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Maximally Orthogonal High-Order Basis Functions
have a Well-Conditioned Gram Matrix
Ignace Bogaert,Member, IEEE,and Francesco P. Andriulli,Senior Member, IEEE

Abstract—Recently, a novel high-order finite element space
for wires, quadrilaterals and hexahedrons was presented [1].
Numerical results have shown a very favorable behavior of the
condition number of the Gram matrix of this finite element
space as a function of the polynomial degree. In this paper, this
high-order finite element space is recognized to be expressible
in terms of Jacobi polynomials, which can be easily computed
using a three-term recurrence. In addition,the condition number
of the Gram matrix of the one-dimensional finite element space
is rigorously analyzed for the general case of a piecewise smooth
(possibly curved) geometry. An explicit upper bound for the
condition number in terms of the mesh quality is proved. This
bound implies that the one-dimensional finite element spaceis
stable for arbitrarily high polynomial degree. Numerical r esults
corroborate the theoretical results and show that the basiscan be
used to perform hp-refinement, leading to an accurate handling
of both large smooth regions and corners.

Index Terms—High-order basis functions, polynomials, condi-
tioning

I. I NTRODUCTION

H IGH-order finite elements have attracted much attention
[2]–[7] because of their potential to yield much better

accuracy for the same number of unknowns or, similarly, a
smaller number of unknowns for the same accuracy. Unfortu-
nately, high-order subdomain finite element spaces have his-
torically suffered from significant linear dependence between
the various basis functions. This in turn leads to ill-conditioned
matrices resulting from the discretization of partial differential
equations or integral equations. While the ill-conditioning
due to the pseudo-differential nature of the equation(be it
partial differential or integral) can usually be mitigatedusing
multigrid, multiresolution or Calderón preconditioners[8]–
[11], this is usually not as easily done for the ill-conditioning
due to linear dependence between the different basis functions.
It is therefore of great practical importance to find high-order
subdomain finite element spaces that show sufficient linear
independence between the various finite elements.

A way to quantify the amount of linear dependence of a
finite element space is to look at the condition number of the
Gram matrix associated with the space. If the finite elements
are denoted asbn, ∀n ∈ [1, B], the elements of the Gram
matrix are defined as

[G]n,m =

∫

Ω

bn(r)bm(r)dr, ∀n,m ∈ {1, B}, (1)
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where the integration is over the computational domainΩ. For
a boundary element method,Ω can be the boundary of another,
higher-dimensional, domain or even a one-dimensional wire
embedded in three dimensional space. It is clear that if two
finite elements are linearly dependent, the smallest singular
value of the Gram matrix will be zero, leading to an infinite
condition number. In this sense the condition number of the
Gram matrix is related to the amount of linear dependence in
the finite element space. However, there is also a more direct
link. For example, when discretizing an integral equation of
the second kind such as the magnetic field integral equation
[12], [13], the Gram matrix arises as an integral part of the
final matrix equation. Clearly, acquiring explicit bounds for
the condition number of the Gram matrix has immediate use
for these types of equations.

For a long time, no div-conforming high-order subdomain
finite element spaces were known that exhibit bounded con-
dition numbers for their Gram matrix. The div-conformity
of the finite elements requires that the finite elements have
continuous normal components globally across the mesh. In
practice, this requirement turned out to be hard to satisfy
while keeping the condition number of the Gram matrix under
control, both for hierarchical [5], [7], [14], [15] and non-
hierarchical bases [2].

However, recently, novel div-conforming high-order finite
element spaces were presented for generalized wires, quadri-
laterals and hexahedrons [1]. Preliminary results were also
presented in [16]. By means of numerical experiments, these
finite element spaces have been shown to be almost orthogonal
up to degree8. One of the most significant observations from
these numerical results is that the orthogonality seems toim-
provewith higher polynomial degree, which lends credibility
to the idea that this finite element space might have a bounded
condition number, irrespective of the polynomial degree. This
is clearly a property that should be regarded as highly valuable,
especially because the space also allows fullhp-refinement
[17]–[19], just like hierarchical finite element spaces.

The finite element spaces from [1] are based on a set of
two node functionsQ0(s), Q1(s) andN−1 segment functions
Qn(s), ∀n ∈ [2, N ] (whereN is the polynomial degree of the
finite element space) that is maximally orthogonalized. Other
sets of functions have been proposed [7], [20], but these have
been shown to not lead to well-conditioned Gram matrices by
means of numerical experiments.

In this paper, the fact that the functionsQn(s) do lead to a
well-conditioned Gram matrix will be proved in a mathemati-
cally rigorous way for the specific case of the one-dimensional
finite elements (i.e. the finite element space for generalized
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wires). First, explicit formulas will be developed for the
segment and node functions. For the segment functions, it will
be shown that the Gram-schmidt procedure proposed in [1]
leads to Jacobi polynomials, such that a three-term recurrence
can be used instead of the Gram-Schmidt orthogonalization.
For the node functions, a representation in terms of derived
Legendre polynomials is proved. These explicit representations
are useful for all three finite element spaces proposed in [1].
Subsequently, these explicit formulas are used to derive an
upper bound for the condition number of the Gram matrix
of the generalized wire finite element space. It is shown that
this upper bound indeed decreases for increasing polynomial
degree, thereby proving the stability of the finite element space
up to arbitrary degree. Numerical results subsequently confirm
the theoretical predictions for polynomial degrees as highas
3036.

