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There is no reality, there is only perception.
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Summary

Over the last decades, the development of digitization techniques and the in-
creasing capacity of storage media together with decreasing storage costs has
led to an explosion of digital content. Huge amounts of audio, images, and
videos are generated daily and are mostly stored in an unstructured repository
of multimedia information, much of which can be accessed through the Inter-
net. There will be approximately 1.8 zettabytes of data in 2011. The biggest
growth in data is visual in nature, from devices such as digital cameras, dig-
ital surveillance cameras, and digital televisions. Further, the music sector is
generating far greater value from the online and mobile market than any other
sector in the creative industries, with the exception of electronic games. For
example, Apple’s iTunes Store offers its customers over ten billion songs to
choose from and the file sharing networks have billions of tracks available for
download.

To deal with these huge amounts of data, one of the main imperatives IT orga-
nizations already face, are new tools and standards for data search and analysis.
In particular, there is a need for efficient techniques that are able to extract in-
formation directly from the content. Indeed, with the growth of digital content,
the need for content-based retrieval techniques has drastically increased. Fur-
ther, approximately 70% of all data are created by individuals. As a result,
the need for representative data models for the management and disclosure of
personal data becomes higher. Today, one’s personal content is stored on many
devices, such as a smart phone, an MP3-player, a laptop, or somewhere on the
World Wide Web. As a result, it becomes more difficult to efficiently manage
these personal data and the related metadata. Therefore, a system to manage
these data is needed that, transparently, keeps track of the data sources, allows
(both manually or automatically obtained) annotations, preserves the seman-
tics, and is interoperable with other metadata standards so that exchanging
metadata is facilitated.

However, within the domain of content-based information retrieval, there is a
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major discrepancy: the semantic gap. The semantic gap states that a user wants
to retrieve data on a semantic level, but the characterizations can only provide
a low-level similarity. Over the last years, a plethora of approaches have been
developed to bridge the semantic gap. These attempts mainly apply two kinds
of strategies: a bottom-up or a top-down strategy. The bottom-up approach
starts from extracting features at the signal level (low level) and then applies
machine learning techniques for concept detection (high level). Contrary, the
top-down approach starts from applying domain knowledge to gain insight into
the compositional elements which are then refined in greater detail.

In any content-based retrieval application, a good content descriptor (or fea-
ture) is essential. In this context, good also means that the descriptor should be
invariant to the accidental variance introduced by the content creation process.
However, there is a trade-off between this invariance and the discriminative
power of features since a very wide class of invariance loses the ability to dis-
criminate between essential differences.

The work presented in this dissertation proposes methods to bridge the seman-
tic gap in the computer vision and the musical audio mining domain. We pro-
pose features that are related with human perception and methods relying on
machine learning techniques to relate these features with concepts. Next, we
present a system to model, disclose, and manage different types of metadata.
Furthermore, the interoperability with metadata standards is also tackled.

In the computer vision domain, we focus on the modeling of textures. Tex-
ture is an important property in computer vision and it plays an important role
in many image analysis applications since it is more robust to lighting con-
ditions than, e.g., color. Furthermore, it can play an important role in image
understanding since texture information can often be directly related with the
depicted concepts. However, there is no formal definition of texture, and con-
sequently, it can be modeled in a variety of ways. Since texture is related with
human perception, we propose a novel texture feature based on outputs of cells
that are found in the visual cortex of humans. These features can be success-
fully used for different applications. At first, we show that for unsupervised
segmentation of textured images, the proposed features obtain the highest ac-
curacy. Secondly, for supervised texture classification, we show that our fea-
tures can compete with state-of-the-art texture analysis methods. However, for
most practical applications, the presence of noise in images is a problem in
texture characterization and causes difficulties for interpretation. On the third
part, we conduct classification experiments with various amounts of noise. We
have shown that the presented approach is highly robust to various levels of
uniform, speckle, and Gaussian noise. Also by applying JPEG image compres-
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sion, we have shown that the presented texture features are highly robust and
can deal better with the impact on the high spatial-frequencies of the textures
than other texture analysis methods. Fourth, we have also examined the use of
texture features for material classification. The presented texture features also
achieve the highest classification rates in our material classification tests. Fi-
nally, the presented texture features are used for the interpretation of textured
outdoor scenery images by applying segmentation, followed by material detec-
tion on the obtained image regions, and the application of domain knowledge.
The experiments point out that the use of perceptually based texture informa-
tion is an added value for scene interpretation since these low-level features
can be related to semantic concepts. To model cognition, we have ingested
domain knowledge by applying a top-down approach. An ontology describing
the conditions and restrictions of the depicted concepts, can tackle many errors
which are related to a bottom-up approach.

In the musical audio mining domain, we present a bottom-up approach to ex-
tract the melody and tonality from musical audio signals. Melody and tonality
are main characteristics of Western music, and are related to pitch percep-
tion. It is a fact that people often remember the melody of a song rather than
the performer and the title. Even after the lyrics have been forgotten, it is the
melody that humans are likely to recall or are able to reproduce by humming or
whistling. Despite the fact that after hearing a song, listeners are able to repro-
duce the melody, automatic melody transcription is not an easy task. Moreover,
as music is nowadays typically produced by different, simultaneously playing
instruments, melody transcription becomes more complex. The latter is be-
cause frequencies of concurrent sounds may coincide. In this dissertation, we
propose a transcription system to automatically extract the melody from — both
monophonic and polyphonic — musical audio signals. We aim to distinguish
individual musical notes characterized by specific temporal boundaries in or-
der to obtain a symbolic representation. Our proposed melody transcription
system consists of four stages. In the first stage, we used an auditory model
to obtain the necessary pitch information for the later processing stages. In
the second stage, we estimated the fundamental frequency in individual time
frames, and we created pitch trajectories over adjacent time frames. In the
third stage, the obtained trajectories are transformed into tones so that a note
representation can be easily deduced. Finally, in the fourth and last stage, post-
processing which removes low-salience tones or too short tones, is applied to
obtain the melody.

Next to the extraction of melodic information, we also considered the extrac-
tion and classification of tonality information. Like melody, tonality also en-
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tails pitch information, but it manifests at a relatively larger time interval than
melody. Tonality is a harmonic system of 24 keys (i.e., 12 major and 12 minor
keys). Both major and minor keys can be placed on a circle of fifths which
models their relationships. The extraction of tonality from musical audio sig-
nals is based on pitch induction which transforms a musical audio signal into
high-dimensional pitch patterns. However, if the low-dimensionality of tonal-
ity is exploited, we obtain different assignments relying on the metric-based
approach. Therefore, we have presented a tree-based approach which over-
comes this shortcoming. Furthermore, the tree-based method offers a way of
regrouping keys into larger key clusters by ascending one (or more) level(s) in
the tree.

Finally, our third research area deals with the representation of semantic meta-
data. In order to efficiently manage personal data and the related metadata, a
content management system (CMS) is needed. Besides a set of procedures to
manage the work flow, a CMS typically involves a metadata model. Within
the context of a single CMS, the semantics of different fields of the meta-
data model are well-defined. However, there is a major discrepancy when it
comes to the interoperability between different metadata models. Therefore,
it is indispensable that the semantics can be formally defined by the metadata
model. In this dissertation, we have presented a solution for this problem by
introducing a CMS to manage one’s personal content that is stored on differed
devices. The metadata model of the proposed CMS relies on an ontology that
is created using Semantic Web technologies. This ontology is an OWL DL
ontology as reasoning needs to be supported. We have outlined how some
common difficulties, with respect to ontology modeling, can be tackled and
what the deficiencies of the OWL DL language are. The presented ontology
for the CMS consists of three major parts that describe system-, security-, and
user-centric metadata. The system-centric metadata concern the storage loca-
tion and how these data can be accessed. The security-centric metadata de-
scribe the rights that end-users have concerning a document and its metadata.
Besides intellectual property rights, the user-centric metadata include content-
descriptive metadata which concern the management of both extracted features
and manually added descriptions. These metadata are content-aware since dif-
ferent types of media (such as images, video, music, or text) require specific
properties. We have elaborated on image metadata and we have presented an
image ontology that is enclosed by the metadata model of the CMS. The im-
age ontology is a rich ontology that supports many concepts for detailed image
annotation, and is extended with a taxonomy that refines additional concepts
and properties for annotation. An advantage of the application of Semantic
Web technologies is to tackle interoperability issues between different meta-
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data standards. This issue can be solved by creating semantic representations
of metadata standards and a mapping between the resulting ontologies. This
way, the proposed image ontology is used as an upper-ontology to relate con-
cepts from other image metadata standards.
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Samenvatting

De laatste decennia is er een enorme toename geweest in de hoeveelheid di-
gitale media. De ontwikkeling van algoritmes en technologieén voor het di-
gitaliseren van media alsook de alsmaar stijgende capaciteit en dalende kost-
prijs van opslagmedia kunnen deze toename verklaren. Grote hoeveelheden
audio, beeld en video worden dagelijks geproduceerd. Zo zal er tegen 2011
maar liefst 1.8 zettabytes aan digitale data zijn. De grootste toename in de
laatste jaren betreft visuele data, o.a. afkomstig van digitale fotocamera’s,
bewakingsbeelden en digitale televisie, en zal ook de komende jaren blijven
toenemen. Ook de onlinemarkt zal blijven groeien. Zo is bijvoorbeeld de on-
line muziekverkoop, op de game-industrie na, nu al de grootste onlinemarkt en
bovendien zal vanaf 2011 het overgrote deel van de muziekverkoop via internet
plaatsvinden. Om een beeld van de grootteorde te geven, Apple iTunes biedt
nu reeds meer dan 10 miljard nummers aan en file-sharing netwerken hebben
ook nog eens miljarden nummers voor het downloaden ter beschikking.

Veel organisaties en bedrijven hebben bijgevolg nood aan applicaties en stan-
daarden om met deze enorme hoeveelheden data om te kunnen gaan. Er is in
het bijzonder een grote noodzaak aan technieken om informatie rechtstreeks
uit de inhoud van de data te extraheren zodoende deze te kunnen ontsluiten.
Bovendien is ongeveer 70% van alle digitale data geproduceerd door indi-
viduen. Bijgevolg is er ook nood aan representatieve datamodellen voor het
beheren en ontsluiten van persoonlijke data. We kunnen bovendien bemerken
dat persoonlijke data tegenwoordig bewaard wordt op verschillende toestellen,
zoals bijvoorbeeld op een mobiele telefoon, een MP3-speler, een laptop of
gewoon op het World Wide Web. Doordat digitale eigendom dus op ver-
schillende toestellen bewaard wordt, wordt het moeilijker om deze data en
haar metadata te beheren. Daarom is er nood aan contentmanagementsys-
temen die, transparant, met zulke opslagvormen overweg kunnen en onder-
steuning bieden voor (zowel manuele als automatisch verkregen) annotaties
ter onsluiting. Bovendien dient semantische interoperabiteit ten opzichte van
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andere metadatastandaarden gewaarborgd te worden zodoende de uitwisseling
van metadata te vergemakkelijken.

Binnen het domein van inhoudsgebaseerde ontsluitingstechnieken is echter
een belangrijk obstakel: de semantische kloof. De semantische kloof duidt
aan dat eindgebruikers data willen bevragen op een semantisch niveau terwijl
de beschrijvende kenmerken die uit de inhoud kunnen geé€xtraheerd worden
enkel een similariteit op een laag niveau kunnen waarborgen. Bijgevolg is er
de voorbije jaren veel onderzoek gebeurd naar methodes om deze semantische
kloof te overbruggen. Deze methodes passen hoofdzakelijk twee strategieén
toe: een bottom-up of een top-down strategie. In de bottom-up strategie wor-
den beschrijvende kenmerken uit het signaal (laagste niveau) ge€xtraheerd en
daarna worden machine learning technieken gebruikt om zodoende bepaalde
concepten (hoogste niveau) te detecteren. De top-down methodologie gaat net
andersom te werk: er wordt domeinkennis gebruikt om inzicht te vergaren in
de componenten van een concept en, in een volgende iteratie, worden deze
componenten dan weer verfijnd.

Een goed beschrijvend kenmerk is essentieel voor elk inhoudsgebaseerd
ontsluitingssysteem. Goed betekent in deze context dat het kenmerk voldoende
robuust moet zijn voor bepaalde variaties die geintroduceerd kunnen worden
door het creatieproces. Maar een grote invariantie betekent vaak ook dat een
groot deel van het onderscheidend vermogen van een bepaalde kenmerk ver-
loren gaat.

Dit proefschrift introduceert een aantal methodes om de semantische kloof in
het computervisiedomein en muziekverwerkingsdomein te overbruggen. We
stellen kenmerken voor die gerelateerd zijn aan perceptie en we gebruiken ma-
chine learning technieken om deze te relateren met bepaalde concepten. Daar-
naast stellen we een systeem voor om verschillende types metadata te modelle-
ren, te ontsluiten en te beheren. Daarnaast wordt ook de interoperabiliteit van
het systeem met andere metadatastandaarden aangepakt.

In het computervisiedomein hebben we ons gefocust op het modelleren van
textuur. Textuur is een belangrijke eigenschap in computervisie aangezien het
robuuster is dan bijvoorbeeld kleur ten opzichte van veranderingen in de be-
lichting. Textuur kan bovendien een belangrijke rol spelen in beeldherken-
ning aangezien het gerelateerd is aan perceptie en bovendien vaak rechtstreeks
gerelateerd kan worden aan bepaalde afgebeelde concepten. Maar er bestaat
geen formele definitie van textuur en bijgevolg zijn er heel veel methodes
om textuur te modelleren. Aangezien textuur gerelateerd is aan perceptie,
stellen wij in dit proefschrift een nieuw beschrijvend textuurkenmerk voor.
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Dit kenmerk is gebaseerd op de respons van cellen in de humane visuele cor-
tex. Deze textuurkenmerken worden dan gebruikt in verscheidene toepas-
singen. In een eerste toepassing tonen we aan dat door gebruik te maken
van de voorgestelde textuurkenmerken, de beste resultaten verkregen worden
voor ongesuperviseerde classificatie van textuurbeelden. In een tweede toe-
passing tonen we aan dat voor supergeviseerde classificatie, de voorgestelde
textuurkenmerken aanleiding geven tot even goede resultaten als door gebruik
te maken van state-of-the-art textuurkenmerken. Aangezien ruis in veel prak-
tische applicaties een veel voorkomend probleem is, hebben we de impact
van verschillende types en hoeveelheden ruis voor textuurclassificatie onder-
zocht. Hierbij hebben we aangetoond dat de voorgestelde textuurkenmerken,
in tegenstelling tot de state-of-the-art technieken, robuust zijn tegen grote hoe-
veelheden ruis. Ook compressieartefacten (zoals geintroduceerd door JPEG-
compressie) hebben een negatieve invloed op textuurclassificatie. We hebben
aangetoond dat de voorgestelde textuurkenmerken voldoende robuust hierte-
gen zijn. In een vierde toepassing hebben we de voorgestelde kenmerken ge-
bruikt voor materiaalclassificatie. Ook in deze toepassing worden de beste
resultaten verkregen door de voorgestelde kenmerken. Tenslotte hebben we
de automatische interpretatie van openluchtfoto’s welke natuurlijke textuurin-
formatie bevatten, onderzocht. Bij deze automatische interpretatie van foto’s
wordt er gebruik gemaakt van segmentatie, materiaaldetectie en het toepassen
van domeinkennis. Deze domeinkennis beschrijft de relaties tussen afgebeelde
concepten en wordt dan via de top-down strategie toegepast om mogelijke
fouten te elimineren. De experimenten duiden aan dat door gebruik te maken
van de voorgestelde kenmerken, de beste resultaten worden verkregen.

In het muziekverwerkingsdomein hebben we een bottom-up strategie gebruikt
om melodie- en tonaliteitinformatie te verwerven uit muziekopnames. Zowel
melodie als tonaliteit zijn twee essenti€le kenmerken van Westerse muziek en
zijn gerelateerd aan toonhoogteperceptie. Luisteraars onthouden vaak makke-
lijker de melodie van een nummer dan de titel en de uitvoerder, of de gezon-
gen tekst. Maar het automatisch extraheren van melodische informatie uit
meerstemmige muziek is geen triviale taak. Dit komt omdat de frequenties
van verschillende instrumenten elkaar soms overlappen. In dit proefschrift
stellen we een methode voor om de melodie uit meerstemmige muziekop-
names te extraheren. Onze doelstelling is om een symbolische notennotatie
te verkrijgen. Ons voorgestelde systeem bestaat uit vier delen. In het eerste
deel wordt toonhoogte-informatie uit de muziekopname geéxtraheerd door ge-
bruik te maken van een gehoorsmodel. In het tweede deel wordt in elke tijds-
venster de fundamentele frequentie geschat (deze is gerelateerd aan de per-
ceptuele toonhoogte) en toonhoogtetrajecten worden gecreéerd over opeenvol-
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gende tijdsvensters. In het derde deel worden deze trajecten omgevormd tot
een symbolische voorstelling. Tenslotte wordt in het laatste deel een filtering
toegepast om minder belangrijke symbolen te verwijderen en zodoende een
symbolische notenvoorstelling te bekomen.

Naast het bekomen van melodische informatie hebben we ook de extractie en
classificatie van tonaliteitinformatie behandeld. Zoals melodie is ook tonaliteit
gerelateerd aan toonhoogteperceptie, maar tonaliteit manifesteert zich dan over
een relatief groter tijdsinterval. Tonaliteit is een harmonisch systeem van 24
toonaarden (12 majeur en 12 mineur) dat aangeeft welke soort intervallen ge-
bruikt worden. De extractie van tonaliteitinformatie uit muziekopnames wordt
verkregen door toonhoogte-inductie welke het signaal transformeert in een
hoogdimensionale kenmerkenvector. Ondanks dat aangetoond is dat tonaliteit
laagdimensioneel is, worden verschillende toonaardsequenties bekomen wan-
neer we deze laagdimensionaliteit benutten door middel van de afstandsge-
baseerde methode. In dit proefschrift stellen we een nieuwe methode voor die
gebaseerd is op het gebruik van classificatiebomen welke niet onderhevig aan
deze beperking. Bovendien biedt de voorgestelde methode een mogelijkheid
aan om toonaarden te groeperen in klassen door een of meerder niveaus te
stijgen in de boom en zodoende een compactere representatie te bekomen.

In ons derde en laatste onderzoeksdomein hebben we de representatie van se-
mantische metadata onderzocht. Om efficiént persoonlijke data te beheren
en te onsluiten, zijn er specifieke vereisten voor een contentmanagementsys-
teem. Naast een verzameling van procedures die de work-flow regelen, be-
vat een contentmanagementsysteem ook een metadatamodel. Binnen de con-
text van een contentmanagementsysteem is de semantische betekenis van de
verschillende velden van het metadatamodel duidelijk, maar de interopera-
biliteit tussen andere metadatastandaarden is vaak niet gegarandeerd. Om
de uitwisseling van metadata ten goede te komen, is deze interoperabiliteit
echter een noodzaak. Daarom vinden we het noodzakelijk dat het metadata-
model de semantiek formeel kan definiéren. In dit proefschrift hebben we
hiervoor een oplossing voorgesteld en deze uitgewerkt in een contentmanage-
mentsysteem voor persoonlijke data welke op verschillende toestellen bewaard
wordt. Het metadatamodel van het voorgestelde contentmanagementsysteem
is een ontologie die gemodelleerd is door middel van Semantische Webtech-
nologieén. De ontworpen ontologie is een OWL DL ontologie aangezien au-
tomatische redenering op de metadata ondersteund moet worden. We hebben
enkele modelleringtechnieken uiteengezet en zwakke punten van OWL DL
aangeduid teneinde een OWL DL ontologie te kunnen bekomen. De gemodel-
leerde ontologie bestaat uit drie grote delen: het eerste deel omvat de metadata
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die het systeem beschrijft, het tweede deel beschrijft de beveiliging van de
data en metadata en het derde deel beschrijft de metadata die door gebrui-
kers kunnen worden toegevoegd. Deze laatste categorie omvat, naast meta-
data om de intellectuele eigendom te modelleren, ook metadata om de inhoud
te beschrijven. Inhoudsbeschrijvende metadata is afhankelijk van het type
inhoud dat beschreven wordt aangezien verschillende mediatypes (zoals bij-
voorbeeld beeld, geluid, video of tekst) verschillende eigenschappen hebben.
We hebben ons verdiept in metadata voor digitale beelden en een ontologie
uitgewerkt die deel uitmaakt van het metadatamodel van het contentmanage-
mentsysteem. Deze ontologie is een rijke ontologie die veel concepten onder-
steunt om beelden te annoteren en bovendien een taxonomie omvat. Door ge-
bruik te maken van Semantische Webtechnologieén kunnen interoperabiliteits-
problemen tussen verschillende metadatastandaarden en -modellen gemakke-
lijk verholpen worden. De voorgestelde oplossing maakt dan gebruik van se-
mantische representaties van metadatastandaarden en afbeeldingen tussen de
respectievelijke ontologién. Zodoende fungeert de voorgestelde ontologie als
een upper-ontologie om concepten uit verschillende metadatastandaarden te
relateren.
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List of Abbreviations

BMU Best Matching Unit

BRICKS Building Resources for Integrated Cultural Knowledge Services
CBIR Content-Based Information Retrieval

CVIR Content-Based Visual Information Retrieval
CMS Content Management System

COV Color Opponent Values

DFT Discrete Fourier Transform

EXIF Exchangeable Image File Format

FFT Fast Fourier Transform

FOAF Friend of a Friend

FT Fourier Transform

GLCM Gray Level Co-occurence Matrix

GMRF Gaussian Markov Random Field

HSV Hue Saturation Value

HVS Human Visual System

IBA not-for-profit International Imaging Industry Association
IPR Intellectual Property Rights

JPEG Joint Picture Experts Group

LBP Local Binary Pattern

LGN Lateral Geniculate Nucleus

MMSem W3C Multimedia Semantics Incubator Group
MPEG Moving Picture Experts Group

OWL Web Ontology Language

PCA Principal Component Analysis

PDF Probability Density Function

PECMAN Personal Content Management Platform

RDF Resource Description Framework

RDFS RDF Schema

RGB Red Green Blue

SOM Self-Organizing Map

SPARQL SPARQL Protocol And RDF Query Language
STFT Short-Time Fourier Transform

SWRL Semantic Web Rule Language
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URIref Uniform Resource Identifier Reference
VIR Visual Information Retrieval

W3C World Wide Web Consortium

WWW Word Wide Web

XML Extensible Markup Language
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Chapter 1

Introduction

The only limit to our realization of tomorrow,
will be our doubts of today.
— Franklin D. Roosevelt (1901 — 1945)

In this dissertation, we present our research on the extraction, application, and
representation of semantic information. The presented research deals with typ-
ical difficulties of three domains: (i) computer vision, (ii) music audio mining,
and (iii) metadata modeling. In the computer vision domain, we focus on
the extraction of perceptual-based texture information and its application for
segmentation, classification, and interpretation of images. The modeling of
a novel texture feature is inspired by the human visual system, and we show
that these texture features have high discriminating capabilities and are ro-
bust to noise and image compression artefacts. In the musical audio mining
domain, we tackle the extraction of melodic lines and tonality information
from polyphonic music. Unlike most other melody extraction approaches, we
aim to explicitly distinguish individual musical notes, characterized by specific
temporal boundaries. Finally, the third domain handles the representation of
metadata using Semantic Web technologies. This domain is extended to the in-
tegration of metadata standards in distributed (personal) content management
systems and the annotation of digital images. In the next section, we describe
the general context and explain some important concepts.
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1.1 Context

Over the last decades, the development of digitization techniques and the in-
creasing capacity together with the decreasing costs of storage media, has led
to an explosion of digital content. Huge amounts of audio, images, and videos
are generated dailey and are mostly stored in an unstructured repository of
multimedia information, much of which can be accessed through the Internet.
According to a study of the International Data Corporation (IDC), there will be
approximately 1.8 zettabytes of data in 2011 [1]. The biggest growth in data
is visual in nature, from devices such as digital cameras, digital surveillance
cameras, and digital televisions. Further, the music sector is generating far
greater value from the online and mobile market than any other sector in the
creative industries, with the exception of electronic games. For example, Ap-
ple’s iTunes StoreE] offers its customers over ten billion songsﬂ to choose from
and the file sharing networks have billions of tracks available for download.

To deal with these huge amounts of data, one of the main imperatives IT orga-
nizations already face, are new tools and standards for data search and analy-
sis. In particular, there is a need for efficient techniques that are able to extract
information directly from the content. Indeed, with the growth of digital con-
tent, the need for content-based retrieval techniques has drastically increased.
Content-based means that, e.g., a search relies on the content rather than re-
lying on human-inputted metadata, such as captions or keywords. Obviously,
manual annotation is a cumbersome and expensive task for large collections,
and is often subjective, context-sensitive, and incomplete. As a result, it is
difficult for the traditional text-based methods to support a variety of task-
dependent queries, such as finding a song by singing the melody or finding
similar images. However, despite the vast amount of digitized media files and
the existence of various types of portable devices, the disclosure of these mul-
timedia data is still mainly text-based. For example, queries to retrieve musical
audio are still based on categories, such as artist, title, or genre. This leads to
a number of limitations for both the end-users and service providers in what
concerns database search and the manual assignment of metadata, respectively.
Thus, to disclose large databases in an efficient manner, it is important that the
property of interest, such as the melody and vocal parts for music databases
or the depicted concepts for photo collections, can be automatically extracted
from the content.

Within the domain of content-based information retrieval, there is a major dis-

"http://www.itunes.com
Zhttp://www.apple.com/pr/library/2010/02/25itunes.html
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Figure 1.1: The semantic gap in content-based information retrieval.

crepancy, i.e., the semantic gap. Smeulders et al. [2] describe the semantic gap
as “the lack of coincidence between the information that one can extract from
the data and the interpretation that the same data have for a user in a given
situation”, as is shown in Figure@ This means that a user wants to retrieve
data on a semantic level, but the characterizations can only provide a low-level
similarity. For example, one wants to find images containing flowers, but an
image file only contains information about the color of the pixels.

Over the last years, a plethora of approaches have been developed to bridge
the semantic gap. These attempts mainly apply two kinds of strategies: (i)
a bottom-up or (ii) a top-down strategy. The bottom-up approach starts from
extracting features at the signal level (low level) and then applies machine
learning techniques for concept detection (high level). Contrary, the top-down
approach starts from applying domain knowledge to gain insight into the com-
positional elements which are then refined in greater detail. However, content-
based information retrieval systems often combine both strategies to generate
perceptually and semantically more meaningful retrieval results, e.g., by incor-
porating relevance feedback obtained from the end-user. Figure[I.2]depicts the
architecture of a typical content-based information retrieval system. In such
a system, the contents of the item in the database are extracted and described
by (multi-dimensional) feature vectors. The feature vectors of the items in the
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Figure 1.2: The architecture of a content-based information retrieval system.

database form a feature database. To retrieve items, a query can be formulated
by an example (i.e., the query-by-example paradigm where users input con-
tent they consider similar to the desired retrieval results). Queries can also be
formulated by keywords or descriptions if the latter can be correlated with the
extracted features by the system. Such systems are usually interactive with a
domain specific definition of similarity. In a content-based retrieval system, it
is important to select the appropriate features that have optimal discriminatory
power. The process of automatically or interactively choosing the best set of
features for a particular application, is denoted as feature selection. In the case
of query-by-example, the system then transforms the example into its internal
representation of feature vectors. When the features have been selected, a met-
ric is chosen, and the similarities between the feature vectors of the query and
those of the items in the database are calculated. An ideal measure of feature
similarity should be correlated to the user’s intuitive sense of similarity. In the
last stage, retrieval is performed, possibly by incorporating users’ relevance
feedback. The query results can be outputted as a list ranked by the similarity
measure.

Next to the semantic gap, a second discrepancy for content-based retrieval can
be identified: the sensory gap. The sensory gap is the gap between the object
in the world and the information in a (computational) description derived from
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a recording [2]. In other words, the sensory gap is the discrepancy between the
properties in a (digital) representation, e.g., an image or audio-recording and
the properties of the concept. The sensory gap makes the description of objects
an ill-posed problem: it yields uncertainty in what is known about the state of
the object. The sensory gap is particularly poignant when a precise knowledge
of the recording conditions is missing.

A good content descriptor is essential in any content-based retrieval applica-
tion. In this context, good also means that the descriptor should be insensitive
to the accidental variance introduced by the content creation process, e.g., the
variation of the illuminant in visual data or the presence of noise in an audio
recording. However, there is a tradeoff between this invariance and the dis-
criminative power of features since a very wide class of invariance loses the
ability to discriminate between essential differences.

Further, the study of the IDC [1] also states that approximately 70% of all data
are created by individuals. As a result, the need for representative data models
for the management and disclosure of personal data becomes higher. Today,
one’s personal content is stored on many devices, such as a smart phone, an
MP3-player, a laptop, or somewhere on the World Wide Web. As a result,
it becomes more difficult to efficiently manage these personal data and the
related metadata. Therefore, a system to manage these data is needed that,
transparantly, keeps track of the data sources and allows annotations.

The work we present in this dissertation proposes methods to bridge the seman-
tic gap in two domains, i.e., in computer vision and in musical audio mining.
We propose methods to relate these features with concepts that are related with
human perception. In the computer vision domain, we focus on the modeling
of textures. As will be explained, texture is an important property in com-
puter vision. Next, important properties of Western music are (besides rhythm)
melody and tonality. In this thesis, we present a bottom-up approach to extract
the melody and tonality from musical audio signals. Finally, our third research
area handles the representation of semantic metadata. This domain is extended
to the modeling and the integration of standardized metadata in personal con-
tent management systems. In the next three sections, we elucidate these three
research topics.

1.2 Texture

Texture analysis plays an important role in many image analysis applications.
Even though color is important for interpreting images, there are situations
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(c) ()

Figure 1.3: Examples of some everyday textures: (a) bricks, (b) grass, (c) trees, and
(d) wood.

where color information is not enough, nor even applicable. For example,
in industrial visual inspection color and texture information can be used for
error detection. Or, in some applications, such as in the quality control of
paper or parquet slabs, there is no color at all. Texture measures can also cope
better with varying illumination conditions, for instance in outdoor conditions.
Therefore, they can be useful tools for high-level interpretation of natural scene
image content. The latter property is exemplified in Figure [[.3 which depicts
some everyday textures. Despite the lack of color information, one is able to
recognize the depicted concepts. Texture methods can also be used in medical
image analysis, biometric identification, remote sensing, content-based image
retrieval, document analysis, and model-based image coding.

Many methods have been proposed in the literature to analyze textures, such
as statistical, structural, and stochastic approaches. In this dissertation, we
present a texture feature that is inspired by the human visual system. We rely
on responses of cells that are located in the primary visual cortex of humans.
These features are then used for unsupervised segmentation of textured im-
ages, semi-supervised texture classification, and the automatic interpretation
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of outdoor scenery images. Furthermore, we show that these texture features
are robust to noise and image compression artifacts.

1.3 Musical Audio Mining

In order to overcome the limitations that are related to traditional text-based
retrieval in music databases, there is a need for automatic music transcription
techniques. Music transcription refers to the analysis of a musical signal in
order to produce a representation of, e.g., the sounding notes in the musical
signal. Melody is one of the main characteristics of Western music, and is re-
lated to pitch perception. Furthermore, it is a fact that people often remember
the melody of a song rather than the performer and the title. Even after the
lyrics have been forgotten, it is the melody that humans are likely to recall
or are able to reproduce by humming or whistling. Despite the fact that after
hearing a song — even untrained — listeners are able to reproduce the melody,
automatic melody transcription is not an easy task. Moreover, as music is
nowadays typically produced by different, simultaneously playing instruments,
melody transcription becomes more complex. The latter is because frequen-
cies of concurrent sounds may coincide. As a result, it is difficult to designate
the frequency components that have been produced by the instrument which
plays the melody. If the melody can be automatically extracted from a musi-
cal signal, it is possible to query a music database by singing, humming, or
whistling the melody, i.e., query by melody. Besides query by melody, other
applications, such as plagiarism detection, music analysis, and performance
analysis, could gain from melody transcription as well. In this dissertation, we
present a transcription system to automatically extract the melody from both
monophonic and polyphonic musical audio recordings. We aim to distinguish
individual musical notes characterized by specific temporal boundaries in or-
der to obtain a symbolic representation.

Besides melody, another important musical property that is related to pitch per-
perception, is tonality. The pitch that attains the greatest stability in a musical
passage is called the musical key or tonal center. Almost all Western music is
built in a way such that certain pitches functionally operate as attractor of other
pitches. In music theory, this is expressed by the concept of tonality. Tonality
is a harmonic system of 24 keys, i.e., 12 major and 12 minor keys. Recognition
of musical key is an important step in the exploration of methods that allow the
development of multi-level music representation schemes for musical content,
such as chord recognition and also emotion detection since the musical key is
deemed to provide a specific emotional connotation.
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1.4 Metadata

In order to efficiently manage personal data and the related metadata, a con-
tent management system (CMS) is needed. Besides a set of procedures to
manage the work flow, a CMS typically involves a metadata model. Within
the context of a single CMS, the semantics of different fields of the metadata
model are well-defined. However, there is a major discrepancy when it comes
to the interoperability between different metadata models. Therefore, it is in-
dispensable that the semantics can be formally defined by the metadata model.
Different metadata standards have been proposed using the Extensible Markup
Language (XML) [3] as underlying language. XML allows to structure data
according to a schema which defines the constructs that represent the metadata.
However, as XML is a structuring language, it infers some problems to define
the semantics of the described concepts. In this dissertation, we have tackled
this issue in the context of a personal CMS and the annotation of photos. We
introduce the application of Semantic Web technologies for personal CMSs
and as a way to integrate metadata standards. The Semantic Web provides a
framework that allows to formally describe the semantics of information re-
sources. As such, these metadata can be shared and reused across different
applications, communities, and enterprises without losing the semantic mean-
ing of the concepts and relationships. Within this dissertation, we deploy the
Web Ontology Language (OWL) [4] which permits to define concepts and re-
lationships on which can be reasoned. Finally, relying on OWL, we present a
layered architecture for a semantic personal CMS.

1.5 Outline

This dissertation is organized as follows. In Chapter 2] we present the mod-
eling of a novel texture feature which is inspired by the human visual system.
First, we explain the typical characteristics of texture, and second, we present
related work in this domain. Next, we present the texture model by relying
on responses of cells that are located in the primary visual cortex of humans.
Then, after the parameter selection, we use this novel feature for unsupervised
texture segmentation, semi-supervised texture classification, semi-supervised
material classification, and outdoor scene labeling. The accuracy of our ap-
proaches is shown by comparing our results with state-of-the-art texture fea-
tures.

In Chapter 3] we present our research in the musical audio mining domain.
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This encloses melody and tonality extraction from polyphonic music. First,
we propose an automatic melody transcription system which exists of four
phases: (i) auditory-model-based pitch detection, (ii) fundamental frequency
estimation and pitch tracing, (iii) tone creation, and (iv) filtering. We evaluate
our approach on different labeled melody collections and discuss the perfor-
mance. Second, we present a method for extracting tonality information from
polyphonic music recordings. We discuss two key-recognition methods for
musical audio: one (classical) metric-based method and a novel tree-based
method.

In Chapter [ we present a distributed personal content management system
that relies on Semantic Web technologies. At first, we present the system re-
quirements and the related work. Next, we present a model for a personal
CMS by relying on Semantic Web technologies, and we introduce a taxonomy
for (photo) annotation. Finally, we solve the addressed interoperability issues
between metadata standards using Semantic Web technologies.

Finally, the conclusions and future work of this dissertation are presented in
Chapter 3]

1.6 Overview of Publications

The research activities that have lead to this dissertation resulted in 7 jour-
nal papers that are listed in the Science Citation Index from which 3 as first
author and 4 as co-author. Our work als contribtuted a book chapter in Self-
Organizing Maps (In-Tech), and in Data Management in the Semantic Web
(Nova). Further, our work contributed to 14 papers.

1.6.1 SCl-listed Publications

1. M. Leman, J. Dierickx, and G. Martens. The IPEM-archive conservation
and digitalization project. Journal Of New Music Research, 30(4):389—
393, 2001

2. G. Martens, H. De Meyer, B. De Baets, M. Leman, M. Lesaffre, and J.P.
Martens. Tree-based versus distance-based key recognition in musical
audio. Soft Computing, 9(8):565-574, 2005

3. C. Poppe, G. Martens, S. De Bruyne, P. Lambert, and R. Van de Walle.
Robust spatio-temporal multimodal background subtraction for video
surveillance. Optical Engineering, 47:110101, October 2008
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. C. Poppe, G. Martens, E. Mannens, and R. Van de Walle. Personal Con-

tent Management System a Semantic Approach. Visual Communication
and Image Representation, 47:131 — 144, February 2009

. G. Martens, C. Poppe, P. Lambert, and R. Van de Walle. Semi-

supervised classification of robust texture features inspired by the hu-
man visual system. Visual Communication and Image Representation,
2010. Under review

. G. Martens, C. Poppe, P. Lambert, and R. Van de Walle. Noise and

compression robust biological features for texture classification. The
Visual Computer, 26(6-8):915-922, June 2010

. C. Poppe, G. Martens, P. De Potter, and R. Van de Walle. Semantic web

technologies for surveillance metadata. Multimedia Tools and Applica-
tions

1.6.2 Book Chapters

1. G. Martens, P. Lambert, and R. Van de Walle. Self-Organizing Maps,

chapter Bridging the semantic gap using human vision system inspired
features, pages 261-276. In-Tech, 2010

. C. Poppe, G. Martens, E. Mannens, and R. Van de Walle. Data Manage-

ment in the Semantic Web, chapter Creating Personal Content Manage-
ment Systems Using Semantic Web Technologies. Distributed, Cluster
and Grid Computing. Nova, 2011

1.6.3 Other Publications

1. G. Martens, H. De Meyer, B. De Baets, M. Leman, J.P. Martens,

L. Clarisse, and M. Lesaffre. A tonality-oriented symbolic represen-
tation of musical audio generated by classiffication trees. In The EURO-
FUSE Workshop on Information Systems, 2002

. M. Leman, L. Clarisse, B. De Baets, H. De Meyer, M. Lesaftre,

G. Martens, J.P. Martens, and D. Van Steelant. Tendencies, perspec-
tives, and opportunities of musical audio-mining. In A Calvo-Manzano,
A Perez-Lopez, and J Salvador Santiago, editors, Revista de Acustica,
volume 33, 2002
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Chapter 2

Texture Analysis

You can’t predict the future, but you can invent it.

— Dennis Gabor (1900 — 1979)

2.1 Introduction

Due to the large volume and variety of digital images that are used in different
application domains, intelligent retrieval techniques have become compulsory.
In particular for large collections, there is an increasing need for automatic
visual content analysis in order to efficiently retrieve information. Large col-
lections of visual information can be found in many application domains, such
as medicine, journalism, identification and surveillance, geographical informa-
tion systems, remote sensing, entertainment, digital catalogues, etc.

As in conventional information retrieval, the purpose of a visual information
retrieval (VIR) system is to retrieve all the images (or image sequences) that
are relevant to a user query while retrieving as few non-relevant images as
possible. A content-based VIR system must be able to interpret the content
of the documents (i.e., images and/or video) in a collection and rank them
according to a degree of relevance to the user query. The interpretation process
involves extracting (semantic) information from the documents and using this
information to match the user needs [28]. A number of related problems and
constrains to content-based VIR are:

* Lighting. Besides the physical content of the scene and the character-
istics of the camera, the color of a recorded image also depends on the
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illumination incident on the scene. Human perception normalizes per-
ceived spectra with respect to global scene illumination, a phenomenon
known as “color constancy” [29]. However, in the case of image acqui-
sition the scene illumination is often not known or not homogeneous.
Given certain assumptions about lighting conditions, the reconstruction
of the actual color of an object is not trivial since the light reflected from
the object also depends on the material where the object is made of and
the object’s surface, two parameters which are often unknown.

Context. The context of a content-based VIR system and the type of vi-
sual information have a strong effect on how the content is described and
compared. For example, searching for images with a similar color com-
position or searching for images with similar objects yield two different
approaches concerning the type of visual information. Domain knowl-
edge and contextual information are essential in deriving an appropriate
image representation. Furthermore, the context may play an important
role in determining which methods are to be used.

Object recognition. The ability to detect objects would support the re-
trieval of semanticly similar visual content. However, object recognition
is a computationally hard problem. Recognition typically involves the
computation of a set of components at one step and their combination in
the next step [30,31]. If a reasonably good match is found, successful
object recognition will occur.

Image segmentation. Partitioning an image into regions that are mean-
ingful with respect to a particular application, is essential in image un-
derstanding. Segmentation could be used for, e.g., object recognition,
occlusion boundary, estimation within motion or stereo systems, image
compression, image editing, or image database look-up, etc. However,
these are difficult to achieve since one has to use low-level image fea-
tures (e.g., color) which are obtained from a 2-dimensional representa-
tion that depicts a 3-dimensional scene. Furthermore, humans probably
use object recognition in conjunction with segmentation.

Motion. In computer vision, there are several tasks related to motion
estimation of image sequences:

— Ego motion: knowledge of the camera rotation and translation be-
tween frames is crucial input to many vision applications.

— Tracking: following or predicting the movements of objects or a
set of interest points in the image sequence.
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— Optical flow: the apparent motion in a visual scene caused by the
relative motion between the camera and the scene.

Content-based VIR retrieval resides on features that are able to represent the
content for the desired application. The choice of a feature is thus essential
for efficient retrieval. These features are computed from the pixels’ values.
Content-based VIR systems do not use all known features as this would involve
large amounts of data and increase the necessary computing time. Instead, a
set of features appropriate to the given task is usually selected. However, it is
difficult to judge beforehand which features are appropriate for which tasks.
Three major types of low-level features can be discriminated for content-based
VIR:

1. Color. The choice of a color space is of great importance for a VIR
application. Color induces equivalent classes in the actual retrieval al-
gorithm. Important criteria in the choice of a color system are, e.g., inde-
pendence of the underlying imaging device (when images are recorded
by different devices) and numerical distances within the color space that
can be related to perceptual differences (visual similarity). Color his-
tograms are widely used in image retrieval and give an estimation of the
distribution of the colors in the image.

2. Shape. An interesting shape description should be invariant to transla-
tion, rotation, scaling and starting point transformations. Typical prob-
lems relate to shape matching which deals with transforming shape pat-
terns and measuring the resemblance. Generally, shapes can be analyzed
at the boundary level or interior level.

3. Texture. In computer vision, there is no exact definition of texture. Tex-
ture is an intuitive concept. The lack of a formal definition of texture
has led to a variety of analysis methods. Both statistical, stochastical
and structural measures have been proposed for texture analysis.

Depending on the context of the application, the importance of a certain con-
tent descriptor can differ. For example, color is an essential feature for clas-
sifying different ground regions from aerial or satellite photographs, while in
echocardiographic images texture is very important.

Since texture is much more robust than color with respect to lighting condi-
tions, it can play an important role in building a system that implements a
bottom-up approach (see Section to extract information from visual data.
Indeed, Renninger and Malik already have concluded that the human visual
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system (HVS) uses texture analysis for rapid scene identification [32]. Fur-
thermore, humans outperform most machine vision systems in many aspects
and carry out those tasks seemingly effortlessly. Therefore, building a system
for texture classification that emulates the processing principles of the human
brain is an attractive and challenging idea.

In this chapter, we focus on texture analysis methods. More specifically, we
propose a new texture feature which is based on the HVS. We investigate
the segmentation of textured images, the classification of textures, material
classification, and outdoor scene analysis using the proposed texture analysis
method. The outline of this chapter is as follows. Section [2.2] describes the
general context of the notion texture. In Section [2.3] we give an overview of
related work in the domain of texture analysis. In Section [2.4] we describe
our texture model which is based on the HVS and in Section [2.5] we clarify
how the parameters of the model are selected. In the context of this disser-
tation, a texture model transforms a window of an image into a feature vector
which can be thought of as a point in an multi-dimensional feature space. Win-
dows taken from the same texture sample form a cluster in feature space, and
windows taken from different texture samples are far away from each other
in feature space. Section [2.6] describes the unsupervised segmentation of tex-
tured images. Both the segmentation of mosaic images and outdoor scenery
photos are considered. Next, in Section [2.7| we investigate the classification of
textures. Furthermore, we examine the robustness against various kinds and
levels of noise in textures for classification. Also the impact of lossy image
compression algorithms on texture analysis is investigated. Section [2.8] then
investigates the use of texture information obtained from a single image for
material classification. The segmentation and labeling of the obtained regions
of outdoor scenery images by linking texture information with semantic con-
cepts is considered in Section [2.9] We end this chapter with conclusions and
future work in Section

2.2 Texture, a Concept

We all know that a wall of brick has a right-angled pattern while the branches of
a tree, if viewed from an appropriate distance, have a tangled appearance, and
that the surface of our woolen jersey looks different than fleece. Despite the
intuitive character of texture, a precise definition is hard to formulate. Textures
have been described in terms of the HVS, i.e., textures don’t have a uniform
intensity but are perceived as homogeneous regions, but also in terms of the
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application in which textures are used. Some examples of texture definitions
are:

* “An image texture may be defined as a local arrangement of image ir-
radiances projected from a surface patch of perceptually homogeneous
irradiances.” [33]

» “Texture regions give different interpretations at different distances and
at different degrees of visual attention. At a standard distance with nor-
mal attention, it gives the notion of macroregularity that is characteristic
of the particular texture.” [34]

* “An image texture is described by the number and types of its (tonal)
primitives... A fundamental characteristic of texture: it cannot be ana-
lyzed with a frame or reference of tonal primitive being stated or im-
plied. For any smooth gray tone surface, there exists a scale such that
when the surface is examined, it has no texture. Then as resolution in-
creases, it takes on a fine texture and then a coarse texture.” [35]

» “Texture is defined for our purposes as an attribute of a field having no
components that appear enumerable. The phase relations between the
components are thus not apparent. Nor should the field contain an obvi-
ous gradient. The intent of this definition is to direct attention of the ob-
server to the global properties of the display, i.e., its overall ‘coarseness’,
‘bumpiness’, or ‘fineness’. Physically, nonenumerable (aperiodic) pat-
terns are generated by stochastic as opposed to deterministic processes.
Perceptually, however, the set of all patterns without obvious enumer-
able components will include many deterministic (and even periodic)
textures.” [36]

* “The notion of texture appears to depend upon three ingredients: (i)
some local order is repeated over a region which is large in comparison
to the order’s size, (ii) the order consists in the nonrandom arrangement
of elementary parts, and (iii) the parts are roughly uniform entities hav-
ing approximately the same dimensions everywhere within the textured
region.” [37]

However, despite these differences, there are two widely accepted properties
of texture:

1. Within a texture, there is significant variation in intensity levels between
nearby pixels.
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2. Texture is a uniform property at some spatial scale larger than the pixel
size of an image.

