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ABSTRACT
Research is still undertaken to develop so-called transparent lateral boundary conditions (LBC) for limited-area nu-
merical weather prediction models. In the widely used semi-implicit semi-Lagrangian schemes, this naturally leads to
LBC formulations that are intrinsically intertwined with the numerics of the dynamic core. This may have profound
consequences for the implementation and the maintenance of future model codes. For instance, scientific development
on the dynamics may be hindered by constraints coming from today’s choices in the LBC formulation and vice versa.

Building further on the work of Aidan McDonald, this paper proposes an approach where (1) the LBCs can be
imposed by an extrinsic numerical scheme that is fundamentally different from the one used for the dynamic core in the
interior domain and (2) substituting one such LBC scheme for another is possible in a manner that leaves the Helmholtz
solver unmodified. It is argued that this concept may provide the necessary frame for formulating transparent boundary
conditions in spectral limited-area models.

Since this idea touches all aspects of the LBC problem, its feasibility can only be established by a rigorous systematic
approach. As a first step, this paper provides promising experimental support in a one-dimensional shallow-water model.

1. Introduction

Notwithstanding the success of the Davies scheme (Davies,
1976) in operational meteorological atmospheric models, active
work on the formulation of transparent boundary conditions has
still been carried out in recent years. In particular, the work of
McDonald (2000, 2003, 2005, 2006) in the HIRLAM model has
led to a formulation of quality comparable to the Davies scheme
(McDonald, personal communication, 2007).

In such transparent formulations of the lateral-boundary con-
ditions (LBCs), one variable is specified at the boundary for each
of the incoming characteristics while the remaining ones are in-
tegrated in an upstream manner. The choice of the variables and
the way they are imposed are not unique. In fact, different choices
lead to different accuracy properties of the resulting scheme, see
for instance McDonald (2000).

In practical implementations, such formulations tend to be-
come ‘intrinsically’ intertwined with the dynamics of the model
at the boundaries of the domain. In semi-implicit schemes, the
solver of the Helmholtz equation of the dynamic core needs to
be adapted accordingly. Moreover, the details of the solver may
depend on the chosen LBC implementation. Each new LBC for-

∗Corresponding author.
e-mail: piet.termonia@oma.be
DOI: 10.1111/j.1600-0870.2008.00334.x

mulation a priori necessitates to revisit its implementation. Vice
versa, the development of the dynamic core may be constrained
by the specificities of the present LBC formulation.

This paper, in the context of the widely used two-time-level
semi-implicit semi-Lagrangian (2TL SISL) schemes, (1) inves-
tigates whether imposing the LBCs can be done with numerical
schemes that are fundamentally different from the one used for
the dynamic core and (2) proposes an approach where the inte-
gration algorithm of the dynamic core in the interior domain is
independent of the details of the chosen LBC scheme. As will
be shown, such an ‘extrinsic’ LBC scheme is a gridpoint scheme
in a buffer zone near the boundary.

This concept will be referred to as ‘externalizing’ the LBCs.
Externalizing problems in atmospheric model codes is not new.
Indeed, Best et al. (2004) proposed a numerical method to ex-
ternalize the treatment of the surface from the atmospheric part
of the model, facilitating the study of both as distinct scientific
entities.

The idea of externalizing the LBCs is a fundamental one, with
potentially far reaching consequences on the way LBCs can be
managed within atmospheric or oceanic models. However, the
answer as to whether this is feasible, requires a rigorous sys-
tematic approach where all the different aspects of transparent
boundary conditions are controlled. As a first step this paper
presents tests in a one-dimensional shallow-water equation, sim-
ilar to the one used by McDonald (2000). As in that paper, this
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model will be discretized by a 2TL SISL scheme on an Arakawa
C grid and will be coupled to the analytic solution of the equa-
tions (instead of a nesting to a host model as in the later paper
McDonald, 2003) to eliminate any problems due to incompat-
ibilities between the coupling model and the coupled model of
the type mentioned by Warner et al. (1997). Avoiding such sub-
tleties, it should be possible to approximate the analytic solution
of the system almost exactly. It will be shown below that for
the studied externalized LBC treatment, this is indeed possible,
providing substantial evidence for the idea.

The search for transparent boundary conditions in spectral
limited-area models (LAMs) poses a particular challenge. It is
impossible to adapt gridpoint values locally in spectral space.
This is a fortiori a problem for the LBCs on the gridpoints of
the boundaries. Although the primary goal of this paper is not
to solve this issue, it will be shown that the proposed concept of
externalization can be extended to spectral models. This exter-
nalization allows, by construction, to impose the LBCs outside
the spectral Helmholtz equation, in the extrinsic gridpoint LBC
scheme near the boundary, with the same stability properties as
the implementations in gridpoint models.

Studying the spectral model alongside the gridpoint model
and controlling all its features, allows to identify the extra com-
plications purely caused by the spectral nature of the model. So,
even if the only aim would be to investigate the potential of this
concept for solving the problems in spectral models, the exter-
nalization must be studied in comparison to an implementation
in a gridpoint model. Both are for this reason treated together in
this paper.

Tests with the shallow-water model will be presented within a
spectral model having a spectral structure that imitates, as closely
as possible, the features of the existing operational ALADIN
model (ALADIN International team, 1997) which follows the
proposal of Haugen and Machenhauer (1993). These tests ex-
hibit some accuracy defects, which are not present in gridpoint
models but which are, nevertheless, acceptably small. The cause
of these defects have been identified. It will be argued that there is
substantial room for improvement within the geometrical con-
figuration of the ALADIN model to make this externalization
more accurate. The further treatment of these issues, which we
deem necessary for an exhaustive assessment of the problems in
a spectral model, lies, however, beyond the scope of this paper.

Although the focus in the paper is put on SISL schemes be-
cause of their wide use in numerical weather prediction, the gen-
eral approach proposed here may have an application in other
schemes as well.

This paper is organized as follows. Section 2 introduces the
one-dimensional shallow-water model. In this section, a clear
distinction will be made between an LBC implementation that
modifies the Helmholtz equation of a gridpoint model intrinsi-
cally and the idea of the externalization. The difference between
intrinsic LBCs and a model with externalized LBCs is explained
in the Sections 2.1 and 2.2 respectively. Section 2.3 describes the

externalization for the spectral version of the model. The details
of how the extrinsic LBCs are computed will be treated sepa-
rately in the next Section 3. Three examples of such integration
schemes that have been used to test the feasibility of substituting
one for another, will be described. Section 4 provides experi-
mental support for the presented concept. The results will be
discussed and an outlook will be given in Section 5.

2. The one-dimensional shallow-water model

The model under consideration in this paper is the linearized
shallow-water system for one-dimensional flow on an f-plane,
given by the equations

du(x, t)
dt

= −e�̄ ∂�(x, t)
∂x

+ f v(x, t) , (1)

dv(x, t)
dt

= − f u(x, t) , (2)

d�(x, t)
dt

= −∂u(x, t)
∂x

, (3)

with x and t space and time, u(x, t) and v(x, t) are the compo-
nents of the wind and �(x, t) = ln φ the logarithmic geopotential
(φ being the geopotential). Without loss of generality, ū ≥ 0
will be assumed in this paper. The choice of the logarithm of φ

was taken to follow the approach of the ALADIN model. The
total derivative is defined as d/dt = ∂/∂t + ū∂/∂x . The advec-
tion velocity ū, the reference logarithmic geopotential �̄ and the
Coriolis parameter f are all constant.

The linear system in eqs. (1)–(3) can be rewritten in matrix
notation: dX/dt = L X, with

X =

⎛
⎜⎝

u

v

�

⎞
⎟⎠ and L =

⎛
⎜⎝

0 f −c̄2 ∂

∂x

− f 0 0

− ∂

∂x 0 0

⎞
⎟⎠ , (4)

where c̄ ≡ e
1
2 �̄. It has three wave solutions of the type X(x, t) =

X̂ exp[i (kx − ωt)]: a slow advective solution with dispersion
relation ω0 = kū corresponding to geostrophic balance state (u =
0, and f v = c̄2∂�/∂x) and two fast solutions corresponding
to gravity wave solutions with ω± = k(ū ± ck) and c2

k = c̄2 +
( f /k)2. The characteristic values of this model are

pa = v , p = u + c̄ � , q = u − c̄ � , (5)

and their associated characteristics are ū and ū ± c̄, respectively.
This model is integrated by a two-time-level semi-implicit

(Robert, 1969) semi-Lagrangian (Robert, 1981) discretization
(2TL SISL). This time discretization can formally be written as[(

I − �t
2

L

)
X+

]
A

=
[(

I + �t
2

L

)
X0

]
D

≡ RD , (6)

where �t denotes the time step and matrix I is the 3 × 3 identity
matrix. The superscripts + and 0 denote time level t + �t and
t, respectively. Time level t − �t will be denoted by −. The
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subscripts A and D, respectively, denote quantities computed at
the arrival point and the departure point of the semi-Lagrangian
trajectories. The departure point is given by D = A − ū�t .