Throughout the rest of this paper, the polynomial degree of
the finite element space will be denoted byN .

II. EXPLICIT EXPRESSIONS FOR THESEGMENT AND NODE

FUNCTIONS

Here, the segment and node functions proposed in [1]
will be cast into analytical formulas. These formulas have
advantages both from an implementation point of view and
for the theoretical understanding of the stability of the finite
element space. Among other things, it will be proved that
the orthogonality factor defined in [1] monotonically improves
with rising polynomial degreeN .

A. Segment Functions

In [1], the segment functionQn(s), with n ∈ [2, N ], is
constructed such that it is:

• a polynomial of degreen,

• L2-orthogonal toQm(s), ∀m ∈ [2, n− 1], (2)

• zero on the boundary, i.e. fors = ±1.

The used construction method is a Gram-Schmidt orthogonal-
ization procedure, which starts from a collection ofN − 1
polynomialsSk(s) = Pk (s) − Pk−2 (s) , ∀k ∈ [2, N ]. The
polynomialPk (s) is the Legendre polynomial [21] of degree
k, which guarantees thatSk(±1) = 0. In general, the result
of Gram-Schmidt orthogonalization depends on the order (i.e.
which one comes first) of the input functions. However, here,
the condition thatQn(s) is a polynomial of degreen (and not
higher) fixes the input order. Hence the functionsQn(s) are
uniquely determined, up to normalization factors, by the three
conditions (2).

It will now be shown that the Gram-Schmidt procedure can
be replaced by a three-term recurrence on a suitable set of
Jacobi polynomials [21]. We claim that the segment functions
can be defined as follows:

Qn(s) = Kn(1− s2)P 2,2
n−2 (s) , ∀n ∈ [2, N ]. (3)

with

Kn =
1

4

√

(2n+ 1)(n+ 1)(n+ 2)

2n(n− 1)
. (4)

The functionsQn(s) are depicted in Figure 1 forn ∈ [2, 4].
Due to the uniqueness of the segment functions, it needs
only be shown that these segment functions satisfy the three
conditions (2) to prove that they constitute the same set of
functions (up to normalization factors).

The first condition is trivially satisfied because the Jacobi
polynomialP 2,2

n−2 (s) is of degreen−2. The factor(1−s2) in
front of the the Jacobi polynomial then drives up the degree
of Qn(s) to n. This factor is also directly responsible for the
satisfaction of the third condition in (2). That leaves the second
condition to be proved. Due to the orthogonality propertiesof
the Jacobi polynomials [21], the following holds

∫ 1

−1

Qn(s)Qm(s)ds = δn,m, ∀n,m ≥ 2 (5)

i.e. the segment functions form an orthonormal set. Clearly,
definition (3) is advantageous from an implementation point
of view because the Jacobi polynomials satisfy the recurrence
relation

2n(n+ 4)P 2,2
n (s) = (2n+ 4)(2n+ 3)sP 2,2

n−1 (s)

− (n+ 1)(2n+ 4)P 2,2
n−2 (s) . (6)

This allows for a rapid and numerically stable evaluation of
the segment functionsQn(s) for arbitrarily high degree.

It should be noted that these segment functions (3)have
also been discussed in [22] and [4].There, however, the
accompanying node functions were not chosen maximally
orthogonal to the segment functions, leading to a growing
linear dependence between the various finite elements as the
degree is increased.

B. Node Functions

The node functionsQ0(s) andQ1(s) are polynomial func-
tions of degreeN that satisfy the following conditions

• Q0(1) = 0 = Q1(−1), Q0(−1) 6= 0 6= Q1(1),

• Q0(s), Q1(s) areL2-orthogonal toQm(s), ∀m ∈ [2, N ].
(7)

To find these functions, one possibility is to project away the
segment functionsQm(s), ∀m ∈ [2, N ] from initial functions
1 − s and 1 + s [1]. However, as will be shown, it is also
possible to relate the node functions to the derivative of
Legendre polynomials. To show this, consider the following
two polynomials:

u0(s) =
d

ds
PN (s) , (8)

u1(s) =
d

ds
PN+1 (s) . (9)
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These two polynomials are orthogonal to the segment func-
tions because∀j ∈ {0, 1}:
∫ 1

−1

uj(s)Qm(s)ds =

= Km

∫ 1

−1

P 2,2
m−2 (s) (1− s2)

d

ds
PN+j (s) ds,

=
2Km

n+ 2

∫ 1

−1

d

ds
P 1,1
m−1 (s) (1− s2)

d

ds
PN+j (s) ds,

= − 2Km

n+ 2

∫ 1

−1

P 1,1
m−1 (s)

d

ds

[

(1 − s2)
d

ds
PN+j (s)

]

ds,

= (N + j)(N + j + 1)
2Km

n+ 2

∫ 1

−1

P 1,1
m−1 (s)PN+j (s) ds,

= 0, ∀m ≤ N. (10)

This result implies that the functionsuj(s) span the space of
node functions. Then the only task left is to find the linear
combinations that satisfy the first of conditions (7):

QN
0 (s) = (−1)N

Nu1(s)− (N + 2)u0(s)
√

2N(N + 1)2(N + 2)
, (11)

QN
1 (s) =

Nu1(s) + (N + 2)u0(s)
√

2N(N + 1)2(N + 2)
. (12)

The factor in the denominators has been chosen such that
∫ 1

−1

QN
j (s)QN

j (s)ds = 1, ∀j ∈ {0, 1}. (13)

Because the functions defined in (11) and (12) depend on the
maximal degreeN , the superscript has been added in these
definitions. For uniformity of notation, this superscript may be
used for the segment functions as well throughout this paper.
Figure 1 depicts these two node functions forN = 4. As can
be seen, these functions have most of their weight clustered
at the edges of the interval[−1, 1]. This clustering increases
for increasing degreeN , due to the orthogonality with the
segment functions.

