bacterial pellet whereas an internal iron pool was not observed for 

KB-grown 7NSK2, since siderophore-mediated iron acquisition is strictly regulated. These 

observations make a role for iron-regulated metabolites of P. aeruginosa in ISR to M. oryzae highly 

unlikely.  

Similar to 7NSK2-mediated ISR in tomato, the pyocyanin-deficient mutant 7NSK2-phzM 

lost the capacity to trigger ISR against rice blast. A similar phenomenon was observed for the 

pyocyanin and pyochelin double negative mutant KMPCH-phzM (Fig. 3.2A). Because the 

inability of these strains to induce resistance to M. oryzae did not result from insufficient 

rhizosphere populations, these data strongly suggest that pyocyanin production by P. aeruginosa 

7NSK2 is necessary for ISR to M. oryzae in rice. Additional support was provided by 
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complementation experiments (Fig. 3.2B), as well as by the protective effect obtained upon 

hydroponic feeding with pure pyocyanin (Fig. 3.4A). Surprisingly, treatment with the pyocyanin-

overproducing strain 7NSK2-phz2, which produces about 5x more pyocyanin compared to the 

wild type, failed to consistently mount ISR to M. oryzae. Provided that the pyocyanin production 

in vitro is an adequate indication of the capacity to produce pyocyanin in the rhizosphere by the 

respective strains, these results suggest that only a balanced production of pyocyanin triggers ISR 

to M. oryzae. However, we found no clear dose effect for pyocyanin in our gnotobiotic system, at 

least in the physiologically relevant pico- and nanomolar range (Fig. 3.4A). These conflicting 

observations could be reconciled when considering the distinct pyocyanin application in soil-

based and hydroponic assays. Contrary to the putative sustained pyocyanin production by the 

bacterial strains in the rhizosphere, purified pyocyanin was fed only once in the hydroponic 

system. In vitro studies have shown that pyocyanin has multiple deleterious effects on mammalian 

cells, such as inhibition of cell respiration, ciliary function, epidermal cell growth, and 

prostacyclin release, disruption of calcium homeostasis, and inactivation of catalase and vacuolar 

ATPase (Lau et al., 2004). Moreover, pyocyanin induces apoptosis in neutrophils (Allen et al., 

2005) and modulates the glutathione redox cycle (Muller, 2002) in lung epithelial and endothelial 

cells. Hence, it is conceivable that sustained exposure of rice roots to substantial levels of 

pyocyanin, as secreted by the overproducing mutant 7NSK2-phz2, causes toxic effects that might 

negatively interfere with the induction of ISR. Such a concept would be consistent with previous 

findings by Abeysinghe (1999) who reported that only balanced doses of pyocyanin trigger 

resistance to Botrytis cinerea in bean. Similar results were obtained by Iavicoli et al. (2003) when 

studying the involvement of the antibiotic 2,4-diacetylphloroglucinol in P. fluorescens CHAO-

mediated ISR to Peronospora parasitica in Arabidopsis. On the other hand, the mutation in phz2 is 

likely to have a pleiotropic effect since it results in the inactivation of the hybrid sensor kinase 

RetS. While we selected this mutant as a pyocyanin hyperproducer, others demonstrated that the 

same mutation affects type III secretion, motility and virulence, and promotes biofilm formation 

(Goodman et al., 2004; Ventre et al., 2006; Zolfaghar et al., 2005). Therefore, we cannot exclude 

the possibility that the effect observed with 7NSK2-phz2 is not only due to pyocyanin 

overproduction. 

One of the most peculiar events in the early phase of plant-pathogen interactions is the rapid 

and transient production of reactive oxygen species by the plant, namely the oxidative burst. 

Because pyocyanin is a redox-active compound (Hassan and Fridovich, 1979, 1980), and has 

been demonstrated before to be capable of generating ROS in an animal system (Britigan et al., 

1997), we investigated whether pyocyanin production in the rhizosphere modulates the oxidative 
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machinery of rice seedlings. By means of a combination of histochemical DAB stainings and in 

planta measurements of H2O2, we demonstrated that pyocyanin feeding of hydroponically grown 

rice seedlings leads to enhanced H2O2 levels both on the root surface of rice seedlings and 

subsequently in distal leaves (Figs. 3.5 and 3.6). The pyocyanin-elicited H2O2 burst in the systemic 

leaves adopted a biphasic generation pattern, similar to the two-phase kinetics frequently 

observed during an avirulent pathogen-induced oxidative burst (Levine et al., 1994; Shirasu et al., 

1997). This biphasic response might indicate a capacity for multiple reiterations of pyocyanin-

triggered ROS generation in order to maintain the induced state. Such a mechanism would either 

require signal amplification for reiteration of the pyocyanin-triggered ROS generation or, 

alternatively, could result from successive redox cycles of pyocyanin as studies by Rezka et al. 

(2004) demonstrated that pyocyanin has the capacity to undergo redox cycling without extensive 

modification of the pigment’s phenazine chromophore, thus leaving the pigment intact.  

There is ample evidence indicating that ROS, and H2O2 in particular, generated in the 

oxidative burst, perform multiple important functions in early plant defense responses. ROS are 

directly protective, activate phytoalexin biosynthesis and also drive peroxidase-mediated cross-

linking of proline-rich cell wall glycoproteins (Lamb and Dixon, 1997). Moreover, ROS induce 

arrays of cellular protectant and defense genes and also cue the collapse of challenged cells (Foyer 

and Noctor, 2005; Neill et al., 2002). In addition to these intracellular or local intercellular signal 

functions, some studies have highlighted the potential role for local ROS accumulation in 

systemic signaling leading to the establishment of SAR (Fobert and Després, 2005). Elegant 

research by Alvarez et al. (1998) demonstrated redox changes in systemic tissues following SAR 

induction. These changes were observed as well-timed, transient microbursts of H2O2 production 

that were required for SAR manifestation. Taking these facts into account, we speculate that the 

transient enhancement of H2O2 levels, observed in systemic leaves of pyocyanin-treated rice 

seedlings, might likewise function in 7NSK2-mediated ISR to M. oryzae by low-level activation of 

defense responses throughout the plant, thereby contributing to the ISR-induced state. Critical to 

the formation of a hypothesis of transiently increased H2O2 levels as the central event in 7NSK2-

mediated ISR in rice was the observation that inclusion of H2O2-quenching ascorbate into the 

pyocyanin containing nutrient solution abrogated both pyocyanin-induced H2O2-generation and 

pyocyanin-triggered ISR to M. oryzae (Figs. 3.5 and 3.7A). Although the exact nature of the 

quenching effect of ascorbate, and in turn, the attenuation of the ISR performance by ascorbate 

cannot be explained at this stage, since it is not known whether ascorbate merely has a quenching 

effect and/or might interfere further downstream of the signalling pathways leading to ISR, the 

involvement of H2O2 production by redox-active pyocyanin in relation to ISR is apparent. Hence, 
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induction of pyocyanin-mediated H2O2 microbursts most likely constitutes the in situ mechanism 

of 7NSK2-mediated ISR against M. oryzae. In line with this concept, there is substantial evidence 

demonstrating the defensive capacity of H2O2 in rice-M. oryzae interactions. Induction of elevated 

levels of H2O2 in transgenic rice expressing a fungal glucose oxidase gene triggered the expression 

of several defense genes, cell death and enhanced blast resistance in response to wounding and 

pathogen-infection (Kachroo et al., 2003a). Likewise, increasing endogenous levels of H2O2 by 

expression of constitutively active OsRac1, a small GTP-binding protein homologous to human 

Rac, triggered cell death and enhanced blast resistance in transgenic rice plants. Conversely, 

dominant negative OsRac1 suppressed elicitor-induced ROS production in transgenic cell 

cultures, and in plants suppressed R-gene-mediated resistance to M. oryzae (Kawasaki et al., 2006; 

Ono et al., 2001). Moreover, the increased blast resistance of several rice lesion mimic mutants is 

linked with elevated H2O2 production (Ueno et al., 2003; Takahashi et al., 1999).  

Pyocyanin-negative mutants, unlike the wild-type bacterium, significantly reduced sheath 

blight severity (Fig. 3.3), whereas the same mutant strains lost the capacity to mount ISR to M. 

oryzae. In concordance with these observations, pyocyanin-treated rice seedlings exhibited 

increased susceptibility to R. solani (Fig. 3.4B), suggesting that pyocyanin acts as a negative 

regulator of disease resistance responses towards R. solani. Similar to pyocyanin-induced ISR to 

M. oryzae, addition of ascorbate to the nutrient solution alleviated pyocyanin-stimulated 

susceptibility to R. solani (Fig. 3.7B). Hence, the cumulative results suggest that the differential 

beneficial effect of pyocyanin in ISR to M. oryzae and R. solani is due to its capacity to generate 

H2O2 in planta. 

In keeping with our results, ROS have been thought previously to play a dual role in plant 

resistance to pathogens. Despite the numerous lines of evidence demonstrating the involvement 

of ROS in the induction of various defense reactions, including orchestration of hypersensitive 

cell death, which is a highly effective defense mechanism against biotrophic pathogens, their 

accumulation has also been reported to be involved in successful pathogenesis of necrotrophic 

pathogens (Glazebrook, 2005; Hennin et al., 2001; Govrin and Levine, 2000). Although the role 

of H2O2 in cell death induction is widely accepted (Apel and Hirt, 2004; Delledonne et al., 2001), 

its benefit for resistance strategies varies with the type of pathosystem and host tissues. For 

instance, transgenic expression of animal cytoprotective antiapoptotic genes in tobacco conferred 

heritable resistance to several necrotrophic pathogens (Dickman et al., 2001). Similarly, the HR-

deficient Arabidopsis mutant dnd1 was highly resistant to the necrotrophic fungi Botrytis cinerea and 

Sclerotinia sclerotiorum, whereas treatments of A. thaliana with pro-oxidantia, or a HR-causing P. 

syringae strain, prior to infection with B. cinerea or S. sclerotiorum enhanced disease severity, 
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suggesting that HR-associated cell death facilitates pathogenesis by necrotrophic pathogens 

(Govrin and Levine, 2000). Although root treatment with pyocyanin, at least in the pico- and 

nanomolar range, did not induce visible cell death, neither in local nor in systemic tissue, a 

marked increase in the number of HR-expressing epidermal penetration sites was observed in 

response to infection with M. oryzae (Fig. 3.8B). Furthermore, pyocyanin feeding, despite not 

interfering with the penetration process of R. solani, provoked intense browning of epidermal 

cells ahead of fungal invasion (Fig. 3.8L). As ascorbate treatment inhibited these pyocyanin-

mediated cellular responses (Fig. 3.8C), it could be reasoned that the pyocyanin-induced 

generation of H2O2 microbursts might lower the threshold for initiating programmed cell death, 

and by consequence facilitate subsequent infection with R. solani, which as a necrotrophic 

pathogen depends on host cell death as a prerequisite for successful pathogenesis. 

In summary, the dual role of the phenazine antibiotic pyocyanin in P. aeruginosa 7NSK2-

mediated ISR suggests that rice requires distinct mechanisms for defense against M. oryzae and R. 

solani. On one hand, root treatment with pyocyanin was effective against M. oryzae, triggering 

reiterative H2O2 microbursts, and causing rapid HR-associated cell death in response to fungal 

infection, which most likely leads to breakdown of the biotrophic phase of the M. oryzae infection 

cycle. On the other hand, treatment with pyocyanin significantly promoted subsequent infection 

by the necrotrophic pathogen R. solani by facilitating pathogen-triggered host cell death. Hence, 

the oxidative burst and related hypersensitive response might act as a double-edged sword in the 

interaction of rice with hemibiotrophic (M. oryzae) and necrotrophic (R. solani) pathogens. This 

conclusion is substantiated with recent research by Ahn et al. (2005b), demonstrating the 

differential beneficial effect of the HR as defense mechanism against M. oryzae and the 

necrotrophic rice pathogen Cochliobolus miyabeanus. Considering that the effect of the oxidative 

burst and HR-associated cell death depends on the type of invading pathogen, the widespread 

cultivation of resistant blast varieties that rely upon major resistance genes may contribute to the 

increase in sheath blight incidence. In this respect, our recent observation that R. solani 

colonization and sheath blight development is favoured by pre-inoculation with a HR-triggering 

incompatible M. oryzae isolate is of particular interest (De Vleesschauwer et al., unpublished 

results) and might explain why there are no HR-triggering gene-for-gene phenomena known for 

R. solani-rice interactions. Our work underscores the importance of utilizing appropriate innate 

defense mechanisms in plant breeding programs and might contribute to the development of 

new strategies for disease control.      
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Materials and Methods 

 

Bacterial strains and plasmids 

Bacteria and plasmids used in this study are listed in Table 3.1. Mutant strains 7NSK2-phzM and 

KMPCH-phzM were constructed as described by Rabaey et al. (2005) by homologous recombination using 

plasmid pZM1-Gm as suicide vector. In trans complementation of 7NSK2-phzM for pyocyanin 

production was performed as described by Audenaert et al. (2002b).  

 

Evaluation of plant colonization by Pseudomonas aeruginosa 7NSK2 and mutants 

To assess whether root colonization with P. aeruginosa leads to bacterial colonization of distal plant 

parts, leaves and stems of 20- and 35-day-old plants (end of bioassay) were checked for bacterial 

colonization. For four plants per treatment, leaves and stems were pooled before maceration in 1.5 ml of 

sterile demineralized water and plated out on KB amended with the appropriate antibiotics. Bacterial 

counts were made after 24 and 48 h of incubation at 37 °C and the experiment was performed twice. 

 

Pathogen inoculation and disease rating  

The Vietnamese M. oryzae isolate VT5M1 was used for all infection trials. Inoculum production and 

inoculation was performed exactly as described by Ninh Thuan et al. (2006). Each plant was sprayed with 

1 ml of inoculum (1 x 104 spores ml-1 in a 0.5% gelatin solution). Six days after inoculation, disease was 

assessed by counting the number of susceptible-type lesions, which are defined as elliptical to round-

shaped lesions characterized by a gray centre indicative of sporulation of the fungus (Schweizer et al., 

1997).  

 

Rhizoctonia solani 

The virulent R. solani isolate MAN-86 (AG-1, IA), obtained from symptomatic plants (cv. IR-50) in 

rice fields in the state of Karnataka (India) and kindly provided by Dr. Sam Gnanamanickam, was used to 

inoculate the plants. Inoculum was obtained as described by Rodrigues et al. (2003b). Inoculated plants 

were kept for 72 h inside the humid inoculation chambers (≥ 92% R.H.) at 30 ± 4 ºC and thereafter 

transferred to greenhouse conditions. Ninety-six h after inoculation, disease was evaluated by measuring 

the length of the water-soaked lesions as described by Singh et al. (2002). 

 

Pyocyanin extraction and quantification 

The pyocyanin-overproducing strain 7NSK2-phz2 was grown for 48 h on Pseudomonas P agar 

medium (Difco, Le Pont de Claix, France) at 37 ºC. Purification of pyocyanin was performed as described 

by Abeysinghe (1999). For quantification, the weight of the purified pyocyanin crystals was determined. 

For all experiments reported herein, pyocyanin was suspended in sterile demineralized water and it was 

filter-sterilized prior to use. 
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Table 3.1. Bacteria and plasmids used in this study with their relevant characteristics 
 

Strains or plasmids Relevant characteristicsa Reference or source 

P. aeruginosa   

7NSK2 Pyo+, Pvd+, Pch+, SA+, wild type Iswandi et al., 1987 

KMPCH Pyo+, Pvd-, Pch-, SA+, chemical mutant of the pyoverdin-
negative mutant MPFM1; Kmr

Höfte et al., 1993 

7NSK2-phzM Pyo-, Pvd+, Pch+, SA+, phzM mutant of 7NSK2, obtained by 
gene replacement using plasmid pZM1-Gm; Gmr

This study 

7NSK2-phzMc Pyo+, Pvd+, Pch+, SA+, 7NSK2-phzM containing pHZM 
(functional phzM gene on plasmid pBBR1MCS) that restores 
pyocyanin production, Gmr, Cmr

This study 

7NSK2-phz2 Pyo+, Pvd+, Pch+, SA+, retS (PA4856) mutant of 7NSK2 
obtained by miniTnphoA3 mutagenesis, overproduces 
pyocyanin, Gmr

This study 

KMPCH-phzM Pyo-, Pvd-, Pch-, SA+, phzM mutant of KMPCH, obtained by 
gene replacement using plasmid pZM1-Gm; Gmr

This study 

Plasmids   

pBR322 Suicide vector in Pseudomonas, Cmr/Cbr/Tcr Bolivar, 1978 

pZM1-Gm 2054-bp PCR-amplified fragment of primer pair 4209A-B 
(phzM) of P. aeruginosa PAO1, inactivated by a site-specific 
insertion of a 803-bp NotI-blunted Gm cassette, cloned in 
pBR322 

Rabaey et al., 2005 

pBBR1MCS Broad host-range cloning vector for Pseudomonas, Cmr Kovach et al., 1994 

pHZM A 2054-bp PCR-amplified fragment of primer pair 4209A-B 
(phzM) of 7NSK2 cloned in the EcoRV site of pBBR1MCS, 
Cmr

Audenaert et al., 
2002b 

a Pyo = Pyocyanin, Pvd = Pyoverdin, Pch = Pyochelin, SA = salicylic acid, Km = Kanamycin, Gm = 
Gentamycin, Cm = Chloramphenicol, Cb = Carbenicilin, Tc = Tetracycline 

 

 

In vitro production of pyocyanin by bacterial strains 

To monitor in vitro production of pyocyanin by the distinct strains, bacteria were grown for 48 h on 

Pseudomonas P agar medium at 37 ºC. Bacteria were scraped off the plates, suspended in sterile distilled 

water and centrifuged for 10 min at 4 ºC. Pyocyanin present in the supernatant was extracted twice with 

chloroform and determined spectrophotometrically in the presence of 0.1 M HCl (optical density at 510 

nm) as described by Essar et al. (1990). The experiment was set up in 6 replicates and repeated twice. 
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Hydroponic plant growth 

For experiments in which purified pyocyanin was applied to rice seedlings, plants were grown in a 

hydroponic gnotobiotic system. Surface-sterilized rice seeds were germinated for 5 days on wet filter paper 

in Petri dishes. After incubation, germinated seeds were sown in perforated plastic trays (23x16x6 cm) 

filled with sterilized vermiculite, and supplemented with half-strength Hoagland solution (Hoagland and 

Arnon, 1938). Every three days, 0.5 litre of the half-strength Hoagland solution was added to each tray 

containing 12 seedlings. In this model, 4 days before challenge inoculation, various concentrations of 

pyocyanin and sodium ascorbate were applied to the plants by including the desired concentration in the 

nutrient solution without ethylenediaminetetraacetic acid ferric sodium salt (Acros, Geel, Belgium). This, 

to avoid possible ferric-catalyzed HO. generation from pyocyanin-derived O2-./H2O2.     

 

Histochemical detection of H2O2  

To assess whether pyocyanin was able to produce H2O2 in the gnotobiotic system, rice roots were 

dipped in half-strength Hoagland nutrient solution containing 1 nM pyocyanin for 2 h, rinsed thoroughly 

with demineralized water and subsequently incubated for 12 h at room temperature in water with 0.01% 

Triton-X-100 and 3,3’-diaminobenzidine (DAB). DAB (Sigma-Aldrich, Bornem, Belgium) polymerizes in 

the presence of H2O2 to form a brownish-red precipitate that can be visualized. The specificity of the 

staining was verified by adding 10 mM ascorbic acid. 

 

In planta determination of H2O2 

The in planta accumulation of H2O2 was determined following the TiCl4-based technique as described 

by Mur et al. (2005). H2O2 accumulation was expressed relative to values obtained in control samples. 

Each experiment consisted of 6 replicates per treatment and was repeated twice to generate the data 

presented.  

 

Enzyme extraction and activity assays 

Frozen leaf samples were crushed to a fine powder in a mortar under liquid nitrogen. Soluble proteins 

were extracted by resuspending the powder in four volumes of 50 mM sodium phosphate buffer (pH 7.5), 

containing 1 mM EDTA, 1 mM PMSF, 5 mM sodium ascorbate and 5% (w/v) PVPP. The homogenate 

was centrifuged at 17000 g for 10 min. The supernatant was divided into aliquots, frozen in liquid nitrogen 

and stored at – 80 ºC for further analysis. All above operations were carried out at 0-4 ºC. Activity levels 

of the various antioxidant enzymes (namely catalase [CAT], guiacol-dependent peroxidase [GPX], 

ascorbate peroxidase [APX], and superoxide dismutase [SOD]) in plant extracts were measured 

spectrophotometrically as described by Garcia-Limones et al. (2002). 

The CAT reaction medium consisted of 50 mM sodium phosphate buffer pH 7.0, 20 mM H2O2 and 

between 10 and 50 µl of enzyme extract. The reaction was started by adding H2O2 and the decrease in A240 

(ε = 39.4 mM-1 cm-1), produced by H2O2 breakdown was recorded. One CAT unit is defined as the 

amount of enzyme necessary to decompose 1 µmol min-1 H2O2 under the above assay conditions. 
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To assay GPX activity, the reaction mixture (3.0 ml) consisted of 100 mM potassium phosphate 

buffer pH 6.5, 15 mM guiacol, 0.25% (v/v) H2O2 (200 mM) and different volumes of enzyme extract. The 

reaction was started by adding H2O2 and the oxidation of guiacol was determined by the increase in A470 (ξ 

= 26.6 mM-1 cm-1). One GPX unit is defined as the amount of enzyme that produces 1 µmol min-1 

oxidized guiacol under the above assay conditions.  

For APX activity assays, the reaction mixture consisted of 50 mM potassium phosphate buffer pH 

7.0, 0.25 mM sodium ascorbate, 5 mM H2O2 and 50 µl of enzyme extract. The reaction was started by 

adding H2O2 and the oxidation of ascorbate was measured by the decrease in A290 (ξ = 2.8 mM-1 cm-1). 

One unit of APX activity is defined as the amount of enzyme that oxidizes 1 µmol min-1 ascorbate under 

the above assay conditions. 

SOD activity was determined from the inhibition of the photochemical reduction of nitroblue 

tetrazolium (NBT) in the presence of riboflavin. The reaction mixture (1.5 ml) consisted of 50 mM 

potassium phosphate buffer pH 7.8, 0.1 mM EDTA, 13 mM methionine, 75 µM NBT, 2 µM riboflavin 

and between 10 and 50 µl of enzyme extract. The reaction was started by adding riboflavin and A560 was 

recorded after 12 min incubation at room temperature under continuous light (70W). One SOD unit was 

defined as the amount of enzyme that inhibits the rate of NBT reduction by 50% under the above assay 

conditions. 

In all assays the blank consisted of the components of the reaction mixture except for the enzyme 

extract, which was replaced by an equal volume of the assay buffer. In the SOD assay, the enzyme blank 

was taken as the 100% rate of NBT photochemical reduction. In the remaining cases the enzyme blanks 

were subtracted from the assay measurements. Protein levels in enzyme extracts were determined by the 

Bradford method (Bradford, 1976) with BSA as a standard. 

 

Detection of pyocyanin by HPLC analysis 

Hydroponically grown 28-day-old CO-39 seedlings were fed with a 50 µM pyocyanin solution as 

indicated above. At various time points post-application, leaves were excised, grinded and homogenized in 

chloroform. The soluble material was subjected to pyocyanin extraction according to Abeysinghe (1999). 

The extract was evaporated in vacuo to dryness and subsequently solubilized in 50% methanol. Samples 

were analyzed by high-performance liquid chromatography using a Genesis C18 column as described by 

Rabaey et al. (2005).  

 

Cytological investigation by using bright-field and fluorescence microscopy 

M. oryzae inoculation of intact leaf sheaths and preparation of specimens for microscopy were 

conducted as described by Koga et al. (2004b). For inoculation with R. solani, sheaths were opened 

carefully and a small piece (circa 1 mg) of sclerotium placed inside the sheath. A few drops (100 µl) of 

sterile water were added to the inoculated sheath. Cytological observations were made using an Olympus 

model BX51 microscope (Olympus, Aartselaar, Belgium) equipped with differential interference contrast 

optics. The autofluorescence of epidermal cell walls or the whole-epidermal cells of each appressorial site 
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examined was recognized by incident fluorescence microscopy (Olympus U-MWB2 GFP filter set-

excitation: 450-480 nm, dichroic beamsplitter: 500 nm, barrier filter BA515). Images were acquired 

digitally (Olympus Color View II camera, Aartselaar, Belgium) and further processed with the Olympus 

analySIS cell^F software. 
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I 
 

nduced systemic resistance (ISR) is a state of enhanced defensive capacity developed by a 
plant colonized by selected strains of nonpathogenic rhizobacteria. Using a combined 
cytomolecular and pharmacological approach, we analyzed the host defense mechanisms 

associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. 
In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more 
resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice 
blast disease. Analysis of the cytological and biochemical alterations associated with restriction of 
fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-
induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic 
compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet 
more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were 
evident in a gene-for-gene interaction with an avirulent M. oryzae strain, indicating that, at the 
cytological level, IC1270-mediated ISR is a partial phenocopy of effector-triggered immunity. 
Yet, this IC1270-mediated ISR response seems to act as a double-edged sword within the rice 
defense network as bacterized plants displayed an increased vulnerability to the necrotrophic 
pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial enhancement of ROS levels in 
inoculated leaves faithfully mimicked the opposite effects of IC1270 bacteria on aforementioned 
pathogens, suggesting a central role for oxidative events in the IC1270-induced resistance 
mechanism. Besides tagging ROS as modulators of antagonistic defense mechanisms in rice, this 
work reveals the mechanistic similarities between S. plymuthica-mediated ISR and effector-
triggered immunity and underscores the importance of using appropriate innate defense 
mechanisms when breeding for broad-spectrum rice disease resistance. 



Chapter 4 

Introduction  
 
 Plants have evolved a powerful immune system to resist their potential colonization by 

microbial pathogens and parasites. Over the past decade, it has become increasingly clear that this 

innate immunity is, in essence, composed of two interconnected branches, termed PAMP-

triggered immunity (PTI) and effector-triggered immunity (ETI) (Jones and Dangl, 2006; Eulgem 

and Somssich, 2007). PTI is triggered by recognition of pathogen- or microbial-associated 

molecular patterns (PAMPs/MAMPs), which are conserved molecular signatures decorating 

many classes of microbes, including non-pathogens. Perception of MAMPs by pattern 

recognition receptors (PRRs) at the cell surface activates a battery of host defense responses 

leading to a basal level of resistance (Chisholm et al., 2006). As a result of the evolutionary arms-

race between plants and their intruders, many microbial pathogens acquired the ability to dodge 

PTI-based host surveillance via secretion of effector molecules that intercept MAMP-triggered 

defense signals (Gohre and Robatzek, 2008). In turn, plants have adapted to produce cognate R-

(resistance) proteins by which they recognize these pathogen-specific effector proteins, resulting 

in a superimposed layer of defense variably termed effector-triggered immunity (ETI), gene-for-

gene resistance or R-gene-dependent resistance (Jones and Dangl, 2006). 

 In many cases, effector recognition culminates in the programmed suicide of a limited 

number of challenged host cells, clearly delimited from the surrounding healthy tissue. This 

hypersensitive response (HR) is thought to benefit the plant by restricting pathogen access to 

water and nutrients and is correlated with an integrated set of physiological and metabolic 

alterations that are instrumental in impeding further pathogen ingress, among which a burst of 

oxidative metabolism leading to the massive generation of reactive oxygen species (ROS) 

(Greenberg and Yao, 2004; Glazebrook, 2005). Apart from local immune responses, ETI-

associated HR formation also mounts a long-distance immune response termed systemic 

acquired resistance (SAR), in which naïve tissues become resistant to a broad spectrum of 

otherwise virulent pathogens (Durrant and Dong, 2004). It should be noted, however, that PTI, 

when activated by PAMPs that activate the SA signaling pathway, can trigger SAR as well 

(Mishina and Zeier, 2007). 

 An archetypal inducible plant defense response, SAR requires endogenous accumulation of 

the signal molecule salicylic acid (SA) and is marked by the transcriptional reprogramming of a 

battery of SA-inducible genes encoding pathogenesis-related (PR) proteins. By contrast, there is 

ample evidence for induced disease resistance conditioned by molecules other than SA, as 

illustrated by rhizobacteria-mediated induced systemic resistance [ISR; (Van Loon et al., 1998)]. 

ISR, which delivers systemic protection without the customary pathogenesis-related protein 
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induction, is a resistance activated upon root colonization by specific strains of plant growth-

promoting rhizobacteria (PGPRs) (Bostock, 2005). In a series of seminal studies using the 

reference strain Pseudomonas fluorescens WCS417r, Pieterse and associates (Pieterse et al., 1996; 

Pieterse et al., 1998; Pieterse et al., 2000) demonstrated that, at least in Arabidopsis, ISR functions 

independently of SA, but requires components of the jasmonic acid (JA) and ethylene (ET) 

response pathways. Even though colonization of the roots by ISR-triggering bacteria leads to a 

heightened level of resistance against a diverse set of intruders, often no defense mechanisms are 

activated in aboveground plant tissues upon perception of the resistance-inducing signal. Rather, 

these tissues are sensitized to express basal defense responses faster and/or more strongly in 

response to pathogen attack, a phenomenon known as priming (Conrath et al., 2002). As 

demonstrated recently, priming of the plant’s innate immune system confers broad-spectrum 

resistance with minimal impact on seed set and plant growth (van Hulten et al., 2006). Hence, 

priming offers a cost-efficient resistance strategy, enabling the plant to react more effectively to 

any invader encountered by boosting infection-induced cellular defense responses (Conrath et al., 

2006; Beckers and Conrath, 2007).  

 In contrast to the overwhelming amount of information on inducible defenses in 

dicotyledonous plant species, our understanding of the molecular mechanisms underpinning 

induced disease resistance in rice (Oryza sativa) and other cereals is still in its infancy (Kogel and 

Langen, 2005). Evidence demonstrating that central components of the induced resistance 

circuitry, including the master regulatory protein NPR1, are conserved in rice has only recently 

been presented (Chern et al., 2001; Chern et al., 2005b; Shimono et al., 2007; Yuan et al., 2007). 

Moreover, reports on SAR-like phenomena in rice are scarce. Most tellingly in this regard, a 17-

year-old report of systemically enhanced resistance against the rice blast pathogen M. oryzae 

triggered by  a localized infection with the non-rice pathogen P. syringae pv. syringae remains one of 

the most compelling examples of a SAR-like response in rice to date (Smith and Metraux, 1991). 

In contrast, there is a sizeable body of evidence demonstrating systemic protection against 

various rice pathogens resulting from ISR elicited by, amongst others, Pseudomonas (Nandakumar 

et al., 2001; Nagarajkumara et al., 2005), Bacillus (Jayaraj et al., 2004) and Serratia strains (Someya 

et al., 2005). However, none of these studies managed to portray an accurate picture of ISR in 

terms of mechanistic issues.  

In a previous study, we demonstrated that rice plants of which the roots were colonized by 

the fluorescent pseudomonad P. aeruginosa 7NSK2 developed an enhanced defensive capacity 

against infection with M. oryzae. Bacterial mutant analysis revealed that this 7NSK2-mediated ISR 

is based on secretion of the redox-active pigment pyocyanin. Perception of pyocyanin by the 
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plant roots was shown to cue the formation of reiterative micro-oxidative bursts in naïve leaves, 

thereby priming these leaves for accelerated expression of HR-like cell death upon pathogen 

attack (Chapter 3). Aiming to gain further insight into the molecular mechanisms underpinning 

rhizobacteria-modulated ISR in rice, we tested the ability of the biocontrol agent Serratia 

plymuthica IC1270 to induce systemic resistance against various rice pathogens with different 

modes of infection. Originally isolated from the rhizosphere of grapes, S. plymuthica IC1270 is a 

well-characterized PGPR strain producing a broad palette of antimicrobial compounds (Chernin 

et al., 1995; Ovadis et al., 2004; Meziane et al., 2005; De Vleesschauwer and Höfte, 2007). In 

addition to its potential as a direct antagonist of a wide array of plant pathogens, preliminary 

experiments in bean and tomato revealed that IC1270 is equally capable of reducing disease 

through activation of a plant-mediated defense response (De Vleesschauwer and Höfte, 2007). 

Here, we demonstrate that colonization of rice roots by IC1270 renders foliar tissues more 

resistant to M. oryzae. Using a combined cytological and pharmacological approach, evidence is 

provided that IC1270 locks plants into a pathogen-inducible program of boosted ROS formation, 

culminating in the prompt execution of HR cell death at sites of attempted pathogen entry. 

Similar, yet even more pronounced, phenotypes of hypersensitively dying cells in the vicinity of 

fungal hyphae were observed in a genetically incompatible rice-M. oryzae interaction, indicating 

that, at the cytological level, IC1270-mediated ISR is a partial phenocopy of R-gene-mediated 

ETI. However, this IC1270-inducible and ETI-resembling resistance mechanism seems to play 

an ambivalent role within the rice disease resistance network, as bacterized plants were rendered 

hypersusceptible to the necrotrophic pathogens R. solani and C. miyabeanus 
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Results  

 

Differential effectiveness of ISR triggered by S. plymuthica IC1270 

 To assess the ISR-triggering capacity of S. plymuthica IC1270, susceptible rice plants were 

grown in soil containing IC1270 bacteria, and subsequently challenged with several fungal 

pathogens exhibiting different modes of infection. In these ISR bioassays, the resistance-inducing 

potential of IC1270 was compared to that of P. aeruginosa 7NSK2, a well-studied PGPR strain 

which we previously uncovered as a potent activator of induced resistance responses in rice 

(Chapter 3).   

We first tested whether root colonization by S. plymuthica IC1270 exerts a protective effect 

against infection by the hemibiotrophic ascomycete M. oryzae, causal agent of the devastating rice 

blast disease and a major threat to food security worldwide (Caracuel-Rios and Talbot, 2007). By 

4 days post-inoculation (dpi), leaves of control, non-bacterized plants displayed typical water-

soaked, diamond-shaped lesions, developing conidia at the center of each lesion by 6 dpi. In 

contrast, IC1270-bacterized plants exhibited a marked reduction in the number of these 

susceptible-type lesions, producing a resistance phenotype mimicking that of quantitative trait 

loci-governed intermediate resistance (Fig. 4.1A). This resistance type is characterized by the 

abundance of small necrotic non-sporulating lesions, less than 2 mm in diameter, 60 to 72 h post-

inoculation (hpi). Consistent with our previous findings (Chapter 3), treatment with P. aeruginosa 

7NSK2 resulted in a substantial reduction of disease as well. No significant differences in the 

number of susceptible-type lesions could be observed between IC1270- and 7NSK2-treated 

plants, indicating that IC1270 and 7NSK2 are equally effective in suppressing M. oryzae.  

 Because IC1270 clearly inhibited the growth of M. oryzae in dual culture experiments (data not 

shown), possible systemic plant colonization by the rhizobacteria was checked. However, in all 

bioassays performed, IC1270 bacteria were absent from sheaths or leaves of root-induced plants, 

indicating that bacterial colonization remained confined to the root zone (data not shown). 

Although such spatial separation does not rule out the possibility that IC1270-conferred 

protection might result from long-distance translocation of bacteria-produced allelochemicals to 

systemic leaves, the latter is rather unlikely as pilot experiments revealed that mutants defective in 

the synthesis of various antimicrobial metabolites were as effective as wild-type IC1270 in 

reducing blast disease severity (De Vleesschauwer and Höfte, unpublished results). The 

cumulative data therefore strongly suggest that the beneficial protective activity exerted by S. 

plymuthica IC1270 is based on activation of the plant’s defensive repertoire, rather then being 

caused by microbial antagonism.  
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To test the spectrum of effectiveness of this IC1270-mediated ISR, we next assayed for 

induction of resistance against the sheath blight pathogen, Rhizoctonia solani, and the brown spot 

pathogen, Cochliobolus miyabeanus, both of which are considered necrotrophic fungi. In contrast to 

M. oryzae, which sequentially invades living cells (Kankanala et al., 2007), R. solani and B. oryzae kill 

host cells at very early stages in the infection, leading to extensive tissue damage (Ou, 1985). As 

shown in Figure 4.1B, both IC1270 and 7NSK2 failed to reduce disease caused by R. solani. This 

impaired ISR response was not due to insufficient root colonization as bacterial counts in the 

rhizosphere of bacterized rice seedlings were comparable to those obtained in the M. oryzae 

bioassays (1.14 ± 0.19 x 105 CFU. g-1). Interestingly, in all four independent experiments, IC1270 

pretreatment favored subsequent infection by R. solani, causing an average 39.6% increase in 

disease severity relative to non-induced controls. A similar trend was observed when challenging 

with C. miyabeanus, with IC1270 consistently promoting vulnerability to the latter pathogen (Fig. 

4.1C). Root colonization by 7NSK2, however, yielded variable results. No significant differences 

between control and 7NSK2-treated plants could be observed in three bioassays (Fig. 4.1D), 

whereas in the two remaining assays, root treatment with 7NSK2 rendered rice seedlings 

substantially more susceptible to brown spot (Fig. 4.1E).  

 In all experiments, mock-inoculated control plants remained healthy, and no apparent 

differences in appearance, size, or weight of control, 7NSK2 or IC1270-treated plants were 

observed prior to challenge infection (data not shown). Thus, under the experimental conditions 

used in this study, root treatment with the ISR-inducing bacteria did not lead to detectable effects 

on plant growth that could have affected the growth or development of the respective pathogens.  

Collectively, these findings demonstrate that S. plymuthica IC1270 plays an ambivalent role in the 

rice induced resistance network, acting as a positive regulator of resistance to the hemibiotroph 

M. oryzae while promoting susceptibility to the necrotrophs C. miyabeanus and R. solani.     
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Figure 4.1. Spectrum of effectiveness of Pseudomonas aeruginosa 7NSK2- and Serratia plymuthica IC1270-
triggered ISR in rice.  triggered ISR in rice.  
  
ISR was induced by growing the plants in soil containing 7NSK2 or IC1270 bacteria. Control plants were treated 
with water. A, Quantification of ISR against M. oryzae. Plants were challenged when 4 weeks old (5-leaf stage) by 
spraying a spore suspension of virulent M. oryzae VT7 at 1 x 104 conidia ml-1. Six days after challenge inoculation, 
disease was rated by counting the number of susceptible-type lesions per leaf 4 and expressed relative to non-
bacterized control plants. Photographs depicting representative symptoms were taken 7 days post inoculation. B, 
Quantification of ISR against R. solani. Four-week-old plants were challenged by placing a 1 cm-toothpick colonized 
by R. solani inside the sheath of the second youngest fully developed leaf; 4 days later, disease severity was assessed 
by measuring the total length of sheath blight lesions. C – E, Quantification of ISR against C. miyabeanus. Plants were 
challenge-inoculated when five weeks old by spraying a conidial suspension at 1 x 104 conidia  ml-1. Disease 
evaluation was performed 4 d postinoculation, using a 1-to-5 disease severity scale as described in the Methods 
section. For all graphs, statistical analysis was performed on pooled data from at least four independent experiments, 
because interaction between treatment and experiment was not significant at α = 0.05 and variances were 
homogeneous. Figures D and E, however, represent data pooled from three and two independent experiments, 
respectively. Different letters indicate statistically significant differences between treatments according to non-
parametric Kruskall-Wallis and Mann-Whitney tests (n ≥ 42; α = 0.05). 

ISR was induced by growing the plants in soil containing 7NSK2 or IC1270 bacteria. Control plants were treated 
with water. A, Quantification of ISR against M. oryzae. Plants were challenged when 4 weeks old (5-leaf stage) by 
spraying a spore suspension of virulent M. oryzae VT7 at 1 x 10

  

4 conidia ml-1. Six days after challenge inoculation, 
disease was rated by counting the number of susceptible-type lesions per leaf 4 and expressed relative to non-
bacterized control plants. Photographs depicting representative symptoms were taken 7 days post inoculation. B, 
Quantification of ISR against R. solani. Four-week-old plants were challenged by placing a 1 cm-toothpick colonized 
by R. solani inside the sheath of the second youngest fully developed leaf; 4 days later, disease severity was assessed 
by measuring the total length of sheath blight lesions. C – E, Quantification of ISR against C. miyabeanus. Plants were 
challenge-inoculated when five weeks old by spraying a conidial suspension at 1 x 104 conidia  ml-1. Disease 
evaluation was performed 4 d postinoculation, using a 1-to-5 disease severity scale as described in the Methods 
section. For all graphs, statistical analysis was performed on pooled data from at least four independent experiments, 
because interaction between treatment and experiment was not significant at α = 0.05 and variances were 
homogeneous. Figures D and E, however, represent data pooled from three and two independent experiments, 
respectively. Different letters indicate statistically significant differences between treatments according to non-
parametric Kruskall-Wallis and Mann-Whitney tests (n ≥ 42; α = 0.05). 

S. plymuthica IC1270 triggers HR-like responses at the sites of pathogen attack S. plymuthica IC1270 triggers HR-like responses at the sites of pathogen attack 

 To begin to unravel the defense mechanism(s) underpinning IC1270-mediated ISR, we 

analyzed the cytological alterations associated with restriction of M. oryzae in IC1270-induced 

plants using the intact leaf sheath method designed by Koga and associates (2004b). In this 

system, intact leaf sheaths of non-bacterized and IC1270-induced plants of the highly susceptible 

rice variety CO39 were routinely inoculated by injecting a conidial suspension of the virulent 

blast isolate VT7. For comparison with R gene-mediated ETI, we also included the VT7-resistant 

variety C101LAC, the latter being a near-isogenic line of CO39 carrying the blast resistance genes 

Pi-1 and Pi-33 (Mackill and Bonman, 1992; Berruyer et al., 2003).  

 To begin to unravel the defense mechanism(s) underpinning IC1270-mediated ISR, we 

analyzed the cytological alterations associated with restriction of M. oryzae in IC1270-induced 

plants using the intact leaf sheath method designed by Koga and associates (2004b). In this 

system, intact leaf sheaths of non-bacterized and IC1270-induced plants of the highly susceptible 

rice variety CO39 were routinely inoculated by injecting a conidial suspension of the virulent 

blast isolate VT7. For comparison with R gene-mediated ETI, we also included the VT7-resistant 

variety C101LAC, the latter being a near-isogenic line of CO39 carrying the blast resistance genes 

Pi-1 and Pi-33 (Mackill and Bonman, 1992; Berruyer et al., 2003).  
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No obvious alterations in cell physiology due to IC1270 treatment were observed prior to 

infection. Similarly, quantitative recording of attempted blast infections revealed no significant 

differences in the number of unsuccessful penetration events, indicating that both IC1270-

mediated ISR and R-gene-conditioned ETI are unlikely to impede pre-penetration development 

by M. oryzae (data not shown). On the other hand, epidermal cells were found to respond to 

fungal ingress through various cellular reaction types depicted at 48 hpi in Figure 4.2A. A 

susceptible reaction was manifested as a type 1 phenotype in which extensively branched invasive 

hyphae vigorously invaded living epidermal cells with little or no host response. Interaction 

phenotype 2, on the other hand, was characterized by prompt arrest of fungal growth in the first-

invaded epidermal cell, a phenomenon associated with enhanced vesicular activity and browning 

of the anticlinal cell walls, while a type 3 reaction represented infection sites in which fungal 

invasion was curtailed shortly after penetration due to development of HR-like cell death, as 

indicated by the characteristic aggregation of the cytoplasm and a bright autofluorescence of the 

anticlinal cell walls (Koga, 1994; Koga et al., 2004b). As expected, sheath cells of non-induced, 

susceptible CO39 plants inoculated with virulent VT7 predominantly mounted a type 1 reaction, 

whereas HR was the prevailing plant response in the incompatible interaction between VT7 and 

C101LAC. Most conspicuously, IC1270-induced CO39 sheath cells displayed an interaction 

profile resembling that observed in VT7-invaded sheaths of genetically resistant C101LAC, with 

type 3 reactions accounting for approximately 60% of all interactions at 48 hpi (Fig. 4.2B).  

 At later stages of infection, M. oryzae had massively colonized the epidermis and mesophyll of 

CO39 sheaths causing extensive host damage as evidenced by the ubiquitous presence of cellular 

debris and fragmented remnants of host cell walls around invasive hyphae in the mesophyll (data 

not shown). By contrast, in resistant C101LAC, as well as in IC1270-induced CO39, invading 

hyphae were largely trapped within hypersensitively dying cells in the epidermal layer, preventing 

fungal passage to the underlying tissue.  
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A B 

 
Figure 4.2. Influence of root treatment with S. plymuthica IC1270 on M. oryzae-induced cellular responses 
in rice.  
 
A, Intact leaf sheaths of the susceptible cv. CO39 and its resistant near-isogenic line C101LAC were challenged by 
injecting a conidial suspension of M. oryzae VT7. Left, Micrographs depicting representative interaction phenotypes: 
(I), Vigorous invasion of living tissues in the absence of visible host responses. (II), Fungal arrest in the first-invaded 
cell associated with browning of anticlinal cell walls and enhanced vesicular activity. (III), Abrupt arrest of fungal 
invasion in hypersensitively reacting epidermal cell as indicated by dense cytoplasmic aggregation. Ap, appressorium 
or appressorial site. IH = invading hyphae. Scale bars = 20 µm. B, Frequencies of abovementioned interaction 
phenotypes at 36 and 48 hours post inoculation. Each bar represents the mean and SD of six replications stemming 
from three plants. At least 50 single-cell interaction sites originating from representative sheath sections were 
examined per replication. Data from one experiment is presented. Repetition of experiments led to results very 
similar to those shown.  
 