This scheme is unconditionally stable and second-order accu-
rate. The right-hand side (r.h.s.) explicit terms are computed in
gridpoint space, yielding values RA = (I + �t

2 L)X. These are
then interpolated to the departure point D to yield RD. For the
sake of the notation, the subscripts D will be dropped hence-
forth; unless indicated by a subscript A, all R components will
be meant to be taken in the departure points.

Applying I + �t
2 L to the left-hand side (l.h.s.) and r.h.s. of (6)

yields a u component that has the form of a Helmholtz equation:[
1 + f 2�t2

4
− �t2c̄2

4

∂2

∂x2

]
u+

= Ru + f �t
2

Rv − �t c̄2

2

∂ R�

∂x
. (7)

This equation is independent of the variables v+ and �+ and is
solved to find the field u+. The fields v+ and �+ can then be
obtained from (6) in a straightforward manner.

This paper will consider a gridpoint model and a spectral
model version of these shallow-water equations. The correspond-
ing space discretizations and the idea of externalization are in-
troduced below. The details of the lateral-boundary conditions
in the externalized setup will be discussed separately in detail in
Section 3.

2.1. A gridpoint version with intrinsic LBC’s

In the interior of the domain, the space discretization of (6) in
the gridpoint model essentially follows McDonald (2000).

The gridpoint version of the scheme in (6) was discretized
on a Arakawa C grid (Arakawa and Lamb, 1977), span-
ning N + 1 grid points labelled by I = 0, . . . , N lo-
cated at xI = I�x, and the odd intermediate grid points la-
bel by I + 1

2 = − 1
2 , . . . , N + 1

2 located at xI+ 1
2

= (I + 1
2 )�x .

The points I = 0 and I = N correspond to the left-
hand boundary at x = 0 and the right-hand boundary at
x = L = N �x, respectively. The variables �I and vI are lo-
cated on the even grid points and the variables uI+ 1

2
are on the

odd ones. The components of RA are discretized as

Ru
A,I+ 1

2
= u0

I+ 1
2

+ �t f
4

(
v0

I+1 + v0
I

) − �t c̄2

2�x

(
�0

I+1 − �0
I

)
, (8)

Rv
A,I = v0

I − �t f
4

(
u0

I+ 1
2

+ u0
I− 1

2

)
, (9)

R�
A,I = �0

I − �t
2�x

(
u0

I+ 1
2

− u0
I− 1

2

)
. (10)

The values of the r.h.s.s are computed at the grid points and are
then interpolated to the departure points of the semi-Lagrangian
trajectories by means of a cubic interpolation, similarly as is
done in McDonald (2000).

In this C-grid discretization, the Helmholtz eq. (7) gets the
form

u+
I+ 1

2
+

(
f �t

4

)2 (
u+

I+ 3
2

+ 2 u+
I+ 1

2
+ u+

I− 1
2

)

−
(

�t c̄
2�x

)2 (
u+

I+ 3
2

− 2 u+
I+ 1

2
+ u+

I− 1
2

)

= Ru
I+ 1

2
+ f �t

4

(
Rv

I+1 + Rv
I

) − �t c̄2

2�x

(
R�

I+1 − R�
I

)
. (11)

The v and � component of (6),

v+
I + �t f

4

(
u+

I+ 1
2

+ u+
I− 1

2

)
= Rv

I , (12)

�+
I + �t

2�x

(
u+

I+ 1
2

− u+
I− 1

2

)
= R�

I , (13)

are added to this to compute v+
I and �+

I .
Considering the case c̄ > ū, a possibility is to impose the in-

coming characteristic values vh
0 and ph

0 at the left-hand boundary
at I = 0 and the characteristic value qh

N at the right-hand bound-
ary I = N (see McDonald, 2000), where the superscript h refers
to the host model. This can be done by replacing v+

0 by vh
0 and

specifying the other boundary fields ph
0 and qh

N . These are then
used to compute

u− 1
2

= 2
(

ph
0 − c̄ �0

) − u 1
2
, (14)

uN+ 1
2

= 2
(
qh

N + c̄ �N
) − uN− 1

2
. (15)

To have stable formulations of the LBCs, they should be im-
posed in the implicit part of the semi-implicit scheme, that is,
by reformulating eqs. (11)–(13) at the boundaries. This leads,
following McDonald (2000), to the following equations(

1 + c̄�t
�x

)
�+

0 + �t
�x

u+
1
2

− �t
�x

ph
0 = R�

0 , (16)

after substituting (14) in (13), at the left-hand boundary and,
analogously,

v+
N + �t f

2

(
qh

N + c̄ �+
N

) = Rv
N , (17)

(
1 + c̄�t

�x

)
�+

N − �t
�x

u+
N− 1

2
+ �t

�x
qh

N = R�
N , (18)

at the right-hand boundary. The Helmholtz equations at the
boundaries become[

1 +
(

f �t
4

)2

+ (1 + 2μ)

(
c̄�t
2�x

)2
]

u+
1
2

+
[(

f �t
4

)2

−
(

c̄�t
2�x

)2
]

u+
3
2

= Ru
1
2

+ f̄ �t
4

(
Rv

1 + vh
0

)

− c̄2�t
2�x

[
R�

1 − μ

(
R�

0 + �t
�x

ph
0

)]
(19)
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Table 1. Geometrical structure of the resolved and imposed fields and their (prognostic) equations in the gridpoint model with intrinsic LBCs

− 1
2 0 1

2 1 3
2 2 . . . N − 3

2 N − 1 N − 1
2 N N + 1

2 Number

Equation – (16) (19) (12)(13) (11) (12)(13) . . . (11) (12)(13) (20) (17)(18) – 3 N + 1

Resolved variable – �+
0 u+

1
2

v+
1

�+
1

u+
3
2

v+
2

�+
2

. . . u+
N− 3

2

v+
N−1

�+
N−1

u+
N− 1

2

v+
N

�+
N

– 3 N + 1

Imposed variable (14) vh
0 – – – – . . . – – – – (15) 3

and[
1 +

(
1 + 2 μ

c̄�t
�x

) (
f �t
4

)2

+ (1 + 2μ)

(
c̄�t
2�x

)2
]

u+
N− 1

2
+

[(
f �t
4

)2

−
(

c̄�t
2�x

)2
]

u+
N− 3

2
= Ru

N− 1
2

+ f �t
4

(
Rv

N + Rv
N−1

)

−μ

[
2 c̄

(
f �t
4

)2

+ c̄2�t
2�x

] (
R�

N − �t
�x

qh
N

)
+ c̄2�t

2�x
R�

N−1

−2

(
�t f

4

)2

qh
N , (20)

with μ ≡ 1/(1 + c̄�t
�x ).

As can be seen from Table 1, eqs. (12) and (13) for I = 1,
. . . , N − 1 and (11) for I = 1, . . . , N − 2, together with eqs.
(16)–(20), form a linear system of 3 N + 1 equations and an
equal number of unknowns

�+
0 , u+

1
2
, v+

1 , �+
1 , . . . , u+

N− 1
2
, v+

N , �+
N . (21)

The values of u+
− 1

2
and u+

N+ 1
2

in (14) and (15) and vh
0 are added to

the values in (21) to provide the input for the next time step in the
eqs. (8)–(10).

For the computation of the interpolated r.h.s. terms, trajec-
tory truncation is used, as introduced by McDonald (2000); if
the departure point is such that the interpolation requires fields
outside the area of integration, then the trajectory is truncated to
the nearest point on the boundary.

Other combinations of u, v and � may be used as well-
posed boundary condition, see Oliger and Sundström (1978) and
Sundström and Elvius (1979). Besides the ones in (14) and (15),
McDonald (2000) presents tests imposing v0, φ0 and φN . Impos-
ing such alternatives at the boundaries in eqs. (11)–(13) yields
equations other than (16)–(20), with different unknowns than the
ones in (21) and a different geometrical structure than the one in
Table 1.

Inverting the semi-implicit (SI) operator is a non-local opera-
tion, making these LBCs ‘intrinsically’ linked to the formulation
of the dynamics in the interior domain. Each time one decides
to implement and test other conditions, for example, other fields
or higher-order conditions, the form and the numerics of these
equations changes. In practice, this implies that any scientific
development of the LBCs and of the numerical scheme of the
dynamic core become tightly linked.