In spite of the lack of a definition, texture plays an important role in many
image analysis applications, such as surface inspection (e.g., aerial image
segmentation, automated industrial inspection), content-based image retrieval,
biomedical image analysis, computer graphics (e.g., texture mapping in sur-
face or scene rendering applications, texture synthesis to create large textures
from usually small texture samples).

2.2.1 Texture Analysis Methods

The lack of a formal definition and the great variety of applications in which
texture analysis plays an important role, has led to a plethora of texture analysis
methods in the literature. Generally, there exist three approaches for texture
analysis: (i) statistical texture measures, (ii) stochastic texture modeling, and
(i11) structural texture measures.

Statistical Texture Measures

Since textures may be random within certain consistent properties, one obvi-
ous way to describe textures is to treat a texture as a statistical phenomenon.
Statistical methods analyze the spatial distribution of gray values and derive a
set of statistics from the distribution. The reason behind this is the fact that the
spatial distribution of gray values is one of the defining properties of texture.

First-order texture measures are statistics calculated from the original image
values and do not consider pixel neighborhood relationships. The measures
can be computed from the histogram of intensities (i.e., gray-levels) from an
image or image region. Suppose that we construct the histogram of the in-
tensities (h;) from an image or image region and h; denotes the number of
pixels with gray-level . Further, let N be the total number of pixels and G the
number of gray-levels, then:

Q
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hi = N. 2.1
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The normalized histogram (H;) with H; = h;/N then represents the empirical
probability density function of the gray-values. Statistics computed from H;
are, e.g.:
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o the gray-level mean: pu = ZiG:_Ol iH;,

« the gray-level variance: 02 = S5 " (i — p)2H;
. 1 G—-1 /. 3

* the gray-level skewness: v = > """ (i — p)° H;

e gray-level kurtosis: x = = > 7" (i — p)* H; — 3,

* the gray-level energy: e = ZZG;()l Hf where G™1 <e <1,

* the gray-level entropy: s = Zic’:ol H;log H; where 0 < s < logG.
The mean ; measures the average gray-level, the variance o2 measures the
global contrast, the skewness v measures the extent to which outliers favor
one side of the distribution, the kurtosis x measures the “peakedness” of the
gray-level distribution, the energy e measures the non-uniformity of the his-
togram or how much intensity variation there is, and the entropy s measures
the uniformity. However, texture analysis based solely on first-order statistics
suffers from the limitation that it provides no information about the relative
position of pixels to each other. For example, 2 completely different images
each with a 50% black and 50% white pixels (such as a checkerboard and a

salt & pepper noise pattern) produce the same gray-level histogram and have
the same first-order statistics.

As a means to overcome these issues, gray-level co-occurrence matrices
(GLCM) were introduced by Haralick [38]. The gray-level co-occurrence ma-
trix estimates image properties related to second-order statistics. The GLCM
for a displacement vector d is defined as follows: the entry (i, j) of the matrix
is the number of occurrences of the pair of gray-levels ¢ and j which are a
distance d apart. The co-occurrence matrix reveals properties about the spatial
distribution of the gray-levels in the texture image. For example, if most of the
entries in the co-occurrence matrix are concentrated along the diagonals, then
the texture is coarse with respect to the displacement vector d. Haralick has
proposed a number of useful texture features that can be computed from the
co-occurrence matrix [35]. However, the co-occurrence matrix features suffer
from a number of difficulties. There is no well established method of selecting
the displacement vector and computing co-occurrence matrices for different
values of d is not feasible. For a given displacement vector d, a large number
of features can be computed from the co-occurrence matrix. This means that
some sort of feature selection method must be used to select the most relevant
features.
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Identical second-order statistics do not guarantee identical textures, higher than
second-order statistics contain little information that can be used for texture
discrimination [39].

An important property of statistical methods is that the image cannot be recre-
ated from the measured set. A survey of statistical approaches for texture is
given by [35, 39].

Stochastic Texture Modeling

This approach assumes that a texture is the realization of a parametrical
stochastic process. A model is defined and the parameters are estimated so
that the stochastic process can be reproduced from the model and its associ-
ated parameters. The estimated parameters can serve as features for texture
classification and segmentation problems. Stochastic texture models can be
divided into three major groups: probability density function (PDF) models,
gross shape models, and partial models [40].

1. PDF models model a texture as a random field and a statistical model is
fitted to the spatial distribution of intensities in the texture. Typically, the
interaction of a small number of pixels is measured. Examples of para-
metric PDF methods are Gaussian-Markov Random Field (GMRF) [41]
and Uniform Clique Random Fields [42]. Examples of non-parametric
PDF methods include texture spectrum methods which use PDF mod-
els that are sensitive to high-order interactions, such as the local binary
pattern [43].

2. Gross shape models measure features which a human would consciously
perceive. The features can either occur at regular intervals (periodicity)
or can be spatially compact (e.g., edges, lines). The latter relate to prim-
itive methods, such as Gabor filter and wavelet outputs [44—47] and the
former relates to harmonic methods, such as autocorrelation features
or Fourier domain features, e.g., [48,49]. Harmonic methods model
a texture as a summation of waveforms so they assume that intensity
is a strongly periodic function of the spatial coordinates. The differ-
ence between primitive and harmonic methods is that primitive methods
measure spatially local features and harmonic methods model spatially
dispersed features.

3. Partial models focus on some specific aspect of texture to the detriment
of other aspects. Fractal methods measure how a texture varies with
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the scale, while /ine methods measure properties along one-dimensional
contours in a texture [50].

Structural Methods

Structural methods define texture as a composition of texture elements or prim-
itives. These primitives may be of varying or deterministic shape, such as cir-
cles, hexagons, or even dot patterns. The analysis usually depends upon the
geometrical properties of these texture elements. In contrast to primitive meth-
ods which model a texture as many simple primitives, structural methods tend
to have one complex primitive for which placement rules apply. In general, this
class of algorithms is limited in power unless one is dealing with very regular
textures. Structural texture analysis consists of two major steps: the extraction
of the texture elements and the inference of the placement rule.

There are a number of ways to extract texture elements in images. Usually
texture elements consist of regions in the image with uniform gray levels.
Voorhees and Poggio [51] argued that blobs are important in texture percep-
tion. They have proposed a method based on filtering the image with Laplacian
of Gaussian (LoG) masks at different scales and combining this information
to extract the blobs in the image. Blostein and Ahuja [52] perform similar
processing in order to extract texture elements in images by examining the re-
sponse of the LoG filter at multiple scales. They integrate their multi-scale
blob detection with surface shape computation in order to improve the results
of both processes. Tomita and Tsuji [53] also suggest a method of computing
texture elements by doing a medial axis transform on the connected compo-
nents of a segmented image. They then compute a number of properties such
as intensity and shapes of these detected elements. Zucker [54] has proposed a
method in which he regards the observable textures (real textures) as distorted
versions of ideal textures. The placement rule is defined for the ideal texture
by a graph that is isomorphic to a regular or semi-regular tessellation. These
graphs are then transformed to generate the observable texture. Which of the
regular tessellations is used as the placement rule is inferred from the observ-
able texture. This is done by computing a 2-dimensional histogram of the
relative positions of the detected texture elements. Another approach to mod-
eling texture by structural means is described by Fu [55]. In this approach, the
texture image is regarded as texture primitives arranged according to a place-
ment rule. The primitive can be as simple as a single pixel that can take a gray
value, but it is usually a collection of pixels. The placement rule is defined by
a tree grammar. A texture is then viewed as a string in the language defined by
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the grammar whose terminal symbols are the texture primitives. An advantage
of this method is that it can be used for texture analysis as well as texture gen-
eration. The patterns generated by the tree grammars could also be regarded
as ideal textures in Zucker’s model.

2.2.2 Texture Classification

Given a set of known texture categories, the goal of texture classification is
to assign a category to a texture sample. In order to achieve this, one needs
to have a priori knowledge of the classes to be recognized. Once this knowl-
edge is obtained, machine learning techniques can be applied for classification.
Supervised classification algorithms need some knowledge of the data, be it ei-
ther training samples or parameters of the assumed feature distributions. Clas-
sification algorithms can either be parametric or non-parametric. Parametric
classifiers, like Bayesian [56] and Mahalanobis [57] classifiers, make certain
assumptions about the distribution of features. Non-parametric classifiers, like
the k-NN classifier [58], can be used with arbitrary feature distributions and
without assumptions about the forms of the underlying densities. With non-
supervised techniques, classes are to be found with no prior knowledge. This
process is often called clustering. Examples of such methods include vector
quantization, utilized in texture classification, and Self-Organizing Maps [59].
Semi-supervised classification is a hybrid approach that uses both labeled and
unlabeled data in the decision process, e.g., by using labeled data to label a
large amount of unlabeled data.

2.2.3 Texture Segmentation

Texture segmentation can be seen as a subclass of image segmentation. The
goal of image segmentation is to cluster pixels into salient image regions, i.e.,
regions corresponding to individual surfaces, objects, or natural parts of ob-
jects so that a more compact image representation is obtained. This repre-
sentation should be easier to analyze and bridge the gap between the low-level
and the higher-level structures. However, general-purpose image segmentation
is still an unsolved problem, i.e., there is no universally applicable segmenta-
tion technique that will work for all images. Therefore, image segmentation
techniques using low-level features aim to identify homogeneous regions in
an image. The homogeneity can be based on one or more of several proper-
ties, such as texture, color, distribution of the densities of the image elements.
Image segmentation may use statistical classification, thresholding, edge de-
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tection, region detection, or any combination of these techniques. In contrast
to the notion of texture, image segmentation is a well-defined problem. An
image consists of an array of elements (pixels) and the aim is to give each
element a label, i.e., to assign a pixel to one region.

Analogously, the goal of texture segmentation is to segment an image into
regions according to the texture of the regions.

In general, segmentation methods are based on two basic properties of the
pixels in relation to their local neighborhood: discontinuity and similarity.
Methods that are based on some discontinuity property of the pixels are called
boundary-based methods, whereas methods based on some similarity property
are called region-based methods.

* Region-based. The region-based approach tries to isolate areas in im-
ages that are homogeneous according to a given set of features. These
image features can consist of: (i) intensity values from original images
or computed values based on an image operator, (ii) patterns that are
unique to each type of region or, (iii) spectral profiles that provide multi-
dimensional image data. Drawbacks of region-based techniques are that
region boundaries are generally distorted. In addition, commonly used
region-based techniques such as region-growing and clustering, have
several critical design issues to be dealt with. The performance of most
region-growing approaches crucially depends on the selection of the ini-
tial regions.

* Boundary-based. Boundary-based techniques use the assumption that
abrupt changes occur with regard to the features of the pixels. A dis-
tinction can be made between ridge detection and edge detection. Ridge
detection follows the local maxima in the original image whereas edge
detection tracks maxima in the gradient space instead of the original im-
age space. Major drawbacks of both boundary-based techniques is that
they can produce spurious, missing, or discontinuous edges. Extensive
post-processing may be needed to provide an accurate segmentation.

2.3 Related Work

In this section, we take a closer look at some widely used texture descriptors.
The lack of a formal definition of texture makes the problem of analyzing
textures ill-posed as analysis methods can be proven neither correct nor wrong.
As a result, evaluation must be carried out in an empirical manner.
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Texture description approaches that quantify the distribution of pixel intensi-
ties by single values, such as first order statistics, have a fundamental weak-
ness: since the image is analyzed at a single scale, much important information
about the distributions might be lost. Since Haralick et al. proposed GLCM
for the classification of regions in satellite images, GLCM have become one of
the most well-known and widely used texture features. But GLCM suffer from
a number of difficulties as described in Section 2.2.1l Also Gaussian-Markov
Random Fields (GMRF) have been extensively used [41]. GMRF methods use
a Gaussian PDF to model the intensity of a pixel as a stochastic function of its
neighboring pixels’ intensity. The mean of the PDF is a linear function of the
pixels’ intensities. An important aspect of GMRF is the neighborhood consid-
ered round a pixel. Typically, a small neighborhood is used, and consequently
GMREF features have problems in modeling macrotextures (i.e., textures that
emerge over a relatively large area). Therefore, it is recommended to combine
multiple GMREF features of different orders in one vector. Further, GMRF
models also assume that second order PDFs are sufficient to characterize a
texture. However, Hall and Gainnakis [60] created a test to determine whether
a sample is likely to have been drawn from a 2-dimensional Gaussian distribu-
tion and they found that textures from the Brodatz album [61] failed the test.
More recently, Ojala et al. [43] proposed the local binary pattern (LBP). A
LBP code is calculated by thresholding a circular neighborhood with the value
of the center pixel. The distribution of these codes is then represented by his-
tograms. In general, the radius of the neighborhood and the number of samples
can take arbitrary values. One of the major advantages of the LBP is the low
computational complexity. As a result, LBP have been successfully used in
real-time surface inspection applications, e.g, [62]. An important limitation of
the LBP operator is its small spatial support area. For example, patterns cal-
culated in a 3 X 3 pixels area cannot capture large-scale structures that may be
prominent features of some textures. The latter can be solved by combining
LBP with different parameters such that a multi-scale description of textures
can be obtained [62, 63]. However, the enormous number of histogram bins
results in huge memory consumption and slower classification.

Scenes in the world contain objects of many sizes and these objects contain
features of many sizes. Moreover, objects can be at various distances from
the viewer. As a result, any analysis procedure that is applied only at a sin-
gle scale may miss information at other scales. The solution is to carry out
analysis at all scales or resolutions simultaneously. Multi-resolution analysis
provides a framework for identifying the properties of a signal, i.e., for taking
note of its existence, measuring it, representing it, and even for reproducing it.
At different resolutions, the details of a signal generally characterize different
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physical aspects. At coarse resolution, these details correspond to the larger
overall aspects, i.e., the context. At fine resolution these details correspond to
its distinguishing features. For multi-resolution signal analysis, wavelets and
filter banks have been used independently in the fields of applied mathematics,
computer vision, and signal processing.

The use of multi-resolution approaches is also very popular for texture analysis
due to their relation with the HVS (see Appendix |A|for a general overview of
the HVS). In fact, it is well-known that the human perception of texture is pri-
marily a function of spatial-frequency analysis [64]. By studying the brain of
the macaque monkey, De Valois et al. found that the simple cells in the primary
visual cortex area have receptive fields which are restricted to small regions of
space and respond only to appropriately oriented stimuli [65]. Complex cells
are also orientation selective, but unlike simple cells, they have some degree
of spatial invariance. They will respond to patterns in a certain orientation
within a large receptive field, regardless of the exact location. Daugman [66]
proposed the use of Gabor filters on the modeling of the receptive fields of
the simple cells [66]. Gabor filters are bandpass filters tuned to a specific
orientation and frequency that produce frequency compositions that achieve
the theoretical lower bound of Heisenberg’s uncertainty principle [67]. Con-
sequently, filter banks consisting of multiple Gabor filters tuned to a unique
orientation and periodicity, have been extensively used for texture analysis ap-
plications [68—70]. For a comprehensive comparison of different Gabor-based
features for texture segmentation and classification, we refer to Clausi and
Jernigan [71].

Wavelet analysis is performed using contracted and expanded versions of a sin-
gle prototype function called a wavelet. Fine spatial resolution is achieved by
using a contracted version of the wavelet, while fine frequency resolution can
be achieved using an expanded version. However, in wavelet analysis, there is
a tradeoff between spatial and frequency resolution. The latter is caused by the
Heisenberg’s uncertainty principle, i.e., one can gain good frequency response
at the expense of a poor place resolution. From a signal processing point of
view, wavelets can be thought of as a bandpass filter. So, filter banks can be
used to implement a wavelet transform.

In computer vision, a successive approximation for a multi-resolution tech-
nique called image pyramid is used. Image pyramids derive a low resolution
version of the original signal and then predict the original based on the coarse
version by taking the difference between the original and the prediction. At
the reconstruction, the difference is added back to the prediction. A shortcom-
ing of this scheme is oversampling as we end up with a low-resolution version
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and a full-resolution difference. Without going deeper into detail, examples of
pyramids are the Laplacian pyramid [72—74] and steerable pyramids [75, 76].

Despite the many approaches to analyze texture, state-of-the-art methods deal
with a couple of shortcomings. When many textures have to be recog-
nized (such as for segmentation and classification), their discriminative power
rapidly drops as the number of unknown textures increases. Also, for material
classification which is similar to texture classification, state-of-the-art methods
obtain a poor result. Furthermore, one of the main shortcomings is their sen-
sitivity to noise. Noise is a frequent problem in texture characterization and
often causes difficulties for interpretation. However, the HVS can relatively
well cope with noisy data. Since humans still outperform any vision system,
it is attractive to build a system that relies on the processing principles of the
HYVS to deal with texture data. In the next sections, we will propose a tex-
ture model that relies on the HVS and we will examine how well our method
behaves for different texture applications.

2.4 Model

In computer vision the use of visual neuroscience has often been limited to a
tuning of Gabor filter banks. Little or no attention has been given to biological
features of higher complexity. In 1992, von der Heydt et al. reported on the
existence of a new type of complex, orientation-selective neuron in the visual
cortex of higher primates which they called grating cells [77]. Grating cells
respond vigorously to a grating of bars of appropriate orientation and period-
icity, but in contrast to the simple cells, they hardly or don’t respond to single
bars (i.e., bars that do not make part of a grating). This non-linear behaviour
is quite different from the spatial frequency filtering behaviour of other ori-
entation selective cells. It is assumed, but not proven at the time of writing,
that grating cells receive their input from simple cells. The main purpose of
grating cells in the HVS is a fast and reliable detection of periodic patterns of
a certain orientation which are common in images of human-made structures,
like fabrics and tiles, and to regular natural periodic patterns, however, which
are relatively rare in nature [78]. Although they represent a minority of the
cells in the visual cortex (about 4% of the cells in V1 and 1.6% of the cells in
cortical area V2 are identified as grating cells), their behaviour could be a vital
property of a robust texture operator since they don’t respond to non-texture
features such as edges that do not make part of a grating or isolated pixels.

The texture features proposed in this dissertation, are based on cell responses
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of the human primary and secondary visual cortex. We propose to combine
responses of simple cells and grating cells, and to apply particular post- and
preprocessing, respectively. At first in Section [2.4.1] we explain the model of
a simple cell by using a Gabor filter. Then, in Section[2.4.2]the spatial smooth-
ing of the simple cell responses with regard to texture analysis is considered.
Section describes the grating cell model. In Section [2.4.4] we describe
how an optimal output of the grating cell operator can be obtained.

24.1 Simple Cell

Daugman proposed the use of 2-dimensional isotropic real Gabor filters to
model the receptive field response (i.e., the firing rate) of simple cells to a
stimulus (a flashing light or a dark spot) in function of the (z,y) location of
the stimulus:
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The parameters of this Gabor function are: o, v, A, 8, and . The standard de-
viation o of the Gaussian factor determines the effective size of the surround-
ing of a pixel which will be considered for further processing. The harmonic
factor (i.e., the cosine) of the Gabor function has a spatial frequency of 1/
(or a wavelength of A pixels). The orientation of the Gabor function (counter-
clockwise with respect to the z-axis) is denoted by 6 € [0, 7r[. This is the angle
between the dashed line (i.e., the normal to the parallel lobes of the filter in the
spatial domain) and the z-axis as depicted in Figure [2.1]

The frequency bandwidth B (in octaves) can be set to a constant value to match
psychovisual data. According to [71], the unknown parameter o is determined
by setting the frequency cut-off to -6 dB:
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Figure 2.1: A 2-dimensional Gabor function z = g ¢ ., (z,y) with orientation 0,
wavelength A, and phase offset ¢ = 0.

Experiments indicate that the frequency bandwidth B of simple cells is about
one octave [79]. Thus for B = 1, we obtain:
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The spatial aspect ratio v determines the eccentricity and herewith the eccen-
tricity of the receptive field ellipse. According to Jones and Palmer, it has
been found that « varies in a limited range of 0.23 < v < 0.92 [80]. For ~-
values closer to 1, the shape of the receptive field is more circular and smaller
~-values yield a narrower elliptical field. Because of this elliptical shape, elon-
gated stimuli, such as bar and edges, are better detected. In our model, y is set
to a constant value of 0.5E| as also suggested by Petkov and Kruizinga [81].
According to [71], the angular bandwidth () is obtained by setting the cut-off
frequency in the angular direction to -6 dB:

o VIn 2\
Y V2rtan(Q/2)
Thus, fory = 0.5and § =0

In2~ A
Q—2arctan< n*y) ~ 19°.

.56, we have:

2 mo

"We empirically found that values in the range of [0.4, 0.6] yield a good response of the filter
to textures and that small variations in this range yield a hardly noticable effect, while for lower
and higher values there is a noticable effect on the filter’s response. Consequently, v = 0.5 is a
good choice for texture analysis.
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Finally, the phase offset ¢ affects the symmetry of the Gabor function (2.2).
For ¢ = 0 and ¢ = = the function is symmetric, while for ¢ = 7/2 or
¢ = —m7/2, the function is anti-symmetric, and for other values the function is
asymmetric.

The response of a linear and spatially invariant filter to an arbitrary signal can
be written as a convolution product, or simply convolution. In general, the
convolution product of two signals f; and f is denoted as f * f> and is defined
by:

fix fo(z) = /+OO f1(t) fo(x — t)dt.

Further, a spatially invariant linear filter L is entirely determined by its im-
pulse response function (also called the kernel) h. For every signal f, we have

L(f) = f *h.

Thus, the receptive field function of a simple cell tuned to an orientation # and a
frequency 1/ to the luminance channel of an input image I(z,y), (z,y) €
(€2 denotes the visual field domaitﬂ but in the context of this dissertation, it is
sufficient to use all pixels of the input image), is then given by the following
convolution:

T)0.0(T,Y) = //Q I(s,t)gxng,p(x — s,y — t)dsdt. 2.5

To obtain invariance to the local average luminance of the input image, r g ,, is
divided by the weighted average gray value within the receptive field. Taking
the Gaussian window, which defines the receptive field — see equation (2.2)
— into account, the weighted average gray value a)(x,y) of the surrounding
pixel values is obtained by:

ax(z,y) = //Q I(s,t)exp <— (=5 + 77y - 7§)2>dsdt. (2.6)

202

In order to obtain a contrast response similar to the ones measured on real
cells, the response of a simple cell of the visual cortex to I(x,y) is, accord-
ing to Petkov and Kruizinga [82], obtained by normalizing the receptive field
function ry g ., (x,y) with the average gray value in the following way:

0 if a)\(x, y) =0
TA797¢(I’y)
s x,y) = BN : 27
M0 (2,Y) X | 250 | otherwise, 7
20,089 | o~
GA(Ivy)

’The visual field actually denotes the total area in which objects can be seen while focussing
on a central point.



30 Texture Analysis

G

(a) (b)

Figure 2.2: (a) An input image (height 189 pixels, width 128 pixels) (b) response to
the input image of a simple cell tuned to orientation O and a periodicity of 2 pixels.

where R denotes the maximum response level, C' is the semi-saturation con-
stant (i.e., the stimulus required to induce a half maximum response), and
x(t) = tfort > 0and x(¢) = 0 for t < 0. The semi-saturation constant
in the denominator prevents very low-contrast signals from being normalized
to a large value.

Figure[2.2|depicts the response of the simple cell defined by with orienta-
tion & = 0 and periodicity A = 2 pixels. As can be seen in the response image,
the simple cell detects every edge (black to white and vice versa) to the normal
of the orientation.

The above figure illustrates that the output of the simple cell, as given by equa-
tion (2.7), detects the presence of edges. However, since a texture typically
contains many edges, the output of a simple cell is not a suitable representa-
tion for texture discrimination. Ideally, for texture analysis and classification
purposes, the output of a description method should be constant for a given
texture. It can easily be shown that the simple cell response to a sinusoidal
input signal is not a constant. Functionally, the output of a simple cell is a real
Gabor function. For simplicity, consider the real part g, of a 1-dimensional
Gabor function:

(0) = —— exp [ 22 ) cos (2rFa)
gT xTr) = eXp 202 COS LX),

A cosine with frequency F' = 1/X in the frequency domain is given by its
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Fourier transform [83]:
1
Fi(u) = B {0(u—F)+é(u+F)},

where 6(x) denotes the Dirac delta function [83].

The Fourier transform [, of a real Gabor function g, is given by the con-
volution of the Fourier transform of the Gaussian function and the Fourier
transform of the sinusoidal function:

Fy(u) = oV2mexp (—27%u?0?) * %(é(u —F)+(u+F))

2
=7 5 T {exp <—27T2(u - F)2J2) + exp (—2772(u + F)202)} .
In the frequency domain, the real Gabor filter’s response to the sinusoidal sig-
nal is given by the multiplication of F,(u) and Fs(u). Given the fact that
d(u) = 0 for u # 0, the convolution of a harmonic signal with a Gabor func-
tion can be written in the frequency domain as:

Fy(u)F,(u) :i[(é(u ) 4+6(ut F))

oV 2r(exp(—27%(u — F)%0?) 4 exp(—272(u + F)?0?))]

zi[(exp(—2W24F202) +1)(6(u— F) + 6(u+ F))

oV 27 ((exp(2n(u — F)%0?) + exp(2n(u + F)%0?))]

:2[5@ — F)+6(u+ F)],

where ¢ = 0+/27 exp(—2m24F%0?) + 1. Thus, Fs(u)F,(u) produces again
a cosine § cos (2 F'x) in the spatial domain. The response of a simple cell,
which is given by equation (2.7), to a sinusoidal signal produces a sinusoidal
in the spatial domain. The variations of this sinusoidal are not ideal, e.g., for
classification since a constant value is preferred. Simple cell responses are
edge detectors, but for texture analysis some post-processing is required in
order to obtain a constant response. To achieve the latter, we propose a spatial
smoothing as described in the next section.

2.4.2 Spatially Smoothed Responses

Hall and Hall describe the existence of sustained channels in the visual system
indicating that the HVS not only considers pixels in the field of view, but also
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pixels in the vicinity [84]. This effect can be obtained by applying a smooth-
ing on the obtained simple cell responses. Furthermore, textures which do not
have sufficiently narrow bandwidths may suffer from leakage. The effects of
leakage can also be reduced by post-filtering the simple cell responses
with a Gaussian filter that has the same shape as the corresponding filter, but
with a greater spatial extent [33,71]. Therefore, smoothed Gabor responses are
known to improve the performance for texture analysis because it suppresses
large variations of the filter responses in areas which belong to the same tex-
ture. However, too much smoothing can have a negative effect (especially on
the localization of texture region edges).

Therefore, we propose to spatially smooth the simple cell responses which are
obtained from a symmetric Gabor function, i.e., 5,0, by using a Gaussian
filter with the same shape but a greater variance o’ > o

Sx0(x,y) = [sa0,0 * gauss](x,y), (2.8)
where

(0.) = gy e (T

auss(x,y) = —=exp | —————— |-

g Y= one P 2072

Different values for o’ have been investigated. Empirically, we observed that
the best results where obtained for ¢/ = 20, i.e., by applying a Gaussian
smoothing with twice the standard deviation of the Gabor filter.

2.4.3 Grating Cell

There exist different computational models of grating cells for oriented tex-
ture analysis. Kruizinga and Petkov use the above model of simple cells, see
equation (2.7)), to model center-on (¢ = 0) and center-off (¢ = ) receptive
fields (in analogy to the retinal ganglion cells) [82]. Center-on and center-off
receptive fields are alternately activated for grating patterns of corresponding
orientation and frequency. Zhang et al. [85] introduce multi-valued logic in the
model of Kruizinga and Petkov. However, this results into 2 new thresholds
for which no optimal values are suggested, nor how they can be obtained. du
Buf uses the notion of a grouping operator [86, 87]. The grouping is done in
2 steps: (i) detection of events along a line and (ii) amplitude completion by
a filling-in process. Instead of simple cell responses, Lourens et al. use com-
plex cell outputs as input for their grating cell operator [88,89]. The authors
model a simple cell by a complex Gabor filter and a complex cell operator
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Figure 2.3: Luminance distribution along a normal to a set of three square bars and
the distribution of the computed responses of center-on and center-off cells along this
line.

then calculates the amplitude of the complex values. According to the authors,
their grating cell model has similar response profiles as monkey grating cells
as measured by von der Heydt et al.

In this dissertation, we applied the model of Kruizinga and Petkov since we
experimently observed that it responds well to gratings. This model detects
the presence of a grating if there are at least 3 parallel bars with the preferred
orientation and periodicity. This non-linear behavior is modeled in two stages:

(i) the calculation of the activity of a grating subunit gy ¢(x, y) with a pre-
ferred orientation € and frequency 1/, see equation (2.9),

(ii) the summation of the responses for a given 6 and )\, see equation (2.10).

A grating subunit g, ¢ will be activated if the corresponding receptive field
functions ry g ., for p, = 0(n = =3,—1,1) and p, = 7 (n € {-2,0,2}),
are alternately activated in intervals of length \/2 along a line segment of
length 3\ centered on point (x,y) as illustrated in Figure

A grating subunit takes as input the simple cell outputs defined in equa-
tion (2.7). At first, for a given A, 6, and n, Kruizinga and Petkov have defined
the quantities M) g, and NN 9, which are computed as follows:

M)\,H,n(l'a y) = maX(u,v){S)\ﬁ,@n (u’ U)}
Nyo(z,y) = max{My g n(z,y)n = —-3,-2,..., 2},
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where u and v satisfy the condition:

nycost <u—x < (n+1)5cosf
n%sinG <v—y< (n+1)%sin9.

M)y .5, is related to the maximum activity of one sort of simple cells (center-
on or center-off) along the line segment of length 3\ passing through the
point (x,y) in orientation #. For instance, My g _3 is the maximum activity
of center-on simple cells in the corresponding interval (i.e., the leftmost in-
terval) of length \/2, M) g o is the maximum activity of center-off simple
cells in the adjacent interval, etc. Center-on and center-off simple cell activi-
ties are thus alternately used in consecutive intervals. The quantity N) g is the
maximum among the above interval maxima.

In case of a grating, the quantities M) g ,, are approximately the same in each
interval. Therefore, the activity of a grating subunit g ¢ is computed as:

1 ifVn, My gn(z,y) > pNyg(z,y)

) 2.9
0 if In, My n(x,y) < pNro(z,y), 29)

o(r,y) = {

where 0 < p < 1 is a threshold value in the proximity of 1. We have found
that p = 0.9, as also suggested by Petkov and Kruizinga, yields good results.
Values that are too close to 1 yield less activations of gy g, while lower values
yield more false activations.

In the final stage, the response w) ¢ of a grating cell whose receptive field is
centered on point (x,y) and tuned to frequency 1/\ and orientation 6 to the
normal of the grating, is computed by a weighted summation of the responses
of the subunits gy 9. The operator is made symmetric by also considering the
opposite direction, i.e., 6 +

wyg(T,y) = //Q W (z,y) (qr0(s,t) + qro+x(s, 1)) dsdt, (2.10)

where W (x,y) = \/ﬁ exp (—%) The parameter 3 determines

the size of the area over which effective summation takes place. According to
Petkov and Kruizinga, a value of 3 = 5 results in a good approximation of the
spatial summation properties of grating cells.

The output of the grating cell operator depends on the output of the sim-
ple cell which is actually an edge detector. A straightforward method to
enhance this edge detection and thus also the output of the grating cell opera-
tor, is explained in the next section.
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Figure 2.4: (a) Original and (b) enhanced image with their respective luminance his-
tograms

2.4.4 Enhanced Grating Cell Operator

The HVS is more sensitive to contrast than absolute luminance. In order to
better distinguish possible salient texture-specific periodicities and to obtain
an improved texture discrimination, we increase the contrast in an image. As
such, an enhanced image I(z,y) is created by applying a histogram equal-
ization to the original input image I(x,y). Histogram equalization is a well-
known technique that rescales the range of the pixel values to produce an image
whose pixel values are more uniformly distributed which results in an image
with a higher contrast as shown in Figure [2.4] Furthermore, histogram equal-
ization also seems to be used in biological neural networks. This has been
proved in particular in the fly retina [90].

For each gray-level j in the original image I(x,y), the new value j is calcu-
lated as follows:

..
=iy Q.11

where [ is the maximum gray-level, n the total number of pixels, n; the number
of occurrences of gray-level j in I(z,y), and j, j,1,n,n; € N.

The enhanced grating cell features Wy g(x, y) are obtained by substituting the
enhanced image I(z,y) in equations and . Remark that the effect
of this enhancement on images having a uniform luminance histogram, will
be nihil. The effect of the histogram equalization on the grating cell opera-
tor is exemplified in Figure 2.5] which depicts the grating cell and enhanced
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(a) (b) (©

Figure 2.5: (a) Input image with 2 textures, (b) the grating cell responses, and (c) the
enhanced grating cell responses for orientation # = /4 and wavelength A = 2+/2.
As can be seen, the enhanced grating cell operator gives a better distinction between
the upper and lower textures.

grating cell response for orientation 7/4 and a wavelength of 2v/2 pixels. As
can be seen in Figure 2.5(b)] there is almost no grating cell response to the
upper texture and no response to the lower texture. Relying on this grating
cell operator, it is thus difficult to distinguish these two textures. Obviously,
the enhanced grating cell response (for the given orientation and frequency)
in Figure shows now a more clear distinction between the two textures
since the response to the upper texture is now much stronger while the response
to the lower texture remains unchanged.

2.5 Parameter Selection

Now that we have outlined the computational models, we explain how the
texture features are computed. Since the output of one filter is not sufficient
to characterize a texture, features are obtained from arrays of filters (i.e., filter
banks) so that the input signal is decomposed into multiple elements. These
elements are then arranged in a vector which is called the feature vector. Each
element in the feature vector then accounts for the response of a unique filter
tuned to a specific orientation and frequency.

Keeping in mind that the bandwidth of the simple cells is 1 octave, see Sec-
tion (2.4.1)), the center frequencies should be chosen accordingly to minimize
the overlap of the filters and to maximize coverage. Related work [91-93]
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that applies Gabor filter banks for texture analysis, suggests the use of fre-
quencies v/2(1,2,4,8,..N/4) cycles per image for texture images of reso-
Iution N x N (where N is a power of 2) pixels. However, for images of
512 x 512 pixels we omit the lower frequencies (patterns of A > 32+/2 are too
large to be perceived as ‘texture’) so that we use the remaining wavelengths of

A = 1/2,2v/2,4+/2,8v/2 and 16/2 pixels.
s e

Further, we choose 8 orientations, i.e., (6=0, g,..,g), which results in an ori-
entation selectivity of 22.5°. Remark that if we would take a smaller number
of orientations, e.g., 6 instead of 8, there will be orientations to which none
of the channels of the filter bank will respond sufficiently (as the orientation
bandwidth of the Gabor filter is approximately 19°) and this will have a neg-
ative effect on the discrimination performance for textures that are dominated
by the concerned orientations. This means that the discrimination performance
will depend on the choice of the texture. The use of 8 orientations and 5 fre-
quencies results in a 40-dimensional feature vector that is obtained from one
filter bank.

An important aspect for implementing a Gabor filter, is the size of the neigh-
borhood window to compute the filter’s response. This aspect is examined by
Garcia and Puig [94] who evaluated various texture analysis methods with dif-
ferent window sizes. They obtain significantly better results by using optimal
window sizes. In our model, the window size k is related to the standard devi-
ation of the Gaussian (and thus to the bandwidth of the filter), i.e., k = 20 + 1,
as also suggested by Khan et al. [95]. Taking equation into account, the
size of the window is obtained by: k& = nint(1.12\ + 1), where nint denotes
the nearest integer function. Consequently, the size of the window changes
according to the periodicity of the texture: a smaller window for small period-
icities (high frequencies) and a larger window for the larger periodicities (low
frequencies).

2.6 Unsupervised Texture Segmentation

As mentioned in Section[2.2.3] a segmentation process may be the first step in
processing a user query in a CVIR application. However, texture segmentation
is a difficult problem since one usually does not know a priori how many and
what types of textures exist in an image. Ideally, we should know how many
and which types of textures there are present in an image. Suppose we have
the priori information about the textures in Figure [2.4(a)| i.e., that there are
2 different textures and we have the features of each texture class, but we do



38 Texture Analysis

nr. training samples | 1024 | 768 | 512 | 256 | 128 | 64 32
nr. test samples | 1024 | 256 | 512 | 768 | 896 | 960 | 992
% misclassifications | 0.0 | 1.0 | 2.0 | 2.6 | 47 | 17.50 | 78

Table 2.1: Supervised classification of textures using a linear SVM. The accuracy of
the classifier decreases as the number of training samples decreases.

not know where they appear in the image. To obtain the spatial arrangement
of the textures in the image, we have trained a supervised classifier in order
to assign a label to the textures in the image. Therefore, we have computed
1024 texture features (enhanced grating cell responses and spatially smoothed
Gabor responses) as explained in the previous section, and we have used them
to train a linear support vector machineE] (SVM) [97]. Once trained, this SVM
can then be used to classify the texture features accordingly. As can be seen in
Table [2.1] the accuracy of the classifier is highly dependent on the number of
training samples. All the 1024 training samples are correctly classified (i.e., the
training set is equal to the test set) as can be seen in the first column. However,
as the number of training features decreases, the number of misclassifications
of the remaining test samples increases because the classifier is overfitted to
the training data.

The above exemplifies why the use of unsupervised machine learning tech-
niques (i.e., clustering) is favored over the use of supervised machine learning.
Consequently, k-means clustering [98] has been widely applied. However, k-
means is not fully unsupervised since a value for k£ to specify the number of
distinct textures in the image has to be given. Other methods that try to find
an optimal method for k, make assumptions about the underlying distribution
of the data [99, 100]. The Bayesian information criterion [101] or Akaike’s in-
formation criterion [102] is then calculated on data sets which are constructed
by a set of Gaussian distributions. However, it has been shown that many
textures, such as the Brodatz textures, have not been drawn from have been
drawn from a Gaussian distribution [60]. Therefore, we recommend the use of
Self-Organizing Maps (SOM) for the unsupervised segmentation of textured
images [59, 103]. This algorithm operates fully unsupervised since no value
or estimate for the number of textures has to be provided. Furthermore, SOM
neural networks are particularly well-suited for the combined task of mapping
the high-dimensional and non-linear data distribution to a low-dimensional
plane while conserving the local neighborhood relations. An important prop-

3The linear SVM is trained using the LIBSVM package [96] and the cost of the constrain
violation is set to 1.
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erty of the SOM is that it clusters similar data vectors and projects dissimilar
ones far from each other on the map (with respect to some predefined metric
and the topology of the map). Generally, segmenting a textured image using
the SOM algorithm consists of the following steps:

(1) Training. The SOM is trained using texture features obtained from an
input image.

(i) Node clustering. Identification of SOM node clusters based on the dis-
tances between their model vectors.

(i) Best matching unit (BMU) calculation. The BMU of each feature vector
obtained from the input image is calculated. This way, the pixels that
correspond to the feature vectors are assigned to a cluster of one or more
SOM nodes. These clusters then represent the regions in the image.

A result of the training phase is that pixels belonging to the same texture are
assigned to the same or adjacent nodes. This means that nodes that are close
to each other (with respect to the topology of the map), have been assigned
similar feature vectors, while distant nodes are related to dissimilar textures.
This effect is illustrated in Figure which depicts the unified distance
matrix of a 8 X 4 SOM trained with texture feature vectors obtained from an
image containing 4 different textures. For each n-dimensional row or column
of SOM nodes N;, i € {0..n—1}, the unified distance matrix contains a vector
u of dimension 2n — 1 so that u;, j = 1,3, ... is the distance between N; and
N;_1,and uj, 7 = 0,2, ... s the mean of the surrounding distances. This way,
texture features from different textures are assigned to different clusters and a
segmentation is obtained. Four clusters can be distinguished in Figure[2.6|(i.e.,
the blue regions near the corners of the map) and each cluster corresponds to
one of the four textures.

It is obvious that the obtained image segmentation depends on the quality of
the trained SOM. However, measuring the quality of the SOM is not trivial.
The SOM quality is usually measured with the following criteria: quantization
error and topographic error. The quantization error is the mean distance be-
tween each data point and its BMU and measures the resolution preservation.
The latter describes how accurately the SOM neurons respond to the given
data set. For example, if the model vector of the BMU calculated for a given
training vector is exactly the same, the error is 0. Normally, the number of
data vectors exceeds the number of neurons and the quantization error is thus
always different from 0. The topographic error represents the proportion of all
data for which the first and second BMU are not adjacent. These measures are
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Figure 2.6: (a) An input image containing 4 different textures. (b) Visualization of a
8 x 4 SOM trained with the proposed texture features obtained from the input image.
The SOM is plotted along the biggest three principal components of the training data.
(c) The unified distance matrix of the SOM. As can be seen, 4 clusters representing
the 4 textures can be distinguished (blue regions).

thus data-dependent since they measure the map in terms of the given data, and
the best measures are obtained in case of overfitting to the data. Overfitting
might lead to oversegmentation and should thus be avoided. Consequently,
these quality measures should be interpreted as an indication rather than an
exact measure. Furthermore, different parameters for a SOM (e.g., dimension,
lattice, grid, neighborhood function) will also affect the quantization and to-
pographic error. Therefore, we have chosen to use a fixed dimension, lattice,
and neighborhood for the SOM because optimal values for these parameters
are not generic due to the data dependency of the quality measures.

The accuracy, i.e., the quality, of the obtained image segmentation will be
defined by the percentage of correctly assigned pixels. This measure can be
computed by the fraction of the number of true positives (¢,) and the sum of the
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true positives with the number of false negatives (f,,). In this context, a false
negative is a pixel that is not assigned to the correct image region according
to the ground truth. The accuracy corresponds to the average recall, i.e., the
proportion of relevant pixels that are assigned to the correct image region (see
eq. 2.12). Remark that the accuracy is not related to the precision, which is
defined by the fraction of the number of true positives (Z,,) and the sum of the
number of true positives with the number of false positives (f,) (see eq. .

Recall = fp ) (2.12)
tp+ fn
t
Precision = L (2.13)
tp+ fp

The SOMs are trained using the well-known batch-training algorithm which
is, in contrast to the sequential training algorithm, much faster to calculate and
the results are as just as good [59]. The SOMs are created using the SOM Tool-
box [104] which is a function package for Matlab that implements the SOM
algorithm using the Euclidean distance. Further settings of the SOM are: (i)
the lattice structure (grid) is hexagonal (each SOM node has 6 direct neigh-
bors), and (ii) the topological structure of the map is a 2-dimensional sheet
(experiments showed that the choice of neither the topological structure(e.g., a
sheet, sphere, or cylinder) nor the lattice structure (e.g., rectangular or hexag-
onal) has significant impact on the obtained segmentation).

In the remainder of this section, we perform texture segmentation experiments
and we show that the combination of enhanced grating cell features with Gaus-
sian smoothed Gabor responses obtains the best segmentation results.

2.6.1 Experiment 1

In this first experiment, we test different Gabor-based texture features for seg-
mentation. Further, two types of unsupervised classifiers have been used: a
SOM- and a k-means-based classifier. Feature extraction is applied on com-
posite images containing textures of the Brodatz album [61]: D6, D8, D24,
D55, D68, D77, D84, and D95. For the k-means algorithm, the value of k
is set to the number of distinct textures in the image. These textures are then
used to create mosaic images that contain different textures. Five, five, three
and three mosaic images of size 512 x 512 pixels containing two, four, five,
and nine texture regions are created, respectively.

From these textured mosaics, the following feature types are calculated: (i)
Gaussian smoothed Gabor responses Gy, (ii) grating cell responses (Grat), (iii)
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enhanced grating cell responses (Grat.,,}), (iv) Gaussian smoothed real Gabor
with grating cell responses (G + Grat), and (v) Gaussian smoothed real Gabor
with enhanced grating cell responses (Gs + Grat,,,;,). The texture features are
calculated from individual pixels and not from patches. This way, no pixel
adjacency information has been used in the clustering process.

Scaling of the feature vectors that consist of different feature types (e.g.,
G; + Grat) is of special importance since our classifiers (both the k-means
and SOM) use the Euclidean metric to measure the distances between feature
vectors. Otherwise, bigger variables tend to dominate the others. Therefore,
the features are normalized before they are combined in one large feature vec-
tor. For a feature vector x, each element z; is normalized by: z} = z;/ || z||.

Using the SOM-algorithm, maps of different sizes have been created. We train
4x2,4%x4,8x7,and 8 x 9 maps for the segmentation of images containing
two, four, five, and nine textures, respectively. Remark that larger maps can
also be used for a lower number of textures. A general rule is that a higher
number of nodes results in better classification results, but a side effect is that
overclassification may occur. On the other hand, small-sized maps are more
attractive because of their lower computational cost during the training phase.