Because rapid accumulation of phenolic compounds is a hallmark of rice defense against M. 

oryzae (Koga, 1994; Rodrigues et al., 2005), we also examined the effect of IC1270 pre-treatment 

on the level of autofluorescence. Autofluorescence was detectable as early as 18 hpi, irrespective 

of IC1270 treatment or the level of resistance of the cultivars used (Fig. 4.3A). However, similar 

to what was observed in resistant C101LAC, root treatment of CO39 with IC1270 caused the 

frequency of autofluorescent appressorial sites to increase rapidly from 18 hpi onward, reaching a 

level of 60 and 100% of all interactions by 24 and 36 hpi, respectively (Fig. 4.3B). By contrast, in 

non-induced CO39 cells, less than 6% of the appressorial sites showed autofluorescence by 24 

hpi, indicating that root colonization by IC1270 primes rice sheath cells for accelerated 
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deposition of autofluorescent phenolic compounds at sites of attempted pathogen invasion. 

Along with the high frequency of hypersensitively reacting cells, these observations indicate that, 

at the cytological level, IC1270-mediated ISR is a partial phenocopy of R-gene-conditioned ETI 

to M. oryzae. 
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Figure 4.3. S. plymuthica IC1270 primes rice for enhanced accumulation of autofluorescent phenolics upon 
challenge inoculation.  
 
Intact leaf sheaths of the susceptible cv. CO39 and its resistant near-isogenic line C101LAC were challenged by 
injecting a conidial suspension of M. oryzae VT7. A, Epifluorescence image of IC1270-induced sheath cells at 24 hpi. 
Ap = appressorium. Scale bar = 20 µm. B, Comparative kinetic analysis of autofluorescence in water-treated 
susceptible (CO39), susceptible yet ISR-expressing (CO39 + IC1270), and genetically resistant (C101LAC) plants. 
Each bar represents the mean and SD of six replications stemming from three plants. Data from one experiment is 
presented. Repetition of experiments led to results very similar to those shown.  
 

S. plymuthica IC1270-mediated ISR to M. oryzae involves priming for enhanced attacker-

induced H2O2 generation 

 There is ample evidence demonstrating the active involvement of reactive oxygen species 

(ROS), and H2O2 in particular, in the induction, signaling and execution of blast resistance in rice 

(Ganesan and Thomas, 2001; Ono et al., 2001; Kawasaki et al., 2006; Vergne et al., 2007). 

Furthermore, in the course of previous studies, we demonstrated that pyocyanin-induced H2O2 

microbursts are primordial for the onset of P. aeruginosa 7NSK2-mediated ISR against M. oryzae 

(Chapter 3). Taking these facts into account, we sought to extend our cytological analysis of ISR 

elicited by IC1270 by monitoring the spatiotemporal patterns of pathogenesis-related H2O2 

production. In planta accumulation of H2O2 was visualized using an endogenous peroxidase-

dependent staining procedure with 3,3’-diaminobenzidine (DAB). In these DAB assays, reddish-

brown precipitates are deposited at the sites of H2O2 accumulation (Thordal-Christensen et al., 

1997). No DAB accumulation was observed in mock-inoculated controls, regardless of IC1270 

treatment or the inherent level of resistance of the cultivars used. However, comparative kinetic 
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analysis of H2O2 production in pathogen-inoculated seedlings revealed the occurrence of a wide 

range of distinct DAB staining patterns that could be grouped into five categories (Fig. 4.4A). 

The first type comprised interaction sites in which DAB accumulation was not detectable despite 

massive fungal colonization of both penetrated and neighboring epidermal cells. Conversely, 

interaction sites displaying H2O2 accumulation in the primary invaded epidermal cell following 

spread of the invasive hyphae into neighboring cells were classified as a type II reaction. Type III 

interaction sites were characterized by the ubiquitous occurrence of DAB-positive vesicle-like 

bodies targeted to the invading hyphae. A type IV reaction referred to intracellular DAB staining 

tightly associated with the characteristic cytoplasmic aggregates of HR-expressing cells (type IV), 

while interaction sites displaying whole-cell DAB accumulation were scored as a type V reaction. 

Importantly, when the DAB solution was supplemented with ascorbate, staining was abolished, 

indicating that the staining was due to H2O2 (data not shown). 

 Leaf sheath cells of susceptible CO39 were characterized by the high ratio of H2O2-negative 

type I reactions, accounting for 78% and 67% of all interaction sites by 36 and 48 hpi, 

respectively (Fig. 4.4B). In some incidences (21% of all interaction sites at 48 hpi), H2O2 

accumulated in the initially penetrated epidermal cell following the formation of an extensively 

branched mycelium in the neighboring cells. Yet, this type II reaction seemingly occurred too late 

to effectively stall the pathogen. IC1270-induced CO39 cells, on the other hand, exhibited a 

strikingly different set of responses in that type I reactions, reaching a level of 33% at 36 hpi, 

were no longer discernible by 48 hpi. The rapid decline in the frequency of type I reactions from 

36 hpi onward corresponded to an approximately 15% increase in the frequency of both type III 

and type V reactions. HR-like cell death of attacked epidermal cells, seen at approximately 52% 

of all interaction sites, was always associated with H2O2 accumulation in the cytoplasmic 

aggregates, beginning 32 hpi. Although not identical, the H2O2 signature of IC1270-treated CO39 

plants 48 hpi showed substantial similarity to that observed in the incompatible interaction 

between C101LAC and VT7, thereby further emphasizing the possible mechanistic parallels 

between IC1270-mediated ISR and R-protein-dictated ETI.  

 Starting 50 hpi, a strong accumulation of H2O2 was found in CO39 mesophyll cells that 

appeared to collapse, whereas in samples from IC1270-induced CO39 or C101LAC sheaths, 

DAB staining in the mesophyll layer was seldom observed (data not shown). However, at these 

late infection stages, massive H2O2 accumulation is most likely a consequence of progressive 

cellular destruction and overtaxed anti-oxidative capacities, and hence, a chaotic reaction 

associated with susceptibility, rather than a controlled defense response restricting cellular 
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accessibility for M. oryzae. Together these results clearly demonstrate the potential of IC1270 to 

prime rice for augmented generation of epidermis-localized H2O2. 
 

A 

 
Figure 4.4. Influence of treatment with S. plymuthica IC1270 on M. oryzae-induced H2O2-generation in 
epidermal sheath cells.  
 

Intact leaf sheaths of the susceptible rice cv. CO39 and its resistant near-isogenic line C101LAC were challenged by 
injecting a conidial suspension of M. oryzae VT7. A, Micrographs depicting distinct H2O2 accumulation patterns in 
inoculated leaf sheaths supplied with 3,3’-diaminobenzidine (DAB): (I), successful fungal colonization of living 
epidermal cells in the absence of DAB staining; (II) DAB accumulation in the first-invaded cell following fungal 
invasion of adjacent cells; (III) accumulation of DAB-positive vesicle-like bodies in the vicinity of the invasive 
hyphae; (IV) DAB-positive cytoplasmic granules in hypersensitively reacting cells ; (V) whole-cell DAB staining. Ap, 
appressorium or appressorial site; IH, invading hyphae; Vs, vesicles. Scale bars = 20 µm. B, Frequencies of 
abovementioned DAB patterns at 36 and 48 hours post inoculation. In all graphs, bars represent the mean and SD 
of six replications originating from three plants. At least 50 single-cell interaction sites originating from 
representative sheath sections were examined per replication. Data from one experiment is presented. Repetition of 
experiments led to results very similar to those shown.  
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Manipulation of oxidative stress in inoculated leaves  

rve multiple defense-related signaling 

earlier work on 7NSK2-mediated ISR to M. oryzae, we sought to extend our 

 In light of the well-documented ability of ROS to se

functions, sometimes with opposite effects in different contexts (Torres et al., 2006; Van 

Breuseghem et al., 2008), we asked whether the ability of IC1270 to boost pathogenesis-related 

H2O2 generation might account for the differential effectiveness of IC1270-ISR against M. oryzae, 

R. solani and C. miyabeanus. To address this question, we examined the effect of manipulating the 

oxidative stress in pathogen-inoculated leaves on subsequent disease development. To artificially 

raise the level of ROS in inoculated leaves, detached leaves were pressure-infiltrated with 

mixtures of glucose plus glucose oxidase (G/GO) and xanthine plus xanthine oxidase (X/XO). 

Similar to what has been observed in other plant species (Alvarez et al., 1998; Orozco-Cardenas 

et al., 2001), supplying rice leaves with G/GO resulted in the sustained production of H2O2 

within the apoplast, whereas a mixture of xanthine and xanthine oxidase was found to generate 

both superoxide and H2O2, the latter by dismutation (data not shown). Treatment with either 

compound (xanthine, glucose, gluconate) or with the enzymes alone had no significant effect on 

disease development compared to buffer-treated control leaves. However, infiltration of G/GO 

or X/XO dramatically reduced the size of the necrotic lesions incited by M. oryzae infection (Figs. 

4.5A, D). By contrast, pre-treatment with G/GO or X/XO mixtures strongly stimulated necrosis 

induced by R. solani (Fig. 4.5B). By 60 hours after infection, the majority of ROS-treated and 

Rhizoctonia-inoculated leaves showed extensive necrosis and were almost completely deteriorated 

(Fig. 4.5D). Enhanced ROS generation also greatly enhanced lesion formation by C. miyabeanus, 

suggesting a common pathogenicity mechanism for both these necrotrophs (Figs. 4.5C, D). 

Extensive lesions were also observed when manipulating plant-intrinsic catalase activity. 

Although exogenous catalase did not significantly alter lesion development, infiltration of rice 

leaves with a specific catalase inhibitor, 3-aminotriazole, prior to inoculation, was 

indistinguishable from the G/GO- or X/XO-treated leaves. No lesions were detected in leaves 

infiltrated with ROS-producing mixtures, catalase or 3-AT alone, as previously reported (Govrin 

and Levine, 2000).  

 Building on our 

analysis of the proposed dual role of ROS in rice defense by feeding the pro-oxidative pigment 

pyocyanin to hydroponically grown rice plants and observe any effects on plant resistance. 

Opposite to the enhanced resistance observed against M. oryzae, pyocyanin feeding favored 

subsequent infection by both C. miyabeanus and R. solani (Fig. 4.6). Amending the pyocyanin 

solution with ascorbate, which has long been recognized as a major antioxidant buffer and free-

radical scavenger (Pignocchi and Foyer, 2003), severely attenuated the pyocyanin-provoked 
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resistance or susceptibility, corroborating our previous findings (Chapter 3). Taken together, 

these results clearly demonstrate that enhanced ROS levels in inoculated leaves positively 

influence resistance to M. oryzae while exerting a negative effect on resistance to C. miyabeanus and 

R. solani, implying a role for ROS as critical modulators of  antagonistic rice defenses.  
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Figure 4.5. Effect of artificial ROS manipulation on M. oryzae, C. miyabeanus and R. solani infection.  
 

or continuous generation of H2O2 in situ, detached leaves were infiltrated with mixtures of glucose oxidase (100 
-1 -1

F
units ml ) plus glucose (2 mM), or xanthine oxidase (0.1 units ml ) plus xanthine (1 mM). Control plants were 
treated with buffer solution only (50 mM phosphate, pH = 6.5). Alternatively, plants were infiltrated with 3-
aminotriazole (10 mM) or catalase (1100 units ml-1) with MES buffer-treated plants as corresponding controls. Two 
hours later, 10 µl droplets of conidial suspension of M. oryzae (5 x 104 sp ml-1) or C. miyabeanus (5 x 104 sp ml-1) were 
carefully applied to the center of the infiltrated area. For infection with R. solani, 8-mm mycelium-overgrown agar 
plugs were used. After 4 days of incubation under laboratory conditions, M. oryzae and C. miyabeanus symptom 
development was assessed using digital image analysis for quantification of necrotic leaf areas. The intensity of the R. 
solani symptoms was evaluated 60 h post-inoculation and graded into five categories based on the leaf area affected: 1 
= no infection, 2 = 1 to 10%, 3 = 11 to 25 %, 4 = 26 to 50%, and 5 = more than 50% affected leaf area. In all 
graphs, bars represent the mean and SD of twenty-four leaf segments. The experiment was repeated twice with very 
similar results. Different letters indicate statistically significant differences between treatments (M. oryzae and C. 
miyabeanus, Fisher’s LSD test, α = 0.05; R. solani, Mann-Whitney, α = 0.05). Photographs depicting representative 
symptoms were taken 96 hpi in case of M. oryzae and C. miyabeanus challenge, and 60 hpi in case of challenge with R. 
solani. G = glucose, GO = glucose oxidase, X = xanthine, XO = xanthine oxidase, 3-AT = 3-aminotriazole.  
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model strain P. fluorescens WCS417r is not marked by a direct induction of defense genes. Rather, 

ISR-expressing plants are primed for enhanced expression of a specific subset of JA/ET-

responsive genes upon pathogen attack (van Wees et al., 1999; Verhagen et al., 2004). Other ISR-

inducing PGPRs also have been found to enhance the plant’s defensive capacity by hyper-

activating pathogen-induced defenses (Benhamou et al., 1996; Ahn et al., 2002; Kim et al., 2004a; 

Tjamos et al., 2005; Ahn et al., 2007), suggesting that priming for enhanced defense is a common 

mechanism in PGPR-mediated ISR. The results presented in this study provide further support 

to this concept since root colonization by IC1270 did not cause a strong constitutive resistance 

phenotype, but rather primed plants to hyper-respond to subsequently inoculated pathogens, 

resulting in excessive defense activation and enhanced resistance to M. oryzae. This priming effect 

of IC1270 was borne out by the observation that challenge inoculation of IC1270-bacterized 

plants with M. oryzae entailed a rapid accumulation of autofluorogenic phenolic compounds in 

and around epidermal cells displaying dense cytoplasmic granulation (Figs. 4.2 and 4.3), two 

features that are considered as hallmarks of an ETI-associated HR (Koga, 1994; Rodrigues et al., 

2005).  

 Comparative profiling of pathogenesis-related H2O2 accumulation in blast susceptible, yet 

ISR-expressing, and genetically resistant leaf sheath cells, further strengthened the parallels 

between R protein-mediated ETI and IC1270-triggered ISR priming (Fig. 4.4). Hence, IC1270 

appears to protect rice from M. oryzae by reprogramming pathogen-attacked epidermal cells to 

undergo a rapid HR-like response, thereby providing a possible functional interface between 

rhizobacteria-mediated ISR and avirulent pathogen-induced ETI. Such mechanistic similarities 

between ISR and ETI are compatible with the idea that defense signals from multiple ‘entry 

points’ can converge and target overlapping sets of defense effectors (Eulgem, 2005; Knoth and 

Eulgem, 2008; Tsuda et al., 2008). Of relevance to considerations here is the substantial overlap 

between gene expression changes and alterations in SA content induced during an avirulent 

pathogen-triggered ETI response, and those induced by treatment with flg22, an 22-amino-acid 

epitope of the archetypal MAMP elicitor flagellin (Navarro et al., 2004; Mishina and Zeier, 2007; 

Tsuda et al., 2008). Although unequivocal evidence is still lacking, the striking homologies with 

the sensitive perception mechanisms for pathogen-derived MAMPs that function in PTI suggest 

that ISR-triggering rhizobacteria are perceived in a similar manner (Meziane et al., 2005; Bakker 

et al., 2007). It is thus not inconceivable that the mechanistic parallels between IC1270-mediated 

ISR and ETI can be traced back to converging MAMP- and R-protein-induced defense 

responses. Furthermore, consistent with the view of ETI as an accelerated and amplified PTI 

response (Tao et al., 2003; Katagiri, 2004; Jones and Dangl, 2006), such MAMP-orchestrated ISR 
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elicitation may also explain the partial nature of the IC1270-induced resistance against M. oryzae 

(Figs 4.1, 4.2 and 4.4).  

 The rapid production of ROS via consumption of oxygen during the so-called oxidative burst 

ious studies (Govrin and Levine, 2000; Mur et al., 2005), continuous 

is a hallmark of the plant’s defense response. Although ROS are generally viewed as initiating 

agents in the disease resistance network (Apel and Hirt, 2004), an expanding body of evidence 

indicates that ROS formation can cascade either to the detriment or benefit of the plant 

depending mainly on the type of host tissues and the lifestyle of the invading pathogen 

(Glazebrook, 2005; Bostock, 2005). Hence, ROS can play a dual role in pathogen defense, acting 

as key players in resistance to biotrophic pathogens on the one hand (Levine et al., 1994; Van 

Breusegem and Dat, 2006), but weakening necrotroph resistance by assisting pathogen-induced 

host cell death on the other hand (Govrin and Levine, 2000; Kumar et al., 2001; Glazebrook, 

2005; Govrin et al., 2006). Taking these facts into account, we propose that priming for 

potentiated ROS generation may likewise function in IC1270-mediated ISR, thereby accounting 

for the differential effectiveness of this resistance against hemibiotrophic and necrotrophic 

pathogens. Critical to the formation of a hypothesis of primed ROS generation as a key event in 

ISR by IC1270 was the observation that artificially increased H2O2 levels, either resulting from 

infiltration of ROS-generating mixtures, application of redox-active pyocyanin, or inhibition of 

endogenous catalase activity, faithfully mimicked IC1270 in conditioning resistance to M. oryzae 

but promoting susceptibility to C. miyabeanus and R. solani. Although we are aware that final proof 

for primed ROS generation as the causal resistance mechanism underpinning IC1270-mediated 

ISR requires the use of inhibitor compounds able to abrogate the oxidative burst in bacterized 

plants (e.g. DPI), such scavenger experiments could not be performed since detached leaves, 

needed for effective infiltration of chemicals in rice, somehow failed to develop ISR. Feeding 

ROS quenching agents to hydroponically grown plants suffered from the same experimental 

vagaries in that IC1270 bacteria, in spite of sufficient root colonization, also lost the ability to 

mount ISR in our well-established hydroponic system, a phenomenon presumably due to small 

differences in the availability of iron and other nutrients in this system compared to standard soil-

based ISR assays. Therefore, we can not rule out the possibility that the altered pathogen 

response of IC1270-induced plants may result in part from ROS-independent processes. 

Nonetheless, the involvement of boosted ROS generation in the establishment of IC1270-

mediated ISR is apparent.  

 In accordance with prev

generation of H2O2 in situ by infiltration of G/GO or 3-AT did not induce any detectable cell 

death per se, indicating that additional pathogen-induced signals are needed for expression of 
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HR-like cell death. Indeed, current concepts suggest that death of host cells during the HR 

requires the poised production of nitric oxide (NO) and ROS, coupled to simultaneous 

suppression of the plant’s antioxidant machinery (Delledonne et al., 2001; Zago et al., 2006; 

Zaninotto et al., 2006). In view of these data, it could be reasoned that IC1270-mediated priming 

for potentiated ROS generation might lower the threshold for activation of programmed cell 

death, thereby blocking the hemibiotroph M. oryzae in its initial biotrophic phase. In line with this 

concept, there is ample evidence demonstrating that early-produced H2O2 is a central signal 

leading to the elicitation of a wide range of blast-effective defenses, among which rapid 

programmed cell death. Most tellingly, Kachroo and associates (2003a) reported a fungal glucose 

oxidase gene to sequentially induce H2O2 generation, rapid HR-like cell death and enhanced 

resistance against M. oryzae when ectopically expressed in young rice plants. On the other hand, it 

is not inconceivable that IC1270-mediated priming for H2O2 may tilt the ROS-controlled cellular 

life-or-death balance toward death, thereby facilitating subsequent tissue colonization by R. solani 

and C. miyabeanus which, as pathogens with a necrotrophic lifestyle, depend on host cell-killing 

for successful pathogenesis. This notion is corroborated by recent observations demonstrating 

that IC1270 pretreatment has no marked impact on the early infection events in C. miyabeanus- or 

R. solani-challenged plants except for a substantial increase in the number of dying cells preceding 

the fungal growth front (De Vleesschauwer and Höfte, unpublished results). Whether this 

increased cell death ahead of the developing hyphae is caused by stimulation of toxin-provoked 

tissue necrotization remains to be elucidated. However, given the myriad defense-related 

responses modulated by ROS (Torres and Dangl, 2005; Van Breusegem et al., 2008), other yet 

unidentified mechanisms also may play a role. 

 In summary, our results favor a model whereby effective root colonization of rice by IC1270 

locks colonized plants into a pathogen-inducible program of boosted ROS generation and 

prompt execution of HR-like cell death, a mechanism which shows remarkable similarity with R-

protein-mediated ETI responses. Although highly effective against the hemibiotroph M. oryzae, 

halting the pathogen in its biotrophic phase, IC1270 pretreatment enhanced infection by the 

necrotrophs R. solani and C. miyabeanus, possibly by facilitating pathogen-triggered host cell death. 

Considering that defense responses effective against M. oryzae may not be effective against or 

even facilitate infection by R. solani and C. miyabeanus, our work underscores the importance of 

utilizing appropriate innate defense mechanisms when breeding for broad-spectrum rice disease 

resistance. 
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Materials and Methods 

ultivation of rhizobacteria and pathogens 

ratia plymuthica IC1270, which was originally described as 

ietnam (Thuan et al., 2006), was grown at 

ing to anastomosis group AG-1 IA (Taheri et al., 2007), was 

 911, obtained from diseased rice in field plots at the International Rice 

athogen inoculation and disease rating 

age) were challenge-inoculated with Magnaporthe oryzae as 

s described in Rodrigues et al. (2003b). Plants were 

cha

 

C

 Bacterial strains used in this study were Ser

Enterobacter agglomerans (Chernin et al., 1995) and Pseudomonas aeruginosa 7NSK2 (Iswandi et al., 1987). For 

inoculation experiments, IC1270 and 7NSK2 were grown on iron-limiting King’s B medium [KB; (King et 

al., 1954)] for 24 h at 28ºC and 37ºC, respectively. Bacterial cells were scraped off the plates and 

suspended in sterile saline (0.85% NaCl). Densities of the bacterial suspensions were adjusted to the 

desired concentration based on their optical density at 620 nm. 

 Magnaporthe oryzae isolate VT7, a field isolate from rice in V

28ºC on half-strength oatmeal agar (Difco, Sparks, USA). Seven-day-old mycelium was flattened onto the 

medium using a sterile spoon and exposed to blue light (combination of Philips TLD 18W/08 and Philips 

TLD 18W/33) for seven days to induce sporulation. Conidia were harvested as described in Chapter 3, 

and inoculum concentration was adjusted to a final density of 1 x 104 spores ml-1 in 0.5% gelatin (type B 

from Bovine skin; Sigma-Aldrich G-6650).  

 Rhizoctonia solani isolate MAN-86, belong

maintained on potato dextrose agar (PDA; Difco Laboratories, Detroit, USA). Inoculum was obtained 

according to Rodrigues et al. (2003b) with minor modifications. After autoclaving, 15 toothpicks, 1 cm in 

length, and five agar plugs (5 mm in diameter), obtained from the margin of an actively growing colony of 

R. solani, were transferred to PDA plates. These plates were then incubated for 8 days at 28ºC so R. solani 

could colonize the toothpicks.  

 Cochliobolus miyabeanus strain

Research Institute (Manila, The Philippines), was grown for sporulation at 28ºC on PDA. Seven-day-old 

mycelium was flattened onto the medium using a sterile spoon and exposed to blue light for three days 

under the same conditions mentioned above. Upon sporulation, conidia were harvested exactly as stated 

in Thuan et al. (2006) and re-suspended in 0.5% gelatin to a final density of 1 x 104 conidia ml-1. 

 

P

 Four-week-old rice seedlings (5-leaf st

described in Chapter 3. Six days after inoculation, disease severity on the fourth leaves of each plant was 

rated by counting the number of elliptical to round-shaped lesions with a sporulating gray center, and 

expressed relative to non-bacterized control plants. 

R. solani bioassays were performed essentially a

llenged when four weeks old by placing a 1-cm toothpick colonized by R. solani inside the sheath of the 

second youngest fully expanded leaf. Inoculated plants were maintained inside humid inoculation 

chambers (≥ 92% relative humidity; 30 ± 4ºC) for 72 h, and, thereafter, transferred to greenhouse 
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conditions. Four days after challenge infection, disease severity was assessed by measuring the length of 

the water-soaked lesions.  

C. miyabeanus bioassays were performed as described in Ahn et al. (2005b) with minor modifications. 

Five-week-old seedlings (6.5-leaf stage) were misted with a C. miyabeanus spore suspension containing 1 x 

104 conidia ml-1 in 0.5% gelatin. Inoculated plants were kept in a dew chamber (≥ 92% relative humidity; 

30 ± 4ºC) for 18 h to facilitate fungal penetration, and subsequently transferred to greenhouse conditions 

for disease development. Disease symptoms were scored at four days after inoculation for about 48 leaves 

per treatment. Disease ratings were expressed on the basis of diseased leaf area and lesion type: I, no 

infection or less than 2% of leaf area infected with small brown specs less than 1 mm in diameter; II, less 

than 10% of leaf area infected with brown spot lesions with gray to white center, about 1-3 mm in 

diameter; III, average of about 25% of leaf area infected with brown spot lesions with gray to white 

center, about 1-3 mm in diameter; IV, average of about 50% of leaf area infected with typical spindle-

shaped lesions, 3 mm or longer with necrotic gray center and water-soaked or reddish brown margins, 

little or no coalescence of lesions; V, more than 75% of leaf area infected with coalescing spindle-shaped 

lesions. 

 

Induction treatments 

 Induced systemic resistance (ISR) assays were performed as described in Chapter 3 with minor 

modifications. Briefly, rice plants (Oryza sativa spp. indica line CO39) were grown under greenhouse 

conditions (30 ± 4ºC, 16-h photoperiod) in commercial potting soil (Structural; Snebbout, Kaprijke, 

Belgium) that had been autoclaved twice on alternate days for 21 min. Rice seeds first were surface 

sterilized with 1% sodium hypochlorite for two min, rinsed three times with sterile, demineralized water 

and incubated for five days on a wet sterile filter paper in sealed Petri dishes at 28ºC. Prior to sowing in 

perforated plastic trays (23 by 16 by 6 cm), roots of germinated seeds were dipped in a bacterial 

suspension of the ISR-inducing strains [5 x 107 colony-forming units (cfu) ml-1] for 10 min. The 

autoclaved soil was thoroughly mixed with bacterial inoculum to a final density of 5 x 107 cfu ml-1. To 

ensure consistent root colonization by the eliciting bacteria, rice plants were soil-drenched a second time 

with bacterial inoculum (5 x 107 cfu ml-1) at ten days after sowing. In control treatments, soil and rice 

plants were treated with equal volumes of sterilized saline.  

 For experiments in which purified pyocyanin was applied to the roots of rice seedlings, plants were 

grown in a hydroponic gnotobiotic system as described before (Chapter 3). In this system, plants were fed 

with various concentrations of pyocyanin and ascorbate 4 days before challenge inoculation by adding the 

desired concentration to the half-strength Hoagland nutrient solution. Pyocyanin extraction, quantification 

and application were performed exactly as stated in Chapter 3. 
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Evaluation of plant colonization by S. plymuth ca IC1270 and P. aeruginosa 7NSK2 i

 Bacterial colonization of the plant roots was determined by the time the bioassays were discontinued. 

Roots of three plants of each treatment were rinsed to remove most of the soil, weighed, and 1 g of root 

was macerated in sterile demineralized water. Serial dilutions were plated on KB agar supplemented with 

rifampicin (40 µg/ml) for IC1270, and KB agar for 7NSK2. After overnight incubation at 28ºC and 37ºC 

for IC1270- and 7NSK2-bacterized roots, respectively, the number of colony-forming units per gram of 

root fresh weight was determined. Possible spreading of root-inoculated bacteria to distal leaves was 

checked as described before (Chapter 3). The detection limit of this assay is approximately 10 CFU per 

sheath or leaf blade. 

 

Cytological analysis of IC1270-mediated ISR against M. oryzae 

 To gain more insight into the nature of IC1270-mediated ISR against M. oryzae, cytological studies 

were performed at sites of pathogen entry. To this purpose, we adopted the intact leaf sheath assay as 

described by Koga et al. (2004b). Briefly, leaf sheaths of the fifth leaf of rice plants at the 5.5 leaf stage 

were peeled off with leaf blades and roots. The leaf sheath was laid horizontally on a support in plastic 

trays containing wet filter paper, and the hollow space enclosed by the sides of the leaf sheaths above the 

mid vein was filled with a suspension of spores (5 x 104 conidia ml-1) of M. oryzae. Inoculated leaf sheaths 

were then incubated at 25ºC with a 16-h photoperiod. When ready for microscopy, the sheaths were 

hand-trimmed to remove the sides and expose the epidermal layer above the mid vein. Lower mid vein 

cells were removed to produce sections three to four cell layers thick. At least five trimmed sheath tissue 

sections originating from different control and IC1270-treated plants were used for each sampling point.  

 Phenolic compounds were visualized as autofluorescence under blue light epifluorescence (Olympus 

U-MWB2 GPF filter set-excitation: 450 to 480 nm, dichroic beamsplitter; 500 nm, barrier filter BA515). 

To detect H2O2 accumulation, staining was performed according to the protocol of Thordal-Christensen 

et al. (1997) with minor modifications. Six hours before each time point, trimmed sheath segments were 

vacuum-infiltrated with an aqueous solution of 1 mg ml-1 3,3’-diaminobenzidine(DAB)-HCL (pH = 3.8) 

for 30 min. Thereafter, infiltrated segments were incubated in fresh DAB solution until sampling. DAB 

polymerizes in the presence of H2O2 and endogenous peroxidase to form a brownish-red precipitate that 

can be easily visualized using bright-field microscopy. After staining, trimmed sheath segments were 

mounted in 50% glycerol. Images were acquired digitally (Olympus Color View II camera, Aartselaar, 

Belgium) and further processed with the Olympus analySIS cell^F software. 

 

Artificial manipulation of the oxidative burst in detached rice leaves 

 For experiments in which plants were treated with the ROS-generating mixtures glucose plus glucose 

oxidase (G/GO) and xanthine plus xanthine oxidase (X/XO), fifth-stage leaves of four-week-old rice 

plants were excised and cut into 7-cm segments. Aspergillus niger glucose oxidase (Sigma-Aldrich, St. Louis, 

MO) was added to 2 mM D-glucose in 20 mM Na phosphate buffer, pH 6.5, immediately prior to plant 

treatment (100 units ml-1). Similarly, xanthine oxidase (0.1 units ml-1) was added to 1 mM xanthine in the 
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same buffer solution (Sigma-Aldrich, St. Louis, MO). The ROS-generating mixtures, buffer alone or 

buffer containing glucose (2 mM), gluconate (50 µM), glucose oxidase (100 units ml-1), xanthine (1 mM), 

or xanthine oxidase (0.1 units ml-1) were infiltrated in approximately 20 µl aliquots into five sites on the 

abaxial surface of the detached leaf segments using a syringe without a needle. Alternatively, detached leaf 

segments were infiltrated with 3-aminotriazole (10 mM) or catalase (1100 units ml-1) in 10 mM MES 

buffer, pH 6.5. In planta H2O2 generation by G/GO, X/XO, or 3-aminotriazole was visually confirmed by 

means of abovementioned DAB staining procedure. Upon infiltration, detached leaf segments were 

immediately placed onto a glass slide in 14.5 x 14.5 cm Petri dishes lined with moist filter paper. Two 

hours later, 10 µl of M. oryzae or C. miyabeanus conidial suspension (5 x 104 sp ml-1 in 0.25% gelatin) was 

drop-inoculated in the center of the infiltrated regions. Control leaves were mock-inoculated with a 0.25% 

(wt vol-1) gelatin suspension. After 24 h, the droplets were removed with a laboratory tissue. For challenge 

with R. solani, a 0.8-cm-diameter mycelial disc of a 7-day-old PDA culture of R. solani strain MAN-86 was 

carefully placed in the center of the infiltrated region. As a control, leaf segments were inoculated with a 

PDA plug without hyphae. Petri dishes with inoculated leaf segments were routinely placed on a 

laboratory bench and maintained at 21ºC to 26ºC with a 16 h photoperiod. For M. oryzae and C. miyabeanus 

assays, disease development was assessed 96 h post-inoculation using digital image analysis (APS assess 

software; Lakhdar Lamari, Winnipeg, Canada) for quantification of necrotic leaf areas. These areas were 

represented as the number of pixels and expressed as a percentage of the total pixel number in a fixed 1 

cm2-leaf quadrant. In case of R. solani inoculation, disease ratings were visually graded into five classes 

based on the leaf area affected; 1 = no infection, 2 = 1 to 10%, 3 = 11 to 25 %, 4 = 26 to 50%, and 5 = 

more than 50% of leaf area affected.  
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elected strains of non-pathogenic rhizobacteria can reduce disease in foliar tissues through 
induction of a defense state known as induced systemic resistance (ISR). Compared to the 
large body of information on ISR in dicotyledonous plants, little is known about the 

mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate 
the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice against the leaf blast pathogen 
Magnaporthe oryzae. Using salicylic acid-nonaccumulating NahG rice, an ethylene-insensitive 
OsEIN2 antisense line and the jasmonate-deficient mutant hebiba, we show that this WCS374r-
induced resistance is regulated by an SA-independent but JA/ET-modulated signal transduction 
pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial 
determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin 
(Psb374) primed naïve leaves for accelerated expression of a pronounced multifaceted defense 
response, comprising rapid recruitment of phenolic compounds at sites of pathogen entry, 
concerted expression of a diverse set of structural defenses, and a timely hyperinduction of H2O2 
formation putatively driving cell wall fortification. Exogenous SA application alleviated this 
Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced 
transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated 
signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-
mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was 
independent of JA/ET signaling and involved potentiation of SA-responsive gene expression. 
Together, these results offer novel insights into the signaling circuitry governing induced 
resistance against M. oryzae and suggest that rice is endowed with multiple blast-effective 
resistance pathways. 
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Introduction 

 Plants have evolved a battery of sophisticated defense mechanisms to defend themselves 

against microbial pathogens. Apart from preformed physical and chemical barriers, plants possess 

an elaborate matrix of inducible defenses that become activated upon pathogen infection. These 

inducible responses are regulated by a network of interconnecting signal transduction pathways in 

which the plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid 

(ABA) play central roles (Adie et al., 2007; Robert-Seilaniantz et al., 2007; Asselbergh et al., 

2008b). A growing body of evidence supports the notion that these signaling pathways do not 

function independently, but influence each other through a complex network of synergistic and 

antagonistic interactions (Koornneef and Pieterse, 2008). Such crosstalk between defense 

pathways is thought to provide the plant with a cost-efficient regulatory potential to adaptively 

tailor its defense reaction to the type of attacker encountered.  

 Besides basal resistance responses that act at the site of pathogen infection, plants are also 

capable of developing a non-specific systemic resistance that is effective against future pathogen 

attack. This phenomenon is known as induced resistance and can be triggered by a variety of 

biotic and abiotic stimuli (Bostock, 2005). Over the past decade, it has become increasingly clear 

that the enhanced defensive capacity of induced plants does not necessarily require a direct 

activation of defenses, but can also result from a faster and stronger expression of basal defense 

responses upon pathogen attack. By analogy with a phenotypically similar phenomenon in 

animals and humans, this enhanced capacity to express infection-induced basal defenses is called 

‘sensitization’, ‘priming’, or ‘potentiation’ (Conrath et al., 2002; Conrath et al., 2006). In some 

elegant work on the costs and benefits of priming in Arabidopsis, Van Hulten and associates 

(2006) demonstrated that the fitness costs of priming are substantially lower than those of 

constitutively activated defense. In addition, it was shown that the benefits of priming-mediated 

resistance outweigh its costs when disease occurs. Priming thus offers an elegant solution to the 

plant’s trade-off dilemma between disease protection and the costs involved in defense activation 

(Conrath et al., 2006).  

 The classic example of an inducible plant defense response is systemic acquired resistance 

(SAR). SAR is triggered by a localized infection with necrotizing microbes and is manifested 

throughout the plant upon secondary challenge by otherwise virulent pathogens (Grant and 

Lamb, 2006). The onset of SAR is marked by local and systemic increases in endogenously 

synthesized salicylic acid (SA) and is tightly associated with the transcriptional reprogramming of 

a battery of defense-related genes, including those encoding pathogenesis-related (PR) proteins 

(Ryals et al., 1996; Maleck et al., 2000; Wang et al., 2006a). These PR proteins, of which some 
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possess antimicrobial activity, serve as hallmarks of SAR in several plant species and are thought 

to contribute to the state of resistance attained (Van Loon et al., 2006b). Transduction of the SA 

signal requires the function of NPR1 (also known as NIM1), a master regulatory protein that was 

identified in Arabidopsis through genetic screens for SAR-compromised mutants (Cao et al., 1994; 

Shah et al., 1997). Although SA is central to the induction and expression of SAR, it is not the 

long-distance SAR signal. Instead, exciting new data implicate methyl salicylate and a lipid-

derived molecule, possibly jasmonic acid, as mobile signals for SAR in tobacco and Arabidopsis, 

respectively (Park et al., 2007; Truman et al., 2007) 

 Colonization of roots by selected strains of nonpathogenic plant growth-promoting 

rhizobacteria (PGPR) leads to a phenotypically similar form of induced resistance commonly 

referred to as induced systemic resistance or ISR (Van Loon et al., 1998). Although some 

rhizobacteria are able to trigger the SA-dependent SAR pathway (De Meyer et al., 1999b; Ryu et 

al., 2003; Tjamos et al., 2005), rhizobacteria-mediated ISR predominantly involves SA-

independent signaling (Pieterse et al., 1996; Ahn et al., 2007; Tran et al., 2007). As for the 

reference strain Pseudomonas fluorescens WCS417r, analysis of several well-characterized Arabidopsis 

mutants revealed that ISR requires an intact response to the plant hormones jasmonic acid (JA) 

and ethylene (ET) and, like SAR, depends on a functional NPR1 protein (Pieterse et al., 1998; 

Van Wees et al., 2000). However, downstream of NPR1, the ISR and SAR signaling pathways 

diverge because, unlike SAR, ISR is not accompanied by the concomitant activation of PR genes 

(Pieterse et al., 1996; Van Wees et al., 1997; Van Wees et al., 1999). Instead, ISR-expressing plants 

are primed for enhanced expression of predominantly JA- and ET-regulated genes upon 

pathogen infection (Verhagen et al., 2004; Cartieaux et al., 2008).  

 Successful establishment of ISR depends on recognition of bacterial elicitors by the plant 

roots. Over the past decade, a myriad of bacterial traits operative in triggering ISR have been 

identified. Examples include flagella, cell envelope components such as lipopolysaccharides, and 

secreted metabolites, including antibiotics, quorum-sensing molecules, cyclic lipopeptides, 

volatiles and siderophores (Bakker et al., 2007; Ongena et al., 2007; Tran et al., 2007). However, 

despite the increasing amount of research devoted to the identification and characterization of 

bacteria-derived ISR elicitors, much remains to be discovered about how these determinants are 

perceived and ultimately give rise to ISR. 

 Compared to the vast body of information available in dicotyledonous plants, our 

understanding of the molecular machinery governing induced resistance responses in 

monocotyledonous crops is still in its infancy. Evidence demonstrating that central components 

of the SAR pathway, such as NPR1, are conserved in cereals has only recently been presented 
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(Chern et al., 2001; Chern et al., 2005b; Shimono et al., 2007; Yuan et al., 2007). Moreover, 

reports on SAR- or ISR-like phenomena in monocots are scarce (Kogel and Langen, 2005). Most 

tellingly in this regard, a 17-year-old report of systemic resistance in rice triggered by pre-

inoculation with an HR-eliciting, non-pathogenic P. syringae strain remains one of the most 

compelling examples of a monocot SAR-like response to date (Smith and Metraux, 1991). 

Previously, we reported that root colonization of rice by P. aeruginosa 7NSK2 renders foliar tissues 

more resistant to infection by M. oryzae (De Vleesschauwer et al., 2006). Extensive bacterial 

mutant analysis and cytomolecular characterization of the defense responses activated in planta 

revealed that this 7NSK2-mediated ISR acts through secretion of the redox-active pigment 

pyocyanin, thereby priming systemic tissues for boosted expression of hypersensitive response-

like cell death upon pathogen infection. 

 Aiming to further dissect the induced systemic resistance response in rice, we analyzed the 

bacterial determinants and host defense mechanisms underpinning ISR induced by P. fluorescens 

WCS374r. This gram-negative bacterium, originally isolated from the rhizosphere of potato, has 

previously been shown to suppress Fusarium wilt of radish (Fusarium oxysporum f. sp. raphani) and 

reduce disease caused by Ralstonia solanacearum in Eucalyptus (Leeman et al., 1995; Ran et al., 

2005a). Remarkably, high inoculum densities of WCS374r cultivated at 28°C failed to elicit ISR in 

Arabidopsis against P. syringae pv. tomato (Van Wees et al., 1997), whereas low inoculum densities or 

inoculum cultivated at elevated temperatures induced resistance against a broad spectrum of 

pathogens with different parasitic habits (Ran et al., 2005b; Djavaheri, 2007). This wide range of 

effectiveness of WCS374r-elicited ISR (WCS374r-ISR) strongly suggests that multiple resistance 

responses are involved. Indeed, recent studies by Ran et al. (2005b) and Djavaheri (2007) 

demonstrated that WCS374r-ISR against Turnip crinkle virus was still functional in Arabidopsis 

genotypes impaired in JA- and ET-dependent signaling, whereas WCS374r-ISR against P. syringae 

pv. tomato was blocked in the latter genotypes. Hence, perception of WCS374r seems to result in 

the activation of multiple signal transduction pathways that all add to establishing broad-

spectrum WCS374r-ISR.  

 In the present study, we demonstrate the ability of WCS374r to mount ISR in rice against the 

leaf blast pathogen M. oryzae and provide evidence that this WCS374r-mediated ISR is based on 

pseudobactin-mediated priming for a pronounced multifaceted cellular defense response. 

Furthermore, we show that WCS374r-triggered ISR functions independently of SA accumulation 

but, unlike benzothiadiazole (BTH)-inducible resistance, requires intact responsiveness to ET as 

well as a functional octadecanoid pathway.  
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Results 

 

P. fluorescens WCS374r mounts ISR in rice to M. oryzae 

 The filamentous ascomycete M. oryzae is the causal agent of rice blast disease, one of the most 

devastating of all cereal diseases and a significant threat to food security worldwide (Talbot, 

2003). To determine whether P. fluorescens WCS374r-mediated ISR is effective against M. oryzae, 

susceptible rice plants were grown in soil containing WCS374r bacteria and subsequently 

challenged with the latter pathogen. As a positive control, a subset of the plants was treated with 

benzothiadiazole (BTH), a functional SA analog and one of the most extensively studied plant 

defense activators in rice (Nakashita et al., 2003; Ahn et al., 2005b; Shimono et al., 2007). Within 

4 to 5 days post-inoculation, leaves of non-induced control plants developed large, spindle-

shaped lesions with a gray center (diameter > 3 mm), often surrounded by chlorotic or necrotic 

tissue (Fig. 5.1). In contrast, plants colonized by WCS374r exhibited a marked reduction in the 

number of these susceptible-type lesions, producing a resistance phenotype characterized by the 

appearance of many small (< 1 mm), dark-brown necrotic spots 2 to 3 days post-inoculation (Fig. 

5.1). Pooled over four independent experiments, WCS374r pretreatment caused a 47% reduction 

in lesion number. Application of BTH (0.05 mM) induced an even higher level of protection, 

reducing the number of susceptible-type lesions by as much as 68% compared to non-induced 

controls (Fig. 5.1).   

 To rule out the possibility that the observed disease protection was due to direct effects of 

WCS374r on M. oryzae, possible spreading of root-inoculated bacteria to foliar tissues was 

assessed by plating leaf extracts from induced plants onto selective King’s medium B (KB) agar 

plates (King et al., 1954). However, WCS374r bacteria were never detected in leaf blades or 

sheaths of root-treated plants, indicating that bacterial colonization remained confined to the 

root zone (data not shown). In conjunction with the inability of WCS374r to inhibit growth of M. 

oryzae in dual culture experiments (data not shown), these findings strongly suggest that the 

WCS374r-provoked disease suppression is not due to microbial antagonism but rather results 

from activation of the plant’s own defensive repertoire.  
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Figure 5.1. Quantification of rhizobacteria-induced systemic resistance (ISR) and BTH-triggered 
resistance against M. oryzae in rice.  
 
