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Abstract

Let F be a field, V a 6-dimensional F-vector space and f a nondegenerate alter-
nating bilinear form on V . We consider a 14-dimensional module for the symplectic
group Sp(V, f) ∼= Sp(6,F) associated with (V, f), and classify the orbits on vectors.
For characteristic distinct from 2, this module is irreducible and isomorphic to the
Weyl module of Sp(V, f) for the fundamental weight λ3. If the characteristic is 2,
then the module is reducible as it contains an 8-dimensional submodule isomorphic
to the spin module of Sp(V, f).
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1 Introduction

Let F be a field and V a 6-dimensional F-vector space equipped with a nondegenerate
alternating bilinear form f . The symplectic group G = Sp(V, f) ∼= Sp(6,F) associated
with the symplectic space (V, f) has a natural action on the third exterior power

∧3 V
of V . The corresponding 20-dimensional FG-module has two nontrivial submodules, one
of dimension 14 which we will denote by Wand another one of dimension 6 which we
will denote by W̃ . The 14-dimensional submodule W is generated by all decomposable
trivectors of the form v1 ∧ v2 ∧ v3, where 〈v1, v2, v3〉 is a 3-space totally isotropic for f .
This module is the Weyl module of Sp(V, f) for the fundamental weight λ3, see Premet

and Suprunenko [27]. The 6-dimensional submodule W̃ consists of all trivectors α ∈
∧3 V

such that α ∧ β = 0 for all β ∈ W . The module W̃ is isomorphic to V , regarded (in a
natural way) as an FG-module.

For characteristic 0, Maschke’s theorem guarantees that the FG-module
∧3 V can be

written as the direct sum of irreducible submodules. In fact, this property holds as soon
as the characteristic of F is distinct from 2. Indeed, in case the characteristic is distinct
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from 2, the submodules W and W̃ are irreducible and
∧3 V = W ⊕ W̃ . On the other

hand, if char(F) = 2, then W̃ ⊆ W and so W cannot be irreducible. Besides W and W̃ ,

we can also consider the FG-modules on the quotient spaces
∧3 V/W and

∧3 V/W̃ . The
first module is isomorphic to V , and latter module is isomorphic to W if the characteristic
is distinct from 2. If the characteristic equals 2, then the submodule

∧3 V/W̃ is reducible

as it contains {w + W̃ |w ∈ W} as an 8-dimensional submodule. This submodule is
isomorphic to the spin module for Sp(V, f), see Gow [19].

The aim of this paper is to classify the orbits on vectors of the FG-module
∧3 V/W̃ .

The difficulty of the problem and the methods to solve it heavily depend on the char-
acteristic of F. The case where char(F) 6= 2 is the easiest one. In this case, the module
is isomorphic to W and the orbits on vectors of W were already described in the liter-
ature. For algebraically closed fields of characteristic distinct from 2, these orbits were
determined by Igusa [24, p. 1027]. For general fields, these orbits can be extracted from
a series of four papers [13, 14, 15, 16] by the authors, where they succeeded in obtain-
ing a complete classification of all orbits on vectors of the Sp(V, f)-module

∧3 V , hereby
extending a result of Popov [26] who succeeded in the same goal, but under the extra
assumption that the underlying field F is algebraically closed of characteristic distinct
from 2. The results of the papers [13, 14, 15, 16], which will be recalled in Section 2, will
play an important role the present paper to obtain the desired classification results in the
characteristic 2 case.

The problem of classifying orbits on vectors (or on subspaces) of certain group modules
has already been considered before in the literature. All finite-dimensional irreducible
rational KH-modules on which a group H has a finite number of orbits on vectors have
been determined in Guralnick et al. [20] in case H is a connected linear algebraic group
over an algebraically closed field K. For the purpose of studying the subgroup structure of
the Chevalley groups of type E6, Aschbacher studied the 27-dimensional modules for these
groups. In particular, he classified the orbits on vectors and hyperplanes of these modules,
see [1]. Cooperstein [7] classified orbits on vectors of the 57-dimensional modules for the
Chevalley groups of type E7, also with the intention to use this information to study the
subgroup structure. There are a number of other papers dealing with the problem of
classifying orbits on vectors and subspaces of certain group modules, see e.g. [3, 5]. For
group modules involving a general linear group GL(V ) acting on an exterior power of V ,
we also have a number of results dealing with the classification of orbits on vectors, see
[2, 4, 18, 21, 22, 23, 28, 29, 30, 32, 33, 34]. Some of these results however impose certain
restrictions on the underlying field.

One of the motivations for studying the problem under consideration in this paper
is the so-called isomorphism problem for hyperplanes of symplectic dual polar spaces.
With the pair (V, f), there is associated a symplectic dual polar space DW (5,F). This is
the point-line geometry whose points are the 3-spaces of V totally isotropic for f , with
each line being the collection of all totally isotropic 3-spaces that contain a given totally
isotropic 2-space. A hyperplane of a point-line geometry is a set of points, distinct from
the whole point-set, meeting each line in either one or all of its points. If the point-line
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geometry is fully embeddable in a projective space, then there is a standard way of con-
structing hyperplanes, namely by intersecting the embedded geometry with hyperplanes
of the ambient projective space. Hyperplanes that arise in this way are called classi-
cal. If the field F has at least three elements, then theoretical results of Cooperstein [8],
Kasikova and Shult [25] and Ronan [31] imply that all classical hyperplanes of DW (5,F)
must arise from the so-called Grassmann embedding of DW (5,F). Without going into
technical details, this amounts to saying that if |F| ≥ 3, then there exists some one-to-
one correspondence between the classical hyperplanes of DW (5,F) and the 1-spaces of the

quotient module
∧3 V/W̃ under consideration in the present paper. The knowledge of the

orbits of vectors of this quotient module seems indispensable to obtain a classification of
the isomorphism classes of hyperplanes of DW (5,F). Such classifications for hyperplanes
have already been obtained in the case the underlying field is perfect of characteristic 2
(De Bruyn [10]) or finite and of odd characteristic (Cooperstein and De Bruyn [9]). The
results of the present paper will allow to generalize some of the results contained in these
papers.

The group GL(V ) has a natural action on
∧3 V . Indeed, for every θ ∈ GL(V ), there

exists a unique
∧3(θ) ∈ GL(

∧3 V ) such that
∧3(θ)(v1∧v2∧v3) = θ(v1)∧ θ(v2)∧ θ(v3) for

all v1, v2, v3 ∈ V . In the sequel, we will often write θ instead of
∧3(θ), accepting this abuse

of notation for the gain of readability. Using this notation, we say that two trivectors χ1

and χ2 are G-equivalent for some subgroup G of GL(V ) if χ2 = θ(χ1) for some θ ∈ G. We
can define an equivalence relation on the vectors of

∧3 V which is coarser than Sp(V, f)-
equivalence. We say that two trivectors χ1 and χ2 are quasi-Sp(V, f)-equivalent if there

exists a θ ∈ Sp(V, f) and a χ ∈ W̃ such that χ2 = θ(χ1) + χ. Obviously, there is a
bijective correspondence between the quasi-Sp(V, f)-equivalence classes and the orbits on

vectors of the FG-module
∧3 V/W̃ . In view of this, we prefer to state our main results in

terms of this quasi-Sp(V, f)-equivalence relation. Before we can do that, we still need to
discuss a result of Revoy regarding the classification of the GL(V )-equivalence classes of
trivectors of V .

Put F∗ := F \ {0} and let F be a fixed algebraic closure of F. For every separable
quadratic extension F′ of F contained in F, we choose one pair (aF′ , bF′) ∈ F2 such that the
quadratic polynomial X2 − aF′X − bF′ ∈ F[X] is irreducible and F′ ⊆ F is the quadratic
extension of F defined by this polynomial. In general, there are many possibilities for
(aF′ , bF′), but throughout this paper (aF′ , bF′) will be a fixed choice among all these possi-
bilities. For every nonseparable quadratic extension F′ ⊆ F of F, we put aF′ := 0 and we
choose a nonsquare bF′ in F such that F′ ⊆ F is the quadratic extension of F defined by
the irreducible quadratic polynomial X2 + bF′ ∈ F[X]. There are many possibilities for
bF′ , but throughout this paper bF′ will be a fixed choice among all these possibilities. Put

Ψ := {(aF′ , bF′) |F′ ⊆ F is a separable quadratic extension of F},
Ψ′ := {bF′ |F′ ⊆ F is a nonseparable quadratic extension of F}.

Let {v1, v2, v3, v4, v5, v6} be a fixed basis of V . For every quadratic extension F′ of F
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contained in F, we have bF′ 6= 0 and we define

χ∗F′ := λF′ · v1 ∧ v2 ∧ v3 + µF′ · v4 ∧ v5 ∧ v6 + (v1 + v4) ∧ (v2 + v5) ∧ (v3 + v6),

where λF′ := aF′ + bF′ − 1 and µF′ :=
1−aF′−bF′

bF′
.

A complete classification of all GL(V )-equivalence classes of trivectors of V was ob-
tained by Revoy [29].

Proposition 1.1 ([29]) Let {v1, v2, . . . , v6} be the fixed basis of V as above. Then every
nonzero trivector of V is GL(V )-equivalent with precisely one of the following vectors:

(A) v1 ∧ v2 ∧ v3;
(B) v1 ∧ v2 ∧ v3 + v1 ∧ v4 ∧ v5;
(C) v1 ∧ v2 ∧ v3 + v4 ∧ v5 ∧ v6;
(D) v1 ∧ v2 ∧ v4 + v1 ∧ v3 ∧ v5 + v2 ∧ v3 ∧ v6;
(E) χ∗F′ for some quadratic extension F′ of F contained in F.

If F′1 and F′2 are two distinct quadratic extensions of F contained in F, then the trivectors
χ∗F′

1
and χ∗F′

2
are not GL(V )-equivalent.

Let X ∈ {A,B,C,D,E}. A nonzero trivector of V is said to be of Type (X) if it is GL(V )-
equivalent with (one of) the trivector(s) described in (X) of Proposition 1.1. It should be
mentioned that the description of the trivectors of Type (E) in terms of the parameters
λF′ and µF′ is not taken from Revoy’s paper [29], but from the paper [12] of one of the
authors. A complete classification of all GL(V )-equivalence classes of trivectors of V was
also obtained by a number of other people under certain assumptions of the underlying
field F, see for instance Cohen and Helminck [4] and Reichel [28].

The next two theorems give a complete classification of all quasi-Sp(V, f)-equivalence
classes in the case the characteristic of F is distinct from 2. These two theorems will be
proved in Section 2 and are an almost immediate consequence of the classification of the
Sp(V, f)-equivalence classes of trivectors. In the remainder of this introductory section,
(e1, f1, e2, f2, e3, f3) will denote a fixed hyperbolic basis of the symplectic space (V, f),
that means that f(ei, ej) = f(fi, fj) = 0 and f(ei, fj) = δij for all i, j ∈ {1, 2, 3}.

Theorem 1.2 (Section 2) Suppose char(F) 6= 2. Then every trivector of V is quasi-
Sp(V, f)-equivalent with (at least) one of the following trivectors:

(Q1) the zero vector of
∧3 V ;

(Q2) χA1 = e1 ∧ e2 ∧ e3;

(Q3) χB4(λ) = e1 ∧ e2 ∧ e3 + λ · e1 ∧ f2 ∧ f3 for some λ ∈ F∗;

(Q4) χC1(λ) = e1 ∧ e2 ∧ e3 + λ · f1 ∧ f2 ∧ f3 for some λ ∈ F∗;

(Q5) χD3(λ1, λ2) = e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ f1 + λ2 · e3 ∧ e1 ∧ f2 for some λ1, λ2 ∈ F∗;
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(Q6) χE1(a, b, h1, h2, h3) = 2 · e1 ∧ e2 ∧ e3 + a ·
(
h1 · f1 ∧ e2 ∧ e3 + h2 · e1 ∧ f2 ∧ e3 + h3 ·

e1 ∧ e2 ∧ f3
)

+ (a2 + 2b) ·
(
h1h2 · f1 ∧ f2 ∧ e3 + h1h3 · f1 ∧ e2 ∧ f3 + h2h3 · e1 ∧ f2 ∧

f3

)
+ h1h2h3a(a2 + 3b) · f1 ∧ f2 ∧ f3 for some (a, b) ∈ Ψ and some h1, h2, h3 ∈ F∗.

In the case char(F) 6= 2, a trivector of V is said to be of Type (Qi), i ∈ {1, 2, . . . , 6}, if it
is quasi-Sp(V, f)-equivalent with (one of) the trivector(s) defined in (Qi) of Theorem 1.2.

Theorem 1.3 (Section 2) Suppose char(F) 6= 2.

• Let i, j ∈ {1, 2, . . . , 6} with i 6= j. Then no trivector of Type (Qi) is quasi-Sp(V, f)-
equivalent with a trivector of Type (Qj).

• Let λ, λ′ ∈ F∗. Then the two trivectors χB4(λ) and χB4(λ
′) of V are quasi-Sp(V, f)-

equivalent if and only if λ
λ′

is a square in F.

• Let λ, λ′ ∈ F∗. Then the two trivectors χC1(λ) and χC1(λ
′) of V are quasi-Sp(V, f)-

equivalent if and only if λ′ ∈ {λ,−λ}.

