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Abstract

We perform an analysis of the transient delay in a discrete-time FIFO buffer with batch arrivals. As
transient delay is an ambiguous concept, we first discuss different possible definitions of the term (delay
of the k-th customer, delay of a customer arriving at time t, etc). In this paper, we focus on the analysis
of the delay of a customer arriving in slot t, also sometimes called virtual delay in single-arrival systems.
It turns out that the modeling in batch-arrival systems is more intricate. In analysis, we relate transient
delay to transient unfinished work and characterize the latter. Some time-dependent as well as limiting
steady-state delay measures are calculated. We also study a variation that is related to active probing
measurements. A substantial part of the article finally focuses on some fundamental differences between
alternative definitions of transient delay.
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1 Introduction

The delay (waiting time, sojourn time) experienced by customers is one of the most important performance
measures of a queueing system. There is a vast literature dealing with the analysis of steady-state delay in
a broad range of queueing systems. Fewer research efforts have addressed transient delay measures, though
it might be of interest to characterize the evolution in time of delay experienced by customers. The latter is
the topic of this paper.

The definition of ‘transient delay’ is not unambiguous. Basically, one can take a customer-based approach
or a time-based approach. With the first approach, transient delay is defined as the delay of the k-th arriving
(or departing) customer (k ≥ 1). This transient delay is analyzed in for instance [1–8]. With the second
approach, transient delay is defined as the delay of a customer arriving at time t (t ≥ 0). In single-arrival
systems, this is sometimes called the virtual delay or virtual waiting time at time t, as it is the delay that a
‘virtual’ customer that would arrive at time t would experience. Examples of analyses of this transient delay
can be found in [1, 9, 10].

We note that the two alternative types of transient delay are substantially different. Only for single-
arrival systems, the steady-state delay distributions are identical, see further. The differences between the
steady-state delay distributions in case of batch arrivals were discussed by Burke [11]. Burke claims that the
customer-based approach (as was done by himself) is the correct one, and the time-based approach (as was
used in papers and books before Burke’s paper appeared) is erroneous. This is a valid point of view if the
steady-state delay is concerned, since one basically wants to characterize the delay of a random customer.
However, in case of transient delay, the time-based approach makes sense as well; one does not necessarily
know the ordinal number of a particular customer (the customer-based approach), while one might know the
time of arrival of this customer (time-based approach). Therefore, characterization of the delay of a customer
arriving at time t is interesting. It is also of interest to analyze the fundamental differences between both
approaches. These two issues are the subject of the current contribution.
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More precisely, we analyze the delay of a customer arriving during slot t (t ≥ 0) in a discrete-time
GeoX/G/1 queue with a FIFO (First-In-First-Out) scheduling discipline. This paper is therefore comple-
mentary to our paper [8], where the delay of the k-th arriving customer (k ≥ 1) in the same queue is analyzed.
We note that almost all articles characterizing transient delay assume single-arrival queueing systems. One
of the main challenges in the current analysis, however, is how to deal with the batch nature of the arrival
process. Indeed, in single-arrival systems, the delay is equal to the sum of the unfinished work at the arrival
instant (i.e., the time needed to process all customers present in the system at that time) and the service
time of the arriving customer. In batch-arrival systems, other customers can arrive at the same instant as
the virtual customer, so we have to deal with this issue. The queueing model is described in more detail
in the following section and the analysis of the delay of a customer arriving in slot t is presented in section
3. We relate the probability generating functions (pgf) of the delay of a customer arriving in slot t and of
the unfinished work at the beginning of slot t and use this relation to compute the transform function of
the former sequence of pgfs (for all t ≥ 0). In section 4, we calculate the pgf for t → ∞. The transient
mean delay is characterized in section 5. We then treat a slightly different model in section 6, where we
assume the virtual customer to be an additional ‘test’ customer. This is, for instance, useful in active probing
measurements, as extra customers are injected into the system in this type of measurements and the delay
of these customers is measured (see, for instance, [12]). Different definitions of (transient) delay lead to
different results. We therefore devote a substantial part of this article (section 7) to a comparison between
the different transient (and steady-state) delays, and investigate fundamental identities and differences. We
also provide some numerical examples. We conclude with some final remarks in the last section.

