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David Eelbodea∗, V. Součekb† and P. Van Lanckerc

aAntwerp University, Dept. of Mathematics and Computer Science

Middelheimlaan 1, 2020 Antwerp, Belgium;
bMathematics Institute of Charles University
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The Fueter theorem states that regular (resp. monogenic) functions in quaternionic (resp.
Clifford) analysis can be constructed from holomorphic functions f(z) in the complex plane,
hereby using a combination of a formal substitution and the action of an appropriate power
of the Laplace operator. In this paper we interpret this theorem on the level of representation
theory, as an intertwining map between certain sl(2)-modules.
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1. Introduction

The original Fueter theorem ([8]) is a classical result in quaternionic analysis,
which tells you how to obtain regular functions (solutions for a generalised Cauchy-
Riemann operator), starting from holomorphic functions f(z) in the complex plane
C. This result has later been generalized, on several occasions, within the setting of
Clifford analysis (far from claiming completeness, we e.g. refer to [10, 13, 16]). This
is a branch of classical analysis in which null solutions for spin-invariant differential
operators are studied from a function theoretical point of view. The main object of
study in this subdomain of classical analysis is the Dirac operator, see e.g. [3, 4, 9].
This first-order operator is the unique (up to a constant) conformally invariant
operator acting on Clifford algebra-valued functions f(x) on the Euclidean space
Rm. This (real or complex) Clifford algebra (Rm or Cm) is the associative algebra
generated by an orthonormal basis {e1, · · · , em} for Rm, endowed with the multi-
plication rules epeq + eqep = −2δpq. The generalized Fueter theorem then yields a
particular method to construct null solutions (monogenics) for this Dirac operator,
starting from holomorphic functions. Note that the Dirac operator ∂x =

∑
j ej∂xj

and the vector variable x ∈ Rm can be seen as the (odd) generators of the Lie
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superalgebra osp(1, 2), a crucial fact which allows to interpret results in Clifford
analysis as concrete realisations for more abstract properties about representations
for the orthosymplectic Lie superalgebra.
The aim of this paper is to show how the Fueter theorem, and some generalisations
thereof, can be understood in terms of particular properties of Gegenbauer poly-
nomials on Rm. These polynomials play a crucial role in the representation theory
for the spin group Spin(m), in particular within the setting of branching rules and
axially monogenic polynomials on Rm, which means that we will find an alterna-
tive interpretation for Fueter’s theorem using classical representation theoretical
techniques. This will lead to a sharper result than the one that has appeared in
the literature. Moreover, the methods used in the present paper can be generalised
to more complicated settings, such as for Dunkl operators or higher spin versions
of the classical Dirac operator.

2. Gegenbauer polynomials and series expansions

First of all we list some standard properties of Gegenbauer polynomials which will
be useful in the sequel. Let <(λ) > −1

2 . The Gegenbauer polynomial Cλk (t) of
degree k can be defined by means of the following generating function:

(1− 2tz + z2)−λ =

∞∑
k=0

Cλk (t)zk , |z| < 1 , t ∈ [−1, 1] .

A more explicit expression in terms of the hypergeometric 2F1-function is given by:

Cλk (t) =
Γ(k + 2λ)

k!Γ(2λ)
F (−k, k + 2λ;λ+

1

2
,
1− t

2
) . (1)

From the definition via the generating function it is clear that C0
k(t) = 0 for k ≥ 1

and that Gegenbauer polynomials satisfy the parity condition

Cλk (−t) = (−1)kCλk (t) .

Let us then introduce spherical coordinates (r, ω) ∈ R+×Sm−1 on the vector space
Rm. For two vectors x, y ∈ Rm with x = |x|ω, y = |y|ξ and ω, ξ ∈ Sm−1, one has:

|x− y|−2λ =
(
|x|2 − 2〈x, y〉+ |y|2

)−λ
=
(
|x|2 − 2|x||y|〈ω, ξ〉+ |y|2

)−λ
.

We thus obtain two expansions:

|x− y|−2λ =


|x|−2λ

∞∑
k=0

Cλk (〈ω, ξ〉)
(
|y|
|x|

)k
|y| < |x| ,

|y|−2λ
∞∑
k=0

Cλk (〈ω, ξ〉)
(
|x|
|y|

)k
|x| < |y| .