ISR was induced by growing the plants in soil containing P. fluorescens WCS374r following application of the ISR-
inducing bacteria as a seedling root dip. For chemical induction of blast resistance, plants were soil drenched with 
BTH (0.05 mM) 3 d before challenge. Control plants were treated with water. Plants were challenged when 4 weeks 
old (5-leaf stage) by spraying a spore suspension of virulent M. oryzae isolate VT5M1 at 1 x 104 conidia.ml-1. Six days 
after challenge inoculation, disease was rated by counting the number of susceptible-type lesions per leaf 4 and 
expressed relative to non-bacterized control plants. Statistical analysis was performed on data pooled from 4 
independent experiments, because interaction between treatment and experiment was not significant at α = 0.05 by 
analysis of variance. Different letters indicate statistically significant differences between treatments as analysed by 
non-parametric Kruskall-Wallis and Mann-Whitney comparison tests (α = 0.05, n > 86). Photographs depicting 
representative symptoms were taken 7 d post inoculation. 
 

WCS374r-triggered ISR to M. oryzae is independent of SA accumulation but requires 

intact responsiveness to ET as well as a functional octadecanoid pathway 

 To unravel the signaling circuitry governing WCS374r-mediated ISR to M. oryzae, bioassays 

were performed with transgenic and mutant rice lines impaired in various structural components 

of known defense pathways. As shown in Figure 5.2, SA-deficient NahG plants (Yang et al., 

2004) and the corresponding wild-type line Nipponbare were equally responsive to WCS374r-

mediated ISR, suggesting that WCS374r elicits ISR in rice either by activating the SA pathway 

downstream of SA or by functioning independently of SA. NahG plants also developed wild-type 

levels of protection against M. oryzae in response to treatment with BTH, indicating that SA 

accumulation is not a prerequisite for expression of BTH-inducible blast resistance. To 

investigate whether JA and/or ET play a role in WCS374r-mediated ISR, we tested the 

effectiveness of WCS374r in the ET-insensitive OsEIN2-suppressed transgenic line 471 (Jun et 

al., 2004) and the JA-deficient mutant hebiba, which is impaired in an as yet unidentified step of 

the octadecadoid pathway (Riemann et al., 2003; Sineshchekov et al., 2004). In contrast to the 

respective wild-type lines Dongyin and Nihonmasari, both 471 and hebiba were blocked in their 

ability to develop WCS374r-mediated ISR, whereas chemical induction of blast resistance by 

BTH resulted in levels of induced resistance comparable to those observed in the wild-types. The 

impaired ISR response of 471 and hebiba was not due to insufficient root colonization, since 

WCS374r colonized the rhizosphere of the different rice genotypes to comparable levels          

(5.4 ± 0.7 log cfu g-1). Together, these results suggest that WCS374r-mediated ISR against M. 
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oryzae is independent of SA accumulation but, unlike BTH-inducible blast resistance, requires the 

operation of an ET/JA-regulated signaling pathway.   
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Figure 5.2. Influence of root treatment with P. fluo escens WCS374r or soil drench with BTH on rice blast 
(M. oryzae) severity on different signaling mutants and transgenic rice lines.  

r

 
ISR was induced by growing plants in soil containing WCS374r bacteria. For chemical induction of blast resistance, 
plants were soil drenched with BTH (0.05 mM) 3 d prior to challenge. Control plants were treated with water. For 
details on M. oryzae bioassays, see legend to Figure 5.1. The average number of susceptible-type blast lesions on the 
fourth leaves of individual control plants were 60 (Nippobare), 56 (NahG), 48 (Dongyin), 59 (471), 65 (Nihonmasari) 
and 85 (hebiba), respectively. Within each frame, different letters indicate statistically significant differences between 
treatments (Kruskall-Wallis and Mann-Whitney, α = 0.05, n > 23). Data presented are from a representative 
experiment that was repeated twice with similar results. NahG = SA-deficient transgenic line generated in the 
background of cv Nipponbare; 471 = ethylene-insensitive OsEIN2 antisense line of cultivar Dongyin; hebiba = 
jasmonate-deficient mutant of cultivar Nihonmasari. 
 

Involvement of iron-regulated metabolites in the elicitation of ISR by WCS374r 

 Several lines of evidence corroborate a major role for iron-regulated bacterial metabolites in 

WCS374r-mediated ISR in dicotyledonous plants (Leeman et al., 1996; Ran et al., 2005a). To 

address whether WCS374r mounts ISR to M. oryzae in a similar manner, we first compared the 

ISR-triggering capacity of inoculum cultivated on iron-rich LB medium to that of inoculum 

prepared from iron-limited KB medium. Figure 5.3A shows that, in contrast to WCS374r 

prepared from KB, LB-grown bacteria failed to significantly reduce disease severity. Because LB- 

and KB-grown bacteria colonized rice to a similar extent (data not shown), the observed 

difference in ISR is likely due to the different iron nutritional state of both inocula. At 

inoculation, LB-grown inoculum had an internal iron pool visible in the red color of the bacterial 

pellet, whereas an internal iron pool was not observed for KB-grown WCS374r (data not shown). 

Although it cannot be excluded that differences in medium composition other than iron content 

might have contributed to the impaired ISR-triggering capacity of LB-derived inoculum, these 
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observations strongly suggest the involvement of iron-regulated metabolites in the elicitation of 

WCS374r-mediated ISR.  

 In order to identify such iron-regulated bacterial traits operative in triggering ISR, we 

compared the potential of WCS374r to induce resistance with that of a collection of mutants 

deficient in the production of the siderophores pseudobactin, pseudomonine and/or salicylic acid 

(SA). All bacterial strains were routinely grown on iron-poor KB medium. As shown in Figure 

5.3B, the pseudomonine-deficient mutant 4A1 induced ISR to an extent similar to that obtained 

after treatment with the wild-type strain, indicating that pseudomonine is not essential for 

WCS374r to induce resistance (Fig. 5.3B). Conversely, treatment with either the pseudobactin-

negative mutant 374-02, the pseudobactin and pseudomonine double negative mutant AT12, or 

the triple negative mutant BT1 no longer caused disease suppression, suggesting a pivotal role for 

pseudobactin in WCS374r-mediated ISR to M. oryzae. However, pseudobactin alone appeared to 

be insufficient for the onset of ISR since we failed to observe any statistically significant 

differences in disease severity between treatment with the pseudobactin-positive but 

pseudomonine- and SA-deficient mutant 4B1 and control plants. A deficiency in root 

colonization could be ruled out, because bacterial counts in the rhizosphere of plants inoculated 

with the respective mutants were similar to those of WCS374r-treated plants (data not shown). 

Based on these results, we initially assumed pseudobactin to act in concert with SA in the 

elicitation of ISR. To test this hypothesis, we next examined the effect of inoculating roots with a 

mix of the ISR-deficient strains 4B1 (SA−, Psb+) and AT12 (SA+, Psb−). Alternatively, plants 

colonized by 4B1 were complemented with a 1nM SA solution, a concentration equivalent to the 

in vitro SA production of 105 CFU of WCS374r. However, none of these combination 

treatments was able to restore ISR, making the involvement of SA and pseudobactin in ISR by 

WCS374r rather questionable (Fig. 5.3C). 
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Figure 5.3. Influence of root treatment with P. fluorescens WCS374r and various mutants on rice blast (M. 
oryzae) severity.  
 
Unless otherwise stated, WCS374r and derived mutants were grown on King’s medium B and applied to rice roots 
and soil. Plants were challenge inoculated when 4 weeks old (5-leaf stage). For details on M. oryzae bioassays, see 
legend to Figure 5.1. A, Influence of the iron nutritional state of the bacterial inoculum on the level of induced 
resistance imparted by WCS374r. Bacteria were grown on iron-poor King’s medium B (KB) or iron-rich Luria-
Bertani medium (LB) prior to inoculation. For comparison with chemically induced blast resistance, plants were soil 
drenched with BTH (0.05 mM) 3 d before challenge. B, Quantification of ISR against M. oryzae triggered by 
WCS374r and various mutant strains. Mutants derived from WCS374r have the following characteristics: 02 (Psb−, 
Psm+, SA+), 4A1 (Psb+, Psm−, SA+), AT12 (Psb−, Psm−, SA+), 4B1 (Psb+, Psm−, SA−), and BT1 (Psb−, 
Psm−, SA−). Psb = pseudobactin, Psm = pseudomonine, SA = salicylic acid. C, Effect of complementing the SA-
deficient mutant strain 4B1 for SA production on the level of induced protection against M. oryzae. SA (1 nM) was 
applied as a soil drench 3 days before challenge infection. Different letters indicate statistically significant differences 
between treatments by Kruskall-Wallis and Mann-Whitney non-parametric tests (α = 0.05, n > 24). Data presented 
are from representative experiments that were repeated at least twice with comparable results. 
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Salicylic acid attenuates pseudobactin-induced resistance against M. oryzae 

 To shed more light on the role of SA and pseudobactin in WCS374r-mediated ISR, we 

isolated pseudobactin from stationary phase cultures of WCS374r as described before (Meziane 

et al., 2005), and applied the purified compound, alone or in combination with SA, to the roots 

of hydroponically grown rice seedlings. Consistent with a previous study (Leeman et al., 1996) 

and based upon the in vitro pseudobactin production of 105 CFU of WCS374r bacteria, we tested 

two different concentrations of purified pseudobactin, i.e. 12 and 70 µg per plant. As a positive 

control, plants were treated with BTH. As shown in Figure 5.4, purified pseudobactin applied at a 

concentration of 70 µg per root system increased resistance against M. oryzae by as much as 88%, 

this being similar to the level of protection induced by 0.05 mM BTH. Application of 12 µg 

pseudobactin per root system was slightly less effective, as evidenced by a 67% decrease in the 

number of susceptible-type blast lesions. Intriguingly, hydroponic feeding of a physiologically 

relevant 1 nM SA solution had no marked effect on disease development, whereas co-application 

of 1 nM SA and 70 µg pseudobactin alleviated the pseudobactin-conferred protection. While 

indicating that pseudobactin alone suffices for full induction of WCS374r-mediated ISR to M. 

oryzae, these findings suggest negative crosstalk in the direction of SA damping pseudobactin 

action.  
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Figure 5.4. Effectiveness of benzothiadiazole (BTH), pseudobactin (Psb) or salicylic acid (SA)-induced 
resistance against M. oryzae.  
 
To trigger resistance, rice seedlings were hydroponically fed with the various compounds by including the desired 
concentration in the half-strength Hoagland nutrient solution. BTH and SA were applied at a concentration of 0.05 
mM and 1 nM, respectively. Pseudobactin was isolated from P. fluorescens WCS374r cultures and applied at a 
concentration of either 12 µg or 70 µg per root system. For details on M. oryzae bioassays see legend to Figure 5.1. 
Different letters indicate statistically significant differences between treatments (Kruskall-Wallis and Mann-Whitney, 
α = 0.05, n > 20). Data presented are from a representative experiment that was repeated twice with comparable 
results  
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Histochemical analysis of pseudobactin-induced resistance against M. oryzae  

Pseudobactin primes rice for a diverse set of HR-independent cellular responses 

 To further decipher the role of pseudobactin in WCS374r-conferred resistance in rice, we 

investigated the cytological and biochemical alterations associated with fungal restriction in 

pseudobactin-induced plants using the intact leaf sheath method developed by Koga et al. 

(2004b). Contrary to leaf blades, leaf sheath tissue is relatively flat and optically clear, which 

facilitates live-cell imaging, while the use of intact leaf sheaths allows the expression of numerous 

partial resistance responses, consistent with the continuous array of symptoms typically observed 

on inoculated leaf blades. Leaf sheaths of control plants and plants of which the roots were 

treated with either the purified pseudobactin of WCS374r (Psb374) or BTH (0.05 mM) were 

inoculated with a M. oryzae conidial suspension and sampled 18, 24, 36, and 48 h post-inoculation 

(hpi). Notably, microscopic assessment revealed no significant differences in the number of 

successful penetrations among treatments, indicating that both BTH- and Psb374-induced 

resistance are unlikely to impede pre-penetration development by M. oryzae (data not shown). 

Starting 36 hpi, epidermal cells were found to respond to fungal ingress through the development 

of various cellular reactions which we grouped into six categories, designated A-F (Fig. 5.5A). 

Type A represented infection sites showing successful fungal invasion in the absence of any 

obvious host response. Type B reactions, on the other hand, were characterized by a pale yellow 

or brown discoloration of the anticlinal cell walls and weakly enhanced vesicular activity. 

Epidermal sites in which the invasive hyphae were confined to the primary penetrated cell due to 

expression of the so-called ‘whole plant-specific resistance’ [WPSR; (Koga et al., 2004a)], a type 

of age-related resistance characterized by the occurrence of large, brownish granules in the 

cytoplasm, were scored as type C. Infection type D likewise comprised single-cell infection sites 

but was associated with intense browning of the anticlinal cell walls and the occurrence of round 

and tubular vesicles in the cytoplasm. Epidermal cells classified as type E displayed a remarkable 

interaction phenotype in which fungal growth was curtailed shortly after penetration by means of 

infection hyphae-encasing tubers, the nature of which is still elusive as staining with 

phloroglucinol provided no compelling evidence for the involvement of lignin-derived deposits. 

Finally, type F represented a hypersensitive response (HR)-like reaction as evidenced by dense 

granulation of the cytoplasm and a bright autofluorescence of the epidermal cell walls. An 

overview of the temporal changes in the frequency of the various cellular reaction types is 

presented in Figure 5.5B. At 36 hpi, control plants almost exclusively displayed type A reactions 

(up to 92% of all interactions). A decrease in type A reaction from 36 to 48 hpi was accompanied 

by a drastic increase in the frequency of appressorial sites exhibiting a type B reaction, reaching a 
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level of 55% by 48 hpi. BTH-induced resistance, on the other hand, was characterized by a high 

frequency of interaction sites with attacked cells expressing HR-related type F reactions (70% of 

all interactions), resulting in abrupt arrest of fungal proliferation. Most conspicuously, Psb374-

supplied plants showed a strikingly different profile of effector responses in that the latter plants 

did not develop any HR-like responses, but rather mounted type D and type E reactions, 

accounting for 33% and 50% of all interactions by 48 hpi, respectively. Together, these 

observations suggest that Psb374 primes rice for a diverse set of HR-independent cellular 

defenses.  

A 

 
Figure 5.5. Quantitative cytological analysis of cellular responses in leaf sheath epidermal cells of control, 
BTH- and pseudobactin-pretreated rice plants infected with M. oryzae.  
 
Roots of young hydroponically grown rice seedlings (6.5-leaf stage) were treated with either the purified 
pseudobactin of P. fluorescens WCS374r (Psb374; 70 µg/plant) or BTH (0.05 mM); 3 d later, plants were challenged by 
injecting the intact leaf sheaths with a conidial suspension of M. oryzae. A, Single-cell interaction phenotypes were 
grouped into 6 categories (A-F). Micrographs depict representative examples. (A) vigorous invasion of living tissues 
in the absence of visible host responses; (B) occurrence of cytoplasmic vesicles and slight browning of the anticlinal 
walls of the first-invaded epidermal cell following fungal invasion of neighbouring cells; (C) epidermal cells 
expressing so-called ‘whole plant-specific resistance’ (WPSR; Koga et al., 2004a) as indicated by the presence of large 
orange-brown granules in the cytoplasm; (D) restriction of fungal development to the first-invaded epidermal cell 
associated with intense browning of anticlinal epidermal cell walls and enhanced vesicular activity; (E) development 
of invading hyphae-embedding tubules confers prompt fungal arrest in Psb374-induced epidermal cells; (F) BTH-
specified hypersensitive response-like reaction characterized by dense cytoplasmic granulation.  Ap, appressorium or 
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appressorial site; IH, invading hyphae; Vs, vesicles. Scale bars = 20 µm. B, Frequency distribution of 
abovementioned interaction phenotypes at 36 and 48 hpi. Each bar represents means of eight replications stemming 
from four plants. At least 50 single-cell interaction sites originating from representative sheath sections were 
examined per replication. Data from one experiment are presented. Repetition of experiments led to results very 
similar to those shown. Bars with the same letter are not significantly different according to Kruskal-Wallis and 
Mann-Whitney comparison tests at α = 0.05. 
 
 
Pseudobactin primes rice for enhanced pathogenesis-related H2O2 formation 

 Production of reactive oxygen species during the oxidative burst is one of the most peculiar 

defense responses in plant-pathogen interactions; therefore, we next compared pathogenesis-

related H2O2 generation using 3,3’-diaminobenzidine (DAB) staining. Consistent differences 

between treatments were seen from 24 hpi onward. At this time, approximately one fourth of all 

Psb374- or BTH-treated epidermal cells adjacent to fungal appressoria showed a local brownish 

staining of the anticlinal walls, whereas little staining was evident in the sheaths of control plants 

(data not shown). Importantly, ascorbate treatment of inoculated leaf sheaths abolished staining 

at the respective sites, confirming the specificity of the staining for H2O2 accumulation. Local 

DAB staining of anticlinal cell walls disappeared within 36 hpi, when the fungus had started to 

develop branched, bulbous invading hyphae. From this time onward, different patterns of DAB 

staining could be distinguished (depicted at 48 hpi in Fig. 5.6A). Interestingly, both the 

susceptibility-related infection type A, in which fungal hyphae vigorously invaded living tissue, 

and the Psb374-specified infection type D, characterized by lignituber-like structures encasing 

invasive hyphae, remained essentially free of DAB accumulation; reactions which we designated 

DAB type I and II, respectively. Conversely, in some incidences, H2O2 accumulated in the 

primary invaded cell following spread of the invading hyphae into neighboring cells (type III). 

Restriction of hyphal growth to the initially invaded cell was associated with variable patterns of 

DAB staining. In some cases, cells were filled with numerous DAB-positive vesicle-like bodies 

targeted to the invading hyphae (type IV), whereas in WPSR- and HR-expressing cells, H2O2 

typically accumulated within the characteristic cytoplasmic aggregation (type V-VI). Finally, in a 

limited number of cases, abrupt arrest of fungal ingress coincided with massive H2O2 

accumulation in the entire cell, beginning as early as 30 hpi (type VII). A comparative kinetic 

analysis of H2O2 formation revealed that by 36 hpi approximately 75% of all interaction sites in 

both control and Psb374-treated tissue lacked any DAB-detectable H2O2 (Fig. 5.6B). However, 

whereas in control cells the absence of H2O2 accumulation at this time point related to successful 

fungal colonization, lack of DAB staining in Psb374-induced tissue mainly resulted from the high 

ratio of appressorial sites exhibiting pathogen-blocking type E reactions. Hence, the high 

frequency of DAB-negative interaction sites in control and Psb374-treated plants reflects distinct 

cellular responses with dramatically different outcomes. By 48 hpi, the overall proportion of sites 
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that showed DAB staining was significantly higher in Psb374-treated plants than in control 

plants. In Psb374-induced tissue, a strong decline in the frequency of DAB-negative type I cells 

from 36 to 48 hpi corresponded to an approximately 10% increase in type III, type IV and type 

V reactions, whereas in control plants, the number of type I and type III reactions decreased very 

slowly at a rate corresponding to an increase in the number of type V reactions. Compared to the 

well-restricted H2O2 production in Psb374-supplied sheath cells, BTH-triggered HR was 

associated with a massive oxidative burst (type VI) beginning as early as 30 hpi, suggesting that 

the mechanism(s) by which BTH boosts pathogen-triggered H2O2 generation may be different 

from Psb374-conditioned priming. Starting 52 hpi, a strong accumulation of H2O2 was found in 

control mesophyll cells that appeared to collapse, whereas in Psb374- and BTH-treated plants, 

DAB staining in the mesophyll tissue was only rarely observed (data not shown). However, at 

these late infection stages, massive H2O2 accumulation most likely reflects deregulated cell 

physiology and overwhelmed anti-oxidative capacities, rather than a controlled defense response 

that restricts cellular accessibility for M. oryzae. Taken together, these results indicate that Psb374-

mediated resistance against M. oryzae involves a timely, highly localized, and well-restricted 

production of H2O2 in the epidermis.   
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Figure 5.6. Effect of pseudobactin and BTH pretreatment on H2O2 accumulation in epidermal rice sheath 
cells inoculated with M. oryzae.  
 
Roots of young hydroponically grown seedlings (6.5-leaf stage) were treated with either the purified pseudobactin of P. 
fluorescens WCS374r (Psb374; 70 µg/plant) or BTH (0.05 mM); 3 d later, plants were challenged by injecting the intact leaf 
sheaths with a conidial suspension of M. oryzae. A, Micrographs depicting examples of distinct H2O2accumulation patterns in 
inoculated leaf sheaths supplied with 3,3’-diaminobenzidine (DAB): (I), successful fungal colonization of living control cells, no 
DAB staining visible; (II) Psb374-specified fungal arrest in the primary invaded cell (see Fig. 5E) is not associated with any 
detectable H2O2accumulation. Note the difference between the natural browning of attacked cells (this picture) and the intense 
reddish-brown coloration due to DAB staining of H2O2 (pictures III-VII); (III) DAB accumulation in a primary epidermal cell 
following fungal invasion of adjacent cells; (IV) accumulation of DAB-positive vesicle-like bodies in the vicinity of the invasive 
hyphae; (V) WSPR-expressing cells (for details see legend to Fig. 5.5) filled with DAB-stained granules; (VI) DAB-positive 
cytoplasmic granules in BTH-treated hypersensitively reacting cells; (VII) whole-cell DAB staining. Ap, appressorium or 
appressorial site; IH, invading hyphae; Vs, vesicles. Scale bars = 20 µm. B, Frequency distribution of abovementioned DAB 
staining patterns at 36 and 48 hpi. Each bar represents means of eight replications stemming from four plants. At least 50 single-
cell interaction sites originating from representative sheath sections were examined per replication. Data from one experiment are 
presented. Repetition of experiments led to results very similar to those shown. Bars with the same letter are not significantly 
different according to Kruskal-Wallis and Mann-Whitney comparison tests at α = 0.05. 
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Pseudobactin-induced resistance against M. oryzae is associated with priming for accelerated cell wall fortification 

 Because H2O2 is often used as a substrate for peroxidase-dependent cross-linking of cell wall 

polymers, different staining procedures were performed to visualize changes in the cell wall. 

Cross-linking of cell wall proteins was detected with Coomassie blue subsequent to protein 

denaturation and free protein removal (Mellersh et al., 2002), whereas safranin-o was used to 

detect the peroxidative incorporation of phenolic compounds in the cell wall, a fortification 

mechanism important during lignification and suberization (Lucena et al., 2003). As shown in 

Figure 5.7, cell wall modification was more abundant and appeared earlier in Psb374- and BTH-

treated plants than in the control treatment: starting from 24 hpi, the anticlinal walls of Psb374- 

or BTH-induced epidermal cells showed intense safranin staining, whereas in control plants, 

staining was weak and only detectable in limited zones of the anticlinal walls of a few colonized 

cells from 36 hpi onward (Fig. 5.7A). Likewise, protein cross-linking was seldom detected prior 

to 48 hpi in control plants, whereas in Psb374-supplied or BTH-induced cells, it was evident in 

the anticlinal and/or periclinal walls of most interaction sites 36 hpi (Fig. 5.7B). Similar results 

were obtained when assaying for autofluorescence, the early occurrence of which is considered a 

hallmark of rice defense against M. oryzae (Rodrigues et al., 2005). Although autofluorescence was 

detectable as early as 18 hpi regardless of the treatment, from this time onward, the frequency of 

autofluorescent appressorial sites increased much more rapidly in Psb374- or BTH-treated plants 

than in non-treated control plants, indicating that both inducers prime rice for augmented 

deposition of phenolic compounds at sites of attempted pathogen entry (Fig. 5.7C). Conceivably, 

enrichment of the host cell wall with phenolics contributes to the elaboration of permeability 

barriers preventing pathogen spread and enzymatic cell wall degradation. 
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A 

 
Figure 5.7.  Quantitative cytological analysis of cell wall modifications in control, BTH- and pseudobactin-
pretreated rice plants challenged with M. oryzae.   
 
Roots of young hydroponically grown rice seedlings (6.5-leaf stage) were treated with either the purified 
pseudobactin of P. fluorescens WCS374r (Psb374; 70 µg/plant) or BTH (0.05 mM); 3 d later, plants were challenged by 
injecting the intact leaf sheaths with a conidial suspension of M. oryzae.  A and B, Priming of pathogen-induced cell 
wall reinforcements in Psb374-treated plants. Peroxidative incorporation of phenolic compounds and protein cross-
linking were visualized with safranin-o (red-pink; A) and Coomassie Blue (dark blue; B), respectively. C, Left, 
Representative epifluorescence images of control and Psb374-supplied epidermal cells at 24 hpi (blue light 
excitation). Right, Psb374 and BTH prime rice for accelerated deposition of autofluorogenic phenolics at sites of 
attempted pathogen entry. Asterisks indicate statistically significant differences compared with the non-induced 
control treatment. Each bar represents means and SD of six replications stemming from three plants. At least 50 
single-cell interaction sites originating from representative sheath sections were examined per replication. Data from 
one experiment are presented. Repetition of experiments led to results very similar to those shown. Scale bars = 20 
µm.  
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Exogenous SA abrogates Psb374-induced priming 

 The observation that Psb374-pretreated plants exhibited potentiated expression of multiple 

cellular defense responses suggested that priming for enhanced basal defense may constitute a 

crucial facet of the Psb374-induced resistance response. To test this hypothesis, we next 

examined the effect of exogenous SA application on the manifestation of Psb374-induced 

priming. As illustrated in Table 5.1, co-application of 1 nM SA with 70 µg Psb374 significantly 

decreased the frequency of Psb374-specified type E reactions, i.e. infection-blocking tubules. 

Adding SA to the Psb374 solution also perturbed the early occurrence of DAB staining and 

autofluorescence in Psb374-treated tissues and alleviated Psb374-primed protein cross-linking 

and cell wall fortification. Along with the suppressive effect of co-applied SA on the level of 

Psb374-induced protection against M. oryzae (Fig. 5.4), these results indicate that Psb374-triggered 

ISR is based on priming for enhanced expression of an attacker-induced multifaceted cellular 

defense program. 

 

Table 5.1. Influence of SA co-application on Psb374-induced defense priming  

 

The data represent means and SD of 4 replicates of each 100 interaction sites per leaf sheath. Each of three 
independent experiments gave very similar results. 

Treatmenta

Ctrl SA Psb374 SA + Psb374 

Reaction % of interaction sites 

Infection-blocking tubules (36 hpi)b not seen not seen 43.3 ± 18.6b 7.5 ± 2.4a

DAB staining (24 hpi)c not seen not seen 26.2 ± 8.7b 5.6 ± 2.1a

Autofluorescence (24 hpi) 2.1 ± 0.8a 9.4 ± 4.2b 66.8 ± 10.6c 18.6 ± 6.7b

Coomassie Blue staining (36 hpi) 24.6 ±  5.8ab 19.2 ± 4.6a 94.2 ± 5.2c 32.4 ± 9.2b

Safranin staining (36 hpi) 29.5 ± 10.2a 24.6 ± 6.8a 72.6 ± 8.6b 21.4 ± 11.3a

a SA (1 nM) and purified WCS374r pseudobactin (Psb374; 70 µg/root system) were applied either alone or in 
combination to the roots of hydroponically grown rice seedlings (5.5-leaf stage) 3 d prior to challenge with M. 
oryzae. b Interaction phenotype ‘E’ as described in legend to Figure 5. c Percentage of interaction sites associated 
with reddish-brown precipitates in the anticlinal cell wall. Within each row, different letters indicate statistically 
significant differences between treatments (Fisher’s LSD test; α = 0.05).  

 

Psb374 antagonizes pathogen-induced activation of SA-responsive PR genes 

 The results above, together with the PR gene-independency of ISR in Arabidopsis (Pieterse et 

al., 1996), prompted us to investigate whether Psb374 pretreatment also affects PR transcript 

accumulation. To this end, we tested control, BTH-induced and Psb374-supplied plants for 

expression of the rice PR-like genes OsPR1b and PBZ1/PR10a. Both of these genes are known to 

be responsive to M. oryzae infection (Kim et al., 2001) and have recently been implicated in the 
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BTH-inducible and SA-mediated signaling branch of the rice defense network (Shimono et al., 

2007). Quantitative RT-PCR analysis revealed that neither BTH application nor Psb374 

treatment alone significantly altered OsPR1b or PBZ1 mRNA accumulation at any of the time 

points investigated (Fig. 5.8A; data not shown). However, significant differences between 

treatments became evident when challenging with M. oryzae. In accordance with previous reports 

(Midoh and Iwata, 1996; Yang et al., 2004), PBZ1 transcript levels responded strongly to blast 

infection, showing an approximately 250-fold induction relative to mock-inoculated controls by 

48 hpi (Fig. 5.8A). Interestingly, application of Psb374 prior to inoculation attenuated this 

pathogen-induced activation of PBZ1, whereas pretreatment with BTH caused a faster and 

stronger induction of the latter gene in comparison to the expression measured in challenged, 

non-induced plants (Fig. 5.8A). Transcript accumulation of the OsPR1b gene mirrored the profile 

observed for PBZ1 (Fig. 5.8B), suggesting that Psb374 antagonizes M. oryzae-induced 

transcription of SA-responsive PR genes.   
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Figure 5.8. Effect of BTH and Psb374 pretreatment on PBZ1/PR10 (A) and PR1b (B) transcript 
accumulation in M. oryzae-infected rice leaves.  

 

 
BTH (0.05 mM) or Psb374 (70 µg/root system) were applied to the roots of four-week-old rice plants 3 d before 
challenge. At the indicated time points post inoculation, fully expanded fourth leaves from six plants were harvested, 
pooled and subjected to qRT-PCR analysis. Gene expression levels were normalized using actin (Os03g50890) as an 
internal reference and calculated relative to the expression in mock-treated control plants at 0 h. Data presented are 
means (± SD) of three replicates of a representative experiment. Two series of independent experiments were carried 
out giving reproducible results. Psb374 = purified pseudobactin of P. fluorescens WCS374r. 
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Discussion 

 Induced systemic resistance (ISR) is a phenomenon whereby disease resistance against 

subsequent microbial infection is induced at the whole-plant level in response to colonization of 

the roots by certain plant growth-promoting rhizobacteria. Compared to the relative wealth of 

information in experimentally tractable plant species such as Arabidopsis, our understanding of the 

molecular mechanisms underlying ISR in economically important cereal crops is still in its 

infancy. In the present work, we have focused on the bacterial determinants and host defense 

responses underlying rhizobacteria-activated ISR in rice, the most important food source 

worldwide and a pivotal model for molecular genetic studies of disease resistance in 

monocotyledonous plants. We show that colonization of the roots of rice by the well-

characterized biocontrol agent P. fluorescens WCS374r renders foliar tissues more resistant to rice 

blast disease, caused by the heterothallic ascomycete M. oryzae (Fig. 5.1). Our data also reveal that 

this WCS374r-mediated ISR (WCS374r-ISR) is not based on direct activation of basal resistance 

mechanisms, but rather acts through pseudobactin-mediated priming for a pronounced 

multifaceted cellular defense program (Figs. 5.3-5.7). Moreover, we demonstrate that ISR by 

WCS374r requires components of the ET and JA pathways, rather then SA accumulation or 

enhanced PR gene expression, suggesting that rice might have evolved a disease-resistance 

pathway similar to the classic ISR pathway in Arabidopsis (Figs. 5.2 and 5.8).  

 

Pseudobactin: iron-chelating protagonist in the initiation of P. fluorescens WCS374r-

mediated ISR  

 To date, several bacterial traits have been implicated in the initiation of WCS374r-ISR, 

including the O-antigenic side chain of outer membrane lipopolysaccharides, salicylic acid, and 

the siderophore pseudobactin (Leeman et al., 1995, 1996; Ran et al., 2005a,b). In this study, we 

initially assumed pseudobactin and SA to be co-required for initiation of ISR against M. oryzae, 

based on the observation that both the pseudobactin-deficient mutant 374-02 and the 

pseudobactin-proficient, yet SA-negative, mutant 4B1 lost the ability to mount ISR (Fig. 5.3). 

However, contradictory results were obtained when testing the isolated bacterial compounds: 

purified WCS374r-derived pseudobactin (Psb374) triggered high levels of resistance against rice 

blast, whereas exogenous SA failed to cause any substantial disease reduction (Fig. 5.4), indicating 

that Psb374 alone suffices for induction of ISR. Moreover, co-application of SA with Psb374 

attenuated the Psb374-induced resistance, prompting the question of how WCS374r bacteria, 

which simultaneously produce both these metabolites in vitro, are able to trigger ISR. One likely 

scenario originates from the observation that treatment with WCS374r does not induce systemic 
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resistance in Arabidopsis against P. syringae pv. tomato, whereas the application of SA does (Van 

Wees et al., 1997). This discrepancy suggests that SA produced by WCS374r is not exuded into 

the rhizosphere, which may be due to the fact that upon iron limitation WCS374r produces not 

only pseudobactin and SA, but also pseudomonine, a siderophore containing a SA moiety 

(Mercado-Blanco et al., 2001). Accordingly, it is plausible that in the rhizosphere, where iron-

limiting conditions tend to prevail, all WCS374r-produced SA is channeled into pseudomonine 

that does not antagonize pseudobactin action. Nonetheless, if pseudobactin is the crucial 

determinant of WCS374r-ISR against M. oryzae, a question remains as to the ISR-minus 

phenotype of the pseudobactin-positive mutant 4B1. One possible explanation for these 

conflicting observations lies in the fact that mutant 4B1 was constructed by gene replacement of 

the native psmB gene. PmsB encodes a presumed isochorismate-pyruvate lyase that catalyzes the 

conversion of isochorismate to pyruvate and SA (Djavaheri, 2007). Interestingly, recent evidence 

suggests that in line with its closest homolog in P. aeruginosa, the catalytically promiscuous SA 

biosynthesis protein PchB, PmsB not only possesses isochorismate-pyruvate lyase but also 

chorismate mutase activity (Kunzler et al., 2005). Since chorismate mutase is located at the 

branch point of the shikimate pathway leading to biosynthesis of tyrosine and phenylalanine, the 

enzyme constitutes a key point of regulation for maintaining the correct balance of aromatic 

amino acids in the cell (Neuenschwander et al., 2007). Hence, it can be envisaged that a mutation 

in such regulatory enzyme might have a pleiotropic effect hampering the induction of ISR. 

Alternatively, mutant 4B1 might simply produce too little pseudobactin in the rhizosphere to be 

effective in inducing resistance.  

 

Rice and Arabidopsis share conserved disease resistance pathways 

 In many dicot plants, the role of SA as a global multi-component regulator of various 

inducible defense responses is well established (Loake and Grant, 2007). Following pathogen 

infection, endogenous levels of SA and its conjugates increase dramatically, preceding the 

induction of PR genes and the onset of local and systemic acquired resistance [SAR; (Durrant and 

Dong, 2004)]. In rice, however, the role of SA is still a matter of debate. Rice differs from most 

other plants in that it contains very high basal levels of endogenous SA that are not elevated 

further in response to pathogen infection, making the role of the SA signaling pathway in rice 

disputable (Silverman et al., 1995). A number of recent reports, however, do support an active 

role for a BTH-inducible and WRKY45- or NPR1-regulated SA signaling pathway in  the rice 

defense response (Chern et al., 2001; Fitzgerald et al., 2004; Chern et al., 2005b; Shimono et al., 

2007; Yuan et al., 2007b). Emerging from these studies is the view that rice, in spite of its high 
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constitutive SA levels, has evolved an SA-mediated SAR pathway similar to that in Arabidopsis. In 

this study, we provide the first report of a similar phenomenon with regard to rhizobacteria-

induced resistance signaling. ISR bioassays with SA non-accumulating NahG plants (Yang et al., 

2004), the ET-insensitive OsEIN2 antisense line 471 (Jun et al., 2004) and the JA biosynthesis 

mutant hebiba (Riemann et al., 2003) revealed that WCS374r-mediated ISR against M. oryzae 

functions independently of SA, but requires intact responsiveness to ET as well as a functional 

JA pathway (Fig. 5.2). In this respect, WCS374r-ISR against M. oryzae mirrors classic WCS417r-

elicited ISR in Arabidopsis (Pieterse et al., 1996, 1998). Consonant with this is the finding that 

treatment with Psb374, which faithfully mimics WCS374r in activating ISR, does not lead to 

direct transcriptional activation or priming of SA-inducible PR genes, such as OsPR1b and PBZ1 

(Fig. 5.8). In contrast to WCS374r-ISR, but similar to BTH-induced resistance in dicots 

(Friedrich et al., 1996; Gorlach et al., 1996), chemical induction of blast resistance by exogenous 

application of BTH was fully retained in both 471, hebiba and NahG rice plants, and involved 

potentiation of SA-inducible gene expression (Figs. 5.2 and 5.8). Taken together, these results not 

only reinforce the contention that rice is endowed with a BTH-inducible SAR-like resistance 

pathway (Shimono et al., 2007; Yuan et al., 2007b), but also hint at a conserved mechanism for 

ISR signaling in rice and Arabidopsis. It is noteworthy, however, that unlike WCS374r-ISR, 

induction of systemic resistance against M. oryzae by P. aeruginosa 7NSK2 was found to be SA-

dependent (De Vleesschauwer and Höfte, unpublished results), indicating that the signal 

transduction pathway governing rhizobacteria-mediated ISR against M. oryzae at least in part 

depends on the eliciting bacterium. Nonetheless, the apparent similarities between WCS374r- and 

WCS417r-activated ISR signaling in rice and Arabidopsis respectively, support and further extend 

the earlier notion of ancient plant-inducible defense pathways that are shared between monocots 

and dicots (Morris et al., 1998). This notion, however, does not rule out the possibility that 

individual plant species may differ in the fine-tune regulation of such conserved defense 

pathways. For instance, while ectopic expression of a rice NPR1 homolog induces constitutive 

activation of SA-responsive PR gene expression and provokes spontaneous development of a 

lesion mimic/cell death phenotype (Chern et al., 2005b), none of these reactions is evident in 

NPR1-overexpressing Arabidopsis until treatment with SAR inducers or pathogen infection (Cao 

et al., 1998). Such species-specific regulation of conserved plant defense mechanisms may also 

apply to ISR-associated resistance phenomena. Indeed, whereas the impaired ISR response of JA-

deficient hebiba argues that in rice WCS374r-ISR develops coincidently with increases in 

endogenous JA content (Fig. 5.2), in Arabidopsis neither induction nor expression of WCS417r-

ISR was found to be associated with substantial alterations in JA biosynthesis (Pieterse et al., 
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2000). Instead, recent evidence indicates that elicitation of WCS417r-ISR sensitizes Arabidopsis for 

perception of attacker-induced JA (Pozo et al., 2008). Hence, although rice and Arabidopsis 

appear to share a conserved ISR pathway, the modulation of this JA-dependent resistance 

conduit may be quite divergent. To our interest, the significance of elevated JA levels in 

mediating rice disease resistance was recently highlighted by the enhanced blast resistance of 

transgenic rice plants over-expressing allene oxide synthase, a key enzyme in the JA biosynthetic 

pathway (Mei et al., 2006).  

 

Parallels between WCS374r-mediated ISR and wound-inducible systemic resistance 

against M. oryzae 

 The predicted role of JA in WCS374r-ISR is reminiscent of the situation in wounded rice 

plants where systemic resistance against M. oryzae is preceded by a strong and transient 

accumulation of non-conjugated JA in local and systemic tissues (Schweizer et al., 1998). Wound-

inducible blast resistance further resembles WCS374r-ISR in that it delivers a similar level of 

systemic protection without the customary PR gene induction and is likewise abrogated in mutant 

hebiba plants (Schweizer et al., 1998; Riemann et al., 2003; De Vleesschauwer and Höfte, 

unpublished results). Regarding these similarities between WCS374r-ISR and wound-induced 

resistance, it is tempting to speculate that both phenomena are based on similar resistance 

mechanisms. Such a concept would also provide a mechanistic framework for the attenuation of 

SA-responsive PR gene expression in challenged Psb374-induced plants (Fig. 5.8). In some 

interesting work on rice responding to mechanical wounding, Lee et al. (2004) demonstrated that 

JA-induced depletion of endogenous SA levels constitutes an important regulatory mechanism 

for JA antagonism of SA signaling. In this scenario, if the establishment of WCS374r- and 

Psb374-mediated ISR coincides with a JA burst, the inverse correlation between endogenous JA 

and SA may account for the down-regulation of at least PR1b, the induction of which is 

considered to be a reliable marker for activation of the SA-regulated defense pathway in rice 

(Yuan et al., 2007b). In a similar vein, antagonistic cross-talk between SA and JA signaling may 

also explain the inhibitory effect of exogenous SA on the Psb374-provoked resistance against M. 

oryzae (Fig. 5.4; Table 5.1). Antagonistic cross-communication between the SA and JA pathways 

in rice was recently shown to be orchestrated by OsWRKY13, a WRKY transcription factor 

functioning upstream of the rice NPR1 homolog OsNH1 (Qiu et al., 2007). Ectopic expression 

of OsWRKY13 represses JA biosynthetic genes while activating a specific subset of SA-dependent 

genes, which suggests that OsWRKY13 antagonizes JA-dependent defenses by negative feedback 
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regulation of JA biosynthesis (Qiu et al., 2007). Whether OsWRKY13 expression is altered in ISR-

expressing plants is currently being investigated.  

WCS374r-triggered ISR is based on pseudobactin-mediated priming for a multifaceted 

cellular defense response 

 In common with many other investigations (Benhamou et al., 1996; Ahn et al., 2002; Kim et 

al., 2004a; Verhagen et al., 2004; Tjamos et al., 2005; Ahn et al., 2007), our results support the 

view that rhizobacteria-mediated ISR is not based on direct activation of defense mechanisms, 

but rather results from a sensitization of the tissue to express basal defenses faster and/or more 

strongly upon subsequent pathogen attack. Such priming effect was borne out by the observation 

that challenge inoculation of Psb374-induced plants with M. oryzae entailed the prompt 

expression of a pronounced multifaceted cellular defense program, comprising rapid recruitment 

of phenolic compounds at sites of attempted pathogen entry, elaboration of specific sheath cell 

reactions, and a timely oxidative burst putatively driving cell wall fortification and protein cross-

linking (Figs. 5.5-5.7). The importance of defense priming in the Psb374-activated resistance 

mechanism was shown by the effect of adding SA to the Psb374 feeding solution, which not only 

counteracted the distinct Psb374-primed cellular responses, but concurrently alleviated Psb374-

provoked resistance against M. oryzae (Fig. 5.4; Table 5.1). In conjunction with the strict 

pseudobactin-dependency of WCS374r-ISR, such close correlation between the manifestation of 

priming and the establishment of Psb374-induced resistance infers that Psb374-mediated priming 

for enhanced defense may constitute the in situ mechanism underpinning WCS374r-ISR against 

M. oryzae. Hence, it is not inconceivable that WCS374r bacteria protect rice from M. oryzae by 

releasing pseudobactin-type siderophores into the rhizosphere, thereby inducing a pre-alerted 

state of defense enabling plants to respond better and more rapidly to subsequently inoculated 

pathogens. In line with this concept, we previously uncovered priming as a crucial facet of the 

resistance mechanism underlying P. aeruginosa 7NSK2-mediated ISR against M. oryzae. Feeding 

rice plants with the redox-active pigment pyocyanin, the crucial determinant of 7NSK2-mediated 

ISR, resulted in enhanced attacker-induced hypersensitive response (HR)-like cell death in naïve 

leaves, a phenomenon shown to be orchestrated by reiterative H2O2 microbursts (Chapter 3). 

Interestingly, similar phenocopies of hypersensitively dying epidermal cells in the vicinity of 

fungal hyphae were evident in challenged rice plants pretreated with BTH (Fig. 5.5), suggesting 

that BTH and pyocyanin might feed into a similar resistance pathway. Psb374-elicited ISR, 

however, was not associated with HR-like cell death, but involved the potentiation of a 

coordinate set of distinct cellular reactions, the fast manifestation of pathogen-blocking tubules 

being a prominent component (Fig. 5.5). In combination with our unpublished findings that 
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WCS374r- and 7NSK2-ISR differ in their requirement for SA, these results support the notion 

that WCS374r and 7NSK2 bacteria employ distinct strategies to mount ISR and suggest that rice 

is endowed with multiple, at least partly distinct, blast-effective resistance pathways. This 

conclusion is further supported by a large body of evidence demonstrating minimal overlap in the 

gene sets activated by different blast resistance inducers (Midoh and Iwata, 1996; Schweizer et al., 

1997a,b; Schweizer et al., 1999; Nakashita et al., 2003; Tanabe et al., 2006).  

 

Conclusion 

 In summary, we have shown that colonization of the roots of rice by pseudobactin-producing 

WCS374r bacteria sensitizes naïve leaves for potentiated expression of a multifaceted cellular 

defense response, resulting in an enhanced level of resistance against the leaf blast pathogen M. 

oryzae. Our results also provide evidence for a WCS374r-activated signaling conduit in rice similar 

to the classic SA-independent but JA/ET-dependent signal transduction pathway controlling 

rhizobacteria-mediated ISR in Arabidopsis. Furthermore, it is evident from the present study that 

WCS374r triggers a resistance that is mechanistically different from BTH-inducible blast 

resistance as well as systemic resistance induced by P. aeruginosa 7NSK2, suggesting the co-

existence of multiple pathways leading to induced resistance against M. oryzae. Further elucidation 

of the bacterial traits and dynamic host responses underpinning rhizobacteria-mediated ISR in 

rice will not only advance our fundamental understanding of how rice plants cope with enemies 

in the context of induced resistance, but also may be instrumental in developing new strategies 

for biologically based, environmentally friendly and durable disease control in economically 

important cereal crops. 
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Materials and Methods 

 

Plant materials 

 The highly susceptible rice (Oryza sativa spp. indica) cultivar CO39 was routinely used in this study. 