• Let λ1, λ2, λ
′
1, λ
′
2 ∈ F∗. Then the two trivectors χD3(λ1, λ2) and χD3(λ

′
1, λ
′
2) of

V are quasi-Sp(V, f)-equivalent if and only if the matrices diag(λ1, λ2, λ1λ2) and
diag(λ′1, λ

′
2, λ
′
1λ
′
2) are congruent, i.e. if and only if there exists a nonsingular (3×3)-

matrix A over F such that diag(λ1, λ2, λ1λ2) = A · diag(λ′1, λ
′
2, λ
′
1λ
′
2) · AT .

• Let h1, h2, h3, h
′
1, h
′
2, h
′
3 ∈ F∗ and (a, b), (a′, b′) ∈ Ψ. Then the two trivectors χE1(a, b,

h1, h2, h3) and χE1(a
′, b′, h′1, h

′
2, h
′
3) of V are quasi-Sp(V, f)-equivalent if and only if

(a, b) = (a′, b′) and there exists a 3×3-matrix A over F′ with determinant equal to 1
such that A·diag(h1, h2, h3)·(Aψ)T is equal to diag(h′1, h

′
2, h
′
3) or diag(−h′1,−h′2,−h′3).

Here, F′ ⊆ F is the quadratic extension of F determined by the irreducible quadratic
polynomial X2−aX−b of F[X] and ψ is the unique nontrivial element of the Galois
group Gal(F′/F).

In Theorem 1.3, diag(h1, h2, h3) denotes the (3× 3)-diagonal matrix whose (i, i)-th entry
is equal to hi for every i ∈ {1, 2, 3}. In the next two theorems, we describe the obtained
classification results for the quasi-Sp(V, f)-equivalence classes in the case the characteristic
of the field F is equal to 2. These two theorems will be proved in Section 4.

Theorem 1.4 (Section 4) Suppose char(F) = 2. Let χ be a trivector of V which is
quasi-Sp(V, f)-equivalent with a trivector of Type (A), (B), (C) or (D). Then χ is quasi-
Sp(V, f)-equivalent with (at least) one of the following trivectors:

(Q1′) the zero vector of
∧3 V ;

(Q2′) χA1 = e1 ∧ e2 ∧ e3;
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(Q3′) χA2 = e1 ∧ e2 ∧ f2;

(Q4′) χB4(λ) = e1 ∧ e2 ∧ e3 + λ · e1 ∧ f2 ∧ f3 for some nonsquare λ of F;

(Q5′) χB5(λ) = λ · e1 ∧ e2 ∧ f2 + e1 ∧ (e2 − e3) ∧ (f2 + f3) for some λ ∈ F such that the
polynomial X2 + λX + 1 ∈ F[X] is irreducible;

(Q6′) χC1(λ) = e1 ∧ e2 ∧ e3 + λ · f1 ∧ f2 ∧ f3 for some λ ∈ F∗;

(Q7′) χD2(λ) = λ · e1 ∧ e2 ∧ f3 + e2 ∧ f1 ∧ e3 + f1 ∧ e1 ∧ f2 for some λ ∈ F∗;

(Q8′) χD3(λ1, λ2) = e1∧e2∧f3+λ1 ·e2∧e3∧f1+λ2 ·e3∧e1∧f2 for some λ1, λ2 ∈ F∗ such that
the equation λ1X

2 + λ2Y
2 +Z2 = 0 has no solutions for (X, Y, Z) ∈ F3 \ {(0, 0, 0)};

(Q9′) χD4(λ1, λ2) = e1∧e2∧f3+λ1 ·e2∧e3∧(f1+f3)+λ2 ·e3∧e1∧f2 for some λ1, λ2 ∈ F∗.

In the case char(F) = 2, a trivector of V is said to be of Type (Qi′), i ∈ {1, 2, . . . , 9}, if
it is quasi-Sp(V, f)-equivalent with (one of) the trivector(s) defined in (Qi′) of Theorem
1.4. Two (3× 3)-matrices A1 and A2 over F are called pseudo-congruent if there exists a
nonsingular (3 × 3)-matrix M over F such that the matrix A1 −MA2M

T is alternating,
i.e. skew-symmetric and having all diagonal elements equal to 0. The relation of being
pseudo-congruent defines an equivalence relation of the set of all (3× 3)-matrices over F.

Theorem 1.5 (Section 4) Suppose char(F) = 2.

• Let i, j ∈ {1, 2, . . . , 9} with i 6= j. Then no trivector of Type (Qi′) is quasi-Sp(V, f)-
equivalent with a trivector of Type (Qj′).

• Let λ and λ′ be two nonsquares of F. Then the two trivectors χB4(λ) and χB4(λ
′) are

quasi-Sp(V, f)-equivalent if and only if the polynomials X2 + λ and X2 + λ′ define
the same quadratic extension of F in F.

• Let λ and λ′ be two elements of F such that the polynomials X2 + λX + 1 ∈ F[X]
and X2 + λ′X + 1 ∈ F[X] are irreducible. Then the two trivectors χB5(λ) and
χB5(λ

′) are quasi-Sp(V, f)-equivalent if and only if the polynomials X2 + λX + 1
and X2 + λ′X + 1 define the same quadratic extension of F in F.

• Let λ, λ′ ∈ F∗. Then the two trivectors χC1(λ) and χC1(λ
′) are quasi-Sp(V, f)-

equivalent if and only if λ = λ′.

• Let λ, λ′ ∈ F∗. Then the two trivectors χD2(λ) and χD2(λ
′) are quasi-Sp(V, f)-

equivalent if and only if λ = λ′.

• Let λ1, λ2, λ
′
1, λ
′
2 ∈ F∗ such that none of the equations λ1X

2 + λ2Y
2 + Z2 = 0 and

λ′1X
2 + λ′2Y

2 + Z2 = 0 has solutions for (X, Y, Z) ∈ F3 \ {(0, 0, 0)}. Then the two
trivectors χD3(λ1, λ2) and χD3(λ

′
1, λ
′
2) are quasi-Sp(V, f)-equivalent if and only if

there exists a µ ∈ F∗ such that the matrices diag(µλ1, µλ2, µ) and diag(λ′1, λ
′
2, 1) are

pseudo-congruent.
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• Let λ1, λ2, λ
′
1, λ
′
2 ∈ F∗. Then the two trivectors χD4(λ1, λ2) and χD4(λ

′
1, λ
′
2) are

quasi-Sp(V, f)-equivalent if and only if there exists a µ ∈ F∗ such that the matrices µλ1 0 µλ1
0 µλ2 0
0 0 µ

 and

 λ′1 0 λ′1
0 λ′2 0
0 0 1


are pseudo-congruent.

It should be mentioned that the classification of the quasi-Sp(V, f)-equivalence classes is
incomplete in the characteristic 2 case, as it does not include the case of trivectors of Type
(E). It could be that (for certain fields) some (if not all) of the trivectors of Type (E)
are quasi-Sp(V, f)-equivalent with a trivector of Type (A), (B), (C) or (D). In the final
remark of this paper, we will show that this is always the case for some of the trivectors
of Type (E).

Suppose F is a finite field of order q. For q odd, a classification of all quasi-Sp(V, f)-
equivalence classes (or equivalently, Sp(V, f)-equivalence classes contained in W ) can be
found in [9] along with information about the stabilizers of the trivectors. For q even, F
is a perfect field. For perfect fields of characteristic 2, it can be shown that any nonzero
trivector is quasi-Sp(V, f)-equivalent with a trivector of Type (A), (B) or (C) (see [10] for
a discussion using the connection with hyperplanes of DW (5,F)) and so our results here
along with [10] offer a complete classification of the quasi-Sp(V, f)-equivalence classes for
those fields.

The classification results obtained in the present paper rely on the classification of the
Sp(V, f)-equivalence classes of trivectors of V . This lengthy classification, which was
realized in a series of four papers [13, 14, 15, 16] by the authors, will be recalled in
Section 2. This classification will immediately be used in Section 2 to determine all
quasi-Sp(V, f)-equivalence classes in the case char(F) 6= 2. The case char(F) = 2 is more
complicated and will be treated in Section 4. Section 3 is devoted to developing the tools
that will be necessary to obtain the classification results in the characteristic 2 case.

2 The classification of the Sp(V, f )-equivalence classes

of trivectors

We continue with the notation introduced in Section 1. So, V denotes a 6-dimensional
vector space over a field F equipped with a nondegenerate alternating bilinear form f , and
(e1, f1, e2, f2, e3, f3) denotes a fixed hyperbolic basis of (V, f). In a series of four papers
([13, 14, 15, 16]), the authors obtained a complete classification of all Sp(V, f)-equivalence
classes of nonzero trivectors of V . This classification is summarized in Tables 1 and 2.

A trivector of V is said to be of Type (X) ∈ {(A1), (A2), . . . , (E2′), (E3′)} if it is Sp(V, f)-
equivalent with (one of) the trivector(s) mentioned in (X) of the tables. The trivectors
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(A1) χA1 := e1 ∧ e2 ∧ e3
(A2) χA2 := e1 ∧ e2 ∧ f2
(B1) χB1 := e1 ∧ e2 ∧ e3 + e1 ∧ f1 ∧ f3
(B2) χB2 := e1 ∧ e2 ∧ f2 + e1 ∧ f1 ∧ e3
(B3) χB3 := e1 ∧ e2 ∧ f2 + e1 ∧ e3 ∧ f3
(B4) χB4(λ) := e1 ∧ e2 ∧ e3 + λ · e1 ∧ f2 ∧ f3 for some λ ∈ F∗

λ/λ′ is a square in F
(B5) χB5(λ) := λ · e1 ∧ e2 ∧ f2 + e1 ∧ (e2 − e3) ∧ (f2 + f3) for some λ ∈ F∗

λ = λ′

(C1) χC1(λ) := e1 ∧ e2 ∧ e3 + λ · f1 ∧ f2 ∧ f3 for some λ ∈ F∗
λ′ ∈ {λ,−λ}

(C2) χC2(λ) := f1 ∧ (e2 + e3) ∧ (f2 − f3) + λ · e1 ∧ e2 ∧ f2 for some λ ∈ F∗
λ = λ′

(C3) χC3(λ) := e1 ∧ e2 ∧ f2 + λ · f1 ∧ e3 ∧ f3 for some λ ∈ F∗
λ′ ∈ {λ,−λ}

(C4) χC4(λ) := f1 ∧ e3 ∧ (e2 + f3) + λ · e1 ∧ e2 ∧ f2 for some λ ∈ F∗
λ′ ∈ {λ,−λ}

(C5) χC5(λ) := e1 ∧ e3 ∧ (f3 + f2) + λ · e2 ∧ f3 ∧ (f1 + e3) for some λ ∈ F∗
λ′ ∈ {λ,−λ}

(C6) χC6(λ, ε) := f1 ∧ (e2 + e3) ∧ (f2 + εf3) + λ · e1 ∧ e2 ∧ f2 for some λ ∈ F∗
and some ε ∈ F \ {0,−1}
ε = ε′ and λ′ ∈ {λ,−λ}

(D1) χD1 := e1 ∧ e2 ∧ f2 + e2 ∧ f1 ∧ e3 + f1 ∧ e1 ∧ f3
(D2) χD2(λ) := λ · e1 ∧ e2 ∧ f3 + e2 ∧ f1 ∧ e3 + f1 ∧ e1 ∧ f2 for some λ ∈ F∗

λ = λ′

(D3) χD3(λ1, λ2) := e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ f1 + λ2 · e3 ∧ e1 ∧ f2 for some λ1, λ2 ∈ F∗
the matrices diag(λ1, λ2, λ1λ2) and diag(λ′1, λ

′
2, λ
′
1λ
′
2) are congruent

(D4) χD4(λ1, λ2) := e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ (f1 + f3) + λ2 · e3 ∧ e1 ∧ f2
for some λ1, λ2 ∈ F∗
λ1 = λ′1 and there exist X, Y ∈ F such that X2 + λ1XY + λ1Y

2 = λ′2/λ2

(D5) χD5(λ) := e1 ∧ e2 ∧ f3 + λ · e2 ∧ e3 ∧ (f1 + f2 + f3)− e3 ∧ e1 ∧ f2 for some λ ∈ F∗
1/λ+ 1/λ′ is of the form X2 +X for some X ∈ F

(D6) (only if char(F) 6= 2) χD6 := −e1 ∧ e2 ∧ f2 + e2 ∧ e3 ∧ f1 + e3 ∧ e1 ∧ f3
(D7) (only if |F| = 2) χD7 := e1 ∧ e2 ∧ f2 + e2 ∧ e3 ∧ (f1 + f3) + e3 ∧ e1 ∧ f3

Table 1: The Sp(V, f)-equivalence classes of trivectors of Type A, B, C and D
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(E1) χE1(a, b, h1, h2, h3) := 2 · e1 ∧ e2 ∧ e3 + h1h2h3a(a2 + 3b) · f1 ∧ f2 ∧ f3 + (a2 + 2b)·(
h1h2 · f1 ∧ f2 ∧ e3 + h1h3 · f1 ∧ e2 ∧ f3 + h2h3 · e1 ∧ f2 ∧ f3