(2)

Definition 2.1: For <(λ) > −1
2 and k ∈ N0 we define the following function:

Kλ
k (ω, ξ) = Cλk (〈ω, ξ〉) + ωξ Cλk−1(〈ω, ξ〉) ∈ C∞(Sm−1 × Sm−1) . (3)
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If k = 0, then Kλ
0 (ω, ξ) = Cλ0 (〈ω, ξ〉) = 1. The Gegenbauer polynomial Cλk (t) is an

even (odd) polynomial of t if k is even (odd). Therefore ω 7→ Kλ
k (ω, ξ) admits a

k-homogeneous polynomial extension to Rm which we will denote as:

Kλ
k (x, ξ) = |x|kKλ

k (ω, ξ) ∈ P(Rm)⊗ C∞(Sm−1) . (4)

Remark that for λ = 0, we get:

K0
k(ω, ξ) =

1 , k = 0
ωξ , k = 1
0 , k ≥ 2

. (5)

Clearly Kλ
k (x, ξ) is of the form fk(|x|2, 〈x, ξ〉) + x ξfk−1(|x|2, 〈x, ξ〉) where fk(u, v)

is a polynomial in the real variables u and v. Multiplying the identities in (2) with
x and y we obtain the expansions:

x− y
|x− y|2λ

=



x

|x|2λ
∞∑
k=0

Kλ
k (ω, ξ)

(
|y|
|x|

)k
|y| < |x| ,

− y

|y|2λ
∞∑
k=0

Kλ
k (ξ, ω)

(
|x|
|y|

)k
|x| < |y| ,

−

( ∞∑
k=0

Kλ
k (ω, ξ)

(
|x|
|y|

)k) y

|y|2λ
|x| < |y| ,

(6)

For λ = m
2 , the left hand side is (up to a constant multiple) the Cauchy kernel

of the Dirac operator ∂x in Rm. The series expansion of the Cauchy kernel, being
a basic result in Clifford analysis of the Dirac operator ∂x in Rm, appears at
numerous places in the literature (see e.g. [3, 4]).

The expansions (2) can be rewritten in a more symmetric way as

(
1− 2〈x, y〉+ |x|2|y|2

)−λ
= |1 + xy|−2λ =

∞∑
k=0

Cλk (〈ω, ξ〉) (|x||y|)k (|x||y| < 1) .

Hereby |1 + xy|2 has to be understood as the Clifford norm of (1 + xy) ∈ Rm:

|1 + xy|2 = |1− 〈x, y〉+ x ∧ y|2 = (1− 〈x, y〉)2 + |x|2|y|2 − 〈x, y〉2 .

In a similar way:

1 + xy

|1 + xy|2λ
= Cλ0 (〈ω, ξ〉) +

∞∑
k=1

(
Cλk (〈ω, ξ〉) + ωξ Cλk−1(〈ω, ξ〉)

)
(|x||y|)k

=

∞∑
k=0

Kλ
k (ω, ξ) (|x||y|)k , |x||y| < 1 . (7)

Definition 2.2: Let α ∈ C. Define the inversion operator Iα on functions f(x):

(Iαf)(x) =
x

|x|m+α
f
( x

|x|2
)
.
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Obviously I2
α = −id and I := I0 is the (conformal) inversion operator mapping

monogenic functions to monogenic functions. In particular, the inversion I[1] of
the constant function f = 1 yields (up to a multiple) the Cauchy kernel (with
singularity in the origin) for the Dirac operator ∂x in Rm. In the same way, for
k ∈ N the inversion I−2k[1] of f = 1 gives rise to (a multiple of) the fundamental
solution |x|2k x

|x|m of ∂2k+1
x .

Let Kλ
k,ξ(x) = Kλ

k (x, ξ). This then gives:

(I−m+2λK
λ
k,ξ)(x) =

x

|x|2λ
Kλ
k,ξ(

x

|x|2
) =

x

|x|2λ+k
Kλ
k,ξ(ω) .

Hence for x, y ∈ Rm with y = |y|ξ, ξ ∈ Sm−1:

x− y
|x− y|2λ

=
∞∑
k=0

(I−m+2λK
λ
k,ξ)(x)|y|k (|y| < |x|) .

Lemma 2.3: Let 2l+<(α) > −m− 1 and let Pl(x) be an arbitrary function on
Rm−1

0 which is homogeneous of degree l ∈ R. Then

K
l+m+α

2

k (x, e1)Pl(x) =
1

k!

(
Iα∂x1

Iα
)k
Pl(x) . (8)

In particular we get that

K
m+α

2

k (x, e1) =
1

k!

(
Iα∂x1

Iα
)k

[1] . (9)

Note that relation (8) is also valid if l+ m+α
2 = 0, in which case K0

k(x, e1) is given

by (5); consequently we have that
(
I−(2l+m)∂x1

I−(2l+m)

)k
Pl(x) = 0 for k ≥ 2.

Proof : For y = te1 with t ∈ R we have the following power series in t:

x− te1

|x− te1|m+α+2l
Pl(x) =

( ∞∑
k=0

(
Iα+2lK

l+m+α

2

k

)
(x, e1)tk

)
Pl(x) , t < |x|

=
∞∑
k=0

(−t)k

k!
∂kx1

(IαPl(x)) , t < |x| .

