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Abstract: We analyze near-Hagedorn thermodynamics of strings in the WZW AdS3

model. We compute the thermal spectrum of all primaries and find the thermal scalar

explicitly in the string spectrum using CFT twist techniques. Then we use the link to the

Euclidean WZW BTZ black hole and write down the Euclidean BTZ spectrum. We give

a Hamiltonian interpretation of the thermal partition function of angular orbifolds where

we find a reappearance of discrete states that dominate the partition function. Using these

results, we discuss the nature of the thermal scalar in the WZW BTZ model. As a slight

generalization of the angular orbifolds, we discuss the AdS3 string gas with a non-zero

chemical potential corresponding to angular momentum around the spatial cigar. For this

model as well, we determine the thermal spectrum and the Hagedorn temperature as a

function of chemical potential. Finally the nature of α′ corrections to the AdS3 thermal

scalar action is analyzed and we find the random walk behavior of highly excited strings

in this particular AdS3 background.
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1 Introduction

String theory models on WZW AdS3 and BTZ have been fruitful toy models to study

string dynamics on non-trivial target spaces. There has been a great deal of work on

this topic: see e.g. [1][2][3][4][5][6][7][8][9] for early treatments. Progress on the topic

was hampered by confusion about unitarity in these models. A no-ghost theorem was

proven by [10] but the issues with the model were only fully resolved in the work of

[11]. The holographic interpretation of these theories combined with their solvability have

shown to be explicit tests for the AdS/CFT correspondence. It is our interest to study

string thermodynamics in these backgrounds and in particular learn about the behavior

of thermodynamical quantities in geometrically non-trivial spaces. Previous studies on the

thermodynamics in these spaces include [12] and [13].

It is known that flat space string theory has a limiting Hagedorn temperature [14][15][16].

Near this temperature, the string gas recombines itself into one (or possibly multiple)

long, highly excited string(s) [17][18][19][20]. The spatial form of these constituents can be

thought of as random walks [21]. An equivalent way of thinking about this is through the

thermal scalar. This string state is in the perturbative spectrum on the thermal manifold

and captures the critical thermodynamics at temperatures sufficiently close to the Hagedorn

temperature. The one-loop contribution of only this state dominates the critical free energy

of the entire string gas on the Lorentzian manifold. We have analyzed the analogous picture

in curved spacetimes in detail in [22]. Due to the exact CFT description of Wess-Zumino-

Witten models, it seems worthwhile to study this picture also in AdS3 and BTZ spacetimes.

The AdS3 spacetime is a mild generalization of flat space, since the thermal time circle still
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is topologically stable for winding strings. The BTZ black hole on the other hand presents a

temporal cigar geometry where strings can simply slip off. We have already analyzed similar

geometries in [23] where we studied the string gas in Rindler spacetime. The Hagedorn

transition in AdS spacetime has also been related to the confinement/deconfinement phase

transition in the dual gauge theory (see for instance [24][25]).

Let us first give a brief summary of the results of [22]. There we have given a path integral

picture of the thermal scalar in general curved backgrounds (following the derivation of

[26]). The strategy is to perform a τ → −1/τ modular transformation on the torus path

integral on the modular strip. After this, the large τ2 limit is taken. This reduces the

string path integral to a particle path integral given by:

Zp = 2

∫ ∞
0

dτ2

2τ2

∫
[DX]

√∏
t

detGij exp−Sp(X) (1.1)

where

Sp =
1

4πα′

[
β2

∫ τ2

0
dtG00 +

∫ τ2

0
dtGij∂tX

i∂tX
j

]
. (1.2)

This realizes the random walk picture of the thermal scalar directly in the path integral

language. The full string partition function has been reduced to a partition function for a

non-relativistic particle moving on the purely spatial submanifold. The time evolution of

the particle in its random walk is identified with the spatial form of the long highly excited

string. The free energy of a gas of strings can then be identified with the single string

partition function as [27]

F = − 1

β
Zp, (1.3)

which in the critical regime is approximated by expression (1.1). Unfortunately there are

corrections to the above particle action. We saw that these can be deduced from the field

theory of the thermal scalar. The correction terms can be subdivided in three different

categories:

• There is a correction term coming from the mass of the flat space tachyon. It has

the following form

∆S = −
β2
Hτ2

4πα′
. (1.4)

For bosonic strings β2
H = 16π2α′ and for type II superstrings β2

H = 8π2α′.

• Secondly there is a correction coming from the G00 metric component as explained

in [22]:

∆S =
1

4πα′

∫ τ2

0
dt4π2α′2

(
− 3

16

Gij∂iG00∂jG00

G2
00

+
∇2G00

4G00

)
. (1.5)

• Finally we could have order-by-order α′ correction terms of the lowest order α′ ther-

mal scalar action.
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We also presented a simple extension to include a background NS-NS field. The particle

action (1.2) has the following extra contribution

Sextra = ∓i β

2πα′

∫ τ2

0
dtB0i(X)∂tX

i, (1.6)

which represents a minimal coupling of a point particle to a vector potential Ai = B0i.

Our primary goal in this paper is to study the above picture for the specific case of the AdS3

and BTZ WZW models. Our study focuses on the approach to the critical thermodynamics

through the thermal manifold. The different canonical approaches are depicted in figure 1.

Figure 1: (a) Critical thermodynamics from the strip domain. The cross depicts the

critical limit. This is the approach used in [12] and [13]. (b) Critical thermodynamics

from the fundamental domain. In this picture, the critical regime is determined by a

perturbative state in the thermal spectrum: the thermal scalar. One finds this regime by

taking τ2 →∞.

Our objectives can be summarized as follows.

I. Determine the thermal spectrum on the AdS3 and BTZ model.

II. Analyze the critical near-Hagedorn behavior of thermodynamical quantities.

III. Find out to what extent field theory results reproduce this.

IV. Determine the complete random walk picture of a highly excited string gas in these

spacetimes.

The paper is organized as follows. In section 2 we present an exact computation of the

thermal string spectrum on AdS3. We utilize twisting techniques on the worldsheet to

determine the states. We then search for the thermal scalar in the resulting spectrum. In

section 3 we make the transition to the WZW BTZ thermal black hole and study the same
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questions. After that, in section 4 we take a look at conical orbifolds, due to their relevance

for thermodynamics. Section 5 treats a slight generalization of the results of section 2 in

which we include an angular chemical potential for the string gas. Finally in section 6, we

look at the naive lowest order α′ thermal scalar action and study to what extent it captures

the critical behavior of the thermal scalar. We end with some conclusions in section 7.

We present background material on WZW models and more elaborate calculations in the

appendices.

2 Exact AdS3 WZW model

2.1 Random walks in AdS3

We consider AdS3 spacetime with a non-zero Kalb-Ramond background field. The metric

is given in the global coordinates of the AdS spacetime as:

ds2 = α′k
(
− cosh(ρ)2dt2 + dρ2 + sinh(ρ)2dφ2

)
(2.1)

where φ ∼ φ+ 2π and the space includes a NS-NS two-form:

B = −α′k sinh(ρ)2dt ∧ dφ. (2.2)

The crucial aspect of this string background is that it is an exact (up to all orders in α′) CFT

because it can be written as a Wess-Zumino-Witten (WZW) model: it is the SL(2,R) WZW

model. This causes the string spectrum to be composed of irreducible representations of

the affine Lie algebra underlying the WZW model. The string spectrum in this background

was determined in [11]. Performing a Wick rotation on this model, yields another WZW

model: the SL(2,C)/SU(2) model. We identify the Euclidean time coordinate as τ ∼ τ+β.

Note that this time coordinate is dimensionless in these conventions. For more information

regarding these WZW models and their link through analytic continuation, we refer the

reader to Appendix A. Moreover, the full string path integral on the thermal AdS3 manifold

can be exactly computed and is given by [28]

Z =
β
√
k − 2

8π

∫
E

dτ1dτ2

τ
3
2

2

e
4πτ2

(
1− 1

4(k−2)

)∑
h,h

D(h, h)e2πiτ(h+h)

×
+∞∑
m=1

e
− (k−2)m2β2

4πτ2
|η(τ)|4∣∣∣ϑ1

(
− imβ

2π , τ
)∣∣∣2 , (2.3)

where E denotes the modular strip region and the sum over h and h̄ corresponds to the

internal CFT, required to make the space a valid string background. The Hagedorn tem-

perature in this background was determined directly from this partition function in [12][13]

and was found to be

β2
H =

4π2

k

(
4− 1

k − 2

)
. (2.4)
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The results from section 1 predict that the critical behavior of the free energy of the string

gas is determined by

F = − 1

β

∑
w=±1

∫ +∞

0

dτ2

2τ2

∫
[DX] exp (−Sp) (2.5)

where Sp is given by

Sp =
k

4π

∫ τ2

0
dt

[
(∂tρ)2 + (β2 cosh(ρ)2 − β2

H,flat) + sinh(ρ)2(∂tφ)2 + 2w
β

2πα′
sinh(ρ)2∂tφ

+
4π2

k2

{
3

4
+

1

4 cosh(ρ)2

}]
.

(2.6)

This represents a particle moving in a two-dimensional curved space in a potential de-

termined by cosh(ρ)2 and interacting with a specific electromagnetic field. The first two

corrections to the random walk discussed in the previous section have already been in-

cluded. Firstly, the tachyon mass correction was included, e.g. for the bosonic string

α′kβ2
H,flat = 16π2α′. Secondly, the extra final term in the action comes from the G00 met-

ric component and represents a mild potential that slightly damps paths that come close

to the origin ρ = 0.1 We remark that we have not considered possible α′ corrections to

the thermal scalar action so there might be more contributions to the particle action (2.6)

that have been neglected. We will turn to this problem next.

2.2 General analysis of α′ corrections

Now we ask whether the above random walk action is α′-exact. Let us therefore first

analyze possible corrections in general and see whether there is at least a regime in which

they can be neglected. We know from previous work [23] that this is not the case for the

Euclidean Rindler string. In this section only, we rescale the coordinates such that they

are not dimensionless.2 The Euclidean metric and Kalb-Ramond field are

ds2 = cosh(ρ/l)2dτ2 + dρ2 + sinh(ρ/l)2dφ2 (2.7)

and

B = −i sinh(ρ/l)2dτ ∧ dφ. (2.8)

We identify τ ∼ τ + β and note that this differs from the temperature we have introduced

earlier by a factor of l, the AdS length. The thermal scalar action consists of diffeomorphism

invariants constructed with T-dual quantities. The T-dual Ricci tensor components are

given by

R̃00 = 0, R̃ρρ =
2

l2 cosh(ρ/l)2
, R̃φφ =

2

l2 sinh(ρ/l)2
, (2.9)

1In [22] (appendix D) we discussed that another term should be incorporated in the particle action when

considering non-zero NS-NS flux. However, one readily checks that this term vanishes in this case using the

explicit form of the metric and NS-NS field.
2kα′τ2 → τ2, kα′ρ2 → ρ2 and kα′φ2 → φ2. The AdS length has been introduced as l2 = kα′. The

Euclidean time coordinate is obtained as t→ iτ .

