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Abstract

A relativistic and quantum mechanical framework to compute nuclear transparen-
cies for pion and nucleon production reactions is presented. Final state interactions
for the ejected pions and nucleons are implemented in a relativistic Glauber eikonal
approach. The proposed model can account for the color transparency (CT) phe-
nomenon and short-range correlations (SRC) in the nucleus. Results are presented
for kinematics corresponding to completed experiments for A(γ,π−p), A(e, e′π+) and
A(γ, pp). The influence of CT and SRC on the nuclear transparency is studied. Both
the SRC and CT mechanisms increase the nuclear transparency. The two mechanisms
can be clearly separated, though, as they exhibit a completely different dependence
on the hard-scale parameter. Recent A(e, eπ+) results point towards the early onset
of the CT phenomenon in pion production processes. The similarities in the trends
and magnitudes of the computed nuclear transparencies compared to semi-classical
models indicate that they are not subject to strong model dependencies. A compari-
son made in the model between the density dependence of the A(e, e′p), A(p, 2p) and
A(γ, pp) reactions shows that the bulk of the (γ, pp) strength stems from the high
density regions in the deep nuclear interior. Despite the strong attenuation, sizable
densities can be probed by (p, 2p) provided that the energy resolution allows one
to pick nucleons from s orbits. The effective mean densities that can be probed in
high-energy (e, e′p) are of the order of 30-50% of the nuclear saturation density.
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Chapter 1
Introduction

The building blocks of visible matter (ranging from cells to stars) consist of nuclei.

Research in nuclear physics and the technological advances spurred by its demands

have made a large impact on society. It has for example, resulted in the building of

nuclear power plants, which account for a significant share of the global electricity

production. Nuclear sources are also used to power ships and space vehicles. The

development of the atomic bomb and the threat of nuclear warfare made a large

impact on international relations in the second half of the 20th century. Radioactive

isotopes are used in many medical procedures and proton radiation therapy provides

a more controllable alternative to more standard therapies that involve photons or

electrons. Accelerator mass spectrometry is used in archaeology, environmental and

biomedical research. The tools used in the ion doping of integrated circuits or medical

prosthetics are spin-offs from accelerator technology used in nuclear physics.

The nucleus, however, still harbours a lot of uncharted territory. Since the exper-

iments of Rutherford [1], Chadwick’s discovery of the neutron [2] and the work of

Yukawa [3], we adopt the picture that a nucleus is made up of protons and neutrons

held together by the meson-mediated strong force. The development of Quantum

Chromodynamics (QCD) and the deep inelastic scattering experiments in the 1950s

and 1960s provided evidence that quarks and gluons are the fundamental degrees

of freedom of the strong force. The use of colorless nucleons and mesons as effec-

tive degrees of freedom in the nucleus, stems from the inability to solve QCD in the
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confinement region and has proved highly efficient and successful. The study of the

crossover from hadronic to partonic degrees of freedom is an active and exciting line

of current research [4]. To map the transition region, one can look for the onset of

phenomena originating from QCD predictions as deviations from standard nuclear-

physics predictions. In this work we adopt the view that QCD phenomena can be

clearly identified when there are deviations between measurements and sophisticated

calculations that adopt hadronic degrees of freedom.

Color Transparency

One of the QCD predictions is the color transparency (CT) effect. For recent overviews

of the phenomenon, we point the reader to [5, 6]. Color transparency was first de-

scribed by Mueller and Brodsky [7, 8] and deals with the expansion of a small-sized

configuration of quarks into a regular hadron state. To the nuclear medium, this

small-sized configuration (also called Point Like Configuration or PLC) seems a color-

less object and the interactions with the nuclear medium lose in importance: the nor-

mally strong interacting hadron can propagate without final-state interactions (FSI).

This can be compared to several similar effects in QED. An electron-positron pair ex-

periences a reduced energy loss in the vicinity of their creation point due to internal

screening of their charges. This is called the King-Perkins-Chudakov effect [9], and

has been observed in cosmic ray tracks [10, 11] and a gold target [12]. A similar

reduction of interactions can be observed in vacuum-assisted photo-ionization [13].
The created electron-positron pair that mediates the ionization is subject to charge

screening, lowering the ionization cross section. Cerenkov radiation is also found to

be reduced for radiation from a electron-positron pair when the pair separation is

smaller than the wavelength of the emitted light [14], and relativistic positronium

beams become “super-penetrating” for solid targets [15–18].
In order to observe true color transparency, three conditions must be satisfied

[19–22]:

1. Reactions with a high momentum transfer squared. This is related to the

uncertainty principle: an impinging particle with high momentum and corre-

spondingly small de Broglie wavelength, will probe small distance scales. When

hitting a confined colored quark, it can only interact with quarks in a small

region within the range associated with the wavelength of the probe before
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hadronization occurs. This production of an object with small size was origi-

nally derived as a consequence of perturbative QCD at very high Q2 [23, 24].
Studies within hadronic models, however, have shown that a PLC could be pro-

duced at momentum transfers squared as low as 1− 2 (GeV/c)2 [25, 26].

Figure 1.1 One of the possible lowest-order diagrams for the interaction of a color singlet of
two constituents with transverse size b, with a medium containing constituents grouped in
colorless objects. The thick incoming and outgoing lines stand for colorless objects. The two
gluons can originate and end on any of the constituents, and cross diagrams are also possible.

2. The PLC experiences reduced interactions (color screening). The diagram of

lowest order describing the interaction between a color singlet and the medium

involves the exchange of two gluons. One of the possible diagrams is depicted

in Fig. 1.1. Perturbative QCD dictates that the cross section of the singlet-

medium reaction is proportional to b2, with b the transverse distance between

the constituents of the singlet. For a PLC, the interactions with the medium

will hence vanish. One can compare this behaviour to the reduced interaction

experienced by an object with a small dipole moment in QED.

3. Ejected particles with a high momentum. As the PLC is not an eigenstate of

the QCD Hamiltonian, it will evolve to the normal hadron state along a certain

formation length l f . As the lifetime of the PLC is dilated in the rest frame of the

nucleus, higher PLC momenta imply a larger l f . In order to maximize the color-

transparency phenomenon, the condition l f � RA (with RA the radius of the

nucleus) should be met. Under current experimental conditions, this condition

is as yet not fulfilled and the PLC expands in the nucleus and is subject to FSI

while traversing the nucleus (l f ≈ RA).
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The observable measured in experiments in search for CT is the nuclear trans-

parency, defined as the ratio of the cross section per target nucleon for a process on a

nucleus to the cross section of the process on a free nucleon

T =
σnucleus

Aσfree nucleon
. (1.1)

Accordingly, the nuclear transparency provides a measure of the attenuation effects

of the nuclear medium on the hadrons produced in some reaction. One can study

the hard-scale dependence of the transparency for a certain target nucleus A, or the

A dependence at a fixed value of the hard-scale parameter. If CT effects were to

appear at a certain energy, the nuclear transparency would be observed to overshoot

the predictions from traditional nuclear physics expectations. The measurement of

the onset and magnitude of the CT effect allows to constrain models describing the

evolution of a PLC into a hadron. The CT effect also plays a role in the access to

generalized parton distributions (GPDs) in deeply virtual Compton scattering (DVCS)

and meson production (DVMP) processes [27, 28], as it is a necessary condition for

factorization to occur. The factorization is related to the assumption that from a

certain virtuality the soft and hard physics can be separated.

Since the late 1980s several experiments looking for signs of color transparency

have been performed for a variety of reactions. So far, there is no conclusive evi-

dence for the CT effect. The 12C(p, 2p) reaction was studied at Brookhaven National

Laboratory (BNL) [29–31]. As shown in Fig. 1.2, the transparency for the 12C(p, 2p)
reaction first shows a rise as a function of incoming beam momentum, but drops again

for momenta larger than 9 GeV/c. This behavior is not in line with traditional nuclear

physics calculations. However, it is currently not considered a clean sign of CT, but

also attributed to nuclear filtering [33, 34] or the threshold for charm resonance

production [35]. Several experiments [36–41] have measured the transparency us-

ing the A(e, e′p) reaction up to Q2 = 8.1 (GeV/c)2 for targets including deuterium,

carbon, iron and gold. No sign of CT was observed up to the largest energies.

As a meson has two constituent quarks, one could expect that signatures of CT

occur at lower energies compared to a baryon. Indeed, it seems easier to produce a

PLC with two constituents. Measurements of the transparency for the production of

ρ0 mesons at Fermilab [42] showed a positive slope in the Q2 dependence of α in

the parametrization T = Aα−1, indicating CT effects. However, this slope has since
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Figure 1.2 The transparency T versus beam momentum for the 12C(p, 2p) reaction. Data are
from Refs. [29–31]. The shaded band represents a Glauber calculation from Ref. [32] and the
solid curve a parametrization from Ref. [33]. Figure taken from Ref. [31].

been associated with variations in the initial state interactions associated with the

fluctuation of the virtual photon into a qq̄-pair [43]. More recent measurements at

DESY by the HERMES collaboration [44] for ρ0 production from a 1H and 14N target

at Q2 = 0.9−3 (GeV/c)2 show a rise in the nuclear transparency. Another experiment

at JLab measuring incoherent ρ0 production is completed and under analysis [45].
The measurement of the cross section of diffractive dissociation of 500 GeV/c pions

into dijets at Fermilab [46] yielded the clearest signal of CT so far. The cross section

was parametrized as σ = σ0Aα, with σ0 a constant independent of A. The fitting

value of α ≈ 1.55 deviates from the nominal value of 2/3 and is in agreement with

calculations assuming 100% color transparency. The value of Q2 in this experiment

was estimated at Q2 ¦ 10 (GeV/c)2. As such, the Fermilab results do not give a precise

value for the hard scale where CT effects start appearing, but only places an upper

limit on it.

During the last couple of years, three specific experiments to measure transparen-

cies have been conducted at the 6 GeV electron accelerator in Jefferson Lab. Two

had a pion, and the third two protons in the final state. The nuclear transparency for
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the pion photoproduction process A(γ,π−p)A− 1 in 4He [47] and for double proton

knockout A(γ, pp)A−2 in 3He and 12C [48, 49] have been measured in Hall A. In Hall

C, data was taken for the pion electroproduction process A(e, e′π+) in 12C, 27Al, 63Cu

and 197Au [50].

Short-Range Correlations

In a many-body system, correlations between the constituents of the system are in-

duced by the interparticle forces. For a system with a one-body density ρ(~r), the

two-body density ρ(~r1,~r2) can be expressed as the conditional probability of finding

a particle at ~r1 if there is one present at ~r2:

ρ(~r1,~r2) = ρ(~r1)ρ(~r2)g(|~r1 −~r2|) , (1.2)

with g(r) the correlation function. In the absence of correlations, g(r) ≡ 1 and all

particles move independently of each other. For an atomic 4He liquid, the correlation

function was measured with neutron [51] and X-ray [52] scattering and is shown

in Fig. 1.3. The correlations are a consequence of the hard repulsive core of the

interatomic potential v(r) that is also shown in Fig. 1.3. The hard core reflects itself

in g(r) becoming zero for small interparticle separations. For larger distances, g(r)
rises, and then oscillates before reaching the asymptotic value of 1. These correlations

increase the high-momentum components in the momentum distribution of the atoms

in the liquid.

Since its conception in the 1950s, the nuclear shell model has provided us with an

efficient approach to the nuclear many-body problem. In the nuclear shell model, the

nucleons are fermions that move independently in a mean field that accounts for a

great fraction of the interactions with the other nucleons. In the nuclear shell model,

the A-nucleon wave functions are Slater determinants with single-nucleon wave func-

tions that are eigenfunctions of the single-particle Hamiltonion. The latter contains

a kinetic energy term and a mean-field potential. As the Pauli principle prevents two

nucleons from occupying the same single-particle state, quantum levels are filled up

to the Fermi-level for the ground state of the nucleus.

Since the nucleons move in a mean-field potential, no explicit correlations be-

tween two nucleons are present in the nuclear shell model wave functions. The re-

alistic nucleon-nucleon interaction consists of an attractive long distance part and a
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Figure 1.3 Interatomic potential v(r) and correlation function g(r) for an atomic 4He liquid.
σ is a measure for the diameter of 4He. Figure taken from [53].

strong repulsive part for separations shorter than 0.8 fm, all depending on the spins

and isospins of the two nucleons. The nuclear mean-field potential does not fully

account for all aspects of the nucleon-nucleon interaction. In particular, the repulsive

hard core and tensor part give rise to short-range correlations (SRC) that go beyond

the typical mean-field approach. As two nucleons get close together, the strong repul-

sion induces pairs with a high relative momentum. As the nucleus is a closely packed

system, those correlations make significant contributions to the total wave function.

The SRC cause high-density fluctuations in the nucleus. Although debated, some

think this might allow us to access cold dense matter like one would encounter in

neutron stars [54]. They enhance the high-momentum part of the shell model wave

function [55] and deplete (populate) levels below (above) the Fermi-sea. As the SRC

play at a small distance scale, their effect should be relatively A independent. This is

confirmed by the scaling of high momentum components in the nuclear wave func-

tions of light and complex nuclei to those of the deuteron wave function [56]. The

long-range correlations (LRC) associated with pion exchange induce modifications to

shell model properties and give rise to highly collective modes, like giant resonances,

in nuclei.
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Figure 1.4 Weighted inclusive electron scattering cross sections ratios for 4He (upper panel),
12C (middle panel) and 56Fe (lower panel), to the 3He one as a function of Bjorken x . The
horizontal dashed lines indicate the NN and 3N scaling regions. Figure taken from Ref. [57].

One- and two-nucleon knockout reactions have the potential to probe SRC. In in-

clusive A(e, e′)measurements performed at Hall B in JLab, scaling was observed in the

ratio of the cross section of the different nuclei to the 3He one for Bjorken x values of

1.5 < x < 2 and 2.25 < x [57, 60] (see Fig. 1.4). The observed scaling suggests that

the electrons probe high-momentum bound nucleons originating from two-nucleon

(first plateau) and three-nucleon (second plateau) SRC. Moreover, the similar shape

of the scaling for all measured nuclei implies that the properties of these SRC do

not depend on the residual nucleus. A(e, e′p) experiments showed the spectroscopic

strength of valence protons was only 55 to 75 % of the value predicted by shell model

calculations, and around 10 % for shells just above the Fermi sea [61]. Calcula-

tions showed both SRC and LRC contribute to these values [62]. Measurements with

missing momentum above 300 MeV/c and missing energy larger than 50 MeV also
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Figure 1.5 Scatter plot of the projection pup
f of the initial proton momentum on an axis opposite

to the momentum of the detected neutron versus the neutron momentum pn in the 12C(p, ppn)
reaction. Data are labelled according to the initial beam momentum. Data labelled 98 (94) are
from Refs. [58] ([59]). The vertical dashed line at 0.22 GeV/c corresponds to kF , the Fermi
momentum for 12C. Figure taken from Ref. [58]

yielded strengths larger up to an order of a magnitude than shell-model predictions

[63]. The results (Fig. 1.5) of the 12C(p, ppn) experiment carried out at BNL by the

EVA collaboration [58], show that the neutron in the final state is accompanied by a

proton in a random direction for neutron momenta below the Fermi surface (∼ 220

MeV). For neutron momenta exceeding the Fermi surface on the other hand, all the

protons were emitted with a projection ≥ 0. This translates to proton-neutron angles

larger than 90 degrees. These directional correlations again form a clear signature of

the dominance of SRC for high momentum nucleons. For the 3He(e, e′pp)n reaction

with the momentum of all the nucleons in the final state larger than 250 MeV/c, the

CLAS collaboration also measured that a large share of the spectator nucleon pairs

are correlated pairs [64]. A recent 12C(e, e′pN) experiment at Hall A in Jefferson Lab

provided indications that about 20% of the nucleons in carbon form correlated pairs
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[65, 66]. Of those about 90 % is of the proton-neutron type, as shown in Fig. 1.6.

Figure 1.6 Relative abundance of pp- and np-pairs for the 12C(e,e’pN) [66] and 12C(p,2pn)
reaction [58]. Figure taken from Ref. [67].

Outline

In this thesis, we present a model that can be used to describe pion and double nu-

cleon removal reactions. It enables us to calculate transparencies and compare them

with the data from the above-mentioned recent experiments. Three essential ingredi-

ents will draw our attention:

• The hard process of the beam interacting with a constituent of the nucleus and

producing the ejected particles in the final state.

• The structure of the target and residual nucleus.

• The propagation of the ejected particles through the nuclear medium and their

FSI with the residual nucleons.

We assume that the incoming beam interacts with one of the bound nucleons,

which is known as the impulse approximation (IA). Two different approaches are

used to model the hard process. For the pion removal reactions, we factorize the
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amplitude into a part containing the pion production process and a part containing

the FSI. This yields an expression for the cross section for a nuclear target that can

be related to their counterparts for a free nucleon target. For the description of the

two-nucleon knockout process, we employ an unfactorized amplitude by including an

explicit form for the interaction of the photon with a bound nucleon, and by relating

the hard nucleon-nucleon scattering amplitude to a parametrization for the free-space

amplitude obtained from the SAID database [68].

In our work, the wave functions of the target and residual nucleus are obtained

in an independent particle model (IPM). The single-particle wave functions in the

A-body Slater determinants are solutions of a one-body Dirac equation with a spher-

ically symmetric Dirac potential. We use relativistic bound-state single particle wave

functions calculated in the Hartree approximation of the σ−ω model [69–71].

The experiments considered in this work have kinematics with outgoing parti-

cle momenta of a few GeV/c. In this range, the eikonal approximation (EA) can

be employed to describe the FSI. The EA was first used in optics. When light has

a wavelength that is smaller than the reflecting and refracting objects that it finds

on its way, one-dimensional rays suffice to describe the physics of the process. Sim-

ilarly, in quantum mechanics the EA can be used for the small-angle scattering of

high energy particles in a potential V . For a non-relativistic incoming particle with

energy E = (ħhk)2

2m
, the condition on the wavelength in optics translate to V/E� 1 and

1
V/E
� ka � 1

(V/E)2
, with a the scattering length of the potential [72]. A relativistic

formulation of the eikonal approximation has been developed for ejected nucleons

and applied to A(e, e′p) [73, 74] and A(p, 2p) [75, 76] reactions. In this work, we ex-

tend this model, based on multiple-scattering Glauber theory, to accommodate outgo-

ing pions. This provides us with a framework that can be applied to a broad spectrum

of reactions with hadronic or leptonic probes and outgoing nucleons and/or pions.

The outline of this work is as follows.

• Chapter 2 describes the theoretical framework that has been developed to model

the pion and two-nucleon knockout reactions. First, a factorized expression for

the electromagnetically induced A(γ, Nπ) cross section is derived. In a next

step, this is extended to the pion electroproduction reaction A(e, e′Nπ). For the
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A(γ, NN) reaction, we consider two competing reaction mechanisms and de-

scribe both in an unfactorized manner. First, we assume that the two-nucleon

knockout can be the result of the breakup of a correlated nucleon-nucleon pair.

Thereby, the photon interacts with one nucleon in the pair and both are ejected.

A competing mechanism is hard rescattering (HRM) whereby the ejectile in-

duces a hard nucleon-nucleon interaction that makes two nucleons to reach the

detectors.

In Section 2.2 we deal with the implementation of the FSI. We introduce a rela-

tivistic multiple-scattering Glauber approximation (RMSGA) to treat the FSI of

nucleons and pions with intermediate to high momentum. Special attention is

paid to a parametrization of the πN scattering parameters which are required

in Glauber calculations. For nucleons with low momentum we cover an alter-

native implementation of the FSI by means of optical potentials in an eikonal

approach.

Sections 2.3 and 2.4 explain how the CT and SRC effects are implemented

in our model. Color transparency is included through the quantum diffusion

model and correlations through a well chosen correlation function that mod-

ifies the one-body density. In our procedure, the proper normalization of the

wave functions is guaranteed.

• Chapter 3 deals with the results of the numerical calculations done with our

model. We start with a detailed study of the FSI factor, wherein all effects of the

FSI are contained. Next, we show the results of the transparency calculations

for the different reactions. We study the influence of the CT and SRC effects

on these results and try to distinguish between the two. In order to value the

robustness of the results of our model, we compare them with predictions from

alternative approaches. In the final section, we investigate the density depen-

dence of several reactions. We study the influence of the FSI on the effectively

probed density and compare reactions involving one
�

(e, e′p)
�

, two
�

(γ, pp)
�

,

and three
�

(p, 2p)
�

nucleons.

• Finally, our conclusions are stated in Chapter 4. Appendix A gives an overview

of the adopted notations. The bound-state wave functions used in the model to

describe the target and residual nucleus are covered in Appendix B. Appendix C
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treats the scattering of a relativistic spinless particle in a potential. The transfor-

mations for the representations used for the hard nucleon-nucleon rescattering

matrix element are outlined in Appendix D. Eventually, Appendix E lists the

parametrization used for the free pion electroproduction cross section.
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Chapter 2
Formalism

2.1 Kinematics and Observables

In this section, the formalism for the description of two types of reactions covered in

this thesis is outlined. We adopt the conventions ħh = c = 1. In subsec. 2.1.1,

the factorized form of the differential cross section for pion photoproduction from

a nucleus is derived. It is shown that, even when excluding final state interactions,

the factorization is not exact and can only be achieved after neglecting the negative

energy contributions. In subsec. 2.1.2, the factorization scheme is extended to pion

electroproduction reactions. Subsec. 2.1.3 introduces the two competing reaction

mechanisms for A(γ, NN): knockout of a correlated nucleon pair and hard rescatter-

ing.

2.1.1 Pion Photoproduction: The A(γ, Nπ) Cross Section

We use the following notations for the four-momenta in the laboratory frame: qµ(q,~q)
for the photon, PµA (EA,~pA = ~0) for the target nucleus, PµA−1(EA−1,~pA−1) for the residual

nucleus, PµN (EN ,~pN ) and Pµπ (Eπ,~pπ) for the ejected nucleon and pion. The missing

momentum ~pm is defined as ~pm ≡−~pA−1 = ~pN +~pπ−~q and the outgoing nucleon has
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spin ms. The fivefold differential cross section in the laboratory frame reads [77]

d5σ

dEπdΩπdΩN
=

MA−1mN pπpN

4(2π)5qEA
f −1
rec

∑

f i

�

�

�M (γ,Nπ)
f i

�

�

�

2
, (2.1)

where MA, MA−1 and mN denote the rest mass of the target nucleus, the residual

nucleus and the nucleon, respectively.
∑

f i involves an averaging over the photon

polarizations and a summation over the spins of the final particles. The recoil factor

frec is given by

frec =
EA−1

EA

�

�

�

�

�

1+
EN

EA−1

�

1+
(~pπ −~q) · ~pN

p2
N

�

�

�

�

�

�

, (2.2)

andM (γ,Nπ)
f i denotes the invariant matrix element:

M (γ,Nπ)
f i = 〈Pµπ , PµN ms, PµA−1JRMR|Ô |qµ, PµA 0+〉 , (2.3)

where JRMR are the quantum numbers of the residual nucleus. We restrict ourselves

to processes with an even-even target nucleus A.