)
+ a ·

(
h1 · f1 ∧ e2 ∧ e3

+h2 · e1 ∧ f2 ∧ e3 + h3 · e1 ∧ e2 ∧ f3
)

for some (a, b) ∈ Ψ and some h1, h2, h3 ∈ F∗

(a, b) = (a′, b′) and there exists a 3× 3-matrix A over F′ with det(A) = 1 and an

ε ∈ {1,−1} such that A · diag(h1, h2, h3) · (Aψ)T = ε · diag(h′1, h
′
2, h
′
3). Here, F′ ⊆ F

is the extension of F determined by X2 − aX − b ∈ F[X] and 1 6= ψ ∈ Gal(F′/F)

(E2) χE2(a, b, k) := k ·
(
f1 ∧ e2 ∧ f3 − b · f1 ∧ f2 ∧ e3 + a · f1 ∧ e3 ∧ f3

)
+e1 ∧ e2 ∧ f2 + e1 ∧ e3 ∧ f3 for some (a, b) ∈ Ψ and some k ∈ F∗
(a, b) = (a′, b′) and k′ ∈ {k,−k}

(E3) χE3(a, b, k, h) := k ·
(
f1 ∧ e2 ∧ f3 − b · f1 ∧ f2 ∧ e3 + a · f1 ∧ e3 ∧ f3

)
+ e1 ∧ e2 ∧ f2

+e1 ∧ e3 ∧ f3 + h · e1 ∧ f2 ∧ f3 for some (a, b) ∈ Ψ and some k, h ∈ F∗
(a, b) = (a′, b′) and there exist a σ ∈ {1,−1} and X, Y ∈ F such that k′ = σk and
h′ = σh(X2 + aXY − bY 2)

(E4) χE4(a, b, k, h1, h2) := (1− h1h2(a2 + 4b)) · e1 ∧ e2 ∧ f2 + (1 + h1h2(a
2 + 4b))·

e1 ∧ e3 ∧ f3 + h1(1− h1h2(a2 + 4b)) · e1 ∧ f2 ∧ f3 + (a2 + 4b)h2 · e1 ∧ e2 ∧ e3
+k ·

(
f1 ∧ e2 ∧ f3 − b(1− h1h2(a2 + 4b)) · f1 ∧ f2 ∧ e3 + a · f1 ∧ e3 ∧ f3

)
for some (a, b) ∈ Ψ and some k, h1, h2 ∈ F∗ satisfying h1h2(a

2 + 4b) 6= 1
(a, b) = (a′, b′), h1h2 = h′1h

′
2 and there exist X, Y, Z, U ∈ F and a σ ∈ {1,−1} such

that k′ = σk and σh′1 = h1(X
2 + aXY − bY 2) + h2(Z

2 + aZU − bU2)

(E5) χE5(a, b, k) := f1 ∧ e2 ∧ f3 + 2 · e1 ∧ f1 ∧ e2 − a · f1 ∧ e2 ∧ f2 + a · f1 ∧ e3 ∧ f3
+(a2 + b) · f1 ∧ f2 ∧ e3 + k ·

(
a · e1 ∧ f2 ∧ e3 − e1 ∧ e2 ∧ f2 + e1 ∧ e3 ∧ f3

)
+a · e1 ∧ f1 ∧ e3 for some (a, b) ∈ Ψ and some k ∈ F∗
(a, b) = (a′, b′) and k′ ∈ {k,−k}

(E1’) χ′E1(a, h1, h2, h3) := a+1
a
· e1 ∧ e2 ∧ e3 + (e1 + h1f1) ∧ (e2 + h2f2) ∧ (e3 + h3f3)

+(a+ 1)h1h2h3 · f1 ∧ f2 ∧ f3 for some a ∈ Ψ′ and some h1, h2, h3 ∈ F∗
a = a′ and there exists a 3× 3-matrix A over F′ with det(A) = 1 such that

diag(h′1, h
′
2, h
′
3) = A · diag(h1, h2, h3) · AT . Here, F′ ⊆ F is the extension of F

determined by X2 + a ∈ F[X]

(E2’) χ′E2(a, k, h1, h2) := 1
a
· e1 ∧ (e2 + h1(a+ 1)f3) ∧ f2 + k · f1 ∧ e3 ∧ (h2(a+ 1)e2 + f3)

+ 1
(a+1)2

· (e1 + kf1) ∧ (e2 + (a+ 1)e3 + h1(a+ 1)f3) ∧ (h2(a+ 1)e2 + (a+ 1)f2 + f3)

for some a ∈ Ψ′ and some k, h1, h2 ∈ F satisfying k 6= 0 and h1h2(a+ 1)2 6= 1
a = a′, k = k′, h1h2 = h′1h

′
2 and there exist X, Y, Z, U ∈ F such that

h′1 = h1(X
2 + aY 2) + h2(Z

2 + aU2) + (XU + Y Z)

(E3’) χ′E3(a, h1, h2) := 1
a
· e1 ∧ (e2 + e3) ∧ f2 + e2 ∧ f1 ∧ (e1 + h1f3) + 1

a+1
· (e1 + e2)∧

(e3 + h1f3) ∧
(

(a+ 1)2h2e1 + f1 + f2

)
for some a ∈ Ψ′ and some (h1, h2) ∈ F∗ × F

a = a′, h1 = h′1 and h2 + h′2 is of the form h1(X
2 + aY 2) + Y for some X, Y ∈ F

Table 2: The Sp(V, f)-equivalence classes of trivectors of Type E
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of Type (D7) only exist if |F| = 2, which seems somewhat unnatural. The reason is that
we have aimed to give a classification which is valid for all characteristics. If we had
only restricted to the characteristic 2 case, a “more natural” description can be given by
replacing (D5) and (D7) by the following:

(D5′) χD5(λ) := e1 ∧ e2 ∧ f3 + λ · e2 ∧ e3 ∧ (f1 + f2 + f3) − e3 ∧ e1 ∧ f2 for some λ ∈ F∗
such that λ−1 is not of the form X2 +X for some X ∈ F;

(D7′) χD7 := e1 ∧ e2 ∧ f2 + e2 ∧ e3 ∧ (f1 + f3) + e3 ∧ e1 ∧ f3.

The two tables divide the nonzero trivectors of V into 28 families (which are subfamilies
of those mentioned in Proposition 1.1; hence the names for the types). In [13, 14, 15, 16],
it was also shown that trivectors belonging to distinct families can never be Sp(V, f)-
equivalent. In case a family of trivectors has at least two members, the tables also mention
a condition that indicates when two trivectors of the same family are equivalent. We
illustrate the interpretation of that condition by means of a concrete example, namely
that of the (E3)-family: If (a, b), (a′, b′) ∈ Ψ and k, h, k′, h′ ∈ F∗, then the two trivectors
χE3(a, b, k, h) and χE3(a

′, b′, k′, h′) are Sp(V, f)-equivalent if and only if (a, b) = (a′, b′) and
there exist a σ ∈ {1,−1} and X, Y ∈ F such that k′ = σk and h′ = σh(X2 + aXY − bY 2)
(we use accents for the parameters of the second member of the family).

The subspace W defined in Section 1 is the subspace of
∧3 V generated by the 14 trivectors

e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ f3, e1 ∧ f2 ∧ e3, e1 ∧ f2 ∧ f3, f1 ∧ e2 ∧ e3, f1 ∧ e2 ∧ f3, f1 ∧ f2 ∧ e3,
f1 ∧ f2 ∧ f3, e1 ∧ (e2 ∧ f2 − e3 ∧ f3), f1 ∧ (e2 ∧ f2 − e3 ∧ f3), e2 ∧ (e1 ∧ f1 − e3 ∧ f3),
f2 ∧ (e1 ∧ f1 − e3 ∧ f3), e3 ∧ (e1 ∧ f1 − e2 ∧ f2), f3 ∧ (e1 ∧ f1 − e2 ∧ f2). So, the nonzero
trivectors contained in W are precisely the trivectors of Type A1, B4, C1, D3, E1, E1’
and (only if the characteristic of F is equal to 2) B3.

The subspace W̃ defined in Section 1 is the subspace of
∧3 V generated by the 6

trivectors e1∧(e2∧f2+e3∧f3), f1∧(e2∧f2+e3∧f3), e2∧(e1∧f1+e3∧f3), f2∧(e1∧f1+e3∧f3),
e3 ∧ (e1 ∧ f1 + e2 ∧ f2), f3 ∧ (e1 ∧ f1 + e2 ∧ f2). The nonzero trivectors contained in W̃ are
precisely the trivectors of Type B3.

Suppose now that char(F) 6= 2. Then every trivector χ ∈
∧3 V can be written in a unique

way as χ1 + χ2 where χ1 ∈ W and χ2 ∈ W̃ . We define πW (χ) := χ1 and πW̃ (χ) := χ2.

For every θ ∈ Sp(V, f) and every χ ∈
∧3 V , we have θ(χ) = θ(πW (χ)) + θ(πW̃ (χ)) where

θ(πW (χ)) ∈ W and θ(πW̃ (χ)) ∈ W̃ . So, if θ ∈ Sp(V, f), then θ ◦ πW = πW ◦ θ and
θ ◦ πW̃ = πW̃ ◦ θ.

Proposition 2.1 Suppose char(F) 6= 2. Then every trivector χ of V is quasi-Sp(V, f)-
equivalent with πW (χ). Moreover, two trivectors χ1 and χ2 of V are quasi-Sp(V, f)-
equivalent if and only if πW (χ1) and πW (χ2) are Sp(V, f)-equivalent.

Proof. The first claim follows from the fact that χ = πW (χ)+πW̃ (χ), where πW̃ (χ) ∈ W̃ .
As for the second claim, the two trivectors πW (χ1) and πW (χ2) are Sp(V, f)-equivalent if
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and only if πW (χ2) = θ(πW (χ1)) = πW (θ(χ1)) for some θ ∈ Sp(V, f), i.e. if and only if

there exist a θ ∈ Sp(V, f) and a χ ∈ W̃ such that χ2 = θ(χ1) + χ. �

Theorems 1.2 and 1.3 are immediate consequences of Proposition 2.1 and the classification
mentioned in Tables 1 and 2.

3 Tools

We continue with the notation introduced in Section 1. Recall that V is a 6-dimensional
vector space over a field F equipped with a nondegenerate alternating bilinear form f .

The following lemma will be useful during the classification of the quasi-Sp(V, f)-
equivalence classes of trivectors in the case char(F) = 2. A proof of it can be found in De
Bruyn and Kwiatkowski [13, Lemma 2.9].

Lemma 3.1 ([13]) Let U be a 4-dimensional vector space over the field F and let {u1, u2,
u3, u4}, {u′1, u′2, u′3, u′4} be two bases of U such that u1 ∧ u2 + u3 ∧ u4 = u′1 ∧ u′2 + u′3 ∧ u′4.
Then u1 ∧ u2 ∧ u3 ∧ u4 = u′1 ∧ u′2 ∧ u′3 ∧ u′4.

If (e1, f1, e2, f2, e3, f3) is a hyperbolic basis of (V, f), then

(1) for every permutation σ of {1, 2, 3}, also (eσ(1), fσ(1), eσ(2), fσ(2), eσ(3), fσ(3)) is a hy-
perbolic basis of (V, f);

(2) for every λ ∈ F∗, also ( e1
λ
, λf1, e2, f2, e3, f3) is a hyperbolic basis of (V, f);

(3) for every λ ∈ F, also (e1 +λe2, f1, e2,−λf1 +f2, e3, f3) is a hyperbolic basis of (V, f);

(4) for every λ ∈ F, also (e1, f1, e2, f2, e3, f3 + λe3) is a hyperbolic basis of (V, f);

(5) for every λ ∈ F, also (e1, f1, e2, f2, e3 + λf3, f3) is a hyperbolic basis of (V, f).

For every i ∈ {1, 2, . . . , 5}, let Ωi denote the set of all ordered pairs (B1, B2) of hyperbolic
bases of (V, f) such that B2 can be obtained from B1 as described in (i) above. The
following lemma was proved in De Bruyn [11, Lemma 2.1].

Lemma 3.2 ([11]) If B and B′ are two hyperbolic bases of (V, f), then there exist hy-
perbolic bases B0, B1, . . . , Bk of (V, f) for some k ≥ 0 such that B0 = B, Bk = B′ and
(Bi−1, Bi) ∈ Ω1 ∪ Ω2 ∪ · · · ∪ Ω5 for every i ∈ {1, 2, . . . , k}.

The properties mentioned in Lemmas 3.3 and 3.4 below are known. (One could give
explicit descriptions of π and π′ with respect to those bases of

∧3 V and
∧4 V defined by

some specific hyperbolic basis (e1, f1, e2, f2, e3, f3) of (V, f) and use Lemma 3.2 to show
that these descriptions are independent of the chosen hyperbolic basis.)
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Lemma 3.3 There exists a unique linear map π :
∧3 V → V for which π(W ) = {o} and

π(e1 ∧ e2 ∧ f2) = e1 for any three linearly independent vectors e1, e2, f2 ∈ V satisfying
f(e1, e2) = f(e1, f2) = 0 and f(e2, f2) = 1.