2 Queueing model

We consider a discrete-time single-server queueing system with infinite buffer space. Customers are served
on a First-Come-First-Served basis. The numbers of arrivals during the consecutive time units (denoted as
slots) are independent and identically distributed (i.i.d.) stochastic variables. Denote the number of arrivals
in an arbitrarily chosen slot by a. We use the notations a(n) and A(z) to indicate its probability mass
function (pmf) and probability generating function (pgf) respectively, i.e., a(n) , Prob [a = n] , n ≥ 0 and
A(z) , E [za] =

∑∞
n=0 a(n)zn. The service times of customers are defined as the numbers of slots it takes to

serve them and are assumed to be generally distributed with pmf s(n), n ≥ 1, and pgf S(z) =
∑∞

n=1 s(n)zn.
The mean number of arrivals in a slot and the mean service time are given by λ = A′(1) and 1/µ = S′(1),
respectively. The load equals ρ = λ/µ.

3 Analysis

We are interested in the delay of an arbitrary customer arriving in slot t, i.e., from all customers arriving in
slot t, we select one customer (the tagged customer) at random and analyze his delay (the number of slots
he resides in the system, not including his slot of arrival). Denote this delay by dt, for all t ≥ 0. Note that
slot t is a ‘special’ slot, as we assume that at least one customer arrives in this slot.

We first introduce the concept ‘unit of work’. We may assume that each customer consists of a number
of units of work equal to its service time and that the server processes at the rate of one unit of work per
slot. We can then relate dt to the unfinished work wt in the system at the beginning of slot t (defined as
the number of units of work that are in the system at the beginning of slot t), the amount of work units
ft arriving in slot t and to be executed before the tagged customer, and the service time st of the tagged
customer himself:

dt = (wt − 1)+ + ft + st, (1)

with (x)+ = max(x, 0).
As mentioned, the distribution of the number of arrivals in slot t is different from the distribution of the

number of arrivals in a random slot, as it is assumed that at least one customer arrives in slot t. However,
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since the numbers of per-slot arrivals are i.i.d., the special nature of slot t has no impact on the unfinished
work wt at the beginning of that slot, and, therefore, wt is equally distributed as the unfinished work at the
beginning of slot t in a system with a number of per-slot arrivals with pgf A(z) in all slots (also in slot t).
For that reason, ft is the only variable of the right-handside of (1) that is affected by the special nature of
slot t.

We now translate equation (1) to probability generating functions. We have:

Dt(z) , E[zdt ]

= E
[
z(wt−1)++ft+st

]
=
S(z)F (z)

z
(Wt(z) + (z − 1)Wt(0)), (2)

where F (z) , E
[
zft
]

and Wt(z) , E [zwt ]. We express F (z) as a function of A(z) later. Let us first take
the z-transform (or x-transform in this case) of the previous equation with respect to t. This will allow us
to use results obtained in [13] and to find (semi-)closed-form results. We define

D(x, z) ,
∞∑
t=0

Dt(z)x
t,

W (x, z) ,
∞∑
t=0

Wt(z)x
t.