Uniqueness of the Taylor series therefore implies:

(−1)k

k!
∂kx1

(Iα[Pl(x)]) =
(−1)k

k!
∂kx1

(
x

|x|m+α+2l

)
Pl(x)

=
(

(Iα+2lK
λ
k )(x, e1)

)
Pl(x)

= Iα
(
Kλ
k (x, e1)Pl(x)

)
,

where λ = l + m+α
2 . Since (Iα)2 = −id, the statement easily follows. �
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3. sl(2)-actions in Clifford analysis

In this section we introduce a particular realisation of the Lie algebra sl(2,R), in
terms of the inversion operator Iα. For α = 0, we then get a subalgebra of the full
conformal symmetry algebra so(1,m + 1) of the Dirac equation. This subalgebra
generates, through repeated action of the creation operator on the scalar 1 ∈ R, the
Gegenbauer polynomials from the previous section (see lemma 2.3). Note that this
lemma is actually more general, in the sense that it creates all axially monogenic
polynomials, see also [3, 11].

Lemma 3.1: Let α ∈ C. The maps πα : sl(2,R)→ End(P(Rm)) defined by

πα(H) = 2Ex + α+m− 1

πα(E+) = Iα∂x1
Iα = −|x|2∂x1

+ x1(2Ex + α+m− 1)− e1 ∧ x

πα(E−) = −∂x1

define a one-parameter family of Lie algebra homomorphisms.

Proof : Let us fix the notation I := I0 in what follows. First of all, one has the
fundamental relation I∂xI = |x|2∂x, which follows from the conformal invariance of
the Dirac operator. Since 2∂x1

= −{e1, ∂x}, it is clear that 2I∂x1
I = {Ie1I, I∂xI}.

Using the notation e1 for the multiplication operator f(x) 7→ e1f(x), we get:

Ie1I =
xe1x

|x|2
= e1 − 2

x1x

|x|2
.

Invoking the identities: {x, ∂x} = −m− 2Ex and |x|2∂x|x|−2 = −2x|x|−2 + ∂x, we
obtain:

I∂x1
I =

1

2

{
e1 − 2

x1x

|x|2
, |x|2∂x

}
= −|x|2∂x1

− x1x∂x − |x|2∂x|x|−2x1x

= −|x|2∂x1
− x1x∂x − 2x1 − ∂xx1x

= −|x|2∂x1
− x1(x∂x + ∂xx)− 2x1 − e1x

= −|x|2∂x1
+ x1(2Ex +m− 1)− e1 ∧ x .

Noting that |x|−α|x|2∂x|x|α = |x|2∂x + αx1 we also get:

Iα∂x1
Iα = |x|−αI∂x1

I|x|α

= |x|−α
(
− |x|2∂x1

+ x1(2Ex +m− 1)− e1 ∧ x
)
|x|α

= −|x|2∂x1
+ x1(2Ex + α+m− 1)− e1 ∧ x .

The sl(2,R)-relations with the shifted Euler operator are obvious and[
∂x1

, x1(2Ex + α+m− 1)− |x|2∂x1
− e1 ∧ x

]
= −2x1∂x1

+(2Ex+α+m−1)+2x1∂x1
,

which proves the statement. �

As was noted in a series of recent papers, see e.g. [2, 6], the operators obtained
through the Lie algebra homomorphism can be used to obtain explicit expressions
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for the embedding factors appearing in the branching problem for harmonic (resp.
monogenic) polynomials.

4. Intertwining relations

In this section, we prove a few (rather technical) operator identities which will allow
us to consider intertwining maps between certain sl(2)-modules in the following
section. We first introduce some definitions and notations. Consider the H-action
of s ∈ Spin(m) on P (x) ∈ P(Rm) given byH(s)P (x) = P (s−1xs). This corresponds
to the standard action of SO(m) on polynomials. The derived action of H then
gives rise to the Lie algebra so(m) generated by the (angular momentum) operators
Lij = xi∂xj − xj∂xi , with i, j = 1, . . . ,m and i 6= j. The Gamma operator Γx can
now be defined as the operator

Γx := −
[
x ∧ ∂x

]
2

= −
∑
i<j

eij
(
xi∂xj − xj∂xi

)
= −

∑
i<j

eijLij ,

with [·]2 denoting the bi-vectorial part (see e.g. [4]). In terms of polar coordinates
x = rω, with ω ∈ Sm−1, the Dirac operator can now be written as

∂x =
1

r
ω(Ex + Γx) or x∂x = −Ex − Γx .

The Laplace Beltrami operator ∆LB on the sphere Sm−1 is defined as the operator
∆LB :=

∑
i<j L

2
ij and can also be expressed in terms of the Gamma operator:

∆LB = |x|2∆− Ex(Ex +m− 2) = Γx(−Γx +m− 2) .