The ground-state wave function of the target nucleus |PµA 0+〉 ≡ Ψg.s.
A (~r1, . . . ,~rA)

is obtained by fully antisymmetrizing the product of the individual nucleon wave

functions φα. We model the pion photoproduction process by means of a contact

interaction: the initial nucleon, impinging photon, and the ejected pion and nucleon

join in a single space-time vertex. As the process can take place on any of the nu-

cleons in the target nucleus, we get the following expression for the corresponding

photoproduction operator:

Ô =
A
∑

i=1

Oµ(~ri) . (2.4)

We assume that Ô is exempted from medium effects. This is a common assumption

in nuclear and hadronic physics and is usually referred to as the impulse or quasi-

free approximation (IA). In the context of A(e, e′p) reaction, for example, the impulse

approximation provides a fair description of the data [73]. It is also applied in the

experimental analysis of Ref. [50] and the model of Ref. [78]. The impinging photon

with polarization λ is represented by

Aµ(λ,~ri) = ε
µ(λ)ei~q·~ri . (2.5)
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Here, εµ(λ) is the polarization four-vector of the photon. The wave function of the

ejected nucleon is written as

|PµN ms〉 ≡Ψ
(+)
~pN ,ms
(~ri) = Ŝ

†
N ′N (~ri;~r1, . . . ,~r j 6=i , . . . ,~rA)u(~pN , ms)e

i~pN ·~ri , (2.6)

which is the product of a positive-energy Dirac plane wave φ~pN
(~ri) = u(~pN , ms)ei~pN ·~ri

and an operator Ŝ †
N ′N . This operator describes the attenuation of the ejected nucleon

through soft final-state interactions with the other nucleons. The wave function for

the ejected pion adopts a similar form as the nucleon one, i.e. a plane wave convo-

luted with a FSI factor Ŝ †
πN :

|Pµπ 〉 ≡ Φ
(+)
~pπ
(~ri) = Ŝ

†
πN (~ri;~r1, . . . ,~r j 6=i , . . . ,~rA)e

i~pπ·~ri . (2.7)

The final A-nucleon wave function is constructed by antisymmetrizing Ψ(+)
~pN ,ms

with the

wave function for the residual nucleus ΨJR,mR
A−1 :

|PµN ms, PµA−1JRMR〉 ≡Ψ
~pN ,ms
A (~r1, . . . ,~rA) =

Â
�

Ŝ †
N ′N (~r1;~r2, . . . ,~rA)u(~pN , ms)e

i~pN ·~r1ΨJR,mR
A−1 (~r2, . . . ,~rA)

�

. (2.8)

As Ψg.s.
A and Ψ~pN ,ms

A are fully antisymmetric, each term of the operator (2.4) will

yield the same contribution to the matrix element (2.3) and we can restrict ourselves

to the term with coordinate ~r1 and multiply it with A. With the above expressions for

the operator and the wave functions of the hadrons involved in the reaction, we can

write for the matrix element of Eq. (2.3) in coordinate space:

M (γ,Nπ)
f i = A

∫

d~r1

∫

d~r2 . . .

∫

d~rA

h

Ψ~pN ,ms
A

�

~r1,~r2, . . . ,~rA
�

i†

× e−i~pπ·~r1ŜπN (~r1;~r2, . . . ,~rA)Oµ(~r1)ε
µ(λ)ei~q·~r1Ψg.s.

A

�

~r1,~r2, . . . ,~rA
�

. (2.9)

We assume that ŜN ′N and ŜπN are spin independent and only retain the central

part of the FSI. This is a commonly used approximation in calculations for A(e, e′p),
A(p, 2p) and proton-nucleus reactions, based on the rapid decrease of the contribution

from the spin-dependent terms in the intermediate energy range. A recent experiment

measured the polarization for the fast forward and slow backward outgoing proton

in the A(p, 2p) reaction for several nuclei (6Li, 12C and 40Ca) [82]. As is shown in

Fig. 2.1, a decrease of the polarization with raising density was observed, but the
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Figure 2.1 Target dependence of the polarization data for p − p scattering and (p, 2p) reac-
tions. P1 (P2) denotes the polarization of the fast forward (slow backward) nucleon. The solid
(dashed) curve represents a DWIA (PWIA) calculation [79, 80]. The PWIA result is extended
to free proton-proton scattering, where the value was obtained from a p− p scattering phase-
shift analysis [81]. The dotted line is the DWIA result, in which the relativistic effect is taken
into account in a Schrödinger equivalent form. Figure taken from Ref. [82].

effect for the fast proton (pN ≈ 800 MeV), was a lot smaller than for the slow proton

(pN ≈ 180 MeV). We also assume that only elastic and mildly inelastic collisions with

the spectator nucleons occur. The actual nuclear transparency measurements select

events whereby the undetected final state with (A−1) nucleons
�

�PµA−1JRMR

¶

is left with

an excitation energy of the order of 100 MeV or less, which makes these assumptions

very plausible. In computing the matrix element of Eq. (2.9) we consider processes

of the type displayed in Fig. 2.2. The following spectator approximation is assumed

to be valid for a struck nucleon with quantum numbers α1 :

∫

d~r1 . . .

∫

d~rA

�

φ~pN
(Pn(~r1))Ŝ

†
N ′N (Pn(~r1); Pn(~r2), . . . , Pn(~rA))

×φα2
(Pn(~r2)) . . .φαA

(Pn(~rA))
�†

e−i~pπ·~r1ŜπN (~r1;~r2, . . . ,~rA)

×Oµ(~r1)e
i~q·~r1φα1

(Pm(~r1))φα2
(Pm(~r2)) . . .φαA

(Pm(~rA))
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≈ δPn(~r2)Pm(~r2) . . .δPn(~rA)Pm(~rA)

∫

d~r1 . . .

∫

d~rA

×φ†
~pN
(~r1)ŜN ′N

�

~r1; Pn(~r2), . . . , Pn(~rA)
�

e−i~pπ·~r1ŜπN (~r1;~r2, . . . ,~rA)

×Oµ(~r1)e
i~q·~r1φα1

(Pm(~r1))|φα2
(Pm(~r2))|2 . . . |φαA

(Pm(~rA))|2 , (2.10)

with Pm and Pn permutations of the set {~r1, . . . ,~rA} occurring in the antisymmetriza-

tion of the nucleon wave functions. Due to the presence of the δ-functions, the right-

hand side of Eq. (2.10) is non-vanishing under the condition that Pm(~r1) = ~r1 and

Pm(~ri) = Pn(~ri) for i = 2, .., A. This means that both the bound wave function α1 and

the ejected nucleon have the same spatial coordinate as the operator, ~r1. Moreover,

all (A− 1)! permutations of the subset {~r2, . . . ,~rA} yield an identical right-hand side.

Figure 2.2 Diagram included in computing the matrix element of Eq. (2.9). The dotted lines
denote the FSI of the ejected pion (red) and nucleon (blue) with the spectator residual nucle-
ons. The diagram shown here is representative for the spectator approximation: one active
nucleon N and π are subject to soft collisions with frozen spectator nucleons that occupy the
single-particle levels α2,α3, . . . ,αA and are not subject to changes in their quantum numbers.

Thus, after expanding the wave functions in Eq. (2.9) and employing Eq. (2.10),
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we arrive at

M (γ,Nπ)
f i ≈

A(A− 1)!
A!

∫

d~r1

∫

d~r2 . . .

∫

d~rA

�

|φα2
(~r2)|2 . . . |φαA

(~rA)|2u†(~pN , ms)

×ŜπN (~r1;~r2, . . . ,~rA)ŜN ′N (~r1;~r2, . . . ,~rA)ε
µ(λ)Oµ(~r1)e

−i~pm·~r1φα1
(~r1)

�

.

(2.11)

We now define the FSI factor FFSI(~r):

FFSI(~r) =

∫

d~r2 . . .

∫

d~rA|φα2
(~r2)|2 . . . |φαA

(~rA)|2ŜπN (~r;~r2, . . . ,~rA)ŜN ′N (~r;~r2, . . . ,~rA) ,

(2.12)

and write

M (γ,Nπ)
f i ≈

∫

d~r1FFSI(~r1)u
†(~pN , ms)ε

µ(λ)Oµ(~r1)e
−i~pm·~r1φα1

(~r1) . (2.13)

In what follows, we assume that the pion production operator acts on a bound-state

wave function as a scalar (factorization assumption): Oµ(~r)φα1
(~r)≡Cµφα1

(~r). With

φD
α1
(~p) =

∫

d~re−i~p·~rφα1
(~r)F FSI(~r) , (2.14)

we can write

M (γ,Nπ)
f i ≈ u†(~pN , ms)ε

µ(λ)CµφD
α1
(~pm) . (2.15)

When studying nuclear transparencies, it is convenient to factorize the invariant ma-

trix element in such a manner that it becomes a convolution of a factor describing the

elementary pion photoproduction process and a factor modeling the combined effect

of all FSI mechanisms of the outgoing hadrons. In order to arrive at such a factorized

form for the cross section, we relate the γ+ A→ (A− 1) + N +π matrix element in

Eq. (2.15) to the one for free nucleons γ+ Ni → N +π
�

M (γ,Nπ)
f i free

�

ms ,m′s
= u†(~pN , ms)ε

µ(λ)Cµu(~pm, ms′) , (2.16)

with ms′ the spin of the initial nucleon. First, we consider the situation with vanishing

FSI, second the more realistic case with inclusion of a FSI phase operator. When
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ignoring FSI, the wave functions for the ejected hadrons reduce to plane waves and

FFSI(~r) ≡ 1, φD
α1
(~pm) ≡ φα1

(~pm). After substituting in Eq. (2.15) the completeness

relation for Dirac spinors:
∑

m′s

�

u(~pm, m′s)ū(~pm, m′s)− v(~pm, m′s)v̄(~pm, m′s)
�

= 1I4×4 , (2.17)

one obtains
�

M (γ,Nπ)
f i

�

RPWIA
=
∑

m′s

�

M (γ,Nπ)
f i free

�

ms ,m′s
ū(~pm, m′s)φα1

(~pm)

− negative energy terms , (2.18)

where RPWIA stands for the relativistic plane-wave impulse approximation. From this

last expression it is clear that even with vanishing FSI the presence of negative-energy

components makes factorization impossible. The contraction of the Dirac spinors ū

and v̄ with the bound nucleon wave function φα1
is given by

ū(~pm, m′s)φα1
(~pm) = (2π)

3/2(−i)l
È

ENi
(pm) +mNi

2mNi

αnκ(pm)χ
†
1
2

,m′s
Yκm(Ωp, ~σ) ,

(2.19)

v̄(~pm, m′s)φα1
(~pm) = (2π)

3/2(−i)l
È

ENi
(pm) +mNi

2mNi

βnκ(pm)χ
†
1
2

,m′s
Y−κm(Ωp, ~σ) ,

(2.20)

where mNi
is the free nucleon mass, ENi

(pm) =
Æ

m2
Ni
+ p2

m and

αnκ(pm) =
ENi
+mNi

2mNi

�

gnκ(pm)−
pm

ENi
+mNi

κ

|κ|
fnκ(pm)

�

, (2.21)

βnκ(pm) =
ENi
+mNi

2mNi

�

pm

ENi
+mNi

gnκ(pm)−
κ

|κ|
fnκ(pm)

�

, (2.22)

with gnκ(pm) and fnκ(pm) defined as in Eqs. (B.4) and (B.5). From Eqs. (2.19) and

(2.20), one observes the positive-, negative-, and crossterm-energy contributions to

the cross section. They are proportional to |αnκ(pm)|2, |βnκ(pm)|2 and 2αnκ(pm)βnκ(pm)
respectively. In Fig. 2.3 we have plotted these three contributions for the two pro-

ton shells in 12C. For the 1p3/2 shell the positive energy projections are about an
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order of a magnitude larger than the cross term and more than two orders than the

negative energy projections. The difference, however, becomes smaller for high mo-

menta. For the 1s1/2 shell, similar features emerge for momenta smaller than 300

MeV/c. At higher momenta, however, the situation changes and the negative-energy

components start playing an important role. For the calculations in this work, we deal

with integrations over phase space with a missing momentum cut off at 300 MeV/c.

Accordingly, we deem it a reasonable approximation to neglect the negative energy

contributions in Eq. (2.18):

�

M (γ,Nπ)
f i

�

RPWIA
≈
∑

m′s

�

M (γ,Nπ)
f i free

�

ms ,m′s
ū(~pm, m′s)φα1

(~pm) , (2.23)

and αnκ(pm) reduces to

αnκ(pm)≈
2mNi

ENi
+mNi

gnκ(pm) . (2.24)

p [MeV]
0 500

]3
E

ne
rg

y 
pr

oj
ec

ti
on

s 
[f

m

-610

-310

1

10 1s 1/2

p [MeV]
0 500

]3
E

ne
rg

y 
pr

oj
ec

ti
on

s 
[f

m

-610

-310

1

10
1p 3/2

Figure 2.3 Contributions of the different energy projections to the momentum distribution for
the 1s1/2 (left panel) and 1p3/2 (right panel) in 12C. The black curve denotes |αnκ(pm)|2)
(proportional to the positive-energy projection, the blue curve |αnκ(pm)|2 (proportional to the
negative-energy projections, and the green curve 2|αnκ(pm)βnκ(pm)| (proportional to the cross
terms).

After squaring the matrix element and summing over the quantum number m of

the bound nucleon wave function, one can use the following property of the spin
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spherical harmonics Yκm [83]

∑

m

Yκm(Ωp, ~σ)Y †
κm(Ωp, ~σ) =

(2 j+ 1)
8π

1I2×2 . (2.25)

Finally, by using χ†
1
2

,ms
χ 1

2
,m′s
= δmsm′s

, the free pion production process can be formally

decoupled from the typical nuclear effects:

∑

f i

|M (γ,Nπ)
f i |2 =

1

2

∑

λ,m,ms

|M (γ,Nπ)
f i |2 ≈ (2π)3

2 j+ 1

4π

ENi
(pm) +mNi

2mNi

|αnκ(pm)|2

×
1

4

∑

λ,ms ,m′s

|
�

M (γ,Nπ)
f i free

�

ms ,m′s
|2 . (2.26)

The right-hand side of the above equation requires knowledge about the off-shell

extrapolation of the pion photoproduction amplitude. For the on-shell situation, the

matrix element for the pion photoproduction process can be linked to the cross section

1

4

∑

λ,ms ,m′s

|
�

M (γ,Nπ)
f i free

�

ms ,m′s
|2≈

4π(s−m2
Ni
)2

mNi
mN

dσγπ

d|t|
, (2.27)

with s = (pµN + pµπ)
2 and t = (qµ − pµπ)

2 the Mandelstam variables of the free process.

The off-shell extrapolation of Eq. (2.27) involves a correction due to the Fermi motion

and the binding of the nucleon on which the photon is absorbed. This can be done

in several different ways and it is not yet clear which of them are the most efficient

and reliable. In this work, we consider photon energies ≥ 1.5 GeV that make off-

shell corrections to s relatively small for typical nucleon momenta. For this reason,

we deem it a reasonable approximation to adopt the Eq. (2.27) for sufficiently high

photon energies. After substituting Eqs. (2.26) and (2.27) in Eq. (2.1), the differential

cross section for γ+ A→ (A− 1) + N +π in the RPWIA reads

�

d5σ

dEπdΩπdΩN

�

RPW IA

≈
MA−1pπpN (s−m2

Ni
)2

4πmNi
qEA

f −1
rec

×
2 j+ 1

4π

�

ENi
(pm) +mNi

�

2mNi

|αnκ(pm)|2
dσγπ

d|t|
. (2.28)
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When FSI are included, the above derivation is no longer possible due to the

presence of FFSI(~r) in φD
α . We define a distorted momentum distribution along the

lines of Ref. [84]

ρD(~pm) =
1

(2π)3
∑

ms ,m

|ū(~pm, ms)φ
D
α1
(~pm)|2 . (2.29)

When FSI and negative-energy contributions to φD
α1

are neglected, Eq. (2.29) reduces

to 2 j+1
4π

ENi
(pm)+mNi

2mNi

|αnκ(pm)|2. Based on this analogy, we write the differential cross

section with FSI as
�

d5σ

dEπdΩπdΩN

�

D

≈
MA−1pπpN (s−m2

Ni
)2

4πmNi
qEA

f −1
rec ρD(~pm)

dσγπ

d|t|
. (2.30)

2.1.2 Pion Electroproduction: The A(e, e′πN) Cross Section

We use the same conventions and notations as in subsec. 2.1.1 in the derivation of

the pion electroproduction cross section. The four-momentum of the virtual photon

γ∗ is qµ(ω,~q) and the z axis lies along ~q. The incoming [scattered] electron has four-

momentum pµe (Ee,~pe) [p
µ

e′(Ee′ ,~pe′)] and spin s [s′], θe denotes the electron scattering

angle. With these additional notations and conventions, the differential cross section

in the laboratory frame reads [77]

d8σ

dΩe′dEe′dEπdΩπdΩN
=

m2
e pe′

(2π)3pe

MA−1mN pπpN

2(2π)5EA
f −1
rec

∑

f i

�

�

�M (e,e′Nπ)
f i

�

�

�

2
, (2.31)

with the recoil factor frec as in Eq. (2.2) and
∑

f i representing the averaging over

initial electron spins and summing over the spins of the final particles. The invariant

matrix elementM (e,e′Nπ)
f i can be written as

M (e,e′Nπ)
f i = 〈Pµπ , PµN ms, PµA−1JRMR| jµ

e

Q2 Jµ|PµA 0+〉 , (2.32)

with the electron current

jµ = ū(~pe′ , s′)γµu(~pe, s) , (2.33)

Q2 =−qµqµ and the hadron current Jµ. By defining an auxiliary current

aµ ≡ jµ −
j0
ω

qµ (2.34)
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and using current conservation, the following identity can readily be proved:

jµJµ =−aiJi =−aiδi jJ j =−
∑

λ=(x ,y,z)
aiei(λ)e j(λ)J j , (2.35)

where ~e(λ) is the unit vector along the axis λ =
�

x , y, z
�

. After defining the electron

density matrix

ρλλ′ =
∑

ss′
[~e(λ) · ~a]†

�

~e(λ′) · ~a
�

(2.36)

and the hadronic matrix elements

wλ = 〈Pµπ , PµN ms, PµA−1JRMR|~e(λ) · ~J |P
µ
A 0+〉 , (2.37)

we can write for the matrix element

∑

ss′

�

�

�M (e,e′Nπ)
f i

�

�

�

2
=

e2

Q4

∑

λλ′

w†
λ
ρλλ′wλ′ . (2.38)

With the degree of transverse polarization defined as

ε=

�

1+
2q2

Q2 tan2 θe

2

�−1

, (2.39)

the electron density matrix becomes [85]

ρλλ′ =
Q2

m2
e

1

1− ε













1
2
(1+ ε) 0 − 1

2

q

2 Q2

ω2 ε(1+ ε)

0 1
2
(1− ε) 0

− 1
2

q

2 Q2

ω2 ε(1+ ε) 0 Q2

ω2 ε













. (2.40)

After substituting Eq. (2.40) in Eq. (2.38), one can factor out a part containing all

the variables related to the electrons in the differential cross section:

d8σ

dΩe′dEe′dEπdΩπdΩN
= Γ

d5σv

dEπdΩπdΩN
≡ ΓD

∑

f i
|M (γ

∗,Nπ)
f i |2 . (2.41)

Here, M (γ∗,Nπ)
f i = 〈Pµπ , PµN ms, PµA−1JRMR|Ô |qµ, PµA 0+〉, D = MA−1mN pπpN

4(2π)5 E∗γEA
f −1
rec and Γ =

α

2π2

Ee′

Ee

E∗γ
Q2

1
1−ε is the electron flux factor, with the virtual photon equivalent energy
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E∗γ =
s−M2

A

2MA
, the fine-structure constant α, and s = (qµ + PµA )

2 one of the Mandel-

stam variables of the virtual photoproduction process. The five-fold differential cross

section of Eq. (2.41) can be cast in the following form

d5σv

dEπdΩπdΩN
≡

d5σT

dEπdΩπdΩN
+ ε

d5σL

dEπdΩπdΩN

+ ε
d5σT T

dEπdΩπdΩN
+
p

ε(ε+ 1)
d5σT L

dEπdΩπdΩN
, (2.42)

with

d5σT

dEπdΩπdΩN
=
D
2

∑

ms MR

�

|Jx |2 + |Jy |2
�

,

d5σL

dEπdΩπdΩN
= D

Q2

ω2

∑

ms MR

|Jz |2 ,

d5σT T

dEπdΩπdΩN
=
D
2

∑

ms MR

�

|Jx |2 − |Jy |2
�

,

d5σT L

dEπdΩπdΩN
=−
D
2

r

2Q2

ω2

∑

ms MR

�

J∗x Jz + J∗z Jx

�

. (2.43)

As for the photoproduction case, we wish to establish a relation between the invariant

matrix element for virtual-photon pion production on a nucleus (M (γ∗,Nπ)
f i ) and on a

free nucleon (M (γ∗,Nπ)
f i,free ). In comparison with the real photoproduction process, the

virtual photon has an extra degree of polarization and Q2 6= 0. This does not alter the

derivation presented in the previous subsection and after neglecting negative energy

contributions, one arrives at

M (γ∗,Nπ)
f i ≈

∑

ms′

(M (γ∗,Nπ)
f i,free )λ,ms ,ms′

ū(~pm, ms′)φ
D
α (~pm) . (2.44)

The matrix elementM (γ∗,Nπ)
f i,free is related to the free electroproduction process by

d5σeN

dEe′dΩe′dφ∗πd|t ′|
= Γ′

m2
N

2(2π)2(s′ −m2
N )

2

∑

f i
|M (γ∗,Nπ)

f i,free |
2 , (2.45)

where Γ′ = α

2π2

Ee′

Ee

K
Q2

1
1−ε is the electron flux factor, with the virtual photon equivalent

energy K = s′−m2
N

2mN
. Further, s′ = (pµN + pµπ)

2 and t ′ = (qµ − pµπ)
2 are the Mandelstam

variables for the free process. Starred variables denote center-of-mass values.
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With ρD defined in Eq. (2.29) and by making use of Eqs. (2.44) and (2.45), we

arrive at the factorized form for the differential A(e, e′Nπ) cross section:

�

d8σ

dΩe′dEe′dEπdΩπdΩN

�

D

=
Γ
Γ′

MA−1pN pπ(s′ −m2
N )

2

2mN EγEA
f −1
rec ρD

d5σeN

dEe′dΩe′d|t|dφ∗π
.

(2.46)

We wish to stress that the assumptions made to arrive at this expression, are es-

sentially identical to those made for the real photon case discussed in the previous

section.

