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Abstract. We study the dual linear code of points and generators on a non-

singular Hermitian variety H(2n + 1, q2). We improve the earlier results for

n = 2, we solve the minimum distance problem for general n, we classify the n
smallest types of code words and we characterize the small weight code words

as being a linear combination of these n types.

1. Preliminaries

Over the last decades, several types of linear codes arising from finite geometries
have been studied. The general concept is as follows: one considers the point set
P of a geometric space or variety S, together with a collection B of k-dimensional
subspaces on S.

Definition 1. The incidence matrix A ∈ {0, 1}B×P is the unique matrix such that
Hb,p = 1 if p ∈ b and Hb,p = 0 otherwise.

Since 0 and 1 are elements of every field, one can use this matrix to construct
subspaces of FPp , p prime. There are two common ways to do this:

• by considering the Fp-row span of A, which is usually called the code generated
by the k-spaces of S and denoted by Ck(S), and

• by considering the Fp-null space of A, which is usually called the dual code of
points and k-spaces of S and denoted by Ck(S)⊥.

Remark 1. A code word c of Ck(S)⊥ is an element of the Fp-null space of A,
which is equivalent to a mapping from P to Fp with the additional property that∑
p∈π cp = 0, for all π ∈ B. Hence, code words can be studied as multisets of points

such that each k-space on S contains 0 (mod p) of the points in the multiset.

These codes have primarily been studied for affine and projective spaces (see
[1, 3, 7] for an overview of relevant results), and more recently these codes have
been investigated for quadrics, Hermitian varieties and generalized quadrangles [2,
8, 10, 9]. In [8], the dual code of points and n-spaces of the Hermitian variety
H(2n + 1, q2) is studied. We will first introduce the basic definitions of Hermitian
varieties, then we state the known results on the Hermitian variety code at hand,
and finally we will state our main result.
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From now on, let PG(m, q2) be the m-dimensional projective space over the
finite field Fq2 . A non-singular Hermitian variety is the set of absolute points of
a Hermitian polarity, which is defined by a non-singular Hermitian matrix and the
non-trivial involution x 7→ xq of Aut(Fq2). All non-singular Hermitian varieties are
projectively equivalent to the one given by the equation

Xq+1
0 +Xq+1

1 + · · ·+Xq+1
m = 0 .

The projective index of a non-singular Hermitian variety in PG(m, q2) equals
⌊
m−1
2

⌋
.

The maximal subspaces of a Hermitian variety are called generators. From now
on, we will denote the standard non-singular Hermitian variety in PG(m, q2) by
H(m, q2). A singular Hermitian variety in PG(m, q2) is a cone with an i-dimensional
subspace as vertex and a non-singular Hermitian variety in an (m−i−1)-dimensional
subspace, disjoint from the vertex, as base, −1 ≤ i ≤ m. All singular Hermitian
varieties in PG(m, q2) with an i-dimensional vertex are projectively equivalent to
the one given by the equation

Xq+1
0 +Xq+1

1 + · · ·+Xq+1
m−i−1 = 0 .

Note that a non-singular Hermitian variety is a singular Hermitian variety with
vertex dimension equal to −1.

Lemma 1. The number of generators on H(2n+ 1, q2) is
∏n
i=0(q2i+1 + 1).

Proof. This, and many other results on Hermitian varieties, can be found in [4,
Chapter 23].

Notation. Throughout this article, we will denote the number of points in PG(m, q)

by θm(q) = qm+1−1
q−1 and the number of points on H(m, q2) by

µm(q2) =
(qm+1 − (−1)m+1)(qm − (−1)m)

q2 − 1
.

Definition 2. The support of a code word c is the set of positions with nonzero
entry, i.e. supp(c) = {p : cp 6= 0} ⊆ P. Note that we identify the set of positions
supp(c) with a set of points of P using the correspondence between those. The
Hamming weight wt(c) of a code word c is the number of nonzero symbols in it, i.e.
it is | supp(c)|. The minimum distance d of Ck(S)⊥ is minc∈Ck(S)⊥\{0} wt(c).

The following theorems on Cn(H(2n+ 1, q2))⊥ are known.

Theorem 1 ([5, Proposition 3.7]). The supports of all code words c ∈ C1(H(3, q2))⊥

with 0 < wt(c) < 3q are projectively equivalent, and their Hamming weights are

2(q + 1). If wt(c) ≤
√
q(q+1)

2 , then c is a linear combination of these code words.

Theorem 2 ([8, Theorem 43]). If c is a code word of C2(H(5, q2))⊥ with wt(c) ≤
2(q3 + q2) and if q > 893, then there are only two possible projective equivalence
classes for supp(c), and the Hamming weights of the corresponding code words are
2(q3 + 1) and 2(q3 + q2). These two types of code words are examples of the code
words constructed in Theorem 5.

In this article, we will discuss the dual code arising from the points and generators
of a Hermitian variety. This improves upon earlier work of [8, Section 5]. We
determine the minimum Hamming weight for general n, and we show that if q is
sufficiently large, a similar statement to the second part of Theorem 1 holds for
general n. Our main result is as follows.
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Theorem 3. Let n be any positive integer and let δ > 0 be any constant. If c
is a code word with wt(c) < 4q2n−2(q − 1) and q is sufficiently large, then there
are only n possible projective equivalence classes for supp(c); call S this set of
projective equivalence classes. If c is a code word with wt(c) < δq2n−1, then c is a
linear combination of code words which are an incidence vector of a set in S. The
minimum distance of Cn(H(2n+ 1, q2))⊥ is 2q2n−4(q3 + 1) for n ≥ 2.

2. The code words

In this section we introduce a set of code words of the code Cn(H(2n+ 1, q2))⊥.
From now on, we consider the projective space PG(2n + 1, q2), n ≥ 1, and the
non-singular Hermitian variety H(2n+ 1, q2) in it.

Lemma 2. Consider a non-singular Hermitian variety H(2n + 1, q2) in PG(2n +
1, q2) and let σ be the corresponding polarity. Let π be a k-dimensional subspace
in PG(2n + 1, q2) such that π ∩ H(2n + 1, q2) is a cone πiHk−i−1 with Hk−i−1 ∼=
H(k − i − 1, q2) and πi an i-space, −1 ≤ i ≤ min{k, n}. Then π ∩ πσ = πi.
Conversely, if π ∩ πσ is an i-space πi, then π ∩ H(2n + 1, q2) is a cone πiHk−i−1
with Hk−i−1 ∼= H(k − i− 1, q2).

Proof. The first statement is [4, Lemma 23.2.8]; the second statement is a corollary
of the first.

We will use this theorem mostly in the case k = n. Using the above lemma, we
can prove an easy counting result.

Theorem 4. The number of generators on H(2n + 1, q2) through a fixed k-space

on H(2n+ 1, q2), 0 ≤ k ≤ n, equals
∏n−k−1
i=0 (q2i+1 + 1).