Figure[2.7)illustrates the pixelwise unsupervised segmentation of some mosaic
images (containing 2, 4, 5 and 9 textures) using the SOM-based clustering al-
gorithm — remark that there are actually 8 different textures in Figure [2.7(m)|
because 2 regions consist of the same texture. The recall of the segmentation
obtained by the k-means and SOM-based clustering algorithm are listed in Ta-
ble[2.2]and Table[2.3] respectively. For both clustering methods, we notice that
the enhanced grating cell features Grat.,,;, give a slight rise in recall compared
to grating cell responses (Grat). However, Grat and Grat,,,;, are not discrimi-
native enough for segmenting images containing Brodatz textures. The com-
bination of enhanced grating cells with Gaussian smoothed Gabor responses
(Gs + Grat,j) achieves the best segmentation. However, we notice that the
difference between G, and G, + Grat or G¢ + Grat,,,, is relatively small for 2
textures. But, as the number of textures in an image increases, the difference
becomes larger. Furthermore, we observe that the SOM-based classifier gener-
ally yields better segmentation results than the k-means classifier. The fact that
by the SOM the distance of each input from all of the model vectors (weighted
by the neighborhood) is taken into account instead of just the closest one for
k-means, can account for this phenomenon. The latter property of the SOM
causes that the SOM follows, to a certain extent, more closely the distribution
of the data set in the input space. This is because centroids used in a SOM
have a predetermined topographic ordering relationship (the centroids that are
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()

Figure 2.7: (a, e, i, m) Original image, (b, f, j, n) ground truth, pixelwise SOM-based
clustering with: (c, g, k, 0) smoothed Gabor responses, (d, h, 1, p) enhanced grating
cell features + smoothed Gabor responses.

close to each other in the SOM grid are more closely related to each other than
to the centroids that are further away).
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regions Gg; Grat Gg+ Grat Grate,, Gs+ Grate,p

2 94.1 735 94.8 78.5 95.1
4 834 543 85.2 66.0 88.7
5 57.5 50.3 73.1 52.4 86.1
9 51.7 183 71.8 27.8 85.7

Table 2.2: Recall in % of the pixelwise k-means clustering of Brodatz textures.

regions Gy Grat Gg+ Grat Grate,, G+ Grate,

2 96.9 85.6 97.0 88.7 97.2
4 85.0 64.6 87.5 71.7 90.3
5 84.8 65.2 87.5 66.6 89.3
9 814 55.1 81.5 59.2 85.9

Table 2.3: Recall in % of the pixelwise SOM-based clustering of Brodatz textures.

2.6.2 Experiment 2

In this experiment, we calculate the proposed texture features, i.e., enhanced
grating cells with Gaussian smoothed Gabor responses (Gg + Grat,,p), from
patches of various sizes. Image patches of size 2 X 2,4 x 4,8 x 8 and 16 x 16
pixels have been used for calculating the texture features. Since square patches
are used, only mosaic images without straight region borders are considered —
i.e., the images of the previous experiment that containing 5 and 9 textures.
As can be seen in Table |2.4] we notice that for mosaic images containing 5
textures, the gain of using 2 X 2 and 16 x 16 patches is almost negligible. For
images consisting of 9 texture regions, the gain is even negative for patches
of 16 x 16 pixels. The latter is caused by the loss of detail near the borders
between adjacent texture regions. The fact that for both mosaic image sets
patches of 4 x4 pixels obtain the highest gain, is rather coincidental because the
decisive factor is the shape and positioning of the region borders. Therefore,
we stress out that the numbers in Table [2.4] are purely indicative. The main
conclusion is that bigger patch sizes might involve detail loss near the borders
of texture regions.

In the second part of this experiment, we compute G4 + Grat,,,;, features from
patches of size 4 x 4 pixels. Patches of size 4 x 4 are chosen as a compromise
between computation time and detai]ﬂ We compare these results with the seg-

“The computation of the texture features of a 512 x 512 pixels image take about 2'16" .
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regions 2x2 4x4 8x8 16x16
5 0.3 4.4 3.0 1.6
9 0.2 4.9 1.1 -1.1

Table 2.4: Recall gain (in %) of the SOM-based clustering of Brodatz textures using
patches of different sizes.

regions G; + Grat.,;,; GMRF;_7

2 98.9 89.0
4 95.1 83.6
5 93.7 72.4
9 90.8 70.5

Table 2.5: Recall in % of the SOM-based clustering of 4 x 4 patches of Brodatz
textures using GMRF and the proposed texture features.

mentations obtained using GMRF features. The GMRF features are obtained
from GMRF models of order 1 to 7 concatenated into one 73-dimensional fea-
ture vector (GMRF;_7) — the combined use of these models performs clearly
better than the individual models, see Ojala et al. [105]. The implementation of
the GMREF features is obtained from the MeasTex site [106] and the features
are computed using the standard symmetric masks. Clustering is performed
using a SOM of the same dimensions as in the previous experiment. This is ex-
emplified by a mosaic image of nine texture regions in Figure[2.8] Introducing
pixel adjacency also boosts the segmentation accuracy for images containing 2
or 4 texture regions (Table2.5). The low performance of the GMRF features is
mainly due to the relatively high size of the mask which causes detail loss near
the borders of the texture regions. More, as the number of textures increases,
the SOM-based clustering algorithm has difficulties to discriminate the GMRF
features.

2.6.3 Experiment 3

To investigate the application of the texture features for segmenting scenery
images, we collected real-life textures from the World Wide Web (WWW) (see

Remark that besides the computation time of extra texture features, also the classification time
will increase.
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©) (d

Figure 2.8: (a) Original image, (b) ground truth, SOM-based clustering with: (c)
GM RF,_7 features, (d) G5 + Grat.,, extracted from patches of 4 x 4 pixels.

also Section[2.7)) for testing instead of using Brodatz textures. It is important to
remark that in contrast to the gray-scale textures from the Brodatz album, the
intra-variation in terms of orientation and scale of a natural texture in scenery
images is much higher. The latter is exemplified in Figure[2.9which consists of
four different grass textures. As can be seen, it is even for the human eye hard
to distinguish the upper two textures, but the difference with the grass textures
at the bottom of the image is much larger. Nevertheless, our segmentation
algorithm is, to a certain extent, still capable to distinguish them, even using a
small-sized (4 x 4) SOM.

We conduct segmentation experiments on mosaic texture images of size 512 x
512 pixels containing 4, 5 and 9 different texture regions. Next to the G, +
Grat,y,, texture information, we also introduce color information by adding
the color features (which consist of 3 dimensions) to a feature vector. Both
normalized HSI and normalized color opponent values (COV) have been used
(see Appendix [B). As in the previous experiment, the features are extracted
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(a) (b) (©

Figure 2.9: (a) Original image of 4 similar grass textures, (b) ground truth, (c) SOM-
based segmentation using G, + Grat,,,; texture features extracted from patches of size
4 x 4 pixels.

(b) ©

Figure 2.10: (a) Original image with 5 real-life textures, (b) ground truth, (¢) SOM-
based clustering of G,+ Grat,,,, texture features + COV color information.

from patches of 4 x 4 pixels.

The segmentation results listed in Table [2.6] indicate that the performance of
the G4+ Grat,y,, texture features drops about 4 to 8% compared to the segmen-
tation results using the Brodatz textures in Section The latter is caused
by the higher variations (of orientation and/or periodicity) inside the natural
texture, as exemplified in the branches texture in Figure 2.10] Further, we
remark that introducing color information gives a small boost in the segmen-
tation results (up to 5% for segmentating 5 textures). In our experiments, the
combination of G4 + Grat,,,;, with COV is slightly better than Gg + Grat,,,}
with HSI information, but using color information alone is not sufficient to
discriminate the image regions.
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regions COV HSI Gg + Grat,p, COV + HSI +
G; + Grat,,,, Gg+ Gratyyy,
4 0.75 0.76 0.89 0.92 0.89
5 0.74 0.69 0.89 0.94 0.93
9 0.53 049 0.83 0.91 0.91

Table 2.6: Recall in % of the SOM-based clustering of real-life textures.

2.7 Texture Classification

Given a set of known textures, texture classification involves deciding what
texture class an observed sample belongs to. In contrast to the clustering al-
gorithm for segmentation, the training data for classification are labeled. The
approach presented in this dissertation is semi-supervised in the sense that no
other a priori knowledge than the labels of the training data are used in the
decision process. Semi-supervised learning using SOMs is similar to the SOM
clustering algorithm for segmentation, but instead of using unlabeled train-
ing data, labeled training data are used. Generally, texture classification using
SOM neural networks consists of the following steps:

(1) Data labeling. The training data are extracted from a set of known tex-
ture classes and are labeled. This means that for each training vector, a
label that identifies the texture class, is assigned.

(ii) Training. The SOM is trained with the labeled training data. The train-
ing algorithm is identical to unsupervised learning, this means that the
labels are not used in this stage.

(iii) BMU calculation. After the training phase, for each feature vector of the
training set, the BMU is calculated. As a result, the feature vectors of a
texture class are assigned to the same or neighboring SOM nodes.

(iv) Node labeling. For each node on the grid of the trained SOM, a label
is assigned. This process is based on the label(s) of the related training
data. Different strategies can be applied as will explained later.

(v) Mapping. For each feature vector obtained from the observed (i.e., the
unknown) data samples, the BMU is calculated. The label of this BMU
is then assigned to the unknown data sample.
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The same remarks about the quality of the SOM also apply now. Even more,
overfitting to the training data implies that the SOM will have a poor predictive
performance.

SOM nodes that were never winning nodes in the BMU calculation step, ob-
tain the same label as their closest neighbor (due to the topology preserving
property of the SOM). When there are no misclassifications, the node labeling
step is straightforward: the label of a node’s related training vectors unambigu-
ously identifies the node label. In the other case (i.e., there are training vectors
from different texture classes assigned to the same node), a decision has to be
made. Consider, e.g., that 1000 training vectors are related to a specific SOM
node and 3 training vectors have a different label than the other ones. Then, it
is obvious that this node should get its label from the remaining 997 vectors.
However, this method is not so evident if the number of misclassifications is
much higher. Furthermore, we have experienced that the number of misclassi-
fications increases with the number of texture classes in the training data. By
increasing the dimensions of the SOM, the number of misclassifications can
decrease. Though, a larger map will also increase the computation time. How-
ever, a larger SOM won’t prevent that some nodes are ‘contaminated’, i.e., that
a node is associated with training data from different textures. The latter will
be the case if, e.g., two textures are relatively similar to each other compared
to several other textures in the training data. It is possible that these two tex-
tures can not be distinguished by the SOM. To tackle this issue, we employ a
hierarchical approach utilizing the labels of the training data as some means
of supervision. The training vectors associated with a contaminated node are
used to train a new, smaller SOM as illustrated in Figure[2.T1] A node’s corre-
sponding training vectors are used to train a new SOM if the proportion of the
most occurring class of training vectors is below a certain threshold (7). This
process is iteratively repeated until a certain stopping criterion is reached or no
progress in the classification can be obtained.

Suppose that a node N is related to a set V' of training vectors of k texture
classes ¢;, 1 = 0.k — 1:

N «—V = {UCOJ - Veg,mos -+ Vej,1 - Uck—lamkfl} ,

where m; denotes the number of training vectors of texture ¢; related to node
N. The stopping criterion is defined by the threshold 0 < 7 < 1, so that:

maxi—o k-1 {Mmi} _ i
k—1 =
2 im0 Mi
If (2.14) is not satisfied, V' is used to train a new SOM. This process is then
repeated for the nodes of the resulting SOM. In other words, the iteration is

(2.14)
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Figure 2.11: An illustration of a hierarchical SOM of 3 layers — On the highest layer,
the 4 x 3 SOM has two contaminated nodes (gradient filled). The training vectors of
these nodes are then used to train a smaller SOM. On the second layer, the 3 x 2 SOM
also contains a contaminated node which training vectors are retrained by a 2 x 2 SOM
on layer three.

stopped if the proportion of vectors related to a certain class is higher than
a threshold, or no improvement in the classification can be obtained. If no
improvement can be obtained and @]) is not satisfied, then the label that
most frequently occurs in the node and the closest node, is chosen.

The parameter 7 is set to 0.95 and the dimensions of the SOM for K texture
classes are chosen as follows: 4 x 4 for K =2 or 3; 8 x 8 for K = 4; 10 x 10
for K = 5;15 x 15 for K = 6 and 20 x 20 for K > 7.

The performance and robustness of the SOM-based classification with the pro-
posed texture features is analyzed using two different data sets: textures from
the Brodatz and the Vistex album [107]. In contrast to the Brodatz textures, the
Vistex textures are in 24-bit RGB colors but only the luminance is used to com-
pute the texture features. Therefore, the Vistex textures are converted to 8-bit
gray-scale images using the standard formula L = 0.299R+0.587G+0.114B5.
From the 512 x 512 pixel images, we crop an area of 512 x 452 pixels and use
it as training data. The remaining 512 x 60 pixels are then used as test data for
classification. The texture features are extracted from patches of 4 x 4 pixels as
a compromise between the computation time and detail. This results in a total
of 1920 test features per texture. The classification rate here is expressed as
the total number of pixels that are correctly classified divided by total number
of pixels.

We again use the SOM Toolbox [104] to create the SOMs, and the Euclidean
distance is employed as distance metric. Next to the proposed texture fea-
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tures, we also tackle these classification problems using GMRF, multi-scale
LBP, fuzzy LBP and Gaussian smoothed Gabor features (see equation [2.8)).
The implementation of the GMRF features is obtained from the MeasTex
site [106] and the features are computed using the standard symmetric masks.
The GMREF features from order 1 to 7 (GMRF;_~, a 73-dimensional feature
vector) and also GMRF features obtained from 13th and 14th order models
(GMRFi34 14, an 80-dimensional feature vector), are considered. Further, the
multi-scale LBP, i.e., LBP"*“2 with parameters (R; = 1 pixel and P; = 8 pix-
els, Ry = 2.4 pixels and P» = 16 pixels), are rotation invariant and uniform
and the 2-dimensional co-occurrence LBP histograms are classified using a
non-parametric L-statistic [63,105]. The fuzzy LBP (FLBP) are calculated in
a 3 x 3 neighborhood (R = 1 pixel, P = 8 pixels) with fuzzyfication param-
eter T' = 75 as proposed in [108]. The resulting histograms are also classified
using the L-statistic.

In the following section, different texture classification experiments will be
discussed.

2.7.1 Classification Experiment

In this experiment, we test the classification performance of the different tex-
ture features separately on the two data sets. At first, 10 Brodatz images are
used for classification: D6, D9, D12, D15, D19, D38, D68, D84, D94, and
D104. As can be seen in Figure [2.12] the proposed features give rise to excel-
lent classification results, e.g., a classification rate of 97.8% for K = 10 tex-
tures. The multi-scale LBP show similar results (97.7% for K = 10), they are
well-suited for classification as well. In contrast, the FLBP obtain the lowest
classification rate due to their small spatial support area (39.6% for K = 10).
The spatially smoothed Gabor responses also obtain good classification re-
sults (91.9% for K = 10) and they are clearly better than the GMRF features
for classifying the Brodatz textures. The GMRF;3,14 heavily underperform
(55.9% for K = 10) whereas the GMRF;_7 show more interesting classifica-
tion results. However, as the number of textures increases, the classification
performance of GMRF;_7 drops to 81.5% for K = 10.

The same test is repeated for 10 textures of the Vistex album: Grass.0001,
Bark.0009, Brick.0000, Metal.0002, Fabric.0005, Fabric.0015, Food.0005,
Leaves.0008, Sand.0001, and Water.0005. As can be seen in Figure the
same behavior can be observed by classifying the Vistex textures. The pro-
posed features and multi-scale co-occurrence LBP histograms have clearly the
best performance (both 96.9% for K = 10). For the 10 texture classifica-
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tion problem, the smoothed Gabor filter responses also achieve high results
(91.5%), whereas the GMRF;_7 (83.6%), the GMRF13,14 (51.6%), and the
FLBP (39.1%) obviously underperform.
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Figure 2.12: Classification rate of Brodatz textures in function of the number of tex-
tures K.

2.7.2 Noise Robustness

Although a plethora of texture analysis methods have been proposed in the lit-
erature, there are still some open issues where many applications struggle with.
Noise is a frequent problem in texture characterization and causes difficulties
for interpretation. Furthermore, different methods used to eliminate the noise,
e.g., adaptive and non-adaptive filtering, eliminate some actual image data as
well which results in loss of texture information.

In the literature, a few approaches exist to deal with noise. For example, Iako-
vidis et al. describe a fuzzy extension to the local binary pattern (LBP) operator
to deal with noise in images [108]. An important drawback of their approach
is that a parameter to control the degree of fuzziness has to be specified and
the optimal value for this parameter is highly content-dependent. They also
assume that the training and test images contain an equal amount of noise (in
terms of the signal-to-noise ratio) . Furthermore, the small spatial support area
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Figure 2.13: Classification rate of Vistex textures in function of the number of tex-
tures K.

(3 x 3 pixels) of the proposed operator cannot capture large-scale structures
that may be prominent features of some textures. The use of larger areas re-
sults in huge histograms, and consequently, in high memory consumption and
longer classification times. Murino et al. apply high-order statistics (which
are insensitive to noise) to create a feature vector [109]. However, a selec-
tion algorithm is needed to reduce the high-dimensional data for classification.
Fountain and Tan use a multi-channel Gabor filter bank for classifying tex-
tures from the Brodatz album [110]. By processing an image using multiple
resolution techniques, filter banks have the ability to decompose an image into
relevant texture features that can be used to classify the textures accordingly.
They concluded that their method was relatively robust to Gaussian noise by
using a sufficient number of features.

In order to test the robustness against noise for texture classification, we per-
form tests with uniform, speckle and Gaussian noise.

Uniform Noise

In this experiment, we add uniform noise to the same test images as in the
previous experiments so that the image quality degraded with a PSNR of —20
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g

Figure 2.14: A detail of 60 x 60 pixels of a test image from the Vistex collection
(Grass.0001) (a) original, (b) with uniform noise.

(a)

dB, as shown in Figure[2.14] Next, these noisy test images are classified using
the network that is trained with the noise free training data. As can be seen in
the graphs plotted in Figure [2.15] and Figure [2.16] we notice that the accuracy
of the LBP and the GMRF features is drastically affected. The classification
rate of the multi-scale LBP features drops to almost ‘ad random’ values (9.0%
for K = 10). The FLBP obtain clearly better results (22.3% for K = 10) than
the multi-scale LBP but they still underperform when taking into account more
textures. In contrast to the classification results published by lakovidis et al.,
the FLBP obtain remarkably lower classification rates in our tests. The rea-
son of this might be that the training data in our test doesn’t contain any noise
while the training data in [108] also contain noise. The FLBP are clearly not
suited for this classification problem. Both GMREF feature vectors rapidly be-
come unreliable as the number of texture classes increases (GMRF_7: 25.3%
and GMRFi314: 11.0% for K = 10). On the other hand, the filter bank ap-
proaches are more robust. The proposed texture features only lose about 5%
accuracy compared to the noise free texture classification experiment of Sec-
tion 2.7.1] The latter observation can be explained by the fact that the added
noise did not greatly affect the periodic components of the textures, while for
LBP and GMREF the random changes of the pixel values in the test data have a
great impact on their distinguishing capabilities.

Speckle Noise

In the previous experiment, we have kept the amount of (uniform) noise con-
stant and varied the number of textures. To know the classification rate be-
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Figure 2.15: Classification rate of Brodatz test images with uniform noise as a func-
tion of the number of textures K.
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Figure 2.16: Classification rate of Vistex test images with uniform noise as a function
of the number of textures K.
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Figure 2.17: (a) Detail of the Vistex Metal.0002 texture, with zero mean speckle noise
and variance (b) 0.01, (c¢) 0.02, and (d) 0.04.

haviour as a function of the amount of noise, we keep the number of textures
constant at K = 10. In this experiment, we add zero mean speckle noise with
different variances (0.0025, 0.005, 0.01, 0.02, 0.03, and 0.04) to the training
data. Speckle noise is a random, granular noise and is an inherent character-
istic of, e.g., ultrasound imaging. Furthermore, the observed speckle pattern
does not correspond to the underlying structure of the texture. The noisy tex-
tures are then classified using the neural network that is trained with the noise
free texture data.

Although hardly visible at first sight for the human eye (see Figure 2.17), the
amount of speckle noise has actually a strong influence on the classification
rates. As can be seen in Figure[2.18] the speckle noise affects the classification
rates of all texture features, but the proposed texture features clearly obtain the
best classification results and perform at least 25% better than the multi-scale
LBP for the highest variance of the noise. For both the Brodatz and Vistex
textures, the performance of the multi-scale LBP and the GMREF features drops
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as the variance of the noise increases. The classification rate of the FLBP only
slightly decreases, and generally obtains a low performance. This not only due
to the small spatial support of FLBP, but also due to the fact that the classifier
is trained with noise free data, while in the experiments of lakovidis et al. [108]
the training data also contain noise.

Gaussian Noise

Similarly to the previous experiment, zero mean Gaussian noise of different
variances (0.0025, 0.005, 0.01, 0.02, 0.03, and 0.04) is added to the test tex-
tures. As exemplified in Figure[2.19] the visual quality of the textures is highly
affected.

Figure and Figure plot the classification rate of the Brodatz

and Vistex texture samples with the Gaussian noise, respectively. As can be
seen, the enhanced grating cell features with the Gaussian smoothed Gabor
responses obtain the best classification rate while the other methods struggle
with the noise. The performance of the FLBP only slightly decreases as the
variance of the Gaussian noise increases, but obtains generally a low classifi-
cation rate. Further, the classification rate of the GMRF and the multi-scale
LBP steadily drops with an increasing variance of Gaussian noise.

2.7.3 Image Compression

To cope with the high data volume of digital images and video, compression is
a popular technique to reduce the size and to optimize the storage. However,
the presence of artifacts caused by compression algorithms is an issue for tex-
ture analysis. Aschkenasy et al. have investigated the effect of compression on
texture analysis of echocardiographic images [111]. They recommend the use
of uncompressed or lossless compressed digital images in studies involving
texture analysis since lossy compression affects texture parameters.

To test the robustness of the presented texture features for classification against
image compression artifacts, we apply compression using a Joint Photographic
Expert Group (JPEG) compression algorithm of the Independent JPEG Group
(IJG) on the color Vistex textures so that blocking artifacts appear in the test
images [112]. There is no direct measure of the degree of image distortion
introduced by JPEG compression. We use the so-called ‘quality levels’ (Q)
proposed by IJG, which range from 0 (lowest quality) to 100 (highest quality).
Remark that the quality level ) = 100 is rather a mathematical limit than
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Figure 2.18: Classification rate of (a) Brodatz and (b) Vistex textures in function of
the variance of zero mean speckle noise.
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Figure 2.19: (a) Detail of the Vistex Fabric.0015 texture, with zero mean Gaussian
noise and variance (b) 0.01, (¢) 0.02, and (d) 0.04.

a useful setting. Therefore, the IJG recommends never to go above quality
level 95. A quality level 100 will produce a file two or three times as large as
@ = 95, but of hardly any better quality. The IJG recommends a quality setting
of ) = 75 for good-quality, full-color source images, without expecting to see
defects in a typical image. The lower the quality level, the more compression
artifacts that will arise, while the high spatial-frequencies of the texture are
more affected as exemplified in Figure 2.21] It is also important to remark
that JPEG quality scales are not standardized across JPEG-creation programs:
other JPEG implementations use completely different quality scales. Since
little or no artifacts appear in gray-scale images using a JPEG compression
algorithm (JPEG compresses hue data more heavily than brightness data), the
Brodatz pictures are not used in this experiment.

In the first classification experiment, the 10 Vistex test textures are compressed
at IJG quality level @@ = 15, texture features are calculated and are then clas-
sified with a classifier that has been trained with the training data which are
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Figure 2.20: Classification rate of (a) Brodatz and (b) Vistex textures in function of
the variance of zero mean Gaussian noise.
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(a) (b (©

Figure 2.21: (a) Detail of the Vistex Fabric.0005 texture, compressed at quality level
(b)Q =T75and (¢c) Q = 15.

not compressed. The test results, which are plotted in Figure [2.22] indicate
that the presented texture features obtain the best classification results com-
pared to the other texture features for all values of K (e.g., 90% for K = 10).
Also the smoothed Gabor filter responses show some robustness against JPEG
compression while the other texture features clearly do not. Since the JPEG
compression mainly affects the high frequency details in the images, the filter-
bank-based methods still achieve satisfactory classification results because the
image is decomposed at different scales. On the other hand, the classification
rate of the multi-scale LBP rapidly drops as the number of textures increases.
The GMRF,_7 features perform slightly better than GMRF;3 14, but the re-
sults for both GMRF vectors are unsatisfactory. The FLBP obtain, again, the
lowest classification rates. It is clear that the multi-resolution approach of our
filter bank can deal better with this loss of information than LBP and GMRF
since the latter methods are more sensible to local changes of pixel values.

In the second experiment, we test the impact of the JPEG quality level () on
the classification rate. Therefore, the number of texture classes is kept constant
(i.e., K = 10). In this experiment, we omitted the GMRF;314 because of
their low accuracy in the previous experiments. Also the G, are omitted since
they make part of the proposed texture features which performance is better.
As plotted in Figure 2.23] it is obvious that the proposed features are hardly
affected by the JPEG compression. The multi-scale LBP can keep up with the
proposed features, but for quality levels lower than 75, the classification rate
steadily drops and attains for quality level 15 a lower classification rate than
FLBP or GMREF. Also, the already low classification rate of the FLBP drops
for quality levels lower than 75. The classification rate of the GMREF also starts
decreasing from quality level 75.
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Figure 2.22: Classification rate of JPEG compressed Vistex test images in function
of the number textures K. The test images are compressed with an IJG compressor at
quality level 15.

2.8 Material Classification

The problem of classifying materials from their imaged appearance, without
imposing any constraints on, or requiring any a priori knowledge of the view-
ing or illumination conditions under which these images were obtained, is an
extremely challenging task. This is because small variations in the illumination
or camera position can have a huge impact on the acquired image. Classifying
materials from a single image obtained under unknown viewpoint and illumi-
nation conditions is similar to texture classification since they both involve the
classification based on the visual appearance of a surface. In this section, we
examine the use of texture information for classifying materials. Therefore, we
apply the texture classification approach which is explained in previous section
on textures from the Vistex library in Section [2.8.1and on a self-created
library of outdoor textures in Section [2.8.2]

2.8.1 Material Classification on Vistex Textures

The Vistex library contains textures which are acquired from photographs of
materials, such as bark, bricks, leaves, and water. In a first material classi-
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Figure 2.23: Classification rate of JPEG compressed Vistex textures in function of
the IJG quality levels.

fication experiment, we group different Vistex images in one class based on
the corresponding material or object from which the photograph is taken. In
this way, textures that describe the same semantics and therefore are similar to
humans, are grouped together. We have considered 4 texture classes: Water,
Bark, Sand, and Leaves and each texture class contains 4 images as de-
picted in Figure [2.24] From each texture class, we leave out one image that
we use as test image for classification, the other three images are then used to
train the classifier. This process is repeated for every image (cross-validation).

As can be seen in Table the proposed texture features (Gs + Grate,p,)
achieve the best classification results. However, the texture class Leaves ob-
tains a considerably lower classification rate than the other classes. The same
finding applies for the smoothed Gabor filter response (G;) and the multi-scale
LBP features. The latter is caused by the fact that the intra-variation of the
Leaves class is very high. As can be seen in Figure @ (e)—(h), the scale
of the texture varies a lot, and consequently, our classifier has some difficulties
with these deviations. Our experiments further indicate that GMRF features
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(a) bark.0007 (d) bark.0012

(e) leaves.0003 (f) leaves.0004 (g) leaves.0008 (h) leaves.0011

(i) sand.0001 (j) sand.0002 (k) sand.0003 (1) sand.0005

(m) water.0001 (n) water.0002 (o) water.0003 (p) water.0006

Figure 2.24: Textures classes: Bark (a)-(d), Leaves (e)-(h), Sand (i)-(1), Water
(m)-(p).

are clearly not designed for this kind of task. The high classification rate of
the Leaves class using GMRF could indicate that GMRF can deal better with
the near-stochasticﬂ property of this texture. However, the high rate is deceiv-
ing. We observe that the Leaves class accounts for a high number of the
misclassifications using GMREF since a large fraction (i.e., 51%) of the fea-

3In this context, a stochastic texture has a more random, noisy appearance, such as randomly
scattered dots.
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tures belonging to each texture class is misclassified as Leaves. The GMRF
features are just not sufficiently distinctive for material classification. Also the
FLBP attain poor classification results due to the small spatial support of the
operator.

G; + Grat.,,,; GMRF;_7 GMRFi3414
Bark 99.3 14.8 1.8
Leaves 74.9 93.0 90.7
Sand 100 55.3 24.4
Water 97.3 60.1 43.1
average 92.9 54.8 40.0
LBpP"*2 FLBP G;
Bark 99.0 57.0 85.9
Leaves 72.9 20.1 64.0
Sand 100.0 27.8 99.1
Water 81.3 98.1 91.7
average 88.3 56.68 85.2

Table 2.7: Classification rate (%) of 4 texture classes obtained from the Vistex album.

2.8.2 Material Classification on Outdoor Textures

To test the material classification of outdoor textures, we create an album
of 100 outdoor textures which are manually collected from the World Wide
Web (WWW). Each collected texture belongs to one of these five classes: (i)
Branches, (ii) Bricks, (iii) Grass, (iv) Sky, and (v) Water. Every class
contains 20 samples. Figure [2.25|depicts some example textures from the self-
created texture album. As in the previous material classification experiment,
one image is used as test sample while the other ones are used to train the
classifier. As depicted in Table [2.8] the G, + Grat,,, texture features achieve
the best classification results over all materials. Also the smoothed Gabor re-
sponses (Gg) obtain very good results. However, the multi-scale LBP have
some difficulties with the Water and Grass textures because of the high
variation of the data. Our experiments further indicate that GMRF features
are clearly not designed for this kind of task. The GMRF have major difficul-
ties to discriminate textures from the class Water and Sky, and textures from
the class Grass and Branches. Since the FLBP and the GMRF;314 have
achieved low classification rates in the previous experiments, they have been
omitted in this one.
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Figure 2.25: Examples of outdoor textures: water (a, b), branches (f, j), sky (d, h, 1),
bricks (e, 1), and grass (c, g, k).

| G, + Grat.,, GMRF;_; LBP"™? G,

Branches 96.8 81.6 72.2 87.6
Bricks 98.5 26.5 86.11 81.9
Grass 87.7 15.5 11.1 85.8
Sky 95.9 99.9 100 95.3
Water 85.9 2.3 16.6 85.7
average 93.0 45.2 57.2 87.3

Table 2.8: Classification rate (%) of outdoor textures.
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2.9 Outdoor Scene Labeling

This section describes the interpretation of outdoor scenery images using tex-
ture information. We demonstrate how the presented HVS-based texture fea-
tures can be used for labeling regions in images. Before our approach is de-
scribed in Section [2.9.2] we first give an overview of related work in the next
section.

2.9.1 Related Work

Early content-based image retrieval systems were based on the search for the
best match to a user-provided query image or sketch [113—115]. Such systems
decompose each image into a number of low-level visual features (e.g., color
histograms, edge information) and the retrieval process is formulated as the
search for the best match to the feature vector(s) extracted from a query image.
However, it was quickly realized that the design of a fully functional retrieval
system would require support for semantic queries [116]. The basic idea is to
automatically associate semantic keywords with each image by building mod-
els of visual appearance of the semantic concepts of interest. However, the
critical point in the advancement of content-based image retrieval is the seman-
tic gap which makes describing high-level semantic concepts with low-level
visual features a challenging task. The first efforts targeted the extraction of
specific semantics under the framework of binary classification, such as indoor
versus outdoor [117], and city versus landscape classification [118]. More re-
cently, efforts have emerged to solve the problem in greater generality through
the design of techniques capable of learning semantic vocabularies from an-
notated training image collections by applying (both unsupervised and semi-
supervised) machine learning techniques, e.g. [119, 120]. Many methods have
been proposed for region-based image retrieval. Zhu et al. [121] partition the
image into equally sized blocks, index the regions using a codebook whose en-
tries are obtained from features extracted from a block. Finally, images are in-
dexed using this codebook. Image retrieval is then performed based on the in-
dexed images. However, the equal-sized blocks ignore the boundary of image
regions and consequently, these blocks cannot represent the objects correctly.
Wang et al. use a codebook to segment an image based on the statistics of the
regions’ color and texture features [122]. At pixel level, color-texture classifi-
cation is used to form the codebook. This codebook is in the next stage used
to segment an image into regions. The context and content of these regions are
defined at image level. The method of Li and Wang [123] uses 2-dimensional
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hidden Markov models to associate the image and a textual description. A
major drawback of these approaches is that they cannot integrate the seman-
tic descriptions into the image regions, and therefore they cannot support the
high-level querying of images. For that reason, some approaches use an image
partitioning as an intermediate step to extract the semantics of scenery images
using low-level features. Depalov et al. [124] use a quantized color and tex-
ture segmentation algorithm to segment images depicting natural scenes. The
features of the obtained regions are used as medium level descriptors to extract
semantic labels at region level and later at scene level. Yuan et al. use spa-
tial context constraints to label image regions [125]. Segmented image regions
are first regularized into a 2-dimensional lattice layout to represent a graphical
model for learning and inference. However, their learning is supervised and the
parameters of the support vector machines and conditional random fields are
estimated sequentially rather than simultaneously. In [126], a self-organizing
map trained with local binary patterns is employed to classify outdoor scene
images. As a means of supervision, the user selects the map nodes with similar
appearance and the corresponding samples are retrained using a smaller map
in order to reveal if some classes are mixed up in the same node. A major
weakness of these retrieval systems is their lack of domain knowledge. Conse-
quently, many systems are error prone when it comes to detection of high-level
concepts. Athanasiadis et al. associate a region with a fuzzy set of candidate
concepts stored in an ontological knowledge base [127]. A merging process
is performed based on new similarity measures and merging criteria that are
defined at the semantic level with the use of fuzzy set operations. Schober et
al. apply domain knowledge for the interpretation of landscape images [128].
They relate the extracted low-level features with concepts and then generate
rules which define the coherences between the concepts. An ontology defines
the spatial relations between the concepts to remove the incorrect assignments.
A detailed overview of content-based image retrieval techniques which include
semantics is given by Liu et al. [129]. They divide these methods into five cat-
egories:

(i) employing ontologies to define high-level concepts,
(i1) applying machine learning on low-level features,
(iii) using relevance feedback,
(iv) generating semantic templates to assist high-level information retrieval,

(v) using both visual content and surrounding text.



2.9. Outdoor Scene Labeling 69

2.9.2 Methodology

Despite the efforts, humans outperform these machine vision systems in many
aspects. Humans are very good at getting the conceptual category and layout
of a scene within a single fixation. However, it is still unknown how visual in-
formation is fully processed by the human brain. Available information about
the processing of the HVS indicates that the first stage of a system that is able
to automatically interpret visual information, should involve the use of percep-
tually based features, i.e., features that are based on the HVS.

According to the above five categories by Liu et al, the approach presented in
this dissertation uses techniques from the first and second category: we apply
machine learning on perceptual texture features, and in the final stage, we in-
gest domain knowledge. Our method to assign a label to regions of outdoor
scenery images consists of 3 successive steps: (i) segmentation, (ii) classifica-
tion, and (iii) the application of domain knowledge. Thus, our methodology
employs two strategies:

(1) a bottom-up strategy to compute semantically relevant information from
the low-level image data,

(ii) a top-down strategy that ingests domain knowledge to increase the ac-
curacy of the obtained interpretation.

Image Segmentation

Instead of directly assigning a label to each pixel, we first apply an intermediate
segmentation step. Based on the perceptual texture (i.e., enhanced grating
cell with Gaussian smoothed Gabor responses) obtained from patches of 4 x
4 pixels, the image is segmented into similar regions with no supervision as
explained in Section[2.6]

Labeling of Image Regions

In the second stage, the same texture features which are used to obtain the im-
age regions, are used for material identification in order to assign a label (see
Section[2.7). For that purpose, the hierarchical SOM-based classifier is trained
with features obtained from different types of texture classes. The label of an
image region is then easily obtained by selecting the label that occurs most
frequently. However, the latter implies that only regions consisting of similar
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textures (i.e., the same texture classes) as those in the training set, can be cor-
rectly identified by the classifier. In order to obtain a successful identification
of an image region, there are two requirements: (i) a representative training set
and (ii) discriminative texture features. However, the creation of a representa-
tive training set is a very difficult issue, if not practically impossible. For the
labeling of outdoor scenery image regions, we use the texture album presented
in Section [2.8.2] which consists of five texture classes, i.e., (i) Branches, (ii)
Bricks, (iil) Grass, (iv) Sky, and (v) Water.

Exploitation of Domain Knowledge

Due to the difficulties described above, any bottom-up approach is error prone.
In order to cope with errors and to obtain a more plausible interpretation of the
depicted scene, we ingest domain knowledge. For that reason, an ontology
is created. An ontology is high level domain knowledge that describes the
conditions and restrictions of the depicted concepts (i.e., the concepts that are
present in the training set). In this way, image regions can be merged or mis-
classifications and illogical compositions can be removed or altered. However,
one should pay special attention to the knowledge modeling phase to avoid
false rules or rules that are not universally applicable within the given context.

The created ontology consists of a few simple, but effective rules. Given the
concepts of our training set, the following rules are iteratively applied:

(i) neighboring regions with the same label, are merged,
(i) no region can exist in Sky,
(iii) no region of Sky can exist in water,
(iv) no Water can be above Sky,

(v) aregion should be at least 8 pixels wide and high,

(vi) regions that not obey to the above rules, are relabeled (the new label is
obtained by the ith BMU of the region, where ¢ denotes the iteration
number).

2.9.3 Experiments

The image labeling experiments are conducted on ten scenery images of var-

ious sizes, e.g., see Figure Figure and Figure These
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grass  sky  water branches

Figure 2.26: (a, e) Scenery image, (b, f) ground truth, (c, g) labeled regions, and (d,
h) obtained regions after ingestion of domain knowledge.
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grass  sky  water bricks branches

Figure 2.27: (a) Scenery image (a), (b) ground truth, (c) labeled regions, and (d)
obtained regions after ingestion of domain knowledge.
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images contain no other texture classes than those in our training set. The
ground truth (see Figure Figure and Figure 2.27(b)) is created
manually and therefore it should be interpreted as an approximation rather than
a certainty. Texture features (i.e., enhanced grating cell responses with Gaus-
sian smoothed Gabor responses) are computed from patches of 4 x 4 pixels
and are fed to a SOM of 10 x 10 nodes for segmentation.

After the segmentation process, our trained classifier is used to label the com-
puted image regions. As can be seen in Figure Figure [2.26(g)| and
Figure the result of this labeling process contains different errors. At
first, some isolated patches are misclassified. These errors can be removed by
applying constraints on the size of the regions. However, some other errors re-
main, e.g., due to reflection, such as the Sky-blob in the lake of Figure
Such type of errors can only be removed by incorporating domain knowledge.
Other errors emerge from the fact that the scaling of certain textures alters
due to changes in the perspective, e.g., at the edges of the mountains in Fig-
ure Generally, this problem is much harder to tackle.

In the last step, the ontology is applied on the intermediate results. As can
be seen in Figure [2.26(d)} [2.26(h)|and [2.27(d)} small misclassified regions are
filtered away, and the blob of Sky in the lake is removed. After the semi-
supervised classification step, 82.7% of the pixels have a correct label. How-
ever, employing the domain knowledge enhanced the region labeling with
9.2% up to 91.9%.

Despite these good results, some improvements can still be made. At first, the
segmentation step should be enhanced. In our experiments, we have noticed
that some region boundaries are falsely detected. The latter could be tackled
by also taking edge information into account or, by using color information as
well. Indeed, since color is the primary visual stimulus, we expect that intro-
ducing color information, next to texture information, could also increase the
classification rate. In the HVS, bar and grating cells seem to play an important
role in boundary detection [77,81]. In contrast to grating cells, bar cells re-
spond only to an isolated edge or line but do not respond to any texture edge.
Hence, it is possible to distinguish between an edge belonging to a textured
region and a non-textured region. This way, the problems that arise due to the
perspective can be tackled. Since the scale of the texture is not constant due to
the perspective, a segmentation solely relying on texture will distinguish tex-
ture samples that are “close” and samples that are “far” away from the position
from which the photo was taken. However, if no clear edge can be detected
between these regions, they should be considered as one region.
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2.10 Conclusions and Future Work

2.10.1 Conclusions

In this chapter, we have presented the use of HVS-inspired features for texture
analysis. These features consist of enhanced grating cell responses combined
with Gaussian smoothed Gabor responses, and correspond to outputs of cells
found in the primary and secondary visual cortex of humans. Enhanced grating
cell responses give a stronger response to the salient texture-specific orienta-
tions and periodicities than the original grating cell features. Although the
use of (enhanced) grating cell responses is not sufficient to obtain a successful
texture characterization, their combination with Gaussian smoothed Gabor re-
sponses produces a texture feature that has more distinguishing characteristics
than existing texture analysis methods. Furthermore, the behaviour of grating
cells is an added value for a texture operator since non-texture features (such as
isolated pixels or edges) can be distinguished from texture patterns containing
some specific orientation.

Using SOMs for the unsupervised segmentation of textured images, we have
shown that these features clearly obtain the best segmentation results, up to a
recall of 85.7% (without using pixel adjacency information) for the segmenta-
tion of nine textured images containing Brodatz textures.

For the classification of texture information, we have employed hierarchical
SOMs. Hierarchical SOMs are obtained by retraining nodes which contain
texture features from different classes using smaller SOMs. Experiments con-
ducted on different texture libraries indicate that the presented texture features
have excellent discriminating capabilities and can compete with state-of-the-
art texture analysis methods like multi-scale LBP. Classification rates up to
97.8% and 96.9% have been achieved for the classification of 10 Brodatz tex-
tures and 10 Vistex textures, respectively.

For most practical applications the presence of noise in images is a problem
in texture characterization and causes difficulties for interpretation. In our ex-
periments, we have shown that the presented approach is highly robust to var-
ious levels of uniform, speckle and Gaussian noise. In contrast, the classifica-
tion rate of well-established texture analysis methods, such as GMRF or LBP,
steadily drops as the variance of the noise increases. The proposed texture fea-
tures obtain classification rates that are, e.g., at least 25% and 35% better than
other methods when speckle noise and Gaussian noise is introduced, respec-
tively. Also the presence of compression artifacts in images causes problems
for texture characterization. By applying JPEG image compression, we have
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shown that the presented texture features are highly robust and can deal bet-
ter with the impact on the high spatial-frequencies of the textures than other
texture analysis methods. For the highest tested compression rate (IJG qual-
ity level 15), the classification rate obtained by our proposed method is at least
50% higher than the classification rate that is obtained by state-of-the-art meth-
ods. The robustness against noise and compression artifacts of the presented
texture features has the advantage that no prior knowledge about the obtained
images is needed for applying texture analysis.

We also examined the use of texture features for material detection. The pre-
sented texture features also achieve the highest classification rates.

Finally, the presented texture features are used for the interpretation of textured
outdoor scenery images by first applying segmentation, followed by material
detection on the obtained image regions. The experiments point out that the
use of perceptually based texture information is an added value for scene in-
terpretation since these low-level features can be related to semantic concepts.
To model cognition, we have ingested domain knowledge by applying a top-
down approach. An ontology describing the conditions and restrictions of the
depicted concepts, can tackle many errors which are related to a bottom-up
approach.

2.10.2 Future Work

For the material detection, some issues due to the high variation of the vi-
sual appearance of materials have shown up: (i) the altering of the scale, and
(ii) the high intra-class variation. Therefore, robustness to scale variations
and the capability to generalize across different instances of the same materi-
als, are needed. We are convinced that more sophisticated machine learning
techniques and class-specific feature selection methods are necessary to tackle
these problems.

To automatically obtain a more accurate scene description, texture information
is not sufficient. Color information, which is the primary visual stimulus, will
certainly be helpful. We demonstrated in the third segmentation experiment
(Section[2.6.3)) that the combined use of color and texture information achieves
better segmentation results than the single use of color or texture information.
However, the recognition by the HVS of visual scenes is yet not fully under-
stood. Moreover, the visual cortex consists of many cell types from which it is
believed that their functionality still has to be discovered. Additional models
are already available for keypoints [130], dot patterns [131], disparity [132],
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contour completion [133], and non-classical receptive field inhibition [134].
These models can possibly be improved and must somehow be integrated into
a complete cortical architecture.

Finally, a general issue related to texture analysis methods is the computation
time of the feature extraction. To achieve real-time processing using Gabor
filter banks, it has been shown that a hardware implementation might be in-
evitable, especially if the resources are limited [135]. However, with the con-
tinuously expanding digital photo and video collections, the need for efficient
and (semi-)automatic content-based retrieval is even growing faster. Conse-
quently, we believe that optimized (hardware) implementations of state-of-
the-art techniques will be indispensable to achieve high retrieval results and
to cope with the enormous amounts of data in limited time.
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Chapter 3

Musical Audio Mining

After silence that which comes nearest
to expressing the inexpressible is music.
— Aldous Huxley (1894 — 1963)

3.1 Introduction

“What is music?” Is it the sound we hear through our speakers when we turn
on the radio or when we play a compact disc? Is music what musicians play
and what singers sing? Or is music the sound that affects our emotions, what
makes us happy, or makes us cry... “the language of emotions”? Sometimes,
music makes us want to dance or feel sleepy. Some people say that music
is art. However, everybody can recognize pieces of music as we hear them.
Furthermore, we know there are different kinds of music and we know which
kinds we like or do not. Thus, the question what music is, is a relatively sim-
ple one, but the answer is apparently not so trivial. It is a fact that music is
present in many aspects of our lives. The question “What is music for?”” might
even be more difficult to answer. A simple answer is that music is enjoyable.
We turn to music to uplift us even further in happy times or seek the comfort
of music when melancholy strikes. Therefore, music has been used in many
domains to intensify sensations, such as advertising and film production while
it is also used in therapeutic sessions for the reduction of anxiety and stress,
the relief of pain, and as an aid for positive change in mood and emotional
states. Music is thus a rich and a powerful medium. What is certain about mu-
sic is that it is related with the sense of hearing and hearing involves sound and
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the perception of it. But, it is hard to state which sound is music and which
is not. Some people will describe certain sounds as “disturbing” or “noise”
while the concatenation of such sounds may be perceived as music. The no-
tion of music, or at least the appreciation of it, is thus highly subjective and
culture-specific. However, there are structures or musical properties that can
universally be recognized, such as melody and rhythm. Humans are capable to
recognize and reproduce these temporal arrangements of sound. People often
only remember the melody and/or the rhythm of a piece they’ve heard, rather
than the name of the song and performer. By imitating these patterns, e.g.,
by singing, whistling, or humming, one would be able to retrieve information
from a musical collection in a natural way. However, consulting large music
collections and databases with audio information occurs still in a textual man-
ner as already stated in Section There is an urging need for techniques that
are able to extract information directly from the musical content, rather than
relying on human-inputted metadata. The domain that deals with the retrieval
of information related to music, is called Music Information Retrieval (MIR).

