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Summary 

 

Selenium (Se) is an essential micronutrient for humans and livestock, having an important 

role in many vital processes. However, its intake by humans and animals varies between 

countries due to its variable distribution in soils and availability in food and feed crops. Many 

world regions are considered as Se deficient, but several strategies can be followed to 

overcome such deficiencies. Agronomic biofortification is considered to be the most feasible 

option to improve the Se status, as this strategy is able to deliver Se to the entire population 

effectively, efficiently and in the most suitable chemical form. Although most biofortification 

strategies and studies focus on supplementing staple food crops with Se, use of vegetables is 

also an option as they are also consumed by a majority of population. Among the vegetables, 

Allium and Brassica species are particularly interesting due to their high potential for Se 

accumulation and conversion to Se species that are considered as beneficial for human health, 

such as γ-glut-cyst, SeCys and MeSeCys. Moreover, kenaf (Hibiscus cannabinus), which 

belongs to Malvaceae family, has much potential as it can be used as food as well as feed 

ingredient, and has proven to have potential for Se accumulation. 

Therefore, we assessed the impact of Se fertilizer type and dose, soil properties, and genetic 

crop variety on Se uptake by leek (Allium ampeloprasum var. porrum) and its Se speciation in 

greenhouse and field experiments. Moreover, we assessed accumulation and speciation of Se 

in kenaf and its physiological response to Se, as well as how contents of other micronutrients 

in kenaf may be affected by Se fertilization. In addition, we studied how liming and supply of 

organic amendments, such as compost, pig and cow manure, to a sandy loam soil may affect 

availability of Se, and how this evolves in the first months after application of the Se 

fertilizer. Finally, we assessed in vitro the bioaccessibility of Se from the Se-enriched food 

crops and compared it with commercially available food supplements, meanwhile assessing 

also the role of intestinal microorganisms in the release and biotransformation of Se in the 

gastrointestinal tract. 

The soils in Flanders (Belgium) were observed to be lower in Se levels. When Se fertilizer is 

added to the soil, the concentration and speciation of Se in leek depend on the form and dose 

of Se fertilizer used, with use of selenate resulting in the highest accumulation in the crop. Its 

uptake by the leek ranges between 5-10% and 36-48% of the amount added to the soil for 

supply of selenite and selenate, respectively. Accordingly, the use of selenite as fertilizer 
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results in a higher risk for Se accumulation in the soil on longer term. Among 20 different 

leek cultivars tested in a field experiment, some cultivars seem to be superior in accumulating 

Se. In a field experiment conducted on different field plots across Flanders with selenite as 

fertilizer, a negative correlation between soil organic carbon and Se uptake by the leek was 

observed. Moreover, in a pot experiment, organic amendments were found to decrease Se 

availability and its concentration in wheat. In the soils amended with cow and pig manure, Se 

uptake by the plants decreases by 91-95% and 88-89%, respectively, when the soils were 

spiked with selenite or selenate. Soil liming improves Se concentrations in crops especially 

when selenate fertilizers are used. 

As was observed for leek, the uptake of Se by kenaf was also highest when the soil was 

fertilized with selenate, whereas also the speciation of Se in kenaf differs when different 

fertilizers are used, with a higher percentage of organic species being formed in the crop 

when soils are fertilized with selenite. At higher doses of selenate fertilizer, plant growth was 

negatively affected, whereas this was not the case when selenite was used at a same Se 

application dose. 

The majority of Se was found to be bioaccessible in the small intestine, and a significant 

fraction of Se contained in the crops also has good chances to reach the colon, where it seems 

to be taken up by the microbial community and may also induce positive health effects. 

However, further research is needed to assess whether this is actually the case. 

Bioaccessibility of biofortified food crops was found to be quite similar to the 

bioaccessibility of commercially available food supplements containing Se in the form of 

selenized yeast or selenomethionine. However, a yoghurt-based food supplement containing 

Se microparticles showed a very low bioaccessibility (less 26%). These observations 

highlight the need for assessing Se speciation and bioaccessibility when evaluating the 

efficacy of new food supplements and fortified food products being brought to the market. 

It is concluded that Se-enriched leek or kenaf can be used to increase intake of Se by humans 

and animals from suboptimal levels to levels which have been reported to promote beneficial 

health effects. However, long-term field studies monitoring Se mobility and bioavailability in 

soils amended with Se fertilizers are needed to be able to outweigh the risk for Se 

accumulation in the soil against the benefit of supplying Se to the crop. 
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Samenvatting 

 

Selenium (Se) is een essentiële micronutriënt voor mens en dier, die een belangrijke rol speelt 

in veel vitale processen. Zijn inname door mens en dier varieert echter tussen verschillende 

landen omwille van zijn variabele distributie in de bodem en beschikbaarheid in voedings- en 

voedergewassen. Veel werelddelen kunnen beschouwd worden als zijnde selenium-deficiënt. 

Verschillende strategieën kunnen gevolgd worden om dergelijke deficiënties tegen te gaan. 

Agronomische biofortificatie wordt beschouwd als de meest realistische optie om de 

seleniumstatus te verbeteren, gezien deze strategie in staat is de hele populatie op een veilige, 

effectieve en efficiënte wijze van Se te voorzien, alsook Se in de meest geschikte vorm aan te 

leveren. 

Hoewel de meeste biofortificatie-strategieën en –studies zich richten op het supplementeren 

van basisvoedingsgewassen met Se, is gebruik van groenten tevens een optie, gezien deze 

ook geconsumeerd worden door het merendeel van de bevolking. Onder de groenten zijn in 

het bijzonder Allium en Brassica gewassen interessant omwille van hun hoog potentieel om 

Se te accumuleren en om te zetten in vormen die beschouwd worden als gunstig voor de 

menselijke gezondheid, zoals γ-glut-cyst, SeCys and MeSeCys. Bovendien is Kenaf 

(Hibiscus cannabinus), die behoort tot de Malvaceae familie, veelbelovend gezien het 

gebruikt kan worden als voedings- en voedergewas en reeds bewezen heeft potentieel te 

hebben om Se te accumuleren. 

Daarom werd in deze studie de impact van vorm en dosis van Se-bemesting, 

bodemeigenschappen en genetische gewasvariëteit op de opname van Se door prei (Allium 

ampeloprasum var. porrum) en diens Se-speciatie ingeschat via serre- en veldexperimenten. 

Bovendien werden accumulatie en speciatie van Se in kenaf en diens fysiologische respons 

op Se-toediening bestudeerd, alsook hoe de gehaltes van andere micronutriënten in kenaf 

kunnen beïnvloed worden door Se-bemesting. Verder werd onderzocht hoe bekalking en 

toediening van organische amendementen, zoals compost, varkens- en koemest aan een 

zandleembodem de beschikbaarheid van Se kunnen beïnvloeden, en hoe dit evolueert in de 

eerste maanden na toedieningen van een Se-meststof. Tenslotte werd in vitro de 

biotoegankelijkheid van Se in de Se-aangerijkte voedings- en voedergewassen ingeschat en 

vergeleken met commercieel beschikbare voedingssupplementen, waarbij tevens de rol van 
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intestinale micro-organismen in de vrijstelling en biotransformatie van Se in het 

spijsverteringsstelsel werd bestudeerd. 

Er werd vastgesteld dat de bodem in Vlaanderen (België) kan beschouwd worden als Se-

deficiënt. Wanneer Se-meststof aan de bodem wordt toegediend, hangen de concentratie en 

speciatie van Se in prei af van de gebruikte vorm en dosis van de Se-meststof, waarbij 

gebruik van selenaat resulteert in de hoogste accumulatie in het gewas. De opname van Se 

door de prei varieert tussen 5-10% en 36-48% van de hoeveelheid toegediend aan de bodem, 

bij gebruik van respectievelijk seleniet en selenaat. Gebruik van seleniet als meststof 

resulteert dus in een hoger risico voor Se-accumulatie in de bodem op langere termijn. Van 

de 20 verschillende prei cultivars die getest werden in een veldexperiment, bleken enkele 

cultivars superieur te zijn in het accumuleren van Se. In een veldexperiment uitgevoerd op 

verschillende proefvelden verspreid over Vlaanderen met seleniet als meststof, werd een 

negatieve correlatie tussen organische koolstof in de bodem en Se-opname door de prei 

waargenomen. Bovendien werd in een potexperiment vastgesteld dat gebruik van organische 

amendementen resulteert in een afname van de beschikbaarheid van Se en diens concentratie 

in tarwe. In bodems waaraan koe- en varkensmest werd toegevoegd, nam de Se-opname door 

de planten af met respectievelijk 91-95% en 88-89% wanneer aan de bodems seleniet of 

selenaat werd toegediend. Bekalking doet Se-concentraties in de gewassen toenemen, in het 

bijzonder wanneer selenaat-meststoffen gebruikt worden. 

Zoals tevens werd waargenomen voor prei, is de opname van Se door Kenaf ook hoger 

wanneer de bodem bemest wordt met selenaat, terwijl de speciatie van Se in Kenaf ook 

verschilt wanneer verschillende meststoffen gebruikt worden. Het hoogste percentage aan 

organische Se-vormen wordt waargenomen in de gewassen wanneer bodems bemest worden 

met seleniet. Bij hogere dosissen van selenaat-meststof wordt de plantengroei negatief 

beïnvloed, terwijl dit niet het geval is wanneer seleniet wordt toegediend aan dezelfde Se 

dosis. 

Het merendeel van het Se aanwezig in de gewassen kan beschouwd worden als zijnde 

biotoegankelijk in de dunne darm, terwijl tevens een significant deel een goede kans heeft om 

de dikke darm te bereiken, waar het blijkt opgenomen te worden door de microbiële 

gemeenschap en positieve gezondheidseffecten zou kunnen induceren. Meer onderzoek is 

echter nodig om te kunnen inschatten of dit effectief het geval is. De biotoegankelijkheid van 

aangerijkte voedingsgewassen is gelijkaardig aan de biotoegankelijkheid van commercieel 
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beschikbare voedingssupplementen die Se bevatten in de vorm van Se-aangerijkte gist of 

selenomethionine. Een yoghurt-gebaseerd voedingssupplement dat Se micropartikels bevat, 

vertoonde echter een erg lage biotoegankelijkheid (minder dan 26%). Deze waarnemingen 

wijzen op de nood om Se speciatie en biotoegankelijkheid in te schatten wanneer de 

effectiviteit van nieuwe voedingssupplementen en aangerijkte voedingsproducten die op de 

markt gebracht worden, geëvalueerd wordt. 

Er kan besloten worden dat Se-aangereikte prei of kenaf gebruikt kunnen worden om de 

inname van Se door mens en dier te verhogen van suboptimale niveaus naar niveaus die 

positieve gezondheidseffecten zouden induceren. Veldexperimenten waarin de mobiliteit en 

biobeschikbaarheid van Se in bodems gedurende langere termijn opgevolgd worden, zijn 

echter noodzakelijk om het risico op Se-accumulatie in de bodem te kunnen afwegen tegen 

het voordeel van Se-toediening aan het gewas. 
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Chapter 1. General introduction and objectives
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1.1 General introduction 

 

Selenium (Se) is a naturally occurring trace mineral. It is an important essential nutrient for 

humans and livestock. Selenium has an important proven role in many vital processes. Its 

deficiency was related to the incidence of major human diseases, such as cancer, the Down-

syndrome, Alzheimer's disease, etc (Bedwal et al., 1993; Rayman, 2000; Rayman, 2002; 

Jackson et al., 2004). Soils were found to be Se-deficient in many parts of the world, such as 

England, Finland, some parts of China and the United states (Borowska, 1998, Gupta and 

Gupta, 2010). Food crops obtained from these Se deficient soils lead to Se deficiency in the 

human population. For example, in the UK dietary Se intake has fallen from 60 µg d
-1

 in 

1974 to <39 µg d
-1

 in recent years, which is thought to be due to replacement of North 

American wheat (high in Se) by European wheat (low in Se) as source for bread (Broadley et 

al., 2006). However, there are also regions where soil has much higher Se concentrations, e.g.  

in some parts of China, India and Ireland (Dhillon and Dhillon, 1991, Fleming, 1962, Hira et 

al., 2004). Although Se is an essential element, it can also be toxic when taken up in excess. 

The narrow gap between its daily requirement and toxic dose ranges between 0.055 and 0.4 

mg Se d
-1

 per adult male or female (Department of Health, 1991). 

 

Several strategies can be followed to overcome Se deficiency in the human diet. Se-enriched 

food supplements are commercially available in many countries (Dumont et al., 2004). They 

are mainly sold as tablets containing Se-enriched baker’s yeast (Saccharomyces cerevisiae) 

having selenomethionine as dominating Se form. Supply of Se-enriched animal products such 

as Se-enriched milk, meat and eggs, is also an option. Enrichment of these animal products 

may be obtained by supplying cattle with Se-rich pasture crops or feed supplements 

containing Se-enriched baker’s yeast. A third strategy is based on production of Se-fortified 

food crops, which is referred to as biofortification. These Se-enriched crops can be obtained 

through genetic engineering, selective breeding or use of Se fertilizers. The efficacy of using 

Se-fortified food crops was recognised in Finland in the early 1980s, where Se fertilizers such 

as sodium selenate and sodium selenite were used to obtain the Se-enriched crops (Ylaranta 

1990, Eurola et al. 1991). Among all strategies, agronomic biofortification is considered to be 

the most feasible option to increase the selenium status as it concerns a food system approach 

that can deliver dietary selenium to the entire population safely, effectively, efficiently and in 

the most suitable chemical forms (Welch and Graham, 1999). Although most biofortification 
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strategies and studies focus on supplementing staple food crops with Se, use of vegetables is 

also an option as they are consumed by a majority of population. Among the vegetables, 

Allium and Brassica species are particularly interesting due to their high potential for Se 

accumulation and conversion to Se species that may be beneficial for human health, such as 

γ-glut-cyst, SeCys and MeSeCys (Pyrzynska, 2009). 

To obtain Se-enriched food crops, fertilizing soil with selenium is often considered as the 

most effective, safest and fastest strategy. However, the Se concentration in food crops 

obtained from Se fertilized soils was found to be influenced by various soil parameters, such 

as soil pH and redox potential (Eh), organic matter, Fe-oxides, sulphates, mode of 

occurrence, soil weathering, physiography, climate, and (an)oxic conditions (Aubert and 

Pinta, 1977). Moreover, it depends on the form of Se used to fertilize the soils (Gissel-

Nielsen et al., 1984). Although several researchers previously investigated soil factors 

affecting Se uptake by different food crops in greenhouse experiments, much less attention 

was given to accumulation and longer-term fate of the fertilizer in the soil, and field studies. 

Moreover, it is not yet clear to what extent the overall nutritional quality of the crops, such as 

their content of other essential micronutrients, is affected by the fertilization. 

It should also be mentioned that the biological significance of Se is not only dependent on the 

total amount of Se consumed but it also depends on the speciation of Se in the food crops 

(Tamas et al., 2010), i.e. the form in which Se occurs, which in turn depends on the type of 

food crop and factors affecting availability of different Se species in the soil. This speciation 

determines its chemical fate, bioavailability, biological role and toxicity in the human body. 

For example, the anti-carcinogenic role of some organic Se forms (e.g., MeSeCys, γ-glut-

cyst) was shown to be higher compared to other organic and inorganic Se forms (Finley and 

Davis, 2001, Finley et al., 2000, Ip et al., 2000). Moreover, the bioavailability of Se in 

fortified food crops can also be affected by its bioaccessibility, i.e. fraction of the compound 

that after ingestion is mobilized into the gut fluids or chyme and is available for assimilation 

(Rossi et al., 1996, Ruby et al., 1996). This bioaccessibility usually depends on the speciation 

as well as characteristics of the food matrix itself (Thomson, 2004). Although several of 

studies have previously focussed on agronomic strategies for Se biofortification, only few 

focussed on factors affecting speciation of Se in the crops and its bioaccessibility (Kápolna et 

al., 2007; Jaiswal et al., 2012). 

 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Jaiswal%2C+Sumit+K.)
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1.2 Objectives 

 

This study aimed to contribute to the development of an effective Se biofortification 

strategies. Leek and kenaf were used as study crops. Leek, which belongs to the Allium 

family was chosen as it has not yet been studied before in Se biofortification studies although 

Allium crops were previously identified to have a high potential for Se accumulation and 

conversion to Se species that may be beneficial for human health, such as γ-glut-cyst, SeCys 

and MeSeCys. Kenaf, which belongs to Malvaceae family, was chosen as it can be used as 

food as well as feed ingredient and has proven to have potential for Se accumulation although 

its Se speciation and physiological response to Se fertilization have not yet been studied 

before (Banuelos et al., 1997a; Lopez et al., 2006; Kubmarawa et al., 2009). 

In particular, we aimed to: 

- assess the impact of Se fertilizer type and dose on Se uptake by leek and its speciation 

in leek grown on a sandy loam soil (chapter 3) 

- assess in a field experiment how soil properties may affect uptake of Se by leek from 

non-fertilized soils and soils fertilized with selenite fertilizer (chapter 4) 

- compare the response of different genetic leek varieties to different types of Se 

fertilizers (chapter 5) 

- assess accumulation and speciation of Se in kenaf and its physiological response to Se 

fertilization (chapter 6) 

- assess how contents of other micronutrients in kenaf may be affected by Se 

fertilization (chapter 7) 

- assess how liming and supply of organic amendments, such as compost, pig and cow 

manure, may affect availability of Se in a sandy loam soil, and how this evolves in the 

first months after application of the Se fertilizer (chapter 8) 

- assess the bioaccessibility of Se from the Se-enriched food crops (in vitro) and 

compare it with commercially available food supplements, meanwhile assessing also 

the role of microorganisms in the release and biotransformation of Se in the 

gastrointestinal tract (chapter 9). 



22 

 

The work concludes with a general discussion in which technical, economic and practical 

feasibility of using Se-enriched leek and kenaf in biofortification programmes is assessed 

(chapter 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Chapter 2. Literature Review
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2.1 Physical and chemical properties 

 

The atomic number of Se is 34 and its atomic mass is 78.96. It belongs to Group 6 

chalcogens (Group VIa) of the periodic table and is considered as a non-metal element. The 

six stable isotopes of Se are 
74

Se (0.87%), 
76

Se (9.02%), 
77

Se (7.58%), 
78

Se (23.52%), 
80

Se 

(49.82%), and 
82

Se (9.19%) (Hoffmann and King, 1997). Selenium replaces sulphur in 

sulphide minerals such as pyrite, chalcopyrite, pyrrhotite and sphalerite being a chalcophile 

(sulphur-loving) element. In the periodic table, the common valence electron configuration of 

s
2
p

4
 causes parallel valances and equivalent bonding structures among the group elements. 

Due to the electron configuration, Se exists in three common oxidation states of 6, 4, and -2, 

identical to sulphur. Selenium is a member of the sulphur group of nonmetallic elements and 

is similar to this sulphur in terms of its forms and compounds. As observed from the periodic 

table, the Se atom is larger than S with a radius of 0.5 Å compared to 0.37 Å for S. The 

inorganic Se forms mainly exist as elemental selenium (Se), selenide (Se
2-

), and in the +4 and 

+6 oxidation state. In the +4 oxidation state it can occur as selenium dioxide (SeO2), selenite 

(SeO3
2-

) or selenious acid (H2SeO3) and in the +6 oxidation state it occurs in the form of 

selenic acid (H2SeO4) or selenate (SeO4
2-

) salts. The fact that Se exists in different oxidation 

numbers allows it to become biologically active as it participates in electron donor and 

acceptor reactions (Shrift, 1973). 

 

2.2 Se sources and geochemistry 

 

Selenium in soils mainly originates from the weathering of Se-containing rocks, volcanic 

activity and dust arising from coal combustion (Weiss et al., 1971). In unweathered rocks and 

mineral ores, the occurrence of Se is nearly always connected with presence of sulphur 

minerals. The abundance of Se in the lithosphere relative to sulphur is on average 1 to 6000. 

When compared to tellurium, Se is approximately 50 times more abundant. However, sulphur 

and Se slightly differ in their oxidation. During weathering, sulphide is oxidized to sulphate 

whereas selenide stops with the formation of selenite. A very high oxidation potential is 



25 

 

needed to form selenate. Under a humid climate, a large part of the sulphate can leach into 

rivers and oceans. However, sulphate in sea water  may occur in the sediments as sulphates of 

the alkaline earth metals, or be transformed into heavy metal sulphides or elemental sulphur. 

Selenites often stay readily available in sea water, although they may also be absorbed and 

co-precipitated with the iron and manganese hydroxide in sediments and with organic 

material, where they can further be reduced to elemental selenium or selenide (Bisbjerg, 

1972, Weiss et al., 1971). 

 

2.3 Selenium toxicity and deficiency 

 

Selenium was initially believed to be a toxic element when toxicity symptoms were observed 

in horses grazing on seleniferous soils. In these horses, hair loss from mane and tail, 

sloughing of hooves, joint erosion and lameness hair loss were observed which is termed as 

the Alkali disease (Toole et al., 1995). In the 13th century such toxic symptoms in animals 

feeding on plants with high Se concentrations were observed by Marco Polo, an explorer. 

Subsequently, Se toxicity in humans was reported in China in regions where soil Se 

concentrations are higher than 40 mg kg
-1

. First deficiency symptoms, such as 

cardiomyopathy, were also reported in China in 1935, and referred to as the Keshan disease 

(Cheng, 2002). In 1941, a study was conducted in which chickens were fed a diet containing 

of corn, barley and wheat grown on seleniferous soils. The diets contained 0, 2, 5, 8 or 10 mg 

Se kg
-1

. The observed chickens fed with 2 mg Se kg
-1

 showed significant and rapid growth, 

while a declined growth was seen in chickens fed with 10 mg Se kg
-1 

(Poley et al., 1941). A 

decade later, in 1957, the nutritional importance of Se was claimed by Schwarz and Foltz . 

Subsequently, the importance of Se for animals and humans was further highlighted in 

several studies (Schwarz et al., 1957, Chen et al., 1980, Gupta and Gupta, 2010). 

 

2.4 Soil Se levels and their availability to plants 

 

Selenium is unevenly distributed in the soil. Most soils are relatively low in Se, with 

concentrations varying in a normal range of 0.01 to 2.00 mg Se kg
-1

 (average: 0.4 mg Se kg
-1

) 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cheng%20TO%5Bauth%5D
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(Fordyce 2005). However, also soils with more than 1200 mg Se kg
-1

 occur. These are termed 

seleniferous soils and are widespread in the Great Plains of the USA, Canada, South 

America, China and Russia (Birte, 1972). The highest Se contents are found most frequently 

in phosphates, uranium ore, fossil coal and oil, and in shale with a high content of organic 

matter (Fleming, 1980). Processes influencing Se cycling are volcanic activity, weathering of 

rocks, sea spray and volatilization–recycling induced by biota. Besides release from the 

native substrate, rainfall plays an important role in determining the selenium content of a soil 

(Fleming, 1980). In regions with less than 500 mm of rain, the soil formed from rocks with a 

high Se content contains potentially toxic Se concentrations. When the substrate is low in Se, 

the soil forming on it will have a low Se concentration regardless of climate. 

In soil solution with high redox potentials, selenate (SeO4
2-

) is the most abundant species 

(pe+pH>15). In the medium redox range (pe+pH=7.5–15), selenite species are prevailing, 

while selenide species are stable only at low redox state (pe+pH<7.5) (Elrashidi et al., 1987). 

Selenite is more stable under lower redox than higher redox potentials, and selenate entering 

drainage systems is readily reduced to selenite if there is a fall in pe/Eh. At lower pH, selenite 

is strongly absorbed by hydrous secondary iron oxides and possibly to a lesser extent by clays 

and organic matter (Dhillon, 2009, Elrashidi et al., 1987, Masscheleyn et al., 1990). If soils 

are rich in Ca and Mg, CaSeO4 and MgSeO4 both contribute to the total Se concentration at 

higher redox potentials, whereas KHSe, NH4HSe and MnSe are the major contributors at 

lower redox potentials (Elrashidi et al., 1987). Plants absorb Se from the soil solution 

primarily as selenate and to a much lesser extent as selenite (Geering et al., 1968). Selenate is 

more readily available to plants and is stable in higher pH soils while selenite, which is 

dominant in acidic soils, is bound to sesquioxides, decreasing its availability for uptake 

(Geering et al., 1968). The order of availability of inorganic Se forms to plants is SeO4
2-

 > 

HSeO3
-
 > SeO3

2-
> Se

0
 (Mayland et al., 1991). In humid regions and acid soils, the prevailing 

form is selenite, which is firmly adsorbed on sesquioxides and clay minerals. This form of Se 

is thus not readily available to plants. On the other hand, selenate, which occurs mainly under 

well-aerated conditions in alkaline soils of semiarid regions, does not form insoluble salts and 

thus is readily available to plants (Cary et al., 1967). However, leaching of available Se forms 

may lead to reduced Se availability to plants. 
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2.5 Agronomic Biofortification 

 

The potential for using Se-enriched fertilizers to increase crop Se concentrations and dietary 

intake has been demonstrated previously in Finland, the UK and Australia (Adams et al., 

2002, Rayman, 2002, Arthur, 2003, Broadley et al., 2006). Most studies focused on pastures 

to increase dietary Se uptake (Gissel-Nielsen, 1998, Gupta and Gupta, 2002). Due to low 

dietary Se intake and its potential health consequences in Finland, widespread use of Se in 

combination with other fertilizers was initiated by the Finnish Ministry of Agriculture and 

Forestry in 1983 (Ylaranta, 1984, Varo et al., 1988, Eurola et al., 1989, Eurola et al., 1991, 

Aro et al., 1995, Rayman, 2002, Eurola et al., 2004). With an application dose of 10 mg Se 

kg
-1

 fertilizer, the Se concentration of wheat bread was increased 10-fold from 0.03 to 0.35 

mg Se kg
-1

 DW (Eurola et al., 1991, Eurola, 2005, Aro et al., 1995). In Australia, a Se 

application ranging from 4 to 120 g Se ha
-1

, sprayed onto the soil at the time of sowing or 

applied after flowering, leads to 133-fold and 20-fold increase of Se concentrations in wheat, 

respectively (Lyons et al., 2005). In the United Kingdom, application of Na2SeO4 solution as 

a single, high volume drench significantly increased Se concentration in wheat grain and 

straw for all four sites which were examined; in this study, the Se concentration increased by 

0.0167 mg kg
-1

 DW for straw and 0.026 mg kg
-1

 DW for grain for each g Se ha
-1

 applied 

(Broadley et al., 2010). In Malawi, application of Na2SeO4 at a rate of 5 g Se ha
-1

 and 10 g Se 

ha
-1

 leads to increases of 12.6- 15.7% and 6.5-10.8%, respectively in maize (Chilimba et al., 

2012). In the various studies, the percentage of applied Se recovered in the crops varies, 

sometimes being below 10% due to the fact that applied selenate is converted to selenite, 

which is easily adsorbed by iron oxides and hydroxides in acidic soils (Cary et al., 1967, 

Geering et al., 1968, Christensen et al., 1989, Balistrieri and Chao, 1990). In an early study 

conducted by Davies and Watkinson (1966), the recovery of applied Se by the plants varied 

from only 1 to 2 % in case of selenite application, while 65% was found to be adsorbed to 

soil colloids while the remaining 30% was unaccounted. In a later study, conducted by Curtin 

et al. (2006), it was reported that the recovery in the crop differs with Se application rate, 

timing and method of application, and crop yield (Curtin et al., 2006). 
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2.6 Selenium speciation in plants 

 

Selenium also exists in different forms in different plant species. Both inorganic and organic 

Se species occur in the plants (Table 1). In plants, selenate is taken up and distributed by 

means of sulphate-proton co-transporters (Smith et al., 1995), whereas, selenite uptake is an 

active process likely mediated, at least partly, by phosphate transporters (Li et al., 2008). In 

general, plants accumulate high amounts of Se from soil-selenate due to its active transport 

through sulphate transport mechanism. Moreover, selenate binds weaker to soil particles and 

tends to have a higher bioavailability (Zhang and Sparks, 1990). Although the uptake of 

selenate is higher, the formation of organic species from selenate is lower because the 

reduction of selenate to selenite is a rate-limiting step in the Se assimilation pathway. Thus, 

most plants supplied with selenate accumulate predominantly selenate while plants supplied 

with selenite accumulate organic Se (Souza. et al., 1998). 
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Table 1. Selenium compounds and their structural formulae 

Name Structural formulae 

 

Dimethylselenide 

 

 

Dimethydiselenide 

 

 

Selenourea 
 

 

Selenate (selenic acid) 

 

 

Selenite (selenous acid) 

 

 

Trimethylselenonium ion 
 

 

Selenoprotein 
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Se-containing protein 

 

 

Se-cysteine (SeCys) 

 

 

Se-cystine (SeCys2) 

 

 

 

Selenomethionine 

 

 

 

Se-methylselenocysteine 

(MeSeCys)  

 

 

Selenobetaine  
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Se-homocysteine 

 

 

Se-methylSemethionine 

(MeSeMet) 

 

 

Se-cystamine  

 

 

Se-cystathione 

 

 

 

Se-lanthionine 

 

 

γ-Glutamyl-Se-

methylselenocysteine  

(γ-glut-cyst) 
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Se-adenosyl-homocysteine 

 

 

The conversion of selenate to selenite involves the consecutive action of two enzymes. ATP 

sulphurylase (APS) couples selenate to ATP, forming adenosine phosphoselenate (APSe) 

(Wilson and Bandurski, 1958). This is subsequently reduced to selenite by APS reductase 

(APR).  Further reduction of selenite to selenide is mediated by sulfite reductase, in analogy 

with sulfite reduction. However, it has also been suggested that nonenzymatic reduction by 

reduced glutathione (GSH) may play a significant role in selenite reduction (Anderson, 1993, 

Terry et al., 2000). After, selenide has been formed, it can be coupled to O-acetylserine 

(OAS) to form SeCys, by means of OAS thiol lyase (also called cysteine synthase). OAS is 

synthesized by the enzyme serine acetyl transferase and functions as a signal molecule that 

upregulates the activity of sulphate transporters and sulphate assimilation enzymes (Figure 

1a). 

The major organic Se compounds are selenomethionine (SeMet), selenocystine (SeCys2), and 

Se-methylselenocysteine. More than 25 Se-containing proteins (selenoproteins) are now 

known. It has been postulated that SeCys is metabolized to SeMet by cystathionine-g-

synthase (CgS), which couples SeCys to O-phosphohomoserine to form Se-cystathionine. A 

second enzyme, cystathionine-β-lyase, converts Se-cystathionine into Se-homocysteine. 

Finally, Se-homocysteine is converted to SeMet via the action of Met synthase. The other 

organic species such as MeSeCys and γ-glut-cyst are formed from SeMet which is further 

metabolized to Se–adenosyl–Se–Met and MeSeMet. The formation of MeSeCys in plants 

occurs through two pathways, via the SeMet pathway and the SeCys pathway (Figure 1a and 

1c). 

Volatilization of Se from plant is recognised as a detoxification process (Wilber, 1980). 

Detoxification can occur via two different pathways as indicated in Figure 1b and c (Lewis et 

al., 1974). Selenium hyper-accumulating plants show a higher detoxification ability 

compared to non-accumulating plants, with the formation of MeSeCys via the action of 
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SeCys methyltransferase being a major process in these hyper accumulators (Lyi et al., 2005). 

As MeSeCys is not incorporated into proteins like SeCys does, the detoxification mechanism 

in hyper accumulators leads to higher formation of DMDSe (Figure 1c). 

In general, selenomethionine (SeMet) is identified in many plant species as the main organic 

Se species. However, in accumulating plants of the Allium and Brassica family, MeSeCys 

and γ-glut-cyst were identified as the dominant Se species. Inorganic Se species were also 

identified in many plants and their degree of occurrence differs between the species. In the 

past decade, many studies focused on achieving organic Se species in plants as these species 

are considered to be more beneficial for humans (see section 2.9). 

 

  

Figure 1. Schematic representation of the metabolization of Se in plants (a), of the 

volatilization of Se in plants (b) and of the metabolization of Se in Se accumulating plants (c) 

(Dumont et al., 2006b) 
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2.7 Role of Se in human health 

 

The essentiality of Se for humans and livestock was previously illustrated in various studies. 

A total of 25 selenoproteins have been identified in humans, including iodothyronine 

deiodinases, thioredoxin reductases, glutathione peroxidases, and a range of other 

selenoproteins (e.g. SelP, SelM, SelT) (Brown et al., 2001, Fairweather et al., 2011, Rayman 

2002). Studies in farm animals indicate that Se deficiency affects both cell-mediated and 

hormonal components of the immune response (Arthur, 2003, Hoffmann and Berry, 2008), 

whereas in humans, limited data suggest that when intake of Se is sub-optimal, Se 

supplements can improve immune response (Hoffmann et al., 2008). In case of low serum Se 

in humans, when consuming Se less than 40 μg Se d
-1 

which is associated with low levels of 

natural killer cells, health disorders, including cardiovascular disorders, occur (Fairweather-

Tait et al., 2011). In such situations, Se supplementation (200 µg Se d
-1

) increased T-

lymphocyte-driven tumor lysis, lymphocyte proliferation and enhanced immune response. 

The Keshan disease (a cardiomyopathy) and Kashin-Beck disease (an osteoarthropathy) were 

reported in case of extremely low Se (<20 μg Se d
-1

) intake levels (Fairweather-Tait et al., 

2011). Several studies indicate that low dietary Se intake can be linked to pancreatitis, 

asthma, inflammatory response syndrome, impacts on immune system functioning, lower 

response to viral infection, lower female and male fertility, and abnormal thyroid functioning 

(Rayman, 2000, Rayman and Rayman, 2002). Correlation studies relating low Se status with 

functioning of the immune system pointed towards a role in spreading of HIV/AIDS (Cirelli 

et al., 1991, Look et al., 1997). 

