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Dankwoord

Zo, hier zijn we dan aangekomen: de laatste schrijfdag van mijn doctoraat. Na alle

wetenschappelijke tekst, word ik geacht ik hier nu iets literairs tevoorschijn te toveren.

Zoals het een echte burgie siert, heb ik het hier dan ook niet gemakkelijk mee. En met

een aantal taalkundigen in de familie ligt de lat onmiddellijk een stuk hoger. Maar

met wat Leonard Cohen en Mariza in de oren, een theetje bij de hand en de eerste

voorjaarszon in het gezicht moet dit wel vlotten. Bovendien wordt het stilaan tijd dat

dit schrijven afgerond geraakt, mijn groeiende buik maakt dat ik steeds moeilijker tot

bij het toetsenbord geraak...

Toen ik hier in september 2005 de eerste keer op ’de gang’ kwam, kon ik me nog

niet goed voorstellen hoe dat doctoreren zou verlopen. Het is zoals met vele dingen

in het leven (studierichting kiezen, trouwen, kinderen krijgen,...), je volgt je intuı̈tie,

begint aan iets en pas als je er helemaal in ondergedompeld bent, ontdek je echt wat

het allemaal inhoudt. Sommige periodes lijkt het wel of alle dagen hetzelfde zijn, je

bent iets aan het bedenken of uitwerken en de tijd vliegt voorbij voor je het goed en

wel beseft. Maar die stabiele periodes worden op de meest onvoorspelbare momenten

afgewisseld door de klassieke ups and downs. Ineens passen alle kleine radertjes in

elkaar en komt er een mooi resultaat tevoorschijn of heb je ’het licht gezien’. Op

zulke dagen kan zelfs de lege koffiekan of papier dat vastzit in de printer je dag niet

meer verpesten. Op andere momenten denk je dat je die bug in je programma waar

je al dagen naar zoekt nooit gaat vinden en zakt je de moed wel eens in de schoenen.

Gelukkig zijn er dan je familie, vrienden en collega’s die je aandacht even afleiden,

zodat je oog toch nog op die ene bug valt. En zo vlogen die vier jaar voorbij... Veel

vrienden en familie hebben me de afgelopen jaren gevraagd: ”Maar wat doe je nu

eigenlijk op den unief?” Ik beken: ik ben er niet steeds in geslaagd om hierop een

bevredigend antwoord te geven. Ik hoop dit met voorliggend boek en de presentatie

op mijn openbare verdediging een beetje goed te maken.

Nu ik zo terugkijk op de voorbije jaren zijn er best wel veel dingen gebeurd op

’de gang’. Oude bekenden zijn vertrokken, nieuwe gezichten zijn verschenen en oude

rotten in het vak verzekerden de continuı̈teit. Mijn promoter, Ann, bedank ik om me

de kans te geven dit doctoraatsavontuur te starten en me de vrijheid te geven om ver-

schillende onderzoekspistes te bewandelen. Gedurende de jaren heeft ze mijn weten-

schappelijke schrijverskwaliteiten aangescherpt. Bovendien waren de gesprekjes over

de kinderen een aangename afleiding van de soms ietwat droge wetenschappelijke

kost. Daniël wens ik te bedanken voor zijn goede zorgen, de snelle opvolging van

mijn schrijfsels en zijn motiverende woorden. Onder de categorie ’oude rotten’ vallen
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ook Hendrik en Isabelle. Isabelle is onze wegwijzer in het administratieve doolhof en

helpt graag met alle praktische zaken. Hendrik slaagt er steeds in de middagpauzes

in de Brug op te vrolijken met al dan niet geslaagde mopjes. Mensen gaan er vaak

vanuit dat burgies alles weten over computers. Ik vrees echter dat in dit vakgebied

mijn vrouw-zijn primeert boven het burgieschap. Daarom ben ik dan ook Jan, Bert en

Kristien (nochtans ook op en top vrouw) van harte dankbaar voor hun computerkennis.

In de hogere echelons van de universiteitsstructuur wens ik ook de vakgroepvoorzit-

ters te bedanken: Prof. Lagasse en Prof. De Zutter.

In ”den bureau” is Luc een vaste waarde. Onze praatjes over de kinderen en ecologisch

bouwen/verbouwen waren talrijk. Wanneer ik het allemaal eens even beu was, kon ik

ook met mijn gezaag bij Luc terecht. Bedankt! Bram en Tom vallen onder de categorie

”verdwenen oude bekenden”, zij konden me steeds overdonderen met hun program-

meertalent en hebben me zo ook veel bijgeleerd. De overkant van mijn bureau is de

voorbije jaren verschillende keren van gezicht veranderd. Eerst was er Peter, met wie

het zeker aangenaam werken was. Zijn enthousiasme voor boeken, films en cultuur

was vaak erg aanstekelijk. The last two years, Mari occupies the chair in front of me.

This elegant Italian lady doubled the feminine population in our office and gave me

the opportunity to have some classical woman-talk during the day. In dit academie-

jaar kwam ook Pieter erbij: zeker een waardevolle aanwinst. Het internationale karak-

ter van onze werkplek werd nog meer aangedikt door de komst van Weigang Wei.

Weigang, thank you for giving me a brief introduction to the Chinese habits. This

made me realize even more that we, Europeans, take a lot of things for granted and

have a relatively easy and comfortable life for which we should be grateful. Jürgen

was mijn vaste reisgezel op conferentie. Uren hebben we daar gezellig zitten babbelen

(als we geen boek aan het lezen waren). Bovendien leidde hij me binnen in de wereld

van de inverse problemen. Wanneer ik weer maar eens met een wiskundig, compu-

tertechnisch, Matlab- of latech- gerelateerd ei zat, kon ik steeds bij Jan, Ignace, Joris,

Kristof en Thomas terecht. Ook alle andere collega’s wil ik bedanken voor hun grote

en kleine bijdragen tot mijn doctoraat, de werksfeer, de momenten van ontspanning.

Door al dat ”gestudeer en gedoctoreer” zou een mens al eens vergeten hoe het er

in de echte wereld aan toe gaat. Om ons daarvoor te behoeden zijn er gelukkig onze

familie en vrienden. Johannes bedank ik als vaste side-kick tijdens onze studietijd. On-

dertussen zijn we getrouwd en fiere ouder en hebben we het allebei wat drukker gekre-

gen. Toch geniet ik steeds van de gezellige momenten samen met Tine en de kroost.

Ook Wouter en Annelies zijn vaak van de partij. Vroeger kookten de vrouwen vaak

samen terwijl de mannen hun wekelijkse kilometers liepen. Door kinderen, bouw- en

verbouw perikelen zijn die wekelijkse Bourgondische uitspattingen wat op de achter-

grond geraakt, maar als het er dan toch nog eens van komt, zijn de porties steevast te

groot en is het lekker genieten.

Nooit was ik mijn studententijd doorgekomen zonder de scouts. Er ging zoveel (soms

teveel) tijd naar de scouts dat er vaak weinig tijd over was om me echt zorgen te maken

in mijn studies, al durfde ik me dat in de examentijd wel eens te beklagen. Ondertussen
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liggen die wilde jaren al enige tijd achter ons, maar nog steeds geniet ik van de gezel-

lige compagnie van de vele vrienden die ik aan die scoutsjaren overgehouden heb.

Nu we volgende zomer in Lokeren gaan wonen, ben ik zeer blij dat Ben zijn vrien-

den daar ook mijn goede vrienden zijn geworden. Onze kennismaking begon als een

schuchtere ”hallo” in de Okapi, bij de Nolle leerden we elkaar beter kennen en nu, met

de kinderen erbij, spreken we al eens vaker overdag af. Straks staan we samen aan de

scoutspoort op onze kleine ravotters te wachten!

Mama en papa, jullie zijn steeds een grote ruggensteun. Ik ben fier jullie dochter

te zijn en dit boek draag ik dan ook graag aan jullie op. Velen hebben ons de laat-

ste maanden geplaagd: ”Hoe hebben jullie dit nu weer geflikt? Je eerste (misselijke)

maanden van de zwangerschap laten samenvallen met het schrijven van dit boek, en

dat dan nog tegelijkertijd met Ben! Je doctoraat verdedigen met een bolle buik en ver-

huizen wanneer je bevalling wordt voorzien?” De laatste maanden waren inderdaad

drukke tijden. Daarom bedank ik jullie, ouders, samen met Veerle, Wouter en de hele

schoonfamilie voor jullie goede zorgen. We kunnen altijd op jullie rekenen.

Arne, kleine grote man, ik weet dat jij met evenveel enthousiasme door dit boek

zal bladeren als door je beestenboekjes. Wanneer we na een dag werken en nadenken

al eens afgestompt thuiskomen, vrolijk jij ons steeds op met je gebabbel. Kleine broer

of zus hebben we nog niet echt goed leren kennen, maar die kleine en grote schopjes

op de meest onverwachte momenten tijdens de dag, waren alvast een mooie afleiding

tijdens het schrijven. Welkom kleine spruit!

De naam ’Ben’ is hier al een aantal keer gevallen. Het is echter niet zomaar een

naam, maar de naam van mijn grote liefde. Ben, zonder jou was dit boek er zeker niet

gekomen. Ik ben niet altijd even zeker van mezelf, maar jij leerde me de afgelopen

jaren wat zelfvertrouwen betekent. Ook wanneer ik het doctoreren even niet meer zag

zitten, had jij steeds peptalk klaar. Wanneer ik je nu bezig zie met Arne, straal ik van

trots. Ik ben zo fier op mijn mannen!

En zo heb ik onverwacht weer maar eens het cliché bevestigd dat vrouwen

taterkonten zijn. Ik hoop dan ook dat jullie nog de moed overhouden om eens in de

rest van dit boek rond te neuzen. Succes!

Sara Van den Bulcke

Gent, 18/03/2010
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Samenvatting

In dit doctoraat wordt een kwantitatieve elektromagnetische beeldvormingstechniek

ontwikkeld om verborgen objecten te karakteriseren met behulp van millimetergol-

ven. De term elektromagnetische beeldvorming omvat een reeks technieken die infor-

matie proberen te achterhalen over bepaalde objecten uitgaande van de wijze waarop

ze elektromagnetische straling verstrooien. Men spreekt van elektromagnetische in-

verse verstrooiing wanneer het object belicht wordt met gekende elektromagnetische

golven, in dit doctoraat opeenvolgend invallend vanuit meerdere richtingen, en de cor-

responderende verstrooide velden - meerbepaald de elektrische veldvector - expliciet

opgemeten worden in een aantal waarnemingspunten. Die opgemeten data wordt dan

gebruikt om de vorm, afmetingen, locatie en elektromagnetische materiaalparameters

(de complexe permittiviteit) van het ongekende object met behulp van een numeriek

algoritme te reconstrueren. Wanneer, zoals in dit doctoraatsonderzoek, de inherente

materiaalparameters van het object numeriek in kaart worden gebracht, spreekt men

van een kwantitatieve beeldvormingstechniek.

De laatste decennia werd veel onderzoek verricht naar kwantitatieve beeldvor-

ming met behulp van microgolfstraling, met als meest gekende toepassingen medische

beeldvorming en het niet-destructief testen van materialen. In dit doctoraat maken we

echter gebruik van millimetergolven, met een typische golflengte tussen één millime-

ter en één centimeter. Dit komt overeen met relatief hoge frequenties (30 tot 300 GHz).

Het gebruik van dit type golven voor beeldvorming is vrij recent en volgt uit de sterk

toegenomen interesse voor de ontwikkeling van beveiligingstoepassingen. Millime-

tergolven hebben namelijk de interessante eigenschap dat ze gemakkelijk door kledij

dringen maar wel gereflecteerd worden door het menselijk lichaam. Dat maakt ze bij-

zonder geschikt om verborgen objecten onder kledij te detecteren. De meeste prakti-

sche toepassingen, zoals de body scanners die momenteel verschijnen op verschillende

grote luchthavens, zijn echter geen kwantitatieve maar kwalitatieve beeldvormingstoe-

passingen: ze kunnen enkel benaderend de vorm en positie van een verborgen object

bepalen maar ze geven geen informatie over de materiaalparameters. In dit doctoraat

hebben we onderzocht hoe millimetergolven gebruikt kunnen worden in het kader van

kwantitatieve beeldvorming.

De keuze voor millimetergolven heeft echter een grote invloed op de numerieke

implementatie van de kwantitatieve beeldvormingstechniek. Doordat de golflengte

zo klein is, zijn de objecten (bijvoorbeeld een mes of ander wapen) zeer groot ten
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opzichte van de golflengte, wat bij de numerieke implementatie leidt tot zeer grote ver-

strooiingsproblemen met een groot geheugengebruik en lange rekentijden. Een andere

consequentie van de keuze voor millimetergolven is het type belichting dat gebruikt

wordt. Typisch gedragen millimetergolven zich zoals een Gaussbundel, bijgevolg

heeft het invallende elektromagnetische veld eindige afmetingen (een 94 GHz bun-

del heeft bijvoorbeeld een doormeter van 1.6 cm), dit in tegenstelling tot een vlakke

golf of dipoolbronnen bij microgolfbeeldvorming. Doordat een groot object slechts

gedeeltelijk belicht wordt door die Gaussbundel, kunnen we een belangrijke veron-

derstelling maken die de grootte van het verstrooiingsprobleem sterk zal beperken. We

veronderstellen namelijk dat het object een cilindrisch karakter heeft en dus oneindig

lang is in een bepaalde richting. Bijgevolg volstaat het om enkel de dwarse doorsnede

van het object te beschouwen, hetgeen een twee-dimensionale ruimtelijke discreti-

satie mogelijk maakt. De invallende Gaussbundel heeft echter eindige afmetingen en

moet dus wel volledig in drie dimensies beschreven worden. Op die manier komen we

tot wat algemeen een twee-en-een-half-dimensionale (2.5D) aanpak wordt genoemd:

objecten worden in twee dimensies behandeld, elektromagnetische velden in drie di-

mensies. Voor de detectie van verborgen objecten op het menselijk lichaam is deze

2.5D aanpak zeker gerechtvaardigd: we kunnen bijvoorbeeld de buik benaderen door

een oneindig lange inhomogene cilinder aangezien zijn karakteristieken niet drastisch

veranderen over een afstand van slechts enkele centimeters (het gebied dat belicht

wordt door de Gaussbundel) in de lengterichting.

Het elektromagnetische inverse verstrooiingsprobleem is niet-lineair, daarom

wordt het gewoonlijk iteratief opgelost als een optimalisatievraagstuk waarin de ob-

jectparameters de onbekenden zijn. Men begint met een initiële gok voor de object-

parameters en gebruikt dan een numeriek verstrooiingsmodel om het bijhorende ver-

strooide elektrisch veld te berekenen. Dit wordt dan vergeleken met het opgemeten

verstrooide elektrisch veld. Uitgaande van deze vergelijking worden dan de objectpa-

rameters aangepast. Deze procedure wordt herhaald tot de gesimuleerde verstrooide

velden voldoende overeenkomen met de opgemeten velden. Voor de praktische im-

plementatie wordt gewerkt met een grid van pixels dat het ongekende object omvat.

De waarden van de complexe permittiviteit in alle pixels van het grid zijn de onbe-

kenden in het optimalisatievraagstuk. Dit doctoraat bestaat uit twee delen, het eerste

deel beschrijft het numeriek verstrooiingsmodel, het tweede deel behandelt het opti-

malisatievraagstuk.

Het numeriek verstrooiingsmodel wordt gewoonlijk de voorwaartse simulator ge-

noemd. Dit model berekent de verstrooide velden voor een gegeven permittiviteits-

profiel, belicht met gekende invallende elektromagnetische golven. Voor elke wijzi-

ging aan het permittiviteitsprofiel tijdens de optimalisatie moet dit verstrooiingsmodel

gevalueerd worden. Daarom is een snelle en efficiënte implementatie essentieel. In

dit doctoraat wordt gewerkt met een volume-integraalformulering van het verstrooi-

ingsprobleem, dit betekent dat de verstrooiers in het model gediscretiseerd worden op

een rooster van cellen, in tegenstelling tot de randintegraalbenadering waarin enkel de
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randen van objecten gediscretiseerd worden. In elke cel van het rooster worden dan de

drie componenten van de verstrooide elektrische veldvector bepaald door de volume-

integraalvergelijking (VIE) iteratief op te lossen. Doordat wij echter in de 2.5D be-

nadering werken, kunnen we niet zomaar de gekende 3D volume-integraalvergelijking

gebruiken, maar is deze geherformuleerd naar een 2.5D versie. Dit gebeurt door

alle drie-dimensionale grootheden (de elektromagnetische velden) te Fouriertrans-

formeren langsheen de onveranderlijke richting van de verstrooiers, bijvoorbeeld de

z-richting in een Cartesiaans assenstelsel. Op die manier krijgen de veldcomponenten,

in plaats van een (x,y,z)-afhankelijkheid, een (x,y,kz)-afhankelijkheid waarbij kz de

spectrale component genoemd wordt. Door deze één-dimensionale spatiale Fourier-

transformatie is de 3D VIE herschreven in de vorm van een set van 2D VIE’s, één voor

elke spectrale component. Na het oplossen van alle 2D VIE’s, worden de oplossingen

gecombineerd door middel van de inverse één-dimensionale spatiale Fourier transfor-

matie tot het gezochte drie-dimensionale verstrooide veld.

De rekentijd wordt aanzienlijk beperkt door een iteratie bij het oplossen van een

VIE te versnellen door gebruik te maken van snelle Fourier transformaties (FFT’s).

In dit doctoraat worden alle berekeningen in het numeriek verstrooiingsmodel multi-

threaded uitgevoerd, wat betekent dat zij verdeeld worden over verschillende proces-

soren binnen één machine, die dan elk een deel van het werk doen. Verder beperken

we ook de rekentijd door te zorgen voor een goede beginschatting voor het veld

op het grid, deze beginschatting wordt bepaald als een lineaire combinatie van een

aantal voorgaande oplossingen voor gelijkaardige configuraties. Deze techniek wordt

marching-on genoemd.

Naast het numerieke verstrooiingsmodel is er ook een numeriek model nodig om

de invallende elektromagnetische velden te beschrijven. In het geval van een vlakke

golf als belichting is zo een model vrij evident, hetgeen echter niet het geval is voor

een Gaussbundel. In de literatuur zijn verschillende modellen terug te vinden om een

drie-dimensionale Gaussbundel te implementeren. Wij hebben deze technieken ver-

taald naar de overeenkomstige 2.5D versie. Het meest efficiënte model is gebaseerd

op de complexe bron formulering, maar dan toegepast voor de 2.5D benadering. Spe-

ciale aandacht is besteed aan het selecteren van een zo laag mogelijk aantal spectrale

componenten om de Gaussbundel accuraat te beschrijven, aangezien het aantal op te

lossen VIE’s gelijk is aan het aantal spectrale componenten in de beschrijving van het

invallende veld.

Het numerieke verstrooiingsmodel is gevalideerd door verstrooide velden voor een

aantal cirkelvormige homogene en stuksgewijs homogene testcilinders te vergelijken

met de bijhorende analytische oplossing, dit zowel voor loodrecht als scheef inval-

lende vlakke golven. Om te verifiëren of de gesimuleerde verstrooide velden ook cor-

rect zijn in het geval van Gaussbundel belichting, vergelijken we met gesimuleerde

velden bekomen met volledig 3D numerieke verstrooiingsmodellen. Bovendien to-

nen we aan dat de beperking tot oneindig lange cilindervormige objecten in de 2.5D

benadering kan afgezwakt worden tot voldoende lange cilinders bij belichting met
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Gaussbundels: de objecten dienen minimaal dubbel zo lang te zijn als de grootte van

het belichte gebied. Ter illustratie van de toepassing om verborgen objecten op het

menselijke lichaam te detecteren is de verstrooiing aan een eenvoudig model voor de

buik bestudeerd. Aangezien millimetergolven niet ver doordringen in het lichaam is

het niet nodig om het volledige inwendige accuraat te modelleren. Daarom nemen

we enkel een laag kledij, een huidlaag en een onderhuidse vetlaag in rekening. Er is

een duidelijke invloed op het elektrisch veld wanneer er tussen de kledij en de huid

een klein object wordt geplaatst. Bovendien tonen deze simulaties zeer goed de voor-

delen van de 2.5D benadering aan: door de grote afmetingen van het lichaam en de

relatief hoge permittiviteitswaarden ervan, is het aantal onbekenden zeer groot, wat

een volledige drie-dimensionale simulatie zo goed als onmogelijk maakt.

Aangezien in de praktijk de inputdata voor het inverse verstrooiingsprobleem

opgemeten verstrooide velden zijn, gaan we ook na in hoever de gesimuleerde

verstrooide velden overeenkomen met de experimenteel opgemeten equivalenten.

We hebben daartoe beschikking van twee sets van opgemeten velden: de Vrije

Universiteit Brussel stelde veldamplitudes opgemeten voor een homogene teflon

cilinder belicht door een loodrecht invallende Gaussbundel ter beschikking, terwijl

het Institut Fresnel in Marseille amplitude en fasemetingen deed voor vlakke golven

die scheef invallen op een inhomogene cilinder. Uit beide vergelijkingen blijkt dat het

ontwikkelde numerieke verstrooiingsmodel inderdaad in staat is om het gedrag van

verstrooide velden accuraat te beschrijven.

Het tweede deel van dit proefschrift gaat over het optimalisatieprobleem gekop-

peld met de inverse beeldvorming. Hierin wordt het verschil tussen opgemeten en

gesimuleerde verstrooide velden geminimaliseerd door het iteratief aanpassen van het

gediscretiseerde permittiviteitsprofiel. De methode die wij toepassen is een Gauss-

Newton optimalisatie gecombineerd met een lijnoptimalisatie. Als maat voor het ver-

schil tussen opgemeten en gesimuleerde velden wordt een kleinste-kwadraten data fit

kostfunctie gebruikt, waaraan een regularisatieterm is toegevoegd. Deze extra term

dient bijgevoegd te worden omdat het inverse verstrooiingsprobleem slecht gesteld is.

Dit komt tot uiting doordat grote perturbaties (vaak met een hoge spatiale frequen-

tie) in het permittiviteitsprofiel slechts aanleiding geven tot kleine perturbaties in de

verstrooide velden. Die kleine veranderingen kunnen gecamoufleerd raken wanneer

de data vervuild zijn met ruis. Perturbaties in de verstrooide velden kunnen aldus

het gereconstrueerde permittiviteitsprofiel degraderen. Het afremmen van ongewen-

ste variaties in het permittiviteitsprofiel gebeurt door een regularisatiemethode toe te

passen. De regularisatiemethode introduceert a-priori informatie in de kostfunctie om

het verlies aan informatie door ruis te compenseren en zo ongewenste veranderin-

gen van het permittiviteitsprofiel in te dijken. Binnen het Gauss-Newton schema is

er voorts een uitdrukking nodig voor de afgeleiden van het verstrooide veld naar de

permittiviteitsonbekenden. In dit doctoraat worden hiervoor analytische uitdrukkingen

geformuleerd binnen de 2.5D benadering.
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Aanvankelijk worden in dit doctoraat twee bestaande regularisatiemethodes

toegepast. De eerste methode is een spatiale regularisatietechniek en wordt ”multi-

plicative smoothing” regularisatie genoemd. In dit geval legt de toegevoegde a-priori

informatie op dat het gezochte permittiviteitsprofiel vrij glad is, dus sterke lokale vari-

aties van de permittiviteit worden afgestraft. Deze regularisatie voegt de gladheids-

restrictie multiplicatief toe aan de data fit term. De tweede regularisatiemethode is

niet spatiaal, maar veronderstelt dat het permittiviteitsprofiel bestaat uit een klein

aantal discrete waarden, die echter niet op voorhand moeten gekend zijn. Bijgevolg

is dit type regularisatie ideaal om stuksgewijs homogene objecten te reconstrueren.

Deze methode wordt de ”stepwise relaxed value picking” regularisatie genoemd.

Deze twee regularisatiemethodes hebben ons geı̈nspireerd tot de ontwikkeling van

een nieuwe methode, die we de ”stepwise relaxed object smoothed value picking” re-

gularisatie noemen. Net zoals de stepwise relaxed value picking regularisatie, bevoor-

deelt deze nieuwe methode stuksgewijs homogene objecten door de complexe permit-

tiviteitswaarden te groeperen in het complexe vlak rond een aantal referentiewaarden,

die ook zelf deel uitmaken van het optimalisatieproces. Het verschil met de voor-

noemde regularisatietechniek is dat er bovendien binnen de homogene gebieden, die

verschijnen tijdens de optimalisatie, gladheid van de permittiviteit wordt opgelegd. Op

die manier worden een spatiale en een niet-spatiale techniek efficiënt gecombineerd.

Deze nieuwe methode resulteert vaak in een langere berekeningsduur, maar is vooral

nuttig wanneer de gewone ”stepwise relaxed value picking” regularisatie aanleiding

geeft tot artefacten in de reconstructie.

Om de kwantitatieve inverse verstrooiingstechniek, voorgesteld in dit proefschrift,

te valideren maken we gebruik van experimentele data. Aangezien er nog geen milli-

metergolf amplitude- en fase-data beschikbaar zijn voor de inversiegemeenschap,

gebeurt deze validatie voor microgolven. Het Institut Fresnel in Marseille heeft een

publiek toegankelijke twee-dimensionale databank met verstrooiingsmetingen aan in-

homogene cilinders, belicht door vlakke golven. Wij hebben drie objecten uit deze

databank gereconstrueerd door gebruik te maken van TM- en TE- gepolariseerde

velden en door de drie verschillende regularisatietechnieken toe te passen. Daaruit

blijkt dat de nieuwe stepwise relaxed object smoothed value picking regularisatie de

beste reglarisatiemethode is voor dit type objecten aangezien die een bijna perfecte

reconstructie oplevert.

Om aan te tonen dat de reconstructietechniek ook veelbelovend is bij millime-

tergolffrequenties maken we gebruik van synthetische meetdata. Dit zijn verstrooide

velden die gegenereerd zijn door het numerieke verstrooiingsmodel en waaraan witte

Gaussische ruis is toegevoegd om het effect van meetruis te simuleren. We hebben een

vergelijking gemaakt tussen de reconstructiekwaliteit bij een belichting met vlakke

golven enerzijds en Gaussbundels anderzijds. Daarbij is vastgesteld dat, alhoewel de

simulaties met Gaussbundels langer duren, het totale aantal iteraties in het optima-

lisatieschema gelijk is voor beide types velden. De reconstructie met Gaussbundels

vertoont iets meer lokale schommelingen in het permittiviteitsprofiel.
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Als sluitstuk van dit werk is een eerste poging gedaan om een millimetergolf-

beeldvormingstechniek voor de detectie van verborgen objecten onder kledij te

simuleren. Daarvoor maken we gebruik van het vereenvoudigde buikmodel dat reeds

eerder werd vermeld. Door de enorme afmetingen van het geheel zijn we echter ver-

plicht om dit model nog verder te vereenvoudigen, om het aantal spectrale componen-

ten in de beschrijving van de Gaussbundel sterk te beperken en om ook het aantal in-

valsrichtingen van de belichting sterk te limiteren. Ondanks al deze vereenvoudigingen

en beperkingen, duurt één enkele iteratie in het optimalisatieschema (toepassen van de

Gauss-Newton optimalisatie met lijnoptimalisatie) tussen de 15 en 27 uur. Bovendien

maakt de buik een rondomrond belichting van het verborgen object onmogelijk, wat

de informatie in de meetdata nog meer beperkt en dus de reconstructie bemoeilijkt. Na

ongeveer vijf rekendagen en zes iteraties verschijnt het verborgen object met de juiste

afmetingen op de correcte positie en ligt de bijhorende waarde voor de permittiviteit

vrij dicht bij de eigenlijke waarden. Dit is een ideaal voorbeeld om de mogelijkheden

van kwantitatieve millimetergolf beeldvorming te illustreren, maar toont ook aan waar

de beperkingen van deze methode momenteel liggen.



Summary

In this doctoral thesis, a quantitative electromagnetic imaging technique is developed

to detect hidden objects using millimeter waves. The term ’electromagnetic imag-

ing’ describes a number of techniques that try to extract information about certain

objects, based on how they scatter electromagnetic radiation. When electromagnetic

inverse scattering is considered, the object is illuminated with known electromagnetic

waves from different directions and the corresponding scattered fields are measured in

a number of receiver points. The measured data is then used to reconstruct the shape,

dimensions, location and the electromagnetic material parameters (the complex per-

mittivity) of the unknown object. When – as in this work – the numerical values of

the material parameters of the unknown object are determined, one speaks about a

quantitative imaging technique.

During the last two decades, quantitative imaging techniques have been studied

extensively for microwave radiation, for applications in medical imaging and non-

destructive testing. In this PhD work however, we use millimeter waves. These waves

have a wavelength between one millimeter and one centimeter, corresponding to rela-

tively high frequencies (30 to 300 GHz). The interest in millimeter waves has recently

grown within the imaging research community thanks to its possible use in security

applications. Indeed, one of the most interesting properties of millimeter waves is that

they easily penetrate clothing but reflect on the human body. This makes them per-

fectly suitable to detect weapons or explosives hidden under clothing. However, most

of the practical applications, as the body scanners which are currently used at dif-

ferent international airports, are not quantitative but qualitative imaging applications.

They can only approximately determine the shape and position of the hidden object,

but are not capable of defining the material parameters. In this PhD work, we have

studied how millimeter waves can be used in the framework of a quantitative imaging

technique.

The choice for millimeter waves largely complicates the numerical implementa-

tion of the quantitative imaging technique. Indeed, the considered objects are very

large compared to the small wavelength, which results in very large scattering prob-

lems to be computed. This leads to massive memory consumptions and extremely

large simulation times. Another consequence of the chosen wavelength is that the type

of illumination is typically a Gaussian beam, contrary to the plane waves and dipole

sources which are typically used in the microwave imaging community. However,



xvi SUMMARY

since the beam illuminates a spatially limited region, the size of the scattering problem

can be reduced drastically by assuming that all objects are cylindrical and infinitely

long in one dimension. Consequently, it is sufficient to only account for the cross sec-

tion of the object, which makes a two-dimensional spatial discretization possible. The

incident Gaussian beam however has to maintain its full three-dimensional nature in

the numerical description. In this way we come to a-two-and-a-half-dimensional ap-

proach, where all objects are treated in two dimensions and all electromagnetic field

quantities are treated in three dimensions. This 2.5D approach is justified for the detec-

tion of a concealed object on the human body when, on a centimeter space scale, the

geometric and material parameters of the object and torso do not drastically change in

the elongated direction.

With the quantitative inverse scattering problem, the unknown permittivity pro-

file is related to the scattered field data in a non-linear way. Therefore, it is generally

solved iteratively as an optimization problem in which the object parameters are the

unknowns. One starts with an initial guess for the object parameters and then uses a

numerical scattering model to determine the corresponding scattered field. In a next

step, the computed scattered field is compared to the measured scattered field. From

this comparison, more suitable object parameters are obtained. This procedure is re-

peated until the simulated scattered field is sufficiently close to the measured scattered

field. In the practical implementation, a grid of pixels is used which contains the un-

known objects. The complex values of the permittivity in all pixels of the considered

grid are the unknowns in the optimization problem. This PhD work contains two parts:

a first part describes the numerical scattering model, while a second part deals with

the described optimization problem.

The numerical scattering model is usually called the forward solver. This model

computes the scattered field starting from a given permittivity profile and a known

electromagnetic illumination. This scattering model needs to be solved for each dif-

ferent permittivity profile during the optimization process. Therefore, a fast and effi-

cient implementation is indispensable. In this PhD, we use a volume integral approach

to solve the scattering problem. Here, the scatterers are discretized on a regular grid

of cells. This is in contrast to boundary integral methods where only the boundaries

of a piecewise homogeneous object are discretized. In each cell of the grid, the three

components of the total field are determined by solving the volume integral equa-

tion (VIE) iteratively. However, since we apply the 2.5D approach, we do not use

the well-known 3D VIE, but revert to a reformulated 2.5D expression. This is done

by Fourier transforming all 3D electromagnetic quantities along the elongated direc-

tion of the scatterers, for instance along the z-axis of a Cartesian coordinate system.

In this way, all field components have an (x,y,kz)-dependency instead of a (x,y,z)-
dependency, where kz is the spectral component. By performing this one-dimensional

Fourier transform, the 3D VIE is rewritten as a set of 2D VIEs, one for each spectral

component. After solving all 2D VIEs, the corresponding scattered field solutions are
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combined to the wanted 3D scattered field by performing a one-dimensional inverse

Fourier transform.

The computation time, required to solve the VIEs is dramatically reduced by ap-

plying fast Fourier transforms. In this PhD, all computations are implemented using

multithreaded commands. Hence, the computations are performed by different pro-

cessors within one machine. Furthermore, the computational time is decreased by

proposing a well chosen initial guess for the total field at the start of the solution

process for each VIE. This initial guess is determined as a linear combination of pre-

vious total field solutions for similar configurations. This is known as the marching-on

technique.

Besides the numerical scattering model, a model is required to describe the in-

cident electromagnetic field. While such a model is straightforward for a plane wave

illumination, this is not the case for a Gaussian beam illumination. Literature describes

different models to implement 3D Gaussian beams. We have reformulated these de-

scriptions to fit the 2.5D approach. The most efficient model is based on the complex

source formulation, applied to the 2.5D approach. Special attention is devoted to limit

the number of spectral components needed to describe the Gaussian beam accurately,

since one has to solve the same number of VIEs.

The numerical scattering model is validated by comparing simulated scattered

fields on circular homogeneous and piecewise homogeneous cylinders with their cor-

responding analytical solution as well for perpendicularly incident plane waves as

for obliquely incident waves. To verify the validity of the model in case of Gaussian

beam illumination, we have compared our simulation results with simulation results

obtained from full 3D numerical scattering models. Moreover, we demonstrate that

the limitation to infinitely long cylindrical objects in the 2.5D approach can be weak-

ened to sufficiently long cylinders when a Gaussian beam illumination is considered:

the object length should be minimal double in size compared to the illuminated area.

To illustrate the feasibility of detecting hidden objects on the human body, the electro-

magnetic scattering on a simplified human body model is considered. Since millimeter

waves do not have a significant penetration depth in the human body, the interiors are

not needed to be fully described. Therefore, we only account for a layer of clothing,

skin and underlying fat. There is a significant influence on the electromagnetic waves

when a small object is placed between the clothing and the skin. Furthermore, these

simulations show the direct advantages of the 2.5D approach: due to the large dimen-

sions of the human body and the relatively high corresponding permittivity values,

the number of unknowns is very large, which makes a full 3D simulation up to now

unfeasible.

In practice, the input data of the inverse scattering problem are measured scattered

fields. Therefore we also investigate how well simulated scattered fields correspond

to experimentally measured equivalents. We had access to two sets of measured scat-

tered fields: the Vrije Universiteit Brussel performed field amplitude measurements on

an homogeneous teflon cylinder, illuminated by a perpendicularly incident Gaussian
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beam, while the Institut Fresnel in Marseille performed amplitude and phase measure-

ments for plane wave illumination obliquely incident on an inhomogeneous cylinder.

Both comparisons show that the developed numerical scattering model is perfectly

capable to describe the scattered fields accurately.

The second part of this PhD work deals with the optimization technique to solve

the inverse scattering problem. Here, the difference between measured and simulated

scattered fields is minimized by iteratively adapting the discretized permittivity pro-

file. The method we use is a Gauss-Newton optimization combined with a line search.

As a measure for the difference between the measured and the simulated fields, a

least squares data cost function with an additional regularization term is considered.

This extra term is required since the inverse scattering problem is ill-posed. This ill-

posedness for instance manifests itself when large differences in the permittivity pro-

file (often with a high spatial frequency) only result in small changes in the scattered

fields. These small changes can get obscured when the data is polluted with noise.

These perturbations in the scattered fields can degrade the reconstructed permittiv-

ity profile. Regularization methods weaken the unwanted variations in the permittiv-

ity profile by introducing a-priori known information in the optimization problem to

compensate the loss of information due to the noise. Furthermore, the Gauss-Newton

scheme needs the derivatives of the scattered fields with respect to the permittivity un-

knowns. In this PhD work, an analytical expression is derived for the 2.5D approach.

Two existing regularization methods are applied in this PhD. The first method is a

spatial regularization technique, called multiplicative smoothing regularization. In this

case, a priori knowledge of a smooth permittivity profile is introduced in the optimiza-

tion problem. Hence, large local variations of the permittivity are suppressed. This

regularization adds the smoothing restriction multiplicatively to the data fit term. The

second regularization method is not spatial, but assumes that the permittivity profile

consists of a small number of discrete values which are not known in advance. Con-

sequently, this type of regularization is suited to reconstruct piecewise homogeneous

objects. This method is called the stepwise relaxed value picking regularization. Both

regularization methods inspired us to formulate a new regularization method which

we called the stepwise relaxed object smoothed value picking regularization tech-

nique. Similar to the stepwise relaxed value picking regularization, this new method

favors piecewise homogeneous objects by grouping the complex permittivity values

in the complex plane around an unknown number of reference values, which are also

part of the optimization process. Similar to the multiplicative smoothing regulariza-

tion, smoothness is enforced, but only within the homogeneous domains which appear

during the optimization. In this way, a spatial and non-spatial technique are efficiently

combined. This new regularization technique often has a longer simulation time, but

is especially useful when the original stepwise relaxed value picking regularization

leads to artifacts in the reconstructed profile.

To validate the quantitative inverse scattering technique, presented in this PhD

work, we have used experimental data. Since no amplitude and phase data in the mil-
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limeter wave range is available in the inversion community, we revert to microwave

measurements. The Institut Fresnel in Marseille provides a public database with 2D

scattering measurements on inhomogeneous cylinders under a plane wave illumina-

tion. We have reconstructed three objects from this database illuminated by TM and

TE polarized fields. Here, we applied the three different regularization techniques de-

scribed above. From the simulations, it is clear that the new stepwise relaxed object

smoothed value picking regularization is the best type of regularization method since

it results in almost perfect reconstructions.

To demonstrate that the proposed reconstruction technique is also perfectly appli-

cable at millimeter wave frequencies, we use synthetic data. These are scattered fields

which are generated by the numerical scattering model with added white Gaussian

noise to mimic the effect of measurement noise. We have compared the quality of

the reconstructions for a plane wave illumination on the one hand and for a Gaus-

sian beam on the other hand. Here, it is concluded that the total number of iterations

in the optimization scheme is identical for both types of field, although simulation

times for Gaussian beam illumination are larger. The reconstructions with Gaussian

beams show some more local fluctuations in the permittivity profile. To conclude the

presented PhD work, a first attempt is made to simulate a millimeter wave imaging

technique for the detection of hidden objects under clothing. Therefore we use the

simplified human body model which is mentioned earlier. Due to the extremely large

dimensions we are however obliged to further simplify the used model, to reduce the

number of spectral components and to limit the number of illumination directions. De-

spite all these simplifications and limitations, one single iteration in the optimization

scheme (applying the Gauss-Newton optimization with line search) still lasts between

15 and 27 hours. Moreover, the human body makes all round illumination of the hid-

den object impossible, which limits the information content of the measurement data

even more and complicates the reconstruction. After about five days of computing and

6 iterations, the hidden object appears at the correct position and with the right dimen-

sions. The corresponding permittivity value fairly agrees with the actual value. This is

a good example to illustrate the possibilities of quantitative millimeter wave imaging,

but it also shows the present limitations of the presented method.
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A 2.5D ELECTROMAGNETIC QUANTITATIVE INVERSE

SCATTERING TECHNIQUE TO VISUALIZE CONCEALED

OBJECTS USING MILLIMETER WAVES





CHAPTER 1

General introduction

1.1. Situation

In this doctoral thesis, a quantitative electromagnetic imaging technique is developed

to detect hidden objects using millimeter waves.

The term electromagnetic imaging describes a number of techniques that try to

extract information about unknown objects, based on their electromagnetic behavior.

Such techniques are widely used in many different scientific domains. Geologists use

them to resolve different layers in soil or to estimate the size of magma chambers in

volcanos [1]. Rich geologists (sponsored by the oil industry) combine them with seis-

mic and acoustic methods to detect new oil supplies without performing the expensive

test drilling of boreholes [2]. For health care, electromagnetic imaging techniques are

of interest to detect breast cancer [3, 4, 5] or prostate cancer [6, 7], to monitor venti-

lation in chronic pulmonary diseases [8, 9] or to study the behavior of the heart [10].

Other applications are the localization of neurological defects in the brain from EEG

measurements [11] and the prevention of cot death [12, 13]. Non-destructive testing

techniques are developed to detect cracks in solid materials [14] or to localize metal

bars in reinforced concrete [15, 16].

Electromagnetic imaging techniques which are based on the use of electromag-

netic waves are denoted as inverse scattering methods, contrary to e.g. the Electrical

Impedance Tomography (EIT) imaging techniques [6, 9, 17]. Inverse scattering meth-

ods try to extract information about an object, based on how it scatters electromagnetic

radiation. In this extraction procedure, often called the inverse scattering problem, an

object is illuminated with known electromagnetic waves, e.g. from different direc-

tions, and the corresponding scattered fields are measured in a number of receiver

points. The measured data is then used to reconstruct the shape, dimensions, location

and electromagnetic material parameters – in this PhD the complex permittivity profile

– of the unknown object.
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The wide range of methods to solve an inverse scattering problem can roughly be

classified in two classes, depending on the type of information they extract from the

measurements. The first class contains the qualitative methods. Examples are radar

imaging [18, 19], diffraction tomography [20, 21, 22], the Linear Sampling method

[23, 24]. These methods provide approximate information on properties as reflectiv-

ity, induced currents: this only gives some idea of the shape, location and number of

objects. Qualitative methods use a linear or linearized model to relate the data and the

reconstruction parameters, which makes them quite fast compared to the second class,

the quantitative methods. Quantitative algorithms provide detailed information on the

intrinsic electromagnetic material properties of an object since they relate the data and

the reconstruction parameters exactly. This requires the solution of a system of non-

linear equations, instead of a linear or linearized version. Due to this non-linearity, it

is common to apply an iterative optimization procedure. The focus of this PhD work

lies entirely on the quantitative inverse problem.

Quantitative inverse scattering methods have been studied widely in the microwave

frequency range [25,26,27,28,29,30,31,32]. They are mainly used for medical imag-

ing [5, 33, 34, 35, 36, 37] and non destructive testing of materials [38, 39]. In this PhD

work however, we use millimeter waves. These waves have a wavelength between one

millimeter and one centimeter, corresponding to relatively high frequencies (30 to 300

GHz) in the electromagnetic spectrum.