For the purpose of stitching together two node functions on
adjacent segments to form a continuous function, it is useful
to know the value of the node functions in the pointss = ±1.
Now, since

uj(±1) = (±1)N+j+1 (N + j)(N + j + 1)

2
, (14)

the node functions can be evaluated on the boundary, which
yields

QN
0 (−1) = QN

1 (1) =

√

N(N + 2)

2
. (15)

C. Orthogonality

Now that expressions have been derived for the segment
and node functions, it becomes possible to determine the
orthogonality properties of these functions on one segment.
To this end, consider theN +1 by N +1 Gram matrix of the
segment and node functions:

[GN ]n,m =

∫ 1

−1

QN
n (s)QN

m(s)ds, ∀n,m ∈ {0, N}. (16)
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Fig. 1. The first few segment and node functions forN = 4.

In [1], a numerical study was done on a so-called orthogonality
factorON , which is a quantity derived from the Gram matrix:

ON =

N
∑

n=0

N
∑

m=0,m 6=n

∣

∣

∣
[GN ]n,m

∣

∣

∣
. (17)

It is clear that a low orthogonality factor is desirable, because
the Gram matrix of the segment and node functions becomes
more diagonally dominant, resulting in a better condition
number and a better linear independence. A remarkable result
from the numerical experiment in [1] was that the orthogo-
nality factordecreasesas the degree is increased. This unique
property will now be proved using the analytical expressions
derived in the above.

First, it is clear that the only nonzero off-diagonal elements
of the Gram matrix are

[GN ]0,1 = [GN ]1,0 =

∫ 1

−1

QN
0 (s)QN

1 (s)ds. (18)

Expressed in terms of the functionsu0(s) and u1(s), this
integral becomes:
∫ 1

−1

QN
0 (s)QN

1 (s)ds = CN

∫ 1

−1

N2u2
1(s)−(N + 2)2u2

0(s)ds,

(19)

with

CN =
(−1)N

2N(N + 1)2(N + 2)
. (20)

Using the result
∫ 1

−1

[

d

ds
Pn (s)

]2

ds = n(n+ 1), (21)

the following is immediately obtained
∫ 1

−1

QN
0 (s)QN

1 (s)ds = − (−1)N

N + 1
. (22)

As a consequence, the orthogonality factor becomes

ON =
2

N + 1
. (23)
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This theoretical result matches perfectly with the numerically
obtained results in Figure 5 in [1]. It also proves that the
orthogonality factor will keep on decreasing for arbitrarily
high degreeN , ultimately converging to zero.

As an alternative to the orthogonality factor, one can also
compute the condition numberκN of the Gram matrix. The
proof is elementary and we give only the result:

κN = 1 +
2

N
. (24)

This shows once more that the segment and node functions
Qn(s) constitute an almost orthogonal set for arbitrarily high
polynomial degrees. A useful additional result is that

N

N + 1
||v||2 ≤ vT · GN · v ≤ N + 2

N + 1
||v||2 , ∀v ∈ R

N+1.

(25)

III. A S TABLE FINITE ELEMENT SPACE

In the previous section, the segment and node functions
Qn(s) were shown to constitute an almost-orthonormal set on
the range[−1, 1]. Of course, in practice, these functions are
not used on the range[−1, 1], but are rather used to construct
a finite element space that is div-conforming. Imposing global
normal continuity and the presence of coordinate stretching
due to geometry representation will deteriorate the orthogo-
nality properties of the basis. This notwithstanding, it will be
shown that the condition number of the normally continuous
finite element space can be bounded from above using a simple
normalization strategy, provided that some regularity condi-
tions are satisfied for the mesh. This normalization behaves
similarly to symmetric diagonal preconditioning, which led to
the good numerical results in [1].

To avoid overcomplicating the problem, we will focus on
a one-dimensional finite element space, which can be used
in for example three-dimensional wire scattering or in two-
dimensional scattering for the transverse-electric case (mag-
netic field parallel to the invariant axis). The analysis of the
condition number will be performed for a general (possibly)
curved geometry, such that the most general conclusions can
be drawn.

A. Finite Element Space

Consider a connected, closed scatterer that consists ofP
segmentsσp, p ∈ [1, P ], such that each segment is param-
eterized bys, which is restricted to the range[−1, 1]. The
point onσp corresponding to a specific value ofs is rp(s).
Associated with this representation isthe Jacobian

Jp(s) = ||ap(s)|| , (26)

with the tangential vectorap(s) defined as

ap(s) =
d

ds
rp(s). (27)

Using the Jacobian (26),the segment lengthlp can be com-
puted

lp =

∫ 1

−1

Jp(s)ds. (28)

Without loss of generality, it will be assumed that two seg-
ments have consecutive indicesp andp+1 if they touch in a
point. To make the scatterer closed, the indexP +1 should be
regarded as equivalent1. In addition, it will be assumed that
they are ordered such thatrp(1) = rp+1(−1).