The protective role of 15 selenoenzymes and their characteristic biological function is shown 

in Table 2. Among them, four glutathione peroxidases (GPx) and three forms of thioredoxin 

reductases have important roles in regenerating antioxidant systems and maintaining the 

intracellular redox state, and three forms of iodothyronine deiodinases are involved in the 

production of active thyroid hormone. The active site of the potent GPx contains SeCys 

residues. It is known that GPx activity and expression have been used in many human studies 

as biomarkers for selenium status. However, other selenoproteins (e.g., selenoprotein P and 

thioredoxin reductase) also have been shown to possess antioxidant properties in defense 

action against peroxynitrite, by reduction of this potent oxidizing and nitrating species to 

nitrite (Arteel and Sies, 2001). 
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Table 2. Known selenoproteins involved in metabolic processes (adapted from Rayman, 

2000) 

 

Selenoprotein Function 

 

Glutathione peroxidases  

(GPx1, GPx2, GPx3, GPx4) 

Antioxidant enzymes: remove hydrogen peroxide, and lipid 

and phospholipid hydroperoxides (thereby maintaining 

membrane integrity, modulating eicosanoid synthesis, 

modifying inflammation and likelihood of propagation of 

further oxidative damage to biomolecules such as lipids, 

lipoproteins, and DNA) . 

(Sperm) mitochondrial 

capsule selenoprotein 

Form of glutathione peroxidase (GPx4): shields developing 

sperm cells from oxidative damage and later polymerises into 

structural protein required for stability/motility of mature 

sperm. 

Iodothyronine deiodinases 

(three isoforms) 

Production and regulation of level of active thyroid hormone, 

T3, from thyroxine, T4. 

Thioredoxin reductases 

(probably three isoforms) 

Reduction of nucleotides in DNA synthesis; regeneration of 

antioxidant systems; maintenance of intracellular redox state, 

critical for cell viability and proliferation; regulation of gene 

expression by redox control of binding of transcription factors 

to DNA. 

Selenophosphate synthetase, 

SPS2 

Required for biosynthesis of selenophosphate, the precursor 

of SeCys, and therefore for selenoprotein synthesis. 

Selenoprotein P Found in plasma and associated with endothelial cells. 

Appears to protect endothelial cells against damage from 

peroxynitrite. 

Selenoprotein W Needed for muscle function. 

Prostate epithelial 

selenoprotein (15kDa) 

Found in epithelial cells of ventral prostate. Seems to have 

redox function (resembles GPx4), perhaps protecting 

secretory cells against development of carcinoma. 

DNA-bound spermatid 

selenoprotein (34 kDa) 

Glutathione peroxidase-like activity. Found in stomach and in 

nuclei of spermatozoa. May protect developing sperm. 

18 kDa selenoprotein Important selenoprotein, found in kidney and large number of 

other tissues. Preserved in selenium deficiency. 

 

The various mechanisms that may play a role in the anti-carcinogenic functioning of Se are 

illustrated in Figure 2. They include regulation of the cell cycle, apoptosis, and antioxidant 

effects, which are due to the action of selenoproteins (in particular, GPx1, GPx4, Sep15, 

SEPP1, and TXNRD1), modulation of angiogenesis and the extracellular matrix, histone 

deacetylase inhibition, carcinogen detoxification, induction of GSTs, alteration of DNA 

damage and repair mechanisms, and also immune system modulation (Jackson et al., 2008, 
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Lu and Jiang 2005, Selenius et al., 2009). Clinical studies on Se supplementation strongly 

supported the role of Se in reducing incidence of cancer in recent years. For instance, the 

Nutritional Prevention of Cancer (or NPC) trial carried out by Clark and co-workers in the 

USA using a supplementation in the form of selenized yeast at 90 µg Se d
-1

, showed 50% 

lower total cancer mortality (p<0.002) and 37% lower total cancer incidence (p < 0.001) with 

63% fewer cancers of the prostate, 58% fewer cancers of the colon, and 46% fewer cancers of 

the lung (Clark et al., 1996). In support of these results, Se supplementation with 200 μg Se d
-

1
 resulted in a 60% decrease in prostate cancer. A significant decrease in other cancer 

incidences was also reported with a significant decrease in esophageal cancer prevalence and 

also reduced total mortality and gastric cancer mortality. In contrast to these studies, the 

Selenium and Vitamin E Cancer Prevention Trial (SELECT), the largest ever prostate cancer 

prevention trial, showed that Se or Vitamin E taken alone or in combination did not prevent 

prostate cancer in a population of relatively healthy men over an average period of five years 

(Klein  et al., 2011). However, in this study pure L-selenomethionine was used instead of 

selenized yeast, which contains a much wider variety of Se species. The effect of selenium on 

cancer is assumed to depend on the dose of Se, as well as its speciation and bioavailability, 

and it may be affected by metabolism and genotype (Figure 2). 

The role of Se in reducing toxicity caused by other metals, e.g. (methyl) mercury found in 

seafood (Chen et al., 2006), was also reported. This is attributed to the formation of inert 

metal selenide complexes. A Se-induced reduction in prooxidant and genotoxic effects of 

arsenic has been demonstrated in humans suffering from arsenic-related skin lesions (Gailer 

et al., 2000). Moreover, Se was reported to reduce oxidative stress induced by cadmium in 

various animal tissues (Zwolak and Zaporowska, 2012). 
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Figure 2. Mechanisms that may play a role in the anti-carcinogenic functioning of Se 

(Fairweather-Tait et al., 2011) 

 

2.8 Selenium intake and daily required allowance 

 

The daily intake of Se varies among different countries across the world (Figure 3). The Se 

intake in most European countries is significantly lower when compared to Japan and the 

USA. The amount of Se available in the soil for plant uptake is clearly related to the intake of 

Se by humans living in an area. It varies considerably between regions and countries. 

Selenium intake below 11 μg d
-1

 is often associated with serious health effects and intake 

below 20 μg Se d
-1

 has been observed to induce deficiency symptoms (Fairweather et al., 

2011). In Australia, Bangladesh, Canada, Finland, Greece, Russia, United Kingdom, USA, 

Venezuela and Germany intake ranges from 29 to 500 μg d
-1

 (Reilly, 1998). The mean intake 

in Finland increased from 30 to 113 μg Se d
-1

 between 1984 and 1986 due to the national 

supplementation programme (Eurola et al., 2003). The intake and status of Se in New 

Zealand also increased when Australian wheat containing higher levels of Se was imported 

(Thomson and Robinson, 1980, 1996, Watkinson, 1981). 
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Figure 3. Global variation in selenium intake. Data shown here were compiled from Se intake 

data (adapted from (Fairweather-Tait et al., 2011). Data are presented for the intakes for 

males (M) and females (F) separately where available, with the latter shown with a lighter bar 

 

 

There are also regions with very high Se intake like in India where an estimated intake of 475 

µg d
-1

 for women and 632 µg d
-1

 for men was reported. In these regions, more than 80% of 

the Se is taken in through consumption of cereals locally grown in soils rich in Se (Hira et al., 

2004). In many parts of the world such as Africa and many parts of Asia and Latin America, 

no data on Se intake are available yet. 

There is no general, international recommended dietary Se intake because the recommended 

dose varies with age, sex and source of dietary Se (Thomson, 2004). The recommended Se 

intake in the USA, Canada and Europe was set at 55 μg d
-1

 (Thomson, 2004), a value 

intended to achieve and maintain the maximum plasma GPx activity. However, as there is 

growing evidence that additional beneficial effects, such as cancer prevention, may be 

provided when dietary Se intake exceeds the normal nutritional range, it may be inappropriate 

to rely solely on GPx activity to define optimal Se intake (Rayman, 2002). Recently, it was 

reported that consumption of Se in amounts up of 3–5 times the recommended dietary 

allowance of 70 µg d
-1

 for men and 55 µg d
-1

 for women (National Research Council 1989) 
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may prevent certain cancers including colon cancer. Plasma Se levels exceeding 120 μg L
-1

 

may be a useful target value for minimizing cancer risk (Combs, 2001). To obtain these 

plasma Se concentrations, it is recommended that the dietary intake should be at least 1.5 μg 

Se kg
-1

 body weight d
-1

, which is equivalent to 90 and 120 μg d
-1

 for people weighing 60 or 

80 kg, respectively. The lowest Se plasma levels in Europe are found in Eastern Europe and 

several parts of Poland, Slovenia and Turkey (Kljai and Runje, 2001, Micetic-Turk et al., 

2000, Ochoka et al., 2000, Vrca et al., 2004). The plasma Se concentration in the Belgian 

population was reported to be 84.3±9.4 μg L
-1

 in year 2004 and 79.8±4.4 in 2007 

(Cauwenbergh et al., 2007, Cauwenbergh et al., 2004). 

In Belgium, Robberecht et al. (1994) reported the daily Se intake to range between 28 and 61 

μg Se d
-1

, with an average of 45 μg Se d
-1

. A recent study conducted by Waegeneers et al. 

(2013) assessed Se intake by the Belgian population. The estimated average Se daily intake 

was 60 μg Se d
-1

 (Waegeneers et al., 2013). Although the latter study used much more recent 

data, it was based on analysis of non-prepared food samples collected on the market, whereas 

data used by Robberecht et al. (1994) referred to cooked food which is ready to consume. 

 

2.9 Selenium speciation and human health 

 

Selenium speciation is gaining attention in human health due to the different role the different 

species may play. The metabolic pathway of Se in the body is presented in Figure 4. Organic 

Se was found to increase blood Se concentrations more than inorganic Se species (Slavik, 

2008). In general, methionine from proteins competes with SeMet, predominantly seen in 

tissue proteins such as skeletal muscle, erythrocytes and plasma. Selenomethionine is more 

effective in increasing apparent selenium status because it is non-specifically incorporated 

into protein, thus acting as a reservoir of Se. Although inorganic Se leads to formation of 

selenoproteins, they cannot be stored for later use (Alfthan et al., 1991). Clinical data 

indicated that organic and inorganic Se species result in a similar Gpx activity in plasma. 

However, in two studies it was concluded that, upon supplementation with SeMet and 

seleni(a)te over a period of time, Se concentrations of plasma reached a plateau in the 

subjects supplemented with inorganic Se forms, while it was still rising in SeMet 

supplemented subjects (Levander et al., 1983, Thomson et al., 1982). This suggests that long 
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term effects of SeMet are larger than those of mineral Se. In some of the studies, Se-enriched 

yeast containing mainly SeMet was used as Se source. Se-methylselenocysteine (MeSeCys), 

another organic species, is a naturally occurring seleno-amino acid that is synthesized by 

plants of the Allium and Brassica family, such as garlic and broccoli, and also by Se-enriched 

yeast at lower levels. Unlike SeMet, which is incorporated into proteins substituting 

methionine, MeSeCys is not incorporated into proteins and shows a behavior similar to 

inorganic Se species. The formed MeSeCys in plants can also convert to γ-glut-cyst (Dumont 

et al., 2006b). It is fully available for the synthesis of Se-containing enzymes, such as Gpx 

(Zeng et al., 2008). Anticarcinogenic effects observed in rat trials have been attributed to this 

species, and other species mainly occurring in Allium and Brassica crops, such as γ-glut-cyst  

and MeSeCys (Ip et al., 2000, Ip and Lisk, 1995). 

 

 

Figure 4. Proposed schematic representation of Se metabolism in humans (adapted 

fromSuzuki et al., 2006a, Suzuki et al., 2006b, Suzuki et al., 2008). CH3SeH: methylselenol; 

(CH3)2Se: dimethylselenide; (CH3)3Se
+
: trimethylselenonium; ƴ-glut-methylselenocysteine: 

gamma glutamyl methylselenocysteine; GSH: glutathione; H2Se: hydrogen selenide; 

MeSeCys: Se-methylselenocysteine; SAH: S-adenosylhomocysteine; SAM: S-

adenosylmethionine; SeBet: selenobetaine; SeCys: selenocysteine; SeMet: selenomethionine 
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2.10 Importance of Allium species in Se biofortification 

The genus Allium includes 600 to 750 species, making it one of the largest plant genera. 

Allium species are consumed by indigenous population across the world. Mainly Allium 

sativum (garlic), Allium cepa (onion), Allium schoenoparsum (chives), Allium ampeloprasum 

(great-headed or elephant garlic), Allium tuberosum (Chinese or garlic chives), Allium 

fistulosm (Japanese bunching onion), Allium tricoccum (ramp), Allium ursinum (bear’s garlic 

or ramson/rank), and Allium ascalonicum (shallot) are widely grown species. Among all 

vegetables in diet, Allium species particularly contain high concentrations of sulphur 

analogues such as cysteine (Eric, 2010). The latter gives a lot of potential to these crops to 

accumulate large amounts of organic Se species (Table 3) due to the fact that Se uptake and 

metabolism follows the sulphur pathways. The ancient Indian Ayurvedic medical treatise 

called Charaka-Samhita already assigned beneficial health effects to Allium species, such as 

garlic and onion. 

 

Figure 5. Major organoselenium compunds occurring in Allium plants (Eric, 2010) 

 

Various sulphur and Se analogues were reported to occur in the Allium species, some of 

which were reported to be anti-carcinogenic (Figure 5) (Eric, 2010). A cysteine analogue in 

which Se replaces sulphur leads to formation of SeCys, called the 21st amino acid which is 

considered essential for ribosome-directed protein synthesis. However, SeCys2, an oxidised 

form of SeCys is often reported to be the dominant Se species. This might be due to 

speciation transformations occurring during the extraction prior to analysis or oxidation 

reactions occurring under biotic and abiotic where glutathione activity is predominant (Arteel 

et al., 2001). Selenocystine may also exist as a free amino acid in certain organisms when 
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they grown in Se rich conditions, and the possibility still exists that SeCys2 may be 

incorporated in proteins (Huber and  Criddle, 1967). Moreover, MeSeCys and γ-glut-cyst, to 

which anticarcinogenic effects were assigned in rat trials, are often present in high 

concentrations (Finley et al., 2000, Ip et al., 1995). The major organic Se species reported in 

Allium crops are reported in Table 3. The total concentration was found to range between 100 

and 1355 mg Se kg
-1

 DW when fertilizing the plants with selenate or selenite salts (Ip et al., 

1995). 
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Table 3. Prevalence of selenium species in Se-enriched Allium species
I 

Plant Se addition Total 

Se
b
 

(µg/g) 

Selenium species (%)
c 

Se(IV) Se(IV) SeMet SeCys2 MeSeCys ᵞ-Glu-

MeSeCys 

Garlic (Allium 

sativum)
II,III ,IV

 

Na2SeO4+mycc-

orhiza (50 mg 

kg
-1

, 4 weeks) 

969 

 

296 

Enzymatic/water extraction 

- -/9
d 

2/1
d 

- 3/5
d
 64/62

d
 

Enzymatic/water extraction 

- 2
d
 13

d
 0.5

d
 3

d
 73

d
/85

d
 

 BaSeO3+ 

BaSeO4 (500 

mg m
-3

 of each, 

8 months) 

96 Water extraction 

- - 15.5
e 

6.0
d
 28.8

e
 49.7

e
 

Onion (Allium 

cepa) 
V
 

 

Na2SeO3 

Na2SeO4 (15 

mg kg
-1

, 8 days) 

 

154 

601 

 

HClO4-ethanol extraction 

- - 0.3
 

0.5
f 

4.0 - 

- - 0.2 0.1
f 

1.9 - 

Green onion 

(Allium 

fistulosum) 
VI

 

Na2SeO3 (15 

mg kg
-1

, 4 

months) 

30.3 Enzymatic extraction/HCl hydrolysis 

+/-
 
 -/- +/- +/- +/- +/- 

Ramp (Allium 

tricocum) 
VII

 

Na2SeO4 (30 

mg L
-1

) 

252 - 42 - - 35 1.4 

 

Shallot (Allium 

ascalonicum) 
VII

 

BaSeO3+ 

BaSeO4 (500 

mg m
-3

 of each, 

8 months) 

226.8 Water extraction 

- 28 - - 5.4 66 

   Enzymatic extraction 

Garlic 
IX

  68 

235 

1355 

- 1 18 0.5 2.5 68 

- 1.5 17 0.5 3 70 

- 4 13 - 60 8 

Ramp  48 

524 

- 1 21 - 34 3 

- 22 5 - 44 1.5 

Onion  96 - 10 5 1 1 63 
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140 - 33 10 - 5 35 

Chives (Allium 

schoenpprasum) 
X
 

 

Na2SeO3 

Na2SeO4 

SeMet (10 mg 

L
-1

, 14 d-1) 

 

222 

613 

265 

HClO4-ethanol extraction/enzymatic extraction 

-/3 21/5 -/5 40/42 28/36 - 

-/- 81/51 -/- 5/2 3/20 - 

-/1 5/- -/3 35/37 46/48 - 

a
+ detected but not quantified; 

b
Based on dry weight; 

c
Relative to total Se in the sample; 

d
Relative to total chromatographed selenium; 

e
Relative to total Se in the extract; 

f
Se-cysteine. 

(I. Pyrzynska, 2009; II. Larsen et al., 2006; III. Ip et al., 2000; IV. Dumont, E. et al., 2006; V. 

Wróbel et al., 2004; VI. Shah et al., 2004; VII. Whanger et al., 2000; VIII. Ogra et al., 2005; 

IX. Kotrebai et al., 2000; X. Kápolna et al., 2007b).
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Chapter 3. Selenium uptake and speciation in leek (Allium 

ampeloprasum var. porrum) as affected by Se fertilizer type 

and dose 

 

This Chapter has been redrafted from: 

Lavu R. V., Du Laing G.,Van de Wiele T., Pratti V. L., Willekens K., Vandecasteele B., Tack 

F. 2012. Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and 

bioaccessibility of selenium in leek (Allium ampeloprasum). Journal of Agricultural and Food 

Chemistry. 60:10930-5. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lavu%20RV%5BAuthor%5D&cauthor=true&cauthor_uid=23078411
http://www.ncbi.nlm.nih.gov/pubmed?term=Du%20Laing%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23078411
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20de%20Wiele%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23078411
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3.1 Abstract 

 

The effect of fertilizing soil with sodium selenite (Na2SeO3), sodium selenate (Na2SeO4) and 

barium selenate (BaSeO4) on Selenium uptake and speciation in leek (Allium ampeloprasum 

var. porrum) was studied in a greenhouse experiment. A sandy loam soil with baseline Se 

concentration of 0.2 mg kg
-1

 was enriched with 0.2, 1.3, 2.6 and 3.8 mg Se kg
-1

 as Na2SeO3, 

Na2SeO4, and BaSeO4 in different treatments. Leek was grown for 3 months on these soils, 

harvested and analysed for Se contents and speciation. Identified selenium species in the leek 

were selenite, selenate, MeSeCys, SeMet, SeCys2 and γ-glut-cyst. When the soil was 

amended with Na2SeO4 or BaSeO4, about half of the Se in the leek was found to be inorganic 

(58 % and 48%, respectively). When Na2SeO3 was applied, only 38 % was inorganic. 

Although applying selenate results in a higher total Se accumulation in the crop, applying 

sodium selenite seems to be better to enhance particular organic Se species, which were 

previously described for other Allium species to exhibit potential anticarcinogenic properties. 

However, the lower plant uptake when using Na2SeO3 as fertilizer results in a higher risk for 

Se accumulation in the soil on longer term. Therefore, more research is needed to assess the 

factors affecting plant uptake and fate of selenite in the soil. 

 

3.2 Introduction 

 

Selenium is an essential trace element for humans and animals. It can occur in different 

inorganic and organic forms (= species), which may have different effects on mobility, 

availability and toxicity (Tamas et al., 2010). The most important source of Se is the diet. 

Selenium uptake depends on the eating habits of the individual. Vegetables were found to 

provide more than 85 % of the average daily human dietary Se intake (Cassens, 1997). 

Selenium supplementation is often needed due to a lack of Se in the soils and crops grown on 

these soils, resulting in Se deficiency in humans and animals. Biofortified food crops such as 

Se fortified Brassica (broccoli, rapeseed, cabbage) and Allium (onion, garlic, chives, ramps) 

species were suggested especially as these plants are capable of accumulating higher amounts 

of Se during cultivation and transforming Se into appropriate chemical forms having potential 
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positive effects on human health. These forms include MeSeCys and γ-glut-cyst which are 

known to be more effective inhibitors of tumor formation (Benoit and Ceustermans, 1994, Ip 

et al., 2000). The Se uptake by crops and Se species formed during crop growth depend on 

the Se form and its concentration available in the soil, as well as soil conditions (Gissel-

Nielsen, 1971, Johnsson, 1991, Robberecht et al., 1982). Several studies described that 

Allium family species are capable of transforming inorganic forms applied to the soil into 

organic forms (Dumont et al., 2006b, Ip et al., 2000, Larsen et al., 2006, Wróbel et al., 2004). 

Amongst the Allium species, focus was laid on studying chives, onions and garlic. Not much 

attention was paid to leek (Allium ampeloprasum var. porrum) yet, even though it is one of 

the economically most important vegetable crops in Europe (Benoit et al., 1994). Leek is a 

good source of vitamin A, vitamin B6, vitamin C, vitamin K, dietary fiber, folate, calcium, 

iron and magnesium, and low in saturated fat, sodium and cholesterol. It is intensively 

cultivated in Indonesia, Turkey, France, Belgium, China and Poland. Daily use of leek in the 

diet has been shown to have beneficial effects on the body, particularly on circulatory system 

(Liu et al., 2006). 

In the present study, the effect of Se fertilizer type and dose on Se accumulation and 

speciation in leek was studied. Leek plants were grown on soil fertilized by Na2SeO4, 

Na2SeO3 and BaSeO4. The plants were harvested and their Se contents and speciation were 

determined. 

 

3.3 Materials and methods 

 

3.3.1 Experimental setup 

 

For the cultivation of the Se-enriched leek, commercially available Leek (Allium 

ampeloprasum var. porrum) plantlets of Harston variety were purchased. Recipients were 

filled with 25 kilograms of soil, which had a sandy-loamy texture and contained Se (0.23 mg 

kg
-1

), Al (4683 mg kg
-1

), Cd (0.24 mg kg
-1

), Cr (10.4 mg kg
-1

), Cu (12.4 mg kg
-1

), Fe (6817 

mg kg
-1

), Mn (262 mg kg
-1

), Ni (5.0 mg kg
-1

), Pb (65.1 mg kg
-1

), Zn (33.3 mg kg
-1

), K (65.1 

mg kg
-1

), Mg (115 mg kg
-1

), Ca (1001 mg kg
-1

), Na (22.1 mg kg
-1

), P (214 mg kg
-1

), and 

organic carbon (1.09 %). Its pH was 6.15.  
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The required amount of Se was added to each soil and the soil was completely homogenized 

in mixing rotator. In each recipient, eight plantlets were planted in two rows and watered with 

deionized water. The treatments consisted of applying three sources of selenium, i.e. 

Na2SeO4, Na2SeO3 and BaSeO4 at four levels of selenium, i.e. 0.2, 1.3, 2.6 and 3.8 mg Se 

kg
−1

 soil. The experiment was replicated four times. To prevent pests, pyrethra pur (Eco-

style, Belgium) was sprayed twice over a period of 3 months. After three months, plants were 

harvested and washed gently with tapwater to remove surface contaminants. Washing with 

tap water was followed by rinsing with deionized water. The weight of each plant was 

recorded and the entire plant was manually cut into pieces. The samples were shock-frozen 

immediately with liquid nitrogen after transferring them into polyethylene boxes. They were 

stored at -80°C. Finally, they were freezedried by a lyophiliser (Heto power dry, Belgium) 

and ground to a fine powder in a mechanical grinder (MF 10 IKA, Werke Germany) to pass 

through a 1 mm sieve.  

 

3.3.2 Reagents and standards 

 

Sodium selenite (Na2SeO3), sodium selenate (Na2SeO4), barium selenate (BaSeO4), SeMet, 

SeCys2 and MeSeCys were purchased from Sigma Aldrich (St. Louis, MO, USA), and γ-glut-

cyst and γ-glut-meth were purchased from pharmaSe (Austin, Texas, USA). For 

chromatographic purposes, citric acid was obtained from Sigma Aldrich (St. Louis, MO, 

USA), heptafluorobutryic acid was obtained from Fluka and ammonium hydroxide was 

obtained from J.T.Baker (Deventer, The Netherlands). For sample preparation procedures, 

protease XIV, lipase and Tris-HCl was purchased from Sigma, while concentrated HNO3 and 

H2O2 were purchased from Chemlab (Zedelgem, Belgium). MilliQ® (MQ) water from Water 

Systems Ltd. (Brussels, Belgium) was used throughout the experiment. Chromatographic 

standards and other solutions were prepared freshly every day. 
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3.3.3 Selenium analysis 

 

3.3.3.1 Sample preparation for total selenium analysis in soil 

 

Conventional aqua regia digestion was performed in 250-mL glass beakers covered with 

watch glasses. A well-mixed sample of 1.000 g was digested in 10 mL of aqua regia (3:1 

HCl:HNO3) on a hotplate for 3 h at 105°C. After evaporation to near dryness, the sample was 

diluted with 2% nitric acid and transferred into a 100-mL volumetric flask after filtering 

through Whatman no. 42 paper. The filtrate was diluted to 100 mL with deionized water, and 

analysed with ICP-MS (see 3.3.3.4). 

 

3.3.3.2 Sample preparation for total selenium analysis in plants 

 

For the determination of total Se in the leek samples, 0.2 g sample was placed into a 

centrifuge tube followed by addition of 2.5 mL concentrated HNO3 and 2.5 mL 30% H2O2. 

After 16 h, the tubes were capped and placed in a microwave oven (Mars, North Carolina, 

USA) (Williams et al., 2007). In a first step, the temperature was raised to 55 
◦
C in 10 min at 

600 Watt and 100% power. Afterwards, the temperature was raised to 75 °C in 10 min. 

Finally, it was maintained at 100 °C for 30 min. The clear digests were diluted to 50.0 mL 

with deionized water for analysis with ICP-MS (see 3.3.3.4). For validation of the procedure, 

the certified reference plant material BCR-CRM 402 (white clover, 6.7 ± 0.27 mg Se kg
-1

) 

was digested using the same procedure. Three replicates of BCR-CRM 402 were analysed 

with each sample batch. 

 

3.3.3.3 Sample preparation for Se speciation analysis in plants 

 

In order to extract the protein-bound Se species in all samples, an enzymatic extraction was 

performed. Plant sample (0.2 g) and 80 mg of the enzyme Protease XIV were dissolved in 5 



50 

 

mL of water. This mixture was shaken in a 10 mL centrifuge tube for 24 h at 37 °C (Mazej et 

al., 2008) using a shaker fitted incubator chamber (Sartorius, Goettingen, Germany) and 

centrifuged (Sigma 2-16PK centrifuge, Germany) for 30 min at 3000 g. The supernatant was 

separated from the residue and filtered through a 0.45 µm syringe-type PVDF membrane 

filter. Supernatant and residue were stored at -20°C until they were analysed for total Se and 

Se speciation using ICP-MS and HPLC-ICP-MS, respectively (Table 4). In addition, an 

enzymatic digestion that also targets the lipid-bound fraction was included. A 5 mL of Tris–

HCL buffer adjusted to pH 7.5 was added to 0.2 g of sample in a 50 mL centrifuge tube, 

followed by addition of 20 mg protease XIV and 10 mg lipase VII. This mixture was further 

processed as mentioned above.  

 

3.3.3.4 Analysis 

 

An Inductively Coupled Plasma Mass Spectrometer (ICP-MS, PerkinElmer DRC-e, 

Sunnyvale, CA, USA) was used for total Se and speciation analysis as an element-specific 

detector. The ICP-MS was fitted with a Babington nebulizer and a Scott double pass spray 

chamber. Among the measured Se isotopes, 
80

Se was choosen for the calculations. The 

interference of 
40

Ar2
+ 

on mass 80 was removed successfully using
 
CH4 as reaction gas. 

Results were calculated using external calibration. 

For speciation analysis, the ICP-MS was coupled as detector to a liquid chromatographic 

system (Series 200 HPLC, PerkinElmer, Sunnyvale, CA, USA). It consisted of a P680 HPLC 

pump and an ASI-100 automated sample injector. A Hamilton PRP-X100 anion exchange 

column and Altima C8 column (250 mm × 4.6 mm I.D., 5 μm, 120 Å) were used as stationary 

phase. Both columns were equipped with a guard column containing the same stationary 

phase material. The different species were quantified using data obtained from the anion 

exchange column. However, the reversed phase column was also used to quantify the 

oxidised form of SeMet (SeMet oxide), which cannot be distinguished from SeCys2 on the 

Hamilton PRP-X100 column. If SeMet oxide was found to be present, its concentration was 

subtracted from the concentration of SeCys calculated using the Hamilton PRP-X100 

column. HPLC-ICP-MS conditions are presented in Table 4. 
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Table 4. Optimized instrumental parameters for ICP-MS 

ICP-MS parameters:  

Power 1250 W 

Plasma Ar flow 15 L min
-1

 

Isotopes monitored (mass) 76,77,78, 80, 82 

Reaction gas and flow rate CH4, 0.9 mL min
-1

 

Dwell time for each isotope 0.1 s 

Chromatographic conditions:  

Anion exchange (isocratic elution)  

Column PRP-X100  (250mm × 4.6 mm, 5 µm) 

Mobile phase 10 mM citric acid, 5 % (v/v) methanol, pH 5.0 

Flow rate 1.0 mL min
-1

 

Injecton volume 25 µl 

Reversed phase (isocratic elution)  

Column Alltech Altima C8 (250mm × 4.6 mm, 5 µm) 

Mobile phase 0.15 % (v/v) Hepta flurobutyric acid, 5% (v/v), methanol 

Flow rate 1.0 mL min
-1

 

Injection volume 25 µl 

 

3.3.4 Statistical analysis 

 

The significance of effects was evaluated using ANOVA with 0.05 as significance level. In 

addition, differences in Se concentrations with the control plant were evaluated using an LSD 

(Least Significant Difference) test. Regression analysis was conducted to identify correlations 

(linear/quadratic) between the tested parameters and applied Se doses. Statistical analysis was 

conducted with SPSS (version 21). 
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3.4 Results  

 

3.4.1 Effect of Selenium fertilizers on biomass production 

 

The application of the different Se fertilizers at different doses did not result in significant 

differences in biomass production (p ≥0.05) (Figure 6). Accordingly, no relationship was 

observed between the applied Se dose and biomass production of the leek. 

 

Figure 6. Biomass production of leek (g DW) as function of Se fertilizer type and dose 

(mean±standard deviation, n=3) 

 

3.4.2 Total selenium concentrations in the plants 

 

The plants differed significantly (p < 0.05) in their total Se concentration when they were 

exposed to Na2SeO4, Na2SeO3 and BaSeO4 supplied to the soil (Table 5). A significant linear 

relationship was observed for both selenate-based fertilizers but not for the selenite-based 

fertilizers between Se application dose and plant Se concetrations (mg Se kg
-1

). 
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Na2SeO3: (plant Se) = -8.14 + 22.97*(soil Se); r
2
=0.47 

Na2SeO4: (plant Se) = -316.66+233.31*(soil Se); r
2
=0.76 

BaSeO4: (plant Se) = -128.80+93.10*(soil Se); r
2
=0.77 

 

The capability of the plants to accumulate Se was very high when they were grown on soil 

fertilized with Na2SeO4 and to a lesser extent when grown on soil fertilized with BaSeO4. In 

these cases, Se concentrations reached 982±159 and 288±143 mg kg
-1

, respectively, when 

applying a dose of 3.8 mg kg
-1

 soil. When the plants were grown on soil treated with 

Na2SeO3 only 103±33 mg kg
-1

 accumulated in the plants even at the highest dose (3.8 mg kg
-

1
). Thus, application of Na2SeO3 results in the lowest Se accumulation in the leek (Table 5). 

 

Table 5. Effect of Se fertilizer type and dose on Se concentration (mg kg
−1

) in leek plants 

(mean±standard deviation, n=3) 

Se application dose Fertilizer type 

 Na2SeO3
**

(%) Na2SeO4
**

(%) BaSeO4
**

(%) 

control treatment: 6.6±0.04 

0.2 mg kg
-

 
1

soil 24.1±5.2 (9.6) 102±24(39) 61.4±40(16) 

1.3 mg kg
- 1

 soil 49.7±63
*
(5.3) 313±29(38) 63.2±42(8.9) 

2.6 mg kg
- 1

 soil 71.2±13
*
(4.5) 582±72

*
(48) 255±61

*
(16) 

3.8 mg kg
- 1

 soil 103±33
*
(4.6) 982±159

*
(36) 288±143*(15) 

*indicates statistically significant difference at p ≤ 0.05 compared to the control leek (LSD); 

** indicates ANOVA overall significance (p ≤ 0.05). Total percentage Se uptake from 

applied Se dose in leek was presented between brackets. 
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3.4.3 Selenium speciation in the plants 

 

Recoveries of total Se measured in the protease and protease:lipase enzymatic extracts were 

found to be 87.8 ± 5.4% and 79.8 ± 7.7% respectively, relative to total Se found in the 

HNO3/H2O2 extracts. The obtained enzymatic extracts were measured using chromatographic 

methods which are optimized to quantify seven Se species (Figure 7 and 8). The sum of 

identified species ranges between 55 and 76% of the total Se present in the leek from two 

different enzymatic extraction methods (protease and protease:lipase). In the plants grown on 

soils treated with Na2SeO4 55.4 % of total Se in the plant was found to be protease extractable 

selenate and the most abundant protease-extractable organic species was SeMet (12.3 %), 

followed by MeSeCys (4.3 %) (Figure 9). When using BaSeO4 as fertilizer, the main protease 

extractable species was selenate (47.8 %), followed by SeMet (13.9 %) and MeSeCys (3.7 

%). When the soil was treated with Na2SeO3 the main protease extractable Se species in the 

plants were selenate (21.6%), SeMet (16.7 %) and MeSeCys (6.8 %) (Figure 9). Using 

enzymatic method (protease:lipase) showed a higher chromatographic recovery (10-15%). 