Lemma 3.4 There exists a unique linear map π′ :
∧4 V →

∧2 V mapping

• e1 ∧ f1 ∧ e2 ∧ e3 to e2 ∧ e3 for any four linearly independent vectors e1, f1, e2 and e3
of V satisfying f(e1, f1) = 1, f(e2, e3) = 0 and {e1, f1} ⊆ e

⊥f

2 ∩ e
⊥f

3 ;

• e1 ∧ f1 ∧ e2 ∧ f2 to e1 ∧ f1 + e2 ∧ f2 for any four linearly independent vectors e1, f1,

e2 and f2 of V satisfying f(e1, f1) = f(e2, f2) = 1 and {e1, f1} ⊆ e
⊥f

2 ∩ f
⊥f

2 .

Above, we have already mentioned that V and W̃ are isomorphic as Sp(V, f)-modules.
We now describe an explicit isomorphism. If v is a nonzero vector of V , then we define

φ(v) := v ∧ (e2 ∧ f2 + e3 ∧ f3),

where the vectors e2, f2, e3, f3 are chosen in such a way that (v, w, e2, f2, e3, f3) is a hyper-
bolic basis of (V, f) for a certain vector w ∈ V . It can be shown that φ(v) is independent
of the chosen hyperbolic basis (v, w, e2, f2, e3, f3) of (V, f). We also put φ(o) equal to the

zero vector of
∧3 V . Then φ : V → W̃ is a linear isomorphism between the 6-dimensional

vector spaces V and W̃ , and φ ◦ θ = θ ◦ φ for every θ ∈ Sp(V, f).

The following lemma is a combination of Lemma 5.4 and Corollary 5.5 of De Bruyn and
Kwiatkowski [15].

Lemma 3.5 ([15]) Let A and A′ be two nonsingular (3 × 3)-matrices over F, and let
(e1, f1, e2, f2, e3, f3) be a hyperbolic basis of (V, f). Put [w1, w2, w3]

T := A · [f1, f2, f3]T
and [w′1, w

′
2, w

′
3]
T := A′ · [f1, f2, f3]T . Then e1 ∧ e2 ∧ w3 + e2 ∧ e3 ∧ w1 + e3 ∧ e1 ∧ w2 and

e1 ∧ e2 ∧ w′3 + e2 ∧ e3 ∧ w′1 + e3 ∧ e1 ∧ w′2 are Sp(V, f)-equivalent if and only if one of the
following two equivalent properties are satisfied:
• there exists a nonsingular (3× 3)-matrix M over F such that A′ = 1

det(M)
·MAMT ;

• the matrices A
det(A)

and A′

det(A′)
are congruent.

For every v ∈ V \ {o}, let Wv denote the subspace of
∧3 V generated by all trivectors

v1 ∧ v2 ∧ v3, where v1, v2, v3 ∈ V such that 〈v1, v2, v3〉 is a totally isotropic subspace
containing v.

Lemma 3.6 For every v ∈ V \ {o}, we have dim(Wv) = 5.

Proof. This is a known fact. If we choose a hyperbolic basis (e1, f1, e2, f2, e3, f3) of (V, f)
such that v = e1, then we would have Wv = 〈e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ f3, e1 ∧ f2 ∧ e3, e1 ∧ f2 ∧
f3, e1 ∧ (e2 ∧ f2 − e3 ∧ f3)〉. �
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Lemma 3.7 Let v ∈ V \{o} and 〈v(1)1 , v
(1)
2 , v

(1)
3 〉 a totally isotropic 3-dimensional subspace

containing v. Then there exist three 3-dimensional totally isotropic subspaces 〈v(2)1 , v
(2)
2 ,

v
(2)
3 〉, 〈v

(3)
1 , v

(3)
2 , v

(3)
3 〉 and 〈v(4)1 , v

(4)
2 , v

(4)
3 〉 containing v and intersecting 〈v(1)1 , v

(1)
2 , v

(1)
3 〉 in a

subspace of dimension 2 such that dim(〈v(j)1 ∧v
(j)
2 ∧v

(j)
3 | j ∈ {1, 2, 3, 4}〉) = 4. Moreover, for

any three totally isotropic subspaces that have been chosen in this way the following holds:
if 〈v(5)1 , v

(5)
2 , v

(5)
3 〉 is a 3-dimensional totally isotropic subspace intersecting 〈v(1)1 , v

(1)
2 , v

(1)
3 〉

in 〈v〉, then Wv = 〈v(j)1 ∧ v
(j)
2 ∧ v

(j)
3 | j ∈ {1, 2, 3, 4, 5}〉.

Proof. If the claim of the lemma is valid if (v, v
(1)
1 , v

(1)
2 , v

(1)
3 ) = (w,w1, w2, w3), then

the claim is also valid if (v, v
(1)
1 , v

(1)
2 , v

(1)
3 ) were equal to (w,w′1, w

′
2, w

′
3), where w′1, w

′
2

and w′3 are three vectors of V such that 〈w′1, w′2, w′3〉 = 〈w1, w2, w3〉. So, without loss

of generality, we may suppose that v = v
(1)
1 . Now, we can choose a hyperbolic basis

(e1, f1, e2, f2, e3, f3) of (V, f) such that v
(1)
1 = e1, v

(1)
2 = e2 and v

(1)
3 = e3. Then Wv =

〈e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ f3, e1 ∧ f2 ∧ e3, e1 ∧ f2 ∧ f3, e1 ∧ (e2 ∧ f2 − e3 ∧ f3)〉. If 〈v(2)1 , v
(2)
2 ,

v
(2)
3 〉, 〈v

(3)
1 , v

(3)
2 , v

(3)
3 〉 and 〈v(4)1 , v

(4)
2 , v

(4)
3 〉 are three 3-dimensional totally isotropic subspaces

containing v and intersecting 〈v(1)1 , v
(1)
2 , v

(1)
3 〉 in subspaces of dimension 2, then we have

〈v(j)1 ∧v
(j)
2 ∧v

(j)
3 | j ∈ {1, 2, 3, 4}〉 ⊆ 〈e1∧e2∧e3, e1∧e2∧f3, e1∧f2∧e3, e1∧(e2∧f2−e3∧f3)〉.

So, we must show that we can choose these subspaces in such a way that we have equality.
This is realized by making the following choices:

v
(2)
1 = v

(3)
1 = v

(4)
1 = e1, v

(2)
2 = e2, v

(2)
3 = f3, v

(3)
2 = f2, v

(3)
3 = e3, v

(4)
2 = e2+e3, v

(4)
3 = f2−f3.

If 〈v(5)1 , v
(5)
2 , v

(5)
3 〉 is a 3-dimensional totally isotropic subspace intersecting 〈v(1)1 , v

(1)
2 , v

(1)
3 〉

in 〈v〉, then v
(5)
1 ∧ v

(5)
2 ∧ v

(5)
3 , written as a linear combination of the trivectors e1 ∧ e2 ∧ e3,

e1 ∧ e2 ∧ f3, e1 ∧ f2 ∧ e3, e1 ∧ f2 ∧ f3 and e1 ∧ (e2 ∧ f2 − e3 ∧ f3), should have a nonzero

component in e1 ∧ f2 ∧ f3, implying that Wv = 〈v(j)1 ∧ v
(j)
2 ∧ v

(j)
3 | j ∈ {1, 2, 3, 4, 5}〉. �

For every χ ∈
∧3 V , let D(χ) denote the set of all v ∈ V such that χ ∧ χ′ = 0 for every

χ′ ∈ Wv, i.e. the set of all v ∈ V such that χ ∧ v1 ∧ v2 ∧ v3 = 0 for all v1, v2, v3 ∈ V
such that 〈v1, v2, v3〉 is a totally isotropic subspace containing v. Notice that v ∈ D(χ)
for every v ∈ V such that χ ∧ v = 0. However, it is also possible that v ∈ D(χ) while
χ ∧ v 6= 0.

Lemma 3.8 For every χ ∈
∧3 V and every χ′ ∈ W̃ , we have D(χ) = D(χ+ χ′).

Proof. This follows from the fact that χ′ ∧ v1 ∧ v2 ∧ v3 = 0 for all vectors v1, v2, v3 of V
such that 〈v1, v2, v3〉 is totally isotropic. �

Lemma 3.9 If χ1 and χ2 are two quasi-Sp(V, f)-equivalent trivectors of V , then there
exists a θ ∈ Sp(V, f) such that D(χ2) = θ(D(χ1)).

Proof. Suppose χ1 and χ2 are two quasi-Sp(V, f)-equivalent trivectors. Then there exists

a θ ∈ Sp(V, f) and a χ ∈ W̃ such that χ2 = θ(χ1) + χ. Observe that χ1 ∧ v1 ∧ v2 ∧ v3 =
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0 ⇔ θ(χ1) ∧ θ(v1) ∧ θ(v2) ∧ θ(v3) = 0, v ∈ 〈v1, v2, v3〉 ⇔ θ(v) ∈ 〈θ(v1), θ(v2), θ(v3)〉 and
f(vi, vj) = 0⇔ f(θ(vi), θ(vj)) = 0 (i, j ∈ {1, 2, 3}). So, D(χ2) = D(θ(χ1)) = θ(D(χ1)). �

In the sequel of this section, we will suppose that char(F) = 2. For every hyperbolic basis
B = (e1, f1, e2, f2, e3, f3) of (V, f) and every trivector

χ = λ1 · e1 ∧ e2 ∧ e3 + µ1 · f1 ∧ f2 ∧ f3 + λ2 · e1 ∧ e2 ∧ f3 + µ2 · f1 ∧ f2 ∧ e3

+λ3 · e1 ∧ f2 ∧ e3 + µ3 · f1 ∧ e2 ∧ f3 + λ4 · e1 ∧ f2 ∧ f3 + µ4 · f1 ∧ e2 ∧ e3
+λ5 · e1 ∧ e2 ∧ f2 + µ5 · f1 ∧ e3 ∧ f3 + λ6 · e1 ∧ e3 ∧ f3 + µ6 · f1 ∧ e2 ∧ f2
+λ7 · e2 ∧ e1 ∧ f1 + µ7 · f2 ∧ e3 ∧ f3 + λ8 · e2 ∧ e3 ∧ f3 + µ8 · f2 ∧ e1 ∧ f1

+λ9 · e3 ∧ e1 ∧ f1 + µ9 · f3 ∧ e2 ∧ f2 + λ10 · e3 ∧ e2 ∧ f2 + µ10 · f3 ∧ e1 ∧ f1
of V , we define

ηB(χ) :=
10∑
i=1

λiµi.

For every hyperbolic basis B = (e1, f1, e2, f2, e3, f3) of (V, f), let BB denote the ordered
basis (e1 ∧ e2 ∧ e3, f1 ∧ f2 ∧ f3, e1 ∧ e2 ∧ f3, f1 ∧ f2 ∧ e3, e1 ∧ f2 ∧ e3, f1 ∧ e2 ∧ f3, e1 ∧ f2 ∧
f3, f1∧ e2∧ e3, e1∧ e2∧ f2, f1∧ e3∧ f3, e1∧ e3∧ f3, f1∧ e2∧ f2, e2∧ e1∧ f1, f2∧ e3∧ f3, e2∧
e3 ∧ f3, f2 ∧ e1 ∧ f1, e3 ∧ e1 ∧ f1, f3 ∧ e2 ∧ f2, e3 ∧ e2 ∧ f2, f3 ∧ e1 ∧ f1) of

∧3 V .

Proposition 3.10 Suppose char(F) = 2. Then for any two hyperbolic bases B and B′ of
(V, f), we have ηB = ηB′.

Proof. In view of Lemma 3.2, it suffices to show that ηB = ηB′ if (B,B′) ∈ Ω1 ∪ Ω2 ∪
· · ·∪Ω5. This clearly holds if (B,B′) ∈ Ω1. We will now also deal with the four remaining
cases. Suppose B = (e1, f1, e2, f2, e3, f3) and let χ be an arbitrary vector of

∧3 V .

(1) Suppose (B,B′) ∈ Ω2. Then B′ = ( e1
λ
, λf1, e2, f2, e3, f3) for some λ ∈ F∗. If

(λ1, µ1, λ2, µ2, . . . , λ10, µ10) are the coordinates of χ with respect to the ordered basis BB′ ,
then (λ1

λ
, λµ1,

λ2
λ
, λµ2,

λ3
λ
, λµ3,

λ4
λ
, λµ4,

λ5
λ
, λµ5,

λ6
λ
, λµ6, λ7, µ7, λ8, µ8, λ9, µ9, λ10, µ10) are the

coordinates of χ with respect to the ordered basis BB. So, we see that ηB′(χ) = ηB(χ).

(2) Suppose (B,B′) ∈ Ω3. Then B′ = (e1 + λe2, f1, e2, λf1 + f2, e3, f3) for some λ ∈ F.
If (λ1, µ1, λ2, µ2, . . . , λ10, µ10) are the coordinates of χ with respect to the ordered basis
BB′ , then (λ1, µ1, λ2, µ2, λ3, µ3 + λ2λ4 + λµ9 + λµ10, λ4, λ3λ

2 + µ4 + λλ9 + λλ10, λ5, µ5 +
λµ7, λ6, µ6 +λµ8, λλ5 +λ7, µ7, λλ6 +λ8, µ8, λλ3 +λ9, µ9 +λλ4, λλ3 +λ10, µ10 +λλ4) are the
coordinates of χ with respect to the ordered basis BB. One verifies that ηB(χ) = ηB′(χ).