2.2. Externalizing the LBCs from the gridpoint model

This link between the LBCs and the numerics of the in-
terior can be removed by the following approach. For the
LBCs, the code calls a separate routine that uses the fields
u0

− 1
2
, v0

0, �
0
0, . . . , v

0
N , �0

N , u0
N+ 1

2
near the boundaries, at time

level t, as input and computes the values at time level t + �t:

X̃+
L

∣∣
∂ D ≡ ũ+

− 1
2
, �̃+

0 , ṽ+
0 (22)

at the left-hand boundary and

X̃+
R

∣∣
∂ D ≡ �̃+

N , ṽ+
N , ũ+

N+ 1
2

(23)

at the right-hand boundary, while properly distinguishing the in-
coming from the outgoing modes. The boundary of the domain D
is represented by the points − 1

2 , 0 and N , N + 1
2 and is formally

written by ∂ D.
Three examples of schemes that compute the values in (22)

and (23) will be described separately in detail in Section 3. This
reflects the essence of the proposed approach of the present pa-
per: the dynamic core is not obliged to care about the details of
the extrinsic LBC scheme but must solely agree to accept the
values (22)and (23) irrespective of their details.

It will be shown later that model codes can be organized such
that the numerical core receives the values in (22) and (23) as
input. At the boundaries the equations of the form

u+
1
2

+
(

f �t
4

)2 (
u+

3
2

+ u+
1
2

)

−
(

�t c̄
2�x

)2 (
u+

3
2

− u+
1
2

)

= Ru
1
2

+ f �t
4

(
Rv

1 + ṽ+
0

) − �t c̄2

2�x

(
R�

1 − �̃+
0

)
, (24)

and

u+
N− 1

2
+

(
f �t

4

)2 (
u+

N− 3
2

+ u+
N− 1

2

)

−
(

�t c̄
2�x

)2 (
u+

N− 3
2

− u+
N− 1

2

)

Ru
N− 1

2
+ f �t

4

(
Rv

N−1 + ṽ+
N

) − �t c̄2

2�x

(
�̃+

N − R�
N−1

)
, (25)

are solved. In the interior, I = 1, . . . , N − 1, the eqs. (11)–(13) are
used. This is illustrated in Table 2 as opposed to Table 1. Please
note that contrary to the intrinsic LBCs in (16)–(20), eq. (25) for
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Table 2. Geometrical structure of the resolved and imposed fields and their (prognostic) equations in the gridpoint model with extrinsic LBCs

− 1
2 0 1

2 1 3
2 2 . . . N − 3

2 N − 1 N − 1
2 N N + 1

2 Number

Equation – – (24) (12) (13) (11) (12) (13) . . . (11) (12) (13) (25) – – 3 N − 2

Resolved variable – – u+
1
2

v+
1

�+
1

u+
3
2

v+
2

�+
2

. . . u+
N− 3

2

v+
N−1

�+
N−1

u+
N− 1

2
– – 3 N − 2

Extrinsic variable ũ+
− 1

2

ṽ+
0

�̃+
0

– – – – . . . – – –
ṽ+

N
�̃+

N
ũ+

N+ 1
2

6

the externalized LBCs at the right-hand boundary is symmetric
to eq. (24) at the left-hand boundary.

It will be shown in Section 4.3 that improved accuracy can be
obtained if the externalized LBC scheme computes more values
than in (22), as given by

ũ+
− 1

2
, �̃+

0 , ṽ+
0 , ũ+

1
2
, �̃+

1 , ṽ+
1 , . . . , ũ+

Nbuf− 1
2
, �̃+

Nbuf
, ṽ+

Nbuf
(26)

in a buffer zone of Nbuf points near the left-hand boundary. This
vector will be denoted as X̃+

L henceforth. In that case, after the
computation of X+ by solving the implicit part, the values near
the boundary may be replaced by these values in (26). This leads
to a wider buffer zone of values computed by the LBC scheme.
The same holds for

X̃+
R = �̃+

N , ṽ+
N , ũ+

N+ 1
2
�̃+

N−1, ṽ
+
N−1, ũ+

N− 1
2
, . . . ,

�̃+
N−Nbuf

, ṽ+
N−Nbuf

, ũ+
N−Nbuf+ 1

2 (27)

in a buffer zone near the right-hand boundary. The definitions
(22) and (23) are particular cases of (26)and (27) for Nbuf = 0.

The details of the data flow of the externalized LBCs in a
gridpoint model is shown in Fig. 1. The dynamic core is displayed
at the left-hand part of the scheme and the extrinsic LBC scheme

interior (dynamical core) lateral boundaries

X− X0 X− X0

explicit dynamics (no LBC’s) extrinsic LBC’s

R

[
I − Δt

2
L
]
X+

∣∣∣
X+

∂D←X̃+
∂D

= R X̃+
L and X̃+

R

X+

X+ ←

(
X̃+

L

X+
Int

X̃+
R

)

Fig. 1. Data flow in the gridpoint version for
the externalized LBCs. Rectangular boxes
represent numerical operations, solid
single-lined arrows represent input and
dashed single-lined arrows represent output.
Double-lined arrows represent the
communication between the dynamic core
and the extrinsic LBC scheme. The dashed
double-lined arrow represents the option to
impose an extrinsic buffer zone with
Nbuf > 0.

is at the right-hand part. The communication between the two
schemes is indicated by the double-lined arrows. Both schemes
use the model states at times t and t − �t. The explicit part of
the dynamic core and the extrinsic LBC scheme are computed in
an entirely separate way. The parts X̃+

L |∂ D and X̃+
R |∂ D of X̃+

L and
X̃+

R are then used to solve eqs. (24) and (25) as conventionally
symbolized by the leftward double-lined arrow. Additionally, the
use of the buffer zone is indicated by the dashed double-lined
arrow. For this option, the values of X+ near the boundaries
are simply replaced by X̃+

L and X̃+
R at the end of the time-step

computation while all the other computations remain the same.
In Section 3, it will be shown how the values near the bound-

aries in (26) and (27) can be computed to yield an LBC formu-
lation with an accuracy and stability that is comparable to the
intrinsic LBCs.

2.3. A spectral model

This paper also considers a spectral-model version of the
shallow-water eqs. (1)–(3) with a structure, following the pro-
posal of Haugen and Machenhauer (1993). This model is dis-
cretized on a collocation A grid with index I = 0, . . . , N, index
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I = 0 representing the left-hand side artificial boundary and I =
N, the right-hand boundary. This physical area is extended by
an artificial extension zone (called the E-zone) labelled by I =
N + 1, . . . , L − 1 making the domain periodic (i.e. the point x =
L �x is identified with the point x = 0). In this zone, all fields are
supplemented with a periodic extension by means of a spline in-
terpolation, before applying the Fourier transforms. This spline
is exactly the same as the existing one in the ALADIN model.

At the beginning of the time step computation, the fields X0

are present in spectral space and the derivatives are computed
thereof. Then an inverse Fourier transform is taken of the fields
and their derivatives to proceed in gridpoint space. The expres-
sion for RA on the A grid is then computed as

Ru
A,I = u0

I + �t
2

f v0
I − �t c̄2

2
∂̂�0

I , (28)

Rv
A,I = v0

I − �t
2

f u0
I , (29)

R�
A,I = �0

I − �t
2

∂̂u0
I , (30)

where the derivative ∂̂ is ∂/∂ x that has been computed in spectral
space. Then these values are also interpolated to the departure
points to yield Ru

I , Rv
I and R�

I .
The Helmholtz eq. (7) is solved by inverting the differential

operator on the l.h.s. of (7), which in spectral space is obtained
by a simple algebraic division, that is,

û+
K = R̂u

K + �t
2 f R̂v

K − �t c̄2

2
2π i K
L R̂�

K

1 + �t2

4 f 2 − �t2 c̄2

4 ( 2π i K
L )2

, (31)

where û+
K , R̂u

K , R̂v
K and R̂�

K are the spectral coefficients corre-
sponding with wavenumber K of u+, Ru , Rv and R�, respectively,
and 2π i K/L the multiplicative factor of the derivative ∂̂ , with
L = L�x . The equations for v̂+

K and �̂+
K are then easily solved

by substitution.
Due to the non-local action of the exact derivatives computed

as in (31), the period extension by the spline may still create a
certain degree of contamination of the extension zone into the
physical interior zone when solving the Helmholtz equation. The
experience in the operational ALADIN models has shown that
this stays within acceptable levels. More exact methods, such as
the one proposed by Boyd (2005), will not be investigated here.
In this paper, the analysis will be restricted to the method used
in the ALADIN model.