The interest in millimeter waves recently has grown in the imaging research com-

munity thanks to its possible use in security applications [40, 41, 42, 43, 44, 45], al-

though the application range is much wider [46,47]. One of the most interesting prop-

erties of millimeter waves is that they easily penetrate clothing but reflect on the hu-

man body. This makes them perfectly suitable to detect weapons or explosives hidden

under clothing. X-rays offer no alternative to millimeter waves for this type of appli-

cation due to their ionizing nature and metal detectors fail at detecting non-metallic

hidden objects. However, most of the practical applications, such as the body scanners

which are currently installed at different international airports, are not quantitative

but qualitative imaging applications. In 2005, an SBO-IWT research project, funded

by the Flemish government, was initiated by the Vrije Universiteit Brussel (VUB)

as a cooperation between different universities (among which the department of In-

formation Technology of Ghent University) to develop a qualitative millimeter wave

imaging system for concealed object detection based on [48]. In this PhD work, we

have studied how millimeter waves can be used in the framework of a quantitative

inverse scattering technique.

The choice for millimeter waves largely complicates the numerical implementa-

tion of the quantitative inverse scattering technique for concealed object detection. In-

deed, the considered objects tend to be very large compared to the wavelength. There-

fore, full-wave three-dimensional computations as in [29, 35, 49, 50, 51] are hardly

feasible, since these methods result in a large amount of unknowns and thus a big

memory consumption and long simulation times. Another consequence of the chosen
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wavelength is that the type of illumination is usually a highly directive Gaussian beam,

contrary to the more uniform plane wave-like illuminations, which are typically used

in the microwave imaging community. The fully vectorial three-dimensional nature of

the Gaussian beam illumination forbids the use of a purely two-dimensional scattering

model [52,53,54]. However, since the beam illuminates a spatially limited region, the

size of the scattering problem can be reduced drastically by assuming that all objects

are cylindrical and infinitely long in one dimension. Consequently, it is sufficient to

only account for the cross section of the object, which makes a two-dimensional spa-

tial discretization possible. The incident Gaussian beam however has to maintain its

full three-dimensional nature in the numerical description. In this way we come to a

two-and-a-half-dimensional (2.5D) approach, where all objects are treated in two di-

mensions and all electromagnetic field quantities are treated in three dimensions. This

2.5D approach is justified for the detection of a concealed object on the human body

when, on a centimeter space scale, the geometric and material parameters of the object

and torso do not drastically change in the elongated direction.

1.2. Description of the problem

With the quantitative inverse scattering problem, the unknown permittivity profile is

related to the scattered field data in a non-linear way. Therefore, it is usually solved

iteratively as an optimization problem in which the object parameters – in this PhD

the complex permittivity – are the unknowns.

A major constituent of the quantitative inverse scattering problem is the numerical

scattering model, which computes the scattered fields that correspond to a given set of

object parameters and a given illumination. Generally, the input of a model is called

the model parameters, its output is denoted as the data. The evaluation of a numerical

scattering model for a given set of object parameters is often denoted as the forward
scattering problem, where the term forward indicates that the model parameters are

known, but the data need to be determined, see Fig. 1.1.

Forward
model

Model
parameters

Data ?Input Output

Figure 1.1: Flowchart of the forward problem.

In quantitative inverse scattering applications however, the model output (the data)

is at hand, while the model parameters are of interest. Since one works the other way

around, this procedure is called the inverse problem. An example of an iterative pro-

cedure to solve the inverse problem is shown in Fig. 1.2. One starts with an initial

guess for the model parameters and then uses the forward model to determine the
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corresponding scattered field data. In a next step, the computed scattered field data

are compared to the measured scattered field data. From this comparison, more suit-

able model parameters are obtained. This procedure is repeated until the simulated

scattered field is sufficiently close to the measured scattered field.

Initial
guess

Measured
data

Model
parameters ?

Simulated
data

Update model
parameters

Forward
model

Figure 1.2: Flowchart of solving the inverse problem.

In the practical implementation, a grid of pixels is used which contains the un-

known object. The complex values of the permittivity in all pixels of the considered

grid are the unknowns in the optimization problem. This approach to reconstruct ob-

jects is denoted a pixel based optimization scheme.

This PhD work contains two parts: a first part describes the forward scattering

problem, while a second part deals with the inverse scattering problem.

1.2.1 The forward problem: evaluating the numerical scattering model

The numerical scattering model computes the scattered field starting from a given per-

mittivity profile and a known electromagnetic plane wave or Gaussian beam illumina-

tion. This forward problem needs to be solved for each permittivity profile during the

optimization process. Therefore, a fast and efficient implementation is indispensable.

In literature, techniques have been presented to determine the three-dimensional

scattered fields of an infinitely long homogeneous cylinder, with circular or elliptic
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cross-section, that is illuminated by a plane wave [55]. These so-called analytic so-
lutions do not discretize the scattering object. Gouesbet [56] extended this theory to

the case of an arbitrary shaped incident beam within the framework of the General-

ized Lorenz and Mie Theorem and based on the variable separation method. However,

these techniques cannot handle inhomogeneous cylinders with arbitrary cross-section,

which strongly limits the range of possible scattering configurations. Furthermore, the

capability of simulating inhomogeneous cylinders is necessary when a forward solver

is to be included in a quantitative pixel-based inversion scheme. Therefore, in this

PhD work, we do not use the analytic solutions and their extensions to Gaussian beam

illumination to solve the forward problem.

Existing numerical 2.5D schemes were particularly designed to interpret exper-

imental data from ground penetrating radars in a geophysical context, see e.g. [1]

and for submarine imaging, see e.g. [57]. In these applications, three-dimensional low

frequency excitations induce scattered fields that are interpreted in a numerical inver-

sion scheme to reveal buried objects (e.g. pipe lines), different ground layers (e.g. gas

fields), etc. Different numerical techniques have been used in 2.5D forward problem

schemes. In [58], the Boundary Element Method (BEM) is adopted to compute the

scattered fields. The computational domain is restricted to be piecewise homogeneous

enabling to discretize only the boundaries. When the number of objects is increasing,

a BEM no longer offers an advantage compared to volume discretization schemes.

In [59], an improved Finite Difference Time Domain (FDTD) scheme is presented.

The method reduces the number of finite difference cells but (as all FDTD schemes)

needs absorbing boundary conditions such as perfectly matched layers to simulate

free space. This is also the case for a Finite Element Method (FEM), which is often

chosen for its flexible meshing capability. In [2], a Volume Integral Equation (VIE)

approach is adopted. The computational domain is discretized using identical cells

as in the FDTD method, but the interactions between the cells are described using

integral equations. Open boundary problems are naturally handled in this approach

avoiding the use of absorbing boundary conditions. Building on the existing experi-

ence in the research group, this PhD work applies a VIE approach to allow for strongly

inhomogeneous scattering objects.

Within the volume integral equation approach, the scatterer is discretized on a reg-

ular grid of cells. This is in contrast to boundary integral equation (BIE) methods

where only the boundaries of a piecewise homogeneous object are discretized [51]. In

each cell of the grid, the three components of the total field are determined by solv-

ing the VIE iteratively. However, since we apply the 2.5D assumption, we do not use

the well-known 3D VIE, but revert to a reformulated 2.5D expression. This is done

by Fourier transforming all 3D electromagnetic quantities along the elongated direc-

tion of the scatterers, for instance along the z-axis of a Cartesian coordinate system.

In this way, all field components have an (x,y,kz)-dependency instead of a (x,y,z)-
dependency, where kz is the spectral component. By performing this one dimensional

Fourier transform, the 3D VIE is rewritten as a set of 2D VIEs, one for each spectral
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component. After solving all 2D VIEs, the corresponding scattered field solutions are

combined to the desired 3D scattered field by performing a one dimensional inverse

Fourier transform.

The computation time, required to solve the VIEs is dramatically reduced by ap-

plying fast Fourier transforms. In this PhD, all computations are implemented using

multithreaded commands. Hence, the computations are performed by different pro-

cessors within one machine. Furthermore, the computational time is decreased by

proposing a well chosen initial guess for the total field at the start of the solution

process for each VIE. This initial guess is determined as a linear combination of pre-

vious total field solutions for similar configurations. This is known as the marching-on

technique [60, 61].

Besides the numerical scattering model, a model is required to describe the in-

cident electromagnetic field. While such a model is straightforward for a plane wave

illumination, this is not the case for a Gaussian beam illumination. Literature describes

different models to implement 3D Gaussian beams [62,63,64]. We have reformulated

these descriptions to fit the 2.5D approach. The most efficient model is based on the

complex source formulation [63, 64], applied to the 2.5D approach. Special attention

is devoted to limit the number of spectral components needed to describe the Gaus-

sian beam accurately, since one has to solve the same number of VIEs. Furthermore,

in the case of a Gaussian beam illumination, we demonstrate that the object does not

have to be infinitely long, as long as its extent is somewhat larger than the size of the

illuminated region and its electromagnetic permittivity is invariant along this extent.

We refer to such objects as quasi two-dimensional objects.

1.2.2 The inverse problem: estimating the model parameters

In the inverse scattering problem, the difference between measured and simulated scat-

tered fields is minimized by iteratively adapting the discretized permittivity profile.

The method we use is a Gauss-Newton optimization combined with a line search [65].

The computational efficiency of a Gauss-Newton scheme is improved when an analyt-

ical expression is available for the derivatives of the scattered fields with respect to the

permittivity unknowns. In this PhD work, such expressions are derived for the 2.5D

approach.

This inverse problem is ill-posed, which means that existence, uniqueness and

stability of a solution (convergence to the solution) cannot be guaranteed simultane-

ously [66]. To complicate matters even further, the electromagnetic inverse problem is

also non-linear, e.g. doubling the model parameters does not lead to a doubled scat-

tered field. In the following, it is illustrated how the ill-posedness and non-linearity

can be tackled.

• non-linearity:

If the experimental scattering data are collected in the data vector emeas and the

simulated scattered field data are collected in the vector escat(ε(ρρρ)), the inverse
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problem tries to solve

emeas = escat(ε(ρρρ)) (1.1)

for the permittivity profile ε(ρρρ). Here, escat(ε(ρρρ)) represents the forward problem,

evaluated for ε(ρρρ), with ρρρ = (x,y,z) the position vector. Due to its non-linearity,

the quantitative inverse scattering problem is solved in an iterative way.

• existence:

Measurements are hardly ever performed in ideal circumstances, usually the mea-

surement data will be corrupted by measurement noise. Furthermore, the numeri-

cal implementation of the forward model also introduces noise (as a consequence

of discretization, some approximations, ...) Due to these effects it is almost impos-

sible to find a profile ε(ρρρ) that yields an exact data fit (1.1). Therefore, this exact

data fit is replaced by the minimization of a least squares data fit:

||emeas − escat(ε(ρρρ))||2 (1.2)

• non-uniqueness:

Problems with non-uniqueness result from another characteristic of the inverse

problem: there are only a limited number of degrees of freedom in the measured

field data (the information content of the data is limited). The permittivity profile

however can have a large amount of degrees of freedom. Therefore, different

permittivity profiles can minimize the least squares data fit (1.2). The solution to

this problem is to provide as much non-redundant data as possible.

• stability:

The stability problem is a consequence of the fact that the computed scattered

fields are not very sensitive to changes in the permittivity profile. Large differences

in the permittivity profile (often with a high spatial frequency) only result in

small changes in the scattered fields. These small perturbations in the scattered

fields can get obscured when the data is polluted with noise, which can degrade

the reconstructed permittivity profile. So, information is lost due to noise on

the measured and simulated data. The usual way to cope with this is to apply a

proper regularization to the inverse problem to weaken unwanted variations in the

permittivity profile. A-priori information thus is added to the inverse problem to

compensate for this loss of information. Examples of such a-priori information

are the assumptions that there are no big jumps in the permittivity profile (smooth

object), or that there are only a limited number of distinct permittivity values

in the profile (piecewise homogeneous object). This additional information also

diminishes the effect of non-uniqueness since it also reduces the number of

degrees of freedom for the permittivity profile.
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Two existing regularization methods are applied in this PhD. The first method is

a spatial regularization technique, called multiplicative smoothing regularization [67].

In this case, a priori knowledge of a smooth permittivity profile is introduced in the

optimization problem. Hence, large local variations of the permittivity are suppressed.

This regularization adds the smoothing restriction multiplicatively to the data fit term.

The second regularization method is not spatial, but assumes that the permittivity pro-

file consists of a small number of discrete values which are not known in advance.

Consequently, this type of regularization is suited to reconstruct piecewise homoge-

neous objects. This method is called the stepwise relaxed value picking regulariza-

tion [67, 68]. Both regularization methods inspired us to formulate a new regular-

ization method which we called the stepwise relaxed object smoothed value picking

regularization technique. Similar to the stepwise relaxed value picking regularization,

this new method favors piecewise homogeneous objects by grouping the complex per-

mittivity values in the complex plane around an unknown number of reference values,

which are also part of the optimization process. Similar to the multiplicative smooth-

ing regularization, smoothness is enforced, but only within the homogeneous domains

that appear during the optimization. In this way, a spatial and non-spatial technique

are efficiently combined. This new regularization technique often has a longer simu-

lation time, but is especially useful when the original stepwise relaxed value picking

regularization leads to artifacts in the reconstructed profile.

1.3. Overview of the PhD work

The first part of this PhD work deals with the 2.5D forward solver. The implementa-

tion is detailed in Chapter 2. The first step is a proper discretization of the contrast

source integral equation after conversion to the 2.5-dimensional case, yielding multi-

ple linear sets of equations to be solved. The next step is to use an iterative method

(a Biconjugate Gradient iterative solver) to solve these systems and combine it with

accelerating techniques (e. g. the Fast Fourier Transform method and marching-on

techniques) to speed-up the solution process.

Chapter 3 describes the incident fields in detail. Two different types of illumina-

tions are studied: plane waves and Gaussian beams. Different models are studied for

the implementation of a Gaussian beam illumination.

The forward solver is validated for many different test cases: by comparing simula-

tions to analytic solutions and to results of fully three-dimensional numerical solvers,

also developed at the department of Information Technology [51, 69]. This extensive

validation is presented in Chapter 4 and in [70]. As an illustration for the concealed

weapon detection applications, a body scattering example is also simulated.

The last chapter in the forward problem part of this PhD work, Chapter 5, is de-

voted to the comparison of obtained numerical results to experimentally measured

fields. Measurements have been performed at the LAMI-ETRO department of Vrije
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Universiteit Brussel (VUB) and at the Institut Fresnel in Marseille. Results of this

comparison with experimental results are presented in [71].

The second part of this PhD work is devoted to the 2.5-dimensional electromag-

netic inverse scattering problem. Chapter 6 describes the implementation details: the

global configuration, the updating process for the complex permittivity, different def-

initions of cost functions and regularization strategies.

To validate the proposed quantitative inverse scattering technique, we use experi-

mental data. Since no amplitude and phase data in the millimeter wave range is avail-

able in the inversion community, we revert to microwave measurements. The Institut

Fresnel in Marseille provides a public database with 2D scattering measurements on

inhomogeneous cylinders under a plane wave illumination. Chapter 7 presents recon-

structions of these objects, for different regularization strategies.

Chapter 8 presents reconstructions from synthetic data in the millimeter wave

range. On the one hand, we compare reconstructions for a plane wave illumination

to reconstructions for a Gaussian beam illumination. On the other hand, a first attempt

is made to simulate a millimeter wave imaging technique for the detection of hidden

objects under clothing.

The last chapter of this PhD work contains the conclusion and proposes some

interesting further research topics.
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PART I
THE FORWARD PROBLEM





CHAPTER 2

Solving the forward problem

2.1. Introduction

The forward problem consists of determining the scattered fields that correspond to

a given permittivity profile of an object and some set of incident fields (multi-view

illumination). The forward solver presented in this chapter is developed to be part of

a quantitative imaging scheme. Hence, it should be able to simulate completely inho-

mogeneous objects. Therefore, a volume integral equation (VIE) scheme is selected.

The integral equation formulation implicitly accounts for the appropriate boundary

conditions by means of the Green’s function, whereas with a differential equation

formulation (Finite Element Method, Finite Difference Time Domain method,) the

boundary conditions need to be imposed explicitly.

Since the forward solver is intended to be used in the millimeter wave range

(small wavelength compared to object dimensions) computations can hardly be done

in a fully three-dimensional fashion, as already stated in Chapter 1. Therefore, a 2.5-

dimensional (2.5D) technique is adopted: the fields maintain their three-dimensional

character but the objects are restricted to be long inhomogeneous, possibly lossy, di-

electric cylinders with invariant electromagnetic properties along their axis. Due to

this assumption, it is sufficient to only discretize the two-dimensional cross-section of

the scattering objects, which strongly reduces the number of unknowns.

The 2.5D forward problem is expanded into a number of two-dimensional prob-

lems by performing a spatial Fourier transform of all fields along the invariant z-

direction. Each spectral Fourier component then corresponds to a particular two-

dimensional problem, that is formulated as a contrast source integral equation in terms

of the Fourier transformed electric fields. The different two-dimensional problems

only depend on the transverse spatial variable r. The Method of Moments is applied

to convert each two-dimensional problem to a linear set of equations, which is solved

with a fast iterative technique. After an inverse Fourier transformation, the different
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two-dimensional solutions are recombined to obtain the full three-dimensional scat-

tered field.

Zwamborn et al. [1, 2] determined a contrast source integral equation in terms of

a vector potential for the purely two-dimensional and three-dimensional cases. In this

work, we follow the same approach to derive and discretize a set of contrast source

integral equations for the 2.5D case. All this is discussed in the following sections of

this chapter.

2.2. Configuration

We assume that the scatterer is isotropic, dielectric (non-magnetic) and embedded in

free space (with permittivity ε0 and permeability μ0), and that it can be inhomoge-

neous. In the 2.5D assumption, the complex permittivity profile ε(r) of an object is

denoted as a function of the transverse two-dimensional position coordinate r. It is

a combination of the (real) relative dielectric permittivity ε′r(r) and the conductivity

σ(r):

ε(r) = ε0εr(r) = ε′(r)+ jε′′(r) = ε0ε′r(r)+ j
σ(r)

ω
, (2.1)

where we have omitted the angular frequency (ω) dependency in the various profiles.

The arbitrarily shaped cross-section of a dielectric cylinder is represented by S . The

axis of the cylinder is aligned with the z-axis of a three-dimensional cartesian coordi-

nate system ρρρ = r+ zuz, where r = xux + yuy defines the position in the xy-plane, see

Fig. 2.1.

All simulations are restricted to a single frequency and a time-dependence e− jωt

is assumed for all field related quantities. Hence, the (time-harmonic) incident electric

field (with three-dimensional character) can be denoted with the complex vector

Ei(r,z) = E i
1(r,z)ux +E i

2(r,z)uy +E i
3(r,z)uz

= [E i
1(r,z),E

i
2(r,z),E

i
3(r,z)]. (2.2)

The superscript ’i’ indicates the incident field, the superscript ’s’ represents the scat-

tered field. The total field (without superscript) is defined as the sum of incident and

scattered field:

E(r,z) = [E1(r,z),E2(r,z),E3(r,z)]
= Ei(r,z)+Es(r,z). (2.3)

2.3. Towards a set of Contrast Source Integral Equations

The derivation of the set of contrast source integral equations starts from the Maxwell

equations in the frequency domain for the three-dimensional total fields in a two-
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x
y

z

Ei(r, z)

ε(r)

ε0, μ0

S

Figure 2.1: 2.5D Configuration.

dimensional isotropic inhomogeneous dielectric medium (characterized by ε(r)):

∇×E(r,z) = jωμ0H(r,z) (2.4a)

∇×H(r,z) = Ji(r,z)− jωε(r)E(r,z) (2.4b)

∇ · (ε(r)E(r,z)) = ρi(r,z) (2.4c)

μ0∇ ·H(r,z) = 0 (2.4d)

with ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) and H(r,z) the total magnetic field. Ji(r,z) is an applied source

current density and ρi(r,z) the corresponding charge density.

By performing a Fourier transform of the electromagnetic fields along the

z-direction, the 2.5-dimensional forward problem transforms into a set of two-

dimensional problems. This spatial Fourier transform (denoted with a ” ̂ ” super-

script) is defined as

ĝ(r,kz) =
Z ∞

−∞
g(r,z)e− jkzzdz (2.5)

and its inverse transform as

g(r,z) =
1

2π

Z ∞

−∞
ĝ(r,kz)e jkzzdkz. (2.6)
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The spatial Fourier transform (2.5) of the Maxwell equations (2.4) yields the trans-

formed equations:

∇̂× Ê(r,kz) = jωμ0Ĥ(r,kz) (2.7a)

∇̂× Ĥ(r,kz) = Ĵi(r,kz)− jωε(r)Ê(r,kz) (2.7b)

∇̂ ·
(

ε(r)Ê(r,kz)
)

= ρ̂i(r,kz) (2.7c)

μ0∇̂ · Ĥ(r,kz) = 0 (2.7d)

where, following (2.6), ∇̂ = ( ∂
∂x ,

∂
∂y , jkz). In (2.7), Ĵi(r,kz) is the applied current den-

sity that generates the incident field Êi(r,kz) and ρ̂i(r,kz) is the charge density that

corresponds to Ĵi(r,kz).
Before deriving the set of two-dimensional contrast source integral equations, the term

contrast source is introduced.

2.3.1 Definition of a contrast source

The Fourier transformed Maxwell equations (2.7) can be reformulated in terms of

sources in a homogeneous free space medium:

∇̂× Ê(r,kz) = jωμ0Ĥ(r,kz) (2.8a)

∇̂× Ĥ(r,kz) = Ĵi(r,kz)− jω(ε(r)− ε0) Ê(r,kz)− jωε0Ê(r,kz) (2.8b)

ε0∇̂ · Ê(r,kz) = ρ̂i(r,kz)+
1

jω
∇̂ ·

[
− jω(ε(r)− ε0) Ê(r,kz)

]
(2.8c)

μ0∇̂ · Ĥ(r,kz) = 0 (2.8d)

Furthermore, the law of charge conservation is given by

ρ̂(r,kz) =
1

jω
∇̂ · Ĵ(r,kz). (2.9)

If this law is combined with equations (2.8), it can be seen that a solution

(Ê(r,kz),Ĥ(r,kz)) of Maxwell’s equations (2.7), is also a solution for the Maxwell’s

equations formulated for free space (2.8), where a source current density is introduced:

Ĵs(r,kz) = − jω(ε(r)− ε0) Ê(r,kz). (2.10)

In what follows, the electric flux density

D̂(r,kz) = [D̂1(r,kz), D̂2(r,kz), D̂3(r,kz)]

= ε(r)Ê(r,kz) (2.11)
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is chosen as the unknown field rather than the total field Ê(r,kz), in accordance with

[1]. Hence, the source current density (2.10) can be rewritten as

Ĵs(r,kz) = − jω
[ε(r)− ε0]

ε(r)
D̂(r,kz)

= − jωχ(r)D̂(r,kz). (2.12)

The quantity χ(r) is the normalized permittivity contrast function and differs from

zero only in the object with support S . Hence, the additional source current density

Ĵs(r,kz) is called the contrast current density.

From the linearity of the fields with respect to the sources in the Maxwell equations

(2.8), it follows that the incident field Êi(r,kz) satisfies

∇̂× Êi(r,kz) = jωμ0Ĥi(r,kz) (2.13a)

∇̂× Ĥi(r,kz) = Ĵi(r,kz)− jωε0Êi(r,kz) (2.13b)

ε0∇̂ · Êi(r,kz) = ρ̂i(r,kz) (2.13c)

μ0∇̂ · Ĥi(r,kz) = 0 (2.13d)

and the scattered field Ês(r,kz) satisfies

∇̂× Ês(r,kz) = jωμ0Ĥs(r,kz) (2.14a)

∇̂× Ĥs(r,kz) = − jωχ(r)D̂(r,kz)− jωε0Ês(r,kz) (2.14b)

ε0∇̂ · Ês(r,kz) =
1

jω
∇̂ ·

[
− jωχ(r)D̂(r,kz)

]
(2.14c)

μ0∇̂ · Ĥs(r,kz) = 0 (2.14d)

These equations give rise to the contrast source integral equation when the scattered

field is expressed in terms of a vector potential.

2.3.2 Scattered field in terms of a vector potential

Equations (2.14) are solved with the aid of a vector potential Âs(r,kz), defined as

Ĥs(r,kz) = − jωε0∇̂× Âs(r,kz). (2.15)

First, a Helmholtz equation is derived for this vector potential [3]. Therefore, (2.15) is

substituted in (2.14a) yielding

∇̂×
(

Ês(r,kz)− k2
0Âs(r,kz)

)
= 0, (2.16)
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with k2
0 = ω2ε0μ0. Equation (2.16) implies that Ês(r,kz)− k2

0Âs(r,kz) can be derived

from a scalar potential. Hence, we write

Ês(r,kz) = k2
0Âs(r,kz)+∇φ. (2.17)

Insertion of (2.15) and (2.17) in (2.14b) yields

∇̂2Âs(r,kz)+ k2
0Âs(r,kz) = −χ(r)D̂(r,kz)

ε0
+

(
∇̂

(
∇̂ · Âs(r,kz)

)
− ∇̂φ

)
. (2.18)

Applying the Lorenz gauge condition

∇̂ · Âs(r,kz)−φ = 0 (2.19)

finally yields the Helmholtz equation for the vector potential:

∇̂2Âs(r,kz)+ k2
0Âs(r,kz) = −χ(r)D̂(r,kz)

ε0
. (2.20)

The solution of this equation is given by

Âs(r,kz) =
1

ε0

Z
S

Ĝ(r,r′;kz)χ(r′)D̂(r′,kz)dr′, (2.21)

where the integration is limited to the object domain S , since the contrast χ(r) only

differs there from zero. The 2D Green’s function Ĝ(r,r′;kz) is the solution of the

Helmholtz equation

∇̂2Ĝ(r,r′;kz)+ k2
0Ĝ(r,r′;kz) = −δ(r′) (2.22)

or, since ∇̂2 = ∇2
2D − k2

z and ∇2
2D = ( ∂

∂x ,
∂
∂y ), of

∇2
2DĜ(r,r′;kz)+(k2

0 − k2
z )Ĝ(r,r′;kz) = −δ(r′). (2.23)

It is given by

Ĝ(r,r′;kz) =
j
4

H(1)
0

(√
k2

0 − k2
z |r− r′|

)
. (2.24)

and corresponds to the 2D Green’s function of homogeneous space with relative per-

mittivity εr = 1− k2
z /k2

0.

The second step consists of expressing the scattered field in terms of the vector

potential. Therefore, the Lorenz gauge condition (2.19) is inserted in (2.17) yielding

Ês(r,kz) =
(

k2
0I+ ∇̂∇̂

)
· Âs(r,kz), (2.25)

where I is the 3×3 identity dyadic.
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2.3.3 Set of Contrast Source Integral Equations

The contrast source integral equation (CSIE) for a given spectral component kz is now

obtained in terms of the electric flux density D̂(r,kz) by substituting (2.25), together

with (2.11), into (2.3):

Êi(r,kz) =
D̂(r,kz)

ε(r)
−

(
k2

0I+ ∇̂∇̂
)
· Âs(r,kz), (2.26)

where the vector potential Âs(r,kz) is given by (2.21).

Figure 2.2 shows the 2.5D forward model for a given permittivity ε(r) and inci-

dent field Ei(r,z) as a set of contrast source integral equations (2.26) with varying

kz. First, a Fourier transform is performed on the incident field Ei(r,z). Every spec-

tral component corresponds to a particular 2D forward problem (2.26) which is then

solved for the unknown electric flux density D̂(r,kz). Next, the corresponding scat-

tered fields Ês(r,kz) are combined, yielding the final three-dimensional scattered field

after an inverse Fourier transform.
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Figure 2.2: Forward model.

The number of spectral components kz, and hence the number of forward prob-

lems, depends on the type of incident field. In this PhD work, plane waves and Gaus-

sian beams are used. The Fourier transformation of a plane wave only yields one

spectral component, more particularly the projection of the propagation vector k on

the z-axis. The Fourier transformation of a Gaussian beam is also Gaussian, hence its

spectrum is concentrated around the projection of the beam propagation vector k on

the z-axis, which restricts the number of 2D problems to be solved. These incident

fields are thoroughly discussed in Chapter 3.

Figure 2.3 illustrates the iterative solution of the CSIE (2.26), where the grey box

represents one CSIE-block from Fig. 2.2. First, one takes an initial guess for the elec-

tric flux density D̂(r,kz) = D̂init(r,kz) within S . Next, the corresponding vector poten-

tial Âs(r,kz) is computed based on formula (2.21). Both electric flux density and vec-

tor potential are then plugged into the right hand side (RHS) of equation (2.26). This

RHS is compared to the known left hand side (LHS), i.e. the incident field Êi(r,kz)
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within S . If the difference between RHS and LHS is sufficiently small (i.e. smaller

than a predefined treshold), it is assumed that the current value for D̂(r,kz) is the solu-

tion. If not, a new guess for the electric flux density D̂(r,kz) = D̂′(r,kz) is made by the

Biconjugate Gradient iterative routine [4] and the process starts all over again. Once

the solution for D̂(r,kz) is obtained, the corresponding total field can be computed

from (2.11). The scattered field within S immediately follows from (2.11), while the

scattered field on the detectors is computed with (2.21) and (2.25).

start
( , k ) =D r z D rinit z( , k )

D r( , k )z

A r
s
( , k )z
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Figure 2.3: CSIE model.
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The contrast source integral equation (2.26) takes the following form for each

component individually:

Ê i
1(r,kz) =

D̂1(r,kz)
ε(r)

− k2
0Âs

1(r,kz)

− ∂2

∂x2
Âs

1(r,kz)− ∂2

∂x∂y
Âs

2(r,kz)− jkz
∂
∂x

Âs
3(r,kz), (2.27a)

Ê i
2(r,kz) =

D̂2(r,kz)
ε(r)

− k2
0Âs

2(r,kz)

− ∂2

∂x∂y
Âs

1(r,kz)− ∂2

∂y2
Âs

2(r,kz)− jkz
∂
∂y

Âs
3(r,kz), (2.27b)

Ê i
3(r,kz) =

D̂3(r,kz)
ε(r)

− k2
0Âs

3(r,kz)

− jkz
∂
∂x

Âs
1(r,kz)− jkz

∂
∂y

Âs
2(r,kz)+ k2

z Âs
3(r,kz), (2.27c)

where the indices 1,2,3 denote the x-, y- and z-component respectively.

The CSIE (2.27) for the Fourier transformed field vector D̂(r,kz) differs from the

CSIE for the two-dimensional TE field vector in Zwamborn and Van den Berg [1]

by the extra terms ∂
∂x Âs

3(r,kz) and ∂
∂y Âs

3(r,kz) in the first two equations and by the

additional third equation.

2.4. Discretization scheme

For every spectral parameter kz in the incident field, the contrast source integral equa-

tion ((2.26) or (2.27)) must be solved numerically, which requires a discretization of

the involved quantities.

Since all variables in (2.26) only depend on the transverse spatial variable r, a 2D

spatial discretization is applied:

• The permittivity ε(r) is discretized on a uniform square grid.

• Equation (2.26) is discretized with a Galerkin Method of Moments, whereby the

unknown field quantities D̂(r,kz) and Âs(r,kz) are expanded in basis functions and

equation (2.26) is tested with appropriate testing functions.

• The expression for the vector potential (2.21) is discretized in a way to preserve

convolution symmetry.

2.4.1 Discretization grids

In this PhD work we have extended the 2D Galerkin Method of Moments discretiza-

tion presented in [1] to the 2.5D case. Consider a rectangular computational do-

main D , which completely includes the support S of the scatterer and which is uni-

formly meshed in Ns × Ms square cells with edge size Δ and with center points
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r(0)
n,m = (nΔ, mΔ), with n = 0 . . .Ns − 1,m = 0 . . .Ms − 1, see Fig. 2.4. In each cell,

the complex permittivity and contrast are assumed to be constant with values εn,m and

χn,m, respectively.

Figure 2.4: Discretization within the computational domain D of an object with cross-sectional

shape S into square cells with center r(0)
n,m and edge size Δ.

Furthermore, three staggered grids are introduced, see Fig. 2.5:

r(1)
n,m = [(n− 1

2
)Δ, mΔ],

r(2)
n,m = [nΔ, (m− 1

2
)Δ],

r(3)
n,m = [nΔ,mΔ]. (2.28)

x

y

Figure 2.5: Center points of staggered grids, as defined in (2.28).
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2.4.2 Discretization of the Contrast Source Integral Equation

The CSIE is tested by multiplying the equations for the x-, y- and z- component in

(2.27) with scalar functions ψ(p)(r(p)
n,m − r) for n = 0 . . .Ns − 1,m = 0 . . .Ms − 1 and

where p = 1,2,3 denotes the x-, y- and z-component respectively. Afterwards, these

products are integrated over the computational domain D . For the x-component, for

example, this testing procedure yields

Z
D

Ê i
1(r,kz)ψ(1)(r(1)

n,m − r)dr =
Z

D

D̂1(r,kz)
ε(r)

ψ(1)(r(1)
n,m − r)dr

− k2
0

Z
D

Âs
1(r,kz)ψ(1)(r(1)

n,m − r)dr−
Z

D

∂2

∂x2
Âs

1(r,kz)ψ(1)(r(1)
n,m − r)dr

−
Z

D

∂2

∂x∂y
Âs

2(r,kz)ψ(1)(r(1)
n,m − r)dr− jkz

Z
D

∂
∂x

Âs
3(r,kz)ψ(1)(r(1)

n,m − r)dr.

The next step is to expand every component p of all field quantities (Ê i
p(r,kz),

D̂p(r,kz) and Âs
p(r,kz)) in basis functions ψ(p)(r− r(p)

k,l ):

Ê i
p(r,kz) = ∑

k,l
Ê i

p;k,l ψ(p)(r− r(p)
k,l ),

D̂p(r,kz) = ε0 ∑
k,l

d̂p;k,l ψ(p)(r− r(p)
k,l ),

Âs
p(r,kz) = ∑

k,l
âp;k,l ψ(p)(r− r(p)

k,l ). (2.29)

To simplify the notations, the kz-dependence of the expansion coefficients Ê i
p;k,l , d̂p;k,l

and âp;k,l is omitted. In principle, it is not necessary to expand also the vector potential

since this introduces small inaccuracies, but it yields a considerable acceleration for

each iteration [1, 2].

Now, the expanded fields are introduced in the tested CSIE. This leads to the set of

equations, in which the coefficients d̂p;k,l are the unknowns:
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∑
k,l

Ê i
1;k,lv

(1)(r(1)
k,l ,r

(1)
n,m) = ∑

k,l
d̂1;k,lu(1)(r(1)

k,l ,r
(1)
n,m)− k2

0 ∑
k,l

â1;k,lv(1)(r(1)
k,l ,r

(1)
n,m)

+∑
k,l

â1;k,lw(1,1)(r(1)
k,l ,r

(1)
n,m)+∑

k,l
â2;k,lw(1,2)(r(2)

k,l ,r
(1)
n,m)

+ jkz ∑
k,l

â3;k,lw(1,3)(r(3)
k,l ,r

(1)
n,m)

∑
k,l

Ê i
2;k,lv

(2)(r(2)
k,l ,r

(2)
n,m) = ∑

k,l
d̂2;k,lu(2)(r(2)

k,l ,r
(2)
n,m)− k2

0 ∑
k,l

â2;k,lv(2)(r(2)
k,l ,r

(2)
n,m)

+∑
k,l

â1;k,lw(2,1)(r(1)
k,l ,r

(2)
n,m)+∑

k,l
â2;k,lw(2,2)(r(2)

k,l ,r
(2)
n,m)

+ jkz ∑
k,l

â3;k,lw(2,3)(r(3)
k,l ,r

(2)
n,m)

∑
k,l

Ê i
3;k,lv

(3)(r(3)
k,l ,r

(3)
n,m) = ∑

k,l
d̂3;k,lu(3)(r(3)

k,l ,r
(3)
n,m)− (k2

0 − k2
z )∑

k,l
â3;k,lv(3)(r(3)

k,l ,r
(3)
n,m)

− jkz ∑
k,l

â1;k,lw(3,1)(r(1)
k,l ,r

(3)
n,m)

− jkz ∑
k,l

â2;k,lw(3,2)(r(2)
k,l ,r

(3)
n,m). (2.30)

The functions u(p)(r(p)
k,l ,r(p)

n,m), v(p)(r(p)
k,l ,r(p)

n,m) and w(p,q)(r(q)
k,l ,r

(p)
n,m) contain the expan-

sion and testing functions:

u(p)(r(p)
k,l ,r(p)

n,m) =
Z

D

ε0

ε(r)
ψ(p)(r− r(p)

k,l )ψ(p)(r(p)
n,m − r)dr p = 1,2,3,

v(p)(r(p)
k,l ,r(p)

n,m) =
Z

D
ψ(p)(r− r(p)

k,l )ψ(p)(r(p)
n,m − r)dr p = 1,2,3,

w(p,q)(r(q)
k,l ,r

(p)
n,m) =

Z
D

(
∂
∂q

ψ(q)(r− r(q)
k,l )

)(
∂

∂p
ψ(p)(r(p)

n,m − r)
)

dr p,q = 1,2,

w(p,3)(r(3)
k,l ,r

(p)
n,m) =

Z
D

ψ(3)(r− r(3)
k,l )

(
∂

∂p
ψ(p)(r(p)

n,m − r)
)

dr p = 1,2,

w(3,p)(r(p)
k,l ,r(3)

n,m) =
Z

D

(
∂

∂p
ψ(p)(r− r(p)

k,l )
)

ψ(3)(r(3)
n,m − r)dr p = 1,2.

(2.31)

To maintain the coupling between the field components in (2.30), the derivatives
∂

∂p ψ(p) in (2.31) for p = 1,2 = x,y must be non-zero. Therefore, the expansion and

testing functions are chosen as [5]

ψ(1)(r) = Λ(x;2Δ) Π(y;Δ),

ψ(2)(r) = Π(x;Δ) Λ(y;2Δ),

ψ(3)(r) = Π(x;Δ) Π(y;Δ). (2.32)
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The basis function Λ(u;2Δ) is a one-dimensional triangle function with support 2Δ:

Λ(u;2Δ) =

{
u+Δ

Δ −Δ ≤ u ≤ 0
Δ−u

Δ 0 ≤ u ≤ Δ
(2.33)

and Π(u;Δ) is a one-dimensional pulse function with support Δ:

Π(u;Δ) =

⎧⎪⎨⎪⎩
0 u ≤−Δ

2

1 −Δ
2 ≤ u ≤ Δ

2

0 u ≥ Δ
2

. (2.34)

Note that, for this choice of expansion and testing functions, the expansion coefficients

in (2.29) satisfy

Ê i
p;k,l = Ê i

p(r
(p)
k,l ,kz),

ε0d̂p;k,l = D̂p(r
(p)
k,l ,kz), (2.35)

âp;k,l = Âs
p(r

(p)
k,l ,kz).

Furthermore, the expressions for u(p)(r(p)
k,l ,r(p)

n,m), v(p)(r(p)
k,l ,r(p)

n,m) and w(p,q)(r(q)
k,l ,r

(p)
n,m)

in (2.31) can be evaluated analytically. This yields the final discretized form of the

contrast source integral equation:

3

∑
k=1

Ê i
1;n+k−2,mvk =

3

∑
k=1

d̂1;n+k−2,mu(1)
k +

3

∑
k=1

â1;n+k−2,mck

−
2

∑
k=1

2

∑
l=1

â2;n+k−2,m+l−1w(1,2)
k,l − ikzΔ(â3;n,m − â3;n−1,m)

3

∑
l=1

Ê i
2;n,m+l−2vl =

3

∑
l=1

d̂2;n,m+l−2u(2)
l +

3

∑
l=1

â2;n,m+l−2cl

−
2

∑
k=1

2

∑
l=1

â1;n+k−1,m+l−2w(2,1)
k,l − ikzΔ(â3;n,m − â3;n,m−1)

Δ2Ê i
3;n,m = Δ2 1

εr;n,m
d̂3;n,m −Δ2(k2

0 − k2
z )â3;n,m

−ikzΔ(â1;n+1,m − â1;n,m)− ikzΔ(â2;n,m+1 − â2;n,m) ,

(2.36)
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where ci, u(p)
i , vi and w(p,q)

i, j , for p,q = 1,2 are the i-th and (i, j)-th elements of

u(1) =
Δ2

6

⎡⎢⎣
1

εr;n−1,m
2

εr;n−1,m
+ 2

εr;n,m
1

εr;n,m

⎤⎥⎦ , u(2) =
Δ2

6

⎡⎢⎣
1

εr;n,m−1
2

εr;n,m−1
+ 2

εr;n,m
1

εr;n,m

⎤⎥⎦ ,

c = −k2
0

Δ2

6

⎡⎣1

4

1

⎤⎦−
⎡⎣ 1

−2

1

⎤⎦ , v =
Δ2

6

⎡⎣1

4

1

⎤⎦ ,

w(1,2) = w(2,1) =
[

1 −1

−1 1

]
. (2.37)

2.4.3 Discretization of the vector potential expression

For given values of the expansion coefficients d̂p;n,m of the electric flux density, the

expansion coefficients âp;n,m of the vector potential are computed with a discretized

version of the vector potential expression (2.21). Therefore, all components D̂p(r,kz)
of the electric flux density are replaced by their expansion (2.29) in (2.21). This yields

an integration of the contrast multiplied by the basis functions, which is accounted for

by introducing three different contrast functions:

χ(1)
n,m =

χ(r(0)
n−1,m)+χ(r(0)

n,m)

2
,

χ(2)
n,m =

χ(r(0)
n,m−1)+χ(r(0)

n,m)

2
, (2.38)

χ(3)
n,m = χ(r(0)

n,m).

The Green’s function Ĝ(r,r′;kz) (2.24) is discretized by integrating it over circular

patches with center r(0)
n,m = (nΔ, mΔ) and radius Δ/2 [6] and then dividing the result

by the patch surface [1]:

gn,m =

⎧⎪⎨⎪⎩
i

Δ
√

k2
0−k2

z
J1

(√
k2

0 − k2
z

Δ
2

)
H(1)

0

(√
k2

0 − k2
z
√

n2 +m2Δ
)

i
Δ
√

k2
0−k2

z

(
H(1)

1

(√
k2

0 − k2
z

Δ
2

)
+ 4i

πΔ
√

k2
0−k2

z

)
if n=m=0.