Expression (2) then leads to

D(x, z) =
S(z)F (z)

z
(W (x, z) + (z − 1)W (x, 0)). (3)

Next, we analyze the transient unfinished work in a GeoX/G/1 queue. We note that this unfinished work
is equal to the buffer content (i.e., the number of customers in the buffer, including the one in service) in a
queue with single-slot service times but with each customer from the original system accounting for as many
customers as the length of its service time (in slots), i.e., a GeoX/D/1 system with the pgf of the number
of customer arrivals in one slot equal to A(S(z)). The transient buffer content in a GeoX/D/1 queue was
already analyzed in [13]. Using these results, we find

W (x, z) =
zW0(z) + xW (x, 0)(z − 1)A(S(z))

z − xA(S(z))
, (4)

W (x, 0) =
W0(Y (x))

1− Y (x)
, (5)

with W0(z) the (given) pgf of the unfinished work at the beginning (slot 0) and Y (x) the only solution for
z inside the unit disk of equation z − xA(S(z)) = 0 (|x| < 1). Substitution of (4)-(5) in (3) yields

D(x, z) = S(z)F (z)
W0(z)(1− Y (x)) + (z − 1)W0(Y (x))

(z − xA(S(z)))(1− Y (x))
. (6)

Finally, we calculate F (z). As already mentioned, this function depends on the fact that the number of
arrivals in slot t is differently distributed than in other slots. In fact, other definitions of ft (and of the delay
dt) are possible as well; we will look into an example later. Since ft is the amount of work arriving in slot t
and to be executed before the tagged customer, and since the order of service of the customers arriving in
one slot is completely arbitrary, we have

F (z) =
1

1−A(0)

∞∑
m=1

m−1∑
l=0

a(m)

m
S(z)l.
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This can be understood as follows. With probability a(m)/(1−A(0)), m customers (m ≥ 1) arrive in slot t.
The tagged customer is one of these m customers and he is served as (l + 1)-st of all these customers with
probability 1/m (l = 0, . . . ,m− 1). Working out the summation over l leads to

F (z) =

∑∞
m=1

a(m)

m
(1− S(z)m)

(1−A(0))(1− S(z))
.

We now relate the sum in the numerator to the pgf A. This can be done as follows:

∞∑
m=1

a(m)

m
(1− S(z)m) =

∞∑
m=1

a(m)

∫ y=1

y=S(z)

ym−1dy

=

∫ y=1

y=S(z)

∞∑
m=1

a(m)ym−1dy

=

∫ y=1

y=S(z)

A(y)−A(0)

y
dy,

and thus

F (z) =

∫ y=1

y=S(z)

A(y)−A(0)

y
dy

(1−A(0))(1− S(z))
.

Substitution in (6) finally yields

D(x, z) = S(z)

∫ y=1

y=S(z)

A(y)−A(0)

y
dy

(1−A(0))(1− S(z))

W0(z)(1− Y (x)) + (z − 1)W0(Y (x))

(z − xA(S(z)))(1− Y (x))
. (7)

By taking derivatives at z = 1, transform functions of the sequences of moments of the delay dt (t =
0, . . . ,∞) can be calculated. We will, for instance, calculate the transform function of the sequence of
mean delays {d̄t}∞t=0 in section 5. We note that it is usually not straightforward to invert these generating
functions, mainly because of the implicitly defined function Y (x), but that a couple of approaches have been
suggested in literature, such as numerical inversion techniques [14, 15], iterative techniques [13], as well as
analytical asymptotical techniques [16]. We also refer to section 5 in our article [8] for some discussion on
this.

4 Limit for t→∞
The limit of Dt(z) for t → ∞ equals the pgf of the delay of an arbitrary customer arriving in a randomly
chosen slot with at least one arriving customer in steady state (if such a steady state exists). Through the
final value theorem [17,18], we find that

D∞(z) , lim
t→∞

Dt(z)

= lim
x→1

(1− x)D(x, z).