However, trends in relative amounts of inorganic and organic species in leek were similar 

when fertilized with different Se forms (data not shown). The chromatograms of enzymatic 

extracts of plants treated with Na2SeO4, Na2SeO4 and BaSeO4 have two or three unknown 

peaks, the largest unknown representing approximately 2–3% of the total Se in the leek. A 

similar number of unknown peaks was identified on both anion and reversed phase columns. 

In all treatments, selenate, SeMet and MeSeCys were dominant species. 

 

3.5 Discussion 

 

Depending upon the oxidation-reduction potential of the soil, Se occurs in the soil mainly as 

selenate, selenite and organic forms (Mazzafera, 1998). Selenium plant uptake differs with 

the Se form available in the soil. In general, selenite is less bioavailable to plants in 

comparison to selenate because the former is more strongly adsorbed by iron oxides and/or 

hydroxides and the latter is more water-soluble (Banuelos et al., 2005). It was previously also 

identified that selenate is the predominant species when wheat plants were treated with 

selenate, whereas in selenite-treated plants the selenite was readily converted to other forms, 
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including SeMet and other organic forms (Li et al., 2008). The fact that total Se was higher in 

leek when the soil was treated with selenate forms illustrates that the uptake of selenate 

follows sulphur pathways from soil to plant (Liang et al., 1999). However, in case of selenite, 

translocation in treated leek was lower, possibly due to the uptake by plant roots being not 

metabolically dependent (Arvy, 1993). 

In leek, Se is accumulated from selenate fertilizer to a larger extent compared to when 

selenite fertilizer is used. This indicates that more residual Se is left in soils after selenite 

application. The fate of this residual Se in soils is still unclear. To our knowledge no long-

term studies, quantitatively reporting on the cycling of Se supplied through Se fertilizers and 

its impact on crop quality and the environment, exist yet. However, some studies already 

reported the trend of Se uptake by crops directly after the first harvest. For instance, in a pot 

study using different ryegrass cultivars (sodium selenite, 30 and 60 g ha
-1

), Se uptake from 

the residual Se left in the soil was found to be similar in the next crop (Cartes et al., 2011). 

Moreover, also in laboratory experiments, it was also proven that residual selenate is 

adsorbed less to soil surfaces and leaches faster than selenite (Alemi et al., 1989). Moreover, 

some studies have also indicated that most of the applied selenate is converted to selenite, 

which is easily adsorbed by iron oxides and hydroxides in acidic soils (Cary et al., 1967, 

Geering et al., 1968, Christensen et al., 1989, Balistrieri and Chao, 1990). 

 

Figure 7. HPLC–ICP MS analysis of a mixture of 7 selenium species using (A) Anion 

exchange, (B) ion pairing reversed phase separation. 1. Se-cystine, 2. Se-

methylselenocysteine, 3. selenite, 4. Se- methionine, 5. γ-glutamyl methyl selenocysteine, 6. 

selenate, 7. γ-glutamyl selenomethionine 
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Figure 8. (I) Overlay of chromatograms of standard containing 7 Se-species anion exchange 

column  (A) Reference standards mixture 1. Se-cystine, 2. Se-methylselenocysteine, 3. 

selenite, 4. Se-methionine, 5. γ-glutamyl methyl selenocysteine, 6. Selenate 7. γ-glutamyl 

selenomethionine (analyses conducted by HPLC-ICP-MS) (B) enzymatic (protease) extract 

of Se-enriched leek fertilized by Na2SeO3. (II). HPLC–ICP MS analysis of non-treated leek 

 

 

Figure 9. Sum of Se species in leek plants extracted using protease enzymatic extraction 

method grown on soils fertilized with Na2SeO3, Na2SeO4 and BaSeO4 (3.8 mg Se kg
-1

 soil) 

and a non-fertilized control soil (expressed as % of total Se) 
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Finally, it is also already known that Se uptake from the soil depends on soil conditions, such 

as pH and organic matter, and addition of P and S inputs through manure and fertilizers, 

which may also change between different cropping seasons and affect the availability of the 

residual Se. This complicates assessment of Se cycling and the role of residual Se in longer-

term field experiments. 

Among the vegetables, Allium species draw particular attention due to their potential for Se 

accumulation and transformation into bioactive species (Larsen et al., 2006, Wróbel et al., 

2004). In the present study, fertilization of soil with Se also resulted in accumulation of Se in 

leek, which also belongs to the Allium family. The extent of accumulation also significantly 

varied with the applied dose and Se form used in the fertilization, with the use of Na2SeO4 as 

fertilizer resulting in a 10-fold higher concentration in comparison to the use of Na2SeO3. 

Similar differences in Se accumulation after applying selenate versus selenite were 

previously also reported in literature for other Allium species, such as chives (Kapolna and 

Fodor, 2007, Kápolna and Fodor, 2007a). These differences previously seemed to be less 

pronounced when working in hydroponic solution, which emphasizes the role of soil in 

retaining selenite (Srivastava et al., 2005). In our study, the use of Na2SeO4 resulted in a 

higher Se concentration in the plants compared to when BaSeO4 was applied at a similar Se 

dose. This supports findings of previous studies, in which BaSeO4 was mentioned to act as a 

slower-releasing Se salt in comparison to Na2SeO4 (Whelan and Barrow, 1994). Amongst 

Allium species reported till now, higher Se concentrations were previously reported for garlic, 

but these higher concentrations were also reached at higher soil Se concentrations (Larsen et 

al., 2006). The prevalence of inorganic species in leek is similar to its prevalence in chives, 

which was reported to be 21% (when applying Na2SeO3) and 51% (when applying Na2SeO4) 

of total recovered Se (using the same extraction method). Higher extraction efficiency of Se 

from Allium species was reported in studies using protease enzyme.The majority of Se in 

these species is associated with proteins which could lead to higher extraction efficiency (70-

100%) from total Se (Table 3). Similarly, in leek, a combination of protease and 

protease:lipase enzyme extracts about 85% of total Se (Kápolna and Fodor, 2007a). The 

results of current study achieve a similar range of extraction efficiency to that of earlier 

reported studies on Allium species. However, use of alternative enzymes might improve 

extraction efficiency of total Se present in leek. 

In samples, Se species chromatographic recovery was approximately 10-15% higher in Tris-

HCl enzymatic extracts than in the extract obtained by water enzymatic extracts. This result 
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suggests that pH which is more stable in Tris buffer extracts increases the chromatographic 

sensitivity. In leek, the highest amount of inorganic species was observed in the plants treated 

with Na2SeO4. Under these conditions, only little transformation to organic species occurred, 

which was previously also reported for various other food crops (de Souza et al., 2000). In 

contrast, applying selenite resulted in a higher fraction of organic Se species. However, it 

results in lower plant uptake, so also a higher risk for Se accumulation in the soil on longer 

term. Selenite concentrations were found to be very little to below detection limits, also in 

plants grown on Na2SeO3 treated soils. A higher prevalence of selenite was previously 

reported for garlic grown on a selenate-enriched medium and chives grown on a selenite-

enriched medium (Kápolna et al., 2007b). Both MeSeCys and SeMet were the major organic 

species in all three treatments. MeSeCys was found in higher concentrations when the soils 

were treated with Na2SeO3. This species was previously reported to exhibit potential 

anticarcinogenic properties (Ip et al., 1995). 

 

3.6 Conclusion 

 

Leek accumulates Se and responds to Se fertilization as other Allium plant species do. 

Therefore, Se-enriched leek can also be considered as a food crop that may induce beneficial 

health effects. Total Se accumulation in the plants is higher when Na2SeO4 is supplied as 

fertilizer but this result in little transformation to organic species. When aiming to increase 

the fraction of organic Se species in leek, Na2SeO3 seems to be the best fertilizer. However, 

the lower plant uptake when using Na2SeO3 as fertilizer results in a higher risk for Se 

accumulation in the soil on longer term. Therefore, more research is needed to assess the 

factors affecting plant uptake and fate of selenite in the soil. 
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Chapter 4. Potential of selenite as fertilizer to biofortify leek (Allium 

ampeloprasum var. porrum): a field study  
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4.1 Abstract 

 

The aim of this study was to investigate how yield and uptake of elements (Se, Pb, Al, Zn, 

Cu, Fe and Mn) in leek plants are affected by use of selenite as fertilizer under field 

conditions, and how the uptake is affected by soil properties. Leek was cultivated in 26 

different fields across Flanders (Belgium). Soil samples were collected prior to cultivation of 

the leek to assess soil properties and metal concentrations. In each study field, a subplot of 

50×50 m
2
 was chosen. In each subplot, half of the plot was considered as control and on the 

other half, Se fertilizer was applied. Fully grown leek plants were harvested after four 

months, and elemental concentrations were analysed in the control as well as Se fertilized 

plants. No significant effect of Se fertilization on yield was observed. The Se concentration in 

leek significantly increased with Se fertilization. The percentage of applied Se taken up by 

the leek plants ranged from 0.2 to 4.8 %. Among all metals analysed, a significant increase in 

Se concentrations was observed upon Se fertilization, whereas no significant effect was 

observed for the other metals. Soils grouping based on soil characteristics and other soil 

parameters (using PCA) shown significant differences in Se uptake between groups. 

 

4.2 Introduction 

 

Most of the essential nutrients are obtained through the human diet (Parr et al., 2006). Soils 

play a major role in providing these essential nutrients to the food chain by delivering 

nutrients to the food crops. Even though some nutrients are present in adequate amounts in 

soils, they can be poorly available to plants due to soil conditions affecting their availability, 

such as organic matter content, clay, pH etc. (Gissel-Nielsen, 1971, Johnsson 1991). A too 

low uptake of some essential nutrients through food crops may result in adverse health effects 

such as cardiovascular diseases, inflammatory bowel diseases and anaemia (Prasad, 2009). 

Biofortification, i.e. fortification of food crops with essential nutrients (Hotz and 

McClafferty, 2007) as well as nutritional supplements were proposed as alternatives to 
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overcome deficiencies of essential nutrients (Hotz et al., 2007) and to induce positive health 

effects in humans and animals (Welch et al., 1999). 

Among other nutrients, selenium (Se) is an essential micronutrient, known for its antioxidant 

and potential anticarcinogenic properties by enhancing the glutathione peroxidase activity 

(Brown and Arthur, 2001). However, the geographical distribution of Se in soils is uneven. A 

majority of countries has Se deficient soils leading to Se deficiency in the population. 

Therefore, use of Se fertilizers to obtain Se-fortified crops was recommended in various 

countries and the Se status in Se deficient regions was improved by adding Se fertilizers to 

soil on which crops were grown (Brown et al., 2001). Use of inorganic Se forms as Se 

fertilizers could aim at obtaining organic Se forms in the food crops (Pyrzynska, 2009). Some 

food crops, including Allium and Brassica species, do not only accumulate considerable 

amounts of Se but also convert inorganic Se forms into organic forms such as MeSeCys and 

γ-glut-cyst, which were reported to have anticarcinogenic properties (Dumont et al., 2006a, 

Larsen et al., 2006, Wróbel et al., 2004). Supply of selenite was found to result in a higher 

relative occurrence of these organic species in the crop compared to the supply of selenate 

(Kapolna et al., 2007). The accumulation of Se in food crops is not only affected by plant 

parameters but also influenced by soil properties, trace metals and Se forms available in the 

soil (Gissel-Nielsen, 1971, Johnsson, 1991, Landberg and Greger, 1994). In addition, soil 

parameters such as pH, organic matter, and Fe-oxide contents were found to affect the 

mobility of Se in soil (Johnsson, 1991). 

Although the response of different Allium and Brassica crops to Se fertilization was 

previously studied under laboratory and greenhouse conditions, there is a lack of field studies 

focusing on the effects of Se fertilization on these crops, and there is a need to define 

relationships between Se supply, soil properties and plant uptake of Se, and other toxic or 

essential trace elements. This can only be done by studying trace and other element uptake by 

crops grown on several field plots differing in soil physicochemical properties. 

Therefore, this study aimed to: (1) examine the variability of biomass growth, Se and trace 

element uptake by leek crops grown on different field plots across the Flanders region 

(Belgium), (2) study the effect of fertilizing the soils with selenite on biomass growth, uptake 

of Se and other elements by the leek crops, and (3) study the effect of soil properties on Se 

uptake by the crops. 
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4.3 Materials and Methods 

 

4.3.1 Experimental setup 

 

Twenty-six fields were selected across the Flanders region in Belgium (Figure 10) during the 

year 2009. In each field 1.5 m wide beds were raised using a tractor to improve soil drainage. 

On sandy soils flat beds were used, whereas ridge beds were installed on other soils (Figure 

11). Each bed accommodates four plant rows, 40 cm apart, with spacing of about 20 cm 

between the plants in different rows. The Se fertilization plot was located in a representative 

subpart of each field, on an area of approximately 50 x 50 m
2
. From this 50 x 50 m

2
, half was 

considered as control and the other half was used to apply Se fertilizer. Leek plantlets were 

planted manually in 10 to 15 cm deep holes. In each plot, one of two commercially available 

varieties (Harston or Poulton) was planted. After planting, each plantlet from the Se fertilizer 

plot was fertilized with 0.5 mg Se as sodium selenite supplied through a 60 mL solution with 

a disposable syringe. Control plants were supplied with 60 mL deionized water. In the 

autumn, leek was harvested manually from the Se fertilized and non-fertilized plot over a 

length of 3 meters. The whole plants, including the root system, were harvested and washed 

thoroughly before being weighed for yield determination. From each of the Se-fertilized plots 

and non-fertilized plots, three plants were dried in an oven at 45 ºC. The three plants were 

ground together and considered as one composite sample for further analysis. 
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Figure 10. Selenium in soils at the studied field sites in Flanders, Belgium 

 

4.3.2 Soil sampling 

 

Soil samples were collected from the Se-fertilized plots on each site. The samples were 

analysed for various soil properties and total metal concentrations. Soil sampling took place 

in spring (April-May) before fertilization and soil tillage. In each plot, 12 soil cores were 

augered in a grid pattern to a depth of 30 cm, and bulked into one composite sample. The soil 

samples were air-dried, ground with a hammer-cross beater mill and stored in air-tight 

polythene bags until analysis. 

 

4.3.3 Soil and plant analysis 

 

Various soil parameters such as pH-KCl, organic matter (OM), cation exchange capacity 

(CEC) and electrical conductivity (EC) were determined according to Van Ranst et al. 

(1999). Elemental concentrations were analysed in the soil samples after aqua regia 

extraction (Van Ranst et al., 1999), whereas plant samples were digested using a digestion 

procedure with HNO3 in open microwave vessels described by Lavu et al. (2012). In the plant 
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and soil extracts, Se, Cd and Pb were determined using ICP-MS (PerkinElmer DRC-E, 

Waltham, MA, USA). The other metal contents (Cr, Cu, Mn, Ni, Pb, Zn, Al, Fe, Ca, and Mg) 

in the plant extracts and soil extracts obtained through aqua regia extraction were determined 

using ICP-OES (Varian Vista MPX, Palo Alto, CA, USA). In addition, soil extractable P 

(ammonium lactate extracts) and S (CaCl2) were determined using ICP-MS. 

 

 

Figure 11. Selenium fertilization conducted for the two different types of leek cultivation   

(1A. Flat type, 1B. Ridge type) 

 

4.3.4 Statistical analysis 

 

The differences in metal uptake by leek between the non-fertilized group and the Se-fertilized 

group were analysed with a paired-sample t-test (p < 0.01). A correlation matrix (Pearson’s 

correlation) was constructed to assess relations between metal concentrations and metal 

uptake in the plants, soil parameters (pH, OC, EC, CEC, sand, clay) and elements in the soils 

(Cr, Cu, Mn, Ni, Pb, Zn, Al, Fe, Ca, Mg, and extractable P and S). Subsequently, a stepwise 

multiple regression analysis was conducted with the aid of SPSS 21.0 software package. Data 

distributions were skewed and transformed prior to analysis using either a log10 or quadratic 

function to improve normality. The categorical variables as ‘‘dummy’’ variables 0 or 1 were 

assigned to each plant variety and cultivation type. For example, to test whether plant variety 

influenced plant metal uptake, all Harston variety samples were given the indicator ‘‘H = 1’’, 

while all Poulton variety samples were assigned ‘‘P = 0’’. This was done to assess the 
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influence of plant variety and cultivation type on the relationship between soil parameters and 

accumulation of other essential and non-essential nutrient accumulation. In addition, using 

principal component analysis (PCA), two sets of groups were created based on soil 

properties, and differences in Se uptake between the soil groups were evaluated using 

ANOVA. A first grouping was conducted based on soil characteristics (sand, clay, Mn, Ca, 

Mg, Fe, OC, pH and HWC) and a second grouping was conducted based on parameters 

which were previously reported to affect  Se uptake by plants (count of aerobic Bacteria , EC, 

CEC, Se, OC, pH, extractable S and P). 

 

4.4 Results and Discussion 

 

4.4.1 Soil Se and other element concentrations 

 

Soil Se concentrations ranged between 0.16 and 0.46 mg Se kg
-1

 across Flanders (Appendix 

1). In general, total soil Se contents of 0.10 to 0.60 mg kg
-1

 are considered to reflect Se 

deficient soils, i.e. soils which induce Se deficiency in humans living in the region due to the 

lower Se contents in the food crops grown on the soils (Rayman, 2000). Selenium deficient 

soils were previously reported to occur in e.g. New Zealand, Denmark and the Atlantic 

Region of Canada (Gupta et al., 2010). The soils under study can thus also be considered as 

Se deficient. This motivates the need for Se fertilization, which is already in practice in 

various other countries such as New Zealand, Finland and to a limited extent in China, the 

United States, and Canada (Gupta et al., 2010). The majority of our study fields contained 

soil Se concentrations ranging between 0.21 and 0.30 mg Se kg
-1

 DW (46%). Only two fields 

contain more than 0.41 mg Se kg
-1

 DW. Other trace metals and nutrients were also analysed 

(Table 6 and Appendix 1 & 2). Soil properties, which were previously reported to affect Se 

uptake by food crops, are presented in Table 7. 
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Table 6. Range of essential and non-essential element concentrations (mg kg
-1

) in the studied 

soils before Se application 

Element   mg kg
-1

 

Cr 9.1 – 31.3 

Cu 11.1 – 54.6 

Cd < 0.5 

Mn 100 – 428 

Ni 4.1 – 12.4 

Pb 9.3 – 149 

Zn 31.3 – 82.5 

Al 5328 – 13075 

Fe 4679 – 19905 

Ca 5483 – 1068 

Mg 428 – 2265 

Se 0.2 – 0.5 

 

4.4.2 Response of leek to selenite fertilizer 

 

An increase in plant Se concentrations following soil Se application was reported in various 

studies (Broadley et al., 2006, Chilimba. et al., 2012, Ip et al., 1995). Also in our study, Se 

applied to the soils in the form of selenite in an aqueous solution was found to increase Se 

concentrations in leek. Selenium concentrations in non-fertilized plants ranged from 0.04 to 

0.17 mg Se kg
-1

, whereas they varied between 0.08 and 0.68 mg Se kg
-1 

in plants grown on 

Se-fertilized soils (Table 8 and 9). The Se uptake in the field experiment, 0.3-4.9% from the 

applied dose, was lower compared to the pot experiment (4.5-9.6%), although the biomass 

production in the pot experiments was lower. In the pot experiment, Se fertilizers were 

thoroughly mixed with soil and the plants were grown in pots that were closed at the bottom. 

This may induce a higher Se availability in the root zone due to lower Se leaching (Brenda 
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and Robert, 1997). In the field study, Se was added near to the root zone and Se have have 

leached from this zone, reducing the effectiveness of Se uptake. 
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Table 7. Soil properties, leek planting system and leek variety used on the selected field plots 

Field No. 

pH-

KCl OC (%) 

EC 

(mS cm-1) 

CEC 

(cmol/kg)  Planting system Leek variety* 

1 5.4 0.7 0.1 7.5 Ridge H 

2 6.3 0.9 0.2 7.2 Ridge P 

3 5.5 0.7 0.1 6.4 Ridge H 

4 5.1 0.6 0.2 5.7 Ridge H 

5 5.6 0.8 0.2 6.7 Flat P 

6 7.2 1.2 0.3 8.8 Flat P 

7 6.0 1.1 0.2 7.9 Ridge H 

8 5.9 1.1 0.2 7.1 Ridge P 

9 5.3 0.6 0.1 8.7 Ridge H 

10 6.9 2.5 0.2 11.5 Flat H 

11 5.3 1.6 0.1 6.2 Flat H 

12 6.6 0.9 0.3 8.4 Flat H 

13 7.1 1.1 0.3 8.3 Flat P 

14 6.4 1.4 0.5 12.7 Flat P 

15 6.0 1.4 0.6 12.0 Flat P 

16 7.1 1.3 0.4 9.9 Ridge H 

17 5.6 2.0 0.3 11.4 Ridge H 

18 4.8 1.7 0.3 11.2 Flat H 

19 5.5 1.5 0.3 8.0 Ridge P 

20 5.5 0.9 0.2 6.8 Ridge H 

21 6.4 1.0 0.6 9.0 Flat P 

22 6.9 1.7 0.3 13.4 Flat P 

23 6.1 0.8 0.3 9.9 Ridge H 

24 5.8 1.1 0.2 7.2 Flat P 

25 4.8 2.3 0.3 15.8 Flat H 

26 6.6 1.8 0.4 10.4 Flat H 

* Leek variety: H: Harston; P: Poulton  
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Table 8. Elemental concentrations in plants grown on non-Se-fertilized soil (mg kg
-1

 DW) 

Field No. Cu Cd Mn Pb Zn Fe Al Se 

1 5.5 0.11 27 0.52 27 123 88 0.08 

2 5.5 0.09 25 0.33 30 154 100 0.17 

3 6.8 0.28 55 0.46 38 222 136 0.08 

4 7.4 0.13 20 0.41 35 120 59 0.11 

5 7.1 0.09 48 1.50 31 544 484 0.20 

6 6.9 0.08 31 0.77 31 532 298 0.06 

7 5.9 0.11 30 0.58 41 278 198 0.11 

8 6.1 0.07 17 0.38 38 97 64 0.09 

9 7.2 0.17 20 0.40 32 167 109 0.07 

10 4.8 0.14 27 1.48 36 92 43 0.17 

11 5.6 0.23 33 0.53 65 70 26 0.04 

12 6.3 0.09 23 0.35 30 113 66 0.10 

13 5.3 0.10 23 0.56 22 225 164 ˂0.01 

14 5.4 0.14 32 0.73 33 375 200 0.04 

15 6.1 0.06 26 0.53 34 231 149 0.04 

16 6.5 0.07 17 0.37 28 209 116 ˂0.01 

17 5.9 0.04 19 0.61 24 299 191 0.09 

18 4.9 0.21 38 0.40 44 263 144 0.04 

19 6.1 0.08 20 0.41 34 189 127 0.05 

20 5.1 0.07 23 0.51 26 222 183 0.08 

21 5.0 0.19 26 0.86 28 186 165 0.04 

22 5.2 0.11 23 0.85 27 340 177 0.16 

23 4.9 0.10 15 0.22 20 109 100 0.07 

24 5.8 0.07 17 0.30 32 100 59 0.05 

25 6.7 0.17 19 0.73 26 654 177 0.09 

26 6.5 0.09 11 0.37 34 257 227 0.14 
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Table 9. Elemental concentrations in leek grown on Se-fertilized soil (mg kg
-1

 DW of Se also 

the percentage of Se applied to the soil taken up by crop is reprensted between brackets. 

 

Field No. Cu Cd Mn Pb Zn Fe Al Se (% taken up by the crop) 

1 5.6 0.10 28 0.44 34 198 152 0.68 (2.1) 

2 6.7 0.17 32 0.55 40 232 182 0.40 (1.7) 

3 9.7 0.23 47 0.23 37 109 78 0.31 (4.2) 

4 7.2 0.14 25 0.37 37 108 63 0.68 (1.3) 

5 8.1 0.12 42 0.51 39 233 201 0.34 (1.5) 

6 5.7 0.06 26 0.6 28 503 317 0.32 (1.8) 

7 5.8 0.11 32 0.42 28 144 113 0.36 (3.5) 

8 5.5 0.05 19 0.4 36 105 80 0.42 (1.5) 

9 6.9 0.11 18 0.37 25 189 131 0.27 (0.6) 

10 4.8 0.13 33 3.08 32 323 197 0.24 (0.2) 

11 6.3 0.44 54 0.66 95 100 58 0.08 (4.5) 

12 4.9 0.07 18 0.24 23 110 81 0.66 (1.5) 

13 5.0 0.09 22 0.44 19 143 142 0.14 (1.6) 

14 5.4 0.13 28 1.28 39 588 393 0.21 (0.5) 

15 4.1 0.09 31 0.98 30 559 380 0.10 (1.7) 

16 6.8 0.09 18 0.4 31 205 139 0.24 (1.9) 

17 6.2 0.04 19 0.41 26 211 149 0.44 (0.4) 

18 4.5 0.16 35 0.52 49 225 137 0.12 (1.4) 

19 6.1 0.17 22 0.45 48 296 208 0.24 (1.0) 

20 5.3 0.23 23 0.37 29 127 98 0.24 (4.9) 

21 5.6 0.12 25 0.63 27 187 179 0.44 (2.0) 

22 5.6 0.08 32 0.3 31 998 598 0.44 (1.6) 

23 5.0 0.16 15 0.43 21 104 89 0.34 (2.3) 

24 5.0 0.11 23 2.3 29 120 85 0.24 (1.3) 

25 7.0 0.09 23 0.22 23 376 371 0.33 (0.3) 

26 6.6 0.07 11 0.36 24 325 373 0.19 (2.1) 
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4.4.3 Differences in Se uptake by leek as affected by soil characteristics 

 

Based on soil characteristics, soils were divided into different groups (Figure 12). A first 

grouping was conducted based on soil characteristics (sand, clay, Mn, Ca, Mg, Fe, OC, pH 

and HWC) and a second grouping was conducted based on parameters which were previously 

reported to affect Se uptake by plants (count of aerobic Bacteria, EC, CEC, Se, OC, pH, 

extractable S and P). 

The PCA based on soil characteristics resulted in four soil groups (Figure 12.I). Similarly, the 

PCA based on parameters which were previously reported to affect Se uptake by plants 

resulted in three groups (Figure 12.II). Differences in Se uptake between these soil groups 

were evaluated. No significant differences in Se uptake by leek plants fertilized with Se were 

observed between the groups. However, in non-fertilized leek, significant differences in Se 

uptake were found between group A and group C when grouping is based on general soil 

characteristics (Figure 13.I). This was also the case when grouping was based on soil 

parameters expected to affect Se uptake (Figure 13.II) (p≤0.05). 

 

Figure 12: Grouping of study plots using principal component analysis. I: Based on soil 

characteristics. II: Based on other soil parameters 

 

Leek plants grown in plots with high sand content (Figure 12I - group A) accumulate higher 

Se contents compared to soils having more clay and organic carbon (Figure 12I -group C). 

Although the sand content of group C and D is significantly different from group A, Se 
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uptake in plants grown on soils from group D is not significantly different from plants grown 

on soils from group A. The higher pH in soils of group D may have facilitated the 

accumulation of Se in plants grown on soils of this group. The results clearly illustrate that 

soils with higher organic carbon content decrease Se uptake by plants (Borowska and Koper, 

2011). When soils are grouped based on parameters that are supposed to affect Se uptake, a 

clear difference in Se uptake was seen between group A and group C (Figure 12.II, Figure 

13) (p≤0.05). Even though soils from group A contain more OC, the leek plants may have 

accumulated more Se due to slightly higher Se contents in soils of this group. In addition, 

soils from this group contain lower available P content compared to soils from group B and 

C. Earlier studies reported a decreasing Se uptake by plants with increasing P content in soils 

due to competition between P and Se for plant uptake (Hopper and Parker,1999; Broyer et al., 

1972). On the other hand, phosphate is also considered to lead to desorption of selenite ions 

bound to minerals in the soil, as it is bound more strongly to trivalent iron and aluminium 

compared to selenite (Liu Q et al., 2004; Nakamaru et al., 2006). However, in our study, 

lower extractable phosphorus in soils of group A tends to be related to higher Se uptake by 

the plants, which may indicate presence of other Se forms or the dominant role of 

competition between Se and P for plant uptake. Count of aerobic Bacteria is significantly 

higher in group C compared to group A, which is an indicative measurement of prevailing 

aerobic conditions in these soils. Aerobic conditions are supposed to induce selenate 

formation, leading to a higher Se uptake by the plant, which is however not in agreement with 

our observations. 

 

  

Figure 13. Se uptake by leek plants grown on soils grouped by PCA (Figure 12). I: Groups 

based on soil characteristics. II: Groups based on other soil parameters considered to affect 

Se uptake; a*, c* indicates statistical differences between two groups LSD (p≤0.05). 
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4.4.4 Accumulation of elements in leek plants and factors influencing their uptake and 

concentrations 

 

Selenium uptake was not significantly different between the two different plant varieties, i.e., 

Harston and Poulton (p>0.05). The differences in uptake and concentrations of metals 

between non-fertilized leek and Se-fertilized leek were significant (p≤0.05) based on the 

paired-sample t-test. However, uptake and concentrations of other trace metals were not 

significantly different between fertilized and non-fertilized plants. No significant differences 

in crop yield (on dry matter basis) were found between fertilized and non-fertilized leek 

((p>0.05). The observed differences in yield between a Se fertilized and the adjacent non-Se 

fertilized plot were considered to be non-existing. The uptake of Se and other metals 

(expressed as mg m
-2

) was calculated considering equal yield values for fertilized and non-

fertilized plots. Therefore, the metal uptake from a non-fertilized plot on a certain field was 

calculated based on the dry matter yield of the respective Se fertilized plot. 

 The results of step-wise multiple regression analysis for the Se concentrations and uptake by 

the plant are shown in Table 10. Out of the various soil parameters simultaneously entered 

into the model, only OC was significant in influencing plant Se. It explained 42% of the 

concentrations and uptake of Se in Se-fertilized leek plants, with the correlation being 

negative (Table 10). Selenite is very well bound to soil organic carbon which could have 

decreased Se uptake by the plants (Gibson et al., 2012). In addition, stepwise linear multiple 

regression was applied to find the dominant soil parameters influencing uptake of other 

elements and their concentrations in the plants. Total metal concentrations in soil were found 

to be the main factor, being correlated positively with metals in the plants in most cases. 