As was mentioned in the introduction, the Dirac operator ∂x and the vector variable
x generate the Lie superalgebra osp(1|2). The Scasimir operator (in one vector
variable) is the first order differential operator Sc ∈ U(osp(1, 2)), defined by

Sc :=
1

2
[x, ∂x]− 1

2
=

1

2
(x ∂x − ∂xx)− 1

2
=
m− 1

2
− Γx .

Because of the extra constant in the definition of Sc, this operator has better
intertwining properties than the standard Gamma operator, a fact that was fully
exploited in [7] in order to define higher spin operators exhibiting full osp(1, 2)-
symmetry. The distinguishing feature here is that Sc has the following properties:
{Sc, x} = {Sc, ∂x} = 0. This shows that Sc anti-commutes with the odd part and
commutes with the even part of osp(1, 2), see also [1] where the Scasimir operator
for the more general Lie superalgebra osp(1, 2k) is considered. In the sequel we will
frequently use the following short-hand notation (dropping the subscript x):

E′ := Ex +
m− 1

2
, Γ′ := Γx +

1−m
2

= −Sc .

Consider the operators T := −x∂x and U := −∂xx− 1 = x∂x+ 2Ex+m− 1. Then:

T = Ex + Γx = E′ + Γ′ = E′ − Sc

U = Ex +m− 1− Γx = E′ − Γ′ = E′ + Sc . (10)
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In the following lemma we list some useful identities in U(osp(1, 2)). Note that we
hereby use the Pochammer symbol (a)j = a(a+ 1) . . . (a+ j − 1).

Lemma 4.1: (Factorization of powers of |x|2∂x)
Let j ∈ N be a positive integer. The following holds:

(1) The operators T and U satisfy the intertwining relations

Tx = x(U + 1) , Ux = x(T + 1) , Tx2 = x2(T + 2) , Ux2 = x2(U + 2)

(11)

Hence: P (T )x = xP (U + 1) and P (U)x = xP (T + 1) for P (t) ∈ R[t].
Moreover, we also have that

∆j |x|2j = (T + 2) . . . (T + 2j)(U + 1)(U + 3) . . . (U + 2j − 1) (12)

= 22j

(
Ex + Γx + 2

2

)
j

(
Ex − Γx +m

2

)
j

(2) The odd powers of |x|2∂x admit the factorization

(
|x|2∂x

)2j+1
= x2j+1T (T + 2) . . . (T + 2j)(U + 1)(U + 3) . . . (U + 2j − 1)

(13)

= (2x)2j+1

(
Ex + Γx

2

)
j+1

(
Ex − Γx +m

2

)
j

= |x|2j+2∂2j+1
x |x|2j . (14)

(3) The even powers of |x|2∂x admit the factorization

(
|x|2∂x

)2j
= x2jT (T + 2) . . . (T + 2j − 2)(U + 1)(U + 3) . . . (U + 2j − 1)

(15)

= (2x)2j

(
Ex + Γx

2

)
j

(
Ex − Γx +m

2

)
j

= (−1)j−1|x|2jx4jx|x|2j−2 . (16)

Proof : The first statement follows from

Tx = (E′ + Γ′)x = x(E′ + 1− Γ′) , Ux = (E′ − Γ′)x = x(E′ + 1 + Γ′).

For the second part, notice that |x|2∂x = x(−x∂x) = x(E + Γ) = xT . Hence

(
|x|2∂x

)2j+1
= (xT )2j+1 .

Using the intertwining relations of the previous part, the vector variable x can be
brought in front and we obtain the identity (13). Invoking the formulae for ∆LB
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mentioned before and
[
∆, |x|2

]
= 4Ex + 2m, one has

∆|x|2 = ∆LB + (E +m)(E + 2)

= −(E + Γ + 2)(Γ− E−m)

= (T + 2)(U + 1) .

Therefore, using the intertwining relations:

∆j |x|2j = ∆j−1(T + 2)(U + 1)|x|2j−2

= ∆j−1|x|2j−2(T + 2j)(U + 2j − 1) .

Repeated application of this identity leads finally to (12). On the other hand

|x|2j+2∂2j+1
x |x|2j = −x2j+1x∂x∆j |x|2j = x2j+1T∆j |x|2j .

Using (12) we can reduce the right hand side of this identity to the expression in
(13). This shows that (

|x|2∂x
)2j+1

= |x|2j+2∂2j+1
x |x|2j .

The proof of part (3) is similar. �

We now come to the basic result we were after:

Theorem 4.2 : (Intertwining relation for odd powers of the Dirac operator ∂x)

(1) The operator |x|2∂x commutes with the positive root π0(E+) .
(2) Let j ∈ N and v ∈ sl(2,R). We have the following intertwining property on
P(Rm):

∂2j+1
x π−2j(v) = π2j+2(v)∂2j+1

x . (17)

(3) The kernel of ∂2j+1
x is an sl(2,R)-module under the action π−2j.