Imposing the lateral boundary conditions locally at a specific
point is not possible in the implicit part of the scheme, that is, by
modifying the Helmholtz eq. (31) in spectral space as it has been
done in the gridpoint model in equations (19) and (20). Imposing
them in the explicit part of the scheme, in (28)–(30), leads to a
scheme that becomes unstable for too short time steps, to be of
operational interest.

It is possible to use the output of the same scheme as the one
used for the gridpoint model on the C grid, as provided in (26)

and (27). To this end, the following objects are computed:

R̃u
I = 1

2

(
ũ+

I− 1
2

+ ũ+
I+ 1

2

)
− �t f

2
ṽ+

I + �t c̄2

4�x

(
�̃+

I+1 − �̃+
I−1

)
,

(32)

R̃v
I = ṽ+

I + �t f
4

(
ũ+

I+ 1
2

+ ũ+
I− 1

2

)
, (33)

R̃�
I = �̃0

I + �t
2�x

(
ũ+

I+ 1
2

− ũ+
I− 1

2

)
(34)

and

R̃u
0 = 1

2

(
ũ+

− 1
2

+ ũ+
1
2

)
− �t f

2
ṽ+

0 + �t c̄2

2�x

(
�̃+

1 − �̃+
0

)
, (35)

R̃v
0 = ṽ+

0 + �t f
4

(
ũ+

1
2

+ ũ+
− 1

2

)
, (36)

R̃�
0 = �̃0

0 + �t
2�x

(
ũ+

1
2

− ũ+
− 1

2

)
(37)

at the left-hand boundary. Since �−1 lies beyond the bound-
ary, the decentred derivative is taken in (35). The equations are
mirrored at the right-hand boundary. For a buffer zone of width
Nbuf �x, this allows to compute R̃0, R̃1, . . . , R̃Nbuf−1. This can
formally be written as,

R̃ ≡
(

I − �t
2

L

)
F D

X̃+, (38)

where X̃+ are the values interpolated to the A grid, obtained by
an externalized treatment of the LBCs in either (26) or (27). The
subscript FD denotes that the derivatives in this operators are
computed as finite differences in gridpoint space. Subsequently
the values of R are replaced by R̃ at I = 0 and I = N. Solving the
Helmholtz equation and the equations for u and � is formally
equivalent to the [I − �t

2 L]−1
S P operator with SP denoting that the

inversion is performed in spectral space. This will approxima-
tively yield the values of X̃+

L |∂ D and X̃+
R |∂ D , at the end of the time

step.
Figure 2 shows how the computation of the extrinsic LBCs

can be organized in a spectral model. As in the subgridpoint
model in Fig. 1, the extrinsic scheme is computed parallelly
to the explicit part of the dynamic core. The difference is that
the LBC scheme computes R̃ as in (38). The leftward arrow
corresponds to replacing the obtained R by RL and RR near
the boundaries before going to spectral space. In the spec-
tral model, a wider buffer zone can also be included by using
Nbuf >1 and replacing R by R̃ in more than one grid point near the
boundary.

The properties of the scheme will depend on the numerical
properties of the operator

Q =
(

1 − �t
2

L

)−1

S P

(
1 − �t

2
L

)
F D

. (39)
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interior (dynamical core) lateral boundaries

inverse Fourier transform

X− X0 X− X0

explicit dynamics (no LBC’s) Extrinsic LBC’s

R X̃+
L and X̃+

R

Rlbc ←

(
R̃L

RInt

R̃R

)
R̃ R ≡

[
I − Δt

2
L
]
FD

X̃+
R

Fourier transform

[
I − Δt

2
L
]
SP

X̂+ = R̂lbc

X̂+ Fig. 2. Data flow in the spectral version for
the externalized LBCs. The same
conventions are used as in Fig. 1.

They can be studied by considering the mode ψ I (ξ ) = ei I ξ , with

ξ = 2π
K�x
L , (40)

and where I denotes the gridpoint location. The components of
Q are

Q11 = 4 cos
(

ξ

2

)
c̄2 + σ 2

[
2ξ sin

(
ξ

2

)
c̄2 + �x2 f 2

]
(
σ 2ξ 2 + 4

)
c̄2 + �x2 f 2σ 2

,

Q12 = 0,

Q13 = 2c̄3σ
(−iξ + eiξ − 1

)
(
σ 2ξ 2 + 4

)
c̄2 + �x2 f 2σ 2

,

Q21 = c̄�x f σ
[
ξ 2σ 2 − 2ξ sin

(
ξ

2

)
σ 2 − 4 cos

(
ξ

2

) + 4
]

2
[(

σ 2ξ 2 + 4
)

c̄2 + �x2 f 2σ 2
] ,

Q22 = 1,

Q23 = �x f σ 2c̄2
(
iξ − eiξ + 1

)
�x2 f 2σ 2 + ξ 2σ 2c̄2 + 4 c̄2

,

Q31 =

− iσ
[
4ξ cos( ξ

2 )c̄2 + �x2 f 2σ 2ξ − 2(4c̄2 + �x2 f 2σ 2) sin( ξ

2 )
]

2c̄
[
(σ 2ξ 2 + 4)c̄2 + �x2 f 2σ 2

] ,

Q32 = 0,

Q33 = [4 − i(−1 + eiξ )σ 2ξ ]c̄2 + �x2 f 2σ 2

(σ 2ξ 2 + 4)c̄2 + �x2 f 2σ 2
, (41)

with σ = c̄�t/�x . The eigenvalues of Q are all smaller than
1. Figure 3 shows them in the interval [− π

3 , π

3 ] for the values
σ = 10, �x = 10 km, f = 10−4 s−1 and c̄ = 300 m s−1, which

-1 -0.5 0.5 1

0.95

0.96

0.97

0.98

0.99

Fig. 3. The eigenvalues of Q for σ = 10, �x = 10 km, f = 10−4 s−1

and c̄ = 300 m s−1 as a function of ξ in the interval [−π/3, π/3].

will be used later in this paper. This guarantees stability of the
scheme. Ideally, the Q operator should be equal to I, but due to
the necessity to compute it partly in gridpoint space and partly
in spectral space, it can never be exactly so. The accuracy of the
approximation of unity can be studied by an expansion in terms
of ξ . For the chosen finite differences discretization in (35)–(37),
this becomes,

Q = I + 1

4 c̄2 + �x2 f 2σ 2

⎛
⎜⎝

− 1
2 c̄2ξ 2 0 −c̄3σξ 2

1
4 c̄�x f σξ 2 0 1

2 �x f σ 2c̄2ξ 2

0 0 0

⎞
⎟⎠

+O
(
ξ 3

)
, (42)
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which is only first-order accurate in ξ , being mostly determined
by the decentred derivative in (35).

There is an important subtlety to be addressed. The operator
I − �t

2 L has a null space of non-zero fields (I − �t
2 L)Xnull = 0.

For the continuous version of the operator taken, as in (4), these
are the two modes given by

unull
λ± (x) = Ueλ±x

vnull
λ± (x) = − f �t

2
Ueλ±x

�null
λ± (x) = −λ±

�t
2

Ueλ±x , (43)

with

λ± = ±
√√√√1 + ( f �t

2

)2

(
c̄�t

2

)2 . (44)

If X̃ contains a linear combination of these two modes, say
X̃ = Ỹ + α+Xnull

λ+ + α−Xnull
λ− , then they will be filtered when go-

ing to spectral space by the operator in (39), Q(Ỹ + α+Xnull
λ+ +

α−Xnull
λ− ) = Q Ỹ, so that Ỹ will be effectively imposed rather than

X̃.
Whereas a periodic spectral model with no LBCs can not

have such a mode since it is not periodic, the periodic extension
with imposed LBCs could allow for it in the physical interior
domain. In the present schemes where three degrees of freedom
corresponding to the outgoing characteristics are not constrained
by the LBCs, the possibility a priori exists that such a null mode
starts to spuriously grow at the boundaries. However, the tests
in Section 4 suggest that, in typical meteorological situations, it
will remain acceptably small.

So, the spectral version of the externalized LBCs may be less
accurate for two reasons: (1) the Q operator is an approximation
of unity, leading to a reduced accuracy as illustrated by eq. (42),
and (2) it has a null-space mode, which potentially might start
to grow and propagate.

The idea of externalizing the LBC treatment, thus, becomes
attractive for two reasons: (1) in gridpoint models, it may pro-
vide a way to decouple the LBCs from the development of the
dynamic core, and (2) in spectral models, it may additionally
provide a way around the impossibility of imposing local LBCs
within the Helmholtz equation.