Interestingly, most of the cationic metals show positive correlations with other elements in 

the plants, such as Al, Ca, Ni and Mg (Table 10). Such relations were reported earlier already 

in other studies. For example, Mg increases with increasing Fe concentrations in soybeans, 

and Ca is affected by Al and other polyvalent cations (Clarkson and Sanderson, 1971, Lingle 

et al., 1963). The extractable P in soils shows a negative correlation with Al concentrations in 

the plants and a positive correlation with the uptake and concentration of Zn. In addition, soil 

pH and CEC correlated negatively with Zn in the plants and with Pb uptake. However, no 
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significant differences in metals between non-fertilized plants and Se-fertilized plants were 

observed based on the independent samples t-test, except for Se and Al. The parameters 

influencing the metal uptake are different between non-fertilized plants and Se-fertilized 

plants (Table 10). 
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Table 10. Results of stepwise linear multiple regression analysis 

 

Element 

Regression equation % R
2
 

Non-treated (NT) Se-treated (ST) NT ST 

 

Regression equation based on uptake of  metals by leek (mg m
-2

):   

 

 

Se NA Se (p) = 0.243-0.078 OC NA 42.0 

Cu NA NA NA NA 

Mn NA NA   

Pb Pb (p) = -0.150+0.110 soil 

Ni-0.003 (CEC)
2
 

*Pb (p) = -0.013+0.012 Pb(s) 65.7 69.6 

Zn * Zn (p) = 14.202+15.711 P 

uptake 

* Zn (p) = 14.294+35.715 (P uptake)
2
 58.0 68.3 

Fe Fe (p) = -15.780+0.169 Mg 

(s)+0.001 Al (s) 

Fe (p) = -119.953+0.232 Mg (s) 72.7 73.5 

Al Al (p) = 71.844+0.005 Ca 

(s) 

Al (p) = -71.811+0.157 Mg (s) 51.6 74.5 

 

Regression equation based on concentration of metals in leek (mg kg
-1 

DW): 

 

 

Se NA Se (p) = 0.354-0.442 log OC NA 41.9 

Cu NA NA NA NA 

Mn Mn (p) = 0.166+0.003 Al (s) NA 46.0 NA 

Pb Pb (p) = -0.016+0.002 Mn (s)+0.068 

(OC)
2
 

*Pb (p) = 0.059+0.018 Pb (s) 71.7 77.6 

Zn Zn (p) = 72.069+30.604 P uptake-

59.903 log pH 

Zn (p) = 112.232+46.959 P 

uptake-114.758 log pH 

63.7 62.4 

Fe Fe (p) = -33.184+0.184 Mg 

(s)+0.002 Al (s) 

Fe (p) = -181.993+0.363 Mg (s) 75.1 75.2 

Al Al (p) = 155.384-424.498 (P 

uptake)
2
+0.006 Ca (s) 

*Al (p) = -95.291+0.202 Mg 

(s)-222.161 log OC 

61.6 83.6 

*Variety of leek (Harston and Poulton) shows a significant influence and is included in the regression equation, 

NA: P > 0.05, p: plant, s: soil 
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Elemental concentrations in plants grown on Se fertilized and non-fertilized soils are 

summarized in Table 8 and 9. Some studies reported that Se application in soils could also 

lead to a decrease or increase in other trace metals (Feroci et al., 2005, He et al., 2004, 

Landberg et al., 1994). In our study, the Pb concentration of leek grown on the majority of 

the study fields was higher than 0.3 mg kg
-1

 DW in non-fertilized and Se-fertilized leek 

which is the general limit for vegetables (Codex alimentarius commission (FAO/WHO)., 

2001 ) (Table 8). In three Se fertilized plots, the leek contains 1-3 mg kg
-1

 DW Pb. The 

obtained results do not confirm findings of He et al. (2004), who reported for Chinese 

cabbage and lettuce that fertilization with 1 mg Se kg
-1

 selenite leads to a decrease in Pb 

concentration. In addition, Al in leek plants was higher in the majority of the study fields 

when plants were grown on Se-fertilized plots compared to plants grown on non-fertilized 

plots. An earlier study reported that Se fertilization leads to a decrease in Al concentrations in 

Stylosanthes humilis. However, the Se form used in this study was selenate (0.1 µM). The 

results of current study show that Se application may increase Al concentrations in plants 

when selenite is used as fertilizer at 0.5 mg Se per plant. For the other metals (except Se), 

concentrations in the plants did not differ significantly between Se fertilized and non-

fertilized plots. 
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4.5 Conclusion 

 

The soils in Flanders (Belgium) can be considered as Se deficient, leading to Se deficiency in 

humans, and hence there may be a need for Se fertilization. Such fertilization increases Se 

concentrations in leek when selenite is used in an aqueous solution at a dose of 0.5 mg per 

plant. The two leek varieties used in the study fields show no significant difference in Se 

uptake. Moreover, no differences in dry biomass yield were observed between plants grown 

on different Se fertilized soils. Among the metals tested, only Se concentrations in the plants 

showed a significant response to Se fertilization. In leek significant difference in Se uptake 

was observed based on soil characteristics and soil parameters. A clear indication of 

decreasing Se uptake with soil organic carbon and phosphorous content was observed. On the 

other hand, Se uptake increased with soil pH and sand content in non-fertilized leek; such 

effects were less pronounced in Se fertilized leek. 
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Chapter 5. Selenium accumulation in leek (Allium ampeloprasum var. 

porrum): role of genetic variation
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5.1 Abstract 

 

Twenty leek cultivars were tested under field conditions for their ability to accumulate Se 

from the soil after application of liquid fertilizers containing Se as selenate or as selenite. The 

Se doses were 0.5 and 2 mg Se per plant in the first year and 4 mg Se per plant in the second 

year. Fully grown leek plants were harvested and dry weight contents and Se concentrations 

were analysed to evaluate whether type or dose of Se fertilizer influences the biomass 

production and Se uptake by the leek, and how this is affected by genetic variation. In the 

current study, the main focus was on the consumable part of leek, i.e. the white belowground 

part. Leek fertilized with selenate was found to accumulate higher Se concentrations in its 

consumable part. This was the case for all leek cultivars tested. At rates of 4 mg Se per plant, 

up to 51% of the Se added as selenate was taken up by the plant, whereas only up to 4% was 

taken up when Se was added as selenite. The biomass was lower in the majority of leek 

cultivars that were fertilized with selenate compared to these fertilized with selenite. When 

using selenite fertilizers, the Se concentration in the leek increases 4-5 times, whereas it 

increases 10-15 times when using selenate fertilizers. Significant differences in Se uptake 

were observed between the cultivars. Six cultivars were selected as superior cultivars, 

accumulating more than 40% of the Se applied as selenate. 

 

5.2 Introduction 

 

Increasing attention is paid to Selenium (Se) in human and animal health as it is an essential 

component of several proteins such as the antioxidant enzyme glutathione peroxidase (GSH-

Px) as well as other Se-containing enzymes, including iodothyronine deiodinases, thioredoxin 

reductase and selenoprotein W (Birringer et al., 2002, Pallud et al., 1997). However, Se is 

also toxic at higher doses and the concentration range between its requirement and its toxicity 

is relatively narrow. Selenium deficiency in diet leads to a decline in blood plasma 

concentrations, which was previously reported to occur in areas of Australia, China, Finland, 

New Zealand, North America and Sweden (Gissel-Nielsen et al., 1984, Gupta and Gupta, 
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2000, Hartikainen, 2005b). To overcome Se deficiencies in entire human populations, growth 

of food crops on Se fertilized soils was proposed in various countries, such as the UK, 

Finland and Malawi (Broadley et al., 2006, Chilimba, Allan et al., 2012, Eurola et al., 2003). 

In this context, it should be noted that Se is not considered as an essential element for plants, 

and at higher Se doses, a decrease in plant growth was previously reported (Kopsell and 

Randle, 1997, Sharmaet al., 2010). Among the vegetables, some authors previously focused 

on species of the Allium and Brassica families  (Dumont et al., 2006a, Ip et al., 2000, Larsen 

et al., 2006, Wróbel et al., 2004), as the Se accumulation potential of these families is higher 

compared to other vegetables. Several Allium vegetables have already been investigated for 

accumulation of Se (total content) and its individual species (Pyrzynska, 2009) and the Se 

uptake was reported to vary among the different species. However, leek (Allium 

schoenoprasum) has not been extensively studied before. Moreover, little attention was paid 

to the effects of genetic variability on Se accumulation, i.e. differences between the cultivars. 

Leek is used as a vegetable in many parts of America, Asia and Europe. It is rich in flavor 

(Eric et al., 1992, Mondy et al., 2002) and has higher antioxidant capacity than tomato, 

cauliflower and cucumber, but less than spinach, broccoli and red cabbage (Bernaert et al., 

2012, Fattorusso et al., 2001, Paganga et al., 1999). The usage of leek in sausages enhances 

the quality during storage (Madentzidou et al., 2012). Its richness in soluble plant fibers helps 

to reduce adherence of diarrhoea-associated pathogens to intestinal epithelial cells (Simpson 

et al., 2012). Leek also contains significant levels of lutein, β-carotene, vitamin C and vitamin 

E (Hart and Scott, 1995, Proteggente et al., 2002). Various leek varieties are commercially 

available; among them, F1 hybrids are gaining popularity due to their higher yields and 

improved uniformity compared with open-pollinated cultivars. A recent study on 30 different 

leek cultivars showed differences in the antioxidant capacity between the cultivars, which 

may be related to variability in Se uptake between these different cultivars (Bernaert et al., 

2012). In the present study, 20 different leek cultivars were selected and the Se uptake in their 

consumable parts was evaluated. Therefore, a liquid Se fertilizer was added to the 

rhizosphere of the plantlets. Two different Se doses of 0.5 and 2.0 mg Se per plant (selenite) 

were tested in the first year and, two different Se forms (selenate and selenite) at 4.0 mg Se 

per plant were evaluated in the second year. 

 

 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=W2L4n98Cpn26kE3N5pB&page=2&doc=14#_blank
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5.3 Materials and methods 

 

5.3.1 Experimental setup and sample collection 

 

Twenty seven leek (Allium ampeloprasum var. porrum) cultivars were studied (Table 11). 

Leek seeds were obtained from the collection of the Institute for Agricultural and Fisheries 

Research (ILVO, Merelbeke, Belgium). The seeds of the leek cultivars were sown in a 

greenhouse in March and the plantlets were transferred to the experimental field plots of 

ILVO (Merelbeke, Belgium) between May and June. This was done in the year 2010 and 

2011. Properties of two soil samples collected in both years are presented in Table 12. 

The plantlets were planted into holes made in the soil. This was repeated two times in 

separate rows (Figure 14) with 15 plants. In the year 2010, three plants were fertilized with 

0.5 mg Se per plant applied as selenite, three plants were fertilized with 2.0 mg Se per plant 

applied as selenite and the remaining plants were left non-fertilized (control). Similarly, in 

the year 2011, three plants were fertilized with 4 mg Se per plant applied as selenite, three 

plants were fertilized with 4 mg Se per plant applied as selenate and the remaining plants 

were left non-fertilized (control). The solution containing the Se (60 mL) was added 

manually into each hole by using a surgical syringe one week after the plantlets were sown 

(Figure 15). Each cultivar (n=3) was harvested manually when the optimal harvest period was 

reached. After harvest, the plants were gently washed with tap water, followed by rinsing 

with deionized water to remove surface contaminants. The weight of each plant and the 

weight of the consumable part (white part) were recorded. The consumable part was 

separated and manually cut into pieces. Samples were stored at -80 ºC (New Brunswick, 

Rotselaar, Belgium) prior to freeze-drying during five days (CD-Energie, Eke, Belgium) and 

subsequently ground to fine powder in a mechanical grinder (Fritsch, Rotterdam, The 

Netherlands) to pass through a 1 mm sieve. 
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Figure 14. Experimental field plot containing different leek cultivars 

 

5.3.2 Sample preparation for total Se and S determination in leek 

 

All replicates of all cultivars were analysed for total Se and S contents. The methodology 

used for determination of total Se contents was similar to the methodology used for wheat 

plants which is described in section 8.3. 

 

5.3.3 Statistical analysis 

 

Statistical analysis was conducted in SPSS version 21.0. The significance of differences 

between the two Se fertilizer types and two doses of selenite was evaluated using factorial 

ANOVA with 0.05 as significance level. Pearson correlation coefficients were determined to 

correlate Se contents in the leek cultivars with biomass and S contents of the cultivars. For 

Pearson correlation analysis and to highlight cultivars with lowest and highest Se 

accumulation, only the 20 cultivars which were common in both study years (2010 and 2011) 

were considered. 
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Table 11. Overview of the analysed leek cultivars 

ID Commercial name Type Category Origin 

1 Albana Summer open pollinated  Nunhems 

2 Miracle F1 Summer F1 hybrid Enza 

3 Zeus F1 Summer F1 hybrid S&G 

4 Striker F1 Summer F1 hybrid Bejo 

5 Breugel F1 Autumn F1 hybrid Rijkzwaan 

6 Tadorna Autumn old cultivar Enza 

7 Alcazar Autumn open pollinated  Rijkzwaan 

8 Belton F1 Autumn F1 hybrid Nunhems 

9 Pretan F1 Autumn F1 hybrid Nickerson-Zwaan 

10 VLimberg R Winter breeder selection Sint Katelijne Waver 

11 Coolidge F1 Winter F1 hybrid Hortiplan 

12 Artico Winter old cultivar IPK 

13 Farinto Winter open pollinated  Nunhems 

14 Arkansas Winter open pollinated  Royal Sluis 

15 Gavia Winter open pollinated  Enza 

16 Toledo Winter old cultivar Thompson & Morgan  

17 Uytterhoe E Winter breeder selection Onze Lieve Vrouw Waver 

18 Engels P Winter breeder selection Putte 

19 Harston F1 Winter F1 hybrid Nunhems 

20 Fahrenheit F1 Winter F1 hybrid Royal Sluis 

21 Varna Summer open pollinated Royal Sluis 

22 Nelli Summer open pollinated Svalöf Weibull 

23 Nebraska Autumn old cultivar Royal Sluis 

24 Buelens Willy Winter breeder selection Onze Lieve Vrouw Waver 

25 Electra Autumn open pollinated Clause 

26 Poribleu Autumn open pollinated Nickerson-Zwaan 

27 Vervloet M Winter breeder selection Sint Katelijne Waver 
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Figure 15. Application of liquid Se fertilizer 

 

Table 12. Properties of soil samples collected on the experimental fields in 2010 and 2011 

 

soil parameter study year 2010 study year 2011 

pH (KCl) 4.7 5.4 

OC (%) 0.9 0.9 

P (mg 100 g
-1

) 16.0 21.8 

 K (mg 100 g
-1

) 5.3 11.4 

Mg (mg 100 g
-1

) 9.9 14.3 

Ca (mg 100 g
-1

) 67 85.0 

Na (mg 100 g
-1

) 4.0 <1.9 

Se (mg 100 g
-1

) 0.03 0.03 
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5.4 Results and discussion 

 

5.4.1 Biomass production as affected by fertilizer type and dose 

 

The biomass of plants fertilized with 0.5 and 2.0 mg selenite-Se ranges between 26 and 85 g, 

and between 41 and 100 g DW per plant, respectively (Figure 16). The analysis of variance 

(ANOVA) for the effects of cultivars and fertilizer on biomass production and Se uptake is 

presented in Table 13. In study year 2010, only the factor “cultivar” significantly affected 

biomass while the interaction of fertilizer with cultivars had no significant effect on Se uptake 

and biomass (Table 13). Notably, when selenite was used at lower doses, differences in 

biomass production were not statistically significant between cultivars (0.5 mg Se per plant), 

whereas at higher dose (2 mg Se per plant) differences in biomass production between 

cultivars were statistically significant. It was reported earlier that Se fertilization significantly 

decreased the dry matter of shoots and roots of Brassica species (Banuelos et al., 1997a, 

Sharmaet al., 2010). Similarly, in crops like maize, wheat, sunflower and rice, which were 

considered as non-accumulators of Se, the DM yield was found to decrease with increasing 

fertilizer dose (Prasad, 2009, Singh and Singh, 1978). In the next study year (2011), the 

biomass of plants fertilized with 4.0 mg Se as selenate and selenite ranged from 16 to 87 g, 

and from 23 to 113 g DW per plant, respectively (Figure 17). Both cultivars and fertilizer 

forms significantly affected biomass. There was also a significant interaction between leek 

cultivars and Se fertilizer for biomass yield (Table 13). This interaction indicates that leek 

cultivars responded differently when different Se forms were used as fertilizers. In chapter 3, 

when soil was fertilized with 3.8 mg Se kg
-1

, biomass production was slightly influenced. 

Earlier studies also reported that biomass production is influenced by Se fertilizers 

(Hartikainen, 2005b, Malik et al., 2011, Pilon-Smits et al., 2009, Yao et al., 2009). In various 

studies, it was observed that fertilization with selenate seems to result in lower plant biomass 

compared to selenite (Hopper and Parker 1999; XimenezEmbun et al., 2004; Sharma et al., 

2010). When selenate is the dominant Se form in the soil, the active uptake of Se by the 

plants via the sulphur pathway could lead to higher accumulation and conversion to organic 

Se species. The replacement of amino acids in plant proteins by their Se analogues 

(selenocysteine and selenomethionine) is considered to be the underlying cause of selenium 

toxicity. The majority of plants in the Allium family, including leek, contains high levels of 

sulphur compared to other vegetables (Cerella et al., 2011). 
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Figure 16. Dry matter yields of whole leek plants grown on soil fertilized with two different 

doses of Se applied as selenite (Na2SeO3) at 0.5 and 2.0 mg Se per plant 
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Figure 17. Dry matter yields of whole leek plants grown on soil fertilized with two types of 

Se fertilizer, selenate (Na2SeO4) and selenite (Na2SeO3), at 4.0 mg Se per plant 

 

5.4.2 Effect of fertilizer type and dose on Se uptake in various leek cultivars 

 

Previously no studies have reported differences between leek cultivars in terms of Se 

accumulation when subjected to Se fertilization at various Se doses and Se forms. In the 

present study, we observed that supply of different Se species influences Se uptake in various 

leek cultivars. Fertilizer doses significantly affected Se uptake while cultivars and the 

interaction of fertilizer with cultivars had no significant effect on Se uptake when 0.5 and 2 

mg selenite-Se per plant were used as fertilizer in study year 2010 (Table 13). In next study 

year (2011), cultivars and fertilizer form (selenate and selenite) significantly affected Se 

uptake. In that study, there was also a significant interaction between leek cultivars and Se 

treatment for Se uptake (Table 13). This interaction indicates that leek cultivars responded 
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differently when two Se forms were used. These differences in Se accumulation between both 

fertilizer types were previously also observed in the greenhouse experiment with leek (see 

chapter 3) and for other food crops (Kapolna et al., 2007, Larsen et al., 2006). Concentrations 

of Se in non-fertilized leek (control) were presented for selected cultivars in figure 18. 

Concentrations of Se in these control plants were similar to control leek data obtained in the 

field survey presented in chapter 4. Among the 20 leek cultivars, some cultivars show 

significant changes in Se uptake when increasing the selenite-Se dose from 0.5 mg Se per 

plant to 2.0 mg Se per plant (p ≤ 0.05) (Figure 19). The Se uptake by plants fertilized with 0.5 

and 2.0 mg selenite-Se per plant ranged from 3.0±0.5 to 10.4±6.1 and from 9.3±0.8 to 68±72 

µg per plant, respectively. When cultivars were fertilized with 4 mg Se per plant as selenite 

and selenate in the subsequent year, significant differences in Se uptake were observed for all 

cultivars (Figure 20). Leek fertilized with selenate fertilizer shows a higher uptake for these 

cultivars. 

No differences between cultivars were observed when the plants were grown on 4 mg Se per 

plant supplied as selenite, whereas significant differences between cultivars were observed 

when plants were grown on 4 mg Se per plant supplied as selenate (Table 13). The fact that 

selenate fertilization results in larger differences between cultivars may be related to selenate 

being translocated to the aerial organs in plants whereas selenite was reported to be 

accumulated mainly in the roots (Arvy, 1993). Moreover, its uptake rate is independent of 

external concentrations (White et al., 2004). On the other hand, selenate readily competes 

with sulphate for uptake by plants and is probably assimilated by the sulphur transport 

pathway in chloroplasts (Ellis and Salt, 2003). 

 

 

file:///E:/Gijs/Documents/doctoraten/Doctoraat%20Srikanth/revisions/Thesis_Sri_260813/Thesis_Sri_260813/Thesis%20Draft_Review%20comments_answered_010813.doc%23_ENREF_126
file:///E:/Gijs/Documents/doctoraten/Doctoraat%20Srikanth/revisions/Thesis_Sri_260813/Thesis_Sri_260813/Thesis%20Draft_Review%20comments_answered_010813.doc%23_ENREF_141
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Figure 18. Selenium concentration in non-fertilized (control) plants of various leek cultivars 

grown in study year 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Average Se content (µg) in consumable white part (DW) of leek grown on two 

different doses of Se supplied as selenite (Na2SeO3) at (A) 0.5 mg Se per plant (B) 2.0 mg Se 

per plant 

A B 
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Figure 20. Average Se content (µg) in consumable white part (DW) of leek, grown on soils 

fertilized with two types of Se fertilizer at (A) 4 mg Se per plant (selenate) and (B) 4 mg Se 

per plant (selenite) 

 

5.4.3 Effect of Se application on leek sulphur content in various cultivars 

 

Selenium and sulphur (S) uptake in the leek were found to be significantly positively 

correlated (P <0.05) when leek was grown on 4 mg selenate-Se per plant (Table 14 and 

Appendix 3).  The high S uptake in the plants grown on soils spiked with selenate 

corresponds with a high plant Se uptake. In the first study year, S uptake of the plants 

fertilized with 0.5 and 2.0 mg selenite-Se per plant ranged from 42±7 to 129±9 and from 

50±9 to 169±68 µg per plant, respectively. In the second study year, the S uptake of the 

plants fertilized with 4.0 mg Se per plant as selenate and selenite ranged from 86±5 to 

304±115 and from 76±4 to 200±52 µg per plant, respectively. When Se was supplied as 

selenite at a dose of 4 mg Se per plant, Se and S showed a positive correlation. The ability of 

Se to enhance S uptake and accumulation in some cultivars was unexpected since Se and S 

A B 
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are competitive and absorbed into the plant by the same carrier (Kopsell et al., 1997). 

Significant differences in contents of organic sulphur compounds were previously observed 

between leek cultivars (Bernaert et al., 2012a). We now also observed differences in total S 

between the cultivars. In general, Allium species contain more S compared to other 

vegetables, and it was previously hypothesized that plants which are prone to the highest 

disease incidence contain more sulphur analouges (Cerella et al., 2011; Coleysmith 1986). 

 

Table 13. ANOVA (p-values) for effects of cultivars and fertilizer on biomass production and 

Se uptake in both studies (2010 and 2011).  Treatments are considered significant at p≤0.05 
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Table 14. Linear correlation coefficients (r) for correlation of Se uptake (µg Se per plant) 

with biomass (g per plant) and S uptake (µg S per plant) for 20 leek cultivars in all fertilizer 

treatments 

Regression 

Variables 

Study-I (2010) Study-II (2011) Study-I & II 

(2010 & 2011) 

 0.5 mg selenite-

Se plant
-1

 

2 mg selenite-Se 

plant
-1

 

4 mg selenite-Se 

plant
-1

 

4 mg selenate-Se 

plant
-1

 

 

Biomass (g per 

plant) 

0.178  (0.122) 0.357 (0.453) 0.096 (0.688) 0.498* (0.025) 0.102 (0.369) 

S (µg per 

plant) 

0.048(0.901) -0.012(0.938) 0.028 (0.864) 0.592** (0.000) 0.259* (0.020) 

* and ** indicate statistical significance at the probability level of p ˂ 0.05, and p ˂ 0.01, 

respectively. Probability values are indicated between brackets 

 

5.4.4 Total Selenium transferred from soil to consumable part 

 

The major focus of the current study was to assess how Se uptake may differ between 

different cultivars aimed at optimizing Se biofortification strategies. Accordingly, the prime 

focus is given to the consumable white part of leek (shoot). However, biomass production 

data were presented for the whole plant. Selenium uptake by the leek was calculated using Se 

concentrations measured in the white part as an estimation of Se concentrations in the whole 

plant. These data are presented in Table 15. 

 

 

 

 

 

 



93 

 

Table 15. Average percentage (%) uptake of Se in leek calculated using Se concentrations 

measured in the white part as an estimation of Se concentrations in the whole plant, expressed 

as percentage of the amount added to the soil in the form of Se fertilizer 

                                          Fertilizer type and dose 

sample 

ID 

commercial 

name 

0.5 mg 

Se per 

plant 

(Selenite) 

2.0 mg Se 

per plant 

(Selenite) 

4.0 mg Se 

per plant 

(Selenite) 

4.0 mg Se per 

plant 

(Selenate) 

1 Albana 1.3 1.3 2.7 45.0 

2 Miracle F1 1.5 1.9 1.3 40.8 

3 Zeus F1 1.9 3.4 3.4 29.8 

4 Striker F1 1.7 1.1 1.8 34.7 

5 Breugel F1 2.0 2.2 3.0 38.4 

6 Tadorna 0.9 1.4 2.2 35.2 

7 Alcazar 0.9 1.6 1.4 46.7 

8 Belton F1 0.9 2.4 1.2 39.0 

9 Pretan F1 0.9 1.6 1.6 36.4 

10 VLimberg R 0.6 0.8 0.7 32.4 

11 Coolidge F1 1.6 1.6 1.9 51.2 

12 Artico 0.7 0.5 3.6 37.7 

13 Farinto 1.2 0.5 2.8 46.8 

14 Arkansas 1.0 1.3 1.2 27.9 

15 Gavia 1.0 0.8 1.3 44.0 

16 Toledo 1.5 1.0 1.8 32.6 

17 Uytterhoe E 1.0 0.8 1.9 32.9 

18 Engels P 2.0 2.4 2.1 18.9 

19 Harston F1 2.1 1.5 1.0 21.4 

20 Fahrenheit F1 0.9 3.3 0.6 18.8 
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The Se content in the white part varied between 0.75 and 2.00 mg per plant when plants were 

grown on soils fertilized with selenate. When grown on soils fertilized with selenite at a dose 

of 4 mg Se per plant, the Se content varied between 0.02 and 0.14 mg per plant. At a dose of 

0.5 and 2 mg selenite-Se per plant, contents between 0.004-0.011 and 0.009-0.07 mg per 

plant were measured, respectively.  It is evident that 95% of the Se remained in the soil when 

leek was fertilized with selenite whereas less than 50% of the Se remained in the soil when it 

was fertilized with selenate. For some cultivars, reproducibility of Se uptake within the 

cultivars seems lower. This could be due to uneven Se availability to the plants through 

application of the liquid Se fertilizer in the root zone. The amount of Se taken up from the 

applied Se dose of 0.5 mg Se per plant in form of selenite by the various leek cultivars in the 

current experiment (0.6-2.1%) is lower compared to the amount taken up by leek (0.3-4.9%) 

grown on various fields throughout Flanders region upon application of the same fertilizer 

type and dose (chapter 4). Notably, the pH of the soil of the current experiment in study year 

2010 was lower (pH 4.7) compared to the soils of the field survey, described in table 7 (pH 

4.8-7.1), and a lower pH may result in a lower Se uptake (Mayland et al., 1991). 

 

 

Figure 21. Six cultivars with the highest and lowest Se uptake for the different fertilization 

treatments. Serial numbers given to the cultivars are explained in Table 11 
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The response of cultivars on Se fertilization differs between Se fertilization doses and Se 

forms. In the first study year, among the six cultivars which recorded the highest Se uptake, 

three cultivars were common for both selenite fertilization doses (0.5 and 2.0 mg Se per 

plant), i.e. Breugel F1, Engels P and Zeus F1. Among the six cultivars exhibiting the lowest 

Se uptake, three other cultivars were common (VLimberg R, Artico and Gavia) (Figure 21). 

Similarly, in the second study year, among the six cultivars which recorded highest Se 

uptake, two cultivars were common for both fertilizer types (selenate and selenite at a dose of 

4 mg Se per plant), i.e. Farinto and Albana. The cultivars exhibiting the lowest Se uptake, 

three other cultivars recorded the lowest Se uptake (Fahrenheit F1, Harston F1 and Arkansas) 

(Figure 21). Irrespective of the fertilization dose, VLimberg R and Fahrenheit F1 cultivars 

recorded the lowest Se uptake in the majority of the cases. Among all cultivars, six cultivars 

showed a Se uptake exceeding 40% of the applied Se dose (Albana, Miracle F, Alcazar, 

Coolidge F1, Farinto and Gavia)  

 

5.5 Conclusion 

 

The Se accumulation in leek is not only affected by Se fertilizer type and dose, but also 

differs between different leek cultivars. Among 20 different cultivars, six cultivars showed 

higher Se uptake when fertilized with selenate. Differences between cultivars were affected 

by Se dose and form tested. However, there is no common cultivars which can be ranked as 

having the highest Se uptake for each Se dose and fertilizer type. The higher amount of Se in 

the consumable part of leek when plants are grown at 4 mg Se per plant supplied as selenate 

could eventually lead to a decrease in production of dry biomass. All varieties respond to Se 

application and show a dose-dependent response in Se uptake. As in the previous chapter, it 

can be concluded that use of selenite (Na2SeO3)
 
as fertilizer results in a higher risk for Se 

accumulation in the soil on longer term. 
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Chapter 6. Use of selenium fertilizers for production of Se-enriched 

Kenaf (Hibiscus cannabinus): effect on Se concentration 

and plant productivity 

This Chapter has been redrafted from: 

Rama V. S. L., De Schepper V., Steppe K., Tack F., Du Laing G. 2013. Use of selenium 

fertilizers for production of Se-enriched Kenaf (Hibiscus cannabinus): Effect on Se 

concentration and plant productivity. Journal of Plant Nutrition and Soil Science. 176: 634–

639.
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6.1 Abstract 

 

Due to selenium (Se) deficiency, Se fortification of food and feed is applied in many 

countries. Therefore, this potential use of Se-enriched kenaf was investigated based on its Se 

accumulation, its potential to transform accumulated Se to other Se species and effect of Se 

accumulation on its growth. Kenaf was grown with different levels of two Se fertilizers 

(selenite and selenate) at concentrations ranging from 0 to 4 mg Se kg
-1

 soil. Total Se 

concentrations in the plants grown on selenate-treated soil amounted to 1019±136 mg Se kg
-1

 

dry weight and were much higher compared to plants grown on selenite-treated soil. 

Identified Se species were selenite, selenate, SeMet and SeCys2. Biomass yield, net 

photosynthesis and chlorophyll content index of the plants decreased when plants were grown 

on soils treated with high doses of selenate.  

 

6.2 Introduction 

 

Selenium (Se) at low levels is essential for humans and mammals and its deficiency is still a 

cause of concern in many countries. Therefore, Se fortification of food and feed has increased 

in the past decade. Countries with low Se status have introduced Se-fortified food and feed 

crops as well as Se-enriched food and feed supplements in their policies to increase the Se 

status of livestock and human population (Aro et al., 1995). Several studies have proven the 

possibility of overcoming Se deficiency by enriching yeast with Se and by applying Se 

fertilizers when growing forage, wheat and maize  (Broadley et al., 2006, Chilimba et al., 

2012, Filley et al., 2007, Kahakachchi et al., 2004). Although Se is needed for biological 

processes, it can be toxic when present in too high concentrations. In addition, the form in 

which Se is present, i.e. its speciation, largely influences its toxicity. Because for Se the range 

between optimal required levels and toxic effects is narrow and depends on its speciation, it is 

important to control concentrations in crops carefully and to evaluate how Se fertilization 

affects the concentration and speciation in the crops. The Se form and dose applied to the 

soil, as well as some soil parameters, were reported to be important in this context (Gissel-

Nielsen, 1971, Johnsson, 1991, Robberecht et al., 1982). 
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Selenium is not a very abundant element and is present at average levels of 1 mg Se kg
-1

 in 

the soil. Deficient soils contain less than 0.4 mg Se kg
-1

, whereas seleniferous soils may 

contain concentration up to 100 mg Se kg
-1

 soil. On seleniferous soils most plant species 

contain 1-10 mg Se kg
-1

 dry weight (DW), but the so-called hyperaccumulators (e.g. from the 

genera Stanleya and Astragalus) accumulated 1000-15000 mg Se kg
-1

 DW even from low 

external soil Se concentrations (Broadley et al., 2006, Pilon-Smits et al., 2009). The potential 

of several plant species to accumulate Se still needs to be evaluated. Attention should go to 

not only total concentrations in the plants, but also to their speciation. Kenaf (Hibiscus 

cannabinus) was previously classified as a Se indicator and identified as a Se-accumulating 

plant (Banuelos et al., 1996).
 
This means that concentrations between 100 mg Se kg

-1
 DW, 

i.e. the upper limit of non-accumulators, and 1000 mg Se kg
-1

 DW, i.e. the lower limit of 

hyperaccumulators can be expected. It is a crop of interest to both humans and animals due to 

its usage as food and feed (Kubmarawa, 2009, Lopez et al., 2006). Kenaf is intensively 

cultivated in several countries, such as India, Bangladesh, United States of America, 

Indonesia, Malaysia, South Africa, Vietnam, Thailand, parts of Africa, and to a small extent 

in southeast Europe. Since ancient periods, these counties cultivated kenaf as a leafy 

vegetable used for cooking, cattle grazing and paper production (Adebayo, 2010). It was also 

recommended as a crop that may be used in phytoremediation, i.e. for the removal of metals 

from polluted soils (Bada, 2010). Kenaf is particularly interesting as a feed crop due to its 

soluble protein content which is comparable to the soluble protein content of alfalfa (Phillips 

et al., 2002). The use of kenaf as a feed crop has been successfully tested on beef cattle and 

small ruminants, and resulted in high percentage of proteins, non fatty solids and total solids 

in the milk (Lopez et al., 2006, Xiccato et al., 1998). Recent studies showed that kenaf seed 

oil enhances apoptosis towards ovarian cancer cells (Yazan et al., 2011). However, not much 

data on Se accumulation and speciation in kenaf are available. In addition, it is not known 

whether Se accumulation influences the development and productivity of kenaf plants. 

Therefore, the current study assessed the effect of fertilizing soil with different doses from 

two types of Se fertilizers on the Se accumulation and speciation, and their effect on plant 

performance and development. 

 

 

http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/Bangladesh
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http://en.wikipedia.org/wiki/Indonesia
http://en.wikipedia.org/wiki/Malaysia
http://en.wikipedia.org/wiki/South_Africa
http://en.wikipedia.org/wiki/Viet_Nam
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http://en.wikipedia.org/wiki/Europe
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6.3 Materials and methods 

 

6.3.1 Experimental setup 

 

Sandy-loamy soil was collected from fields in Merelbeke, Belgium. The soil was air-dried 

and sieved through a 2 mm sieve. The soil contained 0.23 mg Se kg
-1

, 1.09% organic carbon 

and its pH was 6.15. One kg of soil was weighed in each recipient. Two types of Se fertilizer, 

i.e. sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) (Sigma Aldrich, St. Louis, 

MO, USA) were separately tested by adding different Se concentrations 0.5, 1.0, 2.0 and 4.0 

mg Se kg
−1

 to the soil, equivalent to 2174, 4348, 8696 and 17391 g per hectare, respectively. 

