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v

Geometrical Resolution of
Spacetime Singularities

General relativity posits that spacetime is not a fixed structure but that it is
represented by a dynamical metric field. The gravitational attraction between
matter appears as follows: the dynamics of the metric field is related to the
distribution of matter throughout the universe, and the propagation of matter
through spacetime is influenced by the metric field that represents the universe.
After the discovery that matter particles and microscopic forces obey quantum
mechanical laws, it has thus become necessary to quantize the metric field as
well. One of the research lines for a consistent theory of quantum gravity has
led to string theory. String theory describes the gravitational interaction in
terms of gravitons, which are the quanta of the gravitational force. In string
theory it is assumed that at the smallest scales elementary particles have a
stringlike nature instead of a pointlike nature. But the behaviour of strings
on time-dependent backgrounds such as our expanding universe is not well
understood yet.

General relativity predicts the existence of gravitational singularities at the
classical level: our universe started with the big bang, and massive stars can
collapse into black holes. A theory that describes quantum gravitational ef-
fects should elucidate our understanding of these singularities. The existence
of these singularities also raises the question whether propagation of quan-
tum fields through a singularity is possible (and how it should be formulated).
String theory can already deal with some timelike singularities but not yet
with spacelike singularities like the big bang. Near singularities, strings often
interact strongly. A formulation of string theory that allows to take strong
interactions between strings into account is given by matrix theory. Matrix
theory models that describe singularities often have a dual translation in terms
of a quantum field theory that is defined on a singular background spacetime.

In this dissertation we investigate these issues. We use a geometric regu-
larization prescription to define the evolution of a free scalar field and of a free
string through a singularity in an unambiguous manner. Remarkably, this ge-
ometric regularization seems to reveal there is a certain feature of discreteness
related to the evolution across the singularity. We also consider an important
class of time-dependent backgrounds that can be investigated in string theory.
This class is called gravitational plane waves. These plane waves can be used
to investigate the strong curvature effects related to a singularity. Our study
shows that it is necessary to take into account that the strings can interact
strongly near the singularity. In order to obtain a better understanding of
matrix theory on a plane wave background we investigate solutions that de-
scribes D-branes in plane wave backgrounds. D-branes are objects that appear
in string theory besides strings, and that are important for the formulation of
matrix theory.
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Prologue

Motivation

“Without gravity you wouldn’t have a sport research,”

Matthew Ketterling

Why doing research in theoretical physics? And why writing a thesis? Or more
precisely, since the writing almost inevitably follows the research, why writing
this thesis in the way it has been written? Let me first address the latter ques-
tion. The public I mainly have in mind when presenting these results are not
only the professional researchers in string theory because the material present
in this PhD thesis has already been presented in scientific papers. On the other
hand, scientific knowledge possesses a cultural merit (a fact often underappre-
ciated, I think, or at least not likely to be stressed) which shouldn’t remain
privileged (even undeliberately) to the small circles where it is investigated,
and which has the right to diffuse among a wider community. Therefore I
would like to present this work as a readable account (or at least as an attempt
thereto). The aim is that whoever has an understanding of quantum mechanics
and special relativity, can use this thesis to understand the derivation of my
results that have appeared in the scientific literature, and the motivation why
they were derived.

Then, why did I choose to do research in quantum gravity? I must say that I
think (although the process of remembering probably alters my own memories)
I became first interested in the subject of quantum gravity while reading Pauli’s
account on general relativity [13]. Despite the fact that its content has become
dated, Pauli’s treatise is important from the historical point of view. It contains
a critical survey of several old theories (like Weyl’s unification of gravitation and
electrodynamics), which in a modern book would never be mentioned because
they have since then been surpassed by experimental counterevidence.

xiii
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Quantum gravity

“Raffiniert ist der Herr Gott, aber boshaft ist er nicht.”

Albert Einstein

As indicated by its title, this thesis deals with spacetime singularities. These
are predicted by general relativity, and it is expected (or hoped) that a quan-
tum theory of gravity will shed light on their nature. At a first glance, one
may suggest that the development of a consistent quantum mechanical version
of general relativity is merely a philosophical question, because it is possible
to write an effective quantum field theory for the gravitational interaction that
is valid at energies much below the Planck scale [27, 28]. However, the con-
struction of such an effective quantum theory breaks down near the Planck
scale, where we expect (or hope) the quantum effects to become important
in order to resolve classical spacetime singularities. Still, one might comment
that we cannot directly observe the Planck scale where quantum corrections
would perhaps significantly alter the classical results, and for the energies we
can observe the standard model of elementary particle physics provides a very
good effective description. Nevertheless (and even putting aesthetical problems
like the unification of forces aside) because of the fact that the matter and en-
ergy that sources the gravitational field is quantized, the gravitational force
has to be quantized too out of consistency, as has already been remarked in
[13] when the quantum nature of matter became first apparent. In addition,
the diffeomorphism invariance behind general relativity is not incorporated in
the standard model either, which is formulated with respect to flat Minkowski
spacetime. For a generally covariant formulation of the standard model, quan-
tum field theory on arbitrarily curved (but still classical) spacetimes would
suffice [22]. But in this approach the degrees of freedom of the gravitational
field (or the degrees of freedom that lead to the gravitational field) aren’t taken
into account yet.

The research presented in this thesis is in the context of only one approach
to quantum gravity, more precisely string theory. Perhaps because of the diffi-
culty to compare quantum gravity theories with experiment, there are a num-
ber of alternative and largely independent approaches to the problem. First
of all, it is in principle possible that the renormalization group equations for
the gravitational force simply possess a nontrivial fixed point. This scenario is
sometimes called “asymptotic safety”. For a review see e.g. [29]. An alterna-
tive, called loop quantum gravity [17, 20], is to consider that the Planck scale
offers a natural cutoff, somewhat reminiscent of the cutoff in solid state field
theory from the underlying atom lattice. In this approach one primarily tries
to reconcile the foundational concepts of quantum mechanics and general rel-
ativity, without immediately aiming to unify gravity with the standard model
forces. There are also numerous other approaches to quantum gravity, which
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I will not list here. For a brief overview, see for example the introduction of
[20]. Historically speaking, also higher derivative theories (adding higher order
curvature invariants to the Einstein-Hilbert action) and supergravity theories
have been investigated in the context of quantum gravity, but some of these
have been incorporated as low-energy limits of string theory.

Nevertheless, before we might become entangled in our attempt to describe
and understand (aspects of) quantum gravity, we should already be aware of
how profoundly our traditional view of the Newtonian gravitational attrac-
tion already has to be changed by the combination of general relativity and
recent cosmological measurements. General relativity posits that every field
with energy-momentum couples to the spacetime structure. While the con-
tribution of the standard model fields to the energy-momentum tensor is well
understood, cosmological observations have confronted us that most of the
energy-momentum tensor in the universe consists of “dark matter” and “dark
energy” of which we do not know the exact nature yet.

Furthermore, the masses that appear in Newton’s fourth law (which, up till
now, has been tested down to the millimeter scale) have a more complicated
origin than we would perhaps implicitly assume. The main contribution to
the mass of the known matter is due to hadrons (e.g. neutrons, protons) but
their large effective mass is actually generated by quantum-chromodynamics
(through the gluon fields and sea quarks that dress the valence quarks in the
hadrons). In addition, the rest mass of the standard model fermions (e.g.
511 keV for an electron) is generated by interactions between the fermions and
the Brout-Englert-Higgs field.
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Conclusions?

All the time you’re saying to yourself “I could do that, but I won’t”
- which is just another way of saying that you can’t.

R. P. Feynman

In fact, the working title of my thesis was “The big bang in string theory”, and
notwithstanding its ambitious sound, I am (and I guess I am not alone) still
far from a thorough understanding of gravitational quantum physics, let alone
a satisfactory understanding of the big bang singularity and the beginning of
the universe. But, I suppose that science benefits from all its contributions,
whether great or small, so allow me to quote an observation from ecology which
states that (in general) “ants are indispensable for the well-functioning of an
ecosystem”, so if this work were only “a small step for the ecosystem” it was
nevertheless still “a great step for the ant”. And now I’ve already mentioned
ants, let me introduce another analogy. Because there is a wonderful relation
between the ability of a nest of ants to construct the shortest path between
two points and the “intuitive” concept behind path integrals (I cannot help
wondering if Feynman came up with his idea after having been busy to keep
ants out of his fridge), maybe I could rather compare scientific progress with a
path integral and consider my “ant” work as a (quantum) fluctuation that ulti-
mately contributes to the (semiclassical) path that leads to an understanding of
quantum gravity. So then I must hope the phase factor of my contribution does
not oscillate too rapidly ;-) And if it would, let me at least hope (to carry the
comparison a little further) that the road to quantum gravity is determined by
a Gaussian fixed point, even while quantum gravity itself isn’t, so that future
scientific developments will finally shed light on a fundamental problem that is
already open since (neglecting a decade or two) the beginning of the previous
century.
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Outline

When Dirac visited Princeton in 1928 he gave a seminar report on
his paper showing the connection of exchange energy with the spin
variables of the electron. In the discussion following the report,
Weyl protested that Dirac had said that he would derive the results
without the use of group theory, but, as Weyl said, all of Dirac’s
arguments were really applications of group theory. Dirac replied, “I
said I would obtain the results without previous knowledge of group
theory.”

“Theory of Atomic spectra,” Condon and Shortly

The thesis “Geometrical resolution of spacetime singularities” deals with some
special cases of string theory (and field theory) in lightcone time-dependent and
singular spacetimes. Because it is a joint thesis between two different faculties,
I have to anticipate that readers can have a very different background. In
addition, precisely because the research results presented here do not require
the full mathematical machinery of string theory, it is an opportunity to make
the whole thesis more accessible for non-experts. Therefore the thesis opens
with a large introduction, and is afterwards divided into several parts, aimed at
different levels of specialisation. Each of the parts consists of several chapters
which are relatively self-contained. Especially the chapters of the second and
the third part can be largely read in the order preferred by the reader: cross-
references point to relevant material discussed elsewhere. The expert readers
can immediately read the third part “Research”.

In the first part “Foundations” I present some preliminaries concerning cos-
mology, general relativity, string theory and field theory in curved spacetimes,
aimed at a researcher in physics without expert knowledge in string theory.
Because it is impossible to give a self-contained discussion in only a few chap-
ters, I will primarily illustrate some important ideas. As already mentioned
in the Prologue, I assume that the reader is acquainted with special relativity,
quantum mechanics (and basics of quantum field theory).

In the second part “Background” I discuss more specific topics that ap-
peared at various points during my research. Some of the latter topics (con-

xix
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cerning plane waves, singularities and matrix theory) are perhaps also useful
for researchers in string theory specialized in a different direction. For the spe-
cialists it may appear that the second part is written at a pedestrian level, this
is in order to remain clear for a wider public (I hope).

The third part “Research” deals most directly with the topics I have in-
vestigated. The first two chapters deal with geometrical resolutions, the third
with the construction of an important class of singular time-dependent back-
grounds. For convenience I have also added a chapter with conclusions that
summarize the work.

The material that did not fit into one of the three previous parts, but which
is perhaps useful for a subset of the readers, has been moved to the appendices,
in which I have also included a Dutch summary.



Chapter 1

Introduction

The desire of children for visualizability is reasonable and healthy,
still such a desire in physics can never be an argument for main-
taining a particular system of concepts.

Wolfgang Pauli

1.1 Gravitational singularities

After the discovery in 1929 by Edwin Hubble that the light we observe from
other galaxies is redshifted in proportion to their distance, it was interpreted
that all galaxies move away from each other. This observation strongly sup-
ported the Friedmann-Lemâıtre model of an expanding universe. Assuming
that there is no special “center” of the universe, the current expansion of our
universe leads to the conclusion that in the past all galaxies must have been
closer together, when the universe was smaller. If we apply general relativity
to derive the evolution of our spacetime, and we make some very reasonable
assumptions about the matter content of the universe, we have to conclude
that 13, 7 billion years ago the universe began with a “big bang” singularity.
At the big bang singularity the matter density in the universe was infinite
and distance between (spacelike separated) points of the spacetime was zero.
Around the seventies the singularity theorems of Penrose and Hawking made
the prediction of an initial singularity even stronger, because they proved that
the existence of a “big bang” in a general relativistic spacetime does not rely
on a homogeneous distribution of matter.

In 1964 Penzias and Wilson observed the presence of an isotropic electro-
magnetic background at microwave frequencies. The signal was characterized
by a blackbody spectrum at a temperature of 2, 725 K, and seemed to be present
throughout the whole universe. This “cosmic microwave background” is even

1
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stronger support for the standard big bang cosmology because the origin of the
cosmic microwave background is straightforwardly clarified by the big bang
cosmological model. The high densities of matter in the early stages of the
universe were accompanied by high particle energies. At such high densities
photons were continuously scattered by charged particles. While the universe
was expanding, the matter density and average particle energy dropped. And
after 380 000 years, when the energy had dropped below 0, 25 eV, electrons and
protons had recombined to form neutral hydrogen. At that moment the uni-
verse became transparent for photons (atomic electrons interact much more
weakly with photons) and at that energy the free photons decoupled from
matter. Because the universe was still expanding afterwards, the photon wave-
lengths became redshifted. The cosmic microwave background observed today
is then the remnant of the high energies of these photons at the moment of de-
coupling, indicating that the universe has indeed expanded from a more dense
and energetic state. But if we extrapolate the temperature of the universe to-
wards earlier times, when the universe was even smaller, the particle energies
grow so high that we expect that general relativity breaks down as a classical
theory. It is expected that, like all other known forces, the gravitational force
has a quantum mechanical nature, but gravitational quantum effects only be-
come important at very high energies around the Planck scale. The Planck
scale lies at an energy of 1, 22 · 1028 eV. It is determined by a combination
of the strength of the gravitational interaction (Newton’s constant GN ), the
speed of light c, and the reduced Planck’s constant ~, which are, as a matter
of fact, our only natural units to construct the units of mass and length. This
energy corresponds to a Planck time, at 10−43 seconds “after” the big bang.
What has happened before this time lies outside the realm of (classical) gen-
eral relativity. Therefore the question what was the origin of the universe is a
question for a quantum theory of gravity. Although, strictly speaking, we can
only safely trace back the evolution of the early universe till 10−12 seconds after
the big bang, because this time corresponds to the energies we have already
investigated in particle accelerators.

Because gravitation tends to increase spatial differences in density, small
irregularities in the matter distribution in the early universe have lead to the
formation of structure. Matter has become collected into superclusters, clus-
ters, galaxies and stars. In stars the matter distribution reaches high densities
again, and hydrogen nuclei become sufficiently hot for a chain of nuclear reac-
tions to take place. During the star’s main sequence the outward pressure of
these nuclear reactions balances out the gravitational attraction inside the star.
Stars like our sun simply burn out their nuclear fuel, but the stellar nucleus of
very massive stars collapses under its own weight. If the star was heavy enough,
its nucleus will shrink and become more and more dense and the original stellar
matter will collapse into a point of infinite density, a “black hole” singularity,
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which is another example of a gravitational singularity. Again, we expect that
gravitational quantum effects will become important once the stellar matter
is contained in a region with a size of about the Planck length. In the case
of black holes, general relativity predicts the appearance of a “horizon”. The
horizon surface is the boundary of the region in which all light curves end in the
black hole singularity. The horizon prevents the outside world to receive infor-
mation from the inside of the black hole, so the singularity cannot be detected.
According to general relativity very massive stars collapse into a gravitational
singularity. The precise nature of the spacetime structure inside the black hole
horizon awaits an answer in a quantum theory of gravity. Both big bang space-
times and Schwarzschild black holes have spacelike singularities, which means
that the singularity is reached when a timelike coordinate approaches a singu-
lar value, or more physically, that the singularity is present in a certain region
of spacetime at a specific value of the time coordinate.

A quantum theory of gravity is also important out of theoretical consider-
ations. Two of the intellectual breakthroughs of early 20th century physics are
general relativity and quantum mechanics. At first sight they seem to describe
different phenomena: general relativity describes relativistic effects in gravi-
tational physics (like the bending of light rays in a gravitational field) while
quantum mechanics describes the behaviour of microscopic particles. Quantum
mechanics, together with special relativity, has led to quantum field theory.
Quantum field theory is the basis of the standard model of particle physics
which gives a very precise description of all known forces except gravitation.
There is only one particle in the standard model that hasn’t been observed
yet: the Brout-Englert-Higgs particle, which is a remnant of the symmetry
breaking of the electroweak force. This mechanism is necessary to explain why
the particles that transmit the weak nuclear force have finite range (the weak
force is transmitted by massive bosonic particles, and the Brout-Englert-Higgs-
Guralnik-Hagen-Kibble mechanism explains the origin of the masses of these
bosons).

As discovered by Einstein, general relativity modifies Newtonian gravity,
and thereby predicts that spacetime is not static but that it is (classically) de-
scribed by a metric field. The metric field is determined (up to an equivalence
class) by the matter distribution in spacetime. Physical theories like general
relativity and the standard model are important to shape our understanding of
nature, but they are also relevant technologically. For example, general relativ-
ity is necessary to make the GPS system operate and quantum electrodynamics,
one of the quantum field theories behind the standard model, is necessary to
study laser fields of relativistic power [31]. Yet, general relativity and quantum
field theory appear to be mutually inconsistent. First, the usual methods to
subtract the divergences that arise in quantum field theory when one takes
quantum effects into account, do not work for general relativity. Second, the
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standard formulation of quantum field theory is worked out in a flat background
without curvature, called Minkowski spacetime (Minkowski spacetime is remi-
niscent of Euclidean space). Still, through Einstein’s equations, the spacetime
structure of our universe is influenced by its matter content, and this matter
consists of particles (or fields) that obey quantum principles, so the metric
field in general relativity has to be quantized too. Likewise, the structure of
spacetime influences the behaviour of matter fields, so one should be able to
formulate quantum field theories in curved backgrounds. But the question how
to formulate gravity at the quantum mechanical level is of a more fundamen-
tal nature than describing propagation of quantum fields in curved spacetime.
The quantisation of the metric field has turned out to be much harder than
the research of quantum effects in curved spacetimes. Since it is expected that
curved spacetimes are describable by macroscopic states in a quantized the-
ory of gravity, the formulation of quantum fields in curved spacetimes should
arise from a semiclassical description of a quantum theory of gravity coupled
to matter particles.

The presence of an initial singularity in our universe, and of final singu-
larities in black holes, also raises the question whether propagation of matter
through a singularity is possible and how it should be formulated in a rigorous
theoretical manner. Such evolution across a singularity is important for cer-
tain cosmological models. The study of how singularities affect the evolution
of fields near (or “through”) a singularity requires a theoretical framework to
take care of quantum gravitational effects.

Ideally, a quantum theory of gravity should give an explanation of these
cosmological singularities. Several attempts have been made to construct a
quantum theory of gravity that reproduces general relativity at energies much
lower than the Planck scale. Yet it turned out that string theory, which was
originally constructed as an attempt to formulate the strong nuclear force,
could describe the exchange of gravitons, the quanta of the gravitational force,
in a consistent manner. But in some sense, some of the older ideas to formulate
a quantum theory of gravity, supergravity and higher derivative theories, are
incorporated in string theory.

1.2 String theory as a quantum gravity theory

The physical description of a certain system differs when we study it at a
“macroscopic” level versus a “microscopic” level. The length scales that macro-
scopic and microscopic refer to, of course depend on the physical context. Al-
though we are looking at the same physical system, we have to use different
physical quantities to describe the phenomena that happen at different length
scales in an effective way. For example, a gas can be characterized by its
temperature and its pressure at the macroscopic level, but at the molecular
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level there are colliding gas molecules with certain chemical properties instead.
At a first glance the “low energy excitations” at the macroscopic level appear
largely independent of the “high-energetic phenomena” that appear at much
smaller length scales. For example, the Navier-Stokes equations describe the
behaviour of fluids in the continuum limit, but in general these equations are
independent of the type of molecules in the fluid. Yet the Navier-Stokes equa-
tions are an effective description that follows from the chemical interaction
between the fluid molecules. At a deeper level, the microscopic molecular in-
teractions do leave their trace in macroscopic parameters like the viscosity. The
Navier-Stokes equations cannot be used to describe molecular interactions and
in general we cannot expect that we can use low-energy effective interactions to
give a consistent description of high-energetic phenomena. Coming back to the
gravitational force (or the interactions transmitted by the metric field), we do
not expect that general relativity can adequately describe the high-energetic
physics close to the big bang, where quantum gravitational effects are expected
to appear. String theory is capable of describing the exchange of gravitons,
which are the quanta of the gravitational force, and general relativity can be
obtained as the (classical) low-energy limit of the gravitational interaction in
string theory.

To achieve a well-defined quantum theory that describes the interaction
of gravitons, one has to assume that string theory (in its usual perturbative
formulation reminiscent of the expansion in terms of Feynman diagrams that
is used in quantum field theory) is described by the propagation of extended
string-like objects and their interactions. Another prediction is that the num-
ber of spacetime dimensions is not arbitrary but is required to be ten for critical
superstrings. For noncritical strings the number of dimensions can be different,
but this leads to a strong curvature of the spacetime geometry of the order of
the inverse Planck area, which cannot correspond to our universe. The ne-
cessity of having ten dimensions for critical superstrings means that at the
low energies we are used to observe, we can only observe four dimensions that
have decompactified (this is the standard interpretation, alternative views pro-
pose the existence of large extra dimensions). String theory is said to unify
general relativity and the standard model because it is not only a quantum
theory of gravity, but also offers a framework capable of incorporating the
non-gravitational interactions of the standard model. But in order to include
oscillations in the spectrum of superstring theory that have a fermionic char-
acter to be able to describe the matter in the universe, one has to assume that
at high energies there exists a symmetry that relates the bosons (up till now
the force-carriers) and the fermions (up till now the matter particles) in the
universe. This relation is called supersymmetry and originally it was proposed
independently of strings. What the precise mechanism is that breaks this sym-
metry at low energies, will be investigated in the Large Hadron Collider at
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CERN.
String theory owns its name because originally its fundamental degrees of

freedom were considered to be stringlike (not pointlike). Physical effects can
be calculated by means of a perturbation expansion into strings that split and
join on a fixed spacetime background (strictly speaking there are five ways to
define a consistent superstring theory that includes fermions). But after sub-
sequent research it has turned out that string theory also includes pointlike
and higher-dimensional objects (coined “p-branes”, a 0-brane is pointlike, a
1-brane is a stringlike object, a 2-brane is a membrane etc.) which can become
the fundamental degrees of freedom in regimes where the usual perturbative
expansion of string theory in terms of the original strings breaks down. As a
matter of fact, none of these objects can be called more fundamental than the
others. Depending on the circumstances, each of these objects can be more ap-
propriate to work out a perturbation expansion to describe the physical effects
of string theory. In order to distinguish the underlying theory that is behind all
these perturbative expansions, compared to the original perturbation series in
terms of strings, one often hears the name “M-theory” [34]. M-theory is used
to describe the research towards a nonperturbative, background-independent
theory of gravity, with the earlier five string theories as approximations when
the string coupling is small, but in this thesis I will simply use the name string
theory.

In brief, research in string theory is an important approach to investigate
gravitational quantum effects. However, these quantum effects are expected to
become only important near singularities or at length scales around the Planck
length. If we take a 20th century point of view on scientific progress and we
look at the research field of quantum gravity with Karl Popper in mind, the
difference of magnitude between the Planck scale and the TeV scale is unfor-
tunate because it means that (barring unexpected future developments) one
cannot directly compare theoretical predictions with experiments. But since
quantum gravitational effects were important in the early universe, they will
have influenced the earliest structure in the universe. Therefore they may lead
to observable effects in cosmological measurements, for example in the higher
order fluctuations of the cosmic microwave background. Last year the satellite
PLANCK has been launched to investigate these issues in more detail than its
precessor WMAP. Furthermore, at the fundamental level a theory of quantum
gravity is needed for theoretical consistency. As a clear experimental verifi-
cation is (at present) not possible, the provision of a theoretical backbone for
well-established theories is an important result. For example, a calculation by
Stephen Hawking in the context of quantum fields on curved spacetime showed
that black holes emit a blackbody radiation [30]. Basically, the origin of this
so-called “Hawking radiation” is that black holes curve spacetime so strongly
that particles are produced. Because of the blackbody spectrum it is possible
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to assign a temperature and an entropy to the black hole. Hawking’s computa-
tion showed that the entropy is related to the horizon area of a black hole. In
statistical mechanics the entropy is related to the number of states of a system.
The question how the number of internal states of a black hole can be rep-
resented by its horizon area size was elucidated by Vafa and Strominger [33],
who presented an important derivation in string theory. Their construction
(with some technical assumptions on the class of black holes) allowed them
to calculate the entropy out of the number of string states that make up the
black hole. They found exactly the same relation between entropy and hori-
zon area and reproduced the precise numerical coefficient. Another important
result in string theory is the realisation of certain aspects of the “holographic
principle”. The holographic principle, introduced by Gerard ’t Hooft [32] in
1993, is based on the behaviour of gravity at high energies and posits (roughly
stated) that gravitational phenomena in a spacetime region can be described
in an equivalent (or dual) “holographic” manner by a quantum field theory
in a smaller amount of dimensions. The principle is apparent in Maldacena’s
conjecture [127] about the equivalence between a certain superstring theory
on a specific spacetime with a negative cosmological constant (which is called
“Anti-deSitter”), and a conformal quantum field theory that is defined on flat
Minkowski spacetime, which is the boundary of that Anti-deSitter spacetime.
Another example of the holographic principle is matrix theory [98], that gives
a non-perturbative formulation of string theory in certain regimes. In matrix
theory, the matrix model of a spacetime gives a description of gravity in terms
of quantum mechanical matrices. These examples of holography show how
string theory can elucidate previously unexplained relations between quantum
field theory and gravity.

Mathematically, the perturbation expansion of string theory is formulated
on a background spacetime. This construction is well understood if the back-
ground spacetime is static. But according to standard cosmology, our universe
is not static but expanding and it has an initial singularity. Currently string
theory cannot deal well with time-dependent backgrounds, nor with spacelike
singularities like the big bang. To understand whether our universe can be de-
scribed by a consistent solution of string theory, it is therefore crucial to develop
techniques that allow to describe string theory in time-dependent backgrounds.
Near singularities strings can become highly excited, which would lead to back-
reaction effects of the string on the metric through Einstein’s equations (or an
appropriate quantum-mechanical generalization thereof in string theory). Of-
ten the interaction between strings grows strong and it becomes necessary to
investigate non-perturbative formulations of string theory that can deal with
strong coupling between strings. Therefore, non-perturbative formulations of
string theory, among which matrix theory, have attracted a lot of attention in
the study of cosmological singularities. These non-perturbative formulations
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were already known for a restricted class of usually static backgrounds. Re-
cent work consists of extending these non-perturbative descriptions to certain
time-dependent backgrounds with cosmological singularities, for example the
matrix big bang model by Craps, Sethi and Verlinde [107]. Matrix models
for spacetimes that include a big bang type of singularity typically involve a
quantum field theory with singular features (one might say that the spacetime
singularity has been mapped to another singularity because of the intrinsic
holographic nature of the matrix models). The singularities in the dual field
theories may appear as time-dependent terms in the Hamiltonian, or the field
theory may be defined on a singular (auxiliary) spacetime. The formulation of
matrix models in arbitrary spacetimes remains to be further developed.

1.3 Matrix theory and the emergence of space-
time

In the previous section I have already mentioned some aspects of matrix the-
ory, but without specifying what it exactly describes. I will give a very brief
introduction to matrix theory, which gives a description of spacetime at the
quantum level when strings strongly interact.

Matrix theory is a conjecture by Banks et al [98] to capture, in certain
regimes, physical phenomena associated to strongly interacting strings. Matrix
theory gives a nonperturbative formulation of superstring theory in terms of a
dual Super-Yang-Mills field theory of quantum-mechanical matrices. Roughly
speaking, the dual theory is derived from Yang-Mills fields that propagate on
D0-branes. These D0-branes are very massive objects when superstrings inter-
act weakly, but become the fundamental degrees of freedom at strong coupling
between strings. The original matrix theory model describes asymptotically
flat eleven-dimensional spacetime, but during consequent work matrix models
have been derived for other spacetimes as well, for example the matrix big bang
model of Craps et al [107] that is a toy-model for a big-bang like singularity.

In matrix theory spacetime is an emergent concept. Let me briefly illustrate
this, the bosonic part of the matrix theory action is given by

S =
∫

dtTr
{(
D0X

i
)2

+ ([Xi, Xj ])2
}
, (1.1)

where the Xi (i = 1 . . . 9) are N×N matrices (for the matrix theory description
of string theory the limit N →∞ has to be taken). For clarity I have neglected
some prefactors and I have omitted the fermionic partners of the spacetime
fields (these fermionic partners are present because the theory is supersymmet-
ric). The symbol “Tr” is the trace over the matrices Xi. The eigenvalues of
the Xi are the position vectors of N D0-branes, and there is a commutator
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potential
V = −([Xi, Xj ])2 . (1.2)

When the D0-branes are far apart, the potential would behave as a quartic po-
tential in generic directions and contribute strongly to the energy. Therefore in
the low-energy configurations the matrices Xi have to commute, which means
that their diagonal elements give a good indication of the position in spacetime.
On the other hand, when the D0-branes move closer, the off-diagonal modes of
the matrices Xi become important, and the position of the D0-branes becomes
fuzzy, which is interpreted that spacetime becomes non-commutative at small
distances.

1.4 Aim and scope of my thesis

The aim of the research is the study of cosmological singularities, and string
theory provides a theoretical framework. Nevertheless, some results can be
understood independently of string theory, in the context of quantum field
theory on singular spacetimes. In addition, to understand the other results
it is not necessary to be skilled in the full computational machinery of string
theory.

My research is divided into two main topics: the use of geometric resolutions
to define evolution across singularities, and the usefulness of singular plane
wave models for studying the behaviour of string theory on singular and time-
dependent backgrounds. Somewhat lurking in the background is the matrix
theory description of singularities that gives rise to field theory models on
singular spacetimes.

The definition of field propagation through singularities suffers from am-
biguities. The geometric resolution prescription allows us to investigate the
evolution across a singular spacetime in a concise manner. That is, once a spe-
cific geometric resolution is chosen, the procedure leads to well-defined results.

In the following sections I introduce gravitational plane waves and I illus-
trate the geometric regularization procedure. We use a geometric resolution
to investigate the propagation of a scalar field on a singular spacetime and of
a string on a singular plane wave background. Finally, in order to develop
a better understanding of matrix models for plane waves, we investigate the
formulation of p-branes in an asymptotically plane wave background.

My research about propagation through singularities is in some sense a
“double” toy model, if we consider it as a direct attack to investigate singular
spacetimes. I use the name “double toy model” because we study the propa-
gation of “test fields” on a “fixed background” spacetime. I believe it is worth
clarifying both concepts because it will elucidate the reasoning behind the spe-
cific conclusions of my research projects that I will discuss in the next sections.
In a complete quantum gravitational setting we would expect that quantum
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fluctuations of the spacetime can appear (hence, no fixed background) and that
there is a backreaction of the propagated field on the spacetime. However, at
present such a complete framework would be hopelessly intractable (and not
well-defined yet). Therefore we have to resort to simplifications that allow us
to derive conclusions. But in a more indirect manner, as I already mentioned
above and as I will clarify shortly afterwards, my research is also important for
a matrix model resolution of singular spacetimes.

We can motivate the choice for a fixed background spacetime because we
expect that in a semiclassical limit the interference of the quantum fluctua-
tions in the metric field (more precisely the stringlike “gravitons”) should lead
to a classical background (which, loosely speaking, should exist as a kind of
coherent state in the quantum theory) accompanied by a phase factor. Then,
in an appropriate approximation scheme around this classical background, the
quantum fluctuations can be considered as perturbations with respect to this
classical background. Therefore, at the zeroth order of the approximation we
can limit ourselves to considering the classical background only.

The second simplification consists of the introduction of test fields (par-
ticles or strings) that propagate on the classical background. This is usually
called the probe limit approximation. By definition “test” fields would mean
the fields do not interact with the spacetime background, but in a relativis-
tic setting both energy and mass couple to the geometry of the spacetime,
and even massless test fields carry energy. Therefore we should assume that
both the mass and the energy of the “test fields” remains small enough such
that it doesn’t disturb the background spacetime. But because of Heisenberg’s
uncertainty principle in quantum mechanics low energies of a field mode are
related to long wavelengths (for the sake of simplicity I present an argument
for a massless field that travels at the speed of light). Therefore test fields with
small energies only permit us to probe the slow variations in the spacetime.
In other words, we can fairly reasonably assume that the introduction of test
fields is permitted in a background with weak curvature, where the spacetime
geometry varies slowly. But singular spacetimes typically produce a very strong
curvature of the classical metric near the singularity, and singularities with a
diverging curvature often tend to blueshift the energy of a string oscillation
mode which leads to backreaction of the field on the spacetime geometry.

If the probe limit approximation (for example, loosely interacting strings
on singular spacetimes) is invalid, we can turn our attention to matrix models
of the singular spacetimes. There is a double advantage to matrix models:
they allow to study the quantum behaviour of a spacetime that reduces to
a classical background far away from the singularity, and they also take the
backreaction of strings on the spacetime background into account. But the
behaviour of matrix models immediately leads back to the investigation of how
quantum fields propagate on singular spacetimes. It turns out that, due to their
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holographic nature, matrix models for spacetimes that include a big bang type
of singularity typically involve quantum field theories that possess various types
of singularities, for example, the field theory that describes the matrix models
may be defined on a singular spacetime. So in addition to the usefulness of my
results as a “double toy model” to investigate singularities, the propagation
of quantum fields on a singular spacetime is very useful for the interpretation
of matrix models of singular spacetimes. Of course, these auxiliary singular
spacetimes on which a matrix model is constructed are still toy models for a
real cosmological spacetime with a big bang singularity, but the consideration
of a quantum field theory on a singular background is strongly motivated by
the observation that they appear in the formulation of a matrix (toy) model
for a spacetime singularity.

1.5 Gravitational plane waves in string theory

There is an important class of spacetime structures, called gravitational plane
waves, which constitute an interesting background in string theory. First, the
plane wave spacetimes can be time-dependent and singular, depending on the
chosen plane wave profile. Plane waves possess a special metric structure. In
lightcone gauge the equations of motion for the oscillation modes of a string are
exactly solvable. In addition, the metrical structure of a plane wave guarantees
there are no α′ corrections1 in the low-energy effective action for string theory
and that plane waves are exact string theory solutions. The α′ corrections are
related to the extended length of strings thus their absence in the low-energy
effective action guarantees that in plane waves “stringlike” effects are not di-
rectly visible (though the consideration of strings is of course still necessary
to guarantee a consistent perturbative approach to study the propagation of
gravitons on a background spacetime). Therefore in singular plane waves it
becomes possible to primarily concentrate on the effects due to the divergent
curvature near the singularity.

In addition, plane waves are naturally associated to cosmological singular-
ities. The “Penrose limit”, a certain procedure developed by Roger Penrose,

1Two important parameters in string theory are the string coupling gs and α′. The latter
is related to the string length `s by

√
α′ = `s. If one regards string theory as a quantum

theory of gravity (say, in ten dimensions) the string length `s has to be of the order of the
Planck length `P according to

`P ≈ g
1/4
s `s. (1.3)

In the formulation of string theory as a perturbation series in the string coupling gs, factors
of gs appear in front of quantum corrections, somewhat like the perturbation expansion of
quantum electrodynamics in terms of the fine structure constant α = e2/(4πε0~c). On the
other hand, α′ corrections are related to the fact that a string has a finite length compared to a
point particle. The α′ corrections appear at low energies where string theory is approximated
by an effective action, in which the higher derivative terms are suppressed by powers of α′.
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associates a plane wave to any spacetime. This is done by “zooming in” onto
the original spacetime near a lightlike geodesic. The resulting plane wave geom-
etry is simpler to study but it captures essential information of the spacetime
in the neighbourhood of the geodesic. If the Penrose limit is performed along
a geodesic that hits a singularity, one obtains a singular plane wave. One of
the possible characteristics of a singularity (but one that is physically very
intuitive) is a divergent tidal force (that is due to the divergent curvature of
the spacetime metric) is encoded in the plane wave profile. For typical cos-
mological singularities Blau et al [70] have shown that under a mild technical,
physically very reasonable assumption, a Penrose limit leads to scale-invariant
plane waves. The scale-invariance means that it is possible to rescale the two
coordinates that characterize the directions on the light cone, while keeping
the metric that characterizes the spacetime invariant.

1.6 Geometrical regularizations

In this section I will illustrate the main idea behind the geometrical resolution
procedure. The problem is to find an unambiguous way to define the propaga-
tion of a field across a spacetime singularity2 and a major step in the procedure
is the construction of a class of geometrically regularized metrics related to the
singular metric. To illustrate the idea, let us consider a simple system that
consists of a massive scalar field on a curved background that is characterized
by a metric tensor gµν . Taking the “mainly plus” convention for the metric,
the field evolution is determined by the action

S = −1
2

∫ √
−g
(
gµν∂µφ∂νφ+

1
2
m2φ2

)
dDx, (1.4)

which is invariant under coordinate reparametrizations x → x′(x) as required
by general relativity. ∂µ denotes the ordinary partial derivative ∂/∂xµ. The
“determinant of the metric” g = det gµν and the inverse metric tensor gµν take
into account that the scalar field propagates on a curved spacetime. There are
no interaction terms higher than the mass term m2φ2, so the scalar field is
called “free”, and the metric field gµν is considered to be non-dynamical. In
other words, to excite the metric field with respect to its classical background
value requires such high energies compared to the excitations of the scalar field,
that as long as we are interested in configurations with low energies, we can
safely neglect the kinetic term of the metric in the action (

√
−gR, as it appears

general relativity). We then demand that the action is stationary with respect

2In order to define a gravitational singularity I would have to introduce a few elements
from differential geometry. I advise the interested reader to take an immediate look at
appendix A which gives an explanation at an introductory level.
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to infinitesimal variations in the field φ → φ + δφ, in order to determine the
(Klein-Gordon) equation of motion(

− 1√
−g

∂µ
(√
−ggµν∂ν

)
+m2

)
φ = 0 . (1.5)

In the case of a free scalar field, we can find the full solution by decomposing
it into field modes (with wave vector k) to which creation operators a†k and
annihilation operators ak are associated,

φ =
∑
k

fkak + f∗ka
†
k , (1.6)

and the mode functions fk are classical solutions to the wave equation (1.4).
In order to proceed with the illustration of the geometrical resolution of

a free field, let us consider a specific example. Suppose we are investigating
the propagation of a free massive scalar field across the singularity of a four-
dimensional singular plane wave metric of the form

ds2 = 2dudv − ω2
0

u2

(
x2 − y2

)
du2 + dx2 + dy2 . (1.7)

Here u and v are “lightcone coordinates” defined by u = (z − t)/
√

2 and v =
(z + t)/

√
2 with the plane wave propagating in the direction z. By means of

the action (1.4) we obtain the Klein-Gordon wave equation

−∂u∂vφ−
1
2
∂2
xφ−

1
2
∂2
yφ−

ω2
0

2u2

(
x2 − y2

)
∂2
vφ+

m2

2
φ = 0. (1.8)

A Fourier transform with respect to v, given by

φ(u, v, x, y) =
1√
2π

∫
dkvφ̂kv (u, x, y)eikvv, (1.9)

puts the Klein-Gordon equation in a Schrödinger-like form (in units where
~ = 1)

i
∂

∂t
φ̂kv (t, x, y) =

{
ω2

0kv
2t2

(
x2 − y2

)
− ∂2

x

2kv
−

∂2
y

2kv
+
m2

2kv

}
φ̂kv (t, x, y). (1.10)

For clarity we have performed the substitution u → t. We can recognize this
as a Schrödinger equation,

i
∂

∂t
|Ψ〉 = H|Ψ〉, (1.11)
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with φ̂kv (t, x, y) = 〈x, y|Ψ〉. In principle can find the exact solution φ̂ with
semiclassical methods, because the (auxiliary) Hamiltonian associated to (1.10)
is quadratic in positions and conjugate momenta,

H =
1

2kv

(
p2
x + p2

y

)
+
ω2

0kv
2t2

(
x2 − y2

)
+
m2

2kv
. (1.12)

The semiclassical method of Wentzel-Kramers-Brillouin (WKB) prescribes to
write the wavefunction in the form of an exponential times a time-dependent
prefactor

Ψ(t) = A(t, t0) exp (iScl(x, y, t|x0, y0, t0)) , (1.13)

with Scl the classical action associated to the auxiliary Hamiltonian (1.12) and
x0 and y0 the initial conditions at t = t0. However, there is a singularity in
the Schrödinger equation at t = 0, as a consequence of the singularity in the
metric. Moving back temporarily to a more abstract notation, the Hamiltonian
(1.12) consists of the following operator structure

H(t) =
∑
i

fi(t)Oi, (1.14)

where the operators are time-independent but some of the time-dependent pref-
actors fi(t) become singular at t = 0 such that the expression

lim
t→0
H(t) (1.15)

is ill-defined. In principle it is straightforward to solve equation (1.10) away
from t = 0. We could call the solutions Ψ+(t) and Ψ−(t) (for t > 0 and
t < 0 respectively). However, how to match Ψ+ and Ψ− across the singularity?
The evolution is ambiguous. In the example considered above the divergent
functions are fx(t) = −fy(t) = ω2

0/
(
2t2
)
.

To proceed we introduce a regularization parameter ε and we define a family
of regularized Hamiltonians Hε such that their behaviour near the singular
point t = 0,

lim
t→0
Hε(t) = Hε (1.16)

is now well-defined and we retrieve the original Hamiltonian in the singular
limit (ε→ 0)

lim
ε→0
Hε(t) = H(t). (1.17)

We then solve Schrödinger equation of the regularized system

i~
∂

∂t
Ψε = HεΨε, (1.18)

for Ψε. The class of resolved metrics, labeled by the parameter ε, is perfectly
regular. As a consequence, the Schrödinger equation related to the evolution of
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a field on the resolved spacetime, will be regular as well. Finally we investigate
the singular limit of the wavefunction

lim
ε→0

Ψε
?= Ψ . (1.19)

If this limit exists, we consider this expression as the solution to the singular
problem. Up till now we haven’t explained what is specifically “geometric”
about our regularization. It means that we introduce a regularization parame-
ter ε in the metric. But we have to impose appropriate conditions to remove the
arbitrariness of the procedure such as that the resolved spacetime still makes
sense physically. For example, in one of the coefficients of the metric tensor we
could easily replace a singular function such as 1/t2 as follows:

1
t2

→ 1
t2 + ε2

. (1.20)

But this would be completely arbitrary without further restrictions that relate
the metric coefficients. We impose the condition that our class of “resolved”
metrics should still satisfy Einstein’s equations (in a sense to be specified below)
for all values of the regularization parameter ε. If it does, we call it a geometrical
resolution.

In fact, for the simple example considered above, the regularization (1.20) is
already geometrical (the singular plane wave is written in Brinkmann form and
the function fx(t) = −fy(t) can be modified arbitrarily) and the regularized
Hamiltonian simply becomes

Hε =
1

2kv

(
p2
x + p2

y

)
+

ω2
0

2(t2 + ε2)
(
x2 − y2

)
+
m2

2kv
. (1.21)

But such a simple structure of the resolved Hamiltonian is rather accidental,
and as we will argue during chapter 10, nothing forbids that in a more general
case the geometrical resolution would lead to a resolved Hamiltonian of a struc-
ture where several operators are involved in the resolution by the parameter ε,

Hε =
∑
i

fi(t, ε)Oi +
∑
j

gj(t, ε)Qj(ε), (1.22)

and where the additional operators Qj(ε) represent the possibility that the
operator structure of the Hamiltonian is modified during the geometric regu-
larization (the Qj(ε) will have to disappear in the singular limit).

Notwithstanding the fact that the geometrical resolution prescription is a
reasonable way to investigate the propagation of fields across spacetime singu-
larities (the regularized spacetime does admit a geometrical interpretation), it
certainly does not remove the large amount of ambiguity related to the propa-
gation of fields through the singularity. One may prefer another regularization
prescription.
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Another remark is that the demand for the regularized spacetimes to “solve”
Einstein’s equation (without specification of the energy-momentum tensor) is
not necessarily a physical criterion, because any spacetime can be considered
as a solution to Einstein’s equation as long as the matter content of the uni-
verse is not specified (though there are some reasonable physical restrictions
on the type of matter that can be allowed). In the case of singular plane
waves in the context of string theory, the analogue of Einstein’s equations are
the background consistency conditions of string theory that relate the metric to
other fields. It is therefore natural to demand that these consistency conditions
remain valid at the level of the class of regularized spacetimes. In case our reg-
ularization parameter introduces additional “fictitious” matter in the class of
regularized spacetimes (the fictitious ε-dependent matter would of course have
to disappear in the singular limit) it would be prefarable to have a physical
argument for such fictitious matter.

1.7 Free scalar field on the parabolic orbifold

Motivated by the role of quantum fields in a singular spacetime associated to
matrix models, in my first collaboration I have investigated the appearance
of singular time-dependent terms in the Hamiltonian. In an earlier project,
my collaborators Ben Craps and Oleg Evnin had considered how to regularize
those Hamiltonians by means of the most conservative approach that would
allow them to define a unitary evolution across the singularity [94]. This ap-
proach, which they called “minimal subtraction”, consists of modifying the
singular time dependences in the Hamiltonian to become distributions while
keeping the operator structure of the Hamiltonian unchanged (this approach is
relevant if the transition through the singularity is dominated by a single term
in the Hamiltonian). The cancellation of the divergence is essentially due to
the negative contributions in the distributions. We found that this prescription
was different from a geometric regularization because the negative function val-
ues associated to the distributions conflict with a geometrical interpretation.
For a geometrical resolution of dynamics on a singular spacetime background,
one generally needs to relax the specifications of the “minimal subtraction” ap-
proach, and permit modifications in the operator structure of the Hamiltonian,
as well as modifications in its time dependence, in the vicinity of the singular
region.

As a specific example we considered the propagation of a massive scalar
field in a singular spacetime. We investigated the so-called parabolic orbifold
that appears by making an identification along one of the two directions on
the lightcone (the other direction will be interpreted as the time direction) in
flat Minkowski spacetime. Because of this identification a singularity is created
that provides a toy model to investigate singularities (compare for simplicity
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the singular tip of a cone that appears by folding a flat sheet). The parabolic
orbifold can be viewed as the singular limit of the (regular) nullbrane, which
is a four-dimensional orbifold with one free parameter R. In the limit R → 0,
the nullbrane geometry reduces to the parabolic orbifold geometry times the
real line, and in this sense the nullbrane is a geometrical regularization of the
parabolic orbifold. Earlier, Liu et al [84, 86] had investigated the parabolic
orbifold in the context of string perturbation theory.

According to our geometric resolution prescription, we first analysed the
evolution of a free scalar field on the regular nullbrane, before taking the sin-
gular limit. To be able to investigate the singular limit, we introduced a new set
of coordinates on the nullbrane that is globally defined and has a well-defined
singular limit. We also considered a generalized nullbrane metric (which is es-
sentially the nullbrane enlarged with two free parameters). The essential step
towards the solution was to translate the quantum mechanical evolution on
the nullbrane into known evolution equations of a dynamical group (in this
case the two photon group from quantum optics). Notwithstanding the appar-
ently strongly singular behaviour (the singular terms cannot even be written
as distributions) of the limiting Hamiltonian, the quantum mechanical evolu-
tion across the singularity is well defined. The commutation properties of the
different operator terms in the Hamiltonian exactly compensate the singular
behaviour. But we find that the singular limit only exists for a discrete subset
of the possible parameter values within the family of generalized nullbrane ge-
ometries. We can label the subset by one integer number. As could have been
expected, the original nullbrane falls into this subset.

The evolution of the modes of the scalar field is completely charactised by
its mode functions (the same mode functions also appear in the description of
strings on the nullbrane). If we compare our results with Liu et al [84, 86] we
find the same mode functions except for the exponential that characterizes the
wave travelling in the X-direction, where there is a sign(t) factor in front of the
coordinate X. Its effect is that the position and velocity in the X-direction for
all particles are reflected as they pass through the singularity. The difference
is due to our new coordinate system that does not fail at the origin t = 0.

If we look at the discrete subset of generalized nullbranes for which the
singular limit exists, we find that their mode functions are equivalent up to a
(global) phase jump across the singularity, which appears because at the origin
the field modes cross a number of focal points that is proportional to the integer
that characterizes the subset.

1.8 String modes in singular plane waves

I have already mentioned that plane waves provide an analytically solvable
background in string theory. In collaboration with Ben Craps and Oleg Evnin
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I have investigated the evolution of a free string on a singular plane wave back-
ground [120]. The approximation of a free string can be seen as a preliminary
consideration before investigating perturbation theory on such a background.
We have concentrated on plane waves that exhibit a scale-invariant profile,

ds2 = −2dx+dx− − λ
∑
i

(
xi

x+

)2

(dx+)2 +
∑
i

(
dxi
)2
, (1.23)

as these naturally appear from a Penrose limit of cosmological singularities.
The coordinates transverse to the lightcone directions x+ and x− are denoted
by xi and we use x+ to indicate lightcone time. The scale-invariance means that
the plane wave metric is invariant under rescalings in the lightcone coordinates
(x+, x−)→ (Cx+, x−/C). Because of the scale-invariance of the singular pro-
file it is natural to impose that our class of resolved metrics be scale-invariant
as well, in addition to the constraint that our resolved metrics satisfy the gener-
alization of Einstein’s equations in string theory (the “background consistency
conditions”). We resolve the scale-invariant profile as

λ
∑
i

(
xi

x+

)2

→ λ

ε2
Ω(x+/ε)

∑
i

(
xi
)2
, lim
η→±∞

Ω(η) ∼ 1
η2
, (1.24)

where we call λ the “normalisation” of the wave profile, ε the unique resolution
parameter and Ω the resolved profile. Because of the scale-invariance there is
only one dimensionful parameter (i.e. ε) that can appear in the resolved metric,
which is the resolution parameter that we will remove in the singular limit.

To satisfy the background consistency conditions in string theory we add a
dilaton field. The dilaton is an oscillation mode of the string, like the graviton,
but it also determines the string coupling. The background consistency condi-
tions relate the curvature of the spacetime metric to the spacetime variation of
the dilaton. Naturally, we also demand that the dilaton can propagate across
the singularity and prove that it is possible.

In lightcone gauge the Schrödinger equation for the string is determined
by a Hamiltonian that can be separated as a sum of quadratic Hamiltonians
with a time-dependent frequency, each determining the behaviour of one os-
cillation mode of the string. Therefore we can initially consider all the string
modes separately. When the resolution parameter is removed, the frequencies
diverge at t = 0. Due to the quadratic dependence of these Hamiltonians
on the position and momentum operators, we can obtain an exact solution to
the Schrödinger equation by the semiclassical approximation. This means that
the string wavefunction is completely determined by solutions to the classical
equations of motion with appropriate boundary conditions. We notice that the
equations of motion for the oscillations of the string are related to the propaga-
tion of the center-of-mass mode (or zero mode) of the string. In fact, the only
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difference between the equations for the excited string modes compared to the
center-of-mass mode is the square of the mode number that contributes to the
time-dependent frequency in the Hamiltonian. But the mode number is a finite
term compared to the (diverging) time-dependent frequency and we can rigor-
ously prove it doesn’t change the existence of the singular limit. We consider
the mode number as a small perturbation and we derive a bound on how much
the solutions for the excited modes can differ with respect to the zero mode. In
the singular limit the difference between the solutions disappears and we can
prove that the excited modes can propagate through the singularity whenever
the zero mode propagates. In an earlier publication Evnin and Nguyen [119]
had already shown that the zero mode can propagate through the singularity,
leading to as discrete spectrum for the parameter λ in the wave profile.

So, just as in the case of the free scalar field on the parabolic orbifold,
also here we find a discrete spectrum related to the propagation across the
singularity. The zero mode (and the excited modes) can only cross the plane
wave singularity for (generically) a discrete set of λ. The precise spectrum
of λ is determined by the shape of the resolved profile Ω(η). But the scale-
invariance of the resolution has permitted us to derive the propagation through
the singularity without any further specification of the resolution profile Ω(η)
except for its asymptotics (1.24).

We have found that all the different modes of the string can propagate
through the singularity separately, but in order for the string to propagate
through the singularity as a whole, we have to demand that the excitation
energy of the string remains finite during the transition. We find that this is
only the case if the “normalisation” λ of the plane wave profile satisfies the
condition

λ =
1
4
−
(
N +

1
2

)2

, (1.25)

where N is an natural number (N = 0 corresponds to Minkowski spacetime or
the lightlike reflector plane of [95]). But, for λ < 0, the dilaton diverges near
the singularity and the string coupling becomes strong without bound, thereby
invalidating perturbative string theory. Thus it is impossible that the total
excitation energy remains finite under the assumption the string is free (out
of consistency the consideration of a free string requires that the interaction
between strings is small). Since perturbative string theory becomes invalid
near the singularity, this further motivates us to investigate matrix models of
singular plane waves that can deal with strong interaction between strings.

1.9 Supergravity Dp-brane solutions

Matrix models that describe the strong coupling limit of string theory, are
formulated in terms of the effective action of D0-branes (or D1-branes). There-
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fore, if we want to better investigate the properties of matrix models of singular
plane waves (for example the matrix big bang model of Craps, Sethi and Ver-
linde [107] or the plane wave matrix models of Blau and O’Loughlin [112])
we should study the formulation of D-branes in an asymptotically plane wave
background. D-branes are a special class of branes that represent degrees of
freedom characterized by strings with specific boundary conditions. They play
an important role as the effective degrees of freedom in matrix theory. The
branes that appear in string theory are dynamical objects, but they can also
be described as classical solutions in supergravity. Supergravity is an exten-
sion of general relativity that also includes fermions in its spectrum (all the
matter we know consists of fermions). Supergravity is a low-energy approx-
imation to string theory, in other words it is valid when there is insufficient
energy to excite the higher oscillations of the string. Therefore at the classical
level, where the D-branes are massive, they can be described by a metric, a
dilaton and a field potential (the field potential appears because the D-brane
is charged). These supergravity brane solutions can also be used to formulate
a duality between (lightcone) time-dependent bulk and boundary theories a la
AdS/CFT correspondence [128, 75]. The standard matrix model Hamiltonian
(1.1) describes eleven-dimensional static Minkowski spacetime. The low-energy
description of the matrix model Hamiltonian is given by string theory in a su-
pergravity background of D0-branes [105]. The matrix big bang [107] which is a
time-dependent model, is formulated in terms of D1-branes in a time-dependent
plane wave background. Therefore we are interested in the classical supergrav-
ity solutions that describe time-dependent D-branes in an asymptotically plane
wave background.

This means we are looking for a spacetime solution that will resemble a
plane wave at the radial asymptotics transverse to the brane, but the presence
of the D-branes at the origin will alter the metric for finite distances. In the
context of matrix theory models for singular plane waves we are primarily
interested in the question how to formulate a system of D1-branes if the spatial
dimension of the branes is perpendicular to the lightcone. A easier problem
is the formulation of D1-branes that are aligned with the lightcone (in other
words, the “world-volume” of the brane is parallel to the propagation direction
of the brane). In collaboration with Ben Craps, Oleg Evnin and Federico Galli,
I have derived the metric that describes extremal D1-branes in asymptotically
plane wave backgrounds, and we have extended these supergravity solutions
to higher dimensional Dp-branes (with p ≥ 1) [136]. The extension of these
p-brane solutions to a configuration of D0-branes in a dilaton-gravity plane
wave is under study. In this case there is no worldvolume of the brane to align
the propagation direction of the wave with.
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1.10 Summary

The large scale structure of our universe is very well described by general rela-
tivity, but general relativity predicts the existence of gravitational singularities
such as the big bang or black holes. The appearance of singularities indicates
where a theory loses its predictive value. In this sense, the theoretical frame-
work of general relativity breaks down near spacetime singularities, where the
gravitational tidal forces may become infinite and the mathematical description
becomes meaningless. String theory is an extension of general relativity, that
allows to describe the exchange of gravitons, the quanta of the gravitational
force. It is expected that quantum effects influence the spacetime behaviour
near a singularity. In addition, string theory offers the possibility of a unified
description of gravity with the electromagnetic and nuclear forces.

The research to extend the original perturbative expansion of string theory
(reminiscent of the expansion of quantum field theory in terms of Feynman
diagrams) towards a fully non-perturbative theory has led, among other, to
matrix theory. In matrix theory spacetime is described in terms of quantum-
mechanical matrices. Because of its intrinsic non-perturbative nature matrix
models are an appropriate method to describe spacetimes with singularities
where the interaction between strings becomes large and the usual formulation
of string theory as a perturbation expansion in function of the interaction
between strings becomes invalid. Matrix models for spacetimes that include
a big bang type of singularity typically involve quantum field theories that
possess various types of singularities. The singularities may appear as time-
dependent terms in the Hamiltonian, or the field theory may be defined on
a singular spacetime. A question related to the existence of singularities, is
whether a dynamical transition across the singularity can be defined.

In the context of cosmological singularities it is natural to investigate (singu-
lar) plane wave spacetimes, because they capture an essential characteristic of
a singularity, namely the diverging tidal forces, and they can provide a solvable
background for a string theoretical analysis. Other examples of spacetimes that
provide useful toy models for a singularity are orbifolds. Orbifolds are space-
times that are obtained by making discrete identifications in a spacetime. If we
want to investigate the evolution of fields across spacetime singularities, we find
that there is a certain amount of ambiguity related to the question. We have
applied a “geometrical resolution” prescription that demands that the resolved
spacetime satisfies Einstein’s equation, such that it still makes sense physically
as a spacetime. We have applied the geometrical resolution prescription to the
propagation of free fields across the spacetime singularity.

We have first investigated the case of a free scalar field on a two-parameter
generalization of the nullbrane spacetime [95], which itself is a geometrical res-
olution of the parabolic orbifold. We find that the singular limit of free scalar
field evolution exists for a discrete subset of the possible values of the two pa-
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rameters. The coordinates we introduce in this study reveal a peculiar reflec-
tion property of the scalar field propagation on the generalized (as well as the
original) nullbrane. We have also investigated the propagation of a free string
on a scale-invariant singular plane wave [120]. Scale-invariant plane waves are
related to typical cosmological singularities by a so-called Penrose limit. Again
we use a geometric resolution prescription and we consider a smooth class of
resolved, scale-invariant plane waves. We prove that the existence of the sin-
gular limit for the string oscillation modes is determined by the center-of-mass
mode. In particular, the demand that a free string can propagate through the
singularity yields conditions on the plane wave profile. But for such plane wave
profiles the associated dilaton leads to a blowup of the string coupling near the
singularity. This indicates that free strings are not a realistic physical approx-
imation near the singularity and it encourages us to look at matrix models. In
order to be able to study matrix models for plane wave singularities into more
detail, we have investigated the formulation of Dp-branes in an asymptotically
plane wave background. We have derived a family of ten-dimensional super-
gravity solutions of extremal p-branes that are embedded into dilaton-gravity
plane waves, with the brane world-volume parallel to the propagation direction
of the wave. Our solutions [136] are time-dependent and supersymmetric and
the freedom in the wave profile allows for the presence of a singularity in the
spacetime.
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Chapter 2

The standard big bang
cosmology

El universo (que otros llaman la Biblioteca) se compone de un número
indefinido, y tal vez infinito, de galeŕıas hexagonales.

El primero: La Biblioteca existe ab aeterno.

El segundo: El número de śımbolos ortográficos es veinticinco.

“La Biblioteca de Babel,” Jorge Luis Borges

The main theme of this thesis is the investigation of spacetime singularities by
means of geometrical resolutions. And although the final aim of our study of
spacetime singularities would be to resolve cosmological singularities, this thesis
does not directly involve cosmology. Nevertheless, for general knowledge, and
perhaps as a warm-up for the later chapters which are more mathematically
involved, it may be useful to summarize some basic cosmology.

The standard big bang cosmology states that our universe is expanding, and
that it had a beginning at the big bang. The big bang model that gives the
best accordance with modern data, such as the recent WMAP measurements
of the cosmic microwave background [35], is called the “concordance model”.
Currently, the concordance model is the so-called Λ CDM model, which includes
cold dark matter (CDM) and a cosmological constant Λ. In this model the
universe is 13, 7 billion years old and made up of 4% baryonic matter, 23%
dark matter and 73% dark energy. The Hubble constant for this model is
71 · 103 m/(s ·Mpc) and the universe is very close to spatial flatness. The dark
energy is best modeled by a cosmological constant.

Recent observations in cosmology have introduced physical questions that
do require an explanation, most notably the cosmological constant and the
cold dark matter. Of course, these observations would not necessarily require

25
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an explanation in terms of a quantum theory of gravity. For example, a neat
explanation for dark matter is given by supersymmetry. But in order to relate
these phenomenological models (with all respect for the models, of course) to
a smaller set of underlying physical principles, it may be worth trying to de-
rive them from of a consistent quantum theory of gravity, especially because
the dynamics of spacetime (in some sense the large scale cosmology) is very
well described by the classical theory of gravity, i.e. general relativity. In addi-
tion, precision cosmology is very probably the most direct method we have at
our disposal to discover experimental signatures of quantum gravity, for exam-
ple the primordial density fluctuations in the cosmic microwave background.
The cosmic microwave background is the strongest evidence that the universe
has been in a very dense state initially and it confirms the expansion of the
universe. The expansion of the universe is the natural conclusion when the ex-
perimental redshift of galaxies discovered by Edwin Hubble, is combined with
the cosmological principle.