The perception of (musical) sound involves many layers of processing in the
auditory system. Therefore, appendix [D]elaborates on the processing of sound
by the human auditory system and gives an overview of the most important —
within the context of this dissertation — aspects of the auditory system as cer-
tain aspects will later be mentioned in the text again. The remainder of this
chapter is organized as follows. In Section [3.2] we describe the context of
MIR and its relation with this thesis. Furthermore, we will explain the notion
of sound in a musical context and define the concept “melody” in this disser-
tation. In Section we will deal with the extraction of melody lines from
musical audio recordings. Unlike many melody extraction approaches, we will
aim to explicitly distinguish individual musical notes, characterized by specific
temporal boundaries. Furthermore, we will intend to obtain the melody infor-
mation from both polyphonic and monophonic recordings and the described
system does not impose any restrictions on the audio recordings concerning
the instrumentation nor the number of instruments (simultaneously) playing.
Next to the extraction of melodic information, we will also consider the ex-
traction and classification of tonality information in Section[3.4] Like melody,
tonality also entails pitch information, but it manifests over a relatively larger
time interval than melody. We will present a novel method to obtain the key
of a musical audio piece by using a classification-tree-based approach instead
of the widely used metric-based approach. Finally, in Section [3.5] concluding
remarks about the presented approaches will be formulated.
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3.2 Music Information Retrieval

Music information retrieval (MIR) is an interdisciplinary research area which
deals with a variety of tasks. Basic research includes many topics, such as rep-
resentation of music, interaction, indexing, retrieval, content analysis, music
recommendation, audio compression, metadata, ontology modeling, percep-
tion, psychology, and intellectual property rights. According to Futrelle and
Downie, these research themes can be grouped according to the kind of mu-
sic representation they employ [136]. This way, a distinction can be made
between:

(1) Metadata MIR tackles the representation of metadata for tasks such as
cataloguing, ontology building and reasoning.

(i1) Symbolic MIR requires a symbolic representation of music, such as
MIDI, for topics like music analysis, melody matching, and score fol-
lowing.

(iii) Audio MIR deals with the retrieval of information from audio recordings
in analog or digital format. Examples are genre classification, drum
detection, melody detection, audio compression, instrument recognition,
digitalization, noise removal, etc.

However, we can add a fourth category to the above list, namely multi-modal
MIR, which uses different representations, such as in music recommendation
where both metadata and symbolic or audio representations are used for anal-
ysis.

Using the above categorization, the research presented in this dissertation falls
within the audio MIR category. In this thesis, research in the domain of tonality
and melody detection from musical audio are presented.

As far as musical audio is concerned, the content can be considered as explicit
audio information or the implicit information related with the signal. The for-
mer relates to the sound, i.e., the signal level while the latter relates to the
characteristics of, e.g., the thythm, melody, structure, etc. Analyzing charac-
teristics of musical audio, such as melody and rhythm, has a strong associa-
tion to physiological and perceptual issues. Human listening comprises many
stages and layers of information processing, from the treatment of low-level
auditory stimuli in the inner-ear to the data handling in the brain. However, the
latter can be influenced by high-level factors such as the memory, the context
and personal experiences.
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3.2.1 Musical Sound

Sound is the audible band of the mechanical wave spectrum, similar to the band
of visible light within the electro-magnetic wave spectrum. Sound propagates
as a traveling wave transmitted through a medium (a solid, liquid or gas).

A musical sound is often characterized with four perceptual attributes, pitch,
duration, loudness, and timbre, which make it possible for the listener to dis-
tinguish musical sounds from each other:

* Pitch allows the tonal ordering of sounds from low to high on a scale. A
sound has a certain pitch if it can be matched by adjusting the frequency
of a sinusoidal wave of arbitrary amplitude [137]. The pitch often repre-
sents the perceived fundamental frequency of a sound [138]. However,
the actual fundamental frequency may differ from the perceived pitch
because of harmonics which have a frequency that is an integer multiple
of the fundamental frequency.

* Duration corresponds to the time of the vibration which leads to the
production of the sound.

* Loudness is the attribute of auditory sensation in terms of which sounds
can be ordered on a scale extending from quiet to loud. It is related to
the physical strength, i.e., the amplitude, of the signal.

» Timbre, also referred to as “sound color”, is closely related to the recog-
nition of sound sources. If two musical sounds have equal pitch, dura-
tion and loudness, timbre is the property which enables us to distinguish
both sounds from each other. Timbre is a multi-dimensional concept
and depends mainly on the spectral energy distribution and its temporal
evolution.

A harmonic sound can be decomposed into a sum of sine waves, i.e., the har-
monics, whose frequencies are integer multiples of the lowest frequency as
exemplified in Figure The lowest frequency is named the fundamental
frequency (FO) which is in the literature often referred to as the first harmonic.
The integer multiple frequencies are then named the overtones. This way, har-
monic sounds are periodic. However, many real-world instrumental sounds are
not perfectly harmonic in the sense that the frequency components are almost
integer multiples of the FO. Examples of such nearly-harmonic instruments
are the piano, violin, flute, and also the human voice. These instruments are
referred to as ‘pitched’ instruments since a distinctive pitch can be perceived.
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Figure 3.1: A harmonic sound decomposed into its harmonics.

Non-harmonic sounds have partials that are no integer multiples of the FO,
such as percussive instruments. Therefore, these instruments are often called
‘non-pitched’ since no clear pitch can be perceived. Apart from that, noise has
no characteristic frequency at all.

A pitch can be measured over a “short” time interval where it represents a
tone. Remark that in the literature, the concept of a tone is often replaced by
the concept note. In this dissertation, we make a clear distinction between
these two concepts:
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* A tone is a regular sinusoidal wave of a single frequency and a given
duration.

* A note is the conceptualization of a tone on a musical scale (e.g., a chro-
matic scale). For example, a tone of 440 Hz corresponds to the note A4,
i.e., the middle “lIa” on a piano clavier.

Over a “long” time interval, pitch corresponds to fonality, which is specified
by hierarchic pitch relationships based on a harmonic center (see Section |3.4)).

In the remainder of this dissertation, we make no distinction between sound
and music because the difference between both concepts can be very subjective
and is often driven by the musical background and the culture.

3.2.2 Music Transcription

Within audio MIR, music transcription is a process that aims to convert a mu-
sical audio signal, e.g., a musical recording on a magnetic tape or a digital
recording stored as an mp3-file, into a symbolic representation (e.g., a musical
score) that identifies the pitch, timings, rhythmic structure, and other features.

The usual process of manual music transcription typically proceeds in a top-
down order. At first, the piece is segmented into meaningful parts and the
rhythmic structure is recognized. Next, the instruments or musical objects of
interest (e.g., the melody or the chords) are written down by repeatedly listen-
ing to the piece. Therefore, musicians commonly use an instrument to deter-
mine the note names while doing the transcription. People having a musical
background can perform certain tasks, such as music transcription, generally
with less effort than people lacking musical background. Furthermore, only
a few people can actually directly name the absolute pitch of a sounding note
or the tempo of the piece. Especially, the human ability to focus on a single
instrument at a time, provided that it is somewhat audible in the mixture, is
a useful property in music transcription. Manual music transcription is thus
a highly specialized ability of the auditory system and it requires more effort
than, e.g., visual scene analysis which occurs almost instantly.

According to the polyphony of the recording, music transcription can be more
or less complex. The polyphony indicates the number of simultaneously
sounding voices (whereas monophonic denotes that there is only one voice
present at each time). For a higher number of simultaneous voices, it be-
comes more difficult to distinguish them. For manual music transcription, a
monophonic recording may, e.g., require only one iteration whereas transcrib-
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ing an entire symphony with instruments with similar timbres may turn out to
be impossible [139]. Particularly, tonally fused (i.e., chimeric) sounds, which
form a unified musical perception, may be difficult to distinguish and to sep-
arate into the corresponding individual musical tones. Actually, it is argued
that trying to explicitly unveil the musical tones that are hidden in a chimeric
sound is perceptually unnatural. In this sense, the mechanism of human music
transcription must draw from a conscious mental effort, which demands sub-
stantial training and musical proficiency. Manual music transcription is thus
rather time-consuming, error-prone, iterative, and requires specialized skills.
Therefore, composers, music amateurs, and professionals could gain from au-
tomatic music transcription systems since these would free them for other more
creative jobs.

Automatic music transcription systems are proposed as a means to overcome
the above difficulties. In contrast to manual music transcription which occurs
in top-down order, automatic music transcription is rather a bottom-up process.
This is due to the fact that modeling such analytic listening and organization
of musical sounds into entities is a very challenging problem. Generally, the
architecture of such transcription systems comprises three main stages:

(1) Spectral or frequency analysis in which features are extracted from a
frame of the original musical audio signal.

(i1) Detection of, e.g., pitches that represent the fundamental frequencies of
melodic notes or classification of spectral data for drum detection.

(iii) Event generation, where the detected mid-level features are transformed
into a desired symbolic representation, e.g., a score.

There exists a wide variety of different research topics in the domain of audio
MIR processing concerning the analysis of music signals. In general, auto-
matic music transcription tries to extract information from the musical con-
tent and includes several topics, such as pitch and multi-pitch estimation, the
transcription of pitched instruments (detecting melody lines), transcription of
percussive instruments (e.g., the snare drum, hihats), beat tracking and meter
analysis, instrument recognition, and musical structure analysis. An important
aspect of (Western) music is the melody. In the next section, we elaborate on
this topic.
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3.2.3 Melody

Successive sounds create temporal auditive patterns. Many problems in mu-
sical content retrieval center on the recognition, identification, and classifica-
tion of patterns. Musicians as well as non-musicians seem to perform such
tasks effortlessly and often unconsciously, such as having a sense of musical
key [140], being able to follow the beat [141], and also following the melody
of a song. A lot of research has been carried out about the way people build
mental structures while listening to music and how musical patterns are re-
membered. Frances found that a figure (a short succession of pitches) is heard
if it is higher in pitch than the rest. However, if the higher pitch is relatively
constant, the lower figures form a more interesting pattern [142]. Another fac-
tor that influences the perception is the loudness. Furthermore, a listener can
shift its attention to other musical parts.

Dowling discovered that the contour of a melody is easier to memorize than
the exact melody [143]. The contour refers to the shape of the perceptual pitch
(i.e., the FO) of the melody: the pitch goes up, stays the same, or goes down. In
contrast, a musical scale is learned over a much longer period in life through
listening to music. So perceptually, the relative changes of the pitch are more
important than the absolute values. Other findings that are made concerning
the perception of melody, are:

* Two melodies having the same contour and the same tonality (see Sec-
tion [3.4) are perceived as more similar than two melodies having the
same contour but a different tonality [143].

* It is harder to distinguish between two atonal melodies with the same
contour than atonal melodies with a slightly different contour [144].

* When the octave of some notes are changed, it is harder to recognize the
melody [145].

* As the pitch intervals (i.e., the timing between successive pitches) are
altered, it becomes more difficult to identify the melody [144].

* Excact transpositions of melodies with a greater difference in pitch -
regardless of relatedness of key- are considered less similar than those
with a small difference in pitch [146].

* As the melodies become longer, pitch intervals become more important
than the contour [147].
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The timing between the pitches is thus also of importance. Consequently, two
musical figures with the same contour, but with different intervals are percep-
tually different.

Thus, defining the notion melody is not so trivial. In effect, the concept of
melody entails a certain subjectivity. Different people can have diverging per-
ceptions of the same song about what the melody actually is. Furthermore,
the concept of melody includes various aspects: melodies can be monophonic,
contrapuntal (with two or more independent melody lines), pitched or rhyth-
mic, tonal or atonal [148]. As a result, many definitions of melody relying
on perceptual or musicological issues have been proposed. In the following,
we list up various definitions of melody found in the literature, but we are not
aiming to cover them all:

* Oxford Music Onlin defines melody as: “A succession of notes, vary-
ing in pitch, which have an organized and recognizable shape. Melody is
horizontal, i.e., the notes are heard consecutively”, but also as “the result
of the interaction of rhythm and pitch”, and further as: “pitched sounds
arranged in musical time in accordance with given cultural conventions
and constraints”.

* “Musical sounds in a pleasant order and arrangement’
* “A succession of rhythms and pitches” [149].

* “Melody is an organized sequence of consecutive notes and rests, usu-
ally performed by a lead singer or by a solo instrument” and also, “the
melody is the part one often hums along when listening to a music
piece” [150].

* “Melody is the dominant individual pitched line in a musical ensemble”
[151].

* “A horizontal musical line of notation on the staff”” and “melody is to a
musical work what a paragraph is to a composition”. [149].

* “An auditory object that maintains its identity under certain transforma-
tion” [152].

* “A series of individual pitches, one occurring after another, so that the
composite order of pitches constitutes a recognizable entity” [153].

"http://www.oxfordmusiconline.com
Zhttp://www.wordsmyth.net/
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* According to Wikipedizﬂ a melody is: “A linear succession of musical
tones which is perceived as a single entity. In its most literal sense, a
melody is a sequence of pitches and durations, while, more figuratively,
the term has occasionally been extended to include successions of other
musical elements such as tone color”.

As can be observed in the above list, various musicological, perceptual, and
subjective properties are used to define the concept melody: (i) a sequence of
pitched sounds, (ii) the musicological characteristics of a melody are exploited,
(iii) the relation with rhythm is used, but also (iv) perceptual and emotional
features are taken into consideration.

In the context of this dissertation, we define a melody as:

Definition. Within a given time frame of a musical signal, the melody is de-
fined by the time-pattern of the most dominant, and non-overlapping pitches.

This definition reflects some of the above listed properties. At first, a melody
is related to music. Second, an association with pitch is made. Furthermore, it
also concerns the dominant pitch which relates our definition of melody with
perception and the fact that there’s only one dominant pitch at a time (i.e., non-
overlapping). Third, melody concerns a pattern in time. The latter property
relates melody with the notion of rhythm as it concerns the timing of successive
pitches. Finally, a melody occurs in a given time frame. The latter is a very
important aspect of our definition since the notion of melody is now not related
with a musical piece as “a whole”. This means that our definition of melody
does not indicate we are looking for the pattern of pitches that is most easily
remembered nor the tune that “stays in our head” after hearing a song, nor the
pattern that occurs most often in a song. Thus, for each excerpt that can be
characterized by pitch information, a melody can be found: one single tone,
a continuously rising pitch, a succession of tones, and so forth. Remark that
since noise has no characteristic pitch, it is not related with melody. Also
according to our definition, a melody is not per se related with one instrument.
Another effect of our definition of melody is that a melody can be represented
as a timed series of tones, the frequency of each tone corresponds then to the
FO.

Melody transcription (or melody detection) can thus be seen as a subtask of
music transcription. Instead of identifying all musical events in an audio
recording, melody transcription aims at finding the pitch information that is

3http://en.wikipedia.org/wiki/Melody
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perceived by the listener as melody. Melody detection has a potential number
of applications:

* Query-by-melody (QBM) is a process by which the melody is used as
query and aims at finding musical items in a database that contain a
similar melody. The latter requires that the melody information must be
extracted from an audio recording. Remark that QBM can “easily” be
performed on symbolic music representations, e.g., when the database
contains score information (such as a collection of MIDI files). Query-
by-melody could then be an intuitive way to query music collections in,
e.g., a store. Such a query could either be aural, e.g., by humming which
is then called query-by-humming (QBH) or by singing, i.e., query-by-
singing (QBS), or a query could also contain symbolic information to
represent a melody, e.g., MIDI data obtained from a synthesizer, or the
Humdrum format [154] that describes the pitch contour.

* Plagiarism detection could gain from melody transcription as well. In-
deed, both authors and copyright instances would have the possibility of
automatically comparing songs based on melodic similarity measures,
similarly like queries that are matched to melodies in QBM.

* Performance and expressiveness analysis by comparing the written and
score could gather much information about the style of music perform-
ers. This is especially useful for analog instruments that cannot output
symbolic (e.g., MIDI) information.

* For music analysis, the melodic part contains useful information for
the detection of motives and themes. Hence, its automatic transcription
could support this task.

3.2.4 Pitch Detection

The first major step in many music transcription methods and especially in
melody transcription, is the detection of pitch information from the musical
signal (as will also be later explained in Section [3.3.2). Pitch is the main
low-level feature in melody detection and is one of the four characteristics of
musical sound (see Section [3.2.1).

As a sound is usually made up of multiple sine waves, there’s is no actual pitch.
However, the human auditory system is anyway able to perceive a pitch which
corresponds to its FO. Thus, to obtain the perceptual pitch of an arbitrary sound
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(over a certain time interval), it suffices to find the FO. An important property
of the human auditory system is that the FO does not need to be present in
the signal to be perceived if the overtones are present. This concept is known
as the missing fundamental. For example, from a signal that consists of 200
Hz, 300 Hz, 400 Hz and 500 Hz harmonics, the 100 Hz FO can still be heard.
Apparently, the brain processes the information present in the overtones to
calculate the FO. For pitch perception, this implies that the frequency spectrum
of the signal is at least as important as the FO. Licklider [155-157] proposed
a neural processing model to explain how this information could be extracted
from the auditory nerve. Others have elaborated this model such as Lyon [158],
van Noorden [159], Slaney [160], Meddis, and Hewitt [161].

A straightforward way to obtain the frequency components of a signal, is by
applying a Fourier transformation (FT). An FT converts a signal from the time-
domain to the frequency-domain by decomposing the signal into complex ex-
ponential functions of different frequencies. However, an FT does not provide
any information on the time at which a frequency component occurs. This is
not a problem for stationary signals, but it is for non-stationary signals, such as
speech and music since their frequency content changes over time. A way to
overcome the latter and to obtain the time-frequency information, is to assume
that the signal is stationary over a short time interval. For this purpose, a win-
dow function w(t) is chosen. The width of this window must be equal to the
segment of the (continuous) signal s(¢) where its stationarity is valid. Conse-
quently, a moving window is then applied to the signal and the FT is applied to
the signal within the window as the window is moved. This process is known
as the short-time FT (STFT), with a window function w centered around 7:

+oo
STFT{s(t)} = / w(t — 7)s(t) exp (—jeot)dt. 3.1
For a non-continuous signal s[z], becomes:
+o00
STFT{s[z]} = Z wlx — m]s[z] exp (—jwx), (3.2)

which is called the discrete STFT.

The size of the window has an important impact on the obtained results. A
wide window gives better frequency resolution but a poor time resolution. On
the other hand, a narrower window gives good time resolution but poor fre-
quency resolution which is related to Heisenberg’ s uncertainty principle.

A more computationally efficient method is the Fast Fourier Transform (FFT).
The FFT performs a Discrete Fourier Transform (DFT) on the discrete signal
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s[z] using a more efficient algorithm with time complexity O(nlog(n)) instead
of O(n?) (n represents the number of data points) [162].

One of the major problems caused by the assumption that a signal is stationary
over a short time interval (and thus of DFT algorithms in particular), is spectral
leakage. When the end-points of a measured signal interval do not match up
perfectly, discontinuities are introduced as illustrated in Figure [3.2(b)] Conse-
quently, the FT will introduce sharp discontinuities which are then processed
into sinusoids and the spectral energy from these sinusoids spreads across the
DFT bins from the fundamental frequency peak. A perfect sine does not have
spectral leakage when the measured signal interval is in phase with the sig-
nal. The effects of spectral leakage can be reduced (or even increased) by
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(e) DFT perceived signal using a Hann window.
Figure 3.2: The effect of windowing functions on a sinusoidal signal.
the windowing function. Selecting an appropriate window function is not a

simple task. Each window function has its own characteristics and suitability
for different applications. To choose a window function, one should be able



92 Musical Audio Mining

to estimate the frequency content of the signal. If the wavelength is shorter
than the window, a rectangular window can be used. A rectangular window is
the simplest window which just takes a chunk out of the signal: w(n) = 1.
However, a rectangular window leads to discontinuities at the end-points (see
Figure[3.2(c)). Therefore, windowing functions typically taper to zero near the
end-points. In this way, the measured signal is attenuated at the end-points to
ensure that the sharpness of discontinuities is dampened. Examples of com-
monly used window functions are the Hamming window (o = 0.54, see Fig-

ure [3.2(d)) and the Hann window (v = 0.5, see Figure [3.2(e)):
2
w(n) :a—(l—a)cos< ™ ),

N -1

for n = 0..N — 1. For more information concerning the use of windowing
functions for harmonic analysis, we refer to [163].

Many techniques for pitch detection from audio signals have been proposed
in the literature, especially for speech analysis, e.g., [160, 164-171], but, no
universal pitch detector currently exists. According to the way spectral in-
formation is handled, pitch detection techniques can be divided into three
classes [172]:

(1) Spectral location algorithms are based on harmonic pattern matching
which look for frequency components at harmonic locations. Pop-
ular examples are time-domain autocorrelation-based algorithms, and
cepstrum-based frequency estimators [164, 173]. However, a major
trade-off of spectral location algorithms is their inability to appropri-
ately cope with non-ideal harmonic sounds. Inharmonicity is not a big
concern in speech processing, but is immediately met when analyzing
musical sounds at a wide frequency band.

(ii) Spectral interval algorithms are based on measuring the spectral inter-
vals between frequency partials by applying autocorrelation on the spec-
trum, e.g., [166, 174]. These methods can cope relatively well with non-
harmonic sounds. The idea is derived from the observation that a peri-
odic but non-sinusoidal signal has a periodic magnitude spectrum, i.e.,
the period which is the FO. Spectral interval algorithms work better for
sounds that exhibit inharmonicities. Even though the intervals do not re-
main constant, they are more stable than the locations of the harmonics.

(iii) Unitary algorithms provide a trade-off between the spectral interval and
spectral location algorithms and evaluate the periodicity of the time-
domain amplitude envelope. In the unitary approach, both timing and
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place information are taken into consideration through bandwise signal
analysis followed by periodicity evaluation in each frequency channel.
Auditory models typically apply this approach. The idea is derived from
the observation that any signal with more than one frequency compo-
nent exhibits periodic fluctuations in its time-domain amplitude enve-
lope (i.e., beating). The frequency components alternatingly amplify
and cancel each other. The rate of beating depends on the frequency
difference between each two frequency components.

As explained in appendix [D] the human auditory system performs pitch detec-
tion in the cochlea by the stimulation of hair cells in the organ of Corti that
resides on the basilar membrane. Furthermore, there are two theories that ex-
plain the perception of pitch in the human auditory system. The place theory
uses the evidence that different places in the basilar membrane of the inner ear
respond to different frequencies. On the other hand, the frequency theory is
based on the fact that the part of the basilar membrane that responds best to
a given frequency component tends to vibrate at the frequency of that compo-
nent as well. The auditory system could then use this information to infer the
spectrum of the analyzed sound. Models of human pitch perception attempt to
unify these theories into one model that is able to reproduce a wide range of
phenomena in human pitch perception [160, 175, 176]. Both timing and place
information are taken into consideration by separating the analysis into differ-
ent frequency bands. As such, increased robustness to corrupted signals can
be achieved.

3.3 Melody Transcription

In this section, we present an automatic transcription system for the detection
of the melody from musical audio. We aim to distinguish individual tones
characterized by specific temporal boundaries without imposing any restric-
tions upon the instrumentation nor the polyphony. In Section|3.3.1] we outline
related work already done in this field. Next, in Section [3.3.2] we describe
the front-end which is a pitch detector based on an auditory model. The sec-
ond phase of our approach consists of the estimation of the FO in each time-
frame and the creation of pitch trajectories over successive frames. This is
explained in Section Next, the creation of melodic tones is clarified in
Section [3.3.4] The final phase of the presented system is a post-processing to
remove redundant tones and is explained in Section In Section[3.3.6] we
give an overview of the presented system. Finally in Section the evalu-
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ation of the presented melody transcription system is discussed, the main en-
countered problems are addressed, and possible improvements are suggested.

3.3.1 Related Work

The first melody transcription mechanism focused on monophonic recordings
of instruments with a relative strong first harmonic (e.g., flutes), playing at a
consistent tempo [177]. This system used a STFT as front-end and formulated
note hypotheses based on amplitude information for automatic score genera-
tion. Currently, tracking the pitch of a monophonic musical piece is practically
a solved problem, but the quantization of pitches into notes is still a difficult
problem (especially for singing) [172]. The latter is mainly due to performance
aspects, such as vibrato and portamento.

In contrast, performing pitch detection on a polyphonic musical piece is a
much more demanding task. In a polyphonic context, several instruments are
usually playing at the same time. As a result, harmonic components of differ-
ent concurrent sounds coincide in frequency. The transcription of the melody
from polyphonic audio data is still recognized as an unsolved problem. While
humans easily spot the melody from various musical pieces, there is still no
reliable method for the automatic extraction of the melody.

To locate melodic fragments, the predominant pitches in the input signal need
to be estimated. Consequently, the first step in a melody transcription system
is the detection of this pitch information.

Over the last decade, there has been a remarkable progress in the area of
melody transcription from polyphonic music. The work of Goto received par-
ticular attention [178—180]. The front-end of these systems consists of a STFT-
based multirate filter bank which generates a number of pitch candidates for
every 10 ms. In the second stage, a probabilistic model for the detection of
melody and bass lines is devised. This model assumes that the obtained pitch
distribution at each frame is generated from a weighted mixture of tone mod-
els. Each tone model has a harmonic structure and is modeled as a Gaussian
distribution centered at integer multiples of the corresponding FO. Further, the
melody then corresponds to the most predominant tone model with the highest
weight. The weights are iteratively updated using the Expectation Maximiza-
tion algorithm. By tracing the FO candidates at consecutive frames, the melody
line is formed. One of the shortcomings of this method is that no discrimina-
tion of the melody and the accompaniment is performed. This limitation was
addressed by Marolt who used features such as loudness, pitch stability, and
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onset steepness in order to perform sound source separation [181]. However,
the accuracy varied considerably across different musical excerpts. Tapert and
Batke also made some adaptations on the FO estimation method of Goto. Their
FO tracking agents are implemented similarly to those in Goto’s work. The
agents contain four time frames of FO probability vectors (two of the past, the
actual and the upcoming frame). To find the path of the predominant frequency,
all maximal values over four frames within an agent are added and disconti-
nuities are punished by diminishing. Finally, the agent with the highest score
decides the FO.

Eggink and Brown suggest a methodology for extracting the melody line
played by a solo instrument in a mixture [182]. After the identification of
FO candidates using an STFI-based front-end, pitch tracks are formed. The
main melodic path is looked up in a network comprising all possible candi-
dates over time. This is supported by various local and temporal knowledge
sources (e.g., FO strength, instrument likelihood, interval likelihood) and sub-
ject to some constraints. Instrument recognition receives particular attention
here, and the likelihood that a particular tone corresponds to the solo instru-
ment is estimated in each frame. A major drawback of this mechanism is that it
requires the solo instrument to be known in advance. Further, the frame-based
instrument recognition does not perform accurately.

Paiva et al. apply the auditory model of Slaney and Lyon [176] for the pitch
detection phase [183]. Next, pitch trajectories are obtained using the peak
continuation algorithm of Serra [184]. The method of Serra looks for regions
of stable sinusoids in the signal’s spectrum, which leads to a trajectory for
each harmonic component found. Next, a frequency-based segmentation is
performed, which aims to split notes of different pitches that may be present
in the same trajectory. Next, a segmentation based on pitch salience minima is
performed to split consecutive notes at the same pitch and to mark the limits of
each note. Since the author aims to find a MIDI representation, the pitches are
in an early stage quantized into (MIDI) notes. However, this early quantization
of frequencies to MIDI notes is only valid if the instruments are well-tuned
and, furthermore, nowadays music production systems can easily change the
pitch of an (instrumental) voice so it matches the accompaniment which does
not necessarily need to be ‘correctly’ tuned.

In Dressler’s approach, sinusoidal-tracks are used as the front-end for predom-
inant FO extraction [185]. First, spectral analysis is performed via an STFT fil-
ter bank and candidate spectral peaks are detected in each frame. The kernel of
the approach is the pitch estimation module where a perceptually-based mag-
nitude weighting is carried out and the harmonic structure is examined. Next,
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perceptual cues of sound organization, namely frequency and magnitude prox-
imity, are used to connect consecutive pitches. The melodic pitch line is then
identified by a rule-based scheme, (e.g., intervals above the octave are avoided)
and notes from middle or higher pitch registers are preferred. This method also
resorts to the identification of the most active frequency regions. In this way,
the weights of the pitch lines belonging to such regions are increased. In [186],
a more elaborate peak selection method has been applied relying on a magni-
tude threshold which depends on the signal. Then the instantaneous frequency
for the selected peaks is computed. In order to obtain more stable frequency
measures, the average of two estimation methods is used. Furher, the actual
estimation of tone height and tone magnitude is performed as an independent
computation: harmonic peaks are added to existing tone objects and after a
few frames, a timbre representation for that tone is established. This way the
impact of noise and other sound sources can be decreased.

Seokhwan and Chang [187] also rely on a STFT as the first phase for the
melody extraction. They assume that melody follows a Markov process. They
estimate melody parameters using sequential importance sampling which is
a conventional particle filter method. Their method outperforms other well-
known methods using the ISMIR 2004 Audio Description Contest data set
[188]. However, they only use 16 (out of 20) songs of this data set and thus
more tests on realistic data are needed.

Joo et al [189] first extract a fixed number of pitch candidate, and then ap-
ply a rule-based algorithm to extract the melody. A major limitation of their
approach is that they limit the melody range to one octave.

Poliner and Ellis tackle the melody detection problem as a classification task
[190]. At first, normalized STFT coefficients are acquired in each time frame.
Next, these data are classified by a support vector machine which is trained
on multi-instrument recordings as well as synthesized MIDI audio. As a re-
sult, the input data are mapped to the corresponding target frequencies. Then,
melodic vs. non-melodic discrimination is performed by energy threshold-
ing. The uniqueness of this approach is that no assumptions about the spectral
structure are made, which is in contrast to the other methods which rely on
(harmonic) frequency structures.

Despite all these attempts, melody transcription from polyphonic audio is still
an unsolved problem. The methods described above mainly rely on a STFT-
based pitch extraction as the first step. However, since melody is a perceptual
phenomenon, we opt to start from an auditory model like Paiva et al. [183].
This way, a more robust pitch detection can be obtained. Then, instead of ap-
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Figure 3.3: Schematic overview of our auditory-model-based pitch detector.

plying a peak continuation algorithm, we propose a method to estimate the FO
relying on Gaussian mixture models. As such, the melody detection problem
can be viewed as an FO estimation problem. The continuation of the FO over
adjacent frames can be considered as a high-order Markov process. But, in-
stead of using a probabilistic framework, we apply a rule-based approach using
an adapted version of Goto’s agent-based approach. In the next sections, we
describe our auditory-model-based melody detection system.

3.3.2 Auditory-Model-Based Pitch Detection

The first phase in the proposed melody transcription system is the detection
of pitch information from the musical signal. The pitch detector presented
in this dissertation is based on the auditory model of Slaney and Lyon [176].
This auditory model outputs a correlogram which corresponds to the output of
Licklider’s duplex theory which states that, next to a frequency analysis, the
auditory system also performs an autocorrelation analysis [191]. Briefly sum-
marized, our pitch detector consists of four stages, as depicted in Figure[3.3}

(i) The application of an auditory model (or ear model) on a sound wave
results in a cochleagram which consists of auditory nerve patterns for
each frequency channel.

(i) A correlogram is obtained by analyzing the periodicities using autocor-
relation in each frequency channel.

(iii) The global periodicities are calculated by a summation which results in
a summary correlogram.

(iv) To obtain the n most salient pitch candidates, the highest n peaks in the
summary correlogram are selected.
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Computation of Cochleagram

The model of Slaney and Lyon implements three main tasks: filtering, detec-
tion, and compression [176]. The cochlear model described by Lyon combines
a series of band-stop filters which model the traveling pressure waves with
resonators into basilar membrane motion or velocity. The acoustic wave is fil-
tered by a band-stop filter at each point in the cochlea. Each filter operates at
successively lower frequencies in order to low-pass the pressure wave. At the
same time, resonators pick out a small range of the traveling energy and model
the conversion into basilar membrane motion which is detected by the inner
hair cells. The filters act as a frequency analyzer and each filter corresponds
to a cochlear channel that best responds to a particular frequency range. Fur-
thermore, front filters are also implemented, which constitute a simple model
of the responses of the outer and middle ear.

After filtering, the movements of the basilar membrane are converted into au-
ditory nerve responses. Since inner hair cells only respond to movement in one
direction, an array of half-wave rectifiers is employed to detect the output of
each filter. Finally, four stages of automatic gain control compress the dynamic
range of the input into a limited level that the auditory nerve can deal with. The
automatic gain control is, in fact, a model of ear’s adaptation: the response to
a constant stimulus is first large and then, as the auditory system adapts to the
stimulus, the response becomes smaller. For a more detailed overview of the
auditory model, we refer to the work of Licklider [191] and Lyon [192].

We use the Auditory Model Toolbox which is a Matlab implementation by
Slaney of the ear model of Lyon [192, 193]. Regarding parameterization, the
parameters proposed by Slaney are used again [193]. The output of this audi-
tory model is a multi-channel representation of auditory nerve firing patterns
and permits the visualization of the sound as a time-frequency image. In this
image, the cochleagram or auditory nerve image, each line contains informa-
tion regarding auditory nerve responses for the corresponding frequency chan-
nel. Figure [3.4] shows the cochlear data obtained from this auditory model of
the note C4 sampled at 44.1 kHz from a piano sound on a Yamaha QS300
synthesizer.

Computation of the Correlogram

After computing the auditory nerve firing responses for each frequency chan-
nel, the main periodicities are detected in a correlogram. The correlogram
summarizes the temporal activity at the output of the cochlea [176]. This is
accomplished by computing the autocorrelation in each channel, which results
in a two-dimensional image of the sound signal. The horizontal axis represents
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Figure 3.4: The corresponding cochleagram of the note C4 from a piano sound at 44.1
kHz — the vertical axis represents the filters (frequency channels) and the horizontal
axis is the time lag (x 10 ms).

the correlation lag and the vertical axis represents the frequency channels. All
channels will show peaks at the horizontal positions corresponding to correla-
tion lags which, on their turn, correspond to the periods of repetition present in
the signal. Slaney and Lyon argue that the correlogram is biologically plausi-
ble. In reality, few researches suggest that the brain measures periodicities us-
ing a neural delay line. This case is supported by the cross-correlator structures
found in the brains of owls and cats for spatial localization, but the structures
that could compute the correlogram for pitch have yet to be found [160]. Other
schemes, e.g., based on mechanical delays in the cochlea, have been proposed
to implement a correlation [194]. Figure [3.5] depicts the corresponding cor-
relogram of the cochleagram depicted in Figure computed using a Hann
window of width 40 ms and a step size of 10 ms.
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Figure 3.5: Correlogram from the note C4 from a piano sound — the vertical axis
represents the filters (frequency channels) and the horizontal axis is the correlation
lag.

Periodicity Summarization

The next step is the creation of a summary correlogram by summing up the
autocorrelation functions across all channels at each time lag. The summary
correlogram quantifies the likelihood that a periodicity corresponding to a par-
ticular time lag is present in the sound wave.

Salient Peak Detection

The next task is to pick the most salient peaks in the summary correlogram.
For a sample rate s, a peak at time lag L (ms) in the summary correlogram
indicates the presence of a pitch with frequency f;, = s/L. This process is
exemplified in Figure which depicts the summary correlogram that is cal-
culated from the correlogram shown in Figure [3.5] and its n = 4 most salient
peaks. Remark that the peak at zero time lag is not considered since the auto-
correlation function has a maximum when the signal is compared to itself. For
a sample rate of 44.1 kHz, the highest peak occurs at time lag 167 ms which
corresponds to the frequency 264.1 Hz. The other three peaks, in decreasing
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Figure 3.6: Summary correlogram of the note C4 from a piano sound sampled at 44.1
kHz and its 4 most salient peaks — the horizontal axis represents the time lag in ms
and the vertical axis is the self-correlation.

salience order, correspond to 131.6 Hz, 87.7 Hz, and 537.8 Hz and thus occur
at nearly (sub)harmonic positions.

The pitch evidence is calculated by dividing the value of the summary cor-
relogram at the corresponding peak position with the value of the summary
correlogram at zero time lag. Highly periodic sounds with an easily perceiv-
able pitch will have a salience close to 1 while aperiodic sounds will have a
salience closer to 0.

Subharmonic Summation

In the next stage, a post-processing is applied on the pitch evidences. Ac-
cording to the subharmonic summation theory, salient peaks in the summary
correlogram often occur at positions that correspond to subharmonics of the
fundamental frequencies. The subharmonic summation theory states that each
spectral component generates a series of subharmonics that give rise to the
perception of pitch [195]. To reduce the evidence of peaks in the summary
correlogram at positions that correspond to subharmonics, post-processing is
applied in the following way. In each time frame ¢, the evidence ev; ; of the ith
pitch (i.e., the ith peak in the summary correlogram) having a frequency f; ; is
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adjusted if a subharmonic f; j,¢ # j is present, by:
v (i) = evy(i)(1++"7),

where 0 < v < 1 is a constant and 7 is the subharmonic degree:

p = Jbi
g

This adjustment will thus increase the evidence of a frequency if there are
peaks found in the summary correlogram that correspond to subharmonics.

Evaluation

Due to perceptual phenomena (e.g., the missing fundamental), evaluating a
pitch detector which is intended for melody transcription, is not a trivial task.
In this evaluation, we test the accuracy of the pitch detector to find the FO in
polyphonic musical audio since its significance in the melody detection pro-
cess. For the evaluation of the proposed auditory-model-based pitch detector,
we have used the MIREX 2005 training set. This set consists of 13 poly-
phonic musical audio files together with their annotated FOs at a resolution
of 10 ms. At the positions where the instrument that plays the melody line
(i.e., the leading instrument) is silent, the annotated FO is 0. Therefore, the
detected pitches at these positions are not taken into account. For evaluation, a
detected pitch f;, at time ¢; matches with the ground truth pitch g;, at time ¢;

if ‘gtl%“’ < 0.05.

1
Besides the auditory-model-based pitch detector, we also considered an FFT-
algorithm [196] for pitch detection. Table [3.1]depicts the FO detection results
by considering the most salient pitch using an FFT-based and the auditory-
model-based pitch detector. It can be observed that the FFT-based pitch de-
tector has a remarkably lower accuracy compared to the auditory-model-based
approach.

Furthermore, it is noticeable for both methods that the accuracy for the last
four training files is remarkably lower than for the other ones. This is mainly
because the proportion between the intensity of the melodic instrument and
the intensity of the background music in these musical audio files is much
lower. Consequently, the spectral information of the melodic instrument is
less prominent in the final sound spectrum.

The results in Table 3.1|indicate that the extraction of a single pitch per frame
is thus not enough to accurately detect the FO. Therefore, we have to extract
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’ ID ‘ training file ‘ FFT ‘ proposed
1 train0l.wav 0.43 0.76
2 train02.wav 0.44 0.56
3 train03.wav 0.26 0.72
4 train04.wav 0.22 0.67
5 train05.wav 0.62 0.75
6 train06.wav 0.40 0.56
7 trainQ7.wav 0.64 0.73
8 train08.wav 0.29 0.79
9 train09.wav 0.31 0.74
10 trainl0.wav 0.43 0.21
11 trainl1.wav 0.13 0.44
12 trainl2.wav 0.05 0.30
13 | trainl3MIDI.wav | 0.03 0.28

average 0.33 0.58

Table 3.1: Accuracy of FO detection from the MIREX 2005 training set by detecting
the most salient pitch.

multiple salient pitches per frame. Table lists the accuracies of the FO
detection using the auditory-model-based pitch detector if the 2, 3, 4, and 5
most salient pitches are considered. We immediately notice that by considering
the 2 most salient pitches, the accuracy already increases with an average of
14% over the 13 test files. When more pitches are considered per frame, the
accuracy increases (compared to the extraction of one pitch) with 19%, 22%
and 24% for 3, 4, and 5 pitches, respectively.

Figure shows the pitch extraction results using the proposed pitch detector
applied on a sinusoidal wave of 200 Hz. As can be seen, the most salient
pitch has indeed a frequency of 200 Hz, but also its subharmonics of 100 Hz
(2nd highest salience), 66.7 Hz (3rd highest salience), and 50 Hz (4th highest
salience) are detected, but also 327 Hz (which is an overtone of 66.7 Hz). The
detection of the subharmonics of 200 Hz is in agreement with the subharmonic
summation theory. However, this simple example also indicates that, next to
subharmonics, it is also possible that overtones (of subharmonics) are detected.
So, by considering multiple peaks from the summary correlogram, peaks that
are not related to (sub)harmonics may be selected, so special attention has to
be paid.
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number of pitches

1D 2 3 4 5
1 0.87 0.89 093 094
2 0.71 0.79 0.86 0.93
3 0.79 0.84 0.89 091
4 0.78 0.83 0.85 0.88
5 091 094 097 098
6 0.74 0.80 0.85 0.89
7 0.82 0.90 0.98 0.99
8 0.87 0.89 091 0.93
9 0.82 0.87 092 0.95
10 028 0.31 032 0.33
11 0.67 0.69 0.70 0.71
12 049 0.54 0.55 0.56
13 0.56 0.62 0.64 0.66

average | 0.72 0.76 0.80 0.82

Table 3.2: Accuracy of the presented auditory-model-based pitch detector for the
detection of the FO by considering the 2, 3, 4 and 5 most salient pitches on the MIREX
2005 training set.

3.3.3 FO0 Estimation

The previous section made clear that we have to extract multiple pitches per
frame in order to increase the probability of the FO detection. However, in
many cases, the FO is not always found. Furthermore, the FO can be lacking
in the signal due to the missing fundamental phenomenon. Thus, whether the
FO is detected or not, the FO has to be estimated from the extracted pitches.
Consequently, the second phase of the melody transcription is the estimation
of the FO in each time frame. The method presented in this dissertation is
based on the approach of Goto [178]. We start from the assumption that
the pitches (obtained from the presented auditory-model-based pitch detec-
tion method) are generated from a model that is a weighted mixture model
of harmonic-structure tone models. Higher weights indicate more dominant
tone models. So, the maximum weight model should correspond to the most
dominant harmonic-structure model with a known FO.

At first, the observed pitches in Hz are transformed into cents so that we use a
linear scale. A frequency fr, is converted into a frequency feents by using the
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Figure 3.7: Detection of the five most salient pitches of a 200 Hz sinusoidal wave
using the auditory-model-based pitch detector.

middle A (440 Hz = 5700 cents) as a reference:

sz

fcents = 1200 ].0g2 W

3.3)

This way, an octave consists of 1200 cents and a semitone is 100 cents. In the
remainder of this dissertation, the notation f is used instead of feepts.

Let €; denote the set of frequencies that are found in frame ¢ (where || =
n, Vt) and evy( f) the adjusted evidence of the frequency f as explained in the
previous section.

Next, the n pitches (in cents) f at time frame ¢, i.e., f € (), are represented as
a PDF py(f):

pr)z‘w;f), (3.4)
where
P=) ew(f). (3.5)
f

Remark that evy(f) = 0 for f & Q, and 3, pi(f) = 1, V1.
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Further, we consider a following harmonic tone model that indicates where the
subharmonics of a fundamental frequency F' occur:

N
p(fIF) = c(h)G(f; F — 1200logy h, W), (3.6)
h=1

where G(z; u, o) is a Gaussian distribution with mean  and standard devia-

tion o:
1 (z —p)?
G(zsp,0) = 902 exp <—W .

The parameters of the tone model are: IV the total number of subharmonics and
c¢(h) = G(h;0, H) denotes the (relative) amplitude of the hth subharmonic
where H is a constant. Remark that if a pitch detection method mainly detects
the overtones of the FO (instead of its subharmonics), the mean of the Gaussian
should become F' 4 1200 log;, h.

The more dominant a tone model p(f|F) in the sound mixture, the higher
the probability of the FO of its model. Therefore, the probability of each
tone model represents the relative dominance of its harmonic structure, i.e.,
its weight in the mixture of tone models. We consider that each observed PDF
p(f) has been generated from a weighted-mixture model p(f|0(t)) of tone
models p(f|F') of all the possible FOs, i.e.:

Fmaac

o100 = [ PR, ()
where 6(t) = {wi(F)|Fnin < F < Fpag} with F being the FO at time ¢, and
wy(F') is the weight of the tone model p(f|F') at time ¢ so that:

Frmaz
/ w(F)dF = 1,Vt. (3.8)
Frin

Further, F),;, and Fj,4; represent the minimum and maximum allowed FO,
respectively (the melody typically occurs in a range so it is not necessary to
analyze the complete frequency range). We need thus to estimate the parameter
0(t) (i.e., the weigths of each tone model in the mixture) so that the observed
distribution py(f) is most likely being generated from the model p(f|6(t)).

The maximum likelihood estimator of 6(t) is achieved by maximizing the
mean log-likelihood [197]:

/ " () og p(F10(1))df. (3.9)

— 00
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This maximization problem can be solved using the Expectation-Maximization
(EM) algorithm which is a method for finding maximum likelihood estimates
of parameters [198]. The EM algorithm is an iterative procedure which con-
sists of two successive steps: (i) the expectation step (E-step) and (ii) the max-
imization step (M-step). In our case, the observed data are p.(f) and 6(t) is
iteratively updated using the previous estimates 6’ (t).

The E-step calculates the expected value of the mean log-likelihood function:

+o00
QO(1)[0'(t)) =/ pi(f)Erllogp(f, F,O@))If. 0'(t)ldf,  (3.10)

—00

where Er[g|f,c| denotes the conditional expectation of g with respect to F’
and conditional distribution c given f:

Fnaz
EF[IOg(p(f,Fﬁ(t)))\f,@’(t)]=/v p(F|f.0'(t) log p(f, F,0(t))dF.