The soils were then brought to field capacity with deionised water and allowed to equilibrate 

for 24h. Thereafter the soils were mixed thoroughly. The moisture content was maintained at 

25%. After 10 days, 10 seeds of kenaf were sown in each recipient, from which six plantlets 

were kept in each recipient by removing the least developed plantlets after five days of seeds 

sown. The experiment was set up in quadruplicate. The soils were regularly watered with 

deionized water. After 45 days, leaf characteristics were measured and afterwards the plants 

were harvested. Soil was washed carefully from the belowground plant parts with tap water, 

ensuring that root hairs were not disturbed. To further remove surface contaminants, the 

samples were again washed gently with tap water followed by deionized water. The six plants 

from each recipient were pooled and considered as one sample, and three independent 

samples were analysed. The weights of the above and belowground parts of the plants were 

recorded. The plant material was cut into pieces, transferred to polyethylene boxes, frozen at 

-20 ºC and lyophilized. Total Se and Se species concentrations were determined in three 

subsamples. Deionized water (MilliQ water, Water Systems Ltd., Brussels, Belgium) was 

used throughout the experiment. 

 

6.3.2 Sample preparation for total Selenium content 

 

For determination of total Se in the kenaf samples, the aboveground plant parts of the pooled 

samples were lyophilized. A subsample of 0.2 g was weighed into a centrifuge tube followed 
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by addition of 2.5 mL concentrated HNO3 and 2.5 mL 30% H2O2 (Chemlab, Zedelgem, 

Belgium). After 16 h, the tubes were placed in a microwave oven (Williams et al., 2007). The 

temperature was raised to 55°C for 10 min at 600 Watt and 100% power. Afterwards, the 

temperature was raised to 75°C for 10 min. Finally, it was maintained at 100°C for 30 min. 

The clear digests were diluted to 50 mL with deionized water for further Se determination. 

For validation of the procedure, the certified reference plant material BCR-CRM 402 (white 

clover, 6.7±0.27 mg Se kg
-1

) was digested using the same procedure and the total Se 

extraction efficiency was found to be 95±3%. Three replicates of BCR-CRM 402 were 

analysed with the sample batch. Both standard addition and external calibration were used. 

 

6.3.3 Sample preparation for Selenium speciation 

 

For Se speciation analysis, plant samples obtained by fertilizing the soil with Na2SeO3 and 

Na2SeO4 at a dose of 0.5 and 4.0 mg Se kg
−1

 soil were used. A 0.2 g plant subsample and 80 

mg of the enzyme protease XIV (Sigma Aldrich, St. Louis, MO, USA) were dissolved in 5 

mL of water. This mixture was shaken in a 10 mL centrifuge tube for 24 h at 37°C and 

centrifuged for 30 min at 10,000 g (Mazej et al., 2008). The supernatant was separated from 

the residue and filtered through a 0.45 µm syringe-type PVDF membrane filter. Supernatant 

and residue were stored at -20°C until they were analysed for Se speciation. In addition, the 

total Se content of supernatant was determined to quantify the Se release through the 

enzymatic digestion. This release was found to range between 75 and 79 %. 

 

6.3.4 Total Selenium and Selenium speciation analysis 

 

An Inductively Coupled Plasma Mass Spectrometer (ICP-MS, PerkinElmer DRC-e, 

Sunnyvale, CA, USA) was used for Se determination. The ICP-MS was fitted with a 

Babington nebulizer and a Scott double pass spray chamber. For speciation analysis, the ICP-

MS was coupled as detector to a liquid chromatographic system (Series 200 HPLC, Perkin 

Elmer, Sunnyvale, CA, USA) (HPLC-ICP-MS). The HPLC consisted of a P680 HPLC pump 

and an ASI-100 automated sample injector. A Hamilton PRP-X100 anion exchange column 
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and Altima C8 column (250 mm × 4.6 mm I.D., 5 µm, 120 Å) were used as stationary phase. 

Both columns were equipped with a guard column containing the same stationary phase 

material. Extraction of Se species was carried out by using a shaker fitted incubator chamber 

from Sartorius (Goettingen, Germany). Total Se determination was carried out using a 

microwave digestion apparatus from Mars (North Carolina, USA). HPLC chromatographic 

standards were sodium selenite (Na2SeO3), sodium selenate (Na2SeO4), SeMet, SeCys2, 

MeSeCys and the mobile phase used during HPLC analysis were citric acid, 

heptafluorobutryic acid ammonium hydroxide and methanol (Sigma Aldrich St. Louis, MO, 

USA). The mobile phase solutions were prepared freshly prior to analysis. Selenium species 

were quantified using an external standardization method with reference standards. Linear 

correlations (R
2
 > 0.99) between peak areas and analyte concentrations were obtained for 

these standards. 

 

6.3.5 Physiological leaf characteristics 

 

Before harvesting (after 45 days), one leaf of three plants per treatment was sampled to 

determine the chlorophyll content index, the photosynthesis rate and the chlorophyll 

fluorescence parameters. The third fully expanded leaf from the top was measured. 

Chlorophyll content index was measured using a portable chlorophyll meter system (SPAD 

502, Minolta Company, Tokyo, Japan) from 9:30 to 3:00 h. During the same time, net 

photosynthesis (Pn) at 1000 µmol PAR m
-2

 s
-1

 was determined with a portable infrared gas 

analyser system (LI-6400, Li-COR, Lincoln, NE, USA). Relative humidity in the leaf 

chamber was uncontrolled and equal to the humidity in the greenhouse, while the air 

temperature in the leaf chamber was controlled at 25°C. External air was CO2 scrubbed and 

mixed with pure CO2 to create a standard concentration of 400 µmol mol
-1

. The air flow rate 

was set at 200 µmol s
-1

. Furthermore, the same device (LI-6400, Li-COR, Lincoln, NE, USA) 

was used as a chlorophyll fluorometer to measure simultaneously with Pn, two light adapted 

chlorophyll fluorescence parameters: effective quantum yield of PSII (ΦPSII) and PSII 

operating efficiency (Fv'/Fm'). 
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6.3.6 Biomass growth measurements 

 

At the time of harvesting, plant height and weight were determined for plants of all 

treatments. Roots and stems with leaves were separated and dried at 55 ºC in an electric 

drying oven for 48 h (to constant weight) to calculate dry weight percentages. 

 

6.3.7 Statistical analysis 

 

The significance of effects of the two Se fertilizers and their applied doses was evaluated by 

ANOVA (fixed effects and Duncan’s Multiple Range Test). Significance of differences was 

evaluated at the 0.05 level. Correlation analysis was conducted in order to identify 

(linear/quadratic) relations between the tested plant parameters and applied Se doses. 

 

6.4 Results 

 

6.4.1 Selenium fertilizers and their effect on Se accumulation and speciation 

 

The Se accumulation in kenaf plants increased significantly and linearly when the dose of 

selenate and selenite applied to the soil increased (Figure 22A; Table 16). However, the 

uptake of Se by the plants grown on the selenate-fertilized soil is much higher compared to 

the uptake by plants grown on the selenite-fertilized soil. The percentage of organic species 

(relative to the total content) was highest in plants grown on selenite-treated soils 

(Figure22B). Similar speciation patterns were observed when plants were fertilized with 0.5 

mg Se kg
-1

 (data not shown) or 4.0 mg Se kg
-1

 (Figure 22B). 

Although relative amounts of organic Se species were lower in plants grown on selenate-

treated soils compared to plants grown on selenite-treated soils, absolute amounts were 

higher. The most abundant organic Se species were SeMet and SeCys2. In both treatments, 
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selenate was found to be the dominant inorganic species in the plants, whereas selenite was 

less dominant. Three unknown peaks were identified in kenaf plants grown on selenate-

treated soils. However, no unknown peaks were identified in plants grown on selenite-treated 

soils. 

 

Figure 22. A. Effect of Se fertilizer type (sodium selenate (Na2SeO4) and sodium selenite 

(Na2SeO3) and dose (0.5 to 4 mg Se kg
-1

 soil) on Se concentration in kenaf plants (mg Se kg
-1

 

DW) represented using two different y-axes (left axis for selenate and right axis for selenite); 

control plants are the same for both treatments. B. Selenium species concentrations in kenaf 

plants (% of total Se) grown on soils fertilized with selenite and selenate (4 mg Se kg
-1

 soil). 

Results are expressed as mean ± standard deviation of three independent samples 
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Table 16. Regression equations predicting plant parameters from applied Se dose for two Se 

fertilizers tested at various application doses 

Parameters Na2SeO4 Na2SeO3 

Pn 15.08+5.08(soil Se)-1.64(soil 

Se
2
); r

2
=0.54 

20.33-24.95 (soil Se)+7.63(soil 

Se
2
); r

2
=0.94 

ΦPSII 0.58-0.23 (soil Se); r
2
=0.36 -1.97+8.81 (soil Se); r

2
=0.54 

Fv'/Fm' 0.35-0.04 (soil Se); r
2
=0.47 -1.95+9.86 (soil Se); r

2
=0.53 

Chlorophyll index 48.88-2.83 (soil Se); r
2
=0.42 NS 

Total plant weight (g) NS NS 

Plant above ground 

weight (g) 

NS NS 

Plant height 37.17-4.145 (soil Se); r
2
=0.74 NS 

Se (mg kg
-1

) -93.81+261.67 (soil Se); r
2
=0.91 0.08+1.98 (soil Se): r

2
=0.97 

Se (µg pot
-1

) 31.99+288.58 (soil Se); r
2
=0.97 0.48+5.07 (soil Se); r

2
=0.97 

NS
Non significant for linear/quadratic (p≥0.05) 

 

6.4.2 Effect of Selenium fertilizers on plant development 

 

Low doses of both Se fertilizers appear to result in a slight increase in the biomass weight, 

but a decrease in plant height (Figure 23A). At high doses of selenate fertilizer (4 mg Se kg
-1

 

soil), both the plant height and weight decreased significantly, while this was not the case for 

the selenite fertilizer. The reduction in plant weight was mainly caused by a reduction in 

aboveground biomass (Figure 23B and 24). However, the regression analysis suggests that 

applied Se doses have no overall significant effect on biomass yield, although selenate 

fertilizers seem to decrease plant height (Table 16). 

When changing the applied fertilizer dose, net photosynthesis (Pn) (Figure 23C) did not 

change significantly except for the highest dose of selenate fertilizer (4 mg Se kg
-1

soil). The 
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pattern of Pn related to the chlorophyll content index (Figure. 23C) and both measured 

fluorescence parameters (Figure 23D). The negative effect of the highest selenate dose (4 mg 

Se kg
-1

 soil) was only significant for the chlorophyll content index and not for the 

fluorescence parameters. According to these leaf characteristics, selenite fertilizer doses 

across the full tested range appeared to not influence plant performance or development, 

whereas selenate  

 

 

 

Figure 23. The influence of two selenium (Se) fertilizers, selenate (Na2SeO4) and selenite 

(Na2SeO3), and their applied dose (from 0.5 to 4 mg Se kg
-1

 soil) on (A) total plant weight 

and height, (B) above (stem) and below (root) ground weight, (C) net photosynthesis and 

chlorophyll content index and (D) fluorescence parameters of kenaf plants. Results are 

expressed as mean ± standard deviation of four independent samples. Statistical significance 

of differences between the different doses is denoted for each treatment using alphabets 

(Duncan’s Multiple Range Test). *indicates overall statistical significance of individual 

parameter (p≤ 0.05). 
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Figure 24. Growth of plants as influenced by Se dose when amending soil with selenate 

 

fertilizer doses have to be restricted to 2 mg Se kg
-1

 soil to avoid any effect on growth and 

performance of the plants (Figure 24). For plants grown on selenate fertilizer, a linear 

negative association was observed for plant physiological parameters and applied Soil Se 

dose, whereas for plants grown on selenite fertilizer a positive trend or no association was 

observed. 

 

6.5 Discussion 

 

The kenaf plants grown on soils treated with selenate seem to accumulate Se at higher 

concentrations compared to plants of the Brassica family, whereas concentrations similar to 

those observed in plants of the Brassica family were found in the kenaf plants grown on the 

selenite-treated soils (Hopper and Parker, 1999, Sharma et al., 2010). Compared to kenaf, 

chives (Allium schoenoprasum) and dill (Anethum graveolens L.) seem to accumulate Se in 

higher concentrations for both fertilizers (Cankur et al., 2006, Kápolna, et al., 2007). The 
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percentage of Se removed by kenaf plants grown on selenate amended soils was 32-42%, 

which is comparable to the percentage removed by wheat plants grown on a similar soil 

(Broadley et al., 2010). The lower Se uptake in soils treated with selenite is attributed to its 

lower bioavailability and mobility. On one hand, the higher Se uptake when applying selenate 

corresponds with the fact that selenate-Se uptake by plants is an active process via sulphate 

transporters, whereas selenite-Se accumulates through passive diffusion and can be inhibited 

by phosphate (Sors et al., 2005). On the other hand, selenate also often exhibits a higher 

mobility and availability in the soil compared to selenite (Broadley et al., 2007). Due to the 

lower uptake, the amount of Se remaining in the selenite-treated soils can become high, 

leading to Se accumulation in the soil and an environmental impact on the longer term. 

In plants, a Se concentration of more than 5 mg Se kg
-1 

DW inorganic or organic Se is 

considered to be toxic to feed for cattle pigs (Kim and Mahan, 2001). Therefore, kenaf plants 

grown on a soil treated with selenate at the doses we tested can be used only as a feed 

additive and not as a bulk fodder, because the Se concentration level by far exceeded these 

toxic Se levels (Figure 22A) at all doses tested. However, Se concentrations in kenaf plants 

grown on soils treated with selenite did not exceed the toxic levels, except for the highest 

dose of 4 mg Se kg
-1

 soil (Figure 22A). 

Inorganic species are considered as less beneficial for animals and humans compared to 

organic species, because inorganic Se can cause acute Se poisoning (Tiwary et al., 2006).  As 

such, the higher relative abundance of organic species in kenaf plants grown on selenite-

treated soils suggests that selenite fortification may be more beneficial compared to selenate 

treatment without having an influence on plant productivity (Figure 23B). In both treatments, 

SeMet was the dominant organic Se species, probably because SeMet is randomly 

incorporated into proteins replacing methionine (Navarro-Alarcon and Cabrera-Vique, 2008). 

The observed Se speciation for both treatments is in good agreement with results reported for 

other food crops such as Se-enriched Allium species (Pedrero et al., 2007, Wróbel et al., 

2004). Even though organic Se compounds are less toxic, when the dominant organic Se form 

is SeMet, it can be directly incorporated into general proteins instead of other Se compounds 

which were most effective in reducing tumors. When an adequate amount of SeMet was fed it 

could lead to accumulation of non-specific pools but at low doses the protective effect of 

SeMet was effective in raising blood Se concentrations than selenate (Ip, 1988). However, the 

bioavailability, GSH-Px activities in whole blood and erythrocytes are similar for the two 

forms (Thomson et al., 1993). 



108 

 

There is no proof of essentiality for Se in plants. However, there have been reports of 

beneficial effects at low Se doses on plant growth (Hartikainen, 2005b, Malik et al., 2011, 

Pilon-Smits et al., 2009, Yao et al., 2009). In the kenaf plants, the slight increase in dry 

biomass for the lowest doses was not statistically significant. In contrast, the physiological 

toxic effects of high Se doses in kenaf plants were significant. This toxic effect as shown by a 

decreased biomass and photosynthesis rate. Selenium levels above 300 mg Se kg
-1

 DW in the 

plant became toxic when selenate doses above 2 mg Se kg
-1

 soil
 
were applied. Many plants 

show signs of Se toxicity in terms of reduced dry matter yield at high Se plant levels 

(Banuelos et al., 1997b, Dhillon, 2009, Sharma, et al., 2010). Selenium toxicity is attributed 

to its similarity to sulphur as Se replaces sulphur in amino acids and can change protein 

folding, causing reduced growth and deformities (Daniels, 1996, Lemly, 1997, Sors et al., 

2005). This sulphur substitution also seemed to occur in the photosynthetic apparatus, 

inducing a loss in PSII efficiency which could explain the observed growth inhibition 

(Geoffroy et al., 2007). Both the reduction in chlorophyll content index and fluorescence 

parameters indicate that the light reactions of photosynthesis are negatively influenced by Se. 

Kenaf plants can accumulate Se from Se-soil fertilizers, and as such can be used as a Se-

enriched fodder crop or feed additive. However, for use as fodder crop the soil should not 

contain too much Se in the form of readily available selenate as levels that are toxic to cattle 

could otherwise be reached. For this purpose, selenate-Se is recommended to be used in doses 

below the lowest dose tested in our study (0.5 mg Se kg
-1 

soil). Se-selenite fertilizers can also 

be used at higher doses (until 4.0 mg Se kg
-1

 soil). However, using selenite can lead to higher 

soil Se accumulation on longer term. Higher Se concentrations in kenaf may be envisaged 

when kenaf plants would be grown to be used as Se-enriched feed additive instead of fodder 

crop. In that case, selenate-Se can be applied at doses up to 2 mg kg
-1

. At higher doses, Se 

becomes toxic for the plants. 

 

6.6 Conclusion 

 

Our study confirms that kenaf can be considered as a Se indicator plant and might be used for 

Se supplementation as part of a diet. The extent of Se accumulation strongly depends on the 

form in which Se is applied as fertilizer to the soil. Using selenate instead of selenite as 
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fertilizer resulted in a Se uptake that is more than 100 times higher. However, using selenate 

also resulted in decreased plant productivity at higher doses. The selenium dose that can be 

applied to the soil to grow Se-enriched kenaf is determined by toxicity of Se to the plant and 

toxicity of Se to cattle consuming the plant. It depends on the Se form contained in the 

fertilizer and whether the Se-enriched kenaf would be used as feed additive or fodder crop. 

Use of selenite may result in a higher appearance of organic species, but also a higher Se 

accumulation in the soil. For use as bulk fodder crop, selenate as well as selenite can be 

applied. However, to avoid effects on physiology of the plants the Se dose may not exceed 

the lowest dose when applying selenate (0.5 mg Se kg
-1

 soil) or the highest dose when 

applying selenite (4.0 mg Se kg
-1

 soil) tested. 
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Chapter 7. Influence of soil selenium fertilization on trace element 

uptake by Kenaf plants (Hibiscus cannabinus) 
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7.1 Abstract 

 

A too low intake of Selenium (Se) by humans and cattle in several world regions has recently 

resulted in an increased interest in soil Se fertilization to enhance Se concentrations in food 

and feed crops. The objective of this work was to examine how trace metal concentrations in 

kenaf (Hibiscus cannabinus) plants are affected by soil Se fertilization. Kenaf plants were 

grown on 0, 0.5, 1.0, 2.0 and 4.0 mg Se kg
-1 

soil, supplied to the soil as selenate (Na2SeO4) 

and selenite (Na2SeO3). After 45 days, plants were harvested and the content of some 

essential (Se, Mn, Zn, Cu and Fe) and toxic (Al, Cd and Pb) metals was measured. The plant 

tissue concentration of most metals significantly decreased or increased (depending on the 

metal) when kenaf was grown on soil fertilized with Se. This effect depended on the applied 

Se dose and form. For instance, when a dose of 2.0 mg Se kg
-1

 soil was applied, the selenite 

fertilizer resulted in a lower concentration of Al, Cu, Fe, and content of Se in plant tissue 

compared to when selenate fertilizer was used. When a dose of 4.0 mg Se kg
-1

 soil was 

applied, both Se-fertilizers significantly increased concentrations of the essential elements 

Cu, Zn and Se, and significantly decreased the concentration of the toxic Al metal. However, 

for the majority of the elements, the uptake decreases upon increase of the Se dose 

irrespective of Se form used in the fertilization. These results emphasize the need to monitor 

trace metal concentrations when applying Se fertilizer to produce Se-enriched food crops. 

 

7.2 Introduction 

 

Selenium (Se) is essential trace element for humans. It also becomes toxic when certain doses 

exceed (Bhasin et al., 2012, Greenberg et al., 1986, Greger, 1999). A daily uptake of 55 µg 

Se per day is considered as an adequate for humans, whereas it becomes toxic when a dose of 

300 µg Se d
-1

 is exceeded (Zeng, 2009). The Se uptake from the soil by the plant potentially 

differs between crops and depends on the available soil Se concentration and forms. 

Especially the Se form present in the soil highly influences Se uptake by the crop: if a soil 

contains Se in the form of selenate (Na2SeO4) a higher uptake is observed compared to when 

the soil contains selenite (Na2SeO3) (Cartes et al., 2005, Singh, 1991). Due to inadequate soil 

Se levels in several countries, supplementation strategies, such as application of soil Se-
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fertilizers, have become a common practice to obtain Se-enriched crops (Aro et al., 1995, 

Broadley et al., 2010, Broadley et al., 2006, Eurola et al., 1991, Lyons et al., 2004). 

However, there is a risk that concentrations of other essential (Mn, Zn, Cu and Fe) and toxic 

(Cd, Pb and Al) metals increase or decrease upon fertilization using Se-fertilizers. Elements 

that are essential for plants play a vital role in plant growth. However, they can also become 

toxic when they exceed the requirement of the plant (Arnon and Stout, 1939, Rengel and 

Graham, 1995). There is some evidence that an increased Se content in crops decreases the 

content of toxic or essential trace elements. For example, Se was found to act as an antagonist 

on green alga, Chinese cabbage and lettuce (Feroci et al., 2005, Havey et al., 2004, Issa and 

Adam, 1999). 

Kenaf (Hibiscus cannabinus) is a crop that is cultivated in many Asian and African countries 

(Cheng et al., 2004). Its cultivation is very popular due to its various uses. It is used for paper 

production, biofuel production and as a leafy vegetable in the human and animal diet (Hays, 

1989, Kim and Sung, 2007, Webber, 1993). The kenaf plant produces a high vegetative 

biomass and yield in a short time period. In addition, kenaf plants can grow well in dry 

environments and can tolerate moderately saline soil conditions (Banuelos et al., 1997a). 

Hence, the production of Se-enriched kenaf food and feed appears as an attractive option for 

the use of soils in rather saline and dry areas. The aim of our study was to investigate how the 

uptake of essential and potentially toxic elements is influenced when kenaf plants are grown 

on soils fertilized with two different Se forms, selenate (Na2SeO4) and selenite (Na2SeO3), at 

five different Se doses. 

 

7.3 Materials and methods 

 

7.3.1 Experimental setup 

 

Kenaf seeds were purchased from a traditional herbal seed supplier in Hyderabad, India and 

confirmed that kenaf variety which was widely used as food and feed crop from Prof. M.N.V. 

Prasad at Department of Plant Sciences, Central University, Hyderabad, India. Sandy-loamy 

soil was collected from Merelbeke (Belgium). One kilogram of soil was weighed into each 
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recipient. Two types of Se fertilizers, i.e., selenate (Na2SeO4) and selenite (Na2SeO3) 

(SigmaAldrich, St. Louis, MO, USA), were separately added to the soil at different doses 

(0.5, 1.0, 2.0 and 4.0 mg Se kg
−1

). The soils were then brought to field capacity with 

deionized water and allowed to equilibrate for 24h. Thereafter, the soils were mixed 

thoroughly. The moisture content was maintained at 25%. After 10 days, 10 seeds of kenaf 

were sown in each recipient, from which six plantlets were kept in each recipient by 

removing the least developed plantlets after five days. The experiment was set up in 

triplicate. The soils were regularly watered with deionized water, maintaining the moisture 

content at 25%. After 45 days, the aboveground plant parts were harvested and washed 

gently, with tap water followed by deionized water. The six plants from each recipient were 

pooled for elemental analysis on ICP-MS and ICP-OES. Biomass of kenaf plants was 

measured as described in Chapter 6. Plant tissue concentrations of all elements were 

expressed on a dry weight basis, and their total uptake per plant was calculated using the 

respective plant dry weights. 

 

7.3.2 Determination of metal contents in kenaf plants 

 

For determination of metal contents in the kenaf samples, the pooled samples were 

lyophilized and grounded. The plant samples were digested in a microwave oven using nitric 

acid (65%) and hydrogen peroxide (37%) (Chemlab, Zedelgem, Belgium) of 2.5 mL for 40 

min. In a first step, the temperature was raised to 55 °C in 10 min at 600 Watt and 100% 

power. Afterwards, the temperature was raised to 75 °C in 10 min. Finally, it was maintained 

at 100 °C for 30 min. The obtained extracts were filtered and diluted to 50 mL with deionized 

water. For validation of the procedure, the certified reference plant material BCR-CRM 402 

was digested using the same procedure. Three replicates of BCR-CRM 402 were analysed 

with the sample batch. 

An Inductively Coupled Plasma Mass Spectrometer (ICP-MS, PerkinElmer DRC-e, 

Sunnyvale, CA, USA) fitted with a Babington nebulizer and a Scott double pass spray 

chamber was used for determination of Se, Cd and Pb (Table 17). An Inductively Coupled 

Plasma Optical Emission Spectrometer (ICP-OES) was used to determine Al, Cu, Fe, Mn and 

Zn (Table 17). 
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Table 17. Instrumental conditions of ICP-MS and ICP-OES  

ICP-MS parameters:  

Isotopes monitored  
80

Se, 
111

Cd, 
208

Pb 

Power 1250 W 

Plasma flow 15.0 L min
-1

 

 

 

Auxiliary flow rate 1.50 L min
-1

 

Reaction gas and flow rate CH4, 0.9 mL min
-1

 

Dwell time for each isotope 0.1 s 

ICP-OES parameters:   

Elements monitored  Al, Zn, Fe, Cu, Mn 

Power 1350 W 

Plasma flow 15.0 L min
-1

 

Auxiliary flow rate 1.50 L min
-1

 

Viewing height 10 mm 

Replicate read time 5s 

 

7.3.3 Statistical analysis 

 

The significance of effects was evaluated using ANOVA (fixed effects and Duncan’s 

multiple range test) with 0.05 as significance level. In addition, differences between metal 

uptake and concentrations in treated plants and those in the control plant were evaluated 

using a LSD test. Statistical analysis was conducted with SAS (version 9.2). 
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7.4 Results 

 

7.4.1 Effect of Selenium fertilizer on the plant tissue concentration of essential trace 

metals 

The Se concentrations in aboveground parts of plants grown on selenite-fertilized soil were 

much lower compared to plants grown on selenate-fertilized soil for all Se doses tested 

(Figure 25A, B). Essential metal concentrations were affected by the dose of Se-fertilizer 

(Figure 26, 27). A significant decrease in Mn concentration was observed in plants grown on 

soil fertilized with selenate to 2.0 and 4.0 mg Se kg
-1

 soil, whereas the different doses of 

selenite had no significant effect (Figure 26A, B). For both Zn and Cu, selenite fertilizers 

showed a decrease in Zn and Cu concentrations for most applied doses (antagonist effect), 

whereas the Se-selenate fertilizer had no significant effect unless a strong synergetic effect at 

4.0 mg Se kg
-1

 soil (Figure 26C, D and 27C, D). In case of Fe, 1.0 and 2.0 mg Se kg
-1

 soil 

doses of Se-selenite induced a significant decrease of the Fe content, while the Se-selenate 

fertilizer significantly decreased the Fe concentrations at doses of 1- 4 mg kg
-1

 Se-selenate 

(Figure 27A, B). However, a dose of 4 mg kg
-1

 Se-selenate had a significant synergetic effect 

on the Cu content (Figure 27C, D). In conclusion, if Se enrichment had an effect on trace 

metals, the effect was antagonistic, except for the highest Se-selenate dose (4.0 mg Se kg
-1

 

soil) where an increase of Zn, and Cu content was observed. 

 

7.4.2 Effect of Selenium fertilizer on the plant tissue concentration of toxic metals 

None of the Se fertilizers significantly influenced concentrations of Pb (Figure 28E, F), 

whereas selenate fertilization decreased Cd concentrations upon application of 2.0 mg Se kg
-

1
.
 
However, both fertilizers significantly decreased Al concentrations in the crop. This effect 

is much stronger when selenite fertilizer is used (Figure 28A, B). When the plants are grown 

at 4.0 mg Se kg
-1 

soil, a 90% decrease was observed when selenate was applied, whereas only 

a 29% decrease was seen when selenite was used.  
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Figure 25. A. Effect of Se fertilizer type (A: selenate (Na2SeO4) and B: selenite (Na2SeO3)) 

and dose (0.5 to 4.0 mg Se kg
-1

 soil) on Se concentration in kenaf plants (mg Se kg
-1

 DW). 

Results are expressed as mean ± standard deviation of three independent samples. Statistical 

significance of differences between the different doses is denoted for each treatment using 

letters (Duncan’s Multiple Range Test). Results significantly (P ≤0.05) differing from the 

control according to LSD pairwise comparison were denoted with symbol (*). 

 

7.4.3 Effect of Se fertilizer on metal pool in aboveground parts of kenaf plants 

 

The accumulation of metals in the aboveground plant pool may differ from the way their 

concentration in the plant tissue is affected; as Se fertilization may also affect the biomass 

production (see Chapter 6). Therefore, the accumulation of metals in the aboveground part of 

the kenaf plants was calculated (Table 18). The metal accumulation in aboveground biomass 

was found to decrease significantly in plants grown on Se-fertilized soil. Significant effects 

were observed for Al, Cu, Fe, Mn, Zn, Se and Cd when plants were grown on soil fertilized 

with selenite, whereas Al, Cu, Fe, Zn, Se, Pb and Cd were significantly affected when plants 

were grown on selenate-fertilized soil (p ≤ 0.05) at 4 mg Se kg
-1

 grown plants. The Se uptake 

in kenaf plants was higher when plants were grown on selenate-fertilized soils which is about 

29-35% whereas, when they were grown on selenite-fertilized soils Se uptake is about 0.38 

and 0.66 % from applied Se dose.. At the highest application dose (4 mg Se kg
-1

 soil), the 

trace metal uptake in the aboveground plant parts is lowest when using selenate as fertilizer. 
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Especially the accumulation of Al in the aboveground plant parts is significantly lower when 

selenite is supplied at 4 mg Se kg
-1

 soil. 

 

Table 18. Elemental accumulation in the aboveground pool of kenaf plants as affected by Se 

fertilizer applied at four different doses and in two different Se forms, expressed in µg per 

pot. The percentage transferred from the soil in each pot to the aboveground plant parts is 

added between brackets 

Elemental uptake (µg/pot)  

(percentage uptake from soil) 

Dose Al Cu Fe Mn Zn Se Cd Pb 

Selenate 

0 73 (0.01) 9.0 (0.07)  252 (0.10) 123 (0.05) 105 (0.31) 0.7 (0.26) 1.5 (0.65) 1.2 (0.00) 

0.5 76 (0.01) 7.7 (0.06)  169 (0.07)* 113 (0.04) 82 (0.24)* 148   (30) 1.3 (0.56) 1.1 (0.00) 

1.0 60 (0.01) 7.6 (0.06)  150 (0.06)* 109 (0.04) 80 (0.24)* 348   (35) 1.4 (0.63) 0.8 (0.00) 

2.0 58 (0.01) 9.1 (0.08)  133 (0.05)* 82 (0.03)* 69 (0.20)* 676 (34)* 0.9 (0.38)* 0.8 (0.00) 

4.0 20 (0.00)* 5.2 (0.04)* 106 (0.04)* 31 (0.01)* 51 (0.15)* 1148 (29)* 0.4 (0.19)* 0.7 (0.00) 

 Selenite 

0 73 (0.01) 9.0 (0.07) 252 (0.10) 123 (0.05) 105 (0.31) 0.7 (0.26) 1.5 (0.65) 1.2 (0.00) 

0.5 60 (0.01) 8.2 (0.07) 189 (0.07) 125 (0.05) 84 (0.25) 3.3 (0.66) 1.5 (0.64) 1.5 (0.00) 

1.0 51 (0.01)* 7.4 (0.06) 151 (0.06) 116 (0.05) 86 (0.26) 4.3 (0.43) 1.4 (0.61) 1.0 (0.00) 

2.0 36 (0.01)* 5.8 (0.05)* 119 (0.05)* 116 (0.05) 70 (0.21)* 8.4 (0.42) 1.3 (0.58) 0.6 (0.00) 

4.0 5 (0.00)* 4.8 (0.04)* 109 (0.04)* 101 (0.04) 68 (0.20)* 15 (0.38)* 1.0 (0.44)* 0.5 (0.00)* 

 
A significant difference (P ≤ 0.05) from the control according to pairwise comparison was denoted 

with symbol (*) 
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Figure 26. Effect of Se fertilizer type (selenate (Na2SeO4) and selenite (Na2SeO3)) and dose 

(0.5 to 4.0 mg Se kg
-1

 soil) on essential trace metal concentrations in kenaf plants (mg Se kg
-1

 

DW). Results are expressed as mean ± standard deviation of three independent samples. 

Statistical significance of differences between the different doses is denoted for each 

treatment using letters (Duncan’s Multiple Range Test). Results significantly (P ≤0.05) 

differing from the control according to LSD pairwise comparison were denoted with symbol 

(*). 
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7.5 Discussion 

 

7.5.1 Impact of Se fertilizer on metal uptake and accumulation in the plants 

 

Effect of Se fertilizers on biomass was described in chapter 6. At higher dose of selenate 

fertilizer (4 mg Se kg
-1

 soil), a higher decrease in plant biomass was observed, while this was 

not the case for the selenite fertilizer. According to the present study, Se fertilization may 

decrease the concentration of metals in kenaf plants (Figure 26, 27). However, it may also 

increase trace metal concentrations (Zn and Cu), which was observed at the highest 

application dose of selenate (4 mg Se kg
-1

 soil). Antagonistic effects of low application doses 

of Selenite were also observed by He et al. (2004), who reported antagonist effects of Se on 

Zn concentrations in Chinese cabbage. Moreover, Landberg et al.  (1994) reported that 

selenite decreased Cu and Cd uptake and selenate increased Cd and Cu uptake. 
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Figure 27. Effect of Se fertilizer type (selenate (Na2SeO4) and selenite (Na2SeO3)) and dose 

(0.5 to 4.0 mg Se kg
-1

 soil) on essential trace metal concentrations in kenaf plants (mg Se kg
-1

 

DW). Results are expressed as mean ± standard deviation of three independent samples. 