Proof. Let πk be a k-space on H(2n+1, q2) and let σ be the polarity corresponding
to H(2n + 1, q2). Then πσk is a (2n − k)-space intersecting H(2n + 1, q2) in a cone
πkH with H ∼= H(2n − 2k − 1, q2). Every generator on H(2n + 1, q2) through πk
corresponds uniquely to a generator on H. Hence, there are

∏n−k−1
i=0 (q2i+1 + 1)

generators on H(2n+ 1, q2) through πk.

In the construction of the code words we need the following lemma.

Lemma 3. Let π be an n-space in PG(2n + 1, q2) and let µ be a generator of
H(2n+ 1, q2). Then π ∩ µ and πσ ∩ µ are subspaces of the same dimension.

Proof. We denote µ ∩ π = πj , a j-space, possibly empty (j = −1). It follows that
2n− j = dim((µ∩π)σ) = dim(〈µσ, πσ〉). Using the Grassmann identity and µ = µσ

(µ is a generator), we find dim(µ∩πσ) = dim(µ)+dim(πσ)−dim(〈µσ, πσ〉) = j.

Now, we can give the construction of small weight code words in the code
Cn(H(2n+ 1, q2))⊥. This construction is based on [8, Theorem 58].

Theorem 5. Consider H(2n+ 1, q2) and its corresponding polarity σ. Let π be an
n-space in PG(2n + 1, q2). Denote the incidence vector of π ∩ H(2n + 1, q2) by vπ
and the incidence vector of πσ ∩ H(2n + 1, q2) by vπσ . Then α(vπ − vπσ ), α ∈ Fp,
is a code word of Cn(H(2n+ 1, q2))⊥.

Proof. Let µ be a generator of H(2n+ 1, q2) and denote its incidence vector by vµ.
Using Lemma 3, we find µ intersects both π and πσ, or neither. In the first case
|π ∩ µ| ≡ |πσ ∩ µ| ≡ 1 (mod q) and in the second case |π ∩ µ| = |πσ ∩ µ| = 0. In
both cases vπ · vµ = vπσ · vµ. The theorem follows.
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Example 1. We list the different possibilities for π ∩ πσ. Hereby, we use Lemma
2 for k = n and Theorem 5. We write H = H(2n+ 1, q2).

• π∩πσ = ∅. We write π∩H = H and πσ∩H = H ′. We know, H,H ′ ∼= H(n, q2).
The corresponding code words have weight 2µn(q2).

• π ∩ πσ = πi, an i-space, 0 ≤ i ≤ n − 2. We write π ∩ H = πiH and
πσ ∩ H = πiH

′, which are both cones, with H,H ′ ∼= H(n − i − 1, q2). The
corresponding code words have weight 2q2i+2µn−i−1(q2).

• π ∩πσ = πn−1, an (n− 1)-space. Then π ∩H = πσ ∩H = πn−1 since H(0, q2)
is empty. The construction gives rise to the zero code word.

• π ∩ πσ = πn, an n-space. Then π = πσ = πn ⊂ H. Also in this case, the
construction gives rise to the zero code word.

It can easily be checked that among these four cases, the code words with smallest
weight are the ones corresponding to i = n− 3.

Remark 2. Consider the construction from Theorem 5, with π ∩ H = πiHn−i−1
and πσ ∩ H = πiH

′
n−i−1. Let P be a point of πiHn−i−1 and let P ′ be a point of

πiH
′
n−i−1. We know that P ′ ∈ πσ ⊆ Pσ and P ′ ∈ H. Hence, the line 〈P, P ′〉 is a

line of H.

3. Some counting results

Lemma 4. Consider the non-singular Hermitian variety H(2n+ 1, q2) ⊂ PG(2n+
1, q2) and let σ be the corresponding polarity. Let τ be a j-space such that τ∩H(2n+
1, q2) = Hj

∼= H(j, q2), −1 ≤ j ≤ n. The number of generators on H(2n + 1, q2)
skew to τ equals

cn,j := q(
j+1
2 )

n−j−1∏
k=0

(q2k+1 + 1)

2n−j+1∏
l=2(n−j)+1

(ql − (−1)l).

Proof. By [4, Theorem 23.4.2 (i)] we know that the number of generators skew to
τ only depends on the parameters n and j and not on the choice of τ itself.

We will prove this theorem using induction on j. If j = −1, τ is the empty
space and hence cn,−1 equals the total number of generators. Using Lemma 1 we
find cn,−1 =

∏n
k=0(q2k+1 + 1). Now, we prove a recursive relation between cn,j and

cn−1,j−1.
By Lemma 2 we know τ∩τσ = ∅. Hence, every point P ∈ PG(2n+1, q2)\(τ∪τσ)

belongs to only one line 〈Pτ , Pτσ 〉, with Pτ ∈ τ and Pτσ ∈ τσ. For every point
P ∈ PG(2n + 1, q2) \ (τ ∪ τσ), we define φτ (P ) = Pτ . This is the projection of P
from τσ on τ . We define a correlation σ : τ → τ that maps the subspace U ⊂ τ to
Uσ ∩ τ . It is straightforward to check that σ defines a polarity on τ . Moreover, it
can be seen easily that the points of Hj are the absolute points of σ. Hence, σ is
the polarity of τ corresponding to Hj .

Now, we consider the set S = {(P, µ) | P ∈ µ\τσ, φτ (P ) /∈ Hj , µ a generator, µ∩
τ = ∅}. We count the number of elements of S in two ways. On the one hand,
there are cn,j generators skew to τ . Let µ be such a generator. The intersection
µ ∩ τσ is an (n− j − 1)-space since dim(µ ∩ τσ) + dim(〈µ, τ〉) = 2n. We also know
that φτ (P ) = R for every point P ∈ 〈R,µ ∩ τσ〉 \ (µ ∩ τσ), R ∈ τ . Hence, for
each generator there are θn(q2) − θn−j−1(q2) − µj(q

2)(θn−j(q
2) − θn−j−1(q2)) =

q2(n−j)(θj(q
2) − µj(q2)) points fulfilling the requirements. On the other hand, we

count the points P ∈ H(2n+ 1, q2) \ (τ ∪ τσ) fulfilling the requirements. There are
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µ2n+1(q2)−µj(q2)−µ2n−j(q
2) points in this set. We must assure that φτ (P ) /∈ Hj .