2.1.3 Two-nucleon Knockout: The A(γ, N1N2) Cross Section

The two ejected nucleons N1 and N2 have four-momentum Kµi (Eki
,~ki), mass mNi

and

spin msi
, with i = 1 ,2. The four-momentum of the residual nucleus is PµA−2(EA−2,~pA−2)

and it has quantum numbers JR, MR and mass MA−2. Missing momentum is defined

as ~Pm =~k1 +~k2 −~q. The fivefold differential cross section reads

d5σ

dEk1
dΩN1

dΩN2

=
MA−2mN1

mN2
k1k2

2(2π)5qEA
f ′−1
rec

∑

i f

|M (γ,N1N2)
i f |2 , (2.47)

with the recoil factor f ′rec and invariant matrix elementM (γ,N1N2)
i f given by

f ′rec =
EA−2

EA

�

�

�

�

�

1+
Ek2

EA−2

�

1+
(~k1 −~q) ·~k2

k2
2

�

�

�

�

�

�

, (2.48)

M (γ,N1N2)
i f = 〈Kµ1 ms1

, Kµ2 ms2
, PµA−2JRMR|Ô |qµ, PµA 0+〉 . (2.49)

The wave functions of the ejected nucleons are written as

|kµ1 ms1
〉 ≡Ψ(+)

~k1,ms1

(~r j) = Ŝ
†

K1N (~r j;~r1, . . . ,~rm6= j,k, . . . ,~rA)u(~k1, ms1
)ei~k1·~r j (2.50)

|kµ2 ms2
〉 ≡Ψ(+)

~k2,ms2

(~rk) = Ŝ
†

K2N (~rk;~r1, . . . ,~rm6=k, j , . . . ,~rA)u(~k2, ms2
)ei~k2·~rk , (2.51)

with ŜKi N an operator that accounts for the FSI with the residual nucleons. The FSI

between the two ejected nucleons is not included in the above approach. We neglect

these FSI, as the kinematics in the experiments we compare to are chosen so that

the two ejected nucleons move back-to-back in the c.m. frame. The final A-nucleon
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wave function is constructed by antisymmetrizing Ψ(+)
~k1,ms1

and Ψ(+)
~k2,ms2

with the wave

function for the residual nucleus ΨJR,mR
A−2 :

|Kµ1 ms1
, Kµ2 ms2

, PµA−2JRMR〉 ≡Ψ
~k1ms1

,~k2ms2
A (~r1, . . . ,~rA) =

Â
h

Ŝ †
K1N (~r1;~r3, . . . ,~rA)u(~k1, ms1

)ei~k1·~r1

×Ŝ †
K2N (~r2;~r3, . . . ,~rA)u(~k2, ms2

)ei~k2·~r2ΨJR,mR
A−2 (~r3, . . . ,~rA)

i

. (2.52)

The wave function of the impinging photon is again as in Eq. (2.5).

Knockout of a correlated pair

First we describe the one-step reaction process of Fig. 2.4 in which the photon in-

teracts directly with a correlated pair. The two nucleons form a high density region

in the nucleus, with high relative momentum and a small distance separating them.

By interacting with one of the nucleons, the photon breaks up the pair. Due to the

high relative momentum, the second nucleon can also be ejected from the nucleus

and detected if the kinematics is carefully tuned.

Figure 2.4 Diagram depicting the A(γ, N1N2) reaction as the breakup of a correlated nucleon-
nucleon pair. The photon interacts in a one-step process with one of the nucleons in the cor-
related pair and the two nucleons are subsequently ejected out of the nucleus. The dotted red
and blue lines represent the FSI with the residual spectator nucleons.
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After using the antisymmetrization of the incoming and outgoing wave functions

and assuming spin independent, elastic and mildly inelastic FSI, we can write the

invariant matrix element in lowest order as (with α1 and α2 the quantum numbers of

the two nucleons forming the initial pair):

M (γ,N1N2)
i f ,pair ≈

∫

d~r

∫

d~r1

∫

d~r2

�

u†(~k1, ms1
)u†(~k2, ms2

)e−i~k1·~r1 e−i~k2·~r2−

u†(~k2, ms2
)u†(~k1, ms1

)e−i~k2·~r1 e−i~k1·~r2

�

(δ(~r −~r1) +δ(~r −~r2))

× ei~q·~rεµ(λ)γ0Jµ(~r)φα1
(~r1)φα2

(~r2)FFSI(~r1,~r2) . (2.53)

Here, Jµ represents the electromagnetic coupling of the photon to a bound nucleon,

and the FSI factor FFSI(~r1,~r2) is defined as

FFSI(~r1,~r2) =

∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N (~r1;~r3, . . . ,~rA)ŜK2N (~r2;~r3, . . . ,~rA) . (2.54)

We now introduce the c.m. and relative coordinates (~R = ~r1+~r2

2
, ~r12 = ~r1 −~r2) of the

pair and assume

FFSI(~R+
~r12

2
,~R−

~r12

2
)≈F FSI (~R,~R)≡FFSI(~R) (2.55)

φα1
(~R+

~r12

2
)φα2
(~R−

~r12

2
)≈ φα1

(~R)φα2
(~R) (2.56)

Jµ(~R±
~r12

2
)≈ Ξµ(~R)g(~r12)≈ Ξµg(~r12) . (2.57)

In Eq. (2.57) we have factorized the photon-pair coupling into a product of the

photon-nucleon coupling and a correlation function. As we have set ~r12 ≈ 0, Eq.

(2.56) requires that the two correlated nucleons reside in a relative S state [86]. This

is a reasonable approximation as investigations of the 16O(e, e′pp) reaction at the

electron accelerators in Mainz [87, 88] and Amsterdam [89–91] have clearly shown

that pairs of protons are solely subject to short-range correlations when they reside in

a relative S state under conditions corresponding with relatively small c.m. momenta

P (or, the initial protons are very close and moving back-to-back).

For the transition to the 14C ground state in the 16O(e, e′pp) reaction, the L =
0 component of the c.m. motion of the pair is associated with a relative 1S wave
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function. For transitions to the ground state and 1+ excitation, the L = 1 component

is associated with a relative 1P wave function. Consequently, one can determine

the quantum numbers of the relative wave function of the pair from the pm (which

is equal to the pair c.m. momentum in the plane-wave limit) dependence of the

differential cross section. In Fig. 2.5, data from MAMI [87] and calculations by

the Ghent group [88] for these transitions are shown. Calculations for the reaction

whereby the final nucleus is created in the 1+ state show the dominance of the two-

body currents for a P-wave pair, while the one-body currents associated with SRC

contribute only marginally. For the transition to the ground state, the c.m. momentum

dependence shows the dominance of relative S-pairs for low c.m. momenta. The one-

body currents clearly form the biggest contribution for these S-pairs. At higher c.m.

momenta, the relative P-pairs dominate, and two-body currents form the dominating

contribution. In Fig. 2.6, data for the ground state transition measured at NIKHEF

[91] and calculations in the Ghent [92] and Pavia [93]model are shown that confirm

these findings.

Figure 2.5 Cross section for transition to the ground state (left panel) and 1+ excitation (right
panel) of 14C as a function of missing pair momentum, for the reaction 16O(e, e′pp). In the
left panel, the dashed curve shows the results of a distorted-wave calculation with only two-
body currents. The solid (dot-dashed) curve is the result of a distorted-wave (plane-wave)
calculation that includes both one- and two-body currents. In the left panel, the dashed curve
shows a calculation that only includes two-body currents. The solid (dot-dashed) curve shows
a distorted-wave (plain-wave) calculation that accounts for both one- and two-body currents.
Data from [87]. Figure taken from Ref. [88].
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Figure 2.6 Cross sections for the transition to the ground state of 14C as a function of the
missing pair momentum, for the reaction 16O(e, e′pp) at three values ofω. Curves are obtained
in the Pavia model (top) [93] and Ghent model (bottom panels) [92]. Solid curves include
one- and two-body currents. Dashed (dotted) curves represent the contribution of one-body
(two-body) currents. Figure taken from Ref. [91].

After defining

ηD
α1,α2
(~P) =

∫

d~Re−i~P·~RFFSI(~R)φα1
(~R)φα2

(~R) (2.58)

g(~p) =

∫

d~re−i~p·~r g(~r) , (2.59)

we can write the matrix element as

M (γ,N1N2)
i f ,pair ≈

�

u†(~k1, ms1
)u†(~k2, ms2

)− u†(~k2, ms2
)u†(~k1, ms1

)
�

×
�

g(
~k1 −~k2 −~q

2
)γ0Ξα1

µ + g(
~k1 −~k2 +~q

2
)γ0Ξα2

µ

�

εµ(λ)ηD
α1,α2
(~Pm) . (2.60)

The superscript αi in Ξαi
µ denotes the quantum numbers of the nucleon that absorbs

the photon. After the choice of the appropriate Ξµ and g(~r) functions we have all the

ingredients to compute Eq. (2.60) readily available. For Ξµ, we use the CC2 form of



32 CHAPTER 2. FORMALISM

Ref. [94] and we impose the Coulomb gauge. For g(r), the correlation function of

Ref. [95] is used. The motivation of this choice will be presented in subsec 2.4.

Hard Rescattering Process

Besides the direct knockout of a correlated pair discussed above, the A(γ, N1N2) pro-

cess receives contributions from a two-step reaction mechanism sketched in Fig. 2.7.

A nucleon obtains high momentum by absorption of the photon and propagates

through the nucleus. On its way out of the nucleus a hard rescattering with one of the

residual nucleons occurs (besides the soft FSI) and the two nucleons are both ejected

from the nucleus. We employ the same notations as in the previous subsections. In

Figure 2.7 Diagram representing the A(γ, N1N2) as a two-step hard rescattering process. The
red, blue and black dotted lines represent the FSI with the residual spectator nucleons. The
dashed green line is the nucleon propagator between the photon interaction and the hard
rescattering process.

addition, we define the nucleon propagator in the medium whereby we account for

soft FSI mechanisms

DD
N (~r0 −~r j) = ŜN N (~r j ,~r0;~r1, . . . ,~rm 6= j,k, . . . ,~rA)DN (~r0 −~r j) , (2.61)

and a two-body operator describing the hard rescattering process

O (2) =
∑

k 6= j

Ô(~r0,~rk) . (2.62)
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In the above two equations ~r j is the vertex of the photon interaction. Further, (~r0,~rk)
determine the spatial coordinates of the hard rescattering process. In Eq. (2.61) we

ignore medium modifications to the DN (~r0 − ~r j) propagator, and put the pole of the

propagator on the free nucleon mass shell . With these notations, the matrix element

(2.49) reads:

M (γ,N1N2)
i f ,HRM =

∫

d~r0 . . . d~rA

�

Ψ
~k1ms1

,~k2ms2
A (~r0,~r2, . . . ,~rA)

�†∑

k 6= j

Ô(~r0,~rk)

×
∑

j

DD
N (~r0 −~r j)Γ

µ(~r j)εµ(λ)e
i~q·~rkΨg.s.

A (~r1, . . . ,~rA) . (2.63)

Due to antisymmetrization, we can take one term in the sum of both operators and

multiply Eq. (2.63) with A for the photon coupling vertex and (A− 1) for the hard

rescattering operator. If we take α1 and α2 for the quantum numbers of the ejected

nucleons and again assume spin independent, elastic and mildly inelastic FSI, we

obtain (with Dirac indices written out explicitly to avoid confusion)

M (γ,N1N2)
i f ,HRM ≈

A(A− 1)(A− 2)!
A!

∫

d~r0d~r1 · · · d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

×
h

u†
a(~k1, ms1

)e−i~k1·~r0u†
b(~k2, ms2

)e−i~k2·~r2ŜK1N (~r0;~r3, . . . ,~rA)ŜK2N (~r2;~r3, . . . ,~rA)

−u†
a(~k2, ms2

)e−i~k2·~r0u†
b(~k1, ms1

)e−i~k1·~r2ŜK1N (~r2;~r3, . . . ,~rA)ŜK2N (~r0;~r3, . . . ,~rA)
i

× Ôab;cd(~r0,~r2)ŜN N (~r0,~r1;~r3, . . . ,~rA)
�

DN (~r0 −~r1)
�

ce

�

Γµ(~r1)
�

e f εµ(λ)e
i~q·~r1

×
h

�

φα1
(~r1)
�

f

�

φα2
(~r2)
�

d
−
�

φα2
(~r1)
�

f

�

φα1
(~r2)
�

d

i

. (2.64)

To further simplify Eq. (2.64), we define the FSI factor

FFSI(~r0,~r1,~r2) =

∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N (~r0;~r3, . . . ,~rA)ŜK2N (~r2;~r3, . . . ,~rA)ŜN N (~r0,~r1;~r3, . . . ,~rA) . (2.65)

We adopt the zero-range approximation for the hard nucleon-nucleon rescattering

allowing us to replace the two coordinates ~r0 and ~r2 of the two interacting protons

with one collision point. Applying this to Eq. (2.65):

FFSI(~r0,~r1,~r2)≈FFSI(~r2,~r1,~r2)≡FFSI(~r1,~r2) (2.66)
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We now write the free nucleon propagator and hard rescattering operator in momen-

tum space

DN (~r0 −~r1) =

∫

d~P

(2π)3
ei~P·(~r0−~r1)DN (~P) , (2.67)

Ô(~r0,~r2) =

∫

d~p

(2π)3
ei~p·(~r2−~r0)Ô(~p) . (2.68)

After eliminating the ~r0 integration and with ~pm1
≡ ~P −~q and ~pm2

≡ ~k1 +~k2 − ~P, the

matrix element reads

M (γ,N1N2)
i f ,HRM ≈

∫

d~r1

∫

d~r2

∫

d~P

(2π)3
�

u†
a(~k1, ms1

)u†
b(~k2, ms2

)Ôab;cd(~P −~k1)

−u†
a(~k2, ms2

)u†
b(~k1, ms1

)Ôab;cd(~P −~k2)
��

DN (~P)
�

ce

�

Γµ(~r1)
�

e f εµ(λ)

× e−i~pm1
·~r1 e−i~pm2

·~r2

h

�

φα1
(~r1)
�

f

�

φα2
(~r2)
�

d
−
�

φα2
(~r1)
�

f

�

φα1
(~r2)
�

d

i

×FFSI(~r1,~r2) . (2.69)

One of the terms entering in Eq. (2.69) is shown in Fig. 2.8.

Figure 2.8 Schematic representation of one of the terms entering in Eq. (2.69). Dirac indices
are shown in blue. The other three terms are obtained by interchanging α1↔ α2 and ~k1↔~k2.

As a last step we neglect the negative-energy projections in the free nucleon prop-

agator. The energy in their denominator P0 + EP (with P0 = q +
Æ

m2
N + p2

m1
and
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EP =
p

m2
N + P2) will be large compared to the one of the positive energy projec-

tions:

DN (~P) =−
mN

EN

∑

sP

�

u(~P, sP)ū(~P, sP)
P0 − EP + iη

+
v(~P, sP)v̄(~P, sP)
P0 + EP − iη

�

≈ −
mN

EN

∑

sP
u(~P, sP)ū(~P, sP)

P0 − EP + iη
. (2.70)

Finally, we insert a complete set
∑

sm

�

u(~pm2
, sm)ū(~pm2

, sm)− v(~pm2
, sm)v̄(~pm2

, sm)
�

in

Eq. (2.69). After neglecting the negative energy contributions of this complete set,

the matrix element of Eq. (2.69) can be written as

M (γ,N1N2)
i f ,HRM ≈−

∑

sm,sP

∫

d~P

(2π)3
mN

EN

�

u†
a(~k1, ms1

)u†
b(~k2, ms2

)Ôab;cd(~P −~k1)

−u†
a(~k2, ms2

)u†
b(~k1, ms1

)Ôab;cd(~P −~k2)
�

× uc(~P, sP)ud(~pm2
, sm)

×
1

P0 − EP + iη

h

< J D
α1,α2
(~pm1

,~pm2
,λ)>−< J D

α2,α1
(~pm1

,~pm2
,λ)>

i

. (2.71)

In this last equation

< J D
α1,α2
(~pm1

,~pm2
,λ)>= εµ(λ)

∫

d~r1

∫

d~r2e−i~pm1
·~r1 e−i~pm2

·~r2

× [ū(~P, sP)Γ
µ(~r1)φα1

(~r1)][ū(~pm2
, sm)φα2

(~r2)]FFSI(~r1,~r2) . (2.72)

For a real incoming photon, the denominator of the propagator in Eq. (2.70) can

never reach on-the-mass-shell conditions and the integration poses no problem. For a

virtual photon the denominator of the propagator can be split into two parts, one for

the on-shell contribution (yielding a delta function) and one for the off-shell contri-

bution (yielding a principal value integration) [96]:

1

P0 − EP + iη
=−iπδ(P0 − EP) +P

�

1

P0 − EP

�

. (2.73)

We can also relate the hard rescattering operator to the free NN scattering amplitude

M NN :

M NN = ūa(~k1, ms1
)ūb(~k2, ms2

)DNN
ab;cduc(~k3, ms3

)ud(~k4, ms4
)

≈ u†
a(~k1, ms1

)u†
b(~k2, ms2

)γ0
aeγ

0
b f Ôab;cduc(~k3, ms3

)ud(~k4, ms4
) , (2.74)
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were we neglected medium effects in the last step. If all four legs of the NN scattering

amplitude are on-shell, the amplitude can be parametrized in terms of five Fermi

invariants as [97]

DNN
ab;cd =FS(s, t)δacδbd +FV (s, t)γac · γbd+

FT (s, t)σµνac (σµν)bd +FP(s, t)γ5
acγ

5
bd +FA(s, t)(γ5γ)ac · (γ5γ)bd , (2.75)

with s and t the Mandelstam variables. The Fermi invariants in Eq. (2.75) can be cal-

culated from five helicity amplitudes as is covered in Appendix D. For the calculations

in this thesis we use the helicity amplitudes available from SAID [98, 99], in function

of s and cosθc.m..

For the nucleon-nucleon rescattering shown in Fig. 2.7, both the incoming nucle-

ons are off-the-mass-shell. For the second bound nucleon, the insertion of positive

energy projections in Eq. (2.71) has put this incoming nucleon line on the positive-

energy mass shell. The positive-energy contributions of the nucleon propagator, how-

ever, still include off-shell behavior. A dynamical model describing the off-shell be-

haviour of the scattering amplitudes in the energy range accessible at JLab is currently

not available. To estimate these effects we use the prescription for the off-shell be-

havior of the amplitude proposed in [96]. The form of Eq. (2.75) is kept, although

additional invariants are possible with an off-shell nucleon. The center of mass angle

can be derived from the three Mandelstam variables:

cosθc.m. =
t − u

p

s− 4m2
q

(4m2−t−u)2

s
− 4m2

. (2.76)

The Fermi invariants become

Fi(s, t)→Fi(s, t, u)FN (s+ t + u− 3m2) for i ≡ S, V, T, Pand A , (2.77)

where

FN (p
2) =

(Λ2
N −m2)2

(p2 −m2)2 + (Λ2
N −m2)2

. (2.78)

is an off-shell nucleon form factor with a cutoff mass ΛN = 1.675 GeV. With all these

ingredients, we can numerically compute the matrix element of Eq. (2.71).
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2.2 Final-State Interactions

2.2.1 Relativistic Multiple-Scattering Glauber Approximation

The Glauber approach can be justified when the wavelength of the outgoing hadron

is sufficiently small in comparison to the typical interaction length with the residual

nucleons. In the context of A(e, e′p) reactions [74] it was shown that the Glauber

model represents a realistic approach to FSI for proton kinetic energies down to about

300 MeV. This corresponds to proton de Broglie wavelengths of the order of 1.5 fm.

For pions comparable wavelengths are reached for kinetic energies of the order of

700 MeV.

A relativistic extension of the Glauber model, dubbed the relativistic multiple-

scattering Glauber approximation (RMSGA), was introduced in Ref. [73]. In the

RMSGA, the wave function for the ejected nucleon and pion is a convolution of a

relativistic plane wave and a Glauber eikonal phase operator that accounts for FSI

mechanisms. In Glauber theory the assumption is made that a fast-moving particle

interacts through elastic or mildly inelastic collisions with frozen point scatterers in

a target. Scattering angles are assumed small and each of the point scatterers adds

a phase to the wave function (EA). This added phase is directly related to nucleon-

nucleon or pion-nucleon scattering data through the introduction of a profile function.

As a starting point in the derivation of the RMSGA FSI-factor in Eqs. (2.6) and

(2.7), we consider the scattering amplitude of a Dirac particle subject to a Lorentz

scalar [Vs(r)] and vector [Vv(r)] potential in the EA [100]:

Fms ,m′s
(~ki ,~k f , E) =−

mN

2π
〈ψ(+)
~k f ,m′s

| (βVs + Vv) | Φ~ki ,ms
〉 , (2.79)

with ψ(+)
~k f ,m′s

the relativistic scattered state in the EA and Φ~ki ,ms
a Dirac plane wave.

After some algebraic manipulations, Eq. (2.79) can be transformed into [100]

Fms ,m′s
(~ki ,~k f , E) = 〈m′s |

K

2πi

∫

d~b ei ~∆·~bΓN ′N (~b) | ms〉 , (2.80)

with

~K =
1

2
(~ki +~k f ) , (2.81)

~∆=~ki −~k f . (2.82)
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~K lies along the z-axis and the impact parameter vector ~b is perpendicular to it. In

Eq. (2.80), we introduced the profile function ΓN ′N (~b). The profile function is related

to the eikonal phase χ(~b) occurring in the scattered wave function via

ΓN ′N (~b) = 1− eiχ(~b) . (2.83)

The eikonal phase depends on the scalar and vector potentials and their derivatives

[100]. In the Glauber approximation, the profile function is related to the nucleon-

nucleon scattering parameters and no knowledge about the scalar and vector optical

potentials is required. For relativistic pion-nucleon scattering an analogous expression

to Eq. (2.80),

F(~ki ,~k f , E) =
K

2πi

∫

d~bei(~ki−~k f )·~bΓπN (~b) , (2.84)

can be derived in a straightforward manner as is shown in App. C. Thus, by apply-

ing the following derivation to pion-nucleon scattering, one will arrive at the same

conclusion for the pion FSI.

The most general form of the NN -scattering amplitude, assuming parity conser-

vation, time-reversal invariance, the Pauli principle and isospin invariance, can be

written as the sum of five invariant amplitudes [101]:

M NN = A(~∆)+ B(~∆)(~σ1 + ~σ2) · n̂+ C(~∆)(~σ1 · n̂)(~σ2 · n̂)

+ D(~∆)(~σ1 · m̂)(~σ2 · m̂) + E(~∆)(~σ1 · l̂)(~σ2 · l̂) . (2.85)

In this last equation, n̂ =
~ki×~k f

|~ki×~k f |
, m̂ =

~ki−~k f

|~ki−~k f |
, l̂ =

~ki+~k f

|~ki+~k f |
and ~σ1, ~σ2 are the nucleon

spin operators. As one can infer from Eq. (2.85), the amplitude consists of a central

term (A(~∆)), a spin-orbit term (B(~∆)) and another three spin-dependent terms. The

five invariants of Eq. (2.85) can be related to the Fermi invariants of Eq. (2.75), and a

transformation between the two is straightforward [97]. In theory, a complete phase-

shift analysis of the NN scattering data can determine all five amplitudes entering

in Eq. (2.85). In the analysis of proton-nucleus scattering with proton momenta of

1 GeV/c, the spinless approximation to Eq. (2.85) - whereby only the A(~∆) term is

kept - was very successful [101]. We apply this approximation and parametrize the

scattering amplitude as

F(~∆)≈ A(~∆= 0)e−
β2

N ′N
∆2

2 , (2.86)
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with βN ′N the slope parameter. This Gaussian parametrization is based on the diffrac-

tive nature of the elastic cross section for high energy nucleon-nucleon scattering. At

GeV momenta, the elastic cross section is extremely forward peaked and drops expo-

nentially over many orders. By employing the optical theorem Im F(θ = 0,φ = 0) =
kσtot

4π
, we can write

F(~∆)≈
kσtot

N ′N

4π
(εN ′N + i)e−

β2
N ′N

∆2

2 , (2.87)

with σtot
N ′N the total cross section and εN ′N the ratio of the real to imaginary part of

the amplitude. We can now obtain an expression for the profile functions by inverting

the Fourier transform of Eqs. (2.80) and (2.84):

ΓiN (~b) =
σtot

iN (1− iεiN )

4πβ2
iN

exp

�

−
~b2

2β2
iN

�

(with i = π or N ′) . (2.88)

To extend this formalism to the multiple-scattering case, we consider the soft in-

teractions of a fast particle with a composite target. In Fig. 2.9, we show differential

cross section data for the elastic scattering of 1 GeV protons with several nuclei. In

Fig. 2.10, we show similar results for the elastic scattering of 800 MeV pions with
12C and 40Ca. These figures clearly illustrate that these cross sections are extremely

forward peaked. The cross section drops a few orders before reaching θc.m. = 10o,

corresponding with lab angles between 9 and 10 degrees for the nuclei considered.