By substituting (7) in this equation and taking the limit for x going to 1 (since Y (1) = 1, see [13], the use
of l’Hôpital’s rule is necessary in the last step), we find

D∞(z) = S(z)

∫ y=1

y=S(z)

A(y)−A(0)

y
dy

(1−A(0))(1− S(z))

z − 1

Y ′(1)(z −A(S(z)))
.
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Finally, we calculate Y ′(1). By taking the first derivative of the equation Y (x) = xA(S(Y (x))) and using
the property that Y (1) = 1, we find

Y ′(1) =
1

1− ρ
,

and

D∞(z) = (1− ρ)

∫ y=1

y=S(z)

A(y)−A(0)

y
dy

(1−A(0))(1− S(z))

S(z)(z − 1)

z −A(S(z))
. (8)

5 Mean delay

Here, we calculate the transform function of the sequence of mean delays {d̄t}∞t=0 (with d̄t , E[dt]), defined
as

D̄(x) ,
∞∑
t=0

d̄tx
t.

It can be calculated from D(x, z) as

D̄(x) =
∂D(x, z)

∂z

∣∣∣∣∣
z=1

.

By means of (7), we find

D̄(x) =
1

2µ(1− x)
+

ρ

2(1−A(0))(1− x)
+
W ′0(1)

1− x
+

W0(Y (x))

(1− Y (x))(1− x)
− 1− ρx

(1− x)2
.

The sum of the first two terms gives the transform of the mean amount of work that arrives in slot t and
that is part of the delay. The other terms account for that part of the delay that is caused by earlier arrived
work.

The mean delay of a customer arriving in a given slot in steady state can be calculated from D̄(x) as
well as from D∞(z):

d̄∞ = lim
x→1

(1− x)D̄(x)

= D′∞(1)

=
1

2µ
+

ρ

2(1−A(0))
+

A′′(1)

2µ2(1− ρ)
+

λS′′(1)

2(1− ρ)
. (9)

6 A variation

In this section, we treat a small variation on the model. Here, we want to study the delay d̂t of an extra
customer arriving in slot t, and its pgf Dt(z). The rationale is that one approach to measure the delay in
a queue is to send in a test customer and measure his delay, the so-called active-probing approach (see for
instance [12]). However, one should be careful, since this is not identical to the delay of a random customer,
or even to the delay of a customer arriving in a random slot (or in slot t in the transient case). Therefore,
it is interesting to study the differences between these different delays.

The model and analysis in this case are not much different from those in section 3. The only difference
between d̂t and dt is the work that arrives in the same slot as the customer we are interested in and that is
part of his delay, i.e., we need a different pgf F̂ (z) that replaces function F (z) from section 3.
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The pgf of the total number of arrivals in slot t equals zA(z), since an extra customer arrives in this slot,
on top of the usual arrivals. Therefore, we find in the same way as in the original model that

F̂ (z) =

∫ y=1

y=S(z)
A(y)dy

1− S(z)
.

We note that the difference between F̂ (z) and F (z), and thus also between D̂t(z) and Dt(z) and even between
the two defined delays, does not depend on the slot t.

The function D̂(x, z) then becomes

D̂(x, z) ,
∞∑
t=0

D̂t(z)x
t

= S(z)

∫ y=1

y=S(z)
A(y)dy

1− S(z)

W0(z)(1− Y (x)) + (z − 1)W0(Y (x))

(z − xA(S(z)))(1− Y (x))
.

The derived functions are given as follows in this variation.

D̂∞(z) = (1− ρ)

∫ y=1

y=S(z)
A(y)dy

1− S(z)

S(z)(z − 1)

z −A(S(z))
,

¯̂
D(x) =

2 + λ

2µ(1− x)
+
W ′0(1)

1− x
+

W0(Y (x))

(1− Y (x))(1− x)
− 1− ρx

(1− x)2
,

¯̂
d∞ =

1

µ
+
ρ

2
+

A′′(1)

2µ2(1− ρ)
+

λS′′(1)

2(1− ρ)
. (10)

7 Some discussion on the different delays

In this section, we discuss the differences and similarities of the three transient delays, namely the delay
of an arbitrary customer arriving in slot t (main topic of this article), the delay of an extra test-customer
arriving in slot t (delay analyzed in section 6) and the delay of the k-th arriving customer (delay analyzed
in [8]).