Let R be a point of Hj . Since τσ ⊆ Rσ, a line RQ, Q ∈ τσ, is a tangent line
(in R) to H(2n + 1, q2) or a line which is completely contained in H(2n + 1, q2).
Hence, φτ (P ) is a point of Hj iff P lies on a line through φτ (P ) and a point of
τσ ∩H(2n+ 1, q2). Consequently there are

µ2n+1(q2)− µj(q2)− µ2n−j(q
2)− µj(q2)µ2n−j(q

2)(q2 − 1)

= q2n−j(θj(q
2)− µj(q2))(q2n−j+1 − (−1)2n−j+1)

points P ∈ H(2n+ 1, q2) \ (τ ∪ τσ) fulfilling the requirement φτ (P ) /∈ Hj . Now, we
fix such a point P and we count the number of generators skew to τ , through it.
All these generators are contained in Pσ. We know Pσ ∩ H(2n + 1, q2) is a cone
PH2n−1, with H2n−1 ∼= H(2n − 1, q2). There is a 1-1 correspondence between the
generators of H(2n+ 1, q2) through P and the generators of H2n−1.We also find

τ ∩ Pσ = τ ∩ (φτ (P ))σ = (φτ (P ))σ ,

since Pσ is a hyperplane through the intersection (φτ (P ))σ∩(φτσ (P ))σ and through
τ ⊂ (φτσ (P ))σ. Hence, the (j − 1)-space τ ∩ Pσ intersects H(2n+ 1, q2) in Hj−1 ∼=
H(j − 1, q2), since φτ (P ) /∈ Hj . We can choose the base of the cone PH2n−1 such
that it contains τ ∩ Pσ. The generators through P and skew to τ correspond to
the generators of H2n−1, skew to τ ∩ Pσ. There are cn−1,j−1 such generators. We
conclude

cn,jq
2(n−j) [θj(q2)− µj(q2)

]
= cn−1,j−1q

2n−j [θj(q2)− µj(q2)
]
·

(q2n−j+1 − (−1)2n−j+1)

⇒ cn,j = cn−1,j−1q
j(q2n−j+1 − (−1)2n−j+1) .

An induction calculation now finishes the proof.

From now on in this section, we use the following notation: H ∼= H(2n+ 1, q2) is
a non-singular Hermitian variety and σ is the polarity corresponding to it; π is an
n-space in PG(2n+1, q2), such that π∩H is a cone πiHn−i−1 with Hn−i−1 ∼= H(n−
i−1, q2) and πi an i-space, −1 ≤ i ≤ n. By Lemma 2, for k = n, we know π∩πσ = πi
and consequently πσ ∩H is a cone πiH

′
n−i−1 with H ′n−i−1

∼= H(n− i− 1, q2).

Definition 3. The number of generators on H intersecting π in a fixed point P ∈
πiHn−i−1 \ πi and no other point of πiHn−i−1, and intersecting πσ in a fixed point
P ′ ∈ πiH ′n−i−1 \ πi and no other point of πiH

′
n−i−1 is denoted by N(π, P, P ′, H).

The number of generators on H skew to π is denoted by N ′(π,H).

By Lemma 3 we know that the generators skew to π are also skew to πσ and that
the generators intersecting π in precisely one point also intersect πσ in precisely one
point.

Lemma 5. The number N ′(π,H) only depends on the intersection parameters (n, i)
of π.

Proof. This follows immediately from [4, Theorem 23.4.2 (i)].

Notation. Consequently, we can denote N ′(π,H) by N ′n,i(q).

Lemma 6. For n ≥ 2, −1 ≤ i ≤ n− 2, N(π, P, P ′, H) = N ′n−2,i(q). Consequently,
N(π, P, P ′, H) only depends on the intersection parameters (n, i) of π.
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Proof. Consider the points P ∈ (πiHn−i−1\πi) ⊆ π and P ′ ∈ (πiH
′
n−i−1\πi) ⊆ πσ.

Denote ` = 〈P, P ′〉. Then `σ is a (2n− 1)-space intersecting H in a cone with ` as
vertex and a non-singular (2n − 3)-dimensional Hermitian variety H2n−3 as base.
Since dim(`∩π) = dim(`∩πσ) = 0, `σ ∩π = V is an (n−1)-space and `σ ∩πσ = V ′

is an (n − 1)-space. Also, ` ⊂ 〈π, πσ〉 = πσi , hence πi ⊂ lσ. Let W , resp. W ′,
be an (n − 2)-space in V , resp. V ′, containing πi and not through P , resp. P ′.
Denote the (2n− i− 4)-space 〈W,W ′〉 by τ ′. It can be seen that on the one hand
τ ′ ⊂ `σ and on the other hand `∩τ ′ = ∅, so the (2n−3)-space τ containing the base
H2n−3 can be chosen such that τ ′ ⊆ τ . Let σ′ be the polarity of τ corresponding
to H2n−3. Analogously to the proof of Lemma 4 we can define this polarity as

follows: Uσ
′

= τ ∩ Uσ. It now immediately follows that Wσ′ = W ′ because both
are (n− 2)-spaces contained in Wσ and in τ .

Arguing as in the proof of Lemma 4, we see there is a 1-1 correspondence be-
tween the generators of H2n−3 and the generators of H through ` (the generators
containing P and P ′). If a generator of H through ` contains no points of π∪πσ but
P and P ′, then its corresponding generator of H2n−3 is skew to W and W ′. Vice
versa, every generator µ of H2n−3 skew to W and W ′, is contained in precisely one
generator of H intersecting π ∪ πσ in only the points P and P ′, namely 〈µ, P, P ′〉.
Since Wσ′ = W ′, the generators of H2n−3 skew to W and W ′ are the ones skew to
W , by Lemma 3. Hence, N(π, P, P ′, H) = N ′n−2,i(q).

The second statement of the lemma follows immediately from the first one.

Notation. Since N(π, P, P ′, H) only depends on the intersection parameters (n, i)
of π, we can denote it by Nn,i(q).

The previous theorem now states Nn,i(q) = N ′n−2,i(q) for n ≥ 2, −1 ≤ i ≤ n− 2.

Lemma 7. For n ≥ 1 and −1 ≤ i ≤ n− 2, the following equality is valid:

Nn,i(q) = q(n−1)
2−(n−i−1

2 )
n−i−2∏
j=1

(qj − (−1)j).

Proof. We prove this theorem using induction. Using Lemma 6, we know that
Nn,−1(q) equals N ′n−2,−1(q), the number of generators of a Hermitian variety H ′ ∼=
H(2n−3, q2) skew to an (n−2)-space intersecting H ′ in a Hermitian variety H(n−
2, q2), if n ≥ 2. This number equals cn−2,n−2. Hence, by Lemma 4,

Nn,−1(q) = q(
n−1
2 )

n−1∏
l=1

(ql − (−1)l) = q(n−1)
2−(n−(−1)−1

2 )
n−(−1)−2∏

j=1

(qj − (−1)j),

which proves the induction base for n ≥ 2. If n = 1, it is easy to prove that
N1,−1(q) = 1. Hence, the formula holds also in this case.

Now, we will prove that Nn,i(q) = q2n−3Nn−1,i−1(q). By Lemma 6, this is
equivalent to proving that N ′n,i(q) = q2n+1N ′n−1,i−1(q). Consider the set S =
{(R,µ) | R ∈ µ, µ a generator skew to π,R /∈ 〈π, πσ〉 = πσi }. This subspace πσi
intersects H in a cone πiH2(n−i)−1. We will count |S| in two ways.