Therefore, it seems plausible to assume that the soft interactions of the fast ejected

particle will only cause small-angle changes in the trajectory of the fast particle. The

high-momentum scattered particle is assumed to traverse the target in a very short

time. This allows us to neglect the motion of the target particles, the so-called frozen

approximation. The interactions with the scattering centers are supposed to occur

through two-body spin-independent interactions as we described before. Charge ex-

change effects between the fast ejectile and the target constituents are also neglected.

The one-dimensional nature of the relative motion, together with the frozen approx-

imation, neglect of three-body forces and longitudinal momentum transfer, allows us

to add the eikonal phases of all the individual scattering centers along the trajectory

of the fast particle. This yields the following expression for the Glauber amplitude of

a multiple-scattering event from a A− 1-particle target with initial state | i〉 to a final
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Figure 2.9 Differential cross sections for elastic proton-nucleus scattering at 1 GeV. Figure
taken from Ref. [102].

state | f 〉 [104]:

F(~∆) =
iK

2π

∫

d~b ei~b·~∆〈 f | Γtot
iN (~b,~b2, . . . ,~bA) | i〉 , (with i = π or N ′) (2.89)

with ~b the impact parameter of the ejectile and ~b j those of the scattering targets. The

total profile function is defined as

Γtot
iN (~b,~b2, . . . ,~bA) = 1− eiχ tot(~b,~b2,...,~bA) =

1− ei
∑A

j=2 χ
j(~b−~b j) = 1−

A
∏

j=2

(1−Γ j
iN (~b−~b j) , (with i = π or N ′) (2.90)

whereby the last step requires the principle of phase-shift additivity. This results in

the following expression for the Glauber multiple-scattering eikonal phase for the FSI
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Figure 2.10 Differential cross sections for elastic pion-nucleus scattering at 800 MeV with 12C
and 40Ca nuclei. Figure taken from Ref. [103].

in the (A − 1) residual nucleus:

cSiN (~r,~r2, . . . ,~rA) =
A
∏

j=2

�

1−ΓiN (~b−~b j)θ(z j − z)
�

(with i = π or N ′) . (2.91)

Here, ~r j(~b j , z j) are the coordinates of the residual nucleons and ~r(~b, z) specifies the

interaction point with the (virtual) photon. In Eq. (2.91), the z axis lies along the

path of the ejected particle i (the proton or pion) and ~b is perpendicular to this path.

The Heaviside step function θ guarantees that only nucleons in the forward path of

the outgoing particle contribute to the eikonal phase.

The parameters σtot
iN , βiN and εiN used in the parametrization of the profile func-

tions depend on the momentum of the outgoing nucleon or pion i. For i = N ′, we
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determined the parameters by performing a fit [73] to the N ′N −→ N ′N databases

from the Particle Data Group (PDG) [105]. For the pion, σtot
πN was fitted to data col-

lected by PDG [105]. The analysis of the slope parameter in Ref. [106] was used for

the βπN fits. Fits provided by SAID [107, 108] and data from PDG [105] were used

in constructing the fits for επN . The fits for σtot
iN ,βiN , and εiN of Figs. 2.11, 2.12, and

2.13 are the result of a χ2 minimization of the data against a a n-th degree polynomial

(with n≤ 10). An alternative way of determining βπN , is via the relation

β2
πN =

(σtot
πN )

2(1+ ε2
πN )

16πσel
πN

, (2.92)

with σel
πN the elastic cross section. Fits for σel

πN to data from PDG [105] are also

presented in Fig. 2.11. The two sets for the βπN parameter in Fig. 2.12 do not

produce significantly different results for the numerical calculations presented here.

We use the χ2 fit for βπN in all calculations presented in this work.

The Glauber operator of Eq. (2.91) is an A-body operator. As a consequence, it

requires integrations over all spectator nucleon coordinates in Eqs. (2.12), (2.54),

and (2.65) which is computationally very demanding, in particular for heavy target

nuclei. In computing the A(γ(∗), Nπ) amplitude and the single-step contribution to

A(γ, N1N2) (Fig. 2.4), a product of two Glauber phases is involved. Accordingly,

the cylindrical symmetry is lost. This increases the computational cost an order of

magnitude compared to single hadron knockout of e.g. the A(e, e′p) type. The HRM

contribution to the A(γ, N1N2) process, via the intermediate nucleon propagator, adds

three extra spatial degrees of freedom and a third Glauber phase to the problem. The

computation time for these calculations soars to new heights. A Romberg algorithm

is used to perform the integrations over the spatial coordinates in the FSI factors.

2.2.2 Relativistic Optical Model Eikonal Approximation

For nucleons with a kinetic energy lower than about 300 MeV, the assumptions un-

derlying the Glauber formalism are no longer justified, and an alternative method to

model FSI is required. Under those circumstances our framework provides the flex-

ibility to adopt the relativistic optical model eikonal approximation (ROMEA) [75].
In the ROMEA approach, the wave function ψ(+)

~pN ,ms
of a nucleon with asymptotic en-

ergy E =
p

p2
N +m2

N after scattering in a scalar [Vs(r)] and vector [Vv(r)] spherical
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Figure 2.11 The pion lab-momentum dependence of the data [105] and adopted fits for the
total and elastic cross section for π−-p (upper panel) and π+-p (lower panel) scattering.
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Figure 2.12 The pion lab-momentum dependence of the data [106] and fits for the β2
pπ pa-

rameter for π−-p (upper panel) and π+-p (lower panel) scattering. Full curves are a χ2 fit to
the data, whereas the dashed curves result from Eq. (2.92).
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Figure 2.13 The pion lab-momentum dependence of the ratio of the real to imaginary part
of the π−-p (upper panel) and π+-p (lower panel) amplitudes. The diamonds represent an
analysis of the data by the George Washington University group [107, 108], whereas the solid
circles are from PDG [105]. The solid line is the fit to the data that are used in the numerical
calculations.
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potential is a solution of the Dirac equation:

Hψ(+)
~pN ,ms
(~r) =

�

~α · ~̂p+ β(MN + Vs(r))
�

ψ
(+)
~pN ,ms
(~r) = (E−Vv(r))ψ

(+)
~pN ,ms
(~r) , (2.93)

with ~̂p the momentum operator. In the relativistic distorted wave impulse approxi-

mation (RDWIA), the scattering wave functionψ(+)
~pN ,ms
(~r) is expanded in partial waves

and solved numerically. At higher energies, the partial-wave procedure gets cum-

bersome and the eikonal approximation is the by far the most economical way of

calculating things. In the EA, we can readily apply the small angle approximation and

the following approximation for the momentum operator is made [72]:

p̂2 = [(~̂p− ~K) + ~K]2 ≈ 2~K · ~̂p− K2 , (2.94)

with ~K = 1
2
(~ki +~k f ) the average of the initial and final momentum of the scattered

particle. In the small angle approximation, ~K ≈ ~pN and points along the z axis. By

using Eq. (2.94), the differential equation for the upper component of the scattering

wave function is transformed into a first order one. After adopting the eikonal ansatz

for the upper component (with N a normalization factor)

u(+)
~pN ,ms
(~r)≡ Nei~pN ·~r eiŜN ′N (~r)χ 1

2
ms

, (2.95)

the scattering wave function adopts the following form [100]

ψ
(+)
~pN ,ms
(~r) =

r

E +mN

2mN

�

1
1

E+mN+Vs(r)−Vv(r)
~σ · ~̂p

�

ei~pN ·~r eiŜN ′N (~r)χ 1
2

ms
, (2.96)

with the eikonal phase determined by

iŜN ′N (~b, z) =−i
mN

K

∫ z

−∞
dz′
�

Vc(~b, z′)+Vso(~b, z′)
�

~σ · (~b× ~K)− iKz′
�

�

. (2.97)

Eq. (2.96) differs from a plane-wave solution in two ways. The eikonal phase eiŜN ′N (~r)

includes the interaction of the nucleon with the nucleus via potential scattering and

the lower component of the Dirac spinor is dynamically enhanced due to the com-

bination of the scalar and vector potentials Vs − Vv < 0. The central and spin-orbit

potentials Vc and Vso are functions of Vs and Vv and their derivatives:

Vc(r) = Vr(r) +
E

mN
Vv(r) +

V 2
s (r)− V 2

v (r)

2MN
,

Vso(r) =
1

2MN
�

E +MN + Vs(r)− Vv(r)
�

1

r

d

dr
�

Vv(r)− Vs(r)
�

. (2.98)
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For protons in the intermediate energy range (Tp ≈ 500 MeV), calculations with the

EA are in very good agreement with exact partial wave solutions [100]. The ROMEA

has been successfully applied to A(e, e′p) [109, 110] and A(p, 2p) [75] reactions.

In the practical implementation of the ROMEA model we have made a few ad-

ditional assumptions. The dynamical enhancement of the lower components of the

scattering wave function (2.96) constitutes a rather small effect. Indeed, at low mo-

menta the lower components are small compared to the upper components due to

the presence of ~̂p in ~σ · ~p. At higher momenta, (Vs − Vv) is small in comparison to

(E + mN ). In the ROMEA calculations presented in this work, this enhancement is

neglected, though it is straightforward to include it (at the cost of increasing the com-

puting time). The operator ~̂p was substituted by the asymptotic value ~pN . Finally, as

collisions were assumed spin independent in Eq. (2.10), the spin-orbit potential Vso in

Eq. (2.97) is neglected. This yields the following phase factor entering in Eq. (2.12):

Ŝ ROMEA
N ′N (~r) = e−i mN

pN

∫ +∞
zN

dzVc(~bpN ,z) , (2.99)

where the integration over z lies along the outgoing momentum ~pN .

In contrast to the Glauber eikonal phase, the optical potential eikonal phase of

Eq. (2.99) depends solely on the coordinate ~r that defines the interaction point. As

a consequence, it can be taken out of all the integrations in Eq. (2.12) and the cylin-

drical symmetry of the pion Glauber eikonal factor is retained, hereby considerably

reducing the cost of computing the total FSI factor FFSI. For the numerical evalu-

ation of the ROMEA phase factor, we made use of the proton-4He optical potential

of van Oers et al. [111]. The optical potential contains a Coulomb term, a central

and l-dependent term with a Wood-Saxon form factor and a spin-orbit term with a

Thomas form factor. The p−4He optical potential of Ref. [111] contains a total of 14

adjustable parameters that are determined by fitting 4He(p, p) data for 85≤ Tp ≤ 580

MeV. For heavier nuclei, we use the pA optical potentials as they were determined in

the so-called global (S − V ) parametrization of Cooper et al. [80]. It uses the scalar-

vector model of Eq. (2.93) with complex potentials containing a volume and a surface

term. It serves proton energies from 20 to 1040 MeV for targets 12C, 16O. 40Ca, 90Zr

and 208Pb.
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2.3 Color Transparency

We implement color transparency effects in the usual fashion by replacing the total

cross sections σtot
iN in the profile functions of Eq. (2.88) with effective ones proposed

by Farrar et al. [112]. The latter induce some reduced pion-nucleon and nucleon-

nucleon interaction over a typical length scale lh corresponding with the hadron for-

mation length. As suggested by pQCD [113], the cross section is assumed to be scaled

by the ratio of the transverse size of the quark system to the average size of the hadron

< b > (i = π or N ′)

σeff
iN =

b2(Z )
< b2 >

σtot
iN for z ≤ lh , (2.100)

with Z the distance from the interaction point. At the point of interaction, the

hadron is supposed to have a transverse area of
n2<k2

t>

H , where n is the number of

elementary fields (2 for the pion, 3 for the nucleon), kt = 0.350 GeV/c is the average

transverse momentum of a quark inside a hadron, and H is the hard-scale param-

eter (or virtuality) that governs the CT effect. H equals the momentum transfer

t = (qµ − pµπ)
2 (pion CT) or u = (qµ − pµN )

2 (nucleon CT) for pion photoproduction

(see Fig. 2.14) and Q2 for pion electroproduction. To describe the expansion along

the formation length lh, two models are described in the work of Ref. [112]. The

first is a naive model using partons with a relative velocity approaching the velocity

of light. This gives us b(Z )∼ t ∼ (E/m)−1Z , with (E/m)−1 the time-dilatation factor

for the lab-frame. Based on semi-classical arguments, the formation length becomes

lh = (E/m)−1(σtot
iN /π)

1/2. Inspired by pQCD, an alternate prescription to determine

lh is proposed stemming from a behaviour called quantum diffusion. It is theoretically

justified for small times, when the transverse area of the system is small enough to

apply the leading-logarithmic approximation to pQCD [23, 24]. Taking into account

the asymptotically most important energy denominator in this leading-logarithmic

approximation leads to b2 ∼ Z . The formation length is determined by the time τ

associated with the quantum fluctuation of the PLC to the normal hadron:

lh ≈ τ≈<
1

EPLC − Ei
>≈ 2p/∆M2 , (2.101)

with p the momentum of the final hadron and ∆M2 the mass squared difference

between the intermediate prehadron and the final hadron state. The value of ∆M2 is
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an undetermined parameter and in itself a simplification of the process, as a process

with high momentum transfer will produce a set of configurations of different masses.

Theoretical arguments do not yield a consistent value for ∆M2, but a lower limit can

be placed e.g. for the nucleon by taking mN + mπ for the mass of the intermediate

prehadron. This yields a value of ∆M2 = 0.93 GeV2. In this work, we adopt the

values ∆M2 = 1 GeV2 for the proton and ∆M2 = 0.7 GeV2 for the pion. Despite

the fact that the order of magnitude of these values can be founded on very general

principles, their precise values should be interpreted as educated guesses and their

precise determination is awaiting experimental information, like nuclear transparency

measurements.

Figure 2.14 The virtuality that determines the formation length for the ejected nucleon (blue)
and pion (red) in A(γ, Nπ).

The arguments outlined above, lead us to the following formula for the effective

cross sections used in the model:

σeff
iN

σtot
iN

=
���Z

lh

�β

+
< n2k2

t >

H

�

1−
�Z

lh

�β
�

�

θ(lh−Z )+θ(Z − lh)
�

. (2.102)

β = 1 corresponds to the quantum diffusion model, τ= 2 to the naive parton model.

Figure 2.15 illustrates the predicted difference of the CT effect on the pion-nucleon

and nucleon-nucleon effective interaction. Reflecting its mesonic nature, the pion has

a longer formation length and during its formation its interaction cross section with
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the residual nucleons is more strongly reduced than for a nucleon.
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Figure 2.15 Comparison of the CT effect on the total effective cross section σeff
iN for nucleon-

nucleon (left panel) and pion-nucleon (right panel) interactions. We consider the situations
whereby the ejectile possesses a lab momentum from 1 to 4 GeV/c. For the hard-scale param-
eter we adoptH = 1.8 (GeV/c)2.

Another recipe for the effective cross section σeff
NN , proposed by Jennings and

Miller [114, 115], is based on a hadronic basis and computes the relevant matrix

elements of σ(b2) in a harmonic oscillator basis. The PLC is considered as a superpo-

sition of the nucleon ground state and a resonance, and the effective cross section is

given by

σeff
NN (Z ) = σ

tot
NN (1− e−iZ/τ) , (2.103)

with τ determined with Eq. (2.101), and ∆M taken from the mass difference with

the lowest radial excitation of the ground state in the harmonic oscillator basis. This

model was later extended with a sum-rule approach to expand the PLC in a com-

plete set of intermediate states [116, 117]. It uses measured matrix elements for

deep-inelastic scattering and diffractive dissociation to represent the hard and soft

scattering operator needed in the evaluation of σeff
NN , respectively. In this approach,
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the effective cross section becomes

σeff
NN (Z ) =

∫ ∞

(mN+mπ)2
dM2

Xρ(M
2
X ,Q2)

�

1− e−i(M2
X−m2

N )Z/2p
�

, (2.104)

with ρ representing the product of the above-mentioned measured matrix elements.

For small values of Z , Eq. (2.104) is approximately linear in Z .

For electroproduction of vector mesons on nuclei, work has been done in a model

based on a light-cone QCD Green’s function formalism [118–120] and calculations

have been done for φ and ρ production [121–124].

For the calculations reported in this thesis, we have adopted the quantum diffusion

model of Farrar et al.

2.4 Short-Range Correlations

We now proceed with introducing a method that allows us to implement the effect of

SRC in the relativistic Glauber calculations. The proposed method adopts the thick-

ness approximation as a starting point. In the thickness approximation, the density
�

�φαi
(~ri)
�

�

2
of the individual nucleons in Eq. (2.12) is replaced by an averaged density

ρ
[1]
A (~r) defined as

ρ
[1]
A (~r) = A

∫

d~r2 . . .

∫

d~rA

�

Ψg.s.
A (~r,~r2, . . . ,~rA)

�†
Ψg.s.

A (~r,~r2, . . . ,~rA) . (2.105)

In terms of ρ[1]A (~r) the FSI factor of Eq. (2.12) can be approximated by

F thick
FSI (~r) =

1

AA−1

∫

d~r2 . . .

∫

d~rAρ
[1]
A (~r2)ρ

[1]
A (~r3) . . .ρ[1]A (~rA)

ŜπN (~r;~r2, . . . ,~rA)ŜN ′N (~r;~r2, . . . ,~rA) (2.106)

In combination with the operators of Eq. (2.91) the expression can be further simpli-
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fied to

F thick
FSI (~r) =

 

∫

d~r2
ρ
[1]
A (~r2)

A

�

1−ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2 − zN ′)
�

�

1−Γπp(~bπ −~bπ2)θ(zπ2 − zπ)
��Z− τz+1

2

×

 

∫

d~r3
ρ
[1]
A (~r3)

A

�

1−ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3 − zN ′)
�

�

1−Γπn(~bπ −~bπ3)θ(zπ3 − zπ)
��N+ τz−1

2 , (2.107)

where τz is the isospin (1 for protons and −1 for neutrons) of the nucleon on which

the initial absorption took place. The zN ′ (zπ) axis lies along the ejected nucleon

(pion). The above expression is derived within the context of the IPM. It is clear that

the nucleus has a fluid nature and that the IPM can only be considered as a first-

order approximation. In computing the FSI effects by means of the Eq. (2.107) one

fails to give proper attention to one important piece of information: namely that one

considers the density distribution of nucleons given that there is one present at the

photo-interaction point ~r.

The two-body density ρ[2]A (~r1,~r2) is related to the probability to find a nucleon at

position ~r2 given that there is one at a position ~r1. We adopt the following normaliza-

tion convention for ρ[2]A
∫

d~r1

∫

d~r2ρ
[2]
A (~r1,~r2) = A(A− 1) . (2.108)

If one ignores correlations between the nucleons,
h

ρ
[2]
A (~r1,~r2)

i

uncorr.
≡

A− 1

A
ρ
[1]
A (~r1)ρ

[1]
A (~r2) . (2.109)

The nucleus has a granular structure as the nucleons have a finite size. This gives

rise to strong nucleon-nucleon repulsions at short internucleon distances that reflect

themselves in SRC at the nuclear scale. One can correct
h

ρ
[2]
A (~r1,~r2)

i

uncorr.
for the

presence of the SRC by adopting the following functional form [125]

ρ
[2]
A (~r1,~r2)≡ γ(~r1)

h

ρ
[2]
A (~r1,~r2)

i

uncorr.
γ(~r2)g(r12) =

A− 1

A
γ(~r1)ρ

[1]
A (~r1)ρ

[1]
A (~r2)γ(~r2)g(r12) , (2.110)
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with g(r12) the so-called Jastrow correlation function and γ(~r) a function that im-

poses the normalization condition of Eq. (2.108) on ρ[2]A (~r1,~r2). The function γ(~r) is

a solution to the following integral equation

γ(~r1)

∫

d~r2ρ
[1]
A (~r2)g(r12)γ(~r2) = A , (2.111)

which can be solved numerically. The Glauber phase factor of Eq. (2.107) can now

be corrected for SRC through the following substitution

ρ
[1]
A (~r2)→

A

A− 1

ρ
[2]
A (~r2,~r)

ρ
[1]
A (~r)

= γ(~r2)ρ
[1]
A (~r2)γ(~r)g(|~r2−~r|)≡ ρeff

A (~r2,~r) , (2.112)

whereby ρ[2]A (~r2,~r) adopts the expression (2.110). These manipulations amount to

the following final expression for the Glauber FSI factor including SRC:

F SRC
FSI (~r) =

�
∫

d~r2
γ(~r2)ρ

[1]
A (~r2)γ(~r)g(|~r2 −~r|)

A

×
�

1−ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2 − zN ′)
��

1−Γπp(~bπ −~bπ2)θ(zπ2 − zπ)
�

�Z− τz+1
2

×
�
∫

d~r3
γ(~r3)ρ

[1]
A (~r3)γ(~r)g(|~r3 −~r|)

A

�

1−ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3 − zN ′)
�

×
�

1−Γπn(~bπ −~bπ3)θ(zπ3 − zπ)
�

�N+ τz−1
2

. (2.113)

The effective density of Eq. (2.112) accounts for the fact that the motion of each

nucleon does depend on the presence of the other ones. In fig. 2.16 we display the

effective nuclear density as it would be observed by a nucleon or a pion created after

photoabsorption on a nucleon at the center of the nucleus. The figure shows the

density for Fe as computed in the IPM [ρ[1]A (x , y, z ≡ 0)] and with the expression

based on the substitution of Eq. (2.112)

γ(x , y, z ≡ 0)ρ[1]A (x , y, z ≡ 0)γ(x ≡ 0, y ≡ 0, z ≡ 0)g(|~r|) .

In Fig. 2.16 and all forthcoming numerical calculations we use a correlation function

g(|~r|) from Ref. [95]. It is characterized by a (Gaussian) hard core of about 0.8 fm
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and a second bump that extends to internucleon distances r of about 2 fm and reaches

its maximum for r12 ≈ 1.3 fm. This correlation function provided a fair description

of the SRC contributions to 12C(e, e′pp) [126] and 16O(e, e′pp) [88] (Fig. 2.5). It

is clear that the SRC lead to a local reduction - with size of the nucleon radius - of

the density around the nucleon struck by the (virtual) photon. To preserve the proper

normalization, this reduction amounts to some enhanced density at distances of about

twice the nucleon radius. With regard to the intranuclear attenuation, the reduction

of the density in the proximity of the struck nucleon will result in some enhanced

transparency close to the photointeraction point ~r. The enhanced density at positions

of about twice the nucleon radius from the struck nucleon, can be expected to have

the opposite effect.