(2.39)

This way of discretizing the expression for the vector potential (2.21) preserves its

convolution symmetry. Therefore, a discrete version of the convolution theorem [7]

can be applied to express the vector potential coefficients âp;n,m by means of the two-

dimensional Discrete Fourier Transform (DFT)

âp;n,m = Δ2DFT−1
[
DFT [gn,m] DFT [χ(p)

n,md̂p;n,m]
]
. (2.40)
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Using DFT’s to evaluate the vector potential coefficients substantially accelerates the

computation of the forward problem.

2.5. Iterative solution of the discretized set of equations

The linear set of equations (2.36) is solved for the unknown electric flux density coef-

ficients d̂p;n,m with an iterative stabilized biconjugate gradient method (BICGS) [4,8].

Starting from an initial estimate for d̂p;n,m, e.g. d̂p;n,m = 0, the corresponding values

of the vector potential coefficients âp;n,m are computed from (2.40). The RHS of the

discretized system (2.36) is evaluated and compared to the known LHS. From this

comparison, a better estimate for d̂p;n,m is derived. This iterative procedure is stopped

when the error between RHS and LHS is smaller than a predefined threshold. Since

the discretized system (2.36) is solved successively for increasing values of kz, the

total number of iterations can be significantly reduced by choosing the initial esti-

mate for d̂p;n,m not equal to zero but with a marching-on-in-kz technique [9]. Once

the coefficients d̂p;n,m are known, all field related quantities (electric flux density, vec-

tor potential, total and scattered field) can be characterized in every grid point of the

computational domain D .

2.6. From grid to detector

In many applications, and for sure in quantitative imaging, one is only interested in

scattered field values in some predefined detector points rR, where R stands for re-

ceiver, lying outside the computational domain D . The scattered field in the detector

points rR can be computed from the electric flux density coefficients d̂p;n,m by dis-

cretizing the expression

Ês(rR,kz) =
(

k2
0I+ ∇̂∇̂

)
· Âs(rR,kz), (2.41)

where the vector potential in rR is given by

Âs(rR,kz) =
1

ε0

Z
r′∈D

Ĝ(rR,r′;kz)χ(r′)D̂(r′,kz)dr′. (2.42)

However, from (2.35), the electric flux density D̂(r′,kz) is known on the staggered

grid points (2.28), whereas the contrast is characterized in the center points r(0)
k,l of the

cell. To obtain the electric flux density coefficients in the center of the cells, denoted

as d̂(0)
k,l , from the values on the staggered grids (2.28), the following approximations
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are made:

d̂ (0)
1;k,l =

d̂1;k,l + d̂1;k+1,l

2
,

d̂ (0)
2;k,l =

d̂2;k,l + d̂2;k,l+1

2
, (2.43)

d̂ (0)
3;k,l = d̂3;k,l .

When the expression for the vector potential (2.42) is inserted in (2.41) and the integral

is discretized, the scattered field Ês(rR,kz) is obtained from the electric flux densities

d̂(0)
k,l through

Ês(rR,kz) = Δ2
Ns

∑
k=0

Ms

∑
l=0

(
(k2

0I+ ∇̂∇̂) Ĝ(rR,r(0)
k,l ;kz)

)
·
(

χk,l d̂(0)
k,l

)
. (2.44)

Here, the grad-div operation is with respect to the receiver coordinate rR in the Green’s

function

Ĝ(rR,r(0)
k,l ;kz) =

j
4

H(1)
0

(√
k2

0 − k2
z |rR − r(0)

k,l |
)

(2.45)

and can be evaluated analytically.

When the scattered field Ês(rR,kz) is computed in the detector points for each

spectral component kz, the final three-dimensional scattered field Es(rR,z) is obtained

by performing the inverse spatial Fourier transformation with respect to kz

Es(rR,z) =
1

2π

Z +∞

−∞
Ês(rR,kz)eikzzdkz. (2.46)

Equation (2.46) suggest that the CSIE should be solved for an infinite number of

spectral components of the incident field, ranging from −∞ to +∞. In practice, we use

a discretized version of (2.46) where a finite number of appropriately chosen kz values

are retained. This will be discussed in Chapter 3.

2.7. Acceleration techniques

In the forward problem, the discretized CSIE (2.36) is solved iteratively. The best

way to reduce the computation time of the iterative routine, is reducing the number of

iterations itself by making a good initial guess for the electric flux density. In this PhD

work, this is done by using two different marching-on techniques.

Furthermore, the computation time for a single iteration is reduced by paying extra

attention to a fast and efficient implementation of the computations that are involved.

This is even more useful when the forward solver is to be included in an inverse

scheme, since in that case the number of CSIE’s to be solved increases significantly:

there are different CSIE’s for every spectral component of every incident field and this
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for every update of the permittivity profile. The first step in an iteration is the calcula-

tion of the vector potential expansion coefficients (2.40), which is already speeded-up

substantially by using DFT’s. In this step, the most time consuming computations are

the three forward DFT’s of the contrast sources, one forward DFT of the Green’s ma-

trix and three inverse DFT’s to obtain the vector potential coefficients. The second

step in an iteration is the right hand side evaluation of the CSIE (2.36), which needs

a large amount of multiplications and summations. The third step is the computation

of the scattered field in the detector points ((2.44) - (2.46)), involving many Hankel

function evaluations and a large amount of multiplications and summations.

Different acceleration techniques are proposed:

• Using multithreaded commands: this speeds up the forward and inverse DFT’s,

together with the RHS evaluation of the CSIE.

• Accelerating the forward and inverse DFT’s when applied to zero padded matrices.

• Performing computations that are common for many RHS evaluations of the CSIE

and storing their results in memory in the set-up phase of the algorithm.

”There is no such thing as free lunch”, stated Milton Friedman and this principle ap-

plies also here. In most cases, no acceleration can be achieved without extra memory

consumption. Therefore, once the geometry and incident fields are initialized, an esti-

mation for the memory consumption is made. Based on this memory estimation, we

manually tune the different acceleration techniques so that the achieved acceleration

is maximal without overriding the memory limit.

2.7.1 Multithreaded commands

A common way to speed up computations is performing them in a parallel way: the

computations are spread out over multiple processors on multiple machines, each hav-

ing their own memory to store results. In such an approach, special attention has to

be paid to the communication between all machines [10]. An intermediate solution,

which avoids the communication problems between separate machines, is the use of

so-called multithreaded commands [11]: computations run on multiple processors of

one machine, all accessing the same memory.

When the forward solver is used as a scattering simulator, but not as a part of an

inverse solver, we use multithreaded versions of standard forward and inverse DFT

routines [12]. Since there is a slight overhead, the acceleration factor for the Fourier

transforms is somewhat smaller than the number of processors that is used to perform

the Fourier transforms. The evaluation of the right hand side of the CSIE in every grid

point is also done in a multithreaded manner: all evaluation points are distributed over

the available processors and each processor computes the RHS only for the points as-

signed to it. Since these RHS evaluations are independent of each other, no problems

arise with processors that are waiting for results of other processors as input or pro-

cessors simultaneously trying to write in the same memory location. The principle of
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distributing a single forward problem over all cores of a machine is shown in Fig. 2.6

(a).

When the forward solver is included in an inversion algorithm, a parallelization is

achieved on a coarser level (see Fig. 2.6 (b)): the forward problems are distributed over

all available processors and each forward problem is computed single-threaded by a

particular processor. Due to the smaller overhead, this yields the largest acceleration,

but it also requires much more memory, since all forward problem related matrices,

which differ for each forward problem, are now stored simultaneously (instead of

sequentially in one matrix). Therefore, a trade off is made between accelerating the

forward problems itself by distributing them over multiple processors and distributing

complete forward problems, as in Fig. 2.6(c).
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Figure 2.6: Computations are spread out over multiple processors (dotted lines) of a machine to re-
duce computation time: (a) A single forward problem is multithreaded using all available processors,
(b) forward problems of an inverse problem are distributed over different processors and (c) a single
forward problem is distributed over half of the available processors, allowing two forward problems
to be computed simultaneously.

2.7.2 Accelerated computation of Discrete Fourier Transforms

In Section 2.4.3, it is stated that the vector potential expansion coefficients âp;n,m are

computed in a fast way by using two-dimensional forward and inverse discrete Fourier

transforms:

âp;n,m = Δ2DFT−1
[
DFT [gn,m] DFT [χ(p)

n,md̂p;n,m]
]
.

Due to the cyclic nature of the DFT, the Ns ×Ms matrices gn,m and χ(p)
n,md̂p;n,m are in

fact periodically extended. In order to preserve a correct evaluation of the convolu-
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tion product, the contrast source matrix χ(p)
n,md̂p;n,m needs to be zero padded prior to

applying the DFT. This means that an equal amount of zeros is added in both x- and

y- directions, enlarging this matrix to a 2Ns × 2Ms matrix. Furthermore, the matrix

containing the Green’s function elements gn,m must be constructed in the so called

wrapped around order, also yielding a 2Ns ×2Ms matrix (without zeros).

For the two-dimensional forward and inverse DFT’s of the involved complex ma-

trices, a fast standard two-dimensional routine from the FFTW library [12] can be

used. This routine contains two steps: first, 2Ms times a one-dimensional Fourier trans-

form of an array of size 2Ns in the x-direction, second 2Ns times a one-dimensional

Fourier transform of an array of size 2Ms in the y-direction. As such, it does not ex-

ploit the structure of the zero padded contrast source matrix. This is illustrated in Fig.

2.7, where in Fig. 2.7(a) the contrast source matrix is represented as the grey part and

the zeros, added after zero padding, as the white part .
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Figure 2.7: Performing a two-dimensional DFT on a 2Ns × 2Ms matrix is a two-step procedure:
first, 2Ms times a one-dimensional Fourier transform of an array of size 2Ns in the x-direction ((a)
to (b)) and afterwards 2Ns times a one-dimensional Fourier transform of an array of size 2Ms in the
y-direction ((b) to (c)).

In the first step of the standard 2D DFT routine, Ms one-dimensional DFT’s are

thus performed on arrays containing only zero elements (the right part of the matrix

in Fig. 2.7 (a)). To avoid this, we do not use the standard 2D DFT routine but the fast

standard one-dimensional DFT routine from the FFTW library [12] and omit the 1D

DFT’s on zero arrays. For example, in case of square matrices (Ns = Ms), the reduc-

tion from 2Ms + 2Ns to only Ms + 2Ns one-dimensional DFT’s decreases the compu-

tational effort by 25%. For the 2D inverse Fourier transform, this two-step scheme is

performed in the opposite direction, starting with Fig. 2.7 (c) and ending with Fig. 2.7

(a). Note furthermore that the number of elements in x- and y-direction (Ns and Ms

respectively) are rounded up to the nearest appropriate FFT size [12] these standard

DFT’s routines are optimized for.
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2.7.3 Green’s function computations in set-up

The vector potential coefficients âp;n,m given by (2.40) have to be updated in each

iteration of the forward solver. Since the Green’s function matrix gn,m does not depend

on the field coefficients d̂p;n,m, it can be evaluated during the initial set-up phase. For

a given set of spectral components kz, the forward DFT’s of the matrices gn,m for each

kz thus are stored in memory.

A similar approach is used to accelerate the computation of the scattered field in

the detector points (2.44) where the term (k2
0I + ∇̂∇̂) Ĝ(rR,r(0)

k,l ;kz) is computed in

advance for every spectral component kz. When the number of unknowns is too large

such that the grid-grid and grid-detector Green’s function matrices cannot be stored in

the available memory, then their elements need to be continuously recalculated.

2.7.4 Marching-on techniques

A common initial guess for the unknowns in the iterative solution of the CSIE (2.36)

is the total field equal to zero: all d̂p;n,m = 0 (p = 1,2,3). However, if multiple forward

problems are solved for slightly different incident fields (e.g. plane waves with slightly

different incident angles), it can be expected that the corresponding field solutions

do not differ considerably. Therefore, field solutions from previously solved similar

forward problems can be extrapolated to yield a suitable initial guess for the current

forward problem. This guess is already close to the final solution and hence reduces

the number of iterations considerably without influencing the final result.

Extrapolating previous solutions to determine an initial guess for a similar prob-

lem is performed by applying a marching-on technique. The only requirement for the

method to be efficient is that the total field error which is chosen as the stopping crite-

rion (related to the desired accuracy of the solution) is not much lower than the total

field error, that is introduced by the discretization and noise [13]. The most common

applications are marching-on-in-frequency, marching-on-in-angle and marching-on-

in-shape, where forward problems must be solved at different frequencies, for differ-

ent angles of incidence or for different scatterer shapes respectively [9, 14].

Marching-on techniques are implemented as follows [9]. First, a linear operator L
is introduced which represents the evaluation of the RHS of the CSIE for the current

value of d̂, where the vector d̂ contains all components (p = 1,2,3) of the electric

flux density expansion coefficients d̂p;n,m in all cells. Similarly, all components of the

discretized incident field are collected in the vector êi. Hence, the CSIE (2.26) can be

represented as

êi = L d̂ (2.47)
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If K previous solutions are taken into account, the initial guess for solving the l-th
forward problem is determined as:

d̂init
l =

K

∑
k=1

βk d̂k (2.48)

The extrapolation coefficients βk are found by minimizing the squared error between

LHS and RHS of the CSIE, corresponding to the current (l-th) forward problem:

||L d̂init
l − êi

l ||2. (2.49)

Hence, the linear system of K equations

K

∑
k=1

[L d̂k′ ]HL d̂kβk = [L d̂k′ ]H êi
l k′ = 1 . . .K (2.50)

yields the expansion coefficients βk. Usually, K is chosen to be 2 or 3 [9].

In this PhD work, forward problems must be solved for a set of spectral components

for the case of a Gaussian beam illumination. Furthermore, when the forward solver

is embedded in an inversion algorithm, there are multiple incident fields that sequen-

tially illuminate the target. Two different marching-on techniques can therefore be

used: marching-on-in-spectral-component and marching-on-in-incident-field, depend-

ing on the configuration. For an inverse problem with Gaussian beams as incident

fields, the marching-on-in-spectral-component is combined with the marching-on-in-

incident field, as shown in Fig. 2.8 with the marching-on-in-spectral-component tech-

nique represented as red arrows and the marching-on-in-incident field represented as

green arrows. Suppose the Gaussian beams are simulated with n spectral components.

For the first spectral component k1
z of the first incident field, no previous solutions are

available. Therefore, the initial guess for the electric flux density d̂init
l is set to zero. For

the second spectral component, one previous solution is taken into account, while for

the third spectral components, two solutions can be used in the extrapolation. Further

on (for the next n−3 spectral components), the three latest solutions are combined. In

that way, all CSIE’s that correspond to the n spectral components of the first incident

field are efficiently solved. Now, the first spectral component of the second incident

field is simulated with as initial guess the field solution of the first illumination, at the

same spectral component k1
z . For the following spectral components, the same pro-

cedure is adopted as for the marching-on-in-spectral-component of the first incident

field. To summarize, marching-on-in-spectral-component is used for simulations cor-

responding to the same 3D incident field, while the marching-on-in-incident-field is

used to generate initial guesses for the first spectral component of 3D incident fields.

These marching-on techniques require the storage of previous solutions, this is why

for very large problems, the number of previous solutions that are taken into account

is reduced, or only one or none of the marching-on techniques is used.
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2.8. Conclusion

In this chapter, we have detailed the implementation of the 2.5D forward solver. Since

it is developed to be part of a quantitative imaging scheme, it should be able to sim-

ulate completely inhomogeneous objects. Hence, a volume integral equation scheme

was selected. The well known contrast source integral approach for two- and three-

dimensional configurations is in this PhD work reformulated for the 2.5-dimensional

case. This 2.5D formulation for the contrast source integral equation is derived from

the Maxwell equations by performing a spatial Fourier transform of the electromag-

netic fields along the invariant direction of the scatterer. As such, instead of one

three-dimensional contrast source integral equation, a set of two-dimensional con-

trast source integral equations is obtained, one for every spectral component. The dis-

cretized version of the integral equation is iteratively solved by applying a Biconjugate

gradient method. Since the forward solver is to be included in an inverse one, special

attention has been paid to a fast and efficient implementation. We have used multi-

threaded commands to speed up computations, accelerated two-dimensional DFT’s of

zero-padded matrices by omitting one-dimensional DFT’s on zero arrays and moved

Green’s function computations to the set-up phase. Furthermore, a marching-on-in-

incident-field and a marching-on-in-spectral-component technique is applied to pro-

vide suitable initial guesses for the iterative solution of the CSIE’s.
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Figure 2.8: Marching-on-in-spectral-component (indicated by red arrows) combined with
marching-on-in-incident-field (indicated by green arrows) to derive a suitable initial guess for a next
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CHAPTER 3

Incident fields

3.1. Introduction

The main concept of the 2.5-dimensional forward solver introduced in the previous

chapter, is the Fourier transformation of the three-dimensional fields in the invari-

ant direction of the simulated cylinders, in the presented PhD work chosen to be the

z-direction. When this Fourier transformation is applied to the three-dimensional inci-

dent field, a set of two-dimensional incident fields is obtained. Any three-dimensional

incident field can be described in this 2.5-dimensional procedure. However, since

for every spectral component a particular contrast source integral equation has to be

solved, a limited range of spectral components is beneficial. This is not the case for ev-

ery type of incident field. Therefore, in this PhD work, the incident fields are restricted

to be plane waves, which have only one spectral component, or Gaussian beams, which

can be described using a limited number of spectral components. Furthermore, in

applications for millimeter waves, the incident field typically has a Gaussian beam

character. The 2.5-dimensional implementation of a three-dimensional plane wave is

straightforward and is discussed in Section 3.2. In Section 3.3, three different models

of Gaussian beams are investigated. Besides a model based on a classical scalar formu-

lation, we have adapted the scalar [1, 2] and vectorial [2] three-dimensional complex

source beam formulations to the 2.5D case. Furthermore, it is detailed how spectral

components are selected.

As a validation, the model for the 2.5D scalar complex source beam formulation is

compared to the model based on the classical scalar formulation and the model for the

2.5D vectorial complex source beam formulation is compared to the three-dimensional

complex source beam description on which its derivation is based.
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3.2. Plane wave illumination

The incident field of a three-dimensional incident plane wave is given by

Ei(r,z) = Ae jki·ρρρupol , (3.1)

where A represents the complex amplitude and upol is the three-dimensional polariza-

tion vector. The propagation vector ki is given by

ki = k0ui, (3.2)

and represents free-space propagation along the ui-direction. The polarization vector

upol is orthogonal to the propagation direction, hence ui ·upol = 0.

The Fourier transformed incident field (with respect to the z-coordinate) is readily

given by

Êi(r,kz) = Ae jki
⊥·rupol , (3.3)

where ki
⊥ is the projection of the three-dimensional propagation vector ki on the hor-

izontal xy-plane and the spectral component kz is the projection of ki on the z-axis.

3.3. Gaussian beam illumination

In what follows, the 2.5-dimensional implementation of a three-dimensional Gaussian

beam illumination is detailed. Such an incident field yields a limited range of spectral

components and results in a limited number of contrast source integral equations to be

solved.

The general configuration of a Gaussian beam is presented in Fig. 3.1, which defines

some of the beam parameters. The beam waist plane is the plane, orthogonal to the

propagation direction, where the beam is the most confined. The corresponding small-

est radius of the beam is called the beam waist radius. The beam waist plane is a

planar equiphase surface. For increasing distances along the propagation direction,

the equiphase surfaces become more and more spherical while the beam radius in-

creases. This type of beam is called Gaussian because it has a Gaussian profile in the

cross-sectional planes, which are orthogonal to the propagation direction.

Two types of describing three-dimensional Gaussian beams can be distinguished:

scalar beams and vectorial beams, shortly denoted as GBscal and GBvect. Scalar

beam models are commonly used, e.g. in optics. In a vectorial wave problem (as in

this PhD work), it is common to simply add a polarization vector upol to the scalar

beam model, here denoted as E i
GBscal(r,z), to construct a three-dimensional vectorial

beam. This polarization vector is tangent to the equiphase surface of the beam. Hence,

the three-dimensional electric field is given by

Ei
GBscal(r,z) = E i

GBscal(r,z)upol . (3.4)
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Figure 3.1: Definition of some parameters of a three-dimensional Gaussian beam.

However, this approach (3.4) is only valid in the well collimated region of the beam,

where the phase front is planar and orthogonal to the beam propagation direction, see

Fig. 3.1. Outside the well collimated region, the equiphase surface becomes spherical

and a unique polarization direction can no longer be determined. Hence, a beam as

(3.4) is no exact solution to Maxwell’s equations. The restriction to well collimated

beams is called the paraxial approximation. The expressions based on the scalar three-

dimensional beam in the paraxial approximation and the reformulation to the 2.5D

case are discussed in Section 3.3.1.

A more complex, but fully vectorial Gaussian beam formulation, denoted as

Ei
GBvect(r,z), is valid in total space, thus also in the non-collimated region of the Gaus-

sian beam. The analytical expression, together with its reformulation to the 2.5D case,

is discussed in Section 3.3.2.

3.3.1 2.5D descriptions based on a 3D scalar Gaussian beam

Two methods to construct a three-dimensional scalar Gaussian beam are considered:

a classical formulation [3] and a complex-source beam formulation, as proposed in

[1, 2].

Classical formulation for a scalar Gaussian beam

Let us first consider a beam that is propagating along the y-direction, with the beam

waist plane located at y = y0. The beam waist radius is w0 in both x- and z- directions
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and the beam center ρρρ0 = r0 + z0uz is located in the point x = 0,y = y0 and z = 0

(hence ρρρ0 = r0).

According to the paraxial approximation formulation [3] the scalar Gaussian beam is

then given by

E i
GBscal(r,z) =

w0

w
exp

(
− ξ2

w2
− jk0ξ2

2R
+ jφ0

)
exp( jk0(y− y0)) (3.5)

with

ξ =
√

x2 + z2,

b0 =
w2

0k0

2
,

w = w0

√
1+

(
y− y0

b0

)2

,

R = (y− y0)+
1

(y− y0)
b2

0,

φ0 = arctan

(
y− y0

b0

)
.

It is common to simply add a polarization vector upol (orthogonal to uy) to the expres-

sion for a scalar beam to obtain a three-dimensional incident field

Ei
GBscal(r,z) = E i

GBscal(r,z)upol . (3.6)

In this PhD work, formulation (3.5)-(3.6) is used as a reference to validate the

complex-source beam formulation, discussed further, in the collimated region. Since

the implementation of a plane wave as incident field is straightforward in the 2.5D

solver and easily verified (see Section 4.2), the three-dimensional scalar beam (3.5)

is decomposed into plane waves. Such decomposition is beneficial since the Fourier

transformation in the z-direction of (3.5) is complicated. Each scalar plane wave of the

decomposition is augmented by the vector upol and serves as an excitation function

in the 2.5D forward problem. Their solutions are combined to the final scattered field,

corresponding with the Gaussian beam illumination.

The decomposition of the incident scalar Gaussian beam is shown in Fig. 3.2.

Figure 3.2 (a) shows the amplitude of the Gaussian beam (3.5) in the beam waist plane

y = y0. To determine the plane wave spectrum, a two-dimensional discrete Fourier

transform in the beam waist plane is performed. The result of this operation is a set

of N propagation vectors ki
n with corresponding complex amplitudes An, n = 1 . . .N,

shown in Fig. 3.2 (b). The propagation vector ki
n is defined by

ki
n = (ki

x,n,
√

k2
0 − ki2

x,n − ki2
z,n,k

i
z,n), (3.7)
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see Fig. 3.2 (b). Each plane wave is assigned the polarization vector of the original

Gaussian beam. Hence, the three-dimensional Gaussian beam is decomposed into N
plane wave functions (3.1)

Ei
GBscal(r,z) =

N

∑
n=1

Ane jki
n·ρρρupol . (3.8)

Note that each scalar plane wave, augmented with upol , is a mathematical function

rather than a vectorial plane wave solution since upol is generally not perpendicular

to ki
n. Furthermore, the numerical implementation of the two-dimensional discrete

Fourier transform in the beam waist plane has to be performed with care to reduce

errors such as aliasing.

x

y z

kx

kz

(a) (b)

Figure 3.2: (a): Gaussian beam profile in the beam waist plane y = y0. (b): plane wave decomposi-
tion of the Gaussian beam. Each cell represents a plane wave, with amplitude |A| represented by the
cell’s color and propagation vector ki defined by its location (kx,kz) in the Fourier space plane.

This procedure can be applied to a Gaussian beam propagating in an arbitrary

direction. In this case, the plane wave decomposition is still performed in the beam

waist plane. Therefore, a local coordinate system is introduced with the xz-plane co-

inciding with the beam waist plane. Afterwards, the propagation vectors ki
n (3.7) are

transformed to the global coordinate system.

To limit the number of forward problems, the plane waves with the largest amplitude

are selected. This is done by exploiting the fact that the plane wave spectrum of a

Gaussian beam is also Gaussian (see Fig. 3.2 (b)) and decreases as exp(−k2
ξw2

0/4) for

increasing kξ =
√

k2
x + k2

z . Now, plane waves with an amplitude smaller than exp(−a),
with a a chosen positive real constant, are neglected, i.e. all plane waves with

kξ > 2
√

a/w0. (3.9)
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In the case of an orthogonally incident Gaussian beam, the set of forward problem

solutions can further be halved by exploiting the symmetry of the contributing plane

waves along the z-axis.

Complex source beam formulation for a scalar Gaussian beam

The classical formulation yields a relatively large number of plane wave forward prob-

lems and extra difficulties such as aliasing when performing the plane wave decom-

position. A formulation which avoids these problems is the complex source beam

formulation.

Consider a three-dimensional scalar Gaussian beam, propagating along a direction ui,

with beam center in ρρρ0 = r0 + z0uz and with circular beam waist radius w0. In the

three-dimensional complex-source beam formulation [1, 2], such a beam is obtained

by evaluating the three-dimensional Green’s function

G(ρρρ) =
exp(− jk0|ρρρ|)

4π|ρρρ| (3.10)

with respect to a complex source point ρρρc = ρρρ0 + jb0ui. This complex source point is

a combination of the real source point ρρρ0 and the beam collimation distance, defined

as b0 = w2
0k0/2.

In this PhD work, we have extended this approach to the 2.5D case: the Fourier

transformed scalar beam is now obtained by evaluating the 2.5D Green’s function

Ĝ(r,r′;kz) =
j
4

H(1)
0

(√
k2

0 − k2
z |r− r′|

)
, (3.11)

with respect to the complex source point ρρρc = (xc,yc,zc). Therefore, a complex dis-

tance from a point r to the complex source point ρρρc is defined as

s(r) =
√

(r−ρρρc) · (r−ρρρc) =
√

(x− xc)2 +(y− yc)2 + z2
c , (3.12)

with Im(s(r)) ≤ 0 [1]. This complex distance is used as the argument in the 2.5D

Green’s function and yields the Fourier transformed scalar Gaussian beam :

Ê i
GBscal(r,kz) =

j
4

H(1)
0

(√
k2

0 − (kc − kz)2 s(r)
)

, (3.13)

where kc = k0ui ·uz is the central spectral component corresponding with the propa-

gation direction. Note that we have shifted the spectral components kz in (3.13) with

a value kc compared to (3.11). This is intuitively understood as follows. In case of

an orthogonally incident Gaussian beam (ui = uy, hence kc = 0), the largest contri-

bution to the beam in (3.13) corresponds to kz = 0, which is the spectral component

linked to the propagation direction since k0uy ·uz = 0. All other spectral components

kz will contribute less to the beam since Ê i
GBscal(r,kz 
= 0) < Ê i

GBscal(r,0). This be-
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havior must also apply to the obliquely incident beams. Hence, independent of the

propagation direction of the beam, the main contribution to the beam should corres-

pond to the spectral component kz = k0ui ·uz, which is accounted for by shifting the

kz values with a factor kc.

The selection procedure for contributing spectral components kz in a scalar Gaus-

sian beam illumination is identically as the one in the case of a completely vectorial

beam, therefore it is simultaneously discussed for both cases in Section 3.3.3, where it

is shown that this elegant complex source beam approach yields far less spectral com-

ponents when compared to the plane wave decomposition of a classically formulated

Gaussian beam.

3.3.2 2.5D description of a 3D vectorial Gaussian beam

The previous models for a Gaussian beam are only valid in the collimated region of

the beam. Outside this region, the polarization must change according to the local

curvature of the phase front. This is the case for a fully vectorial Gaussian beam,

which can be constructed by applying a similar approach as for the scalar complex

source beam. This fully vectorial formulation is valid inside as well as outside the

collimated region.

Whereas a point source in complex space generates a three-dimensional scalar

Gaussian beam, a dipole source in complex space generates a three-dimensional vec-

torial Gaussian beam [2].

If we expand this approach to the 2.5D case, the Fourier transformed vectorial

Gaussian beam yields:

Êi
GBvect(r,kz) =

(
k2

0I+ ∇̂∇̂
)
· Ê i

GBscal(r,kz)upol , (3.14)

where Ê i
GBscal(r,kz) is the scalar complex source beam (3.13) and upol represents the

polarization direction in the beam waist plane. This elegant expression for a vectorial

Gaussian beam can be evaluated analytically. However, a set of contributing spectral

components kz still has to be determined. This is discussed in the next section (Section

3.3.3).

At millimeter wave frequencies, the arguments of the 2.5D Green’s function (3.13)

become very large. Therefore, the Hankel function and its derivatives are evalu-

ated analytically using asymptotic expansions [4]. Furthermore, they are scaled by

a factor exp(−k0b0), which corresponds to a normalization with respect to the field

in the real source point ρρρ0 at the dominating spectral component kz = kc (hence,

s(ρρρ0) =
√

(ρρρ0 −ρρρc) · (ρρρ0 −ρρρc) = − jb0). These asymptotic expansions are also nec-

essary when a scalar complex source Gaussian beam (3.13) is implemented.

In the following chapters, Gaussian beams are always implemented as 2.5D dipole

sources in complex space.
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3.3.3 Spectral decomposition of a Gaussian beam

As mentioned before, a general 3D incident field is incorporated into the 2.5D descrip-

tion by transforming the field along the z-direction. In the case of a scalar or vectorial

Gaussian beam illumination, this approach becomes straightforward when using the

complex source beam formulation. Indeed, this formulation avoids the Fourier trans-

form in the z-direction in an elegant way since the conversion to the 2.5D case is done

by simply substituting the three-dimensional Green’s function by its 2.5-dimensional

variant. Generating a finite set of spectral components kz that corresponds to a (scalar

or vectorial) complex source Gaussian beam is done in a two-step procedure, shown

in Fig. 3.3.

Ewald sphere

u
i

kz

�

�
i

Figure 3.3: Projection of circular patch with contributing propagation vectors on the kz-axis of the
Ewald sphere.

First, upper and lower bounds for kz need to be determined by neglecting certain

spectral components. From the definition of the inverse Fourier transform (2.6), kz

values should be taken from [−∞,+∞]. This interval can be significantly reduced by

neglecting all plane waves with an amplitude smaller than exp(−a) (with a a chosen

positive real constant) from the beam’s plane wave spectrum: i.e. all plane waves with

kξ > 2
√

a/w0, as in Section 3.3.1. Consequently, all contributing propagation vectors

lie within a circular patch with center k0ui and radius 2
√

a/w0 on the Ewald sphere,

see Fig. 3.3. Projection of this patch on the kz-axis yields the interval of spectral com-
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ponents kz which significantly contribute to the 3D Gaussian beam:

kz ∈ [k0 cos(ψi + τ),k0 cos(ψi − τ)], (3.15)

where cos(ψi) = ui ·uz and sinτ = 2
√

a/(w0 k0).
Second, discrete values for kz within this interval are determined by applying a

Gauss-quadrature formula [4]. These selected spectral components all result in a for-

ward problem to be solved. Hence, when a Q-point Gaussian quadrature formula is

used to discretize the Gaussian beam spectrum (3.14), the incident field for the scalar

case is written as

Ei
GBscal(r,z) =

1

2π

Q

∑
q=1

wqÊ i
GBscal(r,k

q
z )upole jkq

z z (3.16)

and for the vectorial case as

Ei
GBvect(r,z) =

1

2π

Q

∑
q=1

wqÊi
GBvect(r,k

q
z )e

jkq
z z (3.17)

with

Êi
GBvect(r,k

q
z ) =

(
k2

0I+ ∇̂∇̂
)
· Ê i

GBscal(r,k
q
z )upol . (3.18)

Here, wq are the Gaussian weights corresponding to the used Gauss quadrature points.

Note that in (3.16) the polarization vector is added to the scalar formulation which

restricts us to the paraxial approximation and a non-exact solution of the Maxwell’s

equations.

A similar approach for the selection of spectral components kz is also possible for

the classical formulation of a Gaussian beam ((3.5)-(3.6)) or for more advanced vecto-

rial Gaussian beam formulations beyond the paraxial approximation [5]. In this case,

the Fourier transform with respect to the z-coordinate has to be performed explicitly.

Due to the complexity of the analytical expression (3.5) and of the expressions in [5],

this Fourier transform has to be performed numerically with care and introduces extra

errors. From this, it is clear that in the 2.5D description of a Gaussian beam, the use

of a complex source beam formulation is strongly recommended.

3.4. Comparison of the scalar Gaussian beam formulations

In this section, both 2.5D implementations for a scalar Gaussian beam under the

paraxial approximation (plane wave decomposition of a classically formulated beam

and a scalar complex source beam) are compared to a classically formulated three-

dimensional scalar Gaussian beam. Furthermore, the scattered fields from a small ho-

mogeneous dielectric cylinder, corresponding to both 2.5D scalar beam formulations,

are compared.
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Consider a three-dimensional TM polarized (i.e. the magnetic field lies in the xy-

plane, the electric field lies in a plane through the z-axis) Gaussian beam illumination,

orthogonally or obliquely incident on a scattering cylinder. The corresponding prop-

agation vector ui makes an angle θi with the horizontal xy-plane, as in Fig. 3.4 and

lies in the vertical yz-plane. The scattering object is a dielectric cylinder with relative

permittivity εr,cyl = 2 and radius a = λ0 = 1 mm. The Gaussian beam center ρρρ0 is in

the origin and the beam waist radius is w0 = 8 mm. The scattered field is calculated in

K = 51 detector points with spacing λ0/10 on a line parallel to the x-axis in y = 5λ0.

The BICGS tolerance for the iterative solution of the contrast source integral equa-

tions is set to 10−5 and the discretization cell size is Δ = λ0/20 (the choice for this

discretization cell size is discussed in Chapter 4).

�r,cyl

�
i

z

E r
i
( ,z) a

y

x

detector

Figure 3.4: Three-dimensional Gaussian beam obliquely incident on a homogeneous circular cylin-
der.

The incident field is implemented in two ways as presented in Section 3.3.1: on

the one hand using an expansion (3.8) into 81 plane waves (yielding 81 CSIE’s to be

solved) and on the other hand using the complex-source beam formulation (3.16) with

10 quadrature points (yielding 10 CSIE’s to be solved). All spectral components with

amplitude smaller than exp(−5) = 6.7 10−3 are neglected.
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For the comparison of the two types of incident fields, a normalized root mean

square error (NRMSE) is defined for each component (p = x, y, z) of the incident
field on the computation grid D (denoted as on grid-error) as

NRMSE E i =

√
∑Ns−1

k=0 ∑Ms−1
l=0 |E i

2.5D,p(r
(p)
k,l )−E i

3D,p(r
(p)
k,l )|2√

∑Ns−1
k=0 ∑Ms−1

l=0 |E i
3D,p(r

(p)
k,l )|2

. (3.19)

In (3.19), E i
2.5D,p(r

(p)
k,l ) stands for the p-th component of the incident field obtained

by the plane wave expansion (PWE) or by using the complex-source beam (CSB)

formula. E i
3D,p(r

(p)
k,l ) is the p-th component of the three-dimensional incident field,

computed from the classical three-dimensional Gaussian beam formulation (3.5).

Also, a normalized root mean square error is defined between the scattered fields

on the computational grid D as

NRMSE Es =

√
∑Ns−1

k=0 ∑Ms−1
l=0 |Es

CSB,p(r
(p)
k,l )−Es

PWE,p(r
(p)
k,l )|2√

∑Ns−1
k=0 ∑Ms−1

l=0 |Es
PWE,p(r

(p)
k,l )|2

, (3.20)

where Es
CSB,p(r

(p)
k,l ) and Es

PWE,p(r
(p)
k,l ) are the p-th component of the scattered fields

corresponding to the respective incident field formulations.

First, the propagation direction of the Gaussian beam is along the positive y-axis

(θi = 0◦), hence E i
x = E i

y = 0. For this test case, no symmetry with respect to the xy-

plane is used to reduce the number of forward problems. The scattered fields on the

detector points, obtained with both formulations, are compared in Fig. 3.5 and show

a very good agreement. Table 3.1 shows that the NRMSE of the z-component of the

incident field for both incident field formulations are less than 1%. This shows that

enough plane waves and quadrature points were taken into account. Indeed, simula-

tions with 225 instead of 81 plane waves and with 20 instead of 10 quadrature points

yield the same NRMSE. The NRMSE of the corresponding scattered field Es
z is of

order 10−3. Table 3.1 also shows the total simulation time (including the computation

of the scattered field), which is about 9 times larger for the plane wave expansion than

for the complex-source point Gaussian beam. The CPU time for the plane wave ex-

pansion could be reduced by carefully selecting and combining plane waves with the

same kz values in advance.

Second, the propagation direction of the Gaussian beam makes an angle θi = 30◦

with the xy-plane, hence E i
x = 0. The scattered fields on the detector points again agree

well with each other, as can be seen in Fig. 3.6. Table 3.2 presents the NRMSE of the

y- and z-components of the incident field for both incident field formulations, which

are again quite small.
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Figure 3.5: Amplitude (top) and phase (bottom) of the z-component of the scattered field for a
cylinder with radius λ0 under a 3D-TM orthogonal Gaussian beam illumination with θi = 0◦. Solid
line: Gaussian beam as Green’s function of a complex source point with 10 quadrature points, dotted
line: Gaussian beam expanded in 81 plane waves.

Table 3.1: On grid-errors (3.19) and (3.20) and computational effort for the simulations with an or-
thogonally incident scalar Gaussian beam (θi = 0◦). PWE: plane wave expansion and CSB: complex-
source Gaussian beam.

CSB vs. classical 3D PWE vs. classical 3D CSB vs. PWE

NRMSE E i
z 5.9 10−3 6.4 10−3 1.0 10−3

NRMSE Es
z - - 9.3 10−4

total CPU time 8 s 70 s -

Table 3.2: On grid-errors (3.19) and (3.20) and computational effort for the oblique scalar Gaussian
beam simulations (θi = 30◦). PWE: plane wave expansion and CSB: complex-source Gaussian beam.

CSB vs. classical 3D PWE vs. classical 3D CSB vs. PWE

NRMSE E i
y 5.0 10−3 5.6 10−3 1.2 10−3

NRMSE E i
z 5.0 10−3 5.6 10−3 1.2 10−3

NRMSE Es
y - - 7.2 10−3

NRMSE Es
z - - 4.6 10−3

total CPU time 9 s 77 s -
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Figure 3.6: Amplitude (top) and phase (bottom) of the z-component of the scattered field for a
cylinder with radius λ0 under a 3D-TM oblique Gaussian beam illumination with θi = 30◦. Solid
line: Gaussian beam as Green’s function of complex source point with 10 quadrature points, dotted
line: Gaussian beam expanded in 81 plane waves.

3.5. Accuracy study of the 2.5D vectorial complex source beam for-

mulation

For the rest of this PhD work, we have chosen the fully vectorial complex source beam

formulation (3.17) with (3.18) and (3.13) as the standard Gaussian beam formulation.

In this section, a validation study is performed to evaluate the accuracy of the pro-

posed 2.5D implementation. Therefore, the 2.5D vectorial complex source beam is

compared to the 3D vectorial complex source beam [2] on which its implementation

is based. The incident field of a 2.5D vectorial complex source beam is also compared

to experimentally measured incident fields in Chapter 5.

The 3D Gaussian beam under consideration is an orthogonally or obliquely inci-

dent 100 GHz (λ0 = 3 mm) beam with a beam waist radius of w0 = 8 mm. This beam

configuration is very similar to the experimentally generated beam in Chapter 5. The

center of the beam waist plane coincides with the center of the computational domain,

hence z0 = 0. Both TM polarization and TE polarization (i.e. with the electric field

in the xy-plane) are studied. The 3D incident field that corresponds with the Gaussian

beam is calculated on a computational domain D , which contains 48 by 48 cells of size

λ0/20. The p-th component of the incident field is calculated in the grid points r(p)
k,l .

The parameter a, which defines the threshold for omitting spectral components on the
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Ewald sphere, is set to 5. Hence, all spectral components with amplitude smaller than

exp(−5) = 6.7 10−3 are neglected.

Also here, a normalized root mean square error is defined between the 3D incident

field Ei
2.5D, generated within the 2.5D scheme using (3.17), and the directly 3D eval-

uated incident field Ei
3D. Contrary to (3.19), a NRMSE is defined which includes all

field components:

NRMSE Ei
2.5D =

√
∑Ns−1

k=0 ∑Ms−1
l=0 ∑3

p=1 |E i
2.5D,p(r

(p)
k,l )−E i

3D,p(r
(p)
k,l )|2√

∑Ns−1
k=0 ∑Ms−1

l=0 ∑3
p=1 |E i

3D,p(r
(p)
k,l )|2

. (3.21)

First, the effect of the number of quadrature points Q in (3.17) is studied. Figure

3.7 shows the NRMSE as a function of Q, in case of TM polarization. The different

curves correspond to Gaussian beams with elevation angles θi (as defined in Fig. 3.4)

ranging from 0◦ (orthogonally incident) to 60◦. Since the number of forward problems

that need to be solved relates directly to the number of quadrature points, it is essential

to choose this number as low as possible. In this case, Q = 5 is appropriate and cor-

responds to a maximal error of 1.1%. In case of a TE-polarized beam, the errors are

significantly smaller, as can be seen from Fig. 3.8. Also here, Q = 5 is a good choice

and corresponds to a maximal error of 0.26%.
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Figure 3.7: NRMSE between a 2.5D formulated TM-polarized complex source Gaussian beam
and a directly 3D formulated TM-polarized complex source beam as a function of the number of
quadrature points. Different curves correspond to Gaussian beams with different elevation angles.
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Figure 3.8: NRMSE between a 2.5D formulated TE-polarized complex source Gaussian beam and a
directly 3D formulated TE-polarized complex source beam as a function of the number of quadrature
points. Different curves correspond to Gaussian beams with different elevation angles.