Statistical significance of differences between the different doses is denoted for each 

treatment using letters (Duncan’s Multiple Range Test). Results significantly (P ≤0.05) 

differing from the control according to LSD pairwise comparison were denoted with symbol 

(*). 

In kenaf, Cd uptake decreases with application dose in plants grown on soil fertilized with 

both forms of Se. However, a significant decrease was observed in plants grown on soils 

fertilized with selenite at 4 mg Se kg
-1

 and plants grown in soils fertilized with selenate at 2 

and 4 mg Se kg
-1

 (Table 18). Although reduction in Cu uptake in kenaf grown on selenite-

fertilized soils was in agreement with what was reported in a study on pea (Pisum sativum) 

and wheat (Triticum aestivum) (Landberg et al., 1994), there is no significant increase in Cu 

uptake by plants grown on selenate-fertilized soils (Table 18). The discrepancy in effects of 

Se between our study and the study from Landberg et al., (1994), implies that the influence of 

Se on metals may vary depending on plant species and Se forms present in the soil. A higher 
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concentration of Al in plants induces stress and reduces plant growth (Mossor-Pietraszewska, 

2001). When Al stress is induced in plants, application of Se has shown antioxidant activity 

similar to N-acetylcysteine (NAC) at low concentration. However, at high concentrations, Se 

act as a ROS-promoting species, which was proven using seedlings of Stylosanthes humilis 

(Ribeiro et al., 2011). The antagonist effect was seen in Al uptake by kenaf plants grown on 

Se-enriched soils. The level of Al decrease was higher in plants grown on soils fertilized with 

selenite compared to plants grown on soils fertilized with selenate (Figure 28). In particular, 

when 4 mg kg
-1

 Se was added to the soil, the Al concentration is higher in plants grown on 

selenate-treated soils which could partly account for the decreased plant growth due to 

enhanced ROS generation by Al. 

 

7.5.2 Factors affecting plant productivity at high selenate doses 

 

Hajiboland and Amirazad (2010) suggested that Zn deficiency could lead to a decrease in 

plant growth when they were exposed at lower concentrations of 2.0 µM compared to 25 µM. 

This is in contrast to our study, where fertilization with Se-selenite decreased the Zn and Cu 

concentrations of the plants while it did not influence plant growth (Figure 26C, D and Figure 

27C, D). A possible explanation for the discrepancy could be that the deficiency levels of Zn 

and Cu were not yet reached in our study. Requirements of Zn and Cu for kenaf were not 

previously described in literature. However, some other species started to show Zn and Cu 

deficiencies from 10-15 and 2-5 mg kg
-1 

DW (Schulte and Kelling, 2004). 

Selenium may act as a healing antioxidant at low concentrations, but also as a harmful 

reactive oxygen species (ROS)-promoting compound at high concentrations (Ribeiro et al., 

2011). In our study, it seemed that the highest Se concentrations (± 1000 mg kg
-1

 DW) 

became toxic and acted as growth-inhibiting agents (Figure 24, 25A). These highest 

concentrations were reached at the highest selenate doses. The reduced plant growth could be 

majorly attributed to higher Se concentrations in kenaf grown on selenate-fertilized soil. In 

addition, the slight difference in Fe concentration between kenaf grown on selenate-fertilized 

soil and kenaf grown on selenite-fertilized soil at 4 mg Se kg
-1

 could also be areason 

explanation for reduced plant growth. Similar to Se, the other ROS promoting metal in 

presence of higher concentrations in plants is Fe. The  iron concentration in plants grown at 

http://www.thefreedictionary.com/deficiencies
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higher selenate doses is not significantly different from to the control group. However, a 

slight increase was observed at this selenate dose. When Fe accumulates too much in plants, 

it can act catalytically via the Fenton reaction to generate hydroxyl radicals, disturb the 

cellular mechanisms in plants and hamper plant growth (Connolly and Guerinot, 2002, Moran 

et al., 1994). In some species like rice, reduced plant growth is observed at 3000 mg Fe kg
-1

 

DW (Mehraban et al., 2008). There is no available data on Fe essesntiality or toxicity of 

kenaf, the above conclusion is based on comparing control group. 
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Figure 28. Effect of Se fertilizer type selenate (Na2SeO4) and selenite (Na2SeO3) and dose 

(0.5 to 4 mg Se kg
-1

 soil) on non-essential and toxic metal concentration in kenaf plants (mg 

Se kg
-1

 DW). Results are expressed as mean ± standard deviation of three independent 

samples. Statistical significance of differences between the different doses is denoted for each 

treatment using letters (Duncan’s Multiple Range Test). Results significantly (P ≤0.05) 

differing from the control according to LSD pairwise comparison were denoted with symbol 

(*). 
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Manganese deficiency is related to a reduction of plant physiological processes, such as 

photosynthesis and chlorophyll content (Arya and Roy, 2011, Singh et al., 2001) because Mn 

plays an important role in the catalytic centre for light-induced water oxidation in 

photosystem-II (Charles and Willigen, 2006). The deficiency of Mn is generally seen in baby 

leaves by interveinal chlorosis (yellowing between the veins of the leaves) while the veins 

themselves remain dark green. In the studied kenaf plants, the leaves developed at the highest 

selenate dose showed similar chlorosis symptoms as well as a significantly decreased 

chlorophyll content and photosynthesis rate (Figure 23). In plants, Mn contents of leaves 

range between 30-500 mg Mn kg
-1 

 DW (Clarkson et al., 1971). In kenaf plants at higher 

selenate dose (4 mg Se kg
-1

), the concentrations were below the normal range. This clearly 

indicates that the Mn deficiency at this dose could limit plant growth (Figure 26A). 

From the previous chapter 6, it became evident that plant growth and physiological 

parameters such as net photosynthesis and chlorophyll content index are influenced by Se 

form and dose. Due to the pale yellowish color of leaves (Figure 24) at higher selenate doses, 

we hypothesized that the toxicity was not only attributed to higher Se concentrations in plants 

but also due to changes in other trace metals which are responsible for various plant 

physiological functions such as Mn, Zn and Cu. With our current experimental results, we 

conclude that higher Se concentrations clearly disrupt the pathway of other trace metals. 

 

7.6 Conclusions 

 

In conclusion, the present study showed that soil Se fertilizers influence the uptake of 

essential and toxic metals depending on applied fertilizer dose and Se form available in soils. 

For most tested doses and forms of Se, Se application to the soil showed antagonistic effects 

in kenaf plants for various metals. These results demonstrate that essential trace metal 

concentrations are not much influenced by Se fertilization, which is important for the 

consumer in terms of dietary needs. However, the uptake of the metals by the plants was 

strongly influenced even though biomass was not always different between kenaf grown at 

various soil Se doses. Reduction of plant growth at high doses of Se fertilizer could be due to 

variation in plant tissue concentrations of Se and Fe, inducing toxicity, and Mn, inducing 

deficiency. 
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Chapter 8. Influence of soil amendments on Selenium mobility and its 

uptake by wheat (Triticum aestivum) 
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8.1 Abstract 

 

The influence of soil amendments and ageing on selenium (Se) mobility in soil and its 

availability to wheat (Triticum aestivum) was investigated to aid in the development of 

strategies for effective and environmentally safe Se fertilization. Wheat plants were grown on 

sandy loam soils spiked with 1 mg Se kg
-1

 in the form of sodium selenate or sodium selenite, 

each treated with 5% inorganic (CaCO3) or organic (compost, cow manure and pig manure) 

amendments. The influence of soil ageing was assessed by growing the wheat plants at 

several time intervals after amending and spiking the soils. Additionally, mobility of Se in the 

soil was assessed using three soil extractions (CaCl2, EDTA and aqua regia). During plant 

growth, pore water samples were collected using Rhizon samplers and analysed for Se 

concentrations. Plants grown on selenate-spiked soils had higher Se concentrations compared 

to plants grown on selenite-spiked soils. Organic amendments decreased Se concentrations in 

the plants. In the soils amended with cow and pig manure Se uptake by the plants decreased 

by 91 and 88% compared to the control when the soils were spiked with selenite, whereas it 

decreased by 95 and 89 % when the soils were spiked with selenate. Low plant uptake may 

result in accumulation in the soil and groundwater contamination, especially when Se is 

applied to the soil in the form of selenite or when soils are amended with cow or pig manure. 

It is obvious that careful soil management is needed when Se fertilizers are used to obtain Se-

enriched food crops. In the current study, soils were treated with high doses of amendments 

under greenhouse conditions to assess potential effects and risks. However, future studies 

should also focus on effects of lower doses under field conditions. 

 

8.2 Introduction 

 

Selenium (Se) is considered as an essential micronutrient in human and animal health 

because of its biological role as component of the antioxidant enzyme glutathione peroxidase 

(GSH-Px). This enzyme scavenges hydrogen peroxide and lipid hydroperoxides to prevent 

oxidative damage in body tissues (Rotruck et al., 1973). Accordingly, the dietary Se 

requirement for humans ranges between 55 and 70 µg/day in Europe (El-Bayoumy, 2001, 

Rayman, 2004, Whanger, 2004). The deficiency of Se in humans over a period of time in 
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certain world regions has resulted in various diseases such as the alkali disease, white muscle 

disease, heart disorders (Keshan disease), and a bone and joint disease (Kashin-Beck disease) 

(Fordyce, 2005). Moreover, it was noted that dietary Se repletion may reduce cancer 

incidence in people at high risk who live in areas with low soil Se (Gissel-Nielsen et al., 

1984; Gupta et al., 2000; Hartikainen, 2005a). It has been estimated that between 0.5 and 1 

billion people globally may have an inadequate intake of Se, including populations in 

developed countries such as Western Europe (Combs, 2001). In Europe, Se intake by adults 

is in the range of 30-100 µg d
-1

 (Combs, 2001). In the Se deficient areas, a low Se uptake by 

humans is related to a low Se uptake by food crops from the soil, which in turn depends on 

the plant availability of soil Se levels and different Se forms that may occur in the soil. Over 

the last decade, the Se status of the UK population declined due to decreased Se contents in 

the wheat which is primarily consumed in the diet (Rayman, 2000). To increase Se contents 

in the food crops, Se may be supplemented to the soil as part of a Se fertilizer. 

However, there are also regions in the world with very high soil Se concentrations, leading to 

Se toxicity (Banuelos and Dhillon, 2011). The fact that Se has a very narrow range between 

dietary deficiency and toxicity (40 µg d
-1

 to 400 µg d
-1

 per adult, respectively) (Fordyce, 

2007) makes it necessary to control its intake by humans and animals, and hence it is 

important to understand the relationship between environmental exposure and health. It is 

important to develop strategies improving Se uptake in deficient regions without 

accumulating Se to levels that may be toxic to humans or the environment. In an attempt to 

increase Se intake by humans through crops, several strategies were tested, which includes 

foliar application, inorganic fertilization, seed treatment and soil incorporation of fly ash, 

municipal incinerator ash, or sewage sludge (Arthur et al., 1992; Logan et al., 1987). 

Selenium absorption was significantly higher for wheat (81%) and garlic (78%) compared to 

fish (56%). Wheat and its products were reported to be among the most effective crops for Se 

supplementation when studying the efficiency of human Se absorption from three food 

sources (Hawkesford and Zhao, 2007; Lyons et al., 2003). Due to the high uptake of Se from 

wheat and the primary need to focus on staple food crops, wheat may be a good choice for 

enhancing the Se status of a Se-deficient population. 

It is well know that the availability of trace elements to plants does not only depend on the 

contents of these elements in the soil, but also on soil factors such as pH, redox conditions, 

soil texture, mineralogy, organic matter content and the presence of competitive ions 
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(Fordyce, 2007). Some of these factors may be altered during field cultivation. However, it is 

not yet clear how some soil amendments and management practices may affect Se mobility, 

availability and its uptake by wheat after fertilizing the soil with different types of Se 

fertilizers, and how this is affected by ageing of the soil after its amendment. Therefore, we 

studied the impact of liming and application of compost, cow manure, and pig manure on the 

mobility, availability and uptake by wheat of Se supplied to the soil through two types of 

fertilizers (selenite and selenate). We also focused on the role of soil ageing by growing 

wheat plants on the amended soils at different time intervals after fertilizing and amending 

the soil. 

 

8.3 Materials and methods 

 

8.3.1 Pot experiment 

 

Sandy loam soil originating from the upper 30 cm of an agricultural field was used for all 

treatments. It had a pH of 6.6, 3.5% organic matter, an electrical conductivity of 0.4 dS m
-1

 

and a Se content of 0.3 mg Se kg
-1

 dry soil. Forty-five kg of homogenised air-dried soil was 

divided into two groups and each group was further divided into five sub-groups. Of these, 

one group was used as reference soil while the remaining four were amended with fresh 

compost, cow manure, pig manure and lime (CaCO3), respectively. Before supplying organic 

matter or lime, the soils were fertilized with 1 mg Se kg
-1 

in the form of selenate or selenite. 

The fresh compost, cow manure and pig manure were oven-dried at 60
o
C for 48 h to 

determine their dry weight contents, which were 78.3, 21.2 and 28.7%, respectively. In each 

soil receiving treatment with an organic amendment, an amount of fresh weight 

corresponding to 5% dry weight of the applied organic amendment was added to the soil.In 

the lime amended soil, lime was added to 5% of the soil dry weight. In each subgroup 

controls receiving the amendments without Se were also included. To ensure homogeneity, 

the soils were thoroughly mixed in open top plastic containers after receiving the amendment. 

No amendments were added to the reference soil. Each amended soil was distributed over 

one pot containing 1 kg soil used for soil and pore water sampling, as well as three pots 

containing 500 g soil used for growing the wheat after several time intervals (Figure 29). 
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The treatments were categorized as Group 1 (Treatment 1): the reference soil, Group 2 

(Treatment 2): the compost amended soil, Group 3 (Treatment 3): the cow manure amended 

soil, Group 4 (Treatment 4): the pig manure amended soil, and Group 5 (Treatment 5): the 

lime amended soil. Each group contains soils who did not receive Se fertilizer (control) and 

two soils receiving different Se fertilizers (Na2SeO3 and Na2SeO4). In each group, subgroups 

were assigned and labeled as T-0, T-1 and T-2, representing the time periods at which the 

wheat was grown. T-0 represents the treatments in which wheat was grown after 10 days, and 

T-1 and T-2 represent the treatments in which wheat was grown after one and two months, 

respectively. At each of these time points, 10 seeds of wheat were sown in a pot used for 

growing the wheat, from which eight plantlets were kept in each recipient by removing the 

least developed plantlets after five days. At 30 days after sowing, the aboveground biomass 

was harvested. The different plants in each pot were pooled and fresh and dry weights of the 

aboveground plant parts were determined. Afterwards, this plant material was powdered for 

further analysis. The average minimum and maximum temperature during the entire growth 

period was 20 
o
C and 27 

o
C, respectively. 

 

 

Figure 29. Experimental set up used for each type of soil amendment. Larger pots (A, B, C) 

were used to obtain pore water and soil samples during the entire experimental period of 

three months. The small pots were used to grow wheat. T-0, T-1 and T-2 refer to the pots 

used to grow wheat after 10 days, 1 month and 2 months of soil equilibration, respectively 
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8.3.2 Soil characterisation 

 

Soil properties were determined on soil samples taken before fertilizing the soil with Se 

fertilizer. Soil pH was determined in a soil suspension (10 g soil: 25 mL deionized H2O) 

using a calibrated pH meter (Thermo Scientific Orion 520A, Vantaa, Finland). The organic 

matter (OM) content and cation exchange capacity (CEC) were determined using the 

procedures described by Van Ranst et al. (1999). Total Se and sulphur (S) were determined in 

aqua regia digests using ICP-MS (PerkinElmer DRC-e, Waltham, MA, USA). Moreover, 

NHOAc-EDTA (pH 4.6) and CaCl2-extractable Se contents were determined in soil samples 

taken before Se application and after harvest, according to Van Ranst et al. (1999). Selenium 

contents were measured in the extracts using ICP-MS as described by Lavu et al. (2012). 

 

8.3.3 Porewater samples 

 

Rhizon samplers type MOM having a pore size of about 0.15 µm (Rhizosphere Research 

Products, Wageningen, The Netherlands) were installed in the pots used for porewater and 

soil sampling. Porewater samples were taken by connecting vacuum tubes to the samplers. 

The porewater samples collected in the vacuum tubes were acidified with a drop of 

concentration HNO3 and analysed by ICP-MS after dilution with internal standard (Indium). 

 

8.3.4 Total Se and S determination in wheat plants 

 

For the determination of total Se and S in the plant samples, 0.2 g sample was placed into a 

centrifuge tube followed by addition of 2.5 mL concentrated HNO3 and 2.5 mL 30% H2O2. 

After 16 h, the tubes were capped and placed in a microwave oven. In a first step, the 

temperature was raised to 55 °C for 10 min at 600 W and 100% power. Afterward, the 

temperature was raised to 75 °C for 10 min. Finally, it was maintained at 100 °C for 30 min. 

After digestion, Se and S were measured. 
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8.3.5 Quality control 

 

Certified reference material of spruce needles (BCR-CRM 101) and white clover (BCR-CRM 

402) were analysed for S and Se, respectively, to control quality of the data. The measured S 

content of the spruce needles was 1568 ± 12, whereas 1690 ± 38 mg kg
-1

 is certified. The 

concentration of Se in the white clover was found to be 6.5 ± 0.28 mg kg
-1

, whereas it was 

certified as 6.7 ± 0.27 mg kg
-1

. As the experimental setup was not replicated, the analytical 

variability was assessed by analysing some randomly chosen plant samples three times for Se 

and S, which illustrated that the reproducibility of the analysis was high (Table 19). 

 

Table 19. Results of replicate analysis of plant selenium and sulphur concentrations to assess 

the analytical variability (average ± standard deviation, n = 3) 

Treatment Sample S/ mg kg
-1

 Se/ µg kg
-1

 

Reference_blank_selenite T-0 3852 ± 133 16483 ± 967 

Cow manure_selenite T-0 3139 ± 12 1605 ± 107 

Cow manure_selenate T-0 4090 ± 28 20924 ± 3230 

Compost_blank T-1 3240 ± 85 545 ± 192 

Lime_selenate T-1 9761 ± 488 303775 ± 31559 

Reference_blank T-2 3441 ± 43 445 ± 61 

Pig maure_selenate T-2 4920 ± 51 33868 ± 1118 

Lime_selenite T-2 4044 ± 282 14362 ± 125 

 

8.3.6 Statistical data analysis 

 

Simple correlation analysis was performed using SPSS 11.5 for Windows (SPSS Inc., USA). 

Pearson correlation coefficients were calculated to determine relationships between Se 
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contents in the wheat plants and Se contents which can be extracted from the soils using 

various extraction methods. 

 

8.4 Results 

8.4.1 Soil pH 

 

In all soils, the initial soil pH was lower than the pH measured after one and two months 

(Table 20). Applying pig manure resulted in a decreased pH compared to the non-amended, 

cow manure amended and compost-amended soil. Applying cow manure resulted in the 

highest increase of soil pH. Initially, the pH was already higher in the soil amended with cow 

manure compared to the non-amended soil. Moreover, the pH still increased predominantly 

between the first and the second month. When lime was used, the pH was also higher 

compared to the non-amended soil and it also increased significantly with time, but it 

stabilised already after one month. The pig manure amended soils and the reference soils at 

the first sampling time had the lowest pH (6.6) while the soil amended with cow manure 

sampled after two months had the highest pH (8.7). 
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Table 20. Effect of amendments on soil pH (T-0: after two weeks, T-1 and T-2: after one and 

two months, respectively) and organic matter (%) 

Amendment Spike pH Organic matter (%) 

 T-0 T-1 T-2 Avg ± stdev Avg 

Reference Blank 6.6 7.5 7.4 7.1±0.5 3.4 

 Selenite 6.6 7.5 7.2 7.1±0.4 3.5 

 Selenate 6.6 7.5 7.3 7.1±0.5 3.4 

Compost Blank 6.7 7.6 7.5 7.2±0.4 4.6 

 Selenite 6.7 7.5 7.5 7.2±0.5 5.0 

 Selenate 6.8 7.5 7.6 7.2±0.5 5.2 

Pig manure Blank 6.6 6.9 7.1 7.3±0.4 6.9 

 Selenite 6.6 6.9 7.0 6.9±0.2 6.1 

 Selenate 6.8 6.7 7.1 6.8±0.2 5.9 

Cow manure Blank 7.3 8.1 8.5 6.9±0.2 6.9 

 Selenite 7.2 7.8 8.7 7.9±0.6 7.6 

 Selenate 7.2 7.9 8.1 7.9±0.7 7.3 

Lime Blank 7.0 7.6 7.9 7.8±0.5 3.4 

 Selenite 7.0 7.8 7.9 7.5±0.5 3.4 

 Selenate 7.0 7.8 7.8 7.5±0.5 3.5 

 

8.4.2 Soil organic matter (OM) content 

 

The organic matter content significantly increased when cow manure, pig manure and 

compost were added with cow manure resulting in the highest increase (Table 20). Lime 

treatment did not significantly increase the organic matter content compared to the non-

amended soil. Significant negative correlations were found between the soil OM content on 

one hand and plant Se concentrations and plant Se uptake on the other hand (Table 23). 
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8.4.3 Soil-extractable Se 

 

Aqua regia is used for extracting pseudo-total trace element contents, so logically it always 

extracted the highest Se amounts (Table 21). EDTA, a strong complexing agent, extracted 

more Se compared to CaCl2. The highest CaCl2- and EDTA-extractable concentrations were 

usually observed after one month of incubation. Overall, Se was recovered more in CaCl2- 

and EDTA-extracts when selenate was used compared to when selenite was used, indicating a 

higher mobility of selenate compared to selenite. When soils spiked with selenate were 

amended with compost and lime, the CaCl2 and EDTA extractability of Se increased 

compared to the non-amended soil, whereas the use of pig and cow manure decreased it.  

 

8.4.4 Se concentrations in the porewater 

 

The Se concentrations in the porewater of spiked soils generally decreased with time (Table 

21). In the selenate-spiked soils, Se concentrations in the porewater were much higher 

compared to the selenite-spiked soils. The use of amendments resulted in lower Se 

concentrations in the porewater compared to non-amended soil. Cow manure was the most 

effective in reducing Se concentrations in the porewater, whereas liming and compost were 

the least effective. However, in the non-spiked soil, pig and cow manure resulted in an 

increase of Se concentrations in the porewater. Porewater concentrations usually decreased 

with time in the spiked soils, except in the compost-amended soil spiked with selenate (Table 

21). Correlation analysis shows significant correlation with plant Se concentrations and 

uptake in wheat plants for both the selenite- and selenite-fertilized soils (Table 25). 
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Table 21. Selenium extracted from the soils using different extraction methods  

 

A
m

en
d
m

en
t Spike Aqua regia (µg kg-1) 

 
CaCl2 (µg kg-1) 

 
EDTA (µg kg-1) 

 
Pore water (µg L-1) 

 

 T-0 T-1 T-2 
Avg 

±stdev 
T-0 T-1 T-2 

Avg 

±stdev 
T-0 T-1 T-2 

Avg 

±stdev 
T-0 T-1 T-2 

Avg 

±stdev 

R
ef

er
en

ce
 

 

Blank 298 510 533 447±130 12 9 10 10±2 52 62 55 56±5 6.2 6.5 6.9 7±0 

Se1* 1398 1331 1533 1420±103 110 151 103 121±26 463 602 478 514±76 264 366 239 290±67 

Se2* 1478 1733 1637 1616±129 699 1276 902 959±293 1394 2322 1662 1793±478 4043 2204 2966 
3017±924 

C
o
m

p
o
st

 

 

Blank 542 444 498 495±49 12 8 7 9±3 64 60 48 57±8 6.2 2.3 3.7 4±2 

Se1* 1438 1280 1223 1314±111 119 126 87 111±21 511 520 413 481±59 207 187 160 185±24 

Se2* 1355 2359 1879 1864±502 769 1576 1213 1186±404 1658 3125 2152 2312±746 2684 2600 2793 
2692±97 

P
ig

 

m
an

u
re

 

 

Blank 605 639 691 645±43 17 17 14 16±2 75 66 56 66±10 21.2 12.6 8.2 14±7 

Se1* 1457 1428 1787 1557±199 150 211 137 166±40 452 415 353 407±50 280 187 143 203±70 

Se2* 1577 1323 1886 1595±282 792 1906 1196 1298±564 1684 3215 2027 2309±803 1787 1410 1193 1463±301 

C
o
w

 

m
an

u
re

 

 

Blank 570 486 502 519±45 14 14 11 15±2 76 72 63 70±7 17.3 15.1 16.2 16±1 

Se1* 1380 1192 1524 1365±166 65 70 56 64±7 415 322 324 354±53 122 90.6 54.3 89±34 

Se2* 1540 2854 1963 2119±671 236 497 327 353±132 587 978 621 729±217 1230 751 401 794±416 

L
im

e
 

 

Blank 441 428 495 455±36 13 9 8 10±3 75 57 56 63±11 7.4 6.2 6.2 7±1 

Se1* 1486 1411 1542 1480±66 100 158 96 118±35 518 593 455 522±69 232 206 145 194±45 

Se2* 1371 1724 1481 1525±181 807 1484 721 1004±418 1778 2385 1373 1845±509 3769 2260 1237 2422±1274 

Se1*: selenite treatment, Se2: selenate treatment 

 

8.4.5 Se concentrations in wheat 

 

The plants grown on selenate-spiked soils had the highest Se concentration followed by those 

grown on selenite-spiked soils (Table 22). The highest Se concentrations were seen in plants 

grown on lime-treated and reference soils spiked with selenate (Table 22). Wheat plants 

grown on lime-treated soils spiked with selenite fertilizer show higher Se concentrations 

compared to soils treated with organic amendments. They are however lower than those of 

the reference soil spiked with selenite. The plants grown on soils amended with cow and pig 

manure had lower Se concentrations compared to the plants grown on soils amended with 

compost (Table 22). The Se concentration in plants grown just after amending the Se-spiked 

soils (T-0) was generally higher than in those grown after 1 and 2 months (T-1 and T-2). 

However, when the plants were grown on non-amended soils, Se concentrations were higher 

after 1 and 2 months. Overall, the plants grown on non-amended soils spiked with selenite 

had higher Se concentrations compared to the plants grown on amended soils. 
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8.4.6 Sulphur concentrations in wheat plants and soils 

 

The plants grown on soils spiked with selenate had a higher S concentration compared to 

plants grown on soils spiked with selenite (Table 22). The S concentrations in plants grown 

on soils spiked with selenite did not differ significantly from those of plants grown on soils 

that were not spiked. The S concentrations in the plants grown on soils amended with cow 

and pig manure were always lower than S concentrations in plants grown on limed soils and 

soils amended with compost.  Plant S concentrations and uptake were significantly correlated 

with plant Se concentration and plant Se uptake. A higher correlation was observed for plants 

grown on selenate-treated soils compared to plants grown on selenite- treated soils (Table 

23). The soil S concentrations are negatively correlated with plant Se concentrations and Se 

uptake by the plants (Table 23). 
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Table 22. Dry weight per pot (g), and plant Se and S concentrations of wheat plants grown at 

three different time periods 

 

Amendment Spike Plant Se (mg kg
-1

)  Plant S ( mg kg
-1

)  Dry weight 

(g) per pot 

 

 

T-0 T-1 T-2 

Avg ± 

stdev T-0 T-1 T-2 

Avg ± 

stdev 

T-

0 

T-

1 

T-

2 

Avg ± 

stdev 

Reference Blank 0.2 1.2 0.5 0.6±0.5 3656 3347 3472 3492±155 0.8 1.3 0.8 1.0±0.3 

 Selenite 15.8 19.5 18.0 17±2 3758 3970 3863 3864±106 0.8 1.1 0.6 0.8±0.3 

 Selenate 375 318 436 376±59 6708 5840 8477 7008±1344 0.7 1.0 0.8 0.8±0.1 

Compost Blank 0.7 0.7 0.7 0.7±0.0 3565 3302 3576 3481±155 0.9 1.0 0.9 0.9±0.1 

 Selenite 14.1 11.6 13.9 13±1 3645 3663 3950 3753±171 0.8 1.3 0.8 0.9±0.3 

 Selenate 577 287 387 417±147 11761 6785 8691 9079±251 0.6 1.2 0.8 0.9±0.3 

Pig manure Blank 0.6 0.8 1.5 1.0±0.5 3525 3037 3453 3338±264 1.0 0.6 1.2 0.9±0.3 

 Selenite 2.6 2.1 2.6 2.4±0.3 3720 3733 3452 3635±159 0.8 1.3 1.2 1.1±0.2 

 Selenate 32.9 37.1 33.1 34±2 4683 6097 4884 5221±765 1.0 1.1 0.9 1.0±0.1 

Cow 

manure 

Blank 

0.2 0.4 0.1 0.2±0.2 3102 3249 3127 3159±78 
1.0 1.2 1.0 1.1±0.1 

 Selenite 1.5 1.4 1.1 1.3±0.2 3131 3181 3033 3115±75 1.1 1.0 0.9 1.0±0.1 

 Selenate 18.6 13.6 11.4 15±4 4070 4060 3205 3779±496 0.9 1.5 1.1 1.2±0.3 

Lime Blank 0.2 0.2 0.1 0.2±0.1 3623 3303 3422 3449±162 0.8 1.1 1.1 1.0±0.2 

 Selenite 18.1 14.8 14.5 16±2 4178 3920 4244 4114±171 0.7 1.2 1.1 1.0±0.2 

 Selenate 571 281 436 429±145 10194 10107 9599 9966±321 0.7 1.1 0.9 0.9±0.2 
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Table 23. Linear correlation coefficients (R) between soil characteristics and plant biomass 

on one hand, and plant Se concentrations and plant Se uptake on the other hand.  

Soil & plant parameters Plant Se concentration (mg kg
-1

) Plant Se uptake (mg per pot) 

Selenate Selenite Selenate Selenite 

OM -0.389* -0.451* -0.407* -0.431* 

CEC -0.067 -0.313 -0.082 -0.305 

pH -0.109 -0.080 -0.077 0.003 

Soil S -0.425* -0.406* -0.444* -0.391* 

Plant biomass -0.415* -0.167 -0.277 0.045 

Plant S 0.938** 0.711** 0.909** 0.700** 

 

* and ** indicate statistical significance at p ˂ 0.05 and p ˂ 0.01, respectively 

 

8.4.7 Wheat biomass production 

 

The average dry weight of the wheat plants per pot was calculated (Table 22). It was highest 

for the plants grown after one month of soil ageing and lowest for those grown just after 

amending the soils. A negative correlation between Se concentrations and biomass 

production was observed when the soils were fertilized with selenate (Table 23). 

 

8.4.8 Impact of soil amendments on Se uptake by the wheat plants 

 

Among organic amendments, cow manure amended soils of selenate and selenite shown 

lowest Se uptake (1.1 and 0.1% respectively). Compared to all treatments, higher Se uptake 

was shown in plants grown on lime treatment with selenate (34%). Application of lime 

increases Se uptake when soils were fertilized with selenate and such increase was not seen in 

plants grown on selenite fertilized soils upon lime application (Table 24). 
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Table 24. Effect of soil amendments on Se uptake in wheat plants 

 

Treatments Selenate fertilized Selenite fertilized 

Se µg/pot % Se uptake Se µg/pot % Se uptake 

Reference 313±33 26.9 15±5 1.6 

Compost 330±16 26.9 12±2 1.4 

Pig manure 33±7 3.8 1.8±0.5 0.2 

Cow manure 16±4 1.1 1.1±0.3 0.1 

Lime 355±45 34.3 15±2 1.5 

 

8.4.9 Comparison of suitability of the soil extractions to predict concentrations and 

uptake of Se in the plants 

 

Correlation analyses were performed to relate Se uptake by the wheat with extractable Se 

contents in soils (Table 25). The correlation analyses were performed considering all soils 

from the three different time points. Of the three soil extracts, EDTA-extractable Se was  

significantly correlated with Se concentrations and uptake in the wheat when grown on 

selenite treated soil whereas, aqua regia was correlated with Se uptake in plants when grown 

on selenate treated soils. However, CaCl2 extraction was not significantly correlated with 

wheat Se concentration or uptake. 
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Table 25. Linear correlation coefficients (r) between Se extracted from the soils by different 

extraction methods and plant Se uptake and concentrations in wheat plants 

 

Soil extraction method 

Plant Se (mg kg
-1

) Plant Se uptake (per pot) 

Selenate Selenite Selenate Selenite 

Aqua regia -0.269 0.285 0.739** 0.193 

CaCl2 0.080 0.097 0.167 0.241 

EDTA 0.164 0.805** 0.116 0.883** 

Pore water 0.770** 0.648** -0.579* 0.627* 

* and ** indicate statistical significance at the probability level of p ˂ 0.05, and p ˂ 0.01, respectively 

 

8.5 Discussion 

 

The present study indicates that Se concentrations in the pore water on Se-fertilized soil 

decreases when organic amendments are used. This effect depends on the type of organic 

amendment used, with cow manure and pig manure having a larger effect than compost.The 

porewater extractable Se was found to decrease with time. The high selenate concentration 

compared to the selenite concentration is due to the fact that selenate is weakly adsorbed on 

the soil than selenite on the other hand reacts strongly with the soil (Ylaranta, 1983). Selenate 

therefore will be leached more easily compared to selenite. The lowest values for the cow 

manure at the starting period (selenite 121 µg L
-1 

and selenate 1230 µg L
-1

) are in conformity 

with the findings of Dhillon et al. (2010), who reported that incubating naturally occurring 

selenium forms with organic amendments led to a substantial decrease 20%-26% of easily 

available (water-soluble and extractable) forms of Se and a corresponding increase of 13%-

62% in the less available Se forms (organic matter and metal oxide bound). The decreasing 

trend of Se availability to plants is in agreement with the study reported on wheat grown on 

seleniferous soils with farmyard manures (Dillon et al., 2010). A higher Se porewater 

concentration was obtained for selenate treatments irrespective of amendments compared to 

selenite treatments, which indicates that the selenate in these soils was weakly bound. Aside 

the effect of the organic treatments, variation in porewater metal concentrations may also be 
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related to the moisture regime of the soil (Du Laing et al., 2007). However, in the current 

study setup, equal moisture contents were maintained for the soils. 