Consequently,

+o00 Foaz
QO(1)[0'(t)) —/ / (DL 0(0)) log (p(f. F. 6(t)))dFdf
-/ N [ n 1.0 0) o Pyl 1) aF

- / ” / " o(f)p(E|S, 0 (1)) log (wy(F))dFdf

+f - [ nos wisimarar

(t) = argmax(Q(0(t)|0'(1))). (3.11)

The prior condition is given by equation (3.§)), i.e.:

Frax
/ ’LUt<F)dF = 1,
Fmin

F, F,
max max dF
wy(F)dF = / —_—

Frax 1
wy(F) — =— | dF = 0.
/ < t( ) Fmax_Fmin)

Fmin
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So, we can introduce a Lagrange multiplier A and the Euler-Lagrange equation
A to solve this conditional maximization problem:

M 3 = QW) - [ (e - L) ar
T (/ - PP s )
(f( /+°° W(E|£.6/(1)) log (p(fIF) df>
ai (A miFm>>
=0.

Consequently,
+o0 ,
=5 I e @)

Given equation (3.8), A = 1. By applying Bayes’ theorem, we further obtain:
p(E)p(f|F
IR
__ wi(F)p(fF)
Jrres wl(y)p(fly)dy

m’LTL

So, a new value w! for the weight wé_l at frame ¢ can be iteratively computed
by:
: e wi (F)p(f|F)
i) = [ n)
—o0 mem w™ (y)p(fly)dy

m F € [Fminvaax]-

The FO of a frame ¢ is then characterized by the frequency F' with the maxi-
mum weight w(F') as given by equation (3.12)) in the last iteration.

df. (3.12)

with the initial weigths w?(F) =

3.3.4 Tone Creation

The final result of the fundamental frequency estimation process is not stable
over adjacent frames because peaks corresponding to the FO of several simulta-
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neous instruments sometimes compete in the PDFs. Therefore, it is necessary
to consider the global temporal continuity of these peaks. Hence, our tone
detection process consists of two parts: (i) a peak tracing algorithm and (ii) a
tone segmentation algorithm.

Peak Tracing

This method sequentially traces for peak trajectories in the temporal transition
of the weights of the tone models, in order to select the most dominant and
stable frequency trajectories. To perform this, an architecture consisting of a
salient peak detector and multiple agents is used.

Salient Peak Detection

A peak detection algorithm detects the local maxima in the PDF at frame ¢
to find the frequencies with the highest probability w;(F"). Therefore, the
peakmap My (F) is created as follows:

. oF? (3.13)
0 otherwise,

.p Owe(F O?wi(F
My(F) = { Pawy(F) it 2270 — g and 2P < o,
where P, is given by equation [3.5] The set of salient peaks ®; at frame ¢ is
given by the peaks that are higher than a threshold 7}, of the maximum peak in
the PDF:

®; = {F\Mt(F) > max (Mt(F))Tp} . (3.14)

Then, we define the salience degree of a peak by tracing a temporary trajectory
in the near future. The traced peak frequency at time ¢ is N;(F') = F and at
time ¢t + 7,7 > 0 is given by:

Nitr(F) = Nypr—1(F) + argmax (¢4 (f; F)). (3.15)
f<2w

W is the standard deviation of a Gaussian distribution G(f;0, W) with zero
mean and ¢ (f; F') expresses the possibility which indicates how much the
peak frequency is likely to change by f from the previous allocated peak fre-
quency Niir—1(F):

Grar(fi F) = Myyr(Neyr—1(F) + f)G(f;0,W). (3.16)
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Finally, we propose to compute the salience degree of a salient peak F' € &,
at frame ¢ by:

Per

M(F)G(0;0, W
_ M(F)G(0:0 )+;;1<1521‘>/(V(¢t+7'(f§F))u (3.17)

SilF) = (1+ Per)SP,

where Per is the number of frames for tracing a temporary trajectory in the

near future and
Per

1
SP, = —— P 3.18
¥ 1+P6T721 T (3.18)

Agent-Based Pitch Tracing

Salient peaks in close proximity of each other are traced by agents. An
agent has a set of parameters which are updated every frame:

* F'ry, the frequency of the current peak.

* Say, the salience degree of the current peak Sy F'ry.

* Peny, the penalty; the agent is inactivated if Pen; > T}, (a threshold).
* S Pow, the cumulative sum of S F; since the agent is active.

* Rey, the reliability calculated as .S Pow;Say.

In the first (non-empty) frame, an agent is created for each salient peak
F; € ®,. For the next frames, a peak candidate is selected using the following
procedure:

(i) A candidate peak C} is looked up in ;.

(i) If no peak can be found in ®;, the penalty Pen, is increased and a can-
didate peak is looked up in M;.

(iii) If no peak can be found in M, the penalty Pen; is increased.
And, the following conditions apply to Cy:

(1) C% is closest to the previously allocated peak frequency F'ri_1: C; =
argmaxp(S¢(F)G(F; Fri—1, W)).
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(ii) Cy should be close enough to F'ry_y: |Cy — Fri—q| < 2W.

If a candidate peak is claimed by more than one agent, the peak is allocated by
the most dominant agent. In this context, we define the most dominant agent
with the highest reliability Re;. Further, active agents can allocate at most one
peak at a time. Upon allocation of a candidate peak C} at frame ¢, the agent’s
parameters are updated accordingly:

hd Frt :Ct,

Sat = St(Ct),
e SPow; = SPows_1 + P,
* Re; = SPow;Say.

If after processing of the current frame ¢, the most salient peak F; =
argmaxy (®;) and second most salient peak Iy = argmaxp_p, (P;) are not
allocated, a new agent is created for those peaks. The process of salient peak
detection and agent-based peak tracing is exemplified in Figure3.§]

salient peaks
p(f|FO)

W\
,f// ;

Figure 3.8: Tracing of salient peaks in the PDF of the current frame.

s

Tone Segmentation

As explained in Section[3.2.1] a tone is defined by a (constant) frequency, start
time, and duration. Each agent outputs a trajectory of frequencies between its
start and end time. Due to the fact that the frequency-estimation is not stable,
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pitch-glide//:

F, { 7 1 / Z_Fz

Figure 3.9: Detection of a pitch-glide from frequency F} to frequency F.

a trajectory can still contain small local fluctuations. Thus, in order to obtain
a note representation, these fluctuations must be eliminated. Furthermore, a
trajectory can slide from a tone to another adjacent tone. Also pitch-glides can
be traced by agents. A pitch-glide is characterized by a continuous increase
or decrease in frequency from one frequency to another. Consequently, a
segmentation algorithm must take these cases into account.

Pitch-Glide Detection

A pitch-glide between two frequencies Fj and F, is characterized by a
continuous increase or decrease in frequency from time b to time e, b < e
and F, # F.. To detect pitch-glides, we introduce a maximum frequency
difference AF between Fp and F, and, a maximum allowed inter-frame
distance At are introduced. Now, suppose that in some frame m a frequency
Fy was lastly allocated by some agent A%, with start frame 7, and in another
frame n, m < n, frequency F» was lastly allocated by an agent A", such that
1 <m < j < nas depicted in Figure Ifn—m < Atand |F,— Fy| < AF,
then both trajectories are considered as a pitch-glide and are linked together.
Pitch-glides are excluded from the segmentation and the averaging phase (see
below). After the pitch-glide detection, trajectories are segmented into tone(s)
using the segmentation approach presented in next section.
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Figure 3.10: The pitch trajectory is segmented with § = 150 cents so that two new
segments, {5300+5250} cents and {5150+5100} cents, are created.

Segmentation

Denote the maximum and minimum allocated peak frequency by an
agent as Fy,q, and Fj;,, respectively. Further, let A; denote the set of
all allocated frequencies by the agent with start frame ¢; and end frame ¢,
ty < t., and § the maximum allowed frequency fluctuation. At any frame
t, let Frpapt = max(Fili < t) and Fppe = min(Fjli < t), ie., the
maximum and minimum frequency traced so far. If there exists a frequency
Fy, k < te for which |Fya0 1 — Fi| > 6 or |Frnin i — Fi| > 0, then a segment
O, x = {Filty < i < k} is created. If there is no such frequency Fy, the
whole trajectory is considered as a segment Oy, ;.. For every segment, both
conditions | F; — Finqz.4| < 6 and |F; — Finin | < 0 are satisfied. The outcome
of this process is shown in Figure [3.10]for § = 150 cents.

Averaging

After the segmentation of the trajectories, the frequency of a segment
Oy, +, can be safely set to a constant value F'(0y, +,) by calculating its integer
average value, see in Figure 3.11}

(3.19)

2R F;
F (O, t,) = round ZFi€Onm 7t )
‘6t17t2|

|O¢, +,| denotes the number of allocated frequencies. Remark that |Oy, 4,] is
not equal to the total number of frames (t2 — t; + 1) since a trajectory can
contain small gaps. These gaps correspond to frames where no (salient) peaks
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Figure 3.11: The previously obtained segments are averaged. Consequently, two
tones of 5300 and 5100 cents are created.

could be found after the FO-estimation or by frames where no pitches were
extracted.

3.3.5 Post-processing

The final result of the tone segmentation phase is an ordered set of tones and
pitch-glides. However, some of those tones and pitch-glides may be redundant.
The latter can be caused by:

* The fundamental frequency estimation created peaks at harmonics of the
extracted frequency components which on their turn could be caused by
the pitch extraction that produced frequency components at harmonic
positions.

e Too short tones.
¢ Qctave errors.

» Concurrent tones at octaves or at harmonic-related positions.

Therefore, we propose a collection of post-processing methods that are run in
the following order to filter out redundant parts:

(1) Keep the most reliable tones. If simultaneous tones exist, tones with the
highest accumulated reliability, i.e., Zi;tb Rey, are kept.

(i) Keep the highest temporal reliability Re;. Simultaneous tones are split
up such that at each frame ¢, the corresponding Re; is maximal.
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Figure 3.12: Schematic overview of the auditory-model-based pitch detector.

(iii)) Remove short tones. Tones (or pitch-glides) with a length smaller than a
predefined threshold L,,;,, are removed.

(iv) Remove tones with a low reliability. Tones (or pitch-glides) with
ie:tb Re; that is lower than a predefined fraction 0 < re;;, < 1 of

the average Re; of all agents are removed.

3.3.6 System Overview

The architecture of our system that transcribes a raw musical audio signal into
a melody consists of four phases: (i) pitch detection, (ii) FO estimation and
pitch tracing, (iii) tone creation, and (iv) filtering. The first phase of the system
is an auditory-model-based pitch detector that takes as input an audio signal
and generates a pitch distribution.

The auditory-model-based pitch detection algorithm consists of the following
stages as outlined in Figure[3.12}

(i) The application of an ear model that mimics the operation of the ear,
and in particular of the cochlea in the inner ear. The output of this stage
is a cochleagram which consists of auditory nerve patterns for each fre-
quency channel.

(i) A correlogram is obtained by analyzing the periodicities using autocor-
relation in each frequency channel of the cochleagram,

(iii) The global periodicities are calculated by a summation over all channels
in the correlogram which results in a summary correlogram.

(iv) Pitch candidates are obtained from the summary correlogram by detect-
ing its highest peaks.
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Figure 3.14: Schematic overview of the tone creation process.

(v) The evidence of a pitch is adjusted according to the presence of subhar-
monics.

The second phase in the melody transcription system concerns the estimation
of the fundamental frequency and the tracing of these frequencies over mul-
tiple frames. This phase takes as input the previously calculated pitch distri-
bution and outputs a set of pitch trajectories. This process is schematically
represented in Figure [3.13]and consists of the following stages:

(i) The generation of a pitch probability density function in each frame.
(i) The detection of salient peaks in the pitch probability density functions.

(iii) The creation of pitch trajectories by using an agent-based approach over
different time frames.

The third phase of our architecture is a tone creation algorithm that takes as
input the pitch trajectories and creates a set of tones and pitch-glides.
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Figure 3.15: Post-processing applied on the obtained tones and pitch-glides.

As outlined in Figure [3.14] the tone creation process consists of the following
stages:

* Pitch-glide detection.
* Segmentation of trajectories.

* Averaging the frequency of a segment.

The final phase of the melody transcription is a post-processing which keeps
the highest temporal reliability and includes the filtering of redundant seg-
ments. In case of (partially) simultaneoussegments, the parts with the lowest
reliability are removed, short segments and segments with a low reliability are
also deleted as outlined in Figure [3.15]

3.3.7 Experimental Results

The results and evaluation of the above presented melody transcription system
are discussed in the next paragraphs. The main problems are addressed and
possible improvements are suggested.

The melody transcription system is evaluated using two different data sets: (i)
a self-created set of melodies acquired from popular songs (further referred to
as GMEL) and (ii) the MIREX 2005 training set which consists of 13 melodies

(see also Section 3.3.2)).

The GMEL data set consists of 34 polyphonic musical excerpts containing
a melody. These melodies of different durations are obtained from ‘popu-
lar’ songs, from which title and performer are listed in Table Further,
the melody can either be vocal, instrumental, or a combination of both. So,
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no restrictions are implied upon the instrumentation of the melody. For the
ground truth, MIDI files containing the melody track have been manually cre-
ated so that the MIDI notes match with the melody in the audio excerpts. The
MIREX 2005 training set consists of 13 polyphonic musical audio files to-
gether with their annotated FOs at a resolution of 10 ms. At the positions
where no “melodic tone” is heard, the annotated FO is 0. In contrast to the
GMEL set, the annotation of the MIREX 2005 set is not quantized (to MIDI
notes) but is a sequence of frequencies.

The parameters of the melody transcription system are set as follows. The
auditory-model-based pitch detection module detects the n = 4 most salient
pitches every ¢t = 10 ms (window size: 40 ms, type: Hann window). We
empirically observed that if more than 4 pitches per frame are extracted, the
FO-estimation phase yields more errors since low-salience pitches are not al-
ways related to the FO.

Further, the FO is estimated at intervals of 50 cents (a half semitone) and
pitch trajectories are created between Fj,;,, = 3000 cents (= 92 Hz) and
Finae = 9000 cents (= 2960 Hz), a range where melody lines typically occur.
The threshold to identify salient peaks in the FO its PDF is set to 7}, = 0.4 (see
equation [3.14). The total number of subharmonics that are considered, is set
to NV = 5 and the standard deviation of the amplitude of the subharmonics is
experimentally set to f = 2.7. The period of tracing a temporary trajectory
in the near future is set to 5 frames: Per = 5 (see equation and equa-
tion [3.18). The parameters that concern the operation of an agent are chosen
so that the penalty can be increased at most 7 times before an agent is deacti-
vated. In the tone segmentation phase, pitch-glides are detected for AF = 100
cents and At = 40 ms (4 frames). Further, the maximum frequency difference
to segment pitch trajectories is set to & = 150 cents. Finally, short tones of
length smaller than L,,;;,, = 100 ms (10 frames) are removed. Further, the
threshold re,,;, is set to 0.05.

Evaluation

The performance of the system is expressed in terms of precision and recall
(see equations and[2.13] where f,, (false negatives) denotes the number of
undetected melodic tones, f;, (false positives) the number of wrongly detected
melodic tones, and ¢, (true positives) the number of correctly detected melodic
tones). Correctly identified empty frames (i.e., frames containing no melodic
pitch information in both the transcription and the ground truth) are excluded.
At first, an important remark about the difference between annotations of the
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ID | composer title duration
1 | 2 Brothers On The 4th Floor Come Take My Hand 11123
2 | 2 Unlimited Tribal Dance (p1) 7359
3 | 2 Unlimited Tribal Dance (p2) 14708
4 | Aqua Barbie Girl 7354
5 | Harold Faltermeyer Axel F 6836
6 | Darude Sand Storm 7003
7 | Dido Thank You 5777
8 | Dj Sash Encore Une Fois 7027
9 | Dj Taucher Infinity 6234
10 | Elton John Candle In The Wind 6905
11 | Enigma Callas Went Away (p1) 16683
12 | Ennio Moricone Chimai 16171
13 | Enya Lothlorien 14756
14 | Europe Final Count Down 8494
15 | Kabouter Plop Kabouterdans (p1) 12741
16 | Kabouter Plop Kabouterdans (p2) 8213
17 | Kernkraft 400 Zombie Nation 4999
18 | La Bouche Be My Lover 13458
19 | Paul Van Dyk For An Angel 6620
20 | Pet Shop Boys Go West 15493
21 | Pet Shop Boys It’s A Sin 10680

22 | Playabhitti The Summer Is Magic 14174
23 | Prodigy No Good 6202
24 | Robert Armani Hit Hard 6654
25 | Robert Miles One And One 7099
26 | Softcell Tainted Love (p1) 3220
27 | Softcell Tainted Love (p2) 6654
28 | DJ Tiesto Love Comes Again 8046
29 | DJ Tiesto Traffic 6571
30 | Vengaboys We Like To Party 6999
31 | Age Of Love Age Of Love 6889
32 | Enigma Callas Went Away (p2) 5303
33 | Mozart Piano Concerto 11 7384
34 | Francois Van Campenhout Brabanconne 17381

total duration (ms) 311210

Table 3.3: The GMEL melody collection set and the duration of each melody in ms.
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GMEL set and the MIREX 2005 training set has to be made. Since the ground
truth of the GMEL set is derived from MIDI files, the pitch information of a
MIDI note will be constant (at least if their is no pitch-bend information avail-
able in the MIDI-file) and this can be matched easily with the generated output
of our system since a fixed frequency corresponds to a note (e.g., in our tuning
A4 =440 Hz). In contrast, the ground truth of the MIREX 2005 training set is
a sequence of unquantized and continuously altering frequencies. As a matter
of consequence, this representation highly differs from the representation used
by our system. Because of this, a frequency sequence has to be mapped on
the outputted note data. It is obvious that the latter can give rise to quantiza-
tion errors. To reduce these quantization errors, a ground truth MIDI note with
number G, and a detected tone 7" (in cents) match if |100G,, — T'| < 50, thus
if their distance is less than a half semitone (50 cents), which is the resolution
of our melody transcription system.

Table [3.4] and Table [3.5]list the precision and recall of the MIREX 2005 and
GMEL melody detection set, respectively. The 2nd and the 3rd column of both
tables list the results for raw pitch detection of the melody line (i.e., octave er-
rors count for an error) while in the 4th and 5th column, the chroma is consid-
ered (i.e., octave errors are not taken into consideration). For the MIREX 2005
training set, the (time-weighted) average precision and recall for raw pitch de-
tection are 0.68 and 0.65, respectively. For chroma, the average precision and
recall are 0.81 and 0.79, respectively. For the GMEL set, the (time-weighted)
average precision and recall are 0.71 and 0.86, and for chroma detection 0.72
and 0.87, respectively. To compare with other algorithms, the best and second
best results from the MIREX 2005 melody extraction contest concerning raw
pitch accuracy are 69% and 68% respectively, and for chroma 74% and 71%,
respectively. The best and second best results for raw pitch detection in the
MIREX 2009 contest using the MIREX 2005 data set are 76% and 75%, re-
spectively and for chroma data 81% and 81%, respectively (the pitch accuracy
of the MIREX competition is measured in terms of precision).

For both the GMEL and the MIREX 2005 set in our evaluation, we immedi-
ately notice that the precision and recall values of the audio tracks where the
melody is sung (i.e., a human voice) are generally lower than for the tracks
where the melody is played by an instrument (for the GMEL set, these are
the tracks with IDs 1, 3, 4, 7, 10, 15, 18, 20, 22, 23, 25, 27, 28, 30, and for
the MIREX 2005 set, these are the tracks with IDs 1-9). Consequently, the
performance using the MIREX 2005 training set is lower than for the GMEL
set since the former mainly contains sung melodies. The observation that the
performance of the transcription system using sung melody is lower, can be
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(raw pitch) (chroma)

ID precision recall | precision recall
1 0.62 0.74 0.71 0.81
2 0.62 0.64 0.76 0.77
3 0.44 0.52 0.64 0.71
4 0.52 0.64 0.71 0.80
5 0.59 0.81 0.71 0.88
6 0.56 0.74 0.66 0.81
7 0.62 0.64 0.76 0.77
8 0.65 0.58 0.76 0.70
9 0.62 0.64 0.76 0.77
10 0.98 0.49 0.99 0.78
11 1.00 0.74 1.00 0.83
12 1.00 0.74 1.00 0.85
13 1.00 0.62 1.00 0.81

weighted average 0.68 0.65 0.81 0.79

Table 3.4: Performance of the presented melody transcription system using the
MIREX 2005 set.

explained by a couple of factors.

At first, the pitch of singing is often less stable than the pitch obtained from an
instrument, especially near the onset. Further, a sung part may exhibit (slight)
fluctuations in the frequency, a phenomenon which is also known as vibrato
(which can be either be stylistic effect or caused by ‘bad’ singing). Conse-
quently, the tone creation process will introduce rounding errors as it averages
the frequencies. This process is exemplified in Figure which depicts
an excerpt from the song “Candle In The Wind” (Elton John). The detected
pitches (dots) converge to (i.e., portamento) (a) and fluctuate around (i.e., vi-
brato) (b) the intended pitch of 4700 cents while the detected tones (bars) rep-
resent the average pitch of the obtained segment. Between 0.5 and 1.0 s (a), the
detected pitch is erroneously rounded to the average of the obtained segment.
The fluctuations of the pitch between 1.0 and 1.65 s (b) cause the creation of
small tones which can be erroneously deleted in the tone filtering stage. Also,
the quantization to 50 cents generates some errors.

Secondly, the spectrum of the human voice thoroughly differs from many
instruments as it contains meaningful frequency components, known as for-
mants, which are essential to distinguish vowels in speech. These formants
do not necessarily match with the harmonics of the fundamental pitch during
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(raw pitch) (chroma)
precision recall | precision recall
0.69 0.88 0.69 0.88
0.98 0.98 0.98 0.98
0.55 0.67 0.55 0.67
0.74 0.86 0.76 0.92
0.83 0.94 0.83 0.94
0.96 0.98 0.96 0.98
0.91 0.86 091 0.86
0.58 0.93 0.58 0.93
0.94 0.90 0.94 0.90
0.32 0.74 0.32 0.74
0.85 0.89 0.88 0.92
0.77 0.99 0.79 0.99
0.53 0.87 0.53 0.87
0.60 0.82 0.60 0.82
0.63 0.76 0.69 0.81
0.62 0.82 0.67 0.84
0.67 0.78 0.73 0.87
0.51 0.93 0.51 0.93
0.88 0.75 0.88 0.75

e
=

RN R == R - NV ST R

20 0.88 0.94 0.88 0.94
21 0.87 0.90 0.87 0.90
22 0.61 0.87 0.61 0.87
23 0.74 0.84 0.74 0.84
24 0.67 0.69 0.67 0.69
25 0.81 0.90 0.81 0.90
26 0.77 1.00 0.77 1.00
27 0.57 0.70 0.57 0.70
28 0.74 0.90 0.74 0.90
29 0.92 0.94 0.92 0.94
30 0.96 0.97 0.96 0.97
31 0.97 0.97 0.97 0.97
32 0.67 0.51 0.67 0.51
33 0.70 0.80 0.70 0.80
34 0.37 0.80 0.49 0.87

weighted average 0.71 0.86 0.72 0.87

Table 3.5: Performance of the presented melody transcription system using the
GMEL set.
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Figure 3.16: Fluctuations in the pitch of the song “Candle in the Wind” (Elton John):
(a) portamento and (b) vibrato.

singing. Furthermore, in singing, the pitch is determined by multiple harmon-
ics. If a formant coincides with such a harmonic, this harmonic becomes very
salient in the spectrum. Consequently, the corresponding frequency (which dif-
fers from the fundamental), is picked up by the transcription system. This pro-
cess explains the following example. Figure depicts the detected pitches
(dots) and the detected tone (bar) from an excerpt (between 8.5 and 9 s) of file 3
from the MIREX 2005 training set. The pitch detector finds pitches near 3000,
4200, 5400 and 6600 cents — remark that they are an octave apart and that they
are all (integer) multiples of 600 cents. According to the ground truth, the pitch
should be 4200 cents. However, the transcription system keeps the pitch track
at 6600 cents (2 octaves higher) since the salience is highest at this frequency.
The latter is not only due to the presence of the subharmonics, which increase
the pitch evidence (cf. the subharmonic summation theory), but also without
the evidence adjustment, the most salient pitch occurs at 6600 cents (=~ 740
Hz). Most likely, a formant of the sung vowel coincides at this frequency.

A way to tackle the problems related to sung melody lines, is the detection of
vocal and non-vocal regions in the musical signal. Once a segment is identified
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Figure 3.17: An excerpt of the MIREX 2005 training set. The transcription system
proposes 6600 cents as FO since a formant coincides at this frequency while the ground
truth indicates 4200 cents as FO.

as vocal, the pitch detection and tone creation phase can deal with the specific
characteristics of voices [199]. Voice detection in music is not a widely studied
subject, but most of its ideas come from speech recognition topics, which is
a well-established research area. Vibrato, harmonicity, timbre, and cepstral
coefficients, such as Mel-Frequency Cepstral Coefficients (MFCC) [200], are
commonly used to detect voice segments in audio [201-204].
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Further, we also noticed that (octave) errors typically occur in excerpts where
multiple instruments that play the melody line are involved. As a consequence,
the frequencies that correspond to another instrument, which can be more
salient in certain time frames, can be retained in the filtering phase. How-
ever, abrupt FO changes are not very common in melodies. This knowledge
can help us to scale the range of a detected tone, so that the frequency interval
with the average of the previously detected tones must be less than, e.g., an
octave. Consequently, by rescaling these intervals, the overall precision and
recall increases.

Another melody transcription problem is caused by the fact that the algorithm
outputs the most salient tones at each time frame. However, when the instru-
ment that plays the melody line is silent, other salient frequencies are also
looked up. Consequently, spectral information of the accompaniment is used
for the construction of the FO hypothesis, which can lead to a false positive
(i.e., a redundant tone in the detected melody). We observed that such tones
often have a lower salience and a shorter duration than the tones related to
the melody line. In this way, many redundant tones can be filtered away.
Currently, the salience- and duration-based tone filtering is threshold-based.
However, this filtering could be enhanced by a more thorough analysis where
the temporal contour of the salience and duration is considered and minima in
these contours can be deleted. Ideally, timbre information about the leading
instrument (i.e., the instrument that plays the melody line) could help to iden-
tify regions where the leading instrument is silent. However, this involves the
recognition of instruments in polyphonic contexts and is a complex task due to
spectral overlapping between concurrent instruments [205].

During the FO estimation, certain parameters such as the number of subhar-
monics, the amplitude of the subharmonics, and the standard deviation of the
these amplitudes are set to a constant value. Ideally, these parameters could
also be estimated [180].

Further improvements can also be conducted at the front-end, i.e., the pitch
detection phase. In the current implementation, the four most salient pitches
(that correspond to the four most salient peaks in the summary correlogram)
are retained every frame. However, the salience of some pitches is often rela-
tively small compared to the most evident pitch(es), so they can be discarded.
Actually, in the tone filtering stage, the resulting low-salience tones are re-
moved to avoid some superfluous computations. Analogously, other possibly
important pitch information is not used as only the four most salient pitches
are considered and some peaks in the summary correlogram might have sim-
ilar heights (especially in vocal parts because of the presence of harmonics
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and formants). A more detailed pitch information can be useful for a better
FO estimation. Further, the peaks are looked up in the summary correlogram
what can lead to peak masking. Therefore, the auditory-model-based pitch de-
tector could be improved by carrying out frequency analysis in each channel
of the correlogram, especially in noisy frequency regions where peak masking
is more likely to occur. Furthermore, lateral inhibition (i.e., the phenomenon
that the presence of a salient frequency makes the auditory system less sen-
sitive for frequencies to sounds of about the same frequency) is disregarded
in the presented peak-picking algorithm. Finally, introducing high-level mu-
sical knowledge such as musical key information can also help to adjust the
frequencies of the notes. In the next section, we present a method to obtain the
key from musical audio recordings

3.4 Tonality Induction

As the perception of pitch over a short time interval gives rise to the notion of
melody, the perception of pitch over a longer interval corresponds to tonality.
In particular the sense of musical key, also called tonality, has been a topic of
many investigations (see [206] for an overview). It is a principal phenomenon
of Western music, well-documented over several centuries, and appealing from
the viewpoint of cognitive information processing because it seems to involve
both bottom-up as well as top-down processing strategies. Knowledge in this
area is based on converging evidence from different fields of research, in par-
ticular experimental (behavioral) psychology [207], brain research [208], and
computer modeling [209].

The pitch that attains the greatest stability in a musical passage is called the
musical key or tonal center. Almost all Western music is built in a way such
that certain pitches functionally operate as attractor of other pitches. In music
theory, this is expressed by the concept of tonality, and the reference to major
and minor scales. The scale is an ordered collection of pitches capable of
maintaining a consistent set of hierarchical functional relationships, the most
important being related to the first pitch in the scale (called the tonic, or first
degree), the fifth pitch (called the dominant, or fifth degree), and the fourth
pitch (called the subdominant, or fourth degree). The tonic is the element that
tends to assert its dominance and attraction over all others. In Western music
theory, the tonic is one in an octave range, within the 12 semitones of the
chromatic scale (i.e., C, Cs/Db, D, Ds/Eb, E, F, Fs/Gb, G, Gs/Ab, A, As/Bb,
B), where s stands for ‘sharp’ (often denoted by ) and raises a note by a
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semitone, a ‘flat’, denoted by b (b), lowers it by a semitone. Remark that in the
chromatic scale, a flat and a sharp of two notes at a step (i.e., two semitones)
coincide, e.g., Cs = Db. Consequently, we do not make a distinction between
the latter two notations.

Tonality is a harmonic system of 24 keys (i.e., 12 major and 12 minor keys).
Both major and minor keys can be placed on a circle of fifths. The circle of
fifths is an observation of a mathematical property of the relationship between
the number of sharps or flats in a key signature and the starting note of the
key. As one moves clockwise, one goes up by fifths from sector to sector.
Figure [3.18] depicts the circle of fifths for major keys (outer circle) and their
respective relative minor keys (inner circle). Within the remainder of this dis-
sertation, major keys are written in capitals while minor keys are written in
non-capitals. In the circle of fifths, we always have the three primary chords
next to each other: the tonic or root in the center, the subdominant to the left
(counter-clockwise), and the dominant to the right (clockwise). For example,
for the tonic C, F' is the subdominant and G is the dominant. Major C and ma-
jor F's are both maximally enharmonic and the relationship between a major
and its minor is called the parallel, e.g., C is the parallel of c. The analysis

Figure 3.18: The circle of fifths for major keys and their relative minor keys.

of listener responses to an induced tonal key shows that the structure of pitch
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Figure 3.19: Strip of tonal centers derived from their toroidal geometric representa-
tion. Left and right borders (respectively upper and lower borders) must be identified.

relationships is low-dimensional [140]. Analysis of the key profiles of all ma-
jor and minor keys, using multi-dimensional scaling, reveals a 3-dimensional
structure which can be represented on a torus, as depicted in Figure[3.19] This
torus embeds all relationships between minor keys and major keys as both
circles of fifths fit on the torus (each circle wraps around three times before
rejoining itself).

The presented research focuses on the assignment of key information from a
musical audio signal. Recognition of musical key is an important step in the
exploration of methods that allow the development of multi-level music rep-
resentation schemes for musical content [210], such as chord recognition and
also emotion detection since the musical key is deemed to provide a specific
emotional connotation [208,211].

3.4.1 Related Work

In the literature on key finding algorithms, a distinction can be made between
audio-based methods and score-based methods. Score-based methods start
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from symbolic representations while in audio-based methods the conversion
to symbolic representations is a main task. Score-based methods have been
founded on rule-based approaches [212-214] and template correlation or dis-
tances [207,215-217].

Automatically estimating the musical key from an audio signal is still a chal-
lenging task. Major difficulties lie in the fact that tonality is a high-level fea-
ture and difficult to extract from audio signals based on the complexity of
polyphonic musical audio analysis. Audio-based methods have been mainly
based on template-related distance approaches and exist of 2 steps: a feature
extraction step and a pattern matching step, e.g., [209,218-220].

Krumbhansl proposed a correlation method that compares the spectrum of a
musical piece with key profiles that are derived by probe-tone rating. The key
that provides the maximum correlation with the musical piece is then con-
sidered as the solution [207]. Fujishima proposed a pitch class profile based
on spectral information (obtained from a DFT on the audio signal) for use in
chord recognition [221]. This pitch class profile is a 12-dimensional vector
which represents the intensities of the 12 semitone classes (i.e., the chroma)
and is similar to the intensity map (a SOM trained with chroma vectors) in Le-
man’s model [209]. Leman’s audio-based model also consists of two parts: a
first part that does bottom-up tonal center extraction using an auditory model,
and a second part that does pattern matching with template patterns obtained
by a training procedure based on SOMs. Zhu and Kankanhalli attempted to
extract precise pitch profile features for key finding algorithms, considering
the interference of percussive noise and pitch mistuning [222]. The latter is
accomplished by a pitch tuning determination algorithm to extract the par-
tials from the signal. A consonance filtering technique, which eliminates most
peaks from percussive sounds, is then used to pick up the partials that are har-
monious and relevant for tonality. Gémez and Herrera propose a harmonic
pitch class profile [223] which is based on the pitch class profile of Fujishima.
The harmonic pitch class profile is computed using the magnitude of the spec-
tral peaks that are located within a certain frequency band, considered to be
the most significant frequencies carrying harmonic information. Bello and
Pickens combine a chroma-based representation and a hidden Markov model
which is initialized with musical knowledge [224]. The output is a function
of beats (instead of time) and represents the sequence of major and minor tri-
ads (i.e., three-note chords) that describe the harmonic character of the input
signal. Shenoy and Wang apply a 3-step, rule-based method that combines
high-level musical knowledge with low-level audio features [225]. Based on a
chromagram representation, triads are detected. Based on a rule-based analy-
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sis of these chords against the chords present in the major and minor keys, the
key of the song is extracted. The final step consists of chord enhancement on
the basis of high-level knowledge and the key information. Their conviction
is that key and chord information should be simultaneously estimated. Also
Catteau et al. start from the opinion that key and chord information should be
handled simultaneously [226]. They extend the framework of Bello and Pick-
ens by proposing a probabilistic framework for simultaneous chord and tonal
key recognition. By using music theory knowledge, training can be omitted.

In this section, we present a bottom-up approach to obtain the musical key
from audio recordings, so no musical knowledge is applied during the deci-
sion process. We focus on two types of symbolic representations: one based
on key recognition using the classical template distance model and another
one based on classification trees. Amongst the variety of well-established non-
distance-based supervised learning techniques, our preference has gone to the
construction of a classification tree mainly because of its simplicity. Also,
classification trees have already been successfully applied in a variety of mu-
sical classification tasks. In [227], classification trees have been used to obtain
an automatic classification of drum sounds. Both [228] and [229] discuss the
use of binary classification trees for the classification of musical instruments.
Classification tree techniques have also been applied for musical genre classi-
fication [230] or content-based audio classification [231,232].

3.4.2 Pitch Induction

As a first step, (low-level) features that are correlated to the tonal context of
the musical piece need to be extracted from the audio signal. Shmulevich et
al. [215,217] derived tonal information on the basis of a difference of pitch
vector (usually derived from a note sequence representation) and on related-
ness ratings found by Krumhansl [207]. Here, we follow the approach of Le-
man [218]. An auditory model, which is an adapted version of the model of
Van Immerseel and Martens [175] (the low-pass filter at 300 Hz is removed so
that frequencies up to 1250 Hz are supported) is used to obtain a pitch pattern
from an audio signal. Next, by integrating this information over an appropriate
time interval, tonality-related information is obtained. This approach is called
pitch induction and proceeds in three steps:

(1) Transformation of a musical signal into a cochleagram (or auditory nerve
image).

(i) Transformation of these auditory nerve patterns into pitch patterns.
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(iii) Transformation of pitch patterns into induced pitch patterns.

These steps, as further described below, are implemented using the IPEM Tool-
box [233].

Transformation of a Musical Signal into an Auditory Nerve Image

This process is similar to the creation of the cochleagram outlined in Section
[3.3.2] Fifteen channels are used, with center frequencies ranging from 141
to 5173 Hz. The filters have a 3 dB bandwidth of one critical ban a low-
frequency slope of 10 dB per critical band unit (cbu), and a high-frequency
slope of about 20 dB per cbu. The firing rate code of the auditory nerve patterns
between 80 Hz and 1250 Hz is taken as input. The 80 Hz accounts for the fact
that for smaller frequencies, the sensation of pitch becomes more a sensation
of textural properties. The higher limit of 1250 Hz is related to the limits of
neural synchronization since for higher pitches, the neurons are not able to
accurately follow the exact period of the signal.

Transformation of Nerve Patterns into Pitch Patterns

A pitch completion module computes the periodicity pitch image of an audi-
tory nerve image. The neural rate code of the auditory nerve images is taken as
input and a periodicity analysis, i.e., a pitch image, is the output. From a con-
ceptual point of view, the pitch completion module performs a transformation
from time-code to place-code, i.e., from patterns whose frequency is contained
within the temporal characteristics of the pattern to patterns whose frequency
is encoded along a spatial array.

For the periodicity analysis, a frame-based autocorrelation analysis is per-
formed on the filtered channels. A frame width w of 40 ms and a step size
At of 20 ms are chosen. For each frame at time ¢ (¢ is a multiple of the step
size At), we perform an autocorrelation analysis based on the following prin-

ciple:
t—w

pe(t) =Y (ec(r)ec(r =), (3.20)

T=t
where e, is the firing pattern in channel ¢ of the auditory nerve image, § =
do + ku defines the delay with § € [0, w] and the number of delay samples

“For a given frequency, the critical band is the smallest surrounding band of frequencies
which activate the same part of the basilar membrane.
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is k = 0,1,..., 2. The time lag thus increases in steps that correspond to the
sampling rate of the auditory nerve images (¢ = 0.36 ms). Each pitch pattern
can thus be represented as a vector p at a certain time step ¢ and the components
of the vector are indexed by the k value. There are z + 1 such values in total
which define the dimensionality of the pattern. The periodicity pitch image or
completion image at time ¢ is obtained by a summation of the autocorrelation
results over all channels:

p(t) = pe(t). 3.21)

c=1

The periodicity pitch image is then attenuated according to:

2
a(d)=1- (6 — _ 0.5) . (3.22)

This attenuation reduces the impact of the short and long periods (respectively
the too high and too low frequency regions) in the pitch pattern. Finally, from
the attenuated pitch pattern, we select  between 28.6 ms and dy = 4 ms. This

gives a pitch pattern with P%‘%gq = 69 J-values.

Transformation of Pitch Patterns into Induced Pitch Patterns

Successive patterns build up a content that captures pitches as they appear in
their musical context and hence may induce a particular pitch pattern or key.
An echoic memory module takes the pitch image as input and gives the leaky
integrated image as output: the images are integrated in such a way that at
each time step, the new image is calculated by adding a certain amount of the
old image to the new incoming image. At each moment, a new value is ob-
tained by adding the incoming signal to an attenuated version of the previously
calculated value. The echo applied to a periodicity pitch image defines the
amount of context we take into account. With long half-decay timeﬂ context
is taken into account and the images are called global pitch images (correspond
to tonality). With little or almost no context, small half-decay times are used
and the images are called local pitch images (e.g., a half-decay time of 0.5 s
corresponds to chords). The echo with a half-decay time 7" is calculated as

>The half-decay time specifies the time it takes for an impulse signal to reach half of its
original value.
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follows:

pr(0)
pr(t)

p(0) (3.23)
p(t) + 27 p(t — 1). (3.24)

To obtain induced key images, we use a half-decay time of 1.5 s.

3.4.3 Creation of Key Templates

Obviously, in order to obtain key templates for all keys, chord sequences have
to be generated for all keys (12 major and 12 minor) and subsequently pro-
cessed. It has been shown by Leman [209] that key templates can be extracted
from chord sequences that establish a strong sense of key. These chord se-
quences are based on the key-inducing pitches from the scale. They are typ-
ically based on the first (the tonic), fourth (the subdominant), fifth (the dom-
inant), and again the first scale degree, both in major and minor expressed in
roman numeral chords as I-IV-V-I and i-iv-V7-i, respectively. For example, in
the key of C major the chords are thus made of the following patterns: C-E—G,
C-F-A, D-G-B and C-E-G and, in the key ¢ minor: C-Ds-G, F-Gs-C,
G-B-D-F, and C-Ds—G. Using the above explained method of pitch induc-
tion, a key template is defined by the global pitch image at the end of such a
chord sequence.

A set of 24 sequences, each sequence consists of four successive chords as
explained above, is created using Shepard tones. A Shepard tone [234] is an
octave-related complex sound that is a highly contrived aggregate of individ-
ual sinusoidal waves each separated by the interval of an octave. The contour
of the spectral envelope of the aggregated sinusoids resembles a bell-shaped
bandpass filter and the components with highest amplitude are situated in the
500-1000 Hz frequency domain, the domain where the human ear is the most
sensitive for frequency perception. Chords built from Shepard tones are called
Shepard chords. The octave position of a Shepard tone being undetermined,
Shepard chords are utterly suited for the implementation of algorithmic har-
mony systems, since the position of the used chords can, in first instance, be
completely left out of the system.

Next, a principal component analysis (PCA) has been carried out on the subset
consisting of the 24 69-dimensional feature vectors for the Shepard sequences.
In this way, the Shepard sequences are assumed to be representative audio
samples that can play the role of sufficiently discriminating centers of attrac-
tion in the 69-dimensional feature space. Furthermore, it can be foreseen that
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C Cs D Ds E F' Fs G
1 2 3 4 5 6 7 8
Gs A As B c cs d ds
9 10 11 12 13 14 15 16
e f fs g gs a as b
17 18 19 20 21 22 23 24

Table 3.6: Conversion from induced key notation to integer class labels.

the 24 principal component vectors are situated in a low-dimensional hyper-
plane. In our setting, the principal components are numbered in increasing
order of variability; hence, the 69th principal component points into the direc-
tion that accounts for the largest variation. For example, the total variance of
the components 66 to 69 (i.e., the four principle components with the highest
variance) is 74.6% and the total variance of the five (65 to 69) and six (64 -
69) principle components with the highest variance is 78.9% and 82.5%, re-
spectively. Further, the 24 keys are given a unique label from 1 to 24, where
the class labels correspond to the common convention of the induced key, as
shown in Table

3.4.4 Key Recognition Using the Distance Model

To obtain the key of a musical excerpt, the induced pitch pattern image vectors
are derived at a rate of one vector every 20 ms. We then express these vectors
in the Shepard key template basis (by means of the linear transformation in-
duced by the principal components associated to the Shepard sequences). The
resulting vectors are therefore called the Shepard-normalized feature vectors.

Using the distance model, the Shepard key template which is closest to the
Shepard-normalized feature vector, is chosen as the key. Residing on the low-
dimensionality, we can use an n-dimensional subset of the 69-dimensional
vectors, n < 69. For each of the thus obtained n-dimensional vectors, we
compute in the n-dimensional subspace the Euclidian distance to the Shepard
key templates and determine the nearest of these key templates.

However, we experience that, despite the low-dimensionality, for n = 4, 5, or
6 the key assignments using the distance model are different. This finding is
demonstrated in the next examples.

In the first application, we take a 7 seconds sample (between 1’53 and 2°00) of
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bre = = = |

Figure 3.20: Score of the prominent melody line of “Eternally” by Quadran.

the dance song “Eternally” by Quadran and compute the Shepard-normalized
feature vectors for every 20 ms. The (prominent) melody line of this excerpt
consists of the notes: As4 C5 Cs5 As4 F5 Asd4d F5 F5 Fs5 Gsb5
Ds5 Ds6 As4 Dsb5 Fsb5 As4 F5 As4 Fs5 F5 Fsb5 Gs5 Ds5 as
depicted in Figure [3.20] By considering the key signatures for major and
minor scales, the four most probable keys are: as, ds and their relative major
key neighbors Cs and F's.

Retaining the components 66 to 69, we obtain a sequence of keys as shown in
Figure 3.21] On the vertical axis, the tonal centers are marked by a number
while to the right of the figure the corresponding key notations are shown, ac-
cording to Table [3.6] The key assignment is almost constantly as, and only
for 1/3 s equal to £. The variation at the beginning of the sequence must be
ignored, since we do not want to take into account deviations that could be
ascribed to particular starting conditions of the pitch pattern detection process.
In Figure[3.22] we show the key recognition for the same musical excerpt, us-
ing a 5-dimensional subspace (spanned by components 65 to 69 of the Shepard
basis). It is striking that this assignment sequence is completely different from
the one established in the 4-dimensional subspace, as one notices that now the
assignment varies in time from Ds over f to ds.

This apparent instability in key recognition when the dimension of the projec-
tion subspace is augmented (or more generally, altered), is again confirmed by
comparing the results obtained in the 6-dimensional subspace with the previ-
ous ones, as shown in Figure[3.23]

At first sight, one may be inclined to conclude that the Euclidean distance
method is unreliable when used in combination with the dimensionality reduc-
tion. Nevertheless, psycho-acoustic experiments by Krumhansl and Kessler
[140], as well as computational methods using neural networks [209] and brain
imaging experiments [208] show that the geometric representation of the inter-
key relations is low-dimensional [207,217]. The geometrical representation as
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24 b
23 as
22 a
21 gs
20 g
19 fs
18 f
17 e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 Ds
3 D
2F Cs
1 L 1 C
1 2 3 4 5 6

Figure 3.21: Sequence of nearest Shepard key templates in the 4-dimensional Eu-
clidean subspace (components labeled 66 to 69 in the Shepard basis) for the excerpt
of “Eternally” by Quadran.

depicted in Figure suggests, for instance, that the variation between the
keys as and £, observed in Figures[3.21]and [3.23] may be somehow situated in
the middle of key as and £, being close neighbors in this representation. The
same geometrical argument can be invoked for the key assignment variation in
Figure [3.22] because ds and Ds are also close neighbors, i.e., parallel neigh-
bors. Hence, in this example, tonal variation can be explained as a positioning
between neighboring tonal centers, although the distance-based assignment
rule does not offer the possibility to select the second nearest tonal center for
key assignment in order to produce more stable key assignment sequences.