Second, the effect of the elevation angle θi on the NRMSE is investigated. Fig-

ures 3.9 and 3.10 show the NRMSE as a function of θi for the case of a TM and TE

polarized Gaussian beam respectively. It is expected that all curves for different Q
converge towards each other for larger elevation angles due to the fact that for larger

elevation angles, the circular patch on the Ewald sphere that contains the remaining

spectral components is more tilted. Hence, its projection on the kz axis has a smaller

extent and the number of quadrature points to cover this interval is less critical. This

behavior is clearly visible in Figs. 3.9 and 3.10. We now focus on the curve for Q = 5.

Both for TM and TE polarization, orthogonal incident beams (θi = 0◦) yield the small-

est NRMSE. For the TM case, the NRMSE gradually increases towards its maximum

of 1.1% for θi = 30◦. For larger elevation angles the error decreases again and stag-

nates at around 0.8%. The behavior is slightly different for the TE case: the NRMSE

gradually increases towards its maximum of 0.26% for θi = 60◦.

We conclude that the proposed 2.5D vectorial implementation of a complex source

beam (3.17) with (3.18) and (3.13) is an accurate formulation for all elevation angles

considered in this work (0◦ −60◦).



62 INCIDENT FIELDS

0 10 20 30 40 50 60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Elevation angle (°)

Er
ro

r

Q = 1
Q = 2
Q = 3
Q = 4
Q = 5
Q = 6
Q = 7
Q = 8
Q = 9
Q = 10
Q = 20

Figure 3.9: NRMSE between a 2.5D formulated TM-polarized complex source Gaussian beam and
a directly 3D formulated TM-polarized complex source beam as a function of the elevation angle
θi. Different curves correspond to 2.5D Gaussian beams implemented using different numbers of
quadrature points.
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Figure 3.10: NRMSE between a 2.5D formulated TE-polarized complex source Gaussian beam
and a directly 3D formulated TE-polarized complex source beam as a function of the elevation angle
θi. Different curves correspond to 2.5D Gaussian beams implemented using different numbers of
quadrature points.
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3.6. Conclusion

In this chapter, three different models to implement a Gaussian beam have been stud-

ied. In a first model, a polarization vector is added to the classical formulation for

a scalar Gaussian beam under the paraxial approximation. Two complications arise

when applying this approach. On the one hand, this type of incident field is not an

exact solution of Maxwell’s equations. On the other hand, an analytical form of the

Fourier transformation of this expression to obtain the set of spectral components is

not at hand. Since the latter is elegantly overcome by the other two formulations, this

classical formulation has only been implemented as a validation case for the other

methods by decomposing the Gaussian beam in plane waves.

The second model is based on a scalar complex source beam formulation. Here,

the Gaussian beam is obtained as the field generated by a point source in complex

space. Still, it is only valid under the paraxial approximation since, also here, a polar-

ization vector is added to the scalar beam. In this PhD work, we have reformulated this

approach for the 2.5D case and elegantly avoided the explicit Fourier transformation

of the incident field to obtain the spectral components. The contributing spectral com-

ponents are discretized by inspecting the beam’s plane wave spectrum on the Ewald

sphere

The third model is the most complete and is the standard implementation for a

Gaussian beam within the presented 2.5D forward solver. Here, a dipole source in

complex space generates a fully vectorial three-dimensional Gaussian beam. No po-

larization vector needs to be added which makes it an exact solution of Maxwell’s

equations. Furthermore, the formulation is valid both inside and outside the well col-

limated region of the beam. In this PhD work, this approach has been translated to

the 2.5-dimensional case. The discretization of the spectral components is performed

similarly as for the scalar complex source Gaussian beam formulation.

All three 2.5D Gaussian beam implementations have been validated by construct-

ing the 2.5-dimensional incident fields for every selected spectral component and com-

bining them into a three-dimensional field. Since the first two models are only valid

in the paraxial approximation, they are not compared to the third one, but to the cor-

responding three-dimensional classical formulation, which also has an added fixed

polarization vector. Both 2.5D formulations agreed very well with this classical 3D

formulation, both for orthogonal and oblique incidence. The third, fully vectorial,

2.5D formulation has been compared to the corresponding three-dimensional formu-

lation on which its derivation is based. The NRMSE between the 2.5D beam and the

3D beam has been evaluated for different elevation angles and different numbers of

quadrature points (Q) in the discretization of the spectrum. We have concluded that

Q = 5 is a good choice and limits the NRMSE on the incident field to a maximum

of 1.1% in case of TM polarization and to a maximum of 0.26% for TE polarization,

both for elevation angles up to 60◦.
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CHAPTER 4

Validation of the forward solver

and case studies

4.1. Introduction

In this chapter, the accuracy of the 2.5D forward solver is examined for different types

of incident fields and different scattering objects. All simulations are performed on a

machine with two AMD Opteron 270 Quad Core processors.

The first part of this chapter is devoted to the comparison of 2.5D simulation results

to analytic solutions. These are analytic expressions for the scattered field. We con-

sider: (i) a homogeneous circular dielectric cylinder and (ii) a piecewise-homogeneous

multi-layered circular dielectric cylinder under orthogonally and obliquely incident

plane wave illuminations. The evaluation of these analytic expressions is computa-

tionally demanding, therefore we restrict ourselves to relatively small cylinders with

radii of the order of a wavelength.

The second part of this chapter deals with the comparison of 2.5D simulation

results to scattered fields obtained with fully three-dimensional forward solvers. The

first 3D solver is a Volume Integral Equation (VIE) solver [1], whereas the second 3D

solver [2] is a parallelized Boundary Integral Equation (BIE) solver. Both 3D solvers

are also developed in the department of Information Technology.

Furthermore, it will be shown that the scattering from a finite dielectric cylinder

under three-dimensional Gaussian beam illumination can be modeled within the 2.5D

approach. To illustrate this, several 2.5D simulations are compared with data obtained

with the aforementioned 3D boundary integral equation solver.

Finally, the applicability of the 2.5D approach to investigate millimeter-wave scat-

tering from concealed objects on the human body is illustrated.
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4.2. Comparison to analytic solutions

In this section, simulation results from the 2.5D forward solver are compared to ana-

lytic solutions for plane wave scattering at infinitely long circular dielectric cylinders,

more in particular homogeneous cylinders and a piecewise homogeneous multilayered

cylinder. Two types of polarization are studied: Transverse Magnetic (TM) polariza-

tion and Transverse Electric (TE) polarization. Transverse Magnetic indicates that the

magnetic field lies in the transverse plane. Hence, the electric field, which is per-

pendicular to the magnetic field, lies in a plane through the z-axis. With Transverse

Electric polarization, the electric field lies in the xy-plane.

A comparison to the analytic solutions is presented for purely two-dimensional

configurations, where the plane wave is orthogonally incident on the infinitely long

cylinder (hence kz = 0 and E = E3uz or E = E1ux +E2uy for a TM- or TE- polarized

field respectively), and for three-dimensional field configurations, where the plane

wave is obliquely incident.

To determine the accuracy of a simulated scattered electric field, the Normalized

Root Mean Square Error (NRMSE) with respect to the analytical solutions is em-

ployed. This quantity measures differences between the solution obtained with the

2.5D forward solver and the exact analytical solution in the N detector points. For

every component p = x, y, z of the scattered field, this error is defined as

NRMSE(Es
p) =

√
∑N

n=1 |Es
2.5D,p(n)−Es

exact,p(n)|2√
∑N

n=1 |Es
exact,p(n)|2

. (4.1)

4.2.1 Scattering by homogeneous cylinders

2D analytic solution for a TM polarized orthogonally incident plane wave

First, the 2.5D forward solver is validated in a purely two-dimensional configuration.

The incident field is a TM-polarized plane wave with unit amplitude, propagating in

the y-direction and orthogonally incident on a homogeneous dielectric cylinder with

a relative permittivity εr,cyl = 2 and with radius a = λ0, where λ0 is the free-space

wavelength, see Fig. 4.1. In this example, the frequency is chosen to be 300 GHz,

corresponding to a free space wavelength of λ0 = 1 mm. There are N = 360 equidistant

measurement points on a circle with radius b = 20λ0.

Simulations are performed using four different discretization cell sizes Δ, corre-

sponding to 10, 20, 40 and 80 cells per wavelength λcyl = λ0/
√εr,cyl inside the cylin-

der. The BICGS iterations are stopped when the relative error (between left and right

hand side of the contrast source integral equation) dropped below a prescribed toler-

ance.

Figure 4.2 shows the amplitude and phase of the z-component of the scattered field

Es = Es
3uz for a cell size of Δ = λcyl/20. The 2.5D forward solver (dotted lines) and

the analytic solution (solid lines) show an excellent agreement. Table 4.1 gives, as a
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εr,cyl

N detector points

Ei(r)

x

y

Figure 4.1: Cross-section of an infinitely long homogeneous circular cylinder, illuminated by an
orthogonally incident plane wave and surrounded with a circular detector array.

function of the cell size, some simulation parameters and the scattered field error. It is

clear that the NRMSE decreases linearly with the cell size Δ and that a size Δ < λcyl/20

is needed to reduce the error to one percent.

A major contribution to the NRMSE in Table 4.1 is due to the discretization in

square cells of a circular cylinder, which gives rise to a staircasing effect on the edges

of the cylinder. This effect can be reduced by taking a very fine discretization grid,

as is the case for Δ = λcyl/80, or by explicitly accounting for the presence of edges

within cells [3]. Forward solvers based on a Boundary Integral Equation approach

suffer less from this effect, since in that case the boundaries between homogeneous

regions are discretized with a piecewise linear approximation, allowing a smoother fit

to the curved edges. However, a VIE approach with square grid cells is appropriate

in this PhD work since we are mainly interested in pixel-based inverse scattering,

where the location and shape of edges are a-priori unknown and where, during the

reconstructions, the pixels can take on a continuum of permittivity values.

2D analytic solution for a TE polarized orthogonally incident plane wave

For the next validation test, the same configuration as above (Fig. 4.1) is simulated,

but now with an orthogonally incident TE-polarized incident field. The plane wave

propagates in the y-direction and is polarized along the x-direction.

Again, the four discretization cell sizes Δ, corresponding to 10, 20, 40 and 80

cells per wavelength, are used to discretize the circular cylinder. Figure 4.3 shows the
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Figure 4.2: Amplitude (top) and phase (bottom) of the 2D-TM scattered field for a cylinder with
radius λ0 and relative permittivity εr,cyl = 2. Solid line: analytic solution, dotted line: 2.5D solver
discretized with 20 cells per λcyl .

Table 4.1: Parameters for the 2D-TM simulations: discretization cell size, grid dimensions, total
number of unknowns, BiCGS tolerance, number of CG iterations, total CPU time and NRMSE of
the z-component of the scattered field.

Δ grid size # unkn. tolerance # it. CPU time NRMSE Es
3

λcyl/10 35 x 35 3 675 1.0 10−2 11 0’ 01” 4.0 10−2

λcyl/20 63 x 63 11 907 1.0 10−3 18 0’ 05” 1.3 10−2

λcyl/40 120 x 120 43 200 1.0 10−3 18 0’ 20” 7.7 10−3

λcyl/80 234 x 234 164 268 1.0 10−3 20 1’ 22” 3.2 10−3

amplitude and phase of the x- and y- components of the scattered field for the cell

size Δ = λcyl/20. The 2.5D solver (dotted lines) and the analytic solution (solid lines)

again show an excellent agreement. Simulation parameters are presented in Table 4.2.

From Table 4.3, it is clear that, also in this case, the NRMSE decreases linearly with

the cell size Δ and that a size Δ < λcyl/20 is needed to reduce the error to one percent.

Next, simulations are performed for increasingly larger cylinders (with radii λ0,

2λ0, 4λ0, 6λ0 and 8λ0) but with a fixed discretization size Δ = λcyl/20.

Table 4.4 shows the simulation parameters, the NRMSE’s can be found in Table 4.5.

The largest cylinder (with more than half a million of unknowns) yields an error of

less than 5 percent and is solved in 42 minutes. The amplitude and phase of the x- and
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Figure 4.3: Amplitude (top) and phase (bottom) of the x- (left) and y- (right) components of the
2D-TE scattered field for a cylinder with radius λ0 and relative permittivity εr,cyl = 2. Solid line:
analytic solution, dotted line: 2.5D solver discretized with 20 cells per λcyl .

Table 4.2: Parameters for the 2D-TE simulations: discretization cell size, grid dimensions, total
number of unknowns, BiCGS tolerance, number of CG iterations, total CPU time.

Δ grid size # unkn. tolerance # it. CPU time

λcyl/10 35 x 35 3 675 1.0 10−3 14 0’ 01”

λcyl/20 63 x 63 11 907 1.0 10−3 16 0’ 05”

λcyl/40 120 x 120 43 200 1.0 10−3 20 0’ 21”

λcyl/80 234 x 234 164 268 1.0 10−2 17 1’ 25”

Table 4.3: NRMSE for the x- and y-components of the scattered field for the 2D-TE simulations.

Δ NRMSE Es
1 NRMSE Es

2

λcyl/10 2.4 10−2 4.8 10−2

λcyl/20 9.3 10−3 1.4 10−2

λcyl/40 4.8 10−3 8.3 10−3

λcyl/80 2.3 10−3 5.1 10−3
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y- components of the scattered field, for the largest cylinder, are presented in Fig. 4.4.

Again, there is a very good agreement with the analytic solution.

Table 4.4: Parameters for the 2D-TE simulations for increasingly large cylinders: radius, grid di-
mensions, total number of unknowns, BiCGS tolerance, number of CG iterations, total CPU time.

radius grid size # unkn. tolerance # it. CPU time

1 λ0 63 x 63 11 907 1.0 10−3 16 0’ 05”

2 λ0 120 x 120 43 200 1.0 10−3 61 0’ 25”

4 λ0 234 x 234 164 268 1.0 10−3 293 3’ 09”

6 λ0 350 x 350 367 500 1.0 10−3 943 15’ 09”

8 λ0 462 x 462 640 332 1.0 10−3 1600 42’ 01”

Table 4.5: NRMSE of the x- and y- components of the scattered field for the 2D-TE simulations
with increasingly large cylinders.

radius NRMSE Es
1 NRMSE Es

2

1 λ0 9.3 10−3 1.4 10−2

2 λ0 1.9 10−2 4.6 10−2

4 λ0 7.8 10−2 1.0 10−1

6 λ0 4.7 10−2 4.3 10−2

8 λ0 4.5 10−2 4.5 10−2

3D analytic solution for a TM polarized obliquely incident plane wave

After a purely two-dimensional test, we now validate the numerical results of the

2.5D forward solver for a three-dimensional illumination. Here, the incident field is an

obliquely incident TM-polarized plane wave. It has a propagation vector ki = k0ui that

makes an elevation angle θi = 40◦ with the xy-plane (see Fig. 4.5). The only spectral

component is given by ki
z = k0 sinθi. The frequency is set to 8 GHz, corresponding to

a free space wavelength of λ0 ≈ 3.75 cm.

The scattering object is a homogeneous dielectric cylinder with permittivity

εr,cyl = 2, having a circular cross-section with radius 6 cm. It is discretized using 35

cells per wavelength λcyl = λ0/
√εr,cyl inside the cylinder to reduce staircasing effects.

The scattered field is computed in 100 equidistantly spaced detector points on a circle

with radius rdetec = 10 cm.

Figure 4.6 shows the amplitude and phase of the z-component of the scattered

electric field, whereas Fig. 4.7 shows the amplitude and phase of the φ-component (in

cylindrical coordinates). There is a perfect agreement between the 2.5D results (dotted

lines) and the analytical solutions (solid lines).
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Figure 4.4: Amplitude (top) and phase (bottom) of the x- (left) and y- (right) components of the
2D-TE scattered field for the cylinder with radius 8λ0. Solid line: analytic solution, dotted line: 2.5D
solver with 20 cells per λcyl .

4.2.2 Scattering by an inhomogeneous cylinder

Since there are no analytic solutions for scattering by completely inhomogeneous

cylinders, the validation for the inhomogeneous case is done for the intermediate

case of a piecewise-homogeneous multi-layered dielectric cylinder with circular cross-

section.

A four-layered dielectric cylinder (see Fig. 4.8) is illuminated by an obliquely

incident TM-polarized plane wave. The layers’ radii are set to r1 = 12 cm, r2 = 9 cm,

r3 = 6 cm and r4 = 3 cm and the respective relative permittivities are εr,1 = 2.0, εr,2 =
2.5, εr,3 = 3.0 and εr,4 = 3.5. All other simulation settings (frequency, incident field,

detector configuration, ... ) are the same as in the 3D illumination example of the

previous section.

Simulated and analytically computed fields are compared in Fig. 4.9 and Fig. 4.10:

Figure 4.9 shows the amplitude and phase of the z-component of the scattered elec-

tric field, whereas Fig. 4.10 shows the amplitude and phase of the corresponding φ-

component. There is once more a perfect agreement between the 2.5D results (dotted

lines) and the analytical solutions (solid lines).
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Figure 4.5: Configuration with an obliquely incident TM-polarized plane wave illuminating a ho-
mogeneous dielectric cylinder.
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Figure 4.6: Amplitude (top) and phase (bottom) of the z-component (cylindrical coordinate sys-
tem) of the 3D scattered field for a homogeneous cylinder with radius 0.06 m under oblique TM
plane wave illumination with θi = 40◦ at 8 GHz. Solid line: analytical solution, dotted line: 2.5D
simulation.
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Figure 4.7: Amplitude (top) and phase (bottom) of the φ-component (cylindrical coordinate sys-
tem) of the 3D scattered field for a homogeneous cylinder with radius 0.06 m under oblique TM
plane wave illumination with θi = 40◦ at 8 GHz. Solid line: analytical solution, dotted line: 2.5D
simulation.
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Figure 4.8: Cross-section of the four-layered dielectric cylinder with radii r1 = 12 cm, r2 = 9 cm,
r3 = 6 cm and r4 = 3 cm and respective permittivities εr,1 = 2.0, εr,2 = 2.5, εr,3 = 3.0 and εr,4 = 3.5.
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Figure 4.9: Amplitude (top) and phase (bottom) of the z-component (cylindrical coordinate sys-
tem) of the 3D scattered field for the four-layered dielectric cylinder of Fig. 4.8 under oblique TM
plane wave illumination with θi = 40◦ at 8 GHz. Solid line: analytical solution, dotted line: 2.5D
simulation.
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Figure 4.10: Amplitude (top) and phase (bottom) of the φ-component (cylindrical coordinate sys-
tem) of the 3D scattered field for a four-layered dielectric cylinder of Fig. 4.8 under oblique TM
plane wave illumination with θi = 40◦ at 8 GHz. Solid line: analytical solution, dotted line: 2.5D
simulation.
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4.3. Comparison to fully three-dimensional forward solvers

In this section, simulation results for the 2.5D solver are compared to simulations from

two full 3D solvers, one is based on a volume integral equation (VIE) approach, the

other used a boundary integral equation (BIE) method. Both 3D solvers are developed

at the Department of Information Technology. The VIE solver [1] uses, as the 2.5D

forward solver, a Biconjugate Gradient method to iteratively solve a fully vectorial

three-dimensional contrast source integral equation and accelerates single iterations

with the FFT-method. The BIE solver [2] is intended for (piecewise) homogeneous

objects and uses the Multilevel Fast Multipole method for acceleration and a TFQMR

method (Transpose-Free Quasi-Minimal Residual method) for the iterative solution.

It is a fully parallel simulation tool, which strongly reduces the computation time and

allows for more memory to be allocated. With these 3D solvers, only a finite 3D ob-

ject can be modeled, whereas the 2.5D solver only treats 2D objects. Consequently,

the comparison between 2.5D and 3D solvers is only meaningful for configurations

where the diffraction effects from the upper and lower sides of the finite cylinder are

negligible. In the following examples we consider homogeneous cylinders with circu-

lar and rectangular cross-sections under plane wave and Gaussian beam illuminations,

respectively.

4.3.1 Comparison to a 3D VIE solver for plane wave illumination

For a plane wave illumination, the comparison with the infinitely long cylinder used in

the 2.5D forward solver is only meaningful when the length l of the finite cylinder is

chosen sufficiently long with respect to its cross-sectional dimensions, and when the

scattered field is calculated close enough to the cylinder. Therefore, its length is set

to l = 100λ0 and the detector consists of N = 360 points on small circle with radius

b = 2λ0.

The scattering object is a dielectric cylinder with permittivity εr,cyl = 2 and radius

a = λ0 (Fig. 4.1). The incident field is an oblique TM-polarized plane wave with a

propagation vector ki = k0ui. The propagation direction makes an angle θi with the

xy-plane, hence ki
z = k0 sinθi, see Fig. 4.5. Three different angles of incidence are

simulated: θi = 8◦, θi = 16◦ and θi = 30◦.

For the incident angle θi = 8◦, the 3D simulation consists of more than 5 million

unknowns, occupying 2.4 Gb of memory, and takes 16 simulation hours. The number

of iterations has already been limited by choosing the BICGS threshold in the 3D

simulation relatively high: at 10−2.5. On the other hand, the 2.5D simulation for θi = 8◦

only requires 13 068 unknowns, occupying 40.6 Mb of memory, and only lasts 6

seconds. Here, the BICGS tolerance is 10−3 and a discretization with 66 cells in both

x- and y-directions is used, leading to a cell size Δ = λcyl/20.

In Table 4.6 some other computational parameters are listed for the three different

incident angles θi, as well as the NRMSE for component p = x,y,z of the scattered
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field, defined as:

NRMSE(Es
p) =

√
∑K

k=1 |Es
2.5D,p(k)−Es

3D,p(k)|2√
∑K

k=1 |Es
3D,p(k)|2

. (4.2)

Figure 4.11 shows the amplitude and phase of each component of the scattered field

vector for the largest elevation, θi = 30◦. There is a good agreement between the 2.5D

(dotted lines) and the 3D (solid lines) solutions. Similar results were obtained for the

angles θi = 8◦ and θi = 16◦.

Table 4.6: Comparison to a 3D VIE solver: parameters for the 2.5D simulations are incident angle,
number of iterations, total computation time and NRMSE’s for the x-, y- and z-components of the
scattered field.

θi # it. CPU time NRMSE Es
1 NRMSE Es

2 NRMSE Es
3

8◦ 18 00’ 06” 5.1 10−2 2.6 10−2 2.3 10−2

16◦ 19 00’ 06” 7.1 10−2 2.7 10−2 2.4 10−2

30◦ 22 00’ 06” 4.9 10−2 2.6 10−2 2.5 10−2

4.3.2 Comparison to a 3D BIE solver for Gaussian beam illumination

Up to this point, all validations have been for plane waves as incident field. Now, an

orthogonally incident three-dimensional Gaussian beam is used. In this case, only

a spatially limited region of the object is illuminated. Therefore, a finite dielectric

cylinder under Gaussian beam illumination can also be modeled with the 2.5D

algorithm if it has invariant electromagnetic properties in the axial direction over a

distance roughly corresponding to the spot size of the beam. In the following, such

objects are referred to as quasi-2D objects. This approach is validated by comparing

scattered fields from an infinite dielectric cuboid computed with the 2.5D solver to

scattered fields from finite cuboids with increasing length, obtained with the 3D BIE

solver.

Figure 4.12 presents the simulated configuration. The incident field is a 94 GHz

(corresponding to a free space wavelength of λ0 = 3.2 mm), normally incident, 3D

Gaussian beam with beam waist radius w0 = 8.5 mm. Its center is located at O and

the distance d between the beam center and the cuboid surface is chosen half the

collimation distance: b0/2 = 35.6 mm. The electric field is parallel to the z-axis (TM

polarization). The beam radius at the cuboid surface is wcuboid = 9.5 mm and the

corresponding spot size a = 2wcuboid = 19 mm. The cross-sectional dimensions of the

cuboid are equal to half the spot size (b1 = b2 = a/2) and its relative permittivity is

εr,cuboid = 2.0. Note that the object’s cross-section is completely located within the

collimated region of the Gaussian beam.



4.3 Comparison to fully three-dimensional forward solvers 79

100 200 300
0

0.2

0.4

index detector point

A
m

pl
itu

de
 E

s 1

100 200 300
−5

0

5

index detector point

Ph
as

e 
Es

1

100 200 300
0

0.5

1

1.5

index detector point

A
m

pl
itu

de
 E

s 2

100 200 300
−5

0

5

index detector point

Ph
as

e 
Es

2

100 200 300
0

1

2

index detector point

A
m

pl
itu

de
 E

s 3

100 200 300
−5

0

5

index detector point

Ph
as

e 
Es

3

Figure 4.11: Amplitude (left) and phase (right) of the x- (top), y- (middle) and z- (bottom) compo-
nents of the scattered field for a cylinder with radius λ0 under oblique plane wave illumination with
θi = 30◦. Solid line: 3D simulation, dotted line: 2.5D simulation.

The scattered fields are computed in N = 180 points on a circle with radius rdetec =
a/2 = 9.5 mm, located in the xy-plane.

Since the Gaussian beam is orthogonally incident, the different spectral compo-

nents kz of the 2.5D algorithm (3.15) are spread symmetrically around kz = 0, hence

symmetry is invoked to reduce the kz-interval to half its size. The beam is further

expanded in five different positive kz values, which appear to be sufficient for the

NRMSE on the incident field, defined as

NRMSE (E i) =

√
∑N

n=1 |E i
2.5D,z(n)−E i

3D,z(n)|2√
∑N

n=1 |E i
3D,z(n)|2

, (4.3)

to be lower than 10−3. This is also illustrated by Fig. 4.13, showing the amplitude

and phase of the z-component of the 2.5D ((3.17)-(3.18)) and 3D [4] incident field

computed on the detector points.

In successive full 3D simulations, the length of the cuboid is increased, starting

from l = a/2. It is expected that from a certain length on, further increasing the cuboid

length will no longer change the scattered fields, since the incident and scattered fields
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Figure 4.12: Configuration with normally incident 3D Gaussian beam on a finite dielectric cuboid.

on the top and bottom faces of the cuboid are negligible. Figure 4.14 shows the am-

plitude and phase of the z-component of the scattered fields, computed in the detector

points, for different lengths of the cuboid. Fields for l = 4a and l = 8a do not differ

from the scattered field for l = 2a and are therefore not shown in the figure. It can

be concluded that finite cuboids with length l ≥ 2a can be treated as quasi-2D ob-

jects when placed in the collimated region of the beam. When the object is placed
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Figure 4.13: Amplitude (top) and phase (bottom) of the z-component of the incident field for the
simulations of the (in)finite dielectric cuboid. Solid line: full 3D Gaussian beam, dotted line: 2.5D
Gaussian beam with 5 positive discrete kz values.

outside the collimated region, this minimum length will be larger, since the beam is

expanding.

Since fields for longer cuboids do not differ from fields obtained for l = 2a, the

comparison between the 2.5D and 3D solver results is performed for l = 2a. Figure

4.15 displays the amplitude and phase of the z-component of the scattered field for

the 2.5D and 3D simulations, showing a very good agreement. The corresponding

NRMSE for the scattered field, defined as

NRMSE (Es
z ) =

√
∑N

n=1 |Es
3D,z(n)−Es

2.5D,z(n)|2√
∑N

n=1 |Es
2.5D,z(n)|2

, (4.4)

is only 1.1%. Table 4.7 presents the relevant simulation parameters: total number of

unknowns, CPU time, memory usage and the number of CPU-cores used to compute

the result. Whereas the 2.5D simulation only lasts 4 minutes and uses 55.6 MB of

memory (on 1 CPU-core), the 3D simulation takes 3h 26 min, occupying 5 GB of

memory on 14 CPU-cores. The very short simulation time and the small memory

consumption, combined with the good precision, clearly proves the advantages of the

2.5D algorithm for simulating quasi-2D objects, illuminated with Gaussian beams.
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Figure 4.14: Amplitude (top) and phase (bottom) of the z-component of the scattered field as com-
puted with the 3D BIE solver for the finite dielectric cuboid with lengths l = a/2, l = a and l = 2a.

Table 4.7: Computational effort for the dielectric cuboid simulations.

length (m) # unkn. CPU time Mem. usage # CPU-cores
2.5D l = ∞ 34 992 3 min 58 s 55.6 MB 1
3D l = 2a 67 500 3h 26 min 5.0 GB 14

4.4. Scattering by objects on a human body

As the presented 2.5D scheme was shown to be accurate in the previous sections, the

applicability is demonstrated for a typical configuration: the scattering of millimeter

waves on the human body. Due to the relatively high frequency and the large

dimensions of the human body compared to the wavelength, such simulations can

hardly be done in full 3D. If we assume invariance of the electromagnetic properties

of the human body (e.g. the abdomen) over a sufficient distance along the vertical

direction, this configuration perfectly fits the quasi-two-dimensional approximation of

the 2.5D algorithm. Due to the high number of unknowns, the computational speed is

increased by distributing computationally demanding operations (e.g. DFT’s) over all

four CPU cores of the computing machine by applying multi-threaded commands [5].
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Figure 4.15: Amplitude (top) and phase (bottom) of the z-component of the scattered field as com-
puted for the dielectric cuboid. Solid line: 2.5D simulation with infinite cuboid, dotted line: 3D
simulation with finite cuboid: l = 2a.

In this section, the scattering from a simple, clothed abdomen model is studied,

with and without a hidden quasi-2D (dielectric or conducting) object. Figure 4.16 (a)

shows the model cross-section, consisting of the object underneath a layer of cloth-

ing on an elliptically shaped abdomen. The z−axis is chosen vertically for a standing

person. The orthogonally incident 3D TM-polarized Gaussian beam has a frequency

of 100 GHz and a waist w0 = 8 mm. Its center is chosen at the exterior surface of the

skin. Since the size of the illuminated body region is only a few cm in the z-direction,

assuming invariance of the electromagnetic properties of the abdomen along this di-

rection (i.e. the quasi-2D assumption) is a valid approach. The heterogeneity of the

inner body tissues does not affect the scattering, due to the very limited penetration of

mm-waves into the human body [6]. This limited penetration, as well as the finiteness

of the illuminated region in the x-direction, furthermore allow to consider a strongly

reduced computational domain, containing only a part of the abdomen as depicted in

Fig. 4.16 (b). In this restricted domain, four layers can be distinguished: clothing, air,

dry skin and fat. The thickness d and permittivity εr for each layer are chosen as fol-

lows: dclothing = 2 mm and εr,clothing = 4.0 + i 0.1 for clothing [6], dair = 3 mm and

εr,air = 1 for air, dskin = 2 mm and εr,skin = 5.60+ i 7.09 for dry skin [7] and d f at = 10

mm and εr, f at = 2.89 + i 0.64 for fat [7]. A rectangular object with width 15 mm,
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thickness 2.5mm and relative permittivity εob j is placed between clothing and skin.

If such an object is to be detected using mm-waves, its introduction should lead to a

significant change in the total field detected at the outside.

13 cm

(a)

Clothing
Free space

Dry skin
Fat

Hidden object

(b)

Ei

Ei

D

x

y
z

Figure 4.16: Configuration for the abdomen under 3D Gaussian beam illumination.

In all simulations the computational domain has dimensions of 110 mm in the

x-direction and 40 mm in the y-direction. It is discretized into 1120× 416 cells with

size Δ = 0.1 mm, yielding a total of 1 397 760 unknowns. The BICGS tolerance is

set to 10−3. The incident field is computed using the vectorial complex-source beam

formula (3.14) for five different kz values, see Table 4.8.

Table 4.8: Computational effort for the abdomen simulations.

no object conducting object dielectric object
kz/k0 # it. # it. # it.

0.0122 535 882 548
0.0601 532 868 531
0.1302 529 919 605
0.2004 299 443 303
0.2482 340 398 323

CPU time 1h 43min 2h 42min 1h 47min

As mentioned in Chapter 2, a marching-on-in-kz technique [8] is applied to reduce

the number of BICGS iterations. For the first three kz values the initial guess for the

electric flux density is a zero field, whereas the initial guess for the fourth and fifth kz
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value is a combination of three previous solutions. This is clearly visible from Table

4.8: the number of BICGS iterations drop significantly from the fourth kz value on.

The left part of Fig. 4.17 shows the total field amplitude when no hidden object is

present. Since the black color corresponds to a zero field amplitude, it is clear that

there is no significant field penetration further than the skin and that there is no diffrac-

tion at the truncated edges. This proves that the selected part (Fig. 4.16 (b)) from the

abdomen cross-section is chosen large enough. On the contrary, the clothing is almost

transparent for the beam, which is mostly reflected by the skin towards the incident

direction. Note that for illustrative purposes the size of the computational domain in

the x-direction was in fact chosen larger than strictly necessary (see Fig. 4.17).

0.0

0.1

Figure 4.17: Total field amplitude for the simulation of the abdomen. Left: no hidden object, middle:
hidden conducting object and right: hidden dielectric object.

Next, a strongly conducting object with εob j = 1 + i100, representing a small

knife-like object, is inserted. The resulting total field amplitude is presented in the

middle part of Fig. 4.17 and clearly reveals the scattering introduced by this object.

Finally, a dielectric object with εob j = 2, representing certain explosives (for example

εT NT = 2.7, εRDX = 3.14, εSemtex−H = 3 [9]) is considered. The scattering from this

object is again clearly visible within and outside the main beam, as appears from the

right part of Fig. 4.17. From Table 4.8 it follows that the simulation for the conduct-

ing object is computationally most expensive. The presence of the hidden objects is
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furthermore illustrated in Fig. 4.18, which shows the amplitude of the difference be-

tween the total fields with and without hidden object (i.e. the change in the total field

due to the insertion of the object) on a line left of the abdomen (19.7 mm left of the

exterior surface of the skin) for the three different simulations. Although it is generally

assumed that a dielectric object with a low permittivity will be more difficult to detect

than a conducting object, this is contradicted by the field plots in Fig. 4.19, which, for

each hidden object, show the amplitude of the difference between the total fields with

and without object, revealing that both dielectric and conductive objects are clearly

”visible”.
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Figure 4.18: Total field amplitude for the simulation of the abdomen, on a line 19.7mm left to the
skin surface. Solid line: no hidden object, dashed line: hidden conducting object, dotted line: hidden
dielectric object.

4.5. Conclusion

In this chapter, the proposed 2.5D forward solver has been tested extensively, both

for plane wave and Gaussian beam illumination. For plane wave illumination, simu-

lated scattered fields have been compared to analytic solutions for: (i) a homogeneous

cylinder illuminated by a purely two-dimensional TM-polarized orthogonally inci-

dent field, (ii) a homogeneous cylinder illuminated by a purely two-dimensional TE-

polarized orthogonally incident field, (iii) a homogeneous cylinder illuminated by a
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0.0

0.1

Figure 4.19: Amplitude of the difference between the total field with hidden object and the total
field without hidden object for the simulation of the abdomen. Left: hidden conducting object, right:
hidden dielectric object.

three-dimensional obliquely incident TM-polarized incident field and (iv) a piecewise-

homogeneous multilayered cylinder illuminated by a three-dimensional obliquely in-

cident TM-polarized incident field. For all configurations, the comparison to the cor-

responding analytic solution yielded excellent results.

Moreover, simulated fields have also been compared to scattered fields, obtained

from fully three-dimensional forward solvers. The comparison to a 3D VIE-based

forward solver with plane wave illumination illustrated the advantage of the 2.5D

approach when simulating long dielectric cylinders: the 2.5 solver needs far less un-

knowns and much shorter computation times. A 3D BIE-based solver was used to

study the 2.5D assumption under Gaussian beam illumination. Increasing the length
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of a homogeneous dielectric cuboid has shown that the restriction to infinitely long
cylinders in the 2.5D solver can be weakened to long enough cylinders in case of a

Gaussian beam illumination. The scattered fields from the 2.5D and 3D solvers agreed

perfectly.

As an illustration of the imaging applications for which this forward solver is

intended, the scattering from the human body has been simulated. This test case con-

siders a Gaussian beam illumination, orthogonally incident on a simplified model of

a clothed human torso. A small metallic or dielectric object was hidden underneath

the layer of clothing and the effect on the scattered fields was compared. The hidden

object clearly influenced the scattered fields.
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CHAPTER 5

Comparison with experimental

data

5.1. Introduction

When an inverse solver is used in practical applications, the data are real-life measure-

ments. Therefore, it is useful to compare also forward solver results to experimentally

measured scattered fields. However, different effects affect the comparison between

simulated and scattered fields.

In an inverse problem, the position of the object is not known in advance, whereas in

the forward problem, knowledge of the position and orientation of the scatterer is crit-

ical to achieve a good agreement between simulated and measured scattered field. The

higher the frequency, the more these positioning errors make the comparison more

difficult. This is even more the case, when not only the amplitude, but also the phase

of the fields are compared.

Another major issue is the characterization of the incident field. If there is no proper

characterization of the incident field, it makes no sense trying to invert the measured

data. In an experimental environment, an incident field can not be a perfect plane

wave. However, cylindrical and spherical waves emitted at a large distance from the

scatterer can be approximated by a plane wave at the scatterer’s position. Moreover,

the distance between antenna and target has to be large enough to neglect the antenna

to target coupling. For a Gaussian beam illumination, it is essential to know the beam

waist radius and the location of the beam waist plane to characterize its propagating

behavior, especially when the beam does not illuminate the target completely. It seems

hard to extract these beam parameters from an incident field in an experimental set-

up. Furthermore, the frequency itself also has an effect. The higher the frequency, the

more complicated the measurement and hence the more expensive the necessary mea-

surement facilities.
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Another important issue when simulation results are compared to measurements, is

the calibration, in which both simulated and measured incident fields are given the

same power and reference plane by scaling one of them, as well as the corresponding

scattered field, by a complex scaling factor.

In this chapter, two types of experiments are presented to compare the 2.5D forward

solver with real measurement data. The first experiment was conducted in the bistatic

polarimetric measurement facility of Institut Fresnel [1] and consists in measuring the

scattered field in amplitude and phase of a long inhomogeneous dielectric cylinder un-

der oblique quasi-plane wave illumination for microwave frequencies between 1 and

18 GHz. The quality of the data provided by this facility is much appreciated by the

electromagnetic inversion community [2, 3, 4, 5].

The second experiment was performed with a millimeter wave measurement setup at

the Vrije Universiteit Brussel (VUB) and yields measurements of the field amplitude

at 94 GHz for the configuration of a 3D Gaussian beam normally incident on a ho-

mogenous teflon cylinder. In the time-span of this PhD work, this millimeter wave

set-up only allowed for field amplitude measurements. This is why the comparison

with amplitude and phase measurements is presented in the microwave regime for

oblique plane wave incidences.

Results of both experiments are presented in [6, 7].

5.2. Plane wave scattering by an inhomogeneous cylinder

5.2.1 Measurement set-up at Institut Fresnel

Figure 5.1 shows the bistatic microwave measurement set-up in the large faradized

anechoic chamber of Institut Fresnel in Marseille [1]. This facility operates in a con-

tinuous wave stepped frequency mode in the range 45 MHz - 26.5 GHz. A transmit-

ting antenna is moved on a vertical arch with radius 1.796 m over 7 elevation angles

θi
n,n = 1...7, in steps of 10◦ starting from θi

1 = 0◦ with respect to the horizontal xy-

plane (see Fig. 5.2). The field generated by the transmitting antenna can locally (i.e.

at the location of the object) be assumed to be a plane wave, although it has a limited

spatial extension. In this way, the incident field approximates a TM polarized plane

wave propagating along ui
n (with the electrical field in a vertical plane through the

z-axis, see Fig. 5.2, and with the magnetic field in the horizontal plane). For each

transmitting position, a receiving antenna is moved on a horizontal arch with radius

1.795 m from −130◦ to +130◦ in steps of 1◦. The 0◦ position corresponds to the loca-

tion opposite to the vertical transmitter arch. The z-component of the field is measured

in amplitude and phase. The scattered field is obtained as the difference between the

measured fields with and without the cylinder for frequencies between 1 to 18 GHz,

in steps of 1 GHz. The 1.5 m long scattering object is placed in the center of both

source and receiver arches, see Fig. 5.2. The white cylinder in Fig. 5.1 that supports
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the scattering target is made of PA6 tube (with a diameter of 0.1 m and εr = 2.6) and

allows an accurate positioning of rather heavy objects [1].

Figure 5.1: Microwave measurement set-up at Institut Fresnel: transmitting antenna (left), scattering
cylinder (middle) and receiving antenna (right).
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Figure 5.2: Antenna configurations for the microwave plane wave experiments.

5.2.2 Measured target at Institut Fresnel

The Institut Fresnel has different dielectric targets that are used to validate

two-dimensional imaging techniques. These dielectric cylinders (with names as

FoamDielInt, FoamDielExt and TwinDiel [1]) are 1.5 m long, which is long enough

for use in purely two-dimensional forward and inverse solvers [1]. However, for this

PhD work, the target is obliquely illuminated with plane waves. It can be expected that

for increasing elevation angles (from orthogonal incidence to more and more oblique

illumination) the upper and lower ends of the targets will contribute more to the scat-

tered field on the receiver and hence will make the agreement worse.

In this chapter, the target under study is the inhomogeneous FoamDielInt target.

This dielectric cylinder consists of a berylon plastic circular cylinder with radius

ra = 15.5 mm and relative permittivity εr,a = 3±0.3 which is off-centered enclosed in

a foam (SAITEC SBF 300) circular cylinder with rb = 40 mm and εr,b = 1.45±0.15

(see Fig. 5.3). The distance d between the centers of both cylinders is d = 5 mm.

In the 2.5D simulations, the relative permittivities for both constituents are set to

εr,a = 3 and εr,b = 1.45.
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Figure 5.3: Plane wave scattering configuration: Cross-section of the piecewise homogeneous di-
electric cylinder FoamDielInt.