Selenium uptake in the wheat was influenced by various organic amendments. A clear 

increase in organic matter of cow and pig manure caused a greater decrease in Se 

concentrations in wheat. This effect of organic amendments was in agreement with what was 

reported in a study conducted by Dhillon et al. (2010). However, Dhillon et al. (2010) 

reported a lower effect with the decrease ranging between 21 and 28% for farm yard manure 

and 84-97% for other organic amendments when an application rate of 5% was used. 

Notably, the soil used in Dhillon et al. (2010) contained high Se concentrations (4.5 mg Se 

kg
-1

). It has been reported that in presence of organic matter, organic anions may bind to Se 

meanwhile also promoting adsorption on the solid soil matrix and reducing the soluble 

fractions available for plant uptake (Wijnja and Schulthess, 2000). Moreover, use of organic 

amendments, especially cow manure and pig manure, may promote microbial activity, 

resulting in the production of microbial biomass and the establishment of reducing 

conditions. 

In contrast to organic manures, compost treatment increases Se accumulation in plants when 

soils were treated with selenate. At time T-0 and T-1, Se accumulation increase to about 14 

and 8% but at T-2 a decrease of 5% was observed. An increase in Se concentrations in 

compost-selenate (T-0 and T-1) due to higher Se availability and decrease over T-2 time 

point can probably be linked with the alternate wetting and drying of the soil which promoted 

rapid transformation of selenate into other forms such as selenite and organic Se that were 

adsorbed onto soil surfaces (Neal and Sposito, 1991). Moreover, the organic materials used in 

the current study were obtained from different sources and might have been in various 

decomposition states. During decomposition of organic manures, the differences in release of 

monocarboxylic and multicarboxylic organic ligands results in retention of various levels of 

Se in soils and made Se unavailable to plants (Ferri and Sangiorgio, 1999). In the current 

study, the organic amendments from various sources might had different S and P contents in 

various redox states, which could have contributed to differences in Se uptake. It was 

previously well documented that selenate in soil is taken up by plants via S transporters 

(Terry et al., 2000). Presence of high amounts of S ions inhibit Se uptake when selenate is the 

dominant soil Se form (Hopper and Parker, 1999). In contrast, there was no proven 

assimilation pathway like sulphur-selenate for P. However, it was reported in various studies 

that P levels in soils could determine the Se uptake particularly when selenite is the dominant 
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Se form in the soil. Some studies confirm an antagonistic effect of phosphate on selenite 

uptake in plants (Hopper and Parker, 1999; Broyer et al., 1972), whereas others found little 

effect (Mora et al., 2008; Nakamaru and Sekine, 2008; Yläranta, 1990b). 

On the other hand, compared to reference spiked soils, lime treatment increases Se uptake in 

wheat plants at T-0 and T-2 time points of both selenate and selenite grown. Although there 

is a decrease in Se uptake at time point T-1 of 5 and 16% of selenate and selenite of lime 

amended soils. The increase of Se in lime amended soils decreases Se binding to soil chelates 

due to increase of OH
-
 ions concentration, which in turn leads to increase in Se uptake. 

Nevertheless, decrease of Se in T-1 aged soils was due to the binding of Se to clay, carbonate, 

extractable Al and Fe oxide content (Elsokkary, 1980, Levesque, 1974). However, the 

decrease in Se contents upon lime treatment is relatively lower compared to organic 

amendments. 

Noticeable variations in Se uptake by the plants were observed between the various soil 

amendments. Significant correlations are observed between plant Se concentrations and 

uptake, and Se accumulation in these various treatments and pore water measurements. Thus, 

for Se fertilized soils pore water analysis could provide indirect assessment of the amount of 

Se available to the plant. The other soil extractions methods were not much successful to 

obtain significant correlations compared to porewater analysis. In fact, the mobility of Se was 

influence by the supply of organic matter, which was reflected in the results of soil 

extractions. However, these soil extraction methods such as CaCl2 and EDTA-extractable Se 

concentrations may vary significantly due to the great impact of soil physical and chemical 

factors, which include CaCO3, pH, silt content, clay content, available iron and organic 

matter (Zhao et al., 2005). Aqua regia, on the other hand, being a stronger extract reflects 

total Se contents. Of the three soil extracts, EDTA-extractable Se was most significantly 

correlated with Se concentrations in the wheat grown on selenite fertilized soils. This 

extraction was previously reported to result in a highly significant correlation with plant Se 

concentration for seleniferous organic soils (Williams and Thornton, 1973). For aqua regia, 

being strong extraction method, significant correlations were obtained for plant Se uptake 

when plants were grown on selenate-fertilized soils. The CaCl2 extraction method resulted in 

no significant correlation with plant Se. 

 The soil amendments tested have an influence on pH. The shift of pH in each treatment was 

seen over the different time points. From table 20, it can be observed that there is an impact 
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of amendments and soil age on pH. Therefore, pH has an effect on Se bioavailability and 

subsequent uptake by plants (Fordyce, 2005). Almost all soils at the starting period had a 

neutral pH though with different values within the range. On average, they became slightly 

alkaline after the first month except for the pig manure amended soil which remained neutral. 

Liming resulted in a higher pH in the lime-amended soils compared to the non-amended 

soils. However, soil pH had no correlation with plant Se accumulations. Some soil properties, 

such as CEC and organic matter (OMshowed significant correlation with plant Se 

accumulation. The correlation of OM shows a negative relation with plant Se for both 

selenate and selenite fertilized soils. In these organic amended soils, there is an increase in 

CEC (data not shown). The organic content of the compost, cow and pig manure amended 

soils could be responsible for the high CEC (on average higher than 12.3 cmol + kg
-1

) in 

these treatments compared to the reference Se and lime amended soils. In the surface horizon 

of mineral soils, soil organic matter is responsible for 25-90% of the total CEC (Van Dijk, 

1971). 

Dry weights of the aboveground plant parts were not significantly influenced by Se uptake. 

However, there is a significant negative correlation with Se concentrations in plants grown on 

selenate-fertilized soils. This confirms the fact that in wheat dry matter production is affected 

by high plant Se concentrations (Rani et al., 2005).  In wheat, selenate follows the active 

sulphate pathway during uptake (Li et al., 2008), whereas selenite is taken up by plants via 

passive diffusion (Arvy, 1993). Accordingly, in our study Se and S are better correlated in 

plants grown on selenate-fertilized soil than in plants grown on selenite-fertilized soil (Table 

23). The high S concentrations in the plants grown on soils spiked with selenate correspond 

with a high plant Se concentration. A synergistic relationship between Se and S was 

observed, which may be explained by the fact that elevated concentrations of Se in the root 

zone might increase plant S accumulation when sulphate concentrations are low in the root 

zone (Mikkelsen et al., 1988). The S concentrations in plants grown on lime-treated soil seem 

to be higher even though the S concentration in the soil was lower compared to organic 

amendments. Soil liming seems to enhance S uptake in the plants which leads to higher S and 

Se concentrations.  

Soil ageing influenced Se uptake in wheat plants irrespective of soil amendments. These 

differences could be attributed to variations in soil conditions. An important parameter which 

might influence the variation in Se uptake by wheat plants is the quantity and quality of soil 

OM which changes upon ageing and has an impact on selenium retention in soils (Coppin et 
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al., 2006). Additionally, soil pH shifts were observed between the three different time points; 

however, there is no significant correlation with plant Se uptake. Moreover, wetting and 

drying of the soil has been reported to promote microbial changes which might lead to rapid 

transformation of Se into other insoluble Se and organic Se forms (Burger et al., 2005, Neal 

et al., 1991). These Se forms may differ in mobility and availability to plants. 

 

8.6 Conclusion 

 

Soil management practices seem to affect Se uptake by crops upon Se fertilization of soils 

due to their influence on soil pH and organic matter contents. In order to increase the Se 

status in wheat, amendments need to be chosen carefully. Cattle manure is not recommended 

to apply along with Se fertilizers when the aim is to enrich food crops with Se. Soil liming 

improves Se concentrations in crops especially when selenate fertilizers are used. Selenium 

accumulation in the soil when Se is applied to the soil in the form of selenite or when soils 

are amended with cow and pig manure poses an environmental risk. However, organic 

amendments may also supply the amount of Se available for plant uptake especially when 

compost is used as soil amendment. Long-term field studies monitoring Se mobility and 

bioavailability in soils amended with seleniferous crop residues and organic wastes are 

needed to be able to outweigh risks for Se accumulation in the soil against potential for Se 

supply to the crop. In the current study, higher doses of organic amendments were tested. 

Application of various organic amendments at this level shows a clear difference in Se 

uptake. However, Se uptake might be different at lower doses. Future studies should focus on 

lower doses, more relevant to field application, and evaluate the influence of microbial 

activity and inputs of S and P through these amendments. 
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Chapter 9. Selenium gastrointestinal bioaccessibility is matrix- and 

speciation dependent and is significantly increased by active 

colon microbiota 
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9.1 Abstract 

 

Selenium (Se) is an essential nutrient for humans as it plays an important role in glutathione 

peroxidase (GPx) activity. Moreover, there is increasing evidence that a sufficient level of Se 

in the diet is effective in reducing cancer risks in both humans and animals. The objective of 

this work was to examine the bioaccessibility of selenium (Se) in three different Se-enriched 

food supplements and two different Se-enriched food crops, with reference to two pure Se 

standards (sodium selenate and SeMet), and their speciation changes. This was done using an 

in vitro gastrointestinal digestion procedure that mimics stomach, small intestine and colon. 

Additionally, the impact on microbial activity was investigated by measuring presence of 

short chain fatty acids and also the role of colon microbes in Se bioaccessibility was assessed 

by using heat-inactivated colon microbiota in comparison with normal SHIME suspension as 

presence of active colon microbes. Clear differences in bioaccessibility patterns were 

observed between the different Se containing matrices with Se-enriched food crops showing 

the highest Se bioaccessibility upon colon digestion. The impact of microorganisms on Se 

bioaccessibility in the colon was demonstrated by the significantly lower Se bioaccessibility 

values upon digestion with heat-inactivated colon microbiota. While selenite was found to be 

highly stable throughout the entire digestion, incubation of SeMet resulted in the production 

of two minor metabolites, identified as MeSeCys and Se(O)-methionine. In conclusion, a 

clear contribution of colon microbiota towards Se bioaccessibility was observed and possible 

biotransformation of Se species was highlighted. The higher proportion of Se reaching the 

colon phase from Se-enriched foods compared to Se supplements could have a possible 

impact on their role in inducing colon health beneficial effects. 

 

9.2 Introduction 

 

Selenium (Se) enters the food chain through plants, which take up Se from the soil. 

Geographic variations in soil Se concentrations around the world were previously reported, 

ranging from high concentrations in soils of the USA and Venezuela to low concentrations in 

Korea, some regions of China and some parts of Europe (Brtkova and Brtko, 1996, Ferguson 

et al., 2004, Rayman, 2000, 2005). The recommended daily intake for healthy adults is 55 
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µg/day in the USA. It ranges between 55 and 70 µg/day in Europe (El-Bayoumy, 2001, 

Rayman, 2004, Whanger, 2004). In Se-deficient populations, Se-enriched food crops and Se-

enriched food supplements are often recommended to overcome Se deficiency. In particular, 

Se-enriched wheat, cabbage, mushroom, pumpkin, broccoli, onions, chives and garlic have 

been recommended as Se-fortified food crops (Dumont et al., 2006a, Govasmark et al., 2010, 

Kapolna et al., 2007). Among these, Brassica and Allium species were often reported as 

preferential crops due to their higher potential for accumulating specific organic Se species 

such as MeSeCys and γ-glut-cyst, that were previously reported to induce beneficial health 

effects (Thomson, 2004). However, it is technically more feasible to produce Se-enriched 

yeast as a Se-enriched food supplement. Such yeast also has the potential to accumulate 

organic species, particularly some yeast species such as baker’s yeast (S.cerevisiae) (Reyes et 

al., 2006). Selenium supplements containing Se-enriched yeast are commercially available as 

tablets with SeMet as major compound. 

An association between Se deficiency in the diet and cancer risk was already reported more 

than 40 years ago (Shamberger and Frost, 1969). In some human epidemiological studies 

conducted during the last years the relationship between dietary Se intake and cancer risk was 

studied (Connelly-Frost et al., 2009, Duffield-Lillico et al., 2002, Rudolf et al., 2008). The 

Nutritional Prevention of Cancer (NPC) trial by Clark and co-workers showed that Se 

supplementation reduced the risk for colon, rectum, prostate and lung cancers (Clark et al., 

1996, Letavayová et al., 2006). Moreover, epidemiological studies conducted earlier have 

shown a geographical correlation between Se deficiency and high incidence of particular 

types of cancer, especially colorectal adenomas (Dworkin et al., 1988, Psathakis et al., 1998, 

Rumi et al., 1992). Dietary intake in 27 countries showed a significant inverse correlation 

with age-adjusted mortality for colon, prostate, breast, ovary and lung cancers, but there was 

a weak correlation for pancreas, skin and bladder cancers (Letavayová et al., 2006). In 

addition to epidemiological studies, in vivo experiments with rats suggested that ingestion of 

Se-enriched broccoli significantly reduced colon cancer compared to other Se forms, such as 

selenite (Finley et al., 2000). From this study it was concluded that Se from the Se-enriched 

broccoli does not accumulate in the body more rapidly compared to other supplementation 

forms of Se, but it could be more efficient in decreasing the formation of polyps/tumors in the 

colon and improving GPx activity in epithelial cells (Gong et al., 2012). 

It is well-known that absorption and bioavailability of Se may depend on the chemical forms 

in which it occurs, i.e. its speciation. In recent years, the (potential) bioavailability of Se in 
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different food sources has been demonstrated by using various in vitro intestinal digestion 

procedures to assess bioaccessibility (Reyes et al., 2006). The term “bioaccessibility” has 

been defined as the fraction of a compound that is released from its matrix in the 

gastrointestinal tract and thus becomes available for intestinal absorption (and may enter the 

blood stream) (Fernandez-Garcia et al., 2009). Some studies already reported differences in 

bioaccessibility between different sources of Se (Brandt-Kjelsen et al., 2012, Govasmark et 

al., 2010, Moreda-Pineiro et al., 2011, Reyes et al., 2006). These in vitro studies were 

performed with Se-enriched food crops, Se supplements (tablets) and pure Se standard 

compounds, and usually mimic the stomach and small intestine (Moreda-Pineiro et al., 2011). 

However, no study reported on the bioaccessibility of Se in the large intestine (colon) yet.   

Moreover, it is not well understood how much Se from Se-enriched food sources becomes 

bioaccessible during colon digestion. We hypothesized that Se bioaccessibility in the colon 

after ingestion of some Se-enriched foods would be higher in upper intestine where a 

substantial amount of Se reaches the colon and has beneficial effects on colon epithelial cells 

and colon microbial flora. Therefore, we aimed to assess Se bioaccessibility in the colon in 

the presence of colon microbiota. Meanwhile, we also evaluated the bioaccessibility of Se 

from food supplements, Se-enriched food crops and pure standard Se compounds in the 

stomach and small intestine to be able to assess how much of the ingested Se may reach the 

colon environment. This was done using an in vitro gastrointestinal digestion procedure. For 

the two standard compounds, speciation changes during digestion were also studied. 

 

9.3 Materials and methods 

9.3.1 Reagents and standards 

 

For sample preparation, protease XIV and the Se reference compounds sodium selenate 

(Na2SeO4) and SeMet were purchased from Sigma Aldrich, while concentrated HNO3 and 

H2O2 were purchased from Chemlab (Zedelgem, Belgium). MilliQ® (MQ) water from Water 

Systems Ltd. (Brussels, Belgium) was used throughout the experiment. Chromatographic 

standards and other solutions were prepared freshly every day. To prepare gastric and small 

intestinal fluids, pepsin and pancreatin (porcine pancreas) were purchased from Sigma 
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Aldrich, and dehydrated galpowder (Difco TM Oxgall) and sodium bicarbonate from VWR 

(Leuven, Belgium). 

 

9.3.2 Instrumentation 

 

An inductively coupled plasma mass spectrometer (ICP-MS, PerkinElmer DRC-e, 

Sunnyvale, CA, USA) was used for total Se and as element-specific detector in speciation 

analysis. The ICP-MS was fitted with a Babington nebulizer and a cyclonic spray chamber. 

For speciation analysis, the ICP-MS was coupled to a liquid chromatography system (Series 

200 HPLC, PerkinElmer, Sunnyvale, CA, USA). It consisted of a P680 HPLC pump and an 

ASI-100 automated sample injector. A Hamilton PRP-X100 anion exchange column and 

Altima C8 column (250 mm × 4.6 mm I.D., 5 μm, 120 Å) were used as stationary phase. Both 

columns were equipped with a guard column containing the same stationary phase material. 

The extracts were analysed using the anion exchange column. However, the reversed phase 

column was also used to confirm the absence of the oxidised form of SeMet (SeMet oxide). 

HPLC-ICP-MS conditions as described in (see chapter 3). Extraction of Se for speciation 

analysis and batch incubations for bioaccessibility assessment was carried out using a shaker 

fitted in an incubator chamber from Sartorius (Goettingen, Germany). The samples were 

centrifuged on a Sigma 2-16PK centrifuge (Germany). For total Se determination, a 

microwave digestion apparatus from Mars (North Carolina, USA) was used. The short chain 

fatty acid analysis was performed using a gas chromatographic method (Van de Wiele et al., 

2007). 

 

9.3.3 In vitro gastrointestinal digestion with active microbiota in the colon phase of Se-

enriched food crops and supplements 

 

Two lyophilized and powdered samples of Se-enriched food crops (leek and kenaf) grown on 

soil fertilized with Na2SeO4 (see chapter 3 and 6) and three food supplements (tablets), i.e. 

SelenoPrecise tablets (SP, Se-enriched yeast), a Se+ACE-vitamins mixture (ACE), and a Se-

enriched yoghurt–based tablet (YB), obtained from commercial available sources were used 
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for assessment of Se bioaccessibility. Three grams of lyophilized and powdered samples of 

Se-enriched kenaf and leek were boiled with 10 mL of deionized water for 3 min to mimic 

the food preparation process applied prior to human consumption. After cooling, 3 g of the 

obtained suspension was transferred into 100 mL amber colored bottles. Thirty mL of 

simulated gastric juice (10 g L
-1

 pepsin adjusted to pH 2.0 with 2M HCl) was added to the 

bottles and they were capped with a rubber stopper and aluminum seal. They were placed on 

a mechanical shaker (100 rpm) in an incubator (37 °C) for 1 h. After 1 h of incubation 5 mL 

was sampled with a syringe. The sample was considered to represent the gastric phase. 

Afterwards, 12.5 mL of small intestine fluid was added and the mixture was shaken in the 

incubator for 2 h again. The small intestine fluid was prepared by weighing 0.75 g dehydrated 

bile powder, 0.5 g of pancreatin and 1.5 g sodium bicarbonate into 100 mL of deionized 

water. After 2 h, 5 mL of sample, representing the small intestine was sampled. 

Subsequently, 25 mL of colon suspension, sampled from the colon compartments of the 

SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) (Figure 30), was added 

to mimic the colon conditions. Thse SHIME is a dynamic model of the human 

gastrointestinal tract that mimics the physicochemical, enzymatic and microbiological 

conditions of the stomach, duodenum, colon ascendens, colon transversum and colon 

descendens in five consecutive compartments (Van de Wiele et al., 2004, Molly et al., 1994, 

Possemiers et al., 2006).  

 

 

Figure 30. SHIME reactor. 1) stomach, 2) small intestine, 3) ascending colon, 4 )transverse  

colon, 5) descending colon  
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The bottles were capped and flushed with nitrogen gas to create anaerobic conditions and 

immediately sampled after shaking which is considered as 0 h (T0) sample. The time between 

addition of SHIME suspension and nitrogen flushing is approximately 5-10 mins.  They were 

again shaken in the incubator and sampled after 2 h (T2), 24 h (T24) and 48 h (T48). The 

samples collected in each step were placed in 10 mL polypropylene tubes and centrifuged at 

10,000 g for 10 minutes. The supernatant collected after centrifugation was filtered (0.45 µm) 

and stored at -80 ºC. The collected filtrates and pellets (residues) were analysed for total Se 

using ICP-MS. For digestion of the pellet prior to analysis, microwave digestion with 

concentrated HNO3 and H2O2 was used. A similar procedure was conducted for Se 

supplements (tablets) by weighing 0.3 g powdered samples which were prepared by crushing 

20 tablets using mortar and pestle in order to obtain homogeneity of Se. They were used in 

the gastric phase, followed by the next digestion phases. The entire procedure was repeated 

using pure Na2SeO4 and SeMet spiked into the gastric solution to a concentration of 2.4 mg L
-

1
. All experiments were conducted in triplicate. 

The relative bioaccessibility of Se was calculated for each digestion phase as  

 

 

9.3.4 In vitro gastrointestinal digestion with inactivated microbiota in the colon phase 

 

The procedure described in 9.3.3 was repeated for SelenoPrecise and pure SeMet. However, 

the SHIME suspension collected for use in the colon phase was now autoclaved twice for 30 

min (121°C, 1 bar overpressure) to inactivate colon microbiota. 
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9.3.5 Short chain fatty acids analysis 

 

To assess the microbial metabolic activity in the working conditions of our study short chain 

fatty acids (SCFA) analysis, reflecting the activity and ability of colonic microbiota to 

ferment carbohydrates and proteins in a sample (Jouany et al., 1982), was conducted. The 

analysis was performed by gas chromatography using thawed samples of colonic phase at 

time point T2. 

 

9.3.6 Stability of Se species during digestion 

 

The reference Se species SeMet and selenate (2400 µg L
-1

) were subjected to an in vitro 

digestion to monitor speciation changes in the bioaccessible fraction. The collected 

supernatants from each digestion phase were analysed by HPLC-ICP-MS 

 

9.3.7 Selenium speciation of crops used for bioaccessibility study 

 

Se-enriched crops (leek and kenaf), previously obtained by growing them on selenite 

fertilized soils, were used to assess Se bioaccessibility in the crops, which was compared with 

bioaccessibility in commercial food supplements and pure Se reference compounds. The 

speciation data of leek and kenaf were reported in chapter 3 and 6 (grown on lowest Se 

applied dose). 

 

9.3.8 Statistical analysis 

 

Results are expressed as mean±SD and one way analysis of variance (ANOVA) was carried 

out using a statistical analysis system (SAS version 9.2). Differences in the concentrations of 

Se in samples of the various digestion phases were tested with ANOVA. Significance of 
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differences was evaluated at the 0.05 level. Tukey’s multiple-comparison test was used to 

compare differences in the mean values 

 

9.4 Results 

9.4.1 Bioaccessibility of Se from Se-enriched food crops, Se-enriched food 

supplements, and pure Se reference compounds 

 

For both crops, the bioaccessibility of Se is higher in the small intestine compared to the 

stomach and it generally decreases with time in the colon (Figure 31A). The bioaccessibility 

did not differ between the crops in the stomach and small intestine, but it clearly differs in the 

colon, where a higher bioaccessibility was observed for leek as compared to kenaf.  

 

Figure 31. (A) Relative bioaccessibility of Se for (A) two Se-enriched crops and (B) three Se-

enriched food supplements in different steps of an in vitro simulation of gastrointestinal 

digestion (T0, T2, T24 and T48 refer to 0, 2, 24 and 48 hours after starting colon incubation, 

respectively; S.I. refers to small intestine). The capital letters indicate Tukey’s multiple-

comparison test for comparison of means between the various digestion phases for each 

crop/tablet, whereas small letters indicate comparison of means between the different 

crops/tablets in each digestion phase. A same letter indicates no significant difference (p > 

0.05). 

The bioaccessibility of Se in the yoghurt-base Se supplement (YB) is significantly lower 

compared to the bioaccessibility of Se in the other Se supplements (SP and ACE) (Figure 
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31B). This is the case for all digestion phases. Moreover, the bioaccessibility is higher for SP 

compared to ACE in the first 2 hours of colon incubation. However, at 24 and 48 hours after 

starting the colon incubation differences between the different food supplements were much 

smaller. Whereas the bioaccessibility decreased in the first 24 hours of colon incubation, it 

slightly increased again afterwards. However, YB showed a significantly lower Se 

bioaccessibility compared to SP and ACE throughout all digestion phases whereas small 

intestine and T24 in the colon phase showed no significant difference between SP and ACE.  

The relative bioaccessibility of the pure Se reference compounds SeMet and selenate does not 

significantly differ in upper intestinal phases. However, significant differences were observed 

between these two Se forms in the colon, with the bioaccessibility being much lower when 

SeMet is used (Figure 32). Compared to food supplements and food crops (Figure 31), the 

bioaccessibility of reference compounds in the upper intestinal tract is higher (Figure 32). 

This should be attributed to the absence of a matrix, allowing instantaneous solubilization of 

these reference compounds when subjected to gastrointestinal conditions. 

 

Figure 32. Relative bioaccessibility of Se for two Se reference compounds (selenate and 

SeMet) in different steps of an in vitro simulation of gastrointestinal digestion (T0, T2, T24 

and T48 refer to 0, 2, 24 and 48 hours after starting colon incubation, respectively; S.I. refers 

to small intestine). The capital letters indicate Tukey’s multiple-comparison test for 

comparison of means between the various digestion phases for each Se compound, whereas 

small letters indicate comparison of means between the different Se compounds in each 

digestion phase. A same letter indicates no significant difference (p > 0.05) 
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9.4.2 Role of colon microbiota 

 

In a second experiment, SP and SeMet were incubated with inactivated colon microbiota, 

using autoclaved colon suspension. Colon microbiota were found to play a prominent role in 

reducing Se bioaccessibility in the colon environment (Figure 33A,B). The presence of 

inactivated microbiota resulted in a higher bioaccessibility compared to the presence of an 

active microbial community. For the inactivated microbiota, no significant difference is 

observed between SeMet and SP.  

 

Figure 33. Comparison of relative Se bioaccessibility in the colon phase at various incubation 

time points (T0, T2, T24 and T48) for (A) SelenoPrecise supplement (SP) and (B) SeMet, in 

presence of active and inactivated (autoclaved) colon microbiota. The capital letters indicate 

Tukey’s multiple-comparison test for comparison of means between the various digestion 

phases for each Se tablet/compound, whereas small letters indicate comparison of means 

between the different Se tablet/compound in each digestion phase. A same letter indicates no 

significant difference (p > 0.05). 
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9.4.3 Stability of Se species during gastrointestinal digestion 

 

Biotransformation of SeMet was observed in the colon. SeMet concentrations decreased, 

whereas MeSeCys was formed to some extent (Figure 34). Moreover, Se-methionine oxide 

(SeMetO) was detected in the small intestine when incubating SeMet (Figure 34). In contrast, 

selenate was highly stable and only selenate was identified in the bioaccessible fraction in the 

colon at various time points when incubating this compound. No unknown peaks were 

observed. 

 

9.5 Discussion 

 

In our study, bioaccessibility of all Se reference compounds, Se-enriched food supplements 

and food crops was highest in the small intestine. Nevertheless, the Se reference compounds 

were found to be more bioaccessible in the gastric phase (Figure 31A,B and 32), which 

should be attributed to the fact that they should not be released anymore from a food matrix 

and can be instantaneously solubilized. The effects of food microstructure on the 

bioaccessibility of several nutrients has previously been reviewed (Parada and Aguilera, 

2007), and also the bioaccessibility of Se was reported to differ according to the food matrix 

(Palafox-Carlos et al., 2011). The incorporation of Se during enrichment of food products 

was found to play a very important role (de Leon et al., 2002). 
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Figure 34.  Relative percentage of Se species of total Se present in the bioaccessible fraction 

when incubating SeMet in different steps of an in vitro simulation of gastrointestinal 

digestion (T0, T2, T24 and T48 refer to 0, 2, 24 and 48 hours after starting colon incubation, 

respectively) represented using two different y-axes (right axis for SeMet and left axis for 

other Se species) 

 

In the current study, Se was more easily released from the SelenoPrecise tablets in the upper 

intestine compared to the Se-ACE tablets. Compared to the SelenoPrecise and Se-ACE 

tablets, the yoghurt-based supplement exhibits a much lower Se bioaccessibility, possibly due 

to the presence of nano- or microparticles of elemental Se. These are formed by microbiota in 

the yoghurt (Mounicou et al., 2009). Among the two Se-enriched food crops, leek and kenaf 

were found to have a similar bioaccessibility in the stomach and small intestine. For both 

crops, the Se bioaccessibility in the upper intestine was found to be higher compared to the 

bioaccessibility of Se in the food supplements but lower compared to the Se bioaccessibility 

of the pure reference compounds. This implies that the efficiency of Se uptake by the human 

body may be slightly higher when consuming Se-enriched food crops compared to Se-

enriched food supplements. Food preparation (cooking) prior to consumption may probably 

promote the release of Se from the food crop matrix in the intestine. Besides, the 

incorporation of Se in the food matrix could also lead to differences in bioacessibility 

between yeast supplement and food crops. In yeast, the majority of Se was reported to be 
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incorporated as SeMet whereas in food crops, it can differ widely based on the plant species 

(Mounicou et al., 2009). 

Previous studies also reported that Se bioaccessibility is different in various digestion phases 

and between various food products (Brandt-Kjelsen et al., 2012, Dumont et al., 2004). For 

different Se supplementation sources it was demonstrated that the majority of Se becomes 

bioaccessible in upper gastrointestinal tract (Dumont et al., 2004). Recent studies indicate 

that Se-containing or Se-enriched food products like meat products, chives and wheat have a 

higher Se bioaccessibility in the small intestine compared to the gastric phase, due to the 

presence of enzymes. There is a probability that pancreatin may have a stronger influence on 

Se extraction efficiency into intestinal fluids than compounds present in the gastric phase. 

The ratio of different enzymes in an extract plays an important role, as was illustrated for 

extraction of Se species from Se-enriched yeast (Yang et al., 2004). 

Although the majority of nutrients is taken up by the body in the stomach and small intestine, 

some nutrients and water are still available in the colon (Sandle, 1998). Selenium may be 

partly transferred to the large intestine when not taken up by the body in the small intestine, 

where it may also induce beneficial effects. In the colon, Se may be taken up by the bacterial 

fraction, resulting in a decreased bioaccessibility (Heider and Bock, 1993, Turner et al., 

1998). When Se-enriched kenaf is used, part of the Se is very rapidly removed from solution 

when moving from small intestine to colon (T0), whereas this is not the case for Se-enriched 

leek. This should probably be attributed to the fact that kenaf and leek contain and release 

different Se species, which are adsorbed to a different extent to the biomass when moving to 

the colon. The bioaccessibility of pure SeMet was indeed found to decrease with about 10% 

when moving from the small intestine to the colon, whereas this was not the case for pure 

selenate (Figure 32). However, it should be noted that this change was not statistically 

significant due to the relatively high standard deviations in the small intestine and during 

early colon incubation. The Se-ACE and yoghurt-based food supplements also exhibited 

some (less significant) removal when moving from small to large intestine (Figure 31B).  

Following the early physical processes in the stomach, when moving from small intestine to 

colon, Se is actively taken up by the bacterial cell fractions of gut contents and feces which 

was earlier reported in rats (Kim and Combs, 1997). In our study, the differences in behavior 

when incubating SelenoPrecise tablets and pure SeMet in non-autoclaved colon suspensions 

have shown lower bioaccessibility than autoclaved suspensions (Figure 33). The uptake of Se 
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by colon microbiota should be attributed to the fact that microbes also require Se as 

micronutrient for their metabolic processes (Baesman et al., 2007, Kasaikina et al., 2011, 

Stolz et al., 2006). We observed that the uptake of SeMet by colon microbiota is much more 

efficient compared to the uptake of selenate. The bioaccessibility of selenate decreases with 

about 30% during 48 hours of colon incubation, whereas it decreases with about 60% when 

incubating SeMet (Figure 32). In case of leek and kenaf, a decrease of bioaccessibility by 

about 42 and 19% after 48 hours of colon phase incubation is observed. The highest final Se 

bioaccessiblity remaining after 48 hours of incubation is observed for Se-enriched leek, 

which makes leek most suitable for biofortification purposes when beneficial health effects in 

the colon are targeted.  

Colon incubation of the Se-ACE supplement and selenized yeast (SelenoPrecise) resulted in a 

decrease of less than 35% and about 50%, respectively, whereas incubation of the yoghurt-

based supplement did not result in significant Se uptake by the microbial biomass. The Se-

ACE supplement resulted in a significant decrease of bioaccessibility already after 2 hours of 

incubation, whereas a significant drop was observed for SelenoPrecise only after 24 hours. 