At the moment the model does not include tensor correlations, believed to be the

main source of the difference in abundance of observed p− p and n− p pairs. If we

take a look at the values of the slope parameter βiN , we observe that a typical value

of βiN for a particle in the GeV momentum range is smaller than 0.5 fm. As this pa-

rameter provides a measure of the transverse range of the attenuation by the nuclear

medium, we anticipate the effects of including tensor correlations (who operate at

larger distances) in the Glauber model will be a lot smaller than those caused by SRC.
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Figure 2.16 The effective nuclear density ρeff
A (~r2,~r) at z2 = 0 for He (left) and Fe (right)

before (upper) and after (lower panel) the inclusion of SRC effects. The effective nuclear
densities here refer to the situation whereby the (virtual) photon is absorbed at the origin
(x = 0, y = 0, z = 0).
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Chapter 3
Numerical Results

This chapter presents the results of the numerical calculations using the model out-

lined in chapter 2. We start with an analysis of the FSI factor of a reaction with

two ejected particles and show the effects of the attenuation mechanisms on the mo-

mentum distributions for pion-nucleon and two nucleon removal reactions in several

nuclei. Sec. 3.3 presents transparency calculations for pion photo- and electropro-

duction and two nucleon knockout reactions. The influence of adding short-range

correlations and color transparency to the transparency calculations is investigated

and the hard-scale dependence of the two effects is determined. For the pion re-

moval reaction, comparisons are made with data taken at Jefferson Lab and other

models, both semiclassical and quantummechanical. We also take a closer look at the

A-dependence of the pion electroproduction reaction. Subsequently, transparency cal-

culations for the A(γ, pp) reaction gives us an opportunity to compare the competing

reaction mechanisms outlined in sec. 2.1.3. We conclude the chapter by comparing

the density dependences of removal reactions involving one, two and three nucleons.

3.1 The FSI factor

In this subsection we present a selected number of results of the numerical calcula-

tions of the RMSGA FSI factor of Eq. (2.12). We consider the 12C(γ, pπ−) reaction

in a reference frame with the z axis along the momentum ~pN of the ejected nucleon
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and the y axis along ~pπ × ~pN (with ~pπ in the lower hemisphere). In what follows,

θNπ stands for the angle of the pion relative to the nucleon. It has a negative value

in all calculations considered in this section. The coordinate ~r denotes the interaction

point with the external photon. A sketch of this situation is presented in Fig. 3.1.

We present the FSI factor versus the spherical coordinates in this frame. The general

conclusions and the trends of this discussion can be straightforwardly generalized to

the situation of two hadrons in the final state (either two nucleons, two pions or a

nucleon and a pion).

Figure 3.1 Sketch of the coordinates, choice of axes and θNπ for the presentation of the
12C(γ, pπ−) FSI factor. r denotes the distance of the interaction point to the center of the
nucleus and theta the angle with the z axis, taken parallel to the momentum of the ejected
nucleon.

In fig. 3.2, we present the calculated norm and phase of the FSI factor in the

scattering plane (φ = 0) for pN ≈ 2.6 GeV and pπ ≈ 2.3 GeV, which are conditions

for which Jefferson Lab collected data [47]. We present the FSI factor for the proton

and the pion separately as well as the combined effect when the two are detected in

coincidence.

When looking at the θ dependence, it becomes clear from Fig. 3.2 that the norm

is smallest in the direction opposite the momentum of the particle (being 180◦ for the
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Figure 3.2 Radial and polar-angle dependence of the norm (left) and phase (right) of the FSI
factorFFSI in the scattering plane (φ = 0◦) for the 12C(γ, pπ−) reaction from the 1s1/2 level. For
the upper (middle) panels, solely the FSI effects on the ejected proton (pion) are considered.
The lower panels include the net effect of both the pion and nucleon FSI effect. The results are
obtained for pN = 2638 MeV, pπ = 2291 MeV, θNπ =−65.19◦.
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nucleon and 180◦+θNπ for the pion). For these directions and large r, the nucleon or

pion is created close to the surface of the nucleus on the opposite side of its asymptotic

direction and has to travel through a thick layer of nuclear medium before it reaches

the detectors. As for the r dependence, we see for the nucleon a reduction of the

FSI effects for rising r at angles in the neighborhood of θ = 0◦, and respectively

an increment for rising r at θ = 180◦. This is again due to the fact that the outgoing

nucleon traverses less, respectively more nuclear matter on its way out of the nucleus.

The same observations apply for the pion, albeit at the angles θNπ and 180◦ + θNπ.

The total FSI factor combines the intranuclear attenuation effects on the nucleon and

pion. Hence, the norm shows the largest reduction at θ around 180◦ and 180◦+θNπ.

The phase of the FSI factor exhibits similar behavior, with the largest phase shifts

occurring at the discussed angles.

Figure 3.3 teaches us a couple things about the φ dependence of the FSI factor.

As the outgoing nucleon lies along the z axis there is no dependence on the azimuthal

angle because of the cylindrical symmetry. Again, we can see that the absorption is

largest when large amounts of nuclear matter need to be traversed (i.e., large θ).

Looking at the pion we see the largest attenuation occurs in the upper hemisphere

(cosφ ≥ 0) as a pion that is created in this region has to traverse the inner core of

the nucleus. The combined effect of the pion and nucleon contributions is contained

in the bottom panel. As the reaction takes place in the xz plane, the total FSI factor

retains the following symmetry: FFSI(r,θ ,φ) =FFSI(r,θ , 2π−φ).

3.2 Momentum Distributions

The attenuation mechanisms of the nuclear medium reflect themselves in distortions

of the momentum distributions which translates to the inclusion of the FSI factor

in Eq. (2.29). In Fig. 3.4, we have plotted the momentum distributions with and

without FSI and CT for the 16O(γ, pπ−) reaction with an incident photon energy of 3

GeV and the pion c.m. angle θπc.m. = 90◦. The strength of the distorted momentum

distribution without CT is reduced by the largest amount in the respective maxima

of the distributions and evaluates to 25 % for the 1s1/2, 32 % for the 1p3/2, and

40 % for the 1p1/2 shell. The shell dependence of the transparency is caused by the

differences in density distribution for the different shells. The density distribution
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Figure 3.3 Polar- and azimuthal-angle dependence of the norm of the FSI factor FFSI at a
distance r = 3 fm from the center of the nucleus for the 12C(γ, pπ−) reaction from the 1s1/2

level. Separate contributions from the nucleon (upper panel) and the pion (middle panel), as
well as their combined effect (bottom panel), are shown. Kinematics as in Fig. 3.2.



62 CHAPTER 3. NUMERICAL RESULTS

 [MeV/c]
z

p
-200 0 200

]3
 [

fm
ρ

0

0.5

1

1.5 1s1/2

 [MeV/c]
z

p
-200 0 200

]3
 [

fm
ρ

0

0.2

0.4

0.6

0.8
1p3/2

 [MeV/c]
z

p
-200 0 200

]3
 [

fm
ρ

0

0.2

0.4

0.6

1p1/2

Figure 3.4 Momentum distributions for neutron knockout from the 1s1/2 (left), 1p3/2 (mid-
dle) and 1p1/2 shell (right panel) in the 16O(γ, pπ−) reaction with an incident photon energy
of 3 GeV and the pion c.m. angle θπc.m. = 90◦. Black curves are RPWIA calculations, blue
includes Glauber FSI and green curves include CT effects to the Glauber FSI.

of the 1s1/2 shell is largest in the center of the nucleus. Hence nucleons knocked

out from this shell will on average have to transverse more nuclear matter than their

counterparts in the 1p3/2 and 1p1/2 shells. The FSI also shift the minimum at p = 0

for the p-shells to higher values in the distorted momentum distributions.

We can also formulate a momentum distribution related to Eq. (2.29) for the
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Figure 3.5 Momentum distributions for double proton knockout from the (1s1/2 − 1s1/2)-
(left), (1s1/2− 1p3/2)- (middle) and (1p3/2− 1p3/2)-orbits (right panel) in the 12C(γ, pp)
reaction with an incident photon energy of 3 GeV and coplanar symmetric kinematics (situation
shown in Fig. 3.7). Black curves are RPWIA calculations, green includes Glauber FSI and blue
curves include CT effects to the Glauber FSI.

nucleon-nucleon pair in a relative S-state of sec. 2.1.3:

ρD
n1κ1n2κ2

(~P,~p) =
1

(2π)6
∑

s1,s2,m1,m2

�

�

�

�

∫

d~Re−i~P·~R
∫

d~re−i~p·~r g(~r)

×ū(
~P

2
+ ~p, s1)φn1κ1m1

(~R)ū(
~P

2
− ~p, s2)φn2κ2m2

(~R)FFSI(~R)

�

�

�

�

�

2

, (3.1)

with notations as in sec. 2.1.3. FFSI(~R) is the FSI factor of Eqs. (2.54) and (2.55),

and (niκimi) denote the quantum numbers of the ejected nucleons. By neglecting the

lower components of the positive-energy projections in Eq. (3.1), we can separate
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Figure 3.6 Momentum distributions for double proton knockout from a selection of shell com-
binations in the 56Fe(γ, pp) reaction with an incident photon energy of 4 GeV and coplanar
symmetric kinematics for the outgoing protons. Black curves are RPWIA calculations, green
includes Glauber FSI and blue curves include CT effects to the Glauber FSI.
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Figure 3.7 The A(γ, N1N2) reaction in coplanar and symmetric kinematics. The two escaping
nucleons N1 and N2 have the same energy and polar angle θNq, but escape from the opposite
side of ~q.

ρD
n1κ1n2κ2

(~P,~p) in a part containing the relative pair momentum and a part containing

the c.m. motion. With the notations of Eqs. (2.58) and (2.59):

ρD
n1κ1n2κ2

(~P,~p)≈ g(~p)
1

(2π)6
∑

s1,s2,m1,m2

�

�

�ηD
n1κ1m1n2κ2m2

(~P)
�

�

�

2
≡ g(~p)ρD

n1κ1n2κ2
(~P) (3.2)

Fig. 3.5 shows the c.m. momentum distribution ρD
n1κ1n2κ2

(~P) for all possible shell

combinations in the 12C(γ, pp) reaction for a photon energy of 4 GeV and coplanar

symmetric kinematics. The strength is reduced at the distribution maxima to 15%

for the (1s1/2− 1s1/2)-orbits, 21% for the (1s1/2− 1p3/2)-orbits, and 26% for the

(1p3/2− 1p3/2)-orbits. Fig. 3.6 also depicts momentum distributions for a selection

of shell combinations in the 56Fe(γ, pp) reaction highlighting the big reduction of the

distributions in a large nucleus.

3.3 Transparencies

3.3.1 Pion Photoproduction

The experiment E94-104 at Jefferson Lab extracted nuclear transparencies for the

process γ + 4He → p + π− + 3He. The measurements were performed for photon

energies 1.6 ≤ q ≤ 4.2 GeV and for θπc.m. = 70◦ and 90◦, with θπc.m. the center-of-mass
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angle between the photon and pion. In total, the nuclear transparencies were mea-

sured for eight kinematical settings. In a proposal for a follow-up experiment, seven

additional kinematics are suggested for measurements at higher photon energies and

θπc.m. = 90◦ [127]. We have performed calculations for the completed and planned

experiments. Table 3.1 provides a list of the kinematics.

q [MeV] θπc.m. [deg] pN [MeV] θN [deg] pπ [MeV] θπ [deg]
1648 70◦ 989 47.39◦ 1238 −36.02◦

1648 90◦ 1277 37.37◦ 1015 −47.73◦

2486 70◦ 1322 44.37◦ 1794 −31.02◦

2486 90◦ 1740 34.45◦ 1438 −43.18◦

3324 70◦ 1642 41.74◦ 2363 −27.56◦

3324 90◦ 2195 32.01◦ 1866 −38.57◦

4157 70◦ 1949 39.51◦ 2929 −25.05◦

4157 90◦ 2638 30.01◦ 2291 −35.18◦

4327 70◦ 2011 39.1◦ 3044 −24.6◦

4327 90◦ 2727 29.6◦ 2377 −34.6◦

5160 70◦ 2307 37.3◦ 3606 −22.8◦

5160 90◦ 3161 28.0◦ 2797 −32.1◦

6059 70◦ 2622 35.6◦ 4211 −21.2◦

6059 90◦ 3625 26.6◦ 3250 −29.9◦

7025 70◦ 2956 33.9◦ 4861 −19.8◦

7025 90◦ 4120 25.2◦ 3735 −28.0◦

8057 70◦ 3309 32.4◦ 5555 −18.6◦

8057 90◦ 4646 24.0◦ 4253 −26.3◦

9156 70◦ 3683 31.0◦ 6294 −17.6◦

9156 90◦ 5204 22.8◦ 4805 −24.8◦

10322 70◦ 4077 29.7◦ 7077 −16.6◦

10322 90◦ 5794 21.8◦ 5389 −23.5◦

Table 3.1 Kinematics used in the completed and planned pion photoproduction transparency
experiments. Central values for the photon energy (MeV), proton momentum pN (MeV), pro-
ton angle θN , pion momentum pπ (MeV) and pion angle θπ for θπc.m. = 70◦, 90◦. Angles are
measured relative to the incoming photon momentum.

We aim at performing calculations that match the kinematic conditions of the ex-

periment as closely as possible. We use the following definition for the transparency:
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T =

∑

α

∫

dqY (q)
∫

d~pm

�

d5σ

dEπdΩπdΩN

�

RMSGA
∑

α

∫

dqY (q)
∫

d~pm

�

d5σ

dEπdΩπdΩN

�

RPWIA

. (3.3)

The integrations
∫

dq
∫

d~pm in Eq. (3.3) were evaluated with a Monte-Carlo integra-

tion algorithm. To this end, random events within the photon beam energy range,

detector acceptances and applied cuts for each data point were generated for the

calculation of the transparency until convergence of the order of 5% was reached.

Typically, this involves about 1000 events for each data point. In Eq. (3.3),
∑

α ex-

tends over all occupied single-particle states in the target nucleus. All cross sections

are computed in the laboratory frame. Y (q) provides the weight factor for the gen-

erated events. It includes the yield of the reconstructed experimental photon beam

spectrum [47] for the photon energy of the generated event. We assume that the ele-

mentary γ+n→ π−+ p cross section dσγπ

d|t| in Eqs. (2.28) and (2.30) remains constant

over the kinematical ranges
∫

dq
∫

d~pm that define a particular data point. With this

assumption the cross section dσγπ

d|t| cancels out of the ratio (3.3). For all kinematic

conditions of Table 3.1, the pion and nucleon momenta are sufficiently high for the

RMSGA method to be a valid approach for describing the FSI mechanism.

In Fig. 3.8, we present the results of transparency calculations for 4He together

with the experimental data and the predictions of the semiclassical model of Ref. [128].
The computed RMSGA nuclear transparencies are systematically about 10% larger

than the ones obtained in the semiclassical model. As can be appreciated from Fig.

3.8, the RMSGA calculations predict comparable CT effects as the semiclassical calcu-

lations shape. We have to stress though that the calculations with CT are normalized

to the calculations without CT for the data point with the lowest |t| in the semiclas-

sical model. We did not perform this normalization for our calculations. Our results

without color transparency are in better agreement with the experimental results than

those with CT effects included. This is in disagreement with the semiclassical model

whose results with CT effects are in better agreement with the experimental data. We

also have to point out that, although the calculations with CT effects overestimate the

experimental results for all data points, the slope of this curve shows better agreement

with the slope of the data than the slope of the curves without CT effects.

As can be seen in Fig. 3.8, our model predicts a rise in the transparency for
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Figure 3.8 The nuclear transparency extracted from 4He(γ, pπ−) versus the squared momen-
tum transfer |t| at θπc.m. = 70◦ (upper panel) and θπc.m. = 90◦ (lower panel). The black and
green curves are RMSGA and RMSGA+CT calculations respectively. The blue and red line are
RMSGA+SRC and RMSGA+SRC+CT results. Table 3.1 lists the kinematics of the calculated
points. The semiclassical model [128] results are presented by the shaded areas: the hatched
(dotted) area is a calculation without (with) CT. Data from [47].
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|t| ≤ 1.2 GeV2. In Fig. 3.9 the separated transparencies of the outgoing proton and

pion are displayed next to the full result for the kinematics that data were taken for.

It is clear from this figure that at low |t| the fall of the transparency with rising |t| can

be attributed to the proton contribution. This phenomenon can be attributed to the

behavior of the proton-proton and (to a lesser extent) proton-neutron cross section

for proton momenta of about 1 GeV. As can be appreciated from Fig. 3.10, a drop from

∼ 40 mb to about 20-30 mb occurs as one approaches 1 GeV from higher momenta.
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Figure 3.9 Contributions of the pion (dashed-dotted) and nucleon (dashed) to the total nuclear
transparency (full) extracted from 4He(γ, pπ−) versus |t| at θπc.m. = 70◦. All calculations include
CT.

Figure 3.9 also shows that the 4He nucleus is more transparent for pion emission

than for proton emission. This can be partially attributed to the lower pion total cross

sections. As pointed out in Fig. 2.15 the larger formation length, and corresponding

bigger reduction of the effective cross section make that the CT effect is larger for

pions than for protons. In Fig. 3.11 the computed increase in the nuclear transparency

caused by CT and SRC mechanisms is shown as a function of |t|. One observes that

SRC mechanisms increase the nuclear transparency by about 5%. As there is no direct

dependence on the hard-scale, the increase is almost independent of |t|. Inclusion of

CT effects tends to increase the predicted transparency at a rate which depends on a

hard-scale parameter. Here, that role is played by the momentum-transfer |t|. The CT

phenomenon shows a linear rise from almost 0 to over 20% at the largest values of
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Figure 3.10 Total and elastic cross sections for proton-proton (upper) proton-neutron (lower
panel) scattering as a function of proton lab momentum. Data are from Ref. [105]. Solid and
dashed curves show global fits used in our calculations from Ref. [73]. The pink box indicates
the momenta of the ejected nucleon covered in our calculations.

|t|. For |t| ≤ 2.5 GeV2 the predicted effect of SRC is larger than the increase induced

by the CT mechanism. The SRC decrease the slope in the |t| dependence of the CT

phenomenon. Indeed, the SRC induces holes in the nuclear density in the direct

neighborhood of the interaction point (see Fig. 2.16) where the CT effects are largest.

At high |t| the short-range correlations have a modest impact on the magnitude of

the CT effects. Our investigations show that by studying the hard-scale dependence

of the transparency the CT-related mechanisms can be clearly separated from the SRC

ones.

In the search of phenomena like CT in transparency studies, it is of the utmost

importance to have robust and advanced calculations based on concepts from tradi-
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Figure 3.11 The |t| dependence of the relative increase of the nuclear transparency due to SRC
and CT effects. We consider the 4He(γ, pπ−) reaction at θπc.m. = 70◦ (left panel) and 90◦ (right
panel) and kinematic conditions from Table 3.1. The baseline result is the RMSGA calculation.
The solid (dashed) curve includes the effect of CT (SRC). The dot-dashed line is the combined
effect of CT+SRC.

tional nuclear physics. Thereby, one of the major sources of uncertainty stem from the

description of FSI mechanisms. In our eikonal model, we can either use optical poten-

tials (ROMEA) or a Glauber framework (RMSGA). In kinematic regions of moderate

hadron momenta both approaches can be used [74]. As they adopt very different un-

derlying assumptions, we consider a comparison between the predictions of the two

approaches as a profound test of the trustworthiness of either approach. We com-

puted the transparency of the 4He(γ, pπ−) reaction for kinematics at θπc.m. = 70◦ and

90◦ with ejected proton momenta ranging from 500 MeV/c to 1 GeV/c, listed in Ta-

ble 3.2. As can be appreciated from Fig. 3.12, both descriptions yield a similar shape,

but the RMSGA calculations are consistently larger by about 5%. At higher nucleon

momenta, however, the difference between the predictions for the transparencies in

the two approaches shrinks to a few percent. The estimated model dependence in

the computed transparencies is of the same order as the predicted role of SRC mech-

anisms. From these observations, it is clear that pion and nuclear transparencies are

not the optimum observables to study SRC mechanisms in nuclei. Indeed they bring

about a relatively modest overall renormalization of about 5 %. Unlike the CT effects

for example, their role does not grow with an increasing hard-scale, nor is there any

sizable A-dependence in the SRC effects.
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Figure 3.12 Comparison between the RMSGA (squares) and ROMEA (circles) description of
the nucleon transparency of the 4He(γ, pπ−) reaction for kinematics at θπc.m. = 70◦ (left panel)
and 90◦ (right panel). Neither CT nor SRC effects were included in the calculations.

3.3.2 Pion Electroproduction

The E01-107 collaboration at Jefferson Lab measured the nuclear transparency for

the pion electroproduction process on H, 12C, 27Al, 64Cu and 197Au. Measurements

were done for the kinematics listed in Table 3.3. The virtual photon can fluctuate into

a qq̄-pair along a certain distance (its coherence length), and introduce initial-state

interactions in this manner. It is important to minimize the influence of these com-

peting energy-dependent reaction mechanisms on the transparency. In the kinematics

of the experiment under consideration, the coherence length is of the order 0.2− 0.5

fm, and smaller than the radius of a nucleus. In all the measurements the pion is de-

tected in a relatively narrow cone about the momentum transfer. We have performed

calculations for all target nuclei. The transparency is defined as

T =

∑

α

∫

dωY (ω)
∫

∆3 pm
d~pm

�

d8σ

dΩe′ dEe′ dEπdΩπdΩN

�

RMSGA
∑

α

∫

dωY (ω)
∫

∆3 pm
d~pm

�

d8σ

dΩe′ dEe′ dEπdΩπdΩN

�

RPWIA

. (3.4)

The integration over ω takes into account the spread in energy of the virtual photon

in the experiment and weighs each point with the reconstructed yield Y (ω) [129].
The quantity ∆3pm specifies the phase space of the missing momentum and is deter-

mined by the condition |pm| ≤ 300 MeV/c, the experimental cuts and detector accep-

tances. An experimental cut of 100 MeV was placed on the missing mass of the final

state. Accordingly, the undetected final neutron is an extremely slow one. The ex-



3.3. TRANSPARENCIES 73

q [MeV] θπc.m. [deg] pN [MeV] θN [deg] pπ [MeV] θπ [deg]
600 90◦ 573 41.61◦ 417 −65.74◦

650 70◦ 489 51.20◦ 513 −47.91◦

650 90◦ 611 41.50◦ 448 −64.64◦

750 70◦ 546 51.01◦ 588 −46.23◦

750 90◦ 686 41.20◦ 509 −62.59◦

850 70◦ 601 50.72◦ 661 −44.70◦

850 90◦ 757 40.83◦ 567 −60.72◦

950 70◦ 653 50.37◦ 733 −43.31◦

950 90◦ 825 40.43◦ 625 −58.99◦

1069 70◦ 713 49.92◦ 818 −41.81◦

1069 90◦ 905 39.90◦ 691 −57.11◦

1250 70◦ 800 49.18◦ 946 −39.80◦

1450 70◦ 892 48.36◦ 1086 −37.87◦

1648 70◦ 989 47.39◦ 1238 −36.02◦

Table 3.2 Central values for the photon energy (MeV), proton momentum pN (MeV), proton
angle θN , pion momentum pπ (MeV) and pion angle θπ for θπc.m. = 70◦, 90◦, used in the low
energy comparison between the RMSGA and ROMEA models. Angles are measured relative to
the incoming photon momentum.

perimental transparency is obtained by dividing the measured yield by a Monte-Carlo

equivalent yield for the targets with nucleon number A and subsequently comparing

it to the ratio of the yields for the 1H target [50]:

T =
�

Ȳmeasured/ȲMC
�

A/
�

Ȳmeasured/ȲMC
�

H (3.5)

As the Monte-Carlo simulation does not include the attenuation mechanisms on the

detected pions, the measured transparency is a measure of these. We compute these

intranuclear attenuation effects on the ejected pions in the RMSGA model. Thereby,

we use a parametrization provided by the E01-107 collaboration for the free electro-

production in Eq. (2.46) [129, 130]. Details for this parametrization are provided in

App. E.