On the one hand, there are N ′n,i(q) generators skew to π. Fix such a generator
µ. Then dim(µ ∩ πσi ) = n − i − 1 since dim(µ ∩ πσi ) + dim(〈µ, πi〉) = 2n. So, µ
contains precisely θn(q2)− θn−i−1(q2) = q2(n−i)θi(q

2) points of PG(2n+ 1, q2) \πσi .
Consequently, |S| = q2(n−i)θi(q

2)N ′n,i(q).
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On the other hand, there are

µ2n+1(q2)− θi(q2)− µ2(n−i)−1(q2)− (q2 − 1)θi(q
2)µ2(n−i)−1(q2) = q4n−2i+1θi(q

2)

points in H \πσi . Fix such a point P . The hyperplane Pσ intersects π in an (n−1)-
space V and intersects πi in an (i − 1)-space πi−1 ⊂ V . Hence, the intersection
V ∩ H has intersection parameters (n − 1, i − 1). The intersection Pσ ∩ H is a
cone PH2n−1, with H2n−1 ∼= H(2n− 1, q2). Let τ be the (2n− 1)-space containing
H2n−1. We can choose τ such that it contains V . Then, there is a 1-1 correspondence
between the generators of H(2n + 1, q2) through P , skew to π and the generators
of H2n−1 skew to V . Consequently, there are N ′n−1,i−1(q) such generators. Thus,

|S| = q4n−2i+1θi(q
2)N ′n−1,i−1(q).

Comparing both expressions for |S|, we find the desired relation between N ′n,i(q)
and N ′n−1,i−1(q). An easy calculation now finishes the proof.

Lemma 8. Assume n ≥ 2 and −1 ≤ i ≤ n−2. Let P be a point of H \(π∪πσ). Let
nP (n, i) be the number of generators through P intersecting both π \ πi and πσ \ πi
in precisely one point. Then,

• nP (n, i) = Nn−1,i−1(q)q4i
(
µn−i−1(q2)

)2
if P /∈ 〈π, πσ〉 = πσi ;

• nP (n, i) = Nn−1,i(q)q
4i+4

(
µn−i−2(q2)

)2
if P ∈ 〈π, πσ〉 = πσi but P does not

lie on a line of H through a point of π \ πi and a point of πσ \ πi;
• nP (n, i) = Nn−1,i+1(q)q4i+4µn−i−3(q2)

[
q4µn−i−3(q2) + q2 − 1

]
if P ∈ πσi =

〈π, πσ〉 and P lies on a line of H through a point of π \ πi and a point of
πσ \ πi, and i ≤ n− 4.
• nP (n, i) = q2i+2Nn,i(q) if P ∈ πσi = 〈π, πσ〉 and P lies on a line of H through

a point of π \ πi and a point of πσ \ πi, and i = n− 3, n− 2.

The first case can only occur if i ≥ 0. The second case can only occur if i ≤ n− 3.

Proof. Since P /∈ π ∪ πσ, Pσ ∩ π = V is an (n − 1)-space and Pσ ∩ πσ = V ′ is an
(n− 1)-space. Furthermore Pσ ∩H is a cone PH2n−1 with H2n−1 ∼= H(2n− 1, q2).
Let τ be the (2n− 1)-space containing H2n−1.

First we consider the case P /∈ 〈π, πσ〉 = πσi . In this case Pσ intersects πi in
an (i − 1)-space πi−1 = V ∩ V ′. Also, τ can be chosen so that it contains V and
V ′. Hence, the number of generators through P fulfilling the requirements equals
the number of generators of H2n−1 intersecting V and V ′ in a point. Let σ′ be the
polarity of τ corresponding to H2n−1. Analogously to the argument in the proof

of Lemma 6, it can be seen that V ′ = V σ
′
. Consequently there are Nn−1,i−1(q)

generators of this type through a fixed point of V \πi−1 and a fixed point of V ′\πi−1.
There are q2iµn−i−1(q2) possible choices for each of these points. The first part of
the lemma follows. Note that 〈π, πσ〉 = PG(2n+ 1, q2) if i = −1. Hence, this case
cannot occur if i = −1.

We fix some notation for the remaining cases. Let W ⊆ π and W ′ ⊆ πσ be
the (n − i − 1)-spaces containing Hn−i−1 and H ′n−i−1, respectively. Furthermore,
let σ and σ′ be the polarities of W and W ′ corresponding to Hn−i−1 and H ′n−i−1,
respectively. In all three remaining cases, πi ⊂ Pσ, hence Pσ ∩ W = W1 and
Pσ ∩W ′ = W ′1 are (n − i − 2)-spaces. Now, the point P is contained in a unique
plane 〈Pπi , PW , PW ′〉, with PW ∈ W , PW ′ ∈ W ′ and Pπi ∈ πi. The points PW ,
PW ′ and Pπi are the projections of P from πσ on W , from π on W ′ and from
〈W,W ′〉 on πi, respectively. Arguing as in the proof of Lemma 4 we can see that

W1 = Pσ ∩W = PσW and that W ′1 = Pσ ∩W ′ = Pσ
′

W ′ . Moreover, since P and Pπi
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are contained in Pσ, neither or both of PW and PW ′ are contained in Pσ. Hence,
we need to distinguish two cases.

• PW ∈ W1 and PW ′ ∈ W ′1 are both contained in Pσ; consequently, PW ∈
PσW , thus PW ∈ Hn−i−1 ⊂ H and PσW ∩ Hn−i−1 is a cone PWHn−i−3, with
Hn−i−3 ∼= H(n− i− 3, q2). Let W2 ⊂W1 be the (n− i− 3)-space containing
Hn−i−3. Then, the intersection of V = 〈πi,W1〉 and H is the cone with vertex
〈πi, PW 〉 and base Hn−i−3. Analogously we introduce H ′n−i−3 ⊂ W ′2 ⊂ W ′1.
Then V ′∩H is the cone with vertex 〈πi, PW ′〉 and base H ′n−i−3. Furthermore,
since PW ∈ V , PW ′ ∈ V ′, and Pπi ∈ V, V ′, P is contained in 〈V, V ′〉. Also,
the line 〈P, PW 〉 is contained in Pσ and is not a 1-secant since P, PW ∈ H,
hence it is a line of H. This line intersects πσ in a point of 〈PW ′ , πi〉 \ πi.

• PW /∈ W1 and PW ′ /∈ W ′1 are both not contained in Pσ; consequently,
PW /∈ PσW , thus PW /∈ Hn−i−1, PW /∈ H and PσW ∩Hn−i−1 is a non-singular
Hermitian variety Hn−i−2 ∼= H(n − i − 2, q2) in W1. Then, the intersection
of V = 〈πi,W1〉 and H is the cone πiHn−2−i. Analogously we introduce
H ′n−i−2 ⊂ W ′1. The intersection V ′ ∩H is the cone πiH

′
n−i−2. Furthermore,

P /∈ 〈V, V ′〉 since PW /∈ W1 and PW ′ /∈ W ′1. Also, all lines in πσ+i through
P intersecting π \ πi and πσ \ πi, are contained in 〈PW , PW ′ , πi〉, but not in
〈P, πi〉. Since PW , PW ′ /∈ Pσ, none of the lines through P can be contained
in H.

These two cases clearly correspond to the three remaining cases of the lemma. We
will treat them separately.