5.2.3 Comparison of incident and scattered fields

Since the measured object is slightly misaligned, an optimization for its real posi-

tion is made by trial and error by performing multiple simulations. Results shown in

the following are for this optimized position of the cylinder. Furthermore, to com-

pare measurements and simulations, a calibration procedure is applied. The simulated

fields are multiplied by a complex scaling factor α, which is determined by minimiz-

ing the least-squares difference between the (scaled) simulated incident field and the

measured one. If the simulated field values are collected in the data vector esim and the

measured field values are collected in emeas, the least-squares difference between both

is defined as:

||α esim − emeas||2 = (α esim − emeas)H(α esim − emeas). (5.1)

Minimizing the function with respect to the complex scaling factor α yields an ade-

quate value for the scaling parameter:

α =
esim Hemeas

esim Hesim
. (5.2)

Figure. 5.4 and Fig. 5.5 show the simulated and measured z-components of the

scattered field, for the elevation angles θi
1 = 0o and θi

3 = 20o and for frequencies

3 GHz and 8 GHz. Figure 5.4(a) and Fig. 5.5(a) show that for an elevation angle

θi
1 = 0o (normally incident field), there is a very good agreement in amplitude and
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phase between the measured and simulated scattered fields. For an elevation angle

θi
3 = 20o, Fig. 5.4(b) and Fig. 5.5(b) again show a good agreement in amplitude, at

both frequencies. At 3 GHz, the phases show a very good agreement whereas at 8 GHz,

the phases are somewhat different for the outer negative detector angles.

For large elevation angles, see Fig. 5.6 and Fig. 5.7, deviations between the sim-

ulated and measured scattered field occur due to two different effects. First, there is

the different nature of the measured and simulated incident field: a spatially confined

plane wave approximation (measurements) against an infinite plane wave (simula-

tions). Second, there are diffraction effects at the end faces of the cylinder, which are

not accounted for by the 2.5D simulation tool but are present in the measurements.

Since, for larger elevation angles, the top edge of the finite cylinder becomes more

and more illuminated, the measured configuration no longer fits the 2.5D assumption.

Table 5.1 presents the total number of unknowns and CPU-time for each simulation

(these computations are all performed on one CPU-core).

Table 5.1: Computational effort for the microwave plane wave simulations.

frequency elevation angle # unknowns CPU time

3 GHz θi = 0o 4 563 5 s

3 GHz θi = 20o 4 563 5 s

8 GHz θi = 0o 24 843 31 s

8 GHz θi = 20o 24 843 31 s
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Figure 5.4: Amplitude and phase of the z-component of the scattered field from the FoamDielInt
target under plane wave illumination at 3 GHz: (a) with elevation angle θi = 0o, (b) with elevation
angle θi = 20o. Solid line: 2.5D simulation, dotted line: measurement.
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Figure 5.5: Amplitude and phase of the z-component of the scattered field from the FoamDielInt
target under plane wave illumination at 8 GHz: (a) with elevation angle θi = 0o, (b) with elevation
angle θi = 20o. Solid line: 2.5D simulation, dotted line: measurement.



5.2 Plane wave scattering by an inhomogeneous cylinder 99

−100 −50 0 50 100
0

0.05

0.1

scattering angle ( o )

A
m

pl
itu

de
 E

s3

−100 −50 0 50 100
−4

−3

−2

−1

scattering angle ( o )

Ph
as

e 
Es

3

(a)

−100 −50 0 50 100
0

0.05

0.1

scattering angle ( o )

A
m

pl
itu

de
 E

s3

−100 −50 0 50 100
−2

−1

0

1

scattering angle ( o )

Ph
as

e 
Es

3

(b)

Figure 5.6: Amplitude and phase of the z-component of the scattered field from the FoamDielInt
target under plane wave illumination at 3 GHz: (a) with elevation angle θi = 30o, (b) with elevation
angle θi = 40o. Solid line: 2.5D simulation, dotted line: measurement.
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Figure 5.7: Amplitude and phase of the z-component of the scattered field from the FoamDielInt
target under plane wave illumination at 8 GHz: (a) with elevation angle θi = 30o, (b) with elevation
angle θi = 40o. Solid line: 2.5D simulation, dotted line: measurement.
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5.3. Gaussian beam scattering by a homogeneous cylinder

5.3.1 Measurement set-up at the Vrije Universiteit Brussel

A picture and a sketch of the millimeter wave experimental set-up at the department

LAMI-ETRO at the Vrije Universiteit Brussel (VUB) is shown in Fig. 5.8 and Fig.

5.9, respectively. A W-band (75 GHz to 110 GHz) Backward Wave Oscillator (BWO)

emits a 94 GHz wave, which is focussed into a TM polarized (i. e. electric field di-

rected along the z-axis) Gaussian beam with a beam waist w0 = 8.5± 0.5 mm by a

lens-capped corrugated horn antenna.

At the detecting side, the receiving antenna is an open WR10 waveguide probe

coupled to a zero biased Schottky diode detector. The detector has a sensitivity of

550 mV/mW and measures the relative power of the field, which is related to its am-

plitude. The probe and detector are mounted together on a two-axis scanner, which is

able to move both parallel and perpendicular to the beam axis in a horizontal plane.

In this way, three different horizontal detector lines are obtained at d1 = 4.5 cm,

d2 = 6.5 cm and d3 = 8.5 cm from the cylinder’s center (Fig. 5.10). Each line consists

of N = 81, 1 mm spaced, detector points.

Figure 5.8: Photo of the Gaussian beam measurement set-up at 94 GHz.

5.3.2 Measured target at the Vrije Universiteit Brussel

The scatterer is a 30 cm long homogeneous teflon cylinder with radius r = 1.75 cm

and relative permittivity εr = 2.06+0.0015 j, positioned along the beam axis at d0 =
10.5±0.9 cm from the source (see Fig. 5.10). Only a small central part of the cylinder

is illuminated by the incident Gaussian beam (the diameter of the illuminated spot is

approximately 3 cm) such that the cylinder can be treated as infinitely long. In the

2.5D simulation, the distance and the beam waist radius are chosen as d0 = 10.5 cm
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Figure 5.9: Schematic of the Gaussian beam measurement set-up at 94 GHz.
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Figure 5.10: Configuration of the 94 GHz Gaussian beam scattering experiment.

and w0 = 8.5 mm and the permittivity is set to εr = 2.06 + 0.0015 j. The simulation

needs 338 688 unknowns and takes 39 min 55 s on four CPU-cores.

5.3.3 Comparison of incident and scattered fields

A similar calibration as for the microwave experiment (5.2) is applied. However, only

the field amplitude is measured. Therefore, the z-components of the simulated fields

are multiplied with a real scaling factor α, given by

α =
esim T emeas

esim T esim
. (5.3)

Here, the data vectors esim and emeas contain the simulated and measured incident field

amplitudes respectively.
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Figure 5.11 and Fig. 5.12 show the amplitude of the incident and total electric

fields on the three different detector lines, respectively. The simulated vectorial Gaus-

sian beam agrees very well with the measured incident field. The corresponding sim-

ulated and measured total fields are also very similar. The remaining small differences

are due to the uncertainty on the beam waist (w0 = 8.5±0.5 mm) and the position of

the source (d0 = 10.5±0.9 cm).
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Figure 5.11: Amplitude of the z-component of the measured and simulated incident field, corre-
sponding to the 94 GHz incident Gaussian beam for the configuration of Fig. 5.10.
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Figure 5.12: Amplitude of the z-component of the measured and simulated total field at 94 GHz,
for the configuration of Fig. 5.10.
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5.4. Conclusion

In this chapter, we have studied the correspondence between simulated scattered fields

on the one hand and experimentally measured scattered fields on the other hand. At

the LAMI-ETRO lab (VUB), amplitude-only scattering measurements are performed

at 94 GHz for homogeneous teflon cylinders. At this high frequency, the incident field

is a three-dimensional Gaussian beam. Although the beam could not be characterized

precisely (there is some uncertainty on the beam waist location and beam waist ra-

dius), the simulated and measured fields agree quite well. No amplitude and phase

measurements are yet available to us in the millimeter wave range.

A completely vectorial comparison to experimental fields is performed in the mi-

crowave range. The Institut Fresnel in Marseille is well known for high quality scat-

tering experiments [1,2,5] and provided measured scattered fields from an inhomoge-

neous dielectric cylinder under oblique plane wave illumination at different frequen-

cies. Also here, simulated and measured scattered fields are in good agreement.
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PART II
THE INVERSE PROBLEM





CHAPTER 6

The quantitative inverse

scattering problem

6.1. Introduction

This chapter deals with the quantitative electromagnetic inverse scattering problem.

The goal is to characterize an unknown object by reconstructing its complex permit-

tivity profile from measured scattered fields. Therefore, the unknown object is sequen-

tially illuminated with known, time-harmonic, electromagnetic fields from different

directions and often also with different polarizations. This results in an active imaging

technique.

Many different techniques to solve the inverse scattering problem have been de-

veloped for microwave imaging applications [1, 2, 3, 4, 5, 6, 7, 8, 9]. In this PhD, we

apply this knowledge to the millimeter wave frequency range. We have extended the

existing inverse scattering techniques in different ways. First, apart from the generally

used plane wave illumination, also a Gaussian beam illumination is considered. Sec-

ond, we have developed a new generally applicable regularization technique, called

the stepwise relaxed object smoothed value picking regularization. Third, the pro-

posed inversion scheme is made applicable to large scattering systems by introducing

a partial inverse problem grid description, which restricts the inversion domain to a

limited area surrounded by known background objects.

Due to the non-linearity of the inverse problem, it is solved in an iterative way, as

shown in Fig. 6.1. From Fig. 6.1, four main components of the inverse problem can be

distinguished:

1. The routine starts with an initial guess for the unknown permittivity profile εεεinit

(e.g. free space everywhere).

2. Then, the forward model computes the scattered fields escat(εεε) that correspond to

the current permittivity profile εεε in the measurement points, for all illuminations.
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3. In the evaluation block, an evaluation is made of how well the current permittiv-

ity profile satisfies some predefined quality standards (e.g. how large is the error

between computed and measured scattered fields, how smooth is the current per-

mittivity profile, etc.).

4. If the permittivity profile does not meet the above requirements, the updating block
derives a new permittivity profile for the next iteration

We refer to the first part of this PhD work for a detailed overview of the forward model

and focus in this chapter on the evaluation and updating blocks. The evaluation block

is implemented by constructing a real-valued cost function that unites the different

quality standards for the reconstruction. The cost function usually consists of a data
fit part and a regularization part. The data fit part is a measure for the difference

between the experimentally obtained scattered fields and the simulated ones, for the

current iteration. Due to the ill-posedness of the inverse scattering problem, the use

of only this data fit part does often not allow to obtain a solution. The regularization

part contains additional a-priori information to the inverse problem (e.g. all objects

are more or less smooth, the scatterer consists of a limited number of homogeneous

regions, etc.).

The updating block contains a two-step procedure. First, an update direction ΔΔΔεεεk

for the current permittivity profile εεεk is computed from the cost function. Second, an

approximate line search is performed yielding the step size βk which (appoximately)

minimizes the cost function along this direction. Hence, permittivity profiles are up-

dated as

εεεk+1 = εεεk +βkΔΔΔεεεk. (6.1)

The update direction is obtained by applying a Newton method. In this PhD work a

Gauss-Newton technique and a modified Gauss-Newton technique are applied. The

approximate line search is performed as proposed by Fletcher in [10]. In the rest of

this PhD work, the term iteration denotes one single loop in Fig. 6.1: the construction

of a new, updated, permittivity profile by (i) computing an update direction for the

permittivity profile and (ii) performing an approximate line search along this direction.

Although the updating routine for the permittivity profile is based on the total cost

function, the criterion to terminate the iterative routine is based on the data fit part

only: the procedure is iterated until the data fit is smaller than a predefined threshold.

The corresponding permittivity profile is denoted the reconstruction.

This chapter is organized as follows. The next section defines general scatterer,

source and detector configurations and the organization of the data vectors. After-

wards, the effects of the ill-posedness of the electromagnetic inverse problem are dis-

cussed and the necessity of regularization is illustrated. The following sections deal

with the evaluation and updating blocks of the inverse problem, respectively, for var-

ious types of regularization. In the updating block, derivatives of the forward model

with respect to the permittivity unknowns are required. An analytical expression for

these derivatives is derived in Section 6.6. Finally, the partial inverse problem grid
approach is briefly illustrated.
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Figure 6.1: Iterative solution of the inverse scattering problem.

6.2. Scatterer, source and detector configurations

The reconstruction of the unknown permittivity profile is obtained by a pixel based in-

version scheme. An investigation domain D is defined, which is known to contain the

unknown scatterer. This investigation domain is subdivided in square cells, yielding

a square grid that consists of Nε cells with cell size Δε and contains Nx and Ny cells

in the x- and y- directions respectively. The center point of an inverse problem cell

(k, l) is denoted by rk,l = kΔεux + lΔεuy. Note that this inverse problem grid usually

consists of larger cells than the forward problem grid (i.e. the grid employed to solve

the forward scattering problem).

Over the investigation domain D , the unknown complex permittivity function ε(r)
is approximated as a piecewise constant function with a unique value within each cell:

ε(r) ≈
Nx−1

∑
k=0

Ny−1

∑
l=0

ε0εk,lΦk,l(r) r ∈ D. (6.2)

Here, Φk,l(r) is a 2D pulse function which is 1 inside cell (k, l) and zero elsewhere.

The inverse problem thus consists of determining the unknown coefficients εk,l , which
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are ordered in a Nε-dimensional complex permittivity vector

εεε = [ε0,0 . . .εNx−1,Ny−1]T = [εν]T , (6.3)

where [.]T stands for transpose.

Now suppose there are NT transmitting antennas, see Fig. 6.2, positioned in rA
t

and producing incident fields (e.g. Gaussian beam, plane wave) with polarization uA
t,p

(t = 1 . . .NT ). The total number of illuminations is NI = NPNT , where NP = 1 if only

one incident field (being TE- or TM- polarized) originates from each transmitting an-

tenna and NP = 2 if two incident fields originate from each transmitting antenna (one

being TE- polarized and the other being TM- polarized). We assume that the receiver

configuration can be different for each transmitting antenna t: every transmitting an-

tenna is linked to a set of NR
t receiver locations, denoted as rA

r (r = 1 . . .NR
t ), which

measure the scattered field along 3 polarization directions uA
r,p (i.e. the x-, y- and z-

components of the scattered field).

?

1
2

3

..
.

transmitting side receiving side

1
2
3

..
.

Figure 6.2: Definition of the position and polarization direction of the transmitting and receiving
antennas in the inverse problem configuration. The propagation direction of the illuminations is also
indicated.

All obtained scattered field data are organized in the data vector emeas, which has a

length ND = NP ∑NT

t=1 3NR
t . The elements of the data vector are Emeas

t,p (rA
r ) ·uA

r,p′ , these

are components of the scattered field, measured in points rA
r , along a polarization

vector uA
r,p′ for an incident field generated in the source position rA

t with polarization

uA
t,p. Similarly, the vector containing the simulated scattered fields at all measurement

positions for every illumination is represented as escat(εεε).
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6.3. Ill-posedness of the quantitative inverse scattering problem

The quantitative inverse scattering problem is ill-posed, which means that, as defined

by Hadamard [11], existence of a solution, uniqueness of a solution and stability (con-

vergence to the solution) are not guaranteed simultaneously.

If the solution of the inverse problem is defined as the permittivity profile for

which the simulated scattered field exactly matches the measured fields (i.e. an exact

data fit), then the inverse problem hardly ever has a solution since both measured and

simulated scattered fields will be corrupted by noise (due to misalignment, unwanted

reflections, ... in the measurement set-up and/or discretization errors, approximations

and other numerical errors in the numerical implementation of the forward problem).

The existence of a solution can be guaranteed by dropping the exact data fit require-

ment and reformulating the solution to an inverse problem as the permittivity profile

that minimizes the least squares scattered field error

||emeas − escat(εεε)||2. (6.4)

This scattered field error (6.4) is denoted as the data fit. In practice, it is sufficient that

the data fit is smaller than a predefined tolerance value to end the iterative procedure

and call the current permittivity profile the solution.

Since scattered fields, measured on an arbitrary surface outside the source region,

only have a limited number of degrees of freedom in finite precision [12], adding more

illumination and measurement points to a measurement set-up does not increase the

information content of the data vector emeas from a certain point on. Therefore, it is

possible that there exist more than one permittivity profile that minimizes the least

squares data fit, since the number of degrees of freedom for the permittivity profile is

usually (especially when a fine reconstruction grid is applied for a good resolution)

larger than the number of degrees of freedom in the data. This uniqueness problem

can be partly alleviated by providing as much non-redundant information as possible,

i. e. maximizing the information content of the data.

The stability problem strongly influences the reconstruction process. Small fluctu-

ations on the measured scattered field (e.g. caused by noise) can introduce relatively

large changes in the permittivity profile. A regularization procedure adds extra, a-
priori, information to the inverse problem, e.g. all scattering objects are more or less

smooth. Consequently, the regularization suppresses the occurrence of unwanted per-

mittivity fluctuations caused by noise and also mitigates the uniqueness problem since

it reduces the number of degrees of freedom for the solution.

Many regularization strategies proposed in literature are based on the same prin-

ciple: a regularization term is added to the data fit cost function. In this PhD work,

three different regularization techniques are implemented, which are all developed at

INTEC. The first type of regularization is the so-called multiplicative smoothing regu-

larization [13, 14]. This technique penalizes strong local variations of the permittivity

and hence smooths out edges in the reconstructed profile. Whereas the first type of
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regularization penalizes spatial variations, the stepwise relaxed value picking regular-

ization [15] penalizes deviations of the permittivity profile with respect to a number

of (hitherto unknown) permittivity values. Hence, this regularization strategy is par-

ticularly suited for the reconstruction of piecewise (quasi-) homogeneous targets. It

yields promising results for reconstructions of dielectric targets from 3D experimental

data [13]. In this PhD, a new type of regularization is proposed, which is a combi-

nation of a spatially smoothing regularization and the stepwise relaxed value picking

regularization. We have named it stepwise relaxed object smoothed value picking reg-

ularization. It is shown in Chapter 7 that this new regularization method significantly

improves the reconstruction, in cases when applying the purely stepwise relaxed value

picking regularization leads to artifacts in the reconstructed permittivity profile.

6.4. The evaluation block: Cost functions

For every permittivity profile, an evaluation is made of how well the computed scat-

tered field fits the measurement data by evaluating a real-valued non-linear cost func-

tion. This is represented by the evaluation block in Fig. 6.1.

Due to the ill-posedness of the quantitative inverse scattering problem, its solution

is defined as the permittivity profile that minimizes the least squares data fit cost func-

tion, in this PhD work denoted as F LS (εεε). Furthermore, a regularization strategy must

be applied to the data fit cost function to improve its stability and to compensate for

the loss of information due to noise. Generally, this is done by adding a regularization

term F reg to the data fit cost function F LS with its weight given by the regularization

parameter γ:

F (εεε) = F LS (εεε)+ γF reg(εεε). (6.5)

In the following, the data fit cost function F LS is discussed, together with the cost

functions F reg that correspond to the three different types of regularization. Note that

the regularization parameter (here denoted as γ) has different representations (α, γ and

ζ) in the following sections, depending on the type of regularization that is applied.

6.4.1 The data fit cost function

The least squares data fit cost function is given by:

F LS (εεε) =
1

NLS ||emeas − escat(εεε)||2, (6.6)

where NLS is a normalization constant such that F LS (εεε) = 1 when escat(εεε) = 0, hence

NLS = ||emeas||2. Since the electromagnetic inverse problem is ill-posed, the minimum

of F LS is not well defined. Scattered fields depend in a non-linear manner on the

permittivity profile, hence this cost function is also non-linear in εεε.
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The evaluation of the data fit cost function for a permittivity profile εεε is a time

demanding operation since the scattered field vector escat(εεε) must be constructed by

solving the corresponding forward problems for every illumination.

6.4.2 The multiplicative smoothing regularized cost function

The multiplicative smoothing (MS) regularization [14] penalizes strong local varia-

tions of the permittivity. It is ideally suited to reconstruct smooth objects since it soft-

ens sharp edges in the reconstructed profile. In the multiplicative approach, the total

cost function, denoted as F M S (εεε), becomes

F M S (εεε) = F LS (εεε)[1+αF R (εεε)] = F LS (εεε)+αF LS (εεε)F R (εεε), (6.7)

with α the regularization parameter, which is a small positive number. The smoothing

function F R (εεε) is defined as

F R (εεε) =
1

N R

[
Nx

∑
k=0

Ny−1

∑
l=0

|εk,l − εk−1,l |2 +
Nx−1

∑
k=0

Ny

∑
l=0

|εk,l − εk,l−1|2
]

, (6.8)

where N R is a normalization constant which accounts for the dimensions of the object

and the size of a discretization cell. In fact, expression (6.8) is a discrete version of

1

ε2
0D

Z
D
|∇ε(r)|2dr. (6.9)

The effect of the smoothing function F R is illustrated in Fig. 6.3 for permittivity

variations in the k-direction only (the first term in (6.8)). Every permittivity jump

between two horizontally (vertically) adjacent cells is once accounted for in the first

(second) term of the smoothing function F R , hence this term comprises for each cell

(k, l) the squared permittivity difference with its left (lower) neighbor as indicated

with the horizontal arrows in Fig. 6.3. Since all permittivity jumps contribute to F R ,

smoothing is imposed all over the reconstruction domain.

The multiplicative nature of (6.7) makes the choice of the regularization parameter

α less critical since the regularizing term in the cost function is proportional to the

data fit. At the start of the optimization, the optimization domain is restricted to very

smooth profiles since the regularization weight, given by αF LS is still large. During

the following iterations the regularization weight decreases, thus gradually enlarging

the optimization domain to allow for more detail. Typically the data fit stagnates when

the noise level is reached, thus yielding an estimate of the noise level.
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Figure 6.3: An illustration of the effect of the smoothing function F R for permittivity variations in
the k- direction (the first term in (6.8)): every permittivity jump between two horizontally adjacent
cells (represented as a horizontal arrow) is once accounted for. The different colors of the cells
represent different permittivity values.

6.4.3 Cost function with stepwise relaxed value picking regularization

The recently developed value picking (VP) regularization [13, 15] is particularly

suited for the reconstruction of piecewise (quasi-) homogeneous targets, consisting

of P  Nε different permittivity values. This regularization technique does not in-

troduce smoothing based on spatial information, as does the multiplicative smoothing

regularization. In the method, an extra term is added to the data fit cost function, which

penalizes permittivity profiles with more than P different values and hence clusters all

permittivity values in the investigation domain around P reference values, named VP
values. This clustering is achieved for each individual cell in a manner that is inde-

pendent of the permittivity clustering of neighboring cells. The total cost function is

given by

F V P (εεε,c) = F LS (εεε)+ γF P (εεε,c), (6.10)

with γ a positive regularization parameter and the vector c containing the VP values.

The regularization function F P (εεε,c) is defined as

F P (εεε,c) =
1

Nε

Nε

∑
n=1

f P(|εn − c1|2, . . . , |εn − cP|2), (6.11)
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where f P is the P-dimensional choice function. It is defined as

f P(u1, . . . ,uP) = FP(u1, . . . ,uP;0), (6.12)

with FP(u1, . . . ,uP;x) defined and evaluated through the recursion formula

FP(u1, . . . ,uP;x) = (uP + x)
FP−1(u1, . . . ,uP−1;x)

FP−1(u1, . . . ,uP−1;uP + x)
(6.13)

with F1(u1;x) = u1 + x. The particular form of this choice function is discussed in

more detail in [1, 15].

The regularization function F P (εεε,c) (6.11) can be reformulated in terms of a

weighted sum of penalty functions |εn − cp|2 [1]:

F P (εεε,c) =
1

Nε

Nε

∑
n=1

P

∑
p=1

bP
p,n(εεε,c)|εn − cp|2. (6.14)

The behavior of the regularization function is as follows: (i) when the permittivity of

a cell is close to a particular VP value, the choice function will try to enforce equality

of the permittivity of that cell with this VP value (i.e. the corresponding weight of that

term in (6.14) will be close to 1), (ii) when there is no clear preference of a permittivity

cell for a particular VP value, no choice is made (the weight in (6.14) being somewhere

intermediate between 0 and 1) and (iii) VP values that are clearly far away from the

considered permittivity cell are neglected (the weight in (6.14) is almost zero). At

the end of the optimization process, the reconstructed permittivity profile is obtained.

Furthermore, a plot of the final weights bP
p,n(εεε,c) for every permittivity pixel shows

to which particular VP value it is most attracted, providing a good idea of the overall

success of the reconstruction.

The VP values are not known in advance and are thus treated as extra variables in

the optimization process. They are initialized randomly within some predefined upper

and lower bounds on their real and imaginary part. One of these VP values, cP, is kept

fixed to the background permittivity, since this permittivity value appears definitely in

the reconstruction domain.

In the value picking regularization method, every permittivity profile consisting of

only P permittivity values, within the constraints on εεε and c, yields F V P (εεε,c) = 0.

Consequently, the permittivity profile can be trapped in a local minimum above the

noise level. Therefore, a stepwise relaxed value picking (SRVP) regularization scheme

is introduced. The number of VP values is gradually increased, starting with only the

background permittivity as a VP value. When the gradient of the cost function is small

enough, indicating that a local minimum of the cost function is reached, an extra VP

value is introduced to relax the optimization. A VP value is also added when the data

fit increases again, indicating that the value picking regularization is making decisions

which are not guided by the data fit. Ideally, the data fit reaches the noise level when

the number of introduced VP values corresponds to the number of piecewise constant
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objects with different permittivity. When the value of the regularization parameter γ is

chosen too high, the relatively large weight of the regularization function is compen-

sated by adding more VP values then necessary. To determine the ideal value for this

parameter, the clustering of the permittivities is studied. Sufficient clustering should

be achieved with as few VP values as possible and for the smallest value for γ yielding

a proper clustering.

6.4.4 Cost function with stepwise relaxed object smoothed value pick-

ing regularization

This section presents the new stepwise relaxed object smoothed value picking

(SROSVP) regularization, developed during this PhD work. It is a combination of the

two previously mentioned regularization techniques and uses only slightly more a-

priori information than the purely stepwise relaxed value picking regularization: i.e.

we assume that all homogeneous objects in the permittivity profile have an extent in

both x- and y- directions that is larger than the size of one inverse problem cell. This

new regularization technique allows for edges in the reconstructed permittivity pro-

file while penalizing unwanted permittivity fluctuations within homogeneous regions.

It shows resemblanceto existing edge preserving techniques, originally developed for

image processing applications (e.g. the Markov Random field approach [16]) and also

used for the microwave inverse scattering problem [17, 18].

As stated in the Section 6.4.3, the weights bP
p,n(εεε,c), that correspond to permittivity

cell n and VP value cp, give information on how well this particular cell ”belongs” to

one of the different homogeneous regions in the permittivity profile. This is because

the weights bP
p,n(εεε,c) indicate how close the permittivity of cell n lies to a particular

VP value cp. If neighboring cells have the same dominant weight, it can be expected

that these cells belong to the same part of the scattering object. This spatial information

is not used in the purely stepwise relaxed value picking regularization, but is exploited

in this new type of regularization.

The regularizing part of the cost function is now two-fold: one term contains the

previously presented stepwise relaxed value picking regularization term γF P (εεε,c) and

added to this term there is now a smoothing term F OS (εεε,c) with weight ζ. Hence, the

total cost function is in this case given by

F SR OSV P (εεε,c) = F LS (εεε)+ γF P (εεε,c)+ζF OS (εεε,c) (6.15)

The smoothing term F OS (εεε,c) behaves as the multiplicative smoothing regularization

term F R (εεε). However, smoothing is only performed over cells that belong to the same

homogeneous region in the permittivity profile.

In every iteration, the cost function F SR OSV P (εεε,c) is to be evaluated. Therefore,

different preprocessing steps have to be performed: (i) the VP weights bP
p,n(εεε,c) have

to be determined for the current permittivity profile, (ii) for each pixel n in the re-

construction grid it must be decided to which homogeneous region it most probably
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belongs, based on the knowledge of the VP weights bP
p,n(εεε,c) and (iii) a set of smooth-

ing areas is determined in which the smoothing will be performed.

We have chosen to name the second preprocessing step group mapping and call the

different homogeneous regions VP groups. The group mapping is done by comparing

all VP weights that correspond to a cell n. The largest and second largest weight are

determined and if the difference between both is larger than a certain threshold value

(the grouping tolerance, often chosen as 0.2), cell n is assigned to the VP group that

corresponds with the largest weight. If the difference is not large enough, we conclude

that we cannot determine to which VP group a cell belongs and the current cell is

assigned to the indefinite cells group. Note that a VP group that is obtained in this way

can consist of several spatially disconnected areas, while it is the purpose to apply the

smoothing only within each separate area.

To detail the determination of smoothing areas from knowledge of the VP groups,

we look back at the implementation of the smoothing function F R (6.8), where, for

every cell (k, l) in the reconstruction grid D , the differences in permittivity with the

neighboring cells (k−1, l) and (k, l−1) are contributing to the smoothing. Hence, per-

mittivity variations over all cell boundaries in the grid are penalized. For the stepwise

relaxed object smoothed value picking regularization, these permittivity differences

only contribute to the cost function if these neighboring cells belong to the same VP

group. Hence, permittivity jumps over cell boundaries between different VP groups

are not penalized. This spatial information is incorporated in two smoothing direction
matrices S(c) that indicate for each cell boundary whether smoothing is allowed in the

x- and y- directions respectively: if cell (k−1, l) belongs to the same VP group as cell

(k, l), smoothing is allowed and the (k, l)−th element of the first smoothing direction

matrix S1 is set to S1
k,l = 1, otherwise smoothing is not allowed and this element is

zero. This is also illustrated in Fig. 6.4 (a) and (b), where cells having the same color

are assumed to be assigned to the same VP group. Similarly, if cells (k, l−1) and (k, l)
belong to the same VP group, S2

k,l = 1. Consequently, the smoothing term F OS (εεε,c)
of the cost function is given by

F OS (εεε,c) =
1

N R

Nx

∑
k=0

Ny−1

∑
l=0

S1
k,l(c) |εk,l − εk−1,l |2

+
1

N R

Nx−1

∑
k=0

Ny

∑
l=0

S2
k,l(c) |εk,l − εk,l−1|2, (6.16)

which only differs from the smoothing function F R (6.8) by the presence of smooth-

ing direction matrices S.

To smooth out unwanted local fluctuations (artifacts) in the permittivity profile,

the second neighbor is also of importance. For example, if pixel (k, l) and his neigh-

bor (k− 1, l) do not belong to the same VP group, the second neighbor in the same

direction (i.e. cell (k−2, l)) is taken into account. If this neighbor does belong to the

same VP group as cell (k, l), it is assumed that the intermediate pixel (cell (k−1, l)) is
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attracted to the wrong VP value. In this case, it is also allowed to smooth towards cell

(k− 1, l) and S1
k,l = 1. This is illustrated in Fig. 6.4 (c). Here, the additional a-priori

information that all scatterers are supposed to be larger than one inversion cell in both

(x- and y-) directions is incorporated.

(k,l)(k-1,l)(k-2,l)

artifact cell

(k,l)(k-1,l)(k-2,l)

(k,l)(k-1,l)(k-2,l)

(a)

(b)

(c)

Figure 6.4: An illustration of the construction of the smoothing direction matrices S, where cells
having the same color are assumed to be assigned to the same VP group. Allowed smoothing is rep-
resented as a horizontal arrow between cells, prohibited smoothing is represented as a cross between
cells.

Finally, the effect of the smoothing function F OS is illustrated in Fig. 6.5 for vari-

ations in the k-direction only (the first term in (6.16)). When this figure is compared to

the corresponding figure in case of multiplicative smoothing regularization (Fig. 6.3),

three effects can be recognized:

• Smoothing is imposed within homogeneous regions only.

• No smoothing is allowed over the boundaries between different homogeneous re-

gions.

• Smoothing is allowed over boundaries of artifacts.
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Figure 6.5: An illustration of the effect of the smoothing function F OS for permittivity variations in
the k- direction (the first term in (6.16)). Cells having the same color are assumed to be assigned to the
same VP group. Allowed smoothing is represented as a horizontal arrow between cells, prohibited
smoothing is represented as a cross between cells.
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6.5. The updating block: The Gauss-Newton method with line

search

Different types of cost functions have been proposed in the previous section. To de-

termine whether a new update for the permittivity profile must be constructed or not,

the data fit cost function is used. If its value is smaller than a predefined threshold, the

current profile yields the reconstruction. If not, a new update is made.

A large body of literature on Newton-type techniques [2, 3, 4, 19, 20, 21] has been

dedicated to the derivation of new updates. Classically, an update direction is derived

for the permittivity profile and a fixed step size βk = 1 is used along this direction,

as in (6.1). Sometimes, this step size is too large, yielding convergence problems.

Therefore, in this PhD, an approximate line search [10] is performed to determine an

adequate step size.

The most common Newton-type methods used to determine an update direction

for the permittivity are the quasi-Newton method [2, 19], the Levenberg-Marquardt

method [3, 20] and the Gauss-Newton method [4, 19, 21]. In this PhD work, the

Gauss-Newton method and a modified Gauss-Newton method [13, 14, 22] are used.

An overview of these methods can be found in [10, 23]. The mentioned methods have

in common that they are local optimization methods and hence require the computa-

tion of local derivatives. These methods can be trapped in local minima or can yield a

non-physical solution (e.g. the real part of the relative permittivity of a cell is smaller

than 1). Global optimization methods however are impractical since, usually, the num-

ber of unknowns is large and global methods require many cost function evaluations,

which are computationally demanding. Examples of global methods are genetic al-

gorithms [5, 6, 7], neural network techniques [8, 24] or the simulated annealing meth-

ods [9, 25]. Another type of local methods are the so-called conjugate gradient meth-

ods [26, 27, 28, 29]. These methods avoid the computationally demanding process of

solving forward scattering problems but typically require a large amount of iterations.

This section is organized as follows. The first part introduces the Newton method

used to determine an update direction for the permittivity profile. Note here that the

term update direction does not refer to a normalized vector, but to a vector which will

be used as a search direction in a line search. Since the derivation of the update direc-

tion is independent of the step size βk, we set βk = 1 and omit the step size in the fol-

lowing parts of this section. First, the general Newton method and the Gauss-Newton

method are introduced for the special case when no regularization term is added to

the cost function. Next, the Gauss-Newton method is extended to the multiplicative

smoothing regularization case, introducing the modified Gauss-Newton method. Fur-

ther, the Gauss-Newton method is formulated for the stepwise relaxed value picking

regularization and stepwise relaxed object smoothed value picking regularization. The

last part of this section introduces the concept of using an approximate line search in

the updating routine.
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6.5.1 Newton’s method applied to the non-regularized cost function

In each iteration, Newton’s method approximates the non-linear cost function with a

quadratic model, derived from first and second order derivatives of the cost function.

The stationary point of the quadratic model serves as update direction for the permit-

tivity profile. Hence, to start iteration k+1, the complex permittivity vector is updated

as

εεεk+1 = εεεk +ΔΔΔεεεk, (6.17)

where εεεk is the permittivity profile at iteration k and ΔΔΔεεεk is the corresponding permit-

tivity update direction. Instead of using the real and imaginary parts of all elements

εν of the permittivity vector as independent variables, the complex permittivity vec-

tor elements εν and their complex conjugate ε∗ν are considered as independent vari-

ables [30, 31, 32].

The Newton optimization scheme constructs the permittivity update direction ΔΔΔεεεk

as [
ΔΔΔεεεk

ΔΔΔεεε∗k

]
= −H−1

k gk. (6.18)

In (6.18), gk denotes the gradient vector of the cost function for the kth iteration and

Hk denotes the corresponding Hessian matrix.

Newton’s method has the fundamental property of superlinear convergence if the

initial guess is close enough to the solution [10]. However, when the optimization

process starts further away from the solution, the Newton correction may lead to an

increase in the cost function and cause convergence problems. This behavior can be

due to two reasons: (i) in the stationary point, the quadratic model is no longer a good

approximation to the cost function or (ii) the Hessian matrix is not positive definite, in-

dicating that the model has no positive curvature. Furthermore, there are second order

derivatives required to construct the Hessian matrix, which is a highly computationally

demanding operation, requiring many forward model evaluations.

For a general cost function F (εεε), the gradient vector and the Hessian matrix are

defined as

gk =

⎡⎢⎣
∂F
∂εν

∂F
∂ε∗ν

⎤⎥⎦ , Hk =

⎡⎢⎢⎣
∂2F

∂εν∂εμ
∂2F

∂εν∂ε∗μ

∂2F
∂ε∗ν∂εμ

∂2F
∂ε∗ν∂ε∗μ

⎤⎥⎥⎦ . (6.19)

For the data fit cost function (6.6), the gradient vector has the dimension 2Nε ×1 and

is given by

gLS
k =

1

N LS

[
JT

k [escat(εεεk)− emeas]∗

JH
k [escat(εεεk)− emeas]

]
, (6.20)

where J is the ND ×Nε Jacobian matrix, which contains the first order derivatives of

the scattered fields: Jd,ν = ∂escat
d /∂εν. An expression for these first order derivatives of
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escat(εεεk) with respect to the complex permittivity coefficients εν is derived in analytical

form in section 6.6. The Hessian matrix, with dimension 2Nε×2Nε, is represented as:

HLS
k =

1

N LS

[
Bk JT

k J∗k
JH

k Jk B∗
k

]
, (6.21)

where B is a Nε × Nε matrix with second order derivatives of the scattered field:

Bν,μ = (∂2escat/∂εν∂εμ)T [escat − emeas]∗.

6.5.2 The Gauss-Newton method applied to the non-regularized cost

function

In the Gauss-Newton method, the scattered field escat is linearized as follows:

ΔΔΔescat
k = escat(εεεk+1)− escat(εεεk) = escat(εεεk +ΔΔΔεεεk)− escat(εεεk) ≈ JkΔΔΔεεεk. (6.22)

This linearization is introduced in the data fit cost function, yielding

F LS (εεεk+1) =
1

NLS ||escat(εεεk +ΔΔΔεεεk)− emeas||2

=
1

NLS ||escat(εεεk)+JkΔΔΔεεεk − emeas||2. (6.23)

If this least squares data fit cost function is minimized with respect to Δεεεk, the permit-

tivity update direction is obtained as

ΔΔΔεεεk = −(
JH

k Jk
)−1 JH

k [escat(εεεk)− emeas]. (6.24)

Hence, no second order derivatives need to be computed, contrary to Newton’s

method. However, the condition number for JH
k Jk is typically large, which is a mea-

sure of the ill-posedness of the inverse problem. Applying a regularization strategy

will improve the condition number.

The Gauss-Newton update direction is also obtained from the Newton optimiza-

tion scheme (6.18) applied to the data fit F LS :

−HLS
k

[
ΔΔΔεεεk

ΔΔΔεεε∗k

]
= gLS

k ⇐⇒ −
[

BkΔΔΔεεεk +JT
k J∗kΔΔΔεεε∗k

JH
k JkΔΔΔεεεk +B∗

kΔΔΔεεε∗k

]
=

[
JT

k [escat
k − emeas]∗

JH
k [escat

k − emeas]

]
, (6.25)

if the matrix B, containing the second order derivatives of the scattered field, is ne-

glected.
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6.5.3 The modified Gauss-Newton method with MS regularization

Now, the update direction is formulated for the multiplicative smoothing regularized

cost function (6.7):

F M S (εεεk) = F LS (εεεk)[1+αF R (εεεk)].

Gradient vector and Hessian matrix of F R (εεεk)

The Newton optimization scheme requires the determination of the gradient vector

and Hessian matrix of the regularizing part of the cost function F R (εεεk) given by

(6.8). The gradient vector, with dimension 2Nε ×1, contains the first order derivatives

of the regularizing function and is defined as

gR
k =

[
∂F R

∂εν
∂F R

∂ε∗ν

]
=

[
ΩΩΩR

k
ΩΩΩR ∗

k

]
. (6.26)

Derivatives with respect to εν are collected in the vector ΩΩΩR
k , derivatives with respect

to ε∗ν are collected in ΩΩΩR ∗
k , e.g.

ΩR ∗
k;ν =

∂F R

∂ε∗ν
=

∂F R

∂ε∗i, j
=

2

N R (4εi, j − εi−1, j − εi, j−1 − εi+1, j − εi, j+1) (6.27)

Similarly, the Hessian matrix is defined as

HR
k =

⎡⎣ ∂2F R

∂εν∂εμ
∂2F R

∂εν∂ε∗μ
∂2F R

∂ε∗ν∂εμ
∂2F R

∂ε∗ν∂ε∗μ

⎤⎦ =

[
0 ΣΣΣR

k
ΣΣΣR

k 0

]
. (6.28)

The diagonal elements are zero due to the specific form of the multiplicative smooth-

ing regularizing function (6.8), the other second order derivatives of the regularizing

function are collected in the matrix ΣΣΣR
k . The diagonal elements of ΣΣΣR

k are given by

ΣR
k;ν,ν =

∂2F R

∂εν∂ε∗ν
=

∂2F R

∂εi, j∂ε∗i, j
=

8

N R . (6.29)

Non-diagonal elements of ΣΣΣR
k (ΣR

k;ν,μ) are zero except if ν denotes a neighbor of μ, i.e.

if (m,n) is a neighbor of (i, j): m = i−1,n = j or m = i,n = j−1 or m = i+1,n = j
or m = i,n = j +1. Then,

ΣR
k;ν,μ =

∂2F R

∂εν∂ε∗μ
=

∂2F R

∂εm,n∂ε∗i, j
= − 2

N R . (6.30)
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Gradient vector and Hessian matrix of the total cost function F M S (εεεk)

The gradient vector and Hessian matrix of the complete cost function are obtained by

applying the chain rule. Hence,

gk = gLS
k [1+αF R (εεεk)]+αF LS (εεεk)g

R
k (6.31)

and

Hk =
1

N LS

[
B′

k A∗
k

Ak B∗′
k

]
, (6.32)

with

B′
k = Bk[1+αF R (εεεk)]+αΩΩΩR

k [escat(εεεk)− emeas]HJk

+αJT
k [escat(εεεk)− emeas]∗(ΩΩΩR )T

k (6.33)

and

Ak = JH
k Jk[1+αF R (εεεk)]+αΩΩΩR ∗

k [escat(εεεk)− emeas]HJk

+αJH
k [escat(εεεk)− emeas](ΩΩΩR

k )T +αN LS F LS (εεεk)ΣΣΣ
R
k (6.34)

Update direction for the permittivity profile

Applying Newton’s update formula (6.18) yields[
B′

kΔΔΔεεεk +A∗
kΔΔΔεεε∗k

AkΔΔΔεεεk +B′∗
k ΔΔΔεεε∗k

]
= −

[
JT

k [escat(εεεk)− emeas]∗

JH
k [escat(εεεk)− emeas]

]
[1+αF R (εεεk)]

−αN LS F LS (εεεk)

[
ΩΩΩR

k
ΩΩΩR ∗

k

]
. (6.35)

Now, the expressions for the matrices Ak (6.34) and B′
k (6.33) are introduced in the left

hand side of the Newton update direction (6.35). Furthermore, the matrix Bk, which

contains the second order derivatives is neglected, as in (6.25). In this way, the lin-

earization of the scattered field (6.22) is introduced in the Newton method, yielding a

Gauss-Newton optimization scheme. The left hand side of the Newton update direc-

tion (6.35) transforms into:

AkΔΔΔεεεk +B
′∗
k ΔΔΔεεε∗k = JH

k Jk(1+αF R (εεεk))ΔΔΔεεεk

+αN LS F LS (εεεk)ΣΣΣ
R
k ΔΔΔεεεk

+αJH
k [escat(εεεk)− emeas]

(
(ΩΩΩR

k )T ΔΔΔεεεk +(ΩΩΩR
k )HΔΔΔεεε∗k

)
+αΩΩΩR ∗

k [escat(εεεk)− emeas]HΔΔΔescat

+αΩΩΩR ∗
k [escat(εεεk)− emeas]T ΔΔΔescat∗. (6.36)
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In (6.36) certain terms contribute more than others. In the first iteration, often all cells

have the background permittivity assigned, which corresponds to F R (εεε0) = 0 and

hence ΩΩΩR = 0. Therefore, the third, fourth and fifth term in (6.36) vanish or remain

small in a few subsequent iterations. When approaching the last few iterations, the

simulated scattered field is already close to the measured one, yielding a small data

residue [escat(εεεk)− emeas]. Therefore, the same terms (3rd, 4th and 5th term) vanish

at the end of the optimization process. Due to this behavior at the beginning and end

op the optimization, these terms are omitted from (6.36) and therefore this method is

denoted the modified Gauss-Newton method [14]. The update direction is then given

by combining this approximate version of (6.36) with (6.35):(
JH

k Jk +λ2ΣΣΣR
k

)
ΔΔΔεεεk = −

(
JH

k [escat(εεεk)− emeas]+λ2
(

ΩΩΩR
k

)∗)
, (6.37)

where the trade-off parameter λ is given by

λ2 =
α||emeas||2F LS

1+αF R . (6.38)

6.5.4 The Gauss-Newton method with SRVP regularization

In the value picking regularization scheme, the auxiliary variables {cp} (the VP val-

ues) are not fixed, but are also optimized for. However, the VP values are subject to

upper and lower bounds on their real and imaginary part. Therefore, a constrained
optimization scheme is needed to update the VP values. This constrained optimization

is performed by an active set method [10] and will not be discussed here.