In the discretization, each segment gets assigned a degree
Np, which signifies the polynomial degree of the expansion
on this segment. Note that different segments are allowed to
have different degrees, such that fullhp-refinement becomes
possible [17]–[19]. The finite elementsgmn will be understood
to be defined on the entire scatterer, being zero on all but one
or two segments. To simplify the definition of these necessarily
piecewise polynomial functions, we introduce the restriction
operator|p, such that

gmn|p(s) = the part ofgmn on segmentσp. (29)

The finite element space consists of two parts, correspond-
ing to the segment and node functions introduced in the above.
The segment finite elements,∀n ∈ [2, Nm], are defined as

gmn|p(s) =
{

p = m : cmQn(s)
ap(s)
Jp(s)

p 6= m : 0
. (30)

From this, it becomes clear thatm is the ’segment-index’ and
n is the ’degree-index’ ofgmn. Since the segment functions
are zero on the boundary of the segment, these finite elements
satisfy the normal continuity constraint. Also, the finite ele-
ments contain a constant factorcm that will be used for the
normalization purposes mentioned earlier. The factorcm will
be defined further on, in equation (35).

The nodal finite elements are more cumbersome, requiring
the stitching together of two node functions on subsequent
segmentsσm andσm+1. The nodal finite elementgm1 on this
pair of segments will be defined as follows:

gm1|p(s) =



















p = m : dm
Q

Np

1
(s)√

Np(Np+2)

ap(s)
Jp(s)

p = m+ 1 : dm
Q

Np

0
(s)√

Np(Np+2)

ap(s)
Jp(s)

p 6= m or m+ 1 : 0

. (31)

This definition guarantees div-conformity because, using equa-
tion (15), it can be checked that

am(1)

Jm(1)
· gm1|m(1) =

am+1(−1)

Jm+1(−1)
· gm1|m+1(−1) =

dm√
2
.

(32)

B. Normalization and Mesh Regularity Assumptions

For the purpose of analyzing the condition number of this
finite element space’s Gram matrix, the normalization factors
cm anddm need to be defined. To this end, we define

Jmin
p = mins∈[−1,1]Jp(s), (33)

Jmax
p = maxs∈[−1,1]Jp(s). (34)
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Using these extremal values of the Jacobian on each segment,
the normalization factors will be defined as

cp =
1

√

Jmin
p

, (35)

dp =

√

√

√

√max

[

Np(Np + 2)

2Jmin
p

,
Np+1(Np+1 + 2)

2Jmin
p+1

]

. (36)

In addition, two regularity assumptions will be made. The first
is an assumption on the geometrical refinement rate, and is
expressed as follows:

max
[

Jmax
p , Jmax

p+1

]

min
[

Jmin
p , Jmin

p+1

] ≤ γ < ∞, ∀p ∈ [1, P ]. (37)

A simple interpretation of this inequality can be found for
meshes consisting of straight segments, for whichrp(s) is a
linear function ofs. In this case it holds that

Jmax
p = Jmin

p = 2lp, (38)

such that criterion (37) simplifies to

max[lp, lp+1]

min [lp, lp+1]
≤ γ < ∞, ∀p ∈ [1, P ]. (39)

This criterion is simply a bound on how quickly the segment
length is allowed to change. This is a common measure
for mesh quality and it is therefore not surprising that a
generalization is found to be necessary for the case with curved
segments. A simple but useful corollary of (37) is

Jmax
p+i

Jmin
p+j

≤ γ, ∀p ∈ [1, P ], ∀i, j ∈ {0, 1}. (40)

The second assumption has to do with how quickly the
segment degreeNp is allowed to change. It will be formalized
as

max[Np(Np + 2), Np+1(Np+1 + 2)]

min [Np(Np + 2), Np+1(Np+1 + 2)]
≤ β < ∞, ∀p ∈ [1, P ].

(41)

A constraint on the rate of change forNp may seem a bit
surprising at first, but it becomes more logical if one thinksof
increasing the degree as increasing the spatial bandwidth of the
finite element space. Indeed, refining the mesh very similarly
increases this spatial bandwidth. Therefore, assumptions(37)
and (41) can be seen as bounds on how quickly the spatial
bandwidth of the finite element space is allowed to change.

C. The Gram Matrix

Now that the finite element space has been defined, we can
move on to investigate the condition number of the Gram
matrix of this finite element space. Due to the presence of
multiple coordinate systems, the Gram matrix can be defined
in multiple ways. However, in this work, the Gram matrix
induced by theL2 norm on the boundary of the scatterer will
be used because of its physical interpretation and its relevance
for the conditioning of the magnetic field integral equation.

Written in terms of integrations over theP segments, the
elements of the Gram matrix are given by

[GFE ]mn,m′n′ =

P
∑

p=1

∫ 1

−1

gmn|p(s)gm′n′ |p(s)Jp(s)ds. (42)

Here,mn andm′n′ are composite indices for the rows and
columns ofGFE respectively, running over both the segment
and degree indices.