As an extension of the Copernican principle, the cosmological principle
states that (on a large scale) all spatial positions in the universe are equivalent.
It means that at a large scale our universe looks similar in the three spatial
directions (it is isotropic) from every point (so it is also homogeneous). As
expressed by the Hubble law, the universe is also observed to be expanding.
Together, the cosmological principle and the expansion of the universe lead
to the standard big bang model. Extrapolating the expansion of the universe
with general relativity, the initial universe must have been denser and hotter.
The big bang model asserts that our universe expanded out of a very hot and
dense initial state. The laws of nuclear and particle physics then allow an
analysis of the early universe. The predictions are in perfect agreement with
the abundancy of elements in the universe. The big bang model also provides
an answer to the Olbers paradox (if the universe is infinite, why isn’t it infinitely
bright) because the light of very distant stars hasn’t reached us yet.

In short, the big bang model is well confirmed. General relativity predicts
that the universe would have started with a beginning in time at the “big bang”
singularity. A resolution of the nature of the big bang singularity itself most
likely awaits an answer in a theory of quantum gravity because the energies
involved are near the Planck scale. Some theories predict that time did not be-
gin at the big bang singularity but that the universe went through a “bounce”,
separating our universe from a previous universe [36], or that new universes are
created from black holes singularities [37]. For cosmological theories of this kind
there is the immediate question whether quantum fields can propagate through
the singularity. In that case the initial matter anisotropies in the universe may
be related to the structure of the universe before the bounce. Hence it ap-
pears important to investigate if it is possible for fields to propagate through
a singularity. A first question is then how to describe propagation through a
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singularity. As a leading candidate for quantum gravity, string theory offers a
natural framework to investigate these issues.

At cosmological scales, the evolution of the universe is determined by the
Friedmann equations. The Friedmann equations can be derived from the Ein-
stein equations for a Robertson-Walker metric, see formula (3.28) in the next
chapter. They express the time-evolution of a scale factor a(t) in function of
the matter and energy content of the universe. If we restrict our attention to a
universe filled with an isotropic, perfect fluid, the matter content is expressed
by an energy density ρ and a pressure p. More generally, if there are different
matter contributions as in the concordance model, we can write ρ =

∑
i ρi and

p =
∑
i pi. It is common to express a relation between ρi and pi by means of

the equation of state pi = wiρi. Radiation (e.g. photons) and “hot matter”
(moving at relativistic speed with negligible rest mass) have w = 1/3, whereas
(cold) matter has w = 0.

The Robertson-Walker universe possesses a parameter k that expresses the
spatial curvature: k = 0 implies spatial flatness, k > 0 represents a closed
universe and k < 0 an open universe. We add the cosmological constant Λ to
the left-hand-side of Einstein’s equation. The Friedmann equations are:(

ȧ

a

)2

=
8πGN

3
ρ+

Λ
3
− k

a2
, (2.1)

ä

a
= −4πGN

3
(ρ+ 3p) +

Λ
3
. (2.2)

Here GN is Newton’s constant and we work in units where c = 1. The Hubble
parameter H is defined in function of the time evolution of the scale factor of
the Robertson-Walker universe as

H =
ȧ

a
. (2.3)

The two Friedmann equations can be combined to yield an equation that ex-
presses energy conservation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.4)

As mentioned above, the parameter k is related to the spatial curvature
of the universe, but our universe is extremely close to spatial flatness which
means that k = 0 (spatial flatness is one of the predictions of the inflationary
model). It is common to rewrite the first Friedmann equation as

1 = Ωm + ΩΛ + Ωk , (2.5)

with
Ωm =

8πGN
3H2

ρ , ΩΛ =
Λ

3H2
, Ωk = − k

a2H2
. (2.6)
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The concordance model states that

Ωm + ΩΛ ≈ 1. (2.7)

In the concordance model the presence of the cosmological constant Λ is con-
firmed as the most likely explanation for the accelerated expansion. The accel-
eration can be written as

ä ∝ − (1 + 3w)× (1− Ωk) . (2.8)

In fact, the cosmological constant can also be viewed as part of the matter
content of the universe, for which w = −1, and with a density given by

ρΛ =
Λ

8πGN
. (2.9)

I would like to remark that the cosmological constant that is naively obtained
from quantum field theory is a factor of 120 orders of magnitude too large (but
see also [38] for recent comments on Λ). There do exist alternative explanations
for the accelerated expansion of the universe. For example, if k > −a2H2 for
all t, the presence of a scalar field for which w < −1/3 (called “quintessence”)
suffices.

Although the measured cosmological constant is tiny, it will be the dominant
contribution for the future evolution of the universe. In analogy with the
term big bang, several names have been suggested for the possible fates of
the universe (with k ≈ 0). A “big crunch” appears when the gravitational
attraction of the matter content of the universe is large enough to make the
scale factor a(t) grow smaller (ȧ < 0). Then the universe contracts again and
finally collapses. With the current value of the cosmological constant this will
be impossible. A more likely scenario is the “big freeze”: the universe keeps
expanding, ȧ ≥ 0, but Ḣ ≤ 0 and the Hubble parameter decreases in time.
A third scenario is the “big rip” (which can only happen if w < −1, such a
material is called phantom energy) in which case Ḣ > 0. In the case of a big
rip there is a future singularity at

tr =
2

3|1 + w|
1
H0

, H0 = H(t = 0) . (2.10)

If we write t = tr + δt, then the scale factor near a big rip singularity (infinite-
expansion singularity) behaves as

a ∝ (δt)−2/3|1+w| . (2.11)

On the other hand, near a big crunch or big bang singularity (infinite-contraction
singularity) the scale factor behaves as

a ∝ (δt)h , h > 0 . (2.12)



Chapter 3

Gravitation in general
relativity

And you run and you run to catch up with the sun, but it’s sinking
And racing around to come up behind you again
The sun is the same in the relative way, but you’re older
Shorter of breath and one day closer to death.
“Time,” Pink Floyd

In this chapter I will give a very brief introduction to a few aspects of general
relativity, to make the rest of the thesis more accessible for general readers. The
scope is very limited, therefore I only want to give some necessary background
such that the following chapters can be understood. Classic textbooks on
the subject are [21, 24], both offering a different point of view. In [21] the
geometrical interpretation of the gravitational interaction is stressed. On the
other hand, [24] remarks that the interpretation of the gravitational interaction
in terms of geometry may be very effective to describe the universe, but that
it is not necessarily fundamental and that it may delude the relation between
the gravitational force and the standard model forces.

In the beginning of the chapter I will introduce the equivalence principle. I
discuss the Riemann tensor in section 3.2 and the Weyl tensor in section 3.3,
adding a few notions concerning spacetime classification useful for chapter 9.
In section 3.4, I present the Einstein-Hilbert action that describes the dynamics
of the gravitational field and I end the chapter with some examples of metrics
that exhibit gravitational singularities.

I will give some mathematical preliminaries that allow to describe generally
covariant systems in appendix B. I will introduce manifolds, vectors, the metric
tensor and forms in appendix B.1. A very important concept is covariant dif-
ferentiation, summarized in appendix B.2. For later convenience, especially in

29
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chapter 9, the concept of Killing vector is briefly described in appendix B.3. In
the course of this thesis I mainly use the older formulation of general relativity
in terms of a metric. A more modern formalism, illustrated in appendix B.4,
makes use of the vielbein. This formulation is necessary in order to be able to
describe fermions in a curved spacetime. But most results of this work can just
as well be obtained with the older formalism, which is easier to communicate.

3.1 The equivalence principle

In the framework of special relativity, Einstein combined Galileo’s relativistic
principle (speed is relative) with the experimental observation that the speed of
light, which appears in Maxwell’s equations for electrodynamics, is constant for
any observer. However, in special relativity the notion of simultaneity becomes
observer-dependent and interactions in spacetime happen at a certain “event”,
instead of at a certain time and a certain place. The place and the time that
correspond to the event depend on the observer. In special relativity only local
theories can be causal. Newton’s gravitational law for the attraction between
two masses becomes acausal because it is expressed in terms of “action at a
distance” between the two masses. The equality between inertial mass and
gravitational mass in Newton’s laws led Einstein to his equivalence principle.

The (strong) equivalence principle states that, in an infinitely small region,
it is always possible to find a coordinate system in which gravitation has no
influence on the motion of particles or on any other physical process [13]. In
other words, every physical law can be brought (at least locally) to the form
that it takes in special-relativity by transforming away the gravitational field
(by going to a coordinate system in “free fall”). The “transforming away” of
the gravitational field is only possible because the gravitational field has the
fundamental property that it imparts the same acceleration on all bodies (i.e.
the gravitational mass is equal to the inertial mass).

General relativity also incorporates some of Mach’s principles, for example
that the inertia of a certain body is related to the distribution of the other
masses in the universe. This is achieved because the dynamics of the spacetime
geometry is related to the distribution of matter in the universe through the
equality between the spacetime curvature and the energy-momentum tensor
expressed by Einstein’s equation. Nevertheless, in four (or higher) dimensions
the gravitational field will also have its own degrees of freedom, for example
there can be gravitational waves in regions that are void of matter.

To incorporate the strong equivalence principle mathematically, the most
elegant way is to formulate all physical laws in a generally covariant manner.
General covariance means that equations are written in such a way that they
have tensorial transformation properties under the diffeomorphism group. In
this way the results obtained from the equations that express the physical
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laws will be invariant with respect to coordinate changes and they can always
brought to the form (locally) that they take in special relativity. In general
relativity spacetime will be identified with a four-dimensional Lorentzian man-
ifold (see appendix B.1). A point at the manifold can be identified with a
spacetime event where an interaction takes place and the coordinate changes
then reflect the different ways in which the manifold can be parametrized. The
mathematical incorporation of the principle of equivalence by means of general
covariance does not mean that everything that is written in a covariant manner
automatically satisfies the principle of equivalence: scalar-tensor gravitational
theories like Brans-Dicke theory violate the principle of equivalence. In some
sense the principle of equivalence implicitly also assumes that the spacetime is
dynamical in the presence of gravitation (or that there is a dynamical gravita-
tional field) because if the spacetime were not dynamical, the laws of physics
would be in their special-relativistic formulation everywhere.

The representation of our spacetime as a manifold is valid in general relativ-
ity which is a classical theory, with which I mean that spacetime in a quantum
theory of gravity is not expected to correspond to a manifold, it may be that
the manifold representation only emerges in the classical limit. To some extent
(at least in classical general relativity) it also depends on someone’s point of
view whether one sees the metric tensor that determines the properties of the
manifold as more fundamental (and the gravitational force determined by the
properties of the manifold) or whether one looks at the spacetime manifold as
a computational scheme that is a convenient representation of the gravitational
force between two objects. The general relativistic description of gravity can
also be reformulated in a manner that is more reminiscent of the electromag-
netic and strong and weak force, which are forces that appear because of local
symmetries. In this formulation gravity is related to local Lorentz symmetries.
Whatever the point of view, general relativity is a very effective way to describe
our universe, as has been verified again very recently by investigation of the
gravitational lensing effect [39].

To recapitulate, general relativity is a classical theory for the gravitational
force and it is based on the (strong) equivalence principle: physical interactions
are relative between the interacting objects and do not depend on the motion
of the observer. Mathematically the principle of equivalence can be incorpo-
rated by writing the physical laws as tensor equations in a generally covariant
manner. The principle of equivalence then means that physical observations
are invariant with respect to diffeomorphisms on the manifold that corresponds
to our spacetime. The gravitational attraction between objects is incorporated
in the dynamics of the spacetime geometry, which influences the movement
of matter along geodesics on the spacetime. The dynamics of the spacetime
geometry is reflected by Einstein’s equation that expresses a relation between
the spacetime curvature and the presence of matter in the spacetime, which we
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will derive in section 3.4. The mathematical expression for the curvature of the
spacetime also has an immediate physical interpretation. As we will see in the
following section, the spacetime curvature gives the deviation of two nearby
point particles that move along geodesics in a gravitational field. Or, equiva-
lently, the spacetime curvature expresses the distortion forces on a macroscopic
object in a gravitational field.

3.2 Spacetime curvature and geodesic deviation

The Riemann curvature tensor expresses to what extent the covariant deriva-
tives of a vector don’t commute (at a certain point on the manifold). The
commutator of two covariant derivatives Dµ of a dual vector field ω only de-
pends on the value of this dual vector field, and thereby defines a tensor of
rank (1,3) R δ

µνγ , called the Riemann tensor, by

R δ
µνγ ωδ = [Dµ, Dν ]ωγ . (3.1)

Using a coordinate expression for the covariant derivatives, the curvature tensor
can be evaluated as

R β
µαν = ∂αΓ β

µν − ∂µΓ β
αν + Γ ε

µν Γ β
εα + Γ ε

αν Γ β
εµ . (3.2)

We have used the convention for the curvature tensor as in [21]. Other authors
frequently prefer a different order of indices or add a minus sign. For instance
this happens if one defines the curvature tensor alternatively by

[Da, Db]V c = R c
ab dV

d. (3.3)

Curvature is an intrinsic property of a manifold and it does not depend
on how we would visualize the spacetime manifold as a higher-dimensional
surface that is embedded in a flat space. Therefore it does not correspond to
our intuitive notion of curvature of a surface (the latter is described by the
“extrinsic curvature” of a surface). For example, the (intrinsic) curvature of
any line is zero, no matter how curved it might appear.

In a curved spacetime, freely falling (point) particles follow trajectories that
maximize their proper time, which are geodesics. Of course, macroscopic ob-
jects will occupy a volume intersected by many geodesics, and in a gravitational
field the macroscopic object will be distorted. Let us therefore consider a one-
parameter family of geodesics γs(τ) where s labels the family of the geodesics
and τ represents an an affine parameter or the eigentime along a geodesic of
the family. If we define the vector field Tµ = (∂/∂τ)µ as the tangent vector to
the geodesic, the equation for a geodesic becomes

T νDνT
µ = 0. (3.4)
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In a coordinate representation of the geodesic by xµ(τ), equation (3.4) becomes
equal to expression (A.5) of appendix A:

ẍµ + Γ µ
νσ ẋν ẋσ = 0 , (3.5)

and the dot denotes the derivative with respect to τ . We define a vector
Xµ = (∂/∂s)µ that reflects the displacement between two (infinitesimally)
nearby geodesics. Xµ is usually called the deviation vector, and coordinate
freedom allows us to set XµTµ = 0. The relative rate of change of the displace-
ment vector between nearby geodesics is defined by the parallel transport (see
appendix B.2) of Xµ along the geodesic,

vµ = T νDνX
µ, (3.6)

and is called the deviation velocity vµ, as it gives the relative velocity of nearby
geodesics. Next, the parallel transport of the deviation velocity gives the rela-
tive acceleration of (infinitesimally) nearby geodesics, by

aµ = T νDνv
µ. (3.7)

By rearrangement of the covariant derivatives one can then show that the
acceleration of nearby geodesics can be expressed in terms of the Riemann
tensor, contracted with the deviation vector and the tangent vector along the
geodesic, as

aσ = −R σ
µνπ X

νTµTπ. (3.8)

Formula (3.8) now clarifies the meaning of curvature tensor: the Riemann cur-
vature tensor determines the “tidal forces” that govern the relative acceleration
of nearby geodesics. Nearby geodesics tend to diverge or converge from each
other under the influence of gravity, and they remain parallel (aµ = 0) if the
curvature tensor1 is zero, i.e. if the gravitational field is zero. For manifolds
with dimension D ≥ 3 the Riemann tensor can be decomposed in terms of the
Weyl tensor, Ricci tensor, and curvature scalar as

Rµνπσ = Cµνπσ +
2

n− 2
(
gµ[πRσ]ν − gν[πRσ]µ

)
− 2

(n− 1)(n− 2)
Rgµ[πgσ]ν .

(3.9)
The brackets over the indices denote a totally antisymmetrized product with
prefactor 1/(n!). The Ricci tensor and the curvature scalar R of equation (3.9)
are given by

Rµν = R α
µαν , R = gµνRµν . (3.10)

1Geodesics of a given congruence can also remain parallel in a curved spacetime if only the
magnetic component of the curvature tensor with respect to the given congruence is nonzero,
because the vanishing of the tidal force only gives information about the curvature’s electric
part with respect to the given congruence.
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Let us consider a macroscopic object moving along a geodesic. With respect to
the deviation of nearby geodesics expressed in (3.8), the Ricci curvature tensor
only contains the information about how the volume of the object changes in
the presence of tidal forces. The Weyl tensor expresses how the shape of the
body is distorted by the tidal force (without reference to its volume).

3.3 The Weyl tensor and its classification

In general relativity, the Weyl curvature is the only part of the curvature that
exists in free space if the metric is a solution of Einstein’s euqation in vacuum.
The Weyl curvature tensor governs the propagation of gravitational radiation
through regions of space devoid of matter. In two and three dimensions the
Weyl tensor vanishes identically, it appears first in four dimensions. This is
in accordance with the fact that gravitons first appear in four dimensions, see
appendix D. Three-dimensional gravity is topological. Spacetime becomes first
dynamical in four dimensions, which corresponds (roughly speaking) to the
existence of gravitational solutions in regions devoid of matter. If the Weyl
tensor vanishes, then the metric is locally conformally flat: in that case there
exists a local coordinate system in which the metric tensor is proportional to a
constant tensor. On the other hand, manifolds which have Rµν = 0 are called
Ricci-flat, they only possess Weyl curvature.

The Weyl tensor is the traceless component of the Riemann tensor. It is a
tensor that has the same symmetries as the Riemann tensor, i.e.

Cµνπσ = C[µν][πσ] , Cµνπσ = Cπσµν , C σ
[µνπ] = 0 , (3.11)

with the extra condition that the Weyl tensor is also trace-free (the metric
contraction on any pair of indices of the Weyl tensor yields zero). Because of
these symmetries, the Weyl tensor can be viewed as a linear map from bivectors
to bivectors, which are tensors for which Aµν = A[µν] (or “two-forms”, see
appendix B.1.4). The analysis of the eigenvalue problem

C αβ
µν Aαβ = λAµν , (3.12)

then leads to the Petrov classification according to the algebraic structure of
the Weyl tensor at a spacetime event (this classification is purely algebraic and
does not consider the matter content of the spacetime). The most important
conclusion of the Petrov analysis is that there exist, in general, four principal
null directions kµ defined by

kνkπk[αCµ]νπ[σkβ] = 0 . (3.13)

It is understood that kµ is a null vector. These principal null directions are
related to the eigenbivectors Aµν that satisfy (3.12). The proof of (3.13) is
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most conveniently given in terms of spinor methods (see e.g. [21]). Although
the Petrov classification is not of great importance in this thesis, it appears in
chapter 9 in the discussion on gravitational plane waves. The Petrov classifica-
tion states there are six possible types of algebraic symmetry depending on the
multiplicities of the principal null directions. The Weyl tensor at a spacetime
event can have the types I, II, D, III, N and O. A spacetime of Petrov type I is
defined by the general formula (3.13) with four distinct null directions. In case
one or more of these principal null directions become aligned (ka = Ck̃a with
ka and k̃a two solutions to (3.13)), stronger conditions hold on the Weyl tensor.
In the case there is one pair of principal null directions that coincides, we have
an event of Petrov type II. For the coinciding null direction the condition (3.13)
becomes

kνkπCµνπ[σkα] = 0 . (3.14)

When two pairs of principal null directions coincide, we have a spacetime event
of type D and two solutions of the condition (3.14). A spacetime event that
has Petrov type III has three coinciding null directions, and the Weyl tensor
satisfies

kπCµνπ[σkβ] = 0. (3.15)

If the spacetime has regions where the Weyl tensor is of Petrov type III, the
gravitational field in these regions is related to longitudinal gravitational radia-
tion, which decays like O(r−2), with r the characteristic distance to the source
of the gravitational radiation. Then, in an event of type N all four principal
null directions coincide and

kπCµνπσ = 0. (3.16)

Regions in spacetime where the Weyl tensor is of type N, can be associated to
transverse gravitational radiation. In this case the (quadruple) null vector kπ

corresponds to the wave vector that describes the propagation direction of the
radiation. Transverse gravitational radiation decays as O(r−1), and therefore
the long-range fields away from sources of the energy-momentum tensor are
of Petrov type N. Finally, for Petrov type O the Weyl tensor is zero and the
spacetime is conformally flat (the Riemann curvature tensor is then also zero
in regions devoid of matter). An example of conformally flat spacetimes are
the Robertson-Walker cosmological models, which will appear a little further.

3.4 Einstein’s equation

We now derive Einstein’s equation which relates the dynamical evolution of the
spacetime metric to the matter content that is distributed on the spacetime.
The quickest way to do this is from an action principle. We have to include
a kinetic term from the metric R, a gravitational “self-energy” term Λ (the
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cosmological constant) and, because the gravitational field is coupled to matter,
we also consider a matter action SM . The action is

S = SEH +SM , SEH =
1

16πGN

∫
dDx

√
−g (R− 2Λ) , SM =

∫
dDxLM .

(3.17)
The scalar curvature R was defined in (3.10) and we will discuss the matter
Lagrangian SM below. We write out the variation of the Einstein-Hilbert action
with respect to the inverse metric, and we impose that at spatial infinity the
variation of the field becomes zero. Then

δSEH =
1

16πGN

∫
dDx

√
−g
(
Rµν −

1
2
gµνR+ Λgµν

)
δgµν , (3.18)

where we have made use of the two expressions

δ
(√
−g
)

= −1
2
√
−ggµνδgµν , det [gij ] = eTr[log gij ]. (3.19)

The demand that the action be stationary with respect to variations in the
metric yields Einstein’s equation (or the Einstein equations, if one rather wants
to consider the equations for each set of indices separately):

Rµν −
1
2
gµνR+ Λgµν = 8πGNTµν . (3.20)

In the formula above the energy-momentum tensor Tµν is defined in terms of
the matter action by

Tµν = − 2√
−g

δSM
δgµν

. (3.21)

In the limit of a weak gravitational field, Einstein’s equation reduces to New-
ton’s equation for the gravitational interaction, written in the form of a Poisson
equation. The energy-momentum tensor is conserved. It is the Noether charge
associated to the diffeomorphism invariance.

Any metric can be a solution to Einstein’s equation if the energy-momentum
is determined according to (3.20) but the related matter action (3.21) would
not necessarily represent a physically realistic situation. In order to determine
the precise influence of known matter on the dynamics of the metric we have
to specify the matter Lagrangian LM . It turns out that the matter Lagrangian
has precisely the same form as in Minkowski space (perhaps up to a total
derivative or a multiplicative constant) but made “generally covariant”, that
is, with replacement of the ordinary partial derivatives to covariant derivatives.
For example, the matter Lagrangian of a (classical) massive free Klein-Gordon
scalar field becomes

LKG = −
√
−g
2

(
gµνDµφDνφ+m2φ2

)
. (3.22)
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In general it is possible to add other terms such as Rφ2 but we have chosen
a “minimally coupled” matter Lagrangian. The matter Lagrangian for the
(classical) electromagnetic field is

LEM = −
√
−g

4π
gµπgνσD[µAν]D[πAσ]. (3.23)

The factor
√
−g ensures the covariant transformation of the matter Lagrangian

under diffeomorphisms.
If the energy-momentum tensor and the cosmological constant are zero,

one of the vacuum solutions of Einstein’s equation is simply the flat-space
Minkowski metric

ds2 = −dt2 + (dxi)2 . (3.24)

Another representation of this metric is given by advanced (v) and retarded (u)
null coordinates. More specifically, rewriting v = (t+r)/

√
2 and u = (t−r)/

√
2

with r a radial coordinate (0 < r <∞), the Minkowski metric becomes

ds2 = −2dudv + r2
(
dθ2 + sin2θdφ2

)
; (3.25)

u, v = −∞ . . .∞, θ = 0 . . . π, φ = 0 . . . 2π .

These coordinates can be thought of as incoming (v) and outgoing (u) spherical
waves travelling at light speed [8]. The coordinates u and v are often called
lightcone coordinates and they will be used throughout this thesis, though often
in the form where they correspond to plane waves propagating in a particu-
lar direction x (instead of spherical waves propagating radially). One of the
lightlike coordinates u (or v) can be chosen to formally replace time [41].

3.5 Singular spacetimes

In appendix A, I illustrate the concept of a spacetime singularity in terms of
the incompleteness of causal geodesics. A more rigorous approach is to consider
singular boundary points of a spacetime. An introduction to such a boundary
construction is given in appendix C. This section will simply deal with some
examples of singular spacetimes: among which a big bang singularity, black
hole singularities, extremal p-brane solutions and Szekeres-Iyer singularities.
To determine whether a singularity is of spacelike, lightlike or timelike nature,
one can draw a Penrose diagram2 of (an embedding of) the singular spacetime
and analyze its boundary structure.

2The Penrose-Carter diagram, see e.g. [8], is a way to visualize in two dimensions the
structure of infinity of a spherically symmetric spacetime. It is obtained by performing a
conformal transformation on the spacetime metric

g̃µν = Ω2gµν , (3.26)
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The metric of a spherically-symmetric Robertson-Walker spacetime3 is de-
termined by the scale factor a(t) and spatial curvature k:

ds2 = −dt2 + a2(t)
(

1
1− kr2

dr2 + r2dΩ2
2

)
. (3.28)

Here dΩ2
2 represents the metric on the (two-)sphere

dΩ2
2 = dθ2 + sin2θ dφ2. (3.29)

The metric (3.28) is singular in case the scale-factor vanishes at a certain time
t∗. If a(t∗) vanishes, it is a big bang or a big crunch singularity.

Another example of a gravitational singularity is that of the static Schwarz-
schild black hole. The Schwarzschild spacetime

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2, (3.30)

represents the gravitational field of a point mass M . The Schwarzschild solution
can be generalized to include electromagnetic fields, in which case one obtains
the Reissner-Nordström spacetime

ds2 = −
(

1− 2M
r

+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2, (3.31)

where Q is the charge of the point charge located at the origin r = 0. The
Schwarzschild and Reissner-Nordström spacetimes possess horizons. Although
the Schwarzschild spacetime appears to be time-independent, it does not pos-
sess a globally defined timelike Killing vector. Inside the horizon, the Killing
vector ∂t becomes spacelike, the Schwarzschild solution is only static for an
observer outside of the horizon. This is also the reason why the singularity at
r = 0 is called spacelike. The singularity of the Reissner-Nordström spacetime
is timelike. In the limiting case of M2 = Q2, the Reissner-Nordström black
hole is called extremal and it does possess a globally defined timelike Killing
vector.

with the conformal factor Ω appropriately chosen such that the (infinite) spacetime is repre-
sented by a diagram of finite size. The diagram captures the causal relations between different
points in spacetime. Radial null geodesics in the spacetime will correspond to straight lines
at angles of ±π/4 on the diagram.

3The energy-momentum tensor associated to the Robertson-Walker spacetime can be
taken as

Tµν = ρuµuν + p (gµν + uµuν) . (3.27)

It represents a perfect fluid with density ρ, pressure p and four-velocity uµ. The Einstein
equations for the Robertson-Walker solution (3.27-3.28) lead to the Friedmann equations
(2.1-2.2).
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There are generalizations of a pointlike black hole, which are called black
branes. These are (p + 1)-dimensional extended objects, embedded in a D-
dimensional spacetime. The spatial dimensions are then split into two groups:
p worldvolume coordinates yα (with α = 1 . . . p) and D − p − 1 transverse
coordinates xa (with a = 1 . . . D− p− 1). Along the worldvolume the solution
looks like flat space, with respect to the transverse dimensions the solution
has the appearance of a black hole. For example we can write the metric of a
(static) extremal p-brane in ten dimensions as

ds2 = H(r)(p−7)/8
(
−dt2 + (dyα)2

)
+H(r)(p+1)/8

(
dr2 + r2dΩ2

D−p−2

)
,

H(r) = 1 +
R7−p

r7−p . (3.32)

The radial coordinate is isotropic with respect to the transverse coordinates
(r =

√
xaxa) and dΩ2

D−p−2 represents the metric on the (D − p − 2)-sphere.
I want to remark that the metric (3.32) is not a vacuum solution, the energy-
momentum tensor related to (3.32) receives contributions from a dilaton (see
e.g. chapter 4) and from a field strength, related to the charge of the brane (see
chapter 8). The Reissner-Nordström and Robertson-Walker spacetimes aren’t
vacuum solutions either. Examples of vacuum solutions, i.e. spacetimes with
a zero energy-momentum tensor, are the Schwarzschild spacetime and, in the
presence of a cosmological constant Λ = R/4, deSitter spacetime (Λ > 0) and
Anti-deSitter spacetime (Λ < 0).

The Szekeres-Iyer [40] metric

ds2 = −2eUdudv + eV dΩ2
2 , (3.33)

describes spherically symmetric power-law singularities. This includes the Tol-
man Bondi dust collapses that have the energy-momentum tensor Tµν = ρuµuν
(with uµ = (1, 0, 0, 0) in the coordinate system {t, r, θ, φ}). In (3.33) U and V
are functions of the spherical lightcone coordinates u and v with u = (t−r)/

√
2

and v = (t+ r)/
√

2 and r a radial coordinate. In the vicinity of the singularity
the metric (3.33) is approximated by

ds2 = −2(ku+ lv)pdudv + (ku+ lv)qdΩ2
2 . (3.34)

If k · l = 0, the singularity at ku = −lv is lightlike. If k · l = 1, the singularity
is spacelike. The exponents p and q are called the Kasner exponents and these
characterize the behaviour near the singularity. For a discussion of this kind of
power-law singularities in the context of string theory, see e.g. [42].
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Chapter 4

From particles to strings

“Muss es sein? Es muss sein!”

String Quartet No. 16 in F Major, Op. 135, Ludwig van Beethoven

In this chapter I will introduce some basic elements of (bosonic) string theory,
while focusing on the quantum description of gravity. The aim is to show
where gravitons appear in the spectrum of string theory. Meanwhile I will also
describe the lightcone quantisation of a string. This is certainly very standard
material, but it does appear as the starting point of one of my projects (see
chapter 13) where we will consider a string propagating in a curved and singular
spacetime. There are two other necessary (though basic) elements of string
theory that I need to introduce to support the non-experts to follow my work,
which are on the one hand the background consistency conditions of string
theory that lead to the supergravity equations of motion, and on the other
hand D-branes. But I will consider those topics in chapter 7 and chapter 8.

4.1 Perturbative approach to quantum gravity

Let me first motivate why to consider strings instead of particles. The general
relativistic description of gravity, when dealt with in a perturbative manner,
possesses small field excitations which are called gravitons (see appendix D).
From the quantum field theoretical point of view these gravitons are mass-
less spin-two particles and, when coupled to matter, they are subject to a
gauge principle. However, the gauge force they transmit turns out to be non-
renormalisable [43], which means, roughly stated, that the quantum field theory
related the gravitational force (gravitons exchanged in Minkowski spacetime)
has to be regarded as an effective theory, which is only valid at energies much
lower than the Planck scale. For a more expanded argument, see e.g. [44].
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Therefore it is very likely that in order to formulate a gravitational theory that
remains valid at the energies near the Planck scale, new physical degrees of
freedom have to be taken into account. For example, because of the effective
nature of the gravitational interaction in general relativity (of the form

√
gR),

additional high-energetical degrees of freedom can be present in the underlying
theory, as is the case in string theory. The high-energetic degrees of freedom
that are necessary for a consistent theoretical description at the Planck scale
can be integrated out at lower energies to yield a low-energy effective action
that agrees with general relativity (see e.g. chapter 7) which is our best descrip-
tion of gravity and spacetime at large distance scales. A closed string contains
graviton-like oscillation modes and thus it is likely that these new degrees of
freedom at the Planck scale are stringlike (or related to strings by dualities like
D-brane degrees of freedom), especially because string theory yields finite scat-
tering amplitudes (hence, no conceptual problem with divergences in quantum
loops) and its theoretical description allows to deal with the gravitational force
in a consistent perturbative manner. A recent review of the status of string
theory as a quantum theory of gravity is given by e.g. [45].

One approach to cure the divergences related to the perturbation theory of
the quantized Einstein-Hilbert action is to modify the gravitational interaction
such that the interaction becomes “smeared out” over a small region instead
of concentrated into one point. Intuitively, one already feels that this idea
requires the introduction of extended objects instead of point particles, and
one arrives at bosonic strings.

In principle, closed bosonic strings1 would suffice to describe the behaviour
of the gravitational force at Planck-scale energies. Open strings allow to in-
clude gauge groups reminiscent of the other forces of nature that appear in the
standard model of elementary particle physics and thus it is believed that inter-
actions between strings allow to describe all the forces of nature. In that case,
it is natural to expect that also the matter content of our universe is described
by excitations of strings. But all matter in the universe discovered so far is
fermionic, and fermionic excitations are not described by bosonic string the-
ory. This has lead to the development of superstrings, which allow to describe
fermionic oscillations of strings, under the assumption of a strong symmetry
relation between bosons and fermions that is called supersymmetry.

4.2 The Nambu-Goto string

In appendix A, I have introduced the action of a point particle in terms of its
worldline, which yields the equation of a geodesic at the classical level. In fact,

1There is a tachyon (a particle with negative mass) in the spectrum of bosonic strings,
but it is likely that the tachyon signals an unstability of the vacuum with respect to which
bosonic string theory is perturbatively defined.
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it is possible to build a relativistic quantum theory based on the worldline ac-
tion of a particle. This is called a first-quantized approach with respect to the
(usual) second-quantized formalism of quantum field theory. Non-relativistic
quantum mechanics treats time and space differently, in the Heisenberg picture
space is an operatorX(t) that depends on time. In the worldline formalism time
and space (the position of the particle) are promoted to operators T (τ), X(τ),
which depend on the eigentime along the worldline. Interactions are given at
the splittings of different worldlines. Instead, in the second-quantized formula-
tion of quantum field theory one introduces operator fields (e.g. φ(t, x)) which
are a function of both space and time. The operator fields are then expanded
in creation and annihilation operators and the interactions are determined by
an interaction Hamiltonian. Though the first-quantized worldline theory for
particles is a more cumbersome formalism than the second-quantized theory,
it can be generalized from a particle worldline to a string worldsheet, with the
position of the field in spacetime Xµ(σ, τ) now depending on two worldsheet
variables τ (temporal) and σ (spatial). The action for a point particle is given
by the length of the worldline. The action for a string is given by the area of
its worldsheet, which leads to the Nambu-Goto action

SNG = − 1
2πα′

∫
M

[−det (gµν∂aXµ∂bX
µ)]1/2 dσdτ. (4.1)

Here M denotes the worldsheet. More abstractly, we can look upon Xµ(τ, σ)
as a map from the worldsheet to a “target space”. The curved “Greek” indices
are lowered and raised by the target space metric gµν , which we currently
restrict to flat Minkowski spacetime ηµν . This will be extended in chapter 7.
The determinant is on the worldsheet indices (a, b). The action is invariant
under Poincaré transformations in the target space (because the target space
is Minkowski spacetime), and it is also invariant under diffeomorphisms on
the worldsheet (any theory formulated on a surface should not depend on the
parametrization of the surface).

4.3 The Polyakov string

The Nambu-Goto action is nonlinear in the spacetime coordinates but it can
be simplified by introducing an auxiliary worldsheet metric γab, to yield the
Brink-Di Vecchia-Howe-Deser-Zumino action [46]

SP = − 1
4πα′

∫
M

√
−γ
(
γabηµν∂aX

µ∂bX
ν
)
dσdτ , (4.2)

which is often called the Polyakov or string action. The string action is classi-
cally equivalent to the Nambu-Goto action (4.1), but because it is bilinear in
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the spacetime coordinates it can be quantized by conventional methods (with
a Fock space representation). Because of historical reasons, it is also called a
two-dimensional (because of the two worldsheet dimensions) sigma model of D
scalar particles. The Xµ are scalars with respect to the worldsheet, but they
are vectors in the target space. In the action (4.2) for a free string there is only
one free parameter, α′, which is related to the string length `s by `s =

√
α′,

and it is also related to the tension of the string

Ts = (2πα′)−1 , (4.3)

which is the prefactor in front of the string action (4.2). In fact, α′ sets the
units of the dimension of area, and it is naturally related to the Planck length
in D dimensions: √

α′ ≈ g−2/(D−2)
s `

(D)
P . (4.4)

The reason for this is that string theory naturally incorporates the gravitational
interaction, and the quantum effects of the gravitational interaction should
appear at the Planck scale, determined by the Planck length `P . As we will
see, there are essentially two arguments that relate string theory to gravity:
the first is the appearance of a massless spin two particle (the “graviton”) as
one of the oscillation states of the string, the second reason is that strings can
only propagate on a background spacetime that satisfies Einstein’s equation.

The string action has an additional symmetry compared to the Nambu-Goto
action. Varying the action with respect to γ leads to the constraint

γab = exp (2ω(σ, τ)) ∂aXµ∂bXµ, (4.5)

where an arbitrary conformal factor has been inserted (it drops out if one plugs
the solution for γab into the string action to obtain the Nambu-Goto action).
The string action is invariant under conformal (or Weyl) transformations,

γ′ab(σ, τ) = exp (2ω(στ)) γab(σ, τ) , X ′µ(σ, τ) = Xµ(σ, τ) , (4.6)

while keeping the coordinates Xµ fixed. Conformal transformations are local
transformations because of their dependence on the worldsheet coordinates. It
is not possible to simply categorize the conformal (or Weyl) transformations as a
subgroup of the two-dimensional diffeomorphism group, because the spacetime
coordinates do change under the worldsheet diffeomorphisms (σ′(σ, τ), τ ′(σ, τ)),

γ′ab(σ
′, τ ′) =

σc

σ′a
σd

σ′b
γcd(σ, τ) , X ′µ(σ′, τ ′) = Xµ(σ, τ) , (4.7)

where (a, b) run over (σ, τ). The Weyl invariance of the string theory sigma
model is very important, because it allows us to remove the third component
of the worldsheet metric tensor. On a two-dimensional worldsheet we would
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expect only two gauge conditions (we can freely redefine the coordinates τ and
σ) but because there is a (classical) invariance with respect to Weyl transfor-
mations we can impose a third gauge condition. This is fortunate, because
otherwise we might have introduced an unphysical degree of freedom. Strictly
speaking, there is no kinetic term for the worldsheet metric in the string action
(4.2) because it does not contain derivatives of the worldsheet metric, for exam-
ple the curvature scalar of the worldsheet R(γ). So in some sense we could still
consider the worldsheet metric to be non-dynamical. Nevertheless, heuristi-
cally speaking, interactions between strings are related to the two-dimensional
topology (the “handles” on the worldsheet) which is related to the curvature
scalar of the worldsheet through the Gauss-Bonnet theorem (see also equation
(4.28) at the end of this chapter).

The worldsheet energy-momentum tensor is determined by

T ab(σ, τ) = − 4π√
−γ

δSP
δγab

, (4.8)

and the invariance under Weyl transformations leads to a traceless tensor
T aa = 0, at least at the classical level. Precisely because we will use the
Weyl invariance to remove an unphysical degree of freedom (namely, one of the
components of the auxiliary worldsheet metric), it will be important to demand
that the Weyl invariance of the string sigma model still holds at the quantum
level.

4.4 Graviton-like oscillations of the closed string

In the context of this thesis, string theory is used as a description of quantum
gravity, therefore I will focus on closed strings. In this section, largely based
on [14], we will derive how one of the excitations of a closed bosonic string can
be identified with the graviton. The classical equations of motion related to
the action (4.2) are,

Tab = 0 , (4.9)

∂a
(√
−γγab∂bXµ

)
= 0 . (4.10)

For a closed string we will consider the coordinate region −∞ ≤ τ ≤ ∞ and
0 ≤ σ ≤ 2π. The fields Xµ(σ, τ) and γab(σ, τ) are periodic in σ with period
2π. To quantize, let us choose lightcone gauge which allows us to impose three
conditions. For the proof that this gauge is possible, see [14]. In lightcone gauge
we align the worldsheet time with the lightcone time of Minkowski spacetime



46 CHAPTER 4. FROM PARTICLES TO STRINGS

and restrict two of the metric components as

X+ =α′p+τ , (4.11)
∂σγσσ = 0 , (4.12)
detγab = −1 . (4.13)

We now solve for gττ and obtain the Lagrangian which is still function of gσσ(τ)
and gστ (σ, τ),

L = − 1
4πα′

∫ 2π

0

dσ

(
2γσσp+α′∂τX

− − 2γτσ
(
α′p+∂σX

− − ∂τXi∂σX
i
)

(4.14)

− γσσ
8∑
i=1

(∂τXi)2 + γ−1
σσ (1− γ2

τσ)
8∑
i=1

(∂σXi)2

)
.

We can split the oscillator X− in a part that depends on σ and a part inde-
pendent of σ by

X−(σ, τ) = x−(τ) + X̂−(σ, τ) , x−(τ) =
1

2π

∫ 2π

0

dσX−(τ, σ) . (4.15)

The σ-dependent part of the oscillator X− is non-dynamical: X̂− enforces
γτσ = 0. The σ-independent part of the oscillator X− can be eliminated as
a constraint that sets γσσ = 1 (for more information about constraints see
appendix F). We can write the following worldsheet Hamiltonian:

H =
1

4πα′

∫
dσ

d∑
i=1

(
π2(Pi)2 +

(
∂σX

i
)2)

. (4.16)

Here Pi are the momenta conjugate to Xi,

Pi =
δL

δ(∂τXi)
. (4.17)

The Hamiltonian (4.16) implies a wave equation for the coordinates transverse
to the propagation direction of the string,

∂2
τX

i = (2πα′)−2
∂2
σX

i . (4.18)

A solution for the string coordinates Xi is given by

Xi = i

√
α′

2

+∞∑
m=∞
m 6=0

1
m

{
αimexp

(
−im(σ +

1
2πα′

τ)
)

+ α̃imexp
(
im(σ − 1

2πα′
τ)
)}

.

(4.19)
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The αim and α̃im are oscillators for left-moving and right-moving waves along
the string, with mode number m 6= 0. In principle there are additional terms
in the solution for Xi (4.19) due to the string’s center-of-mass position xi and
center-of-mass momentum pi. The center-of-mass momentum pi is given in
terms of the zero modes αi0 and α̃i0. For the closed string periodicity in σ forces
the zero mode oscillators to satisfy αi0 = α̃i0, at least if the i’th dimension is
non-compact. We will come back to this in chapter 8. But these center-of-mass
terms are not important for the discussion below.

The degrees of freedom are the oscillators of the string modes (and in princi-
ple also the center-of-mass variables, but we will concentrate on the oscillators)
which are promoted to operators in the quantum theory for which we can write
the commutation algebra as

[αim, α
j
n] = mδijδm,−n , [α̃im, α̃

i
n] = mδijδm,−n . (4.20)

We can now build a general state on top of a state |0; k〉 characterized by its
center-of-mass momentum kµ and annihilated by all the oscillators αim and α̃im
with m > 0. This general state is written as

|N ′, Ñ ′; k〉 =

D−1∏
i=2

∞∏
n=1

(αi−n)N
i
n(α̃i−n)Ñ

i
n

√
n
NinÑ

i
n

(
N i
n! Ñ i

n!
)1/2

 |0; k〉 , (4.21)

where the primed occupation numbers N ′ and Ñ ′ are shorthand for the whole
set of N i

n and Ñ i
n that specify the occupation numbers at each mode level and

for each transverse dimension (hence the products over the mode levels and
the dimensions). The factors of

√
n appear in the denominator because of the

specific normalization of the commutation relations of the oscillators in (4.21).
For the closed string the total number of left moving oscillations must be

equal to the number of right moving oscillations, due to invariance under trans-
lations of the worldsheet coordinate σ. This means that the expectation value
of the total number operators on a physical state must satisfy N = Ñ , with N
and Ñ the total left-moving and right-moving number operators respectively.
These are defined by the sum over all oscillation modes over all transverse
dimensions:

N =
∞∑
n=1

D−1∑
i=2

N i
n =

∞∑
n=1

D−1∑
i=2

αi−nα
i
−n , (4.22)

Ñ =
∞∑
n=1

D−1∑
i=2

Ñ i
n =

∞∑
n=1

D−1∑
i=2

α̃i−nα̃
i
−n . (4.23)

Perhaps it is appropriate to comment that the worldsheet approach yields a
first-quantized theory from the viewpoint of the target-space (i.e. from the
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point of view of the background spacetime), because a state in the Hilbert space
spanned by the states (4.21) will correspond to a single string in spacetime.

The mass of a string which is in a state with N oscillations (with respect
to the state |0; k〉) is given by the occupation number of the oscillations modes
of the string

m2 =
4
α′

(
N +

D − 2
2

∞∑
n=1

n

)
, (4.24)

where the second contribution is given by the sum of the zero-point energies,
which has to be renormalized carefully, taking care of Lorentz invariance. The
infinite sum over n can be written in terms of the Riemann zeta function and
in this way the factor ζ(−1) = −1/12 appears.

At the first excited level of the string we find a state

αi−1α
j
−1|0, 0; k〉 , m2 =

26−D
6α′

, (4.25)

which transforms as a tensor under SO(D−2) rotations. Out of consistency this
state must be massless because a massive state would fill out a representation
of SO(D − 1) (for the representation theory of a massless particle one cannot
single out a preferred rest frame). This condition fixes the dimension of the
target space to be D = 26, at least for the critical bosonic string. In the case
of non-critical strings additional terms are added to the string action, which
may change the dimension in which the string propagates (but these additional
terms induce a curvature of the target space of the order of 1/α′). So it is the
demand for Lorentz invariance2 that will fix the dimension of the spacetime in
which a quantized string can propagate consistently.

The state (4.25) transforms as a full two-tensor under the rotation group
of the transverse dimensions SO(D − 2). We can decompose this two-tensor
into a traceless symmetric tensor (with the number of degrees of freedom of
a graviton), a scalar (the trace) and an antisymmetric tensor, because these
components do not mix under the rotations in SO(D − 2),

eij =
1
2

(
eji + eij − 2

D − 2
δijekk

)
+

1
2
(
eij − eji

)
+

1
D − 2

δijekk. (4.26)

The traceless symmetric tensor is now identified with the graviton (see also
appendix D), the massless field corresponding to the antisymmetric tensor is
called the Kalb-Ramond field and the masless scalar field corresponding to the
trace of the two-tensor is called the dilaton. In principle, all these massless fields

2If the determination of the dimension in the lightcone quantisation procedure outlined
above does not fully convince the reader, I refer to the literature for a more rigorous treatment,
for example the “old covariant” quantisation approach or the more modern Becchi-Rouet-
Stora-Tyutin quantisation.
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can be added3 to the worldsheet sigma model, which will be shown in chapter 7.
Even more remarkably, we will see that Einstein’s equation (more precisely its
generalization in supergravity) follows from the demand of conformal invariance
of the nonlinear string sigma model in which the graviton, Kalb-Ramond and
dilaton fields are included.

So far I have (briefly) described the spectrum of a free bosonic string. In-
teractions between strings are described in terms of the splitting and joining
of string worldsheets, the strength of which is captured by the parameter gs,
the string coupling. The interaction between strings can be written in terms
of a perturbation expansion with respect to the topology (roughly, the number
of “handles” that appear when strings join or split) of the worldsheet, which
is called the genus expansion. One then finds that at each order of the world-
sheet topology the total amplitude remains finite, which is essentially due to
the strong symmetries of the string theory worldsheet sigma model (modular
invariance), which restrict the possibility that divergences appear. So we find
that strings define finite quantum interactions (including the gravitational in-
teraction). Of course, it can very well be that the total sum of all the finite
perturbative terms is still infinite, but this issue is rather related to the pertur-
bative approach and is just as much a problem for the perturbative expansion
of ordinary quantum field theories as it is a problem of string theory. When
the coupling between strings becomes large one has to use a dual description in
terms of other effective degrees of freedom, for example a description in terms
of D-branes. The latter are introduced in chapter 8.

As mentioned above, the scalar particle that corresponds to the trace of
the SO(D − 2) tensor in the state (4.25) is called the dilaton φ. It turns out
that the strength of the string coupling is directly related to the expectation
value of the dilaton by gs = eφ. If one writes the string action for the free
string, it is natural to include an additional term given by the scalar dilaton
coupled to the worldsheet curvature scalar R(γ), because such a term respects
all the symmetries of the string action. With SP defined by (4.2) the total
string action becomes

S = SP +
1

4π

∫
M

√
−γR(γ)φ dσdτ . (4.27)

The dilaton is defined up to a constant φ0. The constant φ0 gives the Euler
number contribution to (4.27). In the case of closed strings there are no bound-
aries of the worldsheet and the Euler number, which characterizes the topology
of the worldsheet, is written as

χ =
1

4π

∫
M

√
−γR(γ)dσdτ . (4.28)

3To be complete, the Kalb-Ramond field is absent if the string is unoriented, but we will
later focus on type IIA and type IIB superstring theories and these are oriented.
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In terms of the worldsheet topology we can write the Euler number as

χ = 2− 2h , (4.29)

where h is the number of “handles” which determines the “genus” of the world-
sheet. Therefore the term φ0χ in (4.27) contributes a factor e2φ0 for each handle
that is added to the worldsheet. Such a handle corresponds e.g. to the absorp-
tion and re-emission of a closed string (or it appears during a virtual process
when a closed string is emitted and re-absorbed). Therefore for each interaction
between closed strings (governed by gs) a factor eφ appears.

In chapter 7 we will generalize the string action in Minkowski spacetime
(4.27) to curved space.



Chapter 5

Supersymmetry and
superstrings

Spieglein, Spieglein an der Wand,
Wer ist die Schönste im ganzen Land?

“Kinder- und Hausmärchen,” Jakob und Wilhelm Grimm.

In the case of the bosonic string, all states in the spectrum are bosonic. To be
able to describe states with a fermionic character, superstrings are introduced,
for which the critical dimension is Dc = 10. In my thesis I have (usually some-
what implicitly) worked in the context of type IIA and type IIB superstring
theory, because these contain closed strings which can describe gravitons. Su-
perstring theories are string theories that respect an additional symmetry prin-
ciple, called supersymmetry. An important argument for supersymmetry from
experimental cosmology is that supersymmetry gives an elegant explanation
for dark matter. The lightest supersymmetric particle is stable (it cannot de-
cay into any lighter particle because of the conserved supersymmetry charge),
which makes it a natural candidate for cold dark matter if it interacts very
weakly with the standard model particles.

Supersymmetry is one of the key concepts in superstring theory, and de-
serves to be introduced, even though it is not essential to understand the results
of chapters 12 and 13. It appears explicitly only for a very brief moment in
chapter 14. Therefore, the sole aim of the present chapter is to illustrate (and
hopefully clarify a little) the concept of supersymmetry in this specific context.
For more information about superstrings I refer the reader to [5] and the second
volume of [14]. For more information about supersymmetry I refer to [25] and
the third volume of [23].
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5.1 Supersymmetry

Supersymmetry is a symmetry that that extends the Poincaré algebra of trans-
lation, rotation and boost operators, by relating bosonic and fermionic fields
through a symmetry which is generated by anticommuting generators Qα. Here
α is a Weyl spinor index, the fermionic generator Qα has definite chirality. Its
Hermitian conjugate of the opposite chirality is denoted as Q†α̇. I’m essentially
using the conventions of [18] because these don’t conflict with my convention
for the signature of the metric. In the present section, we assume that the
spacetime metric gµν is equal to the Minkowski metric ηµν .

In the simplest case where there is only one set of supersymmetry genera-
tors Qα and Q†α̇, which is called N = 1 supersymmetry, the anticommutation
relations between the supersymmetry generators become,

{Qα, Q†β̇} = −2σµαα̇Pµ , (5.1a)

{Qα, Qβ} = 0 . (5.1b)

Qα and Q†α̇ commute with the four-momentum Pµ and are the conserved (su-
per)charges. The matrices σµ are the two-dimensional identity matrix and
Pauli matrices,

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.2)

A representation of the supersymmetry algebra (5.1) is given by a supermul-
tiplet, which consists of a collection of particles that are called superpartners.
In a N = 1 supersymmetric theory as in (5.1), each boson is accompanied by
one fermionic superpartner, and vice versa. But the supermultiplets can be
larger in the case of extended supersymmetry algebras. Because (at least up
till the energy scales we could already observe) no superpartners of standard
model particles have been observed yet, supersymmetry cannot be an exact
symmetry of our universe and has to be broken at a certain energy scale.

In the case of multiple supersymmetry generators (labeled by r, s, . . .), the
extended supersymmetry algebra becomes,

{Qαr, Q†α̇s} = −2δrsσ
µ
αα̇Pµ , (5.3a)

{Qαr, Qβs} = εαβZrs . (5.3b)

For the antisymmetric tensor εαβ we use the matrix representation

ε =
(

0 −1
1 0

)
. (5.4)

The matrix Z is antisymmetric. Its elements Zrs are “central charges” of
the supersymmetry algebra. They commute with themselves and with the
supersymmetry generators Qαr and Q†α̇s.
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5.2 BPS condition in supersymmetry

As I already mentioned, the only place where supersymmetry appears more
concretely is in chapter 14, where we check the extremality of certain extended
objects. The extremality means that the objects preserve (some fraction of)
the supersymmetry charges, and are therefore called BPS objects. The abbre-
viation BPS stands for Bogomol’ny-Prasad-Sommerfield, by analogy with their
derivation of a lower bound on the mass of magnetic monopoles. In the context
of an extended supersymmetry of N generators, the BPS bound (which is de-
rived by acting with a positive operator constructed from the supersymmetry
generators on a massive multiplet and using polar decomposition for the square
matrix Z) can be written as

M ≥ 1
2N

Tr
(
ZHZ

)
, (5.5)

with M the mass of the multiplet and ZH the Hermitian conjugate of Z. If
the bound (5.5) is saturated, the object is called BPS. In particular, massless
states must be neutral. In the case N = 2, the matrix Z is determined by
one complex number (say, Z12) and the BPS inequality becomes M ≥ |Z12|/2.
When M = |Z12|/2, the helicity content of the massive N = 2 supermultiplets
are the same as those for zero mass, and they are called “short” supermultiplets.

5.3 Supergravity

The supersymmetry algebra presented in the (anti)commutation relations (5.3)
can be understood as the algebra of a global symmetry. But in the context of
gravity the supersymmetry is naturally promoted to a local symmetry, pre-
cisely because the anticommutator of two supersymmetry generators yields the
momentum operator, which is the vector field that generates diffeomorphisms
in general relativity. When supersymmetry is promoted to a gauge symmetry,
it leads to supergravity theories. These are gravity theories in which there is a
precise set of fields in addition to the metric field of Einstein’s general relativity.
Together with the metric (or rather the vielbein) the additional supergravity
fields are grouped in a supergravity multiplet (the fields in the supergravity
multiplet are related to each other by supersymmetry transformations).

An important particle in supergravity theories is the gravitino, which is a
supersymmetric partner of the graviton. The gravitino is a fermion of spin-
3/2 and therefore it obeys the Rarita-Schwinger equation. A massless spin-3/2
particle as the gravitino has to mediate a gauge symmetry (like the graviton
does for diffeomorphisms or the photon for the U(1) phase associated to elec-
tromagnetism). The gauge symmetry associated to the gravitino is precisely
the local supersymmetry transformation of supergravity.
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For example, in eleven dimensional supergravity (from which all other su-
pergravities can be derived) the (massless) supergraviton multiplet consists of
256 states: there are 128 bosonic components and 128 fermionic components.
Denoting eleven dimensional indices by Roman capitals, the bosonic compo-
nents can be grouped in a vielbein field eaI with 44 components (which corre-
sponds to a symmetric traceless transverse tensor in eleven dimensions), sup-
plemented by a three-form potential AIJK with 84 components. The fermionic
degrees of freedom correspond to a Rarita-Schwinger (spin-3/2) field in eleven
dimensions.

Not every spacetime that is a solution to Einstein’s equations is automati-
cally a solution in supergravity. The spacetime has to admit a Rarita-Schwinger
field which describes the spin-3/2 gravitino. Of course, to allow for describing
spin-1/2 fermions also puts restrictions on the spacetime manifold: it has to
be orientable.

5.4 Superstring theory

Supergravity has a better high-energy behaviour than the “ordinary” gravity
described by general relativity (because of the supersymmetry several Feynman
diagrams cancel: diagrams with internal fermion loops cancel diagrams with
internal boson loops). Notwithstanding the virtues of supersymmetry with re-
spect to cancellations of quantum loops, a quantum theory of supergravity also
needs an infinite number of counterterms to cancel all the divergent Feynman
diagrams (though the issue seems to be still open for N = 8 supergravity in
four dimensions, see e.g. [47]). On the other hand, it has turned out that
supergravity is the low-energy effective limit of superstring theory.

There are several ways to formulate superstrings with spacetime supersym-
metry: the Ramond-Neveu-Schwarz formalism, the Green-Schwarz formalism
and the pure spinor formalism. In the Ramond-Neveu-Schwarz formulation the
bosonic string worldsheet action is extended with worldsheet fermions to be-
come supersymmetric on the worldsheet. However, it is cumbersome to show
the explicit target space supersymmetry of the Ramond-Neveu-Schwarz for-
malism. In the Green-Schwarz formalism supersymmetry in the target space
is manifest by adding anticommuting degrees of freedom to the action which
already transform as spacetime spinors (but as worldsheet vectors). In the ac-
tion for the Green-Schwarz superstring the supersymmetry on the worldsheet
is not the standard supersymmetry, but it is the so-called κ-symmetry. The
pure spinor formalism [48] was conceived in order to quantize the superstring
covariantly (which is not possible in the Green-Schwarz formalism) while being
manifestly spacetime supersymmetric. I will not go into further details and
refer the interested reader to the literature [5, 14, 48].

There are a few superstring theories, among which the type IIA and type
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IIB superstrings. The low energy limit of these theories is given by type IIA and
type IIB supergravity theory respectively. The latter are supergravity theories
in ten dimensions with thirty-two supersymmetry generators. These theories
have N = 2 supersymmetry in ten dimensions: the supersymmetry generators
can be written as two sixteen-dimensional Weyl spinors. Each of these sixteen-
dimensional spinors can be chosen as Majorana-Weyl (see e.g. appendix I) with
a definite chirality while satisfying a (Majorana) reality condition. In type IIA
supergravity theory the two supersymmetry charges have opposite chirality,
while they have the same chirality in type IIB supergravity theory. In addition
to the graviton, dilaton and Kalb-Ramond field, the type IIA and type IIB
supergravity theories have additional bosonic Ramond-Ramond fields that are
sourced by extended objects called p-branes.

In order to be able to formulate a strong coupling prescription of superstring
theory like matrix theory, supersymmetry appears to be a necessary tool [104]
(up till now we do not know if a strong coupling limit of bosonic string theory
exists). Nevertheless, the possible existence of supersymmetry at energies near
the Planck scale is largely independent of its possible existence at the TeV
scale. Supersymmetry has not been observed at the energy scales we have
already probed with particle accelerators, therefore it must be broken. One
scenario is the spontaneous breaking mechanism of supersymmetry, to which
the so-called Goldstino fermion is associated. The Goldstino fermion can be
absorbed by the gravitino of supergravity to explain why the Goldstino and
the gravitino are invisible at low-energies (somewhat like the Brout-Englert-
Higgs mechanism that makes the W and Z bosons massive in the electroweak
theory).
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Chapter 6

Particle creation in
time-dependent spacetimes

Question: Why do only three generations of particles exist?

Answer: God suddenly created a “stop”.

F.D.R.

During one of my projects, I will discuss the phenomenon of mode creation
when a first-quantized string propagates across a singularity. In general, when
particles or strings propagate on a time-dependent spacetime, particle or string
creation may occur. But according to [49], which had a rather strong influence
on this chapter, it could just as well be called “field excitation”. It is already
sufficient to have a simple time-dependence in the metric of the spacetime to
allow for particle creation. Essentially the phenomenon of particle creation can
be already be illustrated by a simple harmonic oscillator with a time-dependent
frequency.

In this chapter, I will first describe how a free scalar field on a time-
dependent spacetime leads to a collection of time-dependent harmonic oscil-
lators. Afterwards I will show that the field excitation appears because the
creation and annihilation operators that are defined at asymptotic (“in” and
“out”) times are different. The example of a scalar field allows to refresh some
notions from field theory, which may be useful for some readers in the light of
later chapters.
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6.1 Scalar field in a time-dependent spacetime

In quantum field theory, a particle is defined as an excited state with respect
to a vacuum. Although there is a natural notion of vacuum in Minkowski
spacetime, it is not possible to define a unique vacuum in a general curved
spacetime. This leads, for example, to the Unruh and the Hawking effects.
In the Unruh effect, an accelerating observer perceives the Minkowski vacuum
as a thermal state due to his non-intertial motion. The Hawking effect near
a black hole horizon states that black holes emits radiation with a blackbody
spectrum at a temperature inversely proportional to the mass of the black hole.
The Hawking effect appears because the vacuum of the observer associated to
the asymptotically flat spacetime is different from the vacuum of an observer
in free fall.