Transgenic NahG rice and its parental line, japonica cultivar Nipponbare, were a kind gift from Dr. Yinong 

Yang (Pennsylvania State University, USA). Seeds of cultivar Dongyin (Oryza sativa spp. japonica) and the 

transgenic line 471, expressing the OsEIN2 antisense construct, were kindly provided by Dr. Gynheung 

An (Yonsei University, Korea), while JA-deficient hebiba mutant seeds and the corresponding wild-type, 

japonica cultivar Nihonmasari, were a kind gift from Dr. Peter Nick (Karlsruhe University, Germany). 

Unless otherwise noted, rice plants were grown on soil under greenhouse conditions (30 ± 4ºC and 16 h 

photoperiod). For seed multiplication, plants were propagated in the greenhouse and fertilized with 0.5% 

ammonium sulphate every two weeks until flowering. 

 

Cultivation of rhizobacteria and pathogens 

 Bacterial strains used in this study are listed in Table 5.2. Pseudomonas fluorescens strain WCS374r and 

derived mutant strains were grown for 24 to 28 h at 28°C on King’s medium B (KB; King et al., 1954) 

agar plates. Bacterial cells were scraped off the plates and suspended in sterile saline (0.85% NaCl). 

Densities of the bacterial suspensions were adjusted to the desired concentration based on their optical 

density at 620 nm. 

Magnaporthe oryzae isolate VT5M1 (Thuan et al., 2006) was grown at 28ºC on half-strength oatmeal agar 

(Difco, Sparks, USA). Seven-day-old mycelium was flattened onto the medium using a sterile spoon and 

exposed to blue light (combination of Philips TLD 18W/08 and Philips TLD 18W/33) for seven days to 

induce sporulation. Conidia were harvested as described in Chapter 3 and inoculum concentration was 

adjusted to a final density of 1 x 104 spores.ml-1 in 0.5% gelatin (type B from Bovine skin; Sigma-Aldrich 

G-6650).  

 

Induction treatments 

 Induced resistance assays were performed basically as described in Chapter 3. Briefly, plants were 

grown under greenhouse conditions (30 ± 4ºC, 16-h photoperiod) in commercial potting soil (Structural; 

Snebbout, Kaprijke, Belgium) that had been autoclaved twice on alternate days for 21 min. Rice seeds first 

were surface sterilized with 1% sodium hypochlorite for two min, rinsed three times with sterile, 

demineralized water and incubated on wet sterile filter paper for five days at 28ºC to germinate. Prior to 

sowing in perforated plastic trays (23 by 16 by 6 cm), roots of germinated seeds were dipped in bacterial 

suspensions (5 x 107 cfu.ml-1) for 10 min. In addition, the bacterial inoculum was thoroughly mixed with 

the potting soil to a final density of 5 x 107 cfu. g-1 and, 12 days later, applied a second time as a soil 

drench. In control treatments, soil and rice plants were treated with equal volumes of sterilized saline.  
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 For chemical induction of resistance, plants were treated with BTH three days prior to challenge 

inoculation. BTH (BION 50 WG), formulated as a water-dispersible granule containing 50% active 

ingredients, was dissolved in sterilized demineralized water for use and applied as a soil drench. Control 

plants were treated with an equal volume of water. BTH was a kind gift from Syngenta Crop Protection 

(Brussels, Belgium). 

 

Pathogen inoculation and disease rating 

 Four-week-old rice seedlings (5-leaf stage) were challenge-inoculated with Magnaporthe oryzae isolate 

VT5M1 as described before (De Vleesschauwer et al., 2006). Six days after inoculation, disease was 

assessed by counting the number of elliptical to round-shaped lesions with a gray center indicative of 

sporulation of the fungus, and expressed relative to non-bacterized control plants. 

 

Table 5.2. Bacterial strains used in this study with their relevant characteristics 

Strains Relevant characteristicsa Reference or source 
Pseudomonas fluorescens 
 

  

WCS374r Psb+, Psm+, SA+, spontaneous rifampicin-resistant mutant 
of WCS374; Rif r

(Geels and Schippers, 1983) 

374-02 Psb−, Psm+, SA+, Tn5 transposon mutant of WCS374; Kmr (Weisbeek et al., 1986) 
4A1 Psb+, Psm−, SA+, pmsA mutant of WCS374r obtained by 

site-directed mutagenesis; Rif r, Kmr
Djavaheri, 2007 

AT12 Psb−, Psm−, SA+, Tn5 transposon mutant of 4A1; Rif r, 
Kmr, Tcr

Djavaheri, 2007 

4B1 Psb+, Psm−, SA−, pmsB mutant of WCS374r obtained by 
site-directed mutagenesis; Rif r, Kmr

Djavaheri, 2007 

BT1 Psb−, Psm−, SA−, Tn5 transposon mutant of 4B1; Rif r, 
Kmr, Tcr

Djavaheri, 2007 

a Abbreviations: Psb = pseudobactin, Psm = pseudomonine, SA = salicylic acid, Pvd = pyoverdine, Pch = 
pyochelin, Rif = rifampycin, Km = kanamycin, Tc = tetracycline. 

 

 

Evaluation of plant colonization by P. fluorescens WCS374r and mutants 

 Bacterial colonization of the plant roots was determined by the time the bioassays were discontinued. 

Roots of three plants of each treatment were rinsed to remove most of the soil, weighed, and macerated in 

sterile demineralized water. Serial dilutions were plated on KB agar supplemented with the appropriate 

antibiotics: kanamycin (25 µg/ml), tetracycline (20 µg/ml) and rifampicin (200 µg/ml). Bacterial counts 

were made after incubation for 24 h at 28ºC. Possible spreading of root-inoculated bacteria to distal leaves 

was checked as stated in Chapter 3. 
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Purification of pseudobactin 

 Bacteria were grown in liquid standard succinate medium (Meyer and Abdallah, 1978) and 

pseudobactin was extracted and purified according to Meziane et al. (2005). To avoid contamination with 

salicylic acid or pseudomonine, mutant 4B1 was used. 

 

Application of purified compounds 

 For experiments in which purified pseudobactin and/or SA were applied to rice seedlings, plants were 

grown in a hydroponic gnotobiotic system. Surface-sterilized rice seeds were germinated for 5 days at 

28ºC on wet filter paper. After incubation, germinated seeds were sown in perforated plastic trays 

(23x16x6 cm) filled with sterilized vermiculite, and supplemented with half-strength Hoagland solution. 

Every three days, 0.5 L of the nutrient solution was added to each tray containing 12 seedlings. In this 

model, various concentrations of pseudobactin and SA were applied to the plants three days before 

challenge by including the desired concentration in Fe-EDTA-free nutrient solution (Acros, Geel, 

Belgium).  

 

Visualisation of defense responses 

 To gain more insight into the cytomolecular mechanisms underlying pseudobactin- and BTH-induced 

resistance against M. oryzae, intact leaf sheath assays were performed as described by Koga et al. (2004b). 

Briefly, leaf sheaths of the sixth leaf of rice plants at the 6.5 leaf stage were peeled off with leaf blades and 

roots. The leaf sheath was laid horizontally on a support in plastic trays containing wet filter paper, and 

the hollow space enclosed by the sides of the leaf sheaths above the mid vein was filled with a conidial 

suspension (5 x 104 conidia. ml-1) of M. oryzae. Inoculated leaf sheaths were then incubated at 25ºC with a 

16-h photoperiod. When ready for microscopy, the sheaths were hand-trimmed to remove the sides and 

expose the epidermal layer above the mid vein. Lower mid vein cells were removed to produce sections 

three to four cell layer thick. For time-course experiments, sheath sections were generally sampled at 18, 

24, 30, 36, 48 and 72 h post inoculation and at least six trimmed sheath tissue sections originating from 

different plants were used for each sampling time point.  

 Phenolic compounds were visualized as autofluorescence under blue light epifluorescence (Olympus 

U-MWB2 GPF filter set-excitation: 450 to 480 nm, dichroic beamsplitter; 500 nm, barrier filter BA515). 

To detect H2O2 accumulation, staining was according to the protocol of Thordal-Christensen et al. (1997) 

with minor modifications. Six hours before each time point, trimmed sheath segments were vacuum 

infiltrated with an aqueous solution of 1 mg/ml 3,3’-diaminobenzidine(DAB)-HCL (pH = 3.8) for 30 min. 

Infiltrated segments were then further incubated at room temperature in above mentioned DAB solution 

until sampling. DAB polymerizes in the presence of H2O2 and endogenous peroxidase to form a 

brownish-red precipitate that can be easily visualized using bright-field microscopy. Specificity of the DAB 

staining was verified by adding 10 mM ascorbic acid. For protein cross-linking, staining was performed as 

described by Mellersh et al. (2002). Trimmed sheath segments were submerged in 1% SDS for 24 h at 80 
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ºC, stained in 0.1% Coomassie blue in 40% ethanol/10% acetic acid for 15 min, and subsequently rinsed 

in a solution of 40% ethanol/10% acetic acid. For analysis of callose deposition, trimmed sheaths were 

stained for 5 min in a solution containing 0.01% (w/v) of aniline blue and 0.15M K2HPO4. To visualize 

cell wall modifications, safranin-O staining was performed according to Lucena et al. (2003)  by incubating 

cut sheath segments in 0.01% safranin-O in 50% ethanol for 2 min. After staining, trimmed sheath 

segments were mounted in 50% glycerol. Images were acquired digitally (Olympus Color View II camera, 

Aartselaar, Belgium) and further processed with the Olympus analySIS cell^F software. 

 

RNA extraction, cDNA synthesis and quantitative RT-PCR analysis 

 Total RNA was isolated from frozen leaf tissue using the Invisorb Spin Plant RNA Mini kit (Invitek, 

Berlin, Germany) and subsequently Turbo DNase-treated according the manufacturer’s instructions 

(Ambion/Applied Biosystems, Lennik, Belgium). Before first-strand cDNA synthesis, the absence of 

genomic DNA was confirmed by PCR. RNA concentration was checked before and after Turbo DNase 

digestion. First-strand cDNA was synthesized from 2 µg of total RNA using Affinityscript reverse 

transcriptase and oligo dT primers (Stratagene/Bio-Connect, Huissen, The Netherlands), according to the 

manufacturer’s instructions. The following primer sequences were used: for actin (Os03g50890, similar to 

AB047313.1), forward 5’- GCGTGGACAAAGTTTTCAACCG-3’ and reverse 5’-

TCTGGTACCCTCATCAGGCATC-3’; for PBZ1 (Os12g36880, similar to D38170), forward 5’-

CCCTGCCGAATACGCCTAA-3’ and reverse 5’-CTCAAACGCCACGAGAATTTG-3’; and for PR1b 

(Os01g28450, similar to U89895), forward 5’-GGCAACTTCGTCGGACAGA-3’ and reverse 5’-

CCGTGGACCTGTTTACATTTT- 3’. For each primer pair, the optimal annealing temperatures were 

pre-determined by gradient PCR using a Thermocycler (Bio-Rad, Belgium). Furthermore, for each target, 

primer concentrations were optimized by performing a primer titration. Quantitative PCR amplifications 

were conducted in optical 96-well plates with the Mx3005P real-time PCR detection system (Stratagene, 

La Jolla, CA, U.S.A), using Sybr Green master mix (Stratagene/Bio-Connect, Huissen, The Netherlands) 

to monitor dsDNA synthesis. The expression of each gene was assayed in triplicate in a total volume of 25 

µl including a passive reference dye (ROX) according to the manufacturer’s instructions (Stratagene, La 

Jolla, CA, U.S.A). The thermal profile used consisted of an initial denaturation step at 95ºC for 10 min, 

followed by 40 cycles of 95ºC for 30 s, 60ºC for 60 s, and 72ºC for 60 s. Fluorescence data were collected 

during the annealing stage of amplification. To verify amplification of one specific target cDNA, a 

melting-curve analysis was included according to the thermal profile suggested by the manufacturer. The 

amount of plant RNA in each sample was normalized using actin (Os03g50890) as internal control and 

samples collected from control plants at 0 h post inoculation were selected as a calibrator. The generated 

data were analyzed with the Mx3005P software (Stratagene, La Jolla, CA, U.S.A). For all amplification 

plots, the optimal baseline range and threshold cycle values were calculated using the Mx3005P algorithm. 

Gene expression in control, BTH- and pseudobactin-treated samples was expressed relative to the 

calibrator and as a ratio to actin expression using the measured efficiency for each gene. 
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lants are obliged to defend themselves to a wide range of biotic and abiotic stresses. 
Complex regulatory signaling networks mount an appropriate defense response depending 
on the type of stress that is perceived. In response to abiotic stresses such as drought, cold 

and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA 
levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and 
expression of stress-responsive genes. In response to pathogens, the role of ABA is more 
obscure and is a research topic that has long been overlooked. This paper aims to evaluate and 
review the reported modes of ABA action on pathogen defense and highlight recent advances in 
deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms 
responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as 
the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic 
microorganisms. In addition, the fast-growing number of reports that characterize antagonistic 
and synergistic interactions between abiotic and biotic stress responses point to ABA as an 
essential component in integrating and fine-tuning abiotic and biotic stress response signaling 
networks. 

P 

 
 
 



Chapter 6 

 

6.1. Introduction 

The capacity of plants to cope with the constant threat of a variety of plant pathogens 

demonstrates the efficiency of their defensive machinery. Plants possess pre-formed physical and 

biochemical barriers. When these constitutive defenses are overcome by a pathogen, recognition 

leads to a complex signaling cascade of inducible defense responses. The phytohormones, salicylic 

acid (SA), jasmonate (JA) and ethylene (ET) were shown to modulate these signaling pathways. 

Instead of forming isolated hormonally controlled signaling cascades, complex regulatory signaling 

networks with frequent cross-talk mount an appropriate defense response depending on the type of 

pathogenic stimuli that is present (Glazebrook, 2005; Thomma et al., 2001, Lorenzo and Solano, 

2005, van Loon et al., 2006a). Furthermore, there is frequent cross-talk between the signaling 

networks controlling the responses to abiotic stresses (Fujita et al., 2006; Mauch-Mani and Mauch, 

2005). The use of shared components in biotic and abiotic stress responses is rationalized by 

economical use of biochemical resources, whereas antagonistic relationships between different 

stress responses result from the plants’ need to activate an appropriate response to the type of 

stress that is encountered.  

The phytohormone abscisic acid (ABA) not only regulates plant developmental processes 

such as seed maturation, dormancy, inhibition of germination, photoregulation, inhibition of lateral 

root formation, senescence and flowering inhibition, but also has a primary function in response to 

salt, drought, osmotic and cold stress (Finkelstein et al., 2002; Finkelstein and Rock, 2002). In 

addition to this well-studied function in the response to abiotic stress, a fast growing number of 

studies have demonstrated that ABA is also prominently involved in the response to pathogens and 

is implicated in the integration of different stress response signaling networks. However, to date 

our knowledge regarding the functions of ABA in response to pathogens is still very fragmentary. 

ABA was reported to play an ambivalent role in pathogen defense and several putative mechanisms 

were proposed (reviewed by Mauch-Mani and Mauch, 2005). This paper aims to evaluate and 

review the reported modes of ABA action on pathogen defense and highlight recent advances in 

deciphering the complex role of ABA in plant-pathogen interactions.  
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6.2. Mechanisms involved in the modulation of disease resistance by ABA 

 Mounting evidence suggests that ABA plays an ambivalent role in defense responses to 

pathogens, acting both as a positive and negative regulator of disease resistance by interfering at 

multiple levels with biotic stress signaling. In this context, a wide range of putative mechanisms 

underpinning the beneficial and detrimental effects of ABA on plant defense have been proposed, 

including the suppression of SA- and ET/JA-dependent basal defenses, synergistic cross-talk with 

JA signaling, suppression of ROS generation, induction of stomatal closure, and stimulation of 

callose deposition. A comprehensive overview of the effects of ABA in various plant-pathogen 

interactions is provided in Table 6.1 and the proposed modes of ABA action will be discussed in 

this section. Generally, the outcome of alterations in ABA content or ABA signaling seems 

independent of the pathogen lifestyle or mode of pathogen attack, as ABA can influence resistance 

against both necrotrophs and biotrophs positively and negatively. Furthermore, also the plant 

species can only partly attribute to the diverse effects of ABA on resistance. For example, in tomato 

ABA is predominantly associated with susceptibility, but in Arabidopsis both negative and positive 

effects on resistance were reported. Even concluding that the role of ABA is plant-pathogen 

interaction-specific seems insufficient to explain all of the contradictory results, as within the same 

interaction several modes of action of ABA with divergent effects on disease resistance might be 

involved at different stages of infection. For instance, in Arabidopsis, ABA-regulated stomatal 

closure is a key element of pre-invasion SA-regulated innate immunity to P. syringae (Melotto et al., 

2006), whereas post-penetration virulence of the same pathogen depends on ABA-mediated 

suppression of several basal defense responses (Mohr and Cahill, 2003; de Torres-Zabala et al., 

2007; Mohr and Cahill, 2007). These results demonstrate that also timing of infection is a crucial 

element in the regulatory role of ABA on pathogen defense.  

 

6.2.1. Suppression of PAL activity, secondary metabolites and SA accumulation 

 A possible mechanism that can explain the negative impact of ABA on pathogen defense is the 

suppression of phenylalanine ammonia lyase (PAL) activity by basal or elevated ABA levels (Ward 

et al., 1989; McDonald and Cahill, 1999; Audenaert et al., 2002a). PAL is a key enzyme in the early 

steps of the phenylpropanoid biosynthetic pathway, leading to the production of secondary 

antimicrobial metabolites, including phytoalexins and phytoanticipins. Incompatible interactions 

between soybean and Phytophthora sojae were marked by a sharp increase in PAL activity within 4 

hpi, which was not present in compatible interactions and could be suppressed by exogenous ABA 

application (McDonald and Cahill, 1999). Reversely, artificial reduction of ABA levels with 

norflurazon during inoculation with compatible isolates elevated PAL activity and led to the 
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formation of incompatible lesions (McDonald and Cahill, 1999). It was shown earlier in the same 

plant-pathosystem that ABA suppresses PAL activity at the transcriptional level (Ward et al., 1989). 

Furthermore, resistance in this interaction was correlated with the accumulation of the 

phenylpropanoid-derived compound glyceollin, which could be suppressed by ABA treatment, and 

was not correlated with lignin deposition nor with the expression of a hypersensitive response (HR) 

(Mohr and Cahill, 2001). These data show that plant ABA levels can determine the outcome of a 

plant-pathogen interaction by controlling the accumulation of phytoalexin production through 

regulation of phenylpropanoid biosynthesis.  

 Besides leading to the formation of antimicrobial secondary metabolites, the phenylpropanoid 

pathway is involved in the synthesis of the plant defense hormone SA. In Arabidopsis, gene-for-

gene resistance to Pseudomonas syringae is SA-dependent and application of exogenous ABA prevents 

the accumulation of SA and suppresses resistance (Mohr and Cahill, 2007). Transcriptome analysis 

confirmed the ABA-mediated suppression of genes in the early steps of the phenylpropanoid 

pathway including PAL and 4-coumarate/CoA ligase (Mohr and Cahill, 2007). In tomato, it was 

shown that the ABA-deficient sitiens mutant is hypersensitive to the SA analogue BTH and displays 

a hyperinduction of PAL activity after pathogen attack (Audenaert et al., 2002a). Comparison of the 

transcriptome of sitiens and wild-type tomato confirmed transcriptional activation of the 

phenylpropanoid biosynthetic pathway in sitiens, and also showed an increased accumulation of SA-

inducible defense-related transcripts such as PR1 both prior to and quickly after inoculation with B. 

cinerea (Asselbergh et al., 2007). A higher basal PR1 mRNA accumulation was also detected in other 

ABA-deficient tomato mutants (Thaler and Bostock, 2004). In addition, down-regulation of β-1,3-

glucanase transcripts, another SA-inducible PR protein (PR2), was detected in tobacco cell cultures 

treated with ABA (Rezzonico et al., 1998). Together, these results indicate that exogenous ABA 

application can suppress SA accumulation and SA-inducible defense transcript accumulation, 

whereas a decrease in endogenous ABA results in constitutive activation and hyperinduction of SA-

dependent defenses.   

 Besides the repression of phenylpropanoid biosynthesis, other mechanisms were suggested for 

the suppressive effect of ABA on SA-inducible gene expression. Adie et al. (2007) proposed that 

ABA-SA antagonism could also be explained by an indirect effect based on the ABA-mediated 

induction of JA biosynthesis (See below). Another conceivable justification for ABA-SA 

antagonism lies in the positive effect of ABA on callose formation (see below). As callose was 

shown to block SA-inducible defense responses (Nishimura et al., 2003), the action of ABA on SA-

dependent responses could be partly due to enhancement of callose deposition. 



 

Tabel 6.1. Effect of ABA on plant-pathogen interactions and proposed mode of action. 
 

ABA decrease inactivation of ABA 
signaling 

ABA increase 

Host plant Pathogen Proposed mode of ABA action on 
defence responsesa method - effect on 

resistancea,b,c
method - effect on 

resistancea,b,d
method - effect on 

resistancea,b,e

reference 

Arabidopsis Pseudomonas syringae suppression of basal defence 
responses 

bm: aao3 + + im: abi1-1, abi2-
1, 35S::HAB1 

+ + ex - de Torres-Zabala et al.,, 2007 

Arabidopsis Pseudomonas syringae suppression of SA responses and 
lignin accumulation 

bm: aba1-1 = im: abi1-1 = ex, ds - - Mohr & Cahill, 2003, Mohr 
& Cahill, 2007 

Arabidopsis Pseudomonas syringae stomatal closure in innate immunity 
pathway 

bm: aba3-1 - - gcsm: coi1-20, 
ost1-2 

  ex   Melotto et al.,, 2006 

Arabidopsis Alternaria brassicicola stimulation of JA biosynthesis bm: aao3-2, aba2-12 - - im: abi4-1 - - ND Adie et al.,, 2007 

Arabidopsis Alternaria brassicicola priming for callose deposition bm: aba1-5 - im: abi4-1 - ex + Ton & Mauch-Mani, 2004 

Arabidopsis Plectosphearella cucumerina priming for callose deposition bm: aba1-5 = im: abi4-1 = ex + Ton & Mauch-Mani, 2004 

Arabidopsis Plectosphaerella cucumerina ND bm: aba1-6 + + im: abi1-1, abi2-1 + + ND Hernández-Blanco et al.,, 
2007 

Arabidopsis Sclerotinia sclerotiorum stomatal closure bm: aba2-1 - - im: abi1-1(-),         
abi2-1(=), abi3-
1(-) 

-/= ND Guimarães & Stotz, 2004 

Arabidopsis Ralstonia solanacearum signaling in irx-mediated resistance 
(leading to antimicrobial compounds) 

bm: aba1-6 - - im: abi1-1, abi2-1 - - ND Hernández-Blanco et al.,, 
2007 

Arabidopsis Leptosphaeria maculans signaling in RLM pathway leading to      
callose-dependent and -independent 
resistance 

bm: aba1-3, aba2-1,       
aba3-1 

- im: abi1-1(-),         
abi4-1(- -), abi2-
1(=), abi3-1(-), 
abi5-1(=) 

-/- -/= ex = Kaliff et al.,, 2007 

Arabidopsis Fusarium oxysporum suppression of JA/ET responses bm: aba2-1 + ND ND Anderson et al.,, 2004 

Arabidopsis Hyaloperonospora parasitica ND bm: aba1-1 + + im: abi1-1 = ex, ds = Mohr & Cahill, 2003 

Arabidopsis Pythium irregulare stimulation of JA biosynthesis bm: aao3-2, aba2-12 - - im: abi4-1 - - ND Adie et al.,, 2007 

Arabidopsis Botrytis cinerea ND bm: aao3-2, aba2-12 + + im: abi4-1 + ND Adie et al.,, 2007 

 



 

 

Tabel 6.1. Continued 
 
Tomato Botrytis cinerea suppression of SA responses, PAL 

activity, hydrogen peroxide 
accumulation and cell wall fortification 

bm: sitiens, notabilis, 
flacca; bi: fluridone 

+ + ND ex, ss, ds - Audenaert et al.,, 2002; 
Asselbergh et al.,, 2007; 
Achuo et al.,, 2006 

Tomato Erwinia chrysanthemi suppression of ROS accumulation and 
cell wall fortification 

bm: sitiens + + ND ex - - Asselbergh et al.,, 2008 

Tomato Oidum neolycopersici ND bm: sitiens + ND ex = Achuo et al.,, 2006 

Tomato Pseudomonas syringae suppression of SA responses  bm: sitiens, flacca + ND ss - Thaler & Bostock, 2004 

Tomato Sclerotinia sclerotiorum ND bm: sitiens + + ND ND Asselbergh and Höfte, 
unpublished results 

Tobacco Peronospora tabacina ND ND ND ex - - Salt et al.,, 1986 

Tobacco Ralstonia solanacearum ND ND ND ex - Steadman & Sequira, 1970 

Tobacco Tobacco Mosaic Virus stimulation of callose deposition ND                ND  ex + Whenham et al.,, 1986; Balazs 
et al.,, 1973; Rezzonico et al.,, 
1998 

Barley Erysiphe graminis f. sp. 
hordei 

ND ND ND ex - - Edwards, 1983 

Barley Blumeria graminis f. sp. hordei ND ND               ND  ex, os, ps + Wiese et al.,, 2004 

Potato Phytophthora infestans unknown ND ND ex - - Henfling et al.,, 1980 

Potato Cladosporium cucumerinum ND ND ND ex - - Henfling et al.,, 1980 

Rice Magnaporthe grisea suppression of 'whole plant-specific 
resistance' 

bi: fluridone + ND ex, cs - Koga et al.,, 2004 

Rice Bipolaris oryzae priming for MPK5-mediated repression 
of ethylene signaling 

bi: fluridone =                ND  ex + De Vleesschauwer and Höfte, 
unpublished results 

Bean Colletotrichum 
lindemuthianum 

ND bi: fluridone -                 ND  ex + Dunn et al.,, 1990 

Lily Botrytis elliptica stomatal closure in probenazol-induced 
resistance 

ND                 ND  ex + Lu et al.,, 2007 

Wheat Erysiphe graminis f. sp. tritici ND ND ND ND Nikitina & Talieva, 2001 

Soybean Phytophthora sojae suppression of PAL activity, glyceollin 
accumulation 

bi: norflurazon + + ND ex - - Ward et al.,, 1989; McDonald 
& Cahill, 1999; Mohr & cahill, 
2001 

a: ND: not determined; b: =: no significant effect; +: moderate positive effects; + +: relatively strong positive effects; -: moderate negative effects; - -: relatively strong negative effects 
on disease resistance, based on the authors’ evaluation of disease indexes in each report; c: bm: biosynthesis mutants; bi: biosynthesis inhibition; d: im: insensitive mutants; gcsm: guard 
cell signaling mutants; e: ex: exogenous application; ds: drought stress; cs: cold stress; ss: salt stress; os: osmotic stress; ps: proton stress.  
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6.2.2. Suppression of ROS accumulation 

 The importance of reactive oxygen species (ROS) accumulation during pathogen defense is 

well documented (Lamb and Dixon, 1997; Wojtaszek, 1997; Apel and Hirt, 2004; Torres and 

Dangl, 2005). Analysis of the resistance mechanisms of the ABA-deficient sitiens tomato mutant 

revealed the importance of rapid and extensive hydrogen peroxide accumulation in arresting the 

necrotrophic pathogens B. cinerea and E. chrysanthemi (Asselbergh et al., 2007; Asselbergh et al., 

2008). Extracellular hydrogen peroxide accumulation and activation of peroxidases in sitiens caused 

rapid cell wall modification upon pathogen inoculation by protein cross-linking and incorporation 

of phenolic compound, causing the arrest of pathogen progression. Pathogen susceptibility could 

be restored by application of exogenous ABA or by pharmacologic disruption or removal of 

hydrogen peroxide accumulation (Asselbergh et al., 2007). Extensive ROS accumulation and 

increases in peroxidase activity as a result of ABA-deficiency is consistent with the hyperinduction 

of SA-inducible defenses in ABA mutants (Asselbergh et al., 2007, Audenaert et al., 2002a). Many 

studies report on the relationship between ROS and SA in biotic stress responses. It is believed that 

ROS and SA work together in a self-amplifying system in establishing systemic acquired resistance 

(Alvarez et al., 1998; Van Camp et al., 1998; Van Breusegem et al., 2001; Durrant and Dong, 2004). 

This model is corroborated by ABA deficiency-triggered potentiation of both ROS- and SA-

mediated defense. On the other hand, ROS are important messengers in ABA-mediated stress 

responses. ROS are key signals in regulating stress-adaptive ABA responses (Pastori and Foyer, 

2002) and ABA-signaling in guard cells requires ROS formation to interact with Ca-channels to 

induce stomatal closure (Kwak et al., 2006; Li et al., 2006b). Interestingly, guard cell ABA activates 

ROS-generating NADPH oxidases (Kwak et al., 2006), which are also necessary for ROS-

production during pathogen defense (Torres and Dangl, 2005). Furthermore, ROS-production 

resulting in stomatal closure could be induced by application of plant cell wall degradation products 

(oligogalacturonides) (Lee et al., 1999) and it was shown that hydrogen peroxide-dependent defense 

responses in sitiens are most likely also elicited by oligogalacturonides (Asselbergh et al., 2008a). 

Together, it seems that at least some components of ROS-generation and ROS-signaling activation 

are common for ABA-responsive abiotic stress signaling in guard cells and for hyperactivation of 

pathogen defense in ABA-deficient plants. The mechanism by which ABA-deficiency in sitiens leads 

to rapid extensive ROS formation upon pathogen attack is at present conjectural.  
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6.2.3. ABA effect on JA/ET-responsive defenses 

 The antagonistic effect of ABA on JA/ET pathogen defense signaling was proposed as an 

alternative mechanism for ABA to negatively influence pathogen defense (Andersen et al., 2004; 

Mauch-Mani and Mauch, 2005). By using PDF1.2, CHI and HEL transcript accumulation as 

markers for JA/ET responsive gene expression in Arabidopsis, it was shown that both basal and 

JA/ET-induced defense gene expression was suppressed by exogenous ABA and was upregulated 

in ABA-deficient aba1 and aba2 mutants, the latter resulting in increased resistance to Fusarium 

oxysporum (Andersen et al., 2004).  

 During wound and pathogen stress, positive and negative interactions between JA and ET 

signaling pathways are essential for the establishment of suitable plant defense responses. During 

pathogen attack, ET and JA cooperate through transcriptional induction of ethylene response 

factor 1 (ERF1), which results in activation of pathogen response genes such as PDF1.2, CHI and 

HEL. In response to wounding, JA activates the transcription factor AtMYC2, leading to wound 

stress-specific gene activation (such as VSP and lox). Repression of pathogen response genes by 

AtMYC2 and repression of wound response genes by ERF1 constitute important points of cross-

talk between the two signaling pathways (Lorenzo and Solano, 2005). AtMYC2 expression was 

shown to be activated by ABA (Lorenzo et al., 2004) and it was suggested that ABA precedes JA in 

the activation of AtMYC2-mediated wound responses (Lorenzo and Solano, 2005). Therefore, 

AtMYC2 functions as a mediator of ABA to repress JA/ET-induced pathogen response (Andersen 

et al., 2004). However, the suppression of JA/ET-induced pathogen response genes by ABA can 

not be solely attributed to AtMYC2, as a suppressive effect remained in an Atmyc2-negative mutant 

background (Andersen et al., 2004). Antagonistic interactions between ET and ABA signaling form 

an alternative mechanism of ABA to repress the JA/ET-induced pathogen response. For example, 

it was shown that ET treatment quickly induces activation of ABI1 and ABI2, two negative 

regulators of ABA signaling (De Paepe et al., 2004). Furthermore, by using ABA and ET signaling 

mutants, it was shown that the relationship between the two phytohormones is mutually 

antagonistic in vegetative tissues (Andersen et al., 2004).  

 Recent evidence suggests that the antagonistic ABA-ET crosstalk might be modulated by the 

ethylene-responsive element binding factor AtERF4 (Yang et al., 2005). AtERF4 is a transcriptional 

repressor whose expression is induced by ABA, ET, or JA exogenous treatment, while its 

overexpression leads to the inhibition of GCC box-containing defense genes, ethylene insensitivity, 

and decreased ABA sensitivity. In rice, exogenous ABA treatment has been shown to decrease 

endogenous ET levels, thereby increasing host susceptibility to Magnaporthe oryzae (Yang 2007; 

Chapter 7). Elegant research by Yang’s group revealed that the suppressive effect of ABA on the 
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ET signaling pathway is mediated by the OsMPK5 gene. OsMPK5 encodes an ABA-inducible 

mitogen-activated protein kinase that positively regulates endogenous ABA content and abiotic 

stress tolerance while repressing endogenous ET levels, pathogenesis-related gene expression and 

resistance to Magnaporthe oryzae (Xiong and Yang 2003; Yang 2007).  

 Although antagonistic interactions between JA and ABA have been reported (Moons et al., 

1997; Lorenzo and Solano, 2005), these two hormones often act as positive regulators in the same 

signaling pathway. In Arabidopsis guard cells both JA and ABA induce stomatal closure by 

activation of identical secondary messengers, such as ROS, NO, Ca 2+ permeable cation channels 

and S-type anion channels (Munemasa et al., 2007). Recently, Adie et al., (2007) demonstrated that 

ABA is an essential signal leading to JA biosynthesis with resultant activation of defense responses 

against the damping-off oomycete Pythium irregulare. Defense signaling against this pathogen relies 

partly on ET and SA, but is predominantly mediated by JA, with JA-insensitive coi1 mutants 

showing extreme susceptibility. Transcriptome analysis of wild type, ET-, SA- and JA-related 

mutants (Col0, ein2-5, sid2-1 and coi1-1 respectively) after infection with P. irregulare allowed the 

division in JA/ET/SA-dependent and JA/ET/SA-independent genes induced by P. irregulare. P. 

irregulare-induced JA/ET/SA-dependent genes were dominated by JA-responsive genes. Meta-

analysis confirmed the dependence on JA-responsive genes as well as revealed high similarity of the 

P. irregulare-induced transcriptome with the response to ABA. Promoter analysis of the JA/ET/SA-

dependent P. irregulare-induced genes also revealed an overrepresentation of ABA-response 

elements. Furthermore, the P. irregulare-induced transcriptome independent of JA/ET/SA clustered 

together with the profiles of responses to ABA and abiotic stresses. ABA-deficient (aba2-12) and 

ABA-insensitive (abi4-1) mutants showed impaired JA biosynthesis and increased susceptibility 

upon P. irregulare infection (Adie et al., 2007). Together, these results elegantly show the 

requirement for ABA signaling to activate JA-dependent resistance to P. irregulare. Interestingly, this 

study also confirmed the down-regulation by ABA of a group of JA/ET-responsive genes, such as 

PDF1-2, HEL and b-CHI, which confirmed earlier findings (Anderson et al., 2004). However, the 

transcriptomic view showed that the major effect of ABA is the opposite, activating many ABA-

specific and ABA/JA-related defense genes (Adie et al., 2007).  

 Collectively, it appears that the cross-talk of ABA with JA and ET signaling pathways occurs at 

multiple convergence points with opposite effects on disease resistance. On the one hand, ABA 

acts negatively on the specific set of pathogen response genes that are controlled synergistically by 

ET and JA, leading to enhanced disease susceptibility. On the other hand, ABA positively affects 

JA biosynthesis in the activation of defense responses against the oomycete P. irregulare.   
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6.2.4. Stomatal closure 

 When effects of ABA on disease resistance are evaluated, special care should be taken to 

discriminate between direct and indirect effects on pathogen defense, especially during interactions 

with root rot and/or wilting pathogens. Since these types of pathogens impinge plant water 

balances or fluxes and cause severe dehydration stress, ABA-induced abiotic stress responses to 

enhance dehydration stress tolerance will be activated and can thereby reduce disease symptoms. 

ABA-induced stomatal closure to limit evaporation water loss and to counteract wilting symptoms 

is a nice example of an indirect positive effect of ABA on pathogen defenses, because it is 

principally an abiotic stress response and not a response to biotic stress.  

 In addition to these indirect effects, a biologically very relevant direct positive effect of ABA 

signaling on pathogen defense is by closing stomata to prevent pathogen invasion. It was recently 

shown that stomatal closure is integral to pre-invasion pathogen-associated molecular pattern 

(PAMP)-induced innate immunity to bacteria (Melotto et al., 2006; Underwood et al., 2007). 

Stomata close upon recognition of plant pathogens, human pathogens (plant non-pathogens) and 

isolated PAMP molecules, a process that requires ABA signaling in guard cells and ABA 

biosynthesis (Melotto et al., 2006). Moreover, it was elegantly demonstrated that Pseudomonas syringae 

pv. tomato needed the virulence factor coronatine in order to enter internal leaf tissue by inhibiting 

ABA-induced stomatal closure. Coronatine, a JA-mimic, counteracts PAMP-induced stomatal 

closure downstream of ABA, but requires functional COI1 signaling. Interestingly, PAMP-induced 

stomatal closure was compromised in SA-deficient transgenic nahG plants and SA-biosynthetic 

mutant eds16-2 plants, indicating that defense trough stomatal closure is an integral part of the SA-

regulated innate immune system (Melotto et al., 2006). These results show that counteracting ABA-

dependent signaling in guard cells is a pathogenic strategy to overcome pre-invasion SA-regulated 

innate immunity. This is in sharp contrast to the up-regulation of ABA signaling and ABA 

biosynthesis needed for post-penetration virulence (de Torres-Zabala et al., 2007) and the 

repression of SA accumulation and SA-dependent defense gene expression by ABA during 

infection (Mohr and Cahill, 2007), both in the same plant-pathosystem. Interestingly, stomatal 

defense and bacterial suppression of stomatal defense seem common phenomena in plant-

bacterium interactions, as PAMPs also induce stomatal closure in tomato, which could also be 

modulated by Pseudomonas syringae pv. tomato (Melotto et al., 2006). Considering that in natural 

environments, bacterial and many fungal pathogens rely entirely on accidental wounds or natural 

plant openings such as stomata to enter internal plant tissues, the impact of stomatal defense on 

plant-pathogen interactions in nature can hardly be overestimated. It remains to be elucidated 

whether PAMP-induced ABA-signaling is limited to guard cells, or if ABA-induced signaling early 
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upon pathogen recognition also occurs in other plant cell types.  

 In addition, it was shown earlier that the fungal toxin fusicoccin promotes stomatal opening 

and antagonizes ABA-induced stomatal closure (Marré, 1979). Also the fungal necrotrophic 

pathogen Sclerotinia sclerotiorum uses the virulence factor oxalate to prevent ABA-induced stomatal 

closure during infection (Guimarães and Stotz, 2004). Increased wilting and facilitation of hyphal 

emergence and secondary colonization were proposed to result from the prevention of stomatal 

closure. The mechanism by which oxalate suppresses ABA-induced stomatal closure remains 

unknown (Guimarães and Stotz, 2004), and the elucidation of this mechanism will be further 

complicated by the multiple functions of oxalate in necrotrophic virulence (Van Kan, 2006). 

Nevertheless, ABA-induced stomatal closure is undoubtedly an important plant defense strategy 

towards pathogens.  

 

6.2.5. Stimulation of callose deposition 

 Another positive effect of ABA on pathogen defense is by its ability to stimulate callose 

deposition. Callose is a β-1,3-glucan that is deposited in cell wall appositions (papillae) that can 

block pathogen entry (Aist, 1976). It was reported that both ABA signaling and callose formation 

are prerequisites for β-amino butyric acid (BABA)-triggered induced resistance to Plectosphaerella 

cucumerina and Alternaria brassicicola in Arabidopsis (Ton and Mauch-Mani, 2004). Treatment with 

exogenous ABA could mimic the effect of BABA and resulted in priming for callose and resistance 

to P. cucumerina. In addition, Arabidopsis resistance to Leptosphaeria maculans through the RLM1col 

pathway and to Pythium irregulare was shown to be partly mediated by ABA-dependent callose 

formation, next to callose-independent ABA-dependent resistance mechanisms (Kaliff et al., 2007; 

Adie et al., 2007). ABA treatment in barley also caused papillae-mediated resistance against Blumeria 

graminis f. sp. hordei (Wiese et al., 2004). In the interaction of tomato with B. cinerea, callose 

deposition was low in the ABA-deficient sitiens mutant and was not important for its resistant 

response. However, ABA-dependent callose formation was involved in basal defense of wild-type 

tomato (Asselbergh and Höfte, 2008). It was hypothesized that basal ABA levels in tomato are 

sufficiently high to create a primed state for callose deposition, while in Arabidopsis, which 

contains about 20-fold less ABA than tomato, exogenous ABA (or BABA) is needed to provoke 

priming for callose deposition (Asselbergh and Höfte, 2008). Furthermore, it seems that compared 

to the levels of tomato resistance caused by strong SA-dependent responses (resulting from ABA-

deficiency) and to the strong effects of ABA-induced priming for callose in Arabidopsis, ABA-

dependent callose formation only marginally influences resistance in tomato (Asselbergh and Höfte, 

2008). 
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 In contrast to these reports, a negative effect of ABA on callose deposition was shown in 

Arabidopsis challenged with Pseudomonas syringae pv. tomato (de Torres-Zabala et al., 2007). ABA-

hypersensitivity (in abi1-sup7 and abi1-sup5 mutants) and exogenous ABA treatment strongly 

reduced callose deposition, while ABA-insensitive mutants (abi1-1 and abi2-1) show augmented 

callose deposition (de Torres-Zabala et al., 2007).  

 It is noteworthy that in some cases ABA does not directly regulate callose deposition upon 

pathogen attack, but rather modulates the priming of its deposition (after BABA treatment) (Flors 

et al., 2005). Also, the fact that BABA treatment enhances the capacity to resist abiotic stress (Ton 

et al., 2005), indicates that priming for callose deposition is mediated by ABA-responsive signaling 

components that are common for biotic and abiotic stress responses. This view is supported by a 

recent study, which shows that salt stress and BABA act synergistically in tomato to induce 

resistance to Pseudomonas syringae pv. tomato (Baysal et al., 2007).  

 The molecular mechanisms behind the modulation of callose by ABA remain to be elucidated. 

It was suggested that ABA could control callose deposition by regulating vesicle-mediated transport 

of callose synthase proteins. Transcriptional activation by ABA of specific N-ethyl-malmeimide-

sensitive fusion protein attachment protein receptors (SNAREs) was speculated to direct callose 

synthase proteins to the site of pathogen attack (Flors et al., 2005). Alternatively, it was proposed 

earlier that ABA down-regulates β-1,3-glucanases, which use callose as a substrate (Rezzonico et al., 

1998). 

 

6.3. ABA mediates global shifts in plant stress response priority 
 

6.3.1. ABA negatively regulates disease phenotypes in a forceful manner  

 Although ABA can affect disease resistance both positively and negatively, ABA seems to act as 

a negative regulator of defense in most plant-pathogen interactions that were studied (Table 6.1). 

One common trend that is observed among the different interactions in which ABA negatively 

influences disease resistance, are the relatively strong effects of ABA on disease phenotypes. For 

example, ABA-pre-treatment of potato slices altered the interaction with an incompatible isolate of 

Phytophthora infestans to obtain disease symptoms indistinguishable from a compatible interaction. 

Furthermore, the same ABA treatment allowed development of Cladosporium cucumerinum, normally 

a non-pathogen of potato (Henfling et al., 1980). In tomato, occurrence of maceration caused by 

Erwinia chrysanthemi was strongly reduced in the ABA-deficient sitiens mutant and spreading 

maceration symptoms were completely absent. This drastic reduction of disease symptoms is 
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remarkable, considering that sources of resistance to this broad-spectrum pathogen are rare 

(Asselbergh et al., 2008a). Fast and extensive extracellular hydrogen peroxide accumulation in sitiens 

was shown to be essential in establishing resistance to both E. chrysanthemi and B. cinerea (Asselbergh 

et al., 2007; Asselbergh et al., 2008a). Interestingly, production of ROS is normally not effective 

against necrotrophic pathogens such as B. cinerea, or can even facilitate necrotrophic tissue 

colonisation (Govrin and Levine, 2000). The effective arrest of B. cinerea by a timely hyperinduction 

of hydrogen peroxide-dependent defenses in sitiens illustrates the strong effect of ABA-deficiency 

on the defensive capacity towards pathogens (Asselbergh et al., 2007). Analysis of sitiens defense 

activation after inoculation with E. chrysanthemi pathogenicity mutant strains and with E. chrysanthemi 

culture filtrate, demonstrated that defenses are activated by E. chrysanthemi type II secreted proteins, 

which mainly consist of pectinases (Asselbergh et al., 2008a). E. chrysanthemi pectinolytic cell wall 

degradation causes the release of plant cell wall oligogalacturonides, which are known and potent 

endogenous elicitors of plant pathogen defenses (Ridley et al., 2001). Defense activation by 

endogenous elicitors that are pathogen non-specific is consistent with the broad spectrum of 

pathogens that is unsuccessful in efficiently infecting sitiens plants (Asselbergh et al., 2008a). These 

observations indicate that ABA has the capacity to negatively affect a broad range of plant 

pathogen interactions in an extreme and forceful manner.  