7.1 Delay of an arbitrarily chosen customer versus delay of a test customer,
both arriving in slot t

We start with comparing the delays dt and d̂t, analyzed in sections 3 and 6 respectively. We first note that
the difference between these two delays is independent of slot t, as the only difference is the work that arrives
in slot t and that is part of the studied delay, i.e., through the variables with pgfs F (z) and F̂ (z). Therefore,
it is also equal to the difference of the steady-state delays. The difference between the transient mean delays
at time t then equals

¯̂
dt − d̄t =

1− (1 + λ)A(0)

2µ(1−A(0))
, (11)

which can be found from (9) and (10). This difference can be positive as well as negative. It is natural that
this difference is positive, as the test customer is an extra customer. However, if the probability A(0) of
no arrivals in a slot is large, the test customer most likely arrives in a slot with no other arrivals. In the
original model, we know that slot t is a slot with arrivals. If the probability that more than two customers
arrive given that at least one customer arrives is high (which should be the case if the probability A(0) of
no arrivals in a slot is large, while the mean arrival rate λ is also high), this mean delay can indeed turn out
to be higher than in the model with a test customer. The difference is then negative.
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Deterministic batch sizes

Let us illustrate this in case of deterministic batch sizes. The number of arrivals in a slot is 0 or m (m fixed),
i.e., A(x) = 1− λ/m+ λxm/m. The difference in (11) becomes

¯̂
dt − d̄t =

λ− (m− 1)

2µ
.

While for m = 1 (Bernoulli arrivals) the difference is positive, the difference is negative for m > 1. I.e.,
active probing leads to an underestimation of the mean delay of a customer arriving in a specified slot
when customers arrive in batches. This is also depicted in Figure 1, where we show the relative difference

(
¯̂
dt − d̄t)/d̄t in case of single-slot service times (S(z) = z, µ = 1). It can be seen that active probing

underestimates the mean delay considerably (upto 60% in the figure), especially for high arriving batch sizes
and low arrival rates. This is logical as in those cases the test customer has a high probability of arriving in
a slot with no other arrivals, while a random customer arrives in a batch with m − 1 other arrivals. It can
also be seen from the figure that the relative difference goes to a limiting value for m→∞. From formulas
(9) and (11), we find that this limit is equal to −(1 − λ). A general conclusion that can be drawn is that
one should be careful with measuring the delay by active probing methods when the customers arrive in
batches.

[Figure 1 about here.]

7.2 Delay of a customer arriving in slot t versus delay of the k-th arriving
customer

In this subsection, we study the difference between the delay of a customer arriving in slot t and the delay
of the customer that is the k-th to arrive in the system. The latter was studied in [8] and we first review
the expressions of interest from this paper. We denote the delay of the k-th arriving customer as d̃k, its pgf

by D̃k(z) and its expected value by
¯̃
dk (k ≥ 1). In order to have a fair comparison between both delays,

we assume zero unfinished work at time zero in both cases, i.e. W0(z) = 1. Therefore, the first arriving
customer does not have to wait and his delay equals his service time, leading to D̃1(z) = S(z). Then, in [8],
the following pgfs and transform functions are derived:

D̃(x, z) ,
∞∑
k=1

D̃k(z)xk

=
xS(z)(1−A(xS(z)))(z − V (x))

(1− xS(z))(1− V (x))(z −A(xS(z)))
,

D̃∞(z) =
1− ρ
λ

1−A(S(z))

1− S(z)

S(z)(z − 1)

z −A(S(z))
, (12)

¯̃D(x) ,
∞∑
k=1

¯̃
dkx

k

=
x

µ(1− x)2
+

x(V (x)−A(x))

(1− x)(1−A(x))(1− V (x))
,

¯̃
d∞ =

1

µ
+

A′′(1)

2λµ(1− ρ)
+

λS′′(1)