– 5 –



and all components with mixed indices vanish. The T-dual Ricci scalar is given by

R̃ =
4

l2 cosh(ρ/l)2
, (2.10)

and the T-dual dilaton has the expression:

∂ρΦ̃ = −1

l
tanh(ρ/l). (2.11)

A peculiarity of this background is that B̃µν = 0. Some possible terms that could appear

in the thermal scalar action are given by:

m2TT ∗ = − 4

α′
TT ∗, bosonic or m2TT ∗ = − 2

α′
TT ∗, type II, (2.12)

G̃µν∂µT∂νT
∗ =

β2

4π2α′2
TT ∗ + ∂ρT∂ρT

∗ − β

2πα′
(T∂φT

∗ − T ∗∂φT )

+
1

sinh(ρ/l)2
∂φT∂φT

∗, (2.13)

R̃TT ∗ =
4

cosh(ρ/l)2

1

l2
TT ∗, (2.14)

α′R̃µν∂µT∂νT
∗ =

2

cosh(ρ/l)2

α′

l2
∂ρT∂ρT

∗ +
2

sinh(ρ/l)2

α′

l2
∂φT∂φT

∗, (2.15)

and

∂µΦ̃∂µΦ̃TT ∗ =
1

l2
tanh(ρ/l)2TT ∗, (2.16)

α′∂µΦ̃∂νΦ̃∂µT∂νT
∗ =

α′

l2
tanh(ρ/l)2∂ρT∂ρT

∗. (2.17)

In this case, all terms originating from higher order corrections such as (2.15) and (2.17)

are suppressed as α′/l2. This ratio is suppressed since the T-dual geometry is only slowly

varying with ρ. This is in sharp contrast to the black hole case, where a curvature singular-

ity in the T-dual spaces sets in at the event horizon [23]. The thermal circles for AdS3 and

its T-dual are sketched in figure 2. In [23] we argued that in general two conditions need to

be met in order to suppress higher α′ terms. The first condition is the one discussed above.

The second requirement is that the temperature is of order the string scale. This condition

is not met for black holes where the temperature equals the Hawking temperature. In our

case, this condition is not required but this is again a peculiarity of this specific model.

Considering for instance the same background but with the Kalb-Ramond field turned off,

one readily finds that β2/l2 � 1 is also necessary to suppress all higher α′ corrections.

From these generalities we conclude, that we can find a regime (large l in string units and

(although not necessary here) string-scale temperatures) where we can neglect all possible

α′ corrections, if they are present in the first place. We will come back to this issue further

on.
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Figure 2: Left figure: size of the thermal circle in AdS space as a function of radial

distance. The center of the figure is at ρ = 0. Right figure: size of the thermal circle in

the T-dual of AdS space as a function of radial distance.

2.3 Thermal string spectrum from a SL(2,R) point of view

Let us now try to answer a different question. In order for the starting point of our story to

be valid, we need to find a winding tachyon in the string spectrum on the thermal manifold

that becomes massless at the Hagedorn temperature. The spectrum in both the Lorentzian

and the Euclidean model are known, so all that is left to do is to compactify the imaginary

time direction and see how the spectrum changes. In [12] a mini-superspace analysis is

used to find the thermal tachyon. The authors of [29][30][31] developed methods to find

the spectrum in general orbifold CFTs by introducing twist operators [32]. We will show

that this approach can be succesfully applied in this context.

We first cite the results for the string spectrum on the Lorentzian signature SL(2,R) model

[11].

The spectrum in (Lorentzian) AdS3 is built on two types of SL(2,R) representations. In

what follows, the quantum number m is the eigenvalue of the J3
0 operator in the zero-mode

Lie algebra.

• Dj where 1
2 < j < k−1

2 . These are the so-called principal discrete representations.

These can be further classified in lowest weight principal discrete representations

given by

D+
j = {|j,m〉 ,m = j, j + 1, j + 2, ...} , (2.18)

and highest weight principal discrete representations

D−j = {|j,m〉 ,m = −j,−j − 1,−j − 2, ...} . (2.19)

• Cj,α where j = 1
2 + is (s ∈ R) and 0 ≤ α < 1. These are the continuous representa-

tions. In this case the representations are given by

Cj,α = {|j, α,m〉 ,m = α, α± 1, α± 2, ...} . (2.20)
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CFT primaries are labeled by these quantum numbers. Descendants can then be con-

structed by applying the affine algebra raising operators. The primary and its descendants

in one SL(2,R) represenation of the zero-mode algebra together with all their affine algebra

descendants form a ̂SL(2,R) representation. The full affine algebra has an automorphism

called spectral flow given by:

J̃3
n = J3

n −
k

2
wδn,0, J̃±n = J+

n±w, (2.21)

which preserves the commutation relations and maps one representation into another. The

amount of spectral flow is labeled by an integer w ∈ Z. The Virasoro operators associated

to the J̃an are given by the Sugawara construction as

L̃n = Ln + wJ3
n −

k

4
w2δn,0. (2.22)

For compact groups this does not lead to new representations whereas for non-compact

groups (such as the one we have here) this results in new representations that should be

incorporated. For more details, we refer the reader to [11]. The strategy is to start with a

representation of the J̃an algebra whose primary satisfies

J̃±n
∣∣j̃, m̃〉 = 0, J̃3

n

∣∣j̃, m̃〉 = 0, n ≥ 1, (2.23)

J̃3
0

∣∣j̃, m̃〉 = m̃
∣∣j̃, m̃〉 . (2.24)

One then finds the conformal weight of this state by applying L0. The conformal dimensions

of the primaries of Lorentzian AdS3 are given by

hwjmm = − j̃(j̃ − 1)

k − 2
− m̃w − kw2

4
+ hint, (2.25)

where w denotes the spectral flow used to generate all primary states and hint is the con-

formal weight of an internal CFT needed to obtain the right central charge. An analogous

expression holds for the antiholomorphic components.

The Lorentzian AdS3 metric is given in global coordinates by

ds2 = α′k
(
− cosh(ρ)2dt2 + dρ2 + sinh(ρ)2dφ2

)
(2.26)

with the periodic identification φ ∼ φ+ 2π. To obtain the thermal manifold we should also

impose periodicity in imaginary time: t ∼ t + iβ. We will use the Lorentzian signature

vertex operators and impose periodicity in imaginary time on these. The reader might feel

a bit uneasy about this, but we will nonetheless obtain the expected result. Moreover, in

the next section we will rederive this from a fully Euclidean point of view as well. The

Lorentzian spectrum consists of normal affine ̂SL(2,R) representations and the spectral

flowed ones. The latter can also be obtained by twisting the CFT by the twist operator

associated with the φ identification [29]. So we now utilize this method and twist the CFT

in both the φ and the t direction.
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The operators generating (spacetime) time translations and angular rotations are given by

(as proven in appendix A)

Qt = J3
0 − J

3
0, (2.27)

Qφ = J3
0 + J

3
0. (2.28)

It is important to note that both are generated by the same set of operators.

We demand that states respect the periodicity of spacetime, so translation by 2π in the

angular direction should reproduce the same state. In other words

exp (i2πQφ) = 1. (2.29)

This implies that

m+m ∈ Z. (2.30)

Analogously for the imaginary time periodicity we get

iβ

2π
(m−m) ∈ Z. (2.31)

String states need to respect these conditions. However, we know that a consistent string

theory should also include twisted states, so we are not finished yet. We can do this by

constructing local operators that implement the above restrictions and hence twist the

preceding (still inconsistent!) CFT [29]. We remark that we determined the above restric-

tions for untwisted sectors only. The twisted sector states could have different restrictions

imposed on their quantum numbers. We will come back to this later.

To proceed, we use a parafermionic representation of the current algebra by diagonalizing

the J3 operator:

J3 = −
√
k

2
∂X, J± = ψ±e±

√
2/kX (2.32)

where the X and ψ± satisfy

X(z)X(w) ∼ − ln(z − w), ψ+(z)ψ−(w) ∼ k

(z − w)2+2/k
, ψ±(z)ψ∓(w) ∼ 0, (2.33)

and with analogous relations for the antiholomorphic copy of the current algebra. The

(untwisted) primaries are then represented as

Φjmm = Ψjmme

√
2
k

(mX+mX)
, (2.34)

where the Ψjmm are uncharged under J3 and J
3
.

Now we construct the twist operators and demand mutual locality of the OPEs (this will

correspond to projecting onto invariant states) and we demand closure of the OPE (this

corresponds to inclusion of twisted sectors). In analogy with [29][30][31], the twist operators

are given by

tφw = e

√
k
2
w(X−X)

, (2.35)

ttp = e

√
k
2
iβp
2π

(X+X)
, (2.36)
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where w denotes the twisting in the φ direction (this is the same as the spectral flow

parameter w used in [11]) and p denotes the twisting in the imaginary time direction. Let

us consider the OPE of a twist operator and an untwisted primary. For a boson field

satisfying X(z)X(w) ∼ − ln(z − w) the following OPE holds

eαX(z)eβX(w) ∼ (z − w)−αβe(α+β)X(w) + (z − w)−αβ+1α : ∂X(w)e(α+β)X(w) : + . . . (2.37)

and higher powers of z − w as dictated by the Taylor series expansion of eαX(z) around

z = w. This OPE holds for general complex values of both α and β. Obviously, depending

on these values, the number of singular terms varies. Important to note is that all powers of

z−w are integrally shifted from αβ and so it is this combination that provides restrictions

on the quantum numbers as we now show. The OPEs of the twist operators with the

untwisted primaries are given by:

tφw(z, z̄)Φjmm(w, w̄) ∼ (z − w)−wm(z̄ − w̄)wmΨjmme

√
2
k [(m+w k

2
)X+(m−w k

2
)X] + . . . , (2.38)

ttp(z, z̄)Φjmm(w, w̄) ∼ (z − w)−
iβp
2π
m(z̄ − w̄)−

iβp
2π
mΨjmme

√
2
k [(m+ iβp

2π
k
2

)X+(m+ iβp
2π

k
2

)X] + . . . .

(2.39)

The OPE of a twist operator with a primary generates new operators that must be included

in the operator spectrum to close the OPE. These are the twisted primaries and these can

be written as

: tφw(z, z̄)ttp(z, z̄)Φjmm(z, z̄) : (2.40)

for general w and p. The most general primary vertex operator is then

Φwp
jmm = Ψjmme

√
2
k [(m+ k

2
w+ k

2
iβ
2π
p)X+(m− k

2
w+ k

2
iβ
2π
p)X] (2.41)

with conformal weight

hwpjmm = −j(j − 1)

k − 2
+
m2

k
−

(
m+ k

2w + kp
2
iβ
2π

)2

k
+ hint. (2.42)

Next we need to determine the range of the quantum numbers m and m and it is at this

point that an important subtlety sets in. The conserved charges determined above are in

fact in general not correct for the twisted sector states. This is related to an ambiguity

of the Noether current: adding a divergence of an antisymmetric tensor gives the same

conservation equation, although the conserved charge is different in topologically non-trivial

sectors. To avoid branch cuts (mutual locality), the m and m quantum numbers of the

untwisted primaries are restricted from (2.38) and (2.39) by the following two conditions:

m+m ∈ Z, (2.43)

iβ

2π
(m−m) ∈ Z, (2.44)
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which are indeed the conditions required for projecting on invariant states which we wrote

down in equations (2.30) and (2.31). One can also (too naively) apply the twist operators

to already twisted vertex operators. This would give us then3

mJ +mJ ∈ Z, (2.45)

iβ

2π
(mJ −mJ) ∈ Z, (2.46)

with

mJ = m+
kw

2
+
iβkp

4π
, (2.47)

mJ = m− kw

2
+
iβkp

4π
. (2.48)

This is however wrong: it is known that the conserved charges can be different in the

twisted sectors. We will demonstrate that this is indeed the case here by using two different

arguments. This failure of the twist operator construction was also previously observed in

a different context in [33] where extremal Lorentzian BTZ black holes were considered.