 

6.3.2. ABA acts as a virulence factor of plant pathogens. 

 The potency of ABA to suppress pathogen defense responses is exemplified by the exploitation 

of ABA as a virulence factor by plant pathogens. A recent study elegantly demonstrated that 

Pseudomonas syringae type III-secreted effectors (T3SE) target the Arabidopsis ABA signaling 

pathway to cause disease (de Torres-Zabala et al., 2007). Exogenous ABA decreases resistance in 

this interaction, and in addition, ABA insensitivity (in abi1.1 and abi2.1 mutants) or hypersensitivity 

(in abi1.sup7 and abi2.sup5 mutants) led to restriction or enhanced bacterial multiplication, 

respectively. Comparison of the Arabidopsis transcriptome after infection with wild-type and 

T3SE-negative P. syringae mutants revealed the overrepresentation of ABA-dependent gene 

expression in response to T3SE. The induction of ABA signaling by T3SE was represented by the 

upregulation of known ABA responsive genes, by the presence of ABA-responsive elements 

(ABRE) in the promoter regions of T3SE-induced genes and by the similarity between the 

transcriptomic profiles after T3SE-induction and ABA treatment. The upregulation of the ABA 

biosynthetic gene NCED3 revealed the stimulation of ABA biosynthesis by T3SE, which was 

confirmed by ABA measurements. Finally, transgenic expression of the conserved P. syringae 

effector AvrPtoB induced NCED3 expression and elevated ABA levels in planta (de Torres-Zabala 
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et al., 2007). These findings demonstrate that bacterial effector-mediated elevation of plant ABA 

biosynthesis and signaling is a major virulence strategy, which leads to the suppression of defense 

responses.  

 In addition to regulating plant ABA biosynthesis, micro-organisms are known to synthesize 

ABA themselves. ABA is produced by different types of fungi, including ascomycetes, 

basidiomycetes and zygomycetes (Crocoll et al., 1991, Dörffling et al., 1984). To our knowledge, all 

fungal ABA-producing strains isolated so far are associated with plants. ABA biosynthesis in fungi 

differs from plant biosynthesis and is mediated through a direct pathway via farnesyl diphosphate 

(Hirai et al., 2000). The fungal ABA biosynthetic pathway is biochemically best characterized in 

Cercospora species (Oritani and Kiyota, 2003) and in B. cinerea (Siewers et al., 2006). Recently, it was 

found that ABA biosynthetic genes in B. cinerea are organized in a gene cluster consisting of at least 

four co-regulated genes (Siewers et al., 2006). Kettner and Dörffling (1995) demonstrated earlier 

that elevated tomato ABA levels during B. cinerea tissue colonization resulted from fungal 

stimulation of plant ABA biosynthesis and fungal inhibition of plant ABA catabolism, as well as 

from production of ABA and its precursor by the fungus. These findings, together with the 

capacity of phytopathogenic fungi from taxonomically unrelated groups to produce ABA, indicate 

that elevation of host ABA levels can function as a general pathogenic strategy to suppress host 

defenses. Assessment of the pathogenicity of ABA- and ABA precursor-negative fungal mutants, 

such as those described by Siewers et al., (2006), could further elucidate the function of ABA in 

pathogen virulence.  

 Relevant information regarding a suppressive role of ABA on plant defense can possibly also be 

derived from the interactions of plant roots with arbuscular mycorrhizal (AM) fungi and nitrogen-

fixating bacteria, as in these symbiotic interactions plant defense responses are suppressed (García-

Garrido and Ocampo, 2002) and alterations in plant hormone homeostasis were reported, 

including increases in ABA content (Esch et al., 1994; Meixner et al., 2005). A direct link between 

ABA and successful AM colonization was recently provided in the tomato – Glomus intraradices 

interaction (Herrera-Medina et al., 2007). Colonization of the ABA-deficient sitiens mutant was less 

frequent and arbuscule development was incomplete. Reversely, application of exogenous ABA 

increased AM colonization in wild-type and mutant plants. The authors suggested that impairment 

of AM development in ABA-deficient mutants was at least partly attributable to the antagonistic 

interaction of ABA with ET (Herrera-Medina et al., 2007). 
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6.3.3. ABA levels mediate a global shift in the priority of response to biotic and abiotic 

stress. 

 When responding to different stresses, integration and concordance of stress signaling networks 

is essential for an adequate response of appropriate amplitude and different types of stress require 

distinct and specific responses. The need to prioritize specific stress responses coupled to 

simultaneous down-regulation of others, justifies the antagonistic interplay commonly observed 

between different stress signaling networks. In nature, the co-occurrence of drought stress and 

pathogen attack is rare, as the great majority of pathogens require relatively humid conditions for 

infection and the establishment of disease (Agrios, 2005). Furthermore, drought or dehydration 

stress forms a much greater threat to plant survival than pathogen infection, which is consistent 

with the plant’s need to be able to quickly prioritize drought stress responses at the expense of 

growth and the responses to other stresses. ABA-responsive signaling functions as a global switch 

to activate the drought stress response and represses many other plant processes, among those the 

response to pathogens. This is consistent with ABA repressing both JA/ET-controlled and SA-

controlled pathogen defense and increasing susceptibility to both necrotrophic and biotrophic 

pathogens. The dominant nature of ABA action was also confirmed by Anderson et al. (2004) who 

showed that JA/ET-dependent defense gene suppression by ABA cannot be reversed by JA or ET 

application. The strong antagonistic effect between abiotic and pathogen responses is also 

exemplified in the ABA-deficient sitiens tomato mutant. When grown under conditions of high 

relative humidity, ABA deficiency does not result in major morphological abnormalities. 

Nevertheless, ABA-deficient plants are unable to cope with drought or cold stress due to the lack 

of ABA-mediated stomatal regulation (Nagel et al., 1994). However, the ability of ABA-deficient 

tomato to block the necrotrophic pathogens B. cinerea and Erwinia chrysanthemi reveals its enormous 

defensive capacity towards biotic stress (Asselbergh et al., 2007; Asselbergh et al., 2008a). This was 

also reflected at the transcriptome level, as sitiens exhibits higher expression of defense-related genes 

prior to infection and shows a further elevation quickly after B. cinerea inoculation (Asselbergh et al., 

2007). This demonstrates that deficiency in ABA results in a global shift towards strong pathogen 

defense responses at the expense of reduced tolerance to abiotic stress. Taken together with the 

strong negative effects of ABA on disease phenotypes and the function of ABA as a virulence 

factor against the central role of ABA in abiotic stress responses, it seems that in general strong 

decreases in ABA levels lead to hyperactivation of pathogen defense together with a reduced 

capacity to react to abiotic stress, whereas elevation of ABA levels leads to enhanced abiotic stress 

responses and suppression of pathogen defense responses.  
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6.4. ABA integrates and fine-tunes different stress responses 

 

6.4.1. Overlap between abiotic and biotic stress responses 

 In addition to the apparent role of ABA levels in mediating a global shift between abiotic and 

biotic stress responses, ABA-responsive signaling seems to interfere at multiple steps in various 

signal transduction cascades, leading to fine-tuning and integration of different stress responses. 

Economical use of biochemical resources implies a significant amount of overlap between the 

responses to different stresses and explains the use of common signaling components in the 

response to both biotic and abiotic stresses. Furthermore, biotic and abiotic stress responses can 

even show considerable overlap at the level of signal perception. For example, root rot or wilting 

pathogens can cause dehydration stress and thereby trigger an abiotic stress response. As a result, 

the influence of ABA on disease signaling is extremely divergent and disease resistance can be 

positively or negatively affected by ABA.  An overview of ABA action on pathogen defense 

responses described in this paper is given in Fig. 6.1. Additional points of convergence between the 

signaling responses to abiotic and biotic stress have been characterized (reviewed by Fujita et al., 

2006; Mauch-Mani and Mauch, 2005). However it seems that only a tiny portion of the total 

overlap of abiotic and biotic stress signaling networks has been described. Several signaling 

mechanisms of high complexity are shared between ABA abiotic stress signaling and pathogen 

defense and constitute means of overlap between different pathways, including Ca2+ and Ca-

dependent protein kinase signaling (Klüsener et al., 2002; Ludwig et al., 2004), ROS- and nitric 

oxide-signaling (Pastori and Foyer, 2002; Apel and Hirt, 2004), mitogen-activated protein kinase 

(MAPK) signaling cascades (Xiong and Yang, 2003; Fujita et al., 2006) and various transcription 

factor families, containing functional domains such as AP2, WRKY, bZIP/HD-ZIP, MYB, MYC 

and several classes of zinc-fingers (Chen et al., 2002; Li et al., 2004; Zhu et al., 2005; Anderson et 

al., 2004; Mengiste et al., 2003). The number of reports that functionally characterize transcription 

factors and signaling components involved in both biotic and abiotic stresses is growing fast and 

originates from studies on various plant species. For example, the pepper C3-H-C4 type RING-

finger protein CaRFP1 functions as an early defense regulator controlling disease susceptibility and 

osmotic stress tolerance, probably by influencing SA and ABA signaling, respectively (Hong et al., 

2007). Also the barley ERF-type transcription factor HvRAF enhances pathogen resistance and salt 

tolerance (Jung et al., 2007). Ectopic expression of HvRAF in Arabidopsis confers its conserved 

function. Similarly, ectopic expression of the rice Osmyb4 upstream transcription factor in 

Arabidopsis was shown to have a positive effect on the responses to abiotic (cold, drought, salt), 

environmental (ozone, UV) and biotic (TNV, B. cinerea, P. syringae) stresses (Vannini et al., 2006). 
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However, overexpression of the same gene in tomato only improved tolerance to drought stress 

and virus infection, while other stress responses were not improved (Vannini et al., 2007), 

demonstrating that the conservation of stress response machinery in dicotyledonous plants is only 

partial. Further unraveling of the components regulating the signaling events between different 

stress stimuli and their resulting defense measures will contribute to understanding the integration 

of overlapping stress signaling networks and the complex role of ABA herein. Even greater 

challenges will presumably lie in combining information from different plant species on partially 

conserved stress response signaling networks and translating this knowledge into applied 

agricultural benefits.  
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Figure 6.1. Schematic representation of ABA interfering with plant abiotic and biotic stress responses. 

Emphasis is given to ABA influencing pathogen defense responses via different modes of action rather than to the 
functions of ABA signaling in abiotic stress responses. The representation of JA/ET/SA crosstalk involving the 
effectors AtMYC2, NPR1, COI1, ERF1, and WRKY70 was partly based on a model by Lorenzo and Solano (2005). 
Sharp full-line arrows represent stimulatory effects and blunt dotted line arrows represent repressive effects. Effects of 
ABA are marked in bold. 
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6.4.2. Complexity of ABA-mediated responses 

 The process of establishing and interpreting possible functions of ABA in plants is hindered by 

the complexity of ABA-mediated responses. ABA-dependent responses are regulated by 

controlling de novo ABA synthesis. The first steps of ABA biosynthesis occur in chloroplasts where 

cleavage of caretenoids by nine-cis epoxycaretenoid dioxygenases (NCEDs) is the rate-limiting step 

and transcriptional regulation of the NCEDs is the major control point of ABA biosynthesis. In 

addition, the level of ABA in plants is not only controlled by its synthesis, but also through its 

catabolism (Schwartz et al., 2003). However, ABA-regulated processes constitute more than a 

simple response to in planta bulk ABA concentrations (Wilkinson and Davies, 2002). During 

drought stress, instant stomatal closure is essential for the plants’ survival and is mediated by ABA-

perception at the guard cells. Whereas severe drought stress that causes water deficit in the shoot is 

followed by a drastic increase in levels of intracellular leaf ABA, drought stress that is only 

perceived at the roots specifically increases apoplastic ABA in guard cells without influencing 

symplastic leaf ABA contents or leaf bulk apoplastic ABA (Wilkinson and Davies, 2002). This 

implicates not only the existence of ABA perception sites at different locations and the co-

regulation of chemical and hydraulic signals, but also implies a whole-plant modulation of the 

ABA-signal, including differential xylem loading in the roots, ABA sequestration into a symplastic 

leave reservoir and alteration of guard cell sensitivity to ABA (Wilkinson and Davies, 2002). In 

addition, drought stress-induced ABA can stimulate primary root elongation while shoot growth 

decreases, leading to increased water absorption and reduced water loss, respectively (Sharp, 2002). 

These and other findings indicate that, even during a single stress response, different signaling 

mechanisms are required that can be stage, organ or cell specific.  

 One mechanism that can help to explain the diversity in ABA responses is the existence of 

different ABA receptors. Indeed, over the last few years, different research groups have 

characterized three proteins that each fulfill the biochemical requirements of an ABA receptor 

(stereospecific and saturable high affinity binding to one binding site). The Arabidopsis nuclear 

protein FCA (for flowering control protein A) is an RNA-binding protein and is required for ABA-

signaling in controlling flowering and lateral root formation, but not in seed germination or the 

stomatal response (Razem et al., 2006). The Arabidopsis protein ABAR/CHLH (putative ABA 

receptor/Mg-chelatase H subunit) specifically binds ABA in chloroplasts, functions at the whole 

plant level and controls seed germination and stomatal movement (Shen et al., 2006). Finally, ABA 

perception at the cell surface was reported to be mediated by a G-protein coupled receptor (Liu et 

al., 2007a), but its function in ABA responses still needs to be unambiguously demonstrated (Gao 

et al., 2007).  
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 Downstream of ABA perception, the components of the complex signaling network include 

RNA-binding proteins (Hugouvieux et al., 2001), protein kinases (Osakabe et al., 2005), protein 

phosphatases (Leung et al., 1997) and multiple-type transcription factors (Finkelstein and Rock, 

2002). In addition, a recent transcriptomic analysis that used ABA structural analogues to detect 

genes that are weakly induced by ABA estimated that about 14% of Arabidopsis genes are ABA-

regulated (Huang et al., 2007). Furthermore, comparison of the ABA-regulated genes that were 

identified in other studies (Hoth et al., 2002; Seki et al., 2001; Leonardt et al., 2004) suggests that 

the full potential of ABA-responsive gene regulation has not yet been identified (Huang et al., 

2007). Taken together, our understanding of ABA-perception, ABA-signaling networks and whole 

plant ABA-mediated plant responses is still very fragmentary and incomplete. Further elucidation 

of the particularly complex mechanisms of responses to ABA will help to clarify many important 

plant processes in which ABA is involved, including the response to pathogens.  

 

6.5. Conclusions 

 The modulation of disease resistance by ABA is a particularly complex phenomenon and our 

knowledge on the diverse regulatory effects of ABA on defense responses currently fails to provide 

us with straightforward interpretations or clear-cut models on how ABA affects disease resistance. 

ABA seems to have divergent effects on defence responses, and the outcome on disease resistance 

seems to be plant-pathogen interaction-specific, rather than to depend on the plant species or the 

lifestyle of the pathogen that is involved (Table 6.1). Moreover, even within the same plant-

pathosystem, ABA can have diverse effects depending on the timing of infection. In Arabidopsis 

inoculated with P. syringae for example, ABA-induced stomatal closure can prevent pathogen 

invasion, while ABA suppresses post-invasion disease resistance (Melotto et al., 2006; de Torres-

Zabala et al., 2007; Mohr and Cahill 2007).  

 One function of ABA in plant pathogen interactions can be obtained from the capacity of plant 

ABA levels to control a global shift between the response to abiotic and biotic stress. During 

abiotic stresses such as drought stress, to which the plant’s response is more crucial for survival 

compared to biotic stress, plant ABA levels rise, which results in a priority to confer abiotic stress 

tolerance and a decrease in capacity to resist pathogens. This view is consistent with the function of 

ABA as a virulence factor of plant pathogens (de Torres-Zabala et al., 2007), with the dominant 

nature of ABA to suppress JA/ET or SA-controlled pathogen defense responses (Andersen et al., 

2004, Audenaert et al., 2002) and with the strong effects on disease phenotypes, characterized by 

the apparently complete abolishment of defense (Henfling et al., 1980). Conversely, ABA-
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deficiency, which results in a decreased tolerance to abiotic stresses, can result in an extremely high 

capacity to resist pathogen infection (Asselbergh et al., 2007; Asselbergh et al., 2008a).   

 In addition to the ABA-controlled global switch in response priority towards biotic or abiotic 

stress, ABA greatly influences the large and complex overlap between abiotic and biotic stress 

signaling pathways at multiple levels, resulting in both positive and negative regulation of defense to 

pathogens. Our current knowledge only covers small fragments of these signaling pathways and 

unraveling of the multiplex role of ABA herein is further complicated by the complexity of ABA-

mediated signaling responses in general. However, the fast-growing number of reports that deal 

with ABA regulating pathogen defense responses should further establish and illuminate the 

function of ABA as a key player in plant biotic stress responses.  
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he plant hormone abscisic acid (ABA) is involved in an array of plant processes, including 
the regulation of gene expression during adaptive responses to various environmental 
cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence 

indicates that ABA is also prominently involved in the regulation and integration of pathogen 
defense responses. Here, we demonstrate that exogenous ABA application enhances basal 
resistance of rice (Oryza sativa) to the brown spot-causing ascomycete Cochliobolus miyabeanus. 
Microscopic analysis of early infection events in control and ABA-treated plants revealed that this 
ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the 
mesophyll. We also show that ABA-IR does not rely on boosted expression of SA-, JA-, or 
callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In 
addition, we present several lines of evidence suggesting that ABA steers its positive effects on 
brown spot resistance through antagonistic cross-talk with the ET signaling pathway. Exogenous 
Ethephon application enhances susceptibility, whereas genetic or pharmacological disruption of 
ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of 
resistance similar to that observed in ABA-supplied plants. Additionally, ABA treatment alleviates 
C. miyabeanus-induced activation of the ET-reporter gene EPB89, while de-repression of 
pathogen-triggered EBP89 transcription via RNAi-mediated knockdown of OsMPK5, a MAP 
kinase gene showing a potentiated expression pattern in ABA-induced leaves, compromises 
ABA-IR. Collectively, these data favor a model in which exogenous ABA induces resistance 
against C. miyabeanus by suppressing pathogen-induced ET action in an OsMPK5-dependent 
manner. 

T 
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Introduction 
 
 To effectively combat invasion by microbial pathogens, plants have evolved sophisticated 

mechanisms providing several strategic layers of constitutive and induced defenses. Pre-formed 

physical and biochemical barriers constitute the first line of defense and fend off the majority of 

pathogens. However, should the pathogen overcome or evade these constitutive defenses, 

recognition of pathogen-derived molecules by plant receptors leads to the activation of a 

concerted battery of defenses designed to impair further pathogen spread. These inducible 

defenses are regulated by the coordinated activity of an elaborate matrix of signal transduction 

pathways in which the plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) 

act as key signaling molecules (Lorenzo and Solano, 2005; Grant and Lamb, 2006; Adie et al., 

2007). In response to pathogen attack, plants produce a highly specific blend of SA, JA, and ET, 

resulting in the activation of distinct sets of defense-related genes (Glazebrook et al., 2003). It is 

thought that this so-called signal signature, which varies greatly in quantity, timing and 

composition according to the type of attacker encountered, plays a primary role in the 

orchestration of the plant’s defense response and eventually determines the specific nature of the 

defense response triggered (Rojo et al., 2003; De Vos et al., 2005; Mur et al., 2006). 

 Over the past decade, it has become increasingly clear that a plant’s resistance to attack is not 

brought about by the isolated activation of parallel, linear signaling conduits, but rather is the 

consequence of a complex network of synergistic and antagonistic interactions (Kunkel and 

Brooks, 2002; Koornneef and Pieterse, 2008). In addition to differential signal signatures, such 

pathway crosstalk provides the plant with a powerful regulatory potential to fine-tune its defense 

response to best suit a specific threat. Thus, despite some exceptions (Thaler et al., 2004; Stout et 

al., 2006; Asselbergh et al., 2007), it is generally accepted that SA promotes resistance against 

pathogens with a biotrophic lifestyle, whereas JA and ET act as positive signals in the activation 

of defenses against necrotrophic pathogens and herbivorous insects (Thomma et al., 2001; Rojo 

et al., 2003; Glazebrook, 2005). Additionally, the primary mode of interaction between the SA 

and JA/ET signaling pathways appears to be mutual antagonism with corresponding trade-offs 

between biotroph resistance, on the one hand, and resistance to necrotrophic pathogens and 

insect herbivores, on the other hand (Bostock, 2005; Stout et al., 2006; Spoel et al., 2007). 

However, this is likely an oversimplified model as synergistic actions of SA and JA/ET have been 

reported as well (Van Wees et al., 2000; Mur et al., 2006; Adie et al., 2007; Truman et al., 2007). 
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 Although mechanistic explanations of antagonistic and cooperative crosstalk are scarce, a 

number of transcription factors and effector proteins have been characterized that are critical in 

the circuitry controlling signal sensitivity and transduction in induced defense. For instance, SA 

repression of JA signaling requires the activation of proteins such as NPR1 and WRKY70 that 

activate expression of SA-responsive genes while repressing JA-dependent genes (Spoel et al., 

2003; Li et al., 2004; Li et al., 2006a). Besides transcription factors, crosstalk between the SA and 

JA signaling pathways may also be mediated by fatty acid-derived signals and/or glutaredoxin 

genes (Kachroo et al., 2003b; Ndamukong et al., 2007). Other important effectors that contribute 

to differential response activation include mitogen-activated protein kinases (MAPKs). Arabidopsis 

MPK4 is one such kinase and has been shown to regulate SA/JA crosstalk by simultaneously 

repressing SA biosynthesis and promoting the perception of or response to JA, thereby 

functioning as a molecular switch between these mutually antagonistic pathways (Brodersen et al., 

2006). On the other hand, fine-tune regulation of the antagonism and cooperation between JA 

and ET depends on the balance of activation by both hormones of ERF1 and MYC2, two 

opposing transcription factors that differentially regulate divergent branches of the JA signaling 

pathway involved in the response to necrotrophic pathogen attack and wounding, respectively 

(Berrocal-Lobo et al., 2002; Lorenzo et al., 2003; Lorenzo et al., 2004).  

 In contrast to the overwhelming amount of information with respect to SA, JA, and ET 

serving as important regulators of induced disease resistance, the role of abscisic acid (ABA) in 

plant defense is less well understood, and even controversial. Most comprehensively studied as a 

global regulator of abiotic stress adaptation, ABA has only recently emerged as a key determinant 

in the outcome of plant-pathogen interactions. In most cases, ABA behaves as a negative 

regulator of disease resistance. Exogenous application of ABA increases the susceptibility of 

various plant species to bacterial and fungal pathogens (Mohr and Cahill, 2003; Thaler et al., 

2004; Achuo et al., 2006; Asselbergh et al., 2007; Mohr and Cahill, 2007), while disruption of 

ABA biosynthesis was shown to confer resistance to, amongst others, the necrotroph Botrytis 

cinerea (Audenaert et al., 2002a) and virulent isolates of the bacterial speck pathogen Pseudomonas 

syringae pv tomato DC3000 in tomato (Thaler and Bostock, 2004), and the oomycete 

Hyaloperonospora parasitica in Arabidopsis (Mohr and Cahill, 2003). Moreover, an intriguing study by 

de Torres-Zabala and coworkers (2007) revealed that P. syringae hijacks the ABA biosynthetic and 

response machinery to cause disease in Arabidopsis, suggesting that ABA is a susceptibility factor 

for this bacterium. This detrimental effect of ABA on pathogen resistance is likely explained by 

its well-documented ability to counteract SA- and JA/ET-dependent basal defenses (Asselbergh 

et al., 2008b).  
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 In contrast, some studies describe a positive role of ABA in activation of defense responses 

and pathogen resistance. For instance, ABA primes for callose accumulation and thereby 

enhances basal resistance in response to Blumeria graminis f. sp. hordei and activates induced 

resistance in response to the necrotrophic fungi Alternaria brassicicola and Plectosphaerella cucumerina 

(Ton and Mauch-Mani, 2004; Wiese et al., 2004; Flors et al., 2008). In the case of bacterial leaf 

pathogens, ABA plays a crucial role in the activation of stomatal closure that, as part of the SA-

regulated innate immune system, represents a major barrier to bacterial infection (Melotto et al., 

2006). Furthermore, a recent study in Arabidopsis uncovered a new role for ABA in defense 

against insects (Bodenhausen and Reymond, 2007). ABA thus appears to play a complex and 

ambivalent role in the plant’s defense response, acting as either a positive or negative regulator of 

disease and pest resistance by interfering at multiple levels with biotic stress signaling cascades. 

 Rice is the most important staple food crop in the world, only rivaled in importance by maize 

and wheat. However, despite its emergence as a pivotal model for monocotyledonous plants, 

surprisingly little is known about the effector responses and hormonal signal transduction 

pathways underlying rice disease resistance. This is particularly true for rice brown spot disease, 

caused by the ascomycete Cochliobolus miyabeanus (anamorph: Bipolaris oryzae). One of the most 

devastating rice diseases in rainfed ecosystems, brown spot adversely affects the yield and milling 

quality of the grain (Dela Paz et al., 2006). In 1942, an epidemic of the disease was one of the 

major factors contributing to the great Bengal famine, which reportedly claimed the lives of no 

less than 2 million Indians (Stuthman, 2002). Nowadays, brown spot is as prevalent as ever with 

recent studies by Savary et al. (2000a,b) showing that among the many diseases occurring in rice 

fields, brown spot, along with sheath blight, accounts for the highest yield loss across all 

production situations in South and Southeast Asia. Although the genetic and molecular basis of 

the rice-C. miyabeanus interaction is still poorly understood, like other Cochliobolus species, the 

fungus appears to employ a varied arsenal of phytotoxins to trigger host cell death (Xiao et al., 

1991).       

 Here, we show that pretreatment of rice with ABA renders leaves more resistant to C. 

miyabeanus attack and present results supporting ABA-mediated repression of pathogen-induced 

ET action as the causal resistance mechanism. In addition, we provide novel evidence regarding 

the role of the ABA-inducible MAP kinase gene OsMPK5 as a pivotal regulator of this ABA/ET 

crosstalk, and describe how ABA might interfere with the postulated fungal manipulation of the 

plant. 
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Results  
 
Exogenous ABA treatment induces resistance against Cochiobolus miyabeanus in rice 

 Six rice cultivars, including four indica and two japonica lines, were screened with two C. 

miyabeanus strains, both of which were isolated from diseased rice in field plots at the 

International Rice Research Institute in the Philippines (Fig. 7.1A). With the exception of japonica 

cultivar CR203, isolate Cm988 was highly virulent on all cultivars tested, causing typical 

ellipsoidal light- or dark-brown lesions with a grey sporulating center, often surrounded by 

chlorotic tissue. On most cultivars, these susceptible-type lesions coalesced within 96 h 

postinoculation (hpi), killing large areas of affected leaves (Fig. 7.1C, no ABA treatment). By 

contrast, in case of infection by strain Cm963, fungal development was restricted to a few dark-

brown necrotic spots, representing a genetically resistant reaction (Ou, 1985). Owing to its 

differential response to Cm988 and Cm963 and its widespread use as a pathogen-susceptible 

control in numerous other studies, indica cultivar CO39 was chosen for further analysis. 

 In a first attempt to unravel the signaling network(s) orchestrating rice defense against C. 

miyabeanus, we examined the effect of various signaling molecules and so-called plant defense 

activators on brown spot disease development. To this end, five-week-old CO39 seedlings were 

sprayed until runoff with the respective compounds and, three days later, inoculated with the 

virulent strain Cm988. Consistent with previous reports (Ahn et al., 2005b), treatment with 0.1 

mM JA yielded no significant protection against C. miyabeanus (Fig. 7.1B), even though this 

concentration is high enough to induce JA-responsive JIOsPR10 transcription (Jwa et al., 2001). 

Higher concentrations of JA also failed to trigger induced resistance, suggesting that JA is not a 

major signal for activation of defenses against C. miyabeanus. Intriguingly, pretreatment with 0.5 

mM Ethephon, an ET-releasing plant growth regulator, rendered plants more vulnerable to 

brown spot disease compared to non-induced controls. The disease-promoting effect of 

Ethephon strikingly contrasted with the enhanced resistance observed in response to 

exogenously administered ABA. Supplying plants with 0.1 mM ABA 3 d prior to inoculation 

induced high levels of protection, as shown by a dramatic decrease in size, type and number of 

brown spot lesions in ABA-supplied leaves (Fig. 7.1C). On the other hand, foliar application of 

the synthetic SA analog BTH (0.5 mM) or soil drench treatment with 150 µM BABA, a non-

protein amino acid and potent elicitor of broad-spectrum disease resistance in dicot plants (Ton 

et al., 2005; Flors et al., 2008), resulted in a rather weak and statistically not significant reduction 

in disease severity compared with control plants. Collectively, these data uncover ABA as a 

powerful activator of induced resistance against C. miyabeanus and suggest that ET acts as a 

negative signal in the signaling circuitry underlying rice defense against this ascomycete. 
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Table I. Virulence pattern of two C. miyabeanus isolates on six rice cultivars 
 
 Host response to individual C. miyabeanus isolatesa 
Rice cultivar Cm988 Cm963 
Chiembac S R 
CO39 S R 
C101PKT S R 
CR203 I R 
Shin2 S R 
Pi-N4 S I 
a R = resistant (score 0-3), S = susceptible (score 4-6), and I = intermediate 
(score 7-9) interaction according to the standard brown spot evaluation scale 
of the International Rice Research Institute (1996). 
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Figure 7.1. Exogenous application of abscisic acid induces resistance against C. miyabeanus in rice.  
 
A, Virulence pattern of two C. miyabeanus isolates on six rice cultivars. All cultivars were inoculated when five weeks 
old by spraying a conidial suspension of C. miyabeanus at 1 x 104 sp ml-1. Four days later, cultivars were scored as 
resistant (R), intermediate (I), or susceptible (S) according to the standard brown spot evaluation scale of the 
International Rice Research Institute (Standard evaluation system for rice, 1996). B, Effect of pretreatment with 
various plant defense activators and signaling molecules on subsequent infection with C. miyabeanus. Five-week-old 
CO39 plants were sprayed until runoff with 0.1 mM  JA, 0.5 mM Ethephon, 0.1 mM ABA , 0.5 mM BTH or soil-
drenched with 0.15 mM BABA. Control plants were treated with water. Three days after chemical treatment, plants 
were challenged with virulent C. miyabeanus Cm988. Disease evaluation was performed 4 d postinoculation, using a 1-
to-5 disease severity scale as described in Materials and Methods. Different letters indicate statistically significant 
differences (Mann-Whitney test; α = 0.05). C, Photographs depicting representative symptoms were taken 5 days 
postinoculation. Data represent one of three experiments with similar results.  
 

ABA-induced resistance (ABA-IR) against C. miyabeanus is based on restriction of 

fungal progression in the mesophyll  

 To gain more insight into the nature of ABA-inducible brown spot resistance, we next 

analyzed fungal development and cellular defense reactions in mock- and ABA-treated CO39 leaf 

sheaths following challenge with virulent Cm988. Regardless of ABA treatment, conidial 

attachment and germination occurred within 6 hpi, followed by normal hyphal growth and 

appressorium-mediated penetration attempts (Fig. 7.2A). Interestingly, at some interaction sites, 

invading hyphae differentiated into subcuticular finger-shaped multicell complexes (Fig. 7.2B), 

resembling the extracellular infection structures, so-called stroma, frequently formed by Venturia 

inaequalis and Bipolaris sorokiniana (Ortega et al., 1998; Schafer et al., 2004). Further ramification of 

 140



Role of ABA and ET in rice resistance against C. miyabeanus 

hyphal tissue occurred predominantly but not exclusively intercellular (Figs. 7.2C, D), giving rise 

to a dense network that eventually penetrated all host tissue types. Epidermal and mesophyll 

tissue necrotization was closely associated with successful fungal infestation, whereby 

necrotization usually preceded fungal growth, suggesting the involvement of C. miyabeanus-

secreted phytotoxins. Comparing control inoculated and ABA-treated plants, we found no 

marked differences in abovementioned infection events, except for a drastic reduction of fungal 

spreading in the mesophyll tissue of ABA-supplied leaf sheaths. By 36 hpi, fungal spreading in 

control inoculated leaves amounted to approximately 1,400 µm, corresponding to 20-25 

mesophyll cells spanned by the fungus, as compared with 300 µm in ABA-pretreated sheath cells. 

Together, these observations suggest that restriction of fungal proliferation during the mesophyll-

based growth phase, rather than a preinfectional, epidermis-based resistance reaction, is the cause 

for the reduced disease susceptibility in ABA-treated plants. 

 

ABA-IR against C. miyabeanus acts through a callose-independent mechanism 

 Recent evidence has implicated ABA as a positive signal in priming of callose biosynthesis 

upon pathogen recognition, which suggests a putative mechanism explaining the role of ABA in 

defense activation (Ton and Mauch-Mani, 2004; Flors et al., 2008). Callose deposition is a 

hallmark of basal defense to attempted fungal and bacterial penetration and may serve to fortify 

cell walls in order to inhibit pathogen penetration of the cell. To ascertain the role of callose in 

the case of C. miyabeanus, we studied the deposition of this compound and its effect on resistance 

in mock- and ABA-treated leaves stained with aniline blue. Deposition of callose, as visualized by 

an intense yellow-green fluorescence under UV light, was detectable as early as 8 hpi in epidermal 

control cells in close contact to the invading hyphae. This fluorescence was infrequently only 

present in appositions or papillae around the site of penetration, more normally being seen to 

encompass large multi-spot deposits located in the close vicinity of the periclinal and anticlinal 

cell walls of both infected and neighboring epidermal cells (Fig. 7.2E). Although no differences 

were evident between ABA- and control-treated plants in the onset of callose formation, ABA-

induced plants tended to accumulate less callose-associated fluorescence following Cm988 

challenge than inoculated controls (data not shown). To determine whether this altered callose 

formation contributed to the ABA-induced resistance, fifth and sixth stage leaves from 5-week-

old CO39 plants were detached and supplied from the cut base with a solution containing 0.1 

mM ABA and different concentrations of the callose inhibitor 2-deoxy-D-glucose (2-DDG; Ton 

and Mauch-Mani, 2004; Asselbergh et al., 2008b). Twenty-four hours later, the leaves were drop-

inoculated with a Cm988 conidial suspension, and the level of induced resistance was quantified 
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by determining average lesion diameters 60 hpi. However, as demonstrated by the results 

presented in Figure 7.3, removal of callose formation with 2-DDG had no marked impact on the 

resistance response of ABA-treated plants, indicating that callose is not a critical factor in the 

establishment of ABA-IR to C. miyabeanus.  
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Figure 7.3. Effect of the callose-inhibitor 2-deoxy-D-glucose (2-DDG) on the level of basal and ABA-
induced resistance against C. miyabeanus in rice.  
 
Leaves of 5-week-old CO39 plants were detached and supplied from the cut base with different concentrations of 
ABA and 2-DDG. Twenty-four hours later, treated leaves were inoculated with five 10-µl droplets of a C. miyabeanus 
Cm988 conidial suspension (5 x 104 sp ml-1). Resistance was quantified by measuring lesion diameters 60 hpi. Data 
shown are means ± SE of at least 19 infection sites from 4 different leaves. Different letters indicate statistically 
significant differences (Duncan; α = 0.05). The experiment was repeated twice with similar results.  
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Figure 7.2. Microscopic analysis of the early infection events in ABA-supplemented rice sheaths inoculated 
with C. miyabeanus.  
 
 
Five-week-old CO39 plants were sprayed until runoff with water or 0.1 mM ABA and, 3 d later, challenged with a 
conidial suspension of virulent Cm988 containing 1 x 104 spores ml-1. co = conidium. A through F, micrographs of 
typical infection sites in control-treated plants. Similar phenomena were observed in ABA-induced tissues save for a 
drastic reduction of fungal spreading in the mesophyll. A, Appressorial (ap) formation on leaf sheath epidermis (6 
hpi). Bar = 20 µm. B, Following appressorium-mediated penetration, invading hyphae frequently differentiate into 
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subcuticular stroma-like complexes (st). Fungal hyphae were stained with KOH-aniline blue and visualized under UV 
excitation. Bar = 20 µm. C, Epifluorescence image of a representative epidermal cell illustrating intercellular fungal 
progression. Hyphae were stained with calcofluor. Bar = 50 µm. D, Extreme fungal spreading in control plants 36 
hpi. Extracellular mycelium was stained using KOH-aniline blue and analyzed under UV excitation. Bar = 50 µm. E, 
Callose formation (white asterisks) at and around sites of attempted pathogen entry at 12 hpi (aniline blue stain). The 
dispersed pattern of callose accumulation strongly suggests the involvement of fungal toxins. Bar = 20 µm. F, 
Massive autofluorescence of both invaded and surrounding epidermal cells under blue light excitation (8 hpi). Bar = 
50 µm. G through J, H2O2 accumulation in control and ABA-treated leaf sheaths inoculated with C. miyabeanus. In 
control plants at 12 hpi (G), strong DAB staining developed in the anticlinal walls of epidermal and mesophyll cells 
surrounding the site of infection, whereas penetrated, hyphae (hy)-containing cells remained essentially free of DAB 
accumulation. Reversely, in ABA-treated tissue (H), DAB staining was exclusively detectable at sites of penetration. 
Bars = 50 µm. I and J, Overview pictures of DAB staining on infected leaf blades of control- (I) and ABA-treated (J) 
plants 36 hpi. Bars = 2 mm. 
 

Influence of exogenous ABA treatment on pathogenesis-related H2O2 generation 

 The callose-independency of ABA-IR prompted us to assay for other biochemical defense 

responses. Tissue autofluorescence, due to accumulation of phenolics compounds, is a key event in 

R-protein-mediated resistance against the rice blast-causing ascomycete Magnaporthe oryzae (Koga, 

1994). In case of C. miyabeanus, however, rapid recruitment of phenolics does not appear to 

constitute an effective defense mechanism as all interaction sites exhibited a strong blue light-

induced autofluorescence as early as 8 hpi (Fig. 7.2F), irrespective of ABA treatment or the inherent 

level of resistance of the cultivars used (data not shown). In contrast, striking differences were 

observed when staining leaves with diaminobenzidine (DAB), a histochemical reagent for H2O2 

(Thordal-Christensen et al., 1997). In control plants challenged with virulent Cm988 at 12 hpi, 

strong DAB staining developed in the anticlinal walls of non-penetrated epidermal and mesophyll 

cells surrounding the site of infection, whereas little staining was evident in infected, hyphae-

containing cells (Fig. 7.2G). Reversely, in ABA-induced tissues, DAB accumulation was tightly 

restricted to the site of penetration with adjacent non-penetrated cells being void of DAB-

detectable H2O2 (Fig. 7.2H). Supplementing the DAB solution with ascorbate markedly reduced 

staining at the respective sites, indicating that the staining was due to H2O2 accumulation (data not 

shown). At later time points, fungal progression in the mesophyll layer resulted in an intense DAB 

staining dispersed throughout the inoculation site in both control and ABA-induced plants. 

However, while control plants developed large, dark-brown patches comprising about 30 DAB-

stained mesophyll cells, in ABA-induced sheaths, DAB accumulated in discrete, small clusters with 

between 4 and 8 mesophyll cells per interaction site. On the macroscopic level, this was reflected by 

large, DAB-soaked lesions occurring on leaves of challenged control plants (Fig. 7.2I; 36 hpi), as 

opposed to the small, pinpoint-size spots visible on ABA-treated plants (Fig. 7.2J; 36 hpi). 

Collectively, these data suggest a dual role of H2O2 in the rice-C. miyabeanus interaction and argue 

that one mechanism of ABA action is to modulate pathogenesis-related ROS formation. 
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The alpha subunit of heterotrimeric G protein but not SA accumulation is required for 

ABA-IR against C. miyabeanus 

 Mounting evidence indicates that defense signaling is not a linear single-response event, but a 

complex network involving a number of different signals and effectors (Koornneef and Pieterse, 

2008). Therefore, to further elucidate how ABA-induced plants counteract hyphal invasion, we 

used several mutant and transgenic rice lines affected in hormonal and nonhormonal resistance 

pathways to dissect the involvement of known plant defense mechanisms. Given the recent 

identification of a heterotrimeric G protein-coupled protein as a pivotal ABA receptor 

controlling all major ABA responses in Arabidopsis (Liu et al., 2007a) and the well-described role 

of the G-protein alpha subunit in rice pathogen defense (Suharsono et al., 2002; Komatsu et al., 

2004), we first tested the effectiveness of ABA in mutant Daikoku dwarf plants. These so-called d1 

mutant plants, which are in the background of japonica cultivar Nipponbare, are defective in the 

sole alpha subunit of heterotrimeric G-proteins in rice (Ashikari et al., 1999; Fujisawa et al., 

1999). Consistent with the role of G-alpha in basal resistance against the bacterial leaf blight 

pathogen, Xanthomonas oryzae pv. oryzae (Komatsu et al., 2004), d1 mutants were highly susceptible 

to infection by virulent C. miyabeanus Cm988 (Fig. 7.4A). Furthermore, in contrast to wild-type 

Nipponbare plants, mutant d1 plants failed to develop ABA-IR, indicating that G-alpha controls 

both basal and ABA-inducible resistance against C. miyabeanus. Although it cannot be completely 

excluded that the ABA-IR-minus phenotype of d1 is due to the excessive fungal colonization in 

this mutant, the latter hypothesis is rather unlikely as the use of lower inoculum densities, 

resulting in less severe disease symptoms, yielded comparable results (data not shown). 

 In several plant-pathosystems, ABA has been shown to influence disease outcome through its 

effect on SA-regulated defense (Robert-Seilaniantz et al., 2007; Asselbergh et al., 2008b). To 

investigate the SA-dependence of ABA-inducible resistance against C. miyabeanus, wild-type 

Nipponbare and SA-deficient NahG transgenic plants (Yang et al., 2004) were routinely sprayed 

with 0.1 mM ABA and subsequently tested for expression of IR. As shown in Figure 7.4A, NahG 

plants retained the strong level of ABA-inducible resistance characteristic for wild-type plants, 

indicating that SA accumulation is not an essential prerequisite for ABA-induced resistance 

against C. miyabeanus. To further probe whether ABA elicits an SA-independent defense 

mechanism, we examined the expression of the SA-responsive genes OsPR1b and PBZ1 in CO39 

plants following challenge infection. Both of these PR-like genes are responsive to BTH 

treatment and have recently been shown to function in the NPR1-dependent branch of the rice 

SA pathway (Shimono et al., 2007). Quantitative RT-PCR analysis revealed that treatment with 

0.1 mM ABA alone did not induce transcription of either gene (Fig. 7.4B). Moreover, at all time 
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points investigated, pathogen-induced OsPR1b and PBZ1 transcription was considerably lower in 

ABA-supplied plants compared to non-induced controls. Collectively, these data suggest that 

ABA-inducible resistance against C. miyabeanus does not rely on boosted expression of SA-

inducible defense responses.  
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Figure 7.4. ABA-induced resistance against C. miyabeanus is independent of SA accumulation but requires 
the heterotrimeric G-protein alpha subunit.  
 
A, Wild-type Nipponbare, mutant d1, and transgenic NahG plants were sprayed until run-off with water or ABA (0.1 
mM) and, 3 d later, challenged with virulent C. miyabeanus Cm988. Disease evaluation was performed 4 d 
postinoculation, using a 1-to-5 disease severity scale as described in Materials and Methods. Different letters indicate 
statistically significant differences (Mann-Whitney test; n ≥ 12; α = 0.05). Photographs depicting representative 
symptoms were taken 5 days postinoculation. Repetition of experiments led to results very similar to those shown. B, 
Effect of ABA pretreatment on transcript accumulation of OsPR1b and PBZ1 in leaves of CO39 inoculated with 
Cm988. At the indicated time points postinoculation, fully expanded fifth and sixth leaves from five plants were 
harvested, converted to cDNA and subjected to quantitative RT-PCR analysis. Gene expression levels were 
normalized using actin as an internal reference and expressed relative to the normalized expression levels in mock-
treated control plants at 0 h. Data presented are means (± SD) of three replicates from a representative experiment. 
Plants were treated and inoculated as described in Figure 7.1. 
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The role of JA-dependent defenses in ABA-IR against C. miyabeanus 

 Besides crosstalk with the SA pathway, ABA has also been found to modulate JA-regulated 

resistance mechanisms (Anderson et al., 2004; Adie et al., 2007). To decipher the role of the JA-

mediated defense pathway in ABA-IR against C. miyabeanus, we tested the effectiveness of ABA 

in the JA biosynthesis mutant hebiba (Riemann et al., 2003). By analogy with the results obtained 

in the Nipponbare and CO39 lines, treatment of wild-type Nihonmasari plants with 0.1 mM 

ABA resulted in a statistically significant reduction in disease severity compared to non-induced 

controls (Fig. 7.5A). Mutant hebiba plants, however, failed to develop resistance when induced by 

ABA, which could point to JA-regulated defenses being an integral part of the ABA-induced 

resistance machinery. However, as non-induced hebiba plants were much more sensitive to C. 

miyabeanus infection than wild-type, it is equally possible that the failure of ABA to induce 

resistance in hebiba is due to a lower efficacy of ABA in face of the high infection pressure in this 

mutant. To discriminate between these possibilities, we examined the effect of exogenous ABA 

application on the activity of lipoxygenase (LOX; EC 1.13.11.12), a key JA biosynthetic enzyme, 

in wild-type Nihonmasari leaves. Interestingly, whereas ABA pretreatment had no significant 

impact on the steady-state kinetics of LOX in mock-inoculated controls, it severely attenuated 

pathogen-induced LOX activation in Cm988-challenged leaves (Fig. 7.5B). Similar results were 

obtained when monitoring the expression of the JA-inducible defense gene JIOsPR10 (Jwa et al., 

2001) in leaves of CO39 plants upon infection with Cm988. As expected, JIOsPR10 mRNAs 

accumulated to high levels in inoculated control plants, resulting in an approximately 9-fold 

induction relative to mock-treated plants by 48 hpi (Fig. 7.5C). However, JIOsPR10 expression 

was induced only slightly, if at all, in CO39 leaves pretreated with 0.1 mM ABA. Together with 

the inability of exogenously administered JA to cause substantial disease reduction (Fig. 7.1B), 

these results suggest that JA-dependent defense mechanisms do not contribute significantly to 

ABA-inducible brown spot resistance. 
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Figure 7.5. Role of the JA pathway in ABA-inducible resistance (ABA-IR) against C. miyabeanus in rice.  
 