Figure 3.13 presents the results from our transparency calculations for the elec-

troproduction reaction together with the experimental data [50] and results from the
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Figure 3.13 The Q2 dependence of the nuclear transparency for the A(e, e′π+) process in 12C,
27Al, 63Cu and 197Au. The full black and green curves are RMSGA and RMSGA+CT calcula-
tions respectively. The blue and red line are RMSGA+SRC and RMSGA+SRC+CT results. The
dashed curves are the results of the semiclassical model by Larson, Miller and Strikman [131]
with (green) and without (black) CT. Data from Ref. [50].
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Q2 [GeV2] Ee [MeV] θe [deg] Ee′ [MeV] pπ [MeV] θπ [deg]
1.10 4021 27.76◦ 1190 2793 10.58◦

2.15 5012 28.85◦ 1730 3187 13.44◦

3.00 5012 37.77◦ 1430 3418 12.74◦

3.91 5767 40.38◦ 1423 4077 11.53◦

4.69 5767 52.67◦ 1034 4412 9.09◦

Table 3.3 Kinematics used in the experiment measuring the pion electroproduction trans-
parency. Central values of Q2 (GeV2), incoming electron energy Ee(MeV), electron scattering
angle θe (degrees), scattered electron energy Ee′ (MeV), ejected pion momentum pπ (MeV),
and ejected pion angle (degrees) for the kinematics of the Jefferson Laboratory experiment
E01-107. Angles are measured relative to the incoming electron beam.

semiclassical model of Ref. [131]. The RMSGA calculations display a modest increase

over the Q2 range. This behavior finds a simple explanation in the pπ dependence of

the σtot
π+p of Fig. 2.11. The results contained in Fig. 3.13 cover a range in pion mo-

menta given by 2.8 ≤ pπ ≤ 4.4 GeV. In this range, σtot
π+p displays a soft decrease,

which reflects itself in a soft increase of the nuclear transparency. The RMSGA+SRC

transparencies are again about 5% larger than the RMSGA ones. The RMSGA+CT

shows a strong Q2 dependence with CT-related enhancements up to 20% at the high-

est energies. These calculations including CT are in very good agreement with the

experimental data. The results overestimate the Au data somewhat, but the slope is

in agreement with the data. If we compare the results to the semiclassical calcula-

tions, we see that the slopes of both calculations are in excellent agreement, reflecting

the use of the same quantum diffusion parametrization for the CT effect. The abso-

lute value differs, however, with the semiclassical results somewhat larger for the
12C calculations, and evolving to smaller for the 197Au calculations. A third model

developed by Kaskulov et al. [132] also finds excellent agreement between their cal-

culations including CT and the data. It includes a model for the primary p(e, e′π+)n
reaction and offers different descriptions for the longitudinal and transverse parts of

the cross section. The longitudinal part is described by a soft hadron exchange using

Regge exchange trajectories, the transverse part combines the soft hadron exchange

with a model describing the pion production as a hard partonic process. The FSI are

modelled using the GiBUU model [133]. Color transparency is implemented with the
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quantum diffusion model outlined in sec. 2.3 with two different parametrizations.

One with a formation time determined by the Lund model [134, 135], and one with

the formation time as in sec. 2.3 with ∆M2 = 1 GeV2 for the pion. The calculations

for the second parametrization are shown in Fig. 3.14.
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Figure 3.14 The Q2 dependence of the nuclear transparency for the A(e, e′π+) process in 12C,
27Al, 63Cu and 197Au. The black dash-dash dotted curves realize the CT effect in both the trans-
verse and longitudinal part. The blue dash-dotted (red dot-dot-dashed) curves only include the
CT effect in the transverse (longitudinal) channel. Data from Ref. [50]. Figure taken from Ref.
[132].

The evolution of the A dependence of the transparency is shown in Fig. 3.15. One

observes that the addition of CT to the calculation adds more curvature and that this

increases with higher Q2. In Fig. 3.16 a fit of the A-dependence to the parametrization

T = Aα−1 is shown as a function of Q2. Fits to the pion-nucleus scattering cross

section have resulted in α = 0.76± 0.01 [136]. Signatures of CT mechanisms can

be extracted from an emerging Q2 (or hard-scale) dependence of the extracted α’s.
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Figure 3.15 A dependence of the transparency for the A(e, e′π+) process at Q2 = 1.1GeV2

(black) and Q2 = 4.69 GeV2 (red). The solid curves denote RMSGA+SRC results. The dashed
lines are RMSGA+CT+SRC calculations.

As one can see, the fits to the data deviate significantly from the established value

and are in nice agreement with both model calculations including CT, though the

RMSGA+CT+SRC results consistently overestimate the data by a few percentages.

Finally, in Fig. 3.17, we compare our model calculations for 12C with those from the

semiclassical model of Ref. [131]. The transparency is plotted as function of the z

component of ~k = ~pπ − ~q. As previously observed for the photoproduction results

(Fig. 3.12) and the electroproduction results (Fig. 3.13), our results again turn out

to be higher by a few percentages.

3.3.3 Two Nucleon Knockout

The Hall A experiment E03-101 [48, 49] at Jefferson Lab has measured the trans-

parency for the 3He(γ, pp) and 12C(γ, pp) reactions, and data analysis is currently

under way [137]. Data are collected for proton c.m. angles θc.m. = 90◦ in coplanar

and symmetric kinematics (Fig. 3.7). Table 3.5 lists the central values of the photon

and nucleon momenta. Transparency is defined along the lines of Eqs. (3.3) and (3.4)
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Figure 3.16 The α parameter in the parametrization of the A-dependence of the transparency
T = Aα−1 is shown as a function of Q2. Inner error bars of the data show the statistic uncer-
tainty, and the outer error bars are the quadrature sum of the statistical, systematic and model
uncertainties [50]. The hatched band is the value of α extracted from pion-nucleus scattering
data [136]. Red curves show fits to the calculations of Ref. [131] with (dashed) and without
(solid) CT. The blue curve is a fit to the RMSGA+SRC+CT calculations. Figure taken from Ref.
[50].

as

T =

∑

α1α2

∫

dqY (q)
∫

d~Pm

�

d5σ

dEk1
dΩN1

dΩN2

�

RMSGA
∑

α1α2

∫

dqY (q)
∫

d~pm

�

d5σ

dEk1
dΩN1

dΩN2

�

RPWIA

, (3.6)

where
∑

α1α2
involves a sum over all possible shell combinations. The integrations

∫

dq
∫

d~Pm are evaluated with a Monte-Carlo integration algorithm that takes into ac-

count experimental cuts and acceptances, and Y (q) represents the weight of each gen-

erated event through the estimated reconstructed experimental photon beam spec-

trum [137]. The transparency is computed for knockout of a correlated pair in a rela-

tive S-state. Thereby we adopt a factorized approach, factorizing the matrix element

of Eq. (2.47) into the momentum distribution of Eq. (3.1) and a part containing the

primary (γ, pp) reaction. The latter part is again assumed to cancel out of the ration

of Eq. (3.6).



3.3. TRANSPARENCIES 79

 [GeV]zk
-0.8 -0.6 -0.4 -0.2

T
ra

ns
pa

re
nc

y

0.6

0.7

0.8

Figure 3.17 Nuclear transparency results for 12C(e, e′π+) versus the z component of ~k = ~pπ−~q
for kinematics corresponding to data points of the JLab experiment of Ref. [50]. The circles are
RMSGA+CT predictions, whereas the stars are from the semiclassical calculations of Ref. [131].
Kinematics are listed in Table 3.4

Fig. 3.18 shows the results of the transparency calculations as a function of mo-

mentum transfer squared |t| = (qµ − pµN1
) for the (γ, pp) reaction in 3He and 12C as

the knockout of a correlated pair. As for the pion photoproduction channel, the trans-

parencies again rise for |t| ≤ 2 (GeV/c2). This phenomenon finds its origin in the local

minimum of the total nucleon-nucleon cross section for momenta around 1 GeV/c. As

with the previously studied reactions, the SRC mechanisms increase the transparency

by 5%. The inclusion of CT on the other hand enhances the transparency up to over

20% for carbon at the highest energies. The most striking feature of these calcula-

tions, however, is the low values of the transparencies. If one takes the transparency

value for the RSMGA calculations of the 12C(e, e′p) reaction at these energies (T ≈ 0.6

[74]) and naively squares this value to estimate the FSI, one obtains 0.36. This is sig-

nificantly higher than the value of ∼ 0.23 we obtain for the 12C(γ, pp) transparency.

As is shown in the next section, this is a consequence of the A(γ, pp) reaction prob-

ing higher density regions of the nucleus then the A(e, e′p) reaction. Higher densities

mean more reduction, and hence a lower transparency.

Fig. 3.19 shows some results for the 3He(γ, pp) process, with the reaction de-
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Figure 3.18 The nuclear transparency extracted from 12C(γ, pp) (upper), 3He(γ, pp) (middle)
and their ratio (lower panel) versus the squared momentum transfer |t|. The black and red
curves are RMSGA and RMSGA+CT calculations respectively. The blue and green line are
RMSGA+SRC and RMSGA+SRC+CT results. Table 3.5 lists the kinematics of the calculated
points. These calculations consider 3He(γ, pp) as the breakup of a correlated pair.
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Q2 [GeV2] Ee [MeV] θe [deg] Ee′ [MeV] pπ [MeV] θπ [deg] kz [GeV]
1.00 3540 29.00◦ 1126 2380 12.06◦ -0.23
1.83 3540 53.46◦ 639 2823 9.23◦ -0.39
2.15 5012 28.85◦ 1730 3187 13.44◦ -0.46
3.00 4700 42.40◦ 1220 3315 12.20◦ -0.58
3.00 5012 37.77◦ 1430 3418 12.74◦ -0.62
4.00 5860 36.56◦ 1734 3897 13.02◦ -0.71
5.00 5860 53.90◦ 1038 4540 9.08◦ -0.79

Table 3.4 Kinematics used in the comparison between the RMSGA and semiclassical models
for the A(e, e′π+) reaction. Central values of Q2 (GeV2), incoming electron energy Ee(MeV),
electron scattering angle θe (degrees), scattered electron energy Ee′ (MeV), ejected pion mo-
mentum pπ (MeV), ejected pion angle (degrees), and z component of ~k = ~pπ − ~q. Angles are
measured relative to the incoming electron beam.

scribed as a hard rescattering process. To make these calculations numerical feasible,

the FSI factor of Eq. (2.66) is approximated by factorizing it into a part containing

the FSI of the ejected nucleons and a part containing the FSI of the propagator:

FFSI(~r1,~r2)≈
∫

d~r3 . . .

∫

d~rA|φα3
(~r3)|2 . . . |φαA

(~rA)|2

× ŜK1N (~r2;~r3, . . . ,~rA)ŜK2N (~r2;~r3, . . . ,~rA)

×
∫

d~r ′3 . . .

∫

d~r ′A|φα3
(~r ′3)|

2 . . . |φαA
(~r ′A)|

2ŜN N (~r2,~r1;~r ′3, . . . ,~r ′A) . (3.7)

With this approximation, we can take the factor containing the FSI of the ejected

particles out of the innermost integrations, as they don’t depend on the momentum

vector of the propagator. The transparency is again calculated by using Eq. (3.6),

but this time with the matrix element of Eq. (2.71) in the five-fold differential cross

section. Calculations were done with all the FSI in Eq. (3.7) included and with

the FSI of the propagator excluded. As can be seen in Fig. (3.19), the FSI of the

propagator lower the transparency by about 5%. Both rescattering calculations result

in transparencies with a similar |t| dependence as the one-step process in Fig. 3.18.

The calculations including the FSI of the propagator yield the lowest transparencies,

indicating that the two-step two-nucleon knockout probes even higher densities than

the correlated pair knockout. A detailed investigation of the A(γ, NN) transparencies
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q [GeV] pN1
[MeV] θN1

[deg] pN2
[MeV] θN2

[deg]
0.849 943 65.32◦ 943 −65.32◦

1.08 1095 62.62◦ 1095 −62.62◦

1.65 1453 57.00◦ 1453 −57.00◦

2.1 1711 53.69◦ 1711 −53.69◦

2.45 1913 51.43◦ 1913 −51.43◦

3.12 2276 47.98◦ 2276 −47.98◦

4.07 2780 44.11◦ 2780 −44.11◦

Table 3.5 Kinematics of the E03-101 experiment at Jefferson Lab. The experiment aims at
measuring the transparency for double proton knockout reactions. Central values for the pho-
ton energy q (GeV), proton momenta pNi

(MeV) and angles θNi
for θc.m. = 90◦. Angles are

measured relative to the incoming photon momentum.

requires calculations with the two competing mechanisms summed at amplitude level.

In this way, the size of the interference between the one- and two-step processes can

also be determined.

3.4 Density Dependence

Nucleon removal studies in quasi-free kinematics belong to the most powerful instru-

ments for studying the structure of nuclei. Since the 1960’s electroinduced single-

nucleon knockout(or, A(e, e′p)) has provided a wealth of information about the mer-

its and the limitations of the nuclear shell-model [138]. Quasi-free proton scattering

from nuclei (i.e. A(p, 2p)) has a somewhat longer history [139] and could in princi-

ple provide similar information as A(e, e′p). With three protons subject to attenuation

effects, in A(p, 2p) the description of the initial and final-state interactions, is a more

challenging issue than in A(e, e′p). More recent applications of the A(p, 2p) reaction

involve the analyzing power (Ay) as an instrument for probing possible medium mod-

ifications of hadron properties and the density dependence of the nucleon-nucleon in-

teraction [82, 140]. In inverse kinematics (i.e. the p(A, 2p)A−1 reaction) the (p, 2p)
process offers great opportunities for systematic studies of the density and isospin

dependency of single-particle properties in unstable nuclei [141] at high-energy ra-

dioactive beam facilities [142]. Studies of that type have the potential to study the

equation of state for nuclei far from equilibrium. With regard to quasi-free A(e, e′p),
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Figure 3.19 The nuclear transparency extracted from 3He(γ, pp) (middle) versus the squared
momentum transfer |t|. The black and blue curves are RMSGA and RMSGA+CT calculations re-
spectively. Solid curves include all FSI, dashed curves do not include the FSI of the propagator.
These calculations consider 3He(γ, pp) as a hard-rescattering mechanism.

a recent development includes the study of possible medium modifications of electro-

magnetic form factors through double polarization experiments of the type 4He(~e, e′~p)
[143]. Another active line of current research with electrons is the two-nucleon re-

moval reaction (A(γ, pp) and A(e, e′pp)) in selected kinematics. This process is ex-

pected to provide a window on the short-range structure of nuclei when performed at

sufficiently high values of the four-momentum transfer [65].
The development of an appropriate reaction theory is essential for reliably extract-

ing the physical information from the nucleon removal reactions. For nucleon kinetic

energies up to about 1 GeV the distorted wave impulse approximation (DWIA) with

appropriately constrained optical potentials, has enjoyed many successes in that it

could reproduce fairly well a large amount of measurements [138]. Constraining

the optical potentials heavily depends on the availability of elastic proton-nucleus

scattering data. Moreover, the optical potentials exhibit a substantial kinetic-energy

dependence. This energy dependence makes it difficult to make more general state-

ments about e.g. the role of attenuation effects and the effective densities probed

in the various reactions. At sufficiently high nucleon energies the Glauber approach

provides a valid alternative for the DWIA framework. The Glauber approach has the
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advantage that the effect of initial and final-state interactions (ISIs and FSIs) can be

computed from the knowledge of the elementary proton-proton and proton-neutron

differential cross sections and a nuclear-structure model for the density of the tar-

get (residual) nucleus. Moreover, for nucleon momenta exceeding about 1 GeV the

energy dependence of the parameters entering the Glauber calculations is relatively

smooth. This results, for example, in nuclear A(e, e′p) transparencies which exhibit

little energy dependence at larger nucleon kinetic energies [74]. From the theoretical

point of view, it allows one to make more universal statements about the predicted

role of nuclear attenuations. Another advantage of the Glauber approach is that it

is applicable to a wide range of reactions, including electromagnetic and hadronic

probes, with stable and unstable nuclei [144, 145].

In this section we exploit the robustness of the Glauber approach to study the

density dependence of quasi-free nucleon removal reactions for ejected protons with

a kinetic energy of 1.5 GeV . Indeed, investigations into the medium dependence

of nucleon properties and the study of the nuclear structure of unstable nuclei e.g.,

heavily rely on the possibility of effectively probing regions of sufficient density in

the target nucleus. Nuclear attenuation effects on the impinging and ejected protons

can make nucleon removal reactions to effectively probe regions of relatively small

density near the surface of the target nucleus. With respect to the description of

nuclear attenuation effects, which exhibit a certain degree of model dependence, we

stress the importance of making cross checks over different fields (electromagnetic

versus hadronic probes) and of studying varying numbers of hadrons that are subject

to nuclear attenuation. Here, we compare the effective nuclear density that can be

probed in reactions that have one nucleon (A(e, e′p)), two nucleons (A(e, e′pp)) and

three nucleons (A(p, 2p)) subject to nuclear attenuation effects.

In a factorized approach, the differential cross sections for the single-nucleon re-

moval reactions considered here (i.e. A(p, 2p) and A(e, e′p)) are proportional to the
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distorted momentum distributions ρD(~pm) of Eq. (2.29)

ρD
nκ(~pm) =

1

(2π)3
∑

s,m

�

�

�

�

∫

d~re−i~pm·~r ū(~pm, s)FRMSGA(~r)φnκm(~r)

�

�

�

�

2

=
1

2(2π)3

∫

dr

∫

dθ





∑

s,m

D(r,θ)†ū(~pm, s)φD
nκm

+ D(r,θ)
�

ū(~pm, s)φD
nκm

�†
i

≡
∫

drdθδ (r,θ)

≡
∫

drδ (r) , (3.8)

where the quantum numbers (n,κ) determine the shell of the struck nucleon. The

missing momentum ~pm is determined by the difference between the asymptotic three-

momentum ~p of the ejected nucleon and the three-momentum transfer ~q. We define

the z-axis along the ~q and the xz-plane as the reaction plane. The function δ(r)
(δ(r,θ)) defined in Eq. (3.8) encodes the contribution from an infinitesimal interval

around r (r and θ) to a single-nucleon removal cross section [140]. The function

D(r,θ) which was introduced in (3.8) reads

D(r,θ) =

∫

dφ sinθ e−i~pm·~r ū(~pm, s)FRMSGA(~r)φnκm(~r) . (3.9)

The Glauber phase operator FRMSGA(~r) encodes the combined effect of the initial and

final-state interactions [73, 75]. Along the lines of Eq. (3.8), we can formulate a sim-

ilar function δ(R,θ) for the A(γ, pp) and A(e, e′pp) reactions describing the knockout

of a correlated pair in a relative S-state, by departing from the distorted momentum

distributions of Eq. (3.1):

ρD
n1κ1n2κ2

(~Pm)≡
∫

dRdθδ(R,θ)≡
∫

dRδ(R) . (3.10)

with ~Pm = ~k1 −~k2 +~q (where ~q is the momentum of the incoming photon and ~ki the

asymptotic momenta of the ejected nucleons).

In Fig. 3.20 we display the function δ(r,θ) defined in the Eq. (3.8) for proton

knockout from the 1s1/2 and 1p3/2 shell from a 12C target. We compare the (p, 2p)
with the (e, e′p) result for an energy transfer of 1.5 GeV and conditions probing the
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Figure 3.20 The function δ(r,θ) for the 12C(e, e′p) and 12C(p, 2p) reaction. For both types of
reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which
probes the maximum of the momentum distribution (i.e. pm=0 MeV for knockout from the
1s1/2-shell and pm=115 MeV for removal from the 1p3/2-shell). For the (e, e′p) results, the
proton is detected along the direction of the momentum transfer. For the (p, 2p), the incoming
proton has a kinetic energy of about 3 GeV and the two ejected protons have a kinetic energy of
1.5 GeV. They are detected under an angle of about 32◦ but on opposite sides of the incoming
beam. For the sake of reference, the proton rms radius in 12C as determined from elastic
electron scattering is




r2�1/2 = 2.464± 0.012fm [146].
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Figure 3.21 The function δ(r,θ) for the 56Fe(e, e′p) and 56Fe(p, 2p) reaction. For both types
of reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which
probes the maximum of the momentum distribution (i.e. pm=0 MeV for knockout from the
1s1/2-shell and pm=100 MeV for removal from the 1p3/2-shell). For the (e, e′p) results, the
proton is detected along the direction of the momentum transfer. For the (p, 2p), the incoming
proton has a kinetic energy of about 3 GeV and the two ejected protons have a kinetic energy of
1.5 GeV. They are detected under an angle of about 32◦ but on opposite sides of the incoming
beam.



88 CHAPTER 3. NUMERICAL RESULTS

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 05010
0

d3
/2

 R
P

W
IA

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 02040

d3
/2

 R
M

SG
A

 (
e,

e’
p)

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 05

d3
/2

 R
M

SG
A

 (
p,

2p
)

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 0

10
0

f7
/2

 R
P

W
IA

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 050

f7
/2

 R
M

SG
A

 (
e,

e’
p)

r 
[f

m
]

2
4

6
8

10

 [deg] θ05010
0

15
0

δ
2

[f
m

 ] 01020

f7
/2

 R
M

SG
A

 (
p,

2p
)

Figure 3.22 The function δ(r,θ) for the 56Fe(e, e′p) and 56Fe(p, 2p) reaction. For both types
of reaction we consider an energy transfer of 1.5 GeV and a three-momentum transfer ~q which
probes the maximum of the momentum distribution (i.e. pm=140 MeV for knockout from the
1d3/2-shell and pm=180 MeV for removal from the 1 f 7/2-shell). For the (e, e′p) results, the
proton is detected along the direction of the momentum transfer. For the (p, 2p), the incoming
proton has a kinetic energy of about 3 GeV and the two ejected protons have a kinetic energy of
1.5 GeV. They are detected under an angle of about 32◦ but on opposite sides of the incoming
beam.
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maximum of the undisturbed momentum distribution ρnκ(~p). The latter can be ob-

tained by setting FRMSGA = 1. In the considered kinematics, it is clear that in the

absence of nuclear attenuation effects (RPWIA), the upper (0◦ ≤ θ ≤ 90◦) and lower

hemisphere (90◦ ≤ θ ≤ 180◦) of the target nucleus would equally contribute to

δ(r,θ) and the measured signal. Moreover, the δ(r,θ) becomes equal for (e, e′p)
and (p, 2p). The ISI and FSI have the strongest impact at the highest nuclear den-

sities, which makes the δ(r,θ) to shift to larger values of the radial coordinate r.