First of all, we look at the latter, which is the second case in the statement
of the lemma. Since P /∈ 〈V, V ′〉, we can choose τ such that it contains 〈V, V ′〉.
Hence, every generator through P , intersecting both π \ πi and πσ \ πi in a point,
corresponds to a generator of H2n−1 intersecting both V \πi and V ′ \πi in a point,
and vice versa. For a fixed point in V \ πi and a fixed point in V ′ \ πi, there are
Nn−1,i(q) such generators. We also know that |V \πi| = |V ′\πi| = q2i+2µn−i−2(q2).
The second part of the lemma follows. Note that V \ πi and V ′ \ πi are empty if
i = n− 2. Hence, this case only occurs if i ≤ n− 3.

Finally, we look at the former case, the third and the fourth case in the statement
of the lemma. Let ` be a line on H through P , a point of π\πi and a point of πσ \πi.
By changing, if necessary, the choices for W and W ′, we can assume ` = 〈PW , PW ′〉.
We distinguish between two types of generators: the ones that contain ` and the
ones that do not contain `. First we look at the ones that contain `. We know
`σ ∩ H is a cone with vertex ` and base H2n−3 ∼= H(2n − 3, q2). Let τ ′ be the
(2n− 3)-space containing H2n−3. We can choose τ ′ so that it contains πi, W2 and

W ′2. As before, one can see that 〈πi,W2〉σ̂
′

= 〈πi,W ′2〉, with σ̂′ the polarity of τ ′

corresponding to H2n−3. The number of generators of the requested type through `
then equals the number of generators ofH2n−3 skew to 〈πi,W2〉. This number equals
N ′n−2,i(q) = Nn,i(q). Furthermore, since ` is a line on H through P intersecting
π \ πi and πσ \ πi, every line through P and a point of 〈PW , πi〉 \ πi lies on H and
intersects 〈PW ′ , πi〉\πi ⊂ πσ\πi. Thus, there are θi+1(q2)−θi(q2) = q2i+2 such lines.
Hence, there are q2i+2Nn,i(q) generators of the first type. Now, we assume no line
through P , intersecting π and πσ, is contained in the generator. Let QW and QW ′

be the points of the generator in W and W ′, respectively. By the previous remarks
on this case, we know there are µn−i−3(q2)q2i+4 possible choices for QW and for
QW ′ . Now, we consider the plane 〈P,QW , QW ′〉. Using arguments, similar to the
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ones in the previous case, we find N ′n−3,i+1(q) = Nn−1,i+1(q) generators fulfilling
the requirements for every choice of QW and QW ′ . Hence, the total number of
generators in this third case equals

nP = q2i+2Nn,i(q) +
(
µn−i−3(q2)q2i+4

)2
Nn−1,i+1(q)

=
[
q2i+2q2i+2(q2 − 1)µn−i−3(q2) +

(
µn−i−3(q2)q2i+4

)2]
Nn−1,i+1(q)

= q4i+4µn−i−3(q2)
[
q2 − 1 + q4µn−i−3(q2)

]
Nn−1,i+1(q) .

Hereby we used the relation between Nn,i(q) and Nn−1,i+1(q) which can immedi-
ately be derived from Lemma 7.

Note that V \ 〈πi, PW 〉 and V ′ \ 〈πi, PW ′〉 are empty if n − 3 ≤ i ≤ n − 2. In
this case, we cannot consider the points QW and QW ′ . So, there are no generators
of the second type. Consequently, all generators are of the first type and there are
precisely q2i+2Nn,i(q) such generators.

4. Classifying the small weight code words

Before giving the new classification theorem, we state the results about the codes
C1(H(3, q2))⊥ and C2(H(5, q2))⊥ to which we referred earlier.

Theorem 6 ([5, Proposition 3.7]). Let C be the code C1(H(3, q2))⊥. There is only
one non-trivial type of code words among the ones described in Example 1, namely
i = −1. These are the code words of minimal weight. Let c be a code word of C with

wt(c) ≤
√
q(q+1)

2 . Then c is a linear combination of code words of minimal weight.

Theorem 7 ([8, Theorem 43]). Let c be a code word of C2(H(5, q2))⊥, q > 893, with
wt(c) ≤ 2(q3 + q), then c is a code word of one of the types described in Theorem 5.
Regarding Example 1, we know that there are precisely two possibilities since n = 2,
namely i = −1 and i = 0.

It is our aim to generalise this result. We start our arguments with two lemmas
about n-spaces: the second lemma shows the existence of an n-space containing a
non-trivial amount of points of the support of a code word, while the first lemma
shows that a generator cannot contain many points of the support of a code word.
In the proof of the second lemma we use the following result.

Theorem 8. Let c ∈ Cn(H(2n+ 1, q2))⊥ be a code word and denote supp(c) = S.
Let P be a point in S. Then |Pσ ∩ S| ≥ 2 + q2n−1.

Proof. This is a special case of [8, Proposition 9(d)].

Throughout the three following lemmas the functions Σn,i(q) is used, −1 ≤ i ≤
n− 2. They are defined by

Σn,i(q) =

2q2i+2µn−i−1(q2) + 4µn−i−2(q
2)(qn−i−1−1)

qn−3i−5(q2−1) n− i odd;

2q2i+2
[
µn−i−1(q2) + 2 q

4µn−i−3(q
2)+q2−1

q2−1

]
n− i even.

Note that in both cases Σn,i(q) = 2q2n−1 + fn,i(q), with fn,i(q) ∈ O(q2n−2) and
fn,i(q) > 0 if q > 0.

Lemma 9. Let c ∈ Cn(H(2n+1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1, and
denote supp(c) = S. Let µ be a generator of H(2n+1, q2). Then |µ∩S| ≤ δθn−1(q2).
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Proof. The proof is a generalisation of the proof of [8, Lemma 41].
Denote x = |µ ∩ S| and let P be a point in µ ∩ S. Then Pσ ∩ H(2n + 1, q2) is

a cone with vertex P . Let H ′ ∼= H(2n − 1, q2) be a base of this cone and consider
the projection from P onto H ′. Denote the projection of (S ∩ Pσ) \ {P} by S′.
The projection of µ is a generator µ′ of H ′. Note that S′ is a blocking set of the
generators on H ′, i.e. every generator of H ′ contains at least one point of S′.

By [6, Lemma 10], we know there are qn
2

generators in H ′ that are skew to µ′,

of which q(n−1)
2

pass through a fixed point of H ′ \ µ′. Hence, the blocking set S′

contains at least q2n−1 points not in µ′. Counting the tuples (P,Q), P ∈ µ ∩ S,
Q ∈ S \ µ, with 〈P,Q〉 ⊂ H(2n+ 1, q2), in two ways we find

xq2n−1 ≤ δq2n−1θn−1(q2) ,

where the upper bound follows from the fact that every point Q ∈ S \µ is collinear
with the points of an (n − 1)-space in µ and not with the other points in µ. The
theorem follows immediately.