A, ABA-IR is blocked in the JA-deficient mutant hebiba. Wild-type Nihonmasari and mutant hebiba plants were 
sprayed with water or ABA (0.1 mM) and, 3 d later, challenged with the virulent C. miyabeanus strain Cm988. Disease 
evaluation was performed 4 d postinoculation, using a 1-to-5 disease severity scale as described in Materials and 
Methods. Different letters indicate statistically significant differences (Mann-Whitney test; n ≥ 12; α = 0.05). 
Photographs depicting representative symptoms were taken 5 days postinoculation. Repetition of experiments led to 
results very similar to those shown. B, Effect of ABA pretreatment on C. miyabeanus-induced lipoxygenase activity. 
Lipoxygenase activity was measured at 234 nm in samples taken from the fifth and sixth stage leaves of Nihonmasari 
plants at different time points after inoculation. Each bar represents average data and SD from two independent 
experiments. C, Effect of ABA pretreatment on expression of the JA-responsive PR gene OsPR4 in leaves of CO39 
plants inoculated with C. miyabeanus Cm988. At the indicated time points postinoculation, fully expanded fifth and 
sixth leaves from five plants were harvested, converted to cDNA and subjected to quantitative RT-PCR analysis. 
Gene expression levels were normalized using actin as an internal reference and expressed relative to the normalized 
expression levels in mock-treated control plants at 0 h. Data presented are means (± SD) of three replicates from a 
representative experiment.  
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Repression of ET signaling confers enhanced resistance against C. m yabeanus i

 The observation that ABA-IR against C. miyabeanus is not brought about by hyperactivation of 

SA- or JA-mediated defense responses prompted us to assess the involvement of the ET 

pathway. To this end, we quantified ABA-IR in wild-type Dongyin and OsEIN2 antisense 

transgenic plants (Jun et al., 2004). Similar to its counterpart in Arabidopsis, OsEIN2 is predicted 

to encode a positive regulator of the rice ET response. Accordingly, the OsEIN2 antisense 

transgenics, which display a somewhat stunted phenotype, exhibit ET-insensitivity and show a 

decreased expression of ET-responsive defense genes (Jun et al., 2004). Intriguingly, in our 

assays, non-induced OsEIN2 antisense seedlings were significantly more resistant to infection by 

C. miyabeanus compared with the wild-type background, indicating that ET action interferes with 

basal resistance to C. miyabeanus (Fig. 7.6A). Moreover, while the level of resistance of non-

induced OsEIN2 transgenic plants mirrored that of ABA-induced wild-type plants, treatment 

with ABA failed to cause an additional reduction in disease severity on the OsEIN2 transgenic 

plants, suggesting that exogenous ABA may induce resistance against C. miyabeanus through 

repression of ET signaling. Consistent with this hypothesis, infiltration of detached wild-type 

leaves with silver thiosulfate (STS), an inhibitor of ethylene action (Navarre and Wolpert, 1999), 

reduced subsequent symptom development to the same extent as treatment with ABA (Fig. 

7.6B). Furthermore, co-application of ABA with STS resulted in a similar reduction in lesion size 

relative to treatment with either compound alone. On the other hand, infiltration of the ET 

biosynthesis inhibitor aminooxyacetic acid (AOA) yielded significantly lower protection levels, 

suggesting that ET action, rather than de novo ET synthesis, is the crucial factor modulating C. 

miyabeanus pathogenicity. To further test whether ABA-IR against C. miyabeanus is associated with 

a down-regulation of ET-dependent defenses, we analyzed the expression of the ethylene-

responsive element-binding protein gene EBP89 (Yang et al., 2002) in non-induced control and 

ABA-IR-expressing CO39 plants. Figure 7.6C shows that in control, non-induced leaves, EBP89 

transcript levels accumulated rapidly, reaching a maximum 12 h after Cm988 challenge. In ABA-

treated samples, EBP89 expression likewise peaked at 12 hpi, albeit to a significantly lower extent. 

Furthermore, whereas in control samples EBP89 mRNA levels were still high at 24 and 48 hpi, 

showing an approximately 10-fold induction over the mock control, they had decayed to near 

basal levels in ABA-treated samples. In conjunction with analyses of the OsEIN2-suppressed 

transgenic plants and the disease-promoting effect of exogenous Ethephon application (Fig. 

7.1B), these results support the notion that the ET pathway contributes to C. miyabeanus 

pathogenicity and strengthen the hypothesis that ABA-IR involves repression of C. miyabeanus-

induced ET action. 
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A 

 
Figure 7.6. Involvement of the ET pathway in ABA-inducible resistance against C. miyabeanus in rice.  
 
A, Antisense suppression of OsEIN2 increases brown spot resistance. Wild-type Dongyin and OsEIN2 antisense 
plants were sprayed with water or ABA (0.1 mM) and, 3 d later, challenged with virulent Cm988. Disease evaluation 
was performed 4 d postinoculation, using a 1-to-5 disease severity scale as described in Materials and Methods. 
Different letters indicate statistically significant differences (Mann-Whitney test; n ≥ 12; α = 0.05). Photographs 
depicting representative symptoms were taken 5 days postinoculation. Repetition of experiments led to results very 
similar to those shown. B, Effect of AOA and STS, inhibitors of ET biosynthesis and action, respectively, on C. 
miyabeanus resistance. Leaves of 5-week-old Dongyin plants were detached and pressure-infiltrated at five sites with 
different concentrations of AOA and STS. ABA treatment, fungal inoculation and disease evaluation was performed 
exactly as described in legend to Figure 7.3. Values presented are means and SE of at least 19 infection sites 
stemming from 4 different leaf segments. Different letters indicate statistically significant differences (Duncan; α = 
0.05). C, Effect of ABA pretreatment on expression of the ET-responsive transcription factor gene EBP89 in leaves 
of CO39 plants inoculated with virulent Cm988. At the indicated time points postinoculation, fully expanded fifth 
and sixth leaves from five plants were harvested, converted to cDNA and subjected to quantitative RT-PCR analysis. 
Gene expression levels were normalized using actin as an internal reference and expressed relative to the normalized 
expression levels in mock-treated control plants at 0 h. Data presented are means (± SD) of three replicates from a 
representative experiment.  
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ABA-induced resistance against C. miyabeanus depends on the MAP kinase gene 

OsMPK5 

 Protein kinases operate at the core of signal transduction networks, channeling information 

from upstream effectors to downstream cellular responses. One such kinase is the ABA-inducible 

mitogen-activated protein kinase OsMPK5, the role of which as a critical regulator of pathogen 

defense and abiotic stress tolerance in rice is well-documented (Xiong and Yang, 2003). In order 

to examine whether OsMPK5 is also involved in ABA-IR against C. miyabeanus, we initially 

analyzed OsMPK5 transcript levels in control non-induced and ABA-IR-expressing CO39 plants. 

As shown in Figure 7.7A, OsMPK5 showed a potentiated expression pattern in ABA-treated 

plants following Cm988 challenge, indicating that ABA primes rice for enhanced OsMPK5 

transcription. To determine whether this primed OsMPK5 response is required for ABA-IR 

against C. miyabeanus, we determined the level of ABA-inducible brown spot resistance in the 

OsMPK5-suppressed transgenic line RI7 (Xiong and Yang, 2003). This transgenic line, which 

exhibits constitutive expression of several PR genes, was generated by introducing a double-

stranded RNA interference (dsRNAi) construct in the background of cultivar Nipponbare (Xiong 

and Yang, 2003). Although symptom development was slightly accelerated in the dsRNAi 

transgenics, we were unable to detect any reproducible or significant differences in overall disease 

severity between non-induced wild-type and similarly treated OsMPK5-silenced plants, suggesting 

that OsMPK5 only plays a minor role in basal resistance against C. miyabeanus (Figs. 7.7B and C). 

However, OsMPK5 does appear to be an integral component of ABA-IR against C. miyabeanus as 

treatment with 0.1 mM ABA resulted in a substantial reduction of disease in wild-type 

Nipponbare but not in OsMPK5-silenced plants.  

 The observation that OsMPK5 is necessary for ABA to induce resistance to C. miyabeanus 

prompted us to assess whether this MAP kinase gene also is implicated in orchestrating ABA/ET 

crosstalk in rice. To this end, we tested wild-type Nipponbare and RNAi OsMPK5 plants for 

expression of the ET-reporter gene EBP89. In accordance with the results obtained in the 

Dongyin background, EBP89 expression responded strongly to pathogen infection in both wild-

type and transgenic Nipponbare plants, resulting in an approximately 50-fold induction by 12 hpi. 

However, suppression of Cm988-induced EBP89 expression resulting from ABA pretreatment, a 

typical reaction in wild-type plants, was severely attenuated in OsMPK5-silenced plants (Fig. 

7.7D). In light of the results presented in Figure 7.6, we interpret these data to suggest that 

RNAi-mediated suppression of OsMPK5 affects ABA-induced resistance against C. miyabeanus by 

blocking the antagonistic action of ABA on ET signaling. 
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Figure 7.7. ABA induces resistance to C. miyabeanus in an OsMPK5-dependent manner.  
 
A, Effect of ABA pretreatment on OsMPK5 transcript accumulation in leaves of CO39 plants inoculated with 
virulent C. miyabeanus Cm988. At the indicated time points postinoculation, fully expanded fifth and sixth leaves from 
five plants were harvested, converted to cDNA and subjected to quantitative RT-PCR analysis. Gene expression 
levels were normalized using actin as an internal reference and expressed relative to the normalized expression levels 
in mock-treated control plants at 0 h. Data presented are means (± SD) of three replicates from a representative 
experiment. B and C, RNAi-mediated silencing of OsMPK5 attenuates ABA-IR. Photographs depicting 
representative symptoms were taken 5 days postinoculation. Plants were treated and inoculated as described in 
Figure 7.1. D, ABA-induced repression of C. miyabeanus-activated ET signaling is blocked in RNAi OsMPK5 plants. 
qRT-PCR analysis of EBP89 transcription in wild-type Nipponbare and OsMPK5-suppressed plants was performed 
exactly as described in Figure 7.6.  

 

Discussion 

 With its relatively compact and fully sequenced genome, ease of transformation, well 

developed genetics, and the availability of a dense physical map, rice is considered a model 

monocot system (Hsing et al., 2007; Miyao et al., 2007; Jung et al., 2008). However, although 

significant progress has been made in cloning rice disease resistance genes and functional 

genomics in general (Jung et al., 2008; Leung, 2008), very little is known about the effector 

responses and hormonal signaling pathways operative in determining rice resistance. In this 

study, we have analyzed the cellular and molecular basis of rice brown spot disease, caused by the 

fungal pathogen Cochliobolus miyabeanus. The data presented here offer a first insight into the 

myriad cellular responses that enable rice to fend off C. miyabeanus infection and have revealed 
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several heretofore unknown aspects of pathway crosstalk in the rice signaling circuitry. In 

particular, we have shown that exogenous application of ABA induces resistance against C. 

miyabeanus by suppressing pathogen-induced ET action. Furthermore, our data indicate that this 

ABA/ET antagonism is orchestrated by the ABA-inducible MAP kinase gene OsMPK5. 

 In contrast to the well-established role of ABA in abiotic stress adaptation (Fujita et al., 2006), 

its contribution to disease resistance is less well understood, and even contentious. Whereas the 

majority of reports have shown an inverse correlation between endogenous ABA levels and 

resistance to pathogens with diverse parasitic habits in several plant species (Audenaert et al., 

2002a; Mohr and Cahill, 2003; Asselbergh et al., 2007; de Torres-Zabala et al., 2007), others have 

pinpointed a positive role for this hormone in plant defense activation (Ton et al., 2005; Adie et 

al., 2007; Hernandez-Blanco et al., 2007). This ambivalent ABA response is also reflected in rice-

pathogen interactions. While our data uncover ABA as a powerful activator of resistance against 

C. miyabeanus, Koga et al. (2004a) previously reported that exogenous ABA treatment enhances 

basal susceptibility to the rice blast pathogen Magnaporthe oryzae. Even within the same plant-

pathosystem, ABA can have divergent effects depending on the timing of infection. This was 

unambiguously shown in the Arabidopsis-P. syringae interaction, where ABA appears to have a 

role in both pre-invasion innate immunity and post-invasion virulence (Melotto et al., 2006; de 

Torres-Zabala et al., 2007). Hence, a complex picture is emerging in which ABA functions as a 

global multi-component regulator of biotic stress-response pathways. 

 In line with the multiplex role of ABA in regulating pathogen defense, a wide range of 

putative mechanisms underpinning ABA action have been proposed (Asselbergh et al., 2008b). 

One of the most comprehensively studied defense responses in relation to ABA-provoked fungal 

resistance is the enhanced deposition of callose at sites of attempted pathogen entry (Ton and 

Mauch-Mani, 2004; Kaliff et al., 2007; Flors et al., 2008). In our system, however, we found no 

compelling evidence for the involvement of callose, as pharmacological disruption of callose 

deposition with the callose synthesis inhibitor 2-DDG did not significantly interfere with the 

resistance response of ABA-treated plants (Fig. 7.3). Another important connection between 

ABA signaling and pathogen defense responses is the generation of reactive oxygen species, 

including the superoxide anion (O2
-) and hydrogen peroxide (H2O2) (Torres et al., 2006). 

Tellingly, several lines of evidence indicate that the same NADPH-dependent respiratory burst 

oxidase homologs are involved in ROS formation leading to ABA-induced stomatal closure and 

elicitation of hypersensitive cell death in response to avirulent pathogen attack (Kwak et al., 2003; 

Torres et al., 2005). Under our experimental conditions, H2O2 in control plants started to 

accumulate from 12 hpi in the anticlinal walls of epidermal and mesophyll cells surrounding the 
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site of infection, where it was intimately associated with spreading cell death (Fig. 7.2F). In ABA-

treated plants, however, H2O2 was often present from 8 hpi specifically in the anticlinal walls of 

infected epidermal cells, with neighboring non-penetrated cells remaining essentially free of H2O2 

(Fig. 7.2G). Such bimodal H2O2 pattern suggests that C. miyabeanus, in spite of its generally 

assumed purely necrotrophic lifestyle, might have a short biotrophic phase in the epidermis 

during which it is sensitive to H2O2-dependent defenses. This is supported by the frequent 

observation of living though hyphae-containing epidermal cells in the early stages of fungal 

infection, i.e. prior to 12 hpi (Fig. 7.2F; data not shown). Accordingly, although not sufficient to 

block C. miyabeanus ingress, the prompt formation of H2O2 in ABA-treated plants may slow down 

fungal invasion, allowing the plant to adequately mobilize the available biochemical and structural 

defenses to effectively halt the invading pathogen in the mesophyll. On the other hand, one 

might speculate that H2O2 accumulation in non-penetrated control cells may support cell death to 

pave the way for C. miyabeanus in its necrotrophic growth stage.  

 One particularly interesting finding in this study was the hypersusceptibility of so-called d1 

mutant plants, which are defective in the sole heterotrimeric G-protein α-subunit gene present in 

rice (Fujisawa et al., 1999). Interestingly, the d1 mutation not only affected basal resistance to C. 

miyabeanus, but also blocked the expression of ABA-IR, which points to a mechanistic connection 

between G-protein signaling and ABA-inducible pathogen resistance. This view is consistent with 

the recent discovery of a G protein-coupled receptor protein as a crucial ABA receptor mediating 

the large majority of ABA-responses in Arabidopsis (Liu et al., 2007a). Moreover, there is ample 

evidence indicating that ABA signaling processes in both seeds and guard cells involve 

components of the heterotrimeric G-protein complex, further supporting our hypothesis (Pandey 

and Assmann, 2004; Fan et al., 2008; Wang et al., 2008a). According to the G-protein signaling 

paradigm, the lack of Gα not only abolishes Gα-mediated signaling but also results in free Gßγ, 

thereby possibly enhancing Gßγ signal output (Pandey et al., 2006). The increased disease 

susceptibility and lack of ABA-IR observed in d1 could therefore be accounted for by either loss 

of the corresponding Gα-mediated signaling or by the constitutive activation of the Gßγ subunit. 

 The involvement of Gα in basal and ABA-inducible defense to C. miyabeanus is consistent 

with a number of other reports implicating a role for this G-protein subunit in rice pathogen 

defense. For instance, upon infection with a virulent strain of bacterial blight (Xanthomonas oryzae 

pv. oryzae), symptom development in d1 mutants is more severe than that in wild-type plants 

(Komatsu et al., 2004). Moreover, despite not being affected in basal resistance, d1 mutant lines 

exhibit a highly reduced response upon inoculation with avirulent M. oryzae (Suharsono et al., 

2002). Apparently contradictory results, however, were found in Arabidopsis where the Gα-
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deficient mutant gpa1-4 showed enhanced disease resistance to several necrotrophic pathogens, 

including Plectosphaerella cucumerina (Llorente et al., 2005; Trusov et al., 2006). In this context, it 

may be noteworthy that rice and Arabidopsis Gα-deficient mutants display remarkably different 

phenotypes. Most conspicuously, the d1 mutation causes severe dwarfism, while in Arabidopsis a 

similar mutation results in rather the opposite effect, with mutants slightly larger than wild-type 

(Fujisawa et al., 1999; Ullah et al., 2003).  

 Similar to d1, the JA-deficient mutant hebiba failed to express resistance when induced by 

ABA, suggesting that ABA-IR might develop coincidently with increases in endogenous JA levels 

(Fig. 7.5A). Although such a concept would be consistent with recent results in Arabidopsis 

supporting a model for ABA inducing JA biosynthesis in the activation of defenses against the 

soil-borne oomycete Pythium irregulare (Adie et al., 2007), it is hard to reconcile with our findings 

that exogenous ABA treatment alleviated C. miyabeanus-induced activity of the key JA biosynthetic 

enzyme lipoxygenase and that ABA-IR was not affected upon infiltration of the LOX inhibitors 

ETYA and SHAM (Fig. 7.5B; data not shown). Moreover, in accordance with the failure of 

exogenous JA to induce brown spot resistance, transcriptional analysis of the JA-inducible 

JIOsPR10 gene (Jwa et al., 2001) did not reveal any primed activity of the JA-defense pathway in 

ABA-treated plants (Figs. 7.1 and 7.5B). It can therefore be concluded that ABA-mediated 

protection against C. miyabeanus does not rely on potentiation of JA-inducible defenses. In a 

similar vein, the failure of BTH to reduce disease severity as well as the ability of ABA to trigger 

resistance in SA-deficient NahG rice also rule out a major involvement of the SA pathway. 

 Besides interactions with SA and JA, there is overwhelming evidence that ABA modulates 

ET-signaling (Beaudoin et al., 2000; Ghassemian et al., 2000; Tanaka et al., 2005). Although most 

examples of ABA/ET interactions have been described in sugar signaling (Leon and Sheen, 

2003), Anderson et al. (2004) recently demonstrated the existence in Arabidopsis of an antagonistic 

ABA/ET connection that interferes with defense gene expression and disease resistance against 

the necrotroph Fusarium oxysporum. Interestingly, several lines of evidence suggest that such 

negative ABA/ET crosstalk also underlies the beneficial protective effect of ABA treatment on 

brown spot resistance. First, lesions caused by C. miyabeanus infection were more severe on wild-

type seedlings pretreated with the ET-releasing chemical Ethephon, implying a negative role for 

ET in rice defense against this pathogen (Fig. 7.1C). Second, disruption of the ET pathway, either 

by antisense suppression of OsEIN2, a central signal transducer in the rice ET pathway (Jung et 

al., 2004), or infiltration of STS, a well-known inhibitor of ET action, yielded levels of protection 

similar to those observed in ABA-treated wild-type plants (Figs. 7.6A and B). Moreover, 

exogenous ABA treatment of the OsEIN2 transgenics or co-application of ABA with STS did 
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not cause a further increase in resistance, suggesting that ABA specifically targets the ET pathway 

to condition brown spot resistance. Third, transcript levels of the ethylene-responsive 

transcription factor gene EBP89 were markedly lower in ABA-treated plants than in wild-type 

after C. miyabeanus attack (Fig. 7.6C). Fourth, RNAi suppression of the ABA-inducible MAP 

kinase gene OsMPK5 de-repressed C. miyabeanus-activated EBP89 transcription, a phenomenon 

which coincided with a loss of ABA-IR (Fig. 7.7). Taken together, these results favor a model 

whereby ABA protects rice from C. miyabeanus attack by antagonizing pathogen-induced ET 

signaling in an OsMPK5-dependent manner. Implicit here is the view that C. miyabeanus hijacks 

the rice ET signaling pathway as a decoy strategy to suppress other, possibly ABA-dependent, 

defenses that normally serve to limit pathogen growth. In this respect, it is significant that several 

plant pathogens can produce ET themselves. Indeed, some P. syringae pathovars have shown an 

ability to synthesize ET both in vitro and in planta from methionine through the 2-keto-4-

methylthiobutyric acid pathway (Weingart et al., 2001). This ability, together with the production 

of the JA mimic coronatine and auxins by the same microorganisms is assumed to contribute to 

hormonal saturation and consequent circumvention of effectual defenses (Cui et al., 2005; 

Sreedharan et al., 2006). More recently, Ralstonia solanacearum has been seen to produce ET by 

means of the HrpG regulon (Valls et al., 2006). Sufficient to affect the plant ET-response 

pathway, bacterial ET production is simultaneous with TTSS (type three secretion system) gene 

expression and contributes to the plant defense imbalance that favors pathogen infection. In light 

of these findings, it is not unlikely that C. miyabeanus may likewise synthesize ET in order to tap 

into the rice signaling infrastructure to interfere with host defense. Alternatively or in addition, C. 

miyabeanus may impact ET-responsive rice defenses via secretion of hereto-specified effector 

proteins. Whichever mechanism operative, manipulating plant hormone signaling and hijacking 

host hormonal cross-talk mechanisms represents an extremely powerful virulence strategy 

considering the global impact of hormone homeostasis on multiple cellular responses (de Torres-

Zabala et al., 2007; Spoel and Dong, 2008).   

 Intriguingly, the concept that ABA-IR is based on OsMPK5-mediated repression of C. 

miyabeanus-induced ET action may also provide a mechanistic explanation for the aforementioned 

Gα-dependency of this resistance. In some interesting work using various d1 mutant lines, 

Lieberherr et al. (2006) previously uncovered a pivotal role of Gα in modulating the stability and 

sphingolipid elicitor-induced activation of the MAP kinase OsMPK1, thus linking rice Gα to 

MAPK regulation. To our interest, these authors also demonstrated that RNAi-mediated 

knockdown of OsMPK1 results in constitutive expression of OsMPK5, which is suggestive of 

potential crosstalk and possible functional redundancy between these evolutionary-related 
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MAPKs. Hence, taking these facts into account, it is not inconceivable that the inability of d1 to 

develop ABA-IR against C. miyabeanus might result, at least in part, from a defect in OsMPK5 

functioning. Analysis of the possible link between Gα, OsMPK5 and ABA-IR against C. 

miyabeanus will shed new light on ABA-induced resistance signaling and represents a major 

challenge for future research. 

 Previously, several other studies have assessed the effectiveness of ABA and ET signaling in 

the rice defense response. An interesting picture emerges when comparing our results with C. 

miyabeanus to those obtained with the leaf blast pathogen M. oryzae. For instance, whereas our data 

clearly indicate that ET action negatively interferes with resistance to C. miyabeanus, Iwai et al. 

(2006) recently proposed ET biosynthesis to be an integral component of R-gene-mediated 

resistance to blast. Taken together with the opposite effects of Ethephon application on blast and 

brown spot development (Singh et al., 2004; Fig. 7.1B), these findings argue that ET plays a dual 

role in the regulation of rice pathogen defense by alleviating stress caused by M. oryzae and 

promoting infection by C. miyabeanus. In support of this assumption, preliminary experiments 

revealed that antisense suppression of OsEIN2 not only enhances resistance to C. miyabeanus but 

also renders plants more vulnerable to M. oryzae infection (De Vleesschauwer and Höfte, 

unpublished data). Intriguingly, the same OsEIN2 antisense plants were also found to be more 

tolerant to cold and drought treatments (De Vleesschauwer and Höfte, unpublished data), 

suggesting that OsEIN2 positively regulates ET signaling and M. oryzae resistance while repressing 

abiotic stress-adaptive ABA responses and resistance to C. miyabeanus. These data are particularly 

interesting in light of previous results showing that the RNAi OsMPK5 transgenic line RI7, albeit 

deficient in ABA-IR against C. miyabeanus (Fig. 7.7B), exhibits constitutive expression of PR 

genes, increased levels of ET, enhanced resistance to both M. oryzae and the bacterial pathogen 

Burkholderia glumae, and reduced tolerance to cold, drought and salinity treatments (Xiong and 

Yang, 2003; Yang, 2007). Although further proof is needed, these transgene-conferred 

phenotypes suggest that OsEIN2 and OsMPK5 function as molecular switches between the ET 

and ABA signaling pathways, thereby differentially regulating C. miyabeanus defense and abiotic 

stress tolerance on the one hand, and resistance to M. oryzae as well as B. glumae on the other 

hand.  
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Conclusion 

 In summary, we have found that exogenous ABA recruits the mitogen-activated protein 

kinase OsMPK5 to trigger resistance against C. miyabeanus by repressing pathogen-induced ET 

signaling. Moreover, the results presented here and those published previously (Xiong and Yang, 

2003; Singh et al., 2004; Iwai et al., 2006) highlight the fine control of rice defenses to C. 

miyabeanus and M. oryzae through the differential engagement and balance of the ABA and ET 

response systems. Whether or not C. miyabeanus disease resistance shares substantial overlap with 

the signaling cascade(s) governing abiotic stress tolerance, and how upregulation of OsMPK5 

attenuates ET signaling remains to be elucidated.  

 
 
 
 
 
 
Materials and Methods 
 
 
Plant materials and growth conditions 

 Rice (Oryza sativa) lines used in this work included the japonica cultivar Nipponbare, the corresponding 

NahG (Yang et al., 2004) and RNAi OsMPK5 transgenics (Xiong and Yang, 2003), and the indica cultivar 

CO39, the latter being a kind gift from the International Rice Research Institute (Manila, The Philippines). 

The Gα-deficient mutant d1 (line DK-22), the OsEIN2 antisense transgenic line 471 (wild-type: japonica cv. 

Dongyin), the JA-deficient mutant hebiba and the corresponding wild-type lines Nipponbare, Dongyin, and 

Nihonmasari, all japonica, were kindly provided by M. Matsuoka (Nagoya University, Japan), G. An (Yonsei 

University, Korea), and P. Nick (Karlsruhe University, Germany), respectively. 

 Seeds were surface sterilized with 2% sodium hypochlorite solution for 2 min, rinsed three times in 

sterile distilled water, and germinated on a wet sterile filter paper in sealed Petri dishes (≥ 92% relative 

humidity) at 28ºC. Five days later, germinated seeds were grown in commercial potting soil (Universal; 

Snebbout, Kaprijke, Belgium) under non-sterile greenhouse conditions (30 ± 4 ºC; 16 h light/8 h dark 

regime), as previously described (Chapter 3). Plants were watered daily and fertilized with 5g/m2 

(NH4)2SO4 and 10g/m2 FeSO4.7H2O on day 8, 15, 22 and 29 after sowing. Five-week-old plants (6-7 leaf 

stage) were used for infection with Cochliobolus miyabeanus. For seed multiplication, plants were propagated 

in the greenhouse and fertilized with 0.5% ammonium sulphate every two weeks until flowering. 
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Pathogen inoculation and disease rating 

 Cochliobolus miyabeanus strains Cm988 and Cm963, obtained from the International Rice Research 

Institute (Manila, The Philippines), were grown for sporulation on PDA at 28ºC. Seven-day-old mycelium 

was flattened onto the medium using a sterile spoon and exposed to blue light (combination of Philips 

TLD 18W/08 and Philips TLD 18W/33) for 3 days to induce sporulation. Upon sporulation, conidia 

were harvested as described in Thuan et al. (2006) and re-suspended in 0.5% gelatin (type B from Bovine 

skin; Sigma-Aldrich G-6650) to a final density of 1 x 104 condia mL-1. For inoculation, five-week-old 

seedlings (6.5-leaf stage) were misted with conidial suspension (1 mL per plant) using an artist airbrush 

powered by an air compressor. Immediately following inoculation, plants were moved into a dew chamber 

(30 ± 4ºC, ≥ 92% relative humidity) to facilitate fungal penetration, and, 18 h later, transferred to 

greenhouse conditions (28 ± 4 ºC; 16 h light, 8 h dark) for disease development. Disease symptoms were 

scored at four days after inoculation and disease ratings were expressed on the basis of diseased leaf area 

and lesion type using a 1-5 disease severity scale: I, no infection or less than 2% of leaf area infected with 

small brown specs less than 1 mm in diameter; II, less than 10% of leaf area infected with brown spot 

lesions with gray to white center, about 1-3 mm in diameter; III, average of about 25% of leaf area 

infected with brown spot lesions with gray to white center, about 1-3 mm in diameter; IV, average of 

about 50% of leaf area infected with typical spindle-shaped lesions, 3 mm or longer with necrotic gray 

center and water-soaked or reddish brown margins, little or no coalescence of lesions; V, more than 75% 

of leaf area infected with coalescing spindle-shaped lesions. All infection trials were repeated at least twice 

with similar results. 

 

Chemical treatments 

 JA, ABA, Ethephon (2-chloroethyl phosphonic acid) and BABA were purchased from Sigma 

(Bornem, Belgium). BTH (BION 50 WG), formulated as a water-dispersible granule containing 50% 

active ingredients, was a gift from Syngenta Crop Protection (Brussels, Belgium). BTH, SA and BABA 

were directly dissolved in water containing 0.02% (v/v) Tween 20, whereas ABA and JA were first 

dissolved in a few drops of ethanol and methanol, respectively. Equivalent volumes of both solvents were 

added to separate control treatments to ensure that they did not interfere with the experiments. For 

chemical treatment of plants, intact seedlings (6.5-leaf stage) were sprayed until near runoff with a fine 

mist of either compound at the indicated concentrations. Control plants were sprayed evenly with a 0.02% 

(v/v) Tween 20 solution only. Three days post-application, chemical-treated plants were challenged with 

C. miyabeanus as described above. ß-aminobutyric acid (BABA) was applied as a soil drench (16 or 30 mg 

L-1) 1 or 2 days prior to challenge inoculation. Only soil-drench treatments were used to avoid formation 

of necroses observed after spraying because such necroses might induce a SAR-like resistance pathway 

and mask the primary effect of BABA (Zimmerli et al., 2000).   
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Visualisation of defense responses 

 To gain more insight into the cytomolecular nature of ABA-inducible resistance against C. miyabeanus, 

intact leaf sheath assays were performed as stated in Koga et al. (2004b). Briefly, leaf sheaths of the sixth 

leaves of rice plants at the 6.5 leaf stage were peeled off with leaf blades and roots. The leaf sheath was 

laid horizontally on a support in plastic trays containing wet filter paper, and the hollow space enclosed by 

the sides of the leaf sheaths above the mid vein was filled with a conidial suspension of C. miyabeanus (1 x 

104 conidia.mL-1). Inoculated leaf sheaths were then incubated at 25ºC with a 16-h photoperiod. When 

ready for microscopy, the sheaths were hand-trimmed to remove the sides and expose the epidermal layer 

above the mid vein. Lower mid vein cells were removed to produce sections three to four cell layer thick. 

For time-course experiments, sheath sections were generally sampled at 6, 8, 10, 12, 18, 24, 36, and 72 h 

post inoculation and at least six trimmed sheath tissue sections originating from three plants were used for 

each sampling point. Intracellular hyphae were visualized using a modified KOH-aniline blue technique 

(Hood and Shew, 1996). Fresh specimens were autoclaved for 10 min at 121ºC in 1 M KOH, followed by 

three rinses in demineralized water. From demineralized water, specimens were mounted on glass slides in 

several drops of the stain solution and examined under UV excitation. The stain solution was prepared at 

last 2 h prior to use as 0.05% aniline blue dye in 0.067 M K2HPO4 at pH 9.0. Alternatively, hyphae were 

stained with 0.1% calcofluor M2R for 1 min and rinsed with demineralized water before microscopic 

observation. Phenolic compounds, on the other hand, were visualized as autofluorescence under blue light 

epifluorescence (Olympus U-MWB2 GPF filter set-excitation: 450 to 480 nm, dichroic beamsplitter; 500 

nm, barrier filter BA515). To detect H2O2 accumulation, staining was according to the protocol of 

Thordal-Christensen et al. (1997) with minor modifications. Six hours before each time point, trimmed 

sheath segments were vacuum-infiltrated with an aqueous solution of 3,3’-diaminobenzidine(DAB)-HCL 

(1 mg mL-1; pH = 3.8) for 30 min. Infiltrated segments were then further incubated at room temperature 

in abovementioned DAB solution until sampling. DAB polymerizes in the presence of H2O2 and 

endogenous peroxidase to form a brownish-red precipitate that can be easily visualized using bright-field 

microscopy. Specificity of the DAB staining was verified by adding 10 mM ascorbic acid to the DAB 

solution. For analysis of callose deposition, trimmed sheaths were stained for 5 min in a solution 

containing 0.01% (w/v) of aniline blue and 0.15 M K2HPO4. Callose-stained segments were examined 

using epifluorescence microscopy with UV filter (Olympus U-MWU2 filter set-excitation: 330-385 nm, 

DM 400 dichroic beam splitter and BA420 long-pass filter). After staining, trimmed sheath segments were 

mounted in 50% glycerol. Images were acquired digitally (Olympus Color View II camera, Aartselaar, 

Belgium) and further processed with the Olympus analySIS cell^F software. 
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Role of ABA and ET in rice resistance against C. miyabeanus 

Pharmacological experiments 

 Aminooxyacetic acid (AOA), a potent inhibitor of ET biosynthesis, the LOX inhibitors ETYA, and 

the callose synthase inhibitor 2-DDG were purchased from Sigma (Bornem, Belgium). Silver thiosulfate 

(STS), an inhibitor of ethylene action, was prepared by mixing solutions of 0.1 M sodium thiosulfate with 

0.1 M of silver nitrate in a 4:1 ratio (Shoresh et al., 2005). All chemicals were dissolved in water at the 

indicated concentrations, with exception of ETYA, which was solubilised in a few drops of ethanol prior 

to diluting in water (0.2% ethanol).    

 For all experiments, fifth and sixth stage leaves of five-week-old rice plants were excised and cut into 

7-cm segments. To evaluate the contribution of callose formation to the ABA-induced resistance, freshly 

detached leaf blades were fed from the cut base with a solution containing 0.1 mM ABA and 0.25 or 2.5 

mM 2-DDG. After 24 h incubation, the treated segments were placed onto a glass slide in 14.5 by 14.5 cm 

Petri dishes lined with moist filter paper, and drop-inoculated with five 10 µl droplets of C. miyabeanus 

conidial suspension (5 x 104 conidia mL-1 in 0.25% gelatin). Control leaves were mock-inoculated with a 

0.25% (wt/vol) gelatin suspension. After 24 h, the droplets were removed with a laboratory tissue. 

Resistance was quantified by measuring lesion diameters 60 hpi. In the case of ETYA, AOA and STS, a 

slightly different application method was used in that the respective chemicals were infiltrated in 

approximately 20 µl aliquots into five sites on the abaxial surface of detached leaf segments using a syringe 

without a needle. Approximately 8 h later, 10 µl of C. miyabeanus conidial suspension (5 x 104 conidia mL-1 

in 0.25% gelatin) was drop-inoculated onto the centre of the infiltrated regions. 

 

Enzyme extraction and LOX activity assay 

 Leaf samples taken from the fifth and sixth stage leaves of ~6 to 10 plants at different time points 

after inoculation were crushed to a fine powder under liquid nitrogen. Soluble proteins were extracted by 

re-suspending the powder (100 mg fresh weight) in 0.9 mL of 50 mM Na3PO4 buffer, pH 6.5, containing 

2% polyvinylpyrrolidone, 5 mM 2-mercaptoethanol, and 0.25% Tween 20. The extracts were then 

incubated on ice for 30 min and centrifuged at 14,000 rpm for 10 min. The resulting supernatant was 

divided into aliquots, frozen in liquid nitrogen, and stored at -80ºC for further analysis. LOX activity was 

determined at 30ºC in 1 mL (final volume) of 50 mM Na3PO4 buffer, pH 6.5, containing 0.25% Tween 20 

and 30 µL of extract supernatant. The reaction was started by adding 100 µL of 10 mM linoleic acid and 

the increase in absorbance at 234 nm was recorded for 10 min. LOX enzyme activity was calculated based 

on the slope of the linear part of the plot and expressed as ∆Ext234 per min per mg protein. Controls 

without the addition of plant extracts were recorded as described above and subtracted from the values 

obtained with the plant extracts. Protein levels in enzyme extracts were determined by the Bradford 

method (Bradford, 1976) with bovine serum albumen as a standard.  
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RNA extraction, cDNA synthesis and quantitative RT-PCR analysis 

 Total RNA was isolated from frozen leaf tissue using the Invisorb Spin Plant RNA Mini kit (Invitek, 

Berlin,Germany) and subsequently Turbo DNase-treated according to the provided protocol 

(Ambion/Applied Biosystems, Lennik, Belgium). Before first-strand cDNA synthesis, the absence of 

genomic DNA was confirmed by PCR. RNA concentration was checked before and after Turbo DNase 

digestion. First-strand cDNA was synthesized from 2 µg of total RNA using Affinityscript reverse 

transcriptase and oligo dT primers (Stratagene/Bio-Connect, Huissen, The Netherlands), according to the 

manufacturer’s instructions. Nucleotide sequences of all primers are given in Table 7.2. For each primer 

pair, the optimal annealing temperatures were predetermined by gradient PCR using a Thermocycler (Bio-

Rad). Only primer pairs, for which PCR efficiency varied between 90 and 110%, as determined by 

standard amplification curves constructed from 5-fold dilutions of cDNAs, were used for expression 

studies. Specific amplification was checked using melting curves of qPCR products. For each target, 

primer concentrations were optimized by performing a primer titration. Quantitative PCR amplifications 

were conducted in optical 96-well plates with the Mx3005P real-time PCR detection system (Stratagene, 

Amsterdam, Holland), using Sybr Green master mix (Stratagene/Bio-Connect, Huissen, The Netherlands) 

to monitor dsDNA synthesis. The expression of each gene was assayed in triplicate in a total volume of 25 

µl including a passive reference dye (ROX) according to the manufacturer’s instructions (Stratagene). The 

thermal profile used consisted of an initial denaturation step at 95ºC for 10 min, followed by 40 cycles of 

95ºC for 30 s, 58-62ºC for 60 s, and 72ºC for 60 s. To verify amplification of one specific target cDNA, a 

melting-curve analysis was included according to the thermal profile suggested by the manufacturer. The 

amount of plant RNA in each sample was normalized using actin (Os03g50890) as internal control and 

samples collected from control plants at 0 h post inoculation were selected as a calibrator. The generated 

data were analyzed with the Mx3005P software (Stratagene). For all amplification plots, the optimal 

baseline range and threshold cycle values were calculated using the Mx3005P algorithm. Gene expression 

in control and ABA-treated samples was expressed relative to the calibrator and as a ratio to actin 

expression using the measured efficiency for each gene. 
 

Table 7.2. Gene-specific primers for quantitative real-time PCR 

Genes 
Genbank 
accession 
number 

Forward (5’-3’) Reverse (5’-3’) 

Actin X15865 GCGTGGACAAAGTTTTCAACCG TCTGGTACCCTCATCAGGCATC 
OsPR1b U89895 GGCAACTTCGTCGGACAGA CCGTGGACCTGTTTACATTTT 
PR10/PBZ1 D38170 CCCTGCCGAATACGCCTAA CTCAAACGCCACGAGAATTTG 
JIOsPR10 AF395880 CGGACGCTTACAACTAAATCG AAACAAAACCATTCTCCGACAG 
EBP89 AJ304840 TGACGATCTTGCTGAACTGAA CAATCCCACAAACTTTACACA 
OsMPK5 AY026332 TCGATCATCCTTACCTAGAGA TCATTTGGTCCTCGTTTAGAG 
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8 
 
Conclusions and Further Perspectives 
 

 

n the absence of adaptive immunity displayed by animals, plants respond locally to biotic 
challenges via inducible basal defenses activated through recognition and response to 
conserved pathogen-associated molecular patterns. In addition to this attacker-specific 

primary immune response, plants can activate an additional layer of defense, thereby enhancing 
their defensive capacity against future attack. This so-called induced resistance often spreads 
systemically throughout the plant and is typically characterized by a broad spectrum of 
effectiveness. Depending on the organism interacting with the plant, different types of induced 
resistance are activated, such as systemic acquired resistance (SAR), which is initiated after gene-
for-gene recognition between plant resistance proteins and microbial effector molecules (Murray 
and Grant, 2007), and induced systemic resistance (ISR), which is triggered upon colonization of 
roots by selected strains of benign rhizobacteria (Van Loon et al., 1988). Although both 
pathogen-induced SAR and rhizobacteria-governed ISR could provide an ecologically sound and 
economically viable mean of disease control, research aimed at exploring the underlying 
molecular mechanisms has been conducted almost exclusively in experimentally tractable model 
plants such as Arabidopsis, rather than in economically important cereal crops. In view of this 
knowledge gap, the primary objectives of this work, as stated in Chapter 1, were:  

I 

 
• (i) to assess whether rhizobacteria able to trigger ISR in dicots are also capable of 

inducing resistance in rice, a monocot model system, against a number of pathogens with 
distinct parasitic habits, and if so, to gain insight into the various aspects of ISR-
associated resistance, ranging from the perception of bacterial resistance determinants to 
long-distance signal transmission and the manifestation of plant effector responses. 

• (ii) to advance our understanding of the role of hormonal resistance pathways in 
inducible pathogen defense of rice and to elucidate how crosstalk between such signaling 
cascades affects the interaction of rice with the fungal pathogen Cochliobolus miyabeanus, 
causal agent of the devastating brown spot disease.  

 



Chapter 8 

8.2. Major research findings and practical implications 

 

8.2.1. Rice defense against M. oryzae, R. solani, and C. miyabeanus: differences and 

similarities 

A potent elicitor of resistance in bean, tobacco, tomato and Arabidopsis against a fairly broad 

range of bacterial, viral and fungal pathogens (Audenaert et al., 2002b; Bigirimana and Höfte 

2002; De Meyer and Höfte, 1997; De Meyer et al., 1999a,b; Ran et al., 2005b), the root-

colonizing P. aeruginosa strain 7NSK2 was found to induce ISR against the rice blast-causing 

ascomycete M. oryzae (Chapter 3). Extensive mutant analysis and testing of purified bacterial 

metabolites uncovered the blue phenazine pigment pyocyanin as an essential determinant of this 

7NSK2-mediated ISR. Yet, a different picture emerged when challenging with the necrotrophic 

sheath blight pathogen R. solani. While the wild-type strain 7NSK2 proved unable to significantly 

reduce sheath blight severity, root colonization with the pyocyanin-negative mutant 7NSK2-

phzM triggered substantial levels of ISR. Hence, pyocyanin appears to act as a two-faced ISR 

elicitor that positively modulates 7NSK2-induced protection against M. oryzae while repressing R. 

solani resistance. Transient generation of low-level micro-oxidative bursts by redox-active 

pyocyanin in planta most likely accounts for the dual role of this phenazine antibiotic in 7NSK2-

ISR as exogenous application of H2O2-quenching sodium ascorbate alleviated the contrasting 

effects of pyocyanin on R. solani and M. oryzae pathogenesis. Interestingly, similar results were 

obtained in response to root treatment with the Serratia plymuthica strain IC1270. Although highly 

effective against M. oryzae, arresting the pathogen in its biotrophic phase by boosting infection-

induced H2O2 accumulation in the epidermis, IC1270 colonization resulted in enhanced tissue 

colonization by R. solani, an effect possibly due to stimulation of fungal toxin-triggered host cell 

death. Overall these results not only strengthen the notion that pathogenesis-related ROS 

formation can cascade either to the benefit or detriment of the plant, but also disclose that rice 

requires distinct resistance mechanisms to fend off R. solani and M. oryzae. From a practical point 

of view, this notion may have important ramifications with respect to molecular resistance 

breeding. Indeed, considering that the effect of ROS-fueled HR-like cell death varies dramatically 

according to the mode of infection and parasitic habits of the invading pathogen, the widespread 

cultivation of high-yielding, semi-dwarf varieties carrying multiple blast resistance genes might be 

an important factor driving the overall increase in sheath blight incidence that is typically 

observed in intensified rice production systems (Mew et al., 2004). In this respect, our 

observation that pre-inoculation with an avirulent HR-triggering M. oryzae strain favors 

subsequent infection with R. solani is of particular interest and may explain why there are no HR-
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associated qualitative resistance phenomena known against this pathogen (De Vleesschauwer and 

Höfte, unpublished results).  