(3) Suppose (B,B′) ∈ Ω4. Then B′ = (e1, f1, e2, f2, e3, f3 + λe3) for some λ ∈ F. If
(λ1, µ1, λ2, µ2, . . . , λ10, µ10) are the coordinates of χ with respect to the ordered bases BB′ ,
then (λ1 + λλ2, µ1, λ2, µ2 + λµ1, λ3 + λλ4, µ3, λ4, µ4 + λµ3, λ5, µ5, λ6, µ6, λ7, µ7, λ8, µ8, λ9 +
λµ10, µ9, λ10 + λµ9, µ10) are the coordinates of χ with respect to the ordered basis BB.
One verifies that ηB(χ) = ηB′(χ).
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(4) Suppose (B,B′) ∈ Ω5. Then B′ = (e1, f1, e2, f2, e3 + λf3, f3) for some λ ∈ F. If
(λ1, µ1, λ2, µ2, . . . , λ10, µ10) are the coordinates of χ with respect to the ordered basis BB′ ,
then (λ1, µ1+λµ2, λλ1+λ2, µ2, λ3, µ3+λµ4, λλ3+λ4, µ4, λ5, µ5, λ6, µ6, λ7, µ7, λ8, µ8, λ9, µ9+
λλ10, λ10, µ10 + λλ9) are the coordinates of χ with respect to the ordered basis BB. One
verifies that ηB(χ) = ηB′(χ). �

Put η := ηB where B is any hyperbolic basis of (V, f).

Corollary 3.11 Suppose char(F) = 2. Then for every trivector χ and every θ ∈ Sp(V, f),
we have η(χ) = η(θ(χ)).

Proof. Let B be an arbitrary hyperbolic basis of (V, f). Then we have η(θ(χ)) =
ηθ(B)(θ(χ)) = ηB(χ) = η(χ). �

Lemma 3.12 Suppose char(F) = 2. Then η(χ + χ′) = η(χ) for every χ ∈ W and every

χ′ ∈ W̃ .

Proof. Obviously, this holds if χ′ = 0. So, suppose χ′ 6= 0 and put χ′ = φ(v) where v
is some nonzero vector of V . There exists a hyperbolic basis B = (e1, f1, e2, f2, e3, f3) of
(V, f) such that v = e1. Let (λ1, µ1, λ2, µ2, . . . , λ10, µ10) denote the coordinates of χ with
respect to the ordered basis BB. Since χ ∈ W , we have

λ5 = λ6, µ5 = µ6, λ7 = λ8, µ7 = µ8, λ9 = λ10, µ9 = µ10.

Now, the coordinates of χ+ φ(v) with respect to BB are (λ1, µ1, λ2, µ2, λ3, µ3, λ4, µ4, λ5 +
1, µ5, λ6 + 1, µ6, λ7, µ7, λ8, µ8, λ9, µ9, λ10, µ10). So, we have η(χ + χ′) = ηB(χ + φ(v)) =
ηB(χ) + (µ5 + µ6) = ηB(χ) = η(χ). �

Corollary 3.11 and Lemma 3.12 then implies the following.

Corollary 3.13 Suppose char(F) = 2 and χ1, χ2 are two quasi-Sp(V, f)-equivalent trivec-
tors of W . Then η(χ1) = η(χ2).

Remark. The form η defines a quadratic form on
∧3 V , left invariant by Sp(V, f).

Denote by b :
∧3 V ×

∧3 V → F; (χ1, χ2) 7→ η(χ1 +χ2)− η(χ1)− η(χ2) the nondegenerate
alternating bilinear form associated to η. If η′ and b′ are the restrictions of η and b to W
and W ×W respectively, then W̃ is the radical of b′ and is totally singular for η′.

Also the following lemma will be useful in our classification.

Lemma 3.14 Suppose char(F) = 2. Let A and A′ be two nonsingular (3×3)-matrices over
F, and (e1, f1, e2, f2, e3, f3) a hyperbolic basis of (V, f). Put [w1, w2, w3]

T := A · [f1, f2, f3]T
and [w′1, w

′
2, w

′
3]
T := A′ ·[f1, f2, f3]T . If there exists a µ ∈ F∗ such that the matrices µA and

A′ are pseudo-congruent, then the two trivectors χ = e1∧e2∧w3+e2∧e3∧w1+e3∧e1∧w2

and χ′ = e1 ∧ e2 ∧ w′3 + e2 ∧ e3 ∧ w′1 + e3 ∧ e1 ∧ w′2 are quasi-Sp(V, f)-equivalent.
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Proof. Let M be a nonsingular (3 × 3)-matrix over F such that µA −MA′MT is an
alternating matrix. If we put A′′ := 1

det(M)
·(MA′MT ) and [w′′1 , w

′′
2 , w

′′
3 ]T := A′′ ·[f1, f2, f3]T ,

then χ′′ := e1∧e2∧w′′3 +e2∧e3∧w′′1 +e3∧e1∧w′′2 is Sp(V, f)-equivalent with χ′ by Lemma
3.5. Since µ

det(M)
· A − A′′ is alternating, χ′′ is quasi-Sp(V, f)-equivalent with µ

det(M)
· χ.

Now, χ and µ
det(M)

·χ are Sp(V, f)-equivalent: if θ denotes the element of Sp(V, f) mapping

(e1, f1, e2, f2, e3, f3) to ( µe1
det(M)

, det(M)·f1
µ

, µe2
det(M)

, det(M)·f2
µ

, µe3
det(M)

, det(M)·f3
µ

), then θ maps the

former trivector to the latter. We conclude that χ and χ′ are quasi-Sp(V, f)-equivalent.
�

4 Classification in the case char(F) = 2

We continue with the notation introduced in Section 1. So, V denotes a 6-dimensional
vector space over a field F which is equipped with a nondegenerate alternating bilinear
form f , and (e1, f1, e2, f2, e3, f3) denotes a fixed hyperbolic basis of (V, f). Throughout
this section, we will suppose that char(F) = 2.

Our first goal is to prove Theorem 1.4. This will be achieved in a series of lemmas (4.1
till 4.14). Table 1 shows that the trivectors of V whose type is either (A), (B), (C) or (D)
can be divided into 19 families when one studies the Sp(V, f)-equivalence between them.
After studying the coarser relation of being quasi-Sp(V, f)-equivalent, it will turn out
that a description using only nine families is already sufficient, see Corollary 4.15 (which
is precisely Theorem 1.4). Our next goal will be to show that none of these nine families
is superfluous in the description. In Lemma 4.23 (which is precisely the first claim of
Theorem 1.5), we will indeed show that trivectors belonging to distinct families (among
these nine) can never be quasi-Sp(V, f)-equivalent. This lemma implies that it suffices to
study quasi-Sp(V, f)-equivalence between trivectors belonging the same family. This will
be done in the six lemmas at the end of this section, and will prove the remaining claims
of Theorem 1.5.

Lemma 4.1 The trivector χB1 is quasi-Sp(V, f)-equivalent with the trivector χD4(1, 1).

Proof. Let θ be the element of Sp(V, f) mapping the hyperbolic basis (e1, f1, e2, f2, e3, f3)
of (V, f) to the hyperbolic basis (e2 +e3, f1 +f3, e1 +e2 +e3, f1, f2 +f3, e2) of (V, f). Then
θ maps the trivector χB1 = e1 ∧ e2 ∧ e3 + e1 ∧ f1 ∧ f3 to the trivector

(e2 + e3) ∧ (e1 + e2 + e3) ∧ (f2 + f3) + (e2 + e3) ∧ (f1 + f3) ∧ e2
= e1 ∧ (e2 + e3) ∧ (f2 + f3) + e2 ∧ e3 ∧ (f1 + f3)

= e1 ∧ e2 ∧ f3 + e2 ∧ e3 ∧ (f1 + f3) + e1 ∧ e3 ∧ f2 + e1 ∧ (e2 ∧ f2 + e3 ∧ f3)
= χD4(1, 1) + e1 ∧ (e2 ∧ f2 + e3 ∧ f3).

It follows that χB1 is quasi-Sp(V, f)-equivalent with χD4(1, 1). �

Lemma 4.2 The trivector χB2 is quasi-Sp(V, f)-equivalent with χA2.
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Proof. The trivector χB2 = e1 ∧ e2 ∧ f2 + e1 ∧ f1 ∧ e3 is quasi-Sp(V, f)-equivalent with
e1 ∧ e2 ∧ f2 + e1 ∧ f1 ∧ e3 + e3 ∧ (e1 ∧ f1 + e2 ∧ f2) = (e1 + e3) ∧ e2 ∧ f2 and the latter
trivector is Sp(V, f)-equivalent with χA2. �

The following result is obvious.

Lemma 4.3 The trivector χB3 is quasi-Sp(V, f)-equivalent with the 0-vector of
∧3 V . In

general, the trivectors quasi-Sp(V, f)-equivalent with the 0-vector of
∧3 V are precisely

the vectors of W̃ .

Lemma 4.4 For every λ ∈ F∗, the trivector χC2(λ) is quasi-Sp(V, f)-equivalent with the
trivector χD2(λ

2).

Proof. The trivector χC2(λ) = f1∧ (e2 + e3)∧ (f2− f3) +λ · e1∧ e2∧ f2 is quasi-Sp(V, f)-
equivalent with f1∧e2∧f3+f1∧e3∧f2+λ·e1∧e2∧f2 = λ2·e′2∧e′1∧f ′3+f ′1∧e′2∧e′3+e′1∧f ′1∧f ′2,
where (e′1, f

′
1, e
′
2, f

′
2, e
′
3, f

′
3) is the hyperbolic basis (e2, f2,

f1
λ
, λe1, λe3,

f3
λ

) of (V, f). So,
χC2(λ) is quasi-Sp(V, f)-equivalent with χD2(λ

2). �

Lemma 4.5 For every λ ∈ F∗, the trivector χC3(λ) is quasi-Sp(V, f)-equivalent with χA2.

Proof. The trivector χC3(λ) = e1 ∧ e2 ∧ f2 + λ · f1 ∧ e3 ∧ f3 is quasi-Sp(V, f)-equivalent
with e1 ∧ e3 ∧ f3 + λ · f1 ∧ e3 ∧ f3 = (e1 + λf1) ∧ e3 ∧ f3, and the latter trivector is
Sp(V, f)-equivalent with χA2. �

Lemma 4.6 For every λ ∈ F∗, the trivector χC4(λ) is quasi-Sp(V, f)-equivalent with χB1

and hence also with χD4(1, 1).

Proof. The trivector χC4(λ) = f1∧e3∧(e2+f3)+λ·e1∧e2∧f2 is quasi-Sp(V, f)-equivalent
with f1∧e3∧(e2+f3)+λ·e1∧e3∧f3 = e3∧e2∧f1+e3∧f3∧(f1+λe1) = e′1∧e′2∧e′3+e′1∧f ′1∧f ′3,
where (e′1, f

′
1, e
′
2, f

′
2, e
′
3, f

′
3) is the hyperbolic basis (e3, f3, λe2,

f2
λ
, f1
λ
, f1 +λe1) of (V, f). So,

χC4(λ) is quasi-Sp(V, f)-equivalent with χB1 and hence also with χD4(1, 1) by Lemma
4.1. �

Lemma 4.7 For every λ ∈ F∗, the trivector χC5(λ) is quasi-Sp(V, f)-equivalent with
χC2(λ) and hence also with χD2(λ

2).

Proof. Let (e′1, f
′
1, e
′
2, f

′
2, e
′
3, f

′
3) be the hyperbolic basis ( e1

λ
+ e2, λf1, e3, λf1 +f2 +f3, e2 +

e3, λe2 + λe3 + λf1 + f2) of (V, f). Then f ′1 ∧ (e′2 + e′3) ∧ (f ′2 − f ′3) + λ · e′1 ∧ e′2 ∧ f ′2 is
Sp(V, f)-equivalent with χC2(λ) and equal to

e1 ∧ e3 ∧ (f3 + f2) + λ · e2 ∧ f3 ∧ (f1 + e3) + λ · e3 ∧ (e1 ∧ f1 + e2 ∧ f2) = χC5(λ) + φ(λe3).

So, χC5(λ) is quasi-Sp(V, f)-equivalent with χC2(λ) and hence also with χD2(λ
2) by

Lemma 4.4. �
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Lemma 4.8 For every λ ∈ F∗ and every ε ∈ F \ {0,−1}, the trivector χC6(λ, ε) is quasi-
Sp(V, f)-equivalent with χD2(λ

2ε).

Proof. The trivector χC6(λ, ε) = f1∧ (e2 +e3)∧ (f2 + εf3)+λ ·e1∧e2∧f2 = f1∧e2∧f2 +
ε ·f1∧e2∧f3 +f1∧e3∧f2 + ε ·f1∧e3∧f3 +λ ·e1∧e2∧f2 is quasi-Sp(V, f)-equivalent with
((1+ε)f1+λe1)∧e2∧f2+f1∧e2∧(εf3)+f1∧f2∧e3 = λ2ε·e′1∧e′2∧f ′3+e′2∧f ′1∧e′3+f ′1∧e′1∧f ′2,
where (e′1, f

′
1, e
′
2, f

′
2, e
′
3, f

′
3) is the hyperbolic basis (f2, e2,

f1
λ
, (1 + ε)f1 + λe1, λεf3,

e3
λε

) of
(V, f). So, χC6(λ, ε) is quasi-Sp(V, f)-equivalent with χD2(λ

2ε). �

Lemma 4.9 The trivector χD1 is quasi-Sp(V, f)-equivalent with χB1 and hence also with
χD4(1, 1).