Using the Gram matrix, theL2 norm of any linear combi-
nation of finite elementsh

h =
∑

mn

[b]mn gmn, (43)

can be written as

||h||2L2
= bT · GFE · b. (44)

To prove an upper bound for the condition number of the Gram
matrix, a bound of the following type will be derived:

α− ||b||2 ≤ b
T · GFE · b ≤ α+ ||b||2 . (45)

The norm||b||2 is the euclidian norm of the coefficient vector.
Of course, the above inequality implies that the smallest
singular value ofGFE is larger thanα−, and that the largest
singular value is smaller thanα+. This in turn leads toα+/α−

as an upper bound on the condition number.
To derive an inequality such as (45), we start from a

corollary of (42):
P
∑

p=1

Jmin
p

∫ 1

−1

[h|p(s)]2 ds ≤ ||h||2L2
≤

P
∑

p=1

Jmax
p

∫ 1

−1

[h|p(s)]2 ds.

(46)

Let us now derive bounds for the integrals appearing in both
the right and left hand sides. Inserting the definition of the
finite elements intoh|p(s) yields

h|p(s) =
∑

mn

[b]mn gmn|p(s),

=

N
∑

n=2

[b]pn cpQn(s)
ap(s)

Jp(s)

+ [b]p1 dp
Q

Np

1 (s)
√

Np(Np + 2)

ap(s)

Jp(s)

+ [b](p−1)1 dp−1
Q

Np

0 (s)
√

Np(Np + 2)

ap(s)

Jp(s)
. (47)

Using this expression and (25), it becomes possible to derive
the following bounds

Np

Np + 1
Dp ≤

∫ 1

−1

[h|p(s)]2 ds ≤
Np + 2

Np + 1
Dp, (48)

with

Dp = c2p

N
∑

n=2

[b]
2
pn +

[b]
2
p1 d

2
p

Np(Np + 2)
+

[b]2(p−1)1 d
2
p−1

Np(Np + 2)
(49)

The two inequalities in (48) will now be used to find a lower
bound for the left hand side of (46) and an upper bound for
the right hand side of (46), thereby providing suitable values
for α±.
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1) Determiningα−: Using (35) and (36), the following can
be shown:

Jmin
p Dp = Jmin

p

[

c2p

N
∑

n=2

[b]
2
pn +

[b]
2
p1 d

2
p

Np(Np + 2)
+

[b]2(p−1)1 d
2
p−1

Np(Np + 2)

]

,

(50)

≥
N
∑

n=2

[b]
2
pn +

1

2
[b]

2
p1 +

1

2
[b]

2
(p−1)1 . (51)

The latter is proved by noting that

Jmin
p d2p

Np(Np + 2)
=

1

2
max

[

1,
Jmin
p

Jmin
p+1

Np+1(Np+1 + 2)

Np(Np + 2)

]

≥ 1

2
.

(52)

Similarly:

Jmin
p d2p−1

Np(Np + 2)
≥ 1

2
. (53)

Inequality (51) can now be leveraged to show that

P
∑

p=1

Jmin
p

Np

Np + 1
Dp ≥ Nmin

Nmin + 1
||b||2 , (54)

with

Nmin = minp [Np] . (55)

This result proves the leftmost inequality in (45) with

α− =
Nmin

Nmin + 1
. (56)

2) Determiningα+: On the other hand

Jmax
p Dp = Jmax

p

[

c2p

N
∑

n=2

[b]
2
pn +

[b]2p1 d
2
p

Np(Np + 2)
+

[b]
2
(p−1)1 d

2
p−1

Np(Np + 2)

]

,

(57)

≤ γ
N
∑

n=2

[b]2pn +
γβ

2
[b]2p1 +

γβ

2
[b]2(p−1)1 . (58)

The reasoning behind this inequality is

Jmax
p

d2p
Np(Np + 2)

=
1

2
max

[

Jmax
p

Jmin
p

,
Jmax
p

Jmin
p+1

Np+1(Np+1 + 2)

Np(Np + 2)

]

,

(59)

≤ γ

2
max

[

1,
Np+1(Np+1 + 2)

Np(Np + 2)

]

, (60)

≤ γ

2
max[1, β] , (61)

≤ γβ

2
. (62)

In a similar way, the following can be derived

Jmax
p

d2p−1

Np(Np + 2)
≤ γβ

2
. (63)

Inequality (58) allows us to proceed with finding an upper
bound for the right hand side of (46):

P
∑

p=1

Jmax
p

∫ 1

−1

[h|p(s)]2 ds

≤
P
∑

p=1

Jmax
p

Np + 2

Np + 1
Dp,

≤ γ

P
∑

p=1

Np + 2

Np + 1

[

N
∑

n=2

[b]
2
pn +

β

2
[b]

2
p1 +

β

2
[b]

2
(p−1)1

]

,

≤ γ
Nmin + 2

Nmin + 1

P
∑

p=1

[

N
∑

n=2

[b]
2
pn +

β

2
[b]

2
p1 +

β

2
[b]

2
(p−1)1

]

,

≤ γβ
Nmin + 2

Nmin + 1
||b||2 . (64)

This means that

α+ = γβ
Nmin + 2

Nmin + 1
, (65)

leads to a provably correct rightmost inequality in (45).
3) Bounding the condition number:Now we are in a

position to construct the bound on the condition number of
the Gram matrix of the finite element space:

κ [GFE ] ≤
α+

α−

= γβ

[

1 +
2

Nmin

]

. (66)

From this, it is clear that a higher minimal degree leads to
a (slightly) better bound on the condition number. However,
more importantly, it unequivocally proves that the condition
number of the Gram matrix for the finite element space is
bounded by a constant determined only by the rate of change
of the mesh density and the selected polynomial degree.
Therefore, it can be concluded that finite element spaces
of arbitrary order can be used without compromising the
condition number of the Gram matrix.