In the next section, it will be discussed how the fields in (26)
and (27) can be computed. To test the independence of the results
of the details of the chosen LBC schemes, three schemes will be
considered.

3. Some extrinsic lateral-boundary schemes

The three ‘extrinsic’ schemes are chosen to be fundamentally
different from the 2TL SISL in the interior domain: (1) they
are explicit; (2) two Eulerian schemes will be tested alongside
a semi-Lagrangian scheme; (3) a three-time-level scheme will

be tested besides a two-time-level one and (4) also two predic-
tor/corrector schemes will be considered.

The choice for explicit extrinsic schemes is motivated, addi-
tionally, by the difficulty of integrating an implicit scheme near
the boundaries. Indeed, the inverse operator [I − �t

2 L]−1 for the
semi-implicit scheme acts non-locally over the whole domain.
The idea of externalizing the LBCs becomes attractive if they can
be treated near or, at most, in a small zone near the boundary.

To avoid this problem, this paper will be restricted to testing
explicit schemes. The problem of the stability being limited by
the CFL criterion will be overcome by resorting to substepping.
On the other hand, as will be shown below, this provides an extra
advantage—substepping allows to solve the problem of trunca-
tion of the semi-Lagrangian trajectories near the boundaries.

Imposing the characteristic values in the same manner as in
(14) and (15), gives the best results, see McDonald (2000). It is
the purpose here to test the effect of the externalization and not
to assess the particular behaviour of the choice of the imposed
values. Therefore (14) and (15) will also be the choice for the
extrinsic LBCs.

In the following, all schemes will be illustrated at the right-
hand boundary. Apart from the difference in the imposed charac-
teristic values, the treatment of the left-hand boundary is entirely
symmetric to this.

3.1. The leapfrog scheme

The CFL stability condition for the Eulerian leapfrog (LF)
scheme is given by (ū + c̄)(�t/�x) < 1/2. Thus, we ensure
stability if we perform

Nτ = 1 + [2(ū + c̄)(�t/�x)] (45)

substeps of �t, with time step τ = �t/Nτ . In this equation, the
square brackets [.] denote the integer part. The eqs. (1)–(3) are
discretized on the C grid as

u+τ

I+ 1
2

= u−τ

I+ 1
2

+ 2τT u
I+ 1

2
[X0τ ], (46)

v+τ
I = v−τ

I + 2τ T v
I [X0τ ], (47)

�+τ
I = �−τ

I + 2τ T �
I [X0τ ], (48)

with the tendencies given by

T u
I+ 1

2
[X] = −ū

u I+ 3
2

− uI− 1
2

2�x
+ f

vI+1 + vI

2
− e�̄ �I+1 − �I

�x
,

(49)

T v
I [X] = −ū

vI+1 − vI−1

2�x
− f

u I+ 1
2

+ uI− 1
2

2
, (50)

T �
I [X] = −ū

�I+1 − �I−1

2�x
−

uI+ 1
2

− uI− 1
2

�x
, (51)

where −τ ,0τ and +τ correspond, respectively, to the time step
t + (n − 1)τ , t + nτ and t + (n + 1)τ , after n substeps.
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τ

Δx

Δtt+

Δt

Δt

Φ
v

Φ
v

Φ
v

τ

τ

τ

τ

t

u u

6 N 4 N 2 N N

Fig. 4. The space–time structure of the extrinsic leapfrog scheme near
the right-hand boundary. Space and time are represented by the
horizontal and the vertical axis, respectively. The lateral boundary is
represented by the thick vertical dashed line through point N. The fields
v and � are lying on the even grid points indicated by circles; filled
ones at the �t time levels and empty ones at the τ substeps. The odd
grid points accommodating the u field, are indicated by crosses on the
�t time levels and pluses on the substep time levels. The fields are
extrapolated outside the boundary (to the triangles). The space–time
dependences of the leapfrog scheme for the � and v fields is indicated
for three points [(N − 4, t + τ ), (N − 3, t + 3τ ) and (N, t + 2τ )] by the
arrows. The empty rectangles represent values that have been obtained
by interpolation between the values at time level t − �t and t, needed
to have the (N − 4, t − τ ) value to compute the first substep.

Moreover, to compute the values at (I, t + (n + 1)τ ) (Space
time points are shorthandly written by its gridpoint index and
time by time), the leapfrog scheme with second-order centred
derivatives for the advection terms uses the values at (I + 1, t +
nτ ), (I, t + nτ ), (I − 1, t + nτ ) and (I, t + (n − 1)τ ). Similarly,
the values at (I − 1/2, t + nτ ), (I + 1/2, t + nτ ), (I + 3/2, t +
nτ ) and (I + 1/2, t + n(τ − 1)) are needed for the computation
at (I + 1/2, t + (n + 1)τ ), for n = 1, . . . , Nτ . Figure 4 illustrates
this for the computation of the fields � and v. As can be seen
from that figure, this leads to a triangular structure of the needed
points between t and t + �t. To produce the values in (27), it is
necessary to start on a buffer zone of width Nbuf + Nτ at time
t. At time t, the buffer zone at the right-hand side of the domain
spans the points N int = N − (Nτ + Nbuf) to N. For the substeps
t < t + nτ ≤ t + �t, the buffer shrinks, covering the subdomain
N − (Nτ + Nbuf) + n, . . . , N.

The values from eqs. (46)–(48) at time t + �t are then iden-
tified as X̃+

L and X̃+
R .

It will be assumed here that only the values of X− from the
previous time step and X0 are available at the full time levels
(Storing the values at, for instance, time t − �t + (n − 1)τ in
the dynamic core is in contradiction with the idea of externalizing

the LBC treatment.). For the first substep, the values at t − τ are
needed on the Nτ + Nb grid points near the boundaries. Here,
they are provided by a linear interpolation between points at X−

and X0. This is indicated in Fig. 4 by the empty rectangles.
A Robert (1966) filter is used to control the computational

mode, with a filter coefficient ε = 0.067.
Assuming that 0 < ū < c̄, the characteristic boundary fields

p(0, t + (n + 1)τ ), v(0, t + (n + 1)τ ) and q(N, t + (n + 1)τ ) are
imposed by simply overwriting the values of u− 1

2
, v0 and uN+ 1

2

as in (14)–(15).
Outside the domain, the extrapolated values X−1 = 2 X0 −X1

and XN+1 = 2 XN −XN−1 are used. The external large-scale
solutions are required at each substep t + nτ . From the dynamic
core, they are only available at times t + �t, t and possibly at
time t − �t. Thus, we estimate Xh (x, t + nτ ) using quadratic
interpolations between Xh (x, t + �t), Xh (x, t) and Xh (x, t −
�t).

3.2. The leapfrog-trapezoidal scheme

In the case of the leapfrog-trapezoidal (LFTR) scheme, eqs. (46)–
(48) are used to compute a predictor X∗ which is then corrected
by a corrector step given by

u+τ

I+ 1
2

= u0τ

I+ 1
2

+ τ

2

(
T u

I [X0τ ] + T u
I [X∗]

)
, (52)

v+τ
I = v0τ

I + τ

2

(
T v

I [X0τ ] + T v
I [X∗]

)
, (53)

�+τ
I = �0τ

I + τ

2

(
T �

I [X0τ ] + T �
I [X∗]

)
. (54)

This scheme dampens the computational mode; so, no Robert
filter is needed (Durran, 1999). The characteristic values are
imposed after the predictor step of the leapfrog scheme and after
the corrector scheme, again as in (14) and (15). This scheme is
stable if

Nτ = 1 + [
√

2(ū + c̄)(�t/�x)] (55)

substeps are taken.
This corrector step needs the same space dependence as the

predictor step; so, the buffer zone needs to be Nbuf + 2Nτ .

3.3. An iterative semi-Lagrangian explicit scheme

Thirdly, a substepping scheme will be used, which is more
closely related to the full 2TL SISL scheme used by the dy-
namic core of the model. It is an iterative semi-Lagrangian (ISL)
explicit scheme, which is essentially a decentred version of the
schemes in Bénard (2003). Keeping it explicit enables to circum-
vent the inversion of the linear semi-implicit correction during
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each time integration. The iterations are computed as,

u(k+1)

I+ 1
2

= Ru
I+ 1

2

+ τ

2

(
f
v

(k)
I+1 + v

(k)
I

2
− e�̄

�
(k)
I+1 − �

(k)
I

�x

)
, (56)

v
(k+1)
I = Rv

I − τ

2
f

⎛
⎝u(k)

I+ 1
2

+ u(k)

I− 1
2

2

⎞
⎠ , (57)

�
(k+1)
I = R�

I − τ

2

⎛
⎝u(k)

I+ 1
2

− u(k)

I− 1
2

�x

⎞
⎠ , (58)

for k = 0, 1, X(0) = X0τ , X̃(+τ ) = X(2) and where the R compo-
nents of the explicit part are computed identically as in (8)–(10)
but with �t replaced by τ and interpolated to the departure point
D = A − ūτ . In principle, D should be recomputed each itera-
tion, but since ū is constant, this is not needed for the scheme
here. The trajectories are truncated as in McDonald (2000), as
already mentioned in Section 2.1. In the case of substepping,
they are not only truncated at the lateral boundary but also have
to be truncated in the inside boundary of the shrinking buffer
on which the extrinsic substepping is performed. Besides, SL
interpolations are peformed in such a way that no points outside
the substepping buffer zone are involved. This implies the use of
quadratic Lagrangian interpolations when the departure point is
immediately adjacent to the inside boundary of the substepping
buffer zone.