In addition, the contribution from the upper and lower hemisphere becomes asym-

metric when considering attenuation mechanisms. Indeed, the nuclear hemisphere

which is closest to the proton detector will provide the strongest contribution to the

detected signal. The stronger the effect of attenuations, the larger the shifts in r, the

larger the induced asymmetries between the upper and lower hemisphere and the

stronger the reduction. Obviously, the asymmetry, shift and reduction occur for the

δ(r,θ) in (e, e′p) and (p, 2p). All three effects, however, are far more pronounced for

the (p, 2p) than for the corresponding (e, e′p) δ(r,θ). The same observations apply

for Figs. 3.21 and 3.22, where we plotted the δ(r,θ) function for a 56Fe target for

the same kinematical conditions as in Fig. 3.20. Fig 3.21 shows results for the inner

1s1/2 and 1p3/2 shells, and Fig. 3.22 for the outer 1d3/2 and 1 f 7/2 shells. A com-

parison between the two figures also shows the greater reduction by the FSI of the

signal strength for the inner shells in Fig. 3.20.

In Fig. 3.23 we display for the 12C target the function δ(R,θ) defined in the

Eq. (3.10) for two-proton knockout from the (1s1/2 − 1s1/2)-, (1s1/2 − 1p3/2)-,
and (1p3/2 − 1p3/2)-orbits. Comparing Figs. 3.20 and 3.23 it is clear that two-

proton removal at high energies, really succeeds in probing the high-density regions

of the target nucleus (note the different range in the radial coordinate r for Figs. 3.20

and 3.23. The attenuation mechanisms induce shifts to the surface but the bulk of

the measured strength can be clearly attributed to high-density regions in the target

nucleus. Results for the 56Fe target are shown in Fig. 3.21 for several two proton

removals from the same shell . Here too, higher densities are probed when compared

to the (e, e′p) and (p, 2p) results.

In order to quantify the average densities that the various reactions can probe, we
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Figure 3.23 The function δ(r,θ) for the exclusive 12C(γ, pp) cross section. In all situations
we consider an energy transfer of 3 GeV and a three-momentum transfer ~q which probes
the maximum of the momentum distribution ρα1α2

(~P) (i.e. P=0 MeV for knockout from
the (1s1/2 − 1s1/2)- and (1p3/2 − 1p3/2)-orbits, and P=160 MeV for removal from the
(1s1/2− 1p3/2)-orbits). We consider coplanar and symmetric kinematics.



3.4. DENSITY DEPENDENCE 91

R [fm]2 4 6

 [
de

g]
θ 0

50

100

150

δ 2[fm ]

10

20

30

(1s1/2-1s1/2) RPWIA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

0.5

1

(1s1/2-1s1/2) RMSGA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

50

100

(1p3/2-1p3/2) RPWIA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

2

4

(1p3/2-1p3/2) RMSGA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

20

40

(1d3/2-1d3/2) RPWIA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

0

2

4

(1d3/2-1d3/2) RMSGA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

0

50

100

(1f7/2-1f7/2) RMSGA

R [fm]2 4 6

 [
de

g]
θ

δ 2[fm ]

0

50

100

150

0

5

10

15

(1f7/2-1f7/2) RMSGA

Figure 3.24 The function δ(r,θ) for the exclusive 56Fe(γ, pp) cross section. In all situations
we consider an energy transfer of 3 GeV and a three-momentum transfer ~q which probes the
maximum of the momentum distribution ρα1α2

(~P) (i.e. P=0 MeV for knockout from all orbits).
We consider coplanar and symmetric kinematics.
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Nucleus Reaction Orbits ρ(RPW IA) [fm−3] ρ(RMSGA) [fm−3]
12C (e, e′p) 1s1/2 0.09975 0.08563
12C (p, 2p) 1s1/2 0.09975 0.05548
12C (e, e′p) 1p3/2 0.04966 0.03821
12C (p, 2p) 1p3/2 0.04966 0.02547
12C (γ, pp) (1s1/2− 1s1/2) 0.15005 0.13493
12C (γ, pp) (1p3/2− 1p3/2) 0.09547 0.07533
12C (γ, pp) (1s1/2− 1p3/2) 0.11546 0.09847
56Fe (e, e′p) 1s1/2 0.12631 0.11335
56Fe (p, 2p) 1s1/2 0.12631 0.07784
56Fe (e, e′p) 1p3/2 0.11547 0.10228
56Fe (p, 2p) 1p3/2 0.11547 0.06991
56Fe (e, e′p) 1d3/2 0.09444 0.08056
56Fe (p, 2p) 1d3/2 0.09444 0.05295
56Fe (e, e′p) 1 f 7/2 0.07793 0.06587
56Fe (p, 2p) 1 f 7/2 0.07793 0.04500
56Fe (γ, pp) (1s1/2− 1s1/2) 0.14513 0.13828
56Fe (γ, pp) (1p3/2− 1p3/2) 0.14005 0.12610
56Fe (γ, pp) (1d3/2− 1d3/2) 0.12982 0.10730
56Fe (γ, pp) (1 f 7/2− 1 f 7/2) 0.10995 0.08679

Table 3.6 The average density ρ probed in various reactions.

introduce [82, 140]

ρ =

∫

drdθρp (~r)δ (r,θ)
∫

drdθδ (r,θ)
, (3.11)

where ρ (~r) is the density of the target nucleus and δ(r,θ) [or δ(R,θ)] the function

as it was defined in Eq. (3.8) [(3.10)]. Table 3.6 lists a systematic comparison of the

computed values of ρ for 12C and 56Fe. For both nuclei, the average density probed

in the two-proton removal reaction from the (1s1/2− 1s1/2) orbits approaches the

nuclear saturation density of ρ0 = 0,17fm−3. We wish to stress the strong dependence

on the nuclear orbit. Despite the strong attenuation, the (p, 2p) reaction from the

1s1/2 orbit in 12C can effectively probe higher densities than the (e, e′p) reaction

from the valence 1p3/2 shell. One can also see that the difference in densities probed

between the different reactions is less pronounced for 56Fe than for 12C. Densities
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for both the 1s1/2 and 1 f 7/2 orbit in A(p, 2p) are about half of those in A(γ, pp) in

iron, whereas in carbon they are more about one third for both the 1s1/2 and the

1p3/2. For the (p, 2p) reaction with knockout from the 1s1/2 orbit, the predicted

effective mean density from the RMSGA calculations is ρ ≈ 0.33ρ0. This number is

almost identical to the DWIA results of Ref. [82] for 12C(p, 2p) for 1 GeV incoming

protons. Figs. 3.25 and 3.26 show δ(r) and δ(R) for knockout from the Fermi level

of 12C and 56Fe compared to r squared times the nuclear density. Here, one can again

clearly see only the (γ, pp) reaction succeeds in probing the high density region while

the dominating contributions for the (e, e′p) and (p, 2p) reactions stem from regions

more than 1 fm removed from this maximum.
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Figure 3.25 Contribution to the exclusive 12C(e, e′p) (green) , 12C(p, 2p) (blue, left panel) and
12C(γ, pp) (blue, right panel) cross section as a function of the radial coordinate r. The black
solid line shows r2ρ(r) for the 12C nucleus. The kinematic conditions are those of Figs. 3.20
and 3.23. We consider one- and two-nucleon removal from the 1p3/2-shell. The RPWIA result
is displayed in red. The ordinate is given for r2ρ(r). The δ(r) are plotted in units fm2 up to an
arbitrary scaling factor.
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Figure 3.26 Contribution to the exclusive 56Fe(e, e′p) (green) , 56Fe(p, 2p) (blue, left panel)
and 56Fe(γ, pp) (blue, right panel) cross section as a function of the radial coordinate r. The
black solid line shows r2ρ(r) for the 56Fe nucleus. The kinematic conditions are those of
Figs. 3.22 and 3.24. We consider one- and two-nucleon removal from the 1 f 7/2-shell. The
RPWIA result is displayed in red. The ordinate is given for r2ρ(r). The δ(r) are plotted in
units fm2 up to an arbitrary scaling factor.



Chapter 4
Conclusions

In this work, we have addressed the issue of the crossover between the hadronic and

partonic degrees of freedom. To study this crossover, we outlined a relativistic and

quantum mechanical framework based on hadronic degrees of freedom. It was em-

ployed in this thesis to describe single pion, pion-nucleon and two-nucleon removal

reactions from nuclear targets. For these removal reactions, sophisticated calculations

were compared to data taken in the search for the onset of QCD phenomena at in-

termediate energies. Such an onset (e.g. of the color transparency effect) manifests

itself in deviations between these data and our calculations.

The model used to perform the calculations is devoid of free parameters and both

kinematics and dynamics are treated in a relativistic manner. The relativistic bound-

state wave functions for the nucleons in the initial and residual nucleus are obtained

in an independent particle model, based on the Hartree approximation to the σ−ω
model [147]. We treat the interaction of the incoming beam with the target nucleus

in the impulse approximation. The effect of final-state interactions on the detected

nucleons and pions is described in the eikonal approximation. Originating from op-

tics, this eikonal approximation is a semi-classical method that uses linear trajectories

for particles that are subject to elastic and mildly inelastic rescattering over small an-

gles. Typically, the wavelength of the incoming particle is small in comparison with

the range of the scattering potential.

At sufficiently high nucleon and pion energies, the intranuclear attenuation on
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the ejected particles can be computed with a relativistic version of the Glauber model

dubbed RMSGA. The attenuating effect of the medium on the ejected particles is com-

puted by means of a Glauber phase operator. The numerical computation of the latter,

requires knowledge about πN → πN and N ′N → N ′N scattering data. In contrast to

the models available in the literature, which adopt a semi-classical approach, our de-

scription of the FSI mechanisms is quantum mechanical and relativistic. For nucleons

with low momenta where the conditions to apply a Glauber approach are not valid

anymore, the framework offers the flexibility to compute the effect of FSI in a ROMEA

model. The ROMEA model incorporates the FSI with the help of optical potentials,

adopting an eikonal approximation. These optical potentials are based on global fits

to elastic nucleon-nucleus scattering data (as opposed to the nucleon-nucleon scat-

tering approach of the RMSGA). Analysis of the RMSGA FSI factor, that contains all

the medium attenuation for an escaping nucleon and pion, showed that the effect

of distortions (both in the norm and the phase of the FSI factor) grows when larger

amounts of nuclear matter are transversed. The biggest attenuations occurred when

the particles transverse long chunks of nuclear material. The effect of short-range cor-

relations on the FSI can also be included in our model calculations. This was done by

replacing the nuclear density in the integrations of the FSI factor with a modified one,

accounting for the presence of a nucleon at the point of the hard interaction in the

removal process, along the lines of Ref. [125]. A hole is introduced in this modified

density that reflects the hard core of the nucleon-nucleon interaction, and densities

are enhanced at the edge of this hole. Normalization of this modified density was

ensured by the introduction of a γ(~r) function, and a solution for this function was

found through solving an integral equation.

We performed transparency calculations for kinematics corresponding to com-

pleted and planned experiments [47, 49, 50, 127]. These transparency experiments

are looking for the onset of color transparency. We implemented the CT effect in our

model via the quantum diffusion model of Farrar et al. [112]. This replaces the total

cross section parameter in the Glauber profile function with an effective one. This

effective cross section evolves from a reduced value (accounting for the reduced in-

teraction of a color transparent PLC) to the normal value along a certain formation

length.

Our pion electroproduction transparency calculations including the CT effect are
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in good agreement with the data taken at Jefferson Lab [50]. Both the energy de-

pendence and the A dependence of the transparency show deviations from the tradi-

tional nuclear physics expectations and are in agreement with calculations including

the effect of CT. The quality of agreement with the JLab data [47] was worse for

the pion photoproduction calculations. The calculations overpredict the measured
4He(γ, pπ−) transparencies and fall short in reproducing their low-|t| dependence.

At higher values of |t|, the slope of the calculations including CT is in better agree-

ment with the data than those without. In order to check the robustness of our results,

we compared the Glauber and optical-potential based models for nucleon momenta

where both approaches can be applied. The calculations predicted transparencies in
4He that follow similar trends in both models. The differences in the magnitude of

the transparency are smaller than 5% and shrink with higher nucleon momentum.

Our RMSGA predictions for the pion electroproduction transparencies are also in rea-

sonable agreement with the semiclassical results of Larson, Miller and Strikman. Both

models predict similar trends, with the RMSGA predictions for the pion transparencies

being systematically ∼ 5% higher. This provides strong support for that the baseline

nuclear-physics transparencies can be computed in a rather model-independent fash-

ion. Better opportunities to study the onset of CT phenomena will become available

at the upgraded Jefferson Lab facility. We predict an increase of the transparency

of over 20 % at the highest energies due to color transparency. Transparencies are

also enhanced through the inclusion of SRC effects in the calculations. This yields an

increase of about 5%, independent of the hard-scale. Accordingly, the SRC and CT

mechanisms can be clearly separated.

For the photo-induced two-proton knockout reaction, we performed calculations

in kinematics corresponding to an experiment completed at JLab and currently un-

dergoing analysis [49]. Our model for two-nucleon knockout accomodates two com-

peting reaction mechanisms, one of the single-step (or direct) type, and one of the

two-step type. The single-step mechanism describes the process as the knockout of

a correlated pair, residing in a relative S-state. The two-step mechanism uses a hard

rescattering mechanism, whereby the nucleon that interacts with the incoming pho-

ton knocks out a second nucleon on its way out of the nucleus. Transparency calcula-

tions confirmed the trends established in the pion photoproduction calculations with

a transparency rising for low |t|. The magnitude of the transparency, however, was
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lower than what could be naively expected from the A(e, e′p) values. For the knockout

of a relative S pair, this was due to the reaction probing high density regions. For the

hard rescattering reaction, excluding the FSI of the intermediate nucleon propagator

increased the transparency with around 5%. Transparencies values in the rescatter-

ing model were lower than those for the knockout of a correlated pair, implying even

higher density regions are probed in this reaction mechanism.

Finally, we exploited the robustness and multifaceted properties of the relativis-

tic Glauber framework to make a comparative and consistent study of the effective

nuclear densities that can be probed in (p, 2p), (e, e′p) and (γ, pp) reactions. As rep-

resentative examples we selected a carbon and iron target and ejected proton kinetic

energies of 1.5 GeV. The (e, e′p) reaction has the potential to probe reasonable den-

sities. Of all reactions considered, the (γ, pp) reaction is the one that can get closest

to the deep nuclear interior. The (p, 2p) reaction is subject to large attenuation, but

a high resolution experiment picking protons from s-orbits in 12C, for example, can

probe densities that are of the order of 30% of the nuclear saturation density. Cal-

culations in iron showed similar trends, but the reduction of the effectively probed

densities in (e, e′p) and (p, 2p) compared to (γ, pp) was less pronounced than in car-

bon. These findings are of importance for ongoing and planned searches of nuclear

effects at small distance scales.

Outlook

In order to establish the onset of CT effect on a firm footing, it is important to

extend the pion transparency measurements to higher energies, where the largest

CT effects are predicted. The upgrade of Jefferson Lab to 12 GeV that is currently

underway will make this possible and experiments are already being planned. We

can also extend our model to include reactions with a kaon or rho meson in the final

state, so that it allows us to perform calculations for the completed JLab experiment

[45]. As experimental information about kaon-nucleon and rho-nucleon scattering is

rather limited, the parameters entering the Glauber phase are not as well determined

as for the nucleon and pion. There is still room for improvement in the two-nucleon

knockout calculations. For instance, the two competing reaction mechanisms can be

combined on amplitude level and the resulting interference effects can be studied.

Other improvements and extensions to the model can also be made. Realistic
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wave functions for light nuclei could be included. The description of the correlations

in the FSI could be improved through the inclusion of tensor correlations. However,

we estimate that the correction due to the tensor correlations would be small, as the

medium-range character of these correlations reaches beyond the small transverse

range of the Glauber FSI. As correlations imply high density fluctuations, there is

also the possibility to include a model for the correlations that departs from partonic

degrees of freedom. In combination with the hadronic picture used in this work, this

would give us a kind of hybrid model wherein the two approaches could be compared

with each other and with results from experiments.
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Appendix A
Notations and Abbreviations

Notations

The spin vector operator acts on two component spinors and is defined as

~σ = (σx ,σy ,σz) = σ
i~ei ≡ (~σ ·~e

†
i )~ei , (A.1)

where the Pauli matrices are given by

σx =
�

0 1
1 0

�

, σy =
�

0 −i
i 0

�

, σz =
�

1 0
0 −1

�

. (A.2)

The Dirac or γ matrices are defined by the anticommutation relations

{γµ,γν}= 2gµν . (A.3)

In the Pauli-Dirac representation used throughout this work, they are written as

γ0 =
�

1I 0
0 −1I

�

, γi =
�

0 σi
−σi 0

�

. (A.4)

γ5 is defined as

γ5 = iγ0γ1γ2γ3 , (A.5)

and the commutators σµν as

σµν =
i

2

�

γµ,γν
�

. (A.6)
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The matrices β and αi are defined as

β = γ0 , ~αγ0~γ . (A.7)

Abbreviations
BNL Brookhaven National Laboratory
c.m. center of mass
CT color transparency
EA eikonal approximation
FSI final-state interactions
GPD generalized parton distribution
HRM hard rescattering model
IA impulse approximation
IPM independent particle model
ISI initial state reactions
LRC long-range correlations
MAMI Mainz microtron
NIKHEF Nationaal Instituut voor Kernfysica en Hoge-energiefysica
PLC point-like configuration
pQCD perturbative quantum chromodynamics
QCD quantum chromodynamics
QED quantum electrodynamics
(R)DWIA (relativistic) distorted-wave impulse approximation
RMSGA relativistic multiple-scattering Glauber approximation
ROMEA relativistic optical model eikonal approximation
(R)PWIA (relativistic) plain-wave impulse approximation
SRC short-range correlations



Appendix B
Relativistic Bound-State Wave
Functions

The wave functions for the bound nucleons are constructed in an independent-particle

model (IPM). We use relativistic wave functions from the Hartree approximation to

the Walecka model with the W1 parametrization [147]. For the sake of conciseness of

the notation, only the spatial coordinates of the nucleons are written throughout this

work. The single-particle wave functionsφα adopt the following form for a spherically

symmetric nuclear potential [148]:

φα(~r)≡ φnκm(~r, ~σ) =





i Gnκ(r)
r
Yκm(Ω, ~σ)

− Fnκ(r)
r
Y−κm(Ω, ~σ)



 . (B.1)

Here, n is the principal quantum number and κ and m denote the generalized angular

momentum quantum numbers. The spin spherical harmonics Y±κm are defined as:

Yκm(Ω, ~σ) =
∑

ml ms

〈lml
1

2
ms| jm〉Ylml

(Ω)χ 1
2

ms
(~σ) ,

Y−κm(Ω, ~σ) =
∑

ml ms

〈l̄ml
1

2
ms| jm〉Yl̄ml

(Ω)χ 1
2

ms
(~σ) , (B.2)

with j = |κ| −
1

2
, l =

�

κ, κ > 0
−κ− 1, κ < 0 , l̄ =

�

κ− 1, κ > 0
−κ, κ < 0 .
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The Fourier transform of the bound-state wave functions (B.1) is given by

φα(~p) =

∫

d~re−i~r·~pφα(~r) = (−i)l(2π)3/2
�

gnκ(p)Yκm(Ωp)
−Sκ fnκ(p)Y−κm(Ωp)

�

, (B.3)

with Sκ = κ/|κ|. The radial functions gnκ(~p) and fnκ(~p) are defined by

gnκ(~p) =

r

2

π

∫ ∞

0

r2dr
Gnκ(r)

r
jl(pr) , (B.4)

fnκ(~p) =

r

2

π

∫ ∞

0

r2dr
Fnκ(r)

r
jl(pr) , (B.5)

with jl(pr) the spherical Bessel function of the first kind.



Appendix C
Klein-Gordon Scattering

We consider the relativistic scattering of a spinless particle with mass m in the pres-

ence of a potential V (r). The time-independent Klein-Gordon equation of the system

is given by

(p̂2 +m2)ψ(~r) = (E − V (r))2ψ(~r) , (C.1)

with E =
p

k2 +m2 and ~̂p the momentum operator. We consider an incoming plane

wave

Φ~ki
(~r) =

1

(2π)3/2
ei~ki ·~r , (C.2)

and a scattering wave function that obeys the asymptotic boundary condition

ψ
(+)
~ki
(~r)−−→

r→∞
A

�

ei~ki ·~r + f (Ω)
eikr

r

�

. (C.3)

Here, A is a normalization factor, f (Ω) is the scattering amplitude, and we assume

that the potential V (r) vanishes faster than r−1 for r →∞. The conserved probability

current associated with the Klein-Gordon Eq. (C.1) is

jµ(~r) =−
i

2m

��

ψ†(~r)
�

∇µψ(~r)−ψ(~r)
�

∇µψ†(~r)
��

. (C.4)

After a derivation similar to the one made for the Schrödinger case in [104], one

readily finds

dσ

dΩ
= | f (Ω)|2 . (C.5)
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We can write Eq. (C.1) as

(E2 − p̂2)ψ(~r) = (2EV (r)− V 2(r))ψ(~r) , (C.6)

and its solution as an integral equation

ψ
(+)
~ki
(~r) =

1

(2π)3/2
ei~ki ·~r +

∫

d~r ′G(+)0 (~r,~r ′)(2EV (r ′)− V (r ′)2)ψ(+)
~ki
(~r ′) . (C.7)

When adopting the following form of the Green’s function

G(+)0 (~r,~r ′) =−
1

4π

eik|~r−~r ′|

|~r −~r ′|
, (C.8)

the wave function ψ(+)
~ki
(~r) has the asymptotic form of Eq. (C.3) For r →∞, we can

write Eq. (C.7) as

ψ
(+)
~ki
(~r)→

1

(2π)3/2
ei~ki ·~r +

eikr

r

�

−
1

4π

∫

d ~r ′e−i~k f ·~r ′(2EV (r ′)− V 2(r ′))ψ(+)
~ki
(~r ′)

�

,

(C.9)

where ~k f = k~r/r . Comparing this with Eq. (C.3) and taking A= (2π)−3/2 gives us

f (Ω) =−(2π)2E〈Φ~k f
| V −

V 2

2E
|ψ(+)

~ki
〉 . (C.10)

If the wavelength of the incident particle is sufficiently short in comparison with

the distance in which the potential varies (ka� 1, with a the typical range of the po-

tential, and V/E� 1), the eikonal approximation can be used. Scattering is assumed

to occur over small angles and we can write

p̂2 = [(~̂p− ~K) + ~K]≈ 2~K · ~̂p− K2 , (C.11)

with

~K =
~ki +~k f

2
. (C.12)

This allows us to write Eq. (C.1) as
�

~K · ~̂p− K2 −
V 2(r)

2
+ V (r)E

�

ψ(~r) = 0 . (C.13)
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Employing the eikonal ansatz for the scattering wave function

ψ~ki
=

1

(2π)3/2
ei~ki ·~r eiS(r) , (C.14)

and substituting it in Eq. (C.13) yields the following equation for the eikonal phase

S(r)

~K · ~∇S(r) =
V 2(r)

2
− V (r)E . (C.15)

If we choose the z-axis along ~K , we obtain (with ~b perpendicular to the z-axis)

iS(r) =
i

K

∫ z

−∞
dz′
�

V 2(~b, z′)
2

− V (~b, z′)E

�

. (C.16)

We can now write the scattering amplitude of Eq. (C.10) as

f (Ω) =−
E

2π

∫

d~bei~q·~b
∫

dzeiS(r)