2(1− ρ)
, (13)

with V (x) the sole solution for z in the unit disk of z −A(xS(z)) = 0 (|x| < 1).
In general, the two transient delays can be very different. In the remainder, we first discuss differences

in steady-state delays. Then, we turn our attention to differences between transient delays.
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7.2.1 Steady-state delays

Let us first look at the differences between the steady-state mean delays in (9) and (13):

¯̃
d∞ − d̄∞ =

Var[a](1−A(0))− λ2A(0)

2λµ(1−A(0))
. (14)

Here, we used that A′′(1) = Var[a] + λ2 − λ, with Var[a] the variance of the number of arrivals in a slot.
This difference is non-negative. This can be observed as follows: the smallest Var[a] is the variance following
from a Bernoulli distributed number of arrivals in a slot. This variance equals λ(1 − λ) and A(0) = 1 − λ.
Substituting this in (14) leads to a difference of zero. In most other cases, the difference (14) is positive.
The reason is that for d∞ each arrival slot has the same probability of being picked, while for d̃∞ each slot
has a probability of being picked that is proportional to the number of arrivals in that slot. Slots with many
arrivals thus have a higher probability of being picked, and customers arriving in these slots are typically
subjected to higher delays. A notable exception is the case of deterministic batch sizes, as discussed next.

Deterministic batch sizes

Assume deterministic batch sizes, i.e., A(x) = 1−λ/m+λxm/m. In this case, D∞(z) and D̃∞(z) are equal;
we find from (8) and (12) that

D∞(z) = D̃∞(z) =
1− ρ
m

1− S(z)m

1− S(z)

S(z)(z − 1)

z −A(S(z))
.

This can be explained as follows: when choosing a random customer, each slot with arrivals has m chances
to be the arrival slot of the randomly chosen customer. Since this m is fixed and this is true for all slots
with arrivals, choosing a random customer or choosing a random slot with arrivals, boils down to the same.
This is especially true for single arrivals (Bernoulli arrival process) as discussed before.

Mix of single and batch arrivals

In the previous paragraph, we have seen that the difference between the mean steady-state delays is zero for
deterministic batch sizes. Here, we analyze whether the difference can be substantial for other batch size
distributions. Therefore, we assume an arrival process which is a mix of single arrivals and batch arrivals of

size m. In Figure 2, we depict the relative difference (
¯̃
d∞− d̄∞)/d̄∞ as a function of the size m of the batch

arrivals, for three combination of the probability A(0) of no arrivals and the mean arrival rate λ. It is clear
from this figure that the difference can indeed be substantial (upto 40% in the figure) and depends on A(0),
λ and m.

[Figure 2 about here.]

7.2.2 Transient delays

We now turn our attention to the differences in the mean transient delays. Therefore, we calculate asymp-

totics from the generating functions D̄(x) and ¯̃D(x). These can be calculated by investigation of the trans-
form functions (or related functions) in the neighbourhood of their dominant singularities (singularities with
lowest norm), see [16] for a detailed procedure. We find

d̄t ∼


d̄∞ −

√
xYKY (xY )

2
√
π(xY − 1)(Y (xY )− 1)2

t−3/2x−tY if ρ < 1

2

KY (1)
√
π

√
t if ρ = 1

(ρ− 1)t if ρ > 1

, (15)
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for t→∞ and

¯̃
dk ∼



¯̃
d∞ −

xVKV (xV )

2
√
π(xV − 1)(V (xV )− 1)2

k−3/2x−kV if ρ < 1

2

KV (1)
√
π

√
k if ρ = 1(

1

µ
− 1

λ

)
k if ρ > 1

, (16)

for k → ∞. Here, xY and xV are the dominant singularities on the real positive axis of Y (x) and V (x),
and KY (xY ) and KV (xV ) are constants that can be calculated as function of the input functions A(x) and
S(x) (but their precise form is not important for the following discussion). Since both Y (x) and V (x) are
implicitly defined, the singularities are square-root branchpoints (see [19,20]) and we have