Every inverse iteration is a two-step procedure. First, an update direction is de-

rived for the permittivity profile and a line search along this direction yields the next

permittivity profile. During this first step, the VP values are kept fixed to their current

value. Second, the permittivity vector is kept fixed while the VP values are being up-

dated. Hence, the updating process for the VP values does not influence the data fit.

Apart from this alternating optimization scheme, VP values are also updated when a

new VP value is introduced in the SRVP regularization scheme.

For the value picking regularization, the cost function has the following form:

F V P (εεε,c) = F LS (εεε)+ γF P (εεε,c),

with the regularizing part given by

F P (εεε,c) =
1

Nε

Nε

∑
n=1

P

∑
p=1

bP
p,n(εεε,c)|εn − cp|2.

To incorporate the regularizing term in the Gauss-Newton update scheme, gradient and

Hessian matrices need to be determined for the regularizing part of the cost function

F P (εεε,c). However, the weights bP
p,n(εεε) also depend on εεε. Therefore, the updating
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process for the permittivity profile is performed for a slightly modified cost function:

F Q(εεε,c;εεεk,ck) = F LS (εεε)+ γQ P (εεε,c;εεεk,ck) (6.39)

with

Q P (εεε,c;εεεk,ck) =
1

Nε

Nε

∑
n=1

P

∑
p=1

bP
p,n(εεεk,ck)|εn − cp|2. (6.40)

The difference with F V P (εεε,c) lies in the fact that the weights are kept fixed to their

current value while updating the permittivity profile from εεεk to εεεk+1. Hence, the gra-

dient vector and Hessian matrix must be determined for Q P (εεε,c;εεεk,ck).

Gradient vector and Hessian matrix of Q P (εεε,c;εεεk,ck)

As in Section 6.5.3, first order derivatives of Q P (εεε,c;εεεk,ck) with respect to the per-

mittivity are collected in the vector ΩΩΩk and the gradient vector is represented as

gP
k =

⎡⎣ ∂Q P (εεε,c;εεεk,ck)
∂εν

∂Q P (εεε,c;εεεk,ck)
∂ε∗ν

⎤⎦ =

[
ΩΩΩP

k
ΩΩΩP∗

k

]
. (6.41)

Elements of ΩΩΩP∗
k are obtained as

ΩP∗
k;ν =

∂Q P (εεε,c;εεεk,ck)
∂ε∗ν

=
1

Nε

P

∑
p=1

bP
p,ν(εεεk,ck)(εν − cp), (6.42)

Also here, diagonal elements of the Hessian matrix are zero and the other second order

derivatives are collected in the matrix ΣΣΣP
k :

HP
k =

⎡⎣ ∂2Q P (εεε,c;εεεk,ck)
∂εν∂εμ

∂2Q P (εεε,c;εεεk,ck)
∂εν∂ε∗μ

∂2Q P (εεε,c;εεεk,ck)
∂ε∗ν∂εμ

∂2Q P (εεε,c;εεεk,ck)
∂ε∗ν∂ε∗μ

⎤⎦ =
[

0 ΣΣΣP
k

ΣΣΣP
k 0

]
. (6.43)

Elements of ΣΣΣP
k are given by

ΣP
k;ν,μ =

∂2Q P (εεε,c;εεεk,ck)
∂εν∂ε∗μ

= δν,μ
1

Nε

P

∑
p=1

bP
p,ν(εεεk,ck). (6.44)

Gradient vector and Hessian matrix of total cost function F Q(εεε,c;εεεk,ck)

The gradient of the complete cost function is a combination of the data fit gradient

gLS
k and the gradient gP

k :

gk = gLS
k + γgP

k (6.45)
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Similarly, the total Hessian is given by

Hk = HLS
k + γHP

k . (6.46)

Update direction for permittivity

Also here, a Gauss-Newton scheme is used, hence the matrix B in the data fit Hessian

(6.21) is omitted as a consequence of the linearization of the scattered field around the

current iteration. The Gauss-Newton update direction is obtained as

Hk

[
ΔΔΔεεεk

ΔΔΔεεε∗k

]
= −gk. (6.47)

Substituting the expression for the gradient vectors and Hessian matrices finally yields

the update direction:(
JH

k Jk +λ2ΣΣΣP
k

)
ΔΔΔεεεk = −

(
JH

k [escat(εεεk)− emeas]+λ2
(

ΩΩΩP
k

)∗)
, (6.48)

Here, the trade-off parameter λ is given by λ2 = γ||emeas||2.

6.5.5 The Gauss-Newton method with SROSVP regularization

Finally, the update direction is formulated for the stepwise relaxed object smoothed

value picking regularization, for which the cost function takes the following form

(6.15):

F SR OSV P (εεε,c) = F LS (εεε)+ γF P (εεε,c)+ζF OS (εεε,c), (6.49)

in which the VP part F P (εεε,c) is given by

F P (εεε,c) =
1

Nε

Nε

∑
n=1

P

∑
p=1

bP
p,n(εεε,c)|εn − cp|2 (6.50)

and the smoothing part F OS (εεε,c) is given by

F OS (εεε,c) =
1

N R

Nx

∑
k=0

Ny−1

∑
l=0

S1
k,l(c) |εk,l − εk−1,l |2

+
1

N R

Nx−1

∑
k=0

Ny

∑
l=0

S2
k,l(c) |εk,l − εk,l−1|2. (6.51)

Since this type of regularization is also based on the concept of VP values, a two

step optimization is applied in every iteration step. First, the permittivity profile is

updated by constructing an update direction along which a line search is performed.

Second, the VP values are updated by applying a constrained optimization scheme (i.e.

an active set method [10]) on the cost function in case of purely stepwise relaxed value
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picking regularization (6.10). Similarly as for the case of purely stepwise relaxed value

picking regularization, VP values are also updated when a new VP value is introduced.

After every update of the VP values, the smoothing direction matrices S1(c) and S2(c)
are also updated.

Also for this new type of regularization, gradient and Hessian matrices are needed

of all contributing terms in the total cost function. However, since the VP part of the

cost function F P (εεε,c) does not differ from the regularizing part of the cost function

for the purely stepwise relaxed value picking regularization (6.14), the gradient and

Hessian matrices for F P (εεε,c) are identical to the ones given in Section 6.5.4. The

VP weights are kept fixed to their current value while the permittivity profile is being

updated from εεεk to εεεk+1. Hence, the gradient vector and Hessian matrix that corres-

pond to the VP term F P (εεε,c), are in fact determined for the slightly modified VP term

Q P (εεε,c;εεεk,ck), given by

Q P (εεε,c;εεεk,ck) =
1

Nε

Nε

∑
n=1

P

∑
p=1

bP
p,n(εεεk,ck)|εn − cp|2. (6.52)

The only gradient vector and Hessian matrix that still need to be determined are the

ones that correspond to the smoothing part of the cost function F OS (εεε,c).

Gradient vector and Hessian matrix of F OS (εεεk)

The gradient vector contains the first order derivatives of F OS (εεεk) with respect to the

permittivity (collected in the vector ΩΩΩOS
k ) and with respect to its complex conjugate

part (collected in the vector ΩΩΩOS∗
k ). Hence,

gOS
k =

[
∂F OS

∂εν
∂F OS

∂ε∗ν

]
=

[
ΩΩΩOS

k
ΩΩΩOS∗

k

]
. (6.53)

Here, elements of ΩΩΩOS∗
k are obtained as

ΩOS∗
k;ν =

∂F OS

∂ε∗ν
=

∂F OS

∂ε∗i, j

=
2

N R
[
S1

i, j (εi, j − εi−1, j)+S2
i, j (εi, j − εi, j−1)

+S3
i, j (εi, j − εi+1, j)+S4

i, j (εi, j − εi, j+1)
]
. (6.54)

Note that two additional smoothing direction matrices S3 and S4 are introduced to

account for cells above and to the right of the current cell.
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The Hessian matrix HOS
k is constructed as follows:

HOS
k =

⎡⎣ ∂2F OS

∂εν∂εμ
∂2F OS

∂εν∂ε∗μ
∂2F OS

∂ε∗ν∂εμ
∂2F OS

∂ε∗ν∂ε∗μ

⎤⎦ =
[

0 ΣΣΣOS
k

ΣΣΣOS
k 0

]
. (6.55)

The diagonal elements of ΣΣΣOS
k are given by

ΣOS
k;ν,ν =

∂2F OS

∂εν∂ε∗ν
=

∂2F OS

∂εi, j∂ε∗i, j
=

2

N R
[
S1

k,l +S2
k,l +S3

k,l +S4
k,l

]
. (6.56)

Non-diagonal elements of ΣΣΣOS
k (ΣOS

k;ν,μ) are zero except if ν denotes a neighbor of μ,

i.e. if (m,n) is a neighbor of (i, j):

ΣOS
k;ν,μ =

∂2F OS

∂εν∂ε∗μ
=

∂2F OS

∂εm,n∂ε∗i, j

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 2
N R S1

i, j : m = i−1,n = j

− 2
N R S2

i, j : m = i,n = j−1

− 2
N R S3

i, j : m = i+1,n = j

− 2
N R S4

i, j : m = i,n = j +1

(6.57)

Gradient vector and Hessian matrix of the total cost function F SR OSV P (εεεk)

By applying linearity, the gradient and Hessian matrix of the complete cost function

(6.15) are obtained as

gk = gLS
k + γgP

k +ζgOS
k (6.58)

and

Hk = HLS
k + γHP

k +ζHOS
k . (6.59)

Update direction for the permittivity profile

We also use a Gauss-Newton scheme to derive an update direction for the permittivity

for this type of regularization. Hence, the matrix B in the data fit Hessian HLS
k (6.21)

is omitted. This yields a total Hessian matrix given by

Hk =

[
000 1

N LS JT
k J∗k + γΣΣΣP

k +ζΣΣΣOS
k

1
N LS JH

k Jk + γΣΣΣP
k +ζΣΣΣOS

k 000

]
. (6.60)

Replacing all expressions of the contributing terms in the formula for the total gradient

yields

gk =

[
1

N LS JT
k [escat(εεεk)− emeas]∗ + γΩΩΩP

k +ζΩΩΩOS
k

1
N LS JH

k [escat(εεεk)− emeas]+ γΩΩΩP∗
k +ζΩΩΩOS∗

k

]
(6.61)
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Substituting expressions (6.60) and (6.61) in the Gauss-Newton update direction

(6.18) yields the update direction:(
1

N LS JH
k Jk + γΣΣΣP

k +ζΣΣΣOS
k

)
ΔΔΔεεεk =

−
(

1

N LS JH
k [escat(εεεk)− emeas]+ γΩΩΩP∗

k +ζΩΩΩOS∗
k

)
. (6.62)

To obtain a formulation for the update direction in the same form as (6.37) and (6.48),

we define two matrices ΣΣΣk and ΩΩΩk as follows:

ΣΣΣk = γ ΣΣΣP
k +ζ ΣΣΣOS

k (6.63)

and

ΩΩΩk = γ ΩΩΩP
k +ζ ΩΩΩOS

k . (6.64)

Hence, the update direction for the permittivity profile can we written as(
JH

k Jk +λ2ΣΣΣk
)

ΔΔΔεεεk = −(
JH

k [escat(εεεk)− emeas]+λ2ΩΩΩ∗
k
)
, (6.65)

with the trade-off parameter λ in this formulation given by λ2 = ||emeas||2 = N LS .

6.5.6 Approximate line search to determine the permittivity step size

Once the update direction for the permittivity is constructed, an approximate line

search is performed along this direction. This routine provides the step size βk that

yields the next permittivity guess εεεk+1 = εεεk + βkΔΔΔεεεk. The step size βk is such that

F (βk) = F (εεεk + βkΔΔΔεεεk) lies close to a local minimum of F along the update direc-

tion ΔΔΔεεεk. In case of the multiplicative smoothing regularization, the cost function F
in the line search is the same as for the construction of the update direction, namely

F M S . In case of the value picking regularization, the update direction is determined

from a modified cost function F Q, whereas in the line search the actual cost function

F V P is used. We refer to [10] for detailed information on the implementation of an

approximate line search.

The advantage of incorporating a line search routine is that it improves the conver-

gence. However, the line search routine requires that the search direction is a descent
direction or that

∂F
∂βk

∣∣∣∣∣
βk=0

< 0. (6.66)

This restriction is equal to

Nε

∑
ν=1

∂F
∂εν

ΔΔΔεεεk,ν +
∂F
∂ε∗ν

ΔΔΔεεε∗k,ν

∣∣∣∣∣
βk=0

= [ΔΔΔεεεT
k ΔΔΔεεεH

k ]gk < 0, (6.67)
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with gk the gradient of the cost function F as computed for iteration k. In [10], it is

demonstrated that an optimization method that searches successively along different

descent paths using an approximate line search, converges to a (local) minimizer pro-

vided that the search directions are uniformly bounded away from orthogonality with

the steepest descent direction, given by −gk. In the following, we will check this re-

quirement in case of the Gauss-Newton method as applied in the various subsections

of Section 6.5.

Approximate line search with the Gauss-Newton method

For Gauss-Newton optimization without regularization, the update direction is given

by (6.24). Since the hermitian matrix JH
k Jk is at least positive semi-definite, the update

direction is never uphill. If the gradient vector gk is split in two

gk =
[

ga
k

gb
k

]
, (6.68)

the update direction can be written as

ΔΔΔεεεk = −(
JH

k Jk
)−1 gb

k = −(
JH

k Jk
)−1 ga∗

k = −Aga∗
k . (6.69)

By construction, A is hermitian and positive semi-definite. Hence,

ΔΔΔεεεT
k ga

k = − [Aga∗
k ]T ga

k

= −gaH
k AT ga

k

≤ 0. (6.70)

Therefore, the update direction ΔΔΔεεεk either lies along a level contour of the cost function

or is a descent direction.

Approximate line search with the modified Gauss-Newton method with MS regu-
larization

If the multiplicative smoothing regularization is applied, the modified Gauss-Newton

direction is given by (6.37). In (6.37), the right hand side is proportional to the total

gradient ga∗
k . In the left hand side,

(
JH

k Jk +λ2ΣΣΣR
k

)
is always positive definite (pro-

vided λ 
= 0) since JH
k Jk is positive semi-definite and ΣΣΣR

k is strictly positive definite. To

illustrate that ΣΣΣR
k ((6.29)-(6.30)) is strictly positive, we make the following considera-

tions [33]: (i) ΣΣΣR
k is a real and symmetric matrix, consequently it is also hermitian, (ii)

ΣΣΣR
k is a constant matrix, i.e. independent of the permittivity profile, since F R (εεε,εεε∗)

is a quadratic function, and (iii) F R (εεε,εεε∗) ≥ 0, ∀εεε and F R (εεε,εεε∗) = 0 if and only

if all εk,l = 1, due to the condition that ε(r) = ε0 outside the reconstruction domain.

Consequently, F R has a unique minimizer, which for a quadratic function means that
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its curvature must be strictly positive. Hence, for every non-zero Nε-dimensional com-

plex vector s the following must hold:

[
sT sH

]
HR

k

[
s
s∗

]
=

[
sT sH

][
0 ΣΣΣR

k
ΣΣΣR

k 0

][
s
s∗

]
= 2sHΣΣΣR

k s > 0 (6.71)

Thus ΣΣΣR
k must be positive definite.

The presence of the regularization term λ2ΣΣΣR
k ensures that ΔΔΔεεεk is a strictly descent

direction. Hence, the optimization will converge to a minimum of the MS regularized

cost function.

Approximate line search with the Gauss-Newton method with SRVP regulariza-
tion

Checking the descent property for the update direction for the SRVP regularization,

is very similar to the previous case. Now, the update direction is given by (6.48). The

right hand side of (6.48) is again proportional to the total gradient, whereas in the left

hand side
(

JH
k Jk +λ2ΣΣΣP

k

)
is always positive definite for λ 
= 0 since ΣΣΣP

k is a diagonal

matrix with strictly positive diagonal elements. Therefore, the update direction is al-

ways a descent direction. Towards the end op the optimization, VP values have been

assigned to every permittivity unknown. Hence,

ΣΣΣP
k → 1

Nε I, (6.72)

where I denotes a Nε ×Nε unity matrix.

Approximate line search with the Gauss-Newton method with SROSVP regular-
ization

The formulation for the update direction for the stepwise relaxed object smoothed

value picking regularization (6.65) is very similar to the update directions for the other

types of regularization ((6.37) and (6.48)). Also here, the right hand side of (6.65) is

proportional to the total gradient and the term
(
JH

k Jk +λ2ΣΣΣk
)

in the left hand side is

positive definite for λ 
= 0. The matrix ΣΣΣk is by construction positive definite (ΣΣΣk =
γ ΣΣΣP

k + ζ ΣΣΣOS
k , with γ and ζ not simultaneously zero) since ΣΣΣP

k and ΣΣΣOS
k are positive

definite matrices. By consequence, the update direction based on stepwise relaxed

value picking regularization is always a descent direction.

6.6. Derivatives of the forward model

For the construction of the gradient vector (6.20) and the Hessian matrix (6.21) of the

data fit cost function in each iteration, the derivatives of the scattered field with respect
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to the permittivity unknowns ∂Es(r,z)/∂εν are required. In this section, an analytical

expression for these derivatives is determined.

Measurement data are three-dimensional electromagnetic fields, whereas in the

forward solver the three-dimensional simulated fields are Fourier transformed along

the invariant (z-) direction. Hence, the derivatives of the scattered field with respect to

the permittivity unknowns are obtained as

∂Es(r,z)
∂εν

=
1

2π ∑
kz

∂Ês(r,kz)
∂εν

e jkzz. (6.73)

To derive an expression for ∂Ês(r,kz)/∂εν, an operator GV , acting on a vector

function p with support V , is defined as

[GV (p)](r) = jωμ0

(
I+

1

k2
0

∇̂∇̂
)
·
Z

V
Ĝ(r,r′;kz)p(r′)dr′. (6.74)

In this way, the CSIE (2.26) for the total electric field Ê(r,kz) can be formulated as

Ê(r,kz) = [GS (Ĵi)](r)+ [GD(Ĵs)](r)
= [GS (Ĵi)](r)+ [GD(− jω[ε− ε0]Ê)](r). (6.75)

Since the incident field does not depend on the permittivity, the derivative with respect

to the permittivity of the scattered field is equal to the derivative of the total field:

∂Ês(r,kz)
∂εν

=
∂Ê(r,kz)

∂εν

=
∂

∂εν

(
[GS (Ĵi)](r)+ [GD(− jω[ε− ε0]Ê)](r)

)
= [GD(− jωε0ΦνÊ)](r)+ [GD(− jω[ε− ε0]

∂Ês(r,kz)
∂εν

)](r), (6.76)

where Φν is defined in (6.2). When this equation is compared to (6.75), it is clear

that ∂Ês(r,kz)/∂εν satisfies a similar CSIE equation, where Ĵi is replaced by a current

density − jωε0ΦνÊ in cell ν.

We will now formulate the total field in terms of the applied current density Ĵi

since it will be sufficient to replace Ĵi by − jωε0ΦνÊ in this expression to obtain

an expression for the scattered field derivatives ∂Ês(r,kz)/∂εν. This is done in the

following.

First, two different 3×3 dyadic Green’s functions are defined: Ĝ(r,r′;kz) for free

space and Ĝinh(r,r′;kz) for inhomogeneous space (i.e. in presence of the scatterer).

The different columns of the dyadic Green’s function of free-space Ĝ(r,r′;kz) can be

constructed by applying a 2D current density along a unit vector u in a point r” for the
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three orthogonal directions u = ux, u = uy and u = uz with current density

Ĵδ(r) =
1

jωμ0
δ(r− r”)u (6.77)

in free space. The dyadic Green’s function of inhomogeneous space Ĝinh(r,r′;kz) is

constructed in a similar way: by using the same 2D current densities (in points r”

along a unit vector u with current density Ĵδ(r)), but now generating incident fields

on the scattering objects. The corresponding total fields yield the different columns of

the inhomogeneous dyadic Green’s function:

Ê(r,kz) = jωμ0

Z
D

Ĝinh(r,r′;kz) · Ĵδ(r′)dr′ = Ĝinh(r,r”;kz) ·u. (6.78)

Hence, the total electric field, resulting from any applied current Ĵi(r,kz) in presence

of the scatterer can now be expressed in terms of Ĝinh as

Ê(r,kz) = jωμ0

Z
D

Ĝinh(r,r′;kz) · Ĵi(r′,kz)dr′. (6.79)

As a result, by replacing Ĵi(r,kz) with − jωε0ΦνÊ in the above expression, the deriva-

tives of the scattered field with respect to the permittivity unknowns are given by

∂Ês(r,kz)
∂εν

= jωμ0

Z
D

Ĝinh(r,r′;kz) ·
(
− jωε0Φν(r′)Ê(r′,kz)

)
dr′

= k2
0

Z
D

Φν(r′)Ĝinh(r,r′;kz) · Ê(r′,kz)dr′. (6.80)

As mentioned in Section 6.2, the data vector emeas contains the elements

Emeas
t,p (rA

r ,zA
r ) ·uA

r,p′ and the simulated scattered field vector escat consists of elements

Es
t,p(rA

r ,zA
r ) ·uA

r,p′ . These respectively correspond to measured and simulated scattered

fields in receiver points (rA
r ,zA

r ), directed along uA
r,p′ , resulting from an illumination

with excitation in (rA
t ,zA

t ) and polarized along uA
t,p. Following (6.73), the derivatives

of the simulated scattered field with respect to εν are thus given by

∂Es
t,p

∂εν
(rA

r ,zA
r ) ·uA

r,p′ =
1

2π ∑
kz

∂Ês
t,p

∂εν
(rA

r ,kz) ·uA
r,p′e

jkzzA
r (6.81)

where, based on (6.80), each spectral component is given by

∂Ês
t,p

∂εν
(rA

r ,kz) ·uA
r,p′ = k2

0

Z
D

Φν(r′) uA
r,p′ · Ĝinh(rA

r ,r′;kz) · Êt,p(r′,kz)dr′. (6.82)

Due to reciprocity Ĝinh(rA
r ,r′;kz) = ĜT

inh(r
′,rA

r ;kz) and since the columns of the dyadic

Green’s function can be constructed by using 2D dipoles as incident fields (6.78), the
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term uA
r,p′ · Ĝinh(rA

r ,r′;kz) in (6.82) can be replaced by

uA
r,p′ · Ĝinh(rA

r ,r′;kz) = Ĝinh(r′,rA
r ;kz) ·uA

r,p′ = Êdipole
r,p′ (r′,kz). (6.83)

Here, Êdipole
r,p′ (r′,kz) is the total field generated by a 2D dipole in the point rA

r , polarized

along uA
r,p′ in presence of the scatterer. Introducing (6.83) into (6.82) finally yields the

searched expression:

∂Ês
t,p

∂εν
(rA

r ,kz) ·uA
r,p′ = k2

0

Z
D

Φν(r′) Êt,p(r′,kz) · Êdipole
r,p′ (r′,kz)dr′. (6.84)

For the computation of the derivatives of the simulated scattered field with respect

to the current permittivity profile, two groups of forward problems must be solved:

• regular forward problems: to construct Êt,p(r′,kz), there is a forward problem for

each spectral component kz of the incident field (e.g. a Gaussian Beam), for each

incidence direction and for all NP
t polarizations.

• dipole forward problems: to construct Êdipole
r,p′ (r′,kz), there is a forward problem for

each spectral component kz of the incident field, for each receiver position rA
r , now

considered as an excitation point, and for all NP
r receiver polarizations.

Consequently, in total, there are #kz (NT NP
t +NR NP

t ) forward problems which have to

be solved for constructing the derivatives of the simulated scattered field with respect

to the current permittivity profile. Of course, the regular forward problems with the

real incident fields already have been solved to determine the scattered fields and cost

function, hence only the dipole forward problems yield an extra computational cost.

6.7. The partial inverse problem grid approach

The proposed inverse scattering method naturally allows for a forward problem grid

that extends the inverse problem grid. Hence, it is possible to account for known ob-

jects in the immediate neighborhood of the unknown scatterer, as illustrated in Fig.

6.6. The dimensions and positioning of the inverse problem grid are chosen to cover

only the expected area of the unknown scatterer. All known background objects (e.g.

having permittivities ε1 and ε2 in Fig. 6.6) are located inside the forward problem grid,

but outside the unknown scatterer area. Only cells inside the inverse problem grid are

optimized for their respective permittivities. In this approach, it is even possible to

have multiple separate inverse problem grids inside one larger forward problem grid.

The total number of permittivity unknowns then equals the total number of cells in

all inverse problem grids. To indicate that an inverse problem grid is part of a larger

forward problem grid, we call the inverse problem grid in this case the partial inverse
problem grid.



138 THE QUANTITATIVE INVERSE SCATTERING PROBLEM

?

��

��

inverse problem grid

forward problem grid

Figure 6.6: Incorporation of the inverse problem grid inside a larger forward problem grid.

For the cost function evaluation in the inverse scattering method, a mapping is

necessary between the partial inverse problem grid (usually with the coarser cells)

and the surrounding (overlapping) forward problem grid (usually with the finer cells).

This mapping is performed at two levels, see Fig. 6.7:

1. To evaluate the data fit part of the cost function, the partial inverse problem grid

is subdivided in smaller cells with the same cell size Δ as the forward problem grid.

2. To evaluate the regularizing part of the cost function for the multiplicative smooth-

ing or stepwise relaxed object smoothed value picking regularization, it is some-

times necessary to step outside the partial inverse problem grid with cell size Δε.

This is the case when the permittivity of a coarse cell adjacent to a border cell

is needed, which now no longer can be assumed to be free space. Therefore, the

permittivities of all forward problem cells within this coarse cell are averaged,

yielding one permittivity value for the corresponding coarse grid cell, see Fig. 6.7.
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Figure 6.7: The different types of cells in the partial inverse problem grid approach.

6.8. Conclusion

In this chapter, we have detailed the theoretical aspects and the implementation of

the proposed inverse scattering method. Iterative techniques to solve the non-linear

quantitative inverse scattering problem, as known for microwave imaging, have been

adapted and applied to the millimeter wave range for plane wave and Gaussian beam

illuminations.

Two regularization techniques –both developed at the department of Information

Technology– have been implemented: the multiplicative smoothing regularization (a

spatial regularization method) and the stepwise relaxed value picking regularization (a

non-spatial technique). In this PhD work, we have combined both methods into a new

regularization method, denoted as the stepwise relaxed object smoothed value picking

regularization. As the value picking regularization, this new regularization method

favors permittivity profiles consisting of few distinct permittivity values and is ideally

suited to reconstruct piecewise homogeneous objects. It differs from the value picking

method by imposing smoothness within the homogeneous regions, deduced from the

VP weights in each iteration.

It is outlined how the different regularization strategies are embedded in the up-

dating scheme for the permittivity profile. First, an update direction is derived by ap-

plying a Gauss-Newton method. Afterwards, an approximate line search is performed

along this direction, yielding the next permittivity profile. The gradient vector and the

Hessian matrix of the data fit cost function depend on the derivatives of the scattered
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field with respect to the permittivity unknowns. In this PhD work, we have formulated

analytical expressions for these derivatives for the 2.5D case.

Finally, to account for large scattering systems, a partial inverse problem grid de-

scription is introduced within the proposed inversion scheme. This approach restricts

the inversion domain to a limited area surrounded by known background objects and

hence strongly reduces the number of permittivity unknowns.
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CHAPTER 7

Reconstructions based on

experimental data

7.1. Introduction

This chapter covers the most challenging reconstruction examples: reconstructions

from experimentally measured scattered fields. These are challenging due to differ-

ent reasons: measurement noise distorts the results, incident fields are not exactly the

same in the measurement set-up and the simulation, discretization noise and numeri-

cal errors influence the simulated scattered fields, etc. Moreover, using experimental

data prevents inverse crime [1], when synthetic scattering data is generated by the

same forward solver that is used in the inversion routine. Obtaining accurate ampli-

tude and phase data of measured scattered fields at millimeter wave frequencies re-

quires a highly sophisticated measurement set-up and we are not aware of any such

data yet being made available to the inversion community. Therefore, we validate the

presented inversion procedure in a lower frequency range.

Many different inverse scattering algorithms have been proposed in the past. How-

ever, it was hard to validate and compare these methods without having benchmark

cases. This problem was first alleviated in 1996 by the US Air Force, which pro-

vided experimental scattering data, known as the Ipswich Data. These are based on

a measurement set-up described in [2]. Several special issues of the IEEE Antennas
and Propagation Magazine were devoted to reconstructions based on these Ipswich
Data [3, 4, 5]. In 2001, scattering measurements of homogeneous targets at the In-

stitut Fresnel gave rise to a special section on inversion algorithms in Inverse Prob-
lems [6]. This database was extended in 2005 with scattering data for inhomogeneous

targets [7, 8]. This purely two-dimensional database contains scattered fields that cor-

respond to elongated (1.5 m long) objects and an orthogonally incident illumination.

In 2009, a special section in Inverse Problems was devoted to a fully three-dimensional

version of the Institut Fresnel scattering database [9]. In this case, cubes and spheres
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are illuminated by orthogonally and obliquely incident fields. Since the 3D-database

objects do not have a longitudinal shape and are fully illuminated from different direc-

tions by each of the incident fields, they do not fit the quasi 2D assumption of this PhD

work, see Section 4.3.2. Hence, we here validate the proposed inversion technique on

the 2D Fresnel data, for which both TE- and TM- polarizations are available.

In the presented PhD work, we have chosen to perform single frequency re-

constructions of the inhomogeneous dielectric Fresnel targets, named FoamDielInt,
FoamDielExt and TwinDiel. These targets were the subject of the 2005 special issue

in Inverse Problems [7, 8].

Although we now have a benchmark case available, it is still hard to compare

our results to the different reconstructions presented in [7], due to different reasons.

First, scattering data are available at different frequencies (2 - 10 GHz). Some authors

use different frequency data simultaneously to obtain a detailed reconstruction (i.e.

multifrequency techniques) [10, 11, 12, 13]. When such a multifrequency approach is

to be used within the presented inverse scattering method, this would be at the expense

of larger simulation times and more memory requirements. Other authors gradually

increase the working frequency and use the reconstruction at a lower frequency as

an initial guess for the next frequency, which gradually allows for more detail (i.e.

frequency hopping techniques) [14, 15]. This technique can easily be incorporated in

the presented inverse scattering method with acceptable memory requirements, but

with much larger simulation times. The single frequency approach [16, 17, 18, 19],

which we also apply, uses fewer input data to reconstruct the targets, making it harder

to obtain a reconstruction of similar quality as in the multifrequency cases but resulting

in an optimal combination of memory consumption and simulation times.

For this experimental validation, we have chosen a working frequency of 4 GHz.

At this frequency, the inverse problems are still moderately sized (as the discretization

cell size scales with the wavelength), resulting in small memory consumptions and

fast simulation times. Moreover, this relatively low working frequency already gives

rise to accurate reconstruction results.

Second, both TE- and TM- polarizations are available from the database. Almost

all authors only use the TM data for the reconstruction [11,12,13,14,15,16,17,18,19].

Some also perform a reconstruction from the TE polarized data only [10,15], but none

use, as we do, both TM- and TE-polarized data simultaneously. This is a consequence

of the fact that the presented techniques in [7] all are purely two-dimensional ones,

which requires a different implementation for each polarization case. Our 2.5D imple-

mentation is able to simulate both polarizations simultaneously as well as each one of

them separately. The use of both TM and TE data increases the quality of the single

frequency reconstructions.

A third factor that complicates the comparison is that some techniques only recon-

struct the shape, dimensions and position of the objects, not the complex permittiv-

ity [16, 17].
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Finally, there is a purely technical complication: There is no quantity defined

which represents the correctness of a reconstruction. Therefore, most authors revert

to figures to show the quality of a reconstruction. Some figures however have poor

resolution and/or are only available with grayscales. Therefore, we have detailed our

reconstructions by providing color figures and cross-section plots of the reconstructed

profiles.

Despite the aforementioned complications when comparing results, we can state

that our reconstructions are comparable to the best ones presented in [7]. Our method

significantly outperforms the two quantitative single frequency methods [18, 19] for

all three measured targets.

Different regularization methods are applied and their influence on the reconstruc-

tion is studied. For all targets, the multiplicative smoothing regularization and the

stepwise relaxed value picking regularization are used. The advantages of the newly

proposed stepwise relaxed object smoothed value picking regularization are illustrated

by applying it for the reconstructions of the FoamDielExt and TwinDiel targets, since

in these cases the purely stepwise relaxed value picking regularization leads to arti-

facts in the reconstructed images.

7.2. Measurement set-up at Institut Fresnel

As in Section 5.2, the measurements of the 2005 Fresnel database were performed in

the anechoic chamber of Institut Fresnel in Marseille. Scattered fields for different di-

electric objects (all embedded in free space) are collected in an open-source database.

The illumination - receiver configuration is as follows. All antenna (transmitting and

receiving) positions lie equally spaced (with a maximum offset of 1◦) in the azimuthal

plane on a circle with radius 1.67 m. The scattering object is positioned at the center

of this circle. Only a subset of T (equally spaced) positions is used to position the

transmitting antenna (T = 8 for the FoamDielInt and FoamDielExt target and T = 18

for the TwinDiel target, see further). Instead of rotating the transmitting antenna, the

scatterer itself is rotated and the source remains fixed. The number of receiving an-

tenna positions is R = 241. Due to technical limitations, only a part of the receiving

positions along the circle can be reached, e.g. for a transmitting antenna at 0◦, the

receiving antenna is positioned from 60◦ to 300◦, see Fig. 7.1. The fields emitted by

the source antenna are treated as plane waves, which is a common procedure for re-

constructing the targets in the Fresnel database [11, 17, 19, 20, 21]. More details about

the set-up and methodology are presented in [8].

Measurements have been performed for frequencies ranging from 2 to 10 GHz

(exceptionally 18 GHz for the most complicated object). In this PhD work, all recon-

structions are performed on single frequency data, for which we have chosen 4 GHz

(λ0 = 0.0749 m). At this intermediate frequency, the objects are moderately sized in

terms of wavelengths and by consequence, all accelerating techniques from Chapter 2

can be applied without reaching the memory limit.
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R=241 receiver points
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Figure 7.1: Antenna configuration for the measurement set-up at Institut Fresnel.

As proposed in [8], a simple calibration procedure is applied to avoid an overall

phase and energy mismatch between measured and simulated fields. Therefore, all

measured scattered field values are multiplied by one complex factor. This complex

factor is obtained as the ratio of the simulated and measured incident field, at the

receiver location opposite to the source (for a source at 0◦, the opposite receiver is at

180◦).

7.3. General settings for the inverse solver

All targets measured in the 2D Fresnel database are guaranteed to lie in a 0.15 ×
0.15 m2 square. This square is chosen as the reconstruction domain in the inverse

solver and is discretized in 30 × 30 square inverse problem cells, yielding a total of

900 permittivity unknowns. The edge size of an inverse problem cell is 5 mm, which

roughly corresponds to 15 inverse problem cells per wavelength λ0. This relatively

small size of an inverse problem cell should facilitate to reconstruct the curved shapes

of the measured targets. To solve the forward problems, each inverse problem cell is

subdivided in 2×2 = 4 forward problem cells, which have the same permittivity. The

tolerance for the BICGSTAB iterative routine is set to 10−3. For all reconstructions,

the initial guess for the permittivity profile is set to free space and no constraints on

the permittivity are applied.

All simulations are performed on a machine with two AMD Opteron 270 Quad

core processors, occupying all 8 CPU cores. Each of the cores solves its own set of
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forward problems, hence the acceleration scheme of Fig. 2.6(b) is applied. Further-

more, the marching-on-in-incident-fields approach is applied, based on three previous

solutions. The marching parameter is in this case the angular position of the transmit-

ting antenna.

Two noise factors complicate the reconstruction. On the one hand, the unavoidable

measurement noise corrupts the data vector emeas, on the other hand, the discretization

noise and numerical errors in the forward problem influence escat(εεε). The noise level

(further denoted as T N) can be estimated by applying the multiplicative smoothing

regularization, since this type of regularization typically stagnates when approaching

T N (see [22]). Reconstructions with stepwise relaxed value picking regularization and

stepwise relaxed object smoothed value picking regularization show no such stag-

nation behavior at the noise level. Hence, in these cases, the iterative procedure is

stopped when the data fit reaches T N , estimated by a reconstruction with multiplica-

tive smoothing regularization. As shown further, the reconstruction for the TwinDiel
target has the highest stagnation level, i.e. at 2.4 10−3, therefore we have set the noise

level to T N = 5 10−3. This value is larger but illustrates that a good reconstruction is

already possible for this value of T N . Furthermore, for the stepwise relaxed (object

smoothed) value picking regularization, the simulation is also terminated as soon as a

sixth extra VP value is to be introduced.

7.4. Reconstruction of the FoamDielInt target

The first real world target that is reconstructed from the Fresnel database is the

FoamDielInt target, shown in Fig. 7.2. This target was also discussed in Section 5.2.2.

A homogeneous plastic cylinder is embedded in a second homogeneous foam cylinder.

The inner plastic cylinder has a radius ra = 15.5 mm ≈ 0.2λ0 and relative permittivity

εr,a = 3±0.3. The outer foam cylinder has rb = 40 mm ≈ 0.5λ0 and εr,b = 1.45±0.15.

The distance d between the centers of both cylinders is d = 5 mm. Within the un-

certainty introduced by the positioning errors, the outer cylinder is positioned in the

center of the antenna circle, which is also the center of the reconstruction grid. For

this experimental set-up, data for 8 source positions are available with TE and TM

polarization. Hence, the dimension of the data vector emeas, containing the x-, y- and

z-components of the measured scattered field, is ND = 11568.

7.4.1 Reconstruction using Multiplicative Smoothing regularization

First, the FoamDielInt target is reconstructed by applying the multiplicative smooth-

ing regularization, with the regularizing parameter α in (6.7) set to α = 10−3. The

reconstructed profile is shown in Fig. 7.3, with the white lines representing the actual

boundaries of both cylinders. The shape of the inner cylinder is clearly visible. How-

ever, due to the imposed smoothness, the dimensions of the objects as well as their

permittivities cannot be accurately determined. A swarm plot of the reconstructed pro-
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Figure 7.2: (a) Real part and (b) imaginary part of the permittivity profile, corresponding to the
FoamDielInt target. The white lines indicate the actual object boundaries.
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Figure 7.3: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
FoamDielInt target, based on the multiplicative smoothing regularized cost function. The white lines
indicate the actual object boundaries.

file (i.e. the permittivity of each pixel, represented as a dot in the complex permittivity

plane) is shown in Fig. 7.4. The cross-sections of the horizontal and vertical solid

lines represent the actual permittivity values of the FoamDielInt target (including free

space as background). There is few clustering of the permittivity pixels around the

cross-sections due to the inherent smoothing procedure and the imaginary parts are

spread out relatively far away from the real axis. From Fig. 7.5, it is clear that the data

fit stagnates after 11 iterations around F LS ≈ 1.6 10−3.
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Figure 7.4: Swarm plot of the reconstructed FoamDielInt permittivity profile with multiplicative
smoothing regularization. Each permittivity pixel is represented as a dot in the complex plane, the
intersections of the solid lines represent the actual permittivity values, including free space as back-
ground.
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Figure 7.5: The data fit while reconstructing the FoamDielInt target, based on the multiplicative
smoothing regularized cost function.
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7.4.2 Reconstruction using Stepwise Relaxed Value Picking regular-

ization

Second, the stepwise relaxed value picking regularization is applied. In the updating

procedure for the VP values cp (p = 1 . . .P), we have imposed the following con-

straints on all added VP values: (i) 1.1 < ℜ(cp) < 5, ∀cp and (ii) −0.001 < ℑ(cp) <

0.001, ∀cp, taking into account the a-priori knowledge that the object permittivities

do not have a significant imaginary part.