It can be shown that this scheme is stable provided that
τ c̄/�x < 1/2. Therefore, by taking

Nτ = 1 + [2 c̄ �t/�x] , (59)

and τ = �t/Nτ , it is ensured that this CFL condition is fulfilled.
The wave CFL constraint is imposed by the fastest gravity modes
with phase speeds of typical values of 300 m s−1, whereas the ad-
vective CFL is defined by the jet-like wind pattern with velocity
around 100 m s−1. Therefore, the advection Courant number al-
ways satisfies ατ = ū τ/�x < 1/2, which strongly reduces the
problem of trajectory truncation.

To compute the substep at time t + (n + 1)τ, Ru
I+ 1

2
is com-

puted at the points N − (Nτ + Nbuf) + n + 1/2, . . . , N by the
expression (8). The components Rv

I and R�
I are computed at the

points N − (Nτ + Nbuf) + n + 1, . . . , N by (9) and (10).
For the predictor part of the scheme, that is, k = 0 in eqs.

(56)–(58), the values of � and v are computed at the points
(I, t + (n + 1)τ ) lying in the buffer N −
(Nτ + Nbuf) + n + 1, . . . , N, from the values of the
previous substep in (I − 1/2, t + nτ ), (I, t + nτ ) and
(I + 1/2, t + nτ ), by the eqs. (57) and (58). The field u
is computed on the points (I, t + (n + 1)τ ) in the buffer
zone N − (Nτ + Nbuf) + n + 1/2, . . . , N, on the half grid
point (I + 1/2, t + (n + 1)τ ), from the values at the points

Δtt+

Δt

Δx

Φ
v

Φ
v

Φ
v

τ

τ

τ

τ

t

uu

N 6 N 5 N N 3 N N N

Fig. 5. The space time structure of the extrinsic predictor/corrector
scheme near the right-hand boundary, with the same conventions as in
Fig. 4. For the three points (N − 7/2, t + 3τ ) (N − 3, t + 3τ ) and (N −
5/2, t + 3τ ), indicated by the three rectangles, the space time
dependence of the predictor step is given by the nine dashed arrows
(three for each point). The predictor values at these three points are
needed for the computation of the corrector step at point (N − 3, t +
3τ ). The space-time dependence of the corrector is indicated by the
solid arrows. The solid arrow making a loop indicates that the corrector
needs the predictor value at the same space time location. The corrector
step is also illustrated in (N, t + 2τ ).

(I − 1, t + nτ ), (I + 1/2, t + nτ ) and (I, t + nτ ) by (56). This
space–time dependence of the predictor step is illustrated by
the dashed arrows, leading to the empty rectangles in Fig. 5.

For the corrector, that is, k = 1, the values of � and v are
also computed at the points (I, t + (n + 1)τ ) lying in the same
buffer N − (Nτ + Nbuf) + n + 1, . . . , N. However, the field u is
computed on the points (I, t + (n + 1)τ ) in the buffer zone N −
(Nτ + Nbuf) + n + 3/2, . . . , N. This space–time dependence of
the predictor step is illustrated by the solid arrows in Fig. 5. In
this way, it is not necessary to let the buffer shrink an extra point
for the corrector, as was the case for the leapfrog trapezoidal
scheme. And the buffer at time t can be taken as Nτ + Nbuf.

At the boundary point N, we impose the characteristic bound-
ary condition in the same way as for leapfrog trapezoidal scheme
after both the predictor and the corrector step.

In the spectral model, the fields X− and X0 are present on the
A grid in spectral space. They are first interpolated to the C grid
before starting the substepping.

4. Experimental support for extrinsic LBCs

The aim of this section is to test the idea of externalized LBCs.
All problems that could potentially originate from causes other
than the extrinsic LBCs will be meticulously eliminated. Testing
in a setup that resembles the behaviour of models in operational
situations constitutes the next step but lies beyond the scope of
this paper.

In limited-area models, the provided boundary data are taken
from large-scale coupling models. Part of the inaccuracy of the
LBCs is caused by the difference between the large-scale model
and the coupled model, see Warner et al. (1997) for a discussion.
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The problem of the interpolation of the coupling data be-
tween provided states, with time differences that are much bigger
than the model time step (of typically three or more hours, see
Termonia, 2003), as occurring in real models, will be avoided
by providing the coupling data at all time steps. The method in
Termonia (2004) provides a technique to control the quality of
the interpolation in operational models, allowing to see this a
separate scientific problem.

Seven different schemes have been studied: the gridpoint ver-
sion of the model with intrinsic LBCs (which will be referred
to as GPINTR henceforth); the gridpoint version with the three
extrinsic schemes in 3.1, 3.2 and 3.3 (GPLF, GPLFTR, GPISL,
corresponding to the leapfrog, the leapfrog–trapezoidal and the
iterative semi-Lagrangian respectively) and the spectral model
with same three extrinsic schemes (SPLF, SPLFTR, SPISL).

Tests have also been carried out with extrinsic substepping in
the spectral model on A grids. Spurious modes of 2�x wave-
length were observed. To avoid this complication only tests with
extrinsic schemes on C grids are presented here.

4.1. Stability of the fast solutions

The numerical stability of the scheme is determined by the fastest
solutions which are given by

u = F cos [k {x − (ū + ck)t} + ζ ] ,

v = F f
kck

sin [k {x − (ū + ck)t} + ζ ] ,

� = F 1
ck

cos [k {x − (ū + ck)t} + ζ ] , (60)

with amplitude F, phase ζ and ck as defined in Section 2.
This wave corresponds to wave Courant number αw = (ū +
c̄)�t/�x . Since this solution represents meteorological noise,
the accuracy of the schemes to represent this solution is subor-
dinate to the stability.

Experiments have been performed for �x = 10 km, ū =
100 m s−1 and f = 10−4 s−1.

The six schemes GPINTR, GPLF, GPLFTR, GPISL,
SPLFTR, SPISL turned out to be stable for any �t, provided that
the substepping time step τ was chosen to satisfy (45), (55) and
(59). For time steps larger than 150 s, the SPLF scheme became
unstable by the computational mode of the leapfrog substepping.
Figure 6 illustrates the tests for the schemes GPINTR, GPISL
and SPISL. The scheme GPLFTR gives the same result as the the
one shown for GPISL in Fig. 6b. As an illustration, the artifical
extension zone between x = 1000 and 1200 km, where the fields
are made period, is included in Fig. 6c.

Note that in the gridpoint versions in Figs. 6a and 6b, the
phase error manifests itself at the right-hand boundary but not at
the left-hand boundary. The net result is that the wave becomes
slightly squeezed as time progresses. This does not happen in
the spectral version, where the the phase shift exists everywhere
in the domain. The artificial extension zone is added in Fig. 6c,
showing the periodic extension.
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Fig. 6. Tests of the stability of the schemes for the fast solution for the
schemes (a) GPINTR, (b) GPISL and (c) SPISL, for
�t = 400 s, ū = 100 m s−1, c̄ = 300 m s−1, f = 10−4 s−1 on a
domain of length L = 1000 km at time T = L/(ū + ck ), when the wave
solution has travelled one wavelength through the domain. The fields
shown are the characteristic values for p(t = 0) (diamonds, joined by
solid lines), p(T) (rectangles, joined by solid lines), q(0) (crosses,
joined by solid lines) and q(T) (pluses, joined by solid line s).
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It is interesting to see that the phase error of the 2TL SISL
scheme of the dynamic core creates a discrepancy between the
numerical solution in the interior domain and the analytical solu-
tion. The tests in Fig. 6 show that the LBC formulation correctly
handle this: they do not generate spurious reflections and the
wave enters the domain even when the imposed value does not
correspond to what happens at the boundary.