The quantum field theory formalism in Minkowski background can be ex-
tended to include quantum fields in curved backgrounds, see for example [2, 22].
To achieve sufficient generality it often becomes necessary to use the algebraic
approach to quantum field theory [6] where the algebra is considered separately
from the representation. Nevertheless, in this chapter it will be sufficient to
limit ourselves to the more conventional (and more concrete) representation
approach. I will illustrate the concept of particle creation with a free scalar
field, for which the action reads

S = −1
2

∫
dDx

√
−g
(
gµν∂µφ∂νφ+

(
m2 + ξR

)
φ2
)
, (6.1)

and it leads to the wave equation(
− 1√
−g

∂µ
√
−ggµν∂ν +m2 + ξR

)
φ = 0. (6.2)

The factor ξ expresses the coupling of the field to the curvature scalar of the
spacetime background. Let us now specify the line-element of a generic (but
spatially flat) Robertson-Walker spacetime,

ds2 = −dt2 + a2(t)dxidxi, (6.3)

where a(t) is the scale factor. If we decompose the scalar field in Fourier modes,

φ(t, ~x) =
1√

(2π)D−1

∫
dD−1~xχ~k(t)exp(i~k · ~x), (6.4)

the equation of motion (6.2) yields[
∂2
t + (D − 1)

ȧ

a
∂t +

~k2

a2
+m2 + 2(D − 1)ξ

(
ä

a
+
D − 2

2
ȧ2

a2

)]
χ~k = 0. (6.5)
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In conformal time η (obtained by η̇ = a−1(t)) the Robertson-Walker metric
takes the (conformally flat) form

ds2 = a2(η)
[
dxidxi − dη2

]
. (6.6)

Then, through the substitution

χ~k = a1−D/2ζ~k, (6.7)

the field equation (6.5) can be written as a time-dependent harmonic oscillator
equation

∂2

∂η2
ζ~k + ω2(η)ζ~k = 0. (6.8)

The time-dependent frequency squared is given by

ω2(η) = ~k2 +m2a2 +

(
(D − 4)
a2

(
∂a

∂η

)2

+
2
a

∂2a

∂η2

)(
(D − 1)ξ − (D − 2)

4

)
.

(6.9)
Sometimes the value ξ = (D − 2)/4(D − 1) is chosen to achieve “conformal
coupling”, but in the remainder of the thesis we will assume that ξ = 0.

6.2 Spacetimes without particle creation

Now that we have seen how a free scalar field in a time-dependent spacetime
leads to a harmonic oscillator equation with time-dependent frequency, I will
describe how this time-dependent frequency leads to particle creation. How-
ever, I want to remark that if one can define a conserved frequency because
the spacetime metric admits a covariantly constant null vector or a globally
defined timelike Killing vector, there will be no particle creation [56] nor string
creation [58] for an observer in free fall. However for strings there may still be
excitation of the string, i.e. creation of string modes. This is because while
propagating in a time-dependent spacetime the quantized string may start to
oscillate because the frequency is not necessarily conserved on the worldsheet.
Let us clarify this difference with the example of a (lightcone) time-dependent
plane wave. There is a covariantly constant null vector, hence no particle cre-
ation nor string creation. But in lightcone gauge the timelike direction on the
worldsheet becomes aligned with the lightcone time, and the plane wave profile
induces a time-dependent mass term for the string modes, very much like an
ordinary time-dependence in the metric would lead to a time-dependent mass
for a scalar field as in (6.5).

The difference between string mode creation and string or particle creation
is of relevance in this thesis. Both in chapter 12 and in chapter 13 the back-
ground metric depends on lightcone time but is independent of another null
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coordinate. But while there is no particle creation for the scalar field that we
investigate in chapter 12, there is generically string mode creation in chapter 13.

6.3 Mode decomposition of the free scalar field

For later convenience and to stress the ambiguous notion of particle in a general
curved spacetime, I will first recapitulate some basic aspects of scalar field
theory. For a free field the quantum evolution is completely determined by
classical solutions to the wave equation. The action depends on the Lagrangian
density L by

S =
∫
dx0

∫
dD−1~x L(φ, φ̇, t), (6.10)

where x0 is a timelike coordinate. Upon canonical quantisation, the field φ and
its conjugate momentum π, which is given by

π = δL/δ∂0φ, (6.11)

are promoted to Hermitian operators, which satisfy the (equal-time) canonical
commutation relations

[φ(x0, ~x), π(x0, ~y)] = i~δD−1(~x− ~y). (6.12)

We define the Klein-Gordon inner product according to [49, 66] (a different
convention from the one used by [2, 94]) between two complex solutions to the
wave equation (6.2)

〈f, g〉KG = − i
~

∫
Σ

dΣµ
√
−gWµ[f∗, g] , Wµ[f, g] = (f∂µg − g∂µf) , (6.13)

where dΣµ the future directed volume element in the spacelike hypersurface
Σ. We can write dΣµ = nµdΣ with dΣ the volume element in Σ and nµ a
future directed unit vector orthogonal to the hypersurface Σ (thus nµ lies in
the future half of the lightcone at each spacetime event, we assume that the
manifold is time orientable). I also recall that the definition for the signs of
the metric is mostly plus. Because f and g are complex solutions to the wave
equation (6.2), the Klein-Gordon product is independent of the surface Σ. It
defines an inner product that is conserved during the field evolution.

For a free field, the field operator φ can be expanded in modes, to which
annihilation and creation operators are associated,

φ(~x, x0) =
∑
~k

f~ka~k + f∗~ka
†
~k
. (6.14)

A mode decomposition doesn’t really have any fundamental meaning because
it amounts to choosing a basis in the solution space. Nevertheless, for practical
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reasons one set of modes may appear more natural in a specific problem (for
example, positive and negative frequency solutions with respect to time trans-
lations in Minkowski spacetime). The annihilation operator associated to the
complex classical solution f is defined as the Klein-Gordon product between
the solution f and the field operator (see e.g. [18])

a(f) = 〈f, φ〉KG. (6.15)

By assumption f satisfies the wave equation, as does the field operator φ, so
the annihilation operator a(f) associated to f is well-defined. The Hermitian
conjugate of the annihilation operator is the creation operator,

a†(f) = −a(f∗) (6.16)

The commutators between annihilation and creation operators are given by

[a(f), a†(g)] =< f, g >KG, (6.17)
[a(f), a(g)] =< f, g∗ >KG, (6.18)

[a†(f), a†(g)] = − < f∗, g >KG . (6.19)

If f is a solution that has unit norm 〈f, f〉KG = 1, then the annihilation and
creation operators satisfy the usual commutation relation [a(f), a†(f)] = 1.

We now specify a quantum state |Ψ〉 that satisfies the normalization condi-
tion

a(f)|Ψ >= 0. (6.20)

The Fock space that contains the wavepackets with n-particle excitations above
the state |Ψ〉 is given by the span of all quantum states of the type

|n(f),Ψ〉 =
1√
n!

(a†(f))n|Ψ〉. (6.21)

With respect the number operatorN(f) = a†(f)a(f) (associated to the solution
f) the excitations |n(f),Ψ〉 are normalized with eigenvalue n. The space S of
complex solutions to the wave equation is given by a direct product between a
positive subspace Sp and its complex conjugate S∗p ,

S = Sp ⊕ S∗p , (6.22)

with the conditions on the (positive) subspace Sp,

〈f, f〉KG > 0, ∀f ∈ Sp, (6.23)
〈f, g∗〉KG = 0 ∀f, g ∈ Sp. (6.24)
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The full Hilbert space of the field theory can be defined as the space of finite
norm sums of (possibly infinitely many) states of the form

a†(f1) · · · a†(fn)|0〉, {f1, . . . , fn} ∈ Sp, (6.25)

where the state |0〉 is defined by

a(f)|0〉 = 0, ∀f ∈ Sp. (6.26)

The state |0〉 defined in (6.26), is called a Fock vacuum. It depends on the
specific decomposition of the solution space and is in general not the ground
state of the system. The ground state is only well defined if the background
metric is globally static.

In flat spacetime, a natural decomposition of the solution space S is given
by positive and negative frequency solutions (with respect to Minkowski time
translations): the positive frequency modes

f+
~k

(t, ~x) =
1
2

√
~
π3
ω(k)e−iω(k)tei

~k·~x, (6.27)

and the negative frequency modes

f−~k
(t, ~x) =

1
2

√
~
π3
ω(k)eiω(k)tei

~k·~x. (6.28)

The field operator has the expansion

φ =
∑
~k

f+
~k
a~k + f+∗

~k
a†~k
. (6.29)

In a general curved spacetime, there is no analog of the Minkowski vacuum.
The notion of particle is ambiguous, and states characterized by the field ob-
servables. Nevertheless, if the wavevector and the frequency of the field mode
are high enough compared to the inverse radius of curvature (that is, the fre-
quency is high compared to the square root of the curvature scalar R), then we
can locally introduce an analog notion of the Minkowski vacuum and particle
states can be defined approximately [49].

6.4 Time-dependent harmonic oscillator

Let us now consider the equation of motion of a time-dependent harmonic
oscillator

ẍ+ ω2(t)x = 0. (6.30)
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We assume that the frequency is asymptotically constant, with the asymptotes

lim
t→∓∞

ω(t) = ω∓, (6.31)

for “incoming” (-) and “outgoing” (+) states respectively. In the Schrödinger
picture, we assume that the oscillator is asymptotically in the state

lim
t→−∞

|ψS(t)〉 = |0−〉 , (6.32)

with |O−〉 the ground state of the “incoming” Hilbert space related to the
frequency ω− . Then we would like to know what

lim
t→∞

|ψS(t)〉 (6.33)

will correspond to. In general (6.33) will not correspond to |0+〉, the ground
state of the Hilbert space related to ω+. But to stress the analogy between
the quantum oscillator and the free scalar field, we will keep on working in the
Heisenberg picture. In the Heisenberg picture the state is time-independent, so
if it starts as |ψH〉 = |0−〉, it will remain in |0−〉 for all times. The question is
now how the state |0−〉 is expressed as a Fock state in the “outgoing” Hilbert
space that is related to ω+. In other words, we want to find the operator
F (a†+, a+) that is defined as,

|0−〉
?= F (a†+, a+)|0+〉. (6.34)

We write out solutions f−(t) and f+(t) to equation (6.30), which are normalized
according to < f−, f− >KG=< f+, f+ >KG= 1, and which have the following
asymptotic behaviour

lim
t→±∞

f± ∝

√
~
ω±

exp (−iω±t) . (6.35)

Because (6.30) is a second order differential equation, it possesses a two-parame-
ter family of solutions, which implies there is a complex relation between f+

and f− that involves two complex constants α and β such that

f+ = αf− + βf−∗, |α|2 − |β|2 = 1. (6.36)

In analogy with (6.15), the “outgoing” annihilation operator can then be writ-
ten as

a+ = 〈f+, x〉KG (6.37)

= αa− − βa†− (6.38)
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Such a linear relation between two sets of annihilation and creation operators is
called a Bogoliubov (or Bogoliubov-Valatin) transformation. The coefficients α
and β are called the Bogoliubov coefficients. We then find that the expectation
value of the “outgoing number operator” N+ = a†+a+ in the “incoming ground
state” |0−〉 is nonzero,

〈0−|N+|0−〉 = |β2|, (6.39)

and the number |β|2 characterizes the excitation number, or the “particle cre-
ation”. The more general relation between the incoming vacuum and the out-
going vacuum defined in (6.34), is given by means of a squeeze operator S,

|0−〉 = S†|0+〉, (6.40)

which only depends on the exponential of the “two-particle” creation and an-
nihilation operators a†a† and aa.

Summarizing the underlying theoretical mechanism behind the phenomenon
particle creation: the mode decomposition at early times (with respect to “in-
coming modes”) is different from the mode decomposition at late times (in
terms of“outgoing modes”), so a quantum state |ψH〉 that is identified as the
vacuum state |0−〉 with respect to the basis of incoming modes will be described
by an excited state in the basis of outgoing modes.
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Chapter 7

Background consistency in
string theory

The first law of attribution:

“Everything that is discovered, is named after someone else.”

V. I. Arnold

(Of course Arnold’s law is self-referential.)

In chapter 4, I have shown that the oscillation modes of a string, propagating
in Minkowski spacetime, contain a massless particle that can be identified with
the graviton. Now I will illustrate that the demand for a consistent quanti-
sation of the sigma model on the string worldsheet, determined by the con-
formal invariance of the string theory sigma model, forces a general spacetime
background to satisfy (a generalization of) Einstein’s equation. Sometimes,
as in chapter 13, these equations are called “background consistency condi-
tions”, because they constrain the spacetime backgrounds on which strings can
propagate. In the context of superstring theory the background consistency
conditions concur with the supergravity equations of motion, and the latter
will appear in chapter 14. Some elements of this chapter have been based on
[14, 52, 53].

7.1 Polyakov action in curved spacetime

We would like to extend the formalism of a string propagating in Minkowski
spacetime to a string that moves in an more general curved spacetime. Or more
precisely, we want to consider a string that propagates in a background of other
strings, because according to general relativity the curved spacetime describes
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the gravitational interaction, and according to string theory the gravitational
interaction is described by interactions between strings. Instead of writing
the action (4.2) of a linear sigma model, we now embed the two-dimensional
worldsheet of the string in a background spacetime, which should be viewed as
a kind of coherent state of the massless string modes [14]. Among the massless
string oscillations is of course the graviton (a coherent state of gravitons leads
to the spacetime metric gµν), but also the dilaton φ and the Kalb-Ramond
field Bµν , the latter being an antisymmetric tensor field that is sometimes also
called the B-field. For the sake of simplicity, we will write the string action in
a general curved spacetime for bosonic string theory. This is given by

S =
1

4πα′

∫
M

d2σ
√
γ
[(
γabgµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν + α′R(γ)φ(X)

]
.

(7.1)
Because of the appearance of the spacetime metric gµν in front of the worldsheet
derivatives of the string coordinates, this action represents a nonlinear sigma
model, or an interacting two-dimensional quantum field theory. As mentioned,
we will assume that only the massless states of the string are excited. We can
neglect the excitation of the massive string modes when the typical radius of
curvature ρ of the background spacetime is much larger than the characteristic
length scale of the string `s =

√
α′, or

√
α′ρ−1 � 1. In fact, without this

condition perturbation theory in the sigma model is not a useful approximation
neither. In (7.1), the dilaton couples through the worldsheet curvature R(γ)

and as we will see in the next section, it ensures that the two-dimensional
sigma model is conformal, or that the worldsheet energy-momentum tensor is
traceless at the quantum level [50] (for example, in lightcone gauge the dilaton
cancels the contribution of the transverse string coordinates to the conformal
or Weyl anomaly [66]).

7.2 Conformal invariance

As illustrated in section 4.3, the sigma model on the string worldsheet is invari-
ant under local conformal transformations at the classical level. These local
symmetries should not be broken by quantum corrections, because the formu-
lation of the worldsheet sigma model depends on the conformal invariance and
otherwise the theory would become inconsistent. Therefore we should check
that quantum corrections do not break the conformal symmetry of the string
theoretical sigma model.

Quantum corrections that add to the trace of the worldsheet energy-momen-
tum tensor may break the conformal symmetry. They contribute to the so-
called conformal or Weyl anomaly, which can be written schematically as

T aa = − 1
2α′

βgµνγ
ab∂aX

µ∂bX
ν − i

2α′
βBµνεab∂aX

µ∂bX
ν − 1

2
βφR(γ), (7.2)
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where the prefactors β are the “beta functions” of the sigma model, and they
depend on the background fields gµν , Bµν and φ. Then, the demand that there
is no Weyl anomaly forces the prefactors βgµν , βBµν and βφ to be zero. Thus the
cancellation of the Weyl anomaly leads to the following equations,

βgµν = 0 ⇒ α′
(
Rµν + 2DµDνφ−

1
4
, HµλωH

λω
ν

)
+O(α′2) = 0, (7.3a)

βBµν = 0 ⇒ α′
(
DωφHωµν −

1
2
DωHωµν

)
+O(α′2) = 0 (7.3b)

βφ = 0 ⇒ D −Dc

6
+ α′

(
DωφD

ωφ− 1
2
DωDωφ−

1
24
HµνλH

µνλ

)
+O(α′2) = 0 . (7.3c)

(7.3) determines the conformal invariance at the quantum level. The three-form
field strength Hµνκ is derived from the Kalb-Ramond field Bµν by

Hµνκ = ∂[µBνκ]. (7.4)

At the order of α′ there are at most two derivatives in (7.3). Terms with
more than two derivatives only appear with the higher order terms in α′, which
involve for example contractions of the products of the Riemann tensor. At
energies that are low compared to 1/

√
α′, spacetimes that are vacuum solu-

tions to Einstein’s equation are also approximate backgrounds in string theory,
by adding a constant dilaton and a zero B-field. In the next chapter I will
describe a class of exact classical solutions in string theory that do not involve
α′ corrections.

In the equations (7.3) I have written the symbol Dc for generality: in
bosonic string theory we have Dc = 26. Nevertheless, in critical superstring
theory in ten dimensions, the fermionic superpartners of the ten spacetime
coordinates give a quantum contribution to the trace of the worldsheet energy-
momentum tensor that is equivalent (in the context of the cancellation of
the Weyl anomaly) to sixteen spacetime dimensions. So the formulas (7.3)
above are also valid in superstring theory for Dc = 10 if we consider bosonic
background fields. In fact, up till now we have only considered the so-called
“Neveu-Schwarz-Neveu-Schwarz” background fields, because there may appear
additional bosonic terms in the equations (7.3) due to so-called “Ramond-
Ramond” fields, which will briefly appear in the next chapter.

So to summarize some material of chapter 4 and the material presented
here, we have seen that in order to be able to quantize the string, we needed
to resort to the action (4.2). It possessed an auxiliary worldsheet metric that
should not introduce unphysical degrees of freedom. Classically, the Polyakov
action is invariant under local Weyl (conformal) transformations which permit
to remove the dependence of the string theory sigma model on the auxiliary
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worldsheet metric. For theoretical consistency, the invariance under local Weyl
transformations should hold at the quantum level as well. The condition for
the absence of the conformal anomaly now leads to (a generalization of) Ein-
stein’s equation. So general relativity appears to be a consequence of the Weyl
invariance of the worldsheet sigma model that describes the propagation of the
string.

7.3 Low-energy effective actions

The field equations for the metric, Kalb-Ramond field and dilaton that guar-
antee that there is no Weyl anomaly in the quantum theory of the worldsheet
sigma model, can be derived from an effective spacetime action

Seffst =
1

16πG

∫
dDx
√
−ge−2φ

[
−2(D −Dc)

3α′
+R− 1

12
HµνλH

µνλ

+ 4∂µφ∂µφ+O(α′)

]
. (7.5)

This is called the effective action in string frame because of the dilaton-depen-
dent prefactor in front of the spacetime curvature scalar. As a consequence the
metric that is obtained by solving its equation of motion is called the string
frame metric. In fact we have a kind of “generalized spacetime” because of the
presence of the dilaton and the Kalb-Ramond field in addition to the metric,
somewhat like the Brans-Dicke theory of gravitation (e.g. [24]) that generalizes
Einstein’s description of gravity by adding a scalar field, in order to construct a
theory that was even more in accordance with Mach’s principle than Einstein’s
general relativity.

In the low energy limit where this action gives a valid effective description
of string theory, the string length is small and the stringlike nature of particles
can be neglected. If we then consider the propagation of point particles in the
spacetime of which the dynamics is described by the action (7.5), they don’t
follow geodesics because the dilaton exerts a force on them. In this sense,
the dilaton breaks the principle of equivalence even at the classical level, even
though the action is still generally covariant and does have a dynamical metric.
On the other hand, there are mechanisms to make the dilaton become massive1,
so the principle of equivalence still holds (up to a certain accuracy) at energies
below the mass scale of the dilaton.

Because point particles don’t follow geodesics, there is no preferred defini-
tion of a metric. It is sometimes convenient to rescale the string metric by a

1For example, in [5] it is argued how the mass of the dilaton could be associated to a
cosmological constant, at a time that it was generally believed that the cosmological constant
was zero.
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factor of the dilaton, in order to remove the exponential prefactor before the
curvature scalar. This prefactor is not important in the classical theory. It
would certainly influence the quantum theory, but for a consistent quantisa-
tion of gravity the full string sigma model is needed and this effective action is
not expected to be valid at energies near the Planck scale anyway. So we will
rescale the metric by a dilaton-dependent prefactor (with φ0 the average value
of the dilaton) according to

g̃µν = exp
(
−4φ̃/(D − 2)

)
gµν , φ̃ = φ− φ0 . (7.6)

In that case we pass to the effective action in Einstein frame:

SeffE =
1

16πGN

∫
dDx

√
−g̃

[
−2(D −Dc)

3α′
exp

(
4φ̃

D − 2

)
+ R̃

− 4
D − 2

g̃µν∂µφ̃∂ν φ̃

]
. (7.7)

I have omitted the field strength Hµνκ because it will not reappear later in this
thesis. The metric obtained by solving the equation of motions from the action
(7.7) is called the Einstein frame metric. For critical superstrings D = Dc = 10
the Einstein frame metric is related to the string frame metric by

ds2
E = e−φ/2ds2

st , (7.8)

which will reappear a few times in this thesis.
At an energy scale far below the mass of the dilaton, (7.7) is the appropriate

action to compare with the Einstein-Hilbert action of general relativity. And it
does indeed resemble the Einstein-Hilbert action more clearly than (7.5). The
prefactor GN in (7.7) is Newton’s constant and differs from the prefactor G in
(7.5) by a factor of the dilaton:

G
(D)
N =

[
g(0)
s

]2
G , g(0)

s = eφ0 . (7.9)

Here the superscript “(D)” indicates that we are considering Newton’s constant
in a target space with D dimensions. From dimensional analysis, the Planck
length is related to Newton’s constant by

G
(D)
N ≈

[
`
(D)
P

]D−2

. (7.10)

The prefactor G in the string frame effective action is naturally determined in
function of the string length as

G ≈ [`s]
D−2

, (7.11)
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which leads us to the relation between Planck length and string length:

`
(D)
P ≈ g2/(D−2)

s `s . (7.12)

This relation has already appeared in the introduction and in chapter 4.
The action (7.7) also agrees with (the bosonic part of) the supergravity ac-

tion, at least for the bosonic fields in the Neveu-Schwarz-Neveu-Schwarz sector.
There is also another bosonic sector called the Ramond-Ramond sector, as I al-
ready mentioned. In the following chapter we will see that there exist extended
objects in string theory that are called Dp-branes. These Dp-branes are sources
for the Ramond-Ramond gauge fields. These fields are higher-dimensional gen-
eralisations of electromagnetic fields. If Dp-branes are present, they lead to
additional terms in the effective action (see for instance, the supergravity ac-
tion in chapter 14) which were not written above.



Chapter 8

D-branes in string theory

Allegro molto alla “Notte e giorno faticar” di Mozart, Ludwig van Beethoven

In this chapter I will introduce the subject of Dp-branes. Dp-branes are solitons
of string theory. They can also be seen as a specific kind of p-branes, which
already appeared as gravity solutions in section 3.5. The reason I have to
make some comments about D-branes in the context of my thesis is twofold:
D-branes are important for the formulation of matrix theory in chapter 11, and
they also appear in my last research project in chapter 14. I will not delve too
deep into the theory of D-branes, because this would lead us to far from the
main line of the thesis. Therefore the readers who are primarily interested in
the research topics that concern the geometrical resolution of singularities, can
easily skip this chapter.

To recapitulate, string theory is formulated as a two-dimensional (confor-
mal) quantum field theory on string worldsheets with signature (−1, 1). The
(1+1)-dimensional quantum field theory describes D scalar bosons Xµ, which
describe the position of the string in D-dimensional spacetime (plus their su-
persymmetric extension in superstring theory). The quantum propagation of
strings involves an expansion in the string coupling, the interaction parameter
between strings, which corresponds to a sum over string worldsheets with dif-
ferent topologies. The worldsheet sigma model of the string is a first-quantized
approach because it deals with the evolution of a single string. To deal with
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strings propagating in the presence of other strings would require a second-
quantized formulation of strings as quantum fields on spacetime, called “string
field theory”. Nevertheless, if the number of backgrounds strings is large enough
that a semiclassical limit is justified, the traditional first-quantized approach
appears sufficient. The problem of a string propagating in a coherent state
of other strings is understood as a string propagating in a curved spacetime.
When the string propagates in a nontrivial spacetime background, the world-
sheet sigma model has to be adapted: the spacetime metric appears in front of
the kinetic terms of the fields Xµ.

The formulation of string theory in curved spacetime backgrounds allows
us to investigate the behaviour of strings in relation to certain configurations of
other strings. But string theory also contains different objects of other dimen-
sionalities which are more directly related to classical spacetime backgrounds.
These objects are generically called p-branes, where the dimensionality of the
“brane” is p + 1: there are p spatial dimensions and there is one timelike
dimension along the worldvolume of the brane. There is one exception, the
D(-1)-brane, which is an “instanton”, one spacetime event. The worldvolume
is the collection of points in spacetime that are swept out by the movement of
the brane, a generalization of the worldline of a particle and the worldsheet of
a string. The remaining (D − p − 1) dimensions are sometimes called “trans-
verse”. The notation D both for Dirichlet-brane and also for the total number
of spacetime dimensions (and the covariant derivative) is a little bit unfortu-
nate, but it should be clear from the context. All the p-branes can be described
as solutions in a gravitational theory, with a certain mass or charge distributed
on the worldvolume. In this way, a Schwarzschild black hole can also be viewed
as a 0-brane, and a string as a “fundamental” 1-brane or F1-brane (these are
not D-branes).

8.1 What are D-branes?

To illustrate how string theory offers a quantized description of gravity, I have
commented on the massless spectrum of a closed string in section 4.4. There
are certain objects in closed string theory, called D-branes, which are static at
weak string coupling (they have infinite mass), but whose dynamics becomes
important at strong string coupling. The theoretical formulation of closed
string theory does not necessarily have to involve open strings as well (I remark
it is not possible to formulate open strings without including closed strings),
at weak string coupling D-branes appear most naturally in the formulation of
open string theory, so I will introduce them that way.

In the case of an open string, the variation of the Polyakov action yields a
boundary term at the endpoints of the string (it is standard to take σ = 0, π).
As a consequence one has to impose a condition on the movement of the string
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to make this boundary term vanish. In analogy with the theory of partial
differential equations on a compact region, the conditions are called Neumann
and Dirichlet conditions. Neumann boundary conditions specify that there is
no momentum flowing out of the string (that is, the endpoints can move freely)

∂Xµ

∂σ

∣∣∣
σ=0,π

= 0, (8.1)

and Dirichlet boundary conditions specify that the endpoints of the string do
not move,

∂Xµ

∂τ

∣∣∣
σ=0,π

= 0. (8.2)

More specifically, let us choose (ten-dimensional) Minkowski spacetime in light-
cone coordinates and write the metric as

ds2 = −2dudv +
p−1∑
α=1

yαyα +
9−p∑
i=1

dxidxi, (8.3)

We now impose Neumann conditions for the (p+ 1) string coordinates U(σ, τ),
V (σ, τ) and Y α(σ, τ), but Dirichlet conditions for the (9 − p) coordinates
Xi(σ, τ). In other words, the string endpoints can move freely on the (p+ 1)-
dimensional subspace Σp+1 along the worldvolume dimensions {u, v, yα}, but
they are fixed in the transverse dimensions xi. These subspaces to which the
endpoints of open strings are attached, are called D-branes. A DD−1-brane fills
the whole space and corresponds to a open string that can move freely, with
only Neumann conditions at the endpoints.

At weak string coupling the D-branes can be considered as rigid objects. In
1995 it was understood by Polchinski [51] that the stable Dirichlet-branes of su-
perstring theory carry Ramond-Ramond charges. As a consequence, D-branes
can be represented by (stable) supergravity solutions in the low-energy limit of
string theory. These solutions describe extremal black p-branes, which I intro-
duced in section 3.5. Black p-branes are higher dimensional generalizations of
black holes, and “extremal” signifies that there is an equality between the mass
and the charge of the p-brane, generalizing the extremal Reissner-Nordström
black hole (3.31). In bosonic string theory D-branes carry no conserved charges
and are not associated with gravity solutions, but in this thesis it is tacitly un-
derstood that I’m referring to superstring theory.

To recapitulate, there are two complementary ways to look upon D-branes
in superstring theory. The first way is to describe D-branes as subspaces on
which strings have Dirichlet boundary conditions: it is possible to consider
open strings with Dirichlet boundary conditions on some number (9 − p) of
the spatial string coordinates Xi. The locus of points defined by the chosen
Dirichlet boundary conditions defines a (p + 1)-dimensional subspace Σp+1 in
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the ten-dimensional spacetime. The second way is to interprete D-branes as
extremal brane solutions of supergravity that carry conserved charges.

Concerning the conserved charges carried by the Dp-brane, the ten-dimen-
sional type IIA and IIB supergravity theories each have a set of (p + 1)-form
gauge potentials A(p+1). These gauge potentials are a generalization of the
electromagnetic potential which is a one-form field. They are the Ramond-
Ramond fields in the massless superstring spectrum. For type IIA supergravity
p is even and for type IIB supergravity p is odd. The (p + 1)-form gauge
potentials A(p+1) lead to a (p + 2)-form field strength, and the charge that
couples to the gauge fields is carried by the p-brane. For each of the gauge
potentials A(p+1) there is a solution of the supergravity equations of motion
(i.e. Einstein’s equation generalized to supergravity), that is invariant under
Lorentz transformations along the brane worldvolume, and which has the form
of an extremal black hole solution in the 9 − p spatial directions that are not
affected by the fields A(p+1). These extremal p-brane solution are so-called BPS
states in the supergravity theory that preserve half of the supersymmetries of
the vacuum supergravity theory (see section 5.2). The supergravity solution
associated to the p-brane expresses the functional shape of the gravitational
field and gauge field strength that are sourced by the charged p-brane, in a
way similar to how the Reissner-Nordström solution represents the electro-
gravitational field of a massive point charge.

8.2 T-duality and D-branes

When in closed bosonic string theory one dimension (say, for example, Xc) is
compactified on a circle with radius R, symbolically written as

Xc ∼ Xc + 2πnR, (8.4)

the behaviour of the theory turns out to be equivalent to a compactification
on a circle of radius α′/R. More specifically, invariance of the closed string
under periodic shifts of the worldsheet coordinate σ → σ+ 2π does not require
that the left-moving and right-moving zero mode creation operators αi0 and α̃i0
be equal as for the string coordinate in an uncompactified spacetime direction,
but it only requires √

α′

2
(αc0 − α̃c0) = mR , m ∈ Z . (8.5)

On the other hand, through the compactification the momentum along the
compact dimension must be quantized as pc = n/R and the operators that
create the string oscillations become

αc0 =

√
α′

2

(
n

R
+m

R

α′

)
, α̃c0 =

√
α′

2

(
n

R
−mR

α′

)
. (8.6)
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However, because the winding modes (mode number m) and the momentum
modes (mode number n) do not appear independently in the spectrum of the
theory, it is not possible to distinguish them physically. For example the mass
of the string states has a term proportional to

∆M = (αc0)2 + (α̃c0)2, (8.7)

which is invariant under the changes R→ α′/R and n↔ m and therefore the
physical predictions remain the same.

When two different theoretical descriptions lead to the same physical be-
haviour the equivalence between them is often called a “duality”. In some sense,
on could view a duality as a complicated relation between two mathematical
representations of the same physical problem. In the case described above one
speaks about T-duality. The “T” stands for toroidal compactification, which
is a more general type of compactification that the compactification along a
circle described in (8.4). Under the T-duality the field Xc is replaced by a dual
field X̂c.

The also exists a T-duality between the two closed N = 2 superstring theo-
ries: type IIA superstring theory defined on a background with a compactified
dimension of a radius R, is T-dual to type IIB superstring theory defined on
the same background but with compactification radius α′/R. But if in ad-
dition to the closed superstrings, also open superstrings are considered, then
the D-branes have to be taken into account explicitly when the T-duality is
performed. Under the T-duality a Dp-brane is mapped into a D(p± 1)-brane.

8.3 D-branes as dynamical objects

When p is even in type IIA superstring theory (or odd in type IIB superstring
theory) the quantum spectrum of the string theory contains a set of massless
gauge fields Am, with m = {u, v, α = 1 . . . p−1} and fields Xi, i = 1, . . . , (9−p).
These gauge fields Am are defined on the worldvolume of the Dp-brane. They
should not be confused with the Ramond-Ramond gauge potentials A(p+1) of
section 8.1 because the latter are present throughout the whole spacetime. The
gauge fields Am can be identified as a set of degrees of freedom that describe
the dynamical fluctuations of the Dp-brane in the transverse directions xi.
To clarify this, suppose we start with a critical open superstring with only
Neumann conditions, which can move freely on the D9-brane that is spacetime.
The open string can couple to a U(1) gauge field Aµ (µ = 0 . . . 9) present on
D9-brane, so the gauge field is present in the whole spacetime. The components
of the gauge field are derived from the vertex operators of the open string that
have the structure V (µ) = ∂tX

µ. Upon an T-duality, we will obtain a D8-
brane instead of a D9-brane, and the A9 component of the gauge field will be
transformed into a field that describes the transverse fluctuations of the brane.
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The reason is that upon T-duality the vertex operator ∂tX9 is transformed into
the operator ∂nX̂9 where ∂n is the normal derivative transverse to the brane
and X̂9 is the T-dual field of X9. The quantum fluctuations of the open string
describe a fluctuating hypersurface1 through the operator ∂nX̂9 and therefore
the D8-brane is not static.

8.4 Effective action for D-branes

To determine the effective action of a system that contains D-branes, we will
again demand conformal invariance as in the previous chapter. In the presence
of D-branes, the boundary terms in the action will lead to additional terms
in the background consistency conditions (7.3). The additional terms can be
derived from an effective action which we will write down here, because it will
turn out to be important for the formulation of matrix theory in chapter 11.
Let us consider a collection of N D-branes. For N non-coinciding D-branes
the massless vector states in the string spectrum only come from strings with
both ends on the same D-brane. For clarity I have kept the Kalb-Ramond field
Bµν = 0 and also Ramond-Ramond p-form fields are omitted. I will first write
out the effective action for a single (bosonic) Dp-brane, which describes the
oscillations of a brane with an equilibrium position at the origin,

SDBI = −α
′−(p+1)/2

(2π)p

∫
dp+1ξe−φ

[
det
(
gµν

∂Xµ

∂ξm
∂Xν

∂ξn
+ 2πα′Fmn

)]1/2

,

(8.8)
with the worldvolume parametrized by ξm. For historical reasons this action
is called the Dirac-Born-Infeld action (DBI). Fmn is the field strength of the
gauge field Am present on the brane worldvolume (this is not to be confused
with the Ramond-Ramond gauge field that is sourced by the brane and present
throughout the whole spacetime). In the case of a single brane it is simply (we
can restrict to the dimensions along the brane)

Fmn = ∂mAn − ∂nAm . (8.9)

In the case of Minkowski spacetime background, up to lowest order in the
gauge field strength, and ignoring the coordinates Xµ transverse to the brane,
the effective action (8.8) for a single D-brane can be rewritten as

S1Dp ≈ −
α′−(p+1)/2

gs(2π)p

∫
dp+1ξ − 1

4gs
α′(3−p)/2

(2π)p−2

∫
dp+1ξFmnF

mn. (8.10)

1A hypersurface is a subspace of codimension one, i.e. it has one dimension less than the
spacetime.
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For N > 1 there are additional terms because of the interactions between the
branes. We neglect the constant (infinite) term in formula (8.10). The bosonic
part of the effective action for N coinciding Dp-branes at the origin becomes

SNDp ≈−
1

4gs
α′(3−p)/2

(2π)p−2

∫
dp+1ξF 2

mn

+
α′−(p+1)/2

gs(2π)p

∫
dp+1ξTr

(
−1

2
(DmX

i)2 +
1

16π2α′2
([Xi, Xj ])2

)
,

(8.11)

with the non-abelian gauge field strength

Fmn = ∂mAn − ∂nAm + i[Am, An], (8.12)

and the covariant derivative

DmXj = ∂mXj + i[Am, Xj ]. (8.13)

The trace in the action (8.11) is over the U(N) matrices. For a single D-
brane, the gauge field Aµ that is associated to the D-brane surface is in the
adjoint representation of the gauge group U(1). An open string that has a
Dirichlet condition with respect to this brane will couple to the gauge field Am
on this brane. For N non-coinciding D-branes, there is one U(1) factor for each
D-brane. So for N non-coinciding Dp-branes the gauge group becomes U(1)N ,
though there are also massive modes related to the open strings stretching
between different D-branes. For coinciding D-branes the full gauge group is re-
stored to U(N) because open strings stretching between the different D-branes
are just as massless as strings with both endpoints on only one brane. Fields in
the adjoint representation of U(N) are represented by N×N unitary matrices.
Because the fluctuations of the D-branes around their equilibrium position is
(by T-duality) directly related to these gauge field Aµ, their representation will
have to written as U(N) matrices as well. I will illustrate in chapter 11 that
the equilibrium position of the branes is given by the diagonal matrix-elements,
at least for widely separated branes. For widely separated branes, the string
modes between different branes are very massive and the gauge group U(N)
breaks down to U(1)N , which corresponds to a N×N diagonal unitary matrix.

For a general Dp-brane, the tension τp of the brane is of the order of the
prefactor of the kinetic term for the matrices Xi in the effective action (8.11),

τp ∝ g−1
s α′−(p+1)/2 . (8.14)

The tension is related to a mass scale:

τp ≈ (MDp)
p+1

. (8.15)

The mass can be derived from the central charge of the supergravity superalge-
bra, because D-branes are extremal objects for which the mass is equal to the
charge. We will come back to the expressions (8.15) and (8.11) in chapter 11.
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Chapter 9

Gravitational plane waves

The second law of attribution:

(prompted by the observation that the sequence of antecedents under
Arnold’s law seems endless)

“Nothing is ever discovered for the first time,”

Michael Berry

In section D.1 of appendix D gravitational waves are introduced as solutions
to the perturbed Einstein equations on a Minkowski background. These grav-
itational waves are derived as perturbations and out of consistency their am-
plitude is therefore assumed to be small. Nevertheless, it is possible to write
down metrics that represent gravitational waves in general relativity that can
become arbitrarily strong, because they satisfy the full nonlinear Einstein equa-
tion. The existence of a nonlinear plane wave solution makes it clear that the
linear gravitational waves are certainly not coordinate artifacts. They really
represent ripples in spacetime that can transport energy. So far, gravitational
waves have not been directly observed, but it is the aim of high precision exper-
iments such as LIGO, GEO600, VIRGO, MiniGrail and LISA to detect them
experimentally.

I will introduce the nonlinear gravitational plane waves and also a more
general class of spacetimes that they belong to, which are called pp-waves.
I will describe why plane waves are an interesting background for studying
toy models in string theory. In this thesis, singular plane waves will be used
as spacetime backgrounds for a free string propagating across a singularity in
chapter 13. Plane waves will also appear as an asymptotical spacetime for a
class of D-brane solutions in chapter 14. Some material of this chapter is based
on [19] and I have recapitulated some useful elementary material of general
relativity in chapter 3 and appendix B.
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9.1 pp-waves

In four dimensions, Lorentzian spacetimes that admit a covariantly constant
null vector field k (k satisfies equation (B.19) and kµkµ = 0) are called “plane-
fronted gravitational waves with parallel rays”, or pp-waves in short. Histor-
ically, pp-waves were first introduced by Hans Brinkmann in 1925 [54], but
the term “pp” was only introduced in 1962 by Jürgen Ehlers and Wolfgang
Kundt [55]. In between, pp-waves were rediscovered many times, for example
by Albert Einstein and Nathan Rosen in 1937. The term pp-waves is purely re-
lated to the mathematical properties of a manifold, irrespective of the physical
matter present in the spacetime.

Because of the requirement of the covariantly constant null vector field
(we will denote it by k = ∂v), electromagnetic non-null fields, perfect fluids
and solutions with a cosmological constant cannot occur and the metric of
the vacuum pp-wave, or generalized with Einstein-Maxwell null fields and pure
radiation fields can be written as,

ds2 = −2dudv + dx1dx1 + dx2dx2 − F (u, x1, x2)du2. (9.1)

In higher dimensions the characterisation of a pp-wave is a little bit more
complicated: pp-waves are not simply identical to the class of Lorentzian space-
times that admit a covariantly constant null vector field. When pp-waves are
mentioned in the literature one is usually referring to the generalized pp-waves,
in contrast to the vacuum plane waves. Higher dimensional vacuum pp-waves
are the Ricci flat Lorentzian spacetimes of Petrov type N that admit a covari-
antly constant null vector field. Generalized pp-waves are not Ricci flat and
these spacetimes have to be equipped with additional matter fields to satisfy
Einstein’s equation, but the generalized pp-waves are also of Petrov type N and
admit a covariantly constant null vector. Petrov type N refers to an algebraic
classification of the Weyl tensor as illustrated in section 3.3). It describes the
possible algebraic symmetries of the Weyl tensor at each event in a spacetime
manifold. In the remainder of this thesis I will make no particular distinc-
tion between (vacuum) pp-waves and generalized pp-waves and use the name
pp-waves for both.

We will write the metric for the D-dimensional pp-wave in Brinkmann co-
ordinates as

ds2 = −2dudv +
d∑
i=1

dxidxi − F (u, xi)du2, (9.2)

where the wave profile F (u, xi) only depends on the lightcone time u and the
transverse coordinates xi. The index i runs over the d = D − 2 transverse
coordinates. The Riemann tensor can be easily characterized in terms of the
wave profile. The only nonzero term is

R b
uau = ∂a∂bF (u, xi)/2, (9.3)
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and those related by symmetries like R v
uab . The Ricci tensor is determined

by the single component

Ruu =
d∑
a=1

∂2
aF (u, xi)/2. (9.4)

So in vacuum F (u, xi) is a solution to the (transverse) Laplace equation.

9.2 Plane waves

9.2.1 Brinkmann coordinates

Plane waves1 are pp-waves that have a wave profile F (u, xi) that depends
quadratically on the transverse coordinates:

F (u, xi) = fab(u)xaxb . (9.5)

Here we write the metric

ds2 = −2dudv − fab(u)xaxbdu2 + δabdx
adxb (9.6)

in Brinkmann coordinates, which are global coordinates. Any linear depen-
dence of F (u, xi) on xi can be removed by a coordinate transformation. fab
is sometimes called the plane wave profile matrix. The Ricci tensor is then
immediately given by the trace of the plane wave profile matrix Ruu = fii(u).
In vacuum these plane waves have a traceless profile matrix and they have the
same amount of degrees of freedom as a graviton.

To anticipate the appearance of singular plane waves in chapter 13, we will
briefly investigate the geodesics related to the spacetime (9.6), which are given
by the equations,

ü = 0, (9.7)

ẍi + fai(u)xau̇2 = 0, (9.8)

v̈ +
1
2
∂fab(u)
∂u

xaxbu̇2 + 2fab(u)xaẋbu̇ = 0, (9.9)

where the dot denotes the derivative with respect to the affine parameter τ .
In case one of the functions fab(u) diverges at u = 0 there is a singularity
because timelike geodesics have u = puτ (p 6= 0) and reach the origin u = 0 in
finite proper time. Furthermore, in the case of a diverging fab(u) all timelike
geodesics will be incomplete, so the singularity in such a singular plane wave

1These are also sometimes called “exact” plane waves, e.g. in [60].
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will be analogous to a cosmological singularity. The geodesic deviation equation
yields,

ÿi + (pu)2fijy
j = 0, (9.10)

with yi the transverse separation between nearby geodesics that have the same
momentum pu. For a vacuum plane wave the trace faa = 0 and the tidal forces
will be attractive in some directions, and repulsive in some others.

Brinkmann coordinates have a few special properties [73]. They provide a
measure of the invariant geodesic distance in spacetime with respect to the null
geodesic u = puτ (in that respect they are reminiscent of Riemann coordinates).
Another property of Brinkmann coordinates is that the curvature is directly
related to the profile of the wave.

9.2.2 Rosen coordinates

Another useful coordinate system is given by Rosen coordinates, in which the
metric only depends on the lightcone time

ds2 = −2y+y− + µij(y+)dxidxj , (9.11)

and it is manifest that each spacetime that is conformal to another plane wave
with the conformal factor only dependeng on lightcone time x+, is also a plane
wave. However, Rosen coordinates suffer from coordinate singularities (e.g. the
metric is not invertible when µij = 0 for a certain value of x+).

The coordinate transformation between Brinkmann and Rosen coordinates
for general wave profile can be expressed most easily in terms of a vielbein field
eai (see section B.4 where “i” takes the role of curved index and “a” the role
of Lorentz index) that only depends on lightcone time and that is restricted to
the directions transverse to the wave propagation direction. The vielbein field
satisfies (with δab instead of the Minkowski tensor because of the restriction to
the transverse directions)

gij = eai e
b
jδab. (9.12)

The coordinate transformation between Brinkmann and Rosen coordinates is
then given by

y+ = u , , y− = v − 1
2
ėaie

i
bx
axb , yi = eiax

a, (9.13)

and eib is the inverse vielbein. To exclude that dy+dyi terms would appear in
the metric, the vielbein has to be chosen such that it satisfies the symmetry
condition ėaie

i
b = ėbie

i
a. The plane wave profile is now given by

fab = −ëai(u)eib(u). (9.14)
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In the special case of a diagonal plane wave the coordinate transformation is
simply given by 

u = y+

v = y− + 1
4

∑
i µ̇i(y

i)2,

xa =
∑
i

√
µiiy

i δai ,

(9.15)

and the plane wave profile matrix fab is related to the polarization matrix µij
by

fab(u) = − 1
√
µaa

∂2√µaa
∂y+

∣∣∣∣∣
y+=u

δab. (9.16)

9.2.3 Homogeneous plane waves

I have already mentioned the Killing vector k, but an arbitrary plane wave
with profile fab possesses additional Killing vectors (see e.g. [66, 67]). In case
the plane wave possesses another null Killing vector in addition to k = ∂v
that generates the lightcone-time translations, then the plane wave is called
homogeneous. All homogeneous plane waves were given in [67]. An important
time-dependent class of homogeneous plane waves are the scale-invariant plane
waves that have a specific dependence of the plane wave profile on the lightcone
time, given by

fab(u) =
Λab
u2

. (9.17)

These scale-invariant plane waves possess the additional null Killing vector

` = u∂u − v∂v (9.18)

that is related to the boost isometry (u, v, xi)→ (Cu, v/C, xi). After diagonal-
isation of the profile, the scale-invariant plane wave can be written in Rosen
coordinates as

ds2 = −2y+y− + (y+)2midxidxi, (9.19)

with mi the “Kasner exponents”. In Brinkmann coordinates,

ds2 = −2dudv −
∑
a

λa
xaxa

u2
du2 + δabdx

adxb, (9.20)

these Kasner exponents are related to the normalizations λa of the eigenvalues
of the matrix Λab by,

λa = ma(1−ma), (9.21)

and it is clear that the transformation mi → 1 −mi of the Kasner exponents
leaves the metric invariant. In the specific case of an isotropic plane wave
profile that we will study in chapter 13, we will describe λ as the “overall



86 CHAPTER 9. GRAVITATIONAL PLANE WAVES

normalization” of the plane wave profile. The scale-invariant plane wave has
a singularity at u = 0 which is at finite distance (the lightcone time u serves
as affine parameter). In principle we should only consider the spacetime from
u =]0,+∞[, but in our study of transition of fields through singularities we
will extend the spacetime to the coordinate range u =] − ∞,+∞[. In this
case, we should interprete the full spacetime as a spacetime with a bounce
singularity: the spacetime first contracts to a big crunch singularity and then
expands from a big bang singularity (at least for positive λ). In addition, out of
general considerations we will assume that it is possible to have a different wave
profile before the singularity compared to after the singularity. In chapter 13
we will denote this difference as λk− before the singularity and λk+ after the
singularity, instead of the previous λ.

9.2.4 Plane waves from Penrose limits

Roger Penrose observed in 1976 that, near a null geodesic, every Lorentzian
spacetime locally looks like a plane wave [57]. A certain procedure, called
the Penrose limit, puts this phrase in a mathematical form and associates a
plane wave geometry to a null geodesic of a certain spacetime. For a modern
exposition that gives a covariant characterisation of the Penrose limit I refer
the reader to [69]. Their results show that the plane wave profile matrix fab
of (9.6) is directly related to the curvature of the original spacetime along the
null geodesic through

fab(u) = R̃aubu|γ̃(u) (9.22)

Here γ̃(u) represents the null geodesic along which the Penrose limit is taken,
and the R̃aubu components of the Riemann tensor of the original spacetime are
evaluated in a parallel-transported frame along the null geodesic.

We will focus on Penrose limits of singular spacetimes that are taken along
a null geodesic that hits the singularity. In this case, we will obtain singular
plane waves. Thus plane waves arise naturally in study of cosmological singu-
larities. Furthermore, singular plane waves are not simply a toy model for a
singularity. Through the Penrose limit the Brinkmann profile matrix contains
the components of the Riemann tensor along the null geodesic that hits the
singularity. An important feature of certain cosmological singularities are di-
verging tidal forces. The tidal forces are encoded in the Riemann tensor, and
lead to the deviation of nearby geodesics by equation (3.8). Because the singu-
lar plane wave profile contains all the information about the Riemann tensor
along the geodesic that hits the singularity, it contains the essential information
of the geodesic deviation equation around that geodesic. Therefore the Pen-
rose limit captures essential features of the original singularity, promoting the
singular plane wave to a real first approximation for a spacetime singularity.
As an approximation, singular plane waves are simpler to study than the orig-
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inal singular spacetime, essentially because one only focuses on the spacetime
structure near one geodesic.

In [70] it was proven that the Penrose limits of metrics with singularities of
an arbitrary power-law type, show a universal scale-invariant 1/u2 behaviour
near the singularity in the plane wave, under the condition that the dominant
energy condition [8, 21] is satisfied and not saturated. This means that the
energy-momentum tensor Tµν satisfies two conditions: for every timelike vec-
tor vµ its contraction with the energy momentum tensor is strictly positive
Tµνv

µvν > 0, and the vector Tµν v
ν is non-spacelike. In other words, for any

observer the local energy density is positive and the energy flux is causal.

9.3 Exact backgrounds in string theory

The pp-waves are solutions to the Einstein equation in vacuum and therefore
we may expect that they are related to certain string theory backgrounds.
We recall that the background consistency conditions in string theory modify
Einstein’s equation at the classical level by adding an infinite number of higher
order terms, which involve higher powers and derivatives of the curvature. The
classical equation of motion for the metric in string theory (the background
consistency condition) is the condition for conformal invariance of the sigma
model on the two-dimensional string worldsheet,

Rµν +
α′

2
RµπρσR

πρσ
ν + . . . = 0, (9.23)

were I have written only the first curvature terms that are related to the metric
and I have omitted other fields like the dilaton or the axion. If the curvature
of the spacetime is small compared to the Planck scale, then the higher order
corrections are small and a spacetime that is a solution to Einstein’s equation
in vacuum will be an approximative solution in string theory too.

However, due to their metrical structure, vacuum pp-waves guarantee that
all the higher order terms (the α′ corrections) are zero, so they are classical solu-
tions of the background consistency conditions up to all order in the worldsheet
sigma model perturbation theory [58, 59]. But also generalized pp-waves satisfy
the background consistency conditions in string theory and as a consequence
several generalized pp-wave solutions that are equipped with Ramond-Ramond
fields or with a time-dependent dilaton have been constructred, all of which are
exact classical solutions as string theory backgrounds, up to all orders in α′.
In the case of plane waves, where the dependence of the plane wave profile on
the transverse coordinates is quadratic, the two-dimensional sigma model on
the string worldsheet can be solved exactly [58].

In order to further elucidate the usefulness of pp-waves as backgrounds in
string theory, we should comment on certain algebraic properties of spacetimes.
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The first is the existence of a covariantly constant null vector field. In case
the spacetime possesses such field, the lightcone gauge can be imposed on
the worldsheet sigma model, which simplifies the formulation of string theory.
Furthermore, such a field also permits the definition of a conserved frequency,
implying that there is no particle nor string creation in the spacetime, as was
considered in chapter 6. A less stringent condition, the existence of a lightlike
Killing vector, is necessary for the formulation of matrix theories, which will
be studied in chapter 11. In order for the spacetime background to preserve
supersymmetry, it has to admit a Killing spinor. A Killing spinor implies the
existence of a null or timelike Killing vector. More precisely, the derivation
of a null or a timelike Killing vector from a Killing spinor has been proved
for a number of supergravity theories and is widely believed to hold for all
supergravity theories (see e.g. [74]). Therefore the existence of a lightlike
Killing vector is a necessary (but not sufficient) condition to preserve some
supersymmetry.

Another important algebraic property of a spacetime is when it has vanish-
ing curvature invariants. This means that all the curvature scalars that can be
constructed from the Riemann tensor and the metric are zero. Such spacetimes
are important because the structure of the higher order terms of the back-
ground consistency condition for the metric simplifies considerably. Because
spacetimes with vanishing curvature invariants are exact classical backgrounds
in (bosonic) string theory, it is interesting to know which of these spacetimes
preserve supersymmetry. In [74] it was proven that for spacetimes that have
vanishing scalar curvature invariants, they cannot preserve supersymmetry if
they do not possess a covariantly constant null vector. Thus exact classical
solutions in string theory that preserve some supersymmetry must possess a
covariantly constant null vector. In four dimensions all spacetimes that ad-
mit a covariantly constant null vector also have vanishing curvature invariants
(see e.g. [65]). In higher dimensions there do exist spacetimes with a covari-
antly constant null vector, but which have non-vanishing curvature invariants
nonetheless (see e.g. [71]). All higher-dimensional spacetimes that possess
both vanishing curvature invariants and a covariantly constant null vector are
given by [72]. These spacetimes are interesting backgrounds for string theory
σ-models.

Plane waves also appear in the formulation of certain time-dependent gen-
eralizations of the AdS/CFT correspondence [75], but since this would distract
us from the main topics of this thesis I will not discuss this any further.



Chapter 10

Resolution of singularities

“Man who says it cannot be done
should not interrupt man doing it,”

Gábor Vattay (and probably many other persons)

In this thesis, a geometrical resolution prescription is applied to investigate free
field propagation across singularities. The geometrical resolution prescription
involves the regularization of the singular spacetimes into a class of regular
spacetimes with specified metric components. The regularized metric allows
to define the field transition across the singularity and to obtain a solution for
the field evolution (at least in principle). This is achieved by solving the field
evolution on the class of regularized spacetimes. Finally the limit should be
taken in which the metric on the regularized spacetimes reduces to the original
singular metric, and we are interested in the singular limit of the solution for
the (free) field propagation. If such a limiting solution exists, we will say it de-
fines the field evolution on the singular spacetime according to the geometrical
resolution prescription.

In this chapter we will also look at some comments about the nature of
singularities that can appear at the classical level of string theory, and what
approaches are used to resolve them. I will also give an overview of how we
can study the transition of (free) fields through a singularity. In between I will
introduce orbifolds, which is an important class of toy models for singularities
in string theory. Some comments about the operator structure of Hamiltonians
obtained by a geometrical resolution are mentioned in the final section of the
chapter.

89
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10.1 Geometrical regularization prescription

The geometrical resolution prescription consists of two steps: the regularization
of a singular spacetime into a class of regular spacetimes, and the taking of the
singular limit. We start with a singular spacetime

ds2 = gµνdx
µdxν (10.1)

with a metric gµν given in a certain coordinate system. We give an explicit
expression for the “regularized metric components” gµν(ε) in terms of ε, such
that they are regular for ε 6= 0. A geometrical regularization of the original
singular spacetime is then given by the class of regularized spacetimes (labeled
by ε) with the line element

ds2(ε) = g(ε)
µν dx

µdxν . (10.2)

The regularized spacetimes (10.2) are perfectly regular for ε 6= 0. We demand
that these spacetimes, possibly equipped with additional massless string fields,
allow for consistent propagation of quantum strings. Therefore they have to
satisfy the generalization of Einstein’s equation in string theory, i.e. the back-
ground consistency conditions of chapter 7. The singular metric components
in (10.1) have been replaced by regularized metric components in (10.2). Of
course, in the singular limit the latter limit to the former:

lim
ε→0

g(ε)
µν = gµν . (10.3)

The geometrical resolution prescription now prescribes that we derive the
field evolution on the class of regularized spacetimes. Finally, we take the sin-
gular limit in which the metric on the class of regularized spacetimes limits
to the metric on the singular spacetime. Notice that when we take the singu-
lar limit of the regularized metric components in (10.3), we make use of the
coordinate system in which we defined gµν(ε).

Because (10.2) represents a class of spacetimes one could perhaps wonder
what its limit would be without specification of the coordinate system. How-
ever, in that case the limit of a class of spacetimes is not well-defined by the
limiting value of ε only. In the next section we will comment on a coordinate-
free treatment of the limits of spacetimes. But this problem has no influence
on our geometrical resolution prescription outlined above.

We are considering the limit of the class of spacetimes (10.2) in the co-
ordinate system in which we proposed the explicit expressions for the gµν(ε).
Our procedure is well-defined in as much as the coordinate system in which
we defined the gµν(ε) is well-defined. For example, in chapter 13 we construct
a class of regularized plane waves, for which we use the globally well-behaved
Brinkmann coordinates. The Brinkmann coordinate system completely covers
the spacetime manifold [55].
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10.2 Limits of spacetimes

Without further specification “the limit of a spacetime” is not a well-defined
concept. This issue has already been raised by Geroch in [76]. Let us consider
the Schwarzschild spacetime as an example. With respect to the metric of
(3.30) there is no limit of the spacetime when M →∞. However, let us apply
the following M -dependent coordinate transformation:

r̂ = M−1/3r , t̂ = M1/3t , ψ̂ = M1/3θ . (10.4)

The line element (3.30) now becomes

ds2 =−
(

1
M2/3

− 2
r̂

)
dt̂2 +

(
1

M2/3
− 2
r̂

)−1

dr̂2

+ r̂2
(
dψ̂2 +M2/3sin2(M−1/3ψ̂)dφ2

)
. (10.5)

In the coordinates (10.4) the limit of the Schwarzschild spacetime exists. The
line element of the limiting spacetime becomes

ds2 =
2
r̂
dt̂2 − r̂

2
dr̂2 + r̂2

(
dψ̂2 + ψ̂2dφ2

)
. (10.6)

It is obtained by taking M →∞ in the metric components of (10.5).
So how to define a unique singular limit without specifying the coordinate

system? In the case of the possible limits of the Schwarzschild spacetime, a
coordinate independent description of the limits of a class of spacetimes was
introduced by Paiva et al [81]. This coordinate independent description is
based on the Karlhede procedure. The Karlhede procedure [77] consists of an
algorithm to compute the Cartan scalars. The Cartan scalars are the set of
frame components of the covariant derivatives of the Riemann tensor. These
are scalars under coordinate transformations and contain all the local infor-
mation about the metric (however, they do change under a change of tangent
frame). The Karlhede procedure leads to a coordinate free characterization of
spacetimes. By making use of the Karlhede procedure it is now possible to
specify a unique limit of a spacetime in a coordinate-independent manner. The
limiting procedure now consists of specifying the limiting value of ε and the
limiting values for all of the (algebraically independent) Cartan scalars. The
freedom of choosing different limiting values for the Cartan scalars reflects the
ambiguity of the ε → 0 limit for the class of spacetimes (Mε, gµν(ε)) when
different coordinates are kept fixed in the limit. Of course, the singular limit
can also be well-defined by specifying a particular coordinate system.
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10.3 Singularities in string theory

For a review of time-dependent solutions and spacelike singularities in string
theory, see e.g. [93] and references therein. Their focus is complementary to
the geometrical resolutions procedure advocated in my thesis. For a discussion
of models in string theory to investigate spacetime singularities see [111]. The
research of singularities in string theory is focused on the resolution of lightlike
singularities. Real cosmological singularities are spacelike, but they are much
harder to investigate.

Let us come back to our definition of singularities in appendix A. Space-
times can be called singular in general relativity when they are geodesically
incomplete, meaning that classical test particles cannot evolve for an infinite
time. In string theory, the situation is different. Because the center-of-mass
motion of a classical string reduces to the null geodesic equation, any spacetime
that is singular in general relativity will also be singular in string theory at the
classical level. However, there do exist spacetimes that are singular in the sense
of general relativity, but the propagation of a first-quantized string is never-
theless well defined (these spacetimes belong to a class called orbifolds, see the
following section). Therefore we should rather consider quantized test strings
in order to determine whether a spacetime in string theory is singular. In order
to determine the singular nature of a spacetime, the usual first-quantized ap-
proach to string theory will be sufficient in time-independent spacetimes, but
in general time-dependent backgrounds there will be string creation. An im-
portant exception are the spacetimes that possess a covariantly constant null
vector like pp-waves, where the first-quantized approach will suffice (see the
previous chapter).

In general, we should call a string theory solution singular if the expectation
value of a certain physical observable associated to the test string diverges [60].
Because the propagation of a first-quantized string may involve other back-
ground fields in addition to the spacetime metric (e.g. dilaton or axion fields),
it may be that a certain string theory solution is singular while the spacetime
metric is nonsingular nonetheless. We do not consider such theoretical cases,
because it is quite possible that these are essentially unphysical examples, un-
less these cases would be related by some kind of duality to a real singular
spacetime with a singular metric. Also, in some cases singular spacetimes are
related to smooth solutions under dualities.

From the perspective of resolving spacetime singularities in general relativ-
ity by means of string theory, the classification of a string theory solution as
singular or non-singular can still be quite subtle, as I will illustrate here with
an example. If we consider flat spacetime to which we add a linear dilaton
field, then we have an exact solution to the string equations of motion [79]. In
Einstein frame, the spacetime corresponds to an expanding Robertson-Walker
solution with a singularity [80]. However, it might seem that this would pro-
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vide a regular solution in string theory, e.g. [59]. Nevertheless, even in string
frame the solution is singular because the string coupling blows up [107]. I will
discuss this model in more detail in section 11.6.

10.4 Orbifolds

In a purely mathematical context an orbifold (from “orbit-manifold”) is a gen-
eralization of a manifold ; it allows the presence of points whose neighbourhood
is diffeomorphic to a quotient of Rn by a finite group, i.e. Rn/G. In a physical
context like in string theory, the name orbifold usually describes an object that
can be globally written as an orbit space M/G where M is a manifold, and G
is a group of some its isometries and/or discrete symmetries. In an orbit space
M/G (also called a quotient space or coset space) all the elements of G are
identified with the identity element.