Presence of vitamins in the Se-ACE supplement probably promoted Se uptake by the 

microbiota (Dumont et al., 2004). However, all food supplements resulted in a similar 

residual bioaccessibility after 48 hours of colon incubation.  

During colon incubation conducted in our experiments, some formation of MeSeCys from 

SeMet was observed (Figure 34). Numerous studies elaborated hypotheses on prevention of 

colon cancer with Se supplementation, and some could also confirm the role of Se (Brigelius-

Flohe, 2008). One of these studies conducted by Clark et al. (1996) suggested that an intake 

of 250-300 µg Se day
-1

 through Se-enriched yeast results in a decreased incidence of colon 

cancer. These reports show the importance of Se species in colon carcinogenesis. Moreover, 

Se-enriched food crops like Allium and Brassica species were found to reduce the risk of 

colon cancer, compared to other sources of Se (Ip et al., 2000). This pointed towards a role of 

MeSeCys and –Glu-SeMeCys, species which particularly occur in high concentrations in 

Se-enriched Allium and Brassica species, but also occur in Selenized yeast at very minute 

amounts (Pyrzynska, 2009, Goenaga et al. 2004,). Our study gives evidence that Se is   

subjected to speciation changes during colon digestion.  

Limited studies have focused on a possible relationship between Se supplementation and the 

microbial community composition in the colon (Kasaikina et al., 2011, Molan et al., 2009). 
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These studies did not only emphasize the role Se may play in enhancing beneficial microbiota 

in the colon, but also illustrate the positive influence Se may have on epithelial cells of the 

gut (Gong et al., 2012). In our study, we investigated the effect of Se supplementation on the 

microbial activity by conducting SCFA analysis. The survey data from different population 

studies show that fecal SCFA are in the order of acetate > propionate ≥ butyrate (Topping and 

Clifton. 2001). No negative effects towards colon microbial metabolism were observed (data 

not shown). SCFA was not significantly different between Se supplements and control 

samples. Hence, the role of microbial activity is evident through SCFA analysis. The active 

microbial colon phase incubation of SeMet results in the formation of other Se species, such 

as MeSeCys (Figure 34). This is probably a biotransformation process, as MeSeCys is not 

expected to be produced purely chemically. It illustrates how Se entering the colon becomes 

involved in biochemical processes of colon microbiota.  

Next to biotransformations in the colon, some chemical species transformations were also 

observed in the small intestine. Pure SeMet is chemically oxidized to Se-methionine oxide 

(SeMetO) under the oxic conditions in the small intestine, which has previously also been 

reported (Dumont et al., 2004). To what extent this change in speciation will also occur when 

incubating food supplements releasing SeMet and to what extent it will affect the 

bioavailability, i.e. the uptake by the bloodstream, should be subject of future research.  

 

9.6 Conclusion 

 

In vitro bioaccessibility studies using SHIME suspension could be used to assess 

bioaccessibility of Se in the colon phase, as an indirect approach to assess the potential of Se 

supplements and Se-enriched food crops in colon health. In our study, clear differences in 

bioaccessibility patterns were observed between the different Se containing matrices with Se-

enriched food crops showing the highest Se bioaccessibility upon colon digestion. The impact 

of microorganisms on Se bioaccessibility in the colon was demonstrated by the significantly 

lower Se bioaccessibility values upon digestion with heat-inactivated colon microbiota. 

While selenite was found to be highly stable throughout the entire digestion, incubation of 

SeMet resulted in the production of two minor metabolites, identified as MeSeCys and Se(O)-

methionine. 

http://physrev.physiology.org/search?author1=David+L.+Topping&sortspec=date&submit=Submit
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Chapter 10. General Discussion 
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10.1 Soil selenium in Flanders (Belgium) 

 

The metalloid selenium (Se) is an essential micronutrient for many organisms, including 

humans and animals, and the soil Se concentration is important in providing optimum Se 

levels to humans and animals through the diet. In general, soils with Se concentrations below 

0.6 mg Se kg
-1

 are considered as Se deficient soils. As such, soils in the Flemish region of 

Belgium can be considered as overall deficient in Se, with concentrations ranging from 0.05 

to 0.4 mg Se kg
-1

 across Flanders. Moreover, extractability of Se from the soil was previously 

considered as relatively poor in Belgian soils (Sillanpää and Jansson, 1992). Although soil 

properties such as pH, OM, EC, etc., were reported to have an influence on Se bioavailability, 

the field data generated by growing leek on these Se deficient soils showed relatively weak 

correlations between Se uptake and soil properties among the full range of soils studied 

(chapter 4). 

 

10.2 Use of Se fertilizers to obtain Se-enriched food crops 

 

The human population in Belgium was previously reported to have a deficient to suboptimal 

Se intake, which could be due to low Se concentrations in agricultural products obtained from 

the Se deficient soils (Robberecht, 1994). The dietary average intake of Belgium was 

reported to be 45 µg Se d
-1

. Moreover, the average plasma Se concentration in the Belgian 

population (84.3±9.4 µg Se L
-1

) is lower than 120 µg Se L
-1

, which was reported to be a 

plasma Se level that minimizes cancer risks (Combs, 2001). These observations suggest that 

Se supplementation in the Belgian population may be useful. One alternative to overcome the 

Se deficiency can be the addition of Se in fertilizers for pastures and food crops, similar to 

what has previously been done in Finland, the UK and Australia (Aro et al., 1995, Broadley 

et al., 2010, Eurola et al., 1991, Lyons et al., 2004). In our study, focus on biofortified Se-

enriched leek was chosen to improve the Se status. Leek, being an Allium family species, 

could provide particular Se species which are considered to be beneficial for human health, 

such as MeSeCys and γ-glut-cyst. Moreover, it is highly cultivated as an important 

commercial crop in Belgium and other European countries. Based on the results reported in 

chapter 3, it can be concluded that leek responds to Se fertilization when the soil is fertilized 
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with two forms of Se, selenite and selenate, at various doses. Use of selenate clearly results in 

the highest accumulation in the crop. The Se speciation data reveal that leek provides a higher 

relative amount of organic species when fertilized with selenite compared to selenate. In 

Allium species, MeSeCys and its derivatives were previously reported to be present in higher 

concentrations compared to SeMet. These species were also found to occur in leek, but to a 

lesser extent compared to the other Allium family species. 

On the other hand, Kenaf was also chosen as a study crop because kenaf as a feed crop was 

successfully tested on beef cattle and small ruminants before (Lopez et al., 2006, Xiccato et 

al., 1998), and Kenaf leaves are also sometimes used in human diets (Adebayo, 2010). A 

recent survey on grasslands in Belgium reported that most grasses contain 83 µg Se kg
−1

 

(Hambuckers et al., 2010). It was previously reported that Se deficiency in livestock 

generally occurs when soil Se concentrations are below 0.6 mg Se kg
-1

 which would lead to 

less than 100 µg Se kg
-1

 in plants (Hambuckers et al., 2010). The recommended Se 

concentration for forages fed to dairy cattle ranges between 100 and 300 µg Se kg
−1

, whereas 

the toxicity threshold level is close to 2 mg Se kg
−1

 (Buchanan-Smith et al., 2001). From 

chapter 6, we can conclude that kenaf contains already 300 µg Se kg
−1

, i.e. an adequate 

concentration for feed, when it is grown on a soil containing 0.3 mg Se kg
-1

. As full 

replacement of grass by kenaf is not realistic, we focus on use of this crop as feed additive or 

as intercropping in grasslands. As was the case for leek, kenaf also responds significantly to 

Se fertilization. Moreover, Se toxicity to the plants was observed when they were grown at 4 

mg Se kg
-1

 soil supplied in the form of selenate, which was not observed for leek, but no 

toxic effect was seen when a similar dose was supplied in the form of selenite (see chapter 6). 

Similar to humans, Se supplementation with organic Se species can be also considered as 

beneficial for the health of livestock (Steen et al, 2008). The speciation data presented in 

chapter 6 reveal that a higher relative amount of organic species is present when selenite 

fertilizer is used, compared to when selenate fertilizer is used. However, although both leek 

and kenaf contain more relative amounts of organic species when fertilized with selenite, 

longer-term usage of selenite fertilizers may need to be avoided due to their much lower 

uptake by the plant, and thus also higher potential for accumulation in the soil. 

 

 

file:///E:/Gijs/Documents/doctoraten/Doctoraat%20Srikanth/revisions/Thesis_Sri_260813/AppData/Roaming/Microsoft/AppData/Local/Temp/Temp1_Thesis%20draft_210513_Lavu.zip/AppData/Srikanth/Desktop/_top%23_blank
http://www.ncbi.nlm.nih.gov/pubmed/?term=Steen%20A%5Bauth%5D
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10.3 Calculation of daily Se intake through leek in fertilized and non-fertilized 

 

Based on the data from the field study (Chapter 4), the amount of Se taken up through 

consumption of non-fertilized leek and Se-fertilized leek. The percentage of the 

recommended daily allowance (RDA) taken up through Se-enriched leek does not exceed 

0.66 % when assuming a consumption rate of 0.345 kg/person/day. The consumption of Se-

enriched leek at this rate could not provide a Se dose exceeding the upper limit of the RDA 

(400 µg d
-1

) (Table 26). 

 

The daily intake of Se by humans was calculated using the following equation: 

 

 

where M: the concentration of Se in plants (mg kg
-1 

DW); K: conversion factor to convert 

fresh to dry weight (0.11: 11% dry weight content); I: daily intake of vegetables (fresh 

weight); W: average body weight. The average body weight was considered to be 55.9 kg, 

while the average daily vegetable intake for adults was considered to be 0.345  

kg/person/day, respectively (Amin et al., 2013). 
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Table 26. Amount of Se taken up through consumption of non-fertilized leek and Se-

fertilized leek obtained from the study fields 

Plot No Non-fertilized leek Se-fertilized leek  

 

Daily intake (µg kg-1 

BW) 
RDA (%) 

Daily intake (µg kg-1 

BW) 
RDA (%) 

1 0.05 0.08 0.46 0.66 

2 0.12 0.16 0.27 0.39 

3 0.05 0.08 0.21 0.30 

4 0.07 0.11 0.46 0.65 

5 0.14 0.19 0.23 0.33 

6 0.04 0.06 0.22 0.31 

7 0.07 0.11 0.25 0.35 

8 0.06 0.09 0.29 0.41 

9 0.05 0.07 0.18 0.26 

10 0.12 0.16 0.17 0.24 

11 0.03 0.04 0.05 0.08 

12 0.07 0.10 0.45 0.64 

13 0.00 0.00 0.09 0.13 

14 0.03 0.04 0.14 0.20 

15 0.03 0.04 0.07 0.09 

16 0.00 0.00 0.16 0.23 

17 0.06 0.09 0.30 0.43 

18 0.03 0.04 0.08 0.11 

19 0.03 0.05 0.16 0.23 

20 0.05 0.08 0.16 0.23 

21 0.03 0.04 0.30 0.43 

22 0.11 0.16 0.30 0.43 

23 0.05 0.07 0.23 0.33 

24 0.03 0.05 0.16 0.23 

25 0.06 0.09 0.22 0.32 

26 0.10 0.14 0.13 0.18 

% of RDA based on a RDA of 70 µg Se d
-1

 (National Research Council 1989) 
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10.4 Estimation of Se fertilizer application doses to obtain safe Se-enriched food crops 

 

In recent years, use of wheat was studied in the UK to improve the Se status of the human 

population. In our study, we investigated whether Se-enriched vegetables could be an 

alternative for wheat. For humans, a Se intake of 55 Se µg d
-1

 is the recommended dose 

according to the Scientific Committee on Food of the European Commission (SCF, 2000) and 

the US Food and Nutrition Board (cited in SCF, 2000). A mean dietary Se intake estimation 

of 60 µg Se d
-1

 was reported for the Belgian population in a recent study (Waegeneers et al., 

2013), Table 27). However, this study highlighted serious concerns about the Se intake of 

vegetarians and vegans in Belgium. When meat and fish products were excluded, the dietary 

intake of Se was estimated to be only 29 µg Se d
-1

. Vegetarians replace these meat and fish 

products in their diet by other ingredients, which however often contain much less Se. 

Roekens et al. (1986) even estimated the daily Se intake of Belgian vegetarians in the 1980s 

to be as low as 13 µg Se d
-1

 (Table 27). We estimated the feasibility of using Se-fortified leek 

to improve the Se intake of the Belgian population.  

 

In general, the vegetable consumption per day was estimated to be 350 g d
-1

 (based on fresh 

weight). It can be assumed that Se-enriched leek could be consumed up to three times per 

week. To compensate for a daily intake deficiency of 26 µg Se, coinciding with a weekly 

deficiency of 182 µg, one would need to consume leek with a concentration of 2 µg Se g
-1

.  

Soil fertilization doses needed to obtain this concentration were assessed based on the field 

and greenhouse experiments that were conducted. Therefore, the average percentage of Se 

uptake from the soil was obtained from the pot experiment in which leek was grown on 

various fertilizer types and doses (Table 5), whereas the average biomass production was 

obtained from the field experiment (chapter 4). Combining both data, a Se concentration was 

calculated that may be expected in leek grown on the field for all Se fertilization doses used 

in the pot experiments, assuming that total Se uptake by a plant depends on the fertilization 
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Table 27. Mean usual Se intake (µg d
-1

) by the Belgian adult population (>15 years), by food 

group (adopted from Waegeneers et al., 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dose rather than on the biomass production. Afterwards, regression analysis was performed to 

assess the dose of fertilizer that would be needed to obtain about a concentration of 2 µg Se 

kg
-1

 DW of leek in the field (Figure 35). 

 

Food group Mean usual intake (µg Se day
-1

) 

Bread, toast(rusk) and breakfast cereals 6.9 

Potatoes and potato products 0.6 

Pasta and rice 6.9 

Vegetables (excluding soups and juices) 1.8 

Fruits (excluding juices and olives) - 

Meat and meat products 18.7 

Fish and shell fish 11.6 

Eggs 2.3 

Cheese 5.5 

Yoghurt and custard 0.3 

Milk and dairy drinks 2.3 

Drinks 2.8 

Total 59.6 

Total excluding meat and fish products 29.3 
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Figure 35. Regressions predicting Se concentration in leek grown on the field from soil Se 

fertilizer doses tested in greenhouse experiments 

 

According to this calculation, a selenate dose of 0.29 mg Se per plant and a selenite dose of 

2.36 mg Se per plant would be needed to obtain a concentration of about 2 µg Se kg
-1

 DW in 

the leek. Although this calculation is useful to assess approximate amounts of Se fertilizer 

needed, it should be emphasized that it is based on quite some assumptions. The relative 

uptake of Se by the leek could change with varying biomass production, soil properties and 

climate conditions. In addition, the assessment was based on the assumption that 

concentrations in white part and green part of the leek are similar, as the entire plant was 

analysed in the greenhouse experiment. 

Based on the calculated dose of Se fertilizer needed per plant, the Se dose needed per hectare 

was also calculated. The average number of leek plants per hectare is at maximum 170,000, 

which coincides with 170,000 (leek plants) × 2.36 (mg Se per plant) = 400,707 mg (401 g) Se 

needed in the form of Na-selenite fertilizer, 170,000 (leek plants) × 0.29 (mg Se per plant) = 

48,511 mg (49 g) Se needed in the form of Na-selenate fertilizer and 170,000 (leek plants) × 

0.76 (mg Se per plant) = 129,200 mg (129 g) Se needed in the form of Ba-selenate fertilizer. 

If an individual substitute part of his diet with with three servings per week of Se-enriched 

leek (2 µg g
-1

) obtained from above recommended fertilization dose, Se intake would 

increase. The estimated increase was calculated and presented in Table 28.   
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Table 28. Estimated increase of Se intake with three servings of Se-enriched leek (2 µg g
-1

) 

per week 

Reference Reported Se intake Estimation of Se intake after leek 

consumption 

Robberecht, 1994  Lowest intake 28 µg Se d
-1

 
a
54 µg Se d

-1
 

Mean intake 45 µg Se d
-1

 
b
71 µg Se d

-1
 

Highest intake 61 µg Se d
-1

 
b
87 µg Se d

-1
 

Waegeneers et al., 

2012 

Average intake 60 µg Se  d
-1

 
b
86 µg Se d

-1
 

1
Without meat and fish intake 

29 µg Se d
-1

 

c
55 µg Se d

-1
 

1
Substracting Se intake through meat and fish from average Se intake estimated by 

Waegeneers et al., 2012. 
a
Not yet adequate

 
Se intake based on 55 µg Se d

-1
 recommendation 

from SCF of the European Commission and the US Food and Nutrition Board; 
b
Selenium 

intakes were
 
within the range of

 
80-100 µg Se d

-1
 recommendation from Combs 2001 to 

obtain plasma Se concentrations (120 µg L
-1

) in countries with low-moderate Se intakes; 

c
based on above µg Se d

-1
 intake recommendation.  

 

In order to determine required Se dietary levels from leek and kenaf, Se uptake data from pot 

experiments were considered where biomass from field experiments (leek) and based on 

literature (kenaf) were used. Compared to field experiments, pot experiment differs in Se 

uptake due to differences in soil conditions and availability of nutrients. For instance, leek in 

pot experiment obtained higher Se uptake compared to field experiments. However, the 

higher level of Se uptake in field experiment was within the range of Se uptake obtained in 

pot experiment studies could provide best approximation of required Se fertilizer doses.   

For kenaf, a similar calculation can be done using the uptake data for Se fertilizer doses (mg 

Se kg
-1

 soil translated to amount of Se per hectare) provided in chapter 6 and 7. The hay 

production (DW) of kenaf that was used to recalculate Se uptake by the plant to 

concentrations that can be expected on the field was 0.5 ton per acre (1.2 ton ha
-1

). This value 

was taken from literature (Knowles et al., 1999). For kenaf, we focused on obtaining Se 
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concentrations similar to commercial Se feed additives, i.e., 600 mg Se kg
-1

 DW. Regression 

analysis was performed to assess the dose of fertilizer that would be needed to obtain such 

concentration in the kenaf in the field (Figure 36). This calculation resulted in a 

recommended fertilizer dose of 110 g Se ha
-1

 when using selenate fertilizer and 136364 g Se 

ha
-1

 when using selenite fertilizer.  

 

 

 

 

 

 

 

 

Figure 36. Regressions predicting Se concentration in kenaf grown on the field from soil Se 

fertilizer doses tested in greenhouse experiments  

 

It should be noted that a much higher dose of selenite needs to be applied to reach the 

targeted concentrations compared to when selenate is used. This is due to its lower uptake by 

crops, which may form a risk for the environment by long-term accumulation in the soil, and 

render the use of selenite to be technically not feasible and economically not viable. These 

disadvantages may not offset the higher amount of organic species in the crops when selenite 

fertilizer is used.  
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10.5 Se biofortification: economic evaluation and potential for commercial 

application of Se-enriched leek and kenaf 

 

The costs of Se fertilizers applied at the doses calculated above were estimated and presented 

in Table 29. A cost of 571 € kg
-1

 was used for sodium selenate, 566 € kg
-1

 for sodium 

selenite, and 3483 € kg
-1

 for barium selenate. Starting from the cost of the salts, a cost per 

unit of Se was calculated.  

 

Table 29. Estimated required Se fertilizer doses and cost of soil-applied Se to achieve 

targeted Se concentrations in kenaf and leek 

 Leek Kenaf 

Se fertilizer type Se fertilizer 

dose (g Se ha
-1

) 

Cost (€ ha
-1

) Se fertilizer 

dose (g Se ha
-1

) 

Cost (€ ha
-1

) 

 

Na-Selenate 24 33 110 355 

Na-Selenite 201 249 136364 168966 

Ba-Selenate 129 1320 - - 

Pricing of selenium salts were according to Lyons et al. (2004) and Sigma Aldrich. 

 

Based on the recommended Se intake, the economic viability of Se-enriched leek was 

assessed by comparing it with commercially available food supplements containing selenized 

yeast (SelenoPrecise tablets). The cost of each tablet containing 200 µg Se (per tablet) was 

0.1 € (cost converted to € from £). Using the above recommended Se fertilization dose for 

different Se forms, the Se amount obtained in leek plant was estimated. An amount of 18700 

mg Se was obtained in consumable white part per hectare. An amount similar to the amount 

of Se in a SelenoPrecise tablet (200 µg) can be obtained in leek at a cost of 0.0021 €, 0.0004 

€ and 2.7 € for Na-selenite, Na-selenate and Ba-selenate, respectively, when recommended 

fertilization doses were applied. In case of kenaf, a feed supplement containing 600 mg Se 
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kg
-1 

in the form of selenized yeast was compared with Se-enriched kenaf. The cost of this 

supplement for 600 mg Se was 5 € (converted to € from USD $). In kenaf, similar Se 

concentrations can be obtained with a cost of 0.30 € for selenate fertilizer and a cost of 141 € 

for selenite fertilizer.  

It is clear that the cost for supplementing food and feed crops is generally lower compared to 

commercially available food and feed supplements containing selenized yeast, except when 

kenaf is fertilized with selenite. However, commercially available supplements based on 

selenized yeast contain organic Se species, mainly SeMet, as a major entity, whereas in the 

crops Se speciation depends on the form of Se supplied to the soil. Selenized yeast approved 

as feed supplement by the European Commission is supposed to contain at least 63 % of the 

Se in an organic form (Commission of the european communities., 2006). If crops were 

fertilized with selenite, approximately 30 % of species were organic. These species include 

more MeSeCys and its derivatives, which were previously reported to potentially have 

anticarcinogenic properties. On the other hand, when selenate was used as fertilizer, higher 

percentages (upto 50%) of inorganic Se species were observed, which should be offset 

against the advantage of its lower cost. In any case, when the aim is to bring a large 

population from suboptimal to optimal Se intake, only agronomic biofortification seems to be 

a feasible option because the risk for over supplementation and toxicity to occur in some 

cases is too high when supplying selenized yeast as a food or feed supplement to a whole 

population. 

 

10.6 Soil management practices affecting Se uptake 

 

Soil management practices may influence Se mobility in the soil and its uptake by the plants 

when soils are fertilized with Se. It is previously reported that Se uptake in plants decreases 

with application of soil organic amendments such as poultry and farmyard manure on 

seleniferous soils (Dhillon et al., 2010). In fact, organic matter was expected to decrease Se 

concentrations in food crops when the dominant form of Se in soil is selenite. Upon soil 

ageing selenate is expected to be slowly converted to selenite which can be adsorbed onto 

soil surfaces. This could decrease Se uptake. In a similar way, soil pH may affect Se uptake 

by plants (Mukherjee, 2007; Geering et al., 1968). In low pH soils, Se uptake was lower 
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compared to high pH soils (Johnsson, 1991). In order to assess the influence of organic 

matter and lime on the fate of two inorganic Se forms during soil ageing, we conducted an 

experiment in which porewater samples were taken and extractability of Se from the soil was 

studied as function of time after amending the soil and applying Se fertilizer. Moreover, 

wheat was used as study crop to assess Se bioavailability. The results showed that organic 

amendments may decrease Se uptake by wheat irrespective of the Se form used in the 

fertilizer. However, for all soil amendments, Se uptake by the wheat is higher when selenate 

is supplied to the soils compared to when selenite is used. Although a higher Se uptake was 

obtained for the wheat grown on compost and lime amended soils spiked with selenate (40 – 

48 %), less Se was taken up by wheat grown on pig and cow manure amended soils spiked 

with selenate (2-4 %). Irrespective of the soil amendment, a lower Se uptake was observed in 

the plants grown on soils spiked with selenite (less than 1-2%). Such very low Se transfer 

from soil to crop may lead to Se accumulation in the soil on longer term. Impact of soil 

ageing on Se availability and mobility was also assessed by porewater analysis. However, no 

clear trends could be observed. Longer-term studies are needed to completely assess the fate 

of residual Se remaining in the soil after fertilization, and factors affecting its mobility and 

availability.   

 

10.7 Bioaccessibility of Se in Se-enriched food crops versus food supplements 

 

Bioaccessibility is a key concept to ascertain nutritional efficiency of food and food formula 

developed with the aim of improving human health. It is essential to prove that supplied 

nutrients are also bioaccessible in the intestine. For example, it was previously discovered 

that wheat flour fortified with iron may not be effective because the iron it contains is not 

bioaccessible (Hurrell, 2004). In vitro bioaccessibility assessment is considered as a useful 

tool to compare Se-enriched food crops and food supplements for their bioaccessibility and 

nutritional efficiency. Numerous studies previously reported the bioaccessibility of Se from 

food supplements and food crops to be relatively high in the upper intestinal tract (stomach 

and small intestinal phase) although there are also substantial evidences that Se 

supplementation in the colon (large intestine) could help in reducing colon carcinogenesis. 

However, no literature is yet available focused on the fate of Se in the colon when it is 

supplied through Se-enriched food crops and food supplements. The results obtained in our 

http://link.springer.com/search?facet-author=%22Lars+Johnsson%22
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study provide insights in the bioaccessibility of Se in stomach and small intestine, as well as 

in its fate in the colon. We observed that the majority of Se in all tested Se-enriched products 

is bioaccessible in the small intestine phase. Similar to what was reported previously by 

others, the bioaccessibility of Se from Se-enriched food crops was found to be higher in the 

small intestine compared to the stomach (Figure 31 and 32) due to enzymatic digestion 

occurring in the small intestine. 

Among the commercially available Se supplements, a new yoghurt based (YB) Se 

supplement showed a much lower Se bioaccessibility (not exceeding 25%), which was 

attributed to the presence of elemental Se. Moreover, it was observed that microbes in the 

colon alter the bioaccessibility of Se. These observations highlight the need for assessing Se 

speciation and bioaccessibility when evaluating the efficacy of new food supplements and 

fortified food products being brought to the market. Thus, speciation and bioaccessibility 

measurements may help to optimize Se supplementation strategies in Se deficient 

populations. 

 

10.8 Conclusions 

 

We can conclude that the soils in Flanders (Belgium) can be considered as Se deficient. 

These low levels of soil Se result in crops with low Se levels, leading to low Se intakes in 

humans and livestock and tending to give low blood Se concentrations. When Se fertilizer is 

added to the soil, the concentration and speciation of Se in leek depend on the form and dose 

of Se fertilizer used, with use of selenate resulting in the highest accumulation in the crop. Its 

uptake by the leek ranges between 5-10% and 36-48% of the amount added to the soil for 

supply of selenite and selenate, respectively. Accordingly, the use of selenite as fertilizer 

results in a higher risk for Se accumulation in the soil on longer term. Among 20 different 

leek cultivars tested in a field experiment, some cultivars seem to be superior in accumulating 

Se. In a field experiment conducted on different field plots across Flanders with selenite as 

fertilizer, a negative correlation between soil organic carbon and Se uptake by the leek is 

observed. Moreover, organic amendments seem to decrease Se availability and its 

concentration in wheat. In soils amended with cow and pig manure, Se uptake by the plants 

decreases by 91-95% and 88-89%, respectively, when the soils are spiked with selenite or 
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selenate. Soil liming improves Se concentrations in crops especially when selenate fertilizers 

are used. 

As was observed for leek, the uptake of Se by kenaf is also highest when the soil is fertilized 

with selenate, whereas also the speciation of Se in kenaf differs when different fertilizers are 

used, with a higher percentage of organic species being formed in the crop when soils are 

fertilized with selenite. At higher doses of selenate fertilizer, plant growth is negatively 

affected, whereas this is not the case when selenite was used at a same Se application dose. 

The majority of Se can be considered as bioaccessible in the small intestine, and a significant 

fraction of Se contained in the crops also has good chances to reach the colon, where it seems 

to be taken up by the microbial community and may also induce positive health effects. 

However, further research is needed to assess whether this is actually the case.  

It is concluded that Se-enriched leek or kenaf can be used to increase intake of Se by humans 

and animals from suboptimal levels to levels which have been reported to promote beneficial 

health effects. However, long-term field studies monitoring Se mobility and bioavailability in 

soils amended with Se fertilizers are needed to be able to outweigh the risk for Se 

accumulation in the soil against the benefit of supplying Se to the crop. 

 

10.9 Recommendations for future research 

 

Study the environmental impact and long-term fate of selenite fertilizers and options to 

increase selenite uptake by crops 

 

Given our finding that selenite is the best fertilizer to increase fraction of organic species in 

crops, but the majority of the selenite remains in the soil after fertilization, there is a clear 

need to understand the environmental implications if selenite fertilization and the longer-term 

environmental fate of selenite fertilizers. Moreover, in this context it may also be interesting 

to study options to increase the efficiency of the uptake of selenite fertilizers by the crops.  
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Effect of Se intake on Se status and human health upon consumption of biofortified 

food crops 

 

Limited studies previously focused on assessing the impact of consumption of Se biofortified 

food crops on human health, in comparison to food supplements containing Se, so there is an 

urgent need to conduct research on the effect of consuming biofortified food crops on Se 

status and human health.  

 

Impact of Se supplementation on the colon environment  

 

Clinical studies have shown that supplementing Se may decrease the incidence of colon 

cancer. However, the mechanism behind this is not yet clear. Given our finding that Se 

bioaccessibility decreases in presence of colon microbes, it would be interesting to evaluate 

the impact of Se on the colon environment, including its effect microbial activity and 

community composition.  
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Appendix 1. Elemental concentrations (mg kg
-1

) in soils of the study fields 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field.No Cr    Cu    Mn Ni Pb Zn Al Fe Ca Mg Se 

1 18.1 24.5 377 8.27 21.6 60.4 7038 10925 1476 1430 0.34 

2 14.8 19.8 165 5.35 10.6 52.9 6746 8231 1984 1092 0.32 

3 13.7 16.5 209 4.93 9.3 33.3 5328 6525 1223 798 0.21 

4 15.1 17.0 192 4.65 14.4 40.3 6543 6489 1313 727 0.3 

5 17.1 21.9 320 8.14 12.0 41.7 6646 7893 1830 1049 0.28 

6 21.4 18.6 242 7.22 11.6 46.0 6682 13008 4422 1554 0.29 

7 19.7 13.7 191 6.88 13.8 37.2 6275 9889 2101 1132 0.16 

8 12.2 18.4 100 5.05 17.9 48.7 4570 5548 1529 757 0.28 

9 22.9 14.0 172 6.52 11.4 35.7 6555 11803 1475 1286 0.24 

10 26.1 54.6 428 10.8 149 169 5949 11970 5483 1031 0.25 

11 9.12 25.1 117 4.41 62.0 55.8 3363 4679 1068 428 0.28 

12 16.4 21.7 201 6.95 14.9 48.9 6778 8837 2665 1088 0.26 

13 15.9 24.5 214 6.86 14.5 45.4 6878 8519 3160 1111 0.43 

14 31.3 18.2 199 9.93 24.3 66.0 9153 18492 2625 2265 0.2 

15 23.0 20.9 324 9.44 22.2 76.4 7669 13429 2209 1545 0.33 

16 22.7 20.6 188 6.98 14.8 50.3 7999 12666 3155 1411 0.35 

17 21.1 20.7 135 6.08 20.4 43.0 5857 12410 1825 1231 0.27 

18 20.7 12.6 102 4.91 11.6 31.3 6696 13581 1222 1248 0.46 

19 14.2 15.9 148 4.84 20.5 53.6 5999 7147 1375 915 0.18 

20 15.5 21.9 274 5.54 16.0 51.3 7014 7910 1224 1071 0.21 

21 17.6 11.1 249 8.38 16.9 42.4 8684 10205 1933 1532 0.23 

22 29.3 20.1 278 10.1 40.5 82.5 8081 19905 3335 2025 0.33 

23 16.5 13.0 118 5.43 13.1 36.4 7753 8026 1978 939 0.33 

24 12.8 22.8 274 4.08 22.3 44.4 5164 6061 1647 864 0.2 

25 26.8 20.3 240 12.4 37.5 67.5 13075 16342 2701 2032 0.37 

26 18.3 11.4 128 6.15 14.4 39.8 10256 11532 2733 1226 0.39 
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Appendix 2: Extratable S and P (mg kg
-1

) in soils of the study fields 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field.No P    S 

1 1.9 30 

2 3.7 10 

3 3.3 10 

4 2.5 10 

5 2.6 10 

6 2.2 20 

7 1.6 10 

8 4.2 10 

9 2.6 30 

10 5.9 10 

11 6.3 10 

12 2.6 40 

13 2.9 60 

14 1.2 370 

15 1.0 280 

16 2.0 50 

17 0.7 30 

18 0.4 40 

19 1.1 50 

20 1.1 30 

21 1.1 10 

22 1.0 50 

23 0.9 220 

24 4.0 10 

25 0.9 90 

26 0.6 120 
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Apeendix 3: Average S (µg plant
-1

) in various leek cultivars after application of different Se 

doses forms 

 Se dose and form 

Name  of 

cultivar 

0.5 mg Se 

selenite 

2.0 mg Se 

selenite 

4.0 mg Se 

selenate 

4.0 mg Se 

selenite 

Albana 127 67 161 304 

Miracle F1 129 104 118 148 

Zeus F1 104 46 111 153 

Striker F1 97 51 134 122 

Breugel F1 121 130 115 121 

Tadorna 114 42 177 167 

Alcazar 105 68 106 112 

Belton F1 79 59 98 143 

Pretan F1 84 82 137 169 

VLimberg R 74 130 126 124 

Coolidge F1 108 169 200 76 

Artico 62 89 89 77 

Farinto 66 102 183 97 

Arkansas 129 70 94 155 

Gavia 100 79 175 116 

Toledo 70 63 153 164 

Uytterhoe E 96 155 123 266 

Engels P 106 128 103 65 

Harston F1 161 74 86 142 

Fahrenheit F1 83 154 106 90 
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