IV. N UMERICAL RESULTS

Numerical results will now be presented to support the
theoretical derivations in the above. To this end, the condition
number of the Gram matrix and the two dimensional magnetic
field integral equation for the transverse-electric case will be
investigated.

First, the condition number of the Gram matrix will be
compared to the theoretically derived bounds. Then the full
magnetic field integral equation will be solved to show that
the finite element space indeed leads to correct solutions.

A. Gram Matrix

To test the condition number of the Gram matrix, an
inhomogeneously curved geometry should be used. In this
work, the lemniscate of Gerono [23] was used, with parameter
representation

x(φ) = cosφ, y(φ) =
1

2
sin 2φ, with φ ∈

[

−π

2
,
π

2

]

. (67)

This closed curve is depicted in Figure 2, along with the
segmentation that was used. Clearly, the presence of the corner
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requires the mesh to be refined in that region. Indeed, even
though no singularity occurs in the current, the charge can be
singular, which means that the current can have an infinite
derivative. Themth segment is defined as the part of the
lemniscate that lies betweenφm andφm+1 with

φm =











m = 0 : −π
2

0 < m ≤ M :
[

2m−M − 1
]

π
2

M < m ≤ 2M : −φ2M−m

. (68)

In total, there are2M segments, where the parameterM
determines the amount of refinement that is done around the
corner. It is clear that, using such a refinement strategy, the
length of subsequent segments will not differ by substantially
more than a factor two, which is why (37) will be satisfied
with a boundedγ.

0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

Fig. 2. The used lemniscate, refined near the corner by means of the division
strategy given in (68) withM = 25.

For the numerical test, the degree assigned to each segment
will be given by

Np = 3 +

⌈

5klp
2π

⌉

. (69)

Here, k is a number that governs how much spatial band-
width the finite element space need to accommodate. The
constants appearing in (69) are chosen somewhat arbitrarily,
but the general form is constructed such that electrically long
segments get assigned high polynomial degrees while short
segments get assigned a fixed degree that is deemed sufficient
for the ’low-frequency’ region near the corner. This is a choice
that corresponds to what one would normally choose while
simulating a scattering problem at a wave number aroundk.
Also, (69) guarantees that the rate of change of the degree is
limited, based on the fact that the rate of change of the segment
length is limited by (37). Therefore, (41) will be satisfied with
a boundedβ.

Table I shows the numerical results obtained using the
choices (68) and (69) for various combinations of the re-
finement parameterM and the wave numberk. The values
for γ and β have been computed for each case, such that
the bound (66) can be evaluated. It is clearly seen that the

M k γ β Nmin Nmax Bound (66) κ [GFE ]

1 20 2.138 1 28 28 2.291 2.130
5 20 2.828 2.263 6 14 8.533 1.762
25 20 2.828 2.263 4 14 9.600 2.093
1 100 2.138 1 125 125 2.172 2.138
5 100 2.828 2.881 14 55 9.314 1.664
25 100 2.828 2.881 4 55 12.225 2.091
1 500 2.138 1 610 610 2.145 2.138
5 500 2.828 3.154 57 259 9.235 1.684
25 500 2.828 3.287 4 259 13.947 2.090
1 2500 2.138 1 3036 3036 2.139 2.138
5 2500 2.828 3.328 272 1279 9.481 1.695
25 2500 2.828 3.784 4 1279 16.056 2.086

TABLE I
THE BOUND ON THE CONDITION NUMBER AND THE ACTUAL COMPUTED

CONDITION NUMBER FOR VARIOUS COMBINATIONS OFM AND k.

condition number of the Gram matrix is smaller than the
corresponding bound for all cases, even for extreme refinement
of the geometry (the longest segment is over three million
times longer than the shortest one) and for large variationsof
the polynomial degree (4 on the shortest segments versus1279
on the longest ones). It is also evident that basis functionsof
extremely high degree can be used without compromising the
condition number of the Gram matrix, see for example the
case where the degree of the polynomials used is3036.

B. Magnetic Field Integral Equation

Finally, it will be shown that the proposed finite element
space can be used to accurately solve scattering problems.
The two dimensional magnetic field integral equation for the
transverse-electric case is chosen to avoid ill-conditioning due
to the pseudo-differential nature of the operator that is being
discretized. Indeed, if the electric field integral equation were
to be used, it would still lead to ill-conditioned matrices
due to the dense-mesh breakdown.However, the crux is
that many techniques exist for removing the ill-conditioning
originating from the equation. Examples are multigrid, mul-
tiresolution or operator preconditioning [8], [9], [11]. Though
these techniques are very effective, they cannot remove theill-
conditioning that comes from the linear dependence between
finite elements if the Gram matrix bears no resemblance to any
physical operator relevant to the problem being solved. The
proposed finite element space removes this issue by having a
well-conditioned Gram matrix.