The assignment sequences in the 4- and 6-dimensional spaces show a great
resemblance, whereas the assignment sequence in the 5-dimensional space is
somewhat different. One possibility to reduce these differences in the key as-
signments, is to agglomerate the keys in larger groups of keys or key-clusters.
Since theoretical acoustical considerations do not provide a straightforward
way of agglomerating tonal centers in larger groups, we need to devise such a
clustering by means of the systematic comparison of the assignment sequences
for a representative set of musical extracts, respectively generated in 4, 5, 6, or
higher dimensions.
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24 b
23 as
22 a
21 gs
20 g
19 fs
18 r f
17 || e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 Ds
3 D
2F Cs
1 L 1 C
1 2 3 4 5 6

Figure 3.22: Key assignment sequence based on Euclidean distance in the 5-
dimensional subspace for the same excerpt as in Figure [3.21]

24 b
23 n as
22 H a
21 gs
20 g
19} fs
18} f
17 e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 Ds
3 D
2 Cs
1 L ! C
1 2 3 4 5 6
N

Figure 3.23: Key assignment sequence based on Euclidean distance in the 6-
dimensional subspace for the same excerpt as in Figure [3.21]
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3.4.5 Classification Tree for Key Recognition

As a way to overcome the drawbacks described in the previous section, we
have developed a new method of key recognition. There is an abundance of
classification methods that fall in the category of supervised learning tech-
niques, such as different types of neural networks, instance-based learning al-
gorithms, and tree-based approaches. However, tree classification techniques
(see Appendix [E)) have a number of advantages. First, the interpretation of the
results summarized in a tree is very simple. This is not only useful for purposes
of rapid classification of new observations, but it can also yield a much simpler
model for explaining why observations are classified or predicted in a particu-
lar manner. Secondly, tree-based methods are non-parametric and non-linear.
There is no implicit assumption that the underlying relationships between the
predictor variables and the dependent variable are linear, follow some specific
non-linear function, or are monotonic in nature. Thus, tree-based methods are
particularly well suited for data mining tasks where little a priori knowledge is
available.

Classification trees are constructed top-down, beginning at the top node with
the most informative feature, i.e., the one that maximally reduces entropy.
Branches are then created for all values of the descriptor of this node. The
training examples are sorted to the appropriate descendant node and the pro-
cess is repeated recursively. Each node is connected to a possible set of an-
swers and each branch carries a particular test results subset to another node.
The eventual rules for classification can be summarized in a series of logical
if-then conditions and each terminal node is associated with a single class. The
building process of a tree is a recursive procedure, but it is still faster than the
training of a neural network.

Besides the 24 Shepard sequences, we have generated 10 more sets of 24
chords sequences, each consisting again of 4 chords and representing one of
the 24 major and minor keys. These 240 additional sequences were sampled
from professional synthesizersﬂ and cover a wide spectrum of instrumental
sounds, such as brass sound, piano, strings, acoustic guitar, etc. We then con-
verted the feature vectors of the training sequences into key templates, repre-
sented as normalized feature vectors divided over 24 classes (10 new vectors
per class plus one vector associated to the Shepard sequence) respectively la-
beled from 1 to 24 according to the conversion rules of Table[3.6] This whole
set of 264 key templates is used as training set for growing a classification tree.
Once established, the classification tree can be used to predict membership of

5Yamaha © QS300 and Waldorf © Micro Q
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newly induced pitch patterns in one of the 24 classes [235].

The construction of a classification tree has been done by means of the CART
4.0 software package [236]. In CART there are a lot of parameter settings and
option selections, and for most of them we have chosen the recommended de-
fault values. In particular, priors have been taken proportional to the class sizes
and misclassification costs have been taken equal for every class. The right-
sized tree has been selected on account of the 10-fold cross-validation tech-
nique. Furthermore, we have chosen the discriminant-based univariate splits
option since linear combination splits are clearly irrelevant for the normal-
ized data. Indeed, the PCA-normalization pre-processing of the data implies
that optimal linear combinations of all vector components have already been
taken into account. Finally, we have done experiments with the two most fre-
quently used splitting rules: the Twoing rule and the Gini rule [235] (also
see Appendix [E). Both methods yield classification trees of comparable qual-
ity (where the used quality criterion, called the relative cost, takes into ac-
count both the misclassification score and the complexity of the obtained tree).
Here, we will mention only the results obtained using the Twoing criterion,
as it yields a tree that is much more equally balanced than the tree obtained
with the Gini criterion. This observation can be attributed to the fact that the
Twoing criterion seeks for splits that are roughly equal in size and Twoing is
better for multi-class dependent variables than Gini.

The smallest subset of components giving rise to a perfect classification tree,
in the sense that none of the learning examples is misclassified, is the set of the
four components label ed 66 to 69. In Figure[3.24] the obtained classification
tree is plotted. Notice that this tree contains 30 leaf nodes (in general, a perfect
tree can possess more leaf nodes than classes). It should be mentioned that
a perfect and well-balanced classification tree with exactly 24 leaf nodes and
with univariate splits on the components 66-69 can be constructed by solely
using the Shepard key-templates. However, it appears that, due to the restricted
training set consisting of only Shepard tones, the applicability of the obtained
classification tree is quite limited since most musical instruments profoundly
differ from Shepard tones [14]. On the other hand, one should not focus too
much on considering only classification trees based on a minimal number of
components (or dimensions) on which to perform splits.

We found, for example, a perfect classification tree with 30 leaf nodes and
with univariate splits on the components 65-69 (5-dimensional space) that is
topologically equivalent to the classification tree of Figure and a perfect
classification tree with 28 leaf nodes with univariate splits on the components
64-69 (6-dimensional space) that is topologically almost equivalent to the clas-
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Figure 3.24: A well-balanced perfect classification tree for the classification of
Shepard-normalized feature vectors into 24 classes, with univariate splits on the com-
ponents 66-69.

sification tree of Figure [3.24] It must be emphasized that topological equiva-
lence or nearly topological equivalence not necessarily implies that the clas-
sification is the same or almost the same. Indeed, classification does not just
depend on the topology of the classification tree, but more dominantly on the
splitting conditions which for topologically equivalent trees may be completely
different. We did not directly compare the splitting conditions at correspond-
ing nodes in the classification trees for 4, 5, and 6 dimensions, respectively, but
preferred to compare the classification results or key assignments on a variety
of musical data.

In testing this method, we reconsidered the musical excerpt “Eternally” of
Quadran. Each of the three classification trees accounts for a key recogni-
tion method that, in contrast to distance-based recognition, will be called tree-
based recognition. Note however that the tree-based recognition is expected to
be more reliable than the distance-based recognition, because the latter only
uses information from the subset of Shepard sequences.

Figure [3.25] shows key recognition with the classification tree of Figure [3.24]
using splits on 4 components. As in the case of distance-based recognition, the
key does not remain constant over the whole excerpt. The key varies between
the keys as and Ds, which are not direct neighbors in the toroidal geometric
representation, but are also not separated too far from each other.

Tree-recognition using splits on 5 components results in Figure [3.26] Again,
the recognition varies between the same two keys, i.e., as and Ds, but the time
of transition clearly does not match.

Finally, using splits on the last 6 components, the result of Figure is ob-
tained. Again a variation between the same two keys is observed. The alterna-
tion between the keys as and Ds is conform to most probable keys using key
signatures. This alternating between two keys is significant as this behavior
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24 b
23 as
22 a
21 gs
20 g
19 fs
18 f
17 e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 - Ds
3 D
2F Cs
1 L 1 C
1 2 3 4 5 6

Figure 3.25: Tree-based key assignment sequence with splits on 4 components for
the same musical excerpt as in Figure[3.21]

Quadran - Eternally (5 components)

24 b
23 as
22 a
21 5
20 g
19 I
18 f
17 e
16 ds
15 d
B 14 cs
§13 c
12 B
§ 11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 Ds
3 D
2 Cs
1 L ! Cc
1 2 3 4 5 6

Figure 3.26: Tree-based key assignment sequence with splits on 5 components for
the same musical excerpt as in Figure [3.21]
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occurs in more experiments. Therefore, we can already postulate the prelim-
inary conclusion that for a fixed dimension, the key assignment with a tree-
based method is more stable than the key assignment with the distance-based
method. The tree-based recognition, however, produces results that seem to
be more robust and invariant with respect to the dimension of the tree (i.e.,
the number of components on which splits are performed). This also implies
that the classification trees in 4, 5 or 6 dimensions, respectively, are not only
topologically similar, but that they also possess splitting conditions that do not
significantly differ from each other in corresponding nodes. Thus, the final
classification is almost the same with each of these trees.

24 b
23 as
22 a
21 gs
20 g
19 fs
18 f
17 e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
4 Ds
3 D
2 Cs
1 L ! C
1 2 3 4 5 6

Figure 3.27: Tree-based key assignment sequence with splits on 6 components for
the same musical excerpt as in Figure[3.21]

3.4.6 Clustering Keys into Key Classes

The property of independence with respect to the number of components with-
held motivates us to proceed with the tree-based key recognition methods. In
particular, we shall consider the lowest-dimensional classification tree of Fig-
ure [3.24] with splits on 4 components. The question arises whether we could
reduce the variability in key assignment at least for short musical excerpts of
only a few seconds long. Usually, such a task is carried out by filtering tech-
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niques that take into account tendencies over longer periods and try to use that
knowledge to eliminate short term variations as much as possible. However,
the classification tree structure on its own provides a way of agglomerating
classes into larger groups and it can be expected that a coarser grain classifica-
tion will automatically lead to fewer variations. Especially the well-balanced
trees that are obtained by means of the Twoing splitting rule may be considered
for the formation of clusters that more or less group together a same number
of classes. Taking into account the binary structure of the classification tree, it
is clear that a reduction is possible from 24 classes into 16, 8, 4, or 2 clusters
of classes. It should also be mentioned that the agglomeration of the 24 keys
into 16 (or less) key groups or key clusters, appears to be the same when either
the 4-dimensional, the 5-dimensional, or the 6-dimensional classification tree
is used. It does not mean, however, that the different trees will necessarily
classify a given feature vector in the same cluster. With the help of the con-
version rules in Table|3.6|one can verify from Figure that one obtains, for
instance, the 8 clusters of musical keys as depicted in Table[3.7]

Cy ={as,As,Ds, F(1)} | Ca ={c, f,F(8)}

C3 = {CL, dvD(g)} Cy= {C7va7F(2)}

Cs = {cs,Cs,Gs} Cs = {ds, gs, B(10), F's}
C7:{fS7A7D(2)} 08:{b767E7B(1)}

Table 3.7: 8 clusters of musical keys obtained from the classification tree of Fig-

ure

The numbers in parenthesis in Table [3.7|indicate how many of the 11 training
sequences associated to each key are present in that cluster. For example, of
the 11 examples of key D, 9 belong to cluster C3 while 2 belong to cluster
Cr. If we trace these clusters in the torus (see Figure [3.19), we readily see
that each of them is an assembly of keys that are in geometrical sense close
to each other. The numbering of these clusters has been attributed by a left-
to-right scanning of the classification tree and this implies that clusters with
consecutive numbers are usually also close to each other in Figure [3.19] For
example, D is close to a and d, as well as to £s and A, which corresponds to
the clusters C'3 and C'7 over which the examples of key D have been distributed.

Let us reconsider the example of “Eternally” by Quadran. The cluster as-
signment sequences obtained by means of the classification trees in 4, 5, or 6
dimensions, respectively, are identical and yield the fixed assignment of clus-
ter C'; to that musical excerpt, as shown in Figure The property that
the three classification trees produce the same cluster sequences has been ob-
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Figure 3.28: Cluster assignment sequence obtained with any one of the classification
trees discussed for the same musical excerpt as in Figure[3.21]

served in many other examples. Therefore, in the remainder, we will only be
concerned with results generated by the lowest-dimensional classification tree
(i.e., with splits on 4 components).

For example, by considering an excerpt of J.S. Bach’s “Inventions Nr. 1 in
C Major”, a piece of (classical) music written in C major, we see that the
tree-based key recognition is mainly characterized by the assignment to the
key C (with some small fluctuation to F, a neighbor on the circle of fifths) as
depicted in Figure The assignment of key clusters also reveals a constant
assignment to cluster C4 as shown in Figure[3.30] It is worthwhile mentioning
that only two of the 11 training sequences associated with key F fall in cluster
Cjy. Nonetheless, the F-key assignment for this piece of music is precisely of
this rather exceptional type, so that one cluster assignment is found.

To illustrate that it is not a rule that the cluster number is constant over a
longer piece of music, we present the results obtained for an excerpt of the
song “Blowing in the wind” by Bob Dylan. It must be emphasized that our
classification tree has not been trained on human voices, and therefore we do
not expect in advance a stable key assignment, nor a stable cluster assignment.
Indeed, from Figures|3.31|and Figures we see that the cluster assignment
varies between the three clusters Cy4, C7 and Cg.
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Figure 3.29: Key assignment sequence for J.S. Bachs “Inventions Nr. 1 in C Ma-
jor”obtained from the classification tree of Figure [3.24]

JS Bach - Inventions nr 1 in C Major

cluster

Figure 3.30: Cluster assignment sequence for J.S. Bach’s “Inventions Nr. 1 in C
Major”.
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24 b
23 as
22 a
21 gs
20 g
19 fs
18+ | f
17 e
16 ds
15 d
14 cs
13 c
12 B
11 As
10 A
9 Gs
8 G
7 Fs
6 F
5 E
41 Ds
3 D
2 Cs
1 Il 1 1 [o}
1 2 3 4 5 6 7 8

Figure 3.31: Key assignment sequence for Bob Dylan’s “Blowing in the Wind”.

Figure 3.32: Cluster assignment sequence for Bob Dylan’s “Blowing in theWind”.
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3.5 Conclusions and Future Work

In this chapter, we have dealt with the extraction of pitch-related information
from musical audio signals. Two types of pitch information are considered:
melody and tonality.

At first, we presented a transcription system to automatically extract the
melody from both monophonic and polyphonic musical audio recordings. Un-
like many melody extraction approaches, we aimed to distinguish individual
musical notes characterized by specific temporal boundaries and a frequency
resolution of a half semitone. Our melody transcription system consists of four
stages. In the first stage, we used the auditory model of Slaney and Lyon to
obtain the necessary pitch information for the later processing stages. In the
second stage we estimated the FO in individual time frames, and we created
pitch trajectories over adjacent time frames. In the third stage, the obtained tra-
jectories are transformed into tones so that a note representation can be easily
deduced. Finally, in the fourth and last stage, a post-processing which removes
low-salience tones or too short tones, is applied to obtain the melody. We eval-
uated this system using two melody sets: (i) the GMEL set, a self-created set of
34 excerpts from popular music with their respective MIDI representation and
(i1) the MIREX training set consisting of 13 FO-annotated musical audio files.
For the GMEL set, the average precision and recall for raw pitch detection are
0.71 and 0.86 while for chroma detection,0.72 and 0.87, respectively. For the
MIREX 2005 training set, the average precision and recall for raw pitch detec-
tion are 0.68 and 0.65, respectively while for detection the chroma information
the average precision and recall are 0.81 and 0.79, respectively. These results
are very promising. However, there is still room for improvement. Especially
the quantization of frequencies related to sung melodies could be improved
by detecting vocal and non-vocal regions in the musical signal and analyzing
the fragment accordingly. The pitch fluctuation of a sung melody (and other
parts with vibrato) give rise to segmentation errors as we aim to obtain a note
representation. On the other hand, one might ask if a note representation is
a good representation (both as ground truth and transcription) to be used for
sung musical fragments since the produced frequencies actually deviate from
the intended pitch. Next, a basic assumption of the presented system is that the
melody line is salient in polyphonic mixes. In songs where the melody is not
so salient, other instruments and percussive sounds may cause peak masking,
which results in a more difficult estimation of the FO. Psychoacoustic findings
about the perception of melody (see Section can therefore be helpful in
the creation of pitch trajectories. Further, in the post-processing phase, infor-
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mation about the musical key can be embedded so that in the tone creation
phase, the most likely notes, given a determined key, can be favored. Conse-
quently, quantization errors can be reduced.

Next to the extraction of melodic information, we also considered the ex-
traction and classification of tonality information. Like melody, tonality also
entails pitch information, but it manifests at a relatively larger time interval
than melody. The presented approach is based on pitch induction as proposed
by Leman. Tonality is low-dimensional which can be deduced from the fact
that by applying a PCA on a 69-dimensional space, the 4 biggest principal
components account for 75% of the total variance. However, when this low-
dimensionality is exploited, the widely used metric-based approach is unstable
as different tonal centers are returned in a 4-, 5-, and 6-dimensional space.
The presented tree-based approach overcomes this shortcoming. Furthermore,
the tree-based method offers a way of regrouping keys into larger key clus-
ters by ascending one (or more) level(s) in the tree. An additional advantage
of the tree-based method is that the set of training data can always be en-
larged with more specific sounds so that specialized trees can be grown for
different types of music whereas the metric-based approach is based on a fixed
data set (preferably Shepard tones) from which the tonality information is ex-
tracted. However, the latter can also be seen as a shortcoming of the presented
approach since it requires the creation of annotated training data for the su-
pervised classification of it. This information can be exploited in order to
significantly reduce the musical search space when a query is launched in a
content-based music retrieval system. Also, we think that it must be possi-
ble to find correlations between these sequences and other musical features
at a higher conceptual level (e.g., emotional connotations). As to the results,
the fact that the labeling of the tonal sequences is absolute, is a fundamental
weakness of the application domain rather than the weakness of the method.
Indeed, a musical piece played at a higher pitch may yield a completely dif-
ferent tonal assignment. A straightforward extension, therefore, is to consider
pitch interval patterns instead of (absolute) pitch patterns or to estimate the
pitch mistuning as later performed by Zhu and Kankanhalli [222].

The work that was presented in this chapter is published in the journal Soft

Computing:

(i) G. Martens, H. De Meyer, B. De Baets, M. Leman, M. Lesaffre, and J.P.
Martens. Tree-based versus distance-based key recognition in musical
audio. Soft Computing, 9(8):565-574, 2005

Additionally, work in this domain can be found in the following publications:
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Chapter 4

Content Management and
Semantic Metadata

Talk to a man about himself and he will listen for hours.
— Benjamin Disraeli (1804 — 1881)

4.1 Introduction

In the last decades, the digitization of content has experienced an enormous
growth in both the number of users and the range of applications. Furthermore,
the amount of digital information is still drastically increasing, a trend that is
going to continue in the next years according to the IDC [1]. This increase
over the last decades is caused by the fact that end-users now are also con-
tent creators besides content consumers. Indeed, the current technology makes
creating multimedia content, such as videos or images, an easy and everyday
task. This growth in digital technology has created the desire amongst users
to manage and exchange their content in a variety of ways. Extra hardware
(such as external hard disks, media players, and photo frames) and on-line file
servers are used for storage, but posting content on the World Wide Web (e.g.,
publishing content on social networks) is also extremely popular. As a conse-
quence, one’s personal content is stored on many devices, and so it becomes
more difficult to efficiently manage these data. Furthermore, this huge amount
of information which is generated daily, is mostly stored in unstructured repos-
itories, much of which can be accessed through the Internet. As one wants that
as much information as possible about the content is provided, the need for
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appending and managing metadata, i.e., data about the data, is even bigger.
Thus, metadata are not only necessary to describe the content itself, but also
the management of this vast amount of content requires metadata.

Concerning the description of the content, the metadata can either be added
manually or automatically be extracted from the content itself. When the meta-
data are manually supplied, we talk about annotations. Annotation is a process
in which a human (expert) generates metadata for some content. Generically,
an annotation can cover any type of metadata, such as the title and performer
of a song, the date a file was created, the name of a person in a photograph,
etc. Metadata that are automatically obtained from the content concern the
extraction of features, possibly followed by some decision process. Examples
of automatically obtained metadata are texture features, color histograms, an
automatic labeling of an image region, a melody transcription, etc.

Despite its great value, multimedia metadata have yet to find its way into stan-
dard use [237]. In fact, many people use sites, such as Flic or YouTub
to publish their content, and in order to manage their collections to some ex-
tent, they typically assign keywords to their content. However, the annotation
of content using keywords implies some issues. Since a keyword is separated
from its context, it loses a lot of its intended meaning. For example, the key-
word “java” can refer to a programming language, but also to an island of
Indonesia, or even to the coffee produced on that island. For the human user,
the context in which a keyword is used, explains its semantic meaning. How-
ever, for a machine, the context is often difficult to obtain. Furthermore, other
difficulties show up: different words are used to refer to the same concept,
spelling errors occur, words can have multiple meanings, slang is used, etc. In
other words, relying on keywords for describing the semantics is not trivial. To
tackle this problem, the use of metadata models is favored as they define fields
and values for specific metadata types. A metadata model describes how data
are represented and formally defines the elements and relationships between
the elements of the model.

In order to efficiently manage the content and the metadata, a content man-
agement system (CMS) is needed. Besides a set of procedures to manage the
work flow, a CMS typically involves a metadata model. Within the context
of a single CMS, the semantics of different fields of the metadata model are
well-defined. However, there is a major discrepancy when it comes to the
interoperability between different metadata models. Especially in networked
systems where many different parties need to cooperate and share information

"http://www.flickr.com
Zhttp://www.youtube.com
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resources, semantic interoperability is a crucial problem. In a general context,
there are a set of independent data sources of a common domain and we need to
share and exchange information among them. Each data source can be repre-
sented by its proper metadata model that uses a certain vocabulary with specific
semantics. Thus, an appropriate mediation system is needed for allowing the
interoperability of different data sources. This mediation system must provide
a means to overcome the semantic heterogeneity between all data sources and
also a means to access the data with transparency as much as possible.

The work in this chapter represents our activities in the IBBT — PeCMan (Per-
sonal Content Management) projec{’| and our collaboration in the W3C Multi-
media Semantics Incubator Group*l We describe a CMS for the management
and disclosure of personal content in a community context. Here, a commu-
nity context indicates that there are different end-users of the system. These
end-users can, if desired, have access to both the content and the metadata of
other end-users. Further, we deal with the interoperability issues between dif-
ferent metadata standards. This interoperability problem was the main topic
of the W3C Multimedia Semantics Incubator Group in which we have actively
participated within the photo use caseﬂ The photo use case deals with the
problems that arise for retrieving personal photos that are stored without any
metadata. Accordingly, the photo use case will be used in this chapter as we
discuss the creation of a content-descriptive metadata model. In traditional
CMSs, data are typically stored at one central location, but due to the increas-
ing number of (high-capacity) storage devices and file servers on the Internet,
it becomes more difficult to keep track of one’s personal content. Therefore,
the proposed CMS will provide a solution for the management of this kind
of data. At first, we describe in Section {f.2] the requirements of the metadata
model and the CMS by use cases. Next in Section 4.3 we give an overview of
related work about metadata modeling languages, image metadata standards,
and open-source CMSs. Then in Section 4.4} we describe our developed CMS
and elaborate on its metadata model which relies on Semantic Web technolo-
gies. Furthermore, the presented CMS metadata model embeds a model for
image annotation. As such, we provide a solution for the interoperability prob-
lem between (image) metadata standards. Finally, in Section 4.5] conclusions
are drawn.

3http://www.ibbt.be/en/project/pecman
*http://www.w3.0rg/2005/Incubator/mmsem
Shttp://www.w3.0rg/2005/Incubator/mmsem/X GR-image-annotation-200708 14/
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4.2 System Requirements

In order to reveal the requirements on the metadata model and the CMS, mul-
tiple use cases were set up. These use cases covered a range of different types
of content, terminals, and services. The following use cases were considered:

(1) content disclosure,
(i) content relocation,
(iii) annotation of content,
(iv) content browsing,

(v) security,

(vi) interoperability.

4.2.1 Content Disclosure

The actual file (here further referred to as document, such as an image, audio,
video, or text file) can be stored on several possible devices that can be con-
nected to the World Wide Web (e.g., a PC, a cell phone, or a storage provider).
The disclosure of a document denotes its registration by the system so that it is
also available for the end-users. Furthermore, the metadata of each document
should also be managed so that the metadata are always available, even if a
document is unavailable. For example, a document that is stored on a mobile
device can become unavailable when the device’s batteries run flat. However,
this unavailability is only temporal and meanwhile queries must be able to rely
on the document’s metadata (e.g., to retrieve all documents of a given end-user
or to impose restrictions upon the content).

4.2.2 Content Relocation

Since a document can be stored on a random device, its storage location should
not impose a constraint upon its disclosure. So, it must be possible to move
a document to an arbitrary device while it remains available for the system
and possibly other end-users. Therefore, three storage modes are possible: (i)
“off-line”, (ii) “on-line”, and (iii) “always on-line” storage. Off-line storage
means that the document is not accessible once the device is switched off (e.g.,
a document stored on a laptop will be automatically set to “off-line” as soon
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as the laptop is disconnected from the World Wide Web and it will be set “on-
line” when the laptop is reconnected). To make a document accessible at any
time (i.e., “always on-line”), even when the storage device is switched off,
the system can hold a copy of the document in its cache so that it is always
available.

4.2.3 Content Annotation

The purpose of content annotation is to provide a description of the content.
This information is relevant for classification and retrieval operations. Exam-
ples of queries are: “find all pictures containing flowers” and “find all songs
with a similar melody”. The description of the content can thus be an anno-
tation, a set of features, or a combination of both. Consequently, metadata
fields are necessary to allow annotation. Both a predefined set of keywords
from a controlled vocabulary (e.g., a taxonomy) and the possibility to freely
add keywords are necessary. For the digital photo use case, basic image pa-
rameters (such as file name, dimension, and coding format), creational and
content-descriptive metadata parameters are mandatory. Further, the following
content-descriptive concepts have been identified in the PeCMan project for
photo annotation:

(i) depicted object, person, group, and event,
(i1) the position within the image of the latter,
(ii1) the time and location,

(iv) the role of the participants in an event.

4.2.4 Content Browsing

As a personal collection of documents permanently grows, it will be harder
for the end-user to find specific content as time passes. Therefore, different
strategies can be employed to retrieve documents. To query a collection, three
broad strategies can be distinguished:

(1) Search by association. The intention of the user is to browse through a
large collection without a specific aim. Search by association tries to find
“interesting” documents. This search method is already implemented in
some state-of-the-art CBIR systems, such as PicSOM [115], Photobook
[238], and Blobworld [239], to find images based on visual similarity.
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(i) Target search. The purpose of this search mode is to find a specific
document. For images, the search may be for a precise copy of the image
in mind (e.g., when searching in an art catalogue) or for the same object
the user has already an image of (e.g., stamps, paintings, and catalogues
in general).

(iii) Category search. This search mode aims at retrieving an arbitrary docu-
ment for a specified class. Categories may be derived from annotations
or may emerge from the data set (e.g., “find all outdoor images” or “find
all photos depicting one or more family members”).

4.2.5 Security and Interoperability

Security rules are necessary to limit the access to both the content and meta-
data. It might be desirable (because of copyright reasons) to grant access to
the annotations, but to hide the content itself. For example, a musical album
can not be shared because of copyright issues, but its metadata can be shared.

Further, there should be interoperability with metadata standards so that ex-
changing information using different formats is possible.

4.3 Related Work

At first, we explain the use of Semantic Web Languages in Section @.3.1] for
metadata modeling. Then, we give an overview of image metadata standards
in Section 4.3.2]and open-source CMSs in Section[#.3.3]

4.3.1 Metadata Modeling

For the modeling of metadata standards, the Extensible Markup Language
(XML) has been widely used over the last decade [3]. XML is a tag-based
metalanguage (i.e., a language to define languages) used to define domain-
specific grammars because it allows the generation of tags that specify the
structure and syntax of metadata. As such, the metadata are machine-parsable
and -readable. Though, the use of XML neither guarantees a correct seman-
tic interpretation. This is because XML is rather a structuring language and
it does not allow to explicitly define the semantics of the concepts that are
described. XML tag names are simply character strings that may be mean-
ingful to a human reader but are meaningless for software. For example, the
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predicate -
object

Figure 4.1: A graphical representation of an RDF statement.

tags <father> and <child> may be ascribed with semantics by a human
reader, but not by software. Therefore, the meaning of tags must b e agreed
upon a priori to support interoperability. Traditional metadata standards that
rely on XML, supply an (often voluminous) textual description of the meaning
of the different XML tags. This knowledge has then to be incorporated into
software in order to correctly interpret this XML.

A way to overcome these problems is the use of Semantic Web technology.
Within the context of this dissertation, when Semantic Web technology is used
to create a metadata model, this model is called an ontology (i.e., domain
knowledge). Ontologies enable the machine interpretation of and reasoning
about semantics. A first metalanguage to create ontologies is the Resource
Description Framework (RDF) which is an approved W3C recommendation
for asserting values of properties associated with web resources [240]. Rather
than displaying information, RDF is intended to be used by applications to
process information. RDF uses the XML standard for its syntax and is a lan-
guage for representing information about resources. In this context, a resource
is anything that can be associated with a Uniform Resource Identifier reference
(URIref) [240]. So, resources include both physical (e.g., a book or a menu)
and virtual (e.g., web page, images, or services) objects. A special type of
resource is a property that serves to describe attributes of resources and binary
relationships between resources. Besides resources, the RDF data model in-
cludes literals and statements. As such, literals are actually text strings with
optional language and data identifiers. Literals are possible property values
in a statement. Statements are attribute-value pairs formed by properties with
associated values. RDF statements consist of a subject resource (i.e., the re-
source that is being described), a predicate (i.e., the property), and an object
(i.e., a literal or a resource value) as graphically represented in Figure 4.1]

Since RDF lacks the description of more complex semantic relationships (e.g.,
classes) nor provides mechanisms for describing properties and concepts for
enumeration and custom data types, RDF Schema (RDFS) was introduced
[241]. RDES defines classes and properties that may be used to describe
classes, properties, and other resources. RDFS builds on the RDF foundation
to provide additional descriptive features and a language for describing the
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expanded vocabulary. However, RDFS still does not provide sufficient expres-
siveness to create meaningful ontologies (e.g., RDFS places no restrictions on
property cardinality, nor methods to express that two properties are each others
inverse).

The Web Ontology Language (OWL) was then developed to satisfy these re-
quirements [4]. OWL supports more expressive descriptions of semantic rela-
tionships than RDFS. The OWL language, which builds on RDF(S) constructs,
consists of three species which support various levels of expressiveness:

(i) OWL Full is the complete set of OWL language constructs and places
no restrictions.

(ii) OWL Description Logic (OWL DL) uses the same constructs as OWL
Full but applies some restrictions.

(iii) OWL Lite uses a subset of OWL DL constructs some of which are re-
stricted.

The restrictions on OWL DL are the same restrictions that make reasoning
systems decidable (i.e., computations will finish in a finite amount of time)
and are thus intended to support reasoning system requirements.

Since October 2009, OWL 2 (i.e., the successor of OWL) is the new W3C rec-
ommendation [242]. OWL 2 adds some new functionality and is backwards
compatible with OWL. New constructs include, e.g., qualified cardinality re-
strictions (OWL does not have a means to restrain the range of instances to
be counted) and disjoint properties (OWL only allows assertions that classes
are disjoint, but not for properties). For a complete list of new constructs, we
refer to [243]. In this dissertation, the OWL language is considered because it
was at the time of modeling the W3C recommendation for Semantic Web lan-
guages and OWL 2 was still under development. However, as we will discuss
the problems that arose during ontology modeling using OWL, we will clar-
ify whether OWL 2 is able to solve the identified deficiency or not. Since we
focus in this chapter on the development of an ontology to describe photos in
a CMS, we give an overview of image metadata standards and their semantic
representations in the next section.

4.3.2 Image Metadata Standards

According to the semantics they describe, (image) metadata can roughly
be subdivided into five classes: (i) low-level, (ii) creational, (iii) content-
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descriptive, (iv) history, and (v) intellectual property rights (IPR) metadata.
In this context, low-level metadata are the metadata that are extracted from the
image content, e.g., color histograms, automatically obtained image regions,
detected faces, etc. Creational metadata are relevant to the creation of the dig-
ital image data, e.g., camera or scanner information and technical information
about the capturing condition as well as the software or firmware to create the
image. Content-descriptive information describes information about the de-
picted scene and is relevant for classification and retrieval of images. History
metadata hold partial information about how the image got to the present state.
These metadata contain a summary of image editing operations that have al-
ready been applied to the image and previous versions of the image metadata.
Finally, IPR metadata are designed to protect the contents of an image file from
misuse and must preserve both moral rights and copyrights.

Probably, the best-known image metadata standard is the Exchangeable Im-
age File Format (EXIF) as it is the specification used by (almost) any digital
camera nowadays [244]. The metadata tags provided by the EXIF standard
cover metadata related to the capturing process of the image. Recently, there
have been efforts to represent the EXIF metadata tags in an RDF Schema on-
tology [245,246]. As these are mainly technical metadata, other standards are
required to describe supplementary categories of metadata.

RDF is also used for describing (image) metadata by the standards Dublin
Core (DC [247]) and PhotoRDF [248]. DC consists of a rudimentary set of 15
elements describing common properties of resources, such as title and creator.
For DC, there is an OWL DL version available at the website of Protégeﬁ [249].
PhotoRDF is an attempt to standardize a set of categories and labels for per-
sonal photo collections using the DC schema as well as an additional schema
for technical and content data. The content schema contains 10 fixed key-
words to be used in the subject property of the DC schema, such as “Portrait”
and “Baby”.

MPEG-7 is developed by the Moving Picture Experts Group (MPEG) and of-
fers a comprehensive set of audiovisual description tools [250]. The metadata
elements, their structure and relationships are defined by the standard in the
form of Descriptors and Description Schemes. The latter specify the struc-
ture and semantics of the relationships while the former define the syntax and
the semantics of each metadata element. MPEG-7 provides rich and general
purpose multimedia content description capabilities, including both low-level
features and high-level semantic description constructs. However, the lack of

Shttp://protege.stanford.edu/plugins/owl/dc/dublincore.owl
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formal semantics in MPEG-7 makes the interpretation of high-level descrip-
tions difficult to cope with. Low-level features are common, as they can be
easily extracted from the content, but there is a deficiency of high-level de-
scriptions. For example, different MPEG-7 metadata constructs can be used to
denote the same semantic concept [251]. For MPEG-7, there is no commonly
agreed mapping to RDF/OWL. There are some existing approaches translating
(parts of) MPEG-7 into RDF/OWL. The first one was created by Hunter [252].
This MPEG-7 ontology was firstly developed in RDFS, then converted into
DAMLA+OIL [253], and is now available in OWL Full. The ontology covers
the upper part of the Multimedia Description Scheme part of the MPEG-7 stan-
dard. Starting from the ontology developed by Hunter, the MPEG-7 OWL DL
ontology by Tsinaraki covers the full Multimedia Description Scheme part of
the MPEG-7 standard [254]. The MPEG-7 ontology by the Rhizomik ini-
tiative[] has been produced fully automatically using a generic mapping tool
(XSD20OWL) and is an OWL Full ontology [255]. The Core Ontology of Mul-
tiMedia (COMM) has been created by re-engineering MPEG-7 according to
the intended semantics of the standard [256]. It is an OWL DL ontology that
covers the low-level audio and visual features represented in MPEG-7 that are
used for describing the structure and content of multimedia documents.

The International Press Telecommunications Council (IPTC) Core Schema is a
metadata set primarily for photographer’s use and aligns with the IPTC Head-
ers [257]. These categorize the metadata fields into four groups regarding to
the semantics they describe: (a) administrative, (b) content-descriptive, (c)
rights, and (d) technical metadata [258]. The administrative metadata are data
about the content that can not be inferred from the content, such as a free text
field for describing the event at which the photo was taken, creation time, and
any number of instructions from the provider to the receiver of the photo. The
content-descriptive metadata consist of 12 fields, including a field “keywords”
to express the subject of the content in free text and two fields to describe the
most prominent subjects of the photo by one or more codes. However, the use
of such free text fields decreases the disclosure of data collections. This is be-
cause a free text field contains unstructured data from which the semantics are
difficult to obtain. The rights and technical metadata describe the rights (e.g., a
copyright notice) and metadata about the hardware and creational parameters,
respectively.

The Visual Resource Association (VRA) is an organization consisting of many
American universities, galleries, and art institutes. For maintaining and de-
scribing large collections of (annotated) slides, images, and other representa-

"http://rhizomik.net/ontologies/mpeg7ontos
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tions of works of art, the VRA Core has been defined [259]. VRA Core is a set
of metadata elements used to describe works of visual culture as well as the
images that represent them. In the context of VRA Core, a work is a physical
entity. Similarly to DC, VRA Core defines a set targeted especially at visual
resources. There currently exists no commonly accepted mapping from VRA
Core to RDF/OWL. At least two conversions have been proposed: RDF/OWL
representation by M. van Asse and the ontology by SIMILEﬂ

Most standards explained above are mainly focused on one metadata type (e.g.,
EXIF mainly describes technical metadata), allow full text annotations, or pro-
vide a fixed set of descriptive keywords. Furthermore, MPEG-7 lacks high-
level semantics. The DIG35 standard, a specification of the International Imag-
ing Association (13, defines a set of public metadata for digital images and
covers a broad spectrum of metadata fields [260]. The DIG35 metadata def-
inition consists of five logical blocks (i.e., Basic Image Parameters, Image
Creation, Content Description, Image History, and IPR) with a separate com-
mon definition, i.e., the fundamental metadata types and fields, that is referred
to by the other blocks. While each block is logically partitioned, they may be
linked to each other to form additional semantics. The DIG35 is provided in
XML accompanied with plain text to describe the semantics.

Table [4.3.2] lists a comparison between these image metadata standards and
the different metadata types they cover. As can be seen, no image metadata
standard covers the whole range of metadata types. For example, PhotoRDF
and VRA Core describe the IPR metadata by only one (free text) field. Fur-
ther, MPEG-7 and PhotoRDF offer only very limited support for creational
metadata, such as the name of the creator, the lens type or camera brand but
lack to support technical metadata (such as, aperture and focal length). On the
other hand, DIG35 covers the whole range of technical metadata of EXIF, but
DIG35 cannot describe low-level features. Furthermore, DIG35 is only avail-
able as an XML Schema. Therefore, in the context of our participation in the
W3C Multimedia Semantics Incubator Group, we have created an OWL DL
ontology for the DIG35 standard [261]

4.3.3 Content Management Systems

Nowadays, a plethora of CMSs are available. In this section, we give an
overview of some popular open-source CMSs. Zope [262] is a CMS which

8http://www.w3.0rg/2001/sw/BestPractices/MM/vra-conversion.html
“http://simile.mit.edu/2003/10/ontologies/vraCore3
Ohttp://www.i3a.org
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PhotoRDF Exif VRA IPTC MPEG- DIG35
Core Photo 7

Low level - - - - v -

Creational  limited v limited v limited v

Content keywords title v v v v

History - - - - v v

IPR copyright copyright description v/ v v
& &

holder rights

Table 4.1: Image metadata standards and their covered metadata types.

makes it possible to publish content to the web. Zope comes with an object
database back-end, known as the Zope Object Database (ZODB) [263]. ZODB
is an object-oriented database for transparently storing Python [264] objects.
The Zope framework, centered around the Python scripting language, uses DC
as the foundation for cataloguing and syndicating its content. Furthermore,
Zope objects support inheritance. Plone [265], a CMS that works hand-in-
hand and sits on top of Zope, comes with a work-flow engine, pre-configured
security and roles, a set of content types, and multi-lingual support. On the
other hand, the open source CMS Drupal [266] interfaces with a relational
database through a lightweight database abstraction layer which handles the
processing of SQL queries. Content types are derived from a single base type
referred to as a node. A node’s related metadata is then internally stored in one
or different tables from the database. Although Drupal is based on the PHP
scripting language [267], it does not allow inheritance. Also Joomla and Ex-
ponent CMS reside on the PHP language and a relational database [268,269].
For these CMSs, support for some image metadata standards can be obtained
by installing additional modules or packages to the system, e.g., [270-272].
However, one of the major drawbacks of these systems is that semantics are
not formally defined, and consequently, they do not support reasoning about
the data. Due to the increasing availability of web-based data sources, the need
for integrating heterogeneous data and machine understanding of metadata has
grown in importance. As a result, the use of Semantic Web technologies for
exchanging and managing digital (multimedia) collections is favored as they
permit reasoning about and relating custom defined concepts.

The Flexible Extensible Digital Object Repository Architecture (Fedora) [273]
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is a framework for managing digital information. In a Fedora repository, all
content is managed as data objects that contain either the content or meta-
data about it. Relationships between digital objects are created using RDF.
Bricks (Building Resources for Integrated Cultural Knowledge Services) is a
European project, funded by the IST priority in FPGEI [274]. The Bricks open
source framework aims at managing digital assets and consists of decentralized
nodes, called Bnodes. A Bnode can be seen as a set of services that can be-
come part of the Bricks network so it can communicate through a peer-to-peer
mechanism with other Bnodes. Each Bnode is characterized by a web-based
interface giving access to administration, cataloguing, consultation, annota-
tion, and personalization of content. Furthermore, Bricks uses the OWL DL
language to model the underlying metadata schemas so that decidability of
reasoning algorithms is guaranteed.

4.4 A Model for a CMS

In our CMS, documents are indexed in a separate module (i.e., the indexer),
such that the storage capacities and network traffic can be optimized [275]. As
a result, system-related metadata will be needed to keep track of the storage
information. Further, the metadata related to each document are managed by
another system (i.e., the metadata service) that is used by the indexer to de-
cide upon the location of the content. Similarly, a security service maintains
the policy rules which are based on specific security-related metadata fields.
Finally, to allow personalized management, user-centric metadata are intro-
duced. The user-centric metadata should deal with IPR and should allow both
annotations and extracted features.

During our participation in the IBBT-PeCMan project, we created a metadata
service for a CMS. This metadata service is built using the Bricks framework
and implemented in a single Bnode. The structure of the metadata service is
shown in Figure The access to such a Bnode is mediated through a web
service interface. The Schema management module stores arbitrary metadata
schemas which are modeled in OWL DL. These schemas describe the actual
metadata, denoted as Metadata records. The Metadata management module
manages these actual metadata about available content, imports them into the
system, and makes it available to querying. The query module uses Lucen
for simple text-search querying. Moreover, advanced ontology queries are ex-

http://cordis.europa.eu/ist
Phttp://lucene.apache.org/java/docs
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Figure 4.2: Metadata architecture of a Bnode of the Bricks framework.

pressed in SPARQL (SPARQL Protocol And RDF Query Language [276]) and
executed by an underlying Jean] RDF query processor. An external content
manager, such as MySQ is used to store and manage object identifiers that
refer to the actual multimedia content.

A constraint for using the Bricks framework is that the metadata model should
be OWL DL. However, creating an OWL DL ontology which captures all the
semantics of a metadata standard is not so straightforward as explained in Sec-
tion[4.4.1] Then in Section[4.4.2] we describe the metadata model of our CMS.

Bhttp://jena.sourceforge.net/
Yhttp://www.mysql.com
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1 <owl:Restriction>
<owl:onProperty rdf:resource="#fNumber"/>
<owl:allValuesFrom>
<owl:DataRange>
5 <owlll:onDataRange rdf:resource="&xsd;double"/>
<owlll:minInclusive rdf:datatype="é&xsd;double"> 0
</owlll:minInclusive>
</owl:DataRange>
</owl:allValuesFrom>
10 </owl:Restriction>

Fragment 4.1: Restricting the range of a simple data type using OWL 2 constructs.

4.4.1 Modeling an OWL DL Ontology

In this section, we give an overview of some common difficulties that arise
when creating an OWL DL ontology by, e.g., converting an XML Schema.
Furthermore, some solutions are proposed in order to create an OWL DL on-
tology. As will be shown, OWL (DL) is insufficient to tackle many common
problems for converting an XML Schema with their accompanying text into
an ontology without losing formal semantics.

One of the major problems of OWL is its well-known inability to customize
the standard data typesE] to deal with data ranges. According to, e.g., the
DIG35 specification, many properties have a range of a non-negative double
(such as the subject distance, the focal number, color temperature, and the iso
saturation). Due to this incapability, we are obliged to use the whole range,
i.e., xsd:double. In OWL 2, this issue can be tackled by “complex” data ranges
that can be constructed from the simpler ones using the dataOneOf, the dat-
aComplementOf, or the datatypeRestriction constructor. These constructs can
be combined with one of the available facets to express a restriction (e.g., min-
Inclusive, maxExclusive). Fragment {.T|exemplifies the application of OWL 2
data ranges to model the property fNumber that has a range of a non-negative
double. In contrast, using OWL the range can only be defined by xsd:double

(i.e., both negative and positive values are included).
Many concepts can have an associated identifier. Expressing the concept of an

identifier (cf. a key in a relational database system) in OWL, can be accom-
plished using the owl:InverseFunctional Property. However, there is a restric-
tion: the latter property type is only applicable for object properties. Conse-

Shttp://www.w3.org/TR/owl-guide/#term_datatype
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quently, if one wants to use a literal value as identifier (ID), an additional ID
class should be created. An ID class holds a data type property uid to refer to
the value of the ID. A drawback of this approach is that some extra complexity
is added since one ends up with the definition of 2 properties and an extra class
for modeling one single concept. In OWL 2, this is tackled by the HasKey
construct which allows to define keys for a given class. In OWL 2, the HasKey
property is not required to be a functional property, but it is always possible to
separately state that it is functional.

Sometimes, it is desirable to describe the order of appearance in a sequence.
For example, the history metadata section of DIG35 specifies a list of the op-
erations that were applied when editing an image. Consequently, the order
in which the operations are listed, is of great importance. RDF provides two
container mechanisms to encapsulate data in a user-defined order: the rdf:Seq
class, which is used for representing ordered lists of literals or resources, and
rdf:List, which is a class for representing a closed list of items. However, those
predefined classes are not OWL DL compatible. To formalize the order in
which an object or literal appears in a list, there are two approaches. A first
method is to create a (double) linked list of items as depicted in Figure
The linked list is navigated by the two properties next and previous while the
object is referred by the property value. As a new item is inserted, the corre-
sponding properties of the previous, next, and current item need to be adjusted.
The latter, however, can not be formalized in the ontology, and consequently,
this should be carried out at a higher level (e.g., by the software). A second
approach is to create an item class with two properties representing the order
and the value. The first property, a data type property (order), defines the or-
der of the object and the second (value) refers to the object itself as depicted
in Figure The item class is to be referred to by an owl:ObjectProperty
with no cardinality restrictions. However, the constraint that the value of the
order property should be unique within the scope of the list, cannot be ex-
pressed in OWL. So, in OWL DL only a partial solution for this problem can
be elaborated. Also, OWL 2 does not provide a solution for this issue.