Proof : (1) Since |x|2∂x = I∂xI and π0(E+) = I∂x1
I, the statement follows from

[∂x1
, ∂x] = 0.

(2) Notice that for α ∈ C, one has:[
Iα∂x1

Iα, |x|2
]

=
[
−|x|2∂x1

+ x1(2Ex + α+m− 1)− e1 ∧ x, |x|2
]

= 2x1|x|2 .

Hence Iα∂x1
Iα|x|2 = |x|2Iα+2∂x1

Iα+2, or equivalently:

πα(E+)|x|2 = |x|2πα+2(E+)

The intertwining relation (17) is straightforward for v = H or E−. If v = E+, we
use the identity (14) of lemma 4.1:(

|x|2∂x
)2j+1

= |x|2j+2∂2j+1
x |x|2j .

By part (1), each power of |x|2∂x commutes with π0(E+):

π0(E+)|x|2j+2∂2j+1
x |x|2j = |x|2j+2∂2j+1

x |x|2jπ0(E+)
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or, using (4):

|x|2j+2π2j+2(E+)∂2j+1
x |x|2j = |x|2j+2∂2j+1

x π−2j(E+)|x|2j .

Omitting the factors |x|2j+2 and |x|2j , we obtain (17) for v = E+.
Formula (3) then follows immediately from part (2). �

5. Fueter’s Theorem revisited: paravector formalism

We now formulate the generalization of Fueter’s theorem as in [10]. Their
approach is based on the so-called paravector formalism where Rm+1 ∼= R ⊕ R1

m,
thus identifying points x ∈ Rm+1 with paravectors x0 +x ∈ R⊕R1

m. The analogue
in this setting of the usual Dirac operator is the generalized Cauchy-Riemann
operator D := ∂x0

+ ∂x in Rm+1, which also appears in e.g. [4]. This formalism
fixes from the start a chosen direction in the Euclidean space Rm+1. The Fueter
theorem in (m + 1) dimensions (with (m + 1) even) provides a way to construct
monogenic functions (with respect to the D-operator) starting from holomorphic
functions.

Set x = rω, ω ∈ Sm−1 ⊂ Rm and z = ξ + iη. Let f be holomorphic in Ω ⊂ C
and consider the splitting in its real and imaginary part: f(z) = u(ξ, η) + iv(ξ, η).
Let Pl(x) ∈ Ml(Rm) be an l-homogeneous monogenic polynomial on Rm.
Fueter’s theorem ([10]) states that the substitution (ξ, η; i) 7→ (x0, r;ω) in
f(z)Pl(x) =

(
u(ξ, η) + iv(ξ, η)

)
Pl(x), followed by the action of a fixed power of

the Laplace operator to this expression leads to a non-trivial monogenic function
(for D) on Rm+1. More precisely:

Theorem 5.1 : (Paravector formulation of Fueter theorem in Rm+1, see [10])
Let m be odd and Pl(x) ∈Ml(Rm,Rm). One then has:

∆l+m−1

2

(
(u(x0, r) + ωv(x0, r))Pl(x)

)
is monogenic in Ω̃ = {x ∈ Rm+1 : (x0, r) ∈ Ω} .

Remark: Note that the case m even has also been treated, using the notion of
Fourier multipliers (see the work of Q. Tao [13]).

6. Fueter’s Theorem: vector formalism

The aim of this section is to formulate and prove Fueter’s theorem in the vector
formalism. Here, vectors in Rm are identified with vector variables x ∈ R1

m. Instead
of the Cauchy-Riemann operator D we will use the standard Dirac operator ∂x in
Rm. Since we are now working on Rm instead of Rm+1, m should be even. The
main ingredient of our approach of Fueter’s theorem is that the odd powers ∂2j+1

x

intertwine certain sl(2)-actions on function spaces on Rm (cf. theorem 4.2). In
particular:

∂2l+m−1
x π−(2l+m−2)(v) = π2l+m(v)∂2l+m−1

x .

This allows us to consider the kernel of the map ∂2l+m−1
x : P(Rm) → P(Rm)

as a representation for π−(2l+m−2) and Fueter’s theorem can then be regarded
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10 Eelbode, Souček and Van Lancker

as a statement about a special type of null solutions for the operator ∂2l+m−1
x in Rm.

We will now introduce some particular sl(2)-modules. Let α ∈ R and take
an arbitrary (not necessarily monogenic) polynomial Pl(x) ∈ Pl(Rm−1). Consider
the lowest weight sl(2,R)-module generated by the lowest weight vector Pl(x):

Vα(Pl(x)) =
⊕
s≥0

(
πα(E+)

)s
Pl(x) =

⊕
s≥0

(Iα∂x1
Iα)sPl(x) .