As a first argument, let us consider the level-matching condition: L0− L̄0 ∈ Z. It is known

from studies in the past concerning heterotic 4d black holes [34] and rotating WZW BTZ

black holes [35] that this condition provides us with the correct projection operator [36].

The general primaries have weights given by:

hwpjmm = −j(j − 1)

k − 2
+
m2

k
−

(
m+ k

2w + kp
2
iβ
2π

)2

k
+ hint, (2.49)

h̄wpjmm = −j(j − 1)

k − 2
+
m2

k
−

(
m− k

2w + kp
2
iβ
2π

)2

k
+ h̄int, (2.50)

and we assume that the internal CFT is on its own level-matched: hint − h̄int ∈ Z. This

gives for the level-matching condition:

h− h̄ = −w(m+m)− piβ

2π
(m−m)− kiβ

2π
pw ∈ Z (2.51)

= −w(mJ +mJ)− piβ

2π
(mJ −mJ) +

kiβ

2π
pw ∈ Z (2.52)

and it is clear that this is in contradiction with (2.45) and (2.46) unless pw = 0 which is

impossible to satisfy in general since interactions of states having pw = 0 could in principle

create states that have pw 6= 0. Noether ambiguities can spoil the projection condition by

additional terms only present in twisted sectors. Let us keep an open mind and consider

the general deformation (in a non-technical sense) of the conserved charges:

Qφ = J3
0 + J

3
0 + f(w, p), (2.53)

Qt = J3
0 − J

3
0 + g(w, p), (2.54)

3We denoted the J3
0 eigenvalue as mJ to distinguish it with the m quantum number. These are not

equal for twisted sectors. Analogous comments hold for the antiholomorphic sector.
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with f and g functions of the twists with the property that f(0, 0) = g(0, 0) = 0. Now we

will determine these functions using what we already know. Consider first the sector p = 0

which coincides, up to the projection onto invariant states, with the non-thermal Lorentzian

AdS3. It was shown in [28][11] that the energy and angular momentum really are measured

by J3
0 ∓J

3
0. Applying this result here, we obtain f(w, p) = f(p) and g(w, p) = g(p).4 When

considering equation (2.52), it is clear that choosing g = 0 and f = −kiβ
2π p satisfies the

level-matching condition which reduces to

− w
(
mJ +mJ −

kiβ

2π
p

)
∈ Z, (2.55)

and which is different than the requirement (2.45). Note that this line of thought is not a

rigorous derivation, but merely demonstrates that the above solution is the most natural

one to choose.

One can also use a different argument to demonstrate this result by taking the flat space

k →∞ limit defined by keeping kρ2 fixed. This argument was used by the authors of [30]

to obtain the correct spacetime energy of twisted states on the Lorentzian BTZ manifold.

The generator of φ-translations was naively identified as

Qφ = J3
0 + J

3
0. (2.56)

The Lorentzian currents are determined in appendix A and the relevant components are

given by

J3(z) = ik cosh(ρ)2∂t− ik sinh(ρ)2∂φ, (2.57)

J
3
(z̄) = −ik cosh(ρ)2∂̄t− ik sinh(ρ)2∂̄φ. (2.58)

In the large k limit (keeping kρ2 fixed) these currents become

J3(z) = ik∂t− ikρ2∂φ, (2.59)

J
3
(z̄) = −ik∂̄t− ikρ2∂̄φ. (2.60)

We can thus rewrite the conserved φ charge as

J3
0 + J

3
0 =

∮
dzJ3(z)−

∮
dz̄J

3
(z̄) = ik

∮
dz∂t+ ik

∮
dz̄∂̄t+ ik

∮
dzρ2∂φ− ik

∮
dz̄ρ2∂̄φ,

(2.61)

where 1/(2πi) factors are left implicit in the contour integrals. The final two terms are

giving us the angular rotation we seek. The first two terms however are not what we want,

but these are dominant in the large k limit. These can be explicitly written as

ikβp

2π
, (2.62)

4Note that we neglect the possibility that f (or g) include ‘mixing’ terms such as pw. Such terms

are unnatural when considering the resulting conformal weights and we will find agreement with other

arguments further on.
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which corresponds to a winding contribution. The generator of angular rotations can then

be obtained by subtracting this part as

Qφ = J3
0 + J

3
0 −

ikβp

2π
. (2.63)

Note that for Qt on the other hand, the winding contribution is subleading in the large

k limit and can be neglected [30]. This agrees with the expression we determined above

using the level-matching argument.

We conclude that the projection conditions are

mJ +mJ −
ikβp

2π
∈ Z, (2.64)

iβ

2π
(mJ −mJ) ∈ Z. (2.65)

The two conditions (2.64) and (2.65) can be solved and this gives together with (2.47) and

(2.48):

m =
q

2
+ i

πn

β
− kw

2
, (2.66)

m =
q

2
− iπn

β
+
kw

2
, (2.67)

where q, n ∈ Z. Substituting these in (2.49) and (2.50), we finally obtain the conformal

weights of the primaries:

hwpjqn = −j(j − 1)

k − 2
− qw

2
− iπnw

β
+
kw2

4
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
+ hint, (2.68)

h̄wpjqn = −j(j − 1)

k − 2
+
qw

2
− iπnw

β
+
kw2

4
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
+ h̄int. (2.69)

Note that indeed h− h̄ ∈ Z, provided the internal CFT is on its own level-matched.

2.4 Comments on the Euclidean SL(2,C)/SU(2) point of view

We now reanalyze this result from a purely Euclidean point of view. Euclidean AdS3 is

the hyperbolic 3-plane and can be seen as a coset SL(2,C)/SU(2). The isometry group is

given by SL(2,C). We are interested in AdS3 (and its continuation) in the global coordi-

nates and the continuation in that particular time coordinate. In appendix A we discuss

this continuation in some more detail. Expanding the symmetry current in the algebra

generators (which we choose to be the same as those of sl(2,R); the only difference is that

the expansion coefficients Ja(z) are now allowed to be arbitrary complex numbers), we

can identify which symmetry current is responsible for Euclidean time translations. This

is again done in appendix A and the result is

Qτ = i(J3
0 − J

3
0). (2.70)

This differs a factor of i compared to the earlier result for Qt. However, the thermal

identification is with parameter β now, so in all nothing changes and the derivation of
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the previous subsection still holds. However, we start with the principal representations

of the sl(2,C) algebra, which do not contain discrete representations nor spectral flowed

representations. This sets w = 0 from the start and j = 1/2+is with real s. This mismatch

is caused by the fact that after Wick rotating all the other representations (discrete and

the spectral flowed), these do not correspond to states in the Euclidean string spectrum

[37], so we have computed ‘too much’ in our first derivation.5 To summarize, we give the

conformal weights of all primaries:

hpjqn =
s2 + 1/4

k − 2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
+ hint, (2.71)

h̄pjqn =
s2 + 1/4

k − 2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
+ h̄int, (2.72)

where q, n ∈ Z and p ∈ Z denotes the winding around the Euclidean time dimension. For

the antiholomorphic part, one simply changes the sign of both p and q. From here on, we

assume the internal CFT to be unitary and compact such that to analyze possible tachyons,

we can restrict ourselves to hint = h̄int = 0.

2.5 Atick-Witten tachyon

It is beneficial to now clearly state how we will identify a tachyonic state in the string

spectrum. In a general bosonic string CFT, the one-loop partition function is given by

Z =

∫
F

dτ1dτ2

2τ2
Tr
[
qL0−c/24q̄L̄0−c̄/24

]
=

∫
F

dτ1dτ2

2τ2
|η(τ)|4 (qq̄)−

1
12

∑
Hmatter

qhi−1q̄h̄i−1 (2.73)

In the second equality, we sum over only the matter contributions (of the full c = 26 matter

CFT). We have isolated a qq̄ combination, since this precisely compensates the ghost CFT

in its asymptotic behavior, meaning

Z →
∫
F

dτ1dτ2

2τ2

∑
Hmatter

qhi−1q̄h̄i−1 (2.74)

as τ2 →∞. A tachyonic state in bosonic string theory is thus determined if the conformal

dimension h+ h̄ in the matter sector is smaller than 2 (divergence for τ2 →∞ in Z) after

integrating over continuous quantum numbers.6 Continuous quantum numbers can give a

non-vanishing contribution if they integrate into a τ2-dependent exponential. Let us make

some comments regarding the above conformal weights (2.71) and (2.72). Firstly note that

the conformal weights have an imaginary part when both p and q are non-zero. This is due

5We want to remark one subtlety: one could set w = 0 from the start in the entire previous derivation,

and consider only one twist operator. The level-matching condition is satisfied without any deformation to

the energy. To determine the spacetime angular momentum of such states (find the correct form of Qφ), we

should then resort to the large k limit as explained in the previous section. The level-matching condition is

of no help here. So in this case, the large k limit becomes a necessary part of the procedure (and not just

an alternative).
6For type II superstrings, the only modification in this definition is that the conformal dimension h+ h̄

needs to be smaller than 1 to have a tachyonic state.
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to the non-unitarity of the SL(2,C)/SU(2) model [38]. Complex conformal weights are

not uncommon on these Euclidean signature manifolds [36] and we will see them appear

again below when we study BTZ black holes. Imaginary parts of conformal weights are

harmless when considering divergence properties. When considering the partition function

in the fundamental modular domain, each string state makes a contribution proportional

to

qhq̄h̄ = e2πiτ1(h−h̄)e−2πτ2(h+h̄). (2.75)

Since τ1 ranges from −1/2 to +1/2, the first factor is not capable of causing divergences

and thus an imaginary contribution of a conformal weight can not cause divergences. Sec-

ondly, the term pn
2 might appear alarming, since this could be arbitrarily large and negative

apparently causing tachyonic divergences. However, one should note that the antiholomor-

phic part has the opposite sign and the contribution to h+h̄ hence vanishes. As a summary,

only <(h+ h̄) matters for determining instabilities.

Let us make one final remark on these conformal weights. The primaries we determined

above satisfy the physicality constraint L0−L̄0 ∈ Z by construction. The on-shell condition

L0 + L̄0 = 2 is in general not satisfied for all these states (and neither is L0 = L̄0). This

means for instance that only a subset of these can be used as vertex operators in scattering

amplitudes. However, we are interested in the one-loop vacuum amplitude and the states

that circle the loop are clearly off-shell. Thus we will not apply the on-shell restriction to

the conformal weights. Our definition of tachyon is rooted in the one-loop amplitude and a

tachyon state can hence be an off-shell state. Note that in [30] tachyons are identified only

as on-shell physical states. Their definition of tachyon is hence not completely the same as

ours.