Another issue is caused by the fact that many existing ontologies are still OWL
Full which make them difficult to reuse and import in existing ontologies [277].
Examples of some popular OWL Full ontologies are Friend Of A Friend
(FOAF [278]) and Simple Knowledge Organization Schema (SKOS [279]). In
most cases, ontologies are rather OWL Full due to syntactic errors or accidental
misuse of the vocabulary, such as the use of RDF-properties instead of OWL-
properties. On the other hand for SKOS, the restrictions on OWL DL prevent
treating SKOS concepts as OWL classes. Since a SKOS concept is defined as
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next . "
inverseOf “previous”

Item value->(Resource/Literal orde
Item
] value .
previous Resource/Literal

() (b)

Figure 4.3: Expressing the order of appearance in OWL: (a) a double linked list, (b)
a list item.

an OWL class, an instance of a concept should also be an OWL instance, but
according to SKOS, an instance must be treated as a class. The latter statement
is only supported by OWL Full. Meta-modeling (i.e., the treatment of classes,
properties and other entities as individuals) is partially allowed by OWL 2.0: a
name can be used for any or all of an individual, a class, or a property. How-
ever, a DC property is modeled using an owl:AnnotationProperty. The range
of the latter must be an individual, literal, or URI, which makes it impossible
to refine an existing OWL DL ontology using the OWL DL version of DC. For
example, it is not possible to express that a data type property is an equivalent
property or sub-property of, e.g., dc:format or that the range of dc:creator is,
e.g., the custom class Person. As a result of the OWL Full-ness of many on-
tologies, we did not reuse any existing ontologies during the modeling process
in order to keep our ontologies OWL DL.

4.4.2 CMS Datamodel

As explained before, with every document three types of metadata are re-
lated: (i) system-, (ii) security-, and (iii) user-centric metadata. A schematic
overview of the structure of the metadata model is given in Figure[4.4] The pre-
sented CMS ontology is modularized into three main modules which describe
the above three metadata types. Each module then relies on multiple modules
that are specialized into the specific media types. Aside design-time advan-
tages, the modularization also minimizes execution overhead when processing
data in an RDF store or when using some reasoning services.
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Figure 4.4: A schematic overview of the metadata model in our content management
system.

User-centric

System-centric metadata

The system-centric metadata hold the system-related metadata of a document.
Every document is related to its unique owner (who is an end-user of the CMS).
The Storagelnfo class holds data about its current location whereas the Acces-
sibility class denotes whether the resource is stored “off-line”, “on-line” , or
“always on-line”. The Storagelnfo class has, e.g., properties to describe the ID
of the remote storage service, the ID of the document on the remote service,

the type of the storage service, time stamps, etc.

Security-centric metadata

Security-centric metadata describe the rights that end-users have concerning a
document and its metadata. Other users might have some access to the docu-
ment and can add or change some metadata. Access to the content relates to
the Sharing class, while the access to the document’s metadata is managed by
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the Changeability class. If a document is shared, rights can be set to different
users or groups. Typical rights are, e.g., “view” and “hide”. Typical permission
settings concerning the accessibility of the metadata are “see”, “add”, “hide”,
and “change”. It is often desirable that some documents are inaccessible for
other users (e.g., because of copyright issues), but to make its metadata acces-
sible. For example, an audio file may often not be shared because of copyright
issues, but by making the metadata accessible, an end-user can inform (s)he
owns the content and (s)he can share some metadata (e.g., an opinion about or
rating of the content).

User-centric metadata

The user-centric metadata hold the metadata which are assigned to the doc-
ument by the end-users. The user-centric metadata are content-aware since
different types of media (e.g., image, video, music, or text) require specific
metadata properties. Within the context of the proposed CMS, the user-centric
metadata consist, at a generic level, of the following metadata: (i) a thumbnail,
(i1) IPR metadata, and (iii) content-descriptive metadata.

At the most generic level, a thumbnail can be interpreted as some summariza-
tion of the content. Therefore, a thumbnail does not need to be of the same
type as the document (e.g., a thumbnail of some music file could be a small
audio excerpt or an image that represents the cover of the corresponding al-
bum). Therefore, in our CMS any document can act as a thumbnail for another
one.

The IPR metadata define the exploitation rights of the content. This exploita-
tion can define metadata to impose restrictions upon the use of the content, a
mechanism (e.g., watermark or registration), or metadata to specify obligations
resulting from the use (e.g., a fee for watching a movie). This IPR mecha-
nism is in line with the IPR systems described in MPEG-21 Rights Expression
Language and Rights Data Dictionary [280]. These define standardized lan-
guage constructs that can be used to create a licensing system that allows a
user to define the rights that other persons have upon the content [281]. In the
proposed CMS, the IPR-related metadata concern the claimers of the rights
(IPRClaimer) and the exploitation rights (IPRExploitation). An IPR claimer
can be a person (Person), a group (Group), or an organization (Organization).
The IPRExploitation class defines metadata to identify IPR mechanisms, e.g.,
a watermark, registration, specific restrictions imposed by the right holder, or
obligations resulting from the use of the document.
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Figure 4.5: The modeling of IPR metadata.
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Figure 4.6: Annotations can consist of multiple keywords (FreeTag) and can be spe-
cialized according to the media type, such as image, audio, and video metadata.

User-centric metadata also concern the data that are related to describe the
content. The Features class relates to the data that are automatically extracted
from the content itself. The resulting (meta)data therefore depend strongly
on the algorithms that are used. This class keeps also track of the specific
information about the used feature extraction algorithm. The Annotation class
takes care of the metadata added by a human. For different types of media
(such as video, audio, or images), different specializations of the Annotation
class are created as shown in Figure 4.6]

Any document in the CMS can be freely annotated with keywords (i.e., “free
tagging”). Because in the free tagging scenario a tag is divorced from its con-
text, it loses a lot of its intended meaning: different keywords are used to refer
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to the same concept, spelling errors occur, vernacular or different languages are
used, or a word can have multiple meanings. Despite all these disadvantages,
the popularity of free tagging is still enormous (e.g., Flickr, Youtube, and Face-
book). Therefore, a structuring is introduced by adding an extra context field
to refer, on a high level, to the intended semantics of the keyword. The context
field can take one of the following values: “who”, “what”, “where”, “when”,
or “misc” to refer to a person, a subject, a place, the time, or miscellaneous,
respectively. To obtain a more detailed content description, an ontology cor-
responding the identified requirements (see Section [4.2) has been created to
annotate digital images. This ontology consists of three parts: (i) basic im-
age metadata, (ii) creational metadata, and (iii) content-descriptive metadata

as shown in Figure 4.6

Basic image parameters enclose the file name, the image dimension in pixels,
the bit size, and the coding format (e.g., “jpeg”, or “tiff”).

Creational metadata describe how the image was created and encompass both
general and detailed creation information. The creation information has similar
properties as those defined by EXIF. The image source property relates to the
device that created the image, e.g., a digital camera or software and the settings
that were used during the creation process.

The content-descriptive image metadata are the most detailed part of the on-
tology and allow end-users to create a detailed and queryable description of
their images. As depicted in Figure the whole image or a region within, as
defined by the Position class, can be described. By explicitly including this in-
formation, we can make statements about specific image regions. As depicted
in Figure 8] a position can be defined by a textual description (Comment), a
point (Point), a bounding box (BoundingBox), or by a region (Region) as a set
of closed splines, i.e., Bézier curves (Spline).

Additionally, a rating class (defined by a value and the minimum and maxi-
mum allowed values) is introduced. In this way, users can rate and comment
the whole photo or regions within. Events can be annotated using the de-
pictedEvent property. The depictedltem property describes all tangible things
(represented by the Tangible thin class) that are depicted. The latter can
be an object or living thing but also a person, a group of people, or an orga-
nization. Depicted things can participate in an event of a specified type (e.g.,
“holiday “” or “wedding”) and they can be assigned a role. Furthermore, it is
possible to relate events with each other by the relatedEvent property.

SRemark that owl:Thing is a predefined class which is the root class (superclass) for all
classes



172 Content Management and Semantic Metadata

Content
_ Location
Position
depictedEvent
Rating )" depicteditem
- Event
Tangible ) ~«
. \ relatedEvent
thing \

[ |
(Group ) (Person ) (Organization )

hasMembers

Figure 4.7: Concepts that can be related to (a position within) an image.
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Figure 4.8: Position class as a generalization of region descriptions.

To manage the automatically extracted data, the Feature class is introduced.
These data strongly depend on the algorithms that are used. Therefore, infor-
mation about the used algorithm is stored by the association class Algorithm-
Info. The specific structure of the extracted data (such as the dimensionality of
the feature vectors and the type of data) is managed by the Data class and can
then be modeled by using, e.g., MPEG-7 descriptors. In most CBIR systems,
a decision process is used to relate the extracted features with high-level data.
For example, a face detection algorithm can detect the faces in a photograph
and these facial data can then be used to recognize the depicted person. There-
fore, the association class Algorithminfo is used to relate the Features class
with the Content class as is depicted in Figure [4.9] Analogously, this class
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Features

Figure 4.9: Modeling of automatically extracted data in the CMS.

can also be used to store, e.g., the index of the document on a remote system.
This index can, e.g., be based on a similarity metric so that documents with a
similar content can be retrieved relying on this index. This way, the content
can be retrieved relying on both annotations and a similarity metric.

Appendix [F lists some OWL schemas of this ontology. Because of the vast
size of this ontology, not all schemas are included.

4.4.3 Taxonomy

The annotation of digital resources involves the use of domain-specific meta-
data. For digital photos, most of these metadata correspond to the concepts
humans know from the real world. It has been argued that the human mind
naturally organizes its knowledge of the world in a hierarchical structure of a
taxonomy [282]. For the purpose of annotation, taxonomies have the advan-
tage of a fixed vocabulary and a hierarchical structure. Within the context of
our CMS, a simple but effective taxonomy has been defined. This taxonomy
extends the content-descriptive part of our metadata model and allows includ-
ing a plethora of concepts. As shown in Figure .10} the Tangible thing class
is extended with some additional specializations (such as Animal, Plant, and
Structure). These specializations can be on their turn generalizations of more
detailed concepts, e.g., Bike is a specialization of Vehicle, Cat and Dog are
specializations of Animal, etc. Using RDF/OWL, semantic properties allow
us to model the typical hierarchical structure of a taxonomy. The latter can
be easily done using the well-known rdfs:subClassOf property as exemplified
in Fragment [4.2] Additionally, the application of Semantic Web technologies
permits the taxonomy to be extensible, easy to remodel, and enables semantic
reasoning.



174 Content Management and Semantic Metadata

Tangible thing

Figure 4.10: An excerpt of the taxonomy used to annotate digital photos.

1 <owl:Class rdf:ID="Vehicle">
<rdfs:label>Vehicle</rdfs:label>
<rdfs:subClassOf rdf:resource="#TangibleThing"/>

</owl:Class>

5 <owl:Class rdf:ID="Car">
<rdfs:label>Car</rdfs:label>
<rdfs:subClassOf rdf:resource="#Vehicle/">

</owl:Class>

Fragment 4.2: Example of an OWL-implementation of the taxonomy.

To further enrich (photo) annotations, domain-specific properties (e.g., name
and birth date for the Person class) are created and relationships are outlined
between the previously defined concepts. Analogously to the previously cre-
ated taxonomy of tangible things, many properties can be structured in a tax-
onomy as well. Figure 4.11] depicts an excerpt of the taxonomy of domain-
specific properties for the Person class. As can be seen, the property isFamily
for the Person class is hierarchically split up into subproperties which further
specify the relationship, such as isParent and its inverse isChild. Those sub-
properties are on their turn generalizations of more specific properties, e.g., the
properties isFather and isMother are specializations of the isParent property.
In OWL/RDEF, these constructs can be modeled using the rdfs:subPropertyOf
property as shown in Fragment[4.3]
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Figure 4.11: A taxonomy of properties for the Person class.

isSibling

1 <owl:ObjectProperty rdf:ID="isFamily">
<rdf:type rdf:resource="&owl; SymmetricProperty">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>

5 </owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="isParent">
<rdfs:subPropertyOf rdf:resource="#isFamily"/>
<owl:inverseOf rdf:resource="#isChild">
<rdfs:domain rdf:resource="#Person"/>

10 <rdfs:range rdf:resource="#Person"/>

</owl:0bjectProperty>

Fragment 4.3: Example of a specialization of a domain-specific property for the
Person class.

4.4.4 Interoperability

Obtaining semantic interoperability using XML is a hard task. This is because
XML is actually a structuring language and it does not formally define the se-
mantics. Metadata formats typically consist of an XML Schema accompanied
with plain text. The text often describes the semantical meaning of the XML
tags specified in the XML Schema. For instance, taking into account differ-
ent metadata standards, the same tags can have a different meaning, different
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Figure 4.12: Mapping of metadata standards to the CMS.

XML-constructs can be created to model the same concepts, tags with the same
meaning can occur in different structures, etc. As a result, mappings between
different XML Schemas are difficult to create and are not generic.

Due to the Semantic Web, a lot of research has been recently devoted to ontolo-
gies and ontology language standard proposals [283]. Ontologies are generally
recognized as an essential tool for allowing communication and knowledge
sharing among users and applications by providing a semantically rich descrip-
tion and a common domain of interest. In this context, an additional advantage
of Semantic Web technologies is the ability to solve interoperability problems
between different metadata standards [284]. This issue was also tackled by
the W3C Multimedia Semantics Incubator Group in which we have actively
participated. The W3C Multimedia Semantics Incubator Group favours to use
semantic representations of metadata standards. These semantic representa-
tions can be used to relate to concepts of different ontologies. Also, the W3C
Media Annotations Working Grou aims to provide an ontology designed to
facilitate cross-community data integration of information related to media ob-
jects in the Web, such as video, audio, and images. Following this approach, an
upper ontology can operate as an intermediate matching step between differ-
ent ontologies. This upper ontology, which defines a set of common concepts,
is then used to match concepts from the semantic representations of metadata
standards. This way, the ontology of the CMS acts as an upper ontology as
schematically shown in Figure 4.12]

A mapping between ontologies typically consists of basic OWL and RDFS

Thttp://www.w3.0rg/2008/WebVideo/Annotations/
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1 <owl:Class rdf:about="DIG35/Event.owl#Event">
<owl:equivalentClass rdf:resource="CMS/Event.owl#Event"/>
</owl:Class>

Fragment 4.4: The DIG35 class Event and the class Event of our metadata model are
both equivalent.

constructs to relate the respective concepts (i.e., classes, properties, and indi-
viduals) of the ontologies. OWL provides properties to relate classes, proper-
ties, and individuals with each other as further explained below.

Relating Classes

Basically, equivalence, disjunction, and specialization/generalization relations
between classes allow us to describe a hierarchical structure of classes in an
ontology. We can also apply these class relations to establish mappings be-
tween classes from different ontologies. One class of an ontology may be con-
sidered as a subclass of another class of another ontology (rdfs:subClassOf)
or they can also be equivalent (owl:equivalentClass). On the other hand, two
classes which have no individual in common may be explicitly declared dis-
joint (owl:disjointWith) with each other. Fragment [4.4] expresses the equiv-
alence between the DIG35 class Event and the class Event of our metadata
model.

OWL also provides expressions to construct a concept that represents a class
of individuals which satisfy some common conditions. A complex class can
be formed by classical set operations like union, intersection, and comple-
ment. Complex class constructions and restrictions allow the description of
even more complicated classes. In OWL, a restriction on a certain prop-
erty can be specified according to its associated value with owl:hasValue, its
range of values (owl:someValuesFrom or owl:allValuesFrom), and its cardinal-
ity (owl:min/maxCardinality or owl:cardinality). Fragment 4.5 exemplifies a
class mapping using conditions between the concept Tree from the above tax-
onomy and the Thing class of DIG35. At first, the Tree is declared to be a
subclass of Thing (line 2) and secondly, a restriction is imposed upon the value
of the DIG35 property name (lines 3-8).
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1 <owl:Class rdf:about="CMS/taxonomy.owl#Tree">
<rdfs:subClassOf rdf:about="DIG35/Thing.owl#TangibleThing"
/>
<owl:equivalentClass>
<owl:Restriction>
5 <owl:onProperty rdf:resource="DIG35/Thing.owl#name"/>
<owl:hasValue rdf:resource="tree"/>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

Fragment 4.5: The concept Tree is equivalent with the DIG35 class TangibleThing if
and only if the DIG35 class its property name has the value “tree”.

1 <owl:DatatypeProperty rdf:about="CMS/Event.owl#id">
<owl:equivalentProperty rdf:resource="DIG35/Event.owl#
eventId"/>
</owl:DatatypeProperty>

Fragment 4.6: The two properties id and eventld are equivalent.

Relating Properties

Analogously to the mapping of classes, properties of different ontolo-
gies can also be mapped. Properties can be generalized/specialized
(rdfs:subPropertyOf), described as equivalent (owl:equivalentProperty), or as
the inverse of each other (owl:inverseOf). Fragment {i.6 exemplifies that the
two properties id and eventld are equivalent .

Relating Individuals

OWL also provides properties for relating individuals with each other. These
properties identify equivalence and diversity, and differentiate groups of indi-
viduals. The owl:sameAs is used to specify that two URIrefs refer to the same
individual. Therefore, it can be used to link individuals from different ontolo-
gies. The owl:differentFrom property has the opposite meaning of owl:sameAs
and is used to state that two individuals are different. Remark that OWL does
not have a unique name assumption. Consequently, individuals must be explic-
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1 <owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">

<Color
<Color
5 <Color
<Color
<Color
<Color
<Color
10 <Color

rdf:
rdf:
rdf:
rdf:
rdf:
rdf:
rdf:
rdf:

about="#Red" />
about="#Green"/>
about="#Blue"/>
about="#Cyan"/>
about="#Magenta"/>
about="#Yellow"/>
about="#Black"/>
about="#White"/>

</owl:distinctMembers>
</owl:AllDifferent>

Fragment 4.7: This example states that the eight URIrefs are different colors.

itly declared to be different. Also groups of individuals can be differentiated all
at once using the predefined owl:AllDifferent class. The owl:distinctMembers
is then used within the class to associate the list of individuals that must be
disjoint. Fragment exemplifies the use of these properties to declare that
the colors (Red, Green, etc) are distinct.

© 0NN R W~
>>>>>>> >

—_
=]

(?x1=7x2)

dig35:Rectangle (?rl) A pecman:Retangle (?r2)
dig35:doubleWidth (?rl, ?wl) A pecman:doubleWidth (?r2, ?w2)
dig35:doubleHeight (?rl, ?hl)

pecman:doubleHeight (?r2, ?h2)

dig35:topLeftPoint (?rl, ?pl)

pecman:toplLeftPoint (?r2, ?p2)

dig35:x (?pl, ?x1) A pecman:x(?p2, ?x2)

dig35:y (?pl,?yl) A pecman:y(?p2,?y2)

A (?yl=?y2) A (?wl=?w2) A (?hl=?h2)

= owl:sameAs (?rl, ?r2)

Fragment 4.8: Rule for mapping two rectangles described by the CMS metadata
model and the DIG35 ontology.
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Rules

However, those properties to relate classes, properties, and individuals can,
e.g., not express that instances of equivalent classes with identical values for
(some) properties should actually be the same. So, rules that can be expressed
in terms of OWL concepts are needed to provide more powerful deductive
reasoning capabilities. To express such a condition, the Semantic Web Rule
Language (SWRL) can relieve [285]. SWRL rules are of the form of an impli-
cation between an antecedent and consequent: whenever the conditions spec-
ified in the antecedent hold, then the conditions specified in the consequent
must also hold. The latter is exemplified by Fragment 4.8 which contains the
rules to express that two rectangles r/ and r2 are equal if they have the same
width and height, and if their upper left corner is the same.

4.5 Conclusions

Nowadays, the amount of personal content is continuously growing. Further-
more, this content is typically stored on multiple devices, e.g., on a mobile
phone, a desktop computer, or on the WWW. As a result, it becomes more
difficult to manage these data. In this chapter, we have presented a solution
for this problem by a CMS to manage one’s personal content. The metadata
model of the proposed CMS relies on an ontology that is created using Se-
mantic Web technologies. This ontology is an OWL DL ontology as reasoning
needs to be supported. However, the creation of an OWL DL ontology is not
trivial at all. Therefore, we have outlined how some common difficulties, with
respect to ontology modeling, can be tackled and what the deficiencies of the
OWL DL language are. The presented ontology for the CMS consists of three
major parts that describe system-, security-, and user-centric metadata. The
system-centric metadata concern the storage location and how these data can
be accessed. The security-centric metadata describe the rights that end-users
have concerning a document and its metadata. The user-centric metadata hold
the metadata which are assigned to a document by the end-users. Within the
context of the proposed CMS, the user-centric metadata also consist of meta-
data that describe IPR metadata and the content. The IPR metadata define the
exploitation rights of the content. This exploitation defines metadata to impose
restrictions upon the use of the content, a mechanism, or metadata to specify
obligations resulting from the use. The content-descriptive metadata concern
both the management of extracted features and manually added descriptions
(i.e., annotations). These metadata are content-aware since different types of
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media (such as image, video, music, or text) require specific properties. Two
types of annotations are supported: keywords and a content-specific model. In
this chapter, we have elaborated on image metadata and we have presented an
image ontology that is enclosed by the metadata model of the CMS. The image
ontology is a rich ontology that supports many concepts for detailed image an-
notation and encapsulates basic, creational, and content-descriptive metadata.
The image ontology is further extended with a taxonomy that refines additional
concepts and properties for annotation. An advantage of the application of Se-
mantic Web technologies is to tackle interoperability issues between different
metadata standards. We have explained that this issue can be solved by cre-
ating semantic representations of metadata standards and a mapping between
the resulting ontologies. From this perspective, an image metadata ontology of
the DIG35 standard was created and was the input for the photo use case of the
W3C Multimedia Semantics Incubator Group. Furthermore, the presented im-
age ontology of the CMS can be used as an upper-ontology to relate concepts
from other image metadata standards and is able to solve the interoperability
issues. The latter was the starting point of the W3C’s Multimedia Seman-
tics Incubator Group and its successor the Multimedia Annotations Working
Group. This way, the proposed CMS also supports the use of image meta-
data standards for image annotation. Our CMS has native support for (image)
metadata standards, in contrast with existing CMSs on which extra modules
need to be installed. Our CMS supports reasoning since we rely on Semantic
Web technologies. Furthermore, the embedded image ontology covers more
metadata types than the state-of-the-art metadata standards.

Our work in this area can be found in following publications:

(i) C. Poppe, G. Martens, E. Mannens, and R. Van de Walle. Personal Con-
tent Management System a Semantic Approach. Visual Communication
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(i1) M. Leman, J. Dierickx, and G. Martens. The IPEM-archive conservation
and digitalization project. Journal Of New Music Research, 30(4):389—
393, 2001

(iii) C. Poppe, G. Martens, E. Mannens, and R. Van de Walle. Data Manage-
ment in the Semantic Web, chapter Creating Personal Content Manage-
ment Systems Using Semantic Web Technologies. Distributed, Cluster
and Grid Computing. Nova, 2011

(iv) D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and R. Van
de Walle. XML to RDF conversion : a generic approach. In P. Nesi,



182 Content Management and Semantic Metadata

K. Ng, and J. Delgado, editors, Fourth International Conference on Au-
tomated Solutions for Cross Media Content and Multi-Channel Distri-
bution, pages 138—144. IEEE Computer Society, 2008

(v) G. Martens, C. Poppe, and R. Van de Walle. Lifting a metadata model
to the semantic multimedia world. In The 2010 International Workshop
on Advanced Future Multimedia Services, 2010. Accepted



Chapter 5

Conclusions

The imagination has made more discoveries than the eye.
— Joseph Joubert (1754 — 1824)

In this dissertation, we have focused on three research domains that concern
the extraction and representation of semantic information from digital media.
In the first domain, we have dealt with the modeling of textures from digital
images and their application for segmentation, classification, and automatic
scene analysis. The second domain concerns the extraction of melody and
tonality information from polyphonic music recordings. Finally, our third do-
main deals with the representation of semantic information in content man-
agement systems. In the next three sections, we present our conclusions of our
research in each domain.

5.1 Texture Analysis

In the computer vision domain, we have focused on texture analysis. Texture
is used in many image applications and can be modeled in a variety of ways.
Since texture can be related with human perception, we have advocated to rely
on features that are related to the human visual system. In Chapter 2] we have
presented a novel texture feature relying on the outputs of simple and complex
cells from the human visual cortex. These features consist of enhanced grating
cell responses combined with Gaussian smoothed Gabor responses. Enhanced
grating cell responses give a stronger response to the salient texture-specific
orientations and periodicities than the original grating cell features. Although
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the use of (enhanced) grating cell responses is not sufficient to obtain a suc-
cessful texture characterization for classification purposes, their combination
with Gaussian smoothed Gabor responses produces a texture feature that has
more distinguishing characteristics than state-of-the-art texture measures. Fur-
thermore, the behavior of grating cells is an added value for a texture opera-
tor since non-texture features, such as isolated pixels or edges, can be distin-
guished from texture patterns.

Since a priori information, such as the number of textures or the texture types
that exist in an image, is (often) unknown for many practical applications, we
have to rely on unsupervised machine learning techniques. More specifically,
we have chosen to use Self-Organizing Maps (SOMs) since they are both a
clustering method and a projection method (from a high-dimensional feature
space to a low-dimensional plane). Furthermore, SOMs need no a priori infor-
mation. Using SOMs for the unsupervised segmentation of textured images,
we have shown that the proposed features clearly obtain the best segmentation
results compared to other state-of-the-art texture measures.

For the classification of texture information, we employed a semi-supervised
approach. Therefore, we have used hierarchical SOMs which are created by
retraining the SOM nodes that contain training data from different classes.
Experiments conducted on different texture libraries indicate that the presented
texture features have excellent discriminating capabilities, and can compete
with state-of-the-art texture measures.

However, for most practical applications, the presence of noise in images is
a problem in texture characterization. In our experiments, we have shown
that our approach is highly robust to various levels of uniform, speckle, and
Gaussian noise. In contrast, the classification rate of other well-established
texture analysis methods steadily drops as the variance of the noise increases.
Next to noise, image compression artifacts can also have a negative influence
on texture characterizations, particularly since the number of artifacts increases
for high compression ratios. By applying JPEG image compression, we have
shown that the presented texture features are highly robust and can deal better
with the impact of the compression technique on the high spatial frequencies
of the textures than the state-of-the-art texture analysis methods. For example,
for the highest tested compression rate (IJG quality level 15), the classification
rate was at least 50% higher than using the state-of-the-art features.

Classifying materials from a single image obtained under unknown viewpoint
and illumination conditions is a very challenging task. It is similar to tex-
ture classification since they both involve the classification based on the visual
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appearance of a surface. Therefore, we have grouped texture images that cor-
respond to the same material in the same class. This way, we have obtained
classes with high intra-variation in terms of orientation and scale. Once again,
our proposed texture features achieved the highest classification rate. This
way, we have actually proposed a technique to relate semantic information
with texture information, and thus to bridge the semantic gap.

Finally, we have examined the application of texture information for outdoor
scene analysis. We have restricted our experiments to outdoor photos con-
taining natural textures. Our methodology applies both a bottom-up and a
top-down approach. A bottom-up approach is used to compute relevant infor-
mation from the low-level image data. First, texture features are computed and
these are then used to segment the image into regions. Second, the obtained
image regions are labeled using a previously trained classifier (a hierarchical
SOM). Third, a top-down strategy is deployed by relying on domain knowl-
edge (an ontology) in order to merge image regions and to cope with possible
misclassifications. Following this methodology, we achieved an accuracy of
91.9% of the images’ pixels that were assigned the correct label.

Regarding our work about the application of texture for automatic material
detection, the altering of the scale and the high intra-class variation of the
visual appearance of materials cause difficulties. Future work in this domain
could include a scale-robust texture measure and the capability to generalize
across different instances of the same material. Therefore, we are convinced
that more sophisticated machine learning techniques and class-specific feature
selection methods are necessary to tackle these problems.

For automatic scene description, solely relying on texture information is not
sufficient. Although we have shown that textures can be used to describe some
image data, it is, e.g., not applicable for object detection. Also, the altering
of the texture scale caused by changes in the perspective, is an issue. It is a
fact that recognition by the HVS is yet not fully understood. Moreover, the
visual cortex consists of many cell types from which it is believed that their
functionality still has to be discovered yet. To achieve a performance that
approximates the HVS, we believe one has to rely on both domain knowledge
(to understand the relationships between the depicted concepts) and models of
certain functions of the HVS that must somehow be integrated into a complete
cortical architecture.

Finally, a general issue related to texture analysis methods is the computation
time of the feature extraction. To achieve real-time processing using Gabor
filter banks, a hardware implementation might be inevitable, especially if one



186 Conclusions

wants to cope the enormous amounts of visual data in limited time. As the
computational power of recent graphic processing units (GPU) exceeds recent
main processors, GPUs could bring relief to increase the computational effi-
ciency for computing HVS-based features.

5.2 Musical Audio Mining

In Chapter [3| we tackled two issues from the musical audio mining domain,
i.e., melody transcription and tonality extraction.

Melody Transcription

At first, we presented a melody transcription system for polyphonic and mono-
phonic music. We aimed to distinguish individual musical notes which are
characterized by temporal boundaries and a fixed frequency. The proposed
melody transcription system consists of four parts.

The first part is an auditory-model-based multi-pitch extractor which finds
for each time frame, the four most salient pitches. Therefore, we have ap-
plied the auditory model of Slaney and Lyon which mimics the operation of
the cochlea of the inner ear and outputs a cochleagram. The cochleagram
contains the auditory nerve patterns for each frequency channel. By apply-
ing an autocorrelation-based periodicity analysis in each frequency channel of
the cochleagram, we obtain a correlogram. Next, we sum up the channels of
the correlogram to obtain a summary correlogram which represents the global
periodicity of the signal. At last, we select the highest four peaks from the
summary correlogram. These four peaks correspond to the four most salient
pitches. At the same, we adjust the evidence of each obtained pitch according
to the subharmonic summation theory.

The second part of our melody transcription system is the estimation of the fun-
damental frequency and the tracing of these frequencies over multiple frames.
Therefore, we assumed that the pitch distribution can be obtained from a mix-
ture of Gaussian harmonic tone models. Each harmonic tone model has a fun-
damental frequency and models the spread of its subharmonics. The weight of
each tone model is estimated using the Expectation-Maximization algorithm
which is an iterative method for finding maximum likelihood estimates of pa-
rameters. The fundamental frequency of a time frame is then characterized by
the fundamental frequency of the tone model with the highest weight. How-
ever, over adjacent time frames, the output of the latter is not stable because
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peaks corresponding to the fundamental frequency of the several simultane-
ous instruments sometimes compete in the probability density functions. So,
in order to obtain a note representation, it is necessary to consider the global
temporal continuity of these peaks. Hence, we introduce an agent-based peak
tracing algorithm. This algorithm sequentially traces for peak trajectories of
the weights of the tone models over adjacent time frames in order to select
the most dominant and stable frequency trajectories. Salient peaks in close
(temporal) proximity of each other are traced by agents.

Since these trajectories still can contain small fluctuations, we need a method
to remove these fluctuations in order to obtain a note representation. As a
result, the third part of our architecture is a tone creation algorithm that takes
as input the obtained trajectories and creates a set of tones and pitch-glides.

Finally, in the fourth and last part of our melody transcription system, we re-
move redundant tones (such as very short sounding tones) by applying some
post-processing.

For the evaluation of our melody transcription system, we have used two poly-
phonic melody collections that accompanied with the ground truth, i.e., the
MIREX 2005 training set and the GMEL set, a self-created set of melodies
acquired from popular songs. For the MIREX 2005 training set, the preci-
sion and recall for raw pitch detection are 0.68 and 0.65, respectively, and for
chroma detection, the precision and recall are 0.81 and 0.79, respectively. For
the GMEL set, the precision and recall for raw pitch detection are 0.71 and
0.86, and for chroma detection 0.72 and 0.87, respectively. We have observed
that the obtained accuracy of sung melodies is generally lower than the accu-
racy obtained of non-vocal melodies. This observation can be explained by a
couple of factors: (i) the pitch of singing is often less stable than the pitch ob-
tained from an instrument, especially near the onset (portamento), (ii) vibrato,
and (ii1) formants of the human voice. For the first two cases, our segmenta-
tion step can make wrong decisions about the intended frequency. In the third
case, certain frequency components, which may differ from the fundamental
frequency, can get a higher evidence which results in a wrong estimation of the
fundamental frequency. Our system has, however, a major limitation: when the
instrument that plays the melody line is silent, the fundamental frequencies of
other instruments (i.e., the accompaniment) are detected. Consequently, spec-
tral information of the accompaniment is used for the construction of the tone
models which can lead to a false positive, i.e., a redundant tone in the detected
melody.

Future work can be done in several sub-domains. At first, the auditory-model-
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based pitch detector could be improved by carrying out frequency analysis in
each channel of the correlogram to avoid peak masking. Further, the automatic
segmentation of the musical signal into voiced and unvoiced parts would im-
prove the melody transcription. Also, the detection and tracing of instruments
in polyphonic contexts would facilitate the melody transcription process. The
latter could be achieved by using timbre information, but this is a complex task
due to spectral overlapping between concurrent instruments. Further, informa-
tion about the musical key and musical domain knowledge could be used to
adjust the melody transcription process.

Tonality Extraction

In the second part of Chapter 3] we have examined the extraction and classi-
fication of tonality information. Like melody, tonality also entails pitch infor-
mation, but it manifests at a relatively larger time interval than melody. We
have discussed two key-recognition methods for musical audio, the (classical)
metric-based method and a novel method based on classification trees. In order
to extract the tonality information from a musical audio signal, we have em-
ployed pitch induction which is computed in three successive steps as proposed
by Leman. In the first step, we compute a cochleagram from the musical sig-
nal. Therefore, we have used an auditory model which is an adapted version of
the model of Van Immerseel and Martens. In the second step, the cochleagram
is transformed into pitch patterns by applying a frame-based autocorrelation,
a summation over all channels, and an attenuation to reduce the impact of the
too low and too high frequency regions. In the third step, induced pitch pat-
terns are obtained by a leaky integration with a half-decay time of 1.5 s on
the pitch images. As was already suggested by Leman, tonality information
is low-dimensional. The latter can be deduced from the fact that by apply-
ing a PCA on the high-dimensional data, the 4 biggest principal components
account for 75% of the total variance.

To obtain the tonality of a musical audio signal, a frequently used method is
the metric-based approach. This approach searches for the closest induced
pitch pattern which is computed from a probe sound, i.e., a sequence of Shep-
ard tones, that characterizes the tonality. However, when low-dimensionality
is exploited, the metric-based approach is unstable as different tonal centers
are returned in a 4-, 5-, and 6-dimensional space. To overcome the latter, we
have presented a tree-based method which is based on classification trees, a
supervised machine learning technique. To train a classification tree, we cal-
culated pitch induction images from audio signals that are recorded from vari-
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ous instruments. Our tree-based approach overcomes the shortcomings of the
metric-based approach. An additional advantage of the tree-based method is
that the set of training data can always be enlarged with more specific sounds
so that specialized trees can be grown for different types of music whereas the
metric-based approach is based on a fixed data set (preferably Shepard tones)
from which the tonality information is extracted. This information can be ex-
ploited in order to significantly reduce the musical search space when a query
is launched in a content-based music retrieval system. Also, we think that it
must be possible to find correlations between these sequences and other musi-
cal features at a higher conceptual level (e.g., emotional connotations).

Future work in this domain resides in the fact that the labeling of the tonal
sequences is absolute. A musical piece played at a higher pitch may yield a
completely different tonal assignment. Therefore, an extension would be pitch
interval patterns instead of (absolute) pitch patterns, or to estimate the pitch
mistuning.

5.3 Content Management and Semantic Metadata

In Chapter ] we have described a system for the management, annotation,
and disclosure of personal content that can be stored on different devices. Ad-
ditionally, we have discussed the creation of a content-descriptive metadata
model which embeds an image metadata model for annotating digital photos.
The system we have developed, gives a solution for the problems described
above. The latter is achieved by relying on Semantic Web technologies for cre-
ating the metadata model and by relying on a distributed architecture (which
contains services for the indexing, security, and metadata storage). In this
dissertation, we have elaborated on the metadata service which has been im-
plemented in a Bnode of the Bricks framework.

At first, we have outlined the requirements of the CMS, and next, we have
discussed related work on CMSs and image metadata standards. We have ob-
served that many existing image metadata standards cover different metadata
types, but no standard covers them all. Further, the discussed CMSs only sup-
port certain metadata standards. This support can be attained by installing
additional modules on the CMS. Furthermore, the major drawback of those
systems is that the semantics are not formally defined, and as a consequence,
reasoning is not supported.

The metadata model of the presented CMS relies on Semantic Web technolo-
gies and is an OWL DL ontology as reasoning needs to be supported. Since the
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modeling of OWL DL ontologies often implies some problems which are due
to OWL DL language constraints, we have outlined how some common diffi-
culties can be tackled and what the deficiencies of the OWL DL language are.
Next, we have described in detail our metadata model. Our ontology for the
CMS consists of three major parts that describe system-, security-, and user-
centric metadata. The system-centric metadata concern the storage location
and how these data can be accessed. The security-centric metadata describe
the rights that end-users have concerning a document and its metadata. Be-
sides IPR metadata, the user-centric metadata consist of content-descriptive
metadata. The content-descriptive metadata concern both the management
of extracted features and manually added descriptions. These metadata are
content-aware since different types of media (such as image, video, music, or
text) require specific properties. In this context, we have created a fine-grained
image ontology that supports many concepts for detailed image annotation.
The image ontology is further extended with a taxonomy that refines addi-
tional concepts and properties for annotation. Finally, we have described how
interoperability issues are tackled between different metadata standards and
are solved by creating semantic representations (ontologies) of metadata stan-
dards and by creating an upper ontology to map the respective semantic rep-
resentations of the metadata standards. The proposed image ontology is used
as an upper-ontology to relate concepts from other image metadata standards.
From this perspective, an image metadata ontology of the DIG35 standard was
created and was the input for the photo use case of the W3C Multimedia Se-
mantics Incubator Group.

Future work focuses on metadata facilities, such as methods to extract infor-
mation from collaborative filtering and ranking sites which try to provide infor-
mation that is already present on the web or in a community. Since ontologies
evolve over time, versioning is an important feature to ensure the consistency
of different versions of ontologies. How to extend and update existing ontolo-
gies is an important issue. Further, one of the main purposes of ontologies is to
enable knowledge sharing and re-use. However, it can be observed that many
ontologies already cover the same domain (e.g., the different ontologies to de-
scribe images and photos). As a result, mapping ontologies will be needed to
relate the different ontologies that share the same domain knowledge, as well
as language constructs to formally relate these concepts.

To conclude this dissertation, much research will have to be devoted to fully
bridge the semantic gap. Understanding how humans process certain informa-
tion is of utmost importance, as well as how and which domain knowledge or
personal experiences steer this process. Once we understand these processes,
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representative models and machine learning techniques can be developed and
optimized. We hope that we have convinced the reader that this dissertation,
although limited in its scope, contributed to bridge the semantic gap, and that
we have aroused the curiosity of the reader about this research domain.
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Appendix A

Human Visual System

Functionally, the (human) eye can be compared with a camera that focuses an
image that is correctly exposed and sharp. After passing through the pupil of
the eye, the light goes on through the lens that projects the light rays onto the
retina. In contrast to a photographic film, the retina is far more complex. The
retina in the eye contains photoreceptors (rods and cones for black/white and
color perception, respectively), which are the only neurons that are directly
sensitive to light and convert the image formed by the light rays into nerve
impulses. The retina also contains ganglion cells that receive their input from
many rods and cones. Ganglion cells are neurons with receptive fields of the
type center-on or center-off. As shown in Figure for a ganglion cell with
center-on receptive field, light on the center of the field increases the frequency
of the cells firing rate while light on the surround suppresses the firing. Cells
with center-off receptive fields have the opposite behaviour.

The optic nerve collects all the axons of the ganglion cells. As shown in Fig-
ure optic nerve fibers run from the retina through the optic chiasm and
continue via the optic tract to the Lateral Geniculate Nucleus (LGN) and then
via the optic radiation to the first stage of the visual cortex, i.e., the primary vi-
sual cortex. The LGN is situated in the thalamus in the middle of the brain and
is the primary processing center of visual information. The LGN consists of 2
parts: one part lies in the left hemisphere and the other lies in the right hemi-
sphere of the thalamus. In the optic chiasm, fibers from the nasal side of each
retina cross sides so that the left LGN receives information of the right visual
field, and vice versa. The full functionality of the LGN is still unknown but,
experiments using functional Magnetic Resonance Imaging (fMRI) in humans
have found that both spatial attention and fast eye movements can modulate
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Figure A.1: Representation of center-on and center-off ganglion cells.

activity in the LGN. Additionally, the LGN receives many strong feedback
connections from the primary visual cortex. The primary visual cortex thus
appears to exert a significant feedback effect on the LGN. In other words, the
LGN’s main target (i.e., the primary visual cortex) may in turn modify the
LGN’s own visual responses. The LGN likely helps the visual system focus its
attention on the most important information. Neurons of the LGN send their
output via the optic radiation directly to the primary visual cortex (also known
as the striate cortex or VI). In primates, nearly all visual information enters
the cortex via the primary visual cortex. The V1 area consists of cells having
elongated receptive fields. Consequently, they respond best to elongated stim-
uli such as bars and edges. Hubel and Wiesel categorized these cells as simple
and complex cells [286]. If the response of the cell depends on the stimulus in
an approximately linear fashion, the cell is termed simple, otherwise, complex.
Complex cells are the most numerous in the primary visual cortex, possibly
making up to three-quarters of the cells in this area. There exist many types
of complex cells, each with a specific functionality and responding to differ-
ent input stimuli. Furthermore, it is believed that the functionality of many
complex cell types still has to be discovered.

The primary visual cortex sends a large proportion of its connections to the
secondary visual cortex or V2. Though most of the neurons in the V2 area
have properties similar to those of the neurons in V1, many others have the
distinctive trait of responding to far more complex shapes. The analysis of
visual stimuli that begins in V1 and V2 continues through two major cortical
systems for processing visual information: the dorsal and the ventral pathway
as depicted in Figure The dorsal pathway runs from the medial temporal
area (MT) to the parietal lobe (which is positioned above the occipital lobe and
behind the frontal lobe) and appears to be essential for locating objects. The
ventral pathway is running from the primary visual cortex over extrastriate vi-
sual areas V2 and V4 to the inferotemporal cortex (IT). The ventral pathway is
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Figure A.2: The visual pathway in the human brain.

Figure A.3: The dorsal and the ventral pathway.

thought to be involved in recognizing objects. Based on physiological exper-
iments in monkeys, the IT has been postulated to play a central role in object
recognition. The IT in turn is a major source of input to prefrontal cortex,
i.e., “the center of cognitive control” which is involved in linking perception to
memory. Furthermore, physiologic evidence points out that the processing of
the ventral visual pathway is mainly feedforward for “immediate recognition
tasks” [287].
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Appendix B

Color perception

Since color is the primary visual stimulus, the choice of a color system is
of great importance for the purpose of proper image retrieval. Color can be
modeled and interpreted in many different ways and color systems have been
developed for various purposes, such as RGB and CMYK for displaying and
printing, YIQ & YUYV, for television and video transmission efficiency, XYZ
for color standardization, etc.

B.1 HSI

The first geometrical model of color perception was created in the 17th century
by Isaac Newton. He epitomized his experiments in light and pigment mixing
by ingeniously overlapping the red and violet ends of the spectrum to create a
hue circle. This circle shows the spectrum as a continuous gradation of color
from red to violet, and from violet to red via the mixed colors carmine, ma-
genta and purple. This circular representation of color is also used in the HSI
(or HSL) space, where HSI stands for hue, saturation, and intensity (or light-
ness) (Gevers, 2001). HSI defines a color space in terms of three constituent
components:

(i) Hue: the color type (such as red, blue, or yellow),

(ii) Saturation: the “vibrancy” of the color; the lower the saturation of a
color, the more “grayness” is present and the more faded the color will
appear, thus useful to define desaturation as the qualitative inverse of
saturation,
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(iii) Intensity or Lightness: the brightness of the color.
Converting RGB color space to HSI color space is obtained by first normaliz-

ing RGB values:
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B.2 Color Opponent Process

In the HVS color vision is mediated by specialized nerve cells in the retina,
called cones. The ability to discern different wavelengths of light (i.e. colors)
gives us more information for detecting and identifying objects than would be
provided solely by black and white vision. The human retina has three types
of cones which makes color detection possible: red, green and blue cones.
By appropriately mixing these three primary colors it is possible to match all
of the colors in the visible spectrum. The latter observation is known as the
trichromatic theory (von Helmholtz, 1867). However, the fact that some colors
cannot be perceived in combination, e.g. “reddish green” or “bluish yellow”,
cannot be explained by the trichromatic theory. This proved to Edwald Hering
that the visual substances were organized as opponent processes [288]. In
summary, Hering proposed there are six fundamental color processes arranged
as three visual contrasts including two opponent processes:

(1) black versus white,
(i1) red - green opponent process,

(iii) blue - yellow opponent process.
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By the middle of the 20th century it was proven that both theories are necessary
to explain the physiological processes of color perception. So, color vision is
a dual process: the trichromatic theory is correct at photo-pigment level by
conical photoreceptors in the retina and the opponent theory is correct at the
neural level by opponent cells found in the LGN.

Digital images are mainly stored in RGB and can thus easily be transformed
into color opponent values (COV) using the following transformation:

RG 12 -1/2 0| |R
BY | = |-1/4 —-1/4 1/2| |G
KW 1/3 1/3 1/3| |B

where RG, BY and K'W represent the red-green, blue-yellow and black-white
channel, respectively. For R ,G and B values between 0 and 255, the values
for RG and BY range between -127.5 and 127.5, while KW ranges between 0
and 127. Remark that the transformation from RGB to HSI is computationally
more expensive than the transformation into COV.
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Appendix C

The Self-Organizing Map

The Self-Organizing Map (SOM), also called the Kohonen Map, is a single
layer artificial neural network that simulates the process of self-organization
with a numerical algorithm. The SOM is both a clustering method and projec-
tion method. There exists a lot of neurophysiological evidence to support the
idea that the SOM captures some of the fundamental processing principles of
the human (both visual and auditory) cortex. A SOM converts the non-linear
statistical relationships between high-dimensional data into simple, geometric
relationships of their image points on a low-dimensional array, also called the
display. This low-dimensional display is usually a regular two-dimensional
grid of nodes. A schematic representation of a SOM is depicted in Figure
Similar vectors, x and ¥, are mapped in the vicinity of each other while dis-
similar vectors are mapped far away from each other, = and z.