Proof. The trivector χD1 = e1 ∧ e2 ∧ f2 + e2 ∧ f1 ∧ e3 + f1 ∧ e1 ∧ f3 is quasi-Sp(V, f)-
equivalent with e1 ∧ e2 ∧ f2 + e2 ∧ f1 ∧ e3 + e2 ∧ f2 ∧ f3 = e′1 ∧ e′2 ∧ e′3 + e′1 ∧ f ′1 ∧ f ′3, where
(e′1, f

′
1, e
′
2, f

′
2, e
′
3, f

′
3) is the hyperbolic basis (e2, f2, f1 + e3, e1, e3, e1 + f3) of (V, f). So, χD1

is quasi-Sp(V, f)-equivalent with χB1 and hence also with χD4(1, 1) by Lemma 4.1. �

Lemma 4.10 For every λ ∈ F∗, the trivector χD5(λ) is quasi-Sp(V, f)-equivalent with
χB5(λ).

Proof. Let θ be the unique element of Sp(V, f) mapping the hyperbolic basis (e1, f1, e2, f2,
e3, f3) of (V, f) to the hyperbolic basis (e2 + e3, f2, e3, f1 + f2 + f3, e1 + e3, f1) of (V, f).
Then θ maps χB5(λ) = λ · e1 ∧ e2 ∧ f2 + e1 ∧ (e2 − e3) ∧ (f2 + f3) to

λ · (e2 + e3) ∧ e3 ∧ (f1 + f2 + f3) + (e2 + e3) ∧ e1 ∧ (f2 + f3)

= λ · e2 ∧ e3 ∧ (f1 + f2 + f3) + e1 ∧ e2 ∧ f3 + e1 ∧ e3 ∧ f2 + e1 ∧ (e2 ∧ f2 + e3 ∧ f3)
= χD5(λ) + e1 ∧ (e2 ∧ f2 + e3 ∧ f3).

So, the trivectors χD5(λ) and χB5(λ) are indeed quasi-Sp(V, f)-equivalent. �

Lemma 4.11 If |F| = 2, then the trivector χD7 is quasi-Sp(V, f)-equivalent with the
trivector χA2.

Proof. The trivector χD7 = e1∧e2∧f2 +e2∧e3∧ (f1 +f3)+e3∧e1∧f3 is quasi-Sp(V, f)-
equivalent with the trivector e2 ∧ e3 ∧ (f1 + f3), which is itself Sp(V, f)-equivalent with
χA2. �

Lemma 4.12 If λ is a square in F∗, then the trivector χB4(λ) is quasi-Sp(V, f)-equivalent
with χA1.

Proof. Suppose λ = µ2 where µ ∈ F∗. Then χB4(λ) = e1 ∧ e2 ∧ e3 + λ · e1 ∧ f2 ∧ f3 =
e1 ∧ (e2 + µf3) ∧ (e3 + µf2) + µ · e1 ∧ (e2 ∧ f2 + e3 ∧ f3) is quasi-Sp(V, f)-equivalent with
the trivector e1 ∧ (e2 + µf3) ∧ (e3 + µf2) which itself is Sp(V, f)-equivalent with χA1. �

Lemma 4.13 Let λ ∈ F∗. If the equation X2 + λX + 1 has a solution for X ∈ F, then
χB5(λ) is quasi-Sp(V, f)-equivalent with χA2.
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Proof. Suppose µ2 + µλ + 1 = 0 for some µ ∈ F. Then µ 6= 0 and λ = µ + 1
µ
. Now,

χB5(λ) = (µ+ 1
µ
) · e1 ∧ e2 ∧ f2 + e1 ∧ (e2 + e3) ∧ (f2 + f3) = (λe1) ∧ e2+µe3

λ
∧ ( 1

µ
f2 + f3) +

(µ+ 1) · e1∧ (e2∧ f2 + e3∧ f3) is quasi-Sp(V, f)-equivalent with (λe1)∧ e2+µe3
λ
∧ ( 1

µ
f2 + f3)

which is a trivector of Type (A2) since f( e2+µe3
λ

, f2
µ

+ f3) = 1. �

Lemma 4.14 Let λ1, λ2 ∈ F∗. If the equation λ1X
2 + λ2Y

2 + Z2 = 0 has a nonzero
solution for (X, Y, Z) ∈ F3, then the trivector χD3(λ1, λ2) is quasi-Sp(V, f)-equivalent
with χB4(λ1) or χB4(λ2).

Proof. Let (α, β, γ) ∈ F3 \ {(0, 0, 0)} such that λ1α
2 + λ2β

2 + γ2 = 0. It is impossible
that α = β = 0. So, α 6= 0 or β 6= 0.

Suppose α 6= 0. Then χD3(λ1, λ2) = e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ f1 + λ2 · e3 ∧ e1 ∧ f2 is
equal to

e′1
α
∧ (e′2 ∧ e′3 + λ2 · f ′2 ∧ f ′3) +

γ

α
· e′2 ∧ (e′1 ∧ f ′1 + e′3 ∧ f ′3) +

λ2β

α
· f ′3 ∧ (e′1 ∧ f ′1 + e′2 ∧ f ′2),

where (e′1, f
′
1, e
′
2, f

′
2, e
′
3, f

′
3) is the hyperbolic basis (αe1 + βe2 + γe3,

f1
α
, e2, f2 + β

α
f1, f3 +

γ
α
f1, e3) of (V, f). So, χD3(λ1, λ2) is quasi-Sp(V, f)-equivalent with

e′1
α
∧(e′2∧e′3+λ2 ·f ′2∧f ′3)

which itself is Sp(V, f)-equivalent with χB4(λ2).
So, if α 6= 0, then we know that χD3(λ1, λ2) is quasi-Sp(V, f)-equivalent with χB4(λ2).

If β 6= 0, then by reasons of symmetry, we know that χD3(λ1, λ2) is quasi-Sp(V, f)-
equivalent with χB4(λ1). �

The following corollary, which is precisely Theorem 1.4, is a consequence of Lemmas 4.1
– 4.14.

Corollary 4.15 Let χ be a trivector of V quasi-Sp(V, f)-equivalent with a trivector of
Type (A), (B), (C) or (D). Then χ is quasi-Sp(V, f)-equivalent with (at least) one of the
following trivectors:
(Q1′) the zero vector of

∧3 V ;
(Q2′) χA1;
(Q3′) χA2;
(Q4′) χB4(λ) for some nonsquare λ of F;
(Q5′) χB5(λ) for some λ ∈ F such that the polynomial X2 +λX + 1 ∈ F[X] is irreducible;
(Q6′) χC1(λ) for some λ ∈ F∗;
(Q7′) χD2(λ) for some λ ∈ F∗;
(Q8′) χD3(λ1, λ2) for some λ1, λ2 ∈ F∗ such that the equation λ1X

2 + λ2Y
2 + Z2 = 0 has

no solutions for (X, Y, Z) ∈ F3 \ {(0, 0, 0)};
(Q9′) χD4(λ1, λ2) for some λ1, λ2 ∈ F∗.

Our next goal will be to show that trivectors belonging to distinct families (as occurring
in Corollary 4.15) can never be quasi-Sp(V, f)-equivalent.
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Lemma 4.16 Let χ1 ∈ W and χ2 6∈ W . Then χ1 and χ2 are not quasi-Sp(V, f)-
equivalent.

Proof. Suppose χ1 and χ2 are quasi-Sp(V, f)-equivalent. Then there exists a θ ∈ Sp(V, f)

and a χ ∈ W̃ such that χ2 = θ(χ1) +χ. Since θ(χ1) ∈ W and χ ∈ W̃ ⊂ W , we must have
that χ2 ∈ W , a contradiction. �

Corollary 4.17 Let i ∈ {1, 2, 4, 6, 8} and j ∈ {3, 5, 7, 9}. Then no trivector of Type (Qi′)
is quasi-Sp(V, f)-equivalent with a trivector of Type (Qj′).

Proof. This follows from Lemma 4.16, taking into account that a trivector of Type (Qi′)
belongs to W , while a trivector of Type (Qj′) does not belong to W . �

Lemma 4.18 Let i ∈ {2, 3, . . . , 9}. Then no trivector of Type (Qi′) is quasi-Sp(V, f)-
equivalent with the zero vector.

Proof. The nonzero trivectors quasi-Sp(V, f)-equivalent with the zero trivector are pre-
cisely the trivectors Sp(V, f)-equivalent with χB3 and none of these trivectors is of Type
(Qi′). �

Recall that F is a fixed algebraic closure of F. For every field K satisfying F ⊆ K ⊆ F, the
vector space V naturally embeds into a K-vector space VK by allowing the coordinates
(with respect to {e1, f1, . . . , e3, f3}) to be elements of K. The nondegenerate alternating
bilinear form f naturally extends to a nondegenerate alternating bilinear form fK of
VK. Every trivector of V can also be regarded as a trivector of VK. For every trivector
χ ∈

∧3 VK, we can define a set DK(χ) ⊆ VK in a similar way as in Section 3. Notice
that we have used a subindex to indicate the underlying field in order to avoid confusion.
Indeed, if χ ∈

∧3 V , then χ can also be regarded as an element of
∧3 VK and the sets

D(χ) and DK(χ) need not to be equal.

Lemma 4.19 Let K be a field such that F ⊆ K ⊆ F. Suppose χ = e1 ∧ e2 ∧ w3 + e2 ∧
e3 ∧ w1 + e3 ∧ e1 ∧ w2, where [w1, w2, w3]

T = A · [f1, f2, f3]T for some (3 × 3)-matrix
A = (aij)1≤i,j≤3 over K. Let (α1, α2, α3) ∈ K3 \{(0, 0, 0)}, and put v = α1e1 +α2e2 +α3e3.
Then the following are equivalent:

(1) v ∈ DK(χ);

(2)
∑

1≤i,j≤3 aijαiαj = 0;

(3) there exist vectors v′, v′′ ∈ VK such that 〈v, v′, v′′〉K is a 3-space totally isotropic for
fK, 〈v, v′, v′′〉K ∩ 〈e1, e2, e3〉K = 〈v〉K and χ ∧ v ∧ v′ ∧ v′′ = 0.

Proof. Put v
(1)
1 = e1, v

(1)
2 = e2 and v

(1)
3 = e3, and let v

(j)
i with i ∈ {1, 2, 3} and

j ∈ {2, 3, 4, 5} be vectors of VK as in Lemma 3.7. By Property (v) of Lemma 3.7, χ ∧
v
(j)
1 ∧ v

(j)
2 ∧ v

(j)
3 = 0 for every j ∈ {1, 2, 3, 4}. So, we have that α1e1 +α2e2 +α3e3 ∈ DK(χ)

if and only if χ ∧ v(5)1 ∧ v
(5)
2 ∧ v

(5)
3 = 0. The equivalence of (1) and (3) follows.
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If α2 6= 0, then we can take v
(5)
1 = α1e1 + α2e2 + α3e3, v

(5)
2 = α2f1 + α1f2 and v

(5)
3 =

α3f2+α2f3. In this case, we put χ′ := 1
α2
·(α1e1+α2e2+α3e3)∧(α2f1+α1f2)∧(α3f2+α2f3).

If α2 = 0, then we can take v
(5)
1 = α1e1 + α3e3, v

(5)
2 = f2 and v

(5)
3 = α3f1 + α1f3. In

this case, we put χ′ := (α1e1 + α3e3) ∧ f2 ∧ (α3f1 + α1f3).
In any case, we have χ′ = α1α3 ·e1∧f1∧f2+α1α2 ·e1∧f1∧f3+α2

1 ·e1∧f2∧f3+α2α3 ·e2∧
f1∧f2+α2

2 ·e2∧f1∧f3+α1α2 ·e2∧f2∧f3+α2
3 ·e3∧f1∧f2+α2α3 ·e3∧f1∧f3+α1α3 ·e3∧f2∧f3.

Now, α1e1 + α2e2 + α3e3 ∈ DK(χ) if and only if χ ∧ χ′ = 0. This happens precisely when∑
1≤i,j≤3 aijαiαj = 0. �

Lemma 4.20 (1) We have D(χA1) = 〈e1, e2, e3〉.

(2) For every nonsquare λ of F, we have D(χB4(λ)) = 〈e1〉.

(3) For every λ ∈ F∗, we have D(χC1(λ)) = DF(χC1(λ)) = {o}.

(4) For all λ1, λ2 ∈ F∗ such that the equation λ1X
2 +λ2Y

2 +Z2 = 0 has no solution for
(X, Y, Z) ∈ F3 \ {(0, 0, 0)}, we have D(χD3(λ1, λ2)) = {o} and DF(χD3(λ1, λ2)) 6=
{o}.

Proof. In [17], a method was described to determine the sets D(χ) for trivectors χ of
V . In Section 3 of that paper, this method was applied to some particular cases. These
cases include all trivectors of Type A1, B4 and C1. Claims (1), (2) and (3) of the lemma
follow from that treatment. We will now also prove Claim (4).