Note that the size of a blocking set on a Hermitian variety H(2n + 1, q2) is at
least the size of an ovoid, hence at least q2n+1 + 1.

Recall that the symmetric difference A∆B of two sets A and B is the set (A ∪
B) \ (A ∩B).

Lemma 10. Let p be a fixed prime and denote q = ph, h ∈ N. Let c ∈ Cn(H(2n+
1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1, δ > 0 a constant, and denote
supp(c) = S. Denote H(2n + 1, q2) by H and let σ be the polarity related to H.
Then a constant Cn > 0, a value Q > 0 and an n-space π can be found such that
|(π∆πσ) ∩ S| > Cnq

2n−1 and such that p−1
p |(π∆πσ) ∩H| < Σn,i(q) − Cnq2n−1, if

q ≥ Q. Hereby, i is such that π ∩ H is a cone with an i-dimensional vertex and
i ≤ n− 2.

Proof. We introduce the notion of a semi-arc. A semi-arc A is a set of k ≥ n points
in PG(2n+ 1, q2) such that no n+ 1 points of A are contained in an (n− 1)-space.

We make two remarks about these semi-arcs. First, if |S| >
(
k
n

)
θn−1(q2), then S

contains a semi-arc with k + 1 points, since it is possible to construct the semi-arc
point by point: we start with a set of n linearly independent points in S and we
extend the semi-arc point by point until we have k + 1 points, which is possible
by the condition on S. Secondly, if we choose K points {P1, . . . , PK} in a semi-arc
A ⊆ S, then

(1)
∑

{i}∈SK,1

|Pσi ∩ S| −
∑

{i,j}∈SK,2

|Pσi ∩ Pσj ∩ S|+ . . .

+
∑

{i1,...,i2l+1}∈SK,2l+1

|Pσi1 ∩ P
σ
i2 ∩ · · · ∩ P

σ
i2l+1

∩ S| ≥ |(Pσ1 ∪ Pσ2 ∪ · · · ∪ PσK) ∩ S| ,

since every point of (Pσ1 ∪ Pσ2 ∪ · · · ∪ PσK) ∩ S is counted at least once on the left
hand side. Also

(2)
∑

{i}∈SK,1

|Pσi ∩ S| −
∑

{i,j}∈SK,2

|Pσi ∩ Pσj ∩ S|+ . . .

−
∑

{i1,...,i2l}∈SK,2l

|Pσi1 ∩ P
σ
i2 ∩ · · · ∩ P

σ
i2l
∩ S| ≤ |(Pσ1 ∪ Pσ2 ∪ · · · ∪ PσK) ∩ S| ,
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since every point of (Pσ1 ∪ Pσ2 ∪ · · · ∪ PσK) ∩ S is counted at most once on the left
hand side. In both expressions we denoted the set of all subsets of {1, . . . ,K} of
size j by SK,j .

Now, we prove using induction on t, for every 0 ≤ t ≤ n, that for any (t+1)-tuple
(c0, . . . , ct) and for any constant cj > 0 (independent of q), we can find a constant
Kt ∈ N such that

∀K ≥ Kt,∀{P1, . . . , PK} ⊆ A ⊆ S :
∑

{i0,...,it}∈SK,t+1

|Pσi0∩P
σ
i1∩· · ·∩P

σ
it∩S| ≥ ctq

2n−1.

We consider the case t = 0, the induction base. Let {P1, . . . , PK} be a set of points
in A ⊆ S (without restriction on K). By Theorem 8, we know

K∑
i=1

|Pσi ∩ S| ≥ Kq2n−1 .

Hence, it is sufficient to choose K0 = dc0e.
Next, we prove the induction step. We distinguish between two cases: t even

and t odd. We look at the former, so we assume the inequality to be proven for
t ≤ 2l − 1 and we prove it for t = 2l. Let Km be the constant arising from the
(m+1)-tuple (c0, . . . , cm), m < 2l, and let {P1, . . . , PK} be a set of points in A ⊆ S
with K ≥ K2l−1. By (1), we know that∑
{i}∈SK,1

|Pσi ∩ S| −
∑

{i,j}∈SK,2

|Pσi ∩ Pσj ∩ S|+ . . .

+
∑

{i0,...,i2l}∈SK,2l+1

|Pσi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S| ≥ |(Pσ1 ∪ Pσ2 ∪ · · · ∪ PσK) ∩ S| .

Using the induction hypothesis and Theorem 8, we find∑
{i0,...,i2l}∈SK,2l+1

|Pσi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S|

≥

(
K

K2l−1

)(
K−2l

K2l−1−2l
)c2l−1q2n−1 +

(
K

K2l−3

)(
K−2l+2

K2l−3−2l+2

)c2l−3q2n−1 + · · ·+
(
K
K1

)(
K−2
K1−2

)c1q2n−1
−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1 + q2n−1

and thus∑
{i0,...,i2l}∈SK,2l+1

|Pσi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S|

≥
(
K
2l

)(
K2l−1

2l

)c2l−1q2n−1 +

(
K

2l−2
)(

K2l−3

2l−2
)c2l−3q2n−1 + · · ·+

(
K
2

)(
K1

2

)c1q2n−1
−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1 + q2n−1

= q2n−1f(K, δ, l,K1,K3, . . . ,K2l−1, c1, c3, . . . , c2l−1).

Note that
( K
K2i−1

)

( K−2i
K2i−1−2i)

=
(K2i)

(K2i−1
2i )

. We now study the function f , which is clearly

independent of q. Considering f as a function of K and comparing the exponents,
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we see that the term
(K2l)

(K2l−1
2l )

c2l−1 dominates the others. Hence, we can find a value

K2l ≥ K2l−1 such that the right hand side is at least c2lq
2n−1 for all K ≥ K2l, with

c2l as chosen above. Then the statement follows. Note that K2l depends on the
parameters l, c1, . . . , c2l chosen before (the values Ki, 0 ≤ i < 2l, depend themselves
on i, c1, . . . , ci).

For the latter case, t odd, the argument is similar, in this case starting from (2).
We will now apply the previous result for t = n. In order to do this, we need

a semi-arc containing at least Kn points. We argued in the beginning of the proof
that δq2n−1 = |S| >

(
Kn−1
n

)
θn−1(q2) is a sufficient condition for a semi-arc of size

Kn to exist. Since Kn is a constant, independent of q, and θn−1(q2) = q2n−2 +
q2n−4 + · · · + q2 + 1, we can find Q′1 > 0 such that this inequality is true for all
q ≥ Q′1. Then we know∑

{i0,...,in}∈SKn,n+1

|Pσi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
in ∩ S| ≥ cnq

2n−1

for the points {P1, P2, . . . , PKn} defining a semi-arc in S. Hence, we can find n+ 1
points - without loss of generality the points {P1, . . . , Pn+1} - such that

|Pσ1 ∩ Pσ2 ∩ · · · ∩ Pσn+1 ∩ S| ≥
cn(
Kn
n+1

)q2n−1.
We can find a constant K > 0 and a value Q′ ≥ Q′1 such that cn

(Knn+1)
q2n−1 ≥

Kq2n−1 + θn−2(q2) for q ≥ Q′. We write Cn = K − ε, max{0,K − 2
p} < ε < K, and

we denote the n-space Pσ1 ∩Pσ2 ∩· · ·∩Pσn+1 by π. Note that π is an n-space since the
points P1, P2, . . . , Pn+1 belong to a semi-arc. Then |π ∩ S| > Cnq