Since πα(H)Pl(x) = (2Ex + α+m− 1)Pl(x) = (2l+ α+m− 1)Pl(x), this module
will be infinite-dimensional if the weight (2l+ α+m− 1) > 0. We can express the
summands in the module Vα(Pl(x)) by means of (2.3) as

Vα(Pl(x)) =
⊕
s≥0

(Iα∂x1
Iα)sPl(x) =

⊕
s≥0

K
l+m+α

2
s (x, e1)Pl(x) .

If e.g. α = −(2l +m), the condition for infinite dimensionality is not fulfilled and
we obtain the finite-dimensional sl(2,R)-module

V−(2l+m)(Pl(x)) =
⊕
s≥0

K0
s (x, e1)Pl(x) = (R⊕ Rxe1)Pl(x) .

Fix j ∈ N and consider the solutions of ∂2j+1
x which are also annihilated by the neg-

ative root −∂x1
. In particular, one can take the trivial solutions given by polynomi-

als R(x) of degree d ≤ 2j in Rm−1, i.e. R(x) =
∑2j

l=0 Pl(x) with Pl(x) ∈ Pl(Rm−1).
Each Pl(x) then generates a lowest-weight sl(2,R)-module V−2j(Pl(x)) with lowest
weight (2(l − j) + m − 1), which is infinite-dimensional for 2j < 2l + m − 1. The
largest value for 2j having this property is 2j = m− 2 + 2l.
We will now focus our attention on this case, also requiring that m is even (unless
stated otherwise). We denote the ring of Laurent polynomials C[z, z−1] as C[(z)].
It turns out that the sl(2)-module Vλ(Pl(x)) has a very simple form in terms of
holomorphic polynomials.

Lemma 6.1: Put λ = −(2l + m − 2) and let Pl(x) ∈ Pl(Rm−1) be an arbitrary
polynomial. One has:

(1) The mapping z 7→ −e1x extends to an algebra isomorphism

ζ : C[(z)]→ C[(−e1x)] .

(2) The space Vλ(Pl(x)) is an irreducible lowest-weight module with weight 1
which, up to the factor Pl(x), can be expressed in terms of holomorphic
polynomials:

Vλ(Pl(x)) =
⊕
s≥0

(Iλ∂x1
Iλ)sPl(x) = C[−e1x]Pl(x) ∼= C[z]Pl(x) . (18)

Moreover, F (x) ∈ Vλ(Pl(x)) if F (x) satisfies the Vekua-type equation

1

2

(
∂x1
− e1ω

(
∂r −

l

r

))
F (x) = 0 .
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Proof : Put α = λ := −(2l +m− 2) in (6). Then we obtain that

Vλ(Pl(x)) =
⊕
s≥0

(Iλ∂x1
Iλ)sPl(x) =

⊕
s≥0

K1
s (x, e1)Pl(x)

is a lowest-weight sl(2,R)-module of weight 1 under the action π−(2l+m−2). Consider
for fixed x the Laurent series in t, given by

− x− te1

|x− te1|2
=

∞∑
k=0

K1
k(x, e1)t−k−1e1 , |x| < t .

This series can be rewritten in the form

(
e1(x− te1)

)−1
= (x− te1)−1e−1

1 =
∞∑
k=0

K1
k(x, e1)t−k−1 , |x| < t .

On the other hand, for |e1x| = |x| < t one has the binomial series expansion:

(
e1(x− te1)

)−1
= (t+ e1x)−1 =

1

t

(
1 +

e1x

t

)−1

=
1

t

∞∑
k=0

(
−e1x

t

)k
.

By the uniqueness of this expansion

K1
k(x, e1) = (−e1x)k = (x1 − e1x)k = (x1 − e1ω|x|)k = |x|k exp(−e1ω kθ) (19)

where we set tan(θ) = |x|/x1. Notice that the bivector −e1ω defines a complex
structure in the two-dimensional (e1,−ω)-plane. Under the substitution i 7→ −e1ω,
u 7→ x1 and v 7→ |x|, the complex variable z is transformed into (−e1x). By (19) it
is clear that the monomial (−e1x)k behaves in a similar way as the k-th power of
the standard complex variable z. In fact, the map z 7→ −e1x extends to an algebra
isomorphism between C[z] and C[−e1x]. Putting |x| = r, we can also identify
C[−e1x] with the polynomial null solutions f(−e1x) of the Cauchy-Riemann type
operator 1

2(∂x1
− e1ω∂r) and F (x) ∈ Vλ(Pl(x)) if

rl
(1

2
(∂x1
− e1ω∂r)

)
r−lF (x) =

1

2

(
∂x1
− e1ω

(
∂r −

l

r

))
F (x) = 0 .