Put χ := χD3(λ1, λ2). By Lemma 4.19, the elements of D(χ) and DF(χ) of the form
α1e1+α2e2+α3e3 are determined by the equation λ1α

2
1+λ2α

2
2+α

2
3 = 0, where α1, α2, α3 ∈ F

in the former case and α1, α2, α3 ∈ F in the latter case. This shows that DF(χ) 6= {o} and
that D(χ) does not contain nonzero vectors of the form α1e1 + α2e2 + α3e3.

We will now show that D(χ) = {o}. Suppose that this is not the case. Then there

exists a vector v1 ∈ D(χ) \ 〈e1, e2, e3〉. Let v2 be a nonzero vector of 〈e1, e2, e3〉 ∩ v
⊥f

1 and
let v3 be a vector of V such that 〈v1, v2, v3〉 is a 3-dimensional totally isotropic subspace
intersecting 〈e1, e2, e3〉 in 〈v2〉. Since v1 ∈ D(χ), we have χ∧ v1∧ v2∧ v3 = 0. Lemma 4.19
would now imply that v2 ∈ D(χ), which is impossible as v2 ∈ 〈e1, e2, e3〉. �

Lemma 4.21 Let λ1, λ2 ∈ F∗ such that the equation λ1X
2 + λ2Y

2 + Z2 = 0 has no
solutions for (X, Y, Z) ∈ F3 \{(0, 0, 0)}. Then the following are equivalent for two linearly
independent vectors v1, v2 of V satisfying f(v1, v2) = 0:

(1) v1, v2 ∈ 〈e1, e2, e3〉;

(2) χD3(λ1, λ2)∧v1∧v2∧v3 = 0 for every vector v3 ∈ V such that 〈v1, v2, v3〉 is a totally
isotropic 3-space.

Proof. Clearly, (1) implies (2) (as χD3(λ1, λ2) ∧ v1 ∧ v2 = 0 in that case). Conversely,
suppose that (2) holds and that not both of v1, v2 are contained in 〈e1, e2, e3〉. Then
we can choose a vector v3 such that 〈v1, v2, v3〉 is a totally isotropic 3-space intersecting

21



〈e1, e2, e3〉 in a one-dimensional subspace 〈e〉. By Lemma 4.19, we would then have that
e ∈ D(χD3(λ1, λ2)). But this is in contradiction with the fact that D(χD3(λ1, λ2)) = {o}
(see Lemma 4.20). �

Lemma 4.22 (1) The set D(χA2) is the union of all onedimensional subspaces of the
form 〈e1〉, 〈be2 + βf2〉, 〈ce3 + γf3〉, 〈e1 + be2 + βf2〉, 〈e1 + ce3 + γf3〉, where (b, β)
and (c, γ) belong to F2 \ {(0, 0)}.

(2) For every λ ∈ F such that the polynomial X2 + λX + 1 ∈ F[X] is irreducible, we
have D(χB5(λ)) = 〈e1〉.

(3) For every λ ∈ F∗, we have D(χD2(λ)) = DF(χD2(λ)) = {o}.

(4) Let λ1, λ2 ∈ F∗. Then D(χD4(λ1, λ2)) is either {o} or the union of |F| + 1 onedi-
mensional subspaces contained in U := 〈e1, e2, e3〉 defining a nonempty nonsingular
conic of the projective plane PG(U), and DF(χD4(λ1, λ2)) is the union of |F| + 1

onedimensional subspaces contained in Ũ := 〈e1, e2, e3〉F, defining a nonempty non-

singular conic of PG(Ũ).

Proof. In [17], a method was described to determine the sets D(χ) for trivectors χ of
V . In Section 3 of that paper, this method was applied to determine these sets for some
particular trivectors. Claims (1), (2) and (3) of the lemma follow from that treatment.
We will now also prove Claim (4).

Put χ := χD4(λ1, λ2) and let K ∈ {F,F}. The elements of DK(χ) of the form α1e1 +
α2e2+α3e3 are determined by the equation λ1α

2
1+λ1α1α3+α

2
3+λ2α

2
2 = 0 where α1, α2, α3 ∈

K. This equation determines a nonsingular conic of PG(〈e1, e2, e3〉K). If this conic is
nonempty (which is always the case if K = F), then it contains precisely |K| + 1 points.
Observe that regardless of whether K = F or K = F, the conic can never contain a line
of PG(〈e1, e2, e3〉K). In view of what we need to prove, it now suffices to show that the
set DK(χ) \ 〈e1, e2, e3〉K is empty. Suppose that this is not the case and let v1 be a vector
belonging to this set. Then we will show that every nonzero vector v2 belonging to the

2-space v
⊥fK
1 ∩ 〈e1, e2, e3〉K belongs to DK(χ), which is in contradiction with the above-

mentioned fact that the conic does not contain lines. Having chosen such a v2, we choose a
vector v3 ∈ VK such that 〈v1, v2, v3〉K is a 3-dimensional subspace, totally isotropic for fK,
intersecting 〈e1, e2, e3〉K in 〈v2〉K. Since v1 ∈ DK(χ), we have χ∧ v1 ∧ v2 ∧ v3 = 0. Lemma

4.19 would now imply that v2 ∈ DK(χ). As this holds for every v2 ∈ v
⊥fK
1 ∩ 〈e1, e2, e3〉K,

we have obtained our desired contradiction. �

Lemma 4.23 Let i, j ∈ {1, 2, . . . , 9} with i 6= j. Then no trivector of Type (Qi′) is
quasi-Sp(V, f)-equivalent with a trivector of Type (Qj′).

Proof. This is a consequence of Corollary 4.17 and Lemmas 3.9, 4.18, 4.20, 4.22, also
taking into account that if two trivectors of V are Sp(V, f)-equivalent, then they are also
Sp(VF, fF)-equivalent. �
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So, it remains to study the quasi-Sp(V, f)-equivalence between trivectors having the same
type (Qi′), where i ∈ {4, 5, 6, 7, 8, 9}. This will be done in the next six lemmas. These six
lemmas correspond to the six claims of Theorem 1.5 that still need to be proved.

Lemma 4.24 Let λ and λ′ be two nonsquares of F. Then the trivectors χB4(λ) and
χB4(λ

′) are quasi-Sp(V, f)-equivalent if and only if the polynomials X2 + λ and X2 + λ′

define the same quadratic extension of F in F.

Proof. Let K = F(
√
λ) ⊆ F and K′ = F(

√
λ′) ⊆ F be the quadratic extensions of F

defined by the respective irreducible quadratic polynomials X2 + λ and X2 + λ′ of F[X].
Suppose the trivectors χB4(λ) and χB4(λ

′) are quasi-Sp(V, f)-equivalent. Then they
are also quasi-Sp(VK, fK)-equivalent. By Lemma 4.12, χB4(λ) is quasi-Sp(VK, fK)-equi-
valent with χA1 and hence also χB4(λ

′) should be quasi-Sp(VK, fK)-equivalent with χA1.
This implies by Lemma 3.9 and Lemma 4.20(1)+(2) that λ′ should have a root in K, i.e.
K′ = F(

√
λ′) ⊆ K. By symmetry, we also have K ⊆ K′. So, K = K′.

Conversely, suppose that K = K′. Then there exist a, b ∈ F with a 6= 0 such that
λ′ = a2λ+b2. The element of Sp(V, f) mapping the hyperbolic basis (e1, f1, e2, f2, e3, f3) of
(V, f) to the hyperbolic basis (ae1,

f1
a
, 1
a
(e2+bf3), af2, e3+bf2, f3) of (V, f) maps χB4(λ) =

e1 ∧ e2 ∧ e3 + λ · e1 ∧ f2 ∧ f3 to the trivector

e1 ∧ e2 ∧ e3 + (a2λ+ b2) · e1 ∧ f2 ∧ f3 + (be1) ∧ (e2 ∧ f2 + e3 ∧ f3) = χB4(λ
′) + φ(be1).

We conclude that χB4(λ) and χB4(λ
′) are quasi-Sp(V, f)-equivalent. �

Lemma 4.25 Let λ, λ′ ∈ F such that the polynomials X2 + λX + 1 and X2 + λ′X + 1 of
F[X] are irreducible. Then the trivectors χB5(λ) and χB5(λ

′) are quasi-Sp(V, f)-equivalent
if and only if the polynomials X2 + λX + 1 and X2 + λ′X + 1 define the same quadratic
extension of F in F.

Proof. Let K ⊆ F and K′ ⊆ F be the quadratic extensions of F defined by the respective
irreducible quadratic polynomials X2 + λX + 1 and X2 + λ′X + 1.

Suppose the trivectors χB5(λ) and χB5(λ
′) are quasi-Sp(V, f)-equivalent. Then they

are also quasi-Sp(VK, fK)-equivalent. By Lemma 4.13, χB5(λ) is quasi-Sp(VK, fK)-equiva-
lent with χA2 and hence also χB5(λ

′) should be quasi-Sp(VK, fK)-equivalent with χA2. This
implies by Lemma 3.9 and Lemma 4.22(1)+(2) that the quadratic polynomial X2+λ′X+1
should have its roots in K. Hence, K′ ⊆ K. By symmetry, we also have K ⊆ K′. So,
K = K′.

Conversely, suppose that K = K′. Then there exist a, b ∈ F with a 6= 0 such that
λ′ = aλ and a2+b2+abλ = 1 (or equivalently, (aX+b)2+λ′(aX+b)+1 = a2(X2+λX+1)).
We need to prove that the trivectors χB5(λ) and χB5(λ

′) are quasi-Sp(V, f)-equivalent,
or equivalently, that the trivectors χ := λ · e1 ∧ e2 ∧ f2 + e1 ∧ e2 ∧ f3 + e1 ∧ e3 ∧ f2 and
χ′ := λ′ · e1 ∧ e2 ∧ f2 + e1 ∧ e2 ∧ f3 + e1 ∧ e3 ∧ f2 are quasi-Sp(V, f)-equivalent. Now, let
θ be the element of Sp(V, f) mapping the hyperbolic basis (e1, f1, e2, f2, e3, f3) of (V, f)
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to the hyperbolic basis (ae1,
f1
a
, e2 + be3, f2, ae3,

bf2+f3
a

) of (V, f). Then θ maps χ to the
trivector

(λa) · e1 ∧ e2 ∧ f2 + e1 ∧ e2 ∧ f3 + e1 ∧ e3 ∧ f2 + be1 ∧ (e2 ∧ f2 + e3 ∧ f3) = χ′ + φ(be1).

It follows that the trivectors χ and χ′ are quasi-Sp(V, f)-equivalent and hence also the
trivectors χB5(λ) and χB5(λ

′). �

Lemma 4.26 Let λ, λ′ ∈ F∗. Then χC1(λ) and χC1(λ
′) are quasi-Sp(V, f)-equivalent if

and only if λ = λ′.

Proof. If χC1(λ) and χC1(λ
′) are quasi-Sp(V, f)-equivalent, then λ = η(χC1(λ)) =

η(χC1(λ
′)) = λ′ by Corollary 3.13. �

Lemma 4.27 Let λ, λ′ ∈ F∗. Then χD2(λ) and χD2(λ
′) are quasi-Sp(V, f)-equivalent if

and only if λ = λ′.

Proof. Suppose the trivectors χD2(λ) and χD2(λ
′) are quasi-Sp(V, f)-equivalent. Then

there exists a hyperbolic basis (e′1, f
′
1, e
′
2, f

′
2, e
′
3, f

′
3) of (V, f) and a v ∈ V such that

λ′ · e1 ∧ e2 ∧ f3 + e2 ∧ f1 ∧ e3 + f1 ∧ e1 ∧ f2 + φ(v)

= λ · e′1 ∧ e′2 ∧ f ′3 + e′2 ∧ f ′1 ∧ e′3 + f ′1 ∧ e′1 ∧ f ′2. (1)

If we let the map π act on both sides of the equality (1), then we find f2 = f ′2. Now, put
v = a1e1 + a2e2 + a3e3 + b1f1 + b2f2 + b3f3 where a1, a2, a3, b1, b2, b3 ∈ F. Then φ(v) is
equal to

a1 · e1 ∧ (e2 ∧ f2 + e3 ∧ f3) + a2 · e2 ∧ (e1 ∧ f1 + e3 ∧ f3) + a3 · e3 ∧ (e1 ∧ f1 + e2 ∧ f2)

+b1 · f1 ∧ (e2 ∧ f2 + e3 ∧ f3) + b2 · f2 ∧ (e1 ∧ f1 + e3 ∧ f3) + b3 · f3 ∧ (e1 ∧ f1 + e2 ∧ f2).

So, if we let the map η act on both sides of the equality (1), then we find that a2 = 0.
Now, take the wedge product of both sides of (1) with f2 = f ′2. Then we find

λ′ · e1 ∧ e2 ∧ f3 ∧ f2 + e2 ∧ f1 ∧ e3 ∧ f2 + a1 · e1 ∧ e3 ∧ f3 ∧ f2 + a3 · e3 ∧ e1 ∧ f1 ∧ f2+

b1 · f1 ∧ e3 ∧ f3 ∧ f2 + b3 · f3 ∧ e1 ∧ f1 ∧ f2 = λ · e′1 ∧ e′2 ∧ f ′3 ∧ f ′2 + e′2 ∧ f ′1 ∧ e′3 ∧ f ′2.