2n−1 + θn−2(q2).
We know the intersection π ∩ H can be written as πiHn−i−1, with Hn−i−1 ∼=

H(n − i − 1, q2) and πi an i-space, −1 ≤ i ≤ n. Let Q′′ ≥ Q′ be such that
Cnq

2n−1 + θn−2(q2) > δθn−1(q2) for all q ≥ Q′′. Such a value exists since the first
term on the left hand side dominates the right hand side. If i ≥ n− 1, then π ∩H
is contained in a generator of H. Thus, using Lemma 9 and the assumption q ≥ Q′′
we find a contradiction. Hence, i ≤ n− 2. We find:

|(π∆πσ) ∩ S| ≥ |(π \ πi) ∩ S| ≥ Cnq2n−1 + θn−2(q2)− θi(q2) ≥ Cnq2n−1 .
We still need to check the second claim in the statement of the lemma:

p− 1

p
|(π∆πσ) ∩H| < Σn,i(q)− Cnq2n−1 .

Looking at the terms of highest degree in Σn,i(q) − Cnq2n−1 − p−1
p |(π∆πσ) ∩ H|,

we find 2− Cn − 2p−1p = ε− cn
(Knn+1)

+ 2
p > 0. Hence, we can find Q ≥ Q′′ such that

the inequality p−1
p |(π∆πσ) ∩H| < Σn,i(q)− Cnq2n−1 holds for all q ≥ Q.

In this proof cn
(Knn+1)

depends also on the choice of c0, . . . , cn−1. So, investigating

the possible values for c0, . . . , cn, we can find many different values for Cn. With
each of these values, a value Q corresponds. We pick one of the possible values for
Cn. By investigating different possibilities for Cn, we can see there is a trade-off
between the choice of Cn and the corresponding value Q.

From now on, we consider Cn and the corresponding value Q to be fixed.

Lemma 11. Let c ∈ Cn(H(2n+ 1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1,
δ > 0 a constant, and denote supp(c) = S. Consider H ∼= H(2n + 1, q2). Let π be
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an n-space such that π ∩ H is a cone πiHn−i−1 with Hn−i−1 ∼= H(n − i − 1, q2).
Assume that |S ∩ (π \ πi)| = x and |S ∩ (πσ \ πi)| = t. Then there exists a value
Qn,i ≥ 0 such that x+ t ≤ Cnq2n−1 or x+ t ≥ Σn,i(q)− Cnq2n−1 if q ≥ Qn,i.

Proof. If i = n − 1 or i = n, the sets π \ πi and πσ \ πi are empty and hence also
their intersections with S. The first inequality is clearly valid in this case. So from
now on, we assume i ≤ n− 2.

Let P be a point of S ∩ (π \ πi) and let P ′ be a point of ((πσ ∩H) \ πi)\S and
denote ` = PP ′. By Lemma 7 we know the number Nn,i(q) of generators through
` intersecting π and πσ in precisely one point, namely P and P ′. Each of these
generators contains an additional point of S. Let R be a point of H\(π ∪ πσ). By
Lemma 8 we know the number nR(n, i) of generators through R intersecting both
π and πσ in a point. Hence, S \ (π ∪ πσ) contains at least

x(|(πσ ∩H) \ πi| − t)
Nn,i(q)

nmax(n, i)
= x(q2i+2µn−i−1(q2)− t) Nn,i(q)

nmax(n, i)

points, whereby nmax(n, i) = maxR∈S\(π∪πσ) nR(n, i). Switching the roles of π and
πσ, and adding these two inequalities, we find after dividing by two a lower bound
on |S \ (π ∪ πσ)|. Adding the points in S ∩ (π∆πσ), we find

x(q2i+2µn−i−1(q2)− t) Nn,i(q)

2nmax(n, i)
+ t(q2i+2µn−i−1(q2)− x)

Nn,i(q)

2nmax(n, i)
+ x+ t

≤ |S| ≤ w .

Rewriting this inequality yields

(x+ t)
(
q2i+2µn−i−1(q2)Nn,i(q) + 2nmax(n, i)

)
− 2xtNn,i(q) ≤ 2wnmax(n, i) .

Using the inequality 2xt ≤ 1
2 (x+ t)2 and writing y = x+ t, we find

1

2
y2Nn,i(q)−

[
q2i+2µn−i−1(q2)Nn,i(q) + 2nmax(n, i)

]
y + 2wnmax(n, i) ≥ 0 .

We now distinguish between two cases: n− i odd and n− i even. First we look
at the former. By detailed analysis one can see that in this case

Nn−1,i(q)q
4i+4

(
µn−i−2(q2)

)2
≥ Nn−1,i−1(q)q4i

(
µn−i−1(q2)

)2
≥ Nn−1,i+1(q)q4i+4µn−i−3(q2)

[
q4µn−i−3(q2) + q2 − 1

]
if n− i > 3 and

Nn−1,n−3(q)q4n−8 (q + 1)
2 ≥ Nn−1,n−4(q)q4n−12

(
q3 + 1

)2 ≥ Nn,n−3(q)q2n−4 .

These inequalities correspond to i = n− 3. Hence,

nmax(n, i) = Nn−1,i(q)q
4i+4

(
µn−i−2(q2)

)2
.

Using the formula for Nn,i(q) from Lemma 7, and simplifying, we can rewrite this
inequality as

(3)
1

2
qn−3i−5y2 −

[
qn−i−3µn−i−1(q2) + 2µn−i−2(q2)

qn−i−1 − 1

q2 − 1

]
y

+ 2δq2n−1µn−i−2(q2)
qn−i−1 − 1

q2 − 1
≥ 0 .

Advances in Mathematics of Communications Volume 8, No. 3 (2014), 281–296



294 M. De Boeck and P. Vandendriessche

Let αn,i(q
2) and α′n,i(q

2) be the two solutions of the corresponding equation, with

αn,i(q
2) ≤ α′n,i(q2). Then x+ t ≤ αn,i(q2) or x+ t ≥ α′n,i(q2). Moreover,

αn,i(q
2) + α′n,i(q

2) = 2q2i+2µn−i−1(q2) + 4
µn−i−2(q2)(qn−i−1 − 1)

qn−3i−5(q2 − 1)
= Σn,i(q) .

For the given δ we calculate

αn,i = lim
q→∞

αn,i(q
2) = lim

q→∞

B′ −
√
B′2 − 4δq3n−3i−6C ′

qn−3i−5
,

with

B′ = qn−i−3µn−i−1(q2) + 2µn−i−2(q2)
qn−i−1 − 1

q2 − 1
,

C ′ = µn−i−2(q2)
qn−i−1 − 1

q2 − 1
.