Y (x) ∼ Y (xY )−KY (xY )
√
xY − x,

V (x) ∼ V (xV )−KV (xV )
√
xV − x,

for x → xY and x → xV , respectively. Expressions (15)-(16) are found as follows: for ρ < 1, x = 1 is
a pole with multiplicity 1, leading to the steady-state values. The second dominant singularities are the
branchpoints of Y (x) and V (x) respectively, leading to the asymptotic terms in t−3/2x−tY and k−3/2x−kV . For

ρ = 1, xY = xV = 1 and x = 1 is a branchpoint of the form 1/(1 − x)3/2 of D̄(x) and ¯̃D(x), leading to a

mean delay d̄t and
¯̃
dk going to infinity according to

√
t or
√
k. Finally, in case of ρ > 1, x = 1 is a pole of

multiplicity 2 of D̄(x) and ¯̃D(x), leading to the ∼ t and ∼ k patterns. In this overload case, the buffer is
non-empty with probability 1 in the limit for t or k going to infinity and the mean delays are respectively
increased with ρ − 1 slots per slot (on average ρ new arriving work units minus one finished work unit per
slot) and 1/µ− 1/λ slots per arriving customer (extra mean waiting time of 1/µ slots mean interdeparture
time minus 1/λ slots mean interarrival time).

The kernel solutions Y (x) and V (x)

We notice from the asymptotics in the general case that the two transient delays (time-based and customer-
based) are driven by two different “kernel solutions” Y (x) and V (x), respectively. Before looking into some
special cases, we take a closer look at these two functions.

We have

Y (x) = xA(S(Y (x))), (17)

V (x) = A(xS(V (x))). (18)

These functions are in fact (defective) generating functions, as it is easy to see that the following relations
between random variables lead to (17)-(18):

y = 1 +

a∑
i=1

si∑
j=1

yi,j , (19)

v = a+

a∑
i=1

si∑
j=1

vi,j , (20)

with y and the yi,j random variables with the same distribution, v and the vi,j also random variables with
the same distribution, a the number of arrivals in a random slot and si the service time of the i-th customer
counted in a. The yi,js are mutually independent, as are the vi,js. From (19), it can be deduced that y
is the number of slots that it takes to reduce the unfinished work at the beginning of a slot by one unit.
Indeed, this equals one slot if there are no new arrivals in that slot. If there are new arrivals, each new
unit of work (there are

∑a
i=1 si new units) takes a number of slots that is equally distributed as y, leading
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to (19). Equation (20) on the other hand demonstrates that v equals the total number of arrivals that is
“generated” during a slot in the sense that not just the number of arrivals in the first slot are counted but
also the arrivals in the slots when these customers are served, and the arrivals in the slots when these latter
customers are served, etc.

It is clear that y and v are essentially different, but also, that they are connected in some way. The
variable y can be regarded as some sort of sub-busy period, namely the time needed to reduce unfinished
work by 1 unit. The variable v is in fact the number of arrivals during this sub-busy period, i.e., we can
write

v =

y∑
i=1

ai, (21)

with ai the number of arrivals during the i-th slot of the sub-busy period. Note that this does not mean that
there is a clear-cut relation between the pgfs of y and v. The main reason is that the ai and the variable y
in (21) are non-independent. Indeed, the higher the ai the higher we expect y to be. Therefore, the relation
V (x) = Y (A(x)) that one could naively expect from (21) is incorrect. Note that, due to Wald’s equation [21],
there exists an easy relation between the expected values of y and v:

E[v] = E[a]E[y]

= λE[y],

which also follows from the derivatives at z = 1 of the pgfs Y (x) and V (x).
A second connection can also be exposed. Since the length of a sub-busy period equals 1 slot augmented

with all the service times of customers arriving during the sub-busy period, we can write

y = 1 +

v∑
i=1

si, (22)

with si the service time of the i-th customer arriving during the sub-busy period. Because of dependence
between v and the si, this does again not lead to an easy relation between Y (x) and V (x), although Wald’s
equation leads to a second relation between the averages E[y] = 1+E[v]/µ. However, this second relation
between stochastic variables is interesting as it shows that, in some special cases, it does lead to relations
between pgfs. For instance, when service times are all equal to 1 slot, (22) results in

y = 1 + v,

and after translation to pgfs

Y (x) = xV (x).