For the scattering by a two-dimensional perfectly conduct-
ing scattererΩ, the magnetic field integral equation for the
transverse-electric case can be written as
1

2
Hz(r) +

∫

∂Ω

n̂(r′) ·∇G(r − r′)Hz(r
′)dr′ = H inc

z (r),

(70)

with n̂(r′) the unit normal vector to the boundary∂Ω and the
Green’s function

G(r) = − j

4
H

(2)
0 (k ||r||) , (71)

wherek is the wave number. The integral in (70) should be
interpreted ason the boundary of the scatterer, such that the
Dirac delta distribution in the integrand is not seen. Rather,
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this part is the first term of (70). Also, thez-directed magnetic
field is used to represent the tangential current on the scatterer:
J(r) = n̂(r) × [êzHz(r)]. This current will be discretized
by means of div-conforming finite elements, such that the
solution has a continuous normal component. This avoids point
charges, which would be non-physical. The test functions are
chosen identical to the basis functions, such that the first term
of (70) gives rise to the Gram matrix of the basis functions.

As a first scattering problem, a cylinder with unit radius is
chosen because of the availability of an analytical solution.
This allows the condition number of thecontinuousMFIE
to be computed. Indeed, for a cylinder with radiusa, the
eigenvalues of the operator in the left hand side of (70) can
be shown to be

λn =
jπ

4ka
(H

(2)
n−1 (ka)−H

(2)
n+1 (ka))Jn (ka) . (72)

Since the MFIE operator on a cylinder is diagonalized by
unitary operators (i.e. the periodic Fourier transform on the
boundary), the singular values are|λn|. Therefore, the condi-
tion number of the continuous MFIE is given by

κCont.
MFIE =

supn |λn|
infn |λn|

. (73)

It is worthwhile to point out that, for largen, |λn| converges
to 1

2 . This means that a moderaten is usually sufficient to
computeκCont.

MFIE.
For the numerical testing, a similar refinement as for the

Lemniscate was used. Themth segment is defined as the part
on the parameter curve

x(φ) = cos (2φ+ π) , y(φ) = sin (2φ+ π) , (74)

with φ betweenφm and φm+1, which have been defined
in (68) and in whichM = 5 was taken. This describes a
cylinder and the resulting segmentation is shown in Figure
3. Of course, the refinement is not strictly necessary for a
smooth geometry such as the cylinder, but it allows us to
show that the robustness of the condition number does not
rely on the uniformity of the mesh. The segment degree was

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3. The used cylinder, with parameter equation (74), refined nearφ =
±

π

2
by means of the division strategy given in (68) withM = 5.

k Bound (66) κ [GFE ] κCont.
MFIE κDiscr.

MFIE L2-Error

1 4.38 1.97 2.36 2.57 0.13× 10−3

4 6.19 1.59 6.09 6.12 0.16× 10−3

16 7.43 1.38 30.5 30.6 0.31× 10−4

64 8.16 1.47 16.3 16.3 0.55× 10−6

256 8.11 1.49 5672 5673 0.58× 10−9

TABLE II
THE CONDITION NUMBER OF THEGRAM MATRIX , THE CONTINUOUS

MFIE AND THE DISCRETIZEDMFIE FOR VARIOUS VALUES OFk.

again set by means of equation (69). Table II shows the upper
bound (66), the condition number of the Gram matrix, the
condition number of the continuous MFIE and the condition
number of the discretized MFIE (denoted byκDiscr.

MFIE) for various
wave numbersk. The achieved relative error (on the current)
in the L2 norm was also computed. As can be seen, the
bound (66) is satisfied for all cases. In addition, the condition
number of the discretized equation very closely matches the
condition number of the continuous equation, especially when
the condition number of the continuous equation is very high.
Finally, it is also interesting to see that the relativeL2-error
decreases dramatically as the wave numberk is increased.
This is due to the fact that the constants in equation (69) are
suboptimal for largek, i.e. they lead to segment degrees that
are too high for the used wave number. This in turn leads
to highly accurate results, demonstrating the approximation
power of the finite element space for smooth solutions.

As a final numerical example, scattering of a plane wave
impinging on the Lemniscate is modeled fork = 25m−1,
M = 25. The incoming plane wave propagates along thex-
axis:

H inc
z (r) = e−jkx. (75)

Thez-component of the total magnetic field is shown in figure
4, for points on the liner = (x, 0) , x ∈ [−1, 2]. As can be
seen, the total magnetic field is of the order10−8 inside the
structure. This shows that the high-order finite element space
is capable of very high accuracy, even when the structure has
sharp corners, if an appropriate refinement strategy is used. In
addition, this refinement is compatible with a low condition
number, in this caseκ [GFE ] = 2.092 andκDiscr.