An example of a quotient space is the periodic segment R/T (R) where T (R)
is a translation that maps x ∈ R into x+ 2πR, also written as,

x ∼ x+ 2πnR , n ∈ Z. (10.7)

The integer n is usually not written out explicitly when it appears linearly, but
rather implicitly understood in the symbol “∼” that signifies equality under
the identification group. Still, I have chosen to write the integer n explicitly, in
order to stress the similarity between the general formula and more complicated
realisations that involve higher powers of n, as in formula (10.13). We have
already encountered this simple example of compactification along a circle in
section 8.2. Actually, in this simple example the orbifold produces a regular
compactified space (the real line is mapped onto a circle of radius R) that is
invariant under discrete coordinate shifts by 2πR (which are in this example
the elements of the discrete group G), and all physical observables should also
be invariant under these shifts.

If the group G has fixed points, then the orbifold M/G will have singular
points. We will be interested in such orbifolds with singular points because
they provide a toy-model for a singular spacetime. In the case of a so-called
“conical” singularity, the curvature is not defined at the singular point, and
geodesics end after a finite eigentime. The singularities appear, for example,
when in a spacetime manifold points are identified by combining a periodic
identification and a reflection. Let us specify a coordinate Xr, and consider
the identification of points under the reflection

Xr ∼ −Xr. (10.8)

If such a reflection is simultaneously combined with a periodic identification,

Xr ∼ Xr + 2πnR, n ∈ Z, (10.9)
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then we obtain a singular spacetime, which possesses a compactified direction
Xr, with the fundamental region 0 ≤ Xr ≤ πR, and both Xr = 0 and Xr = πR
are fixed points under the orbifold group. In the remainder of this thesis, I will
use the name orbifold for these singular orbit-manifolds.

Orbifolds provide toy-models of spacetime singularities in string theory. The
conical singularity of an orbifold is sometimes viewed as a “mild” singularity
because it can be removed by going to the covering space of the orbifold. Be-
cause of the identification under a reflection, orbifolds lead to the appearance
of “twisted closed strings”. Loosely speaking, these twisted strings are wound
around the conical singularity. Timelike orbifold singularities are resolved in
string theory precisely because of the twisted states. Although these orbifolds
are geodesically incomplete, it has been shown [78] that the propagation of
a first-quantized string is well defined. There is no such resolution for point
particles. On the other hand, for lightlike orbifold singularities string theory
is not well-behaved on the orbifold because of backreaction effects [87]. One
example of a lightlike singularity is the parabolic orbifold, which I will discuss
into more detail because of its importance in chapter 12.

10.4.1 Parabolic orbifold

In the literature the parabolic orbifold is also known as the null orbifold. In
Rosen coordinates, the metric on the parabolic orbifold [61, 84] is given by

ds2 = −2dy+dy− + (y+)2dy2 , (10.10)

where the following identification is understoody+

y−

y

 ∼
 y+

y−

y + 2πn

 , n ∈ Z . (10.11)

There is no reflection identification as in the example (10.8), but because of
the combination of the periodic identification in the y direction and the metric
coefficient gyy = (y+)2, the parabolic orbifold is singular nevertheless.

The parabolic orbifold is in fact simply (three-dimensional) Minkowski space-
time where a lightlike identification has been made. That the metric becomes
Minkowski spacetime (albeit compactified) written in lightcone coordinates
ds2 = −2dx+dx− + dx2, can be seen by making a coordinate transformation

x+ = y+ , x− = y− − 1
2
y+y2 , x = y+y. (10.12)

In the Minkowski lightcone-coordinates the idenfication for Rosen coordinates
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(10.11) becomesx+

x
x−

 ∼ exp(2πnJ )

x+

x
x−

 , n ∈ Z , J =

0 0 0
1 0 0
0 1 0

 . (10.13)

In fact, the identification group for the parabolic orbifold is a lightlike Lorentz
boost generated by the Killing vector x+∂x+x∂x− . The Lorentz group in 1+2
dimensions has three classes:

• A Killing vector from the elliptic class (spacelike rotations) generates the
Zn orbifolds.

• A Killing vector from the hyperbolic class (a Lorentz boost) generates the
boost orbifold (also called Misner space in [93]). The three-dimensional
boost orbifold is related to the Milne spacetime, which is defined as two-
dimensional Minkowski spacetime under a boost identification. The Milne
spacetime has four regions: the future and past cones and two “whisker”
regions with closed timelike curves. I do not give the metric here because
it will appear shortly in equation (10.25). We will also consider the future
cone of the Milne orbifold in section 11.6 in the context of the “matrix
big bang” toy model.

• A Killing vector from the parabolic class generates the parabolic orb-
ifold. The parabolic orbifold is the only orbifold that does not break
supersymmetry.

For y+ → 0 there is a singularity in the Rosen metric (10.10), which is not
a coordinate artifact because of the identification (10.11). Indeed, for x+ = 0,
all the points x− and x are identified with x− = 0 and x = 0 respectively, so
the parabolic orbifold has a (lightlike) singularity occurring at zero lightcone
time x+ = 0, reminiscent of a “big crunch” followed by a “big bang”. The
parabolic orbifold can be visualized as two cones (parametrized by y and y+)
with a common tip at y+ = 0, times the real line labeled by y−. y plays the
role of angular variable of the cones and y+ of radial coordinate, in addition to
its role as time variable.

Although the parabolic orbifold has Minkowski spacetime as its covering
space, and Minkowski spacetime is certainly regular, the covering space should
by no means be confused with a geometrical regularization of the parabolic
orbifold like the nullbrane, discussed in the following section.

10.4.2 Nullbrane

The nullbrane spacetime was originally introduced in [82] and can be considered
as a geometrical regularization of the parabolic orbifold (actually the review [93]
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that I referred to before also uses the name “nullbrane” to specify the parabolic
orbifold itself). The nullbrane was studied in the context of perturbative string
theory in [86, 88]; a matrix theory description was provided in [109].

We will consider four-dimensional Minkowski spacetime in lightcone coor-
dinates ds2 = −2dx+dx−+dx2 +dz2. The nullbrane is obtained by identifying


x+

x
x−

z

 ∼


1 0 0 0
2πn 1 0 0

2π2n2 2πn 1 0
0 0 0 1



x+

x
x−

z

+ 2πn


0
0
0
R

 , n ∈ Z. (10.14)

In the R → 0 limit the nullbrane reduces to the parabolic orbifold times
the real line labeled by z. In this sense, the nullbrane is a geometrical regular-
ization of the parabolic orbifold. In the R→∞ limit the nullbrane reduces to
Minkowski space.

In [86], the nullbrane geometry was discussed in two coordinate systems (to
facilitate comparison we use their notation for the coordinates),

ds2 = −2dy+dy− + du2 + (R2 + (y+)2)dy2 + 2Rdydu; (10.15)

ds2 = −2dx̃+dx̃− + dx̃2 + (R2 + x̃2)dθ2 + 2(x̃+dx̃− x̃dx̃+)dθ, (10.16)

related to Minkowski coordinates by

x+ = y+, x = yy+, x− = y− + 1
2y

+y2, u = z −Ry; (10.17)
x+ = x̃+, x = x̃+ θx̃+, x− = x̃− + θx̃+ 1

2θ
2x̃+, θ = z

R . (10.18)

Unfortunately, neither coordinate system is fully satisfactory for studying the
R → 0 limit of dynamics on the nullbrane. To study the singular limit, we
would like to phrase the dynamics in terms of a Hamiltonian (see expression
(10.39)) that has the structure H =

∑
i fi(t, R)Hi in which fi(t, R) is regular

in t for R 6= 0 and regular away from t = 0 for R = 0. The terms that appear
in the Hamiltonian can be easily deduced from the inverse metric. On the
one hand, the y-coordinates are not globally defined since they are singular at
y+ = 0 for any R. On the other hand, the x̃-coordinates, which are nonsingular
for R 6= 0, do not have an R → 0 limit even away from the parabolic orbifold
singularity, as the determinant of the metric is −R2 everywhere.

Therefore, in our publication [95] we introduced new coordinates that in-
terpolate between the x̃-coordinates (for small x̃+) and the y-coordinates (for
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large y+):

X+ = x̃+ = y+; (10.19)

X− = x̃− − 1
2
x̃

x̃+

(
1− R4

(R2 + (x̃+)2)2

)
= y− +

R2

2
y+u2

(R2 + (y+)2)2 ;

X = − Rx̃√
R2 + (x̃+)2

=
y+u√

R2 + (y+)2
;

Θ = θ +
x̃

x̃+

(
1− R2

R2 + (x̃+)2

)
= y +

Ru

R2 + (y+)2
.

In this coordinate system, the metric has determinant

det [gµν ] = −(R2 + (X+)2), (10.20)

which is regular for all X+. Despite the capital notation, the spacetime co-
ordinates should not be confused with string coordinates. We will use this
coordinate system in chapter 12 to derive the evolution of a scalar field (hence,
confusion with string coordinates is unlikely).

10.4.3 The generalized nullbrane

The metric of the nullbrane spacetime, written in our new coordinates, can be
naturally generalized to a two-parameter family of metrics, which we will call
“generalized nullbrane”. The family is labeled by two parameters α and β, and
the original nullbrane corresponds to α = 3, β = 2:

ds2 =
R2X2

(
β2 − α

)
(R2 + (X+)2)2

(
dX+

)2 − 2dX+dX− +
2βRX√

R2 + (X+)2
dX+dΘ

+
(
R2 + (X+)2

)
dΘ2 + dX2. (10.21)

For the reader’s future convenience, the inverse metric has the following
components:

gµν =



0 −1 0 0

−1
αR2X2

(R2 + (X+)2)2

βRX

(R2 + (X+)2)3/2
0

0
βRX

(R2 + (X+)2)3/2

1
R2 + (X+)2

0

0 0 0 1

 , (10.22)

with Xµ ∈ [X+, X−,Θ, X].
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As a matter of fact, the generalized nullbrane is only a solution of Einstein’s
equation in vacuum when

α = 1 + β2/2 . (10.23)

Therefore, unless we could provide a reasonable physical explanation that jus-
tifies the nonzero value of the Ricci tensor of the generalized nullbrane

RX+X+ = −
R2
(
2 + β2 − 2α

)
2 (R2 + (X+)2)2 , (10.24)

it would seem more appropriate to only consider the one-parameter subfamily
of the generalized nullbrane determined by (10.23). Nevertheless, in chapter 12
where we consider the geometrical resolution of a scalar field on the parabolic
orbifold we will keep the values of both parameters α and β arbitrary and
consider the whole parameter space of the generalized nullbrane. This allows
us to discover an interesting phenomenon: if the singular limit of the scalar field
(propagating on the generalized nullbrane specified by the coordinates (10.21))
is to exist, the parameters α and β are forced to be discrete. In fact, the only
discrete value that corresponds to a vacuum solution is precisely the original
nullbrane.

10.5 Transition through singularities

The presence of singularities in the spacetime that describes our universe, and
the proposal of cosmological models that possess a bounce, where (part of) the
universe collapses into a singularity and then re-expands, raises the question
how transition of matter through the singularity should be described at the
theoretical level. String theory, as a unified formalism of matter and gravi-
tation, is a natural framework to investigate these issues. According to string
theory, matter particles are contained in the excitation spectrum of strings, but
geometry is contained as well (through gravitons), and we may expect that the
issue of matter propagating through a singularity in the spacetime geometry
should be describable in string theory.

Nevertheless, defining dynamical transitions through spacetime singularities
entails a very large amount of ambiguity, both technically and conceptually, and
a deeper and more systematic understanding of gravitational physics is needed
in order to address the issue with full legitimacy. Nevertheless, even in the
absence of such understanding, it appears desirable to explore the range of
possibilities presented by the problem of evolution across singularities.

In the context of string theory, holography can be understood as a duality
between a gravitational theory and a quantum field theory. For details about
holography, I refer the reader to the review [83]. In several string theory ap-
proaches, holography maps the study of cosmological singularities to the study
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of quantum mechanics or quantum field theory with certain singular features.
For example, the couplings may develop a singularity as a function of time, or
the quantum field theory may be defined on a singular spacetime background.
This is the case in the “matrix big bang model” of [107, 110] where the gravita-
tional phenomena near the singularity are described by a quantum field theory
of matrices on (the future cone of) the compactified Milne spacetime. To be
able to illustrate this model, we first have to introduce certain aspects of ma-
trix theory, so we will consider this in more detail in the next chapter. A
similar model studied in [109] involves quantum field theory of matrices on
the nullbrane spacetime and its singular limit, the parabolic orbifold. Another
model [112] involves quantum field theory of matrices on singular homogeneous
plane waves. The cosmological models presented in [108] are quantum mechan-
ical models of matrices instead. All these related approaches of field theory or
quantum mechanics of matrices are collectively called “matrix models” (though
the term matrix models can also be used more widely than in the matrix theory
context described here).

An important question is what happens in these matrix models when the
background spacetime on which they propagate, develops a singularity. In
such a case, a geometrical resolution of the field evolution can be called an
appropriate regularization prescription, at least if we maintain a classical view
on the background spacetime. In the classical picture the singular spacetime
background does permit a geometrical interpretation and we can, at least in
principle, relate the singular metric to a class of regular metrics. The geomet-
rical resolution of the background spacetime will then translate in a resolution
of the (time-dependent) couplings of the matrix model. As mentioned above,
in some cases the singular time-dependences of the couplings can be absorbed
into the worldsheet metric. Instead of regularizing the original singular space-
time metric one could then also opt to regularize the worldsheet metric more
directly, for example by devising a kind of geometrical regularization of the
singular worldsheet metric. Nevertheless, the (singular) worldsheet metric is
an auxiliary concept, so a geometrical resolution cannot be advocated in the
same manner as in the case of a singularity of a real spacetime. The nontrivial
worldsheet metrics appearing in some matrix models should not be considered
as a real spacetime background with a geometrical interpretation. Still, for the
both kinds of matrix models described above, be it field theory defined on a
singular background or field theory with a singular coupling, the singular be-
haviour leads to singular Hamiltonians. While certain subtle questions related
to the large N limit (N being the size of the matrices) have not been fully
addressed yet, these matrix models clearly motivate the study of field theory
with (near-)singular Hamiltonians.

As an initial step in the study of singularities by means of a geometrical
resolution prescription, I have investigated if a (free) scalar field or a (free)
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string can propagate through the singularity. The spacetime metric affects the
evolution of the field, but in principle the field will “backreact” and influence
the spacetime metric through its energy-momentum tensor. However, this is
in the case we are considering a gravitational theory such as string theory on
a singular spacetime background, or if we would consider the propagation a
scalar field on a real spacetime. In that case we will consider the “probe limit
approximation”, in which we neglect the backreaction of the field on the metric.
In the case we are considering a holographically dual quantum field theory on
an auxiliary singular spacetime, it is understood that the duality has translated
the gravitational phenomena related to the singularity of the real spacetime in
a dual field theory language on an auxiliary spacetime, at least for some of the
matrix models described in the previous paragraph (other holographic models
may map gravitational theories onto field theories defined on the boundary
of the real spacetime). The formulation of the dual field theory on the fixed
auxiliary background includes all the backreaction effects in principle. How
all the complicated physical effects near the singularity are captured by the
dual field theory in practice, is a major open task that will demand substantial
research in the future.

In chapter 13 we study the evolution of a scalar field on a singular space-
time. On the one hand, this could be viewed as the propagation of a real
field on a real spacetime with a singularity in the probe limit where we ne-
glect backreaction. On the other hand, we can also look upon this model as a
dual formulation of the gravity. From the latter point of view the gravitational
physics has been translated into a dual field theory, defined on an auxiliary
spacetime with a singularity, where we should not consider auxiliary backreac-
tion effects of dual fields. We are not dealing anymore with a direct formulation
of gravity where the spacetime structure is coupled to the energy-momentum
tensor of the fields, but with a holographic formulation of gravity, where the
dual fields are propagating on a fixed auxiliary background, and the real back-
reaction is already encoded in the evolution of the dual fields. Truth be told,
we have simplified the problem considerably by investigating a free scalar field
instead of the much more complicated field theories that arise in dual models
for singularities (e.g. [107]). Therefore our investigations in chapter 12 don’t
permit us to derive immediate conclusions about the gravitational physics of a
specific dual toy-model for a singularity, but the aim of that chapter is rather
to investigate the use of a geometrical resolution to derive field evolution across
a singularity in a particular example.

Another reason why we have investigated the evolution of a field across the
singular parabolic orbifold in chapter 13, is that it allows us to compare with
the literature: to define the evolution of the free scalar field we derive mode
functions that also appear in the formulation of string theory. The parabolic
orbifold [84], the nullbrane [86] as well as the compactified Milne spacetime
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have been studied as (a part of) backgrounds of gravitational theories, in par-
ticular as (a part of) string theory spacetimes. Most attempts to study the
singular spacetimes among those just mentioned in string perturbation theory
have failed because both the parabolic orbifold and the Milne orbifold exhibit
divergences signaling large gravitational backreaction [84, 85, 87, 89]. With
respect to a real spacetime singularity, the probe limit approximation is only
valid if the field under consideration does not become too energetic (when there
is a “blueshift” of field modes), which turned out to be problematic indeed for
some of the earlier approaches listed above. With respect to the issue of back-
reaction, we will see in chapter 13 that the total excitation energy of a string
propagating through a plane wave singularity becomes unbounded for a large
subset of the plane wave profiles. In chapter 12 we will simply limit ourselves
to the study of free field propagation and we neglect interesting questions re-
lated to possible non-gravitational backreaction because the main focus of the
chapter is on the implementation of the geometrical resolution prescription to
define the transition of a scalar field through the singularity, and we can view it
as an approximation for the more complicated field theories that appear in the
dual formulation of spacetime singularities. So in the model we will discuss in
chapter 12, the singular spacetime hosts a holographically dual quantum field
theory, not a gravitational theory as in the approach of [84, 86].

10.6 Comparison of resolution prescriptions

As already mentioned, prescribing propagation across a singularity is ambigu-
ous and there are various ways to approach the issue. In this section I will
compare the geometrical resolution prescription with a resolution prescription
devised by Ben Craps and Oleg Evnin in a paper that preceded my collab-
oration with them, in order to better motivate the choice for a geometrical
resolution. In [94] they noticed that evolution across spacelike or lightlike sin-
gularities appears to be often described by time-dependent Hamiltonians with
an isolated singularity in their time dependence. They then exposed the most
conservative way to define a unitary quantum evolution corresponding to such
Hamiltonians by modifying the singular time dependences to become distribu-
tions while keeping the operator structure of the Hamiltonian unchanged. This
approach is relevant when the transition through the singularity is dominated
by a single term (single operator structure) in the Hamiltonian, and one can
think of this way to define the transition through the singularity as a sort of
“minimal subtraction”. To clarify this procedure it is perhaps instructive to
describe a specific case. A typical example would be the minimal subtraction
procedure for a free scalar field propagating on the Milne orbifold. Then I will
argue why the minimal subtraction prescription does not admit a geometrical
interpretation. In the light of the importance of the parabolic orbifold in the
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chapter 12 I will also apply the “minimal subtraction” prescription of [94] to
the parabolic orbifold.

10.6.1 Minimal substraction on the Milne orbifold

As mentioned above, in [94], Ben Craps and Oleg Evnin divised a kind of “min-
imal subtraction” prescription and described its particular implementation for
the case of a free scalar field propagating on the compactified Milne universe.
Here, I would like to argue that the approach of [94] does not lend itself to a ge-
ometrical interpretation, and, therefore, should we be interested in geometrical
resolutions of space-time singularities, a more general framework is required.

To recapitulate briefly, the metric of the compactified Milne universe (we
consider the past and the future cone) is

ds2 = −dt2 + t2dx2, x ∼ x+ 2π, (10.25)

and the corresponding free scalar field Hamiltonian is

H =
1

2|t|

∫
dx
(
π2
φ + φ′

2
)

+
m2|t|

2

∫
dxφ2. (10.26)

With this form of the Hamiltonian, the Schrödinger equation cannot be inte-
grated through t = 0 on account of the singularity of 1/|t|.

The idea of the “minimal subtraction” scheme of [94] is to keep the operator
structure of the Hamiltonian unchanged and to modify the singular time de-
pendences in (10.26) locally at t = 0 by subtracting terms proportional to (pos-
sibly) resolved δ-functions and its derivatives such that the time dependences
become well-defined in the sense of distributions1. Then, the Schrödinger equa-
tion can be integrated. Put differently, one can replace 1/|t| in (10.26) by its
regulated version f1/|t|(t, ε) (with ε being a regularization parameter), in such a
way that, as ε is taken to 0, f1/|t|(t, ε) converges to a distribution F1/|t|(t), and
this distribution F1/|t|(t) equals 1/|t| everywhere away from t = 0. A possible
choice is

f1/|t|(t, ε) =
1√

t2 + ε2
+ 2 ln(µε)

ε

π(t2 + ε2)
, (10.27)

with µ an arbitrary mass scale.
With this approach, one obtaines a regularized version of the Hamiltonian

(10.26), namely

H =
1
2
f1/|t|(t, ε)

∫
dx
(
π2
φ + φ′

2
)

+ · · · (10.28)

1This procedure bears a strong formal resemblance to the conventional renormalization
of local field theories by subtracting local counter-terms, and it can be thought of (see [94]
for further discussion) as renormalizing the time dependence of (10.26).
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such that, as ε is taken to 0, the evolution away from t = 0 becomes identical to
that arising from (10.26), and, furthermore, the system displays a well-defined
(unitary) transition through t = 0.

10.6.2 The demand for a geometrical interpretation

The “minimal subtraction” procedure we have just briefly re-stated, is a con-
sistent evolution prescription in itself. However, a direct inspection of (10.28)
shows that the regularized version of our dynamics does not admit a geometri-
cal interpretation (nor should one think of its singular limit, albeit well-defined,
as being geometrical).

The problem with constructing a geometrical interpretation of (10.28) is
that, since f1/|t|(t, ε) has an ε→ 0 limit as a distribution, the ε→ 0 limit of

t0∫
−t0

dt f1/|t|(t, ε) (10.29)

must exist. Furthermore, as stated above, the ε → 0 limit of f1/|t|(t, ε) must
equal 1/|t| everywhere away from t = 0. For that reason, in order for the limit of
(10.29) to exist, f1/|t|(t, ε) should be very large and negative somewhere in the
ε-neighborhood of t = 0 so that the positive divergence from integrating 1/|t|
is compensated in (10.29). This is clearly apparent in figure 10.1. However,
the coefficient of the kinetic term in the Hamiltonian of a field in a geometrical
background comes from the square root of the determinant of the metric (and
the coefficients of the inverse metric), and it needs to be positive (as is the
function 1/|t| appearing in (10.26)).

Nevertheless, in a geometrical context as the propagation of a free field on a
curved spacetime in the probe limit approximation, a geometrical interpretation
of the singular limit may be desirable. In that case the spacetime is treated as
a classical background, and precisely because of the clear geometrical meaning
of the spacetime background, it is rather natural to define the transition across
the singularity in a geometrical manner. One may want to resolve the singular
geometry into a smooth space, and then try to take the singular limit in such
a way that the dynamical evolution remains well-defined. It is non-trivial,
because ad-hoc resolutions of a singular spacetime will generically not lead to
a well-defined dynamics in the singular limit.

Because of the conflict between the minimal subtraction approach and a
purely geometrical interpretation of the Hamiltonian, we generally need to relax
the specifications of the minimal subtraction approach if we want to construct a
geometrical resolution of dynamics on a singular spacetime background. That
is, we should permit modifications in the operator structure of the Hamilto-
nian, as well as in its time dependence, in the vicinity of the singular region.
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Figure 10.1: Negative contribution around t = 0 in regularized f1/|t|(t, ε)
(10.27)

We will then typically end up with a situation where a few different operator
structures in the Hamiltonian essentially contribute to the transition to the
singular region:

H(t) =
∑
i

fi(t, ε)Hi, (10.30)

where Hi are time-independent operators and fi are time-dependent number-
valued functions. ε is a regularization parameter, and the implication is that,
as ε is taken to 0, some of the fi’s may develop isolated singularities at a certain
value of t, which we choose to be t = 0. It is the commutation properties of
those different terms in the Hamiltonian that are responsible for divergence
cancellation (rather than explicit negative contributions introduced through
the “minimal subtraction” scheme of [94]).

10.6.3 Minimal subtraction on the parabolic orbifold

In this section we will derive the propagation of a free scalar field across the
singularity of the parabolic orbifold by means of a minimal subtraction proce-
dure, which, as mentioned before, does not permit a geometrical interpretation.
The readers who are interested to compare this procedure with the geometrical
resolution prescription of the next chapter are invited to continue reading. If
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they prefer to concentrate on the main line of the thesis, it may be better to
skip this subsection and to resume reading at the beginning section 10.7 where
I will consider some dynamical aspects of Hamiltonians that exhibit a multiple
operator structure.

We write the action for a massive scalar field in the parabolic orbifold using
the metric (10.10):

S =
∫

dy dy+ dy− dz |y+|
(
∂+φ∂−φ−

(∂yφ)2

2 (y+)2
− m2φ2

2

)
. (10.31)

We decompose φ into Fourier modes along y− and y (with the condition φ∗`,ky =
φ−`,−ky ):

φ =
1

2π

∑
ky

∫
d`φ`,kyexp(i`y− + ikyy). (10.32)

Now the action can be rewritten as

S =
∑
ky

∫
dy+ d` |y+|

[
i`
(
φ`,ky∂+φ

∗
`,ky − φ

∗
`,ky∂+φ`,ky

)

−

(
k2
y

(y+)2
+ m2

)
φ`,kyφ

∗
`,ky

]
(10.33)

The equations of motion are

2i`∂+φ`,ky +
i`φ`,ky
y+

+

(
k2
y

(y+)2
+ m2

)
φ`,ky = 0. (10.34)

One can deal with the constraints due to the first order nature of the lightcone
formalism by choosing φ̃`,ky =

√
i`y+φ`,ky as the canonical coordinate and

π̃`,ky =
√
i`y+φ∗`,ky as its conjugate momentum (for more details in a similar

case, see appendix F). We obtain the Hamiltonian

H =
∑
ky

∫
dy+ d`

1
2i`

(
k2
y

(y+)2
+ m2

)
π̃`,ky φ̃`,ky . (10.35)

We now apply the “minimal subtraction” scheme of [94] to the singular time
(y+) dependence in (10.35):

1
(y+)2

→ (y+)2 − ε2

((y+)2 + ε2)2 . (10.36)

(One could in principle add a (resolved) δ-function with an arbitrary coefficient
on the right hand side, but we will not make use of this freedom for the sake
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of brevity.) At this point we can clearly see the appearance of a negative
contribution in the Hamiltonian near the singularity at t = 0 due to the −ε2
term in the numerator in (10.36).

To resume the derivation of the scalar field mode functions on the parabolic
orbifold, the solution for φ̃ reads:

φ̃`,ky ∝ exp

(
−m

2

2i`
y+ +

k2
y

2i`
y+

(y+)2 + ε2

)
. (10.37)

We can return to the original φ`,ky and write the scalar field mode functions
as:

ψ`,ky,m2(y+, y−, y) ∝ 1√
2i`y+

exp
(
−m

2

2i`
y+ +

k2
y

2i`
y+

(y+)2 + ε2
+ ikyy + i`y−

)
.

(10.38)
In order to compare our mode functions of (10.38) obtained by a minimal

subtraction prescription with the mode functions of [86], we identify ky = J
and p+ = −p− = −`. Furthermore, the mode functions of [86] are derived
for the parabolic orbifold times a line, whereas the mode functions (10.38)
refer to the parabolic orbifold proper. To compensate for this difference, one
should set the momentum along the extra line in [86] to zero (which amounts
to imposing n = J in the notation of that paper). Thereafter, the two sets
of mode functions agree. The agreement is largely by coincidence. The mode
function of [86] are derived via a geometrical regularization (the nullbrane), but
they are written in the singular y-coordinates (10.15). The minimal subtraction
mode functions are obtained through a regularization procedure that does not
admit a geometrical interpretation.

10.7 Geometrically resolved Hamiltonians

In the absence of further physical specifications, the minimal subtraction proce-
dure of [94] appears to be the most natural way to define evolution across singu-
larities, because the distributions have no effect on the wavefunction away from
the singularity. However, the minimal subtraction approach introduces nega-
tive contributions to the Hamiltonian at the singularity, apparent in (10.28) or
(10.35). On the other hand, for the propagation of a free field, the coefficients
of the operator terms in the Hamiltonian are related to the components of the
inverse metric. The negative contributions to the Hamiltonian at the singu-
larity is then conflict with the geometrical interpretation of the coefficients of
the operator terms in the Hamiltonian [95]. Therefore, in order to maintain
the positivity of the coefficients in the Hamiltonian related to the components
of the inverse metric, a more geometrical approach to resolve the singularity
appears to be desirable, which will be developed in the next chapter.
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In preparation for our analysis of geometrical resolutions and their singu-
lar limits in chapter 12, we now review the quantum dynamics described by
Hamiltonians of the form

H(t) =
∑
i

fi(t, ε)Oi, . (10.39)

Our ultimate question will be whether the ε→ 0 limit of the evolution operator
corresponding to (10.39) exists. In chapter 13 we also consider a geometrical
resolution, but because of the specific nature the singular metric (plane wave in
Brinkmann coordinates) the considerations presented in this section regarding
multi-operator Hamiltonians do not appear.

It is in general impossible to solve the Schrödinger equation corresponding
to the Hamiltonian (10.39). The familiar symbolic solution for the evolution
operator U(t1, t2) involves the time-ordering symbol T:

U(t1, t2) = T

−i t2∫
t1

dtH(t)

 . (10.40)

The above representation can be further transformed in an instructive way
using a technique known as the Magnus expansion. For possible convenience I
discuss the Magnus expansion in more detail in appendix E. The operator U
belongs to the group of unitary operators on the Hilbert space, and the Magnus
expansion can be thought of as an analog of the Baker-Campbell-Hausdorff
formula (the latter is a formula valid in the context of finite-dimensional Lie
groups, and discussed in many textbooks on group theory, for example, in [7]).
The expansion can be symbolically written as:

U(t1, t2) = exp

−i t2∫
t1

dtH(t) + η1

∫
dt dt′ [H(t), H(t′)]

+i η2

∫
dt dt′ dt′′ [H(t), [H(t′), H(t′′)]] + · · ·

]
,

(10.41)
with some numerical coefficients η1, η2, . . . (their values will not be important
for us, and it appears they can only be derived recursively [140]). The key
property of the above expression is that the higher order terms are entirely ex-
pressed through higher order nested commutators of H(t) at different moments
of time.

Even though, in a completely general setting, the Magnus expansion is hope-
lessly intractable, it displays the broad range of opportunities for divergence
cancellation in a singular limit of the dynamics described by (10.39). Namely,
for the case of (10.39), the Magnus expansion (10.41) will contain all kinds of
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combinations of the fi and their products, in such a way that, even if fi develop
very strong singularities as ε is taken to 0, the limit of U(t1, t2) may still exist.
For example, even if all fi are positive, cancellations may still occur on account
of the commutation properties of Hi.

Should such cancellations take place, one may think of the ε → 0 limit of
(10.39) as an operator-valued generalization of conventional distributions: just
as ordinary distributions may contain singularities in a way that permits eval-
uating ordinary integrals, the Hamiltonian (10.39) will contain singularities in
a way that permits evaluating the time-ordered exponential integral in (10.40).

There is a special case when the above analysis can be taken significantly
further. Namely, it may turn out that, for all moments of time, the operator U
of (10.40) belongs to a finite-dimensional subgroup of the unitary group of the
Hilbert space. This situation has been described as a presence of a dynamical
group (see [115, 11] and references therein). For the Hamiltonians of the form
(10.39), there will exist a finite-dimensional dynamical group if the set of nested
commutators of Hi’s closes on a finite-dimensional linear space of operators
(which would serve as the Lie algebra of the dynamical group). Should that
happen, one would be able to use the closed resummed version of the Baker-
Campbell-Hausdorff formula for finite-dimensional Lie groups (see, for example,
[7]) to treat the Magnus expansion, or, alternatively, the Schrödinger equation
can be reduced to a finite number of ordinary differential equations describing
the evolution on the finite-dimensional dynamical group manifold [115, 11, 116].
In practical terms, one can choose a particular low-dimensional faithful linear
representation of the dynamical group furnished by matrices M , and write
down the Schrödinger equation in this representation:

i
dM(t, t0)

dt
= ϕ(H(t))M, M(t0, t0) = 1, (10.42)

where ϕ is a homomorphism from Hilbert space operators onto the represen-
tation furnished by M . (This is a finite-dimensional system of ordinary dif-
ferential equations.) Given the solution for M(t, t0), one can reconstruct the
original evolution operator as ϕ−1(M(t, t0)).

The analytic power of the dynamical group approach does not appear com-
pletely clear or fully explored. It certainly does apply to all linear quantum sys-
tems; however, in that case, the conventional WKB analysis would suffice. Be-
yond linear systems, the relevant finite-dimensional subalgebras of Hermitean
operators may be difficult to construct and/or classify. Nevertheless, some non-
trivial examples of dynamical groups for quantum-mechanical systems do exist
(see, for example, [117]).

While the specific examples of quantum dynamics discussed in chapter 12
will be constructed using a somewhat unconventional application of WKB
methods, the fact this “double-semiclassical” analysis is possible reflects an
underlying dynamical group structure inherent to the systems we are working
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with. After explicitly computing the mode functions encoding the dynamics,
we will investigate (in this greatly simplified setting) the existence of singular
limits. It will then be possible to circumnavigate the formal complications in-
troduced by the non-commuting structures in (10.39), and examine the limiting
case of evolution on a singular spacetime background.
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Chapter 11

Matrix theory

“I apologize for introducing a difficult formula,”

(The slide referred to TrAij =
∑
iAii)

Anonymous visiting speaker (not in our department).

Although matrix theory does not literally appear in the work that I will present
in the part “Research”, it is an important motivation for the projects that I
have investigated. Furthermore, matrix theory is a non-perturbative formula-
tion of string theory, so it allows to investigate the quantum structure of space-
time irrespective of the strength of the coupling between strings. Therefore
it is ideally suited to investigate quantum gravitational effects near spacetime
singularities. In this chapter I will review the conjecture of Banks-Fishler-
Shenker-Susskind [98], how a matrix model action can describe M-theory on
an eleven-dimensional asymptotically Minkowski spacetime. Here, M-theory is
understood as the strong coupling description of type IIA superstring theory
(in the strong coupling limit an eleventh direction appears). The low-energy
description of M-theory can be given in terms of eleven-dimensional supergrav-
ity.

I will also discuss some aspects of the matrix big bang model of Craps, Sethi
and Verlinde [107] that provides a toy model for a spacetime with a big bang
type singularity, because it is a motivation for our study of Dp-branes in an
asymptotically plane wave background in chapter 14. To arrive at these dual
matrix models, I will illustrate how D-branes can be understood as the funda-
mental degrees of freedom at strong coupling. Then I will illustrate the discrete
lightcone quantisation procedure to arrive at the BFSS matrix model in sec-
tion 11.3. The BFSS matrix model describes eleven-dimensional M-theory, but
the matrix big bang model describes ten-dimensional superstrings in the pres-
ence of a spacetime singularity. In section 11.5 I will therefore also introduce
matrix string theory, which provides a dual and non-perturbative description

111
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of superstring theory, to bridge the gap in between the matrix big bang model
and the BFSS matrix model for M-theory.

One of the virtues of matrix theory is that it allows to describe space-
time in a quantum mechanical manner, where the spacetime coordinates reveal
an intrinsic noncommutative nature. I will avoid technical details and refer
the interested reader to some introductions to and reviews of matrix theory
[102, 103, 105, 104, 106] where further references can be found. A convenient
summary can also be found in [111] or in the first sections of [112]. Throughout
the present chapter, I have used information especially from [102, 106, 111, 112].

11.1 D-branes as effective degrees of freedom

In section 8 I have already remarked that type IIA superstring theory contains
the even Dp-branes. I recall that the effective action for N Dp-branes of bosonic
string theory in flat spacetime was given in (8.11). For N D0-branes of IIA
superstring theory the effective action can be written as

SND0 =
1

gs
√
α′

∫
dt Tr

{
1
2
(
D0X

i
)2

+
(

[Xi, Xj ]
4πα′

)2

− gsiΘT∂tΘ +
gsΘT γj

2πα′
[Xj ,Θ]

}
. (11.1)

Upon closer inspection, formula (11.1) reveals that a collection of N D0-branes
can be described by a Super-Yang-Mills theory with gauge group U(N) in 0+1
dimensions (i.e. along a worldline). In other words, we are dealing with the
quantum mechanics of matrices of order N ×N (the matrices only depend on
time). The commutator term in the potential

V = − 1
16π2α′2gs

([Xi, Xj ])2 (11.2)

is non-negative, because it is the square of the Hermitian matrix i[Xi, Xj ]. The
Xi are Hermitian matrices. I will come back to this action shortly.

Referring to formula (8.15), for a D0-brane the mass is equal to the tension,

MD0 =
1

gs
√
α′
. (11.3)

Thus, in the limit of weak string coupling gs → 0 the D0-brane has infinite
mass. It is expected [14] that for N D0-branes, there are bound states with a
mass given by

MND0 =
N

gs
√
α′
, (11.4)
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which is an evenly spaced spectrum with respect to the number of D0-branes,
separated by the mass difference 1/(gs

√
α′). Now, as the string coupling be-

comes large (gs →∞), the mass difference between the bound states becomes
small and the spectrum (11.4) approaches a continuum. Because of the even
spacing with the integer N , the spectrum of bound D0-branes actually matches
the discrete spectrum of Kaluza-Klein modes for a periodic dimension of ra-
dius R(g)

11 = gs
√
α′. Kaluza-Klein modes are states that appear when a higher

dimensional theory is compactified.
When the radius of compactification becomes large, the mass difference be-

tween the Kaluza-Klein modes becomes smaller, and in the limit of decompact-
ification R(g)

11 →∞, we reobtain the continuous spectrum of the uncompactified
spacetime. Thus, from a more geometrical point of view, we can view the bound
states of N D0-branes as the Kaluza-Klein modes of an eleven-dimensional the-
ory that is compactified along a new spatial dimension on a circle with radius
given by

R
(g)
11 = gs

√
α′, (11.5)

where the superscript (g) indicates that the radius is actually being measured
with respect to the ten-dimensional string frame metric. In the limit of vanish-
ing string coupling, the compactification radius R(g)

11 becomes zero, which is the
reason why it could not be observed in string perturbation theory. However, in
the opposite limit of decompactification, an eleventh dimension appears. The
eleven dimensional metric is related to the ten dimensional metric and dilaton
by

ds2
11 = e−2φ/3ds2

st + e4φ/3dȳ2. (11.6)

Still, in the limit gs → ∞, string theory cannot be defined in terms of a
perturbation expansion in the coupling constant gs. However, precisely at
strong coupling, the states of bound D0-branes become light (11.4) and it is
tempting to call them the fundamental degrees of freedom of string theory
at strong coupling. Because of the dualities between the different theoretical
descriptions of string theory at different limits of the parameters like gs, it
would be more correct to call D0-branes the effective degrees of freedom at
strong coupling.

11.2 Type IIA superstrings at strong coupling

The existence of an eleven dimensional theory (“M-theory”) with the different
critical (ten dimensional) superstring theories as effective descriptions in cer-
tain regions (e.g. by specifying certain compactifications and limits like weak
coupling), was conjectured in [97, 34]. In the previous section we have seen that
D0-branes become the effective degrees of freedom in case we are considering
the strong coupling limit of type IIA superstring theory.
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The parameters of type IIA superstring theory are the string coupling gs
and the string length `s, and these are related to the M-theory parameters.
The latter parameters are the eleven-dimensional Planck length `

(11)
P and the

compactification radius of the eleventh dimension R11, the latter already intro-
duced in the previous section:

gs =

(
R11

`
(11)
P

)3/2

, `s =

√
`
(11)
P

R11
`
(11)
P . (11.7)

The eleven-dimensional Planck mass is given by MP = 1/`(11)
P .

In [98] Banks, Fishler, Shenker and Susskind (BFSS) argued that it is pos-
sible to extend the validity of the description of type IIA superstring theory
in terms of D0-branes to certain regions of the parameter space of M-theory.
The description of M-theory in terms of D0-brane quantum mechanics is called
“matrix theory”. In the case of the BFSS matrix model (see the next sec-
tion) matrix theory gives a description of M-theory in a asymptotically eleven-
dimensional Minkowski space. There do exist matrix theory formulations of
certain toroidal compactifications of M-theory (see e.g. [104]), and some (light-
cone) time-dependent backgrounds, for example the matrix big bang which will
be described in section 11.6. It has been shown that the BFSS matrix theory
(for the action see (11.1) or (11.25) in section 11.4) contains the Fock space of
an arbitrary number of supergravitons and that it describes the scattering of
two gravitons in the same way as eleven dimensional supergravity. In the limit
N → ∞, the matrix model Hamiltonian reduces to the Hamiltonian of the
eleven dimensional supermembrane in the lightcone gauge [96]. The tension
of the matrix model membranes agrees with the tension of the membranes in
eleven dimensional supergravity.

11.3 Discrete lightcone quantisation

To introduce the reader to the BFSS matrix model we will make use of discrete
lightcone quantisation (DLCQ) which we will apply to M-theory [101, 100].

11.3.1 A lightlike compactification

We specify the eleven-dimensional Minkowski metric as

ds2 = −(dx0)2 +
9∑
i=1

(dxi)2 + (dx11)2 . (11.8)

Let us now consider the lightlike compactification,(
x0

x11

)
∼
(
x0 + 2πnR/

√
2

x11 + 2πnR/
√

2

)
, n ∈ Z , (11.9)
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or, equivalently, (
x+

x−

)
∼
(

x+

x− + 2πnR

)
, n ∈ Z , (11.10)

where we have made use of lightcone coordinates

x+ = (x0 − x11)/
√

2 , x− = (x0 + x11)/
√

2 . (11.11)

Because of the identification, the lightcone momentum p+ = −p−, conjugate
to x−, is quantized as p+ = N/R. Because of translation invariance in x−, the
total lightcone momentum is conserved. We will focus on one sector of p+ with
a fixed amount of N units of lightcone momentum (with N > 0). The lightlike
compactification (11.9) can be defined as a limit of spacelike identifications,
more precisely as (

x+

x−

)
∼
(
x+ − nπR2

s/R
x− + 2πnR

)
, n ∈ Z , (11.12)

in the limit limRs→0. To show the spacelike nature of (11.12) for nonzero
Rs, we can consider a Lorentz boost. The relation beween the boosted frame
(indicated by a prime) and the original frame is expressed as(

x′+

x′−

)
=
(
eβ 0
0 e−β

)(
x+

x−

)
, (11.13)

with the boost parameter determined as

eβ =
√

2R/Rs . (11.14)

In the boosted coordinates (indicated by a prime) it is manifest that the iden-
tification is spacelike for Rs > 0,(

x′+

x′−

)
∼
(
x′+ −

√
2nπRs

x′− +
√

2nπRs

)
, n ∈ Z , (11.15)

which becomes even more apparent if we rewrite the identification (11.15) as,(
x′0

x′11

)
∼
(

x′0

x′11 + 2πnRs

)
, n ∈ Z . (11.16)

This means that the lightlike compactification of M-theory (on a circle with
finite coordinate radius R) is related to a spacelike compactification on a circle
with vanishing radius Rs → 0. Therefore, it appears possible to describe
M-theory with a lightlike identification in terms of weakly coupled type IIA
superstring theory (i.e. gs � 1). After the boost, we focus on a sector with
momentum on a spacelike circle

p′11 = N/Rs . (11.17)
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In the lightlike limit it will corresponds to p+ = N/R. This momentum corre-
sponds to the charge of N D0-branes in type IIA superstring theory, of which
the worldvolume effective action is given by (11.1).

Let us now investigate the compactification of M-theory on a lightlike circle
more closely. With Rs playing the role of R11 in (11.7), we find that in the
limit Rs → 0, the string coupling becomes small and the string length becomes
infinite. An infinite string length implies a vanishing string tension, see (4.3).
In string theory, the appearance of gs is related to (quantum) loop corrections,
and α′ corrections (derivative corrections) are related to the finite length of the
string. If the length scales of interest are large with respect to

√
α′, then a point

particle approximation is reasonable (low-energy limit). So, whenRs → 0 in the
lightlike compactification it follows that α′ = (`s)2 → ∞. So this would seem
to conflict with our description as lightlike compactified M-theory in terms of
weakly coupled string theory, because of the vanishing string tension. However,
the parameter `s is a dimensionful quantity, and we should compare it with a
typical length scale. In the next section we will verify that the string length
remains smaller than the length scales of the phenomena we are interested in.

11.3.2 Energy in the lightlike frame

We will compare the inverse string length 1/`s with the energy of the states we
are interested in. We focus on a sector with N units of lightcone momentum
and we keep the eleven-dimensional Planck scale (11.7) fixed. We are interested
in the states that have finite energy E``N in the lightlike frame (11.8, 11.11).
We define the lightlike Hamiltonian H``

N of the discrete lightcone quantisation
procedure as

H``
N = i∂x+ (11.18)

in the lightlike limit Rs → 0. It is related to the boosted frame (11.13) by

i∂x+ =
1√
2
eβ (i∂x′0 − i∂x′11) . (11.19)

The energy in the spacelike compactification (in the boosted coordinates 11.13)
is

E′ =
N

Rs
+ ∆E′ , (11.20)

where the first term is the mass term of N D0-branes, which corresponds to
the momentum in the compactified direction x11. Thus, making use of (11.14)
and substituting (11.20) in the right hand side of (11.19), with p′11 = N/Rs,
the energy in the lightlike frame is related to the energy in the boosted frame
by

E``N =
R

Rs
(E′ − p′11) =

R

Rs
∆E′ . (11.21)
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If we now compare ∆E′ with `s (we obtain `s from (11.7) with Rs playing the
role of R11)

∆E′

1/`s
=

√
Rs

(
`
(11)
P

)3E``N
R

, (11.22)

we find that the energy of the system ∆E′ vanishes faster than 1/`s in the
lightlike limit Rs → 0, while we keep the eleven dimensional Planck length and
the energy in the lightlike frame fixed. So for the states that we are interested
in, the energy ∆E′ remains much smaller than the energy scale that is related
to the string tension (even though the tension vanishes in the lightlike limit).
In other words, the string length remains small with respect to length scales of
the states we are interested in. Therefore we can reasonably study the lightlike
compactification in the limit of spacelike compactifications.

The relation between the lightlike compactification and the spacelike com-
pactification can be formalized by a rescaling of the length and mass scales by
a factor ε = Rs/R, as L̃ = εL and M̃ = M/ε. Let us write the Hamiltonian
of N D0-branes in the boosted coordinate system as HN (M,L), which will
scale with a factor 1/ε. Note that p+ = εp′11. If we look back at the lightcone
Hamiltonian (11.18) it is then determined by

H``
N = lim

Rs→0

R

Rs
HN (M,L) = lim

R̃s→0
H̃N (M̃, L̃) . (11.23)

11.3.3 D-brane worldvolume theory and decompactifica-
tion limit

The N units of lightcone momentum p+ in M-theory (in the lightlike frame)
correspond to N units of D0-brane charge in type IIA string theory. In the
boosted coordinate system this corresponds to the effective action (11.1). Thus,
in the limit of vanishing Rs, we can find a description of the system in terms
of D0-brane interactions: the degrees of freedom are captured by the N ×
N matrices of the D0-brane worldvolume theory. Eventually, one recovers
uncompactified M-theory by taking the limit R → ∞ in a sector with fixed
lightcone momentum p+. Therefore the decompactification limit corresponds
to a large N limit in which the matrices become infinite dimensional:

R→∞ , N →∞ , p+ = N/R fixed. (11.24)

11.3.4 Summary of DLCQ of M-theory

Recapitulating, a lightlike compactification of M-theory (compactified on a
lightlike circle with radius R) in a sector with N units of lightcone momentum
p+ = N/R, is described by type IIA superstring theory in the limit of weak
string coupling (gs � 1) and in the limit

√
α′∆E′ → 0 with ∆E′ the energies
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of the states of interest and
√
α′ the string length. Because the string length

remains small with respect to the length scale related to ∆E′, it is reasonable to
study the lightlike compactification as a limit of spacelike identifications with
Rs → 0. We limit our attention to the states that remain light after a boost and
rescaling of the system. In the limit Rs → 0 the effective states are D0-branes.
The worldvolume theory of D0-branes is described by dimensional reduction
of ten-dimensional Super-Yang-Mills theory and is described by quantum me-
chanics of N×N matrices. All the higher terms in the D0-brane action become
suppressed. To obtain uncompactified M-theory (on flat Minkowski space) we
have to consider the decompactification limit N →∞.

11.4 Non-commutative space from D0-branes

The Banks-Fishler-Shenker-Susskind conjecture [98] advocates that M-theory
in asymptotically flat spacetime can be described by a theory with only D0-
branes as dynamical degrees of freedom. Therefore the system is determined
by the effective action of N D0-branes in the N →∞ limit, with a Hamiltonian
that follows from reducing 9 + 1 dimensional U(N) Super-Yang-Mills theory to
0+1 dimensions, given by matrix quantum mechanics:

S =
1√
α′

∫
dtTr

{
1

2gs

(
∂tX

i
)2

+
([Xi, Xj ])2

16π2α′2gs
− iΘT∂tΘ +

ΘT γj

2πα′
[Xj ,Θ]

}
.

(11.25)
In the action we find nine bosonic Hermitian N×N matrices Xi and an N×N
matrix Θ whose elements are sixteen-component Majorana spinors. In principle
there should have been a covariant derivative D0 that contains the gauge field
A0, but we can make the gauge choice A0 = 0 to reduce it to ∂t.

The N eigenvalues of the Xi can be interpreted as the position vectors of
N D0-branes. The commutator potential,

V = − 1
16π2α′2gs

([Xi, Xj ])2 , (11.26)

expresses the interaction between the D0-branes. The potential has flat direc-
tions, where the matrices commute,

[Xi, Xj ] = 0 , (11.27)

and along which the matrices Xi can be simultaneously diagonalized. In that
case the eigenvalues indicate the position of the branes in the i’th dimension.
The flat directions imply a continuous spectrum. Matrix theory is supposed to
describe multi-particle states.

To see how the commutator potential is influenced by the off-diagonal
modes, let us consider the following simple example for two branes (N = 2)
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where for simplicity we also select only two of the nine matrices (say, X = X1

and Y = X2):

X =
(
xa x∗

x xb

)
, Y =

(
ya y∗

y yb

)
. (11.28)

For N = 2 it is sometimes convenient to write these 2× 2 Hermitian matrices
in terms of the Pauli matrices (5.2). Up to a prefactor, we can rewrite the
commutator potential as

−[X,Y ]2 =
(
V 0
0 V

)
, (11.29)

with

V =|x|2(ya − yb)2 + |y|2(xa − xb)2

− 2 cos(x̂, y) |x||y|(xa − xb)(ya − yb) + 4 sin2(x̂, y) |x|2|y|2 . (11.30)

If the two branes coincide, then xa = xb and ya = yb. Neglecting the flat
directions for which V = 0, the potential behaves as |x|2|y|2. When the branes
are distant, then xa 6= xb and ya 6= yb. For small off-diagonal modes (“small”
with respect to (xa−xb) and (ya−yb)) the potential behaves only quadratically
in the off-diagonal modes and the off-diagonal modes are therefore more sup-
pressed (by the prefactors (xa − xb) and (ya − yb) instead of |x| and |y|) than
when the branes coincide. For very large off-diagonal modes, the dominant
term is always the quartic potential |x|2|y|2.

• Thus if the diagonal terms in the Xi are different from each other and
the branes are far away with respect to each other, the commutator term
would become very large if the off-diagonal modes in the matrices Xi were
nonzero. Thus, the low energetic states are then given by commuting Xi,
which permits a clear interpretation of the position of the D0-branes in
terms of the eigenvalues of the matrices Xi.

• However, when the diagonal terms in the Xi have roughly the same value,
the commutator term does not become very large in the case of non-
commuting matrices Xi with nonzero off-diagonal modes and it cannot
be argued that the matrices are diagonal. Consequently, it is not possible
to clearly distinguish the position of the individual D0-branes anymore
once they become close.

Another way to express the observation that for close D0-branes the commuta-
tor term is nonzero and that the matrices Xi are far from diagonal, is that space
is intrinsically non-commutative with ordinary commutative space only emerg-
ing at long distances. In a more stringlike picture one can say that for distant
D0-brane configurations, only the strings with endpoints on the same brane
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(the diagonal terms) are important, the configurations with very long strings
stretching between far D0-branes have high energy. When the D0-branes are
close, the strings stretching in between different branes become important and
these correspond to the off-diagonal modes in the matrices Xi.

To clarify this with an example, suppose the matrix Xi can be written in
block-diagonal form with the diagonal blocks representing different D-brane
clusters. Then the distance between two clusters a and b can be written as

rab =

(
9∑
i=1

[
Tr
{

1
Na

Xi
a −

1
Nb

Xi
b

}]2
)1/2

, (11.31)

with Na and Nb the size of cluster a and b. Suppose we can write (at fixed N)

Xi =

X
i
A

Xi
B

. . .

 , Xi
A =

Xi
11 Xi

12 Xi
13

Xi
21 Xi

22 Xi
23

Xi
31 Xi

32 Xi
33

 , Xi
B =

(
Xi

44 Xi
45

Xi
54 Xi

55

)
,

(11.32)
with the block-diagonal form appearing when clusters of D0-branes are widely
separated in the dimension xa and their off-diagonal crossterms are small. In
the example (11.32) we can identity a cluster of three D0-branes, and another
cluster of two D0-branes. Classical gravitational interactions between separate
clusters of D0-branes arise from quantum corrections in matrix theory.

11.5 Matrix (string) theory

The large N limit of the BFSS matrix model provides a description for un-
compactified eleven-dimensional M-theory. Now suppose we want to find a
non-perturbative description (valid at whatever value of the string coupling
gs) of type IIA superstring theory in ten dimensions instead. It will turn out
that the latter is described by matrix (string) theory, in terms of the worldvol-
ume theory of N D1-branes. The effective action of the matrix string [99] is
described by the dynamics of D1-branes instead of D0-branes. This leads to a
1+1 dimensional quantum field theory, with one spatial dimension, instead of
the 0+1 quantum mechanics of the BFSS matrix model. It can also be seen as
a second-quantized generalization of the Green-Schwarz action for superstrings,
in which the spacetime coordinates have now become matrix valued fields on
the worldsheet.

The matrix big bang model that is presented in the next section will be
resolved by a matrix string model, therefore it is necessary to illustrate the
derivation of matrix string theory. But let me first quickly recapitulate the
steps in the construction of the BFSS matrix model.
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11.5.1 Correspondence between M- and matrix theory

As we have seen in section 11.3, the lightlike compactification of M-theory on
a circle with radius R in the direction x− can be defined as a limit of spacelike
compactifications on a circle with vanishing radius Rs. As in section 11.3 we
write the lightcone coordinates as a combination of x0 and x11 with

x± = (x0 ∓ x11)/
√

2 (11.33)

and we consider a sector with N units of lightcone momentum. In the limit
Rs → 0 (with the eleven-dimensional Planck length `P kept fixed) a dual
description of M-theory with N units of lightcone momentum is given by a
worldvolume theory of N D0-branes in type IIA superstring theory. The latter
D0-brane worldvolume theory is given by the dimensional reduction of ten di-
mensional Super-Yang-Mills theory down to 0+1 dimensions, i.e. the quantum
mechanics of U(N) matrices. In the large N limit (with N/R constant) one
obtains uncompactified M-theory.

11.5.2 Compactification of the correspondence

Let us now consider the dual description of ten-dimensional type IIA super-
string theory in terms of matrix (string) theory. Type IIA superstring theory is
given by the compactification of M-theory along a spacelike circle with radius
R9, let us say in the direction x9. The remaining coordinates are xi (i = 1 . . . 8)
and x± defined as in (11.33).

In the previous paragraph we have recapitulated the correspondence be-
tween lightlike compactified M-theory (in a sector with N units of lightcone
momentum) and the worldvolume theory of N D0-branes in an auxiliary type
IIA superstring theory (i.e. the BFSS matrix theory). Therefore, if we com-
pactify both sides of this correspondence along a spacelike circle with radius
R9, we obtain a relation between type IIA superstring theory (with N units of
lightcone momentum) and a worldvolume theory of N D0-branes in an auxiliary
type IIA superstring theory compactified on a circle with radius R9.

Making use of (11.7) we find that the original type IIA superstring theory
(obtained from M-theory by a compactification along x9) has the following
parameters:

gs =
(
R9

`P

)3/2

, `s =
√
`P
R9

`P . (11.34)

On the other hand, the auxiliary type IIA superstring theory (compactified
along x9 on a circle with radius R9) is a lightlike compactification of M-theory
along the direction x−. The lightlike compactification along the direction x−

is obtained as a limit of spacelike compactification on a circle with radius Rs
in the direction x11. Therefore the auxiliary type IIA superstring theory has



122 CHAPTER 11. MATRIX THEORY

the following parameters (we use a prime for clarity):

g′s =
(
Rs
`P

)3/2

, `′s =
√
`P
Rs

`P . (11.35)

But the lightlike compactification in the direction x− is obtained in the limit
Rs → 0. Yet in this limit the string length `′s in the auxiliary theory becomes
much larger than the radius R9 of the compactified direction. Because `′s � R9

it is convenient to T-dualize in the direction x9 such that R9 → α′/R9 as
described in section 8.2. In this way, the worldvolume theory of the N D0-
branes is mapped into a worldvolume theory of N D1-branes in an auxiliary
type IIB superstring theory compactified on a circle with radius α′/R9. The
D1-branes are wrapped around the compact direction x9.

11.5.3 Summary of DLCQ of type IIA superstring theory

Let me summarize the dual description with the following schematic represen-
tation (the scheme bears a strong resemblance with Fig. 15 of [111]):

c−

TM → TND0

c9 ↓ ↓ (11.36)

TIIA → T 9
ND0

T 9

⇔ TND1

with the abbreviations in (11.36) given by

• TM : uncompactified M-theory in eleven dimensions;

• TIIA: type IIA superstring theory in ten dimensions (obtained by com-
pactifying TM along x9 with radius R9), we are interested to find a dual
description for this theory if the string coupling becomes large;

• TND0: a worldvolume theory of N D0-branes in an auxiliary type IIA
superstring theory, obtained by applying the discrete lightcone quantisa-
tion procedure to TM , in the limit Rs → 0 of a spacelike compactification
along x11;

• T 9
ND0: a worldvolume theory of N D0-branes in an auxiliary type IIA

superstring theory compactified on a circle with radius R9;

• TND1: a worldvolume theory of N D1 branes in an auxiliary type IIB
superstring theory compactified on a circle with radius α′/R9;

• c−: lightlike compactification along x− on a circle with radius R, cor-
responding to the limit Rs → 0 of a spacelike compactification along
x11;
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• c9: compactification along x9 on a circle with radius R9;

• T 9: T-duality along the compactified direction x9 such that R9 → α′/R9.

To recapitulate, type IIA superstring theory is given by the compactification
of M-theory along a spacelike circle with radius R9 (say, in the direction x9). We
can now compactify the type IIA superstring theory on a lightlike circle (defined
as the limit of a spacelike compactification along the direction x11). Through a
boost and a scaling as described in section 11.3, the lightlike compactification
of TIIA corresponds to a D0-brane worldvolume theory in an auxiliary type
IIA superstring theory compactified along the direction x9. An equivalent
description is given by a D1-brane worldvolume theory in an auxiliary type
IIB superstring theory with N D1-branes wrapped around the compactified
direction x9. This is matrix string theory. If we are interested in describing an
uncompactified type IIA superstring theory, we have to take the large N limit.

11.5.4 9-11 flip, TST-duality and TS-duality

The relation between the theories TIIA and T 9
ND0 is called the “9-11 flip” be-

cause each of them is derived from a compactification of M-theory (the former
theory as a compactification along x9 and the latter as a compactification along
x11). The 9-11 flip is equivalent to a sequence of a T-duality, an S-duality1 and
another T-duality, which together are called the “TST-duality”.

By the TST-duality we can thus relate a type IIA superstring theory with
N units of lightcone momentum (TIIA) to an auxiliary type IIA superstring
theory with N units of D0-brane charge (T 9

ND0). By applying only a TS-duality
instead, we can relate the type IIA superstring theory with N units of lightcone
momentum to an auxiliary type IIB superstring with N D1-branes wrapped
around the compact direction x9 (TND1). This is how we will implement the
matrix big bang in the following section.

11.6 The matrix big bang

The matrix big bang [107, 110] is a toy model for a cosmological big bang like
singularity that can be resolved by string theoretical methods. The properties
of the real spacetime near the singularity are described by a dual model, which
is essentially a quantum field theory defined on an auxiliary singular spacetime.
Hence, if we want to investigate the behaviour of the real spacetime near the
real singularity, we are naturally led to the study of quantum field theory on
singular (auxiliary) spacetimes. In addition, to investigate whether spacetime

1An S-duality is a duality that relates a string theory with weak coupling to a string
theory with strong coupling.
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may have bounced through the singularity we should study the evolution of
quantum field theory across singularities.

The matrix big bang is a (lightcone) time-dependent model and because of
the time-dependence the discrete lightcone quantisation procedure has to be
adapted slightly.