Since αn,i ∈ O(q2n−2), we can find Qn,i > 0 such that αn,i(q
2) ≤ Cnq

2n−1 for
q ≥ Qn,i.

In the latter case, n − i even, similar arguments can be used. However, in this
case we need to distinguish between n − i > 2 and i = n − 2. First, we discuss
n− i > 2. We can deduce that

Nn−1,i(q)q
4i+4

(
µn−i−2(q2)

)2
≤ Nn−1,i−1(q)q4i

(
µn−i−1(q2)

)2
≤ Nn−1,i+1(q)q4i+4µn−i−3(q2)

[
q4µn−i−3(q2) + q2 − 1

]
,

hence nmax(n, i) = Nn−1,i+1(q)q4i+4µn−i−3(q2)
[
q4µn−i−3(q2) + q2 − 1

]
. We find

the inequality

(4)
q2 − 1

2
y2 − q2i+2

[
µn−i−1(q2)(q2 − 1) + 2(q4µn−i−3(q2) + q2 − 1)

]
y

+ 2δq2n−1q2i+2(q4µn−i−3(q2) + q2 − 1) ≥ 0 .

Just as in the previous case Σn,i(q) equals the sum of the solutions of the corre-
sponding equation. Also for these values of n and i, we define αn,i:

Σn,i(q) = 2q2i+2

[
µn−i−1(q2) + 2

q4µn−i−3(q2) + q2 − 1

q2 − 1

]
,

αn,i = lim
q→∞

B′′ −
√
B′′2 − 4δq2n−1(q2 − 1)C ′′

q2 − 1
,

with

B′′ = q2i+2
[
µn−i−1(q2)(q2 − 1) + 2(q4µn−i−3(q2) + q2 − 1)

]
,

C ′′ = q2i+2(q4µn−i−3(q2) + q2 − 1) .

Since αn,i ∈ O(q2n−2) also holds in this case, we again can find Qn,i > 0 such that
αn,i(q

2) ≤ Cnq2n−1 for q ≥ Qn,i.
Finally, we consider the case i = n− 2. The second possibility in Lemma 8 can

thus not occur. We note that

Nn−1,n−3(q)q4(n−2)(q + 1)2 ≤ q2n−2Nn,n−2(q)
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if q ≥ 3 and
Nn−1,n−3(q)q4(n−2)(q + 1)2 ≥ q2n−2Nn,n−2(q)

if q = 2. The arguments in this case are analogous.
Hence, in all cases we can find Qn,i > 0 such that x + t ≤ Cnq

2n−1 or x + t ≥
Σn,i(q)− Cnq2n−1 for q ≥ Qn,i.

Using the three previous lemmas, we can now prove a classification theorem for
the small weight code words in Cn(H(2n+ 1, q2))⊥.

Theorem 9. Let p be a fixed prime, δ > 0 be a fixed constant and n be a fixed
positive integer. Then there is a constant Q such that, for any q = ph ≥ Q, h ∈ N,
and any c ∈ Cn(H(2n+1, q2))⊥ with wt(c) ≤ w = δq2n−1, c is a linear combination
of code words described in Theorem 5.

Proof. For the given values p and δ we have found a set of possible Cn-values, of
which we have chosen one, in Lemma 10, with Q, a power of p, corresponding to
it. By the proof of this lemma, we know that Cnq

2n−1 > δθn−1(q2) for all q ≥ Q.
Define Q = max({Q} ∪ {Qn,i | −1 ≤ i ≤ n − 2}), with Qn,i as in Lemma 11,

corresponding to the chosen value Cn. We assume q ≥ Q.
Denote supp(c) = S. By Lemma 10, we find an n-space π such that N :=

|(π∆πσ)∩S| > Cnq
2n−1. The intersection π ∩H can be written as πiHn−i−1, with

Hn−i−1 ∼= H(n− i− 1, q2), −1 ≤ i ≤ n− 2.
Since N > Cnq

2n−1 and q ≥ Qn,i, we know by Lemma 11 that N ≥ Σn,i(q) −
Cnq

2n−1. For each element α ∈ F∗p, we denote by Nα the sum of the number
of points P ∈ π such that cP = α and the number of points Q ∈ πσ such that
cQ = −α. We can find β ∈ F∗p such that Nβ ≥ N

p−1 . We now consider the code

word c′ = c− β(vπ − vπσ ), with vπ and vπσ as in Theorem 5. We know

wt(c′) = (N−Nβ)+(|(π∆πσ)∩H|−N) = |(π∆πσ)∩H|−Nβ ≤ |(π∆πσ)∩H|− N

p− 1
.

We also know that N ≥ Σn,i(q) − Cnq2n−1 > p−1
p |(π∆πσ) ∩H| by Lemma 10. It

follows that

wt(c′) <
p

p− 1
N − N

p− 1
= N ≤ wt(c) .

Hence, the theorem follows using induction on w = wt(c).

We now focus on the code words that we described in Section 2.

Remark 3. Let c be a small weight code word and q sufficiently large. Following
the arguments in the proof of Theorem 9, we know that c = c1 + · · ·+ cm, with ci,
1 ≤ i ≤ m, a code word that we described in Theorem 5 and Example 1, such that
wt(c1 + · · ·+ cm′) < wt(c1 + · · ·+ cm′+1) for all 1 ≤ m′ ≤ m. From this observation,
it immediately follows that the code words that we described in Theorem 5 and
Example 1 are the code words of smallest weights.

Now we consider small weight code words different from the ones described in
Theorem 5. Let c be a code word c of weight smaller than 4q2n−2(q−1), q sufficiently
large. Since c is not of the type we described in Theorem 5, c can be written as a
linear combination of at least two of these code words. By the above arguments,
we can find a code word c′ which is a linear combination of precisely two of these
code words, such that wt(c′) ≤ wt(c). In particular, we can find α, α′ ∈ F∗p and
n-spaces π, π′, π /∈ {π′, π′σ}, such that c′ = α(vπ−vπσ )+α′(vπ′−vπ′σ ) and wt(c′) <
4q2n−2(q−1). Let S be the support of c′. We know that S = ((π∆πσ) ∪ (π′∆π′σ))∩
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H(2n+1, q2) if α+α′ 6= 0 and S = ((π∆πσ) ∆ (π′∆π′σ))∩H(2n+1, q2) if α+α′ = 0.
In both cases, S ⊇ ((π∆πσ) ∆ (π′∆π′σ)) ∩ H(2n + 1, q2). However, it can be seen
that |(π∆πσ) ∩ (π′∆π′σ)| ≤ 4q2n−2. Hence,

|S| ≥ wt(α(vπ − vπσ )) + wt(α′(vπ′ − vπ′σ ))− |(π∆πσ)∩ (π′∆π′σ)| ≥ 4q2n−2(q− 1) ,

a contradiction. It follows that all code words of weight smaller than 4q2n−2(q− 1)
are of the type described in Theorem 5.

Note that Theorem 9 only proves the second half of Theorem 3. From Remark
3 now the first half also follows.
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