If we let π′ act on both sides of the latter equality, then we find

λ′ · e1 ∧ f3 + f1 ∧ e3 + a1 · e1 ∧ f2 + a3 · e3 ∧ f2 + b1 · f1 ∧ f2 + b3 · f3 ∧ f2
= λ · e′1 ∧ f ′3 + f ′1 ∧ e′3. (2)

Since (f ′2)
⊥f = f

⊥f

2 = 〈e1, e3, f1, f3, f2〉 = 〈e′1, e′3, f ′1, f ′3, f ′2〉, there exist unique vectors
e′′1, e

′′
3, f

′′
1 , f

′′
3 ∈ U := 〈e1, e3, f1, f3〉 and unique α, β, γ, δ ∈ F such that e′1 = e′′1 + αf2,

e′3 = e′′3 + βf2, f
′
1 = f ′′1 + γf2 and f ′3 = f ′′3 + δf2. Since f(e′1, e

′
3) = f(e′1, f

′
3) = f(f ′1, e

′
3) =

f(f ′1, f
′
3) = 0 and f(e′1, f

′
1) = f(e′3, f

′
3) = 1, also f(e′′1, e

′′
3) = f(e′′1, f

′′
3 ) = f(f ′′1 , e

′′
3) =
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f(f ′′1 , f
′′
3 ) = 0 and f(e′′1, f

′′
1 ) = f(e′′3, f

′′
3 ) = 1. So, both (e′′1, f

′′
1 , e

′′
3, f

′′
3 ) and (e1, f1, e3, f3) are

hyperbolic bases of (U, f|U). Now, equation (2) becomes

λ′ · e1 ∧ f3 + f1 ∧ e3 + a1 · e1 ∧ f2 + a3 · e3 ∧ f2 + b1 · f1 ∧ f2 + b3 · f3 ∧ f2

= λ · e′′1 ∧ f ′′3 + f ′′1 ∧ e′′3 + (λδ) · e′′1 ∧ f2 + (λα) · f2 ∧ f ′′3 + β · f ′′1 ∧ f2 + γ · f2 ∧ e′′3.

Since e′′1, f
′′
1 , e

′′
3, f

′′
3 ∈ 〈e1, f1, e3, f3〉, this implies that

λ′ · e1 ∧ f3 + f1 ∧ e3 = λ · e′′1 ∧ f ′′3 + f ′′1 ∧ e′′3,

and
a1e1 + a3e3 + b1f1 + b3f3 = (λδ)e′′1 + βf ′′1 + γe′′3 + (λα)f ′′3 .

By Lemma 3.1, the former equation implies that

λ′ · e1 ∧ f1 ∧ e3 ∧ f3 = λ · e′′1 ∧ f ′′1 ∧ e′′3 ∧ f ′′3 .

Since (e1, f1, e3, f3) and (e′′1, f
′′
1 , e

′′
3, f

′′
3 ) are two hyperbolic bases of (U, f|U), we have e1 ∧

f1 ∧ e3 ∧ f3 = e′′1 ∧ f ′′1 ∧ e′′3 ∧ f ′′3 (Cohn [6, Corollary 3.6.4]). We conclude that λ′ = λ. �

Lemma 4.28 Let λ1, λ2, λ
′
1, λ
′
2 ∈ F∗ such that none of the equations λ1X

2+λ2Y
2+Z2 = 0

and λ′1X
2 + λ′2Y

2 + Z2 = 0 has solutions for (X, Y, Z) ∈ F3 \ {(0, 0, 0)}. Then the
trivectors χD3(λ1, λ2) and χD3(λ

′
1, λ
′
2) are quasi-Sp(V, f)-equivalent if and only if there

exists a µ ∈ F∗ such that the matrices µ · diag(λ1, λ2, 1) and diag(λ′1, λ
′
2, 1) are pseudo-

congruent.

Proof. If the matrices µ · diag(λ1, λ2, 1) and diag(λ′1, λ
′
2, 1) are pseudo-congruent for

some µ ∈ F∗, then Lemma 3.14 implies that the trivectors χD3(λ1, λ2) and χD3(λ
′
1, λ
′
2) are

quasi-Sp(V, f)-equivalent.
Conversely, suppose that the trivectors χD3(λ1, λ2) and χD3(λ

′
1, λ
′
2) are quasi-Sp(V, f)-

equivalent. Then there exists a hyperbolic basis (e′1, f
′
1, e
′
2, f

′
2, e
′
3, f

′
3) of (V, f) and a vector

v ∈ V such that

e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ f1 + λ2 · e3 ∧ e1 ∧ f2 + φ(v)

= χ := e′1 ∧ e′2 ∧ f ′3 + λ′1 · e′2 ∧ e′3 ∧ f ′1 + λ′2 · e′3 ∧ e′1 ∧ f ′2.

By Lemma 4.21, there exists a (necessarily unique) totally isotropic 3-space U such that
the following are equivalent for two linearly independent vectors v1 and v2 of V for which
f(v1, v2) = 0:

(1) v1, v2 ∈ U ;

(2) χ ∧ v1 ∧ v2 ∧ v3 = χD3(λ1, λ2) ∧ v1 ∧ v2 ∧ v3 = 0 for every vector v3 ∈ V such that
〈v1, v2, v3〉 is a totally isotropic 3-space.
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Lemma 4.21 implies moreover that U = 〈e1, e2, e3〉 and U = 〈e′1, e′2, e′3〉. Hence, 〈e1, e2, e3〉 =
〈e′1, e′2, e′3〉.

By Lemma 4.19, the set DF(χD3(λ1, λ2))∩〈e1, e2, e3〉F is the union of all onedimensional
subspaces of the form 〈αe1+βe2+γe3〉, where (α, β, γ) 6= (0, 0, 0) satisfies

√
λ1·α+

√
λ2·β+

γ = 0. Similarly, the set DF(χ)∩〈e1, e2, e3〉F is the union of all onedimensional subspaces of
the form 〈α′e′1+β′e′2+γ′e′3〉, where (α′, β′, γ′) 6= (0, 0, 0) satisfies

√
λ′1 ·α′+

√
λ′2 ·β′+γ′ = 0.

Now, since 〈e1, e2, e3〉 = 〈e′1, e′2, e′3〉, there exists a nonsingular (3 × 3)-matrix M over
F such that [e′1, e

′
2, e
′
3]
T = M · [e1, e2, e3]T . We have αe1 + βe2 + γe3 = α′e′1 + β′e′2 + γ′e′3,

where [α, β, γ] = [α′, β′, γ′] · M . Moreover, if [α, β, γ] = [α′, β′, γ′] · M , then [α, β, γ] ·
[
√
λ1,
√
λ2, 1]T = [α′, β′, γ′] ·M · [

√
λ1,
√
λ2, 1]T .

Since DF(χD3(λ1, λ2)) = DF(χ), the equations [α′, β′, γ′] ·M · [
√
λ1,
√
λ2, 1]T = 0 and

[α′, β′, γ′] · [
√
λ′1,
√
λ′2, 1]T = 0 should be equivalent. So, there should exist a µ ∈ F \ {0}

such that [
√
λ′1,
√
λ′2, 1]T = µ ·M · [

√
λ1,
√
λ2, 1]T . Hence,

√
λ′1 = µM11

√
λ1 + µM12

√
λ2 + µM13,√

λ′2 = µM21

√
λ1 + µM22

√
λ2 + µM23,

1 = µM31

√
λ1 + µM32

√
λ2 + µM33,

or equivalently, 
λ′1 = µ2M2

11λ1 + µ2M2
12λ2 + µ2M2

13,
λ′2 = µ2M2

21λ1 + µ2M2
22λ2 + µ2M2

23,
1 = µ2M2

31λ1 + µ2M2
32λ2 + µ2M2

33.

This implies that µ2 ∈ F∗ and that diag(λ′1, λ
′
2, 1) − µ2 · (M · diag(λ1, λ2, 1) ·MT ) is an

alternate matrix. Hence, the matrices µ2 · diag(λ1, λ2, 1) and diag(λ′1, λ
′
2, 1) are pseudo-

congruent. �

Lemma 4.29 Let λ1, λ2, λ
′
1, λ
′
2 ∈ F∗. Then the two trivectors χD4(λ1, λ2) and χD4(λ

′
1, λ
′
2)

are quasi-Sp(V, f)-equivalent if and only if there exists a µ ∈ F∗ such that the matrices
µA and A′ are pseudo-congruent, where

A :=

 λ1 0 λ1
0 λ2 0
0 0 1

 and A′ :=

 λ′1 0 λ′1
0 λ′2 0
0 0 1

 .
Proof. If the matrices µA and A′ are pseudo-congruent for some µ ∈ F∗, then Lemma
3.14 implies that the trivectors χD4(λ1, λ2) and χD4(λ

′
1, λ
′
2) are quasi-Sp(V, f)-equivalent.

Conversely, suppose that the trivectors χD4(λ1, λ2) and χD4(λ
′
1, λ
′
2) are quasi-Sp(V, f)-

equivalent. Then there exists a hyperbolic basis (e′1, f
′
1, e
′
2, f

′
2, e
′
3, f

′
3) of (V, f) and a vector

v ∈ V such that

e1 ∧ e2 ∧ f3 + λ1 · e2 ∧ e3 ∧ (f1 + f3) + λ2 · e3 ∧ e1 ∧ f2 + φ(v)

= χ := e′1 ∧ e′2 ∧ f ′3 + λ′1 · e′2 ∧ e′3 ∧ (f ′1 + f ′3) + λ′2 · e′3 ∧ e′1 ∧ f ′2.
By Lemma 4.22(4), DF(χD4(λ1, λ2)) = DF(χD4(λ1, λ2) + φ(v)) generates the subspace
〈e1, e2, e3〉F, andDF(χ) generates the subspace 〈e′1, e′2, e′3〉F. Hence, 〈e1, e2, e3〉 = 〈e′1, e′2, e′3〉.
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So, there exists a nonsingular (3 × 3)-matrix M over F such that [e1, e2, e3]
T = M ·

[e′1, e
′
2, e
′
3]
T . Let α1e1 + α2e2 + α3e3 be an arbitrary nonzero vector of VF contained in

〈e1, e2, e3〉F. We have α1e1 + α2e2 + α3e3 = α′1e
′
1 + α′2e

′
2 + α′3e

′
3, where [α1, α2, α3] ·M =

[α′1, α
′
2, α

′
3]. By Lemma 4.19, the onedimensional subspace 〈α1e1+α2e2+α3e3〉F = 〈α′1e′1+

α′2e
′
2 + α′3e

′
3〉F is contained in DF(χD4(λ1, λ2)) = DF(χ) if and only if one of the following

(necessarily equivalent) conditions is satisfied:
• [α1, α2, α3] · A · [α1, α2, α3]

T = 0,
• [α′1, α

′
2, α

′
3] · A′ · [α′1, α′2, α′3]T = 0.

Now, [α′1, α
′
2, α

′
3] · A′ · [α′1, α

′
2, α

′
3]
T = [α1, α2, α3] · (MA′MT ) · [α1, α2, α3]

T . Since the
equations [α1, α2, α3] · A · [α1, α2, α3]

T = 0 and [α1, α2, α3] · (MA′MT ) · [α1, α2, α3]
T = 0

describe the same nondegenerate nonempty conic of PG(〈e1, e2, e3〉F), there should exist
a µ ∈ F∗ such that µA−MA′MT is an alternate matrix. Hence, the matrices µA and A′

are pseudo-congruent. �

Remark. We were also able to deal with some but not all of the trivectors of Type (E).
Indeed, every trivector of Type (E2), (E3) or (E5) is quasi-Sp(V, f)-equivalent with a
trivector of Type (X) with (X) ∈ {(B), (C), (D)} Note that since char(F) = 2, we must
have that a 6= 0 6= b for every (a, b) ∈ Ψ.
• Suppose (a, b) ∈ Ψ and k ∈ F∗. Then the trivector χE2(a, b, k) of Type (E2) is

quasi-Sp(V, f)-equivalent with k · (f1 ∧ e2 ∧ f3 + b · f1 ∧ f2 ∧ e3 + a · f1 ∧ e3 ∧ f3) =
f1 ∧ f3 ∧ (ke2 + kae3) + f1 ∧ f2 ∧ (kbe3) which is a trivector of Type (B).
• Suppose (a, b) ∈ Ψ and k, h ∈ F∗. Then the trivector χE3(a, b, k, h) of Type (E3) is

quasi-Sp(V, f)-equivalent with k ·(f1∧e2∧f3+b·f1∧f2∧e3+a·f1∧e3∧f3)+h·e1∧f2∧f3 =
f1 ∧ f3 ∧ (ke2 + kae3) + f1 ∧ f2 ∧ (kbe3) + f2 ∧ f3 ∧ (he1) which is a trivector of Type (D).
• Suppose (a, b) ∈ Ψ and k ∈ F∗. Then the trivector χE5(a, b, k) of Type (E5) is quasi-

Sp(V, f)-equivalent with f1∧e2∧f3+a ·e2∧f2∧e3+(a2+b) ·f1∧f2∧e3+ka ·e1∧f2∧e3 =
f1 ∧ e2 ∧ f3 + (ae2 + (a2 + b)f1 + kae1) ∧ f2 ∧ e3 which is a trivector of Type (C).
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