11.6.1 A string theory model with a lightlike singularity

Let us consider Minkowski spacetime (the lightcone coordinates are written
in terms of x0 and x9) in type IIA superstring theory, with a lightlike linear
dilaton,

ds2
st = −2dx+dx− +

8∑
i=1

(dxi)2 , φ = −Qx+ . (11.37)

In Einstein frame, given by

ds2
E = e−φ/2ds2

st , (11.38)

the metric becomes singular for x+ → −∞. After a reparametrization,

dχ+ = exp
(
Qx+/2

)
dx+ , (11.39)

the Einstein frame metric becomes

ds2
E = −2dχ+dy− +

1
2
Qχ+(dxi)2 , φ = −2 log

(
Qχ+/2

)
, (11.40)

and the singularity is located at χ+ = 0 at a finite distance (for instance, take
χ+ as an affine parameter). The singularity is reminiscent of a big bang sin-
gularity, because the scale factor

√
Qχ+/2 goes to zero (but it is a lightlike

singularity instead of a spacelike singularity). The singularity is also present
in string frame because the string coupling blows up for x+ → −∞. As one
approaches the singularity the string coupling gs = eφ becomes unboundedly
large. As discussed in [112], the lightlike dilaton background (11.37) corre-
sponds to an eleven dimensional plane wave.

As we will see, the final result of the matrix big bang model is that the
effective dynamics near the singularity is described by a dual matrix (string)
model. Stated more precisely, type IIA superstring theory on the lightlike
dilaton background (11.37) can be described by a matrix model which is given
by Super-Yang-Mills theory with gauge group U(N) and time-dependent Yang-
Mills coupling constant.

11.6.2 Adaptation of the discrete lightcone quantisation

Because of the (lightcone) time-dependence in the dilaton, the discrete lightcone
quantization procedure (in the matrix string theory setting) cannot be applied
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literally. Instead, the boost that relates the compactification on a lightlike
circle with a compactification on a (vanishing) spacelike circle involves one of
the transverse coordinates, which we label as y1. So there are two steps: a null
rotation and a boost. If we perform the null rotation

x+ = x̃+ , x− = x̃− − R

Rs
x̃1 +

R2

2R2
s

x̃+ , y1 = x̃1 − R

Rs
x̃+ , (11.41)

the identification in the x̃-coordinates becomesx̃+

x̃−

x̃1

 ∼
 x̃+

x̃− − 2πR
x̃1 + 2πRs

 . (11.42)

Then we make an additional Lorentz boostx′+x′−
x′1

 =
1√
2

R/Rs 0 0
0 2Rs/R 0
0 0

√
2

x̃+

x̃−

x̃1

 . (11.43)

In the limit Rs → 0 the states that have p′1 = N/Rs are mapped to the
states with p+ = N/R and the arguments of the discrete lightcone quantisation
procedure can be carried through (especially the argument in subsection 11.3.2
why the energy of interest remains small with respect to the energy related to
the string length).

After applying a T-duality (along x′1) and an S-duality we arrive at a
collection of N D1-branes in type IIB superstring theory, wrapped around the
compact x′1 direction:

ds2 =
Rs√
α′
eQx

′+Rs/R

{
−2dx′+dx′− +

8∑
i=1

(
dx′i

)2}
, (11.44a)

φ =
Rs
R
Qx′+ + log

(
Rs√
α′

)
, (11.44b)

x′1 ∼ x′1 + 2πnα′/Rs , n ∈ Z . (11.44c)

This configuration represents a dilaton-gravity plane wave (to obtain the met-
ric in standard Rosen coordinates, we have to redefine the lightcone time). The
collection of D1-branes in the background (11.44) is one of the main motiva-
tions for my study of supergravity solutions in chapter 14. In fact, the solutions
presented there are limited to Dp-branes whose worldvolume is aligned along
the propagation direction of the plane wave, while the D1-branes relevant for
the matrix big bang are wrapped around the x′1 direction and therefore per-
pendicular to the propagation direction of the dilaton-gravity plane wave (the
latter problem is still under study).
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11.6.3 Effective action for the matrix big bang

The result of the derivation in [107] is that the effective action of the matrix big
bang is given by N = 8 Super-Yang-Mills theory on a cylindrical worldsheet
and with the time-dependent Yang-Mills coupling

gYM =
1√
α′

exp

(√
α′

2
Qτ

R

)
. (11.45)

The worldsheet metric is given by

ds2 = −τ2 + σ2 , σ ∼ σ + 2πn
√
α′ , (11.46)

and the terms in the bosonic part of the action are

SND1 ≈
1

4πα′

∫
dσdτTr

{
−(∂αY i)2 − 2π2α′

g2
YM

F 2
αβ +

g2
YM

2π2α′
[Y i, Y j ]2

}
,

(11.47)
with the Y i(σ, τ) matrix valued (string) coordinates. We can see that the Yang-
Mills coupling grows with time and that the commutator term, proportional to
the coupling, will generically becomes very large at late times. The off-diagonal
modes of the matrices Y i become very massive near τ → +∞, hence they will
not be excited for configurations near the ground state of the system. Thus
at late times (“far away” from the singularity) the matrices Y i are diagonal
and spacetime effectively commutes. At early times, the off-diagonal terms are
important, and near the singularity the non-commutative nature of spacetime
cannot be neglected. An important feature of the model is that the field theory
is weakly coupled (11.45) near the singularity at τ → −∞, hence the gravi-
tational physics near the singularity is tractable by means of a perturbation
expansion in the dual Super-Yang-Mills field theory.

Some recent research focuses on the strength of the commutator term near
the singularity [113].

11.6.4 Time-dependent worldsheet description

An alternative description of the matrix big bang model is obtained when one
rescales the worldsheet metric to absorb the time-dependent coupling of the
Super-Yang-Mills theory. The Super-Yang-Mills theory on a cylindrical world-
sheet with a time-dependent coupling constant of (11.47-11.45) is equivalent
to a Super-Yang-Mills theory with a constant coupling constant on the future
cone of the Milne orbifold

ds2 = e2Qτ/R
(
−dτ2 + dσ2

)
, σ ∼ σ + 2πn

√
α′ . (11.48)
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The Milne background becomes singular for τ → −∞. So we find that the
physics near the singularity is described by a quantum field theory on a singu-
lar spacetime. This provides additional motivation for another research project:
in chapter 12 we will investigate the geometrical resolution of a field theory on a
singular spacetime background. Actually, we have simplified the problem con-
siderably by investigating a free scalar field (on the parabolic orbifold) instead
of the much more complicated Super-Yang-Mills theory on the Milne orbifold
as it appears in the dual formulation of the matrix big bang.
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Chapter 12

Scalar field on the
parabolic orbifold

He first took my altitude by a quadrant, and then with a rule and
compasses described the dimensions and outlines of my whole body,
all which he entered upon paper, and in six days brought my clothes
very ill made, and quite out of shape, by happening to mistake a
figure in his calculation.
“Gulliver’s travels,” Jonathan Swift

In this chapter, we study the quantum dynamics of a free scalar field propa-
gating on the parabolic orbifold, based on the publication [95]. The parabolic
orbifold is a singular spacetime and we will carry out our study of the field
evolution by considering a geometrical resolution procedure, as anticipated in
chapter 10. The geometrical resolution procedure means that we consider the
propagation of the field on a regularized spacetime and then take the singular
limit. We will immediately consider a whole class of geometrical resolutions
of the parabolic orbifold. We have coined this class of resolved geometries
the “generalized nullbrane” (which involves two additional parameters). The
parabolic orbifold, and (generalized) nullbrane were already introduced in chap-
ter 10. In addition, other important background material concerning geometri-
cal resolutions has been provided there, especially section 10.7 that deals with
Hamiltonians with a multiple-operator structure. I refer to chapter 6 for the
discussion of a free scalar field in a curved spacetime.

The evolution of a free scalar field on the generalized nullbrane spacetime
can be described by means of its mode functions, which are classical solutions
to the wave equation. We compute the mode functions by solving the wave
equation exactly using WKB methods. Then we discuss properties of the mode
functions of a free scalar field in the singular limit in which the generalized
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nullbranes turn back into the parabolic orbifold. We find that the limit of the
mode functions exists for certain discrete values of the parameters α and β
in the metric of the generalized nullbrane. We compare with the literature in
section 12.5 and give a qualitative discussion of the results in section 12.7.

The singular limit of the free scalar field involves the Maslov phase, a phys-
ical concept established in the context of caustics. The Maslov phase can be
described most easily in the context of the quantum harmonic oscillator, which
is summarized in appendix G. The derivation of the Hamiltonian for the free
scalar field on the generalized nullbrane in the context of constrained systems,
is worked out in appendix F. Those two topics are not included here because
they would distract from the main line of the chapter.

12.1 Action and Hamiltonian of the free scalar
field

We consider a free scalar field Φ(X+, X−, X,Θ) with the action

S = −1
2

∫ √
−ggµν

[
∂µΦ∂νΦ +m2Φ2

]
dX+dX−dXdΘ. (12.1)

The scalar field is propagating on the generalized nullbrane metric of which the
metric was given in formula (10.21). We Fourier transform with respect to X−

and write a Fourier series with respect to Θ (the coordinate Θ is compact),

Φ(X+, X−, X,Θ) =
1

2π

∑
kΘ

∫
dk−φk−,kΘ(X+, X)exp

(
ik−X

− + ikΘΘ
)
.

(12.2)
Here we have explicitly written

φk−,kΘ(X+, X) (12.3)

but from now on we will suppress the indices k− and kΘ and omit the argu-
ments X+ and X. Because of the difference in notation between the original
field Φ(X+, X−, X,Θ) and the field modes φk−,kΘ(X+, X) that appear in the
Fourier transform of the field, the suppression of the indices should not cause
any confusion. We use a standard expression for the δ-function

δ(k − k′) =
1

2π

∫
exp (i(k − k′)x) dx, (12.4)
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and rewrite the action as,

S =
∑
kΘ

∫
dX+ dk− dX

√
R2 + (X+)2

[
−ik−φ∗∂X+φ− ∂Xφ∂Xφ

∗

2

−
(
m2

2
+

k2
Θ

2(R2 + (X+)2)
+

αX2R2k2
−

2(R2 + (X+)2)2
+

kΘk−βXR

(R2 + (X+)2)3/2

)
φφ∗

]
.

(12.5)

Denoting ∂X+φ as φ̇, the wave equation reads

− iφ̇ =
iX+

2 (R2 + (X+)2)
φ− ∂2

Xφ

2k−
+

βXRkΘ(
R2 + (X+)2

)3/2φ (12.6)

+
k2

Θ

2k− (R2 + (X+)2)
φ+

α

2
X2R2k−(

R2 + (X+)2
)2φ+

m2

2k−
φ.

In principle we have to deal with constraints when deriving the Hamiltonian
that corresponds to the Lagrangian of the action (12.5) because the Lagrangian
is first order in time-derivatives. However, we can take the following shortcut.
The field Φ is real, so the following equality holds for the Fourier transform,

φ−k−,−kΘ = φ∗k−,kΘ
, (12.7)

If we consider φ∗k−,kΘ
as nondynamical, and only φk−,kΘ as a canonical co-

ordinate for all (k−, kΘ), we can interprete π ≡ −ik−
√
R2 + (X+)2φ∗ as its

conjugate momentum. The Hamiltonian then reads

H =
∑
kΘ

∫
dk− dX π

[
− X+

2 (R2 + (X+)2)
+
im2

2k−
− i

2k−
∂2
X +

iβXRkΘ(
R2 + (X+)2

)3/2
+

i

2k−
k2

Θ

R2 + (X+)2
+
iα

2
X2R2k−(

R2 + (X+)2
)2
]
φ. (12.8)

For completeness I will derive the Hamiltonian (12.8) more carefully in ap-
pendix F (it has been moved to an appendix because it is long enough to
distract the reader’s attention from the main line developed here, although it
is of no further importance for the remainder of the chapter). The Hamiltonian
(12.8) is manifestly of the form H =

∑
i fi(t, R)Hi; in other words, it belongs

to the class of Hamiltonians we singled out in section 10.7.
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12.2 Dynamical group and auxiliary Hamilto-
nian

We now show that the Hamiltonian (12.8) leads to a finite-dimensional dy-
namical group structure of the type discussed in section 10.7. The canonical
variables π(X, t) and φ(X, t) appear in four combinations

∫
π ∂2

Xφ,
∫
πφ,

∫
πXφ

and
∫
πX2φ. The commutation relations for such operators are given by[∫

π Â(X)φdX ,

∫
π B̂(X)φdX

]
=
∫
π[Â, B̂]φdX, (12.9)

reducing the commutator algebra to that of {∂2
X , 1, X, X2}, which closes after

the addition of {X∂X , ∂X}. Equivalently, we can form the standard (single
degree of freedom) creation and annihilation operators a and a† out of X and
∂X , to conclude that the Lie algebra of the dynamical group is spanned by

n = a†a+ 1/2, a†2, a2, a†, a and I. (12.10)

Given the inclusion of powers of the creation operator up to a†2, it is not sur-
prising that the corresponding algebra has become known as the two-photon
algebra, or h6, and has been featured in discussions of quantum optics, and
squeezed states in particular (see, for example [115]). A complete formal anal-
ysis of quantum dynamics on the two-photon group has been given in [116].

Following the picture presented in the previous chapter in section 10.7, we
could use the two-photon group considerations of [116] to reduce the question of
free scalar field dynamics on the generalized nullbrane to ordinary differential
equations. In our present setting, however, we can perform these operations
in a considerably more familiar guise. Namely, since the free scalar field is lin-
ear, solving for its quantum dynamics amounts to constructing a complete set
of solutions to the classical wave equation (12.6). Furthermore, the classical
wave equation turns out to be equivalent to the Schrödinger equation for a
linear auxiliary one-dimensional quantum system. Because the auxiliary sys-
tem is linear, its Schrödinger equation (i.e. the wave equation of the original
scalar field) can be solved exactly by WKB methods. The latter effectively
reduce the problem to ordinary differential equations (the classical equations
of motion of the auxiliary linear system). Thus, one attains the same level of
simplification through this method as through performing the analysis of [116].
We can refer to the above procedure as “double-semiclassical” analysis (there
is an (exact) WKB procedure leading from a free quantum scalar field to the
wave equation for the mode functions, and an (exact) WKB procedure leading
from the wave equation for the mode functions to a one-dimensional auxiliary
classical system). Note that both the “double-semiclassical” approach and the
general dynamical group approach of [116] (which are essentially one and the
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same thing) are made possible by the fact that the metric of the generalized
nullbrane is a quadratic polynomial in the X-variable.

For linear quantum systems, it is most common to work in the Heisen-
berg picture, instead of (equivalently) deriving WKB wavefunctions in the
Schrödinger picture. We obtain the solution for the Heisenberg field opera-
tor as an expansion in terms of a complete set of mode functions uy(X,X+)
(with y being a generic basis label) satisfying the classical equations of motion:

φk−,kΘ =
∫

dy uy(X,X+)a(y). (12.11)

The corresponding conjugate momentum is

πk−,kΘ = ik−

√
R2 + (X+)2

∫
dy u∗y(X,X+)a†(y). (12.12)

If we demand the standard commutation relations for the creation-annihilation
operators a† and a, the canonical commutation relation between π and φ de-
termine the normalisation of the mode functions (this is the analog for first
order systems of the Klein-Gordon norm for second order systems, see equa-
tion (6.13)):

δ(X − X̃) = k−

√
R2 + (X+)2

∫
dy u∗y(X,X+)uy(X̃,X+). (12.13)

12.3 Solution of the wave equation

To recapitulate, we investigate a free scalar field Φ(X+, X,X−,Θ) on the gen-
eralized nullbrane. Because the field does not interact, the solution for the
field evolution in the quantum theory is completely determined by classical so-
lutions to the wave equation (i.e. the mode functions). We performed a Fourier
transform to the field Φ (with respect to the coordinates X− and Θ) and we
composed the field in modes φk−,kΘ(X+, X), which satisfy the wave equation
(12.6), for convenience repeated here,

− iφ̇ =
iX+

2 (R2 + (X+)2)
φ− ∂2

Xφ

2k−
+

βXRkΘ(
R2 + (X+)2

)3/2φ (12.14)

+
k2

Θ

2k− (R2 + (X+)2)
φ+

α

2
X2R2k−(

R2 + (X+)2
)2φ+

m2

2k−
φ.

The wave equation (12.14) has the form of a Schrödinger equation and is
quadratic in X and PX , and can therefore be solved exactly by WKB methods.
Once we find a set of classical solutions to (12.14) (superficially, these classi-
cal solutions will have the “appearance” of a quantum wavefunction because



136 CHAPTER 12. SCALAR FIELD ON THE PARABOLIC ORBIFOLD

the wave equation resembles a Schrödinger equation), we can promote these to
mode functions.

Denoting X+ by t, (12.14) takes the form of an auxiliary Schrödinger equa-
tion with Hamiltonian

H =
it

2 (R2 + t2)
+

P 2

2k−
+

βXRkΘ(
R2 + t2

)3/2 +
k2

Θ

2k− (R2 + t2)
+
α

2
X2R2k−(
R2 + t2

)2 +
m2

2k−
(12.15)

(up to a sign difference in the left hand side of (12.14)). As the corresponding
Hamiltonian (12.15) is quadratic in X, (12.6) can be solved exactly by WKB
methods. The starting point is the observation that the ansatz

φ(X1, t1|X2, t2) = A(t1, t2)exp (−iScl [X1, t1|X2, t2]) (12.16)

solves (12.6) (with t2 → t) if

Scl =
∫ t2

t1

dt
(
PẊ −H

) ∣∣∣
X=Xcl(X1,t1|X2,t2)

; (12.17)

−2k−
∂A(t1, t)

∂t
= A(t1, t)

∂2Scl [X1, t1|X, t]
∂X2

. (12.18)

Here, Scl is the classical action with boundary conditions X(t1) = X1, X(t2) =
X2. More general solutions to (12.6) are obtained by integrating (12.16) over
X1, weighted by an arbitrary smooth wavepacket.

A subtlety arises in this ansatz when the dynamical evolution reaches a
focal point t2 = t∗, where the classical action diverges, unless a certain relation
between X1 (“the source”) and X2 (“the image”) is met. At such focal points,
the differential equation for A(t1, t2) becomes singular. In that case, one solves
the WKB equations away from t∗ and connects the solution by a phase jump
at the focal point. The phase jump should be chosen such that convolutions of
(12.16) with a smooth wavepacket are continuous across the focal point. The
general guidelines for this procedure are best familiar in the context of caustic
submanifolds in geometrical optics (see, for example, [16, 12]) and the above-
mentioned correction pre-factors have become known as the Maslov phases. We
will give some further details in the next section. For pedagogical reasons we
will also illustrate the appearance of the Maslov phase in a simple system in
appendix G. In that appendix we comment on the path-integral description of
the quantum harmonic oscillator, where the Maslov phase appears naturally
(without having to refer to the full theory of Maslov).

In order to compute the classical action we first need to consider the classical
motion and its solution. We use the Hamilton equations

Ẋ =
∂H
∂P

, Ṗ = −∂H
∂X

, (12.19)
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to obtain the classical equation of motion:

Ẍ + α
R2(

R2 + t2
)2X = −βkΘ

k−

R(
R2 + t2

)3/2 , (12.20a)

X(t1) = X1, X(t2) = X2. (12.20b)

This equation is actually exactly solvable, and it has become known as the
equation for “bending of a double-walled compressed bar with a parabolic cross-
section” [15]. It can be reduced to a driven harmonic oscillator with constant
frequency via substitution X =

√
R2 + t2χ(η(t)), taking η = arctan(t/R):

d2χ

dη2
+ (1 + α) χ = − βkΘ

Rk−
. (12.21)

In order to give a transparent derivation of the solution to (12.20) and the cor-
responding value of the classical action, we first consider the two independent
solutions to the homogeneous version of (12.20a):

f(t) =
√
R2 + t2 sin

(√
1 + α arctan

t

R

)
, (12.22a)

h(t) =
√
R2 + t2 cos

(√
1 + α arctan

t

R

)
. (12.22b)

A useful object to consider is the Dirichlet Green function of the operator

D = ∂2
t +

αR2(
R2 + t2

)2 . (12.23)

The Green function is given by

G(t, t′|t1, t2) =
(f1h(t<)− h1f(t<)) (f2h(t>)− h2f(t>))

W [f, h](f1h2 − h1f2)
, (12.24)

and satisfies (
∂2
t +

αR2(
R2 + t2

)2
)
G(t, t′|t1, t2) = δ(t− t′), (12.25)

G(t1, t′|t1, t2) = 0, G(t2, t′|t1, t2) = 0 (12.26)

with W [f, h] = fḣ− hḟ being the Wronskian of f(t) and h(t) (independent of
t), t2 > t1, t< = min(t, t′), t> = max(t, t′) and f1 = f(t1), h1 = h(t1), etc.

With the Green function given by (12.24), and b(t) denoting the right hand
side of equation (12.20a),

b(t) = − βkΘ

Rk−

R(
R2 + t2

)3/2 , (12.27)
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we can write down the solution to (12.20) as

Xcl(t|X1, t1;X2, t2) = −X1∂t′G(t, t′|t1, t2)
∣∣∣
t′=t1

+X2∂t′G(t, t′|t1, t2)
∣∣∣
t′=t2

+

t2∫
t1

dt′G(t, t′|t1, t2)b(t′)

(12.28)
Given the above formulas, the classical action can be written in a rela-

tively general form that will turn out to be useful later. For a more general
Hamiltonian

H =
P 2

2µ
+ Ω2(t)

X2

2
− b(t)X + γ(t), (12.29)

which leads to a differential operator D = ∂2
t + Ω2(t), we can re-use the Green

function (12.24) with f(t) and h(t) solutions to the homogeneous equation of
motion DX = 0. We can then write the classical action corresponding to
(12.29) as

Scl = −µ
2

[
h2ḟ1 − f2ḣ1

f1h2 − h1f2

]
X2

1 +
µ

2

[
f1ḣ2 − h1ḟ2

f1h2 − h1f2

]
X2

2 − µ
[

W [f, h]
f1h2 − h1f2

]
X1X2

(12.30a)

− µ
∫ t2

t1

dt b(t)
(
h2f(t)− f2h(t)
f1h2 − f2h1

)
X1 − µ

∫ t2

t1

dt b(t)
(
f1h(t)− h1f(t)
f1h2 − f2h1

)
X2

(12.30b)

+ µ

∫ t2

t1

dt′
∫ t′

t1

dt b(t)

(
f1h(t)− h1f(t)

)(
f2h(t′)− h2f(t′)

)
W [f, h](f1h2 − h1f2)

b(t′) (12.30c)

−
∫ t2

t1

γ(t)dt . (12.30d)

Equivalently, we can also solve the equations of motion (12.20) explicitly:

X = X1

√
R2 + t2√
R2 + t21

sin2∆t2

sin2∆12
+X2

√
R2 + t2√
R2 + t22

sin2∆1t

sin2∆12

− βkΘ

√
R2 + t2

Rk−(1 + α)

[
1− sin2∆t2

sin2∆12
− sin2∆1t

sin2∆12

]
(12.31a)
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where we have used abbreviations for the following arguments

∆12 =
√

1 + α

2

(
arctan

t2
R
− arctan

t1
R

)
(12.31b)

∆t2 =
√

1 + α

2

(
arctan

t2
R
− arctan

t

R

)
(12.31c)

∆1t =
√

1 + α

2

(
arctan

t

R
− arctan

t1
R

)
. (12.31d)

The classical action can now be evaluated either by brute force using the explicit
classical solution (12.31), or, with less work, from (12.30):

Scl[X1, t1|X2, t2] =− k−
[ t1

2 (R2 + t21)
− R

√
1 + α

2 (R2 + t21)
cot2∆12

]
X2

1 (12.32a)

+ k−

[ t2
2 (R2 + t22)

+
R
√

1 + α

2 (R2 + t22)
cot2∆12

]
X2

2 (12.32b)

−
[ k−

√
1 + αR√

R2 + t21
√
R2 + t22 sin2∆12

]
X1X2 (12.32c)

−
[ β kΘ√

1 + α
√
R2 + t21

tan∆12

]
X1 (12.32d)

−
[ β kΘ√

1 + α
√
R2 + t22

tan∆12

]
X2 (12.32e)

− β2 k2
Θ

k− (1 + α)3/2
R

(
tan∆12 −∆12

)
(12.32f)

− m2

2k−
(t2 − t1)− i

2
ln

√
R2 + t2

2√
R2 + t1

2
− k2

Θ∆12

k−R
√

1 + α
.

(12.32g)

Next we consider the “quantum-mechanical” prefactor A(t1, t2) that ap-
peared in (12.16). With the expression for Scl given by (12.30), equation (12.18)
becomes:

∂A(t1, t)
∂t

= −1
2
f1ḣ− h1ḟ

f1h− h1f
A(t1, t). (12.33)

This leads to the solution

A(t1, t2) = N
(
R2 + t21

)−1/4 (
R2 + t22

)−1/4 | sin2∆12|−1/2
φM , (12.34)

which contains the Maslov phase φM and a constant normalization factor N .
The Maslov phase is piecewise constant away from the focal points (the posi-
tions of focal point for t2 are functions of t1). Its value is worked out in the
next section 12.4.
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We can now fix the normalization of A(t1, t2) by imposing (12.13):

N =

√
R
√

1 + α

2π
√
R2 + t21

(12.35)

12.4 Focusing properties of the wave equation

In the evolution of classical dynamical systems, it often happens that all the
classical trajectories that start at (X1, t1) will reach the same point X∗(X1)
at the same moment t∗(t1), irrespectively of their initial velocity V1. Under
such circumstances, we say that t∗(t1) is classical focal point (or caustic) of the
evolution. If t∗(t1) is such a focal point, the classical action Scl[X1, t1|X2, t

∗(t1)]
will diverge unless X2 = X∗(X1, t1). Basically, if it did not, there would
have been classical trajectories connecting (X1, t1) and (X2, t

∗(t1)) for X2 6=
X∗(X1, t1),in contradiction with the definition of a focal point. A general recipe
for handling these divergences can be given [16, 12] and introduces the concept
of the “Maslov phase”.

As we already remarked in section 12.3, if we pursue a semiclassical con-
struction of the quantum-mechanical mode functions, the singular behavior of
the classical action near focal points introduces formal complications in (12.18).
We will analyze the Maslov phase for our rather general form of the classical
action (12.30). To this end we rewrite the classical action in the following form:

Scl[X1, t1|X, t] =
k−
2

[
f1ḣ− h1ḟ

f1h− h1f

]
(X −X∗(X1, t1, t))

2 + · · · (12.36)

=
k−
2
∂

∂t
ln [f1h− h1f ] (X −X∗(X1, t1, t))

2 + · · · , (12.37)

where the dots represent contributions non-singular at t = t∗(t1). A focal point

X∗(X1, t1, t
∗(t1)) (12.38)

is reached whenever

f1h(t∗)− h1f(t∗) ≡ f(t1)h(t∗)− h(t1)f(t∗) = 0. (12.39)

At the same time, equation (12.33) for the prefactor A(t1, t) can be solved on
the left and on the right of the focal point t∗(t1) (even though constructing a
solution at t = t∗(t1) naively would be problematic on account of the singularity
on the right hand side of (12.33)):

A(t1, t) = N< |f1h(t)− h1f(t)|−1/2 (t < t∗(t1)),

A(t1, t) = N> |f1h(t)− h1f(t)|−1/2 (t > t∗(t1))
(12.40)
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(with N< and N> being complex constants).
Armed with these relations, we can examine the behavior of the entire

wavefunction φ(X1, t1|X, t) = A(t1, t)exp (−iScl [X1, t1|X, t]) in the vicinity of
a focal point t∗(t1). Generically assuming that f1h(t) − h1f(t) has a simple
zero at the focal point, f1h(t)− h1f(t) ∝ t− t∗(t1), and keeping in mind that

lim
λ→∞

√
|λ|
π

exp
(
− iπ

4
sign(λ)

)
exp

(
iλx2

)
= δ(x), (12.41)

we conclude that

lim
t→(t∗(t1))−

φ(X1, t1|X, t) = A<δ(X −X∗(X1, t1)),

lim
t→(t∗(t1))+

φ(X1, t1|X, t) = A>δ(X −X∗(X1, t1)),
(12.42)

with
A<
A>

=
N< exp (iπ sign(k−)/4)
N>exp (−iπ sign(k−)/4)

(12.43)

If we further demand that the limits in (12.42) should be the same (this
automatically ensures that any convolution of φ(X1, t1|X, t) with a smooth
wavepacket is continuous across the focal point), we conclude that

N>
N<

= exp
(
iπ

2
sign(k−)

)
. (12.44)

When there are many focal points t∗` (t1), each of them will give a contribution,
and the resulting wavefunction can be written as

φ(X1, t1|X, t) = NφM |f1h(t)− h1f(t)|−1/2 exp (−iScl [X1, t1|X, t]) (12.45)

with a constant normalization factor N and the Maslov phase φM of the form

φM = exp

(
iπ

2
sign(k−)

∑
`

θ(t− t∗` )

)
(12.46)

(θ(t) being the Heaviside step function).
We now turn to our specific case for which the relevant term in the classical

action (12.32) near a focal point is given by:

Scl[X1, t1|X, t] ' k−
[ t

2 (R2 + t2)
+

R
√

1 + α

2 (R2 + t2)
cot2∆1t

]
X2 + · · · (12.47)

The focal points are the poles of cot2∆1t:

t∗ =
t1 +R tan(π`/

√
1 + α)

1− tan(π`/
√

1 + α) t1/R
, ` ∈ Z (12.48)
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The value of α determines the number of focal points. We will restrict our
attention to the case α = (2N)2 − 1 relevant for our present investigation, and
we obtain ` ∈ {1, . . . , 2N − 1}, i.e. 2N − 1 focal points.

In the R→ 0 limit, all the 2N−1 focal points are squeezed into t = 0. This
means that there will be one large phase jump from t < 0 to t > 0. We thus
obtain the following expression for the Maslov phase in the R→ 0 limit:

φM = exp
(
iπ

2
sign(k−) (2N − 1) θ(t)

)
. (12.49)

12.5 Comparison with earlier work

To facilitate comparison with earlier work, we now derive momentum basis
mode functions using the position basis mode functions φ (X1, t1|X2, t2) of sec-
tion 12.3. The existence of an R→ 0 limit will not be affected by such conver-
sion. To obtain the momentum basis mode functions, we have to manipulate
our “propagator” φ (X1, t1|X2, t2). First, we take a Fourier transform (with
respect to X1) of the “propagator” to convert it to an incoming plane wave ba-
sis. The Fourier transform introduces an exponential phase exp

[
−ip2t1/(2k−)

]
which only depends on the initial time t1 and on the wave number of the Fourier
transform. This term is present already for “free evolution”. Another such term
is exp

[
−im2t1/(2k−)

]
which appears through (12.32g). We cancel these terms

by multiplying with

exp

(
i
(
m2 + p2

)
t1

2k−

)
. (12.50)

This is possible because we are simply using the freedom we have in defining
the basis of mode functions. We also omit other time-independent overall phase
factors. Finally, we will take the limit t1 → −∞, which refers our momentum
labels to incoming waves in the infinite past:

Vk−,kΘ,p,m = lim
t1→−∞

∫ ∞
−∞

dX1A(t1, t2) exp (−iScl)

× exp (ipX1) exp

(
i
(
m2 + p2

)
t1

2k−

)
(12.51)

To be consistent with our notation in the beginning of this section, we now
switch back to writing X+ instead of t for all spacetime quantities. We finally
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obtain the mode functions

Vk−,kΘ,p,m =

√
2RN

|k−| (R2 + (X+)2) | sin2∆ |
φM × (12.52)

exp
[
−ik−X2 (2NR cot2∆ +X+)

2 (R2 + (X+)2)
+

iX√
R2 + (X+)2

(
kΘtan∆ +

2RNp
sin2∆

)

+
ipkΘ

k−
tan∆− ip2RN

k−
cot2∆ +

ik2
Θ

2k−NR
tan∆ +

im2X+

2k−
+ ik−X

− + ikΘΘ
]

where ∆ = Narctan(X+/R) + πN/2.
For R→ 0 we obtain:

Vk−,kΘ,p,m =
1√
|k−X+|

exp
(
iπ

2
sign(k−)(2N − 1)θ(X+)

)
× (12.53)

exp
[
−ipX sign(X+) +

ip2X+

k−
− ik2

Θ

2k−X+
+
im2X+

2k−
+ ik−X

− + ikΘΘ
]
,

where θ(t) denotes the Heaviside step function.
In order to compare our mode functions (12.52) with those derived in [86],

we write out the mode functions for N = 1 explicitly:

V
(N=1)
k−,kΘ,p,m

=
1√
|k−X+|

φM exp
[ −ik−R2X2

2X+ (R2 + (X+)2)
− ipkΘR

k−X+

− iX√
R2 + (X+)2

(
kΘ

R

X+
+ p

R2 + (X+)2

X+

)
− ip

2

k−

(
R2 − (X+)2

2X+

)
+ ik−X

− + ikΘ −
ik2

Θ

2k−X+
+
im2X+

2k−
Θ
]
. (12.54)

We have already given the general expression for the Maslov phase φM is given
in section 12.4. For N = 1, there is only one focal point at X+ = 0, and the
Maslov phase becomes:

φM = exp
(
iπ

2
sign(k−) θ(X+)

)
. (12.55)

Written in our interpolating coordinates from (10.19), the mode functions
of [86] can be re-expressed as

1√
iX+

exp
[ ip+R2X2

2X+ (R2 + (X+)2)
− iX√

R2 + (X+)2

(
J
R2 + (X+)2

RX+
− nX

+

R

)

− iX
+

2p+

(
n− J
R

)2

+
iJ2

2p+X+
− im2X+

2p+
− ip+X− + inΘ

]
,

(12.56)
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with J , n being the labels used in [86].
The equality of the two expressions (up to normalization conventions) is

established by recognizing the following identifications:

k− = −p+,

p =
J − n
R

,

kΘ = n.

(12.57)

Our results thus agree with those of [86] for non-zero values of R in the partic-
ular case of the nullbrane (α = 3, β = 2). A further comparison between the
modefunctions of [86] and a minimal subtraction procedure applied to the null-
brane was already made in section 10.6.3 of chapter 10. Now we are ready to
examine the R→ 0 limit (where our choice of coordinates will reveal a peculiar
reflection property at the singularity) for the original as well as the generalized
nullbrane.

12.6 Construction of the singular limit

Now that we have constructed the “propagator” φ(X1, t1|X2, t2), which pro-
vides a basis of mode functions labeled by X1, we can investigate its R → 0
limit, which will only exist for special values of α and β.

The first non-trivial condition for the existence of an R → 0 limit comes
from the prefactor A(t1, t2). This will vanish identically for t1 < 0, t2 > 0
as R is sent to 0 (which would make the field operator vanish identically and
manifestly destroy unitarity), unless

α = N2 − 1, (12.58)

with an integerN , on account of the structure
√
R/sin2∆12 in (12.34) combined

with (12.35).
This behavior of the prefactor A(t1, t2) can be naturally understood by

inspecting the classical homogeneous solutions (12.22). For generic values of
α and β, in the R → 0 limit, those behave as f(t) → t and h(t) → |t|. Since
these two functions are not linearly independent on the negative real axis, we
will not be able to specify arbitrary initial conditions (X1,V1) for the classical
solution at t1 < 0. Should we try to do so, in the R → 0 limit, the classical
trajectory will be kicked away to infinity for all t > 0. Correspondingly, all
quantum wavepackets will be kicked away to infinity, and the wavefunction
will vanish at all finite values of X for t > 0, as manifested by the behavior of
the prefactor A(t1, t2). This problem is avoided, however, for special values of
α: if α = (2N)2−1 (with an integer N), the R→ 0 limit of the two solutions is
f(t)→ sign(t) and h(t)→ |t|; if α = (2N + 1)2−1, it is f(t)→ t and h(t)→ 1.
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A further condition on α and β arises from considering the R → 0 limit
of the classical action Scl[X1, t1|X2, t2]. The problematic terms in the action
(12.32) are those with coefficients containing k2

Θ, namely:

− β2 k2
Θ

k−(1 + α)3/2R

(
tan∆12 −∆12

)
− k2

Θ∆12

k−R
√

1 + α
. (12.59)

In order to cancel the divergences, we find the following equation for β:

β2 =
1 + α

1−
tan

(
π
√

1 + α/2
)

π
√

1 + α/2

. (12.60)

If α = (2N + 1)2 − 1, this condition would make us naively conclude that
β = 0. However, a direct inspection of (12.59) reveals that it wouldn’t make
the divergence cancel. The only other option remaining is

α = (2N)2 − 1, β = 2N (12.61)

(β = −2N corresponds to the same space written in different coordinates).
These are the conditions for existence of an R → 0 limit for a free scalar field
dynamics on the generalized nullbrane. As we would expect, the values α = 3
and β = 2 corresponding to the original nullbrane do meet these conditions
(for N = 1).

12.7 Discussion of the singular limit

To recapitulate, we have examined the dynamics of a free scalar field on the
following three-parameter (α, β, R) family of backgrounds (“generalized null-
brane”):

ds2 =− 2dX+dX− +
X2R2(β2 − α)
(R2 + (X+)2)2

(dX+)2 +
2βXR√

R2 + (X+)2
dX+dΘ

+
(
R2 + (X+)2

)
dΘ2 + dX2 . (12.62)

As R goes to 0, all of these geometries (irrespectively of the values of α and β)
reduce (away from X+ = 0) to the parabolic orbifold times a line:

ds2 = −2dX+dX− + (X+)2dΘ2 + dX2 (12.63)

What we have found is that the R→ 0 limit of the scalar field mode functions
exists only when α = (2N)2 − 1 and β = 2N , with N being an integer.

In terms of the limiting expression for the mode functions (12.53), we find
few surprises. The result is essentially independent of the values of α and β
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(for those values for which the limit exists) and bears a close resemblance to
the mode functions obtained in [86]. However, the minor discrepancy between
our results and those of [86] deserves some clarification.

For any α and β, the metric of the generalized nullbrane converges to the
metric of the parabolic orbifold times a line (12.63), which is formally the same
as the metric of the parabolic orbifold written in the y-coordinates of [86].
Given only the R = 0 expressions, it may therefore be tempting to identify
(y+, y−, y, u) ↔ (X+, X−,Θ, X). With this identification, however, the mode
functions are not exactly the same, even for the case of the original nullbrane
(α = 3, β = 2). The difference between the two is the factor of sign(X+) in
front of the ipX term in the exponential of (12.53). It is important to realize
that the difference between the two sets of mode function does not represent
any dynamical distinction. Rather, it is explained by the difference in the
choice of coordinates.

To construct the parabolic orbifold (12.63) as an R → 0 limit of the null-
brane, the authors of [86] employ their singular y-coordinates (this coordinate
system fails at X+ = 0 even for smooth spaces at non-zero R). As a result,
they obtain mode functions without the aforementioned factor sign(X+). In-
cidentally, as I have anticipated in section 10.6.3, the same mode functions are
obtained by applying the non-geometrical “minimal subtraction” prescription
of [94] directly to a free scalar field on the parabolic orbifold, without any
recourse to the nullbrane or its generalizations.

On the other hand, we construct the parabolic orbifold metric (12.63) and
the corresponding coordinates as an R → 0 limit of smooth coordinate sys-
tems parametrizing smooth geometries. In this case, the factor of sign(X+) is
present. Its effect is that the position and velocity in the X-direction for all
particles are reflected as they pass through X+ = 0.

Even though the two sets of mode functions are essentially equivalent (and
only differ by a coordinate choice), we may think of our present parametization
as being more accurate. Indeed, it is very natural to demand that, since the
singular space is constructed as an R→ 0 limit of smooth resolved geometries,
the coordinates on the singular space should be constructed as an R → 0
limit of smooth coordinate systems on the smooth resolved geometries (even
though, with our present theoretical understanding of spacetime singularities, it
is not possible to give a systematic justification to this treatment of coordinate
systems). Note that the flip of the X-direction for positive X+ cannot be
undone by a smooth coordinate transformation, so it will always be present
if the parabolic orbifold metric (12.63) is constructed as a limit of a smooth
coordinate frame on the (generalized) nullbrane.

We find considerably more surprises if we contemplate the properties of
those geometrical resolutions for which the singular limit of the scalar field
dynamics exists (rather than merely examining the limiting expressions for the
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mode functions).
Firstly, looking at the nullbrane example of [86], we could get the impression

that the singular limit exists because the curvature is identically zero for any
finite R (in a way, one can say that the singularity is never really “there”).
This is different for the generalized nullbrane. The non-vanishing components
of the Riemann tensor for our generalized nullbrane geometries are

R+X+X =
R2(4α− 3β2)

4(R2 + (X+)2)2
, R+Θ+Θ =

R2(β2 − 4)
4(R2 + (X+)2)

. (12.64)

We will now show that “the curvature generically blows up at X+ = 0” in the
singular limit R → 0. To make this statement more precise, we will construct
a null geodesic that approaches X+ = 0 in finite affine parameter, and we will
show that one of the frame components of the Ricci tensor diverges when we
reach X+ = 0. Let us consider the geodesic given by

X−(t) =
ξt

2
+

sin τ(t)
2

(
R
√
α+ 1 cos τ(t) + t sin τ(t)

)
, (12.65a)

Θ(t) =
β√
α+ 1

cos τ(t) , X(t) =
√
R2 + t2 sin τ(t) , (12.65b)

X+(t) = t , τ(t) =
√
α+ 1 arctan

t

R
, (12.65c)

with ξ = 0 for a lightlike geodesic and ξ > 0 for a timelike geodesic. Events on
the generalized nullbrane for which X+(t) = 0 are reached in finite parameter
t. The tangent vector along the geodesic (12.65) is given by

t = ∂X+ +
1
2

(
ξ + sin2 τ(t) +

R
√
α+ 1

R2 + t2
[
t sin 2τ(t) +R

√
α+ 1 cos 2τ(t)

])
∂X−

− βR

R2 + t2
sin τ(t) ∂Θ +

1√
R2 + t2

(
R
√
α+ 1 cos τ(t) + t sin τ(t)

)
∂X .

(12.66)

The only nonzero component of the Ricci tensor is

RX+X+ =
R2
(
2α− 2− β2

)
2
(
R2 + (X+)2

)2 (12.67)

and therefore the component R11 in a parallelly propagated frame along the
geodesic (with t = e1) is given by

R11 = RX+X+e+
1 e

+
1 =

R2
(
2α− 2− β2

)
2 (R2 + t2)2 . (12.68)



148 CHAPTER 12. SCALAR FIELD ON THE PARABOLIC ORBIFOLD

Let us assume that α 6= 1 + β2/2. We will consider the frame component of
the Ricci curvature (12.68) at the spacetime event that corresponds to t = 0
along the geodesic (12.65). If we now consider the singular limit R → 0, the
frame curvature at that event will blow up. This divergence is also present for
those values of α and β for which the singular limit of the scalar field dynamics
exists, except for the value of the couple (α, β) that corresponds to the original
nullbrane. Note that the Ricci scalar vanishes, so our results do not depend on
the choice of the Ricci scalar coupling of the scalar field (minimal, conformal,
etc., [2], see also chapter 6).

The curvature components will obviously vanish for the specific value of
α = 3 and β = 2 that corresponds to the original nullbrane spacetime, because
its curvature is zero. In fact, if the Θ coordinate is decompactified, the original
nullbrane becomes Minkowski space. Meanwhile (in the decompactification
limit) the generalized nullbrane metrics become pp-waves (though in a rather
awkward coordinate system). Therefore, string theory sigma-models should
be exactly solvable on all the generalized nullbrane spacetime. We have not
investigated sigma models on the generalized nullbrane, but a sigma model on
a singular plane wave will be considered in the next chapter.

Furthermore, we can examine the Weyl tensor:

C+X+X =
R2(α+ 1− β2)
2(R2 + (X+)2)2

, C+Θ+Θ = −R
2(α+ 1− β2)

2(R2 + (X+)2)
(12.69)

and notice that it actually does vanish for all those cases where the limit exists
(within the particular family of geometries we have been considering). However,
there are many values of α and β for which the Weyl tensor (12.69) vanishes, yet
no R→ 0 limit of the scalar field dynamics exists. For that reason, conformal
flatness is not likely to constitute an important part in possible explanations
for the existence of the singular limit.

Perhaps the most puzzling feature of our results is that the limit appears
to exist for a discrete subset of the possible parameter values within our family
of geometries. One could think of this as being an artifact of choosing our
particular slice in the space of all possible geometries (this, however, would
obviously require a fairly delicate coincidence). If, on the other hand, the
feature is generic, it would point to an interesting sort of discreteness inherent
to the dynamics in the near-singular region. This question would certainly
deserve further investigation, even though that would require mathematical
machinery going beyond what has been employed in our present considerations.



Chapter 13

String modes in singular
plane waves

The third law of attribution:

“Everything of importance has been said before by someone who did
not discover it,”

Alfred North Whitehead

In this chapter we study the propagation of a free string across a plane wave
singularity. The singular plane waves we investigate have a scale-invariant and
isotropic profile. The material of this chapter is based on [120, 121]. The
structure of the chapter is as follows: we will first comment on the geomet-
rical resolution of this type of plane waves. Then we derive the Hamiltonian
for a free string in the plane wave background. The Hamiltonian is a set of
time-dependent harmonic oscillators, related to the center-of-mass mode of the
string and the excited modes. We will quickly recapitulate the main results
of [119] for the evolution of the center-of-mass motion across the plane wave
singularity. I did not participate in the collaboration that led to the publi-
cation [119], but its content is necessary for the development of the chapter.
We extend this analysis to the evolution of excited string modes, essentially by
means of Gronwall’s inequality, a mathematical technique which can be used
to bound the solutions to perturbed differential equations. We state this rather
mathematically oriented material in section 13.3.

Next, we discuss the propagation of the string across the singularity. We
consider the propagation of the excited modes in section 13.5. We find that
the propagation of the excited modes across the singularity is possible if and
only if the center-of-mass mode can propagate across the singularity.

In section 13.6 we investigate the issue of string mode creation, which im-

149



150 CHAPTER 13. STRING MODES IN SINGULAR PLANE WAVES

poses stringent conditions on the possibility of free string evolution across a
singularity. These restrictions arise if we demand the total mass of the string
to remain finite after it crosses the singularity, which is a natural demand
for consistent propagation of the whole string. Let me immediately refer to
chapter 6 where I discuss some aspects of particle creation in the context of
time-dependent harmonic oscillators. This material may be useful in view of
section 13.6.

For completeness we consider the singular limit of the dilaton in section 13.7
because it supplements the string to satisfy the background consistency con-
ditions in string theory. We have chosen to supplement the plane wave metric
with a time-dependent dilaton to establish a classical string theory solution.
In order for the singular limit of the dilaton to exist, we obtain two conditions
on the regularization profile. We construct a simple theorem in section 13.8 to
prove that it is always possible to find a geometrical resolution that satisfies
these conditions. We conclude the chapter with a discussion of the singular
limit of a free string with respect to the entire string theory solution (which
has a time-dependent string coupling due to the dynamical dilaton).

13.1 Geometrical resolution of singular plane
waves

String propagation in strong gravitational waves has attracted a considerable
amount of attention on account of a few highly special properties of such space-
times which we summarized in chapter 9. See also [59, 66] among other pub-
lications. For one thing, the structure of the curvature tensor in plane gravi-
tational waves implies that these solutions to Einstein’s equations (coupled to
appropriate matter fields, if necessary) remain uncorrected [59, 58] in a num-
ber of higher derivative extensions of general relativity. In particular, they do
not receive any α′-corrections when introduced as backgrounds in perturba-
tive string theories. Furthermore, the corresponding lightcone Hamiltonian of
string σ-models turns out to be quadratic and admits a fairly thorough analytic
treatment. This class of backgrounds also admits a natural formulation of the
matrix theory description of quantum gravity [107, 112].

In this chapter, we will concentrate on exact plane waves with an isotropic
profile, written in Brinkmann form as,

ds2 = −2dx+dx− − F (x+)
d∑
i=1

(xi)2(dx+)2 +
d∑
i=1

(dxi)2. (13.1)

The case of constant F (x+) corresponds to supersymmetric plane waves studied
in [62], and it is quite different from the rapidly varying F (x+) we intend
to consider. As mentioned in chapter 9, a coordinate transformation can be
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performed into Rosen coordinates, eliminating the dependence of the metric on
the transverse coordinates xi. The resulting metric depends on x+ only and
displays manifestly a plane-fronted spacetime wave propagating at the speed
of light. However, the Rosen parametrization tends to suffer from coordinate
singularities, and we will work with the Brinkmann form.

The function F (x+) contained in (13.1) is completely arbitrary, and one
may ask, for example, what happens to quantum strings propagating in such
spacetimes when the wave profile F (x+) develops an isolated singularity. This
question is of some interest per se, since studies of string theory in the presence
of spacetime singularities have played a pivotal role in the development of
the subject. In this particular case, we are dealing with singularities in time-
dependent backgrounds. Additional heuristic justification for our studies is
provided by the observation that plane waves of the type (13.1) with

F (x+) =
λk

(x+)2
, λk = const , (13.2)

arise as Penrose limits of a broad class [69] of spacetime singularities, including
the Robertson-Walker cosmological singularities. With F (x+) of (13.2), the
metric (13.1) is invariant under scaling transformations x+ → αx+, x− → x−/α
(which are identical to Lorentz boosts in flat spacetime). Note that this type
of singularities is considerably stronger than the so-called “weak singularities”
of [90].

Free string propagation on (13.1) with F (x+) given by (13.2) has been
previously studied in [66]. In particular, it was suggested in that publication
that the question of propagation across the 1/(x+)2 singularity in the metric
can be addressed by employing analytic continuation in the complex x+-plane.
We believe that this issue merits further elucidation.

In the context of string theory and related approaches to quantum gravity,
there is a general expectation that the spacetime background used for formulat-
ing the theory should satisfy some stringent consistency conditions. For pertur-
bative string theories, these conditions take the form of the appropriate super-
gravity equations of motion together with an infinite tower of α′-corrections.
For non-singular plane waves, all the α′-corrections vanish automatically on
account of the special properties of the Riemann tensor corresponding to these
spacetimes. For singular spacetimes, the question of background consistency
conditions at the singular point appears to be extremely subtle. Indeed, what
should replace the supergravity equations of motion at the singular point where
they obviously break down? Ad hoc prescriptions are not likely to produce
meaningful results under these circumstances.

One approach to formulating string theory in backgrounds (13.1-13.2) is to
resolve the singular plane wave profile into a non-singular function, perform the
necessary computations and see if the result has a meaningful singular limit.
This approach was advocated in [59], where a conjecture was made that for
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certain choices of the plane wave profile, taking a singular limit may result in
well-defined transition amplitudes. We intend to consider this question quanti-
tatively. Note that, for the resolved spacetimes of this sort, perturbative string
background consistency conditions are automatically satisfied to all orders in
α′. The only non-trivial question is the existence of a singular limit.

But how should one resolve? We want to construct a function F (x+, ε) in
such a way that

lim
ε→0

F (x+, ε) =
λk

(x+)2
(13.3)

everywhere away from x+ = 0. There is in principle a large amount of am-
biguity associated with such resolutions. One class appears to be very special
however. The background (13.1-13.2) possesses a scaling symmetry and does
not depend on any dimensionful parameters. It is natural to demand that
this symmetry should be recovered when the resolution is removed. This will
happen if the resolved profile F (x+, ε) does not depend on any dimensionful
parameters other than the resolution parameter ε. In this case, on dimensional
grounds,

F (x+, ε) =
λ

ε2
Ω(x+/ε). (13.4)

The limit (13.3) will be recovered if

Ω(η)→ k

η2
+O

(
1
ηb

)
(13.5)

for large values of η, with some b > 2. The appearance of λk seems redundant,
but it is necessary to incorporate the case k = 0. Note that the fact that the
original background possesses a certain symmetry (away from x+ = 0!) in
no way implies that we must resolve in a way consistent with this symmetry.
For resolved profiles different from (13.4), the limit of the metric may still be
given by (13.3) away from x+ = 0 (and thus be scale invariant), but additional
dimensionful scales may become buried inside the singularity at x+ = 0 (in a
way that only affects processes involving singularity crossing). One would need
some strong physical rationale for introducing such scales buried at the singular
locus, and in the present chapter we will simply study the “scale-invariant”
resolutions (13.4), written out in full as

ds2 = −2dx+dx− − λ

ε2
Ω(x+/ε)

d∑
i=1

(xi)2(dx+)2 +
d∑
i=1

(dxi)2. (13.6)

For the resolved spacetime (13.6) which approximates a scale-invariant
plane wave near infinity by (13.5), we can use (9.21) to specify the Kasner
exponents; although the wave profile is isotropic in the transverse coordinates
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xi, there are two Kasner exponents because we can allow for different asymp-
totic profiles near x+ → ±∞ respectively. We denote these Kasner exponents
by m±, related to the plane wave profile by,

m2
± −m± + (λk±) = 0 , (13.7)

where k± expresses the asymptotic behaviour of the resolved profile Ω(η) (more
general than (13.5)):

Ω(η)→ k±
η2

+O

(
1
ηb

)
, b > 2 , η → ±∞ . (13.8)

Because the Kasner exponent can be transformed according to m± → 1−m±
(at least, this is the case for a plane wave without a dilaton), we will select the
exponent m± (the largest value of those two) and denote it in this chapter as
a±, for the asymptote at −∞ and +∞ respectively:

a± =
1
2

+

√
1
4
− (λk±). (13.9)

13.2 Free strings in plane waves

Due to the presence of covariantly constant null vectors in plane wave geome-
tries, the string theory σ-model can be analyzed explicitly in such backgrounds,
and reduces to a set of independent classical time-dependent harmonic oscilla-
tors. In this section, we re-state this familiar material in a way convenient for
our present investigations.

13.2.1 The lightcone gauge

In the Green-Schwarz formulation of the superstring, the fermion part of the
action in lightcone gauge is always quadratic in the fermions, for any pp-wave
background [64]. An exception occurs for plane wave backgrounds that include
Ramond-Ramond fields. In that case the fermions can couple to the background
through a generalized covariant derivative that includes the gauge field. An
example is given by the dilaton-gravity backgrounds with D-branes of the next
chapter, where the D-brane sources the Ramond-Ramond fields.

In the plane wave backgrounds that we consider in the present chapter,
the string worldsheet fermions are free in lightcone gauge. We will therefore
concentrate on the bosonic part of the string action, given by

I = − 1
4πα′

∫
dτ

∫ 2π

0

dσ
√
−γ
(
γabgµν∂aX

µ∂bX
ν − 1

2
α′R(γ)Φ

)
, (13.10)
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with γab the worldsheet metric and gµν the spacetime metric. We choose light-
cone gauge X+ = α′p+τ and gauge-fix the worldsheet metric,

det(γab) = −1, ∂σγσσ = 0, (13.11)

to obtain the following Lagrangian, where we have solved for γττ :

L = − 1
4πα′

∫ 2π

0

dσ

(
2γσσp+α′∂τX

− − 2γτσ
(
α′p+∂σX

− − ∂τXi∂σX
i
)

− γσσ
8∑
i=1

(
(∂τXi)2 +

(α′p+)2

ε2
Ω(α′p+τ/ε)(Xi)2

)

+ γ−1
σσ (1− γ2

τσ)
8∑
i=1

(∂σXi)2 − 1
2
α′R(γ)Φ

)
. (13.12)

We rescale ε = ε′α′p+,

(α′p+)2

ε2
Ω(X+/ε) =

1
ε′2

Ω(τ/ε′), (13.13)

and from here on, we will denote worldsheet time τ = t and write ε instead of
ε′. The σ-dependent part of the oscillator X− is non-dynamical and enforces
gτσ = 0. The σ-independent part of the oscillator X− can be eliminated as a
constraint (gσσ = 1), the (dynamically non-trivial) coupling to the dilaton dis-
appears (see, e.g., [66]), and we can write the following worldsheet Hamiltonian

H =
1

4πα′

∫
dσ

d∑
i=1

(
π2(Pi)2 +

λ

ε2
Ω(τ/ε)(Xi)2 +

(
∂σX

i
)2)

, (13.14)

where Pi are momenta conjugate to Xi. We now choose units in which α′ = 1.
If we Fourier transform the σ-coordinate,

Xi(t, σ) = Xi
0(t) +

√
2
∑
n>0

(
cos (nσ)Xi

n(t) + sin (nσ) X̃i
n(t)

)
, (13.15)

we obtain a set of time-dependent harmonic oscillator Hamiltonians

H =
∞∑
n=0

d∑
i=1

Hni, (13.16)

H0i =
(P0i)2

2
+
λ

ε2
Ω(t/ε)

(Xi
0)2

2
, (13.17)

Hni =
(Pni)2 + (P̃ni)2

2
+
(
n2 +

λ

ε2
Ω(t/ε)

)
(Xi

n)2 + (X̃i
n)2

2
. (13.18)



13.2. FREE STRINGS IN PLANE WAVES 155

13.2.2 WKB solution for time-dependent harmonic oscil-
lator

The Hamiltonian (13.16) is quadratic and the solution to the corresponding
Schrödinger equation,

i
∂

∂t
φ(t;Xi

n) =

(∑
n

d∑
i=1

Hni

)
φ(t;Xi

n), (13.19)

can be found using WKB techniques, which are exact for quadratic Hamilto-
nians. From (13.19) it follows that

i
∂

∂t
φin(t;Xi

n) = −1
2

∂2

(∂Xi
n)2

φin(t;Xi
n) +

1
2

(
n2 +

λ

ε2
Ω(t/ε)

)(
Xi
n

)2
φin(t;Xi

n),

(13.20)
if we separate variables as

φ(t; X) =
∏
n

8∏
i=1

φin(t;Xi
n). (13.21)

We then take the WKB ansatz

φin(t;X) = An(t1, t) exp
(
iScl;n[Xi

1,n, t1|Xi
n, t]

)
, (13.22)

where Scl;n[Xi
1,n, t1|Xi

n, t] is the “classical action” evaluated for the path going
from Xi

1,n at the time t1 to Xi
n at the time t,

Scl[Xi
1,n, t1|Xi

n, t] =
∫ t

t1

dt′
(

(Ẋi
n)2

2
−
(
n2 +

λ

ε2
Ω
(
t′

ε

))
(Xi

n)2

2

)
. (13.23)

If An(t1, t) satisfies

−2
∂

∂t
An(t1, t) = An(t1, t)

∂2

∂(Xi
n)2

Scl[Xi
1,n, t1|Xi

n, t], (13.24)

then (13.22) satisfies the original Schrödinger equation exactly.
Up to normalization, a basis of solutions, labelled by the initial condition

Xi
n(t1) = Xi

1,n, is given by

φ(t; X) ∼
∏
nk

1√
C(t1, t)

exp

(
− i

2C

d∑
k=1

[
(Xk

1,n)2∂t1C − (Xk
n)2∂t2C + 2Xk

1,nX
k
n

])
(13.25)
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where C(t1, t2) (suppressing the index n) is a solution to the “classical equation
of motion” for the time-dependent harmonic oscillator Hamiltonian (13.18):

∂2
t2C(t1, t2) +

(
n2 +

λ

ε2
Ω(t2/ε)

)
C(t1, t2) = 0, (13.26)

with initial conditions specified as

C(t1, t2)|t1=t2 = 0, ∂t2C(t1, t2)|t1=t2 = 1. (13.27)

We will refer to C(t1, t2) as “compression factor”, since it describes convergence
of solutions to the corresponding harmonic oscillator equation starting at the
same point at the moment t1. (If C(t1, t2) vanishes, then t2 is a focal point, as
the difference between any two solutions with the same initial position X(t1)
is proportional to C(t1, t2).) A useful representation of C(t1, t2) is given by

C(t1, t2) =
f(t1)h(t2)− f(t2)h(t1)

W [f, h]
, (13.28)

where f(t) and h(t) are two independent solutions to the differential equation
under consideration, and the Wronskian W is given by

W [f, h] = fḣ− hḟ . (13.29)

To derive the singular limit of the wavefunction (13.25) it is sufficient to study
the singular limit of (13.26-13.27).

13.3 Solutions to perturbed differential equa-
tions

In view of the subsequent application to the singular limit analysis, we would
like to bound the difference δX between the solution X(t) of a perturbed dif-
ferential equation,

∂2

∂t2
X + (Υ + δΥ)X = 0, (13.30)

and the solution X̄(t) of an unperturbed differential equation,

∂2

∂t2
X̄ + ΥX̄ = 0, (13.31)

where we take
X = X̄ + δX (13.32)

and demand that the initial conditions remain unchanged:

X(t0) = X̄(t0), ∂tX(t0) = ∂tX̄(t0). (13.33)
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If we substitute (13.32) and (13.31) into (13.30) we obtain a differential equation
for the perturbation on the solution.

∂2

∂t2
δX + Υ(t)δX = −δΥ(t)

(
X̄ + δX

)
. (13.34)

A formal solution to (13.34) is given by

δX(t) = −
∫ ∞
−∞

Gr(t, t′)δΥ(t′)
(
X̄(t′) + δX(t′)

)
dt′, (13.35)

with the Green function Gr(t, t′) satisfying(
∂2

∂t2
+ Υ(t)

)
Gr(t, t′) = δ(t− t′) (13.36)

and initial conditions

Gr(t, t′)|t=t0 = 0, ∂tGr(t, t′)|t=t0 = 0. (13.37)

Therefore, we can write the Green function in terms of the “compression fac-
tor” C̄ of the unperturbed equation (13.31), where C̄ obeys the same initial
conditions as in (13.27):

Gr(t, t′) =

{
C̄(t′, t) t0 < t′ < t,

0 otherwise.
(13.38)

To obtain a bound on δX we will invoke the so-called Gronwall inequality [26].