Like R. solani, C. miyabeanus is generally considered a necrotrophic pathogen that depends 

exclusively on dead host tissue for nutrition and reproduction (Ou, 1985; Xiao et al., 1991). 

Consistent with this view, plant treatment with HR-eliciting pyocyanin or ROS-boosting IC1270 

bacteria facilitated rapid growth and spread of C. miyabeanus in a manner similar to what was 

observed for R. solani, indicating a common pathogenicity mechanism for both these 

necrotrophs (Chapter 3). However, these apparent similarities notwithstanding, accumulating 

evidence suggests that also against the latter pathogens distinct resistance mechanisms are 

operative. Support for this notion is provided by the observations that exogenous ABA 

treatment, albeit highly effective against C. miyabeanus (Chapter 7), failed to reduce sheath blight 

severity (De Vleesschauwer and Höfte, unpublished results), whereas topical application of 

riboflavin, a water-soluble B vitamin thought to function via activation of JA-dependent defenses 

(Taheri, 2007), was found to induce resistance to R. solani while increasing susceptibility to C. 

miyabeanus (Taheri, 2007; De Vleesschauwer and Höfte, unpublished results). Taken together, a 

complex picture is emerging in which resistance against the major fungal rice pathogens, M. 

oryzae, R. solani, and C. miyabeanus is mediated by distinct, at least partly antagonistic, defense 

mechanisms. 

 

8.2.2. Rice is endowed with multiple blast-effective resistance pathways.  

Induced resistance often involves the activation of a large spectrum of inducible defense 

mechanisms, including the accumulation of defensive compounds with antimicrobial activity, 

enhanced strengthening of plant cell walls and the concerted expression of a battery of defense-

related genes. However, in many cases the enhanced defensive capacity in induced plants is not 

associated with a direct activation of immune responses, but with priming for enhanced defense 

(Conrath et al., 2006; Frost et al., 2008). Because priming initiates a state of readiness that does 

not confer resistance per se but rather allows for accelerated induced resistance once an attack 

occurs, one presumed benefit of priming is that it entails less fitness costs than direct induction 

of defense (Van Hulten et al., 2006). Moreover, priming is thought to confer flexibility to adapt 

the defense response to a specific challenge, leading to a less costly and broad-spectrum 

resistance (Van der Ent et al., 2008a). 

In keeping with an extensive body of work in dicot plants, this dissertation revealed priming 

to be a common defense strategy that is implicated in various types of microbially and chemically 

induced pathogen resistance in rice. For instance, in chapter 4, evidence is reported that root 
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colonization by S. plymuthica IC1270 primes rice for boosted generation of H2O2, leading to an 

accelerated expression of HR-like cell death at sites of attempted pathogen entry and significantly 

enhanced resistance to M. oryzae. Priming was also shown to constitute a crucial facet of the 

resistance mechanism underpinning blast resistance induced by either 7NSK2-derived pyocyanin 

or the synthetic SA analog benzothiadiazole (BTH). Interestingly, histochemical analysis of the 

early infection events in pyocyanin- and BTH-supplemented blast resistant plants revealed that 

the latter compounds partially mimic IC1270 bacteria in that they were found to activate a similar 

set of defense reactions, characterized by hypersensitively dying cells in the vicinity of fungal 

hyphae (Chapter 3; Chapter 5; Chen et al., 2007). Although it does not follow that the signal 

transduction cascade(s) operative in IC1270-mediated ISR is (are) necessarily the same as that 

(those) leading to pyocyanin- or BTH-inducible blast resistance, such commonalities apparent at 

the level of defense mobilization suggest that these elicitors may feed into related, if not 

identical, resistance pathways. Further supporting this hypothesis is the overlap manifest at the 

level of resistance to attackers, with IC1270, BTH and 7NSK2 all being ineffective or even 

increasing vulnerability to C. miyabeanus and R. solani (Ahn et al., 2005b; Chapter 3; Chapter 4; 

Taheri, 2007). Induction of ISR by the P. fluorescens strain WCS374r, however, appears to rely on 

a different resistance mechanism and was associated with pseudobactin-mediated priming of 

naïve leaves for a wide array of HR-independent cellular defenses, the most prevalent 

component being the prompt attacker-induced manifestation of invading hyphae-embedding 

tubules (Chapter 5). Although further proof is needed, this apparent plasticity in the molecular 

processes leading to induced resistance against M. oryzae strongly suggests that rice possesses 

multiple blast-effective resistance pathways. Depending on the outcome of possible cross-talk 

between the latter pathways, concomitant activation of distinct systemic defense mechanisms 

may provide an attractive tool for the improvement of blast control. Support for this hypothesis 

can be deduced from the work of Van Wees et al. (2000). In this intriguing study, the authors 

demonstrated using various mutant and transgenic Arabidopsis lines that SA-dependent SAR 

and JA/ET-dependent ISR act independently and additively to increase resistance against the 

bacterial speck pathogen P. syringae pv. tomato. In a similar vein, simultaneous treatment of 

tomato seedlings with BTH and ISR-inducing PGPRs was found to be compatible in greenhouse 

experiments and reduced incidence of bacterial wilt caused by Ralstonia solanacearum (Anith et al., 

2004). Taking these facts into account, it will be particularly interesting to assess whether such 

positive interplay also holds for a combination of WCS374r-mediated ISR and IC1270-, 7NSK2- 

or BTH-inducible blast resistance, to analyze the spectrum of effectiveness of the resistance 
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conferred and, most importantly, to evaluate the impact of such extensive defense elicitation on 

growth rate, plant development and crop yield. 

 

8.2.3. Rice and Arabidopsis share evolutionary conserved defense signaling networks 

Apart from their roles in plant development, plant hormones have repeatedly been 

implicated in the regulation of primary and induced defense responses. Upon pathogen infection, 

plants respond by producing a specific blend of these signaling molecules, resulting in the 

activation of disparate sets of defense-related genes (Maleck et al., 2000; De Vos et al., 2005; 

Wise et al., 2007). Historically, research aimed toward deciphering the role of hormones in plant 

pathogen defense has tended to focus on the involvement of SA. However, in contrast to the 

well-established role of SA as a global multicomponent regulator of resistance to mainly 

biotrophic pathogens in dicots, its contribution to disease resistance in rice is less well 

understood, and even contentious. Unlike most other plants, rice is endowed with very high 

endogenous SA levels that do not increase upon pathogen attack, which has led to the suggestion 

that SA is not an effective defense signal in rice (Silverman et al., 1995; Yang et al., 2004). Yet, 

this interpretation is hard to reconcile with the often reported ability of benzothiadiazole (BTH), 

a SA analog, to trigger resistance against, amongst others, M. oryzae and the bacterial leaf blight 

pathogen, Xanthomonas oryzae pv. oryzae (Schweizer et al., 1999;  Nakashita et al., 2003; Shimono 

et al., 2007; Chapter 2; Chapter 5). A series of elegant papers, however, seem to have put a hold 

on this controversy and suggest that rice, in spite of its high endogenous SA content, has evolved 

a BTH-inducible SA-dependent resistance pathway that shares downstream components with 

the archetypal SAR pathway described in Arabidopsis and tobacco (Chern et al., 2001; Fitzgerald 

et al., 2004; Chern et al., 2005b; Shimono et al., 2007; Yuan et al., 2007). In Chapter 5, we 

document for the first time a similar phenomenon with respect to ISR-induced resistance 

signaling. Using various mutant and transgenic lines affected in either the biosynthesis or 

perception of SA, JA and ET, it was shown that WCS374r-ISR to M. oryzae is independent of SA 

but reliant on a functional JA pathway as well as on intact responsiveness to ET. In this respect, 

WCS374r-ISR mirrors classic ISR induced in Arabidopsis by the reference strain P. fluorescens 

WCS417r (Pieterse et al., 1996; Pieterse et al., 1998). Further support for this hypothesis came 

from the finding that, unlike BTH, hydroponic feeding of pseudobactin, a crucial determinant of 

WCS374r-ISR, did not result in direct transcriptional activation or priming of SA-inducible PR 

gene expression (Chapter 5). When considered together, these findings not only consolidate the 

earlier contention that rice is endowed with a SAR-like resistance route but also infer that rice 

and Arabidopsis share a conserved ISR pathway, implying that fundamental modes of resistance 
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elicitation and induced defense signaling have been conserved through plant evolution and 

diversification. It should be noted, however, that this concept does not exclude that the fine-tune 

regulation of such conserved resistance pathways may differ across individual plant species. 

Indeed, whereas the observation that WCS374r-ISR is attenuated in the JA-deficient mutant 

hebiba argues that in rice de novo JA biosynthesis is indispensable for ISR, in Arabidopsis ISR 

seems to be based on an enhanced sensitivity to JA, rather than on an increase in its production 

(Pieterse et al., 2000; Pozo et al., 2008). In conjunction with the divergent effects of NPR1-

overexpression on plant growth and defense responses in both plant species (Cao et al., 1998; 

Chern et al., 2001; Fitzgerald et al., 2004; Chern et al., 2005b), it therefore appears that although 

rice and Arabidopsis share ancient plant-inducible defense pathways, the modulation of these 

resistance conduits and the links to other plant pathways may be quite divergent.  

 

8.2.4. Decoy of plant defense: pathogens hijack hormonal crosstalk mechanisms as a 

virulence strategy 

During the evolutionary arms race between plants and their intruders, the latter class of 

organisms has evolved a wide array of sophisticated mechanisms to circumvent, or even 

attenuate plant defense. Thus, many plant-pathogenic bacteria as well as fungi and oomycetes 

subdue host responses by injecting a large repertoire of effector proteins into host cells, thereby 

enabling successful infection and reproduction in planta (Jones and Dangl, 2006). While a number 

of these effector molecules disable PTI and ETI by targeting various defense-associated proteins, 

others induce specific host genes to enhance plant susceptibility (Rooney et al., 2005; Tian et al., 

2005; Abramovitch et al., 2006; Yang et al., 2006; Bittel and Robatzek, 2007; Kramer et al., 2007; 

Xiang et al., 2007; Sugio et al., 2007; Zhou and Chai, 2008). Alternatively, microbial pathogens 

may disarm the plant’s weaponry by manipulating plant hormone signaling pathways. For 

instance, in current research evidence was brought forward to demonstrate that the brown spot 

pathogen C. miyabeanus co-opts the ET response pathway as a virulence strategy (Chapter 7). This 

notion was borne out by the observation that C. miyabeanus infection entails a strong upregulation 

of ET-responsive gene expression, and was further supported by various experiments 

demonstrating that genetic, pharmacological or ABA-mediated repression of ET signaling 

renders plants considerably more resistant. Activation of the MAP kinase gene OsMPK5 was 

shown to be essential in establishing resistance in ABA-induced plants, because OsMPK5 RNAi 

plants were specifically blocked in aforementioned ABA-mediated repression of ET signaling 

and consequently failed to express ABA-IR. Besides implicating a role for the ET pathway in the 

pathogenicity of C. miyabeanus, these data favor a model whereby ABA protects rice from brown 
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spot infection by antagonizing pathogen-induced ET action in an OsMPK5-dependent manner. 

Considering the inhibitory effects of ET on, amongst others, the ABA signaling pathway 

(Chapter 2; Anderson et al., 2004; Zhou et al., 2007), one may envision that C. miyabeanus 

activates the ET pathway as a decoy to suppress other, possibly ABA-dependent, effectual host 

defense responses. In line with this concept, there is substantial evidence indicating that the 

ability to modify phytohormone signaling is indispensable for a pathogen to be successful. For 

example, several fungi and bacteria, including the bacterial speck pathogen P. syringae and the 

necrotrophic fungus Botrytis cinerea, have been shown to manipulate components of the ABA 

biosynthetic and response machinery as an essential strategy to cause disease (Audenaert et al., 

2002a; Asselbergh et al., 2007; de Torres-Zabala et al., 2007). In addition to modifying plant 

hormone synthesis, microbial pathogens can also manipulate the plant’s signaling infrastructure 

by producing phytohormones or functional mimics thereof to ‘trick’ the plant into activating 

inappropriate defenses (Robert-Seillaniantz et al., 2007; Koornneef and Pieterse, 2008; Angel- 

Lopez et al., 2008). An archetypical example reflecting this situation is the production by some 

virulent P. syringae strains of a phytotoxin called coronatine that structurally resembles JA 

derivatives, including JA-Isoleucine (Staswick, 2008). Working with COR-deficient P. syringae 

mutants and plants impaired in SA or JA signaling, several groups have demonstrated that P. 

syringae employs COR to hyperactivate JA signaling, resulting in suppression of SA-mediated 

defense through antagonistic cross-talk (Brooks et al., 2005; Cui et al., 2005; Laurie-Berry et al., 

2006; Koornneef and Pieterse, 2008). Recently, COR was also shown to facilitate bacterial 

invasion by repressing ABA-mediated stomatal closure (Melotto et al., 2006). Production of 

gibberellic acid, cytokinin and auxin has also been described for multiple plant pathogens (Valls 

et al., 2006; Robert-Seillaniantz et al., 2007). Like ABA and COR, most of these hormones are 

known to stimulate pathogen virulence through various crosstalk mechanisms, many of which 

involve negative interactions with effectual SA- or JA-dependent defense pathways (Navarro et 

al., 2007; Wang et al., 2007a; Angel-Lopez et al., 2008; Spoel and Dong, 2008). Together these 

findings suggest that manipulating the plant’s defensive machinery by exploiting hormonal cross-

talk mechanisms is a common virulence strategy amongst plant attackers, controlling the 

outcome of numerous plant-microbe interactions. Fresh insights into hormone cross-talk and 

the various strategies used by pathogenic microorganisms to manipulate these specialized host 

processes is central to our understanding of plant immune responses and will undoubtedly 

contribute to designing effective novel strategies for engineering durable, broad-spectrum disease 

resistance in crop species. 
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8.3. Future perspectives  

Although this research has significantly advanced our mechanistic understanding of induced 

pathogen resistance in rice, several aspects still deserve further experimental investigation. In 

addition, this work has opened up several perspectives for future research. 

 
• Histochemical, biochemical and molecular analysis of rhizobacteria- or ABA-induced rice 

seedlings has uncovered a role for reactive oxygen species, cell wall fortification, 

hypersensitive response-like cell death, and defense gene expression in the establishment 

and/or maintenance of the induced defense state (Chapters 3, 4, 5, and 7). However, this 

does not exclude the involvement of other types of biochemical defense responses in the 

resistant reaction. Further analysis of IR-associated defense mobilisation could employ a 

combined transcriptome, proteome, and metabolome profiling to derive a holistic picture 

of the various IR phenomena observed in this study.   

 

• In Chapter 3, we demonstrate that low-level systemic generation of pyocyanin-induced 

reiterative H2O2-microbursts in naïve leaves is a prerequisite for the successful 

establishment of P. aeruginosa 7NSK2-mediated ISR against M. oryzae. Several ROS-

generating mechanisms have been identified, of which cell wall- and apoplast-localized 

peroxidases and plasmalemma-bound NADPH oxidases have received a great deal of 

attention (Apel and Hirt, 2004; Van Breuseghem et al., 2008). The use of inhibitor 

compounds blocking specific ROS-producing enzymes, organelle-specific activity 

measurements of enzymes involved in controlling ROS homeostasis and monitoring the 

expression of redox-associated genes can reveal the mechanisms that allow 7NSK2-

colonized plants to hyperinduce HR-like cell death and should provide insights on the 

action of 7NSK2 upstream of ROS generation. A similar approach could be employed to 

unequivocally delineate the involvement of oxidative events in the IC1270-induced ISR 

response.    

 

• Necrotrophic pathogens have long been thought of as aggressive, indiscriminate 

pathogens that simply ramify through defenseless plant tissue, thereby killing host cells 

by means of a varied arsenal of lytic enzymes and toxic molecules without having much 

of a real ‘interaction’ with their host (van Kan, 2006). Emerging evidence, however, adds 

some nuances to this view and suggests that necrotrophs, like their biotrophic 

counterparts, develop a more sophisticated relationship with their host by co-opting the 
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plant’s apoptotic pathways. This notion was borne out by the finding that ectopic 

expression of metazoan cytoprotective PCD inhibitor proteins in transgenic tobacco and 

tomato conferred heritable resistance to a wide range of necrotrophic pathogens and 

toxins derived thereof (Dickman et al., 2001; Lincoln et al, 2002; El Oirdi and Bouarab, 

2007). Consistent with animal antiapoptotic proteins protecting plants from necrotrophic 

pathogen attack is the large body of evidence indicating that host cell death induced by 

archetypal necrotrophs such as Sclerotinia sclerotiorum, B. cinerea or Cochliobolus victoriae 

exhibits several biochemical and morphological hallmarks of PCD, including DNA 

laddering, nuclear condensation and enhanced caspase-like activity (Dickman et al., 2001; 

Govrin and Levine, 2001; Hoeberichts et al., 2003; Coffeen and Wolpert, 2004). 

Considering the ambivalent role of HR-eliciting pyocyanin with respect to 7NSK2-

mediated ISR (Chapter 3) and the opposite effects of IC1270 bacterization on blast, 

sheath blight and brown spot development (Chapter 4), it is not inconceivable that R. 

solani and C. miyabeanus may likewise cause disease by hijacking the rice PCD machinery. 

Support for this hypothesis can be inferred from the specific down-regulation of a 14-3-3 

protein in a R. solani-resistant rice mutant (Lee et al., 2006). A role for 14-3-3 proteins in 

the elicitation of PCD is implied by experiments in powdery mildew-infected barley, 

where 14-3-3 proteins were found to activate the plasma membrane H+-ATPase of 

inoculated epidermal cells, a process proposed to switch on a signaling cascade leading to 

HR manifestation (Zhou et al., 2000; Finnie et al., 2002). Furthermore, suppression 

subtractive hybridization (SSH) analysis of R. solani-infected rice revealed that sheath 

blight development correlates with down-regulation of OsGPX1 (Zhao et al., 2008). 

Interestingly, this phospholipid hydroperoxide glutathione peroxidase is the closest rice 

homolog of tomato LePHGPx, a potent antagonist of mammalian BAX-induced cell 

death known to confer resistance to B. cinerea in tobacco (Chen et al., 2004). Further 

support for the idea that R. solani and C. miyabeanus may actively engage rice PCD as a 

pathogenicity strategy might come from the study of rice BAX-INHIBITOR 1 

(Matsumura et al., 2003). Coding for a structurally and functionally conserved ancient cell 

death suppressor protein (Hückelhoven et al., 2003), BI-1 has been reported to be 

suppressed upon exposure of rice suspension cultures to a M. oryzae-derived cerebroside 

elicitor, a phenomenon culminating in the prompt execution of HR-like cell death. Since 

cerebroside elicitors isolated from R. solani and C. miyabeanus are as effective in inducing 

HR-like cell death as those derived from M. oryzae (Umemura et al., 2002), it is not 

unlikely that the former pathogens likewise antagonize BI-1 expression to promote their 
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virulence. Given the recent emergence of PCD suppressor genes such as BI-1 and 

baculovirus p35 as workable targets for genetic engineering of heritable necrotroph 

resistance in plants (Dickman et al., 2001; Lincoln et al., 2002; Imani et al., 2006; El Oirdi 

and Bouarab, 2007), the potential role of PCD regulation in rice defense against 

necrotrophic pathogen attack is worthy of further investigation. 

 

• Induced resistance by WCS374r against M. oryzae depends exclusively on bacterial 

production of a pseudobactin-type siderophore (Chapter 5). Despite the widespread 

interest, it is still unknown how pseudobactins are perceived and ultimately give rise to 

ISR. An alternative to direct recognition of pseudobactin elicitors by the plant is the 

perception of microbially induced alterations in the plant’s immediate environment, i.e. 

the rhizosphere (Van der Ent et al., 2008b). Given the scarcity of bioavailable iron 

[Fe(III)] in the rhizosphere, and the high affinity of pseudobactins for this ferric iron, 

pseudobactin-producing rhizobacteria are thought to interfere with the iron acquisition 

of other soil organisms, including the host plant (Vansuyt et al., 2007). In this respect, 

our recent observation that WCS374r aggravates chlorosis symptoms of young rice 

plants grown under iron-limiting conditions is of particular interest (De Vleesschauwer 

and Höfte, unpublished results). Strikingly, enhanced iron deficiency chlorosis was not 

observed in response to root colonization with rhizobacteria producing ISR-deficient 

pseudobactins, such as P. aeruginosa 7NSK2 or P. putida WCS358 (De Vleesschauwer and 

Höfte, unpublished results). Furthermore, hydroponic feeding of Psb374 was found to 

trigger intracellular iron depletion in systemic leaves as evidenced by the down-regulated 

expression of the iron homeostasis marker gene OsFer1 (De Vleesschauwer and Höfte, 

unpublished results). These findings suggest that the ability of a given pseudobactin to 

increase blast resistance is related to its potential to deprive rice from iron. Interestingly, 

in a recent microarray study on iron-deficient rice, Kobayashi et al. (2005) found that 

iron deficiency in roots strongly induces the expression of genes involved in every 

predicted step of the methionine cycle, both in root and leaf tissue. Furthermore, several 

studies point to a role for the methionine cycle and its main intermediate, the universal 

substrate S-adenosyl-L-methionine (SAM), in rice defense responses to M. oryzae. Most 

tellingly in this regard, Seguchi et al. (1992) reported that the activity of the SAM utilising 

enzyme S-adenosyl-L-methionine decarboxylase was suppressed by as much as 50% in 

M. oryzae-inoculated rice plants , whereas such suppression was not observed in plants 

pretreated with the blast resistance-inducing chemical N-cyanomethyl-2-
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chloroisonicotinamide. Likewise, SAM synthetase, a SAM biosynthesis gene, was found 

to be upregulated in probenazole-induced rice plants (Shimono et al., 2003). The link 

between the methionine cycle, SAM metabolism and resistance to M. oryzae is further 

strengthened by the rapid and specific expression of OsBISAMT1, encoding a putative 

SAM methyl transferase, in incompatible rice-M. oryzae interactions (Xu et al., 2006), and 

the observation that topical application of methionine not only induces production of the 

rice phytoalexins sakuranetin and momilactone A, but also increases resistance to 

subsequent blast attack (Nakazato et al., 2000). In this perspective, it is tempting to 

speculate that pseudobactin-type siderophores may induce resistance to M. oryzae by 

depriving rice roots from iron, leading to cytosolic iron depletion and resultant activation 

of the methionine cycle. This concept has received further support recently following 

work by Liu et al. (2007). In line with disease-related alterations in iron homeostasis in 

animals, these authors convincingly demonstrated that targeted redistribution of redox-

active Fe inflicted by powdery mildew attack acts as an underlying factor associated with 

the oxidative burst and regulating cereal disease resistance. Interestingly, a model 

implying pseudobactin-mediated iron stress on the roots as a primary event in the 

elicitation of ISR might also hold for WCS417r-mediated ISR in Arabidopsis as MYB72, 

a transcription factor gene required for the onset of ISR (Van der Ent et al., 2008b), was 

reported to be activated exclusively in response to low iron conditions (Colangelo and 

Guerinot, 2004; Van de Mortel et al., 2006). Deciphering the putative role of iron 

homeostasis perturbation and SAM metabolism in the onset of the systemic immune 

response in rice may provide novel insights into the function of the methionine pathway 

in plant pathogen defense and could shed new light on the mode of action of ISR-

eliciting pseudobactin siderophores.   

 

• Recent studies demonstrated that, in addition to known defense pathways modulated by 

SA, JA, ET, or ABA, oxylipins other than JA, and hormones such as brassinosteroids, 

auxins, and gibberellins play important roles in plant responses to pathogen assault 

(Chapter 2; Robert-Seillaniantz et al., 2007; Angel-Lopez et al., 2008). Simultaneous 

measurements of these signaling compounds and monitoring the expression of known 

defense-related marker genes should expand our knowledge on rice hormone 

interactions in the context of biotic stress response signaling. The availability of 

numerous mutant and transgenic rice lines impaired in the perception or biosynthesis of 

this ‘novel’ class of defense regulators (Wang and Nick, 1998; Sharma et al., 2001; Chhun 
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et al., 2003; Hong et al., 2003; Sakamoto et al., 2004; Yamamoto et al., 2007) will be of 

particular value in deciphering the tapestry of signaling networks governing rice defense 

against various pathogens.  

 

• The results denoted in Chapter 7 argue that exogenously administered ABA conditions 

resistance to C. miyabeanus in an OsMPK5-dependent manner by preventing the fungus 

from hijacking the ET signal transduction pathway. Further work should be focused on 

exploring whether these molecular observations (i.e. ET signaling promotes C. miyabeanus 

virulence) can be related to environmental conditions that predispose rice to brown spot. 

It is known that abnormal or poor soil conditions, inadequate water management and 

poor soil nutrition, especially potassium deficiency, favor brown spot incidence (Dela 

Paz et al., 2006). Taking advantage of our well-established hydroponic rice-growing 

system (Chapter 3), plant experiments could be set up under controlled conditions to 

assess how these unfavorable conditions influence brown spot incidence and affect the in 

planta hormone balances. Revelations about the basic mechanisms underlying such 

abiotic stress-induced plant susceptibility will not only reveal whether other resistance 

mechanisms against brown spot are operational besides the OsMPK5-mediated resistance 

identified in this work, but may also open new doors to design strategies for improving 

brown spot control.     

    

• Modulation of pathogen resistance by ABA is a particularly complex phenomenon, 

involving multiple ABA perception sites, asymmetric multicomponent signaling cascades 

and ABA-concentration dependent processes (see Chapter 6). In-depth analysis of the 

spatial and temporal fluxes in endogenous ABA content by organ- and cell-specific ABA 

measurements should aid to further clarify and illuminate the mode of ABA action 

during rice-pathogen interactions. Similarly, evaluation of disease resistance and defense 

response activation in mutant or transgenic rice lines impaired in either ABA synthesis or 

perception may help to decipher the multicomponent role of ABA in the rice defense 

response. Potential candidate lines could include the ABA biosynthesis mutants recently 

developed by Fang et al. (2008). 
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• A long-standing goal in rice disease control is to identify and incorporate broad-spectrum 

durable pathogen resistance (BSDR). In addition to approaches focusing on natural 

germplasm (Leung et al., 2003), rice lines with induced mutations have been identified 

that show BSDR to multiple diseases. Because quantitative resistance phenotypes 

exhibited by these mutant lines could vary with genetic background, a precise analysis of 

the phenotypes and their genetic interactions must be done in a common genetic 

background. Although this problem can be addressed by incorporating individual 

mutations into near-isogenic lines via backcrossing and breeding, this process is time and 

labor intensive. In this context, the International Rice Research Institute has produced an 

extensive collection of chemical- and irradiation-induced mutants in the single genetic 

background of IR64, the most widely grown indica rice variety in South and Southeast 

Asia. About 60,000 mutants have been generated and 38,000 have been advanced to M4 

generation enabling evaluation of quantitative traits by replicated trials. Several of these 

mutants show enhanced resistance to both blast and bacterial blight, while others are 

rendered either more susceptible or more resistant to blast or blight (Hirochika et al., 

2004; Wang et al., 2004; Wu et al., 2005; Wu et al., 2008). As these mutants are ideal 

vehicles for the identification of genes contributing to BSDR, it will be particularly 

interesting to test these mutants for their resistance to brown spot and sheath blight. To 

shed light on the type of defense responses involved, mutants with an altered resistance 

phenotype could be subjected to a flurry of biochemical, microscopic, molecular and 

genetic analyses. Alternatively, time-resolved hormone measurements coupled to 

genome-wide expression profiling could provide insight into the regulation of the 

signaling circuitry governing the gain- or loss-of-resistance phenotype. In addition, the 

mutants are suitable for reverse genetics through PCR detection of deletions or 

TILLING (targeting induced local lesions in genomes). 
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nterest in biological control of plant pathogens has increased in recent years fuelled by trends 
in agriculture towards greater sustainability and public concerns over the use of hazardous 
pesticides in the environment. Most studies on biological control of fungal plant pathogens 

have tended to focus on the use of antagonistic rhizobacterial strains belonging to the genus 
Pseudomonas or Bacillus. However, the development of biocontrol products based on isolates 
belonging to the gram-negative genus Serratia is now gaining momentum. S. plymuthica is a 
ubiquitous bacterium that has been preferentially recovered from rhizospheres all over the world, 
both as a free-living and endophytic organism. Specific strains of S. plymuthica produce a broad 
pallet of antimicrobial compounds and might hold great potential as broad-spectrum biocontrol 
agents. This review surveys the advances of biocontrol research with respect to plant-associated 
S. plymuthica strains focusing on the principles and mechanisms of action of S. plymuthica and their 
use or potential use for the biological control of fungal plant diseases. A cursory overview of the 
taxonomy and ecology of S. plymuthica is provided as well. We highlight recent progress in the 
identification of antifungal secondary metabolites produced by S. plymuthica and pay special 
attention to the regulatory mechanisms underpinning the production of the latter metabolites. 
Finally, we discuss several strategies that may provide a basis to improve the efficacy of S. 
plymuthica-mediated biocontrol. 

I 
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A.1. Taxonomy and ecology 

The genus Serratia is named after the Italian physicist Serafino Serrati and belongs to the 

family Enterobacteriaceae within the Gammaproteobacteria. The only Serratia species recognized 

in the 8th edition of Bergey’s Manual was Serratia marcescens (Buchanan and Gibbons, 1974). In 

their paper about the taxonomy of Serratia, Grimont and collaborators (1977) described four 

species within the genus Serratia: Serratia marcescens, S. liquefaciens, S. plymuthica and S. marinorubra 

(now called S. rubidaea). Nowadays, recognized species within the genus Serratia are S. marcescens,  

the S. liquefaciens complex (S. liquefaciens, S. proteamaculans, S. grimesii ) (Grimont et al., 1981); the so-

called ‘unusual Serratia species (Stock et al., 2003):  S. ficaria (Grimont et al., 1979), S. fonticola 

(Gavini et al., 1979), S. odorifera (Grimont et al., 1978), S. plymuthica, S. rubidaea  (Ewing et al., 

1973) and S. entomophila (Grimont et al., 1988); and S. quinivorans (Ashelford et al., 2002).  

  The Serratia species are ubiquitous and can be found in water, soil, plants and animals 

(including humans). Serratia is an opportunist that has been recognized as a human pathogen only 

since the 1960s.  S. marcescens and the S. liquefaciens complex are routinely associated with human 

infections, but also the ‘unusual’ Serratia spp. (except S. entomophila) have been described as 

causing human disease.  

Serratia plymuthica [Lehmann and Neumann (1896)] Breed et al. (1948) has  been found in soil 

(Galland and Paul, 2001; Grant et al., 2002), water (Grimont and Grimont, 1978; Vivas et al., 

2000) the air of poultry fattening houses (Vucemilo et al., 2005), insects (Grimont and Grimont, 

1978; Kobayashi and Ichikawa, 1990; Stojek and Dutkiewicz, 2004; Tothprestia and Hirshfield, 

1988) as an opportunistic pathogen in fish (Austin and Stobie, 1992; Nieto et al., 1990) and on 

cold smoked rainbow trout (Lyhs et al., 1998) and fresh tunafish (López-Sabater et al., 1993). In 

addition, a variety of clinical infections have been attributed to this microorganism. S. plymuthica 

has been isolated from blood cultures, surgical wound exudates, the peritoneal fluid, infections of 

bone marrow, central venous catheters and a human burn site (Carrero et al., 1995; Clark and 

Janda, 1985; Domingo et al., 1994; Horowitz et al., 1987; Reina et al., 1992; Zbinden and Blass, 

1988). In general, S. plymuthica is considered to cause nosocomial infections, which means 

infections as a result of treatment in the hospital. However, we would like to insert a word of 

caution on the interpretation of these data. Although S. plymuthica has frequently been recovered 

from the human body, it was rarely isolated as the sole bacterial species present. Based on an 

international approved German directive (TRBA 466), S. plymuthica is nowadays classified into 

risk group 1 by the DSMZ (German Collection of Microorganisms and Cell Cultures), indicating 

that the species does not inadvertently pose a threat to human health. In contrast to Serratia 

marcescens, which belongs to risk group 2, there is no compelling evidence that S. plymuthica is 
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capable of causing human infections. Furthermore, no pathogenicity factors have been identified 

so far and, in contrast to other nosocomial pathogens like Burkholderia and Stenotrophomonas, S. 

plymuthica does not inflict disease in alternative animal model systems such as the Caenorhabditis 

elegans assay (G. Berg, personal communication).  

Serratia plymuthica, however, is most frequently associated with plants. This organism has been 

isolated from the rhizosphere of grass (Alstrom and Gerhardson, 1987), wheat (Astrom and 

Gerhardson, 1988), maize (Lucon and Melo, 2000), oilseed rape (Kalbe et al., 1996), grape 

(Chernin et al., 1995), melon (Kamensky et al., 2003), onion (Park and Shen, 2002), Brassica sp. 

(Carlot et al., 2002), Cichorium intybus (Stock et al., 2003), sugarbeet (Tenning et al., 1987), tomato 

(Frommel et al., 1991) and as an endophyte from the endorhiza of potato (Berg et al., 2005). It 

has been found on the edible parts of green onion, carrot and lettuce (Grimont et al., 1981), on 

the phyllosphere of spring wheat (Legard et al., 1994), on Brassica spp. (Leifert et al., 1993) and as 

a contaminant in a raw vegetable processing line (van Houdt et al., 2005). 

 

A.2. Serratia plymuthica as a biocontrol agent of fungal plant pathogens  

Over the last two decades, S. plymuthica has received steadily increasing attention as a 

biological control agent of mainly fungal pathogens. As such, S. plymuthica isolates have been used 

to control fungal soil-borne and leaf pathogens. Furthermore, some papers report the use of S. 

plymuthica to suppress post-harvest diseases. An overview of the S. plymuthica strains which have 

been reported to provide biocontrol of fungal plant pathogens ad planta is listed in Table A.1. 

 

A.2.1. Using Serratia plymuthica to control soil-borne diseases 

Since Serratia plymuthica strains are frequently associated with plant roots, they have most 

extensively been studied for their ability to control soil-borne fungal diseases. Serratia plymuthica 

strain IC1270 from the rhizosphere of grapes, previously described as Enterobacter agglomerans 

(Chernin et al., 1995) and later on attributed to S. plymuthica (Ovadis et al., 2004b), effectively 

controlled Rhizoctonia solani damping-off of cotton (Chernin et al., 1995), R. solani root rot of bean 

and Pythium aphanidermatum pre- and postemergence damping-off on cucumber (Ovadis et al., 

2004) under greenhouse conditions. Pythium disease severity was reduced to about two-third in 

the IC1270-treated plants compared with control non-bacterized plants.  
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Table A.1. Overview of S. plymuthica strains providing biocontrol of plant pathogens ad planta 
Strain Plant Pathogen Reference 
IC1270 Gossypium barbardense (cotton) Rhizoctonia solani Chernin et al., 1995 
 Phaseolus vulgaris (bean) Rhizoctonia solani Ovadis et al., 2004 
 Cucumis sativus (cucumber) Pythium aphanidermatum Ovadis et al., 2004 
 Prunus persica (peaches) Monilinia fructicola Ritte et al., 2002 
  Rhizopus stolonifer Ritte et al., 2002 
 Pirus malus (apples) Penicillium expansum Ritte et al., 2002 
 Citrus sinensis (oranges) Penicillium digitatum Meziane et al., 2006b 
  Penicillium italicum Meziane et al., 2006b 
 Phaseolus vulgaris (bean) Colletotrichum lindemuthianum Meziane et al., 2006a 
 Phaseolus vulgaris (bean) Botrytis cinerea Meziane et al., 2006a 
 Lycopersicon esculentum (tomato) Botrytis cinerea Meziane et al., 2006a 
 Oryza sativa (rice) Magnaporthe grisea 

Xanthomonas oryzae pv. oryzae 
De Vleesschauwer and 
Höfte, unpublished 
results 

IC14 Citrus sinensis (oranges) Penicillium digitatum Meziane et al., 2006a 
  Penicillium italicum Meziane et al., 2006a 
 Cucumis sativus (cucumber) Botrytis cinerea Kamensky et al., 2003 
  Sclerotinia sclerotiorum Kamensky et al., 2003 
CL43 Dutch white cabbage Botrytis cinerea Leifert et al., 1993 
  Alternaria brassicicola Leifert et al., 1993 
R1GC4 Cucumis sativus (cucumber) Pythium aphanidermatum McCullagh et al., 1996 
 Cucumis sativus (cucumber) Pythium ultimum Benhamou et al., 2000 
3Re4-181 Solanum tuberosum (potato)  Rhizoctonia solani Grosch et al., 2005a 
 Lactuca sativa (lettuce) Rhizoctonia solani Faltin et al., 2004 
 Beta vulgaris (sugarbeet) Rhizoctonia solani Faltin et al., 2004 
R12 Fragaria virginiana (strawberry) Verticillium dahliae Berg et al., 2001 
HRO-C482 Fragaria virginiana (strawberry) Verticillium dahliae Kurze et al., 2001a 
 Fragaria virginiana (strawberry) Phytophtora cactorum Kurze et al., 2001a 
2-67 Cucumis sativus (cucumber) Colletotrichum orbiculare Gang et al., 1991 
- grape Eutypa lata  Schmidt et al., 2001 
B-781 Cucumis sativus (cucumber) Pythium perplexum Galland and Paul, 2001 
A21-4 Capsicum  annuum (pepper) Phytophtora capsici Park and Shen, 2002 

1 strain 3Re4-18 was also designated B4 
2 strain HRO-C48 has been deposited as DZMZ12502 
 

Over 5000 bacterial isolates from the roots of oilseed rape were screened for antifungal 

properties against Verticillium dahliae. 146 of the active isolates were determined, 18 isolates 

belong to the genus Serratia (Kalbe et al., 1996). Of the 18 Serratia strains, 16 strains were 

identified as Serratia plymuthica. All the investigated isolates showed an antifungal acivity against 

Verticillium dahliae, Rhizoctonia solani and Sclerotinia sclerotiorum in bioassay (Kalbe et al., 1996). One 

of the isolates from this study is the well-characterized S. plymuthica strain HRO-C48 (indicated as 

isolate C48 in Kalbe et al. (1996) and as S. plymuthica strain DSMZ12502 in Berg (2000) and 

Kurze et al. (2001a). Dipping strawberry roots in a suspension of S. plymuthica HRO-C48 reduced 

the percentage of Verticillium wilt with 18.5% and the percentage of Phytophtora cactorum root rot 

with 33.4%. In three different field trials, Verticillium wilt was reduced compared with the 

nontreated control with an average of 24.2%, whereas the average yield increase was 296%. 
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Phytophthora root rot was reduced with an average of 9.6%, while the strawberry yield was 

increased by 60% compared with the nontreated control (Kurze et al., 2001a). A commercial 

product on the basis of HRO-C48 has been developed (European patent 98124694.5) and called 

RhizoStar® (e-nema GmbH, Raisdorf, Germany). 

Serratia plymuthica strain 3Re4-18 [indicated as S. plymuthica B4 in Grosch et al. (2005a)] is an 

endophyte, isolated from the endorhiza of potato (Berg et al., 2005). This isolate caused an 

average reduction of 25% in Rhizoctonia solani disease severity in two experiments on potato 

sprouts. Under field conditions, a disease suppression effect of 31% was achieved on potato, 

whereas the marketable tuber yield increased up to 17% compared with the pathogen control. 

The strain was thus more effective in the field than in the pot experiments. Strain B4 was also 

used to control bottom rot on lettuce, caused by R. solani AG1-1B on leaf disks (Faltin et al., 

2004) and in two experimental fields. In both field experiments, soil application with the isolate 

increased the dry mass of lettuce as much as 31% and reduced disease severity 19% (Grosch et 

al., 2005a). However, strain B4 was not effective to control damping-off disease caused by 

Rhizoctonia solani AG4 on sugar beet seedlings (Faltin et al., 2004). 

Alström and Gerhardson (1987) describe an isolate of Serratia plymuthica (G15), frequently 

isolated from roots of various plant species that showed strong antagonism against Botrytis cinerea 

and Gerlachia nivalis and moderate antagonism against Rhizoctonia solani, Fusarium culmorum and 

Pythium sp. In addition, this isolate significantly increased growth of lettuce plants when applied 

to the roots under non-sterile conditions.  

Serratia plymuthica strain A153 was isolated from the rhizosphere of wheat (Astrom and 

Gerhardson, 1988). This strain was later on shown to suppress apothecia formation in Sclerotinia 

sclerotiorum (Thaning et al., 2001). Inhibition of apothecial formation appears to be due to the 

production of chlorinated macrolides (Levenfors et al., 2004; Thaning, 2000; Weissmann, 2002). 

Strain A153 has also been used for the biological control of weeds, both in the greenhouse 

(Weissmann, 2002) and the field (Weissmann et al., 2003). 

The isolate S. plymuthica R1GC4 (origin could not be retraced) has been tested on rockwool-

grown cucumbers for its ability to reduce Pythium root rot caused by Pythium aphanidermatum. 

Strain R1GC4 slightly increased the cumulative cucumber yields (McCullagh et al., 1996). 

Benhamou et al. (2000) also used this isolate in a later study in which the defense reactions of 

cucumber seedlings against Pythium ultimum with and without bacterial treatment were studied at 

the cellular level.  
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S. plymuthica strain A21-4 was isolated from the roots of onion and significantly inhibited 

mycelium growth, zoosporangia formation and cystospore germination of Phytopthora capsici in 

vitro. When pepper seedlings were dipped in a cell suspension of A21-4 and transplanted in the 

greenhouse, the bacteria successfully suppressed Phytophthora blight. Disease incidence 60 days 

after transplanting was 72.4% in the untreated plot, compared to 12.6% in the treated plants. 

A21-4 readily colonized the pepper roots and the bacterial density on the root was maintained 

above 106 CFU/g root until 3 weeks after transplanting (Park and Shen, 2002).  

S. plymuthica strain B-781, which was isolated from a soil sample taken in the Burgundy region 

in France, effectively controlled damping-off disease of cucumber caused by P. perplexum 

(Galland and Paul, 2001).  

 

A.2.2. Using Serratia plymuthica to control fungal post-harvest diseases 

Only a few reports deal with the use of Serratia plymuthica to control post-harvest diseases. 

Serratia plymuthica CL43 (= Serratia plymuthica NCIMB40492), among other bacterial antagonists, 

has been used to control Botrytis cinerea and Alternaria brassicicola on Dutch white cabbage at cold 

store temperature (Leifert et al., 1992; Leifert et al., 1993; Stanley et al., 1994). The Serratia 

plymuthica strains used showed in vitro and in vivo antagonism at 4°C. The use of Serratia 

plymuthica CL43 and other bacteria to control post-harvest diseases on cabbages is the subject of 

three different patents (US patent no. 5780080, US patent no. 5869038 and US patent 5597565). 

Serratia plymuthica strain IC1270 is an effective antagonist of Penicillium expansum (blue mould) 

on apple, and Monilia fructicola on peach  (Ritte et al., 2002). In addition, this strain and Serratia 

plymuthica strain IC14, isolated from soil around melon roots (Kamensky et al., 2003) effectively 

suppressed Penicillium digitatum (green mould) and Penicillium italicum (blue mould) on orange 

(Meziane et al., 2006b). Both strains reduced disease incidence by about 30% compared with 

control treatments. 

 

A.2.3. Using Serratia plymuthica to control fungal leaf pathogens 

Only Serratia plymuthica strains IC14 and IC1270 have been used for foliar application. Strain 

IC14 protected cucumber seedlings against Botrytis cinerea grey mould and Sclerotinia sclerotiorum 

white mould diseases of leaves under greenhouse conditions. Disease incidence was reduced by 

76 and 84%, respectively (Kamensky et al., 2003). The survival ability of strain IC14 on cucumber 

leaves is limited, however. The titer of bacteria decreased from 1 x 106 cells per 0.5 cm2 of leaf 

tissue to 2.7 x 103 cells per 0.5 cm2 of leaf tissue after 72 h. Leaf application with strain IC1270 
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decreased the number of B. cinerea spreading lesions from 92% in the control to 64%, and from 

78% to 48% in bean and tomato, respectively (Meziane et al., 2006a). 