To find the thermal tachyon, we simply set s to zero and we will find the right state where

we expect it. This will be an a posteriori verification that the integration over s (with the

correct density of states) does not yield a τ2-dependent exponential contribution, unlike

for instance the linear dilaton background that we discuss elsewhere [39]. We find for the

p = ±1 state:
1

4(k − 2)
+

kβ2

4(2π)2
= 1, (2.76)

which determines indeed the Hagedorn temperature (2.4) given in section 2.1. The left

hand side is equal to 1 if p = ±1, so this represents a state that becomes ‘marginally

convergent’ at the Hagedorn temperature. The state is in the twisted sector and can be

interpreted as a winding 1 state. So we have found a state in the thermal spectrum that

becomes tachyonic at temperatures higher than the Hagedorn temperature: this is the

Atick-Witten tachyon [15][12].

An important aspect of the above analysis is that not only the q = n = 0 state is marginal

but in fact the states with arbitrary q and n are all marginal simultaneously at the Hagedorn

temperature. This implies that the critical limit of Z(τ) includes all of these states since

they are equally dominant. Note though that we are not interested in the thermal partition

function for fixed τ , but instead integrate over the fundamental modular domain. Tachyonic
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divergences are located at large τ2 and in that region, the τ1 integral is simply from −1/2

to +1/2 and acts as a projector onto states satisfying L0 = L̄0 [40]. Thus when considering

the critical regime of the free energy, the n 6= 0 states are irrelevant, but the sum over

q remains. The quantum number q is to be interpreted as discrete momentum along the

spatial cigar. This is a priori very surprising since one generally expects states that include

discrete momentum quantum numbers to be more massive than those without discrete

momentum. This observation will lead to some important ramifications further on when

we look at the random walk behavior of the critical free energy. Of course, for this to be

valid, the integration over s should not alter the critical behavior: it must not give a τ2-

dependent exponential for each q. If this is not the case, several of these states can actually

be subdominant. This however does not occur. We present quantitative arguments in favor

of this in appendix B. In subsection 4.3 we will further discuss, using numerical methods,

that indeed all q ∈ Z states are needed to produce the critical behavior.

2.6 Type II Superstring in AdS3 space

The modification to obtain the Hagedorn temperature for type II superstrings in AdS3 is

the following:
1
4 + s2

k
+
k

4

β2
H

4π2
=

1

2
. (2.77)

Two things have changed: the denominator of the SL(2,R) term is now k and the r.h.s. is

1/2 which is the condition needed to ensure convergence of the thermal partition function.

This immediately leads to

β2
H =

4π2

k

(
2− 1

k

)
, (2.78)

which satisfies the correct flat space limit when taking k → ∞. This provides confidence

in our method to determine the winding tachyon.

Our analysis of the type II superstring is not rigorous, but looks very plausible. It is

known though, that in a wide variety of models based on the SL(2,R) WZW model

[41][42][43][44][30], the only difference with the bosonic string is the replacement k−2→ k

in the first term of the conformal weights and a modification of the unitarity constraints

for discrete representations. We will assume that also in this case, these are the only mod-

ifications.

We want to remark that the tachyon state we found (both for the bosonic string and for

the type II string) is in the continuous representation as in [12] and the quantum number

s can be interpreted as a measure for the radial momentum. The state is delocalized over

the AdS space due to the repulsion from the Kalb-Ramond background just as is the case

for the long strings in (Lorentzian signature) AdS3 [11].

2.7 Summary

Using CFT twist techniques, we have found the thermal string spectrum on the WZW AdS3

background. This required introducing two twist operators and a subtle discussion on the

Noether ambiguities in the projection conditions on invariant states. The thermal scalar

state is clearly visible in the spectrum and it predicts the correct Hagedorn temperature. In
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the following we will come back to these results several times, providing more clarifications

as we go along.

3 Euclidean BTZ model

Next we look at the Euclidean BTZ black hole. This is the same background as the

Euclidean AdS3 background, so the results of the previous sections apply. We first briefly

review the link between the thermal ensembles of both backgrounds [45].

Consider the following Euclidean metric

ds2 = l2
(
cosh(ρ)2dτ2 + dρ2 + sinh(ρ)2dφ2

)
(3.1)

where l is the AdS length. For WZW models this is related to the string length as l2 = kα′.

We identify τ ∼ τ+β and φ ∼ φ+2π (fixed to avoid a conical singularity at ρ = 0) to obtain

the thermal AdS3 metric. To obtain Euclidean BTZ black holes, we set r = r+ cosh(ρ),

ϕ = l
r+
τ and t = l

r+
φ to obtain

ds2 = (r2 − r2
+)dt2 +

l2dr2

r2 − r2
+

+ r2dϕ2. (3.2)

We then identify t ∼ t + βBTZ (to avoid a conical singularity at r = r+) and ϕ ∼ ϕ + 2π

where

βBTZ =
2πl

r+
. (3.3)

To connect these, note that using the BTZ manifold coordinates we have

ϕ ∼ ϕ+ 2π ⇒ τ ∼ τ +
2πr+

l
, (3.4)

where the τ -periodicity is equal to the inverse temperature β from the AdS3 manifold. So

we have that

βBTZ =
2πl

r+
=

4π2

β
. (3.5)

In all, we obtain

ZBTZ (β) = ZAdS3

(
4π2

β

)
(3.6)

and this is the precise link between thermodynamics in both backgrounds.

The generators of Euclidean time translations and angular rotations are given by

Qt =
2π

βBTZ

(
J3

0 + J
3
0

)
, (3.7)

Qϕ = i
2π

βBTZ

(
J3

0 − J
3
0

)
, (3.8)

where t ∼ t + βBTZ and ϕ ∼ ϕ + 2π. With the same caveats and modifications as in the

AdS3 background, this leads to the restrictions (for untwisted primaries):

m+m ∈ Z, (3.9)

i2π

βBTZ
(m−m) ∈ Z. (3.10)
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This is indeed simply the substitution β → 4π2

β as discussed above. The Euclidean BTZ

spectrum is thus obtained simply by evaluating the thermal AdS3 spectrum at a tempera-

ture 4π2

β :

hwjmm =
s2 + 1/4

k − 2
+
m2

k
−

(
m+ kw

2
ir+
l

)2

k
+ hint. (3.11)

where the winding w is around the ϕ direction which is the τ -direction in theAdS3 language.

The m and m quantum numbers are similarly given by

m =
q

2
+ i

βn

4π
, (3.12)

m =
q

2
− iβn

4π
, (3.13)

where q, n ∈ Z. To sum up, the conformal weights of the primaries are given by

hwjqn =
s2 + 1/4

k − 2
− qwir+

2l
+
wn

2
+
kw2r2

+

4l2
+ hint, (3.14)

h̄wjqn =
s2 + 1/4

k − 2
− qwir+

2l
− wn

2
+
kw2r2

+

4l2
+ hint, (3.15)

with q, n ∈ Z and w ∈ Z denotes the winding around the angular ϕ direction. These

conformal weights were obtained in [36], but there the projection operation on invariant

states (which determines the m and m quantum numbers) was not considered.

Let us now discuss some peculiarities of this spectrum.

3.1 Thermal tachyons

Firstly (and most importantly for our purposes) there are no string states that wind the

t direction for the same reason that the Euclidean AdS3 manifold does not have cigar-

winding states. Thus the thermal scalar is not even in the spectrum!7 Even though such

states are normalizable (they can be determined numerically from a field theory point of

view as discussed in section 6), they are simply absent from the spectrum. There are also

no discrete states bound to the black hole horizon. This is a consequence of the repulsive

NS-NS background field. The situation is sketched in figure 3. These results show that

the WZW BTZ model is markedly different from the standard behavior of strings near

uncharged black holes where we expect a zero-mode localized at string length from the

horizon [23]. We can be more explicit about this. One can consider the AdS3 partition

function (as for instance given in equation (C.7)) and rewrite this in terms of the characters

of ̂SL(2,R). This has been done in terms of twisted characters in [46][47]. In appendix

C.1 and C.2 we go one step further and rewrite these in terms of normal characters where

the conformal weights of the primaries are those we determined above. The result is that

no spectral flowed states (in the angular φ dimension) are present: the partition function

is entirely reproduced by the primaries (both untwisted and twisted in the Euclidean time

dimension) and their descendants. For the BTZ partition function (obtained by simply

7In [13] it was argued that this BTZ partition function might be incomplete but we believe this not to

be the case as we discuss further on.
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Figure 3: (a) Thermal circle and spatial cigar for thermal AdS3. The arrows denote

the Kalb-Ramond repulsion. String states can wind the cilinder where the gravitational

attraction to the center precisely compensates the Kalb-Ramond repulsion such that the

winding strings are in the continuous representations. States that would wind the cigar

are not allowed: these states are simply absent from the spectrum. (b) The same situation

for the thermal BTZ black hole. Strings cannot wind the temporal cigar in this case.

setting β → 4π2/βBTZ in the AdS3 partition function (C.7)), one obtains the same result

upon switching the interpretation of time and angular: thermal winding states are not

present in the BTZ partition function.

3.2 Cylinder-winding tachyons

Secondly, there is the possibility of a winding tachyon in the ϕ direction. The winding

states in the ϕ direction depend on r+, the horizon location. Let us look at a q = n = 0

state:

hwj00 =
s2 + 1/4

k − 2
+
kw2

( r+
l

)2
4

+ hint. (3.16)

To have convergence for the BTZ partition function, we need

1

4(k − 2)
+
kw2

( r+
l

)2
4

≥ 1. (3.17)

Decreasing the BTZ temperature, decreases r+. So there is a critical BTZ temperature

below which a ϕ-winding tachyon appears. The location of the horizon at this critical

temperature is given by

r2
+ = α′

(
4− 1

k − 2

)
, (3.18)

and the size of the black hole is clearly string size ranging from r+ =
√

3
√
α′ (for the

limiting k = 3 case) to r+ = 2
√
α′ (as k → ∞). So this tachyon is a consequence of

shrinking the horizon to string scale and has nothing to do with the thermal scalar that we

are interested in. The change in βBTZ that we have considered here in this paragraph is

an on-shell change (changing the temperature changes the black hole size), whereas for the

– 19 –



thermal scalar we are interested in an off-shell change of the temperature and the ensuing

introduction of conical singularities. The ϕ-winding state causes the AdS3/BTZ black hole

condensation process as was discussed in [12].

For the type II superstring, the results of this and the preceding subsection do not change

qualitatively.

3.3 Summary

Let us summarize the BTZ WZW black hole. There is no zero-mode surrounding the black

hole. This is in sharp contrast with the generic uncharged black hole where such a zero-

mode is present. It is only for small black holes that a stringy state becomes marginal,

but this state is a Lorentzian state that wraps the cylindrical ϕ dimension. It signals the

AdS3/BTZ transition and it is not the high temperature thermodynamical state that we

seek.

4 AdS3 orbifolds: conical spaces

In the previous section, we saw that the Euclidean BTZ WZW model does not contain

cigar-winding string states in the thermal spectrum. For thermodynamical purposes, con-

ical orbifolds of the cigar-shaped subspace are also important since these correspond to

the string gas at a temperature different than the Hawking temperature. An intriguing

possibility would be that the winding state is not present for the black hole itself, but when

considering conical spaces the state might reappear. This could then possibly still give an

important effect. In this section we analyze the thermal spectrum on such conical spaces,

and in particular consider the question whether the thermal scalar is present or not. Our

primary focus is again on the lowest weight state.