13.3.1 The Gronwall inequality

Let I = [A,B]. Assume β and α real valued and continuous on I and β ≥ 0.
If u is continuous, real valued on I and satisfies the integral inequality

u(t) < α(t) +
∫ t

A

β(s)u(s)ds, t ∈ I, (13.39)

then

u(t) < α(t) +
∫ t

A

β(s)α(s) exp
(∫ t

s

β(r)dr
)
ds, t ∈ I. (13.40)

Proof : First we define

z(t) =
∫ t

A

β(s)u(s)ds, t ∈ I. (13.41)
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Then, after differentiation and using the initial assumption (13.39), we obtain

z′(t) = β(t)u(t) ≤ β(t)α(t) + β(t)z(t). (13.42)

Using the line above we write[
exp

(
−
∫ s

A

β(u)du
)
z(s)

]′
= exp

(
−
∫ s

A

β(r)dr
)

(z′(s)− β(s)z(s)) (13.43)

≤ β(s)α(s)exp
(
−
∫ s

A

β(u)du
)
, s ∈ I. (13.44)

We integrate from a to t and obtain

exp
(
−
∫ t

A

β(s)ds
)
z(t) ≤

∫ t

A

β(s)α(s)exp
(
−
∫ s

A

β(u)du
)

ds , t ∈ I.

(13.45)
From assumption (13.39) and (13.45) we now derive the desired inequality,

u(t) ≤ α(t) + z(t) (13.46)

≤ α(t) + exp
(∫ t

A

β(r)dr
)∫ t

A

β(s)α(s)exp
(
−
∫ s

A

β(u)du
)

ds (13.47)

= α(t) +
∫ t

A

β(s)α(s)exp
(∫ t

s

β(u)du
)

ds, t ∈ I. (13.48)

13.3.2 Bounds on the perturbations δX

From (13.35) we derive the following bound on the formal solution δX

|δX(t)| <
∫ ∞
−∞
|Gr(t, t′)δΥ(t′)X̄(t′)|dt′ +

∫ ∞
−∞
|Gr(t, t′)δΥ(t′)δX(t′)|dt′.

(13.49)
We now make use the fact that, by virtue of (13.38), where nonzero, Gr(t, t′) =
C̄(t′, t). Therefore, making use the expression (13.28) for the compression factor
of the unperturbed equation (13.31), we obtain the bound,

|Gr(t, t′)| <
1
|W |

(|f |M |h(t′)|+ |f(t′)||h|M ) ≡ g(t′), (13.50)

with |f |M and |h|M being the absolute value maxima of these functions on
the integration domain (f and h are solutions of the unperturbed differential
equation (13.31)). The integration regions are in fact finite, since the Green
function (cf. (13.38)) vanishes unless t0 < t′ < t:

|δX(t)| <
∫ t

t0

|g(t′)δΥ(t′)X̄(t′)|dt′ +
∫ t

t0

|g(t′)δΥ(t′)δX(t′)|dt′. (13.51)
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Since g(t′) is independent of t we can now apply Gronwall’s inequality to obtain

|δX(t)| <
∫ t

t0

|g(t′)δΥ(t′)X̄(t′)|dt′ +
∫ t

t0

(∫ t′

t0

|g(t′′)δΥ(t′′)X̄(t′′)|dt′′
)

× |g(t′)δΥ(t′)|exp
(∫ t

t′
|g(t′′)δΥ(t′′)|dt′′

)
dt′. (13.52)

On the interval (t0, t) we assume the existence of a maximum of |X̄| and of |δΥ|
and we call these |X̄|M and |δΥ|M respectively. We also assume the integral∫ t
t0
|g(t′)|dt′ can be bounded by a number M . If∫ t

t0

|g(t′)|dt′ < M, (13.53)

then it follows that also ∫ t

t′
|g(t′′)|dt′′ < M. (13.54)

We thus find

|δX(t)| < |X̄|M
(
M |δΥ|M +M2|δΥ|2Mexp (M |δΥ|M )

)
. (13.55)

The second term on the right-hand side is negligible compared to the first one
for sufficiently small |δΥ|.

13.4 The singular limit for the center-of-mass
mode

In [119], the singular limit of a scalar field on a class of scale-invariant plane
waves was investigated, which is fundamental for our present work (the center-
of-mass mode of the string exhibits the same behaviour as a scalar field). For
the convenience of the reader I will restate some of the material that appeared
in [119] in the following subsection, reformulated in a language more convenient
for the remainder of the chapter. One of the conclusions of [119] is that (gener-
ically) a discrete spectrum will appear. A particular exactly solvable example
for such a discrete spectrum has been given in [95] (we called it the “lightlike
reflector plane”) and we will inspect it in section 13.4.2.

13.4.1 Consistent propagation across the singularity

We consider equations (13.26-13.27) for the n = 0 mode of the string and we
obtain as the “classical equation of motion”

Ẍ +
λ

ε2
Ω(t/ε)X = 0. (13.56)
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We need to study the ε→ 0 limit of the solution that obeys the initial conditions

X(t1) = 0, Ẋ(t1) = 1, t1 < 0. (13.57)

The singular limit of solutions to this equation has been analyzed in [119].
Performing a scale transformation Y (η) = X(ηε), with η = t/ε, removes the
ε-dependence from the equation, leaving

∂2

∂η2
Y + λΩ(η)Y = 0. (13.58)

This scale transformation is possible because our initial singular metric was
scale-invariant and we have resolved it according to (13.4) without introducing
any dimensionful parameters besides ε. The existence of a singular limit is
then translated [119] into constraints on the asymptotic behavior of solutions
to (13.58). These “boundary conditions at infinity” are strongly reminiscent of
a Sturm-Liouville problem, and it is natural that a discrete spectrum of λ is
singled out by imposing the existence of a singular limit.

For the specific asymptotic behaviour of our resolved profile (13.5), it can
be shown [119] that, in the infinite past and infinite future, the solutions ap-
proach a linear combination of two powers (denoted below a and 1− a, with a
being a function of kλ, cf. (13.4-13.5)). This power law behavior simply cor-
responds to the regime when the second term on the right hand side of (13.5)
can be neglected compared to the first. It is then convenient to form two bases
of solutions, one asymptotically approaching the two powers (dominant and
subdominant) at η → −∞,

Y1−(η) = |η|a− + o(|η|a−), Y2−(η) = |η|1−a− + o(|η|1−a−), (13.59)

and another behaving similarly at η → +∞

Y1+(η) = |η|a+ + o(|η|a+), Y2+(η) = |η|1−a+ + o(|η|1−a+), (13.60)

where a± is given by

a± =
1
2

+

√
1
4
− λk±. (13.61)

(We are temporarily assuming that k can take two different values k± for
the positive and negative time asymptotes, a possibility that will be discarded
shortly.) The two bases need, of course, to be related by a linear transformation:[

Y1−(η)
Y2−(η)

]
= Q(λ)

[
Y1+(η)
Y2+(η)

]
, (13.62)

where Q(λ) is a 2× 2 matrix whose determinant is constrained by Wronskian
conservation as

W [Y1−, Y2−] = W [Y1+, Y2+] detQ. (13.63)
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The singular limit has been rigorously considered in [119], but the results
can be understood heuristically from the following argument. Imagine one is
trying to construct a solution Ỹ to (13.58) satisfying some (ε-independent)
initial conditions at η1 = t1/ε < 0. This solution can be expressed in terms of
Y1− and Y2− (a complete basis) as

Ỹ = C1Y1− + C2Y2−. (13.64)

Since the initial conditions are specified at η1 = t1/ε, the asymptotic expansions
(13.59) are valid. There needs to be a non-trivial contribution from both Y1−
and Y2− in the above formula in order to satisfy general initial conditions.
Hence, the two terms on the right hand side should be of order 1. Therefore,
we should have

C1 = O(εa−), C2 = O(ε1−a−). (13.65)

If we now apply (13.62) and (13.60) to evaluate Ỹ at a large positive η = t2/ε,
the powers of ε in C1 and C2 will combine with the powers of ε originating from
Y1+ and Y2+ and yield

Ỹ (t2/ε) = Q11(λ)ta+
2 O(εa−−a+) +Q12(λ)t1−a+

2 O(εa−+a+−1)

+Q21(λ)ta+
2 O(ε1−a−−a+) +Q22(λ)t1−a+

2 O(εa+−a−). (13.66)

Since a+ and a− are greater than 1/2, this expression can only have an ε→ 0
limit if a+ = a− (i.e. k+ = k− and we can set both equal to 1 by redefining λ)
and Q21(λ) = 0. The latter condition implies that the absolute normalization
λ of the plane wave profile Ω(η) will generically lie in a discrete spectrum,
dependent on the specific way the singularity is resolved, i.e. the shape of Ω(η).
Conversely, we can expect that for a given λ, the shape of Ω lies in a discrete
spectrum, as we will illustrate in the next subsection (for k± = 0 this has been
proven in [119]). With Q21(λ) = 0 and detQ = −1, the matrix Q can be
written as

Q =
[
q q̃
0 −1/q

]
, (13.67)

with q being a real nonzero number (q̃ does not affect the singular limit). This
means that the subdominant solution Y2−(η) is related to the subdominant
solution Y2+(η) without receiving admixture from the dominant solution, i.e.
it is subdominant at both ±∞. In the singular limit, a basis of solutions is
given by

Y1(t) = (−t)a, Y2(t) = (−t)1−a, t < 0,

Y1(t) = q ta, Y2(t) = −1
q
t1−a, t > 0. (13.68)
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In case the resolved profile satisfies Ω(η) = Ω(−η), we have

Q = Q−1 ⇔ q2 = 1 . (13.69)

As a specific example we find q = −1 for Minkowski spacetime and q = 1 for
the “lightlike reflector plane” of [95] (see the next section). Both Minkowski
spacetime and the lightlike reflector plane have k = 0. The basis with the
asymptotics

Y1−(t)→ |t| , Y2−(t)→ 1 , t→ −∞ , (13.70)

is given by
Y1−(t) = −t , Y2−(t) = 1 , ∀ t . (13.71)

The basis functions with the asymptotics

Y1+(t)→ |t| Y2+(t)→ 1 , t→ +∞ , (13.72)

are given by
Y1+(t) = t , Y2+(t) = 1 , ∀ t . (13.73)

Combining (13.62) and (13.67) it is clear that q = −1 for Minkowski spacetime.
We will explain why q = 1 for the lightlike reflector plane in the following
section.

13.4.2 Example: the lightlike reflector plane

A natural simplification (which, by the way, is not an orbifold) of the general-
ized nullbrane (10.21) discussed in the previous chapter, is given by the metric

ds2 = − αε2x2

(t2 + ε2)2 dt
2 − 2dtdx− + dx2 . (13.74)

This spacetime is called the “lightlike reflector plane” for α = (2N)2 − 1 with
N integer. The lightlike reflector spacetime can be classified as a plane wave
geometry in Brinkmann coordinates (see chapter 9, or also [68]), and, in partic-
ular, it can be extended to a 10-dimensional background satisfying Einstein’s
equation by inclusion of the appropriate antisymmetric tensor field and dilaton.
What makes this particular plane wave interesting is that it develops a strong
singularity when ε is sent to 0 (for example, the singularity is much more dan-
gerous than the “weak pp-wave singularities” of [90]). Furthermore, the ε→ 0
limit of the wave equation in this geometry can be explicitly analyzed. Thus
the parameter ε can be regarded as a regularization parameter.

We will not present a detailed derivation of the mode functions for (13.74),
but simply notice that the wave equation in this background is formally anal-
ogous to that on the generalized nullbrane (12.6), with β = 0, kΘ = 0 and the
first term on the right hand side omitted (this term comes from the determinant
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of the generalized nullbrane metric). Also we have renamed the coordinates
(X+, X−, X) as (t, x−, x) and we wrote ε instead of R. The expression for the
position basis mode functions φ(x1, t1|x2, t2) = A(t1, t2) exp[−iScl(x1, t1|x2, t2)]
then follows from (12.32, 12.34, 12.35):

Scl[x1, t1|x2, t2] =− k−
[ t1

2 (t21 + ε2)
− ε
√

1 + α

2 (t21 + ε2)
cot2∆12

]
x2

1

+ k−

[ t2
2 (t22 + ε2)

+
ε
√

1 + α

2 (t22 + ε2)
cot2∆12

]
x2

2 (13.75)

−
[ k−

√
1 + α ε√

t21 + ε2
√
t22 + ε2 sin2∆12

]
x1x2 −

m2

2k−
(t2 − t1)

A(t1, t2) =
(

2π
ε
√

1 + α

√
t21 + ε2

√
t22 + ε2 | sin2∆12 |

)− 1
2

φM (13.76)

(with ∆12 =
√

1 + α (arctan(t2/ε)− arctan(t1/ε)) /2 and φM being the appro-
priate Maslov phase).

The ε → 0 limit of φ(x1, t1|x2, t2) exists if α = K2 − 1 (with K being an
integer) and equals

φ(x1, t1|x2, t2) =
1√

2π|t2 − t1|
φM exp

[
im2

2k−
(t2 − t1)

]
×

exp
[
ik−
2

(
x2 − (sign(t1)sign(t2))K+1

x1

)2
]
. (13.77)

IfK is odd, the above expression merely represents free motion on Minkowski
space. To verify this statement, one can simply check that φ(x1, t1|x2, t2) solves
the Minkowski space wave equation written in light cone coordinates:

−iφ̇ = −∂
2
xφ

2k−
+

m2

2k−
φ (13.78)

Despite the strength of the singularity in the ε → 0 limit, the free scalar field
dynamics actually becomes identical to that on a completely flat space.

If K is even, the motion is still free for all positive and all negative t.
However, as the particles pass through t = 0, their positions and velocities in
the x-direction are reflected: note the

(sign(t1)sign(t2))K+1 (13.79)

structure in (13.77). This reflection is similar to the one happening for the case
of the generalized nullbrane, but it occurs on a simpler spacetime geometry.
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The mode functions corresponding to (13.77) can be easily derived by means
of a Fourier transformation, analogously to section 12.5.

Because of the property we have just described, we have called the spacetime
(13.74) with α = (2N)2 − 1, where N is an integer, the lightlike reflector
plane. It is an extremely simple family of pp-wave geometries developing a
strong singularity at t = 0 when ε is sent to 0. Furthermore, at least for free
propagation in this background, the singular limit is manifestly well-defined,
and includes a peculiar lightlike object reflecting the positions and velocities of
all particles passing through it (hence q = 1, see also section 12.6).

Thus we can interprete the lightlike reflector plane as a regularized plane
wave spacetime a la (13.5) with b = 4 and k = 0, and we conclude that the
regularized profile exhibits a discrete spectrum given by α = (2N)2−1, N ∈ N.

13.5 The singular limit for the excited string
modes

Following our general discussion of free strings in plane wave backgrounds
in section 13.2, the evolution of excited string modes is described by time-
dependent harmonic oscillator equations

∂2

∂t2
X(t) +

(
n2 +

λ

ε2
Ω(t/ε)

)
X(t) = 0. (13.80)

Solutions for the wavefunctions of the excited string modes can be expressed
in terms of a particular solution to this equation C(t1, t2) defined by (13.26-
13.27). Hence, to analyze the singular (ε → 0) limit of the excited modes
dynamics, it should suffice to analyze the singular limit of C(t1, t2). Because
n2 is finite, it is natural to expect that it does not affect the existence of the
singular limit (which is governed by the singularity emerging from Ω(t/ε)). We
will prove that it is indeed the case for positive λ. For negative λ unstable mo-
tion of the inverted harmonic oscillator leads to divergences. More specifically,
the divergences arise from subleading infinities in the position of the inverted
harmonic oscillator, while the leading infinities cancel. Such sub-leading infini-
ties are absent for the center-of-mass motion analyzed in section 13.4, hence
no analogous divergences in that case. Further details are given in subsec-
tions 13.5.3 and 13.5.4. Nevertheless, λ influences the string coupling and a
negative λ corresponds to a strong string coupling near the singularity, so we
cannot expect free strings to be a valid first-order approximated to interacting
strings (see also the discussion at the end of the chapter in section 13.9) and the
divergences related to the inverted harmonic oscillator are of limited physical
relevance for our present investigations.

To derive C(t1, t2) for equation (13.80) we use the following strategy: the
differential equation (13.80) is linear and any solution X(t2) at t = t2 can be
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written in terms of a “transfer matrix” T that only depends on the initial and
final times, [

X(t2)
Ẋ(t2)

]
= T (t1, t2)

[
X(t1)
Ẋ(t1)

]
. (13.81)

The transfer matrix can be expressed as

T (t1, t2) =
[
−∂tiC(t1, t2) C(t1, t2)
−∂ti∂tf C(t1, t2) ∂tf C(t1, t2)

]
, (13.82)

where ∂ti and ∂tf indicate differentiation with respect to the first and sec-
ond argument respectively. The transfer matrix is completely determined once
C(t1, t2) has been determined, and vice versa. We now use the fact that trans-
fer matrices of subintervals are combined by ordinary matrix multiplication.
Dividing the solution region into three sub-intervals, we calculate the transfer
matrices Tk for each sub-interval k and apply multiplication to construct the
total transfer matrix. The sub-intervals are chosen as indicated in the following
figure:

I II III
| | | |
t1 −tε tε t2

|
0

We use tε to indicate a time that will approach zero in the singular limit as

tε = ε1−ct̃c, (13.83)

with t̃ staying finite in relation to the “moments of observation” t1 and t2. The
number c (between 0 and 1) will be chosen later as needed for our proof. On
each interval, we can write the transfer matrix Tk in terms of the “compression
factor” Ck. Using matrix multiplication to construct the full transfer matrix T ,
we can now deduce an expression for the “compression factor” of the complete
interval

C(t1, t2) = CI(t1,−tε)∂tiCII(−tε, tε)∂tiCIII(tε, t2)
− ∂tf CI(t1,−tε)CII(−tε, tε)∂tiCIII(tε, t2)
− CI(t1,−tε)∂ti∂tf CII(−tε, tε)CIII(tε, t2)
+ ∂tf CI(t1,−tε)∂tf CII(−tε, tε)CIII(tε, t2), (13.84)

in terms of the “compression factors” of the three sub-intervals. Once again,
∂ti and ∂tf differentiate C with respect to its first and second argument (initial
and final time).

To study the existence of the singular limit of C(t1, t2), we will use the
following strategy: for two linear differential equations related by a small per-
turbation we will establish a bound on the difference between perturbed and
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unperturbed solutions with the same initial conditions. This bound will, of
course, apply to Ck. For each of the three sub-intervals introduced above, we
will consider a simplified differential equation that is a good approximation to
equation (13.80) on the corresponding interval:

• Region I and III: Ẍ(t) +
(
n2 + λ/t2

)
X(t) = 0 (related to Bessel’s equa-

tion);

• Region II: Ẍ(t) + λ/ε2Ω(t/ε)X(t) = 0 (equation of motion for the zero
mode).

Then, on each sub-interval, Ck can be written as the sum of a simplified “com-
pression factor” C̄k satisfying the simplified differential equation on this sub-
interval, plus a small perturbation δCk. We will prove that, in the singular
limit, the δCk will drop out of the expression for the total “compression factor”
C(t1, t2).

Most of this section is dedicated to implementing the proof we have just
outlined. The reader primarily interested in the discussion of the singular limit
and content with the general sketch given above can jump to section 13.5.3.

13.5.1 Solutions away from the singularity

In regions I and III we will take

Υ = n2 + k/t2, δΥ =
1
ε2
O

(
εb

tb

)
, (13.85)

with b defined in (13.5). The solutions to the unperturbed differential equation
(13.31) are given by√

|t|Jα(|nt|),
√
|t|J−α(|nt|), α = a− 1

2
, (13.86)

where the Bessel functions, Jα(x) and J−α(x), satisfy the differential equation

x2 ∂
2

∂x2
Jα(x) + x

∂

∂x
Jα +

(
x2 − α2

)
Jα(x) = 0. (13.87)

(This Bessel-negative-order-Bessel basis is more convenient for our purposes
than the often-used Bessel-Neumann basis, as it approaches |t|a and |t|1−a for
small values of t without mixing the two powers.)

The unperturbed “compression factor” in region I is then

C̄I(t1, t) =
√
|t1|
√
|t|Jα(−nt1)J−α(−nt)− Jα(−nt)J−α(−nt1)

W [
√
|t|Jα(−nt),

√
|t|J−α(−nt)]

. (13.88)
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Using the series expansion of the Bessel function for small arguments (they will
be evaluated at t = −tε),

Jα(x) ∼
(x

2

)α 1
Γ(α+ 1)

, α 6= −1,−2,−3, . . . . (13.89)

we can estimate the various contributions to (13.55), thereby constraining the
correction to the unperturbed “compression factor”. One can distinguish three
cases:

1) a > 1, Jα(−nt1) 6= 0, which yields

|C̄(t1, tε)| ∝ ε(1−c)(1−a), |C̄|M ∝ ε(1−c)(1−a), |δΥ|M ∝ εbc−2, M ∝ ε(1−c)(1−a).
(13.90)

From (13.55), δC(t1, tε) is negligible compared to C(t1, tε) if

c >
a+ 1

a+ b− 1
. (13.91)

2) a < 1, Jα(−nt1) 6= 0, which yields

|C̄(t1, tε)| ∝ ε(1−c)(1−a), |C̄|M ∝ ε0, |δΥ|M ∝ εbc−2, M ∝ ε0. (13.92)

From (13.55), δC(t1, tε) is negligible compared to C(t1, tε) if

c >
3− a

b+ 1− a
. (13.93)

3) Jα(−nt1) = 0, which yields

|C̄(t1, tε)| ∝ ε(1−c)a, |C̄|M ∝ ε0, |δΥ|M ∝ εbc−2, M ∝ ε0. (13.94)

From (13.55), δC(t1, tε) is negligible compared to C(t1, tε) if

c >
2 + a

b+ a
. (13.95)

In any of the three cases, it suffices for c to be greater than a number less
than 1, in order for the corrections to the unperturbed “compression factor” to
be negligible for small values of ε. The discussion of interval III is completely
parallel to what we have just presented.

13.5.2 Solutions in the near-singular region

The “unperturbed” equation in region II,

∂2

∂t2
X̄(t) +

λ

ε2
Ω(t/ε)X̄(t) = 0, (13.96)



168 CHAPTER 13. STRING MODES IN SINGULAR PLANE WAVES

is precisely that of the string center-of-mass motion. In order to simplify deriva-
tions, we will assume a+ = a−, as required for well-defined zero-mode propa-
gation (see section 13.4). The unperturbed “compression factor” in region II
takes the form

C̄II(ti, tf ) =
Q22(λ)|ti|at1−af −Q11(λ)|ti|1−ataf

2a− 1

+
Q21(λ)|ti|ataf ε1−2a −Q12(λ)|ti|1−at1−af ε2a−1

2a− 1
, (13.97)

where the 2×2 matrixQ is defined by (13.67), and we have usedW [|t|a, |t|1−a] =
2a−1. Via the expression for the compression factor given by equation (13.28),
formula (13.97) follows from the asymptotic behaviour of the zero mode solu-
tion at infinity given by expressions (13.59) and (13.60), and from the relation
between the two bases given by (13.62). Formula (13.97) is also the same ex-
pression as formula (44) of [119]. The given expression corresponds to small
values of ε. The corrections are suppressed by powers of ε and do not contribute
to the singular limit.

To study the perturbation we will first perform the scaling transformation
η = t/ε, Y (η) = X(ηε), which yields

∂2

∂η2
Y (η) +

(
ε2n2 + λΩ(η)

)
Y (η) = 0. (13.98)

We now take
Υ = λΩ(η), δΥ = ε2n2. (13.99)

If we now choose f ∼ ηa, g ∼ η1−a in (13.50), M of (13.53) for the region
(−tε/ε, tε/ε) (whose size, in η, is proportional to ε−c) becomes (with the three
factors derived from f , h and the size of the integration region):

M ∝ ε−acε−(1−a)cε−c = ε−2c. (13.100)

Because there are only power laws involved in (13.97), the maximal value C̄M
is of the same order as |C̄(−tε, tε)|. Furthermore, |δΥ|M ∝ ε2 by construction.
It then follows from (13.55) that

|δCII | <
(
O
(
ε2−2c

)
+O

(
ε4−4cexp

(
ε2−2c

)))
|C̄II |. (13.101)

The correction is negligible for any c < 1.
A subtlety in our above derivation deserves a comment: one might have

thought that the factor of n2 in δΥ of (13.99) competes with the smallness
of ε and undermines the validity of our considerations for sufficiently large
mode numbers. It is indeed true that, for each value of ε (i.e. for each fixed
resolved space), our analysis is only valid for modes with sufficiently small
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mode numbers. But this range of validity increases infinitely as ε is taken to 0.
However, since the modes are completely independent, the limit for the motion
of the entire string (if it exists) is exactly the same as if it were computed
mode-by-mode. For that reason, n can be kept fixed in the derivations of this
section, and the problem of n2 competing with the smallness of ε does not arise.
This attitude guarantees reproducing the ε → 0 limit correctly for the entire
set of modes, though it does not allow to draw conclusions on the uniformity
of this limit with respect to n.

13.5.3 Effective matching conditions

Having analyzed the “compression factors” on subintervals I, II and III, we can
combine them into the total “compression factor” by applying (13.84). As has
been shown above, there exist a number c in (13.84) between 0 and 1, such that
the “compression factors” on subintervals I, II and III can be well approximated
by the simplified expressions (13.88) and (13.97), with corrections suppressed
by positive powers of ε. One can then substitute (13.88) and (13.97) into the
right-hand-side of (13.84).

For a > 1 (λk < 0), the Bessel functions featured in (13.88) blow up near
the origin (the inverted harmonic oscillator is propelled off to infinity). This
threatens the existence of an ε → 0 limit. In section 13.5.4, we display the
divergences arising for a > 3/2. For 1 < a < 3/2, the limit may exist for
individual string modes, but a consideration along the lines of section 13.6
would still indicate no consistent propagation for the entire string. In any case,
we do not explore this case further since, as will be explained in section 13.9,
free strings are not a good approximation to motion in such plane waves.

For a < 1 (λk > 0), substituting (13.88) and (13.97) in (13.84) yields

C̄(t1, t2) =
√
−πt1t2

2 sinαπ

(
Q22(λ)Ja−1/2(−nt1)J1/2−a(nt2)

−Q11(λ)J1/2−a(−nt1)Ja−1/2(nt2) +Q21(λ)ε1−2aJa−1/2(−nt1)Ja−1/2(nt2)γn

−Q12(λ)ε2a−1J1/2−a(−nt1)J1/2−a(nt2)γ−1
n

)
, t1 < 0, t2 > 0, (13.102)

where γn are numbers originating from the coefficients of the power law expan-
sion of the Bessel functions.

Note that the expression (13.102) has the same algebraic structure as the
one derived for the center-of-mass motion in [119], except that |t|a and |t|1−a
are replaced by

√
|t|Jα(|t|) and

√
|t|J−α(|t|). Requiring the existence of the

ε→ 0 limit results in the condition

Q21(λ) = 0. (13.103)

It is exactly the same condition as the one for the existence of a singular limit
of the center-of-mass motion (generically leading to a discrete spectrum for λ).
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Under the assumption of (13.103) we obtain in the singular limit

C(t1, t2) =
√
−t1t2

Q22(λ)Ja−1/2(−nt1)J1/2−a(nt2)
W [
√
−t1Ja−1/2(−nt1),

√
−t1J1/2−a(−nt1)]

−
√
−t1t2

Q11(λ)J1/2−a(−nt1)Ja−1/2(nt2)
W [
√
−t1Ja−1/2(−nt1),

√
−t1J1/2−a(−nt1)]

,

t1 < 0, t2 > 0. (13.104)

The matching conditions across the singularity can now be derived rigorously
by constructing two independent solutions to (13.80). Note that all the informa-
tion necessary for such construction is encoded (cf. (13.82)) in the “compression
factor” given by (13.104). A convenient shortcut for this procedure is to recall
the representation (13.28) of C(t1, t2) in terms of two arbitrary independent
solutions f(t) and h(t), and to read off the corresponding singular limit of the
two solutions directly from (13.104). Writing Q11(λ) = q and Q22(λ) = −1/q,
we obtain as a basis of solutions,

Y1(t) =
√
−tJa−1/2(−nt), Y2(t) =

√
−tJ1/2−a(−nt), t < 0,

Y1(t) = q
√
tJa−1/2(nt), Y2(t) = −

√
t

q
J1/2−a(nt), t > 0. (13.105)

13.5.4 Divergences for the case of the inverted harmonic
oscillator

As remarked in section 13.5.3, for the case of kλ < 0 (inverted harmonic oscil-
lator), divergences may arise in the evolution of excited string modes. These
divergences may be seen via a blunt application of (13.84), but it will be more
instructive to make their algebraic structure more explicit.

To this end, we will derive a slightly different representation for the total
“compression factor” in place of (13.84). We can start by rewriting (13.28) as

C(t1, t2) =
1

W [f, h]
(
f(t1) h(t1)

)( 0 1
−1 0

)(
f(t2)
h(t2)

)
. (13.106)

For any two sets of solutions {f, h} and {F,H}, the following relation holds:(
f(t)
h(t)

)
=

1
W [F,H]

(
W [f,H] −W [f, F ]
W [h,H] −W [h, F ]

)(
F (t)
H(t)

)
. (13.107)

We can then take four sets of solutions: one approximated by

{
√
−tJα(−nt),

√
−tJ−α(−nt)} (13.108)

in region I, two approximated by

{Y1−(t/ε), Y2−(t/ε)} (13.109)
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and
{Y1+(t/ε), Y2+(t/ε)} (13.110)

in region II, and one approximated by

{
√
tJα(nt),

√
tJ−α(nt)} (13.111)

in region III. We can then start with (13.106) written with the first of these
four sets of solutions. In this representation, the functions featured in (13.106)
are easily evaluated at t1 < 0, but not at t2 > 0. One then consecutively
applies (13.107), (13.62) and (13.107) again to insert the remaining three sets of
solutions, with the Wronskians in (13.107) being evaluated at the boundaries of
sub-regions. In the resulting expression, all the four sets of solutions occur only
with the values of the arguments for which we have convenient approximations
to these solutions, and the total compression factor can be evaluated. As a
matter of fact, this is simply another way to write (13.84).

The divergent contributions to the total “compression factor” can be iden-
tified with particular Wronskians emerging from (13.107), when one constructs
the total “compression factor” with the procedure outlined in the previous
paragraph. For example, at the boundary of regions I and II, the following
Wronskian occurs:

W [
√
−tJ−α(−nt), Y2−(t/ε)]

∣∣∣
t=−tε

. (13.112)

The leading terms of both functions featured in the Wronskian are proportional
to |t|1−a, and therefore cancel by virtue of antisymmetry of the Wronskian.
However, the sub-leading contributions have a different functional form and do
not have to cancel. For example, for a > 3/2, one may consider the contribution
from the first sub-leading power-law correction to the Bessel function, and the
leading term in Y2−. This term is proportional to

W [|t|3−a, |t|1−a] ∼ t3−2a, (13.113)

and furthermore it is not accompanied by any power of ε in the total expression
for C(t1, t2). For that reason, evaluating this term at t = −tε and taking the
ε→ 0 limit will produce a divergence.

13.6 The singular limit for the entire string

As we have seen in the previous section, for kλ > 0, consistent propagation
of the string center-of-mass across the singularity guarantees that all excited
string modes also propagate in a consistent fashion. This is not sufficient,
however, to define a consistent evolution for the whole string, since even small
excitations of higher string modes can sum up to yield an infinite total energy
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[59]. As we will see below, the condition of finite total string energy (after the
singularity crossing) turns out to be very restrictive.

The total string excitation energy can be conveniently expressed in terms of
the Bogoliubov coefficients for the higher string modes. To compute the latter,
we form two different bases of solutions from (13.105) corresponding to purely
positive and negative frequencies at large negative and large positive times.
More specifically, using the asymptotic expansion for the Bessel functions

J±α(x) ∼
√

2
πx

cos
(
x∓ απ

2
− π

4

)
, x→∞, (13.114)

we construct[
φ−1
φ−2

]
=

i

sin(απ)

[
−exp(iαπ/2− iπ/4) exp(−iαπ/2− iπ/4)
exp(−iαπ/2 + iπ/4) −exp(iαπ/2 + iπ/4)

] [
Y1(t)
Y2(t)

]
,

(13.115)
such that,

φ−1 (t) ∼
√

2
πn

exp(int) , φ−2 (t) ∼
√

2
πn

exp(−int) , t→ −∞ .

(13.116)
Analogously, we introduce[
φ+

1

φ+
2

]
=

i

q sin(απ)

[
exp(−iαπ/2 + iπ/4) q2exp(iαπ/2 + iπ/4)
−exp(iαπ/2− iπ/4) −q2exp(−iαπ/2− iπ/4)

] [
Y1(t)
Y2(t)

]
,

(13.117)
such that

φ+
1 (t) ∼

√
2
πn

exp(int) , φ+
2 (t) ∼

√
2
πn

exp(−int) , t→ +∞ .

(13.118)
The two bases are related by a matrix made of Bogoliubov coefficients αn and
βn: [

φ+
2

φ+
1

]
=
[
αn βn
β∗n α∗n

] [
φ−2
φ−1

]
(13.119)

For the Bogoliubov coefficients, we obtain the following expressions, indepen-
dent of n:

αn = − 1 + q2

2q sin(απ)
, (13.120)

βn = −iexp(iπα) + q2exp(−iπα)
2q sin(απ)

. (13.121)

Here, α =
√

1− 4kλ/2. The total mass of the string after crossing the singu-
larity is given by [60]

M =
∑
n

n|βn|2. (13.122)
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Since the βn are n-independent, M can only be finite if βn = 0 for all n. In
general, one needs the uniformity of the ε → 0 limit of βn with respect to n
in order to analyze infinite sums as in (13.122). As remarked at the end of
section 13.5.2, our considerations allow to draw immediate conclusions on the
existence of the limit, but not on its uniformity. However, since M is a sum
of positive numbers, it is obvious that it will diverge when the βn approach an
n-independent non-zero value (in the ε → 0 limit), irrespectively of whether
this approach is uniform in n. For that reason, no further considerations are
needed to draw our conclusions.

For kλ > 0, finiteness of M cannot be achieved, since 0 < α < 1/2 and q
is real. As a matter of fact, expression (13.122) can only be finite if q2 = 1
and kλ = 1/4 − (N + 1/2)2, that is for kλ ≤ 0. For an asymptotical profile
with k = 0, all βn will vanish if q2 = 1, which is satisfied automatically for
any reflection-symmetric Ω(λ). The case kλ = 0 is not only the trivial case of
flat Minkowski space, for example it is also the case of the “lightlike reflector
plane” of [95] which is a simplification of the generalized nullbrane.

13.7 Background consistency and singular limit
for the dilaton

As we have seen in the course of main exposition, consistent free string prop-
agation turns out to impose extremely stringent constraints on the treatment
of scale-invariant dilaton-gravity plane wave backgrounds. For that reason,
it was not crucial for our picture to explore further conditions arising from
supergravity equations of motion imposed on the background. However, for
methodological completeness, we will present considerations for the singular
limit of the dilaton field, and examine how this condition combines with propa-
gation of individual string modes. These derivation will not have much bearing
on the outcome of the analysis in the main text, but they may be useful for
pursuing various modifications of our present set-up.

If a time-dependent dilaton is used to support the curvature of the metric
(13.1-13.2) in the context of string theory, the condition for conformal invari-
ance of the world-sheet theory is given by [66] (for details see [118])

Rµν = −2DµDνφ. (13.123)

We impose this equation for all X+ in the resolved plane wave profile, and
then examine the singular limit of the solutions for the dilaton. This is in
contrast to the approach in [66], where the background consistency conditions
at the singular locus were not discussed. The condition for conformal invariance
(13.123) leads to the equation

φ̈(t) = − λd
2ε2

Ω(t/ε) (13.124)
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for the dilaton where d is the number of transverse dimensions Xi. We want
to consider the limit ε → 0 of the solution φ to this equation. In order for
this limit to exist, the regularization Ω will have to fulfill extra conditions.
Since, in the singular limit, the spacetime is regular away from X+ = 0, we can
construct a solution φ(t) to the left of the singularity and another solution φ(t)
to the right. The requirements for the singular limit of φ to exist then reduce
to demanding that the jumps in φ(t) and in its first derivative φ̇(t) are finite:

∆φ =
∫ t2

t1

φ̇(t)dt =
[
tφ̇(t)

]t2
t1
−
∫ t2

t1

tφ̈(t)dt (13.125)

=
[
tφ̇(t)

]t2
t1

+
λd

2

∫ t2/ε

t1/ε

ηΩ(η)dη (13.126)

and

∆φ̇ = −
∫ t2

t1

λd

2ε2
Ω(t/ε)dt = −λd

2ε

∫ t2/ε

t1/ε

Ω(η)dη (13.127)

Thus, ∆φ̇ can only be finite if∫ +∞

−∞
Ω(η)dη = 0. (13.128)

If that is the case, the first term in (13.126) is automatically finite, and we are
left to demand finiteness of the second term

lim
ε→0

∫ t2/ε

t1/ε

ηΩ(η)dη <∞. (13.129)

If Ω is even and satisfies (13.5), this second condition is automatically satisfied.

13.8 Explicit example of a geometrical resolu-
tion

We now want to show that it is possible to combine the finite dilaton condition
(13.128) with consistent propagation of individual string modes. Given the
considerations in the main text, this translates into finding Ω(η) such that
(13.128) is satisfied and, in addition,

∂2

∂η2
Y (η) + λΩ(η)Y (η) = 0 (13.130)

has a solution approaching Y (η) ∝ η1−a for η → ±∞. We apply inverse
reconstruction to Ω(η), assuming some shape of this solution and adjusting it
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so as to satisfy ∫ +∞

−∞

Y ′′(η)
Y (η)

dη = 0. (13.131)

This “inverse reconstruction” technique is generally useful for contemplating
qualitative properties of various plane wave profiles in relation to the singular
limit.

13.8.1 No-go theorem for Y (η) without zero crossings

In constructing an appropriate Y (η), it is important to decide whether it should
have zeros. If Y has no zeros, Y ′/Y is regular everywhere, and we can rewrite
(13.131) as:∫ +∞

−∞

Y ′′(η)
Y (η)

dη =
[
Y ′(η)
Y (η)

]+∞

−∞
+
∫ +∞

−∞

Y ′2(η)
Y 2(η)

dη. (13.132)

We now use Y (η) ∝ η1−a for η → ±∞, yielding∫ +∞

−∞

Y ′′(η)
Y (η)

dη =
∫ +∞

−∞

Y ′2(η)
Y 2(η)

dη > 0. (13.133)

Therefore, if Y has no zeros, it is impossible to construct an Ω(η) that integrates
to zero. One must permit zeros (say Y (ηi) = 0), and it is necessary to have
bending points (Y ′′(ηi) = 0) at the same locations due to (13.130). We will aim
at constructing a symmetric Ω, assuming that Y is symmetric and restricting
our analysis to η > 0, and we will look for Y that has only one zero for η > 0.

13.8.2 Piece-wise construction

We prove that it is possible to construct an Ω that integrates to zero for a
Y that has one zero-crossing. Ω can be made arbitrarily smooth but for the
simplicity of the proof we will allow Ω to have discontinuities. The main idea
is to split the contributions to the integral∫ ∞

0

Ω(η)dη, (13.134)

into two parts, separated by η = ηM . The part∫ ∞
ηM

Ω(η)dη, (13.135)

will be chosen to be always positive. Then we prove that the contribution∫ ηM

0

Ω(η)dη, (13.136)
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can be made equal to any negative number while keeping the η > ηM region
intact. Therefore the total sum (13.134) can always be taken zero by adjusting
the η < ηM contribution.

We rewrite equation (13.130) as

Ω = − 1
λ

Y ′′

Y
, (13.137)

and we take a piecewise Y (η) (with a continuous first derivative),

Y (η) =

{
Y1(η) − ηM < η < ηM

Y2(η) |η| > ηM .
(13.138)

The function Y2 is fixed throughout our considerations, and we demand that
it asymptotes to the subdominant solution for large η: Y2 → η1−a with 2a =
1 +
√

1− 4λ. As mentioned above, because of the denominator Y in Ω there
needs to be a bending point for each crossing of the η-axis. Y ′′2 /Y2 is negative
everywhere at η > ηM . The splicing point ηM is taken to be a minimum, and
we demand that Y1(ηM ) = Y2(ηM ) ≡ Y (ηM ). We take the following ansatz:

Y1(η) = (C − Y (ηM ))
(
η4

η4
M

− 2
η2

η2
M

)
+ C. (13.139)

A pictorial representation of our assumed solution is given on Fig. 13.1. Due to
the piecewise construction of Y it is clear that

∫
Ω(η)dη consists of a separate Y1

and Y2 contribution. The contribution of Y2 (i.e. -
∫∞
ηM

Y ′′2 /Y2dη) will always be
positive. It remains to be proven that Y1 can contribute an arbitrarily negative
value for fixed Y (ηM ) and ηM . With ηM > 0 and λ > 0, this is equivalent to
asking that ∫ 1

0

3y2 − 1
y4 − 2y2 + C

C−Y (ηM )

dy (13.140)

can be set equal to an arbitrarily positive number. We know that Y (ηM ) ≤
C < 0, since Y1 should not cross the η-axis and η = ηM is a minimum. First,
if C = Y (ηM ), the integral above is 0. Then, for C → 0−, with δ = −C/(C −
Y (ηM )) > 0, we find in the limit of δ → 0:∫ 1

0

3y2 − 1
y4 − 2y2 − δ

dy ∼ π

2
√

2δ
. (13.141)

For C → 0− or δ → 0 this becomes arbitrarily large and positive. As a
consequence (13.136) can be made equal to any negative number (between 0
and −∞), and (13.128) can be satisfied by appropriately adjusting Y1(η).
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Figure 13.1: Piece-wise construction of Y (η).

13.9 Discussion of the singular limit

Before we recapitulate our main results, it is appropriate to make two observa-
tions. First, one can ask what kind of cosmological singularities gives rise, when
the Penrose limit is taken, to the plane wave singularities we have been consid-
ering. According to [69], if one starts with isotropic homogeneous cosmology
of the type

ds2 = −dt2 + t2hdxidxi, (13.142)

and performs a Penrose limit, one obtains a plane wave of the form (13.1-13.2)
with

kλ =
h

(1 + h)2
. (13.143)

Thus, positive values of kλ correspond to positive h, i.e. Friedmann-like big
bang singularities, and negative values of kλ correspond to negative h, i.e.
an infinite-expansion rather than an infinite-contraction singularity. Because
(with p = wρ)

h =
2

3(1 + w)
, (13.144)

such an infinite-expansion singularity has state parameter w < −1 and it was
called a big rip singularity in chapter 2.
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Secondly, the dilaton field (which was discussed in more detail in sec-
tion 13.7) in the backgrounds of the type (13.1-13.2) takes the form [66]

φ = φ0 + cx+ +
dkλ

2
lnx+ . (13.145)

We can put c = 0 if we demand an asymptotically finite string coupling for
x+ → ±∞. Expression (13.145) becomes singular at x+ = 0, but if kλ is
positive the string coupling

gs = (x+)dkλ/2 eφ0 (13.146)

vanishes at x+ = 0. On the other hand, if kλ is negative then the string
coupling becomes infinitely large near x+ = 0, invalidating a perturbative
string theory approach in the vicinity of the singularity, and invalidating free
string propagation as the zeroth order approximation thereto.

13.9.1 Case of the inverted harmonic oscillator

We have paid relatively little attention to kλ < 0 because of the limited validity
of the free string approximation in that case. What we could see is that, gener-
ically, it is hard to make excited string modes propagate consistently across
the singularity (though it may still be possible to arrange such propagation by
means of a judicious choice of the resolved profile Ω(η) of the plane wave). The
issue, however, cannot be competently addressed within perturbative string
theory on account of string coupling blow-up. Our considerations can be seen
as a motivation to study these backgrounds in the context of non-perturbative
matrix theory descriptions of quantum gravity. Some steps in this direction
have been taken in [112]. Alternatively, one could try to construct plane wave
backgrounds of the type (13.1-13.2) where the curvature of the metric is com-
pensated by a dynamical B-field (or with non-zero p-forms), rather than the
dilaton, thus avoiding the dilaton blow-up problem, but care should be taken
that the configuration of metric and B-field (or metric and p-forms) is still a
classical string theory solution.

13.9.2 Case of standard harmonic oscillator

For the case of positive kλ, i.e. those plane waves that arise as Penrose limits of
Friedmann-like cosmologies, it turns out that individual excited string modes
propagate consistently across the singularity, whenever the center-of-mass of
the string does. In those cases, the dilaton (13.145) is actually very large and
negative near the singularity, and one can expect that free strings are a good
approximation as far as propagation across the singularity is concerned (the
string coupling is small in the near-singular region). However, for free strings,
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we find it impossible to maintain a finite total string energy after the singularity
crossing, provided that the (scale-invariant) singularity is resolved in a way that
does not introduce new dimensionful parameters. One way out appears to be
to allow hidden scales buried at the singular locus (even though the spacetime
away from the singularity is scale-invariant). On the other hand, if arbitrary
resolutions, more general than (13.4), are allowed, for a given string mode,
one should be able to reproduce (virtually) any matching conditions. This can
be seen by assuming a particular form of solutions to the harmonic oscillator
equation describing string propagation, and then reconstructing the plane wave
profile necessary to produce this assumed motion. However, it is non-trivial
to fit matching conditions for the entire tower of string modes in a particular
geometrical resolution. For example, it is not obvious whether the matching
conditions postulated in [66] should have any geometrical interpretation at all.

Another relevant consideration would be the propagation of strings across
plane wave singularities stronger than 1/(x+)2. Unfortunately, at present, little
can be said about this case, even for the center-of-mass motion.

13.9.3 Discrete spectrum and shape of the resolution pro-
file

Finally, let us look more closely at the appearance of a discrete spectrum for
the normalization λ of the (isotropic) plane wave profile (13.4). Just as it
was the case for the generalized nullbrane in the previous chapter, the authors
of [119] also found that the consistent propagation of a free scalar field on
singular scale-invariant plane waves leads to a discrete spectrum (which is gen-
eralized to the propagation of a free string across a scale-invariant singularity
in this chapter). Nevertheless, there are a few differences between the resolved
plane wave singularities of the present chapter and the generalized nullbrane
geometries of the previous chapter. In the previous chapter, the geometrical
resolution of the parabolic orbifold in terms of the (generalized) nullbrane intro-
duced an additional (trivial) dimension in the singular limit. The geometrical
resolution applied in this chapter only changes the profile of the plane wave
without even affecting the other components of the plane wave metric, which
is possible because we work in Brinkmann coordinates where the (lightcone)
time-dependence of guu is arbitrary. In addition, the geometrical resolution
applied in this chapter is not explicit. In fact, the profile Ω(η) remains arbi-
trary for finite η, we only restrict the asymptotics near infinity such that Ω(η)
reduces to the original singular scale-invariant plane wave in the singular limit.

We have seen that the specific shape of the resolution profile Ω will generi-
cally lead to a discrete spectrum for λ that characterizes the plane wave profile
(13.2). In fact, it would be more natural to consider that λ is fixed for a
given singular scale-invariant plane wave. That is, we start with a specific
scale-invariant plane wave (of which the singular profile is determined by λ) for
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which we want to find a geometrical resolution. We did not construct a proof
that could state that it is always possible to find a resolution profile Ω that
corresponds to a given λ. Instead we silently assumed that we have chosen
Ω such that its spectrum includes λ. On the other hand, all the results of
the present chapter where derived without relying on the exact shape of Ω(η),
though consistent propagation of the dilaton implies that the profile integrates
to zero and that it is (for example) even in η, but these are relatively mild
integral assumptions that leave local freedom for Ω.



Chapter 14

Supergravity Dp-brane
solutions

The zeroth law of attribution:

“Therefore only false discoveries . . . may be truly called original.”

(Of course the fourth law is self-referential too).

F.D.R.

In this chapter we present supergravity solution that describe extremal p-branes
embedded in a dilaton-gravity plane wave, based on the publication [136].
Dilaton-gravity plane waves are gravitational waves equipped with a dilaton
with a non-constant profile. They play a special role in string theory and
related approaches to quantum gravity, since they provide a rare example of
tractable strongly curved (possibly singular) time-dependent spacetime back-
grounds, essentially because they possess a covariantly constant null vector and
their curvature invariants are zero. Furthermore dilaton-gravity plane waves
permit a formulation of (time-dependent) matrix theories of quantum gravity
[107, 112]. In the context of string theory they have already appeared in the
previous chapter, and (for instance) in [59, 66].

With respect to quantum gravity approaches in the context of string theory,
a likewise prominent role is accorded to the p-brane supergravity solutions (see
e.g. [125]). Through their connection with the D-branes of string theory,
they lead to the formulation of the AdS/CFT correspondence [127] and its
generalizations to different dimensions [128].

Thus, to investigate the time-dependent matrix theories in more detail, and
to formulate time-dependent generalizations of the AdS/CFT correspondence,
it appears important to derive supergravity solutions describing p-branes em-
bedded into dilaton-gravity plane waves. The simplest of these solutions are su-
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persymmetric configurations corresponding to extremal p-branes aligned along
the propagation direction of the plane wave (the existence of such configura-
tions can be suggested by the DBI worldvolume analysis for the corresponding
D-branes). Some considerations of these, and related, configurations have been
undertaken in [133, 131, 134, 130] (among other publications) for highly spe-
cific choices of the plane wave profile. Our present purpose is to derive this
type of solutions without any assumptions regarding the functional shape of
the asymptotic plane wave. Nevertheless, we will assume that the plane wave
profile is isotropic.

The structure of the chapter is as follows: in order to solve the super-
gravity equations of motion for a p-brane embedded in a dilaton-gravity plane
wave in a tractable manner, we limit ourselves to a restricted ansatz that will
prove sufficient to find extremal p-brane solution. The supergravity equations
split into time-independent and time-dependent equations, which we can solve
sequentially. We verify that our ansatz for extremal p-branes preserves su-
persymmetry. We then fix the coordinates in which our solution is written,
such that it becomes manifest that our solution asymptotically agrees with an
isotropic Brinkmann plane wave in string frame.

14.1 p-branes aligned with the dilaton

Thus we will search for the supergravity solution of a metric that expresses a
p-brane embedded in an asymptotically time-dependent isotropic plane wave.
We select a radial coordinate r, transverse to the brane, and define that the
dilaton-gravity plane wave is recovered for r →∞ . The p-brane is charged and
therefore there is an additional Ramond-Ramond field strength, which vanishes
asymptotically. We need a time-dependent dilaton to satisfy the background
consistency conditions at r = ∞, and it is natural to assume that the dilaton
will also depend on the radial distance to the brane.

14.1.1 Supergravity action and equations of motion

We assume that the Kalb-Ramond field is zero, and we start by inspecting
the ten-dimensional Einstein-frame supergravity equations of motion (see, e.g.,
[125]) which contain a metric, a dilaton and a Ramond-Ramond form associated
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to the charged brane:

Rµν =
1
2
∂µφ∂νφ+

∑
N

1
2nN !

eaNφ
[
nN
(
F 2
nN

)
µν
− nN − 1

8
F 2
nN gµν

]
,(14.1)

�φ =
∑
N

aN
2nN !

eaNφF 2
nN , (14.2)

∂µ1

(√
−geaNφFµ1···µnN

)
= 0, (14.3)

∂[µFµ1···µnN ] = 0, (14.4)

where N labels the various form fields of the theory, with field strengths FnN
of rank nN , and aN = (5 − nN )/2 for Ramond-Ramond form fields. For the
“square” of the forms we have used the notation,(

F 2
nN

)
µν

= Fµµ2···µnN F
µ2···µnN

ν , F 2
nN = Fµ1···µnN F

µ1···µnN . (14.5)

14.1.2 Restricted ansatz for extremal solutions

We will solve the supergravity equations of motions and Bianchi identity (14.1-
14.4) for the following ansatz that consists of one p-brane with an associated
field strength F that is a p+ 2-form:

ds2
E = A(u, r)

(
−2dudv +K(u, r)du2 + dy2

α

)
+B(u, r) dx2

a, (14.6)
φ = φ(u, r), (14.7)

Fuvα1···αp−1a =
xa

r

F (u, r)A(p+1)/2e
p−3

2 φ

B(7−p)/2 εα1···αp−1

[
1√
2

]
p=3

(p ≤ 3),

(14.8)

Fa1···a8−p =
xa

r
F (u, r)εa1···a8−pa

[
1√
2

]
p=3

(p ≥ 3). (14.9)

Here the transverse radius is written as r2 = xaxa, p is the number of spatial
dimensions of the p-brane, F is the field strength of the corresponding Ramond-
Ramond form, α runs from 1 to p− 1 and a runs from 1 to 9− p; the factors of
1/
√

2 are only inserted into the form field ansatz for the self-dual case p = 3. It
will turn out that the factor K(u, r) is asymptotically related to the (isotropic)
plane wave profile in Brinkmann coordinates.

This ansatz is not the most general one allowed by the symmetries (in par-
ticular, when the u-dependences are non-trivial there is in general no Poincaré
symmetry relating guv and gαα), however it will prove sufficiently general for
our purposes (i.e. extremal branes) and it simplifies the calculations and anal-
ysis considerably. To find more general non-extremal (but still isotropic) time-
dependent branes one should add a gua(u, r)dudxa term to the line element
and alter the metric component A(u, r)dy2

α to A(u, r)L(u, r)dy2
α.
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14.2 Step I: equations of motion for our ansatz

In order not to distract the reader from the main line of this chapter (the
“solution menu”), I have separated the equations of motion for our ansatz from
the “recipe” of the chapter presented in the next section 14.3. If the reader has
an appetite for equations and a strong stomach, an explicit “raw” form of the
equations of motion for our ansatz is given in [136] which I will not write out
here, instead I will present some convenient combinations of the equations of
motion for our ansatz below. But even these “pre-cooked” equations can easily
be skipped. In that case I recommend the reader to take a look at the strategy
to obtain the p-brane solution in the next section 14.3.

I now present the manipulated equations of motion. Throughout, prime
denotes derivatives with respect to r and dot denotes derivatives with respect
to u. First of all, the equations for the form (14.3-14.4) can be integrated
straightforwardly to yield

F (u, r) =
Q

r8−p , (14.10)

whereQmeasures the brane charge. With these dependences, the uv-component
of Einstein’s equations (identical to the αα-components) can be written as,(

r8−pA(p+1)/2B(7−p)/2A
′

A

)′
=

7− p
8

Q2 e
p−3

2 φA(p+1)/2

r8−pB(7−p)/2 , (14.11)

which we will call the “uv-equation”. The dilaton equation (14.2) gives

(
r8−pA(p+1)/2B(7−p)/2φ′

)′
=
p− 3

4
Q2 e

p−3
2 φA(p+1)/2

r8−pB(7−p)/2 . (14.12)

The ab-components of Einstein’s equations yield (from terms proportional to
δab) the “δab-equation”(

r8−pA(p+1)/2B(7−p)/2B
′

B

)′
+2r7−p

(
A(p+1)/2B(7−p)/2

)′
= −p+ 1

8
Q2 e

p−3
2 φA(p+1)/2

r8−pB(7−p)/2 , (14.13)

and (from terms proportional to xaxb, after (14.11) and (14.13) have been used
to eliminate the terms depending on Q, i.e. originating from the form field) the
“xaxb-equation”

−
(
p
A′

A
+ (8− p)B

′

B

)′
+ 4

A′

A

B′

B
+

8− p
r

(
A′

A
− B′

B

)
= φ′2. (14.14)
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The ua-component of Einstein’s equations (we rearranged to derivatives for
later convenience) gives the “ua-equation”

−
(
p
A′

A
+ (8− p)B

′

B

).
+ 4

A′

A

Ḃ

B
= φ̇φ′. (14.15)

Finally, the uu-component of Einstein’s equations (combined with the uv-
component to eliminate the form) yields the “K-equation”

−A
B

(
r8−pA(p+1)/2B(7−p)/2K ′

)′
r8−pA(p+1)/2B(7−p)/2 =

= (p− 1)

 Ä
A
− 3

2

(
Ȧ

A

)2
+ (9− p)

 B̈
B
− 1

2

(
Ḃ

B

)2

− Ḃ

B

Ȧ

A

+ φ̇2.

(14.16)

14.3 Step II: solution strategy

In this section I present the recipe to obtain the extremal p-brane solutions. Let
us first notice that the electric ansatz of the form (14.8) immediately satisfies
the Bianchi identity (14.4), and the magnetic ansatz (14.9) satisfies the equation
of motion of the form (14.3). Then the remaining equation (the equation of
motion for the form for the electric ansatz and the Bianchi identity for the
magnetic ansatz) can be integrated straightforwardly (see previous section),
which yields one integration constant related to the brane charge.

The remaining equations split into two groups: the equations without time
derivatives (14.11-14.14) and the equations with time-derivatives (14.15-14.16).
We have six equations for four unknown functions A(u, r), B(u, r), φ(u, r)
and K(u, r). We first solve the time-independent equations, then promote all
integration constants to functions of u, and finally solve the time-dependent
equations. This algebraic structure essentially reduces the u-dependent case to
the u-independent one.

The equations without time-derivatives (14.11-14.14) are identical to those
for the static (u-independent) problem, and should be solved first. The static
p-brane has already been considered in the literature, and the techniques we
use in section 14.4 have previously appeared in other work. Because K(u, r)
does not appear in these equations there are four equations for three unknowns,
but it will turn out in section 14.4 that two of the four equations are related,
and only impose a condition on the integration constants. Therefore we obtain
two integration constants. All this will be performed in step III.

Once the time-independent equations have been solved, all the integration
constants should be promoted to functions of u. We have three integration
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constants (one from the integration of the form and two from solution of the
time-independent equations). Meanwhile, we will restrict to extremal solutions
in step IV and check that these solutions preserve supersymmetry in step V.

In step VI we finally consider the two time-dependent equations. They
have a different complexity: equation (14.15) does not contain the guu pref-
actor K(u, r), while (14.16) does. Therefore, into the “ua-equation” (14.15)
we should first substitute the extremal solutions of the time-independent equa-
tions (14.11-14.14), with the integration constants promoted to functions of u.
This will constrain the u-dependences of our integration constants. Finally, the
“K-equation” (14.16) will determine K(u, r).

14.4 Step III: time-independent equations

The solution for the u-independent case corresponding to our present ansatz has
been given in [123]. Essentially, one eliminates the Q-dependent terms (coming
from the form field) from the “dilaton equation” (14.12) and the “δab-equation”
(14.13) using the “uv-equation” (14.11) to obtain(

r8−pA(p+1)/2B(7−p)/2
(
φ′ − 2(p− 3)

7− p
A′

A

))′
= 0, (14.17)(

r15−2p
(
A(p+1)/2B(7−p)/2

)′)′
= 0. (14.18)

These equations are easily integrated, whereupon the “uv-equation” (14.11)
reduces to a Liouville equation (one-dimensional classical particle moving in
an exponential potential) with respect to a new variable ρ defined as d/dρ =
r8−pA(p+1)/2B(7−p)/2d/dr. For example, in terms of the new variable ρ the
dilaton equation (14.17) turns into,

d2

dρ2

(
φ− 2

p− 3
7− p

logA
)

= 0. (14.19)

All the non-linearity of the problem becomes concentrated in this simple non-
linear equation, which can be solved explicitly in terms of hyperbolic functions.
Furthermore, as it turns out, the “xaxb-equation” (14.14) can be equivalently
rewritten as an energy value specification for the above-mentioned Liouville
equation and simply reduces to one constraint on the integration constants.
We refer the reader to [123] for explicit expressions.

Even though the static (u-independent) problem can be solved explicitly
for our ansatz, it appears to be of limited use for general non-extremal p-
branes. The ansatz we have chosen was not the most general one allowed by the
symmetries of the problem (though it will suffice for constructing the extremal
solutions we are aiming at, and help us to keep the derivations reasonably
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compact), and in the presence of strong non-linearities, one should expect all
types of motion permitted by the symmetry constraints to mix. In particular,
as I mentioned before, one should relax the equality of guv and gαα (some
of related static non-extremal solutions have been constructed in [122], and
a rather general analysis has been presented in [132]), and add a non-zero
gua. Our present investigations will not pursue this computation-extensive
program but concentrate instead on the case of extremal p-branes, which can
be completely analyzed using the ansatz (14.6-14.9).

14.5 Step IV: restriction to extremal solutions

To obtain extremal p-brane solutions, we take particular integrals of (14.17)
and (14.18), namely:

d

dr

(
A(p+1)/2B(7−p)/2

)
= 0,

d

dr

(
φ− 2(p− 3)

7− p
logA

)
= 0. (14.20)

(These particular integrals are known to correspond to extremal p-branes for
the u-independent case.) One can then take

A ∝
(

1 +
R7−p

r7−p

)(p−7)/8

(14.21)

(where R will turn out to be simply another parametrization for the brane
charge Q; we restore the expressions for the form field explicitly in our final
results), compute the correspondingB(u, r) and φ(u, r) using (14.20), and check
that the resulting A(u, r), B(u, r) and φ(u, r) solve both the remaining “uv-
equation” (14.11) and the “xaxb-equation” (14.14). Equations (14.11-14.14)
have now been satisfied. We will check that these branes are extremal in
subsection 14.6.

14.5.1 Ansatz for the time-dependent equations

As explained in the previous section, one needs to further promote all the
integration constants to functions of u and solve (14.15) and (14.16). The u-
dependent prefactor in guv can be changed arbitrarily by a redefinition of u,
and we can use this freedom to relate the u-dependent prefactor of A to the
u-dependence of the dilaton. We thus introduce the following expressions to
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be substituted into (14.15) and (14.16):

A = e−f(u)/2

(
1 + h(u)

R7−p

r7−p

)(p−7)/8

,

B = µ(u)e−f(u)/2

(
1 + h(u)

R7−p

r7−p

)(p+1)/8

,

φ = f(u) +
3− p

4
ln
(

1 + h(u)
R7−p

r7−p

)
.