This proves the lemma. �

In the following lemma we collect some further results which will be used in the
proof of Fueter’s theorem.

Lemma 6.2: (Properties of inversions )
Set λ = −(2l +m− 2). Let Pl(x) ∈ Pl(Rm−1) . Then:

(1) The map −L(e1)Iλ : C[(−e1x)]Pl(x)→ C[(−e1x)]Pl(x) :

f(−e1x)Pl(x) 7→ 1

e1x
f
( 1

e1x

)
Pl(x) =

xe1

|x|2
f
(xe1

|x|2
)
Pl(x)

and the map

ι : C[(z)]→ C[(z)] : f(z) 7→ −1

z
f
(
− 1

z

)



March 11, 2013 9:2 Complex Variables and Elliptic Equations EeSoVL˙paper
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are intertwinable by ζ and satisfy (−L(e1)Iλ)2 = −id and ι2 = −id.
(2) Let m be even. If P (x) ∈ P(Rm) is a polynomial satisfying the condition

∂2l+m−1
x P (x) = 0, then

(IλP )(x) = (I−(2l+m−2)P )(x) =
x

|x|2
|x|2lP

( x

|x|2
)
∈ C∞(Rm0 )

belongs to the kernel of ∂2l+m−1
x and ∂2l+m−1

x

(
L(e1)IλP

)
= 0. In particular,

if Pl(x) belongs to Pl(Rm), it follows that

(IλPl)(x) =
x

|x|2
Pl(x)

belongs to the kernel of ∂2l+m−1
x .

(3) Let m be odd. If P (x) ∈ P(Rm) is a polynomial such that ∂2l+m
x P (x) = 0,

then also

(Iλ−1P )(x) = (I−(2l+m−1)P )(x) =
x

|x|
|x|2lP

( x

|x|2
)
∈ C∞(Rm0 )

belongs to the kernel of ∂2l+m
x and ∂2l+m

x

(
L(e1)IλP

)
= 0. In particular, if

Pl(x) belongs to Pl(Rm), it follows that

(Iλ−1Pl)(x) =
x

|x|
Pl(x) = ωPl(x) (20)

belongs to the kernel of ∂2l+m
x .

Proof : Let F = f(−e1x)Pl(x). Consider the inversion operator Iλ acting on F :

(IλF )(x) =
x

|x|m+λ
F
( x

|x|2
)

= x|x|2l−2F
( x

|x|2
)

=
x

|x|2
f
(
− e1x

|x|2
)
Pl(x) .

In particular, for f = (−e1x)k, the identities

x

|x|2

(
− e1x

|x|2

)k
=

(
−xe1

|x|2

)k x

|x|2
=

(
−xe1

|x|2

)k+1

e1 = (−e1x)−(k+1)e1

leads to the following formula, which holds on each summand C[−e1x]Pl(x):

Iλ : (−e1x)kPl(x)→ (−e1x)−(k+1)e1Pl(x) .

This is equivalent to the transformation

−L(e1)Iλ : (−e1x)kPl(x)→ (e1x)−(k+1)Pl(x) ,

which under the identification z = −e1x corresponds to the classical complex
inversion f(z) 7→ −1

zf(−1
z ) for holomorphic functions. Hence,

−L(e1)Iλ : C[(−e1x)]Pl(x)→ C[(−e1x)]Pl(x)

corresponds to an inversion satisfying
(
− L(e1)Iλ

)2
= −id and the intertwining

property is also clear. In order to prove (2), let us suppose that ∂2l+m−1
x P (x) = 0.
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This implies that P (x) has a Fischer decomposition in x of the form

P (x) =

2l+m−2∑
j=0

xjMj(x) , Mj(x) ∈M(Rm) .

The action of Iλ on P (x) yields

(IλP )(x) =
2l+m−2∑
j=0

xj |x|2l+m−2−2j x

|x|m
Mj

( x

|x|2
)

=
2l+m−2∑
j=0

εj x
2l+m−2−jM̃j(x) (21)

where M̃j(x) := IMj(x) is left monogenic in x , εj = ±1, and m is supposed to
be even. Hence, the right hand side of (21) is polymonogenic of order 2l +m− 1.
Since L(e1) anti-commutes with the action of ∂x, the statement in (2) is proved.
The proof of (3) is analogous to (2). �

This leads now immediately to the following version of the generalization of Fueter’s
Theorem.

Theorem 6.3 : (Fueter theorem in Rm with m even: vector formulation)
Fix a unit vector e1 ∈ Rm, with m an even dimension, and identify e⊥1 with Rm−1.
Let Pl(x) ∈ Pl(Rm−1) be an arbitrary polynomial and let f(z) ∈ C[(z)]. Consider
the algebra homomorphism ζ : C[(z)] → C[(−e1x)] : f(z) 7→ f(−e1x). We then
have:

∂2l+m−1
x

(
f(−e1x)Pl(x)

)
= 0

∂2l+m−1
x

(
f(−e1x)e1ωPl(x)

)
= 0 .