In the case of stepwise relaxed value picking regularization, the choice of the reg-

ularization parameter in (6.10) is more critical when compared to the multiplicative

smoothing regularization. Therefore, simulations are performed for three different reg-

ularization parameters: γ = 1, γ = 3 and γ = 5. Figure 7.6 shows the decrease of the

data fit as a function of the iteration number for these three cases. Vertical lines in the

same line style as the different data fit curves, stand for the iterations in which a VP

value is added in the stepwise relaxed VP regularization scheme. When the weight is

chosen too large (e.g. γ = 5), the data fit is prevented to reach the noise level and the

simulation stagnates. When the weight is too small, the data fit reaches the noise level

easily, without using much of the a-priori knowledge, incorporated in the regularizing

function. This results in a very weak clustering of the permittivity values in the com-

plex plane. This is the case for γ = 1, where the noise level is already reached after

5 iterations but only 1 VP value (c1 = 2.62) is introduced. From Fig. 7.6, the choice

γ = 3 seems most adequate. However, when reaching the estimated noise level at it-

eration 18, there are 3 added VP values, c1 = 2.98, c2 = 1.38 and c3 = 2.72. Hence,

one superfluous VP value is added, since there are only two non-background permit-

tivities. Here, the two VP values c1 and c3 lie close to each other. Figure 7.7 presents,

for every pixel in the reconstruction domain, the VP weights (see Section 6.4.3) that

correspond to the three added VP values at iteration number 18. Cells at the left side

of the inner cylinder tend more towards c1, whereas the right half of the inner cylinder

tends more towards c3. However, for the majority of cells in the inner cylinder, the

weights corresponding with c1 and the weights corresponding with c3 are similar in

magnitude. From these weights-plots, it is quite reasonable to conclude that the actual

permittivity of this inner cylinder will lie between c1 and c3, both already lying within

the uncertainty bounds on the permittivity of the inner cylinder (εr,a = 3±0.3).

Figure 7.8 shows two orthogonal cross-sections along the real part of the recon-

structed profile at iteration number 18, parallel to the coordinate axes and through

the center of the reconstruction grid. The solid lines represent the original profile, the

dashed lines correspond to γ = 1 and γ = 3. The result for γ = 5 is not shown since

this simulation converged too slowly and was terminated. The simulation with a small

regularization weight (γ = 1) results in a relatively smooth profile since, until the last

but one iteration, the only active VP value is the one kept fixed to the background

medium. The profile that corresponds to γ = 3 yields a fairly good reconstruction: the

size of the outer cylinder is exactly reconstructed, the deviation in size for the inner
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Figure 7.6: The data fit as a function of the iteration number, for the reconstruction of the
FoamDielInt target with stepwise relaxed value picking regularization. The vertical lines indicate
the iterations in which a VP value was added, their corresponding line styles are identical to the data
fit curves they are related to.

cylinder is of the order of a reconstruction cell. The permittivity of the outer cylin-

der is very well estimated. Due to the fact that the permittivity of the inner cylinder

is slightly underestimated, its size is somewhat too large. Also from this figure, it is

clear that γ = 3 is the best choice.

The reconstructed permittivity profile, for γ = 3 at iteration number 18, is presented

in Fig. 7.9. Again, the solid white lines indicate the contours of the actual target. The

final VP values are c1 = 2.98, c2 = 1.38 and c3 = 2.72. From Fig. 7.7, we already

concluded that the actual permittivity of the inner cylinder lies somewhere between

c1 = 2.98 and c3 = 2.72, the permittivity of the outer cylinder can be fixed to c2 =
1.38, which is also within the uncertainty bounds εr,b = 1.45± 0.15. A swarm plot

of the reconstructed permittivity profile, for γ = 3, is shown in Fig. 7.10. The dots in

the complex plane represent the different pixel permittivities, cross-sections of solid

lines denote the actual permittivities and cross-sections of dashed lines denote the

optimized VP values. When this swarm plot is compared to the one for multiplicative

smoothing regularization (Fig. 7.4), it is clear that a substantially better clustering of

the permittivities is achieved. The total simulation time for the reconstruction with

stepwise relaxed value picking regularization (with γ = 3) of the FoamDielInt target

is 1h 57 min.
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Figure 7.7: A plot of the VP weights bP
p,n for every reconstruction cell n at iteration number 18

(for γ = 3). (a) weight bP
1,n corresponding to the first added VP value c1 = 2.98, (b) weight bP

2,n

corresponding to the second added VP value c2 = 1.38 and (c) weight bP
3,n corresponding to the last

added VP value c3 = 2.720.

Since the reconstructed cylinders already show a smooth permittivity profile inside

the different permittivity regions, no extra improvement is expected when the stepwise

relaxed object smoothed value picking regularization technique is applied.
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Figure 7.8: Cross-section through the real part of the reconstructed permittivity profile along the x−
axis (a) and along the y-axis (b) and through the center of the reconstruction grid, for a reconstruc-
tion of the FoamDielInt target with stepwise relaxed value picking regularization. The solid lines
correspond to the actual profile, the dashed ones to reconstructed profiles with different values for
the regularization parameter γ.
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Figure 7.9: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
FoamDielInt target after 18 iterations, based on a stepwise relaxed value picking regularized cost
function. The white lines indicate the actual object boundaries.
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Figure 7.10: Swarm plot of the reconstructed FoamDielInt permittivity profile with stepwise relaxed
value picking regularization. Each permittivity pixel is represented as a dot in the complex plane, the
intersections of the solid lines represent the actual permittivity values, intersections of dashed lines
represent optimized VP values.
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7.5. Reconstruction of the FoamDielExt target

The second target that is reconstructed from the Fresnel database is named

FoamDielExt. It consists of the same two cylinders as the FoamDielInt target, where

the small plastic cylinder is now positioned outside the larger foam cylinder, as shown

in Fig. 7.11. The material properties for the small cylinder are: radius ra = 15.5 mm

≈ 0.2λ0 and relative permittivity εr,a = 3± 0.3. The foam cylinder has rb = 40 mm

≈ 0.5λ0 and εr,b = 1.45±0.15. Also here, the foam cylinder is positioned in the center

of the antenna circle (within the uncertainty introduced by the positioning errors). The

source configuration is the same as for the FoamDielInt target: T = 8 source positions

with TM and TE polarization resulting in a data vector emeas of length ND = 11568.
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Figure 7.11: (a) Real part and (b) imaginary part of the FoamDielExt target of Institut Fresnel.

7.5.1 Reconstruction using Multiplicative Smoothing regularization

As a benchmark case, a reconstruction is performed with the multiplicative smooth-

ing regularization with the weight of the regularizing part of the cost function set to

α = 10−3. The result is presented in Fig. 7.12. The small plastic cylinder is clearly

visible and its permittivity is well estimated. The larger foam cylinder however, is

only revealed as a blurry area to the right of the plastic cylinder. Its shape and permit-

tivity are not well resolved. Furthermore, around both cylinders artifacts are present

where free space is supposed. Still, one could come to the conclusion that there are

two objects next to each other, one having a permittivity of approximately 3 and one

having a permittivity of approximately 1.7. Figure 7.13 contains the swarm plot of the

reconstructed profile. Due to the imposed smoothness, few clustering of permittivity

values is visible. Many pixels have an imaginary part relatively far away from the real

axis and a real part of the permittivity smaller than 1. The data fit as a function of

the iteration number is shown in Fig. 7.14 and stagnates after 16 iterations around

F LS ≈ 1.4 10−3.
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Figure 7.12: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
FoamDielExt target, based on the multiplicative smoothing regularized cost function. The white
lines indicate the actual object boundaries.
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Figure 7.13: Swarm plot of the reconstructed FoamDielExt permittivity profile with multiplica-
tive smoothing regularization. Each permittivity pixel is represented as a dot in the complex plane,
the intersections of the solid lines represent the actual permittivity values, including free space as
background.
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Figure 7.14: The data fit while reconstructing the FoamDielExt target, based on the multiplicative
smoothing regularized cost function.
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7.5.2 Reconstruction using Stepwise Relaxed Value Picking regular-

ization

The previous result is now compared to a reconstruction, based on the stepwise relaxed

value picking regularization. We have imposed the same constraints on the VP values

as in Section 7.4.2: (i) 1.1 < ℜ(cp) < 5, ∀cp and (ii) −0.001 < ℑ(cp) < 0.001, ∀cp,

taking into account the a-priori knowledge that the object permittivities do not have

a significant imaginary part. Also for this object, simulations have been performed

for different values of the regularization parameter γ. The data fit is shown in Fig.

7.15. Due to the large difference in the number of iterations for the cases γ = 1 and

γ = 3, an additional simulation is done for γ = 2. The case γ = 1 corresponds to very

weak regularization and it can be seen that the data fit easily reaches the noise level.

In case of a really strong regularization (γ = 5), the data fit decreases really slowly,

boosting the iteration number. Therefore this simulation was terminated and is no

longer considered in what follows. For γ = 2 and γ = 3, the data fit decreases steadily,

but the optimization process adds too many VP values (in the last few iterations a VP

value is added in every step). The results for γ = 2 (after 21 iterations) do not differ

substantially from those for γ = 3 (after 32 iterations), but we will focus on γ = 3 since

this value was also chosen in Section 7.4.2. In that case, the final (after 32 iterations)

VP values are c1 = 2.99, c2 = 1.39, c3 = c4 = 2.70 and c5 = 2.8. Here, c3 and c4 were

initially different but merged during the optimization process.

Figure 7.16 presents, for every pixel in the reconstruction domain, the VP weights

that correspond to the five added VP values and the VP value that is kept fixed to

the background permittivity. In Fig. 7.16(a), (c), (d) en (e), the presence of the small

cylinder at the left is revealed. However, the difference in weight for these four VP

values is negligible. No dominant VP value can be selected, which suggest that the

actual permittivity of the small cylinder at the left lies somewhere in between the VP

values c1, c3, c4 and c5. The pixels are slightly more attracted towards c3 = c4 = 2.70,

than towards c1 = 2.99 and c5 = 2.8. Since the permittivity c3 = c4 = 2.70 is slightly

too small, the cylinder dimensions are overestimated. From these weight plots, we can

conclude that there is (probably) a small cylinder at the left side with a permittivity

somewhere between 2.70 and 2.99 and a larger cylinder with circular shape and an

estimated permittivity of c2 = 1.39. These reconstructed permittivities all lie within the

specified uncertainties on the object properties (εr,a = 3±0.3 and εr,b = 1.45±0.15).

However, in the three different distinguished permittivity regions some artifacts are

clearly visible. For instance, pixels in the small cylinder region take the VP value

corresponding to the large cylinder and vice versa. The same exchange of VP values

also takes place between the background and the large cylinder, see Fig. 7.16(b) and

(f).

The occurring artifacts also appear in Fig. 7.17, which shows the real part of the

reconstructed permittivity profile along the x- and y- axis of the reconstruction grid for

γ = 1, γ = 2 and γ = 3. The presence of artifacts is clearly visible for the case γ = 1 in
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Figure 7.15: The data fit as a function of the iteration number, for the reconstruction of the
FoamDielExt target with stepwise relaxed value picking regularization. The vertical lines denote
the iterations in which a VP value was added, their corresponding line styles are identical to the data
fit curves they are related to.

Fig. 7.17(a) and for all cases in Fig. 7.17(b). The complete reconstructed permittivity

profile, for γ = 3, is presented in Fig. 7.18.

Fig. 7.19 shows the swarm plot of the reconstructed permittivity profile, for γ = 3.

There is a good clustering of the permittivities around the background permittivity

and around c2 = 1.39, whereas the higher permittivities are more spread out. This

was also the case in the reconstruction of the FoamDielInt target with VP regulariza-

tion. Compared to the swarm plot when multiplicative smoothing regularization (Fig.

7.13) is applied, the clustering effect is apparent. A total simulation time of 3h 40 min

was necessary to obtain this reconstruction of the FoamDielExt target with stepwise

relaxed value picking regularization (with γ = 3).

Contrary to the reconstruction of the FoamDielInt target, we still have room for

improvement after the application of the stepwise relaxed value picking regularization

technique. It is expected that applying the stepwise relaxed object smoothed value

picking regularization technique will lead to a further improvement of the reconstruc-

tion.
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Figure 7.16: A plot of the VP weights bP
p,n for every reconstruction cell n corresponding to γ = 3. (a)

weight bP
1,n corresponding to c1 = 2.99, (b) weight bP

2,n corresponding to c2 = 1.39, (c) weight bP
3,n

corresponding to c3 = 2.70, (d) weight bP
4,n corresponding to c4 = 2.70, (e) weight bP

5,n corresponding

to c5 = 2.8 and (f) weight bP
6,n corresponding to the VP value that is kept fixed to the background

permittivity (c6 = 1).
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Figure 7.17: Cross-section through the real part of the reconstructed permittivity profile along
the x− axis (a) and along the y-axis (b) and through the center of the reconstruction grid, for a
reconstruction of the FoamDielExt target with stepwise relaxed value picking regularization. The
solid lines correspond to the actual profile, the dashed ones to reconstructed profiles for different
values of the regularization parameter γ.
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Figure 7.18: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
FoamDielExt target, after 32 iterations and based on a stepwise relaxed value picking regularized
cost function. The white lines indicate the actual object boundaries.
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Figure 7.19: Swarm plot of the reconstructed FoamDielExt permittivity profile with stepwise re-
laxed value picking regularization. Each permittivity pixel is represented as a dot in the complex
plane, the intersections of the solid lines represent the actual permittivity values, intersections of
dashed lines represent optimized VP values.



7.5 Reconstruction of the FoamDielExt target 165

7.5.3 Reconstruction using Stepwise Relaxed Object Smoothed Value

Picking regularization

The FoamDielExt target is an ideal example to illustrate the performance of the pro-

posed stepwise relaxed object smoothed VP regularization. This type of regularization

spatially smooths over neighboring cells that are attracted to the same VP value, in-

cluding over isolated cells that are attracted towards another VP value. The VP values

are subject to the same constraints as in the case of purely stepwise relaxed value

picking regularization: 1.1 < ℜ(cp) < 5, ∀cp and −0.001 < ℑ(cp) < 0.001, ∀cp.

Furthermore, VP values are added once the criterion to add an new VP value in the

stepwise relaxed VP regularization scheme is fulfilled.

The object smoothing regularization term is additive to the VP regularized part of

the cost function and the corresponding weight is set to ζ = 10−3 . The weight of the

VP part of the cost function is kept to γ = 3. Since an additional term is added to the

cost function, the total weight of the regularizing part, when compared to the data fit

term, has increased. This results in a stronger regularization and a slower decrease of

the data fit. Consequently, VP values are added later in the optimization process. This

is clearly visible in Fig. 7.20, showing the data fit with stepwise relaxed VP regular-

ization and with stepwise relaxed object smoothed VP regularization. The final VP

values are c1 = 3.00, c2 = 1.48 and c3 = c4 = c5 = 2.75, where c3, c4 and c5 merged

during the optimization. Whereas the total simulation time for this target with purely

stepwise relaxed value picking regularization and γ = 3 is 3h 40 min, the reconstruc-

tion with the new stepwise relaxed object smoothed value picking regularization needs

almost the double in computation time (6h 23 min) due to the stronger regularization.

As explained in Section 6.4.4, a group mapping of the pixels into VP groups has

to be performed. This mapping, at different iteration numbers, is illustrated in Fig.

7.21. First, only the fixed background VP value (here denoted as c0) is present, see

Fig. 7.21(a). Consequently, all pixels are assigned to the background group and the

object smoothing part of the cost function behaves as the multiplicative smoothing

regularization with a fixed weight. After the first added VP value (at that stage c1 =
2.74 at iteration 44), the small cylinder starts to appear in the group mapping, see Fig.

7.21(b). The inner cells at the location of the small cylinder are assigned to the newly

added VP group, whereas the border cells at this location are assigned to the indefinite

cells group. At this stage, object smoothing is performed within the three different VP

groups. Once, the second VP value is introduced (at iteration 48, c2 = 1.40, see Fig.

7.21(c)), all cells at the location of the small cylinder are assigned to the same VP

group and to the right the larger foam cylinder starts to appear. Also here, the inner

cells are assigned to the new VP group, whereas the outer cells are now mapped to

the indefinite cells group. A third VP value is added (c3 = 2.77 in iteration 51) in Fig.

7.21(d). Some cells of the small cylinder switch groups to the newly added VP group,

which causes the other cells to join the indefinite cells group. For the foam cylinder,

all cells are now assigned to the correct group. In Fig. 7.21(e), another VP value is
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Figure 7.20: The data fit as a function of the iteration number, for the reconstruction of the
FoamDielExt target. Dashed curve: with stepwise relaxed value picking regularization, solid curve:
with stepwise relaxed object smoothed value picking regularization. The vertical lines denote the
iterations in which a VP value was added, their corresponding line styles are identical to the data fit
curves they are related to.

added in iteration 52 but immediately merges with c3 (c4 = c3 = 2.75). Because none

of the VP values are dominant, the corresponding weights only slightly differ and

all cells of the small cylinder end up in the indefinite cells group. Consequently, the

smoothing is performed over the complete left cylinder. All pixels at the location of the

foam cylinder still belong to the same VP group. Also for this object, the smoothing

is performed over almost the exact object location. The situation in the last iteration

(after adding c5 = c4 = c3 = 2.75, see Fig. 7.21(f)) does not differ from the one in

Fig. 7.21(e), since c5 also merges with the other VP values. We can conclude that the

object smoothing is performed exactly in the regions that we wanted.

Figure 7.22 shows cross-sections of the real part of the permittivity profile. The

cross-sections are still along the x- (a) and y- (b) axis, but now pass through the regions

in which artifacts are present when using the purely stepwise relaxed value picking

regularization (y = 0.005 m and x = 0.005 m respectively). Fig. 7.22(a) shows that the

artifacts have disappeared when the object smoothing is applied. The permittivity of

the larger cylinder is correctly estimated while the size of the larger cylinder is only

slightly overestimated. In Fig. 7.22(b), the artifacts also disappeared. The permittivity

of the small cylinder is somewhat underestimated and its location is shifted slightly to

the right, but the dimension is exactly estimated. The permittivity of the larger cylinder

is correctly estimated and its dimensions are a little bit too small.
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Figure 7.21: A plot of the mapping of permittivity cells into VP groups for FoamDielExt. The
indefinite cells group is denoted as indef., the other VP groups are represented by their VP value,
where c0 denotes the VP value that is kept fixed to the background medium. (a) group mapping when
c1 = 2.74 is added, (b) group mapping after the introduction of c2 = 1.40, (c) group mapping after
adding c3 = 2.77, (d) group mapping after adding c4 = c3 = 2.75, (e) group mapping in last but one
iteration, after introduction of c5 = c4 = c3 = 2.75 and (f) final group mapping.
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The complete reconstructed permittivity profile, for γ = 3, is presented in Fig. 7.23.

The circular shape, dimensions and center positions of both cylinders are correctly re-

constructed. The only deviations appear where both cylinders touch. The permittivity

of the small cylinder is estimated to be 2.75 and the permittivity of the larger cylinder

is estimated to be 1.48, which both lie within the uncertainty bounds on the objects

(εr,a = 3±0.3, εr,b = 1.45±0.15).

Fig. 7.24 shows the swarm plot of the reconstructed permittivity profile, for γ = 3.

The clustering of the permittivities around the background and object permittivities

is even better than in case of the purely stepwise relaxed value picking regularization

(Fig. 7.19).

We can conclude that the stepwise relaxed object smoothed value picking regu-

larization is indeed a valuable approach to deal with artifacts that can appear when

purely stepwise relaxed value picking regularization is applied to scatterers with a

limited number of (quasi-) homogeneous regions.
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Figure 7.22: Cross-section through the real part of the reconstructed permittivity profile along the
x− axis (a) and along the y-axis (b) and cutting through the location of the artifacts, for a reconstruc-
tion of the FoamDielExt target with stepwise relaxed object smoothed value picking regularization
and purely stepwise relaxed value picking regularization. The solid lines correspond to the actual
profile, the dashed ones to reconstructed profiles.
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Figure 7.23: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
FoamDielExt target, based on a stepwise relaxed object smoothed value picking regularized cost
function. The white lines indicate the actual object boundaries.
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Figure 7.24: Swarm plot of the reconstructed FoamDielExt permittivity profile with stepwise re-
laxed object smoothed value picking regularization. Each permittivity pixel is represented as a dot
in the complex plane, the intersections of the solid lines represent the actual permittivity values,
intersections of dashed lines represent optimized VP values.
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7.6. Reconstruction of the TwinDiel target

The last target, also the most complicated one, is a combination of the two previous

targets and is named TwinDiel. It consists of the same cylinders as the FoamDielInt

and FoamDielExt target and contains twice the smallest plastic cylinder, once posi-

tioned outside the larger foam cylinder and once inside it, as shown in Fig. 7.25. The

material properties for the smallest cylinders are: radius ra = 15.5 mm ≈ 0.2λ0 and

relative permittivity εr,a = 3±0.3. The larger foam cylinder has rb = 40 mm ≈ 0.5λ0

and εr,b = 1.45 ± 0.15. Also here, the foam cylinder is positioned in the center of

the antenna circle (within the uncertainty introduced by the positioning errors). The

source configuration is slightly different than before: T = 18 source positions with

TM and TE polarization resulting in a data vector emeas of length ND = 26028.
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Figure 7.25: (a) Real part and (b) imaginary part of the TwinDiel target of Institut Fresnel.

7.6.1 Reconstruction using Multiplicative Smoothing regularization

We start with a reconstruction based on multiplicative smoothing regularization. Also

here, the regularization parameter of the cost function is set to α = 10−3. Figure 7.26

shows the reconstructed permittivity profile. The presence of the two small plastic

cylinders is clearly visible, although their shape is harder to determine. Their rela-

tively large permittivity (when compared to the background and foam cylinder) can

be distinguished. The larger foam cylinder is less perceptible, due to the fluctuations

in permittivity of the background medium. With regard to the permittivity of the foam

cylinder, one can only conclude that it lies somewhere between the high permittivity of

the small cylinders and the background permittivity. A swarm plot of the reconstructed

profile is shown in Fig. 7.27. As could be expected from this type of regularization, no

clustering of permittivities is visible. Furthermore, permittivities are spread out rela-

tively far to the left (real part smaller than 1) and towards high imaginary parts. The



7.6 Reconstruction of the TwinDiel target 171

decrease of the data fit as a function of the iteration number is presented in Fig. 7.28,

showing a stagnation after ±22 iterations around F LS ≈ 2.4 10−3.
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Figure 7.26: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
TwinDiel target, based on the multiplicative smoothing regularized cost function. The white lines
indicate the actual object boundaries.

0.5 1 1.5 2 2.5 3 3.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Real part

Im
ag

in
ar

y 
pa

rt

Figure 7.27: Swarm plot of the reconstructed TwinDiel permittivity profile with multiplicative
smoothing regularization. Each permittivity pixel is represented as a dot in the complex plane, the
intersections of the solid lines represent the actual permittivity values, including free space as back-
ground.
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Figure 7.28: The data fit while reconstructing the TwinDiel target, based on the multiplicative
smoothing regularized cost function.
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7.6.2 Reconstruction using Stepwise Relaxed Value Picking regular-

ization

In the previous sections, the reconstructions based on the stepwise relaxed value pick-

ing regularization yielded a more detailed image of the target, when compared to the

reconstruction with the multiplicative smoothing regularization. We will show that this

is also the case for this more complicated target.

Since the measurement set-up for this target consists of many more illuminations

than the previous ones (resulting in many more forward problems that need to be

solved and hence much longer simulation times), we choose not to start from free-

space as initial guess, but from a permittivity profile that is obtained during the multi-

plicative smoothing regularized optimization. However, we cannot use the final result

as initial guess since this profile already corresponds to a data fit on the noise level and

leaves no extra space for further optimization. Therefore, the permittivity profile that

corresponds to a data fit of F LS = 9.5 10−3 (achieved in iteration 5 in the multiplica-

tive smoothed reconstruction after approximately 2.5 hours) is taken as initial guess

for this reconstruction. This permittivity profile is shown in Fig. 7.29.
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Figure 7.29: (a) Real part and (b) imaginary part of the initial permittivity profile for the recon-
struction of the TwinDiel target.

The same constraints are imposed on the VP values as in the previous sections: (i)

1.1 < ℜ(cp) < 5, ∀cp and (ii) −0.001 < ℑ(cp) < 0.001, ∀cp. Since a regularization

weight of γ = 3 proved to be a good choice for the other targets, we choose to use the

same regularization parameter for this target.

Figure 7.30 presents the decreasing data fit during the optimization with the step-

wise relaxed value picking regularization. In the first iteration (the switching between

multiplicative smoothing and stepwise relaxed value picking regularization), the data

fit slightly increases, but decreases steadily afterwards. The total simulation time in

this case is 3h 35 min.
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Figure 7.30: The data fit as a function of the iteration number, for the reconstruction of the
FoamDielExt target with stepwise relaxed value picking regularization. The vertical lines denote
the iterations in which a VP value was added.

Five VP values are added during the optimization process (after iteration 10):

c1 = 3.00, c2 = 1.39 and c3, c4 and c5 merged during the optimization process into

c3 = c4 = c5 = 2.59. The corresponding VP weights for every pixel in the reconstruc-

tion domain are shown in Fig. 7.31. Since the VP’s c3, c4 and c5 merged, their corre-

sponding weight plots are identical, as can be seen from Fig. 7.31(c), (d) en (e). The

small cylinder at the left side of the reconstruction grid and the small cylinder inside

the foam one are visible, although their inner parts (especially that of the left one) are

more drawn towards c1 = 3.00, see Fig. 7.31(a). Figure 7.31(b) reveals the outer foam

cylinder and Fig. 7.31(f) shows which cells are attracted to the background VP. Based

on these weight plots, we can conclude that the scatterers are probably: (i) a large

cylinder in the center of the grid with permittivity c2 = 1.39 (εr,b = 1.45±0.15), (ii)

a small cylinder inside the large one with permittivity c3 = c4 = c5 = 2.59 (slightly

too low, εr,a = 3± 0.3), (iii) a small cylinder left of the large one with permittivity

c3 = c4 = c5 = 2.59 (again slightly too low, εr,a = 3± 0.3) and possibly (iv) a very

small cylinder inside the left one with permittivity c1 = 3.00 . Hence, from these VP

weights, the left cylinder is not expected to be a homogeneous object. Furthermore,

artifacts are present in the reconstructed profile: there is an exchange of VP values

between the background and the large cylinder, see 7.31(b) and Fig. 7.31(f). This was

also the case when reconstructing the FoamDielExt target, see Section 7.5.2.

Figure 7.32 shows cross-sections through the real part of the reconstructed per-

mittivity profile along the x- and y- axis and through the center of the reconstruction
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Figure 7.31: A plot of the VP weights bP
p,n for every reconstruction cell n. (a) weight bP

1,n corre-

sponding to c1 = 3.00, (b) weight bP
2,n corresponding to c2 = 1.39, (c) weight bP

3,n corresponding to

c3 = 2.59, (d) weight bP
4,n corresponding to c4 = 2.59, (e) weight bP

5,n corresponding to c5 = 2.59

and (f) weight bP
6,n corresponding to the VP value that is kept fixed to the background permittivity

(c6 = 1).
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grid. The reconstruction in Fig. 7.32(a) is rather good, whereas Fig. 7.32(b) reveals the

artifacts inside all cylinders and the background medium. The complete reconstructed

permittivity profile, for γ = 3, is presented in Fig. 7.33.
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Figure 7.32: Cross-section through the real part of the reconstructed permittivity profile along
the x− axis (a) and along the y-axis (b) and through the center of the reconstruction grid, for a
reconstruction of the TwinDiel target with stepwise relaxed value picking regularization. The solid
lines correspond to the actual profile, the dashed ones to reconstructed profiles.
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Figure 7.33: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
TwinDiel target, based on the stepwise relaxed value picking regularized cost function. The white
lines indicate the actual object boundaries.

Fig. 7.34 shows the swarm plot of the reconstructed permittivity profile, for γ = 3.

A good clustering of the permittivities is visible around the background permittivity

and around c2 = 1.39, the assumed permittivity of the large foam cylinder. The re-

constructed permittivities for the small plastic cylinders are more spread out around



7.6 Reconstruction of the TwinDiel target 177

c3 = c4 = c5 = 2.59 and spread towards negative imaginary parts. A few permittiv-

ity dots appear with a real part larger then 3. However, when compared to the swarm

plot when multiplicative smoothing regularization (Fig. 7.27) is applied, the cluster-

ing effect is apparent. This behavior was also present in the reconstructions of the

FoamDielInt and FoamDielExt targets with stepwise relaxed value picking regular-

ization (see Fig. 7.10 and Fig. 7.19).

Section 7.5.3 already proved that the newly proposed stepwise relaxed object

smoothed value picking regularization technique is capable of strongly reducing the

artifacts that can appear when purely stepwise relaxed value picking regularization is

applied. It is expected that also for this target, this new regularization technique will

lead to a further improvement of the reconstruction.
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Figure 7.34: Swarm plot of the reconstructed TwinDiel permittivity profile with stepwise relaxed
value picking regularization. Each permittivity pixel is represented as a dot in the complex plane, the
intersections of the solid lines represent the actual permittivity values, intersections of dashed lines
represent optimized VP values.
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7.6.3 Reconstruction using Stepwise Relaxed Object Smoothed Value

Picking regularization

Finally, the stepwise relaxed object smoothed VP regularization is applied to the

TwinDiel target. Also here, the constraints on the VP values are 1.1 < ℜ(cp) < 5, ∀cp

and −0.001 < ℑ(cp) < 0.001, ∀cp, and VP values are added once the criterion to add

an new VP value in the stepwise relaxed VP regularization scheme is fulfilled. The

weight of the object smoothing regularization term is set to ζ = 10−3, whereas the

weight of the VP part of the cost function is still γ = 3. Due to the stronger regular-

ization (when compared to the purely stepwise relaxed value picking regularization),

the data fit decreases more slowly, as can be seen from Fig. 7.35. Furthermore, the

total simulation time (i.e. 6h 53 min) is much larger, compared to the purely stepwise

relaxed value picking regularized reconstruction (3h 35 min). The final VP values (at

iteration nr. 12) are c1 = 3.50, c2 = 1.40 and c3, c4 and c5 merged during the opti-

mization into c3 = c4 = c5 = 2.88. It can be expected that the two largest VP values

correspond to the small plastic cylinders and that their actual real part of the per-

mittivity lies somewhere in between these values. However, if the final VP weights

are studied in Fig. 7.36, it is clear that no cells are attracted towards c1 = 3.50 (see

Fig. 7.36(a)) and hence, all cells at the locations of the small cylinders take the VP

value c3 = c4 = c5 = 2.88 (see Fig. 7.36(c), (d) and (e)). Therefore, the permittivity

of the small cylinders can be estimated as 2.88, which lies again within the uncer-

tainty bounds on the actual permittivity (εr,a = 3± 0.3). All cells at the location of

the larger foam cylinder are attracted towards c2 = 1.40 (see Fig. 7.36(b)) and, by

consequence, this foam cylinder permittivity is estimated as 1.40, lying within the

uncertainty bounds on the permittivity (εr,b = 1.45±0.15).

Although none of the cells are finally attracted towards c1 = 3.50, this VP value

has not been useless during the optimization. This is illustrated in the group mapping

plot of Fig. 7.37, showing the result of the group mapping step at different iteration

numbers. Figure 7.37(a) shows the different VP groups after the first iteration. Here,

only the background VP value (denoted as c0) is present and all pixels are assigned to

the background group. In Fig. 7.37(b), a first VP value is added (at that stage c1 = 3.03)

and the two plastic cylinders start to appear at the correct locations. The same behavior

as for the reconstruction of the FoamDielExt target appears here: the inner cells of the

appearing small cylinders are assigned to the newly added VP value, the outer cells

are still assigned to the indefinite cells group. Once the second VP value is introduced

(c2 = 1.34, see Fig. 7.37(c)), the larger foam cylinder appears at the correct position.

Also here, its inner cells are immediately assigned to the new VP group, whereas

the outer cells end up in the indefinite cells group. At the same time, all cells at the

location of the small cylinders have switched to the VP group corresponding to c1.

In Fig. 7.37(d), a third VP value is added (c3 = 2.92). All cells at the small cylinder

positions immediately switch to the newly added VP group, since c1 has moved away

at that stage towards c1 = 3.49. Almost all cells that correspond to the foam cylinder
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Figure 7.35: The data fit as a function of the iteration number, for the reconstruction of the TwinDiel
target. Dashed curve: with stepwise relaxed value picking regularization, solid curve: with step-
wise relaxed object smoothed value picking regularization. The vertical lines denote the iterations in
which a VP value was added, their corresponding line styles are identical to the data fit curves they
are related to.

are now assigned to the correct VP group (c2 = 1.38). In the last but one iteration (Fig.

7.37(e)), another VP value is added but immediately merges with c3 (c4 = c3 = 2.88).

Since the weight that should correspond to a VP value equal to 2.88 is distributed over

two identical VP values, none of these two VP values are dominant. Consequently,

all cells that belong to the small plastic cylinders are moved towards the indefinite

cells group. At this stage, smoothing is performed over four different regions: (i) an

area corresponding with the location of the small plastic cylinder at the left, (ii) an

equally sized area corresponding with the location of the small plastic cylinder inside

the foam one, (iii) a larger area that corresponds with the support of the foam cylinder

and finally (iv) the background medium. In the last iteration (see Fig. 7.37(f)), c5 is

added and also merges (c5 = c4 = c3 = 2.88). Therefore, the final situation does not

differ from the one in Fig. 7.37(e). Also for this target, we can conclude that the object

smoothing is performed exactly on the regions that we wanted.

Cross-sections of the reconstructed permittivity profile are presented in Fig. 7.38,

with cross-sections along the x- (a) and y- (b) axis and through the center of the recon-

struction grid. From Fig. 7.38(a), we conclude that the dimensions of the large foam

cylinder and its inner small plastic cylinder are exactly reconstructed. The permittiv-

ity of the large foam cylinder is almost exactly reconstructed (estimated to be 1.40),

the permittivity of the small plastic cylinder is somewhat underestimated as 2.88,
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Figure 7.36: A plot of the VP weights bP
p,n for every reconstruction cell n. (a) weight bP

1,n corre-

sponding to c1 = 3.50, (b) weight bP
2,n corresponding to c2 = 1.40, (c) weight bP

3,n corresponding to

c3 = 2.88, (d) weight bP
4,n corresponding to c4 = 2.88, (e) weight bP

5,n corresponding to c5 = 2.88

and (f) weight bP
6,n corresponding to the VP value that is kept fixed to the background permittivity

(c6 = 1).
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Figure 7.37: A plot of the mapping of permittivity cells into VP groups. The indefinite cells group
is denoted as indef., the other VP groups are represented by their VP value, where c0 denotes the
VP value that is kept fixed to the background medium. (a) group mapping before any VP is added
(first iteration), (b) group mapping after the introduction of c1 = 3.03, (c) group mapping after adding
c2 = 1.34, (d) group mapping after adding c3 = 2.92, (e) group mapping in last but one iteration, after
introduction of c4 = c3 = 2.88 and (f) final group mapping after introduction of c5 = c4 = c3 = 2.88.
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but all reconstructed permittivities lie within the uncertainty bounds (εr,a = 3± 0.3,

εr,b = 1.45±0.15). Figure 7.38(b) shows that the artifacts that appear when the purely

stepwise relaxed value picking regularization is applied, have completely disappeared.

The dimensions of the small plastic cylinder at the left are very little underestimated,

the deviation being smaller than the size of a permittivity pixel. The dimensions of the

outer foam cylinder and the inner plastic cylinder are exactly reconstructed, and their

permittivities are very well estimated.
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Figure 7.38: Cross-section through the real part of the reconstructed permittivity profile along the
x− axis (a) and along the y-axis (b) and through the center of the reconstruction grid, for a recon-
struction of the TwinDiel target with stepwise relaxed object smoothed value picking regularization
and purely stepwise relaxed value picking regularization. The solid lines correspond to the actual
profile, the dashed ones to reconstructed profiles.

Finally, the complete reconstructed permittivity profile is presented in Fig. 7.39.

The quality of the reconstruction with stepwise relaxed object smoothed value pick-

ing regularization is comparable to the reconstruction of the FoamDielExt target (Fig.

7.23): the circular shape, dimensions and center positions of all cylinders are cor-

rectly reconstructed. There is only one small deviation: the large foam cylinder ex-

tends somewhat (approx. the size of two permittivity pixels) too far to the left. The

swarm plot of the reconstructed permittivity profile is shown in Fig. 7.40.

From these results we again conclude that the stepwise relaxed object smoothed

value picking regularization is a valuable approach to deal with artifacts that can ap-

pear when purely stepwise relaxed value picking regularization is applied.

7.7. Conclusion

In this chapter, we have validated the proposed inverse scattering method for the mi-

crowave frequency range by reconstructing real world targets from experimental data.

The scattering data are part of the 2D Institut Fresnel database and consist of TM- and

TE- polarized measured scattered fields for long inhomogeneous dielectric cylinders.
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Figure 7.39: (a) Real part and (b) imaginary part of the reconstructed permittivity profile of the
TwinDiel target, based on the stepwise relaxed object smoothed value picking regularized cost func-
tion. The white lines indicate the actual object boundaries.
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Figure 7.40: Swarm plot of the reconstructed TwinDiel permittivity profile with stepwise relaxed
object smoothed value picking regularization. Each permittivity pixel is represented as a dot in the
complex plane, the intersections of the solid lines represent the actual permittivity values, intersec-
tions of dashed lines represent optimized VP values.

We have obtained very accurate reconstructions of three different Fresnel targets

by using single-frequency data only. Furthermore, it is demonstrated that the newly

proposed stepwise relaxed object smoothed value picking regularization method leads

to a perfectly piecewise homogeneous reconstruction where the stepwise relaxed

value picking regularization method suffers from artifacts while reconstructing the

FoamDielExt and TwinDiel targets.
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CHAPTER 8

Reconstructions at millimeter

wave frequencies from

synthetic data

8.1. Introduction

The previous chapter offered an extensive validation study for the proposed inverse

scattering method. These validation cases are all performed at microwave frequencies.

The proposed method was developed in the framework of a millimeter wave joint

research project [1]. Therefore, this chapter presents some reconstruction results at

these high frequencies. By consequence, we are restricted to synthetic scattering data.

The term synthetic denotes that the scattered field input data are generated by a forward

scattering method instead of obtained by real measurements. All synthetic data in this

chapter are produced by the forward scattering solver presented in the first part of this

PhD work.

To fully exploit the acceleration techniques presented in Chapter 2, the marching-

on-in-source-position and marching-on-in-spectral-component techniques are applied,

where three previous forward problem solutions are combined into an initial guess for

the current forward problem solution. All simulations are performed on a machine

containing two quadcore AMD Opteron 2350 processors, allowing a multi-threaded

implementation using all 8 CPU cores.

This chapter contains two sections. The first one deals with the influence of the

type of incident field on the reconstruction process. A comparison is made between

reconstructions obtained with plane wave illumination and reconstructions obtained

with Gaussian beam illumination and this for different types of polarization of the in-

cident field. The second section covers the largest reconstruction example of this PhD

work: the reconstruction of a small object hidden underneath a layer of clothing on
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a human body model. The configuration for this simulation is based on the human

body simulation of Section 4.4 and is challenging due to different reasons. First, the

permittivity of the skin layer is relatively large, which demands a fine discretization

when solving the forward scattering problem. Combined with the relatively large di-

mensions of the body compared to the free space wavelength (order of millimeters),

the number of cells in the forward scattering problem is very large. Second, the illu-

mination is not realized over 360◦ around the target, since it is physically not possible

to realize source positions inside the human body. Therefore the number of different

incidence angles is limited, which worsens the in-depth resolution, i.e. the position

between the clothing and skin layer and the thickness of the hidden object are hard to

determine. Third, the human body model is illuminated with Gaussian beams, which

requires the solution of forward scattering problems for different spectral components.

Therefore, larger simulation times are expected compared to a plane wave illumina-

tion. Consequently, the number of antenna and detector positions must be strongly

restricted and the human body model of Section 4.4 has to be further simplified.

8.2. Influence of the incident field type on the reconstruction

In this section, we study the influence of the type of incident field (plane wave ver-

sus Gaussian beam) and the polarization of the incident field (TM- or TE- only or

combined TE-TM polarization) on the reconstruction process of a moderately sized

target.

All simulations are performed at 300 GHz (λ0 = 1 mm) and the multiplicative

smoothing regularization technique (with a regularization parameter α = 0.005) is

used . The initial guess for the permittivity profile is free space. Furthermore, 30 dB

of white Gaussian noise is added to the synthetic data. The target consists of three

concentric dielectric squares, surrounded with air, see Fig. 8.1. The respective relative

permittivities are εouter = 1.2, εmiddle = 1.3 and εinner = 1.4 and the edge lengths of the

squares are douter = 2 λ0 = 2.0 mm, dmiddle = 1.2 λ0 = 1.2 mm and dinner = 0.4 λ0 =
0.4 mm. The size of a permittivity cell in the reconstruction grid is Δinv = 0.2 λ0 =
0.2 mm, yielding 12×12 unknowns.

Plane waves and Gaussian beams are used as incident fields. The Gaussian beams

have a beam waist radius of 8λ0 = 8 mm and the beam waist planes located at the

center of the reconstruction grid.

The scatterer is illuminated from 40 directions, equally spaced 9◦, see Fig. 8.2.

All Gaussian beams completely illuminate the target. We test the effect on the recon-

struction of three types of polarization for the incident field: TM, TE and combined

TE-TM polarization. In Fig. 8.2, the black square represents the reconstruction grid,

the horizontal dark blue arrows indicate the propagation direction for each illumina-

tion, and the vertical light blue arrows represent the direction of the electric field for

TM polarization. The scattered fields are measured in 40 detector points, distributed

along a circle of radius 5λ0, see Fig. 8.2.
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Figure 8.1: Real part of the actual permittivity profile when comparing the influence on the recon-
struction of the incident field type.

Figure 8.2: Illumination configuration for the reconstruction of the target of Fig. 8.1. All 40 source
and detector positions are distributed along a circle of radius 5λ0. The black square represents the re-
construction grid. The horizontal dark blue arrows indicate the propagation directions of all incident
fields, the vertical light blue arrows represent the TM polarization direction.