4.1 Thermal spectrum

Let us take a closer look at the orbifolds obtained by creating conical deficits with opening

angle 2π
N at the tip of the cigar. First we remark that the prodedure of section 2.3 can be

applied to this case and leads simply to w → a
N with a ∈ Z. Hence one considers fractional

winding numbers [31]. We have however no control on which of these states actually appear

in the spectrum. To analyze this, a Hamiltonian analysis of the exact partition function is

needed, to which we turn now. The thermal partition function of these orbifolds (for AdS3

or BTZ) has the schematic form [48]

Z =
1

N

∑
a,b

Zab, (4.1)

where a runs over the twisted states and the sum over b realizes the projection on invariant

states. The sum over b ranges from 0 to N − 1. The individual partition functions that

are summed over are given by

Zab(τ) =
β
√
k − 2

8π
√
τ2

∑
l,p

e−kβ
2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2e

πτ2
2

|sin(πUlp)|2
∣∣∏+∞

r=1(1− qr)(1− qre2πiUlp)(1− qre−2πiUlp)
∣∣2 , (4.2)
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with

Ulp =
b

N
+
a

N
τ1 − i

β

2π
(pτ1 − l) + i

a

N
τ2 +

pβ

2π
τ2. (4.3)

In appendices C.3, C.4 and C.5 we rewrite this orbifolded partition function in a Hamilto-

nian way and we identify which states actually occur in the spectrum. The upshot is that

in this case there are string states that wind the cigar, but only for w = a/N with |w| < 1
2

and integer a. The reason we restrict to this interval for w will be explained in the next

subsection.8 In particular, one can choose the range as follows:

a = −N − 1

2
→ N − 1

2
, N odd, (4.4)

a = −N − 2

2
→ N

2
, N even. (4.5)

A crucial observation made in appendix C.5 is that the sectors with w 6= 0 can include

discrete states. This depends on whether k |w| is larger or smaller than 1. Roughly, these

discrete modes appear as follows. To rewrite the partition function in a Hamiltonian man-

ner, one needs to employ the general Poisson summation formula. For w 6= 0 however,

one actually needs a proper analytic continuation of Poisson’s summation formula which

is presented in appendix C.4. The naive substitution of complex arguments in the nor-

mal summation formula gives the continuous representations. This is not enough however:

one needs to include extra terms in Poisson’s summation formula corresponding to simple

poles of the complex function. These precisely correspond to the discrete states that are

otherwise completely missed.

For BTZ, it is clear that now the thermal spectrum does contain twisted strings that wind

the temporal cigar. The situation is similar to Euclidean Rindler space and its orbifold

cousins.

In terms of AdS3 parameters, the thermal spectrum includes continuous states with con-

formal weights

hwpjqn =
s2 + 1/4

k − 2
+
qw

2
+
iπnw

β
+
kw2

4
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
, (4.6)

h̄wpjqn =
s2 + 1/4

k − 2
− qw

2
+
iπnw

β
+
kw2

4
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
, (4.7)

and discrete states with weights

h = − j̃(j̃ − 1)

k − 2
+
qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
− pn

2
+
kp2β2

4(2π)2
, (4.8)

h̄ = − j̃(j̃ − 1)

k − 2
− qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
+
pn

2
+
kp2β2

4(2π)2
, (4.9)

where j̃ = M − l = k|w|
2 −

|q|
2 ±

iπn
β − l and l = 0, 1, 2, . . .. We also have q ∈ NZ, n ∈ Z,

p ∈ Z and w = a
N with a in the range determined above. The discrete states are present for

8A priori any range of length N is allowed for a. This follows from the fact that Za,b = Za+N,b and

Za,b = Za,b+N which can be seen explicitly in equation (4.2). This is related to the periodicity of the

Ray-Singer torsion.
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<(j̃) > 1
2 . In particular for k |w| < 1, no discrete states are present at all. This is important

in what follows. We remark further that for the thermal manifold, the discrete states really

are discrete, unlike the discrete representations utilized in the Lorentzian AdS3 spacetime

[11] which are actually continuous because j̃ and m̃ are continuous quantum numbers there

due to the fact that one considers the universal cover of the SL(2,R) manifold.

Note that the discrepancy between M and m̃ or ˜̄m is expected and the same sort of

situation occurs for the SL(2,R)/U(1) black hole in which case it is well understood [49][42].

Actually, the resemblance of the discrete weights with those of the SL(2,R)/U(1) black

hole is remarkable: in that case one finds for M :

M =
k |w|

2
− |q|

2
, (4.10)

which is of precisely the same form as above for the quantum numbers associated to the

cigar-submanifold.

4.2 Numerical analysis

As a first method to analyze the critical large τ2 regime, we present the results of a numerical

analysis of the expression (4.2). To start, we drop the infinite product present in the

denominator. As discussed in appendix C.2, we expect this product to arise from oscillator

states. Further on we will confirm numerically that this product does not influence the

critical behavior. So we analyze numerically the expression

E = lim
τ2→∞

∑
l∈Z

e
(2−k)πl

2

τ2

β2

4π2 +4πlw β
2π

+2πw2τ2∣∣∣sin(π
(
iwτ2 + il β2π

)
)
∣∣∣2 . (4.11)

This expression gives the asymptotic limit of part of the partition function (since w is fixed)

for the case τ1 = 0, b = 0 and p = 0. We will comment on the more general cases we are

interested in below.

Firstly (crucially!), notice that we can not bring the large τ2 limit into the summation over

l.

Numerically we can analyze the expression E by truncating the series and then taking

τ2 sufficiently large but still sufficiently small compared to the truncation index.9 Using

numerics as a guidance, we found the following asymptotic behavior.

• If k |w| < 1, one finds the following asymptotic behavior10

E ∝ e−kπw2τ2 . (4.12)

This is the expected behavior corresponding to a continuous state. Note that indeed

one finds here that the density of states does not correct the critical behavior. The

9By ‘sufficiently’ we mean that we varied the values of these parameters up to the point where the

numerical result is neglegibly influenced by any further variation.
10Obtained by taking the logarithm of the numerical computation and then determing the slope of the

resulting line.
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prefactor of (4.12) has a periodicity in τ2 which equals11

τ2 → τ2 +
Nβ

2πw
, N ∈ Z (4.13)

and indeed, this is the symmetry one expects from the CFT point of view of the

critical behavior: ∑
n∈Z

ρ(n)e
4π2inwτ2

β , (4.14)

with ρ the density of string states.

• If k |w| > 1, we find

E ∝ e−kπw2τ2e
π(k|w|−1)2

k−2
τ2 . (4.15)

More precisely, the prefactors can be determined as

E → 8π

β

√
τ2

k − 2
e−kπw

2τ2e
π(k|w|−1)2

k−2
τ2 . (4.16)

We note that this behavior of the prefactor is also correct even when τ1 6= 0 or p 6= 0

or b 6= 0. One can readily see that this asymptotic behavior corresponds exactly to a

discrete state including the prefactors.

Let us now briefly discuss how the numerics change when we consider the more general

case. Firstly, let us set b 6= 0. Numerically we checked that b 6= 0 gives precisely the same

asymptotics.

The case with p 6= 0 is also easily analyzed. We consider now

lim
τ2→∞

∑
l∈Z

e
(2−k)πl

2

τ2

β2

4π2 +4πlw β
2π

+2πw2τ2−kπp2τ2
β2

4π2∣∣∣sin(π
(
pτ2

β
2π + iwτ2 + il β2π

)
)
∣∣∣2 . (4.17)

The result gives the expected extra correction ∼ e−kπp2τ2 but no mixing between w and p

is generated by this, as indeed our analytical results also predict.

The above expressions do not fully coincide with what we are interested in: from the point

of view of the spectra written down in the previous subsection, we want to set q = 0, which

is enforced by the τ1 integral. Simply setting τ1 equal to zero still gives us the sum over

q with the q-dependent density of states. We can extend the above numerical analysis to

include τ1 dependence by studying instead

lim
τ2→∞

∑
l∈Z

e
(2−k)πl

2

τ2

β2

4π2 +4πlw β
2π

+2πw2τ2∣∣∣sin(π
(
wτ1 + iwτ2 + il β2π

)
)
∣∣∣2 . (4.18)

This expression was written down with b = 0 and p = 0. Numerical analysis yields the same

asymptotic behavior as before, irrespective of the value of τ1 (it does however influence the

11This was determined numerically and is not manifest in expression (4.11).
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prefactors). Integrating τ1 from −1/2 to +1/2 hence does not alter the asymptotic form.12

Note that the sum over b becomes irrelevant since the τ1 integral enforces q = 0 and the

restriction of q ∈ NZ achieved by summing over b does not influence the final result.

Infinite oscillator product

Up to this point, we did not analyze the infinite product present in equation (4.2). Its

treatment is tricky. We dismissed it somewhat carelessly in appendix C.2 when considering

the Hamiltonian picture. A delicate point is that the Taylor expansion we should use for

each of the factors of the infinite product depends on the precise value of l. Therefore

we should split the sum over l in different pieces. But we needed the entire sum over l

to perform the Poisson resummation formula. This is related to the fact that one cannot

take the large τ2 limit through the summation over l. This is an issue that requires more

thought and we will not discuss this further here.

Numerically however, we can analyze this infinite product (albeit in a truncated way of

course). One finds the following. Firstly periodicity w → w+1 is recovered. This symmetry

is exactly present in (4.2) due to the periodicity properties of the Ray-Singer torsion, but is

compromised upon dropping the infinite product. It is nice to find numerical evidence that

when including a truncated version of this infinite product, the symmetry becomes more

and more restored.13 Secondly, for values of w that satisfy |w| < 1
2 , the infinite product

does not contribute to the large τ2 limit and one can hence trust the above expressions

to yield the dominant behavior. If w is outside this interval, the infinite product makes a

contribution that survives the large τ2 limit, precisely to restore the periodicity w → w+1.

Hence we restrict w to |w| < 1
2 and drop the infinite product. All other intervals of w

should be found by periodicity. As noted before, this numerical treatment is actually the

only indication we have on how the infinite product affects the critical behavior.

4.3 A brief look back at the AdS3 string gas

Before we proceed, let us briefly return to the normal AdS3 space. The numerical methods

discussed in the previous subsection can also be used for this (easier) case. We hence

analyze

E = lim
τ2→∞

∑
l∈Z

e
(2−k)πl

2

τ2

β2

4π2−kπp2 β2

4π2 τ2∣∣∣sin(π
(
pβ
2π τ2 + i β2π l

)
)
∣∣∣2 . (4.19)

One finds

E ∼ e−kπp
2 β2

4π2 τ2 (4.20)

12For instance, consider the mean value theorem from elementary integral calculus: the τ1-integral equals

the length of the interval (=1) times the function value at some intermediate point. But all intermediate

points display the same asymptotic form. Thus the asymptotic form cannot be influenced by the integral

over τ1.
13The symmetry restoration is apparent only for values of |w| not too large. Roughly speaking, if one

wants the periodicity domain to increase by an integer, one should include one more factor in the numerical

treatment of the infinite product.
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with a prefactor periodic in τ2 as

τ2 → τ2 +
2πN

βp
, N ∈ Z, (4.21)

which is in accord with what we argued for in subsection 2.5. There we discussed the

fact that all q ∈ Z stringy states contribute to the critical regime. And indeed, their sum

respects this symmetry since it gives (schematically):∑
q∈Z

ρ(q)eiqpβτ2 . (4.22)

It is hard to imagine how this periodicity would be generated if the q ∈ Z states would be

subdominant.14 A periodic prefactor of the critical behavior was also explicitly determined

in [13].