The SOM can be formally described as a non-linear, ordered, smooth mapping
of high-dimensional input data onto the elements of a regular, low-dimensional
array. Each element in the array, a neuron or node, is associated with a para-
metric real vector m; = {1, fti2... i n } called the reference or model vector.

Let z = {&1,...£,} be a stochastic data vector. Further we assume a general
distance measure (metric) between m; and x, denoted d(z, m;). The image of
an input vector is defined as the element m, that matches best with x, i.e. the
distance between the input vector and the reference vector is the minimum:

c=arg <ml_in{d(:r, m,-}> .

The element m, is also called the best matching unit (BMU), or the winning
node.
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Figure C.1: Schematic representation of the Self-Organizing Map.

Before recursive processing can begin, the m; must be initialized. The values
of the m; components can be selected at random: starting from an arbitrary
initial state, the m; will finally attain low-dimensional ordered values. This
is the basic effect of self-organization. A more careful selection of the initial
reference vectors can make the process converge much faster.

During learning the nodes that are topologically close in the array up to a
certain geometric distance will activate each other to learn something from the
input x. This will result in a local relaxation or smoothing effect on the weight
vectors of the neurons in this neighborhood. In continued learning this leads
to global ordering.

The learning process can be defined as follows:

e mi(t+1) =my(t) + hei(t)(z(t) —m4(t)) fort =0,1,2, ...

* he,; is the neighborhood-function. For convergence, it is necessary that
he; — 0 whent — oo.

e usually, h.; = h(d(rc,7;),4) where d is some metric and 7., r; are the
location vectors of respectively the node ¢ and the node ¢ in the array.

« with increasing d(rc,7;), hei — 0.

In the literature a neighborhood set of array points around a certain node c
is frequently used. Let their index set at time ¢ be denoted by N.(¢) where
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hei = a(t)if i € Ne(t) and he; = 0if i ¢ N.(t). The value of 0 < a(t) < 1
is denoted as the learning-rate factor.

Both «(t) and the radius of N,(t) are usually decreasing monotonically in
time during the ordering process. If the neighborhood is too small to start
with, the map will not be ordered globally. Instead, locally ordered clusters
are seen between which the ordering direction changes discontinuously. This
can be avoided by starting with a wide N.(0) and letting it shrink with time.
This ensures that the global order is obtained already at the beginning, whereas
towards the end, as the radius gets smaller, the local corrections of the model
vectors in the map will be more specific.

During the initial phase, an accurate time function is not important: «(t) can be
linear, inversely or exponential proportional to ¢, e.g., a(t) = 0.9(1 —¢/1001)
may be a reasonable choice for the first 1000 steps. During this initial period,
the m; get ordered. After the initial ordering phase, over a long period «a(t)
should attain small values. It is not crucial whether «(¢) decreases exponen-
tially or linearly during the final phase.

Since learning is a stochastic process, the final statistical accuracy of the map-
ping depends on the number of steps in the final convergence phase. This phase
must be reasonably long enough.

According to Kohonen, the number of steps should be at least 500 times the
number of neurons [59]. A method of evaluating the quality of the result-
ing map is to calculate the average quantization error over the input samples.
The quantization error, often called distortion measure, is the distance between
each data vector and its BMU.

After training, for each input sample vector the BMU in the map is searched
for, and the average of the respective quantization errors is returned. Another
often used quality criterium measures the topology preservation, and is called
the topographic error which is the proportion of all data vectors for which first
and second BMUs are not adjacent units. However, both measures give the
best results when the map has overfitted the data. This may happen when the
number of map units is as large or larger than the number of training samples.
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Appendix D

Human Auditory System

The processing of sound comprises many layers of analysis and processing in
the human auditory system. Furthermore, music listening is affected by many
variables, such as sound production, listening conditions, personal memory,
or personal experiences which make it rather complex. Since music is medi-
ated as sound, it is important to understand how this information is processed
by the first stages of the human auditory system as it precedes the remaining
processing of the musical information in the brain.

The human ear can be divided into three distinct parts: (i) the external, (ii) the
middle, and (iii) the inner ear.

®

(i)

(iii)

The external ear just functions as an acoustic antenna: it defracts and
focusses the sound waves and further acts as a resonator. The final part
of the external ear is the eardrum.

The middle ear transmits acoustic energy from the eardrum to the inner
ear by allowing adjustment of the difference in impedance between an
air environment and a fluid environment. Furthermore, the middle ear
also acts as a pressure amplifier so that it is able to capture the available
acoustic energy in the air and augment the amplitude of the mechanical-
acoustic stimuli in the inner ear.

The inner ear houses two sensory organs: the vestibule which is the
balance organ and the cochlea which is the auditory portion of the inner
ear. The cochlea is responsible for the decoding of the sound and the
generation of neural responses towards the brain.

Figure schematically depicts these major components of the human ear.
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Figure D.1: The various parts of the external, middle, and inner ear.

Sound waves are collected by the external ear and travel through the ear canal
where they bump up against the eardrum. The eardrum vibrates in sympathy
with these sound waves and, consequently, it moves a series of tiny bones in
the middle ear, which carry the vibrations to the cochlea. The cochlea is a spi-
ralled, hollow, and conical chamber filled with fluids which move as a response
to the vibrations evoked by a sound coming from the middle ear through the
oval window. Structurally, the cochlea is divided by two membranes: Reiss-
ner’s membrane, which keeps the fluids separated, and the basilar membrane
which is the base of the organ of Corti which houses the hair cells, i.e., the
sensory cells of hearing. An important function of the basilar membrane is
that its movement is responsible for the electric impulses transmitted by the
hair cells. A vibration of a certain frequency that reaches the inner ear gener-
ates a pressure in the fluids which distorts the basilar membrane. On its turn,
this distortion bends the hair cells and causes the firing of electric impulses
that are sent to nerve cells. Hair cells located along the inside of the cochlear
coil are referred to as inner hair cells while hair cells along the outside of the
curve are called the outer hair cells. The inner hair cells are responsible for
the neural output of the cochlea while the outer hair cells operate as an am-
plifier. In the human cochlea, there are only about 12000 outer hair cells and
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Figure D.2: Spatial arrangement of frequencies (in Hz) along the basilar membrane.

3500 inner hair cells. This number is very low when compared to the millions
of photoreceptors in the retina. Furthermore, the final number of hair cells is
reached about 10 weeks after conception since they have the inability to prolif-
erate. The inner hair cells are tuned to specific frequencies according to their
spatial arrangement. This behaviour, which is also referred to as tonotopy, is
illustrated in Figure [D.2] Low frequencies are situated near the apex of the
cochlea, the higher frequencies are situated near the intersection of the middle
ear with the inner ear (i.e., close to the oval window). The cochlea acts thus as
a frequency analyzer. Experiments indicate that the frequency range of human
hearing ranges approximately from 20 Hz to 20000 Hz [289].

There are two theories to explain pitch perception: the frequency theory and
the place theory. The frequency theory states that the pitch is encoded by the
frequency of discharge in the primary auditory fiber. Actually, auditory nerve
fibers can signal frequencies up to about 4000 Hz in their discharge. However,
human pitch perception reaches up 20000 Hz so the frequency theory falls
short to fully explain pitch perception. On the other hand, the place theory
states that pitch perception is a matter of which fibers are active, determined
by the hair cells where they are connected with. This is in agreement with the
basilar membrane which is widest and most flexible at the apex of the cochlea,
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and narrowest and least flexible at the base. Because the base is stiffer than the
rest of the membrane, traveling waves always begin at the base and progress
toward the apex regardless of how they are initiated. The lowest frequencies
propagate thus along the complete route of the cochea. A given frequency dis-
places obviously more than a single point along the basilar membrane. The
amount of displacement leads to different excitation of the hair cells according
to their place, being maximum for the cells that match the stimulation fre-
quency and spreading in the direction of the base. In other words, each cell
acts as a bandpass filter. Furthermore, the stiffness of the basilar membrane
decreases nearly exponentially towards the apex. However, the place theory
cannot explain how sound intensity is encoded. This is because the traveling
waves excite more than one point. For example, a tone of 100 Hz sets up a
traveling wave with a maximum excursion near the apex. At a slightly greater
intensity, the maximum excursion is greater, but still occurs at the same point.
A point adjacent to the 100 Hz location that, e.g., corresponds to 150 Hz, is
also caused to vibrate by the more intense tone. The problem is now how to
distinguish the louder 100 Hz tone from a (softer) 150 Hz tone which both
cause to vibrate the same point by an equal intensity. It is probable that a com-
bination of both the place and frequency theory is carried out by the auditory
system. The frequency theory seems to dominate the lower frequencies up to
4000 Hz, whereas higher frequencies are probably handled according to the
place theory [290].

Auditory messages are conveyed to the brain via two pathways: the primary
auditory pathway which exclusively carries messages from the cochlea and
the reticular sensory pathway which carries all types of sensory messages.
The primary auditory pathway is a relatively short pathway, consisting of four
intermediate stations as shown in Figure Primary auditory fibers enter
the brainstem and immediately make connections with secondary neurons in
the cochlear nucleus. At the level of the cochlear nucleus, the input from the
two ears mainly remains separated. Just as the inner hair cells are arranged
according to the best frequency, so is the cochlear nucleus. The cochlear nu-
cleus receives input from each spiral ganglion, but also receives input from
other parts of the brain (mainly for sound localization). Information about the
sound is carried over the lateral lemniscus (a tract of axons in the brainstem)
to various nuclei in the brainstem (such as the superior olivary complex where
the first major binaural interactions occur) and ends in the inferior colliculus
which is located below the visual processing centers. Inferior colliculi possibly
integrate information about sound localization before sending it to the cortex
and the medial geniculate nucleus in the thalamus. Similarly to the lateral
geniculate nucleus (see Appendix [A), the medial geniculate nucleus acts as a
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Figure D.3: The primary auditory pathway.

key auditory relay between the inferior colliculus and the primary auditory cor-
tex. The medial geniculate nucleus influences the direction and maintenance
of attention. When auditory impulses reach this area, the sound is heard but not
fully comprehended. Understanding requires the participation of the auditory
association area, the auditory cortex. Figure[D.3|depicts a schematic overview
of the primary auditory pathway. For a more detailed overview of the auditory
pathways, we refer to [291,292]. The primary auditory pathway ends in the
auditory cortex.

The auditory cortex is located on the temporal lobe as depicted in Figure [D.4]
and consists of three parts: the primary, the secondary and the tertiary audi-
tory cortex. The primary auditory cortex is situated in the temporal lobe of the
human brain and is responsible for processing sound information. The neurons
in this brain region are organized according to the frequency of sound to which
they respond best, and thus reflects the tonotopy of the basilar membrane in the
cochlea. Individual cells consistently get excited by sounds at specific frequen-
cies or multiples of that frequency. Human brain scans have indicated that only
a minor part of this brain area is active when trying to identify musical pitch.
Further, it appears that some areas of the primary auditory cortex are special-
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Figure D.4: Localization of the auditory, prefrontal and rostromedial prefrontal cor-
tex.

ized for processing combinations of frequencies while others are specialized
for processing modulations of amplitude or frequency. The secondary audi-
tory cortex is likely specialized in processing temporally complex acoustical
signals, such as harmonic, melodic and rhythmic patterns, and in processing
elementary speech sounds. The tertiary auditory cortex supposedly integrates
everything into the overall experience of music [293].

However, pitch is perceived in more places than just the auditory cortex. Janata
et al. showed that areas of the rostromedial prefrontal cortex, which is thought
to aid in the inhibition of emotions, are active during tonality processing [208].
Thus, it is likely that tonal contexts are maintained in cortical regions that
mediate interactions between sensory, cognitive, and affective information.

In addition to the pathway that propagates from the cochlea to the cortex
(which is also called the ascending pathway), there is also a descending path-
way propagating from the cortex to the cochlea. Many of these descending
fibers end up synapsing to the outer hair cells as well as to afferent fibers from
the inner hair cells. Little is known about this pathway except for the fact that
it aids in the detection of sounds in a noisy background.



Appendix E

Classification Tree

Classification trees are used to predict membership of cases or objects in the
classes of a categorical dependent variable from their measurements on one or
more predictor variables. The goal of classification trees is to predict or explain
responses on a categorical dependent variable, or otherwise stated, obtain the
most accurate prediction possible. The available techniques have much in com-
mon with the techniques used in the more traditional methods of discriminant
analysis, cluster analysis, non-parametric statistics, and non-linear estimation.

Tree classification techniques have a number of advantages over other super-
vised learning techniques. At first, the interpretation of the results summarized
in a tree is very simple. This simplicity is not only useful for purposes of
rapid classification of new observations, but it can also often yield a much
simpler model for explaining why observations are classified or predicted in a
particular manner. Secondly, tree methods are non-parametric and non-linear.
There is no implicit assumption that the underlying relationships between the
predictor variables and the dependent variable are linear, follow some specific
non-linear link function or that they are monotonic in nature. Thus, tree meth-
ods are particularly well suited for data mining tasks where there is often little
a priori knowledge.

Classification trees are constructed top-down, beginning at the top node with
the most informative feature, that is the one that maximally reduces entropy.
Branches are then created for all values of the descriptor of this node. The
training examples are sorted to the appropriate descendant node and the pro-
cess is repeated recursively. Each node is connected to a possible set of an-
swers and each branch carries a particular test results subset to another node.
The final results of using tree methods for classification can be summarized in
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a series of logical if-then conditions and each terminal node is associated with
a single class. Despite the building process of a tree is a recursive procedure,
it is still faster than the training of a neural network.

E.1 Specifying the criteria for predictive accuracy

The most accurate prediction is operationally defined as the prediction with the
minimum costs. The need for minimizing costs, rather than just the proportion
of misclassified cases, arises when some predictions that fail are more catas-
trophic than others, or when some predictions that fail occur more frequently
than others. In many typical applications, costs simply correspond to the pro-
portion of misclassified cases. The notion of costs was developed as a way to
generalize, to a broader range of prediction situations, the idea that the best
prediction has the lowest misclassification rate.

E.1.1 Priors

Priors, or a priori probabilities, specify how likely it is, without using any
prior knowledge of the values for the predictor variables in the model, that a
case or object will fall into one of the classes. Minimizing costs, however, does
correspond to minimizing the proportion of misclassified cases when priors are
taken to be proportional to the class sizes and when misclassification costs are
taken to be equal for every class. The a priori probabilities used in minimizing
costs can greatly affect the classification of cases or objects. The general point
is that the relative size of the priors assigned to each class can be used to
adjust the importance of misclassifications for each class. Minimizing costs
corresponds to minimizing the overall proportion of misclassified cases when
priors are taken to be proportional to the class sizes (and misclassification costs
are taken to be equal for every class), because prediction should be better in
larger classes to produce an overall lower misclassification rate.

E.1.2 Misclassification Costs

Sometimes more accurate classification is desired for some classes than others
for reasons unrelated to relative class sizes. Higher misclassification costs can
be specified for misclassifying observations with a certain property then for
other observations. But to restate, minimizing costs corresponds to minimizing
the proportion of misclassified cases when priors are taken to be proportional
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to the class sizes and when misclassification costs are taken to be equal for
every class.

E.1.3 Case Weights

The application of case weights on a weighting variable as case multipliers for
aggregated data sets is also related to the issue of minimizing costs. Interest-
ingly, as an alternative to using case weights for aggregated data sets, one could
specify appropriate priors and/or misclassification costs and produce the same
results while avoiding the additional processing required to analyze multiple
cases with the same values for all variables.

Priors, misclassification costs, and case weights illustrate the wide variety of
prediction situations that can be handled using the concept of minimizing costs,
as compared to the rather limited prediction situations that can be handled
using the narrower idea of minimizing misclassification rates.

E.2 Splitting Rules

Splitting rules attempts to divide a N-dimensional attribute space into homo-
geneous regions, i.e. regions that contain examples from just one category.
The goal of adding new nodes to a tree is to split up the sample space so as
to minimize the impurity of the training set. Some algorithms measure good-
ness instead of impurity, the difference being that goodness values should be
maximized while impurity should be minimized.

There exist different splitting criteria to build a classification tree that are both
accurate and can reveal important data structure.

The two most frequently used splitting rules are:

(1) Gini: excellent for two class dependent variables

(i) Twoing: better for multi-class dependent variables

Both methods yield classification trees of comparable quality (where the rela-
tive cost, the used quality criterion, takes into account both the misclassifica-
tion score and the complexity of the obtained tree). They use different formulas
but pick the same splitters in the two class problem. The main difference is that
the Gini method attempts to isolate one class and on the other hand the Twoing
criterion seeks for splits which are roughly equal in size.
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Assume that the set of examples T at the node about to be split contains n > 0
instances that belong to one of k£ categories (Initially 7" is the entire training
set). A hyperplane H divides 7" into two non-overlapping subsets 77, and T's.
L; and R; are the number of instances of category j in Ty, and T'r, respectively.

E.2.1 Gini

The Gini index measures the probability of misclassification of a set of in-
stances, rather than the impurity of a split.

Ginir, = 1.0 — ],
= \ Tzl
k 2
Ginig = 1.0 — Z (I?I ) ,
; R

|TL\szL + |TR|szR
n

Impurityr

where Giniy, denotes the Gini index on the left side of the hyperplane and
Ginig denotes the Gini index on the right side of the hyperplane.

E.2.2 Twoing

The value to be computed with the Twoing rules is defined as:

2

T
Twoing = foR Z}Lg/‘TL’ j/‘TRH )

where |T'r| is the number of examples on the right of a split at node 7', n is the
number of examples at node 7', and R; is the number of examples in category
1 on the right of the split. The Twoing value is actually a goodness measure
rather than an impurity measure.

E.3 Stop Splitting

Splitting could continue until all cases are perfectly classified or predicted.
However, this wouldn’t make much sense since one would likely end up with
a tree structure that is as complex as the original data. So reasonable stopping
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rules are required. The two most commonly used rules are called Minimum n
and Fraction Of Objects.

E.3.1 Minimum n

One way to control splitting is to allow splitting to continue until all terminal
nodes are pure or contain no more than a specified minimum number of cases
or objects.

E.3.2 Fraction Of Objects

Another way to control splitting is to allow splitting to continue until all termi-
nal nodes are pure or contain no more cases than a specified minimum fraction
of the sizes of one or more classes (in the case of classification problems, or all
cases in regression problems). If the priors used in the analysis are equal and
class sizes are equal as well, then splitting will stop when all terminal nodes
containing more than one class have no more cases than the specified fraction
of the class sizes for one or more classes. Alternatively, if the priors used in the
analysis are not equal, splitting will stop when all terminal nodes containing
more than one class have no more cases than the specified fraction for one or
more classes

E.4 Pruning

A major issue that arises when applying classification trees to real data with
much random error noise concerns the decision when to stop splitting. If not
stopped, the tree algorithm will ultimately extract all information from the
data, including information that is not and cannot be predicted in the popu-
lation with the current set of predictors (most training samples will appear in
a separate leaf node). This phenomenon is called overfitting or overlearning.
The general approach to addressing this issue is first to stop generating new
split nodes when subsequent spits only result in very little overall improve-
ment. For example, if one can predict 9011 splits, then it makes little sense to
add the 11th split to the tree. Once the tree building algorithm has stopped, it
is also useful to further evaluate the quality of the prediction of the tree with
samples of observations that did not participate in the original computations.
These methods are used to prune back the tree, i.e. to select a simpler tree



216 Classification Tree

than the one obtained when the tree building algorithm stopped, but one that is
equally as accurate for predicting or classifying new observations.

E.4.1 Crossvalidation

One approach is to apply the tree computed from one set of observations (learn-
ing samples) to another completely independent set of observations (testing
samples). If most or all of the splits determined by the analysis of the learning
sample are essentially based on random noise, then the prediction for the test-
ing sample will be very poor. Hence one can infer that the selected tree is not
very good (useful), and not of the right size.

E.4.2 V-fold crossvalidation

V-fold crossvalidation repeats the crossvalidation analysis many times over
with different randomly drawn samples from the data, for every tree size start-
ing at the root of the tree, and applying it to the prediction of observations
from randomly selected testing samples. Then uses the tree that shows the best
average accuracy for crossvalidated predicted classifications or predicted val-
ues. In most cases, this tree will not be the one with the most terminal nodes,
i.e. the most complex tree. This method for pruning a tree, and for selecting a
smaller tree from a sequence of trees, can be very powerful and is particularly
useful for smaller data sets. It is an essential step for generating useful (for
prediction) tree models.

E.4.3 Tree selection after pruning

The pruning often results in a sequence of optimally pruned trees. So the next
task is to use an appropriate decisive factor to select the right-sized tree from
this set of optimal trees. A natural criterion would be the cross-validation
costs. There is nothing wrong with choosing the tree with the minimum cross-
validation costs as the right-sized tree, but often there will be several trees
with crossvalidation costs close to the minimum. But one could also choose
as the right-sized tree the smallest sized tree whose cross-validation costs do
not differ significantly from the minimum cross-validation costs. Or one could
choose the smallest-sized tree whose cross-validation costs do not exceed the
minimum cross-validation costs plus the standard error of the cross-validation
costs for the minimum cross-validation costs tree.
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PeCMan OWL schema

In this appendix, we present the ontology of our proposed CMS in scope of
the PeCMan project. The presented ontology consists of a number of OWL
schemas. Due to the vast size of the ontology, only some schemas are incorpo-
rated in this appendix.

At first, the schema describes a document in the CMS as shown in Frag-
ment With a document, user-, system-, and security-centric metadata are
related. Fragment [F.2| shows the OWL schema of the user-centric metadata,
and Fragment 3] outlines the Annotation class. Fragment [F.4]shows the mod-
eling of the image metadata and Fragment describes the image creation
metadata.

Fragment F.1: OWL schema describing a document in the CMS.

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY user "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/UserCentric.owl#">
5 <!ENTITY system "http://multimedialab.elis.ugent.be/users/gmartens
/Ontologies/Pecman/v2.0/SystemCentric.owl#">
<!ENTITY security "http://multimedialab.elis.ugent.be/users/
gmartens/Ontologies/Pecman/v2.0/SecurityCentric.owl#">
1>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
10 xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

xmlns:xsd="&xsd;"

xmlns:owl="http://www.w3.0rg/2002/07/owl#"

xmlns="http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/PDocument .owl#"

xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/PDocument.owl"
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xmlns:user="&user;"
xmlns:system="&system; "
xmlns:security="&security;"
>

<owl:0Ontology rdf:about="">
<rdfs:comment xml:lang="en">
Pecman Ontology for describing PDocument
</rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/XMLSchema#
string">version 2.0</owl:versionInfo>
<owl:imports rdf:resource="guser;"/>
<owl:imports rdf:resource="&system;"/>
<owl:imports rdf:resource="&security;"/>
</owl:Ontology>
<!—= -——>
<!-- Class that describes a document in the CMS —-—>
<owl:Class rdf:ID="PecmanDocument">
<rdfs:label>Real Pecman Document</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#userCentric"/>
<owl:maxCardinality rdf:datatype="http://www.w3.0rg
/2001/XMLSchema#nonNegativeInteger">1</
owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#systemCentric"/>
<owl:maxCardinality rdf:datatype="http://www.w3.0rg
/2001/XMLSchema#nonNegativeInteger">1</
owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#securityCentric"/>
<owl:maxCardinality rdf:datatype="http://www.w3.o0rg
/2001/XMLSchema#nonNegativeInteger">1</
owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<! —= —>
<!-- property to refer to the user-centric metadata -->
<owl:0ObjectProperty rdf:ID="userCentric">
<rdfs:domain rdf:resource="#PecmanDocument"/>
<rdfs:range rdf:resource="&user;UserCentric"/>
</owl:0ObjectProperty>

<!-- —>
<!-- property to refer to the system-centric metadata —-—>
<owl:0ObjectProperty rdf:ID="systemCentric">
<rdfs:domain rdf:resource="#PecmanDocument"/>
<rdfs:range rdf:resource="&system;SystemCentric"/>
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</owl:0bjectProperty>

<l--

-—>

<!-- property to refer to the security-centric metadata —-—>
<owl:0bjectProperty rdf:ID="securityCentric">

<rdfs:domain rdf:resource="#PecmanDocument"/>
<rdfs:range rdf:resource="&security;SecurityCentric"/>

</owl:0ObjectProperty>

</rdf :RDF>

Fragment F.2: OWL schema describing user-centric metadata.

10

15
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25

30

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF[

<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">

<!ENTITY ipr "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v2.0/IPR.owl#">

<!ENTITY annot "http://multimedialab.elis.ugent.be/users/gmartens/

1>

Ontologies/Pecman/v2.0/Annotation.owl#">

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

<l--

xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

xmlns:xsd="&xsd;"

xmlns:owl="http://www.w3.0rg/2002/07/owl#"

xmlns="http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/UserCentric.owl#"

xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/UserCentric.owl"

xmlns:annot="&annot;"

xmlns:ipr="&ipr;" >

<owl:0Ontology rdf:about="">

<rdfs:comment xml:lang="en">
Pecman Ontology for describing user centric metadata

</rdfs:comment>

<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#string">version 2.0</owl:versionInfo>

<owl:imports rdf:resource="&annot;"/>

</owl:0Ontology>

-

<!-- Class that describes user-centric metadata -—>
<owl:Class rdf:ID="UserCentric">

<rdfs:label>User centric</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#manualAnnotation"/>
<owl:maxCardinality rdf:datatype="http://www.w3.org
/2001/XMLSchema#nonNegativeInteger">1</
owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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35 <l-= -—>
<!-— Properties to relate to a thumbnail, manual, and automatic
annotations ——>

<owl:DatatypeProperty rdf:ID="thumbnail">
<rdfs:domain rdf:resource="#UserCentric"/>
40 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:0ObjectProperty rdf:ID="manualAnnotation">
<rdfs:domain rdf:resource="#UserCentric"/>
45 <rdfs:range rdf:resource="&annot;ManualAnnotation"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="automaticAnnotation">
<rdfs:domain rdf:resource="#UserCentric"/>
50 <rdfs:range rdf:resource="&annot;AutomaticAnnotation"/>
</owl:0ObjectProperty>

<!—— —>
<!-- Relates to the IPR data—-—>
55 <owl:DatatypeProperty rdf:ID="iprData">
<rdfs:domain rdf:resource="#UserCentric"/>
<rdfs:range rdf:resource="&ipr; IPR"/>
</owl:DatatypeProperty>

60 </rdf :RDF>

Fragment F.3: OWL schema describing an annotation.

1 <?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">
5 <!ENTITY log "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Log.owl#">
1>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#" xmlns:xsd="&
xsd; " xmlns:owl="&owl;"
xmlns="http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Annotation.owl#"
10 xml:base="http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Annotation.owl"
xmlns:log = "&log; ">

<owl:0Ontology rdf:about="">
<rdfs:comment xml:lang="en"> Ontology for describing an
annotation </rdfs:comment>
15 <owl:versionInfo rdf:datatype="&xsd;string">version 0.1</

owl:versionInfo>

<owl:imports rdf:resource="&log;"/>

</owl:Ontology>

<!—— -——>

<!-- Class that describes an annotation —-->
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<owl:Class rdf:ID="Annotation">

<rdfs:label>Annotation</rdfs:label>

</owl:Class>

-
Automatic annotation —-->

<owl:Class rdf:ID="AutomaticAnnotation">

<rdfs:label>Automatic annotation</rdfs:label>
<rdfs:subClassOf rdf:resource="#Annotation"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#algorithmInfo"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#timeStamp"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasFeature"/>
<owl:minCardinality rdf:datatype="&xsd;
nonNegativeInteger">0</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:ObjectProperty rdf:ID="algorithmInfo">

<rdfs:domain rdf:resource="#AutomaticAnnotation"/>
<rdfs:range rdf:resource="#AlgorithmInfo"/>

</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="hasFeature">

<rdfs:domain rdf:resource="#AutomaticAnnotation"/>
<rdfs:range rdf:resource="#Feature"/>

</owl:0ObjectProperty>

<owl:DatatypeProperty rdf:ID="timeStamp">

<rdfs:domain rdf:resource="#AutomaticAnnotation"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

-—>

<!-- Class to describe the information
about an algorithm ——>
<owl:Class rdf:ID="AlgorithmInfo">

<rdfs:label>Algorithm Information</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#id"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativelInteger">1</owl:maxCardinality>
</owl:Restriction>
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</rdfs:subClassOf>
<rdfs:subClassOf>
75 <owl:Restriction>
<owl:onProperty rdf:resource="#name"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
80 <rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#reference"/>
<owl:maxCardinality
rdf:datatype="&xsd; nonNegativelInteger">1</
owl:maxCardinality>
85 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:DatatypeProperty rdf:ID="id">
90 <rdfs:domain rdf:resource="#AlgorithmInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="name">
95 <rdfs:domain rdf:resource="#AlgorithmInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="reference">
100 <rdfs:domain rdf:resource="#AlgorithmInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

105 <!-= -—>
<!-— (Class that represents a feature —-—>
<owl:Class rdf:ID="Feature">

<rdfs:label>Feature</rdfs:label>
</owl:Class>

110
<!-= -—>
<!-- Class that represents a manual annotation —->
<owl:Class rdf:ID="ManualAnnotation">
</owl:Class>
115
<owl:DatatypeProperty rdf:ID="scope">
<rdfs:domain rdf:resource="#ManualAnnotation"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
120
<owl:DatatypeProperty rdf:ID="mimeType">
<rdfs:domain rdf:resource="#ManualAnnotation"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
125

<owl:0ObjectProperty rdf:ID="freeTag">
<rdfs:domain rdf:resource="#ManualAnnotation"/>
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<rdfs:range rdf:resource="#FreeTag"/>
</owl:ObjectProperty>

<P-= —>

<!--Class that represents a free tag —-—>
<owl:Class rdf:ID="FreeTag">
<rdfs:label>Free tag</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#context"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:DatatypeProperty rdf:ID="context">
<rdfs:domain rdf:resource="#FreeTag"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="tag">
<rdfs:domain rdf:resource="#FreeTag"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:0bjectProperty rdf:ID="log">
<rdfs:domain rdf:resource="#FreeTag"/>
<rdfs:range rdf:resource="&log;Log"/>

</owl:0ObjectProperty>

</rdf :RDF>

Fragment F.4: OWL schema describing image metadata.

10

15

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">
<!ENTITY basic "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v2.0/BasicImageParam.owl#" >

<!ENTITY creat "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v2.0/ImageCreation.owl#" >

<!ENTITY cont "http://multimedialab.elis.ugent.be/users/gmartens/

Ontologies/Pecman/v2.0/Content.owl#">

<!ENTITY annot "http://multimedialab.elis.ugent.be/users/gmartens/

1>

<rdf :RDF

Ontologies/Pecman/v2.0/Annotation.owl#">

xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd="6&xsd;"

xmlns:owl="&owl;"

xmlns:basic = "&basic;"

xmlns:creat = "&creat;"

xmlns:cont = "&cont;"

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
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xmlns:annot="&annot;"
xmlns = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/ImageMetadata.owl#"
xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/ImageMetadata.owl"
20 >

<owl:Ontology rdf:about="">
<rdfs:comment xml:lang="en">
Pecman Ontology for describing metadata for digital
images
25 </rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#string">version 2.0</owl:versionInfo>
<owl:imports rdf:resource="&basic;"/>
<owl:imports rdf:resource="&creat;"/>
<owl:imports rdf:resource="&cont;"/>
30 <owl:imports rdf:resource="&annot;"/>
</owl:Ontology>

<= -—>
<!-- Class representing image metadata ——>
35 <owl:Class rdf:ID="ImageMetadata">

<rdfs:subClassOf rdf:resource="&annot;ManualAnnotation"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#basicParam"/>
40 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
45 <owl:onProperty rdf:resource="#imageCreation"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

50
<owl:0ObjectProperty rdf:ID="basicParam">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&basic;BasicParam"/>
</owl:0bjectProperty>
55
<owl:ObjectProperty rdf:ID="imageCreation">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&creat; ImageCreation"/>
</owl:0ObjectProperty>
60
<owl:0ObjectProperty rdf:ID="imageContent">
<rdfs:domain rdf:resource="#ImageMetadata"/>
<rdfs:range rdf:resource="&cont; ImageContentDescription"/>
</owl:0ObjectProperty>
65

</rdf :RDF>
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Fragment F.5: OWL schema describing image creation parameters.
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<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<!ENTITY pers "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Person.owl#" >
<!ENTITY proddet "http://multimedialab.elis.ugent.be/users/gmartens
/Ontologies/Pecman/v2.0/ProductDetails.owl#" >
<!ENTITY dat "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/DateTime.owl#">
1>
<rdf:RDF =xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns
#"
xmlns:rdfs="&rdfs;"
xmlns:xsd="&xsd;"
xmlns = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/ImageCreation.owl#"
xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/ImageCreation.owl"
xmlns:owl="&owl;"
xmlns:pers = "&pers;"
xmlns:proddet = "&proddet;"
xmlns:dat= "&dat;"

<owl:0Ontology rdf:about="">
<rdfs:comment xml:lang="en">
Pecman: Ontology for Image Creation metadata
</rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#string">version 2.0</owl:versionInfo>
<owl:imports rdf:resource="&pers;"/>
<owl:imports rdf:resource="&proddet;"/>
<owl:imports rdf:resource="&dat;"/>
</owl:0Ontology>
<!—— -—>

<!-- Image Creation class ——>
<owl:Class rdf:ID="ImageCreation">
<rdfs:label>Image creation information</rdfs:label>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#generalCreationInfo"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#detailedCreationInfo"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="generalCreationInfo">
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<rdfs:domain rdf:resource="#ImageCreation"/>
<rdfs:range rdf:resource="#GeneralImageCreation"/>
50 </owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="detailedCreationInfo">
<rdfs:domain rdf:resource="#ImageCreation"/>
<rdfs:range rdf:resource="#DetailedImageCreation"/>

55 </owl:0ObjectProperty>
<-= -
<!-— General Creation Information —-->
60

<owl:Class rdf:ID="GeneralImageCreation">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#creationTime" />
65 <owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
70 <owl:onProperty rdf:resource="#creator"/>
<owl:maxCardinality rdf:datatype="&xsd;
nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
75 <owl:Restriction>
<owl:onProperty rdf:resource="#source"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger"
>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
80 </owl:Class>

<owl:DatatypeProperty rdf:ID="creationTime">
<rdfs:domain rdf:resource="#GeneralImageCreation"/>
<rdfs:range rdf:resource="&xsd;dateTime" />
85 </owl:DatatypeProperty>

<!-- creator-->
<owl:0ObjectProperty rdf:ID="creator">
<rdfs:domain rdf:resource="#GeneralImageCreation"/>
90 <rdfs:range rdf:resource="g&pers;Person"/>
</owl:0ObjectProperty>

<!-- source —-—>
<owl:0ObjectProperty rdf:ID="source">
95 <rdfs:comment>specifies the device source of the digital file</

rdfs:comment>
<rdfs:domain rdf:resource="#GeneralImageCreation"/>
<rdfs:range rdf:resource="#ImageSources"/>
</owl:0ObjectProperty>

100 <owl:Class rdf:ID="ImageSources">
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<owl:oneOf rdf:parseType="Collection">
<ImageSource rdf:about="#DigitalCamera"/>
<ImageSource rdf:about="#ComputerGraphics"/>
</owl:oneOf>
</owl:Class>

<owl:Class rdf:ID="ImageSource">
<rdfs:comment>this class represents the device source of a
digital file</rdfs:comment>
</owl:Class>

<ImageSource rdf:ID="DigitalCamera">

<rdfs:label>Digital Camera</rdfs:label>

<rdfs:comment>Image created by digital camera </rdfs:comment>
</ImageSource>

<ImageSource rdf:ID="ComputerGraphics">
<rdfs:label>Computer Graphics</rdfs:label>
<rdfs:comment>Image digitally created on computers </
rdfs:comment>

</ImageSource>
<!—= N
<!-- Detailed Image Creation info —-->

<owl:Class rdf:ID="DetailedImageCreation"></owl:Class>

<! -- -—>
<!-- Software Creation ——>
<owl:Class rdf:ID="SoftwareImageCapture">
<rdfs:comment>this class represent the capture metadata </
rdfs:comment>
<rdfs:subClassOf rdf:resource="#DetailedImageCreation"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#softwareInfo"/>
<owl:maxCardinality rdf:datatype="&xsd;positivelInteger">1</
owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="softwareInfo">
<rdfs:domain rdf:resource="#SoftwareImageCapture"/>
<rdfs:range rdf:resource="&proddet;ProductDetails"/>
</owl:0ObjectProperty>

<! —- —-—>

<!-- Class to represent camera image capture —->
<owl:Class rdf:ID="CameralmageCapture">
<rdfs:comment>the digital image is created with a digital
camera</rdfs:comment>
<rdfs:subClassOf rdf:resource="#DetailedImageCreation"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#lensInfo"/>
<owl:maxCardinality rdf:datatype="&xsd;
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nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
155 <rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#cameralnfo"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
</owl:Restriction>
160 </rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#cameraSettings"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
165 </owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#firmware"/>
170 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

175 <owl:ObjectProperty rdf:ID="cameralInfo">
<rdfs:domain rdf:resource="#CameralmageCapture"/>
<rdfs:range rdf:resource="g&proddet;ProductDetails"/>
</owl:0bjectProperty>

180 <owl:ObjectProperty rdf:ID="lensInfo">
<rdfs:domain rdf:resource="#CameralmageCapture"/>
<rdfs:range rdf:resource="gproddet;ProductDetails"/>
</owl:0ObjectProperty>

185 <owl:ObjectProperty rdf:ID="cameraSettings">
<rdfs:domain rdf:resource="#CameralmageCapture"/>
<rdfs:range rdf:resource="&proddet;ProductDetails"/>

</owl:0ObjectProperty>

190 <owl:ObjectProperty rdf:ID="firmware">
<rdfs:domain rdf:resource="#CameraImageCapture"/>
<rdfs:range rdf:resource="&proddet;ProductDetails"/>
</owl:0ObjectProperty>

195

<!—— —>
<!-— Class that describes camera capture settings -——>
<owl:Class rdf:ID="CameraCaptureSettings">
<rdfs:subClassOf>
200 <owl:Restriction>
<owl:onProperty rdf:resource="#exposureTime" />
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
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<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#exposureProgram"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#meteringMode" />

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#focallength"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#fNumber"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#flash"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:DatatypeProperty rdf:ID="exposureTime">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="fNumber">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
<rdfs:range rdf:resource="&xsd;double"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="exposureProgram">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="meteringMode">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
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<owl:DatatypeProperty rdf:ID="focalLength">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
260 <rdfs:range rdf:resource="&xsd;double"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="flash">
<rdfs:domain rdf:resource="#CameraCaptureSettings"/>
265 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
</rdf :RDF>

Classes to describe the content of an image, are managed by the Content
class, as shown in Fragment[F.6] For example, Fragment[F.7] depicts the OWL
schema of an event, and Fragment [F.§] shows an excerpt of the taxonomy of
tangible things.

Fragment F.6: OWL schema holding content-related metadata.

10

20

25

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">

<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">

<!ENTITY ev "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Event.owl#" >

<!ENTITY tang "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/TangibleThing.owl#">

<!ENTITY log "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Log.owl#">

<!ENTITY rat "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Rating.owl#">

<!ENTITY pos "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Position.owl#">

1>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd="&xsd;"
xmlns:owl="&owl;"

xmlns:ev = "gev;"
xmlns:tang = "&tang;"
xmlns:log = "&log;"

xmlns:pos="&pos;"

xmlns:rat="&rat;"

xmlns = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Content.owl#"

xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Content.owl"

<owl:0Ontology rdf:about="">
<rdfs:comment xml:lang="en">
Pecman: Ontology for describing image content
</rdfs:comment>
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<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/XMLSchema
#string">version 2.0</owl:versionInfo>

<owl:imports rdf:resource="&ev;"/>

<owl:imports rdf:resource="&pos;"/>

<owl:imports rdf:resource="&tang;"/>

<owl:imports rdf:resource="&log;"/>

<owl:imports rdf:resource="g&rat;"/>

</owl:Ontology>

<!-- —-—>
<!-- Content Description -—>
<owl:Class rdf:ID="ImageContentDescription">
<rdfs:label>Image content description</rdfs:label>
<rdfs:subClassOf rdf:resource="&log;LoggedItem"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#position"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger"
>1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:0ObjectProperty rdf:ID="comment">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&log;StringLog"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="depictedItem">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&tang; TangibleThing"/>
</owl:0ObjectProperty>

<owl:0bjectProperty rdf:ID="depictedEvent">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&ev;Event"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="rating">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="g&rat;Rating"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="position">
<rdfs:domain rdf:resource="#ImageContentDescription"/>
<rdfs:range rdf:resource="&pos;Position"/>
</owl:0ObjectProperty>
</rdf :RDF>

Fragment F.7: OWL schema to describe an event.

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
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<!ENTITY dat "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/DateTime.owl#">
5 <!ENTITY tang "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/TangibleThing.owl#">
<!ENTITY log "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Log.owl#">
<!ENTITY addr "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Address.owl#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">
1>
10
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd="&xsd;"
xmlns:owl="&owl;"
15 xmlns = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Event.owl#"
xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Event.owl"
xmlns:dat = "&dat;"
xmlns:tang = "&tang;"
xmlns:log="&log;"
20 xmlns:addr="&addr;"
>

<owl:Ontology rdf:about="">
<rdfs:comment xml:lang="en">
25 Pecman ontology for describing events
</rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/XMLSchema#
string">version 0.1</owl:versionInfo>
<owl:imports rdf:resource="&dat;"/>
<owl:imports rdf:resource="&tang;"/>
30 <owl:imports rdf:resource="&addr;"/>
<owl:imports rdf:resource="&log;"/>
</owl:0Ontology>

<l—— ============ ——>
35 <!-- Event class -—>
<owl:Class rdf:ID="Event">
<rdfs:label>Event</rdfs:label>
<rdfs:subClassOf rdf:resource="&log;LoggedItem"/>
<rdfs:subClassOf>
40 <owl:Restriction>
<owl:onProperty rdf:resource="#id"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1</
owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
45 <rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#type"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1</
owl:cardinality>
</owl:Restriction>
50 </rdfs:subClassOf>
<rdfs:subClassOf>
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<owl:Restriction>
<owl:onProperty rdf:resource="#description"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#location"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#time"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl :maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#duration"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1<
/owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="id">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="type">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="description">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="location">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&addr;Address"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="time">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&dat;DateTime"/>
</owl:0ObjectProperty>

<owl:DatatypeProperty rdf:ID="duration">
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<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&xsd;duration"/>
</owl:DatatypeProperty>

<owl:0ObjectProperty rdf:ID="participation">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="&tang; TangibleThing"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="relatedEvent">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="#Event"/>

</owl:0ObjectProperty>

<= -

<!-- Class to describe the role of a thing in an event —-->
<owl:Class rdf:ID="Role">
<rdfs:label>Role</rdfs:label>
<rdfs:subClassOf rdf:resource="&log;LoggedItem"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#name"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1</
owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Role"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<!-- ——>
<!-— (Class to relate an event with a thing (participant) and the
role —-—>
<owl:Class rdf:ID="EventParticipation">
<rdfs:label>Event participation</rdfs:label>
<rdfs:subClassOf rdf:resource="&log;LoggedItem"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#event"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</
owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#participant"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</
owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:0ObjectProperty rdf:ID="event">
<rdfs:domain rdf:resource="#EventParticipation"/>
<rdfs:range rdf:resource="#Event"/>
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</owl:0ObjectProperty>

<owl:ObjectProperty rdf:ID="participant">
<rdfs:domain rdf:resource="#EventParticipation"/>
<rdfs:range rdf:resource="&tang; TangibleThing"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="role">
<rdfs:domain rdf:resource="#EventParticipation"/>
<rdfs:range rdf:resource="#Role"/>
</owl:0ObjectProperty>

</rdf :RDF>

Fragment F.8: OWL schema describing a taxonomy.

15

20

25

30

35

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF[

<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">

<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">

<!ENTITY tang "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/TangibleThing.owl#">

1>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd="&xsd;"
xmlns:owl="&owl;"
xmlns = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Taxonomy.owl#"
xml:base = "http://multimedialab.elis.ugent.be/users/gmartens/
Ontologies/Pecman/v2.0/Taxonomy.owl"
>
<owl:0Ontology rdf:about="">
<rdfs:comment xml:lang="en">
Pecman ontology for describing a taxonomy of things
</rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0rg/2001/XMLSchema#
string">version 0.1</owl:versionInfo>
<owl:imports rdf:resource="&tang;"/>
</owl:Ontology>

<l-- ——>
<!-— a (short) taxonomy of tangible things —->

<owl:Class rdf:ID="Vehicle">
<rdfs:label>Vehicle</rdfs:label>

<rdfs:subClassOf rdf:resource="g&tang; TangibleThing"/>
</owl:Class>

<owl:Class rdf:ID="Car">
<rdfs:label>Car</rdfs:label>
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>
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<owl:Class rdf:ID="Bike">
<rdfs:label>Vehicle</rdfs:label>
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>

<owl:Class rdf:ID="Plane">
<rdfs:label>Plane</rdfs:label>
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>

<owl:Class rdf:ID="Boat">
<rdfs:label>Boat</rdfs:label>
<rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>

<owl:Class rdf:ID="Animal">
<rdfs:label>Animal</rdfs:label>

<rdfs:subClassOf rdf:resource="&tang;TangibleThing"/>
</owl:Class>

<owl:Class rdf:ID="Cat">
<rdfs:label>Cat</rdfs:label>
<rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>

<owl:Class rdf:ID="Dog">
<rdfs:label>Dog</rdfs:label>
<rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>

<owl:Class rdf:ID="Bird">
<rdfs:label>Bird</rdfs:label>
<rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>

</rdf :RDF>
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