Proof : The intertwining property (17) gives for all v ∈ sl(2,R) that

∂2l+m−1
x π−(2l+m−2)(v) = π2l+m(v)∂2l+m−1

x . (22)

Recall that we have put λ = −(2l+m−2). By lemma 6.1, we have the graded sum

Vλ(Pl(x)) =
⊕
s≥0

(Iλ∂x1
Iλ)sPl(x) =

⊕
s≥0

(−e1x)sPl(x) ,

consisting of homogeneous polynomials. Let s be an arbitrary positive integer. By
repeated application of identity (22) for v = E+ we find that

∂2l+m−1
x

(
s!(−e1x)sPl(x)

)
= ∂2l+m−1

x

(
(Iλ∂x1

Iλ)sPl(x)
)

= (π2l+m(E+))s∂2l+m−1
x Pl(x) = 0 .

This proves the statement for f(z) ∈ C[z] . Let now h(z) have a Laurent series
which only consists of negative powers of z, then h(z) = ιf(z) with f(z) ∈ C[z]
and

∂2l+m−1
x

(
h(−e1x)Pl(x)

)
= ∂2l+m−1

x

(
(−L(e1)Iλ)f(−e1x)Pl(x)

)
= 0
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because ∂2l+m−1
x

(
f(−e1x)Pl(x)

)
= 0.

For the second part we apply (20) to Pl(x) ∈ P(Rm−1). Since (m − 1) is odd, it
follows that

ωPl(x) ∈ Ker
(
∂2l+m−1
x

)
.

We can then regard the function ωPl(x) as a C∞-function on Rm \ Re1 which is
annihilated by ∂x1

. Hence, we obtain another lowest weight vector ωPl(x) which is
moreover in the kernel of ∂2l+m−1

x . Again with λ = −(2l +m− 2), we obtain that

Vλ(ωPl(x)) =
⊕
s≥0

(Iλ∂x1
Iλ)sωPl(x) =

⊕
s≥0

K1
s (x, e1)ωPl(x) = C[−e1x]ωPl(x)

is a lowest weight module for sl(2,R) of lowest weight 1 under the action π−(2l+m−2)

and each function in this module is annihilated by ∂2l+m−1
x . In view of the fact that

Iλ∂x1
Iλ and (−e1x) anti-commute with L(e1), one can also replace ω by (e1ω). �

Remark that the identification in lemma 6.1, given by

Vλ(Pl(x)) = C[−e1x]Pl(x)
ζ∼= C[z]Pl(x) ,

also explains where the substitution: z → x1 − e1ω|x| in Fueter’s theorem has its
origin. Moreover, our approach immediately yields in a natural and unified way the
result for general polynomials Pl(x) ∈ Pl(Rm−1). In case of theorem 5.1 formulated
in the paravector formalism, this result was proved over the years in several rather
technical papers: first the case l = 0, then Pl(x) ∈ Ml(Rm) and finally also for
Pl(x) ∈ Pl(Rm). In chronological order, we mention the papers [8, 10, 12, 14, 16].
Remark that the same statement remains true when Pl(x) ∈ Pl(Rm−1) is replaced
by a polynomial Pl(x) ∈ Pl(Rm):

Corollary 6.4: (Fueter theorem for Pl(x) ∈ Pl(Rm) in Rm with m even)
Let Pl(x) ∈ Pl(Rm) be an arbitrary polynomial and let f(z) ∈ C[(z)]. We then
have:

∂2l+m−1
x

(
f(−e1x)Pl(x)

)
= 0

Proof : Consider the expansion

Pl(x) =
l∑

j=0

xj1Pl−j(x) , Pl−j(x) ∈ Pl−j(Rm−1) .

Since −e1x = x1 − e1x (with e1x and e1x commuting variables), we find that

f(−e1x)Pl(x) =

l∑
j=0

j∑
s=0

(
j

s

)
f(−e1x)(−e1x)j−s(e1x)sPl−j(x) ,

=

l∑
j=0

j∑
s=0

fjs(−e1x)(e1x)sPl−j(x) , fsj(z) ∈ C[z] . (23)

Since (e1x)sPl−j(x) ∈ Pl−j+s(Rm−1) we can apply Fueter’s theorem 6.3 to each of
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the summands, hence

∂2(l−j+s)+m−1
x

(
fjs(−e1x)(e1x)sPl−j(x)

)
= 0 , j = 0, . . . , l , s = 0, . . . , j .

The highest power of the Dirac operator which can occur is 2l+m−1. This proves
the statement. �
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