(14.22)

This ansatz is designed to make the large r asymptotics in string frame (ds2 ≡
eφ/2ds2

E) look simple, as we choose to parametrize our solutions by this asymp-
totics.

14.5.2 Transition to string frame and quasi-harmonic func-
tion

More specifically, if we transform our metric to string frame, we obtain the
following “intermediate (string-frame) ansatz”, which we can use to verify the
supersymmetry properties of our claimed extremal solutions. The metric is
written as,

ds2 = H(u, r)−1/2(−2dudv+K(u, r)du2 +dy2
α)+µ(u)H(u, r)1/2dx2

a , (14.23a)

with (what I would call the “quasi-harmonic” function) H(u, r) given by,

H(u, r) = 1 + h(u)
R7−p

r7−p , (14.23b)

and the dilaton and form become

φ = f(u) +
3− p

4
ln (H(u, r)) (14.23c)

Fuvα1.....αp−1a = −e−f(u)H ′H−2x
a

r
εα1...αp−1 . (14.23d)

The function H(u, r) approaches the identity for r → ∞, thus from this form
of the metric in string frame, it is clear that guv is set to go to 1 for large r
(in string frame) as a matter of gauge choice; gαα is forced to go to 1 for large
r by hand (recall that we have chosen to impose Poincaré symmetry between
guv and gαα on the brane worldvolume).

14.6 Step V: Supersymmetry analysis

The fact that, in constructing our solutions, we have relied on the particular
integrals (14.20) of the equations of motion (which, for the u-independent case,
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correspond to extremal BPS solutions) makes it natural to expect that our
u-dependent solutions will likewise be supersymmetric (and thus related to the
D-branes of string theory), which we will verify in this section. Readers pri-
marily interested in the solution for the time-dependent p-brane, can skip this
section and jump to section 14.7 where we solve the remaining time-dependent
equations.

There are two types of maximal supergravity theories in ten dimensions:
type IIA and type IIB, whose multiplet structure agrees with the massless
spectrum of IIA and IIB superstring theory, respectively. We have to consider
both IIA and IIB supergravity because the even p-branes appear in IIA su-
pergravity, and the odd branes in type IIB. The massless multiplet structure
includes the supersymmetric partners of the graviton, these are the gravitino
and the dilatino.

Although the p-brane background (14.35) that we want to derive is purely
bosonic (there is a dilaton, a metric and a form) it can nevertheless be super-
symmetric. In fact, in order for our p-brane solution to be identifiable with a
Dp-brane in string theory, we have to check that it is (partially) supersymmetric
and that it preserves (some part of) the supersymmetry transformations of the
dilatino and the gravitino. The dilatino and gravitino fields are assumed to be
absent in our ansatz, but under an infinitesimal supersymmetry transformation
their field values will deviate from zero. More specifically, they will transform
according to the values of bosonic fields that are present in the background. If
these variations are different from zero, our p-brane background breaks super-
symmetry. Should that be the case, the p-brane background would still make
sense as an supergravity spacetime, but it will not be sypersymmetric, and it
will not be possible to identify it with a D-brane solution.

The supersymmetry transformations of the dilatino and the gravitino in
string frame are given by [124, 126]

δλ = (∂µφ)Γµε+
3− p

4(p+ 2)!
eφFµ1... µp+2Γµ1...µp+2ε′(p) , (14.24)

δψµ =
(
∂µ +

1
4
ωµabγ

ab

)
ε+

(−1)p

8(p+ 2)!
eφFµ1...µp+2Γµ1...µp+2Γµε′(p) , (14.25)

where γa are the Minkowski space γ-matrices and Γµ = eµaγ
a are the curved

space gamma matrices, with eµa as the (inverse) vielbein (see section B.4). ε is a
32-dimensional Majorana spinor for type IIA supergravity and a 32-dimensional
complex Weyl spinor for type IIB supergravity. The spinor ε′ that appears in
the equations (14.24-14.25) is defined as:

ε′(p=1,5) = iε∗, ε′(p=3) = iε, ε′(p=2,6) = γ11ε, ε′(p=4) = ε . (14.26)

These supersymmetry variations are written in a formalism where both form
fields and their duals are explicitly present, and we should use the duals of the
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forms of (14.6-14.9) for p > 3 (we do not consider explicitly the p = 3 self-dual
case for the sake of compactness). We check the supersymmetry variations for
the intermediate solution in string frame (14.23a-14.23d). This is considerably
more general than our full solution (K(u, r) is unconstrained and the functions
µ(u), f(u) and h(u) are unrelated).

In [136] it was shown that the variations of dilatino and gravitino vanish if

ε = H−1/8ε̃ , (14.27)

with the “quasi-harmonic” function H(u, r) defined in formula (14.23b), and
where ε̃ is a constant spinor such that

γuε̃ = 0 , (14.28)

and
xa

r
γaε̃−

εα1...αp−1

(p− 1)!
γuvα1...αp−1a

xa

r
ε̃′ = 0 , (14.29)

with ε̃′ defined similarly to ε′. These two conditions restrict the components
of the Majorana (or complex Weyl) spinor down to 8 real components, which
makes 8 supersymmetries manifest for our solutions and establishes them as the
BPS p-branes. Note that the presence of these supersymmetries is insensitive
to whether the time-dependent equations of motion are satisfied or not, since
supersymmetry is preserved as long as the field configuration is of the form
(14.23a-14.23d).

14.7 Step VI: time-dependent equations

To recapitulate, we have obtained solutions for the time-independent equations
in section 14.4. We have restricted these solutions, corresponding to extremal
branes, and we have promoted the integration constants in these solutions to
three functions f(u), µ(u) and h(u). We have verified that the restriction
corresponds to extremal branes (they preserve supersymmetry). We now solve
the time-dependences. We find the relation between f(u), µ(u) and h(u), and
we obtain an expression for K(u, r). To write out the explicit solution to
K(u, r) we will fix our coordinate system such that the asymptotic plane wave
is expressed in Brinkmann coordinates.

14.7.1 Analysis of the remaining equations

Plugging the “time-dependent ansatz” (14.22) into equation (14.15) yields a
relation between f(u), µ(u) and h(u):

ḣ

h
= ḟ − 7− p

2
µ̇

µ
, h =

ef

µ(7−p)/2 (14.30)
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(the integration constant can always be absorbed into R). Equation (14.16)
becomes(
r8−pK ′

)′
µr8−p =

[
4f̈ − (9− p)

(
µ̈

µ
− µ̇2

2µ2

)]
+

2efR7−p(√
µr
)7−p [f̈ − ḟ µ̇µ − µ̈

µ
+

9− p
4

µ̇2

µ2

]
,

(14.31)
which is easily integrated to obtain a specific combination of r2 and 1/r5−p

dependences. It is always possible to add terms solving the homogeneous ver-
sion of (14.31), i.e. r0 and 1/r7−p with arbitrary u-dependent coefficients. The
r-independent term can be absorbed into a redefinition of v. The 1/r7−p term
describes a peculiar singular pp-wave that propagates parallel to the brane es-
sentially not interacting with it (in the sense that the shape of this wave does
not affect the metric apart from its uu-component). We will ignore these terms
in our present considerations.

14.7.2 Plane wave asymptotics in Brinkmann coordinates

If we now examine the large r asymptotics of our solutions in string frame, we
obtain:

ds2 ≡ eφ/2ds2
E = −2dudv +K(u, r)du2 + dy2

α + µ(u)dx2
a. (14.32)

As indicated above, K(u, r) contains an r2 term, so the asymptotics indeed look
like a plane wave. It is known, however, that, by redefining v and xa, plane
wave metrics can always be put into a form that makes the r2du2 term in the
metric vanish, with the wave profile encoded in µ(u) (the Rosen form), or into
a form that makes µ(u) = 1, with the wave profile encoded in the coefficient
of the r2du2 term in the metric (the Brinkmann form). Not surprisingly, this
kind of transformations can be extended to our entire p-brane solutions (at all
values of r).

More specifically, one can check that the transformation

v = ṽ + µ(u)η(u)η̇(u)

(
r̃2

2
+ h(u)

(
R

η(u)

)7−p
r̃p−5

p− 5

)
, xa = η(u)x̃a

(14.33)
preserves the algebraic form of our ansatz given by (14.6) and (14.22), while
multiplying µ by η2. Since η is an arbitrary function of u, it can be used to
set µ to 1, in which case our p-brane solution is parametrized in a way that
approaches the Brinkmann form of the plane wave in the asymptotic region.

14.7.3 Solution for the profile K(u, r)

If we choose the particular coordinate system for our solution that specifies the
asymptotic plane wave that our solution approaches to as a Brinkmann plane
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wave, then (14.31) simplifies further and it can be easily integrated to yield

K = f̈ r2

(
2

9− p
− ef

5− p
R7−p

r7−p

)
. (14.34)

(Of course, other parametrization choices can be made, with (14.22)-(14.31)
giving the appropriate solutions; also, as already mentioned, we do not include
the homogeneous solutions of (14.31) into our expressions.)

14.8 Solution for branes aligned with the dila-
ton

With all the ingredients assembled together, our extremal plane-wave-p-brane
solutions can be written in string frame, in the form that approaches asymp-
totically Brinkmann plane waves, as follows:

ds2 ≡ eφ/2ds2
E =

(
1 + ef(u)R

7−p

r7−p

)1/2

dx2
a

+
(

1 + ef(u)R
7−p

r7−p

)−1/2 [
−2dudv + f̈(u) r2

(
2

9− p
− ef(u)

5− p
R7−p

r7−p

)
du2 + dy2

α

]
,

φ = f(u) +
3− p

4
ln
(

1 + ef(u)R
7−p

r7−p

)
,

Fuvα1···αp−1a =
xa

r
e−f(u) ∂

∂r

(
1 + ef(u)R

7−p

r7−p

)−1

εα1···αp−1

[
1√
2

]
p=3

(p ≤ 3),

Fa1···a8−p =
xa

r
e−f(u) ∂

∂r

(
1 + ef(u)R

7−p

r7−p

)
εa1···a8−pa

[
1√
2

]
p=3

(p ≥ 3).

(14.35)
For large values of r, this metric takes the form (ignoring the infrared problems
for branes with a small number of transverse dimensions)

ds2 = −2dudv +
2

9− p
f̈(u) r2du2 + dy2

α + dx2
a, φ = f(u), (14.36)

which is indeed the most general Brinkmann-coordinate plane wave (isotropic
with respect to xa-directions and with flat yα-directions), written in string
frame.

It could be very interesting and important to generalize our results to the
case of 0-branes. In that case, there is no worldvolume to be aligned with
the propagation direction of the wave, and the 0-brane is subject to forces
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induced by the plane wave. However, it can be seen from the correspond-
ing D0-brane DBI analysis that there are configurations for which the gravity
and dilaton forces balance each other and the 0-brane does not move. One
could expect relatively simple supergravity solutions for these cases, and they
are also precisely the solutions whose near-horizon geometry may have signifi-
cance within the context of time-dependent matrix models. Unfortunately, our
present derivations do not allow to construct such solutions. It may also be
worth to investigate generalizations to the non-extremal case.

14.9 Comparison with the literature

Now that we have derived our time-dependent p-brane solutions, it is appro-
priate to compare them with the literature. Our solutions are new, but other
papers investigate related issues, such as configurations that consist of multiple
branes. For the reader who is satisfied with the taste of our solution presented
in the previous section, the following comments are relatively detailed, and can
be skipped, in which case the reader has come to the end of this chapter.

Comparing our result to the previously published derivations, one can note
that (22) of [133] becomes identical to our (14.35) for a specific choice of f(u)
in the dilaton profile as a linear function of u.

For p = 1, (21) of [133] corresponds to a special choice of f(u) in the
dilaton profile (logarithmic in u, if the definition of u is changed to agree
with the one we are using), for which (in the asymptotically Rosen frame,
different from the one used in (14.35) and related to it by transformations of
the form (14.33)), the du2 term disappears from the metric and the u- and r-
dependences factorize throughout. Incidentally, (39) of [134] presents a family
of intersecting p1-p5-solutions that should reduce to (21) of [133] when the 5-
brane charge is set to 0. [134] suggests that this family of solutions should have
two free parameters (three numbers, a, b and c with one quadratic constraint).
However, we believe that there is in fact only a one-parameter family in (39)
of [134], corresponding to the single parameter Q of [133] (when the 5-brane
charge is set to 0). An additional constraint on a, b and c of [134] (restoring
the correspondence between (39) of [134] and (21) of [133]) can be derived by
considering the ur-component of the Einstein equations.

For p > 1, (21) of [133] corresponds to a plane wave asymptotics different
from (14.36), with non-trivial yα polarizations present in the asymptotic plane
wave (there is a u-dependent function multiplying dy2

α in the asymptotic ex-
pression for the metric). We have not considered such asymptotic plane waves
here for the sake of compactness, but one should not expect any considerable
complications in including them (the brane geometry is trivial in the longi-
tudinal directions, so superposing plane waves polarized in yα-directions on it
should be even simpler than for the case of xa-directions). The reason why only
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special choices of the functional shape of the asymptotic plane wave appeared
in the previous publications is that assumptions have been made about u- and
r-dependence factorization, or about the absence of du2 terms in the metric.
By relaxing these assumptions, we have restored the functional arbitrariness of
the asymptotic plane wave profile.

After the work that I described in this chapter was completed and published
online, a preprint [135] addressing very similar issues came to our attention.
In that publication, a somewhat more general ansatz (compared to the one we
have used here) is examined (non-trivial asymptotic plane wave polarizations in
the directions parallel to the brane are added); considerations are also given to
intersecting brane solutions. The advantage of our present treatment is that all
the light-cone time dependences are derived explicitly (in [135], the problem is
reduced to ordinary differential equations, which are not solved), the equation
determining the uu-component of the metric (14.6) is analyzed without any
assumptions. Indeed, this analysis does not confirm the suggestions of [135].
In (2.42) of [135] it was assumed that K of (14.6) is a combination of r0 and
1/r7−p dependences on r. As is evident from our analysis in section 3, however,
an inclusion of r2 and 1/r5−p dependences is essential for maintaining the func-
tional arbitrariness of the plane wave profile. The inclusion of r0 and 1/r7−p

terms is optional, as far as the construction of plane-wave-p-brane solutions is
concerned, cf. the remark at the end of subsection 14.7.1. In a more recent
paper [137] the authors of [135] enlarged their previous solutions by applying
a similar technique to construct K(u, r) as in this chapter.



Chapter 15

Conclusions

“If I have seen less far than others
it is because I have stood behind giants,”

Edoardo Specchio

In this final chapter I will briefly recapitulate the results of the previous chapters
and add a some final comments. But let me first of all illustrate the main idea
behind the thesis again.

15.1 Geometrical resolution of spacetime singu-
larities

In general relativity, spacetime becomes curved in the presence of matter
sources. Because matter moves on a curved spacetime, the spacetime geometry
encodes the gravitational interaction, at least at the classical level. But all
matter obeys quantum-mechanical laws, and thus a quantum theory of general
relativity is needed for theoretical consistency. String theory is an approach to
quantum gravity (and also to a unified description of all forces) that has general
relativity as its limit at low energies compared to the Planck scale. A key con-
cept in string theory is supersymmetry, a symmetry that relates bosons (force
carriers) to fermions (matter particles). One of the modern developments in
string theory is that it can be formulated in terms of different dual descriptions,
which are derived by making use of supersymmetry. One class of dual theories
are matrix models, which can be used to study the strong coupling behaviour
of strings, for example near spacetime singularities.

General relativity predicts spacetime singularities like the big bang singu-
larity or black hole singularities, which are boundary points of the spacetime
manifold where the curvature becomes unbounded or ill-defined. Given that

195
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these singularities appear at the classical level, it is expected that a quan-
tum theory may perhaps clarify their nature. At present, string theory is well
understood in static spacetimes (for example, it is possible to formulate the
microscopic degrees of freedom of certain static black holes), but further re-
search is necessary to develop string theory in singular and time-dependent
backgrounds relevant to the spacetime that corresponds to our universe.

The presence of spacetime singularities raises the question whether propa-
gation across singularities is possible and how it should be described theoret-
ically. In certain models, propagation of string theory on singular spacetimes
leads to dual descriptions in terms of matrix models. The singularity in the
spacetime is then mapped into singular terms in the Hamiltonian that describes
the matrix model. In other cases, on can directly relate the singular terms in
Hamiltonians that describe the propagation across the singularity to the origi-
nal singularity in the spacetime metric. In such a case, a geometrical resolution
is a meaningful resolution prescription. In order to investigate the question of
field propagation across a singularity, we first regularize the spacetime with a
regularization parameter. When this parameter is sent to zero, we reobtain
the singular spacetime. We then derive the field evolution on the regularized
spacetime, and consider the singular limit. If the limit for the field evolution
exists, we have found a geometrical resolution to describe the field propagation
across the singularity.

I have used a geometrical resolution to study the propagation of free fields
across singularities. In chapter 10, the relevance of Hamiltonians involving
multiple operator structures (with singular time-dependent prefactors) for the
problem of geometrical resolution of singular spacetimes was stressed. A general
review of the quantum dynamics corresponding to this type of Hamiltonians
was given, with an emphasis on important simplifications that can occur if the
Hamiltonian possesses a finite dimensional dynamical group.

15.2 Scalar field on the parabolic orbifold

I started my research with the study of a geometrical resolution of a specific toy-
model: the propagation of a free scalar field on the singular parabolic orbifold
spacetime [95]. A geometrical regularization of the parabolic orbifold is given
by the nullbrane spacetime. We have considered a two-parameter generalization
(α, β) of the nullbrane spacetime,

ds2 = −2dX+dX− +
X2R2(β2 − α)
(R2 + (X+)2)2

(dX+)2 +
2βXR√

R2 + (X+)2
dX+dΘ

+
(
R2 + (X+)2

)
dΘ2 + dX2 , (15.1)

and addressed the question of the singular limit (R→ 0) of the dynamics of a
free scalar field on this regular background. The evolution of a free scalar field
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on the parabolic orbifold is governed by a dynamical group, more specifically
the two-photon group H6. The wave equation of the free field is related to an
auxiliary quantum mechanical system, expressed by the auxiliary Hamiltonian

H =
it

2 (R2 + t2)
+
P 2

2k−
+

βXRkΘ(
R2 + t2

)3/2 +
k2

Θ

2k− (R2 + t2)
+
α

2
X2R2k−(
R2 + t2

)2 +
m2

2k−
.

(15.2)
We can find an exact solution to the auxiliary system by means of semiclassical
methods, leading to the “propagator” in position space

φ(X1, t1|X2, t2) = A(t1, t2) exp (−iScl[X1, t1|X2, t2]) , (15.3)

where t corresponds to coordinate X+ in the metric 15.1. The non-standard
minus sign in front of the classical action is a consequence of our choice to write
−2dX+dX− in the line element (15.1). The classical action Scl in (15.3) can
be evaluated as

Scl[X1, t1|X2, t2] = −
[ k−

√
1 + αR√

R2 + t21
√
R2 + t22 sin2∆12

]
X1X2 (15.4a)

− k−
[ t1

2 (R2 + t21)
− R

√
1 + α

2 (R2 + t21)
cot2∆12

]
X2

1

+ k−

[ t2
2 (R2 + t22)

+
R
√

1 + α

2 (R2 + t22)
cot2∆12

]
X2

2

−
[ β kΘ√

1 + α
√
R2 + t21

tan∆12

]
X1 −

[ β kΘ√
1 + α

√
R2 + t22

tan∆12

]
X2

− β2 k2
Θ

k− (1 + α)3/2
R

(
tan∆12 −∆12

)
− m2

2k−
(t2 − t1)

− i

2
ln

√
R2 + t2

2√
R2 + t1

2
− k2

Θ∆12

k−R
√

1 + α
.

We have abbreviated the arguments according to

∆12 =
√

1 + α

2

(
arctan

t2
R
− arctan

t1
R

)
(15.4b)

∆t2 =
√

1 + α

2

(
arctan

t2
R
− arctan

t

R

)
(15.4c)

∆1t =
√

1 + α

2

(
arctan

t

R
− arctan

t1
R

)
. (15.4d)
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The quantum-mechanical prefactor in (15.3) is given by,

A(t1, t2) =

√
R
√

1 + α

2π
√
R2 + t21

(
R2 + t21

)−1/4 (
R2 + t22

)−1/4 | sin2∆12|−1/2
φM ,

(15.5a)
and the “Maslov phase” (which determines the phase jumps across the focal
points) is

φM = exp

(
iπ

2
sign(k−)

∑
`

θ(t− t∗` )

)
, (15.5b)

with θ(t) being the Heaviside step function and t∗` the focal points of cot2∆1t,
located at

t∗` =
t1 +R tan(π`/

√
1 + α)

1− tan(π`/
√

1 + α) t1/R
, ` ∈ Z. (15.5c)

Now we have found the solution for the propagation on the generalized
nullbrane, we can study the singular limit. The limit must be taken care-
fully, because of focussing properties of the wave equation. Surprisingly, the
limit happened to exist for a discrete subset of the possible values of the two
parameters,

α = (2N)2 − 1 , β = 2N , N ∈ N . (15.6)

The limiting mode functions are closely related to those previously obtained for
the nullbrane by Liu et al [86]. We have opted for an accurate coordinatization
of the singular limit of our spaces, based on taking a limit of smooth coordinate
systems on the smooth geometrical regularized spacetime. In contrast to the
coordinates employed in [86], our coordinate system reveals a peculiar “reflec-
tion” property of the generalized (as well as the original) nullbrane spacetimes.

15.3 String modes in singular plane waves

During my second project [120] I have investigated the propagation of free
strings across the singularity of a scale-invariant and isotropic plane wave.
These plane waves are first approximations to realistic spacetime singularities,
the scale-invariance of a plane wave naturally follows from the Penrose limit
procedure that associates a plane wave to a generic (power-law) spacetime
singularity [70]. Again we employ a geometric resolution prescription to inves-
tigate the free field propagation across the singularity. The resolved metric is
given by

ds2 = −2dx+dx− − λ

ε2
Ω(x+/ε)

d∑
i=1

(xi)2(dx+)2 +
d∑
i=1

(dxi)2. (15.7)
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and the resolution profile Ω has the following asymptotic profile,

Ω(η)→ 1
η2

+O

(
1
ηb

)
, b > 2 , (15.8)

such that when the resolution parameter ε is taken to zero, we obtain the
singular metric

ds2 = −2dx+dx− − λ
d∑
i=1

(
xi

x+

)2

(dx+)2 +
d∑
i=1

(dxi)2 . (15.9)

Thus we have resolved the singularity in a scale-invariant manner, without
introducing dimensionful parameters except for ε.

To satisfy the background consistency conditions in string theory, we have
supplemented the metric with a time-dependent dilaton to compensate the non-
zero Ricci tensor of the isotropic plane wave profile. Then the string coupling
becomes time-dependent, and near the singularity x+ = 0 it can be written as

gs = eφ0 +
(
x+
)λd/2

. (15.10)

The higher curvature invariants of plane wave metrics are zero and therefore
plane waves are an exact classical solution in string theory. Due to the geomet-
rical resolution prescription, the background consistency conditions hold for all
x+, for every spacetime in our regular class (15.7).

The string theory worldsheet sigma model is exactly solvable in plane wave
backgrounds and the presence of a covariantly constant null vector in our back-
ground permits us to use lightcone gauge. Then the worldsheet Hamiltonian
can be obtained from the bosonic part of action solely, because in lightcone
gauge the fermionic superpartners decouple. In addition, in lightcone gauge we
obtain a decoupled set of Hamiltonians for each oscillation mode of the string.
Thus the string motion splits into the evolution for all modes separately. The
evolution for each oscillation mode corresponds to a time-dependent harmonic
oscillator, therefore the semiclassical WKB analysis is exact.

The behaviour of the center-of-mass mode was studied previously in [119].
The scale-invariance of the resolution permits to perform a scale transformation
that removes the ε-dependence from the problem. In the rescaled formulation
the evolution of a string mode across the singulatiry then resembles a Sturm-
Liouville problem, and one is led to a discrete set of solutions. Practically this
means that the resolution profile Ω should be chosen such that the number
λ that appears in the plane wave profile falls into its discrete spectrum. We
can relate the behaviour of the excited modes to the zero mode by means of
a mathematical technique, called the Gronwall inequality. We find that the
excited modes can propagate through the singularity if and only if the zero-
mode can propagate through. We then construct a basis of solutions in the
ε→ 0 limit.
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It is not sufficient that all string modes can propagate through the singu-
larity. We also have to demand that the total energy related to the oscillations
of the modes remains finite. To specify the excitation of the string modes at
x+ → +∞ we calculate the Bogoliubov coefficients that express the mode cre-
ation. In lightcone gauge the worldsheet theory is also scale-invariant, and the
Bogoliubov coefficients are independent of the mode number. Therefore the
energy related to the string oscillations blows up when the string crosses the
singularity, unless

λ =
1
4
−
(
N +

1
2

)2

, N ∈ Z . (15.11)

We see we can only obtain a solution for λ ≤ 0. However, in that case free
strings are not a good approximation because the string coupling (15.10) near
the singularity becomes large. This is an encouragement to look at matrix
models that can provide a strong coupling prescription of string theory. To
investigate certain aspects of matrix models for singular plane waves (cf. [107,
112]) in detail, it would be interesting to obtain supergravity solutions that
describe D0-branes embedded in plane waves.

15.4 Supergravity Dp-brane solutions

During my third collaboration [136] I have constructed a family of ten-dimen-
sional supergravity solutions describing extended extremal p-branes embedded
into a dilaton-gravity plane wave, with the brane worldvolume aligned along the
propagation direction of the wave. We have assumed an isotropic plane wave
polarization in the directions transverse to the brane worldvolume, and the
absense of polarization components along the brane worldvolume. No assump-
tions have been made about the functional shape of the plane wave profile,
which is contained in our family of solutions as an arbitrary function of the
lightcone time. We present the solution in string frame. First of all, the line
element of the metric is given by

ds2 = H(u, r)1/2dx2
a

+H(u, r)−1/2

[
−2dudv + f̈(u) r2

(
2

9− p
− ef(u)

5− p
R7−p

r7−p

)
du2 + dy2

α

]
.

(15.12a)

The dilaton is written as

φ = f(u) +
3− p

4
ln
[
H(u, r)

]
, (15.12b)
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and the field strength is determined by

Fuvα1···αp−1a =
xa

r
e−f(u) ∂

∂r
H(u, r)−1εα1···αp−1 δ̂(p) (p ≤ 3) , (15.12c)

Fa1···a8−p =
xa

r
e−f(u) ∂

∂r
H(u, r) εa1···a8−paδ̂(p) (p ≥ 3) , (15.12d)

with the factor δ̂(p) = 1/
√

2 for p = 3 and δ̂(p) = 1 otherwise. Finally, the
function H(u, r) is defined as

H(u, r) = 1 + ef(u)R
7−p

r7−p . (15.12e)

The extension of this class of supergravity solutions to D0-branes, in which
case there is no worldvolume to align the propagation direction of the plane
wave with, is still under study.

15.5 Discussion

I have investigated free field propagation across singularities by means of a
geometrical resolution prescription, in some special classes of lightcone time-
dependent spacetimes. I have mainly concentrated on singular plane waves.
I have also studied the formulation of branes embedded in (lightcone) time-
dependent (and possibly singular) isotropic plane waves.

15.5.1 Geometrical resolution prescription

The main line of the thesis is that a geometrical resolution prescription provides
a natural method to define and investigate evolution across a singularity. Of
course, one is naturally tempted to prefer the regularization prescription that
one has used himself/herself, but the geometrical resolution prescription is also
relatively attractive from a more objective point of view.

We regularize the singular metric components by writing out explicit ex-
pressions for the regularized metric components in terms of a regularization
parameter ε. The field propagation on the singular spacetime is then derived
as the limit of propagation on a class of regular spacetimes. The singular limit
ε → 0 is taken with respect to the coordinate system in which we wrote out
the regularization of the metric components.

The field propagation on the regularized spacetimes admits a physical in-
terpretation. Yet we shouldn’t carry this physical interpretation too far: we
primarily utilize the regularized spacetimes as mathematical objects that allow
us to define the field evolution on the singular spacetime and they disappear
once we take the singular limit. Perhaps I could compare the appearance of
the regularized spacetimes with the ghost fields that appear in the calculation
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of Yang-Mills-amplitudes to ensure unitarity. The ghosts aren’t physical par-
ticles. Similarly, in our case, it is the field evolution on the singular spacetime
that should be interpreted physically, the field evolution on the regularized
spacetimes is a tool to obtain the former.

We have seen hints that there is a certain discrete feature related to the
geometrical resolution prescription. For example, in the case of the generalized
nullbrane the singular limit exists only for a discrete subset of parameter values
of the generalized nullbrane geometries. In case the discreteness manifests
itself in the expressions for the field evolution on the singular spacetime, it
can be considered as a (perhaps essential) physical characteristic related to
field propagation across a singularity. In the geometrical resolution of the
parabolic orbifold the physical consequence of the discreteness (thus after the
singular limit has been taken) manifests itself in a global phase jump across
the singularity. In principle, if one could make a comparison between the
phase of the field before and after the singularity, one could determine if the
discreteness really existed and if so, which of the regularized spacetimes were
preferred in terms of the phase jump. If the discreteness had been solely related
to the specific choice of the regularized spacetimes it should have rather been
considered as an (interesting) mathematical curiosity.

The geometrical resolution prescription is useful for plane wave singularities.
Its extension to other singular spacetimes, e.g. cosmological spacetimes or
black holes, is certainly not straightforward. However, in a first approximation,
certain aspects of spacetime singularities can be studied in terms of the singular
plane waves that correspond to them through a Penrose limit.

15.5.2 Backreaction

The aim of the research presented in chapter 12 was to investigate the geo-
metrical resolution prescription in a simple toy model. The toy model appears
at two levels: the parabolic orbifold is a toy model singularity, and we consid-
ered a scalar field without investigating possible backreaction on the geometry.
The issue of backreaction is unavoidable if one is considering a geometrical
resolution of a physical spacetime because matter does gravitate. From the
point of view of backreaction, one can consider chapter 13 about string prop-
agation across a plane wave singularity as a simple investigation of this issue:
closed strings describe the gravitational interaction and if the string coupling
grows large, backreaction cannot be neglected. Admittedly, the propagation of
one free string across a plane wave singularity is a rather naive picture (and
it could have been investigated earlier, or even stronger: it should have been
investigated earlier, as it doesn’t rely on the more recent string theoretical de-
velopments). Nevertheless, I would like to remark that it remains important
to find out how string theory can be used in a (more) realistic setting. A plane
wave singularity is only an approximation to a real cosmological singularity,
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but at least one has to investigate such a toy-model problem in order to get
some feeling for the present status of the difficulties of applying string theory
to (more) realistic models, which are necessary to be able to elucidate some of
the remaining puzzles in quantum gravity and cosmology.

15.5.3 Background spacetime

In chapter 13 we have considered the propagation of a free string on a fixed
classical background spacetime. Still, even if we would consider interacting
strings on a singular plane wave, this remains a perturbative approach to quan-
tum gravitational interactions, because we still treat our background geometry
as classical. In general relativity the gravitational interaction is encoded in
the spacetime structure, so in a more complete model the spacetime structure
should also be described by means of string theory. For example, one clear
realisation is in Maldacena’s conjecture that relates a superstring theory on an
Anti-deSitter background to a holographic gauge theory, but such a holographic
picture is not yet applicable for all spacetimes. The treatment of spacetime as a
classical background is unavoidable when we investigate a string theory sigma
model on a particular background spacetime. In order to treat the background
spacetime as a fluctuating entity, we can consider matrix models for such a
background spacetime. In that case only the asymptotical structure of the
spacetime is kept fixed and the quantum mechanical degrees of freedom in the
bulk spacetime are allowed to fluctuate.

As I have already remarked during the thesis, in order to resolve the issue
of string propagation across a plane wave singularity it appears necessary to
investigate matrix models in plane wave spacetimes (and thereby considering
the quantum-mechanical nature of the spacetime). In this sense, the results
of chapter 14 are perhaps the most important for other researchers in the
string theory community. Although we haven’t yet derived the supergravity
configuration that describes D0-branes, which would be of most interest for
investigating matrix models, that chapter contains the supergravity solutions
that describe time-dependent Dp-branes which may also be useful for future
research.

15.5.4 Lightcone time-dependent models

In this thesis we have investigated (lightcone) time-dependent models. Models
on (lightcone) time-dependent spacetime are very different from models on
globally static spacetimes. Yet there is also a considerable difference between
the lightcone time-dependent spacetimes we have investigated and more general
time-dependent spacetimes. Although one is free to choose whatever direction
within the lightcone as “time”, a generic time-dependence would lead to a
dependence on the two lightcone coordinates. For example, a function f(t)
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would become f(u + v), with u = (t− x)/
√

2 and v = (t + x)/
√

2. Of course,
there are exceptions: for example a wave travelling in the x direction will
exhibit a special time dependence f(t − x) and will therefore only depend on
the lightcone coordinate u.

Because we have investigated time dependence with respect to only one of
the lightcone coordinates, our spacetimes automatically possessed a lightlike
Killing vector ∂v, which is a necessary condition for supersymmetry. It seems
an outstanding question how to generalize the results, derived in (lightcone)
time-dependent models with a dependence on only one of the lightcone time
coordinates, to fully time-dependent models without a lightlike Killing vector
and therefore certainly without unbroken supersymmetry.

Nevertheless, string theory models on lightcone time-dependent spacetimes
do already provide some information about more general time-dependent space-
times. The argument is based on the relation between time-dependent space-
times and (lightcone) time-dependent spacetimes through the Penrose limit:
every time-dependent spacetime can be approximated by a lightcone time-
dependent plane wave spacetime with a Killing vector ∂v. Of course, the Pen-
rose limit yields only a first approximation (though, for example in the case
of a singular spacetime, the plane wave profile already captures the diverging
tidal forces near the singularity, a prominent characteristic of some singular-
ities) but it makes it possible to obtain information about string theory in a
general time-dependent spacetime. To extend the information beyond this ap-
proximation probably requires a more direct formulation of string theory (or
matrix theory) in general spacetimes.
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Appendix A

An introduction to
gravitational singularities

Lasciate ogne speranza, voi ch’intrate

“Divina Commedia,” Dante Alighieri

In this appendix I introduce the notion of gravitational singularities in general
relativity at a very introductory level. In fact, it would be more rigourous to
stick to the concept of “singular spacetime” of appendix C. Roughly speaking,
with the term “spacetime singularity” we are referring to a “singular point”
that is related to a singular spacetime. Notice that we can just switch names
between “spacetime singularity” and “gravitational singularity” because in Ein-
stein’s classical theory of gravity the gravitational interaction is encoded in the
geometry of the spacetime.

The aim of the appendix is to elucidate the concept of a “singularity” in
general relativity. But meanwhile I can also mention a few concepts that appear
in general relativity such as the metric and the line element. These concepts will
become more clear when I discuss them further in chapter 3 and appendix B.

In general relativity free test particles follow geodesics, which extremize
their path length in curved spacetime, as expressed by an action that is simply
equal to the path length:

S =
∫
P

dσ. (A.1)

The structure of spacetime is governed by the metric tensor gµν . It is related to
the path length. With respect to a certain set of coordinates {xµ} this relation
is expressed as (dσ2 = −ds2, with ds2 the line element)

ds2 =
∑
µν

gµνdxµdxν . (A.2)
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The coefficients of the metric tensor depend on the coordinate basis, but the
signature of its eigenvalues is a coordinate-independent property. Physically,
it turns out that the “temporal eigenvalue” has the opposite sign with respect
to the “spatial eigenvalues”. We will choose the ”mostly plus” convention,
which is common in general relativity. The signature of the metric is then
determined as (−+ ++) which means that we choose the temporal eigenvalue
to be negative.

Causal geodesics are either null (lightlike) or timelike. The equation for
geodesics immediately follows when we parametrize the path P in terms of an
affine parameter λ as

P : λ→ xµ(λ) , (A.3)

in the case of a null geodesic (e.g. for a light ray), or in terms of an eigentime
τ as

P : τ → xµ(τ) , (A.4)

in the case of a timelike curve (e.g. the worldline of a massive particles), and
when we vary the action with respect to the coordinates xµ:

ẍκ +
∑
µν

Γ κ
µν ẋµẋν = 0. (A.5)

The dot is the derivative with respect to the affine parameter or eigentime
along the path. In the case of a null geodesic we have∑

µν

gµν ẋ
µẋν = 0 , (A.6)

and for a timelike curve ∑
µν

gµν ẋ
µẋν < 0 . (A.7)

The “Christoffel symbols” Γ κ
µν in equation (A.5) are derived from the metric

tensor gµν (see also appendix B).
Out of the Christoffel symbols one can construct the Riemann curvature

tensor, which determines the tidal gravitational forces on nearby particles. In
general relativity the gravitational force is only an “apparent” force that de-
pends on the movement, like the Coriolis force or centrifugal force in Newtonian
mechanics [13]. Of course, this does not mean that there exists no gravita-
tional force: consider, for example, the attraction towards the center of the
earth. More specifically, it is only when there is time translation invariance
in the physical problem, that it is possible to define a gravitational force by
comparing geodesics with the natural “static” curves that correspond to the
time translation symmetry [21]. In more general cases like the gravitational
attraction caused by several stellar bodies, it is only the tidal forces between
nearby geodesics that are well-defined. In such a general case there are simply
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no static curves to compare the geodesics with, in order to be able to define
an absolute gravitational force. Instead the relative gravitational force (i.e.
the tidal force) still makes sense in a general setting without time translation
invariance. Thus the tidal force encodes the physical effects of gravitation that
are independent of the movement.

We now define a spacetime singularity in terms of the incompleteness of
causal (i.e. timelike or lightlike) geodesics. If the geodesic P(λ) cannot be
extended for all finite values of the affine parameter λ, the worldline of a par-
ticle that follows this particular geodesic will have a beginning or an end,
corresponding to a singularity. In order to have a “physical singularity”, test
particles travelling along a geodesic that hits a singularity should reach it in
finite eigentime (or finite affine parameter). If not, the singularity would be
located infinitely far away and would essentially not interact with the rest of
spacetime.

The incompleteness of the geodesic can appear because of various reasons:
for example the scalar curvature becomes unbounded along the geodesic as one
approaches the singular point. It may also occur that the scalar curvature
remains finite, but that certain components of the Riemann tensor become
unbounded at a certain value of the affine parameter along the geodesic, or
that certain components of the metric tensor become ill-defined. For example,
in the case of conical singularities that appear in orbifolds (see chapter 10), the
manifold becomes ill-defined at the singular point while the curvature remains
bounded.

I would like to remark that the divergence (or the ill-definition) of certain
components of the metric of the curvature tensor by itself does not necessarily
represent a “physical singularity”. It may just as well reflect an artifact of the
particular coordinate system that we have used to parametrize the spacetime.
If the singularity is due to the locally bad behaviour of the coordinate system
and therefore disappears in a more regular coordinate system, we call it a
“coordinate singularity”. For example, the metric for a Schwarzschild black
hole (in spherical coordinates) is given by

ds2 = −
(
c2 − 2MGN

r

)
dt2 +

dr2

1− 2MGN/(rc2)
+ r2

(
dθ2 + sin2θ dφ2

)
(A.8)

where M is the mass located at r = 0. There is a coordinate singularity at
r = 2MGN/c

2, which can be removed by a change of coordinates, for exam-
ple to Kruskal coordinates. Because true physical observables are expressed
by constructing “scalar” quantities which do not transform under a change of
coordinates, a physical singularity would remain present in any coordinate sys-
tem. For example, the Schwarzschild metric has another singularity at r = 0,
which cannot be removed by a change of coordinate system.

Thus, recapitulating, we define physical singularities as singular points
(these singular points are excluded from the spacetime manifold) where causal
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geodesics end within finite eigentime or finite affine parameter. A more rigourous
definition of spacetime singularities is given, for example, by “essential singu-
larities” in the abstract boundary formalism, see appendix C.



Appendix B

Some mathematics for
general relativity

But gravity always wins.

“Fake plastic trees,” Radiohead

The main purpose of this appendix is to refresh some of the elementary math-
ematical material of general relativity, i.e. differential geometry. I expect that
most readers are acquainted with differential geometry, but maybe some haven’t
been recently exposed to this anymore. Those who are not acquainted, may
perhaps benefit from a quick introduction to the basics of differential geome-
try, whereas the introduction of other mathematical material would complicate
matters unnecessarily. Why only some basic mathematics for general relativ-
ity? The knowledge of the basics of differential geometry roughly suffices to
understand the major part of the thesis, the full mathematical machinery of
string theory is not needed, as I already mentioned in the outline. Nothwith-
standing the word “mathematical” in the title of this appendix, this appendix
is (very) far from mathematically rigorous. Therefore, the lay reader who wants
to be well-prepared is referred to the literature, e.g. the initial chapters of [21].

In general relativity, spacetime appears as a (four-dimensional) Lorentzian
manifold. In the first section of this chapter I will explain the notion of “man-
ifold”, and of “Lorentzian”. In the second section I will introduce covariant
differentiation. In the third section I will comment on Killing vectors and in
the final section I will discuss the vielbein.
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B.1 Mathematical preliminaries

B.1.1 Manifolds

A manifold is a mathematical structure that can be differentiated, because
the local neighbourhood of each point is diffeomorphic to Rn, with n the di-
mension of the manifold, to be identified with the dimension of the spacetime
D. Loosely speaking, a manifold can be “visualized” as a smooth surface in a
higher number of dimensions (which is generally larger than the dimensional-
ity n of the manifold itself and which has no related with the dimension of the
physical spacetime). Of course, the definition of a manifold is independent of
such an embedding.

As is the case with an ordinary surface, it is possible to parametrize a man-
ifold in terms of different coordinate systems, although this does not change
anything about the manifold. A change of coordinates (a diffeomorphism) is
not a physical transformation, and in general relativity it will just reflects the
“gauge freedom” in the metric field (which is needed because the metric field
is massless). Because changes of coordinates do not affect the outcome of any
physical experiment in general relativity, therefore all general relativistic laws
have to be formulated in a “generally covariant” manner, which reflects the
fact that physical observables are independent of coordinate changes (diffeo-
morphisms). To achieve this we have to introduce the notion of vectors and
tensors that have specific transformation properties under the diffeomorphism
group. More precisely we introduce vectors and tensors with respect to dif-
feomorphisms on the manifold. All physical ingredients for a theory are then
formulated in terms of vectors and tensors (so they do transform under diffeo-
morphisms according to a strict rules) but true physical observables (which can
be measured experimentally) are constructed out of these vectors and tensors
in such a way that they are invariant with respect to the coordinate transfor-
mations.

A priori, the manifold is a mathematical construction and points do not
have physical meaning because of diffeomorphism invariance in general rela-
tivity. Yet we observe that objects at different spacetime locations are clearly
physically inequivalent. In order to give physical meaning to the points on the
mathematical manifold (“events” in the case of Lorentzian spacetimes), they
have to be labeled, by fixing a coordinate system and by a physical measure-
ment (see e.g. chapter 19 of [20]).

B.1.2 Vectors and tensors

Suppose we parametrize the manifold by coordinates xµ. By following a speci-
fied path P on the manifold described by a parameter τ : P : τ → xµ(τ), we can
define vector fields as the set of tangent vectors along this path. At each point
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of the manifold one can find a basis of tangent vectors that are tangent to the
coordinate lines. This basis spans up the tangent space Vp at that point, which
has the same dimensionality as the manifold. In each tangent space one can
now define (tangent) vectors. Vectors are associated to directional derivatives,
and are defined as the map from functions on the manifold to scalars. Thus, if
we call F the space of C∞ real-valued functions on the manifold M, then for
a vector V at the point p ∈M:

V : F → R , (B.1)

where the map V is linear and obeys the Leibnitz rule. A vector field on
the manifold M is defined as an assigment of vectors V|p ∈ Vp at each point
p ∈ M. With respect to the basis vectors ∂µ (which is shorthand for ∂/∂xµ)
that are associated to a coordinate system {xµ}, each vector (field) V can be
decomposed in its “contravariant” components V µ, according to

V = V µ∂µ. (B.2)

In most formulas the Einstein summation convention is implicit, which means
that one sums over repeated upper and lower indices (so in the formula above a
summation

∑n
µ=1 is implicitly understood). The “contravariant” components

means that the indices are “up”. One can also write out the “covariant” compo-
nents of a vector (these have the indices “down”). For this, one has to associate
to each vector a dual vector. Dual vectors are defined as the maps that map
a vector back to a number. The basis of dual vectors spans up the cotangent
space (or dual vector space) at a point on the manifold and is given by {dxµ}.
By making a coordinate transformatie from the original coordinates xµ to an-
other set of coordinates x′ν (the coordinate transformation being given by the
functions x′ν(xµ)), the components of a vector and a dual vector transform as

V ′ν(x′) =
∂x′ν

∂xµ
V µ(x), (B.3)

W ′ν(x′) =
∂xµ

∂x′ν
Wµ(x), (B.4)

where x represents the set of coordinates {xµ}. One can also define an inner
product between two vectors in function of their components V ·W = VµW

µ =
WµV

µ. The relation between the covariant components Wµ and contravariant
components Wµ of a vector W will be given in the next subsection after I have
introduced the metric. It is good to keep in mind that there is often (also in
this thesis) abuse of language between vectors and their components.

Then, with V an n-dimensional vector space and V ∗ its dual vector space,
we can define tensors of rank (k,l) as the multilinear map from a collection of
vectors and dual vectors to the real numbers

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R . (B.5)
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Tensors are reminiscent of vectors and dual vectors but they have additional
upper and/or lower indices. Each tensor has a rank (k,l) that is associated to
the number of contravariant indices k and the number of covariant indices l
when the tensor is decomposed with respect to the basis vectors ∂µ and dxµ.
The transformation of tensors with respect to a coordinate transformation is
essentially a combination of the transformations for all the vector indices as in
B.3 and dual vector indices as in B.4,

T ′ µ···ν
π···σ =

∂x′µ

∂xκ
· · · ∂x

′ν

∂xλ
∂xρ

∂x′π
· · · ∂x

τ

∂x′σ
T κ···λ
ρ···τ . (B.6)

B.1.3 The metric and Lorentzian spacetimes

We define a “line element” ds2 on a manifold that is an indication of the
distance between two points. The distance between two points along a certain
path is then obtained by integrating the “path length” ds between these points,
given by the square root of the line element. As a physical observable, the line
element depends on the coordinates in such a way that it is invariant with
respect to coordinate transformations. Therefore the metric function itself is
usually written as,

ds2 = gµνdx
µdxν , (B.7)

where the metric g is a covariant tensor of rank (0,2) with components gµν .
The metric gµν can be inverted and the inverse is gµν , with

gµνg
µπ = δπν , (B.8)

where I have introduced the usual Kronecker delta δπν . Because the metric
is symmetric the order of the indices doesn’t matter. The metric tensor and
its inverse are used to lower and raise the indices of tensor components, so
contravariant and covariant components of a tensor are related to each other
by the metric tensor. For example, the components of the following tensor can
be raised and lowered according to

T π···σ
µ···ν = gπρ . . . gστgµκ . . . gνλT

κ···λ
ρ···τ . (B.9)

The sign of the eigenvalues of the metric tensor gµν , called the “signature”
of the metric, is independent of the coordinates used to describe the manifold.
In the case of a Euclidean manifold all the eigenvalues have the same sign,
conventionally noted as (++++) in the case of a four-dimensional manifold. In
the case of a Lorentzian manifold, there is one “timelike” direction which has a
negative sign with respect to the others. We will use the mostly plus convention
and write the signature of a Lorentzian spacetime metric as (−+ ++).
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B.1.4 Forms and wedge products

We can also introduce forms, these are tensor fields whose components are
antisymmetric in all their indices (dual vectors are one-forms). With respect
to the standard basis of one-forms, a p-form is decomposed as

T (p) = Tµ1···µpdx
µ
1 . . . dx

µ
p , (B.10)

with the following condition on the components of the form,

T
(p)
µ1···µp = T

(p)
[µ1···µp], (B.11)

where bracketed indices [µ1 · µp] indicate the total antisymmetrization of all
the indices, with a prefactor 1/(p!). Between a p-form and a q-form we can
now define a “wedge product” ∧ according to,(

T (p) ∧ T (q)
)
µ1···µpν1···νq

=
(p+ q)!
p!q!

T
(p)
[µ1···µpT

(q)
ν1···νq ]. (B.12)

B.2 Covariant differentiation

The ordinary partial derivative of a scalar field yields a vector, but the ordi-
nary partial derivative of a vector is not a tensor because it does not possess
the correct transformation property under diffeomorphisms. Nevertheless, in
order to be able to write generally covariant expressions we have to be able to
write dynamics in terms of tensors (and there is no dynamics without deriva-
tives). Therefore we have to introduce the concept of the covariant derivative
Dµ, which is a modification of the ordinary derivative ∂µ, such that the (co-
variant) derivative of a vector will yield a tensor. This procedure is of broad
generality: in general relativity the covariant derivative is defined with respect
to coordinate transformations, but in electromagnetism there is also a covari-
ant derivative with respect to infinitesimal transformations in the U(1) gauge
field, which is the vectorpotential of electromagnetism.

The covariant derivative Dµ can be written in terms of the ordinary deriva-
tive ∂µ by means of a “connection”. The connection, say Γ κ

µν , is not a tensor
by itself. How the ordinary derivative and the covariant derivative are precisely
related actually depends on the nature of the tensor that is being differentiated,
for example

DκT
µ···ν

π···σ =∂κT µ···ν
π···σ − Γ λ

κπ T µ···ν
λ···σ − · · · − Γ λ

κσ T µ···ν
π···λ

+ Γ µ
κλ T λ···ν

π···σ + · · ·+ Γ ν
κλ T µ···λ

π···σ .

There are several ways to define a connection, but in the metrical notation
of general relativity the most “natural” way is by making use of the Christoffel



216 APPENDIX B. MATHEMATICS FOR GENERAL RELATIVITY

connection which we already anticipated by the notation Γ κ
µν . The Christoffel

connection is symmetric in its lower indices and preserves the metric (Dαgµν =
0). In a coordinate representation it can be written as

Γ β
αν =

1
2
gβµ (∂αgµν + ∂νgµα − ∂µgαν) . (B.13)

On a curved manifold covariant differentiation is commonly introduced by
the notion of “parallel displacement”. Vectors that are located at different
point on a manifold cannot be directly compared with one another. One of
the vectors has to be parallelly displaced till they are both located at the same
point on the manifold. A vector V µ is parallelly displaced along a curve C if
the following identity holds

T νDνV
µ = 0 , (B.14)

where T ν is the tangent vector along the curve C. A curve is called a “geodesic”
if the parallel transport of its tangent vector is zero:

T νDνT
µ = 0. (B.15)

B.3 Isometries and Killing vectors

Isometries are coordinate transformations that leave the metric invariant. The
most simple example is when the metric coefficients are independent of a certain
coordinate y, in which case the transformation y → y+ y0 obviously leaves the
metric invariant. For a general coordinate transformation x → x′ the metric
tensor transforms as

g′µν(x′) =
∂xπ

∂x′µ
∂xσ

∂x′ν
gπσ(x) (B.16)

and isometries are expressed by the condition

gµν(x) = gµν(x′). (B.17)

Isometries are generated by Killing vectors. The condition for a Killing vector
is

Dµξν +Dνξµ = 0 . (B.18)

If the metric is independent of x, then ξ = ∂/∂x (ξµ = δµx ) is a Killing vector.
A Killing vector that satisfies

Dµξ
ν = 0 (B.19)

is called covariantly constant. In a D-dimensional spacetime there are at most
D(D + 1)/2 independent Killing vectors. For example, in four-dimensional
Minkowski spacetime there are four translations, three boosts and three spatial
rotations.
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B.4 Vielbein and spin connection

The formulation of general relativity in terms of a metric gµν does not allow to
accomodate the presence fermions in curved spacetimes. To be able to formu-
late fermions, the concepts of “vielbein” (also called “tetrad” or “vierbien” in
four dimensions) and spin connection need to be introduced. In addition, the
spin connection allows for a more efficient computation of the Riemann tensor.
Nevertheless, in this thesis the vielbein formalism is only needed to calculate
the supersymmetry variations in chapter 14.

At each point of the manifold we can construct an orthonormal basis of
vectors eaµ called the “vielbein”, which satisfies

e aµ e
b
ν ηab = gµν . (B.20)

a is a so-called “flat” or “Lorentz” index from the tangent space and runs up
to the number of dimensions of the manifold. The Lorentz indices are raised
and lowered with the Minkowski tensor η and we define the inverse vielbein eµb
as

e aµ e
µ
b = δab. (B.21)

We will continue to use Latin letters for the tangent space and Greek letters
to denote the “curved” or “Riemann” indices. Next, we define D vielbein
one-forms and D2 spin connection one-forms,

ea = e aµ dx
µ, (B.22)

ωab = ω a
µbdx

µ. (B.23)

From these the torsion two-form and the curvature two-form can be deduced,
introducing a covariant derivative D that acts on Lorentz vectors,

T a = Dea = dea + ωab ∧ eb (B.24)
Rab = dωab + ωac ∧ ωcb (B.25)

If no torsion is present, the tangent space covariant derivative of the vielbein
is zero. In that case one can write the spin connection uniquely in terms of the
vielbein,

ω ab
µ = 2eν[a ∂[µe

b]
ν] + eνaeσbeµc∂[σe

c
ν], (B.26)

where the forms ωab are antisymmetric in the tangent indices.
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Appendix C

Singular spacetimes

Three Countrymen were pursuing a Wiltshire Thief through Brent-
ford. The simplest of them, seeing the Wiltshire House written
under a Sign, advised his Companions to enter it, for there most
probably they would find their Countryman. The second, who was
wiser, laughed at this Simplicity; but the third, who was wiser still,
answered, ‘Let us go in, for he may think we should not suspect him
of going amongst his Countrymen.’ They accordingly went in and
searched the House, and by that Means missed overtaking the Thief,
who was at that Time, but a little ways before them; and who, as
they all knew, but had never once reflected, could not read.

Henry Fielding

The material of this appendix on the nature of singularities aims to give the
interested reader a little more background information about this subject. In
appendix A we have defined a spacetime singularity in terms of incompleteness
of causal geodesics. We will formalize the concept of singularities in terms of the
incompleteness of more general curves. In addition, a more rigorous definition
of singularities can be given in terms of a boundary construction, of which the
“abstract boundary” of Scott and Szekeres [138] is a modern example. This
appendix is largely based on [8, 138, 139] and should be read in the context of
(classical) general relativity.

C.1 Boundary constructions

A spacetime manifold is represented by a pair (M, gµν) of a manifold M with
a metric gµν . Singularities can be regarded as “failed” boundary points, ei-
ther due to the incompleteness of physically important curves, or because a

219
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certain notion of the spacetime curvature becomes unbounded or non-smooth
in the limit as we approach the singular point. A particular case of curve in-
completeness, i.e. incompleteness of causal geodesics, was used in appendix A.
However, there are mathematical complications associated to a description of
singularities solely in terms of curve incompleteness.

Singularities may be realised as some boundary set of (an open embedding
of) the spacetime manifold. In order to do so, we need to be able to attach
some sort of boundary ∂M to the manifold M, which is uniquely determined
by the non-singular structure of (M, gµν). Several boundary prescriptions have
already been developed. Historically, the most important of these prescriptions
were the g-boundary of Geroch, the b-boundary of Schmidt and the c-boundary
of Geroch, Kronheimer and Penrose. A suitable and more modern boundary
construction is given by the abstract boundary (or a-boundary). We will discuss
it below. All boundary constructions are problematic or counterintuitive in
some specific cases. For a discussion, see [139].

A boundary prescription can be constructed in the context of curve incom-
pleteness. For example, in the g-boundary prescription of Geroch it is investi-
gated whether two (causal) curves limit to the same point. But we can consider
different classes of curves. If the choice of curve family is fixed in advance, then
the concept of singular point becomes crucially dependent on the chosen curve
family. Certain physically relevant phenomena may be missed if we restrict
our attention to a too limited set of curves such as causal geodesics. In some
cases timelike curves with bounded acceleration can reach singularities that are
not reached by causal geodesics. In some other cases it should also be possible
to consider spacelike geodesics or even other curves with possible geometrical
significance. Therefore in order to have a useful boundary construction, there
should be some flexibility in the choice which curve-family to consider.

C.2 Incompleteness of general curves

The restriction to incompleteness of causal geodesics is not sufficient to char-
acterize all kinds of singularities. To consider more general curves we need to
generalize the concept of affine parameter to all C1 curves, whether geodesic or
not. To make this more precise, let us follow [8]. Let us consider the C1 curve
P(t) that passes through p ∈M and we choose {ei} as a basis for the tangent
space Tp. Along the curve P(t), the basis {ei} can be parallelly propagated to
obtain a basis for TP(t) at each value of t. The tangent vector V = (∂/∂t)P(t)

can be expressed in terms of the basis as V = V i(t)ei and a generalized affine
parameter u can be defined on the curve P(t) by

u =
∫
p

√
δijV iV jdt. (C.1)
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The parameter u depends on the point p and the basis {ei} at p. But it can
be shown that the length of a curve P is finite in the parameter u if and only
if it is finite in the parameter u′, obtained by choosing the basis {e′i} instead
of {ei}. If P is a geodesic then u corresponds to an affine parameter. We can
now define a spacetime (M, gµν) to be b-complete if there is an endpoint for
every C1 curve of finite length as measured by a generalized affine parameter.
In [8] a spacetime is called singularity free if it is b-complete. As a side remark,
b-completeness can also be defined without a metric, it is sufficient that a
connection is defined on the spacetime manifold.

The b-boundary of Schmidt is a boundary construction that considers all
general curves by making use of the definition of b-completeness. Yet it is prob-
lematic in other aspects: because of the generality of curves the b-boundary is
very difficult to generate, and when it can be done it has some drawbacks, e.g.
in the case of the closed Friedmann model the initial and final singularity are
identified. For further comments and references, see [139].

C.3 The abstract boundary

Besides the flexibility in the choice of what curves to consider (flexibility in
the sense of not to be fixed in advance) it would also be preferable to have a
boundary construction that makes use of the principle of general covariance by
providing information that is invariant under any re-embedding of the space-
time. For these issues the abstract boundary construction provides a solution.

The abstract boundary is a rigorous classification scheme for boundary
points of pseudo-Riemannian manifolds, thus including Lorentzian manifolds
relevant for spacetimes. The aim of the abstract boundary construction is to
produce a formal description of a singularity as a place with respect to the
spacetime manifold. As such it provides a model for “essential singularities”.

In contrast to the previous attempts of defining singularities as failed bound-
ary points of the manifold, the abstract boundary [138] provides an algorithm
for classifying topological boundary points of some manifold once they are ob-
tained in a particular embedding of the spacetime. The construction of the
abstract boundary involves a method to identify equivalent boundary sets of
the same manifold from different embeddings. Thus the main advantage of
the abstract boundary is that many physically important and topologically es-
sential concepts are defined in a way that is invariant under the choice of the
boundary representative.

Once a manifold is provided with an affine connection (or a metric, but an
affine connection is sufficient) and some class of curves that satisfy a bounded
parameter property (affinely parametrized curves satisfy this property) then
abstract boundary points naturally fall into various categories, which are inde-
pendent of the affine connection and the chosen family of curves. The bound-
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ary points can be classified in the following categories: unapproachable points,
indeterminate points, points at infinity and essential singularities. Essential
singularities are further subdivided into directional singularities and pure sin-
gularities. A point is called a directional singularity if in some particular em-
bedding it also covers regular points and points at infinity.

Armed with theorems derived within the abstract boundary formalism, it
is then possible to rigorously describe situations under which a spacetime is
singularity free. It is important to remark that geodesic incompleteness is
not a sufficient condition for a manifold to be considered singular within the
abstract boundary prescription. This is because geodesic incompleteness is not
always due to the presence of essential singularities. Therefore, one has to
focus on additional requirements to enforce equivalence between the existence
of essential singularities and the incompleteness of causal geodesics. The latter
concept was used in the singularity theorems of Hawking and Penrose which
were briefly mentioned in the introduction. In the case of strongly causal,
maximally extended spacetimes, this equivalence has been proven in [139].



Appendix D

Gravitons

“The gauge condition always strikes twice,”

Marc Henneaux

In the context of quantum gravity, one often speaks about gravitons, the quanta
of the gravitational force. I will first introduce gravitational perturbations,
then show that these perturbations have spin-two helicity, and finally present
an argument (originally due to Steven Weinberg) why the gravitational force
naturally couples to the energy-momentum tensor.