4.2. Accuracy of the slow solutions

As a meteorologically relevant test the following slow bell-
shaped solution

u = 0 ,

v = −2
e�̄

f
x − xs

σ 2
s

�̂ e−
(

x−xs
σs

)2

,

� = �̂ e−
(

x−xs
σs

)2

. (61)

has been used as initial condition, as in McDonald (2000). This
solution is a superposition of slow solutions of the form

u = 0,

v = −S k
f e�̄ sin [k (x − ūt) + ζ0] ,

� = S cos [k (x − ūt) + ζ0] . (62)

with varying wavenumber k but propagating with uniform ve-
locity ū.

Figure 7 shows a test of the bell-shaped solution by the
schemes GPINTR, GPISL and SPISL. The result for the GPISL
scheme is almost exactly the same as for the GPINTR scheme—
differences were observed in the numerical output of the two
model versions, but no differences can be seen in the figure.

The same test was also performed for the GPLF and GPLFTR
scheme and gave exactly the same result as Fig. 7b.

As discussed in Section 2.3, for the spectral version there
are the two additional sources of inaccuracy—the tiny but un-
avoidable leaking of the extension into the physical zone and the
inaccuracy of the Q.

As shown in the expansion (42), the accuracy deteriorates
as the normalized wavenumber ξ increases. It also deteriorates
as the wave Courant number σ increases, for instance when
augmenting the time step �t. Figure 8 shows some tests for
different slow, balanced solutions (62) for K = 1, 2, 4, 8, as
defined in (40) and for time steps �t = 100 s and 400 s, as a way
to quantify both ξ and σ dependence.

Figure 9 shows the same experiment as in Fig. 7 but for the
scheme SPISL and with ū = 12.5 m s−1 and �t = 400 m s−1.
In contrast to the artificial setups in Fig. 8, this represents a
test with the same scheme but for a meteorologically relevant
situation. To illustrate the sources of inaccuracy the time evo-
lution is shown here at four times. At time T = L/ū when
the bell has crossed the domain, a small feature can be no-
ticed near the left-hand boundary. We believe that this is a
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Fig. 7. Bell-shaped slow solution computed by scheme (a) GPINTR
and (b) GPISL with �t = 416 s and ū = 100 m s−1, both on a domain
of length L = 1000 km. The fields are u(0) (crosses), v(0) (dash dot
dot), �(0) (diamonds), u(T) (pluses), v(T) (triangles) and �(T)
(rectangles), with T = L/ū, the time to travel through the entire
domain. The solid lines represent the analytic solution.

combination of some contamination of the extensions zone and
the inaccuracy of the Q operator. The results for SPLFTR are
similar.

Although the inaccuracy of the Q operator manifests itself
clearly in the tests in Fig. 8, the net result stays small in the test
of the meteorological situation in Fig. 9 and remains restricted
to about ten grid points near the boundary.
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Fig. 8. Tests with the SPISL scheme (solid lines) of balanced waves
(slow solutions) with wavenumbers K = 1, K = 2, K = 4, K = 8 (from
bottom to top) for (a) �t = 100 s and (b) �t = 400 s. The other
parameters are taken ū = 12.5 m s−1, �x = 10 km. The true solution is
also indicated (dash dot dot).

4.3. Better treatment of the trajectories by an enhanced
buffer zone

A major reason for the reflections in Fig. 7 are the semi-
Lagrangian trajectories of the 2TL SISL scheme and their trun-
cations. McDonald (2000) proposes a few approaches for this
scheme to address this problem.

In the schemes with the extrinsic LBCs, the combination of the
externalization with substepping provides an alternative solution
to this. First, if the extrinsic LBCs are computed with Nbuf >

ū�t/�x , the trajectories of the points used in the interior will
not lie beyond the boundary. Additionally, by construction the
advection Courant number of the substepping is small enough
to guarantee a high accuracy of the trajectory truncation.

Figure 10 illustrates this by two tests with GPISL and SPISL
run, with Nbuf = 5, with exactly the same settings as in Fig. 7. This
option with its corresponding improvement is impossible in the
GPINTR scheme in Fig. 7a. For the GPISL case the reflections
almost disappear completely. This is also the case for the spectral
model SPISL, but in this case the artefact is still present near the
lef-handt boundary, as well as a smaller one at the right-hand
boundary.

4.4. An adjustment and radiation test

Some tests have also been performed for the Rossby adjustment
problem as described by Gill (1982) and tested by McDonald
(2000). This represents the evolution of the unbalanced initial
state u(t = 0) = 0, v(t = 0) = 0, φ (t = 0, x ≤ L/2) = 10 and
φ (t = 0, x > L/2) = −10. to a geostrophic steady-state. The
test is entirely the same as in McDonald (2000): �x = 100 km,
�t = 10 min and ū = 1 m s−1, with a domain of length L =
30 000 km, which is large compared with the Rossby number of
deformation. The characteristic values are imposed as described
in Section 3.

Figure 11 shows the state after 10 d. It represents the known
exact solution (given in Gill, 1982), almost identical as in
McDonald (2000). The GPISL gives the same result and is
therefore not given here (the plots could not be distinguished
visually).

Additionally a radiation experiment was performed as in Mc-
Donald (2002) given by the initial condition,

u = 0, v = 0, � = �̂ e−
(

x−xs
σs

)2

sin
16πx

L
. (63)

The tests are shown in Fig. 12 for the GPISL and SPISL scheme.
The model was run on the shown domain while imposing the
characteristic values vh

0, ph
0 and qh

N . This state creates two wave
packets propagating in the opposite directions. At t = 0.8776 h,
both have left the domain without spurious reflections, pro-
ducing equivalent results to the ones obtained by McDonald
(2002).
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Fig. 9. Time evolution of the bell-shaped
solution with the SPISL scheme at times (a)
t = 0, (b) t = L/(2ū), (c)t = L/ū snd (d)
t = 3L/(2ū), for �t = 400 s and
ū = 12.5 m s−1. The conventions are the
same as in Fig. 7.

5. Discussion and outlook

The tests show that, at this stage, the idea of externalized extrinsic
LBCs is promising. The major finding is that ‘stable’ LBCs are
possible in a gridpoint model ‘and’ in a spectral model using
this approach. In the gridpoint model, the same accuracy could
be obtained as for the intrinsic LBC model, and the use of the
enhanced buffer allows to get even higher accuracy. The issues
that are still open solely pertain to the accuracy in the spectral
model.

As explained and illustrated in this paper, the main advantages
of extrinsic schemes are the following.

1. Although the dynamic core is semi-Lagrangian, this al-
lows to use explicit schemes at the boundaries, which eliminates
the problem of the trajectory truncations.

2. Any LBC scheme developed for a spectral model can
be used for a gridpoint model and vice versa. This is illustrated
in the test in Fig. 7. This also means that one can develop the
dynamic core without having to consider the details of the LBC
scheme.

3. For a given dynamic core, an LBC scheme can be replaced
by another. In a 2TL SISL scheme, this means, for instance, that
one can develop the numerical solver of the Helmholtz equation
once and keep using it when scientific progress is made in the
(externalized) formulation of the LBCs.

4. Externalization allows to circumvent the impossibility to
impose LBCs in a spectral Helmholtz equation.

Of course the stability of the scheme with externalized LBCs
is determined by the stability of the dynamic core and of the ex-
trinsic scheme, specifically by the weakest of both. For instance,
in the case of the leapfrog scheme, the unstable computational
mode is the determining factor.

The fact that the semi-implicit operators are computed in grid-
point space and then inverted in spectral space decreases the ac-
curacy of the method in the case of the spectral model. This a
priori is not a shortcoming of the idea of the externalization but
a problem of the difference of the gridpoint derivatives versus
the spectral derivatives. The result is a decreased accuracy of the
scheme compared with what could be obtained in the gridpoint
model. In this paper, only one gridpoint version of the operator
has been studied, with limited accuracy of Q. The search for
more accurate choices will be the subject of future studies.

Specifically, the weak points of the current tests in the spectral
setup with the periodic extension of the ALADIN model are

1. the potential non-local contamination of the extension
zone into the physical zone and

2. the inaccuracy of the Q operator.

This manifests itself in the artefact in a zone of about ten
gridpoints near the boundary in Figs. 9 and 10, while the run in
the rest of the domain remains unharmed. Mind that the Davies
scheme in the ALADIN model uses an artificial zone of about
eight gridpoints width near the boundary where the forecast is
not to be taken as physically relevant. So, notwithstanding the
artefact, the tests have produced satisfactory results.
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Fig. 10. Bell-shaped solution computed by scheme (a) GPISL and (b)
SPISL both with �t = 416 s, ū = 100 m s−1 and buffering Nbuf = 5.
The conventions are the same as in Fig. 7.