Note that in this case no change of dominant behavior occurs. This case is hence for all

values of the parameters similar to the k |w| < 1 case of the orbifolds discussed above.

4.4 Dominant state

Let us now study the large τ2 limit analytically. Which state is the dominant one? This

is easy to analyze. First let us take a look at the continuous states. The situation is the

same as that analyzed in section 2.5 and one can repeat the entire discussion given there,

including the arguments presented in appendix B as to why the density of states does not

influence the critical weight.

Next, we focus on the discrete states. Consider (part of) the conformal weight h = − j̃(j̃−1)
k−2 .

The most negative conformal weight dominates. Since j̃ > 1/2 is required, the dominant

state has the largest value of j̃ allowed by the constraints. This is then obviously a state

which has q = l = 0. The n quantum number has an n2 contribution in the conformal

weight as given before. It is hence dominated by n = 0.

Note that this is a major qualitative difference between the continuous states and the dis-

crete states. For continuous states in AdS3 we noted before in subsection (2.5) that the

dominant state has arbitrary q ∈ Z and one should sum these to get the critical behavior.

The same story applies here for the continuous states: arbitrary n is allowed and we should

sum these for the critical behavior (and in order to satisfy the periodicity in τ2 of the pref-

actors as discussed in the previous subsections). For discrete states on these orbifolds, n

and q are both set to zero. Hence no summation is required to obtain the critical behavior.

The reason for this peculiar behavior of the continuous states is the absence of n2 and q2

terms in the expressions for the conformal weights (2.68) and (2.69). We will discuss this

further in section 6.3.

For any value of N , one can then determine whether the system is stable or not by con-

sidering the mode with lowest conformal weight. The conformal weight h as a function of

w = a
N is given in figure 4. Even though this figure is drawn for w a continuous variable,

one should keep in mind that in principle we only determined this for w = a
N . From the

numerical approach, we learned that we should restrict to |w| < 1/2. The lowest mode for

14For instance setting q = 0 would not give a critical behavior that respects this symmetry.
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a fixed value of N , is given by taking w = 1
N . In particular, the dominant state is discrete

for N < k and is continuous otherwise. We remark that the curve of the lowest conformal

(a) (b)

Figure 4: (a) Conformal weight h of the most tachyonic mode of both types of represen-

tations (continuous and discrete) as a function of w. The blue curve originates from the

continuous representations. The green curve represents the lowest mode of the discrete

representations. The latter only appears when |w| > 1
k , represented by the red circles. (b)

Conformal weight of the overall lowest weight state relevant for stability issues. As soon

as the discrete representations are present, they dominate the continuous modes.

weight (as displayed in figure 4), is smooth across the ‘joints’ |w| = 1
k . This analysis is in

precise agreement with the numerical study presented in the previous subsection.

Note further that since k > 2, these orbifold models always include twisted discrete states

in their spectrum.

If we analyze solely the large τ2 behavior with w arbitrary and not summed over, i.e. one

of the expressions we studied numerically in the previous subsection, then the lowest con-

formal weight displayed in figure 4 should be periodically continued with period 1 both to

the left and to the right.

4.5 Hagedorn temperature

Can we utilize these observations to determine the Hagedorn temperature of the BTZ

black hole? Analogous to the treatment of conical orbifolds of the flat plane [50][51][23],

the 1
N parameter should be interpreted as β

βBTZ
, the ratio of the actual temperature and

the Hawking temperature. The lowest state for each N is given by choosing |w| = 1
N , thus

setting a = ±1. This corresponds to taking w = β
βBTZ

. To determine whether the BTZ

black hole itself is stable, we are hence interested in taking N → 1. Thus we would like to

continue the above expressions to N = 1. The discussion that follows is hence necessarily

more speculative than the previous results. Unlike for the flat C/ZN cones, in this case

this continuation in N is more ambiguous: we have a piecewise definition of the lowest
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conformal weight and it is a priori unclear which is the correct way to proceed. A naive

application of the above periodicity results would suggest then that the lowest weight state

for w = 1 is the same as that for w = 0 and the BTZ black hole would be unstable.

However, we believe this is not correct for the following reasons. Firstly, from a Lorentzian

point of view, the canonical partition function is given by15

Z =
∑
n∈H

e−βEn . (4.23)

It is clear from this formula that periodic behavior of the system as w → w + 1 or β →
β+βBTZ is impossible. The reason for this periodicity symmetry can be traced back to the

following. As we discuss in appendix C.2, the first step in evaluating the partition function

using path integral methods consists of performing a coordinate transformation that makes

manifest that φ is an angular coordinate. However, this coordinate transformation is 1:1

only when the range of φ is less than 2π. Thus the periodicity w → w + 1 is an artifact of

the new coordinates and is not a symmetry of the original space.

A better approach, which we believe to be the correct one, is to ignore this periodicity.

The presence of discrete states causes the partition function to diverge for w ≈ 1. In figure

5 we draw the lowest conformal weight when we continue the discrete state all the way to

|w| = 1. Curiously, the conformal weight becomes zero and the conclusion seems to be that

the bosonic BTZ WZW model is divergent at the Hawking temperature. In fact, it appears

to be divergent for any value of β. The computation of the critical weight for the discrete

states is actually completely the same as that for the discrete modes in Euclidean Rindler

space [23]. In both cases, it is very ambiguous how to correctly interpret the continuation

N → 1 in terms of convergence or divergence of thermodynamic quantities.16 Despite the

speculative nature of the above discussion, for conical BTZ spaces the dominant behavior

is well-defined. The thermal scalar on these BTZ conical spaces for N < k is characterized

by |w| = 1
N ,17 q = 0, l = 0, p = 0 and n = 0. Unlike the thermal scalar on the AdS3

space which included a summation over q to distill the critical random walk behavior, in

this case no summation is required.

Let us look at the analogous formulas for the type II superstring. We did not determine

these ab initio, but it seems obvious how to modify the resulting conformal weights: one

simply replaces k− 2→ k in the denominator of the first term of the conformal weights.18

After integrating out the continuous quantum number s, the most tachyonic continuous

state hence has

h = h̄ =
1

4k
+
kw2

4
, (4.24)

15Let us remark that the equality of the partition function on the thermal manifold at one loop and the

Lorentzian thermal free field trace is not a settled issue for black hole spacetimes [52]. Different arguments

are presented below.
16Note further that even if we did take the β → β + βBTZ periodicity seriously, our conclusion would

remain unaltered: the singly wound state yields a divergence for |w| → 1.
17Winding ±1 on the cone is equivalent to winding ± 1

N
on the ‘covering’ space of the cone, i.e. the

unorbifolded space.
18We have already argued for this before in section 2.6.
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Figure 5: Conformal weight of lowest weight state when continuing the expressions up to

|w| = 1. The vertical dashed lines denote the boundary |w| = 1
2 . The two black diamonds

depict the weight of the state at |w| = 1, where it becomes zero.

whereas the most tachyonic discrete state (for k |w| > 1) has

h = h̄ = −
kw
2

(
k|w|

2 − 1
)

k
+
kw2

4
=
|w|
2
. (4.25)

Crucially, unlike the bosonic string, the term quadratic in w cancels out and we are left

with a linear dependence on w. Moreover, and this is the intriguing part of this analysis,

if we demand that h = 1
2 , we find precisely |w| = 1, i.e. β = βBTZ . The situation

is drawn in figure 6. A further field-theoretic argument in favor of this continuation in

N will be given in section 6.6. We are inclined to believe these results since they are

very reminiscent on the results for SL(2,R)/U(1) black holes and its Euclidean Rindler

limit. In fact, qualitatively the situation is almost the same. Bosonic strings have (save

for the non-thermal closed string tachyon) a convergent free energy, but as soon as the

temperature is varied, thermodynamic quantities (such as the thermal entropy) diverge.

Type II superstrings precisely have TH = THawking, meaning a marginal convergence is

achieved for thermodynamic quantities. The major difference is that the thermal scalar

state is absent for the BTZ black hole itself.

4.6 Summary

In this section we analyzed conical orbifolds obtained by identifying points on the cigar

after a certain rotation. The partition function contains states that wind the cigar now. A

surprising result is that the spectrum includes also a set of discrete states in the twisted

sectors. These states appear only for k |w| > 1. Mathematically, the appearance of the

discrete states can be traced back to a correct analytic continuation of Poisson’s summation

formula. These discrete states are crucial, since if they are present, they dominate the
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(a) (b) (b)

Figure 6: (a) and (b) represent the analogous figures for the type II superstring as figure

4 does for the bosonic string. (c) The curves are drawn all the way to |w| = 1, where the

green curve is found to precisely equal 1
2 . This point is depicted with black diamonds. The

vertical dashed lines denote the boundary |w| = 1
2 .

continuous states. We also presented a numerical analysis of the partition function in

the large τ2 limit. The results agree with the predictions in terms of the spectrum. The

two major lessons we learned from the numerical analysis are the following. Firstly, the

summation over l and the large τ2 limit cannot be interchanged. Secondly, the infinite

product gives a subdominant contribution as long as |w| < 1
2 . Else, the infinite product

simply restores the periodicity w → w + 1 that is not present in the partition function if

one simply drops the infinite product. We then discussed how the Hagedorn temperature

emerges for the BTZ black holes. We continued the conformal weight of the discrete

representations all the way to |w| = 1, and found a divergence for the bosonic string BTZ

black hole. For type II superstrings on the BTZ black holes however, we find a marginal

convergence: βH = βBTZ .

5 The inclusion of a chemical potential for the AdS3 string gas

5.1 Thermal spectrum

A simple generalization of the AdS WZW model at finite temperature is by substituting

β → β(1 + iµ) in Ulp as defined in equation (C.8) in the exact path integral treatment.

This corresponds physically to the introduction of a chemical potential for the angular mo-

mentum of the string gas around the cigar-shaped angular submanifold. On the Euclidean

manifold this is realized as the simultaneous identification τ ∼ τ +β and φ ∼ φ+µβ. As a

small reminder, this can be seen by writing down the grand-canonical partition function:

Z = Tre−β(H+iµQ) (5.1)

with Q the conserved charge. This is the generator of angular rotations in our case.

Again as usual anti-periodic boundary conditions for the fermions are required. These
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identifications lead to skew tori as fundamental domains in the (φ, τ) plane as shown

in figure 7 below. The path integral and Hamiltonian interpretation techniques that we

Figure 7: Left figure: The identifications of the coordinates τ ∼ τ + β and φ ∼ φ + 2π

define a rectangular torus as fundamental domain. Right figure: When including µ, the two

identifications are more involved. The first is the simultaneous identification of τ ∼ τ + β

and φ ∼ φ+µβ. The second identification is again φ ∼ φ+2π. These define a more general

skew torus as fundamental domain.

analyzed in appendix C.2 provide the fastest way to get the string spectrum in this case.

In fact, our results on angular orbifolds in appendices C.3, C.4 and C.5 can be almost

exactly copied to study this case. We present the computational details in appendix C.6.