This can also be acquired from (17)-(18) by putting S(x) = x. So, in this case, there is a clear-cut relation
between Y (x) and V (x), driving the transient delays. More generally, for deterministic service times of l
slots, we find from (22)

y = 1 + l · v,

and after translation to pgfs

Y (x) = xV (xl).

Again this can be discovered from (17)-(18) as well, by first substituting x by xl in (18) and multiplying
both sides with x, and further observing that this leads to the same implicit function for xV (xl) as (17) does
for Y (x).
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Single arrivals

Let us finally look at the rate of convergence of the mean transient delays d̄t and
¯̃
dk to their steady-state

values (assuming there is a steady state, i.e., for ρ < 1) for single arrivals. Then, A(x) = 1− λ+ λx. Since
the steady-state delays are equal in case of Bernoulli arrivals (cf. paragraph 7.2.1), a natural question to
pose is which of both delays converges the fastest to this steady-state value. The rates of convergence are

determined by xY and xV respectively. We prove that xY < xV and thus that the mean delay
¯̃
dk converges

faster to the steady state than d̄t. For Bernoulli arrivals, the functions Y (x) and V (x) are determined by

Y (x) = x(1− λ+ λS(Y (x))),

V (x) = 1− λ+ λxS(V (x)).

From these formulas, it is easy to see that Y (x) = V (x) for x = 1 only. Since λ < 1, Y ′(1) > V ′(1), and
Y (x) > V (x) for all x > 1 where both functions exist. The derivatives of both functions are given by

Y ′(x) =
1− λ+ λS(Y (x))

1− λxS′(Y (x))
,

V ′(x) =
λS(V (x))

1− λxS′(V (x))
.

The branchpoints xY and xV are reached when the denominators of Y ′(x) and V ′(x) are zero. Since
xS′(Y (x)) > xS′(V (x)) the former function will reach 1 for a lower x, and thus xY < xV . Thus, the mean

delay
¯̃
dk converges quicker to its steady-state value than d̄t does. This can be intuitively understood as

follows: since at most one customer arrives in a slot, customer k arrives in slot t = I(k) with I(k) a strictly
increasing discrete function; for each increment of k with 1 unit, t = I(k) increases with at least 1 unit (but

possibly more), and thus
¯̃
dk has to converge quicker than d̄t to their mutual steady-state value. This is also

demonstrated in Figure 3, where we show xY and xV as functions of the arrival rate λ for single arrivals,
geometric service times (S(x) = µx/(1 − (1 − µ)x)) and for different values of the load ρ(= λ/µ). Since
µ < 1, the arrival rate is restricted to the interval [0, ρ]. We see that xY and xV differ the most for low
arrival rates and low loads and they become equal for λ→ ρ, i.e. for µ→ 1.

[Figure 3 about here.]

8 Concluding remarks

We elaborately studied the transient delay in a batch-arrival queue. We first argued that defining the tran-
sient delay is not a straightforward matter, especially in case of batch arrivals. We therefore suggested several
possible definitions and analyzed the transient delay in these cases. Some discussion on the fundamental
differences and identities between these delays reveals that we should be careful, especially in case of batch
arrivals. Even their steady-state limits can differ. Therefore, we suggest caution when using, for instance,
active probing for measuring the (transient) delay. Our results could furthermore be used to correct these
measurements.
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