A good candidate for improving the formulation of the peri-
odic extension in the spectral model and creating higher accuracy
of the derivatives is the proposal of Boyd (2005). This may al-
low to use centred derivatives in (32) and (35) by the points lying
outside of the domain.

The use of such operators is already being done in the AL-
ADIN model for the current implementation of the Davies
scheme, see Radnóti (1995). However, in that case, all deriva-
tives are computed in spectral space. So, there is no problem of
accuracy in the existing ALADIN model. However, the existence
of a null space of these operators and potential problems thereof
have never been investigated. The fact that no serious shortcom-

5000 10000 15000 20000 25000 30000
5

0

0

5

10

15

v 
(m

/s
) 

 a
nd

Φ

x (km)

Fig. 11. Spectral model SPISL: �x = 100 km, t = 10 d, �t = 600s,
ū = 1 m s−1 of the fields v (solid) and � (dash dot dot). Tests were
performed for GPISL and gave exactly the same fields as in this figure.

ings have been observed in the research runs and the operational
suites of the ALADIN runs suggests that even if the null-spaces
modes propagate, their effect remains negligibly small.

The trick of computing the semi-implicit operator in gridpoint
space before going to spectral space could become useful in a
broader context in spectral models, provided the null space of
the Q operator can be understood better and kept under control.
Indeed, it allows to pull any gridpoint computation of a variable
(e.g. X̃+

L,R in Fig. 2) to the end of the time step, without substan-
tially being distorted by the spectral part of the dynamics.

The relation between the error propagating into the domain
and the error originating from the null-space modes of the Q

operator is a complicated one. As shown in eq. (43), the null-
space modes have an exponential spatial dependence. Once they
start to propagate, there is a priori no reason for them to stay
exponential. This makes it difficult to diagnose this problem and
to distinguish its contribution from other error sources. In fact,
the error growth due to errors in the LBCs is poorly understood.
The first proposal for a general formulation has been given only
recently by Nicolis (2007). The approach in that paper may be-
come useful in minimizing the error of the LBCs, by a proper
choice of the the gridpoint part of the Q operator, although the
analysis may have to be carried out in a simpler advective model
than the present one.

The substepping scheme is quite demanding in computing re-
sources due to its need of rather large buffers near the boundary.
For instance for �t = 400 s, �x = 10 km and c̄ = 300 m s−1,
eq. (59) requires Nτ = 25 substeps and a buffer zone at the
beginning of the substepping of Nbuf + 25 gridpoints. While
the substepping itself would be relatively cheap in realistic 3-D
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Fig. 12. Adjustment of the field � at time t = 0 s (indicated by
diamonds joined by solid lines) after time t = 0.8776 h (pluses joined
by solid lines) with �t = 25 s and ū = 0.0001 m s−1, for the (a) GPISL
and (b) SPISL.

model codes, it may lead to a substantial increase in the commu-
nication in parallel model codes.

Alternative extrinsic schemes should be investigated to reduce
this computational cost, ideally semi-implicit schemes. To im-
plement a semi-implicit scheme, it is necessary to impose some
conditions at the interior of the buffer zone, that is, at the points
N − (Nτ + Nbuf) + n for the shrinking right-hand buffer zone
for substep (n + 1) τ . With the use of interior boundary condi-

tions the computing cost would be reduced for two reasons: (1)
a smaller buffer zone and (2) larger time steps hopefully elim-
inating the need to rely on substepping. However, this has not
been studied in this paper since this would have complicated the
present study by making it more difficult to distinguish the dif-
ficulties originating from this compromise from the difficulties
due to the externalization idea itself. The present schemes can
serve as a reference for developing alternatives.

In contrast, using a buffer zone together with substepping
allows to solve the problem of the trajectory truncation, as shown
in Fig. 10. This problem is difficult to solve in an intrinsic LBC
formulation with a semi-Lagrangian scheme.

Put differently, the value of the choice for substepping in the
present study lies primarily in its usefulness to follow an ex-
haustive testing procedure of extrinsic LBCs (everything can
be controlled by the substepping). Moreover, the substepping
schemes are very different from the 2TL SISL in the interior
domain making the test of the hypothesis even stronger.

Within the present time step organization of the type used in
the ALADIN model (see the description of the AAA models
by Termonia and Hamdi, 2007), it would not be necessary to
compute the physics in the extrinsic LBC scheme. In this model,
the physics is computed and coupled to the dynamics before the
explicit part of the dynamics. So, in Fig. 2, it can be coupled to
X− and X0 before they are provided to the extrinsic LBC scheme
(as in indicated by the left-hand side double-lined arrow). In
the case of semi-Lagrangian averaging of the physics–dynamics
coupling, as is, for instance, done in the SLAVEPP scheme of
the IFS model proposed by Wedi (1999), it should be considered
not to average the values that are input to the extrinsic scheme.

The biggest problems discussed in this paper were related to
the inversion of the implicit operator and the truncation of the
semi-Lagrangian trajectories. These problems are not present
in explicit and/or Eulerian codes. Since this study was moti-
vated by a need for alternative LBCs in the ALADIN model,
we started with the most difficult case. We believe that, even
if it presently seems less interesting, externalizing the LBCs is
technically more likely to work in Eulerian and explicit dynamic
cores.

6. Acknowledgments

This work benefited from useful discussions with Aidan McDon-
ald and Pierre Bénard. We very much appreciate the numerous
helpful comments of Pierre Bénard and Jean-François Geleyn on
the manuscript. The manuscript was also substantially improved
by numerous comments of one of the anonymous reviewers.

References

ALADIN International team, 1997. The ALADIN project: mesoscale
modelling seen as basic tool for weather forecasting and atmospheric
research. World Meteorol. Organ. Bull. 46, 317–324.

Tellus 60A (2008), 4



648 P. TERMONIA AND F. VOITUS

Arakawa, A. and Lamb, V. R. 1977. Computational design of the basic
dynamical processes of the UCLA general circulation model. Meth.
Comput. Phys. 17, 173–265.

Best, M. J., Beljaars, A., Polcher, J. and Viterbo, P. 2004. A Proposed
Structure for Coupling Tiled Surfaces with the Planetary Boundary
Layer. J. Hydrometeor. 5, 1271–1278.

Bénard, P. 2003. Stability of Semi-Implicit and Iterative Centered-
Implicit Time Discretizations for Various Equation Systems Used in
NWP. Mon. Wea. Rev. 131, 2479–2491.

Boyd, J. P. 2005. Limited-Area Fourier Spectral Models and Data Anal-
ysis Schemes: Windows, Fourier Extension, Davies Relaxation, and
All That. Mon. Wea. Rev. 133, 2030–2042.

Davies, H. C. 1976. A lateral boundary formulation for multilevel pre-
diction models. Q. J. Roy. Meteorol. Soc. 102, 405–418.

Durran, D. R. 1999. Numerical Methods for Wave Equations in Geo-
physical Fluid Dynamics, Springer-Verlag, New York, 465 pp.

Gill, A. E. 1982. Atmosphere-Ocean Dynamics, Academic Press, CA,
662 pp.

Haugen, J. E. and Machenhauer, B. 1993. A Spectral Limited-Area
Model Formulation with Time-Dependent Boundary Conditions Ap-
plied to the Shallow-Water Equations. Mon. Wea. Rev. 121, 2618–
2630.

McDonald, A. 2000. Boundary Conditions for Semi-Lagrangian
Schemes: Testing some Alternatives in One-Dimensional Models.
Mon. Wea. Rev. 128, 4084–4096.

McDonald, A. 2002. Testing Transparent Boundary Conditions for the
Shallow Water Equations in a Nested Environment. HIRLAM tech-
nical report 54, (Available from A. McDonald, Irish Meteorological
Service, Glasnevin Hill, Dublin 9, Ireland) 28 pp.

McDonald, A. 2003. Transparent Boundary Conditions for the Shallow-
Water Equations: Testing in a Nested Environment. Mon. Wea. Rev.
131, 698–705.

McDonald, A. 2005. Transparent lateral boundary conditions for baro-
clinic waves: a study of two elementary systems of equations. Tellus
57A, 171–182.

McDonald, A. 2006. Transparent lateral boundary conditions for baro-
clinic waves II. Introducing potential vorticity waves. Tellus 58A, 210–
220.

Nicolis, C. 2007. Dynamics of Model Error: The Role of the Boundary
Conditions. J. Atmos. Sci. 64, 204–215.

Oliger, J. and Sundström, A. 1978. Theoretical and practical aspects of
some initial boundary value problems in fluid dynamics. SIAM J. Appl.
Math. 35, 419–446.
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