MFIE = 24.29.
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Fig. 4. The total magnetic field on the liney = 0, which cuts through the
Lemniscate along the symmetry axis.
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V. CONCLUSION

A recently proposed high-order finite element space has
been rigorously analyzed. An alternative expression for the
finite elements in terms of known orthogonal polynomials has
been derived, leading to a simplified computation.In addition,
an explicit bound for the condition number of the Gram matrix
of this finite element space has been derived for the one-
dimensional case. This shows that the mesh refinement rate
and degree variation rate are the two main factors determining
the condition number.To the best knowledge of the authors,
this is the first div-conforming finite element space that is
usable inhp-refinement and has a provably bounded condition
number. Numerical results confirm the theoretical predictions,
even for extreme polynomial degrees (3036) and mesh refine-
ments.
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[5] J. Schöberl and S. Zaglmayr, “High Order Nédélec Elements with Local
Complete Sequence Properties,”International Journal for Computation
and Mathematics in Electrical and Electronic Engineering, vol. 24,
no. 2, pp. 374–384, 2005.

[6] M. Djordjevic and B. M. Notaro, “Higher-Order Hierarchical Basis
Functions with Improved Orthogonality Properties for Moment-Method
Modeling of Metallic and Dielectric Microwave Structures,” Microwave
and Optical Technology Letters, vol. 37, no. 2, pp. 83–88, 2003.

[7] E. Jorgensen, J. Volakis, P. Meincke, and O. Breinbjerg,“Higher Order
Hierarchical Legendre Basis Functions for Electromagnetic Modeling,”
Antennas and Propagation, IEEE Transactions on, vol. 52, no. 11, pp.
2985–2995, 2004.

[8] Yu Zhu and Andreas C. Cangellaris,Multigrid Finite Element Methods
for Electromagnetic Field Modeling. Wiley-IEEE Press, 2006.

[9] F. P. Andriulli, A. Tabacco, and G. Vecchi, “A Multiresolution Approach
to the Electric Field Integral Equation in Antenna Problems,” SIAM
Journal on Scientific Computing, vol. 29, no. 1, pp. 1–21, 2007.

[10] F. P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Chris-
tiansen, and E. Michielssen, “A Multiplicative Calderon Preconditioner
for the Electric Field Integral Equation,”IEEE Transactions on Antennas
and Propagation, vol. 56, no. 8, pp. 2398–2412, 2008.

[11] R. Hiptmair, “Operator Preconditioning,”Computers and Mathematics
with Applications, vol. 52, no. 5, pp. 699 – 706, 2006.

[12] F. Murray, “Conductors in an Electromagnetic Field,”Ant. J. Math.,
vol. 53, pp. 275–288, 1931.

[13] A. Maue, “On the Formulation of a General Scattering Problem by
Means of an Integral Equation,”Z. Phys., vol. 126(7/9), pp. 601–618,
1949.

[14] M. Ainsworth and J. Coyle, “Hierarchichp-edge Element Families
for Maxwell’s Equations on Hybrid Quadrilateral/Triangular Meshes,”
Computer Methods in Applied Mechanics and Engineering, vol. 190,
no. 49-50, pp. 6709–6733, 2001.

[15] R. Graglia, A. Peterson, and F. Andriulli, “Curl-Conforming Hierarchical
Vector Bases for Triangles and Tetrahedra,”IEEE Transactions on
Antennas and Propagation, vol. 59, no. 3, pp. 950–959, 2011.

[16] D. Sumic and B. Kolundzija, “Efficient Iterative Solution of Surface
Integral Equations Based on Maximally Orthogonalized Higher Order
Basis Functions,” inAntennas and Propagation Society International
Symposium, 2005 IEEE, vol. 4A, 2005, pp. 288–291 vol. 4A.

[17] I. Babuska and M. Suri, “Thep andh−p Versions of the Finite Element
Method, Basic Principles and Properties,”SIAM Review, vol. 36, no. 4,
p. 578632, 1994.

[18] L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz, “de Rham
Diagram forhp-Finite Element Spaces,”Computers and Mathematics
with Applications, vol. 39, pp. 29–38, 2000.

[19] L. Demkowicz, W. Rachowicz, and P. Devloo, “A Fully Automatic hp-
Adaptivity,” Journal of Scientific Computing, vol. 17, no. 1-4, pp. 117–
142, 2002.

[20] B. M. Kolundzija, “Electromagnetic Modeling of Composite Metallic
and Dielectric Structures,”IEEE Trans. Microw. Theory Tech., vol. 47,
p. 10211032, 1999.

[21] M. Abramowitz and I.A. Stegun,Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, ser. Advanced Math-
ematics. New York: Dover Publications, Inc., 1965.

[22] J. P. Webb and R. Abouchacra, “Hierarchical TriangularElements Using
Orthogonal Polynomials,”International Journal for Numerical Methods
in Engineering, vol. 38, pp. 245–257, 1995.

[23] Wikipedia, “Lemniscate of Gerono — Wikipedia, The Free
Encyclopedia,” accessed 7-Januari-2014. [Online]. Available: http://
en.wikipedia.org/wiki/Lemniscateof Gerono

http://en.wikipedia.org/wiki/Lemniscate_of_Gerono
http://en.wikipedia.org/wiki/Lemniscate_of_Gerono

	Introduction
	Explicit Expressions for the Segment and Node Functions
	Segment Functions
	Node Functions
	Orthogonality

	A Stable Finite Element Space
	Finite Element Space
	Normalization and Mesh Regularity Assumptions
	The Gram Matrix
	Determining -
	Determining +
	Bounding the condition number


	Numerical results
	Gram Matrix
	Magnetic Field Integral Equation

	Conclusion
	References