Figure 8.3 presents the real part of the reconstructed profile for the simulations

with TM-polarized incident fields. Fig. 8.3(a) corresponds to a plane wave illumina-

tion, whereas Fig. 8.3(b) corresponds to an illumination with Gaussian beams. The

solid white lines indicate the contours of the actual target. For both types of inci-

dent fields, the simulations result in relatively smooth objects. The permittivity of the

smallest inner square is slightly underestimated: the permittivity of the 4 inner cells is

estimated as 1.36, 1.36, 1.34 and 1.36 for the plane wave case and 1.36, 1.36, 1.35 and
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1.35 for the Gaussian beam case. Figure 8.4 shows the real part of the reconstructed

profile, for a TE-polarized illumination. Here, a larger difference exists between the

reconstruction with plane wave illumination (Fig. 8.4(a)) and the reconstruction with

Gaussian beam illumination (Fig. 8.4(b)) since there are slightly more local oscilla-

tions in the permittivity profile for the Gaussian beam case. The permittivity of the

4 inner cells is estimated as 1.37, 1.39, 1.39 and 1.38 for the plane wave case and

1.45, 1.41, 1.37 and 1.42 for the Gaussian beam case. The reconstruction for com-

bined TE-TM- polarization, presented in Fig. 8.5, is almost perfect. For the plane

wave illumination (Fig. 8.5(a)), the largest (outer) cylinder is very smooth, whereas

the middle cylinder has more local oscillations in permittivity. The reverse situation

is visible in the Gaussian beam case: the middle cylinder is relatively smooth and the

outer cylinder has more local oscillations. For both types of incident field, the per-

mittivity of the 4 inner cells is exactly estimated as εinner = 1.4. We conclude that a

similar reconstruction quality is obtained for both types of incident fields, although

the TE- reconstruction with Gaussian beams is slightly worse.
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Figure 8.3: Reconstructed real part of the permittivity profile of Fig. 8.1 using a TM polarized
illumination with (a) plane waves and (b) Gaussian beams as incident fields. The solid white lines
indicate the contours of the actual target.

Table 8.1 shows some other reconstruction parameters for both types of incident

fields and all three polarization cases. From the second column, it is clear that the

type of incident field does not influence the number of iterations in the reconstruc-

tion process. However, the type of incident field is a determining factor when the total

simulation times are compared. Since a factor five more forward problems need to be

solved for the Gaussian beam case than for the plane wave case (five spectral com-

ponents instead of one), the total simulation times are much larger. Another way to

compare reconstructed permittivity profiles is to define a relative error as

rel. error(εεε) =
||εεε− εεε0||
||εεε0|| , (8.1)
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Figure 8.4: Reconstructed real part of the permittivity profile of Fig. 8.1 using a TE polarized
illumination with (a) plane waves and (b) Gaussian beams as incident fields. The solid white lines
indicate the contours of the actual target.
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Figure 8.5: Reconstructed real part of the permittivity profile of Fig. 8.1 using a TE- and TM-
polarized illumination with (a) plane waves and (b) Gaussian beams as incident fields. The solid
white lines indicate the contours of the actual target.

where εεε0 denotes the actual (correct) permittivity profile. The reconstructed profiles

for TM polarization both have the largest relative error of only 1.5%. The plane wave

TE-polarized case yields an error of 0.95%, whereas the Gaussian beam TE-polarized

case corresponds to a larger error of 1.4%. The best reconstructions (obtained with

combined TE-TM- polarization) have a relative error of 0.73% for the plane wave case

and 0.98% for the Gaussian beam case. Another comparison parameter is the mean

permittivity of a square. This mean permittivity is computed by averaging all permit-

tivity cells that lie within the actual (correct) bounds of that object. If we compare

these parameters, the difference between results of plane wave illumination and Gaus-
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sian beam illumination is negligible, the only deviation appears for the TE-polarized

reconstructions where the permittivity of the inner square is slightly underestimated

(εmean
inner = 1.38) for plane wave illumination and slightly overestimated (εmean

inner = 1.41)

for Gaussian beam illumination. From these data it is clear that in all cases almost

perfect reconstructions are obtained.

The decrease of the data fit is shown in Fig. 8.6 for all polarization cases and both

types of incident fields. All simulations give rise to a similar behavior, for plane wave

and Gaussian beam illuminations.

Finally, we conclude that the largest implication of changing the incident fields

from plane waves to Gaussian beams is the increased simulation time. The number

of iterations remains unaltered and the mean permittivities do not remarkably change.

There is a small effect on the reconstructed profiles, illustrated by the slightly larger

relative errors on the permittivity.

Table 8.1: Results of the reconstructions with plane wave (PW) and Gaussian beam (GB) illumi-
nation for TM-, TE- and combined TE-TM polarization: number of iterations, total simulation time,
relative error and mean permittivities of objects within their actual bounds.

# it. CPU time rel. error(εεε) mean perm.

1.196
TM PW 4 1’24” 1.5% 1.294

1.358
1.199

TE PW 5 1’ 54” 0.95% 1.297
1.383
1.200

TE-TM PW 5 2’ 50” 0.73% 1.301
1.399

1.196
TM GB 4 8’ 48” 1.5% 1.294

1.355
1.200

TE GB 5 10’ 38” 1.4% 1.299
1.413
1.201

TE-TM GB 5 15’ 35” 0.98% 1.301
1.403
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Figure 8.6: The data fit as a function of the iteration number, corresponding to the reconstructions
of the target of Fig. 8.1 for plane wave and Gaussian beam illumination with TM-, TE- or combined
TE-TM polarization.
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8.3. A millimeter wave reconstruction of a simplified human body

model

This section presents a reconstruction result for the clothed human body model (see

Section 3.5) with a hidden object underneath the clothing. The working frequency

is 94 GHz, which corresponds to a free space wavelength of about λ0 = 3 mm. The

illumination consists of Gaussian beams with a beam waist radius of w0 = 2.67λ0 =
8 mm, the beam waist plane is located at the exterior surface of the clothing layer.

This section illustrates the possibility to image hidden objects on a clothed hu-

man body with millimeter waves. Since we are restricted in memory consumption and

computation time, we assume that the positions, thicknesses, shapes and permittivi-

ties of the clothing layer and the human body layers are known. It is not our aim to

reconstruct these layers, we only hope to reveal the presence of the hidden object.

Therefore, the partial inverse problem grid approach of Chapter 6 is used. All layers

of the human body model are assumed to be part of the background and their corre-

sponding permittivity cells are not optimized for. Only cells at the assumed location

of a possible hidden object (i.e. between the clothing and skin layer) are treated as

inverse problem unknowns.

As already mentioned in the introduction, this type of reconstruction is challenging

due to the large size of the involved forward problems, the aspect-limited data and the

Gaussian beam illumination. We will now focus on each of these aspects in detail.

We start the analysis by inspecting the number of forward problems that needs to

be solved in every iteration. Each iteration consists of different steps. First, for the

current permittivity profile, the corresponding scattered field is determined by solving

the regular forward problems (see Section 6.6). A regular forward problem is to be

solved for:

• every source position

• every polarization of the incident field (TM-, TE- or both)

• every spectral component kz of the incident field.

Second, to determine the Jacobian matrix J ( containing the derivatives of the scattered

field with respect to the permittivity profile), we need to compute the inhomogeneous

Green’s function Ĝinh (6.83). This is done by solving the set of dipole forward prob-
lems (see Section 6.6). There is a dipole forward problem for:

• every receiver position

• all three receiver polarization directions (x−, y- and z-direction)

• every spectral component kz of the incident field

Once the scattered field and Jacobian matrix are determined for the current per-

mittivity profile (εεεk), the update direction for the permittivity profile (ΔΔΔεεεk) can be

determined, along which a line search is performed to find an adequate step size βk.

Hence, the next permittivity profile is given by εεεk+1 = εεεk +βkΔΔΔεεεk.
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Each step of the line search routine itself also contains several forward problems:

(i) to evaluate F (βk), all regular forward problems (for every kz, every source position

and every polarization) must be solved for εεεk + βkΔΔΔεεεk, (ii) to evaluate ∂F (βk)/∂βk,

the total gradient of the cost function gk must be constructed, involving the evaluation

of the Jacobian matrix J. Hence, this also requires the solution of all dipole forward

problems for εεεk +βkΔΔΔεεεk (for every kz, every receiver position and 3 polarizations).

We can conclude that it is essential to restrict the number of regular forward prob-

lems and dipole forward problems as much as possible by an adequate choice of the

number of spectral components and of the number of source and detector positions.

Although the standard number of spectral components in this PhD work was previ-

ously chosen to be 5, we reduce this to three for this large reconstruction example.

This still corresponds to an acceptable error on the incident field of the order of 1%

for an orthogonally incident Gaussian beam (see Section 3.5).

The choice of an adequate number of beam directions and detector points cannot

be made without considering the aspect-limited character of the source-receiver con-

figuration. Due to the presence of the human body, a 360◦ illumination of the hidden

object is not feasible. Hence, we are restricted to use source and detector positions at

one side of the clothed human body model only, as shown in Fig. 8.7. Consequently, it

is hard to get a good in-depth resolution (i.e. along the y-direction in Fig. 8.7). There-

fore, it is advisable to maintain a good spatial distribution of the transmitting antennas

along the x-axis to preserve the lateral resolution of the reconstruction. In this way, we

hope to reveal the presence of the hidden object at the correct position along the x-axis,

whereas its position along the y-axis will be much harder to determine. Since the num-

ber of regular forward problems relates directly to the number of incident fields, only 5

beam directions are used for the reconstruction (both a TE- and TM-polarizations are

used). Blue arrows in Fig. 8.8 indicate the propagation direction of the incident Gaus-

sian beams, which pass through the red dots that are equally spaced 4λ0 = 12 mm on a

line at 33.3λ0 = 10 cm from the clothing layer. The pink arrows indicate the direction

of the electric field for TE- polarization. The TM polarization direction is not shown

since it points outwards of the figure. The black square represents the location of the

clothed human body model. For the detector configuration, we have chosen a line of

41 receiver positions with a spacing of λ0/3 = 1 mm and place the detector line very

close (at 1.5λ0 = 4.5 mm) to the clothing layer. The detector positions are indicated

as green dots in Fig. 8.8.

We will now focus on the forward and inverse problem grids. Since the partial

inverse problem grid approach is used, the unknown grid cells at the assumed location

of the hidden object have to fit in the larger background grid. To make this fitting

easier, we neglect the curvature of the human body and model the clothing layer and

the human body layers as rectangular objects, see Fig. 8.9.

The human body model of Fig. 8.7, used in Section 4.4, consists of approximately

1.4 million unknowns in the forward problem and corresponds to a simulation time of

approximately two hours for a single illumination. Neglecting the curvature of all lay-
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Figure 8.7: Human body model of Section 3.5 with antenna configuration.

Figure 8.8: Sources and detector configuration for the reconstruction of the hidden object on a
clothed human body.
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ers will only slightly reduce the dimensions of a single forward problem. Therefore,

more simplifications are required to obtain a model for which a single forward prob-

lem can be solved in a reasonable amount of time. A first necessary step is reducing

the dimensions of the model along the x-axis. Since all incident Gaussian beams (with

a beam diameter of approximately 1.6 cm) are directed towards the expected location

of the hidden object, the outer parts of the rectangular clothing and human body lay-

ers are not illuminated and can therefore be further neglected. We have reduced the

dimensions of all layers along the x-axis to 5.8 cm (in the original model of Fig. 8.7,

this length was 10 cm). A second step to make the solution time of a forward problem

acceptable is omitting the layer of fat in the human body model. Since the thickness

of this layer (1cm) is large compared to the 2 mm thickness of the clothing and skin

layer, omitting the fat will significantly reduce the number of forward problem cells in

the y-direction. We expect that this necessary simplification will not strongly influence

the fields since there is no substantial field penetration further than the skin layer (see

Fig. 4.17). The permittivity profile of the simplified human body model is shown in

Fig. 8.9. The layer at the left side represents the clothing layer, the layer at the right

is the skin layer. The intermediate rectangular solid blue box denotes the positions

of the unknown permittivity cells. The ultimate number of unknowns in the forward

problem of the considered simplified human body model is 174 528 and corresponds

to a forward problem cell size of λ0/30 = 0.1 mm.

Now, the partial inverse problem grid is discussed. This is a coarser grid compared

to the forward problem grid and it is restricted to a rectangle that includes the expected

location of the hidden scatterer, as indicated by the light blue box in Fig. 8.9. Hence,

only the cells within this partial inverse problem grid are optimized for. The dimen-

sions of the partial inverse problem grid are 1 cell along the y-axis and 20 cells along

the x-axis, yielding a total number of 20 permittivity unknowns. The cells have a cell

size of λ0/3 = 1 mm.

The rectangular hidden object is 1 mm wide and 14 mm long, which corresponds

to one coarse grid cell along the y-axis and 14 cells along the x−axis. It is positioned

in the center of the partial inverse problem grid and has a relative permittivity of

εr,ob j = 2, see Fig. 8.9. Note that the hidden object is less elongated than the partial

inverse problem grid. Hence, we hope to reconstruct both permittivity and longitudinal

dimension of this hidden object. The properties of the clothing and skin layer are (see

Section 4.4): thickness dclothing = 2 mm with a relative permittivity of εr,clothing =
4.0 + i 0.1 [2] and thickness dskin = 2 mm with a relative permittivity of εr,skin =
5.60+ i 7.09 [3].

This configuration is very challenging in computation effort, but is relatively small

in terms of memory consumption. Hence, all accelerating techniques of Chapter 2

are applied: (i) all forward problems are distributed over the 8 available CPU cores,

(ii) a marching-on-in-source-position technique is applied which recycles three pre-

vious solutions and (iii) a marching-on-in-spectral-component technique is applied,
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Figure 8.9: (a) Real part and (b) imaginary part of the coarse grid permittivity cells for the recon-
struction of a hidden object underneath clothing on a human body. The solid white lines indicate the
contours of the actual objects, the solid blue lines surround the positions of the unknown permittivity
cells (i.e. the partial grid).

also reusing three previous solutions. All these implementation details lead to a total

memory consumption of approximately 2 Gb (32 Gb available).

The reconstruction parameters are as follows. Since this configuration is already

a highly demanding inverse scattering problem, no noise is added to the synthetic

data. The tolerance for the BICGS routine in the forward problem is set to 10−3.

We have applied the stepwise relaxed value picking regularization technique with the

regularization parameter γ = 1, since the computation time with purely stepwise re-

laxed value picking regularization is smaller compared to the stepwise relaxed ob-
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ject smoothed value picking regularization. The bounds on the VP values cp are (i)

1.1 < ℜ(cp) < 5, ∀cp and (ii) −0.001 < ℑ(cp) < 0.001, ∀cp.

Figure 8.10 shows the reconstructed permittivity profile, obtained after only 6 iter-

ations. The hidden object is clearly visible inside the partial inverse problem grid and

its dimensions are correctly estimated. Figure 8.11 shows a cross-sectional plot of the

reconstructed permittivity values through the partial inverse problem grid. The solid

lines correspond to the actual profile, whereas the dash-dot curve corresponds to the

reconstructed permittivities inside the partial inverse problem grid. The longitudinal

dimension of the hidden object is exactly determined, the permittivity is a little under-

estimated (εr,ob j = 1.8 instead of εr,ob j = 2). The vertical dashed lines represent the

boundaries of the partial inverse problem grid. The decrease of the data fit is shown in

Fig. 8.12. One VP value is added in the reconstruction process and its value at iteration

6 is c1 = 1.99, which is exactly the actual permittivity of the hidden object.

The computation times for each iteration and the current value for c1 are presented

in Table 8.2. These computation times clearly illustrate the computational effort of this

reconstruction example. More complex and/or realistic configurations in the millime-

ter wave range can be simulated if a fully parallel version of the presented methods

is available, which allows to distribute the forward problems over more CPU cores. If

the volume integral equation approach, presented in this PhD work, is combined with

a boundary integral approach [4, 5] a computationally more efficient hybrid method

might be obtained to cope with the influence of the surrounding background me-

dia. Here, the partial grid approach is an effective manner to avoid the inclusion of

the known surrounding environment into the inverse problem unknowns. For future

research, it may be of interest to look for more efficient ways to solve the forward

problem in case of a changing object in a non-changing environment [6].

Table 8.2: Computation times and current value for the VP value c1 as a function of the iteration
number, corresponding to the reconstruction of an object hidden underneath clothing on u human
body.

# it. CPU time c1

init 0h 0’ 54” -
1 15h 22’ 2” -
2 15h 51’ 49” -
3 16h 9’ 42” -
4 14h 33’ 27” -
5 26h 54’ 59” 1.73
6 24h 18’ 48” 1.99
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Figure 8.10: (a) Real part and (b) imaginary part of the reconstructed permittivity profile inside
the partial inverse problem grid, embedded in the coarse grid. This reconstruction corresponds to the
configuration of an object hidden under clothing on a human body. The solid white lines indicate the
contours of the actual objects, the solid blue lines surround the positions of the unknown permittivity
cells (i.e. the partial inverse problem grid).
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of an object hidden underneath clothing on a human body. The vertical solid line denotes the iteration
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8.4. Conclusion

In this Chapter, reconstructions are performed based on synthetic data in the millime-

ter wave range. First, the influence of the type of incident field on the reconstruction

is investigated by comparing reconstructions with Gaussian beam illumination to re-

constructions with plane wave illumination. Reconstructions with Gaussian beam illu-

mination require much longer computation times due to the larger number of spectral

components, while the number of iterations in the inversion scheme is similar to the

plane wave illumination case. The quality of the reconstruction is slightly worse.

The second part of this chapter dealt with the reconstruction of a hidden object

on the clothed human body model of Chapter 4, illuminated by a millimeter wave

Gaussian beam. Due to the extremely large dimensions of this scattering example, we

were obliged to adopt different model simplifications and reduce the number of spec-

tral components to describe the Gaussian beam. Due to the presence of the human

body, illuminations could not be realized over 360◦ around the hidden object, caus-

ing the scattering data to be aspect limited. Furthermore, a relatively small number

of source and detector points was chosen to allow for a computation time of a single

iteration to be less than or equal to one day. After only 6 iterations, the reconstructed

permittivity profile revealed the hidden scatterer, at the correct location and with the

correct dimensions. Its permittivity was slightly underestimated but the corresponding

VP value converged to the exact permittivity value. This human body scattering ex-

ample has clearly illustrated the limitations as well as the possibilities of the presented

inverse scattering method. A fully parallel version is expected to be able to detect hid-

den objects on more realistic human body models within a more realistic millimeter

wave imaging set-up.
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Conclusions and further

research

In this PhD work, we proposed a full-wave forward and inverse scattering algorithm

for the millimeter wave frequency range. The consequences of such high frequencies

are twofold. On the one hand, incident fields are typically Gaussian beams, which

have a fully three-dimensional nature. On the other hand, realistic objects tend to be

very large with respect to the wavelength, which makes a fully three-dimensional im-

plementation hardly feasible. Consequently, we adopted a so-called two-and-a-half-

dimensional implementation by assuming that all scatterers are two-dimensional (be-

ing infinitely long cylinders with an arbitrary cross-section) while maintaining the

three-dimensional nature of the incident fields.

In a first part of this dissertation, we described the implementation of the forward

solver. Since the forward solver is developed to be part of the quantitative inverse

scattering scheme, special attention was paid to a fast and efficient implementation.

A volume integral equation scheme was selected to allow the forward solver to sim-

ulate strongly inhomogeneous objects, which is required by the pixel-based inversion

method. Therefore, we reformulated the well-known contrast source integral approach

to fit the 2.5D description by applying a spatial Fourier transform of the electromag-

netic fields along the invariant direction of the scattering cylinder. Hence, the longitu-

dinal coordinate dependency of the electromagnetic fields was replaced by a spectral

component dependency. Consequently, a set of two-dimensional contrast source in-

tegral equations was obtained: one for every spectral component. In this way, a 2D

spatial discretization in a cross-sectional plane of the object could be applied. The set

of discretized equations is iteratively solved by applying a biconjugate gradient FFT

method.

Three different models for the 3D Gaussian beam illumination were implemented.

These can be classified in two groups. The first two models are based on a scalar

beam formulation, where a polarization vector is added to the scalar beam to obtain

a vectorial illumination. Consequently, these models are only valid under the paraxial

approximation. The third model is valid both inside and outside the well collimated

region of the beam and yields the most accurate and efficient description of a Gaussian

beam. In this model, the Gaussian beam is obtained as the field generated by a dipole

source in complex space. This approach was inspired on the three-dimensional com-

plex source beam formulation of Heyman and Felsen [1], which we have reformulated
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for the two-and-a-half-dimensional case. This fully vectorial model was chosen as the

standard implementation for a Gaussian beam within the presented PhD work.

An extensive validation of the proposed 2.5D forward solver was provided in

Chapter 4, both for plane wave and Gaussian beam illumination. First, an excellent

agreement was achieved between simulated scattered fields and analytic solutions for

orthogonally and obliquely incident plane waves, being TE- or TM-polarized, incident

on a homogeneous cylinder or a a piecewise-homogeneous multilayered cylinder. Sec-

ond, a comparison of simulated scattered fields to fields obtained with a fully three-

dimensional VIE-based forward solver [2] demonstrated the computational advan-

tages of the 2.5D approach when simulating long dielectric cylinders. Third, for an or-

thogonally incident Gaussian beam illumination, we successfully matched simulated

scattered fields to scattered fields obtained from a fully three-dimensional BIE-based

forward solver [3]. Furthermore, we proved that the restriction to infinitely long cylin-

ders in the 2.5D solver (i.e. the 2.5D assumption) can be weakened to long enough
cylinders in case of a Gaussian beam illumination.

Since the presented forward solver is intended for millimeter wave imaging appli-

cations that visualize hidden objects under clothing [4], we showed a scattering exam-

ple for a human body configuration, consisting of an orthogonally incident Gaussian

beam that illuminates a simplified model of a clothed human torso. The effect on the

total field of a small metallic or dielectric object, hidden underneath the clothing, was

clearly visible.

We have also studied the correspondence between simulated scattered fields

on the one hand and experimentally measured scattered fields on the other hand.

The LAMI-ETRO lab of the Vrije Universiteit Brussel provided us amplitude-only

scattering measurements of a homogeneous teflon cylinder, in the millimeter wave

range and thus for a Gaussian beam illumination. The simulated and measured fields

agreed quite well, even though the incident beam could not be characterized precisely.

Fully vectorial scattering measurements in the microwave range were provided by

the Institut Fresnel in Marseille for an obliquely illuminated long inhomogeneous

dielectric cylinder. Also in this case, a good match was obtained between simulated

and measured fields.

In the second part of this dissertation we described the quantitative inverse scat-

tering algorithm. The iterative implementation is based on existing techniques for mi-

crowave imaging, which we adapted and applied to the millimeter wave range. There-

fore, we reformulated the analytical expression for the derivatives of the scattered field

with respect to the permittivity unknowns for the two-and-a-half-dimensional case. A

two-step strategy is applied to update the permittivity profiles. First, an update direc-

tion is derived by applying a Gauss-Newton method. Afterwards, an approximate line

search is performed along this direction, yielding the next permittivity profile. Fur-

thermore, we proposed a partial inverse problem grid description to account for large
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scattering systems, restricting the inversion domain to a limited investigation area sur-

rounded by known background objects.

Both a spatial and a non-spatial regularization technique were implemented: the

multiplicative smoothing regularization and the stepwise relaxed value picking regu-

larization respectively. These existing methods inspired us to develop a new type of

regularization, which we denoted the stepwise relaxed object smoothed value pick-

ing regularization. Its behavior is similar to that of the stepwise relaxed value picking

regularization: it favors permittivity profiles consisting of few distinct permittivity val-

ues, which makes it ideally suited to reconstruct piecewise homogeneous objects. The

novelty lies in the fact that smoothing is imposed within the different homogeneous

regions, deduced from the VP weights in each iteration.

The proposed inverse scattering method was validated by reconstructing real world

targets from TM- and TE- polarized experimental data for long inhomogeneous di-

electric cylinders, provided by the 2D Institut Fresnel database. Only using single

frequency data, we obtained very accurate reconstructions of different Fresnel targets.

In some cases, the stepwise relaxed value picking regularization led to artifacts in

the reconstructed profile. Since the targets are piecewise constant, these configura-

tions were ideally suited to test the newly proposed stepwise relaxed object smoothed

value picking regularization method. The results were excellent: perfectly piecewise

homogeneous reconstructions with a good estimation of the positions, dimensions and

permittivities of the objects were obtained.

To present some reconstruction results at millimeter wave frequencies, we were

obliged to use synthetic data. A preliminary study was made of how the type of inci-

dent field (plane wave or Gaussian beam) influences the reconstruction process. This

test case consisted of a relatively small multilayered square scatterer, completely il-

luminated by the incident fields. Whereas the number of iterations in the inversion

scheme is similar for both types of illumination, the computation time for a recon-

struction with Gaussian beam illumination is larger. These longer computation times

are inherent to the Gaussian beam implementation, due to the larger number of spectral

components. The quality of both reconstructions was very good, with a slight advan-

tage for the plane wave illumination. This example shows that quantitative millimeter

wave imaging could be promising for specific non-destructive testing applications, e.g.

for material characterization of small samples that are opaque to light.

Finally, we came back to the millimeter wave imaging of concealed objects on the

human body by trying to reconstruct a small hidden object on the clothed human body

model of Chapter 4, which is a very challenging configuration due to its extremely

large dimensions. We were obliged to further simplify this human body model and to

reduce the number of spectral components in the description of the Gaussian beam.

In order to simulate a configuration that could be realized experimentally, we had to

omit the 360◦ illumination of the target and used aspect limited scattered field data.

Although the number of source and detector points was already relatively small, this

still resulted in a computation time of the order of one day for a single iteration in the
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inverse scheme. After approximately five days and six iterations, the hidden scatterer

was revealed at the correct location and with the correct dimensions. Its permittivity

was slightly underestimated but the corresponding VP value converged to the exact

permittivity value. This body scattering example clearly illustrates the present limita-

tions as well as the possibilities of the presented inverse scattering method.

To be able to reconstruct more challenging configurations (e.g. detect hidden ob-

jects on more realistic human body models within a more realistic millimeter wave

imaging set-up), further research is necessary and could include the following:

• The presented method uses a multithreaded implementation, which makes it, to

some extent, already a parallelized simulation tool. However, we are restricted

to run simulations on multiple processors on a single machine, all accessing the

same common memory. A fully parallel implementation [5] would allow to spread

out the computations over multiple processors on multiple machines, each having

their own memory to store results. Hence, the simulation times could be strongly

reduced, while the available memory increases. This parallelization should pose

few difficulties since the parallelized version of the inverse problem is very similar

to its multithreaded version.

• To speed up single forward problems, the conditioning of the set of CSIE’s could

be improved by implementing an appropriate preconditioner or by improving the

routine to compute initial guesses (now the marching-on scheme).

• To better account for known and unchanging objects in the surroundings of the

unknown scatterer, a hybrid solver which combines a BIE approach for the known

objects with a VIE approach or a finite elements approach for the unknown objects

might be an advantage.

• The choice of the regularization parameter in case of stepwise relaxed value pick-

ing and stepwise relaxed object smoothed value picking is still done by trial and

error. More research should be done to obtain an a-priori or adaptive value for this

regularization parameter.

• A more extensive study on the influence of the type of incident field on the recon-

struction might provide more insight. Furthermore, it needs to be studied how the

reconstruction process behaves when the object is only partially illuminated by a

Gaussian beam.
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APPENDIX A

Analytic solutions for an

obliquely incident TM polarized

plane wave on an infinitely long

dielectric circular cylinder

1.1. Homogeneous cylinder

In this section we present a brief sketch of the construction of the analytic solution

for the scattered field that results from a plane wave obliquely incident on a circular

homogeneous cylinder with radius a1 and relative permittivity ε′r1.

We start from the Fourier transformed Maxwell equations ((2.7a)-(2.7b)):

∇̂× Ê(r,kz) = jωμ0Ĥ(r,kz) (A.1a)

∇̂× Ĥ(r,kz) = Ĵi(r,kz)− jωε(r)Ê(r,kz), (A.1b)

where, in case of a plane wave illumination, kz corresponds to the projection of the

propagation vector ki = k0ui of the obliquely incident plane wave on the z-axis, hence

kz = k0ui ·uz. The complex permittivity ε(r) is equal to ε1 = ε0ε′r1 inside the cylinder

and equal to ε0 outside the cylinder.

We will formulate all fields in a cylindrical coordinate system with origin (ρ = 0)

in the center of the cylinder, hence r + zuz = ρuρ + φuφ + zuz. Consequently, the

incident electric and magnetic fields are denoted as Êi(ρ,φ,kz) = Ê i
ρ(ρ,φ,kz)uρ +

Ê i
φ(ρ,φ,kz)uφ + Ê i

z(ρ,φ,kz)uz and Ĥi(ρ,φ,kz), respectively. Similarly, the scattered

electric and magnetic fields outside the cylinder are represented as Ês(ρ,φ,kz) and
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Ĥs(ρ,φ,kz), respectively, and the total electric and magnetic fields inside the cylinder

are represented as Êtot1(ρ,φ,kz) and Ĥtot1(ρ,φ,kz), respectively.

At the surface of the cylinder (for ρ = a1) the electromagnetic fields satisfy:

Ê i
z(a1,φ,kz)+ Ês

z (a1,φ,kz) = Ê tot1
z (a1,φ,kz) (A.2a)

Ĥ i
z(a1,φ,kz)+ Ĥs

z (a1,φ,kz) = Ĥ tot1
z (a1,φ,kz) (A.2b)

Ê i
φ(a1,φ,kz)+ Ês

φ(a1,φ,kz) = Ê tot1
φ (a1,φ,kz) (A.2c)

Ĥ i
φ(a1,φ,kz)+ Ĥs

φ(a1,φ,kz) = Ĥ tot1
φ (a1,φ,kz). (A.2d)

In the following subsections, we derive expressions for the z− and φ− field compo-

nents.

1.1.1 Expressions for the z− and φ− components of the incident fields

Due to the TM polarization of the incident plane wave, the z-component of the incident

magnetic field is zero:

Ĥ i
z(ρ,φ,kz) = 0. (A.3)

The z-component of the incident electric field is expanded as

Ê i
z(ρ,φ,kz) =

+∞

∑
n=−∞

A(− j)nJn(γ0ρ)e jnφ, (A.4)

where A represents the amplitude of the incident plane wave and γ0 =
√

k2
0 − k2

z .

The corresponding φ- components of the incident electric and magnetic fields are

obtained from

∇̂× Êi(ρ,φ,kz) = jωμ0Ĥi(ρ,φ,kz) (A.5a)

∇̂× Ĥi(ρ,φ,kz) = − jωε0Êi(ρ,φ,kz). (A.5b)

Since all field components are derived in a cylindrical coordinate system, we have to

reformulate ∇̂× a (with a equal to Êi(ρ,φ,kz) or Ĥi(ρ,φ,kz) and ∇̂ = ∂
∂x ux + ∂

∂y uy +
jkzuz) to cylindrical coordinates (ρ,φ,z). Hence,

∇̂×a =
[

1

ρ
∂

∂φ
az − jkzaφ

]
uρ +

[
jkzaρ − ∂

∂ρ
az

]
uφ

+
[

1

ρ
∂

∂ρ
(ρaφ)− 1

ρ
∂

∂φ
aρ

]
uz (A.6)
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By introducing (A.6) into (A.5) and by identifying the uρ- and the uφ- components,

the following set of equations is obtained:

1

ρ
∂

∂φ
Ê i

z(ρ,φ,kz)− jkzÊ i
φ(ρ,φ,kz) = jωμ0Ĥ i

ρ(ρ,φ,kz) (A.7a)

jkzÊ i
ρ(ρ,φ,kz)− ∂

∂ρ
Ê i

z(ρ,φ,kz) = jωμ0Ĥ i
φ(ρ,φ,kz) (A.7b)

− jkzĤ i
φ(ρ,φ,kz) = − jωε0Ê i

ρ(ρ,φ,kz) (A.7c)

jkzĤ i
ρ(ρ,φ,kz) = − jωε0Ê i

φ(ρ,φ,kz). (A.7d)

After elimination of Ê i
ρ and Ĥ i

ρ, the φ- components of the incident fields are obtained

as a function of the z- component of the incident electric field as

Ê i
φ(ρ,φ,kz) =

jkz

γ2
0

1

ρ
∂

∂φ
Ê i

z(ρ,φ,kz) (A.8a)

Ĥ i
φ(ρ,φ,kz) =

jωε0

γ2
0

∂
∂ρ

Ê i
z(ρ,φ,kz). (A.8b)

1.1.2 Expressions for the z− and φ− components of the scattered

fields outside the cylinder

For ρ≥ a1, the z-components of the scattered electric and magnetic fields are expanded

as

Ês
z (ρ,φ,kz) =

+∞

∑
n=−∞

AnH(1)
n (γ0ρ)e jnφ (A.9a)

Ĥs
z (ρ,φ,kz) =

+∞

∑
n=−∞

BnH(1)
n (γ0ρ)e jnφ, (A.9b)

where An and Bn are unknown coefficients to be determined from the boundary equa-

tions (A.2).

The corresponding φ- components of the scattered electric and magnetic fields are

obtained from

∇̂× Ês(ρ,φ,kz) = jωμ0Ĥs(ρ,φ,kz) (A.10a)

∇̂× Ĥs(ρ,φ,kz) = − jωε0Ês(ρ,φ,kz). (A.10b)
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By introducing (A.6) into (A.10) and by identifying the uρ- and the uφ- components,

the following set of equations is obtained:

1

ρ
∂

∂φ
Ês

z (ρ,φ,kz)− jkzÊs
φ(ρ,φ,kz) = jωμ0Ĥs

ρ(ρ,φ,kz) (A.11a)

jkzÊs
ρ(ρ,φ,kz)− ∂

∂ρ
Ês

z (ρ,φ,kz) = jωμ0Ĥs
φ(ρ,φ,kz) (A.11b)

1

ρ
∂

∂φ
Ĥs

z (ρ,φ,kz)− jkzĤs
φ(ρ,φ,kz) = − jωε0Ês

ρ(ρ,φ,kz) (A.11c)

jkzĤs
ρ(ρ,φ,kz)− ∂

∂ρ
Ĥs

z (ρ,φ,kz) = − jωε0Ês
φ(ρ,φ,kz). (A.11d)

From (A.11), the φ- components of the scattered fields are obtained as a function

of the z- components of the scattered fields as

Ês
φ(ρ,φ,kz) =

jkz

γ2
0

1

ρ
∂

∂φ
Ês

z (ρ,φ,kz)− jωμ0

γ2
0

∂
∂ρ

Ĥs
z (ρ,φ,kz) (A.12a)

Ĥs
φ(ρ,φ,kz) =

jkz

γ2
0

1

ρ
∂

∂φ
Ĥs

z (ρ,φ,kz)+
jωε0

γ2
0

∂
∂ρ

Ês
z (ρ,φ,kz). (A.12b)

1.1.3 Expressions for the z− and φ− components of the total fields

inside the cylinder

For ρ ≤ a1, the z-components of the total electric and magnetic fields are expanded as

Ê tot1
z (ρ,φ,kz) =

+∞

∑
n=−∞

CnJn(γ1ρ)e jnφ (A.13a)

Ĥ tot1
z (ρ,φ,kz) =

+∞

∑
n=−∞

DnJn(γ1ρ)e jnφ, (A.13b)

where Cn and Dn are unknown coefficients to be determined from the boundary equa-

tions (A.2) and γ1 =
√

k2
0ε′r1 − k2

z .

The corresponding φ- components of the total magnetic and electric fields are ob-

tained from

∇̂× Êtot1(ρ,φ,kz) = jωμ0Ĥtot1(ρ,φ,kz) (A.14a)

∇̂× Ĥtot1(ρ,φ,kz) = − jωε1Êtot1(ρ,φ,kz). (A.14b)
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By introducing (A.6) into (A.14) and by identifying the uρ- and the uφ- components,

the following set of equations is obtained:

1

ρ
∂

∂φ
Ê tot1

z (ρ,φ,kz)− jkzÊ tot1
φ (ρ,φ,kz) = jωμ0Ĥ tot1

ρ (ρ,φ,kz) (A.15a)

jkzÊ tot1
ρ (ρ,φ,kz)− ∂

∂ρ
Ê tot1

z (ρ,φ,kz) = jωμ0Ĥ tot1
φ (ρ,φ,kz) (A.15b)

1

ρ
∂

∂φ
Ĥ tot1

z (ρ,φ,kz)− jkzĤ tot1
φ (ρ,φ,kz) = − jωε1Ê tot1

ρ (ρ,φ,kz) (A.15c)

jkzĤ tot1
ρ (ρ,φ,kz)− ∂

∂ρ
Ĥ tot1

z (ρ,φ,kz) = − jωε1Ê tot1
φ (ρ,φ,kz). (A.15d)

From (A.15), the φ- components of the scattered fields are obtained as a function

of the z- components of the scattered fields as

Ê tot1
φ (ρ,φ,kz) =

jkz

γ2
1

1

ρ
∂

∂φ
Ê tot1

z (ρ,φ,kz)− jωμ0

γ2
1

∂
∂ρ

Ĥ tot1
z (ρ,φ,kz) (A.16a)

Ĥ tot1
φ (ρ,φ,kz) =

jkz

γ2
1

1

ρ
∂

∂φ
Ĥ tot1

z (ρ,φ,kz)+
jωε1

γ2
1

∂
∂ρ

Ê tot1
z (ρ,φ,kz). (A.16b)

1.1.4 Analytical solution

From the previous sections, we have obtained expressions for both the z- and φ-

components of the incident and scattered fields outside the cylinder and of the total

fields inside the cylinder. The expressions for the z-components of the scattered fields

outside the cylinder contain 2 unknown coefficients (An and Bn, for each n). Similarly,

the expressions for the z-components of the total fields inside the cylinder contain 2

unknown coefficients (Cn and Dn, for each n). All φ-components can be written as

a function of the corresponding z- components. Consequently, the total number of

unknowns to characterize all fields (for each n) is 4. The boundary equations at the

surface of the cylinder (A.2) offer four independent equations. Hence, the system of

equations (A.2) is sufficient to characterize all unknown coefficients and consequently

all unknown fields.

1.2. Two-layered cylinder

The previous approach for a homogeneous cylinder can easily be extended towards

the case of a two-layered homogeneous cylinder. Suppose the outer cylinder (denoted

as cylinder 1) has a radius a1 and relative permittivity ε′r1 (corresponding to a com-

plex permittivity ε1) and the inner cylinder (denoted as cylinder 2) has a radius a2

and relative permittivity ε′r2 (corresponding to a complex permittivity ε2). The total

electric and magnetic fields inside cylinder 1 are now denoted as Êtot1(ρ,φ,kz) and
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Ĥtot1(ρ,φ,kz), respectively, and the total electric and magnetic fields inside cylinder 2

are represented as Êtot2(ρ,φ,kz) and Ĥtot2(ρ,φ,kz), respectively.

At the exterior surface of cylinder 1 (for ρ = a1, being the interface free space -

cylinder 1) the electromagnetic fields satisfy

Ê i
z(a1,φ,kz)+ Ês

z (a1,φ,kz) = Ê tot1
z (a1,φ,kz) (A.17a)

Ĥ i
z(a1,φ,kz)+ Ĥs

z (a1,φ,kz) = Ĥ tot1
z (a1,φ,kz) (A.17b)

Ê i
φ(a1,φ,kz)+ Ês

φ(a1,φ,kz) = Ê tot1
φ (a1,φ,kz) (A.17c)

Ĥ i
φ(a1,φ,kz)+ Ĥs

φ(a1,φ,kz) = Ĥ tot1
φ (a1,φ,kz), (A.17d)

whereas, at the interface cylinder 1 - cylinder 2 (for ρ = a2), the electromagnetic fields

satisfy

Ê tot1
z (a2,φ,kz) = Ê tot2

z (a2,φ,kz) (A.18a)

Ĥ tot1
z (a2,φ,kz) = Ĥ tot2

z (a2,φ,kz) (A.18b)

Ê tot1
φ (a2,φ,kz) = Ê tot2

φ (a2,φ,kz) (A.18c)

Ĥ tot1
φ (a2,φ,kz) = Ĥ tot2

φ (a2,φ,kz). (A.18d)

Similarly as in the previous section, the z- components of the incident fields are char-

acterized as

Ĥ i
z(ρ,φ,kz) = 0 (A.19a)

Ê i
z(ρ,φ,kz) =

+∞

∑
n=−∞

A(− j)nJn(γ0ρ)e jnφ (A.19b)

and the z- components of the scattered fields outside the cylinders are characterized as

Ês
z (ρ,φ,kz) =

+∞

∑
n=−∞

AnH(1)
n (γ0ρ)e jnφ (A.20a)

Ĥs
z (ρ,φ,kz) =

+∞

∑
n=−∞

BnH(1)
n (γ0ρ)e jnφ. (A.20b)

The Fourier series expansions for the z- components of the total fields inside cylinder

1 now contain four (instead of 2) unknown coefficients:

Ê tot1
z (ρ,φ,kz) =

+∞

∑
n=−∞

CnJn(γ1ρ)e jnφ +DnYn(γ1ρ)e jnφ (A.21a)

Ĥ tot1
z (ρ,φ,kz) =

+∞

∑
n=−∞

EnJn(γ1ρ)e jnφ +FnYn(γ1ρ)e jnφ, (A.21b)
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where γ1 =
√

k2
0ε′r1 − k2

z . The Fourier series expansions for the z- components of the

total fields inside cylinder 2 are similar to those in the homogeneous cylinder case:

Ê tot2
z (ρ,φ,kz) =

+∞

∑
n=−∞

GnJn(γ2ρ)e jnφ (A.22a)

Ĥ tot2
z (ρ,φ,kz) =

+∞

∑
n=−∞

HnJn(γ2ρ)e jnφ, (A.22b)

where γ2 =
√

k2
0ε′r2 − k2

z .

All φ- components of the incident, scattered and total fields can be derived from

the corresponding z- components as in the previous section.

Consequently, the total number of unknowns to characterize all fields is eight (An

to Hn) and the two sets of boundary equations at the surfaces of the cylinders ((A.17)

and (A.18)) offer eight independent equations. Hence, the system of equations ((A.17)

- (A.18)) is sufficient to characterize all unknown coefficients and consequently all

unknown fields.

This approach can be easily extended towards the case of a N-layered cylinder by

introducing extra boundary conditions of the type (A.18) for the extra interior inter-

faces and by introducing extra Fourier series expansions for the z-components of the

total fields in the different layers as (A.22) for the inner part and as (A.21) for the other

layers.
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