One finds a continuous spectrum of states with conformal weights

hpsqn =
s2 + 1/4

k − 2
+ i

µnp

2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ hint, (5.2)

h̄psqn =
s2 + 1/4

k − 2
+ i

µnp

2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ h̄int, (5.3)

and a set of discrete states with weights

hpjqn = − j̃(j̃ − 1)

k − 2
− iµnp

2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ hint, (5.4)

h̄pjqn = − j̃(j̃ − 1)

k − 2
− iµnp

2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ h̄int, (5.5)

where now j̃ = k|µp|β
4π − |q|2 −

iµq
2 ±

inβ
π − l. The quantum numbers take values as follows:

q ∈ Z, n ∈ Z, p ∈ Z and l = 0, 1, 2, . . .. The discrete states include all states that satisfy

<(j̃) > 1/2. The unitarity constraint <(j̃) < k−1
2 is trivially satisfied for all such states,

provided k > 2.

5.2 Dominant state and critical Hagedorn thermodynamics

As for theAdS3 orbifolds, the dominant state can be either continuous or discrete depending

on the value of k |w|.
For k |µ|β2π < 1, the dominant state is continuous and characterized by p = ±1, n = 0 but

arbitrary q.

The dominant discrete state for k |µ|β2π > 1 is again given by considering q = l = n = 0 and

– 30 –



p = ±1. It is the same state as the one in the conical AdS3 space characterized by p = ±1,

w = µβ
2π p.

The numerical analysis done in the previous section can be readily extended to include this

case as well.19

After including the spectator dimensions, the condition to find the Hagedorn temperature

is given by
1

4(k − 2)
+ k

β2

16π2
(1 + µ2) = 1 (5.8)

when |µ|β2π < 1
k or by

1

4(k − 2)
−

(k|µ|β2π − 1)2

4(k − 2)
+ k

β2

16π2
(1 + µ2) = 1 (5.9)

when 1
k <

|µ|β
2π < 1

2 . For even larger values of the chemical potential, periodicity of the

system under w → w + 1 should be used. This periodicity is obvious from a Lorentzian

point of view as well, since the grand-canonical partition function is given by [11][53]

Z =
∑
n∈H

e−βEneilnµβ (5.10)

for integer angular momentum ln, which is manifestly periodic under

µ→ µ+
2πN

β
, N ∈ Z. (5.11)

If |µ|β2π < 1
k , the Hagedorn temperature is readily found and is given by

β2
H =

4π2

k(1 + µ2)

(
4− 1

k − 2

)
, (5.12)

which is the expression written down in [13]. However, for other values of the chemical

potential, the Hagedorn temperature disagrees with the above formula and should instead

be determined by equation (5.9). For completeness, the Hagedorn temperature in this

regime is given by the not-so-transparant expression:

βH = −2π
k |µ| −

√
(−7k2µ2 + 16kµ2 − 16k2 + 4k3 + 16k)

k(−2µ2 + k − 2)
. (5.13)

19More precisely, one should analyze

lim
τ2→∞

∑
l∈Z

e
(2−k)πl

2

τ2

β2

4π2 +4πlw β
2π

+2πw2τ2−kπp2 β2

4π2 τ2∣∣sin(π
(
pβ
2π
τ2 + iwτ2 + i β

2π
l − β

2π
lµ
)
)
∣∣2 , (5.6)

which yields results in agreement with the analytical predictions. Actually, an additional numerical con-

sistency check can be performed. In the regime where the continuous state dominates, the prefactor of the

leading behavior is expected to exhibit periodicity in τ2. According to the precise form of the weights (5.2)

and (5.3), the periodicity is

lcm

(
1

µ
,

2π

β(1 + µ2)

)
, (5.7)

which as a sidenote exists only when the ratio of these two numbers is rational. Such a periodicity is indeed

what is observed numerically.
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For even larger values of the chemical potential, one needs to use the periodicity (5.11).

However, the periodic parameter is µβ and not µ itself. This then leads to a distortion of

the βH(µ) curve for larger values of µ. Note that the Hagedorn temperature only depends

on |µ|, thus the critical curve is symmetric under µ → −µ. The resulting critical curve

is depicted in figure 8. Note that indeed the critical curve is smooth at the points where

Figure 8: βH as a function of chemical potential µ for the case k = 7. Above the

displayed curve, the system is stable. Below the curve, the system is unstable. Note that

for increasing chemical potential, the curve becomes deformed.

a different formula for the Hagedorn temperature should be used, as we noticed before.

For very large values of µ, the curve can even ‘fall over’ such that for a single value of µ,

multiple critical temperatures exist. The interpretation is then as follows. Starting from

a low-temperature gas at fixed chemical potential, we turn up the temperature. At the

beginning, the system is thermodynamically stable. Then at some temperature (which

is at least as high as the µ = 0 Hagedorn temperature), the system becomes unstable.

However, when bearing through this region, one again encounters a regime where the

system is stable. This stability is soon after again compromised and one re-enters the

divergent Hagedorn phase. For very large temperatures, being larger than the temperature

associated to µ∗ =
√

k(k−2)
14k−32 , the system always becomes unstable. Thus there is an interval

of temperatures, where depending on the chemical potentials, the system can alternate

between convergent and divergent behavior. This strange zone is bounded as follows:

√
k

2π

√
k − 2

4k − 9
< T <

√
k(k − 2)√

2π
√

7k2 − 30k + 32
, (5.14)

where the upper temperature is computed as T (µ = µ∗). This feature is illustrated in

figure 9. Let us finally remark that the Hagedorn temperature is always at least as high as

the µ = 0 Hagedorn temperature. This is intuitively obvious [13], since we expect string

states with prescribed average angular momentum to be less numerous than the general

string states. Thus a higher temperature is necessary to get a sufficient number of string

states to yield Hagedorn behavior.

The alternating divergence behavior is quite strange. In fact, in the past a similar situation
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Figure 9: βH as a function of chemical potential µ for sufficiently large µ for k = 7. The

blue line denotes a thermodynamic path one could follow in heating (or cooling) the system

at fixed chemical potential. It is now apparent that multiple crossing with the critical curve

are possible, indicating an alternating convergent and divergent system.

arose when computing the one-loop free energy of heterotic strings in flat space [54].20 It

was shown [15] that this behavior is unphysical and incompatible with the monotonicity

of a canonical partition function in β. The genus zero condensate of the thermal heterotic

string in flat space cannot disappear at higher temperatures. In this case however, we

are using the grand-canonical partition function (5.10) which need not be monotonic in

β. Hence the above behavior is in principle allowed. Even more so, we now present an

argument that the persistence of the genus zero condensate as in [15] cannot occur here.

The crucial ingredient is the fact that we have an extra parameter µ to play with. Consider

a thermodynamical path as given in figure 10. First we follow the blue curve by heating

the system. Then we follow a suitable trajectory in the (µ, β) plane (the green curve) that

does not cross the critical curve. We end up at the same point. This point could have been

chosen arbitrarily low in temperature and hence we expect the system to converge there in

the low-temperature phase, both initially and finally after following the thermodynamical

process. However, a genus zero condensate forms as soon as one crosses the critical curve

the first time. If this condensate persists after crossing the critical curve the second time,

then this path shows that it is possible to cool down the system without any more crossings,

which implies that the low temperature system we obtain after this entire process would

still contain a genus zero condensate. This is impossible.

Generalizing this argument, if the convergent region in the plane of parameters (here µ and

β) is connected then the entire critical curve is important and the genus zero condensate

can disappear again at higher temperatures. If it is not connected, one cannot a priori

know what will happen at higher temperature as is the case for the heterotic string in flat

space. In that case, the canonical partition function itself shows that one cannot return to

20The flat space heterotic string has two critical temperatures and divergences occur only in between these

two temperatures. This suggests at first sight that the heterotic string is again stable at high temperature.
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Figure 10: Thermodynamical path through the (µ, β) plane. We start at the black

square. First the system is heated following the blue path. Then the green path is followed

to finally end up at the same point from which we started.

a convergent region with the same degrees of freedom as the low-temperature phase.

For completeness, we present the analogous picture for the type II superstring (assuming

the obvious replacements) in figure 11. Peculiar to note is that the smooth gluing of the

Figure 11: βH as a function of chemical potential µ for the case k = 7 for the type II

superstring. Above the displayed curve, the system is stable. Below the curve, the system

is unstable. Again the curve deforms for increasing µ.

piecewise defined function for the bosonic string is not present here: the critical curve

exhibits points where it is non-differentiable.
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5.3 BTZ with µ 6= 0

In the previous section, we noted that the BTZ thermal spectrum does not include the

thermal scalar state. We then considered conical orbifolds and found that the thermal

scalar reappears. A different question one could ask is whether introducing a chemical

potential for the BTZ black hole can cause the thermal scalar to appear. Let us briefly

look into this. One readily finds the generalization of the relation between AdS3 and BTZ

for non-vanishing chemical potential (in terms of AdS3 parameters):

τ ∼ τ +
2πr+

l
, (5.15)

φ ∼ φ+ 2π, τ ∼ τ + 2πµBTZ . (5.16)

This is a situation we have not yet analyzed, both identications include the temporal

dimension. The φ identification is trivial and we can drop it. Since the identification

is purely in the AdS time direction, we do not encounter the problems with the w →
w + 1 periodicity shift. The result is an AdS3 where the thermal direction includes two

independent identifications: a double toroidal model. More elaborate computations for

this set-up will not be treated here. We just remark that cigar-winding states make a

reappearance here due to the non-trivial identification τ ∼ τ + 2πµBTZ . We hope to come

back to this model in the future.

5.4 Summary

In this section, we presented results on the treatment of the string gas in AdS3 spacetimes

(and its orbifolds) when including a chemical potential for the angular momentum. The

techniques used are very similar to those we employed in the previous section when ana-

lyzing conical orbifolds. We found the thermal spectrum and the thermal scalar for AdS3

in this case. The periodicity of µ then allowed us to construct the entire critical curve in

the (µ, β) plane. This extends the work of [13]. A curious feature we discovered was that

for large enough chemical potentials, the system can change between stable and unstable

several times over a certain range of temperatures. This is, as far as we know, an effect

that has not been noted before.