�

V (r)−
V 2(r)

2E

�

, (C.17)

where ~q =~ki −~k f . To simplify this last equation, we can make use of

�

V (r)−
V 2(r)

2E

�

eiS(r) =
iK

E

deiS(r)

dz
(C.18)

to write

f (Ω) =
K

2πi

∫

d b2ei~q·~b
�

eiχ(~b) − 1
�

, (C.19)

with

χ(~b) =
1

K

∫ ∞

−∞
dz′
�

V 2(~b, z′)
2

− V (~b, z′)E

�

. (C.20)
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Appendix D
NN Amplitudes: Representations

The helicity amplitudes for the free nucleon-nucleon scattering process are defined as

Mλ′1λ
′
2;λ1λ2

= [ūλ′1(
~p′1)]α[ūλ′2(

~p′2)]βD
NN
αβ;γδ[uλ1

(~p1)]γ[uλ2
(~p2)]δ , (D.1)

where λ denotes the helicity of the spinor. They can be expanded into a partial wave

sum as

Mλ′1λ
′
2;λ1λ2

=
1

2ik

∑

J

(2J + 1)〈λ′1λ
′
2 | T

J (E) | λ1λ2〉dJ
µν(θ) , (D.2)

with k and θ the momentum and scattering angle in the center of mass frame and

µ= λ1 −λ2, ν = λ′1 −λ
′
2. The Wigner D-matrices dJ

µν(θ) satisfy

dJ
µν(θ) = (−1)λ−µdJ

νµ(θ) = (−1)λ−µdJ
−ν−µ(θ) . (D.3)

Parity, time-reversal and particle exchange symmetries can respectively be used to

write

〈λ′1λ
′
2 | T

J (E) | λ1λ2〉= 〈−λ′1 −λ
′
2 | T

J (E) | −λ1 −λ2〉 ,

〈λ′1λ
′
2 | T

J (E) | λ1λ2〉= 〈λ1λ2 | T J (E) | λ′1λ
′
2〉 ,

〈λ′1λ
′
2 | T

J (E) | λ1λ2〉= 〈λ′2λ
′
1 | T

J (E) | λ2λ1〉 . (D.4)
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By using Eqs. (D.3) and (D.4) in Eq. (D.2), the total helicity amplitudes satisfy

〈−λ′1 −λ
′
2 | T

J (E) | −λ1 −λ2〉= (−1)λ1−λ2−λ′1+λ
′
2〈λ′1λ

′
2 | T

J (E) | λ1λ2〉 ,

〈λ1λ2 | T J (E) | λ′1λ
′
2〉= (−1)λ1−λ2−λ′1+λ

′
2〈λ′1λ

′
2 | T

J (E) | λ1λ2〉 ,

〈λ′2λ
′
1 | T

J (E) | λ2λ1〉= (−1)λ1−λ2−λ′1+λ
′
2〈λ′1λ

′
2 | T

J (E) | λ1λ2〉 . (D.5)

These symmetry relations can be used to reduce the total amount of independent

helicity amplitudes from 16 to 5:

a ≡M1,1;1,1 =M−1,−1;−1,−1 ,

b ≡M1,1;1,−1 =M1,−1;1,1 =M1,1;−1,1 =M−1,1;1,1

=M−1,−1;−1,1 =M−1,−1;1,−1 =M−1,1;−1,−1 =M1,−1;−1,−1 ,

c ≡M1,−1;1,−1 =M−1,1;−1,1 ,

d ≡M1,1;−1,−1 =M−1,−1;1,1 ,

e ≡M1,−1;−1,1 =M−1,1;1,−1 . (D.6)

These five helicity amplitudes are available online from the SAID database [68] for

lab momentum up to 2 GeV. After substituting Eq. (2.75) in Eq. (D.1) for these five

amplitudes and solving for the Fermi invariants, one gets [96]
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=
1

s− 4m2















a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
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c
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e















, (D.7)

with

a11 =−a24 = a25 =−2a31 = a41 =−a54 = a55 =−
2m4

s
,

a14 =−a15 =−a21 =−2a34 = 2a35 = a44 =−a51 =
2m4

s
−m2 ,

a12 =
m
�

8m2 − (3+ cosθ)s
�

p
s sinθ

,

a13 =
m2
�

2m2(1+ cosθ)− s(3+ cosθ)
�

s(1+ cosθ)
,

a22 =
4m3(1+ cosθ)
p

s sinθ
,
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a23 =
2m2

�

m2(1+ cosθ) + s
�

s(1+ cosθ)
,

a32 =−
m
p

s(1− cosθ)
2 sinθ

,

a33 =−
m2
�

2m2(1+ cosθ) + s(1− cosθ)
�

2s(1+ cosθ)
,

a42 =−
m
�

8m2 + s(3+ cosθ)
�

p
s sinθ

,

a43 =
m2
�

2m2(1+ cosθ)− s(3+ cosθ)
�

s(1+ cosθ)
,

a45 =−
m2
�

2m2(1− cosθ) + s(7+ cosθ)
�

s(1− cosθ)
,

a52 =−
4m3(1− cosθ)
p

s sinθ
,

a53 =
2m2

�

m2(1+ cosθ)− s
�

s(1+ cosθ)
. (D.8)

In all these equations θ is the scattering angle in the center of mass system and s is

the Mandelstam variable.
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Appendix E
Parametrization of the pion
electroproduction cross section

With the notations used in subsec. 2.1.2, the pion electroproduction cross section of

Eq. (2.46), can be written as the product of the electron fluxfactor with the sum of

four response functions:

d5σeN

dEe′dΩe′d|t|dφ∗π
= Γ′

�

dσeN
T

d|t|
+ ε

dσeN
L

d|t|

+ε
dσeN

T T

d|t|
cos 2φ∗π +

p

ε(ε+ 1)
dσeN

T L

d|t|
cosφ∗π

�

. (E.1)

In JLab experiment E01-004, that measured the pion charge form factor through pion

electroproduction, the four response functions in Eq. (E.1) were initially parametrized

as [130]

dσeN
T

d|t|
= f (s′)

�

4.5/Q2 + 2/Q4
�

,

dσeN
L

d|t|
= f (s′)350Q2 e−t(16−7.5 lnQ2)

(1+ 1.77Q2 + 0.05Q4)2
,

dσeN
T T

d|t|
=− f (s′)

5

Q4

|t|
(|t|+ 0.02)2

sinθ ∗π
2 ,



114
APPENDIX E. PARAMETRIZATION OF THE PION ELECTROPRODUCTION CROSS

SECTION

dσeN
T L

d|t|
= f (s′)

�

e
0.79− 3.4p

Q2
t
+ 1.1− 3.6/Q4

�

sinθ ∗π . (E.2)

Here, θ ∗π denotes the pion angle with the virtual photon in the pion-nucleon c.o.m.

frame and the dependence on the Mandelstam variable s′ = (pµN + pµπ)
2 is assumed to

have the following t-pole dependence

f (s′) =
8.539

2π(s′ −m2
N )

2
. (E.3)

For the pion electroproduction transparency experiment, a multiplicative correction

function was applied to the parametrization of Eq. (E.1) for each Q2 setting to make

the Monte Carlo distributions match the data [129]. These functions for each Q2

setting are as follows (with W =
p

s′):

Q2 = 1.10(GeV/c)2 → (−47.5984+ 43.4145W − 9.64264W 2)

× (1.32289− 0.698424Q2 + 0.35561Q4)

× (1.17152− 7.03367t + 52.053t2)

× (1.0612+ 0.147858cosφ∗π − 0.0430268 cos2φ∗π)

Q2 = 2.15(GeV/c)2 → (−23.1723+ 20.6505W − 4.37408W 2)

× (2.29646− 1.11745Q2 + 0.229736Q4)

× (0.704879+ 1.61954t + 0.0859429t2)

× (0.979176+ 0.044882 cosφ∗π − 0.0743073 cos2φ∗π)

Q2 = 3.00(GeV/c)2 → (−6.14191+ 5.64149W − 1.0843W 2)

× (2.43486− 0.888779Q2 + 0.136267Q4)

× (0.745356+ 1.22215t − 1.24105t2)

× (0.962609− 0.0608404cosφ∗π − 0.0084712cos 2φ∗π)

Q2 = 4.00(GeV/c)2 → (−7.8696+ 6.48878W − 1.16624W 2)

× (−0.703888+ 0.814839Q2 − 0.0957087Q4)

× (0.723372+ 0.140101t + 0.809151t2)

× (1.00054− 0.100002 cosφ∗π + 0.00780768 cos2φ∗π)
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Q2 = 4.80(GeV/c)2 → (−11.1202+ 9.4995W − 1.86788W 2)

× (2.27339− 0.469771Q2 + 0.0421723Q4)

× (1.08961− 1.06851t + 1.36125t2)

× (0.89789− 0.118188cosφ∗π − 0.0350948 cos2φ∗π) .
(E.4)
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Samenvatting

Inleiding

Sinds de ontwikkeling in de jaren ’50 en ’60 van kwantumchromodynamica (QCD)

als ijktheorie voor de sterke wisselwerking, weet men dat quarks en gluonen de fun-

damentele bouwstenen vormen voor haast alle zichtbare materie. Door het confine-

mentgedrag van QCD, treden bij lage energieën echter kleurloze baryonen en meso-

nen naar voren als effectieve vrijheidsgraden. De beschrijving aan de hand van deze

hadronische vrijheidsgraden is in de nucleaire- en hadronfysica al geruime tijd zeer

efficiënt en succesvol gebleken. Bij welke energieschaal en op welke wijze de tran-

sitie van hadronische naar de partonische vrijheidsgraden plaatsvindt, is nog steeds

niet opgehelderd en vormt heden ten dage een zeer actief en boeiend onderzoeksge-

bied. Om deze overgang in kaart te brengen gaat men op zoek naar QCD-gerelateerde

fenomenen die afwijken van wat door de nucleaire fysica standaard voorspeld wordt.

Een voorbeeld van zo’n fenomeen is kleurtransparantie. Bij reacties met een ho-

ge vierimpulstransfer, voorspelt QCD dat hadronen in een toestand met een kleine

dwarsdoorsnede gevormd worden. Deze kleine objecten lijken kleurloos, en onder-

vinden verminderde reacties met het medium waarin ze gevormd worden alvorens te

evolueren tot een normale hadronische toestand. In de zoektocht naar kleurtranspa-

rantie meet men de nucleaire transparantie, een observabele die een maat vormt voor

de attenuatie van een hadron in een medium. Kleurtransparantie zou zich manifes-

teren als een stijging van de transparantie bij toenemende energieën. Transparanties
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werden al voor verschillende reacties gemeten, maar tot nog toe is de aanvang van het

fenomeen van kleurtransparantie niet eenduidig vastgesteld. De voorbije jaren wer-

den in Jefferson Lab experimenten uitgevoerd waarin men de transparantie gemeten

heeft bij foto- en elektroproductie van het pion, en twee-nucleon-uitstootreacties. In

dit werk wordt de transparantie berekend in de kinematische gebieden die overeen-

komen met bovenvermelde experimenten.

Korte-drachtscorrelaties zijn een tweede afwijking van de standaardbeschrijving

van nucleaire systemen die in dit werk van naderbij bekeken worden. Korte-drachts-

correlaties ontstaan door de repulsieve kern en het tensorgedeelte van de nucleon-

nucleonkracht. Omdat deze delen van de nucleon-nucleonkracht niet compatibel zijn

met een typische gemiddeld-veldbenadering, vindt men de korte-drachtscorrelaties

niet terug in het traditionele schillenmodel. De sterke afstoting creëert nucleonparen

met een hoge relatieve impuls en zorgt voor fluctuaties van hoge dichtheid in de kern.

Formalisme

In dit werk wordt een relativistisch en kwantummechanisch raamwerk uiteengezet

dat gebruikt wordt om exclusieve uitstootreacties aan kernen te beschrijven en dat

geen enkele vrije parameter bevat. Het wordt hier specifiek toegepast op foto- en

elektroproductie van pionen en twee-nucleon foto-uitstootreacties. Bij het modelleren

van uitstootreacties verdienen drie deelproblemen onze aandacht:

• De beschrijving van de harde reactie, die de uitstoot van de deeltjes veroorzaakt.

• De structuur van de golffuncties voor de trefkern en de restkern.

• De behandeling van de finale-toestandsinteracties (FSI), die de invloed van het

nucleaire medium op de uitgaande deeltjes uitdrukken.

De interactie van de inkomende probe gebeurt bij alle reacties in de impulsbenade-

ring. Bij de foton- en elektrongeïnduceerde productiereacties van pionen, wordt voor

het beschrijven van de harde reactie gebruik gemaakt van een zogenaamde gefacto-

riseerde benadering voor de werkzame doorsnede. Hierbij wordt amplitude van het

uitstootproces gerelateerd aan die van het vrije proces, waarna de werkzame door-

snede van het vrije proces optreedt als een factor in die van het proces aan een kern.
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Voor de fotongeïnduceerde uitstoot van twee nucleonen worden twee concurrerende

reactiemechanismes ongefactoriseerd behandeld. Het eerste beschrijft de reactie als

een eenstapsproces waarbij het inkomend foton interageert met één van de nucleo-

nen in een gecorreleerd paar waarbij dit nucleon de kern verlaat. Het tweede nucleon

blijft achter met een hoge impuls, waardoor het de kern ook kan verlaten. Het ge-

correleerd nucleonpaar wordt beschreven d.m.v. golffuncties die zich in een relatieve
1S0 toestand bevinden. Het tweede reactiemechanisme gebruikt een tweestapsproces

waarbij het foton interageert met een nucleon dat op zijn baan uit de kern een twee-

de harde reactie veroorzaakt met een tweede nucleon, dat daardoor ook uit de kern

vliegt. Om deze harde herverstrooiing te beschrijven wordt er gebruik gemaakt van

de nucleon-nucleonverstrooiingsamplitudes uit de SAID database.

Voor de beschrijving van alle inkomende en uitgaande deeltjes worden relativisti-

sche golffuncties gebruikt. De golffunctie van de tref- en restkern wordt bekomen in

het nucleaire schillenmodel. Hierbij bewegen de individuele nucleonen van de kern

in een gemiddeld-veldpotentiaal opgewekt door alle andere nucleonen. De totale

golffunctie van de kernen neemt de vorm aan van een Slater-determinant. De relati-

vistische één-deeltjesgolffuncties worden bekomen in de Hartree-benadering van het

σ−ω model.

Bij voldoende hoge energieën wordt de invloed van het nucleaire medium op de

uitgestoten deeltjes berekend in een relativistische Glauber veelvoudige-verstrooiings-

benadering (RMSGA). De Glauber-beschrijving, voor het eerst toegepast in optica, is

een eikonale benadering en steunt op de kleine golflengte van het deeltje in vergelij-

king met de dracht van de potentiaal. De verstrooiingen gebeuren over kleine hoeken

en zijn elastisch of licht inelastisch. De banen van de uitgestoten deeltjes worden

door een lineair traject beschreven en de residuele nucleonen worden bevroren tij-

dens de verstrooiingen. De implementatie van de RMSGA benadering gebeurt d.m.v.

een scalaire Glauber-operator die inwerkt op de golffunctie van het uitgaand deel-

tje. Elke verstrooiing met een residueel nucleon voegt een extra fase toe aan deze

operator. Deze Glauber-operator hangt van drie verstrooiingsparameters af. Voor de

numerieke bepaling van deze parameters worden fits aan pion-nucleon- en nucleon-

nucleonverstrooiingsdata gebruikt.

Voor uitgestoten nucleonen met een lage impuls, waarvoor de onderliggende aan-

names van de Glauber-benadering niet meer toepasbaar zijn, voorziet het model
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ook de mogelijkheid om de FSI te beschrijven met behulp van een ROMEA model

in een eikonale benadering. Het ROMEA model steunt op optische potentialen om

de interacties van de uitgaande deeltjes met het nucleaire medium te beschrijven.

In tegenstelling tot de aanpak van de RMSGA benadering, die steunt op nucleon-

nucleonverstrooiing, zijn deze optische potentialen gebaseerd op globale fits aan elas-

tische nucleon-kern verstrooiingsdata.

De implementatie van het kleurtransparantie-effect gebeurt in het kwantumdif-

fusiemodel van Farrar e.a. De totale werkzame doorsnede voor pion-nucleon- en/of

nucleon-nucleonverstrooiing (die één van de Glauber-parameters is), wordt vervan-

gen door een effectieve werkzame doorsnede. Deze evolueert lineair van een geredu-

ceerde waarde over een bepaalde formatielengte tot zijn normale waarde.

De invloed van korte-drachtscorrelaties kan toegevoegd worden aan de bereke-

ning van de FSI. De ééndeeltjesdichtheid in de integralen bij de berekening van de

Glauber-operator wordt vervangen door een gemodificeerde dichtheid die rekening

houdt met de aanwezigheid van een nucleon op de plaats van de harde interactie.

Deze gemodificeerde dichtheid vertoont een gat op de plaats van de harde interactie,

veroorzaakt door de harde kern van de nucleon-nucleoninteractie. Dichtheden aan

de rand van dit gat zijn hoger dan de gewone ééndeeltjesdichtheid. De normalisatie

blijft behouden bij het gebruik van de gemodificeerde dichtheid, door het invoeren

van een extra functie die afhankelijk is van de coördinaat van de harde interactie.

Deze functie vormt de oplossing van een integraalvergelijking, die numeriek opgelost

wordt.

Numerieke resultaten

De resultaten van de numerieke berekeningen werden samengevat in hoofdstuk 3. Dit

hoofdstuk begint met de numerieke analyse van de Glauber-FSI-factor (die alle infor-

matie omtrent de attenuatie door het nucleaire medium omvat) voor een uitgestoten

pion en nucleon uit koolstof met een kinematiek die overeenstemt met die waarvoor

in Jefferson Lab data werden genomen. De analyse toont aan dat het effect van de

verstoringen in de norm en fase van de FSI-factor sterker wordt naarmate meer ma-

terie doorkruist wordt. De invloed van de FSI-factor op de impulsdistributies van de

nucleonen laat zien dat het signaal sterk gereduceerd wordt in de aanwezigheid van
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de finale-toestandsinteracties.

Het hoofddoel van dit werk is het uitvoeren van berekeningen met een kinematiek

die overeenstemt met die van de hierboven aangehaalde transparantie-experimenten

uitgevoerd in Jefferson Lab. Berekeningen voor de fotongeïnduceerde pionproduc-

tiereactie tonen een transparantie die relatief weinig afhangt van de harde schaal.

De toevoeging van korte-drachtscorrelaties zorgt voor een toename in de transparan-

tie van ongeveer 5%, onafhankelijk van de harde schaal. Berekeningen met inclu-

sie van het kleurtransparantie-effect tonen een volledig andere afhankelijkheid van

de harde schaal. De invloed op de transparantie varieert van ongeveer 0% bij de

laagst opgemeten fotonenergie tot meer dan 20% bij de energieën die beschikbaar

zullen zijn na de 12-GeV-upgrade van JLab. Een vergelijking met de data en een

semi-klassieke berekening laat zien dat de RMSGA-berekeningen deze in het ganse

energiebereik overschatten en er niet in slaagt de lage |t|-afhankelijkheid te reprodu-

ceren. Bij hogere energie is de helling van de data wel in goede overeenstemming

met de berekeningen waarbij kleurtransparantie in rekening werd gebracht. Transpa-

rantieberekeningen met de RMSGA- en ROMEA-aanpak in het energiegebied waar ze

beide toepasbaar zijn, tonen verschillen van ongeveer 5% tussen beide modellen, die

bovendien kleiner worden bij hogere energie.

Voor de elektrongeïnduceerde productiereactie van pionen bevestigen de bereke-

ningen dat de korte-drachtscorrelaties en kleurtransparantie-effecten op verschillen-

de manieren afhankelijk zijn van de harde schaal. De energie- en A-afhankelijkheid

van de data vertonen bovendien duidelijke afwijkingen van de voorspellingen uit de

traditionele nucleaire fysica, hetgeen in zeer goede overeenstemming is met zowel

de RMSGA-berekeningen die het kleurtransparantie-effect bevatten, als resultaten uit

een semiklassiek model. Meer bewijs voor de modelonafhankelijkheid van de trans-

parantieberekeningen wordt geleverd door extra vergelijkingen met resultaten uit het

semiklassiek model. Deze vertonen gelijkaardige trends, met RMSGA-berekeningen

die meestal ongeveer 5% hoger liggen.

Resultaten in zowel het een- als tweestapsreactiemechanisme voor de fotongeïn-

duceerde twee-nucleonuitstootreactie, tonen transparanties die duidelijk lager liggen

dan wat men uit een één-protonuitstootreactie zou verwachten. Dit is het gevolg van

het feit dat beide reactiemechanismes zones met hoge dichtheid in de kern bereiken.

Hoge dichtheden betekenen meer FSI, en dus lagere transparanties. Bij de tweestaps-
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harde-herverstrooiingsreactie wordt het effect van de nucleon propagator FSI op de

transparantie bepaald op 5%.

In een laatste deel, worden de robuustheid en veelzijdigheid van het Glauber-

raamwerk aangewend om een consistente vergelijkende studie van de effectief be-

reikte dichtheid te maken voor uitstootreacties met één
�

(e, e′p)
�

, twee
�

(γ, pp)
�

en

drie
�

(p, 2p)
�

nucleonen. Vergelijkingen in een koolstof- en een ijzerkern tonen dat

de (γ, pp)-reactie de hoogste dichtheid in het centrum van de kern bereikt. Door de

sterke initiële-toestandsinteracties is de (p, 2p)-reactie sterk aan het oppervlak gelo-

caliseerd, waar het een eerder lage dichtheid bereikt. De (e, e′p)-reactie valt ergens

tussen deze twee uitersten. Het verschil in effectieve dichtheid tussen de drie reacties

was minder uitgesproken voor de ijzerkern dan voor de koolstofkern.

Conclusie

We hebben een relativistisch formalisme ontwikkeld dat gebruikt werd voor de mo-

dellering van foton- en elektrongeïnduceerde pionproductie aan kernen. Ook de

twee-nucleon-uitstootreactie kan worden beschreven, zowel in een eenstapsreactie

(uitstoot van een gecorreleerd paar) als tweestapsreactie (harde herverstrooiing). De

FSI van de pionen en nucleonen worden behandeld in het RMSGA-model. Voor nu-

cleonen met lage impuls is er ook een beschrijving in het ROMEA-model mogelijk.

Transparantieberekeningen toonden een duidelijk verschil in de manier waarop korte-

drachtscorrelatie- en kleurtransparantie-effecten afhankelijk zijn van de harde schaal.

De data voor pion elektroproductie waren bovendien in zeer goede overeenstemming

met de berekeningen die het kleurtransparantie-effect in rekening brachten.

In de toekomst, na de upgrade van de Jefferson Lab versneller tot 12 GeV, zullen

experimenten ons meer kunnen leren over het verloop van de transparantie bij hogere

energieën. Ook kan het model nog verder uitgebreid worden en beschrijvingen voor

uitstootreacties met een kaon- of rho-meson voorzien. Verbeteringen die nog mogelijk

zijn in het model zijn bijvoorbeeld het gebruik van meer realistische golffuncties voor

lichte kernen, het toevoegen van tensorcorrelaties, en een beschrijving voor de korte-

drachtscorrelaties die vertrekt vanuit partonische vrijheidsgraden.
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