D.1 Gravitational perturbations

Let us consider a metric perturbation ğµν upon a background metric ḡµν that
is a solution to Einstein’s equation in vacuum, such that the total spacetime
metric can be written as

gµν = ḡµν + ğµν . (D.1)

The (linearized) inverse metric should be written as

gµν = ḡµν − ğµν , (D.2)

where raising and lowering of the perturbation is performed with the back-
ground metric. Consequently, to the metric gµν a Ricci tensor is associated
that is slightly different from the background Ricci tensor

Rµν = R̄µν + R̆µν , (D.3)

where the perturbation of the Ricci tensor is given by

R̆µν =
1
2
(
D̄αD̄µğαν + D̄αD̄ν ğαµ − D̄µD̄ν ğ

α
α − D̄αD̄

αğµν
)
. (D.4)
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The “bars” indicate that the covariant derivative is taken with respect to the
background. But the new spacetime metric gµν would not necessarily represent
a different spacetime. We could consider an infinitesimal coordinate transfor-
mation

xµ → x′µ = xµ + ξµ(x), (D.5)

which would lead to the transformation (up to first order) of the metric per-
turbation

ğµν → ğ′µν = ğµν +
∂ḡµν
∂xα

ξα + ḡαν
∂ξα

∂xµ
+ ḡαµ

∂ξα

∂xν
,

= ğµν + D̄µξν + D̄νξµ. (D.6)

Any metric perturbation ğ′µν that is related to another ğµν by this kind of
transformation is physically the same (and if a metric perturbation can be
made zero by this kind of coordinate transformation the perturbation is sim-
ply “pure gauge”). To separate the physical perturbation from the variation
due to the coordinate freedom, we can gauge-fix the coordinates (or construct
gauge-invariant quantities). We will choose coordinates such that the perturbed
metric (we drop the primes) satisfies the condition

D̄µ

(
ğµν −

1
2
ḡµν ğ

)
= 0, (D.7)

with g the trace of the perturbation (with respect to the background metric).
In order to do so we need to find the vector field ξµ (which generates the
coordinate transformation (D.5)) that satisfies

D̄νD̄νξµ + R̄ ν
µ ξν = −D̄ν ğµν +

1
2
D̄µğ, (D.8)

and it can be proven that it is always possible to find such a ξµ. Still, even
after imposing the gauge condition (D.7) we have some residual freedom left.
We can use this residual freedom to impose a condition on the initial value of
the perturbation coefficients. By making a coordinate transformation

x′ → x′′µ = x′µ + χµ, (D.9)

where χµ satisfies
D̄νD̄νχµ + R̄ ν

µ χν = 0, (D.10)

we will set ğ = 0 (again without proof, this is possible in the case considered
here). Combining the conditions, we conclude that for an arbitrary vacuum
perturbation ğµν of an arbitrary vacuum solution ḡµν , we can always choose
the transverse, traceless gauge where

D̄µğµν = 0, (D.11)
ğ = 0. (D.12)
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The perturbation of Einstein’s equation follows by relating the pertubation
of the Ricci tensor (D.4) to the perturbation of the energy-momentum ten-
sor, which is zero in vacuum. In the gauge (D.11-D.12) the perturbation of
Einstein’s equation becomes

D̄κD̄κğµν − 2ḡκπR̄ λ
κµν ğλπ = 0 . (D.13)

This is the wave equation for the perturbation ğµν that we want to solve. These
are vacuum perturbations with respect to a background that is a vacuum solu-
tion. In case we want to consider perturbations with respect to a non-vacuum
background that is related to a certain energy-momentum tensor, we should
investigate the transformation of the components of the energy-momentum
tensor under the infinitesimal coordinate changes (D.5,D.9).

We will write out a solution to equation (D.13), subject to the gauge con-
ditions (D.11-D.12). For simplicity, we will assume that the background is
Minkowski spacetime. With hindsight, we will single out a certain direction x
and write the background in lightcone coordinates (with u = (t − x)/

√
2 and

v = (t+ x)/
√

2):

ds2 = −2dudv +
D−2∑
i=1

(
dxi
)2

(D.14)

which is essentially the same as (3.25) except that we allow for more than four
dimensions (the index i runs over the D−2 transverse dimensions) and that the
transverse coordinates are Cartesian instead of spherical. The wave equation
is simply (

−2∂u∂v +
∑
i

∂2
i

)
ğµν = 0 (D.15)

We will split the perturbation in modes propagating in the x-direction (de-
pendent on u), and propagating in the negative x-direction (dependent on v)
which we collect in two “polarization matrices” A and B (in what follows we
use (i, j, k) to denote the transverse indices):

ğµν = Aµν(u, xi) +Bµν(v, xi). (D.16)

We set the components of A and B that have indices in the lightcone directions
u or v equal to zero. The gauge conditions and the wave equation become∑

i

∂iAij = 0 ,
∑
i

Aii = 0 ,
∑
k

∂2
kAij = 0 . (D.17)

The easiest way to solve the transversality condition and the (transverse)
Laplace equation is to remove the dependence of the polarization matrices
on the transverse coordinates. So the solution is given by Aij(u) and Bij(v)
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where
∑
iAii =

∑
iBii = 0. The solution represents a superposition1 of plane

gravitational waves that travelling to the right or to the left, respectively, with
waves vectors kRµ = kRδ

u
µ and kLµ = kLδ

v
µ. The polarization profile is encoded

in the matrix structure, which is traceless and symmetric, so the matrices A
and B have each D(D − 3)/2 components. In four dimensions, we can write
out the perturbation as

ğµνdx
µdxν = (A11(u) +B11(v))

(
dx1dx1 − dx2dx2

)
+ 2 (A12(u) +B12(v)) dx1dx2 (D.19)

The perturbation is assumed to have a small amplitude, but we will see later
that these gravitational waves can actually have arbitrary strength, but only
if we restrict the solution to either right-moving (with polarization Aij) or
left-moving waves (with polarization Bij(v)).

For a long time there has been the question whether these perturbative
solutions really represent physical waves, which was clarified when nonlinear
gravitational wave solutions were discovered. These perturbative solutions do
represent fluctuations in the metric, just as Maxwells equations contain elec-
tromagnetic waves. And just as Maxwell’s waves resemble a collection of mass-
less spin one particles (photons), we will see in the next section that these
gravitational waves resemble the characteristics of a massless spin two particle
(graviton). Yet, we should remark that this resemblance of the metric per-
turbation is only with respect to the (fixed) Minkowski background, and the
split of the full metric into a Minkowski background plus a perturbation is a
particular approximation (that is a priori only valid under the assumption that
the perturbations remain small) and from the stanpoint of the equivalence be-
tween the gravitational force and the spacetime structure, it is not natural to
make split between the spacetime structure (the Minkowski background) and
the gravitational force (the perturbations), except when we assume that the
perturbations are to remain small.

1If desired, one can decompose the solution into a basis of plane waves, e.g.

Aij(u) =
1
√

2π

∫
Âij(kR) exp (ikRu) dkR, (D.18)

and likewise for Bij(v).
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D.2 Helicity of the gravitational perturbations

Let us return to the equation of motion (D.4) for the metric perturbation on a
Minkowski background, subject to the first gauge condition (D.7),

∂α∂
αğµν = 0 (D.20)

∂µğµν −
1
2
∂ν ğ = 0 (D.21)

We do not immediately choose the transverse traceless gauge (D.11-D.12) in
order to impose constraints on the components of the metric perturbation in a
clearer manner. If we take the (single) plane wave ansatz

ğµν = aµνexp
(
ikλx

λ
)

+ a∗µνexp
(
−ikλxλ

)
, (D.22)

it will solve (D.20-D.21) if the wave vector kµ obeys

kµk
µ = 0 (D.23)

kµaµν −
1
2
kνa = 0, (D.24)

meaning that the gravitational wave travels at the speed of light and that
the polarization tensor aµν is subject to D conditions. But the polarization
tensor is not gauge-invariant yet, if we make the coordinate transformation
xµ → xµ + εµ, with εµ given by

εµ(x) = iεµexp
(
ikλx

λ
)
− iεµ∗exp

(
−ikλxλ

)
, (D.25)

then the polarization tensor will change according to,

aµν → aµν + kµεν + kνεµ, (D.26)

without violation of the conditions (D.24). So we have another D components
of the polarization tensor that are fixed. In total there are D(D − 3)/2 free
components to characterize the plane wave travelling along kµ.

For the clarity of the exposition we will assume that D is even, and without
loss of generality we can write out the Minkowski background in lightcone
coordinates, and combine the transverse coordinates in complex pairs (e.g.
ζ1 = x1 + ix2), such that

ḡµνdx
µdxν = −2dudv +

∑
i

dζidζ
∗
i (D.27)

and that kµ = kuδ
u
µ. We use the conditions (D.26) to remove all u-components

of the polarization tensor. Then we use the remaining conditions (D.24) to
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remove all the v-components of the polarization tensor and the trace a, now
determined by

a =
∑
i

aζiζ∗i . (D.28)

We now split the remaining components of the (transverse and traceless) polar-
ization tensor, according to their transformation under a Lorentz transforma-
tion Λµν (which is a global symmetry of the Minkowski background spacetime).
More specifically we choose a rotation with angle θ in the complex plane ζj (in
D = 4 this corresponds a rotation along the wave vector kµ). Under this
rotation Jµν the coordinates transform as

xµ → Jµνx
ν , Jµν = eiθδµζjδ

ζj
ν + e−iθδµζ∗j

δ
ζ∗j
ν (D.29)

and the polarization tensor according to

aµν → J ρ
µ J σ

ν aρσ

→
[
e−2iθδρζjδ

σ
ζj + e2iθδρζ∗j

δσζ∗j + 2δ(ρ
ζj
δ
σ)
ζ∗j

+ 2e−iθδ(ρ
ζj

∑
k 6=j

δ
σ)
ζk

+ 2eiθδ(ρ
ζ∗j

∑
k 6=j

δ
σ)
ζk

]
aρσ. (D.30)

Under the rotation elements of the little group ISO(D− 2) that preserves the
propagation direction of a massless wave, a wave component with helicity h
transforms as

ψ′ = eihθψ. (D.31)

We can thus separate the polarization vector in helicity components h =
0,±1,±2. In arbitrary dimensions there are two components with helicities
h = ±2, 2(D− 4) components with h = ±1, and (D− 4)(D− 3)/2 components
with h = 0. In four dimensions we only have the h = ±2 components with
maximal (absolute) helicity because the traceless condition (D.28) removes the
ζζ∗ component. The positive and negative helicities are related to each other
by an inversion of space.

D.3 Interacting spin-two particles

If we specify our background as Minkowski space, (D.13) becomes

∂κ∂
κğµν = 0 (D.32)

which is the classical equation of motion for a massless spin-two particle, also
known as a graviton, and it was first written by Pauli and Fierz. (Suppose we
consider the same equation for an arbitrary rank-two tensor, we can split it
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into parts that are symmetric or antisymmetric in their indices. Then we can
still consider only the symmetric part ğµν , because the antisymmetric part of
the tensor field would rather behave like two photon fields, see e.g. [4]. We
can decompose the field ğµν into positive and negative frequency modes to
which we associate creation and annihilation operators. From these creation
and annihilation operators for gravitons, we can construct (see e.g. [4, 24]) a
tensor R̆µνρσ which has the same algebraic properties of the Riemann curvature
tensor (antisymmetric within the pairs (µν) and (ρσ), and symmetric between
the pairs).

Because the graviton is a massless spin-two particle, its the number of de-
grees of freedom in D dimensions is only D(D − 3)/2. Therefore we have to
remove the 2D unphysical states (e.g. in four dimensions only 2 polarizations of
the graviton are physical) that appear because generically a symmetric (space-
time) tensor with two indices has D(D+1)/2 components. The only way to do
this, is to include a gauge symmetry of D elements, under which the unphysical
states are pure gauge, and can be removed by gauge fixing.

Then, if we want to construct a Lorentz-invariant physical theory in which
the field ğµν interacts with other fields, it is not sufficient that the couplings of
ğµν are only invariant under transformations of the type,

ğµν → Λ ρ
µ Λ σ

ν ğµν , (D.33)

which would imply a formal Lorentz invariance, but the couplings of ğµν also
have to be invariant under the gauge transformations

ğµν → ğµν + ∂µξν + ∂νξµ. (D.34)

The latter condition can be accomplished by constraining the interactions of
ğµν with other fields to be of the form ğµνT

µν , where Tµν is a conserved tensor
current that satisfies ∂µTµν . As anticipated in the notation, the only possible
such tensor is the energy-momentum tensor.

In principle one could avoid this conclusion by using e.g. R̆µνρσ instead
of ğµν when one constructs interacting theories of massless particles of spin
two. An interaction density that is constructed solely from tensors related to
R̆µνρσ will have matrix elements that vanish more rapidly for small energy and
momentum (of a massless particle) than an interaction density that also uses
ğµν , because R̆µνρσ is obtained by taking derivatives of ğµν . So interactions
in the former theory without ğµν will have a rapid fall-off at large distances,
faster than the inverse-square gravitational law discovered by Newton. In other
words, in order to incorporate the usual inverse-square law of gravitational in-
teractions, we need a field ğµν that transforms as a symmetric tensor, up to
gauge transformations that are associated with coordinate transformations in
general relativity. Then, when considering a quantum theory of massless parti-
cles of helicity ±2 that can incorporate long-range gravitational interactions, it
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is necessary for those gravitons to have a gauge symmetry that is reminiscent
of general covariance.



Appendix E

The Magnus expansion

A diferencia de Newton y de Schopenhauer, su antepasado no créıa
en un tiempo uniforme, absoluto. Créıa en infinitas series de tiem-
pos, en una red creciente y vertiginosa de tiempos divergentes, con-
vergentes y paralelos. Esa trama de tiempos que se aproximan, se
bifurcan, se cortan o que secularmente se ignoran, abarca todas las
posibilidades. No existimos en la mayoŕıa de esos tiempos; en al-
gunos existe usted y no yo; en otros, yo, no usted; en otros, los
dos.
“El jard́ın de senderos que se bifurcan,” Jorge Luis Borges.

In this appendix we will review the formulation of the Magnus expansion [140,
141]. The Magnus expansion is an (approximate) formula for the exponential
representation of the operator solution to the Schrödinger equation with a
time-dependent Hamiltonian. Its main virtue is that it gives a unitary time-
displacement operator in every order of the approximation.

Let us consider a system that obeys the time-dependent Schrödinger equa-
tion. If the system is describet at time t0 by the wavefunction ψ(t0), it will be
described at time t by the wavefunction ψ(t) that is generated by the unitary
time-displacement operator U ,

ψ(t) = U(t, t0)ψ(t0), (E.1)

where the operator U satisfies

i~
dU(t, t0)

dt
= H(t)U(t, t0), U(t0, t0) = 1. (E.2)

The Hamiltonian H will be time-dependent if the system is not isolated. The
formal solution

U(t, t0) = exp
[
−i
∫ t

t0

dt′

~
H(t′)

]
(E.3)

231
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is only correct if all the H(t) commute with each other for all t, unless it
is interpreted symbolically (by inserting a time-ordered product). Then the
solution to equation (E.1) is written iteratively as

U(t, t0) = 1− i

~

∫ t

t0

dt1H(t1)U(t1, t0) (E.4)

= 1− i

~

∫ t

t0

dt1H(t1) +
(
i

~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) + · · · . (E.5)

But this approximation to U(t, t0) is not manifestly unitary at each order of
the expansion, and it can only be expected to hold for small H and small time
differences between t0 and t. However, precisely because of its exponential
form, U(t, t0) can be approximated by an expansion that is manifestly unitary
order-by-order. Suppose we can write

U(t, t0) = exp [W (t)] , (E.6)

then any approximation to W (t) that is anti-Hermitian, will result in a unitary
approximation for U(t, t0). The Magnus formula now presents an expansion for
the operator W (t), and it is essentially just a rearrangement of the perturbation
series (E.5).

The Magnus expansion provides an expression for the operator W (t) as a
functional of H(t′). It is related to the Baker-Campbell-Hausdorff formula,
that gives the expansion of a matrix C defined in terms of the matrices A and
B by the expression

exp (A) exp (B) = exp (C) , (E.7)

in terms of a series of nested commutators in A and B:

C = A+B +
1
2

[A,B] +
1
12

[A, [A,B]] +
1
12

[[A,B], B] +
1
24

[[A, [A,B]], B] + · · · ,
(E.8)

where we have omitted the nested commutators with an order higher than three.
Obviously, this formula has special importance when the commutator algebra
of A and B closes at a certain order, for example [[A,B], A] = [[A,B], B] = 0.

In the case of the Magnus expansion we combine the equations (E.2) and
(E.6). The derivative of the evolution operator

d

dt
exp(W (t)), (E.9)

is expanded into commutators of W (t) and dW (t)/dt and equated to the ex-
pansion of

− i
~
H(t)exp (W (t)) . (E.10)



233

We will not derive the full Magnus formula, but it can be obtained by writing
W (t) as a series

W (t) =
∞∑
n=1

Wn(t), (E.11)

where the first term is given by

W ′1(t) = − i
~
H(t), (E.12)

and then solving iteratively for the Wn(t). These terms will be expressed as
a sum of integrals of (n − 1)-fold multiple commutators of H(t). Each Wn(t)
is the commutator of two anti-Hermitian operators and as such it is again
anti-Hermitian. Therefore the Magnus expansion of W (t) may be truncated
at any order without affecting the unitarity of the operator U(t). Each term
of the Magnus expansion is in principle no more difficult to solve than term
of corresponding order in equation (E.5), but there does not exist a general
nonrecursive expression for the n-th term. Therefore the Magnus expansion is
mainly useful when it is possible to truncate the series after the lowest orders
(and when one wishes to obtain an approximation for the exponential form of
the evolution operator).

The commutators in the first terms of the Magnus expansion can be rear-
ranged to give,

W1(t) =− i

~

∫ t

t0

dt1H(t1); (E.13)

W2(t) =
1

2~2

∫ t

t0

dt2
∫ t2

t0

dt1 [H(t1), H(t2)] ; (E.14)

W3(t) =
i

6~3

∫ t

t0

dt3
∫ t3

t0

dt2
∫ t2

t0

dt1 [H(t1)[H(t2), H(t3)]]

+
i

6~3

∫ t

t0

dt3
∫ t3

t0

dt2
∫ t2

t0

dt1 [[H(t1), H(t2)], H(t3)]. (E.15)

The minus sign difference between the second order contribution in (E.5) and
(E.14) is easily explained by noticing that in the Magnus expansion t2 is later
than t1, but in the common expansion t2 is earlier than t1. Of course, we should
immediately remark that the Magnus formula gives an expansion for W (t, t0),
which is the logarithm of U(t, t0), while the common Dyson series (E.5) is the
expansion for U(t, t0) itself.
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Appendix F

Field theory with
constraints: an example

There is certainly a gauge fixation in this book,

Anonymous physicist upon reading [9]

In this appendix I will derive the Hamiltonian (12.8) of the free scalar field
on the generalized nullbrane of chapter 12 more carefully, while taking care
of the constraints. For the readers who would like to read more about the
subject of constrainted systems: a classic introduction is [3]. For constraints
in the context of quantum field theory see chapter 7 of [23], and for a detailed
treatment see [9].

We will consider the action (12.5) rewritten in the form

S =
∑
kΘ

∫
dX+ dk− dX

√
R2 + (X+)2

[
ik−
2
(
φ∂X+φ∗ − φ∗∂X+φ

)
− ∂Xφ∂Xφ

∗

2

−
(
m2

2
+

k2
Θ

2(R2 + (X+)2)
+

αX2R2k2
−

2(R2 + (X+)2)2
+

kΘk−βXR

(R2 + (X+)2)3/2

)
φφ∗

]
,

(F.1)

to bring the fields φ and φ∗ on equal footing. Fields φ and φ∗ with oppo-
site k− and kΘ wavenumbers are still related through the reality condition on
the original field Φ (the reality condition on the Fourier decomposition yields
φ∗k−,kΘ

= φ−k−,−kΘ), but in what follows we consider each wavenumber (k−, kΘ)
separately and we will consider them to be functionally independent (for the
time being, because they will turn out to be related through the first-order
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formalism). We can obtain the Lagrangian and the Hamiltonian by

S =
∫

dX+ L , (F.2)

H =
∑
kΘ

∫
dk−

∫
dX

[
πk−,kΘ φ̇k−,kΘ + π∗k−,kΘ

φ̇∗k−,kΘ

]
− L , (F.3)

where the conjugate momenta πk−,kΘ(X,X+) and π∗k−,kΘ
(X,X+) are defined

as usual by

π =
δL

δφ̇
, π∗ =

δL

δφ̇∗
. (F.4)

As mentioned in chapter 12, there are constraints because the Lagrangian is
linear in the time derivatives of the fields φ̇ and φ̇∗. This means that the
conjugate momenta (from now on the labels k− and kΘ are implicit)

π = − ik−
2

√
R2 + (X+)2φ∗ (F.5)

π∗ =
ik−
2

√
R2 + (X+)2φ (F.6)

are determined by the fields only (and not by their derivatives), so the trans-
formation of the Langrangian to the Hamiltonian is not well defined: the time
derivatives of the fields cannot be expressed in terms of the fields and their
conjugate momenta. We can write that the action 12.5 is supplemented by two
primary constraints:

χ1 = π +
ik−
2

√
R2 + (X+)2φ∗ ≈ 0, (F.7a)

χ2 = π∗ − ik−
2

√
R2 + (X+)2φ ≈ 0. (F.7b)

The weak equality sign “≈” is standard use in the theory of constrained systems
and symbolizes the fact that these equations only hold on the constraint surface
(which is determined by these equations), but these equations can be different
from zero elsewhere in the phase space. For our present discussion the notion of
constraint surface is not very important, but in order to distinguish equalities
that hold under the constraints from ordinary equalities, it may still be useful
to write the weak equality sign. Because the constraints are weakly zero, it is
always possible to add a linear combination with Langrange multipliers um to
the Hamiltonian (F.3) and obtain

H ′ = H +
∑
kΘ

∫
dk−dX (u1χ1 + u2χ2) . (F.8)
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At the classical level the time evolution of a field variable is expressed by its
Poisson bracket with the total Hamiltonian. The Poisson bracket is defined for
functionals that depend on the canonical variables φ and π,

[ξ, η]PB =
δξ

δφ

δη

δπ
− δξ

δπ

δη

δφ
+

δξ

δφ∗
δη

δπ∗
− δξ

δπ∗
δη

δφ∗
. (F.9)

We introduce an explicit subscript “PB” to distinguish the Poisson bracket
from the commutator that appears in the canonical quantisation prescription

[φ, π]PB → −
i

~
[φ, π]. (F.10)

We should check that the primary constraints (F.7) do not generate sec-
ondary constraints. Since the primary constraints have to hold during the
time evolution, this means that if we calculate their Poisson bracket with the
Hamiltonian (F.8), these should remain weakly zero:

[χ1, H]PB + u2[χ1, χ2]PB = π̇ + ik−
√
R2 + (X+)2u2 ≈ 0, (F.11a)

[χ2, H]PB + u1[χ2, χ1]PB = π̇∗ − ik−
√
R2 + (X+)2u1 ≈ 0. (F.11b)

There are no secondary constraints because these relations depend on the La-
grange multipliers. Following Dirac, we should classify our constraints as “first
class” or “second class”. We calculate the Poisson bracket between our con-
straints,

[χ1, χ2]PB = ik−
√
R2 + (X+)2, (F.12)

and see that it doesn’t vanish, so the constraints are second class. Because the
constraints are second-class, the standard theory tells us to introduce the Dirac
bracket, related to the Poisson bracket by (in our specific case)

[ξ, η]DB = [ξ, η]PB +
i

k−

{[ξ, χ2]PB [χ1, η]PB − [ξ, χ1]PB [χ2, η]PB}√
R2 + (X+)2

. (F.13)

In the standard theory it suffices to continue working with the Dirac bracket
instead of the Poisson bracket. However, this would be cumbersome, and it is
mentioned in [9] that second-class constraints can be used to eliminate degrees
of freedom. So it would be more practical instead to make a change of basis in
the canonical variables, such that the constraints become aligned with one of
the canonical pairs. In this way, applying the constraints becomes equivalent
to omitting one of the canonical pairs. For any set of canonical variables Φk

and Πk governed by second class constraints, it is always possible [114] to make
a canonical transformation and construct two sets of canonical variables Qn,
Qr and their respective conjugate momenta Pn, Pr such that the constraints
become Qr ≈ 0 and Pr ≈ 0.
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Thus, we direct our focus back to the Hamiltonian (F.3) and we perform a
canonical transformation from the fields φ, φ∗ to the fields φa, φb,

φa =
1
2

(
φ− 2i

k−

π∗√
R2 + (X+)2

)
, (F.14a)

πa = π − ik−
2

√
R2 + (X+)2φ∗, (F.14b)

φb =
1
2

(
φ∗ − 2i

k−

π√
R2 + (X+)2

)
, (F.14c)

πb = π∗ − ik−
2

√
R2 + (X+)2φ. (F.14d)

The new variables satisfy [φa(x, t), πb(x′, t)]PB = δabδ(x − x′). These new
variables will lead to a new Hamiltonian H ′ which we will derive below. But
let us first notice that if we apply the constraints in the new variables (thus
after the canonical transformation) we simply obtain

φa ≈ φ, (F.15)

πa ≈ −ik−
√
R2 + (X+)2φ∗, (F.16)

φb ≈ 0, (F.17)
πb ≈ 0. (F.18)

Because the constraints are equivalent to φb ≈ 0 and πb ≈ 0 in the new canon-
ical basis, we can directly impose them by simply reducing the dimension of
the phase space.

To derive the new Hamiltonian H ′(φa, πa, φb, πb), which appears after the
canonical transformation (F.14), we will make use of a generating function (see
e.g. [10])

G(φ, φ∗, φ1, φ2) = ik−
√
R2 + (X+)2

[
φbφ+ φaφ

∗ − φaφb −
1
2
φ∗φ

]
, (F.19)

with the conjugate momenta given by

π =
∂G

∂φ
, π∗ =

∂G

∂φ∗
, πa = − ∂G

∂φa
, πb = − ∂G

∂φb
, (F.20)

and the new Hamiltonian

H ′(φa, πa, φb, πb) = H(φ, π, φ∗, π∗) +
∂G

∂X+
. (F.21)

In our case the canonical transformation does lead to an additional time-
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dependent term in the new Hamiltonian (F.21)

∂G

∂X+
=

ik−X
+√

R2 + (X+)2

(
φbφ+ φaφ

∗ − φaφb −
1
2
φφ∗

)
, (F.22)

≈ − X+

2
√
R2 + (X+)2

πaφa . (F.23)

The equations (F.20) are identical to (F.14) and the new Hamiltonian becomes

H ′ =
∑
kΘ

∫
dX+ dk− dX

[
− X+

2
√
R2 + (X+)2

πaφa − iπa
∂2
Xφa
2k−

(F.24)

+ iπa

(
m2

2k−
+

k2
Θ

2k−(R2 + (X+)2)
+

αX2R2k−
2(R2 + (X+)2)2

+
kΘβXR

(R2 + (X+)2)3/2

)
φa

]
.

(F.25)

So we see that our shortcut at the end of section 12.1, to interprete the conju-
gate momentum in terms of the complex conjugate of the field

π ≡ −ik−
√
R2 + (X+)2φ∗, (F.26)

in order to obtain the Hamiltonian (12.8), agrees with the lengthier procedure
illustrated here, once we remove the label a.
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Appendix G

The Maslov phase for the
quantum harmonic
oscillator

I believe what characterizes 20th-century physics, so as to distin-
guish it from the flavor of physics in past centuries, are three con-
cepts: quantization, phase factor, and symmetry.

C. N. Yang

In the context of this thesis the Maslov phase arose in the derivation of the
mode functions on the generalized nullbrane. As we already remarked in sec-
tion 12.3, if we pursue a semiclassical construction of the quantum-mechanical
mode functions, the singular behavior of the classical action near focal points
introduces formal complications in the equation that determines the quantum-
mechanical prefactor that accompanies the exponential of the classical action.

The Maslov phase is a phase factor that is picked up each time a focal
point is passed. For example, the phase of light jumps by −π/2 when it passes
through a focal point. Discussing the general theory would lead us too far,
but it is straightforward to describe a simple system to show the origin of the
Maslov phase. In the quantum harmonic oscillator the Maslov phase appears
naturally when the propagator is evaluated by means of the Feynman path
integral. The phase factor that accompanies the exponential of the classical
action is obtained by integrating the variations with respect the classical path,
and it is precisely this integral that yields the Maslov phase.

In this appendix we will derive the Maslov phase for a one-dimensional quan-
tum harmonic oscillator in the context of the Feynman propagator in quantum
mechanics. The exposition is based on [142]. We will thereby summarize some
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general results about the Feynman propagator, but we emphasize the role of
focal points. The main purpose of this appendix is to serve as an illustration,
from another point of view, to the discussion of the focusing properties of the
wave equation on the generalized nullbrane in section 12.4.

We consider two points x1 and x2 and a set of paths γ(t) with γ(t1) =
x1 and γ(t2) = x2. According to the principle of least action, the classical
motion from x1 to x2 within the time-interval [t1, t2] is given by the path γ̄ that
extremizes1 the action S(γ). In quantum mechanics all paths are “possible” and
the evolution between x1 and x2 is described by a propagator K(x2, t2|x1, t1)
that is given by a “sum” over all paths. A phase factor is associated to each
path γ and the propagator is given by

K(x2, t2|x1, t1) =
∫
P

exp
(
i

~
S(γ)

)
Dγ, (G.1)

with P the set of all paths and Dγ the integration measure. To see that this
gives us the correct classical limit (when the action of a path is much larger
than ~) we note that paths that are distinct from the classical path γ̄ (which
is the path with stationary phase) will end up with a rapidly oscillating phase
factor, and cancel each other out. To proceed we have to define the integration
measure, which is possible for a harmonic oscillator.

We will assume there is a unique classical path γ̄ and we will decompose
each path γ(t) as a variation η(t) with respect to the classical path γ̄(t), i.e.
γ(t) = γ̄(t) + η(t) with η(t1) = η(t2) = 0. The action along γ(t) is then

S(γ) =
∫ t2

t1

m

2
(
γ̇2 − ω2γ2

)
dt

=
∫ t2

t1

m

2
(

˙̄γ2 − ω2γ̄2
)

dt+
∫ t2

t1

m

2
(
η̇2 − ω2η2

)
dt, (G.2)

where the terms that included both η and γ̄ disappeared after partial integra-
tion (we have invoked the fact that the classical path γ̄ satisfies the equations
of motion ẍ + ω2x = 0). The equations of motion yield the following solution
for the classical path γ̄:

x(t) =
sinω(t2 − t)
sinω(t2 − t1)

x1 +
sinω(t− t1)
sinω(t2 − t1)

x2. (G.3)

Therefore the classical action (unless it is evaluated at a focal point, determined
by ω(t2 − t1) = kπ) is given by

S(γ̄) =
mω

2 sinω(t2 − t1)
(
(x2

1 + x2
2)cosω(t2 − t1) − 2x1x2

)
. (G.4)

1In general there is only one such path.
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The measure Dγ reduces to Dη and we can rewrite the propagator as

K(x2, t2|x1, t1) = K(t1, t2)× exp
(
i

~
S(γ̄)

)
, (G.5)

with K(t1, t2) a path integral over all variations η(t),

K(t1, t2) =
∫
P

exp
[
i

~

∫ t2

t1

m

2
(
η̇2 − ω2η2

)
dt
]
Dη . (G.6)

We now expand the variations η on the interval [x1, x2] into a Fourier series.
More specifically (with the time interval T = t2 − t1) we write

η(t) =
∞∑
k=1

aksin
(
kπ

T
t

)
. (G.7)

In the Fourier domain the integration over all paths becomes the integration
over all fourier coefficients ak such that

K(t1, t2) = lim
n→∞

J
∫
· · ·
∫ ∞
−∞

n∏
j=1

daj×exp

[
n∑
k=1

i
mω2

2~

(
π2k2

ω2(t2 − t1)2
− 1
)
a2
k

]
.

(G.8)
The Jacobian J of the linear transformation from the set of paths to the set
of fourier coefficients is independent of the parameters of the problem, and
together with some formally divergent factors we include it in a prefactor Cn.
We use the following results for the Fresnel integrals that appeared in expression
(G.8) ∫ ∞

−∞
exp

(
iλk
2
x2

)
dx =


√∣∣∣ 2πλk ∣∣∣ eiπ/4, λk > 0√∣∣∣ 2πλk ∣∣∣ e−iπ/4, λk < 0

, (G.9)

where, in our case, λk is shorthand for (πk)2/(ωT )2 − 1. From the formula for
the Fresnel integrals we can already see where the Maslov phase will appear.
At every focal point (i.e. t2 = t1 +kπ/ω) another λk will become negative, each
time adding a phase −π/2. Thus we obtain

K(t1, t2) = limn→∞ Cn

n∏
k=1

∣∣∣∣ π2k2

ω2(t2 − t1)2
− 1
∣∣∣∣−1/2

× exp
(
−iπ

2
N
)
. (G.10)

The exponential in this expression is the Maslov phase, and N is the number
of focal points already crossed. Manipulating the square root in (G.10) and
using the Euler formula

∞∏
k=1

∣∣∣∣1− ω2(t2 − t1)2

k2π2

∣∣∣∣ =
|sinω(t2 − t1)|
ω(t2 − t1)

, t2 > t1, (G.11)
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we obtain

K(t1, t2) ∝

√
ω(t2 − t1)
|sinω(t2 − t1)|

(G.12)

and the (formally divergent) proportionality factor can be chosen such that in
the limit ω → 0 the expression for the propagator of the harmonic oscillator
reduces to the propagator of a free particle. So we obtain (away from focal
points)

K(x2, t2|x1, t1) =
√

mω

2π~ |sinω(t2 − t1)|
e−iπ/4 exp

(
−iπ

2
N
)
×

exp
{
i

mω

2~ sinω(t2 − t1)
[
(x2

1 + x2
2)cosω(t2 − t1) − 2x1x2

]}
, (G.13)

where N is the number of focal points crossed. Finally, at the N ’th focal point
the propagator will be given by

K(x2, t2|x1, t1) = exp
(
−iπ

2
N
)
× δ(x1 − (−1)Nx2). (G.14)



Appendix H

Bessel functions

Bloch: “Space is the field of linear operators.”

Heisenberg: “Nonsense, space is blue and birds fly through it.”

“Heisenberg and the early days of quantum mechanics,” Felix Bloch

For convenience we list some properties of Bessel functions of order ν, obtained
from [1]. They solve the differential equation

x2 d
2y(x)
dx2

+ x
dy(x)
dx

+
(
x2 − ν2

)
y(x) = 0. (H.1)

A basis of solutions to this differential equation (for non-integer ν) is given by
the Bessel functions of the first kind: the Bessel functions Jν(x) and J−ν(x).
A different basis is given by Jν(x) and the Neumann function (or Bessel func-
tions of the second kind) Yν(x), which are linearly independent for all ν. The
Neumann function is written as

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
. (H.2)

A series expansion for the Bessel function is given by

Jν(x) =
∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(x
2

)2m+ν

, (H.3)

with the Gamma function defined as

Γ(x) =
∫ ∞

0

dt tx−1 e−t. (H.4)

For discrete arguments we can write Γ(n+ 1) = n!.

245



246 APPENDIX H. BESSEL FUNCTIONS

The Hankel functions (or Bessel functions of the third kind) are written as

H(1)
ν (x) = Jν(x) + iYν(x) = icosec(νπ)

{
e−iπνJν(x)− J−ν(x)

}
, (H.5)

H(2)
ν (x) = Jν(x)− iYν(x) = icosec(νπ)

{
J−ν(x)− eiπνJν(x)

}
, (H.6)

and are linearly independent for all ν.

Asymptotic expansions

For mall arguments 0 < x <
√
ν + 1 we can write:

Jν(x) ∼ 1
Γ(ν + 1)

(x
2

)ν
, (H.7)

Yν(x) ∼

{
2
π [ln(x/2) + γ] , ν = 0
−Γ(ν)

π

(
2
x

)ν
, ν > 0

. (H.8)

For large arguments x� |ν2 − 1/4| we can write:

Jν(x) ∼
√

2
πx

cos
(
x− ν π

2
− π

4

)
, (H.9)

Yν(x) ∼
√

2
πx

sin
(
x− ν π

2
− π

4

)
, (H.10)

H(1)
ν ∼

√
2
πx

ei(x−ν
π
2−

π
4 ) , (H.11)

H(2)
ν ∼

√
2
πx

e−i(x−ν
π
2−

π
4 ) . (H.12)

Wronskians

W [Jν(x), J−ν(x)] = Jν+1(x)J−ν(x) + Jν(x)J−(ν+1)(x) (H.13)

= − 2
πx

sin(νπ) . (H.14)

W [Jν(x), Yν(x)] = Jν+1(x)Yν(x)− Jν(x)Yν+1(x) (H.15)

=
2
πx

. (H.16)

Note: in this thesis we have used the convention W [f, h] = fḣ− hḟ , in accor-
dance with our reference.
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Recurrence relations

In the following prime denotes the derivative with respect to x and C can de-
note a linear combination of Bessel functions of any kind (but with coefficients
independent of ν and x):

Cν−1(x) + Cν+1(x) =
2ν
x
Cν(x) , (H.17)

Cν−1(x)− Cν+1(x) = 2C′ν(x) , (H.18)

C′ν(x) = Cν−1(x)− ν

x
Cν(x) , (H.19)

C′ν(x) = −Cν+1(x) +
ν

x
Cν(x) . (H.20)
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Appendix I

Majorana-Weyl spinors in
9 + 1 dimensions

In the early days, such matrices were taken as a literal truth [...]
Every morning, day after day, Klein and Nishina would multiply
away explicit [4 × 4] γµ matrices and sum over µ’s. In the after-
noon, they would meet in the cafeteria of the Niels Bohr Institute
to compare their results.

“Group theory: Birdtracks, Lie’s and Exceptional Groups,” Predrag
Cvitanović

In this appendix I will briefly discuss a few aspects related to the supersym-
metry variations in type IIA and IIB supergravity, in view of our derivations
in chapter 14. First of all I have to introduce Weyl and Majorana spinors in
terms of Dirac spinors. Let us follow the conventions of [14] (adapted to our
notation with small Roman letters for tangent space indices) and consider a
representation of the Clifford algebra given by the (flat-spacetime) γ-matrices,{

γa, γb
}

= 2ηab, (I.1)

where the curly brackets indicate anticommutators as usual and ηab is the in-
verse Minkowksi metric in (D−1, 1) dimensions, with the mostly plus signature
(−1, 1, . . . , 1). From the γ-matrices we can construct the matrices Σµν by

Σab =
1
4i
[
γa, γb

]
. (I.2)

They satisfy the commutation relations of the Lorentz group generators:

i[Σmn,Σsr] = ηnsΣmr + ηmrΣns − ηnrΣms − ηmsΣnr. (I.3)
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If we now consider an infinitesimal rotation of SO(D − 1, 1) and store the
parameters associated to the rotation in the matrix θmn, then a spinor is an
object with the following transformation property under such a rotation:

δψ =
i

2
θmnΣmnψ. (I.4)

We restrict ourselves to 9 + 1 dimensions (one timelike and nine spacelike
dimensions), where Dirac spinors have 32 components. We define a matrix γ11

by
γ11 = γ0γ1 . . . γ9. (I.5)

It has eigenvalues ±1. The Dirac representation splits into two sixteen-dimen-
sional Weyl representations, defined by the eigenvectors of γ11 with eigenvalues
(chirality) ±1 respectively. These are called Weyl spinors. If we construct the
chiral projectors

P± =
1
2

(1± γ11) . (I.6)

a Weyl spinor (of chirality ±1) satisfies

P±ψ = ψ. (I.7)

In ten dimensions, the Weyl representations are self-conjugate (this is different
from four dimensions, where they are conjugate to each other). The anti-
symmetrized products of γ-matrices are abbreviated as

γm1m2···mn = γ[m1γm2 · · · γmn]. (I.8)

Let us define another matrix, following the notation of [14],

B = γ3γ5γ7γ9. (I.9)

A Majorana spinor (in ten dimensions) satisfies the reality condition

ψ∗ = Bψ, (I.10)

which expresses a relation between the spinor and its conjugate. In ten di-
mensions it is possible to consider Majorana-Weyl spinors with sixteen real
components, which satisfy both Majorana and Weyl conditions.

In chapter 14 the supersymmetry variations in the time-dependent p-brane
background are written in a formalism that allows to formally consider type
IIA and type IIB supergravity simultaneously. To achieve this, the formalism
works with 32-dimensional spinors. The two (sixteen-dimensional) Majorana-
Weyl spinors of type IIA and type IIB supergravity are combined into a Ma-
jorana spinor for type IIA supergravity (the two Majorana-Weyl spinors have
opposite chirality), and a complex Weyl spinor for type IIB supergravity (the
two Majorana-Weyl spinors have the same chirality).



Nederlandse samenvatting

“The production of useful work is limited by the laws of thermody-
namics, but the production of useless work seems to be unlimited.”

Donald Simanek

Geometrische resolutie van ruimte-tijd singula-
riteiten

In algemene relativiteit wordt verondersteld dat de ruimte-tijd geen op voor-
hand vastgelegde structuur is, maar door middel van een dynamisch metrisch
veld wordt beschreven. De gravitationele aantrekking tussen materie manifes-
teert zich dan op de volgende wijze: de dynamica van het metrische veld is gere-
lateerd aan de distributie van de materie doorheen het universum, en de pro-
pagatie van materie in de ruimte-tijd wordt bëınvloed door het metrische veld
dat de voorstelling vormt van het universum. Sinds ontdekt werd dat de ma-
teriedeeltjes en de microscopische krachten gehoorzamen aan kwantummecha-
nische wetten, is het dus wegens consistentie noodzakelijk om ook het metrische
veld te kwantiseren. Eén van de onderzoeksrichtingen naar een consistente
theorie van kwantumgravitatie heeft tot snaartheorie geleid. Snaartheorie be-
schrijft de gravitationele interactie door middel van gravitonen, die de kwanta
zijn van de zwaartekracht. In snaartheorie wordt verondersteld dat, op de
kleinste afstandsschalen, elementaire deeltjes geen puntdeeltjes zijn maar daar-
entegen ééndimensionale snaren zijn. Het gedrag van snaren op tijdsafhanke-
lijke achtergronden zoals ons uitdijend universum is echter nog niet volledig
begrepen.

Algemene relativiteit voorspelt het bestaan van gravitationele singulari-
teiten op het klassieke niveau: ons universum nam een aanvang met de oer-
knal, en zware sterren kunnen ineenstorten tot zwarte gaten. Een theorie die
kwantumgravitationele effecten kan beschrijven zou ons begrip over dit soort
singulariteiten moeten verbeteren. Bovendien doet het bestaan van ruimte-tijd-
singulariteiten de vraag rijzen of de propagatie van kwantumvelden doorheen
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een singulariteit mogelijk is, en indien ja, hoe dat zou moeten worden gefor-
muleerd. Snaartheorie kan reeds sommige tijdsachtige singulariteiten beschrij-
ven maar nog geen ruimteachtige singulariteiten zoals de oerknal. Nabij singu-
lariteiten interageren snaren vaak sterk en een formulering van snaartheorie die
toelaat om sterke interacties tussen snaren in rekening te brengen wordt gegeven
door matrix theorie. Modellen in matrix theorie die singulariteiten beschrijven
hebben vaak een duale beschrijving in de vorm van een kwantumvelden theorie
die gedefinieerd is op een supplementaire singuliere ruimte-tijd.

In mijn thesis wordt onderzocht hoe de propagatie van kwantumvelden
doorheen een singulariteit te definiëren. We gebruiken een geometrisch regu-
larisatievoorschrift om de evolutie van een vrij scalair veld, alsook van een vrije
snaar, doorheen een singulariteit op een niet-ambiguë manier te definiëren.
Merkwaardig genoeg suggereert de geometrische regularisatie dat er aan de
evolutie doorheen de singulariteit een zeker discreet gedrag gerelateerd is. We
onderzoeken eveneens een belangrijke klassie van tijdsafhankelijke achtergrond-
en die onderzocht kunnen worden in snaartheorie. Deze klasse wordt gevormd
door de vlakke zwaartekrachtsgolven. Deze vlakke golven kunnen gebruikt
worden om de effecten vanwege sterke kromming nabij een singulariteit te on-
derzoeken. Onze studie toont aan dat het nodig is om in rekening te nemen dat
de snaren sterk kunnen interageren nabij de singulariteit. Om een beter begrip
te krijgen van matrix theorie op een vlakke golfachtergrond, onderzoeken we
oplossingen die D-branen beschrijven in vlakke golfachtergrond. D-branen zijn
objecten die voorkomen in snaartheorie naast snaren, en ze zijn belangrijk voor
de formulering van matrix theorie.

Vrij scalair veld op het parabolisch orbifold

In de context van matrixmodellen voor tijdsafhankelijke singulariteiten speelt
de evolutie van kwantumvelden op een singuliere ruimte-tijd een belangrijke
rol, wat aanleiding geeft tot singuliere tijdsafhankelijke termen in de Hamil-
toniaan. Daarom heb ik tijdens mijn eerste project het voorkomen van sin-
guliere tijdsafhankelijke termen in de Hamiltoniaan onderzocht. In een eerder
project hadden mijn medewerkers Ben Craps en Oleg Evnin overwogen hoe
zulke Hamiltonianen te regulariseren door middel van de meest conservatieve
benadering die hen zou toelaten een unitaire evolutie doorheen de singulariteit
te definiëren [94]. Deze benadering, die zij “minimale subtractie” noemden,
bestaat erin om de singuliere tijdsafhankelijke termen in de Hamiltoniaan in
distributionele zin te definiëren terwijl de operatorstructuur van de Hamil-
toniaan onveranderd wordt gehouden (deze aanpak is relevant als de transi-
tie doorheen de singulariteit wordt gedomineerd door een enkele term in de
Hamiltoniaan). De neutralisatie van de divergentie houdt rechtstreeks verband
met de negatieve contributies vanwege de distributies. We ontdekten dat dit
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voorschrift afweek van een geometrische regularisatie omdat de negatieve func-
tiewaarden geassocieerd met de distributies onverenigbaar zijn met een geo-
metrische interpretatie. Voor een geometrische resolutie van veldendynamica
op een singulaire ruimte-tijdachtergrond, moet men in het algemeen de speci-
ficaties van de “minimale subtractie” aanpak verzwakken en wijzigingen in de
operatorstructuur van de Hamiltoniaan, alsook wijzigingen in de tijdsafhanke-
lijke termen, toelaten in de buurt van de singulariteit.

Als een specifiek voorbeeld bekeken we de propagatie van een massief scalair
veld in een singuliere ruimte-tijd. We onderzochten het zogenaamde paraboli-
sche orbifold, hetgeen de singuliere limiet van het reguliere nulbraan is. Het
parabolische orbifold ontstaat wanneer men in vlakke Minkowski ruimte-tijd
een identificatie maakt langs één van de twee richtingen op de lichtkegel (de
andere richting wordt gëınterpreteerd als de tijdsrichting). Vanwege deze iden-
tificatie wordt een singulariteit gecreëerd die een speelgoedmodel biedt om sin-
gulariteiten te onderzoeken (vergelijk bevoorbeeld, bij wijze van eenvoud, met
de singuliere tip van een kegel die ontstaat door een vlak oppervlak te vouwen).
Het nulbraan is een vierdimensionaal orbifold met een vrije parameter R. In
de limiet R → 0 reduceert de nulbraan geometrie zich tot een produkt van
het parabolische orbifold met de reële as, en in deze zin is het nulbraan een
geometrische regularisatie van het parabolische orbifold. Eerder hadden Liu et
al [84, 86] het parabolische orbifold reeds onderzocht in de context van pertur-
batieve snaartheorie.

Overeenkomstig met ons geometrische resolutievoorschrift, hebben we eerst
de evolutie van het vrije scalair veld op het reguliere nulbraan geanalyseerd
alvorens de singuliere limiet te nemen. Om in staat te zijn de singuliere limiet
te onderzoeken, introduceren we een nieuw coördinatensysteem op het nul-
braan dat globaal gedefinieerd is en een wel-gedefinieerde limiet heeft. We
hebben ook een veralgemeende nulbraan metriek beschouwd (dit is in essentie
het nulbraan met twee extra vrije parameters). De essentiële stap in de oplos-
sing van het probleem was om de kwantummechanische evolutie op het nul-
braan te verlaten in gekende evolutievergelijkingen van een dynamische groep
(in dit geval de twee-foton groep bekend in kwantumoptica). Niettegenstaande
het ogenschijnlijk sterk singuliere gedrag van de limiterende Hamiltoniaan (de
singuliere termen kunnen zelfs niet als distributies geschreven worden) is de
kwantummechanische evolutie doorheen de singulariteit goed-gedefinieerd. Het
commutatie-gedrag van de verschillende operatortermen in de Hamiltoniaan
compenseren het singuliere gedrag precies. Maar we vinden dat de singuliere
limiet slechts bestaat voor een discrete deelverzameling van de mogelijke para-
meterwaarden binnen de familie van veralgemeende nulbraangeometrieën. We
kunnen deze deelverzameling labelen door één natuurlijk getal. Zoals verwacht
kan worden, maakt het originele nulbraan deel uit van deze deelverzameling.

De evolutie van de modes van het scalaire veld wordt volledig bepaald door
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zijn modefuncties (die zelfde modefuncties treden ook naar voor in de beschrij-
ving van snaren op het nulbraan). Als we onze resultaten vergelijken met Liu et
al [84, 86] vinden we dezelfde modefuncties behalve in de expontiële factor die
de golf in de X-richting karakteriseert waar we een extra sign(t) factor hebben
bij de coördinaat X. Het effect ervan is dat de positie en de snelheid in de X-
richting voor alle deeltjes wordt gereflecteerd als ze doorheen de singulariteit
gaan. Het verschil treedt op vanwege ons nieuw coördinatensysteem dat niet
faalt in de oorsprong t = 0.

Als we naar de discrete deelverzameling kijken waarvoor de singuliere limiet
bestaat, merken we op dat hun modefuncties equivalent zijn aan elkaar op een
(globale) fasesprong ter hoogte van de singulariteit na. Deze treedt op omdat
de veldmodes in de oorsprong een aantal focale punten kruisen, en het aantal is
proportioneel met het natuurlijk getal dat de het element uit de deelverzameling
karakteriseert.

Vrije snaar op een singuliere vlakke golf

Vlakke gravitationele golven vormen een analytisch oplosbare achtergrond voor
de propagatie van snaren. In samenwerking met Ben Craps en Oleg Evnin heb
ik de evolutie van een vrije snaar op een singuliere vlakke golf onderzocht
[120]. De benadering van een vrije snaar kan gezien worden als een eerste
stap vooraleer perturbatieve snaartheorie op zulk een singuliere achtergrond te
onderzoeken. We hebben ons geconcentreerd op vlakke golven met een schaal-
onafhankelijk profiel ten opzichte van de coordinaat x+,

ds2 = −2dx+dx− − λ
∑
i

(
xi

x+

)2

+
∑
i

(
dxi
)2
. (I.11)

Dit soort profiel ontstaat op een natuurlijke wijze via een Penrose limiet van
kosmologische singulariteiten. De coördinaten die loodrecht staan op de lichtke-
gelrichtingen x+ en x− noteren we met xi en we gebruiken x+ om de lichtkegel-
tijd aan te duiden. De schaal-invariantie betekent dat de vlakke golf-metriek
invariant is ten opzichte van herschalingen in de lichtkegel-coördinaten

(x+, x−)→ (Cx+, x−/C). (I.12)

Vanwege de schaal-onafhankelijkheid van het singuliere profiel zullen we veron-
derstellen dat onze klasse van geregularizeerde profiel ook schaal-onafhankelijk
is, bovenop de beperking dat onze geresolveerde klasse een oplossing vormt van
de veralgemeende Einsteinvergelijkingen in snaartheorie (de achtergrond con-
sistentiecondities). Dus regulariseren we het singuliere schaal-onafhankelijke
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profiel als

λ
∑
i

(
xi

x+

)2

→ λ

ε2
Ω(x+/ε)

∑
i

(
xi
)2
, lim
η→±∞

Ω(η) ∼ 1
η2
, (I.13)

waar we λ de “normalisering” van het golfprofiel noemen, met ε de unieke
resolutieparameter en met Ω het geregulariseerde profiel. Vanwege de schaal-
onafhankelijkheid is er slechts één dimensionele parameter (i.e. ε) die kan optre-
den in de geregulariseerde metriek. Dit is de resolutieparameter die we zullen
verwijderen in de singuliere limiet. De schaalinvariantie laat ons toe de pro-
pagatie doorheen de singulariteit op te lossen zonder verdere specificatie van
de geregulariseerde metriek.

Opdat de achtergrondsmetriek voldoet aan de consistentie condities in snaar-
theorie voegen we een dilatonveld toe. Het dilaton is een oscillatiemode van de
snaar, zoals het graviton, maar het bepaald ook de snaarkoppeling. De con-
sistentie condities voor de ruimte-tijd achtergrond relateren de kromming van
de metriek aan de spatiotemporele variatie van het dilaton. Vanzelfsprekend
eisen we ook dat het dilaton doorheen de singulariteit kan propageren en we
bewijzen dat dit mogelijk is.

In lichtkegel-ijk is de Schrödinger golfvergelijking voor de snaar bepaald
door een Hamiltoniaan die opgedeeld kan worden in een som van kwadratische
Hamiltonianen met een tijdsafhankelijke frequentie, waarvan elke deelhamilto-
niaan het gedrag van een andere oscillatiemode van de snaar bepaalt. Daarom
kunnen we alle snaarmodes initieel als afzonderlijk beschouwen. Wanneer de
resolutieparameter wordt verwijderd, divergeren de frequenties op t = 0. Van-
wege de kwadratische afhankelijkheid van deze Hamiltonian in functie van de
positie- en impulsoperatoren, kunnen we met behulp van een semiklassieke be-
nadering een exacte oplossing vinden voor de Schrödinger vergelijking. Dit
betekent dat de golffunctie voor de snaar volledig bepaald is door oplossingen
van de klassieke bewegingsvergelijkingen met gepaste randvoorwaarden. We
merken op dat de bewegingsvergelijking voor de snaaroscillaties gerelateerd zijn
aan de propagatie van het massamiddelpunt (of nulmode) van de snaar. Meer
in het bijzonder, het enige verschil tussen de vergelijkingen voor de geëxciteerde
snaarmodes en de nulmode is het kwadraat van het modegetal dat bijdraagt
tot de tijdsafhankelijke frequentie in de Hamiltoniaan.

Maar het modegetal is een eindige term in vergelijking met de (diverge-
rende) tijdsafhankelijke frequentie en we kunnen rigoureus bewijzen dat het
modegetal het bestaan van de singuliere limiet niet bëınvloedt. We beschouwen
het modegetal als een kleine perturbatie en we bepalen een grens hoeveel de
oplossingen van de geëxciteerde modes kunnen verschillen ten opzichte van de
nulmode. In de singuliere limiet verdwijnt het verschil tussen de oplossingen en
we kunnen bewijzen dat de geëxciteerde modes doorheen de singulariteit kun-
nen propageren als de nulmode propageert. In een eerdere publicatie hadden
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Evnin en Nguyen [119] reeds bewezen onder welke condities de nulmode kan
propageren doorheen de singulariteit, wat leidt tot een discreet spectrum in de
parameter λ die optreedt in het profiel van de vlakke golf.

Dus, net als in het geval van het vrije scalair veld op het parabolische or-
bifold, bekomen we ook hier een discreet spectrum dat gerelateerd is aan de
propagatie doorheen de singulariteit. De nulmode (en de geëxciteerde modes)
kunnen slechts doorheen de vlakke golf-singulariteit propageren (in een generiek
geval) voor een discrete verzameling in λ. Het precieze spectrum in λ wordt
bepaald door de vorm van het geregulariseerde profiel Ω(η). Maar de schaal-
invariantie van de resolutie heeft ons toegelaten om de propagatie doorheen
de singulariteit te bepalen zonder enige verdere specificatie van het geregu-
lariseerde profiel Ω(η) behalve asymptotisch (I.13).

We hebben ontdekt dat alle oscillatiemodes van de snaar afzonderlijk door-
heen de singulariteit kunnen propageren, maar opdat de snaar in haar geheel
doorheen de singulariteit kan propagaren, moeten we opleggen dat de excitatie-
energie van de snaar eindig blijft gedurende de transitie doorheen de singula-
riteit. We vinden dat dit alleen het geval kan zijn als de “normalisatie” λ van
het vlakke golfprofiel voldoet aan de conditie

λ =
1
4
−
(
N +

1
2

)2

, (I.14)

waar N een natuurlijk getal is (N = 0 komt bijvoorbeeld overeen met Minkow-
ski ruimte-tijd of met het lichtachtig reflectorvlak uit [95]). Maar voor λ < 0
divergeert het dilaton nabij de singulariteit en de snaarkoppeling wordt onbe-
grensd sterk. Zo wordt perturbatieve snaartheorie ongeldig. Dus het is on-
mogelijk dat de totale excitatie-energie eindig blijft onder de veronderstelling
dat de snaar vrij is (opdat het beschouwen van een vrije snaar een consistente
benadering zou zijn is het vereist dat de interactie tussen de snaren klein is).
Aangezien perturbatieve snaartheorie op die manier ongeldig wordt nabij de
singulariteit, motiveert dit ons om matrixmodellen van singuliere vlakke gol-
ven te onderzoeken, want deze matrixmodellen laten toe om sterke interacties
tussen snaren te beschouwen.

Supergravitatie Dp-braan oplossingen

Matrixmodellen die een beschrijving vormen van snaartheorie in de limiet van
sterke snaarkoppeling, worden geformuleerd in functie van de effectieve actie
van D0-branen (of D1-branen). Dus, als we de eigenschappen van matrixmodel-
len van singuliere vlakke golven beter willen onderzoeken (zoals bijvoorbeeld
het matrix oerknalmodel van Craps et al [107] of the vlakke golf matrixmodellen
van Blau en O’Loughlin [112]) dan moeten we de formulering van D-branen in
een asymptotisch vlakke golf-achtergrond bestuderen. D-branen zijn branen
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die voldoen aan specifieke randvoorwaarden (ze karakteriseren de eindpunten
van open snaren) en ze spelen een belangrijke rol als de effectieve vrijheids-
graden in matrix theorie. De branen die optreden in snaartheorie zijn dynami-
sche objecten, maar ze kunnen ook beschreven worden als klassieke ruimte-tijd
oplossingen in superzwaartekracht. Superzwaartekracht is een uitbreiding van
algemene relativiteit die fermionen in zijn spectrum bevat (alle materie die
we kennen bestaat uit fermionen). Superzwaartekracht is de laag-energetische
benadering voor snaartheorie: het is een geldige benadering wanneer er on-
voldoende energie beschikbaar is om de hogere oscillatiemodes van de snaar te
exciteren. Daarom kunnen de D-branen op het klassieke niveau, waar ze massief
zijn, kunnen beschreven worden door een metriek, een dilaton en een ijkveld
(het ijkveld treedt op omdat het D-braan geladen is). De standaard matrix
model Hamiltoniaan bescrhijft elf-dimensionale statische Minkowski ruimte-
tijd. De laag-energetische beschrijving van de matrix model Hamiltoniaan
wordt gegeven door snaartheorie in een superzwaartekracht achtergrond van
D0-branen [105]. Het matrix oerknalmodel [107] is een tijdsafhankelijk model
en wordt geformuleerd in termen van D1-branen in een tijdsafhankelijke vlakke
golf-achtergrond.

Dit betekent dat we gëınteresseerd zijn in de klassieke oplossingen in super-
zwaartekracht die tijdsafhankelijke D-branen beschrijven in een asymptotisch
vlakke golf achtergrond beschrijft in superzwaartekracht. Asymptotisch heeft
die ruimte-tijd metriek het karakter van een vlakke golf, maar de aanwezigheid
van D-branen in de oorsprong zal de metriek veranderen voor eindige afstanden
ten opzicht van het braan. Een eenvoudiger probleem is de formulering van D1-
branen die gealigneerd zijn met de lichtkegel (in andere woorden, het “wereld-
vlak van de braan” is evenwijdig met de bewegingsrichting van de vlakke
golf). In samenwerking met Ben Craps, Oleg Evnin en Federico Galli heb
ik de metriek ontdekt die extremale D1-branen in een asymptotisch vlakke
golfachtergrond beschrijft, en we hebben deze oplossingen voor D1-branen in
superzwaartekracht uitgebreid naar hoger-dimensionale Dp-branen (met p ≥ 1)
[136]. Momenteel bestuderen we de uitbreiding van deze p-braan oplossingen
tot een configuratie van D0-branen.
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[48] N. Berkovits, “Super-Poincaré covariant quantisation of the superstring,”
JHEP 0004 (2000) 018, [arXiv:hep-th/0001035].

[49] T. Jacobson, “Introduction to Quantum Fields in Curved Spacetime and
the Hawking Effect,” [arXiv:gr-qc/0308048].

[50] E. S. Fradkin and A. A. Tseytlin, “Effective field theory from quantized
strings,” Phys Lett B158 (1985) 316.

[51] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys.
Rev. Lett. 75 (1995) 4724, [arXiv:hep-th/9510017].

[52] J. Polchinski, “TASI lectures on D-branes,” [arXiv:hep-th/9611050].

[53] W. Taylor IV and B. Zwiebach, “D-Branes, Tachyons, and String Field
Theory,” [arXiv:hep-th/0311017].

[54] H. W. Brinkmann, “Einstein spaces which are mapped conformally on
each other,” Math. Ann. 18 (1925) 119.

[55] J. Ehlers and W. Kundt “Exact solutions of the gravitational field equa-
tions,” in Gravitation: an Introduction to Current Research ed. L. Witten
(1962).

[56] G. Gibbons, “Quantized Fields Propagating in Plane Wave Space-
Times,”Commun. Math. Phys. 45 (1975) 191.

[57] R. Penrose, “Any space-time has a plane wave as a limit,” in Differential
geometry and relativity, Reidel, Dordrecht (1976) pp. 271-275.

http://arxiv.org/abs/0709.3555
http://arxiv.org/abs/0906.3495
http://arxiv.org/abs/hep-th/0001035
http://arxiv.org/abs/gr-qc/0308048
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/abs/hep-th/9611050
http://arxiv.org/abs/hep-th/0311017


BIBLIOGRAPHY 263
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