Some S. plymuthica strains, however, can induce systemic resistance in plants and control leaf 

pathogens when inoculated on plant roots. Seed treatment with S. plymuthica strain 2-67 

significantly reduced the number and diameter of lesions caused by Colletotrichum orbiculare on 

cucumber leaves in two of three trials under greenhouse conditions (Gang et al., 1991). Soil and 

seed treatment with S. plymuthica strain IC1270 induced systemic resistance to B. cinerea on tomato 

and bean leaves and to Colletrichum lindemuthianum on bean (Meziane et al., 2006a). Effective root 

colonization resulted in a 35% disease severity reduction. Strain 1270 was also able to induce 

systemic resistance to Magnaporthe grisea and Xanthomonas oryzae pv. oryzae on rice, causing 

reductions in disease severity of as much as 50% (De Vleesschauwer and Höfte, unpublished 

results).  

 

A.3. Biocontrol mechanisms 

A thorough understanding of the antimicrobial mechanisms employed by S. plymuthica is key 

to an efficient and long-lasting biocontrol. Rhizosphere competence and biocontrol activity of S. 

plymuthica are enabled by antibiosis, parasitism involving production of lytic enzymes, competition 

for nutrients and iron by secretion of siderophores, and induction of plant defense mechanisms. 

None of these mechanisms are mutually exclusive and frequently several modes of action are 

exhibited by a single S. plymuthica strain. For instance, the mode of action of strain HRO-C48 

comprises a diverse set of biocontrol mechanisms facing both pathogen and host plant (Alstrom 

and Gerhardson, 1987; Berg, 2000; Chernin et al., 1996; Chernin et al., 1995; Kalbe et al., 1996; 

Kamensky et al., 2003; Levenfors et al., 2004; Shoji et al., 1989; Thaning et al., 2001). Table A.2. 

presents an overview of the spectrum of biocontrol-associated secondary metabolites produced 

by model strains of S. plymuthica.  

 

A.3.1. Antibiosis 

The production of organic antimicrobial secondary metabolites as a biocontrol mechanism of 

S. plymuthica has become increasingly better understood over the past decade. A variety of 

antibiotics have been identified, including compounds such as pyrrolnitrin, prodigiosin, the 

dipeptide antibiotic CB-25-I, 1-acetyl-7-chloro-1-H-indole and haterumalides (Alstrom and 

Gerhardson, 1987; Berg, 2000; Chernin et al., 1995; Kalbe et al., 1996; Kamensky et al., 2003).  
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Few S. plymuthica strains produce the non-diffusible red pigment and antifungal antibiotic 

prodigiosin (Alstrom and Gerhardson, 1987; Berg, 2000; Chernin et al., 1995; Kalbe et al., 1996; 

Kamensky et al., 2003). Pigmented S. plymuthica biotypes, which were rarely isolated from plants, 

seem to be toxic to protozoa (Grimont, 1992). Hence, production of prodigiosin might offer an 

ecological advantage in widely diverse ecological niches. However, a correlation between the 

production of prodigiosin and the level of resistance to several antibiotics as has been 

demonstrated for S. marcescens  (Grimont, 1992) could not be confirmed for S. plymuthica (Berg, 

2000). 

 

Table A.2. Overview of the production of biocontrol-related secondary metabolites by model S.
plymuth ca strains 

 
i

 S. plymuthica strain 

Metabolite HRO-C48 IC1270 IC14 A153 R12 3Re4-18 

Prodigiosin - - - ND ND ND 

Haterumalides ND ND ND + ND ND 

Pyrrolnitrin + + + + ND ND 

Glucanases - ND - ND + + 

Chitinases + + + ND + + 

Proteases + + + ND + + 

Siderophores + + + ND ND + 

IAA + - + ND ND - 

ND = not determined 

 

The chlorinated macrolides, haterumalide NA, B, NE and X, were among the first polyketide 

substances found to be produced by isolates belonging to the genus Serratia (Levenfors et al., 

2004; Thaning et al., 2001). Isolated haterumalides, purified from the supernatant of S. plymuthica 

strain A 153, strongly suppressed apothecial formation, ascospore germination and mycelial 

growth of several filamentous fungi and oomycetes in vitro (Levenfors et al., 2004; Strobel et al., 

1999). Haterumalides NA, B and NE were also isolated from an Okinawan Ircinia sponge as 

inhibitors of the cell division of fertilized sea urchin eggs (Takada et al., 1999). Structural 

similarities to other compounds suggest that the biosynthetic pathway of the haterumalides 

involves a type I polyketide synthase cluster, similar to the haterumalide biosynthesis in bacteria 

from the genus Pseudomonas (Nowak-Thompson et al., 1999; Rangaswamy et al., 1998). 

Nevertheless, further research regarding the genetic origin of haterumalides and the underlying 

biosynthetic pathway is needed to confirm the involvement of a type I polyketide synthase cluster 

in the biosynthesis of haterumalide antibiotics by S. plymuthica. 
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Pyrrolnitrin [3-chloro-4-(2´-nitro-3´-chlorophenyl) pyrrole] is a tryptophan-derived secondary 

metabolite which has been reported to suppress a wide range of fungal and bacterial pathogens 

(for review see Haas and Keel, 2003). Although a vast amount of isolated S. plymuthica strains has 

been demonstrated to produce pyrrolnitrin (Prn) in vitro (Chernin et al., 1996; Kalbe et al., 1996; 

Kamensky et al., 2003; Levenfors et al., 2004), several studies showed discrepancies regarding the 

role of Prn in the antagonistic activity of S. plymuthica strains. While Prn production was assumed 

to be a key factor of S. plymuthica IC1270-mediated biocontrol of several fungal post-harvest 

pathogens of peaches and apples (Ritte et al., 2002), no evidence was found for the involvement 

of Prn in post-harvest control of blue and green mould by the same strain (Meziane et al., 2006b). 

Likewise, IC1270-triggered resistance against Botrytis cinerea was shown to be independent of Prn, 

whereas Prn was demonstrated to play a prevalent role in direct antagonism towards distinct 

pathogens by the latter strain (Gavriel et al., 2004; Meziane et al., 2006a). However, these 

conflicting observations can be reconciled when considering that many biocontrol strains 

produce a pallet of secondary antimicrobial metabolites and that conditions favoring one 

compound may not favor another (Duffy and Defago, 1999). This varied arsenal of biocontrol 

traits may enable antagonists to efficiently fine-tune their biocontrol activity and perform their 

ultimate objective of pathogen suppression under a wide range of environmental conditions. As 

such, different mechanisms or combinations of mechanisms may be involved in the suppression 

of different plant diseases by a particular biocontrol agent (Haas and Defago, 2005).  

Because Prn production is an important biocontrol mechanism against several plant 

pathogens, extensive work has been carried out to elucidate its gene expression and regulation in 

the model strain Pseudomonas fluorescens Pf-5. In addition to the identification of the Prn 

biosynthetic gene operon, which comprises four genes (Hammer et al., 1997; Kirner et al., 1998), 

Prn has been reported to be under global genetic control by a two-component regulatory system 

composed of the sensor protein ApdA (also called LemA) (Corbell and Loper, 1995) and the 

response regulator GacA (Gaffney et al., 1994; Laville et al., 1992). Moreover, a gene necessary 

for pyrrolnitrin production has been identified as rpoS, which encodes the stationary-phase sigma 

factor sigma(s) (Nowak-Thompson et al., 1999; Sarniguet et al., 1995). The interactions between 

the RpoS and the GacS/GacA regulons are, however, poorly understood. Elegant research by 

Ovadis and associates (2004a) demonstrated the involvement of rpoS and gacA/lemA homologues 

(tentatively designated grrA/grrS for global response regulation activator/sensor) in pyrrolnitrin 

regulation in S. plymuthica strain IC1270. Pyrrolnitrin-deficient grrA, grrS and rpoS gene 

replacement mutants were markedly less capable of suppressing Rhizoctonia solani and Phytium 

aphanidermatum under greenhouse conditions, indicating that IC1270-mediated biocontrol is 
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tightly modulated by the GrrA/GrrS global regulatory cascade and the sigma factor RpoS. In 

addition, pyrrolnitrin biosynthesis was very recently demonstrated to be subject to positive 

control by a LuxI/LuxR-type quorum-sensing system consisting of an N-acyl-homoserine 

lactone (AHL) synthase (SplI) and an AHL-responsive cognate transcriptional repressor, 

designated as SplR (Liu et al., 2007). Using an AHL and pyrrolnitrin double negative mutant of 

strain HRO-C48, which was deficient in suppressing the growth of several fungal plant 

pathogens in vitro, the authors first provided evidence for the involvement of quorum-sensing 

signalling in biocontrol exerted by S. plymuthica.  

 

A.3.2. Parasitism 

Parasitism relies on the excretion of extracellular cell wall-degrading enzymes, such as 

chitinases, proteases and β-1,3-glucanases that can lyse pathogen cell walls (Whipps, 2001). 

Chitin, an insoluble β-(1,4)-linked polymer of N-acetyl D-glucosamine (GlcNAc), is a 

ubiquitous component of most fungal cell walls. Chitinases, which catalyze the hydrolysis of 

chitin, can be classified into two major categories. Endochitinases (EC 3.2.1.14) cleave chitin 

randomly at internal sites, generating low molecular mass multimers of GlcNAc, such as 

chitotetraose, chitotriose, and diacetylchitobiose. Exochitinases can be divided into two 

subcategories: chitobiosidases (EC 3.2.1.29) catalyze the progressive release of diacetylchitobiose 

units starting at the nonreducing end of chitin microfibrils, and N-acetyl- β-(1,4)-D-

glucosaminidases (EC 3.2.1.30), which cleave the oligomeric products of endochitinases and 

chitobiosidases, generating monomers of GlcNAc (Patil et al., 2000). Based on this system of 

nomenclature, several types of chitinases have been identified in S. plymuthica strains. Strain 

IC1270 produces two N-acetyl- β-D-glucosaminidases of 89 and 67 kDa, an endochitinase with a 

molecular mass of 59 kDa and a 50 kDa chitobiosidase. Strains IC14 and HRO-C48, on the other 

hand, have been reported to secrete an endochitinase and a 100 kDa N-acetyl-β-1,4-D-

hexosaminidase or chitobiase (Frankowski et al., 2001; Kamensky et al., 2003). 

To date, only one chitinase-encoding gene from S. plymuthica has been cloned (Chernin et al., 

1997). Sequencing of the cloned gene chiA, which encodes the endochitinase from strain IC1270, 

yielded an open reading frame coding for 562 amino acids of a 61-kDa precursor protein with a 

putative leader peptide at the N terminus. Homology modelling of the deduced enzyme’s three-

dimensional structure revealed high structural similarities with the corresponding enzyme from S. 

marcescens. Both structures consisted of an all-β-strand amino-terminal fibronectin III (FnIII)-type 

domain, an α + β fold domain, and an α/β-barrel domain. While the first domain has been 

suggested to facilitate the binding of chitinase to chitin, the last domain is catalytic retaining the 
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conserved residues Glu315 and Asp391 which are located in the active site (Chernin et al., 1997). 

The antifungal activity of the secreted endochitinase was demonstrated in vitro using 

recombinant DNA techniques. The recombinant strain E. coli JM109/pCHITEa1, expressing the 

S. plymuthica chiA gene, acquired the ability to suppress Rhizoctonia solani and spore germination of 

Fusarium oxysporum f. sp. meloni in vitro. Furthermore, the transformed strain also abrogated root 

rot disease caused by R. solani in cotton seedlings under greenhouse conditions (Chernin et al., 

1997). 

The 58 kDa endochitinase of S. plymuthica IC14 (ChiA) differs from this of strain IC1270 in 

that it not only hydrolyzes chitin but also EGC, a chitin derivative usually used as a test substrate 

for lysozyme activity, suggesting that IC14 ChiA belongs to the class of bifunctional 

chitinase/lysozyme enzymes (Kamensky et al., 2003). Such bifunctional enzymes have been 

suggested to enable bacteria to compete efficiently with fungi and other bacteria in a limited-

nutrient environment. Alternatively, broader substrate specificity of chitinases has been related to 

other aspects of their function such as modulating the intricate relationships between biocontrol 

bacteria and their host organism (Kamensky et al., 2003). 

So far, research aimed at elucidating the regulatory mechanisms underlying chitinase 

production in S. plymuthica has been confined to a limited number of strains. The GacS/GacA 

two-component system has previously been shown to positively regulate the expression of genes 

coding for secreted enzymes such as chitinases in a group of root-colonizing, plant-beneficial 

bacteria including Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens BL915 (for review 

see Heeb and Haas, 2001). GrrA and grrS gene replacement mutants of IC1270, however, were 

deficient in production of the 58 kDa ChiA endochitinase but not in that of the 89-kDa and 67-

kDa exochitinases. As the rpoS mutant of IC1270 still secretes ChiA, the mutation in grrA or grrS 

is unlikely to exert its effect via repression of the stationary sigma factor RpoS, whose expression 

is positively regulated by the GacS/GacA system in P. fluorescens strain Pf-5 (Whistler et al., 1998) 

and Escherichia coli (Mukhopadhyay et al., 2000). In addition, regulation of chitinase production 

seems to act independently of the quorum sensing machinery of IC1270 because synthesis of N-

acyl-homoserine lacton signal molecules was blocked in both rpoS and grrA/grrS gene 

replacement mutants (Ovadis et al., 2004). However, Müller and associates (2006) very recently 

reported that expression of chitinase is regulated positively by quorum sensing in strain HRO-

C48. Likewise, an extracellular chitinase in S. plymuthica strain RVH1 is synthesized under the 

positive control of the SplIR quorum-sensing system (Van Houdt et al., 2007), suggesting that the 

regulatory cascades that modulate chitinase production are strain-specific. Recently, it has been 

demonstrated that the GacS/GacA system partly steers its effects via posttranscriptional control 
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exerted by small regulatory RNAs such as RsmB, RsmZ and RsmY (Cui et al., 2001; Heeb et al., 

2002). In Erwinia carotovora subsp. carotovora and P. fluorescens, these regulatory RNAs sequester the 

RNA-binding protein RsmA and thereby relieve translational repression of target mRNAs. Based 

on the taxonomic resemblance between S. plymuthica and E. carotovora, Ovadis and associates 

(2004) hypothesize that translation of ChiA mRNAs involves similar posttranscriptional 

regulators. 

Several studies have investigated the role of chitinases in biocontrol activity of S. plymuthica 

strains. Chitinases produced by S. plymuthica HRO-C48 played an important role in the antifungal 

activity of the latter strain both in dual culture assay and ad planta (Frankowski et al., 2001). 

However, chitinolytic activity appears less essential for S. plymuthica IC14; when used to suppress 

S. sclerotiorum and B. cinerea, synthesis of proteases and other biocontrol traits were involved 

(Kamensky et al., 2003). Likewise, S. plymuthica IC1270-mediated biocontrol against R. solani and 

P. aphanidermatum was demonstrated to be independent of chitinase production (Gavriel et al., 

2004). Similar results were obtained in IC1270-modulated biocontrol assays with different post-

harvest pathogens (Meziane et al., 2006b; Ritte et al., 2002). Hence, the contribution of 

chitinolytic activity in S. plymuthica-mediated biocontrol is clearly strain-specific and further 

illustrates the heterogeneous multifaceted character of biocontrol mechanisms employed by 

distinct bacterial strains against a diverse set of pathogens. 

Glucanases and proteases are cell-wall degrading enzymes that are produced by a wide range 

of S. plymuthica strains (Berg et al., 2001; Berg et al., 2005; Faltin et al., 2004; Kalbe et al., 1996; 

Kamensky et al., 2003). However, to date, no studies regarding the regulation or precise role of 

these antifungal compounds in biocontrol by S. plymuthica have been conducted.   

 

A.3.3. Competition for iron and the role of siderophores 

Iron is an essential growth element for all living organisms. The scarcity of bioavailable iron 

in soil habitats and on plant surfaces foments a furious competition (Höfte et al., 1993). Under 

iron-limiting conditions, bacteria produce a range of low-molecular-weight compounds or 

siderophores to competitively acquire ferric iron. These bacterial iron chelators are thought to 

sequester the limited supply of iron available in the rhizosphere, thereby depriving pathogenic 

fungi of this essential element and consequently restricting their growth (Loper and Henkels, 

1999; Osullivan and Ogara, 1992). Several S. plymuthica strains including IC1270, IC14, 3Re4-18 

and HRO-C48, have been shown to secrete potent siderophores in vitro when grown on iron-

poor media (Berg et al., 2005; Faltin et al., 2004; Frankowski et al., 1998; Kalbe et al., 1996; 

Kamensky et al., 2003; Ovadis et al., 2004). Additionally, the residual biocontrol activity of 
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distinct pyrrolnitrin- and/or endochitinase-negative mutants of IC1270 have been partially 

attributed to the unaltered ability of the latter strains to compete for nutrients such as iron 

(Gavriel et al., 2004; Ovadis et al., 2004). Nevertheless, more detailed studies using siderophore-

deficient mutants and application of purified compounds will be required to unequivocally 

delineate the involvement of bacterial iron chelators in S. plymuthica-mediated biocontrol.  

 

A.3.4. Induction of plant resistance mechanisms 

An additional mechanism by which S. plymuthica can reduce plant diseases is by activating the 

host plant’s defensive repertoire. Although the concept of rhizobacteria-mediated systemic 

resistance (ISR) has received increasing attention over the last decade, reports about S. plymuthica 

strains mounting systemic resistance are scarce. Gang and associates (1991) first reported 

evidence that the S. plymuthica strain 2-67 induces ISR in cucumber to Colletotrichum orbiculare. 

Further evidence showing the ISR-triggering capacity of S. plymuthica was provided by Benhamou 

and associates (2000). Using electron microscopy, the authors demonstrated that Pythium-

challenged induced cucumber root cells undergo significant ultrastructural and biochemical 

modifications that correlate with the formation of structural barriers that likely prevent pathogen 

ingress towards the vascular stele accompanied by the deposition of a phenolic-enriched 

occluding material. Such responses associated with the onset of induced resistance would include 

the oxidation and polymerization of pre-existing phenols and the synthesis of new phenolic 

compounds via an activation of the phenylpropanoid pathway. Hence, S. plymuthica R1CG4 

reduces Pythium root rot by priming susceptible cucumbers plants to elaborate a wide range of 

defense mechanisms. Recently, S. plymuthica strain IC1270 was shown to mount ISR against B. 

cinerea and C. lindemuthianum in bean and tomato (Meziane et al., 2006a). In rice, however, IC1270 

plays an ambivalent role in mounting induced resistance responses. While IC1270 conferred 

enhanced resistance to M. grisea and the bacterial pathogen Xanthomonas oryzae pv. oryzae, bacterial 

colonization significantly promoted subsequent infection with the necrotrophic pathogens R. 

solani and Bipolaris oryzae. The differential effectiveness of IC1270 with respect to ISR-mediated 

disease resistance in rice is most likely due to its capacity to modulate the plant’s oxidative 

machinery. Biochemical and histochemical studies demonstrated that IC1270 primes rice 

seedlings for a potentiated generation of reactive oxygen species in response to pathogen 

infection and wounding (Chapter 4). 
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A.3.5. Phytostimulation 

Plant growth is affected by a plethora of abiotic and biotic factors. Most plant growth-

promoting bacteria (PGPRs) increase plant growth indirectly either by the suppression of well-

established diseases caused by major pathogens or by reducing the deleterious effects of minor 

pathogens. Alternatively, PGPRs may directly affect plant metabolism resulting in increased plant 

growth, seed emergence or improved crop yield (Whipps, 2001). Several S. plymuthica strains have 

been demonstrated to exert plant growth-promoting effects in phytochamber, greenhouse and 

field trials (Berg et al., 2001; Faltin et al., 2004; Kurze et al., 2001). The plant growth-stimulating 

ability of the latter strains has often been linked to their capacity to produce the auxin 

phytohormone indole-3-acetic acid (IAA) in vitro. IAA is the main auxin in plants, controlling 

many fundamental physiological processes including cell enlargement and division, tissue 

differentiation, and responses to light and gravity (Teale et al., 2006; Woodward and Bartel, 

2005). However, in several independent studies it was shown that IAA biosynthesis alone cannot 

account for the overall plant growth-promoting effect of Azospirillum (Spaepen et al. 2007). 

Furthermore, Faltin and associates (2004) found no correlation between IAA production in vitro 

and the plant growth-promoting effect on lettuce seedlings of several antagonistic bacteria, 

including the S. plymuthica strain 3Re4-18. In view of these data, the growth and yield promotion 

observed might be explained by the ‘additive hypothesis’ (Bashan and Holguin 1997), postulating 

that growth promotion is the result of multiple coordinated mechanisms such as associative 

nitrogen fixation, modulation of phytohormonal balances, phytohormone biosynthesis, and 

solubilisation of phosphate. Thus, a balanced interplay of different factors including bacterial 

IAA biosynthesis rather than IAA production per se is most likely needed to stimulate plant 

growth. The use of mutant and transgenic strains and the analysis of inoculants’ supernatant 

might shed more light on the diverse role played by different bacterial factors involved in S. 

plymuthica-mediated phytostimulation.  

 

A.4. Conclusions and future considerations 

Over the past two decades, several S. plymuthica strains have been demonstrated to be 

effective biocontrol agents against soil-borne and foliar diseases. Some S. plymuthica strains can 

also be used to control post-harvest diseases given their ability to antagonize pathogens at cold 

store temperatures (Leifert et al., 1992; Leifert et al., 1993; Stanley et al., 1994). In addition, S. 

plymuthica strains have been described as entomopathogens (Tan et al., 2006) and are employed 

for biological control of weeds (Weissmann, 2002; Weissmann et al., 2003). Many strains produce 

a variety of allelochemicals, including antibiotics, lytic enzymes and iron-chelating siderophores 
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(Chernin et al., 1995; Faltin et al., 2004; Kalbe et al., 1996; Levenfors et al., 2004; Ovadis et al., 

2004; Shoji et al., 1989). Moreover, the diverse origin of S. plymuthica isolates demonstrates that 

these bacteria are able to colonize widely diverse ecological niches. Hence, S. plymuthica strains 

might be ideal candidates for use as broad-spectrum biocontrol agents in integrated crop 

management.  

Despite their potential as low-input practical agents of plant protection, widespread 

application of S. plymuthica strains as commercial biocontrol products has been hampered by 

several reasons such as the limited number of field tests conducted so far, the difficult 

formulation of the bacteria, and their emergence as facultative pathogens. Chief among concerns 

is the often reported inconsistent performance of biocontrol agents in the field, which is usually 

attributed to their poor rhizosphere competence (Weller, 1988). Biocontrol strains can only be 

used optimally if the molecular basis of their beneficial effects, and the way these traits are 

influenced by a myriad of biotic and abiotic factors are unraveled. As many studies demonstrated 

discrepancies between the antagonistic potential of the biocontrol agent in vitro and its efficacy 

under field conditions (Faltin et al., 2004), successful reproducible biocontrol on the basis of 

plant-associated S. plymuthica also requires profound knowledge of the ecological and molecular 

interplay taking place in bacterial communities in order to predict the conditions under which 

biocontrol can be achieved. Revelations about the modes of action of S. plymuthica biocontrol 

strains will open new doors to design strategies for improving the efficacy of biocontrol products 

(Walsh et al., 2001). For instance, identifying different modes of action will facilitate the 

combination of biocontrol strains to hit pathogens with a broader spectrum of microbial 

weapons (de Boer et al., 1999; Olivain et al., 2004). Identification of key antimicrobials produced 

by S. plymuthica, such as chitinases or pyrrolnitrin, and elucidation of their biosynthetic pathways 

can be exploited for streamlining biocontrol strain discovery by targeting selection of new isolates 

that carry relevant biosynthetic genes (Compant et al., 2005).  

Despite the fact that genotypic and phenotypic diversity occuring in natural populations of 

biocontrol agents provides an enormous resource for improving biological control of plant 

diseases (Keel et al., 1996), exploitation of such diversity among bacterial biocontrol agents of 

fungal plant pathogens has received little attention. Yet, knowledge of the diversity within a 

group of strains sharing a common biocontrol trait can be exploited to select biocontrol strains 

that are superior with respect to rhizosphere competence and biocontrol activity. Recent studies 

by Berg (2000) demonstrated that populations of plant-associated and antifungal S. plymuthica 

strains can be highly diverse and thus have great potential for improving biological control. For 

instance, by matching bacterial genotypes with crops or varieties for which they have a 
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preference, genotypic differences among strains could be exploited to face the biotic and abiotic 

complexity of natural environments   

A salient feature of S. plymuthica is that some strains are able to colonize the endorhiza (Berg 

et al., 2005). Given the intimate relationships with their hosts, endophytic bacteria hold great 

potential to further our understanding of the multiple facets of disease suppression. As indicated 

by Compant et al. (2005), continued work with endophytic bacteria might play a fundamental role 

in the development of biocontrol agents that are self-perpetuating by colonizing hosts and being 

transferred to progeny much as is the case with the nonsymbiotic endophyte bacterium 

Burkholderia phytofirmans PsJN (Sessitsch et al., 2005) or associative nitrogen-fixing bacteria on 

sugarcane (Boddey et al., 2003). 
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Summary 

Summary 

To cope with the constant threat of a variety of pathogenic microorganisms, plants have 

evolved sophisticated strategies to perceive microbial attack and to translate this perception into 

an appropriate adaptive response. Apart from reacting locally, plants can also mount a systemic 

immune response, establishing an enhanced defensive capacity in plant parts distant from the site 

of initial invasion. A classic example of such a systemically induced resistance response is 

activated upon primary infection with a necrotizing pathogen. Once initiated, this so-called 

systemic acquired resistance (SAR) is generally durable and broad-spectrum, rendering plants 

more resistant towards a wide range of otherwise virulent pathogens. Colonization of plant roots 

by selected strains of nonpathogenic rhizobacteria leads to a phenotypically similar form of 

induced resistance, commonly referred to as induced systemic resistance (ISR). Although both 

SAR and ISR hold great potential as an environmentally sound and economically viable mean of 

disease control, research aimed at elucidating the underlying molecular mechanisms has been 

polarized towards the use of experimentally tractable dicot plants, such as Arabidopsis thaliana and 

tobacco. Conversely, in the class of the Monocotyledoneae, including the most important agronomic 

cereals, our understanding of the regulatory mechanisms controlling induced resistance is still in 

its infancy, this knowledge being key to effective utilization of SAR and ISR in an agricultural 

context.    

In the present work, we have explored the mechanistic basis and regulation of biologically 

and chemically induced pathogen resistance in rice, a central monocot plant model and the staple 

food for half the world’s population. In the first part of this dissertation, several rhizobacteria 

known to elicit ISR in dicot plants were assessed for their capacity to convey protection against 

various rice pathogens exhibiting distinct parasitic habits. A potent activator of ISR in bean, 

tomato, and Arabidopsis, P. aeruginosa 7NSK2 proved able to significantly reduce infection caused 

by the hemibiotrophic rice blast pathogen Magnaporthe oryzae, thereby producing a resistance 

phenotype resembling that of quantitative trait loci-conditioned partial resistance. Although 

7NSK2 is known to induce resistance in dicots plants through a synergistic interaction of the 

phenazine pigment pyocyanin and the iron-chelating compound pyochelin, only mutations 

interfering with pyocyanin production impaired ISR to M. oryzae, whereas in trans 

complementation of pyocyanin synthesis restored to ability to mount resistance. Intriguingly, 

pyocyanin-deficient mutants, unlike the wild-type, triggered ISR against the necrotrophic 

pathogen R. solani. These results pinpoint pyocyanin as a two-faced ISR elicitor, acting as a 

positive regulator of induced resistance to M. oryzae while facilitating infection by R. solani. 

Experiments using purified pyocyanin further revealed that transient enhancement of in planta 
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H2O2 levels priming naïve leaves for expression of hypersensitive response-like cell death upon 

pathogen attack accounts for the dual role of the latter compound in 7NSK2-mediated ISR. The 

differential effectiveness of such ROS-fueled systemic immune response was also reflected in 

experiments utilizing the Serratia plymuthica strain IC1270 as an inducing agent. Triggering high 

levels of resistance against M. oryzae, plant colonization by IC1270 rendered plants 

hypersusceptible to attack by R. solani and C. miyabeanus, both of which are considered 

necrotrophic fungi. Artificial enhancement of ROS levels in inoculated leaves faithfully mimicked 

the opposite effects of IC1270 bacteria on aforementioned pathogens, confirming a central role 

for oxidative events in the IC1270-induced resistance mechanism. Besides tagging reactive 

oxygen species and the associated hypersensitive response as a double-edged sword in the rice 

induced resistance program, these findings add weight to previous reports claiming that rice 

requires distinct mechanisms for defense against M. oryzae and the necrotrophs R. solani and C. 

miyabeanus. 

Aiming to further dissect the induced systemic resistance response of rice, we next analyzed 

the bacterial traits and host defense mechanisms underpinning ISR elicited by the biocontrol 

bacterium P. fluorescens WCS374r. Similar to 7NSK2 and IC1270, root treatment with WCS374r 

induced an enhanced level of protection against M. oryzae. Nevertheless, the underlying regulatory 

mechanisms appeared to be substantially different. Using salicylic acid-nonaccumulating NahG 

rice, an ethylene-insensitive OsEIN2 antisense line and the jasmonate-deficient mutant hebiba, we 

demonstrated that WCS374r-induced resistance, unlike 7NSK2-ISR, is regulated by an SA-

independent but JA/ET-modulated signal transduction pathway, thereby mimicking the classic P. 

fluorescens WCS417r-inducible ISR pathway in Arabidopsis. Moreover, bacterial mutant analysis 

uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR 

elicitation. Root application of WCS374r-derived pseudobactin (Psb374) sensitized naïve leaves 

for accelerated expression of a pronounced multifaceted defense response, comprising, amongst 

others, the rapid recruitment of phenolic defense compounds at sites of attempted pathogen 

entry, concerted expression of a diverse set of structural defenses, and a timely yet highly 

restricted hyperinduction of H2O2 in the epidermis. Strikingly, in sharp contrast to WCS374r-

mediated ISR but similar to SA-dependent SAR in dicotyledons, chemical induction of blast 

resistance by the SA mimic benzothiadiazole was independent of JA/ET signaling and involved 

potentiation of SA-responsive gene expression. These findings not only strengthen the 

contention that monocots and dicots share evolutionary conserved plant-inducible defense 

pathways, but also suggest that rice is endowed with multiple blast-effective resistance 
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mechanisms, the simultaneous activation of which may provide an attractive tool for 

improvement of blast control. 

In the second part of this work, attention was shifted to the complex and ambiguous role of 

the plant hormone abscisic acid (ABA) in rice disease resistance, thereby focusing on the rice- C. 

miyabeanus interaction. Historically most comprehensively studied as a key component in many 

aspects of plant development as well as in the regulation of stomatal aperture and in the initiation 

of adaptive responses to various environmental cues, emerging evidence also implicates ABA as 

an important factor integrating and fine-tuning responses to biotic challenges. Some exceptions 

notwithstanding, ABA predominantly behaves as a negative regulator of pathogen defense with 

basal or elevated plant ABA levels commonly being associated with disease susceptibility. Under 

our experimental conditions, however, topical application of ABA led to a significant restriction 

of C. miyabeanus progression in the mesophyll, culminating in less severe disease symptoms 

compared to noninduced controls. Acting independently of SA-, JA-, or callose-controlled 

defense mechanisms, this ABA-inducible brown spot resistance (ABA-IR) was found to be 

compromised in the Gα-deficient d1 mutant, which points to a mechanistic connection between 

G protein signaling at the cell surface and ABA-inducible pathogen defense responses. Besides 

the involvement of Gα, exogenous ABA treatment was also found to steer its positive effects on 

C. miyabeanus resistance through negative cross-talk with the ET signaling pathway. Disease tests 

with ET-insensitive OsEIN2-knockout plants revealed enhanced resistance, whereas plant 

treatment with Ethephon, an ET-releasing chemical, favored subsequent infection. Moreover, 

transcriptional activation of the ET reporter gene OsEBP89 was markedly lower in ABA-induced 

plants following pathogen challenge, suggesting that ABA specifically targets the ET pathway to 

promote C. miyabeanus resistance. Finally, RNAi-mediated knockdown of OsMPK5, a rice 

mitogen-activated protein kinase gene demonstrating a potentiated expression pattern in ABA-

induced wild-type leaves, severely attenuated ABA-mediated repression of EBP89 transcription 

and consequently compromised ABA-IR. Considering these findings, we propose that ABA 

recruits OsMPK5 to trigger resistance against C. miyabeanus by preventing the fungus from 

hijacking the ET signaling pathway. Whether or not C. miyabeanus disease resistance shares 

substantial overlap with the ABA-dependent signaling cascade(s) driving abiotic stress tolerance, 

and how upregulation of OsMPK5 interferes with ET-responsive biotic stress signaling remains to 

be explored.  

In conclusion, the results denoted in this thesis have provided several novel insights into the 

molecular machinery governing rhizobacteria- and chemical-induced disease resistance in rice and 

provide an excellent primer for future studies aimed at elucidating the tapestry of networks 
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underlying the innate, multicomponent defense response in rice and other cereals Such 

conceptual advances will not only advance our fundamental understanding of how plants cope 

with pathogen assault, but may also guide novel strategies to improve crop performance in 

suboptimal environments, and help identify appropriate contexts for the optimal deployment and 

commercial acceptance of induced resistance phenomena in certain agricultural contexts. 
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Samenvatting 

Samenvatting 
 
 Om aan de constante dreiging van een brede waaier aan pathogene micro-organismen te 

weerstaan, hebben planten een breed gamma aan gesofisticeerde afweermechanismen ontwikkeld. 

Sommige van deze mechanismen zijn constitutief, terwijl anderen slechts tot expressie komen als 

reactie op de belager. Behalve het activeren van afweermechanismen in lokaal geïnfecteerd 

weefsel, zijn planten tevens in staat een verhoogd niveau van resistentie te verwerven tegen 

toekomstige pathogeeninfecties. Een klassiek voorbeeld van dergelijke geïnduceerde resistentie is 

de zogenaamde ‘systemisch verworven resistentie’ (SVR). Geactiveerd door een primaire infectie 

met een necrose-inducerende pathogeen, is SVR niet alleen effectief tegen de initiële 

ziekteverwekker maar ook tegen een breed spectrum aan andere, doorgaans virulente, 

pathogenen. Bovendien verspreidt SVR zich systemisch doorheen de plant, wat leidt tot een 

bescherming van de volledige plant tegen toekomstige belagers. Een resistentie die fenotypisch 

vergelijkbaar is met SVR wordt geïnduceerd na kolonisatie van de wortels door bepaalde niet-

pathogene rhizobacteriën. Deze vorm van resistentie wordt ook wel geïnduceerde systemische 

resistentie (ISR) genoemd. Hoewel SVR en ISR een uitgelezen target vormen ter ontwikkeling 

van een duurzame, economisch rendabele, en ecologisch verantwoorde biologische 

gewasbescherming, werd fundamenteel onderzoek inzake de onderliggende moleculaire 

mechanismen tot op heden voornamelijk toegespitst op dicotyle modelplanten zoals Arabidopsis 

thaliana, eerder dan op monocotyle voedselgewassen zoals gerst, tarwe en rogge. Het doel van 

voorliggend proefschrift bestond in het ontrafelen van de moleculaire mechanismen met 

betrekking tot biologisch en chemisch geïnduceerde pathogeenresistentie in rijst, een modelplant 

voor onderzoek naar graangewassen alsmede het basisvoedsel voor bijna de helft van de totale 

wereldbevolking.  

 In het eerste luik van dit werk werden verschillende rhizobacteriën die in staat zijn 

resistentie op te wekken in dicotyle planten getest op het vermogen om rijst te beschermen tegen 

diverse ziekteverwekkers. Behandeling van de wortels met Pseudomonas aeruginosa 7NSK2, een 

goed gekarakteriseerde induceerder van resistentie in boon, tomaat en Arabidopsis tegen tal van 

pathogenen, zorgde voor een significante reductie van ziekte veroorzaakt door de hemibiotrofe 

schimmel Magnaporthe oryzae. Hoewel uit voorgaand onderzoek in tomaat gekend is dat 7NSK2 

resistentie induceert door een synergistische wisselwerking tussen respectievelijk het fenazine 

antibioticum pyocyanine en het siderofoor pyocheline, waren enkel pyocyanine-deficiënte 

mutanten niet langer in staat ISR op te wekken tegen M. oryzae. Echter, in tegenstelling tot wild 

type (WT) bacteriën, zorgden deze pyocyanine-negatieve mutanten voor een verhoogde afweer 

tegen de necrotrofe pathogeen Rhizoctonia solani. Deze resultaten tonen duidelijk aan dat 
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pyocyanine een duale rol vervult in het door 7NSK2 opgewekte resistentiemechanisme. Enerzijds 

fungeert dit pigment als een positieve regulator van resistentie tegen M. oryzae, anderzijds leidt de 

productie ervan tot een verhoogde weefselkolonisatie door R. solani. Uit experimenten met 

opgezuiverd pyocyanine bleek bovendien dat de ambivalente rol van pyocyanine in de door 

7NSK2-geinduceerde ISR te wijten is aan een verhoogde accumulatie van waterstofperoxide 

(H2O2) in planta, een fenomeen dat gepaard gaat met priming van de plant voor een versnelde 

expressie van hypersensitieve celdood op de plaats van pathogeenaanval. Een gelijkaardig 

werkingsmechanisme bleek aan de grondslag te liggen van de differentiële effectiviteit van de 

Serratia plymuthica stam IC1270 met betrekking tot het induceren van ISR. Hoewel kolonizatie van 

de wortels door IC1270 resulteerde in de hyperinductie van H2O2-afhankelijke hypersensitieve 

celdood en een significant verhoogd resistentieniveau tegen M. oryzae, impliceerde dezelfde 

behandeling tevens een stijgende gevoeligheid voor zowel R. solani als de necrotrofe ‘brown spot’ 

pathogeen Cochliobolus miyabeanus. Deze resultaten tonen duidelijk aan dat, afhankelijk van het type 

ziekteverwekker, de accumulatie van reactieve zuurstofvormen en expressie van de geassocieerde 

hypersensitieve respons zowel een positieve als negatieve invloed kunnen uitoefenen op de 

geïnduceerde afweerrespons in rijst. Verder kan op basis van deze bevindingen worden 

geconcludeerd dat verschillende, onderling antagonistische, resistentiemechanismen vereist zijn 

voor een efficiënte plantafweer tegen de voornaamste rijstpathogenen: M. oryzae, R. solani en C. 

miyabeanus.    

 Om het mechanisme van door rhizobacteriën-geïnduceerde systemische resistentie in rijst 

verder te ontleden werden in een volgend stadium van het onderzoek de bacteriële determinanten 

en plant afweermechanismen geanalyseerd die betrokken zijn bij ISR opgewekt door de P. 

fluorescens stam WCS374r. Behandeling van de wortels met WCS374r leidde tot een verhoogde 

bescherming tegen M. oryzae, zoals ook waargenomen na behandeling met 7NSK2 en IC1270. 

Niettemin lijkt het onderliggende werkingsmechanisme aanzienlijk te verschillen. Door gebruik te 

maken van NahG rijst die geen salicylzuur accumuleert, een ethyleen ongevoelige OsEIN2 

antisense lijn en de jasmonaat deficiënte mutant hebiba, werd aangetoond dat, in tegenstelling tot 

7NSK2-ISR, de resistentie geïnduceerd door WCS374r gereguleerd is door een SA-

onafhankelijke maar JA/ET-afhankelijke signaaltransductieweg. Deze observaties bekomen in 

rijst, stemmen overeen met de klassieke ISR-pathway geïnduceerd door P. fluorescens WCS417r in 

Arabidopsis. Verder toonde analyse van verschillende bacteriële mutanten aan dat een siderofoor 

van het pseudobactine type de cruciale determinant is voor het opwekken van de ISR respons. 

Het toedienen aan de wortels van het opgezuiverde pseudobactine (Psb374) resulteerde in 

priming van de bladeren voor een versnelde afweerrespons gekenmerkt door onder meer een 
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snelle recrutering van fenolische componenten op plaatsen waar de pathogeen tracht binnen te 

dringen, evenals een gecombineerde expressie van verschillende structurele afweercomponenten 

en een hyperinductie van H2O2 in de epidermis. Verder bleek dat chemische inductie van 

resistentie tegen M. oryzae door benzothiadiazole, een synthetisch salicylzuur analoog, 

onafhankelijk is van jasmijnzuur en ethyleen maar gepaard gaat met een geprimede expressie van 

salicylzuur-gevoelige afweergenen. Dit type resistentie staat in scherp contrast met de ISR 

respons geïnduceerd door WCS374r maar is gelijkaardig aan de SA-afhankelijke SAR in dicotylen. 

Deze gegevens ondersteunen de idee dat monocotylen en dicotylen evolutionair geconserveerde 

signaaltransductieroutes delen en suggereren verder dat rijst voorzien is van verschillende 

effectieve resistentiemechanismen tegen M. oryzae. Gelijktijdige activatie van deze verschillende 

mechanismen is mogelijk een handig instrument in de ontwikkeling van nieuwe 

bestrijdingsstrategieën tegen deze destructieve pathogeen.  

 In het tweede luik van dit onderzoek werd het belang van het plantenhormoon 

abscisinezuur (ABA) bestudeerd in de afweer van rijst tegen C. miyabeanus. Tot op heden werd de 

rol van ABA voornamelijk onderzocht met betrekking tot abiotische stresstolerantie. Recent 

onderzoek bracht echter aan het licht dat ABA ook een belangrijke functie vervult in plantafweer 

tegen pathogenen. Hoewel er uitzonderingen gekend zijn, resulteert ABA deficiëntie vaak in 

verhoogde ziekteresistentie, terwijl basale of verhoogde ABA gehaltes doorgaans geassocieerd 

worden met een toegenomen gevoeligheid voor pathogenen. In voorliggend werk echter bleek 

exogene toediening van ABA een positief effect te hebben op het basale resistentieniveau van 

rijst tegen C. miyabeanus. Preventieve behandeling van de bladeren met ABA resulteerde in een 

significante reductie van schimmelgroei in de mesofyllaag, met verminderde 

symptoomontwikkeling tot gevolg. Hoewel deze ABA-induceerbare resistentie (ABA-IR) 

onafhankelijk is van door salicylzuur, jasmijnzuur, of callose-bemiddelde afweerreacties, waren 

rijstmutanten met een defect in de alfa subeenheid van het heterotrimerisch G proteïne niet 

langer in staat resistentie te genereren. Hoewel verder onderzoek noodzakelijk is, laat deze 

bevinding vermoeden dat er een mechanistisch verband bestaat tussen de door G proteïnen-

bemiddelde signalisatie ter hoogte van de celperiferie en ABA-induceerbare ziekteresistentie. 

Verdere experimenten toonden tevens aan dat ABA-IR tegen C. miyabeanus gestoeld is op een 

negatieve interactie met de ethyleen pathway. Ethyleen ongevoelige OsEIN2 knockout planten 

bleken minder ziektegevoelig dan wild type (WT) planten, terwijl behandeling van de bladeren 

met Ethephon, een ethyleen producerende groeiregulator, resulteerde in een verlaagd 

resistentieniveau. Verder bleek de transcriptionele activiteit van OsEBP89, een merker voor 

ethyleen-afhankelijke afweer in rijst, beduidend lager te zijn na pathogeeninfectie in door ABA-
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geïnduceerde planten dan in onbehandelde controleplanten. Het door ABA-induceerbare MAP 

kinase gen OsMPK5 speelt een cruciale rol in dit proces, aangezien transgene OsMPK5 RNAi 

planten een analoog OsEBP89 expressiepatroon vertoonden als onbehandelde controleplanten en 

ook niet in staat bleken om ABA-IR tot expressie te brengen. Deze bevindingen suggereren dat 

ABA resistentie induceert tegen C. miyabeanus door misbruik van de ethyleen signaaltranductieweg 

door de pathogeen te verhinderen. Of ziekteresistentie tegen C. miyabeanus al dan niet verloopt via 

een analoge ABA-bemiddelde signaaltransductieroute als deze vereist voor de activatie van 

plantreacties tegen abiotische stressfactoren, en hoe inductie van OsMPK5 leidt tot een repressie 

van ethyleen-afhankelijke afweer is stof voor verder onderzoek.   

 Tot besluit kan gesteld worden dat deze thesis verscheidene nieuwe inzichten verleent in 

de fundamentele mechanismen die ten grondslag liggen aan door rhizobacteriën en abscisinezuur 

geïnduceerde pathogeenresistentie in rijst. De bekomen resultaten vormen een uitstekende basis 

voor verder fundamenteel onderzoek inzake de regulatie van de natuurlijke immuniteitsrespons in 

rijst en andere graangewassen, en kunnen aldus een belangrijke bijdrage leveren tot het 

ontwikkelen van nieuwe strategieën met het oog op een optimale exploitatie en implementatie 

van geïnduceerde resistentie in het kader van een geïntegreerde gewasbescherming. 
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