6 The AdS3 field theory point of view

After the exact analysis of the primaries in the previous sections, we now take a closer look

at the thermal scalar field equation and its possible α′-corrections. Armed with the exact

thermal spectrum on AdS3 in (2.71) and (2.72), we look at the lowest order (in α′) action

and we analyze to what extent the eigenvalues reproduce the exact spectrum.
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6.1 Winding states from the field theory action

Firstly, we look into winding states. In general, the lowest order (in α′) action for winding

modes (with winding p) including a NS-NS background is given by

S ∼
∫
dD−1x

√
Ge−2Φ

×

(
G̃ij∂iTp∂jT

∗
p +

p2R2G̃00

α′2
TpT

∗
p + G̃0i ipR

α′
(
Tp∂iT

∗
p − T ∗p ∂iTp

)
+m2TpT

∗
p

)
, (6.1)

where G̃µν denotes the T-dual metric. In our case, the T-dual metric and its inverse are

given in matrix notation with ordering (τ , ρ, φ) by

G̃µν =


1

l2 cosh(ρ)2 0 −i tanh(ρ)2

0 l2 0

−i tanh(ρ)2 0 l2 sinh(ρ)2 − l2 sinh(ρ)2 tanh(ρ)2

 , G̃µν =

 l
2 0 i

0 1/l2 0

i 0 1
l2 sinh(ρ)2

 ,
(6.2)

where l2 = kα′. Note that the G̃00 metric component is constant: the background NS-NS

field has cancelled the confining G00 potential ∝ cosh2(ρ). So we obtain

S ∝
∫
dDx sinh(ρ) cosh(ρ)

[
1

l2
∂ρT∂ρT

∗ +
1

l2 sinh(ρ)2
∂φT∂φT

∗

−pR
α′

(T∂φT
∗ − T ∗∂φT ) +

R2p2l2

α′2
TT ∗ +m2TT ∗

]
. (6.3)

Since φ ∼ φ + 2π, we can expand in Fourier modes ∝ eiqφ for q ∈ Z. The qth mode

corresponds to the following eigenvalue equation:

1

l2

(
−∂ρ∂ρT − 2 coth(2ρ)∂ρT +

q2

sinh(ρ)2
T

)
+

2iqpR

α′
T +

R2p2l2

α′2
T − 4

α′
T = λT. (6.4)

When looking for δ-normalizable eigenmodes, the set of eigenfunctions need to decay faster

than e−ρ to compensate for the growing measure factor ∼ e2ρ as ρ → ∞. One can show

that the eigenvalues of the first two terms are given by

λ =
4s2 + 1

l2
, (6.5)

where s is a real number. The restriction to λ > 1/l2 arises precisely due to this restric-

tion on normalizability of the wavefunctions. Using numerical methods, we checked that

the same spectrum is obtained when including the third term containing the q quantum

number. The eigenvalues λ of the above operator are hence

λ =
4s2 + 1

l2
+
iqpβ

πα′
+

β2p2l2

(2π)2α′2
− 4

α′
. (6.6)

Multiplying by α′/4, we can clearly see aspects of the exact conformal weight spectrum

(2.71) and (2.72) appear:

h =
s2 + 1/4

k
+
iqpβ

4π
+
kβ2p2

4(2π)2
− 1. (6.7)
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The criterion for non-negative eigenvalues is equivalent to the criterion for conformal

weights larger than one. The only discrepancy is the k → k − 2 appearing in the de-

nominator of the Laplacian, to which this field theory analysis is a priori insensitive.

6.2 Exact WZW analysis for non-winding states

Now we look into the non-winding states, but instead of using the lowest order (in α′)

spacetime action, we utilize the geometrization of the (inverse) string propagator L0 + L̄0.

Following the treatment of [49] for the gauged WZW case, we will use this geometrization

to deduce the form of the spacetime action of the non-winding modes. Using formulas

given in appendix A, one can write the zero-modes of the currents as differential operators

when acting on vertex operators. We find the following form for the holomorphic currents:

D̂3 = − 1

2i
∂φ +

1

2
∂τ , (6.8)

D̂+ = i
eτ−iφ

2
[−∂ρ + i coth(ρ)∂φ + tanh(ρ)∂τ ] , (6.9)

D̂− = −ie
−τ+iφ

2
[∂ρ + i coth(ρ)∂φ + tanh(ρ)∂τ ] . (6.10)

Analogous formulas hold for the antiholomorphic sector as given in appendix A. One can

readily check that indeed these operators satisfy the sl(2,R) algebra:[
D̂3, D̂±

]
= ±D̂±, (6.11)[

D̂+, D̂−
]

= −2D̂3. (6.12)

After some more algebra, the L0 and L̄0 operators can be found using the Sugawara con-

struction. These are equal for this case and given by

L0 = L̄0 =
1

4(k − 2)

(
−∂ρ∂ρT − 2 coth(2ρ)∂ρT −

1

sinh(ρ)2
∂2
φT −

1

cosh(ρ)2
∂2
τT

)
. (6.13)

This expression coincides with the scalar Laplacian on the group manifold. We arrive at

the eigenvalue equation:

1

4(k − 2)

(
−∂ρ∂ρT − 2 coth(2ρ)∂ρT −

1

sinh(ρ)2
∂2
φT −

1

cosh(ρ)2
∂2
τT

)
− T = λT. (6.14)

Like before, modes with φ dependence do not give a modification of the spectrum. Similarly,

modes with τ dependence also do not modify the spectrum (obviously both of these do

modify the eigenfunctions). The resulting eigenvalues are then

λ =
s2 + 1/4

k − 2
. (6.15)

This is exactly as expected: discrete momentum modes in the φ and/or the τ directions

do not alter the conformal weights.
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6.3 Thermal scalar action

Combining the results from the previous subsections and the exactly known spectrum, we

propose the following exact form of the eigenvalue equation for primary operators on AdS3:

1

4(k − 2)

(
−∂2

ρT − 2 coth(2ρ)∂ρT +
q2

sinh(ρ)2
T +

n24π2

β2 cosh(ρ)2
T

)
− iqpβ

4π
T +

kβ2p2

4(2π)2
T = T.

(6.16)

In particular, the thermal scalar action (with q = 0, n = 0 and p = ±1) becomes

1

4(k − 2)

(
−∂2

ρT − 2 coth(2ρ)∂ρT
)

+
kβ2

4(2π)2
T − T = 0. (6.17)

Compared to the lowest order (in α′) thermal scalar action, the only difference is the shift

k → k − 2 for the Laplacian term. For the type II superstring, this shift does not occur,

and just like for the WZW cigar discussed in [49], the lowest order effective action is exact

(for describing the on-shell conditions).

We see that the field theory action reproduces the string spectrum (up to k → k − 2

for the bosonic string). This also clearly shows the physical interpretation of the different

quantum numbers we introduced in section 2.3: q represents the discrete momentum around

the angular φ-cigar, w is the winding around this cigar, n denotes the discrete momentum

around the thermal circle whereas p is the winding around the thermal circle.

6.4 Flat space limit

In [55][56], the authors utilize the flat limit of the SL(2,R)/U(1) to get information on

string theory in polar coordinates (Euclidean Rindler space). Also for the thermal AdS3

manifold, one has the opportunity to look at the flat limit as k → ∞. What happens in

this case?

The temporal part of the background becomes a flat toroidal dimension. However, looking

back at the spectrum (2.71) and (2.72), we see that there is no n2 contribution. One can

see how this comes about by looking at the spacetime equation of motion (6.16). Discrete

momentum states clearly do not influence the spectrum for any finite value of k, which

one can see by looking at the large ρ asymptotics. However, if kρ2 is held fixed, cosh→ 1,

and the discrete momentum term no longer vanishes in the asymptotic large ρ region.

Thus this term represents an additive contribution to the eigenvalue which becomes the

addition n2π2α′

β2 to the conformal weight. This is precisely the missing term. The same

story happens for the φ part. The geometry asymptotes to flat space in polar coordinates,

but the discrete momentum part q2 is missing. Although geometrically the space turns to

flat space in polar coordinates, the potential term is still cancelled by the Kalb-Ramond

background, a feature which is not present in purely flat space. Despite the resemblances

with the SL(2,R)/U(1) cigar (as discussed in section 4), this shows that taking the large k

limit of this space is not a good starting point to analyze string theory in polar coordinates,

unlike the SL(2,R)/U(1) cigar CFT itself as studied by [57][55][56].

It is precisely the absence of the n2 and q2 terms in the conformal weights that causes

the simultaneous marginality of these states at the Hagedorn temperature. Unlike the
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majority of the pathological properties of this model, the physical reason for this is not

the Kalb-Ramond field. The ever-increasing circumference of the angular cigar and the

temporal cylinder, i.e. the asymptotic geometry, is the culprit here. Naively, when a

compact dimension has a large circumference, discrete momentum modes are contributing

little energy. This is the analogous effect of winding modes becoming light when the

compact dimension becomes very small.

Note that also in Euclidean Rindler space the thermal circle becomes infinitely large at

infinity. However, inspection of the conformal weights [23] shows that in that case the

degeneracy of marginal states does not occur. The above feature is hence not generic.

6.5 Random walk behavior in AdS3

Equiped with the field theory action corresponding to (6.16) for the primaries, the random

walk picture can be completed now. If the only critical state present were the state with

q = n = 0 (the thermal scalar), then the random walk displayed in (2.6) would not be

modified (except for the bosonic k → k− 2 shift). However, we saw in section 2.3 that the

states with arbitrary q (and n, but as discussed above this is irrelevant for thermodynamical

quantities) all become marginal at the Hagedorn temperature. Hence all of these contribute

to the critical behavior. The random walk should hence contain a sum over these quantum

numbers:

Zp =
∑
w=±1

∑
q∈Z

∫ +∞

0

dτ2

2τ2

∫
[DX] exp (−Sp) . (6.18)

For definiteness, we focus on the type II superstring. Utilizing the explicit action for the

primaries, the particle action becomes

Sp =
k

4π

∫ τ2

0
dt

[
(∂tρ)2 + (β2 cosh(ρ)2 − β2

H,flat) + sinh(ρ)2(∂tφ)2 + 2w
β

2πα′
sinh(ρ)2∂tφ

+
4π2

k2

{
3

4
+

1

4 cosh(ρ)2

}
− i4πβqw

k
+

4π2q2

k2 sinh(ρ)2

]
.

(6.19)

6.6 Cigar-winding states

Previously we stated that the cigar-winding string states are absent for AdS3 and BTZ.

However, we did (formally) obtain these in section 2.3. Moreover, we saw in appendix C.3

that conical spaces reintroduce these states. It thus seems worthwile to look at the field

theory equation for such states. One can obtain these simply by T-dualizing along the φ

direction. The T-dual (in the φ-direction) metric components are given by

G̃φφ =
1

l2 sinh(ρ)2
, G̃φτ =

Bφτ
Gφφ

= i, G̃ττ = Gττ +
BφτBφτ
Gφφ

= l2. (6.20)

The T-dual metric and its inverse are hence given by (the ordering of the coordinates in

the matrices is now (φ, ρ, τ)):

G̃µν =


1

l2 sinh(ρ)2 0 i

0 l2 0

i 0 l2

 , G̃µν =

 l2 tanh(ρ)2 0 −i tanh(ρ)2

0 1/l2 0

−i tanh(ρ)2 0 1
l2 cosh(ρ)2

 (6.21)
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This leads to the following eigenvalue equation for pure winding states:

1

l2
(−∂ρ∂ρT − 2 coth(2ρ)∂ρT ) +

w2l2

α′2
tanh(ρ)2T − 4

α′
T = λT. (6.22)

In general, the spectrum of this eigenvalue equation contains both a discrete part and a

continuous part. The continuous eigenvalues are:

λ =
4s2 + 1

k
+
w2l2

α′2
− 4

α′
(6.23)

and the second term is clearly the pure cigar-winding contribution kw2

4 to the conformal

weights.

The field theory of point view also exhibits the discrete states with the correct eigenvalues,

again modulo the substitution k → k− 2 in the Laplacian operator. Let us briefly analyze

this in more detail. We study the eigenvalue equation

(−∂ρ∂ρT − 2 coth(2ρ)∂ρT ) + (kw)2 tanh(ρ)2T = λT (6.24)

which is obtained from equation (6.22) by setting λnew = l2λold + 4
α′ l

2.

Numerically, one finds discrete bound states when

λ = 2nk |w| − (n2 − 1), n = 1, 3, 5, . . . (6.25)

= −4

(
k |w|

2
− l
)(

k |w|
2
− 1− l

)
+ (kw)2, l = 0, 1, 2, . . . (6.26)

and indeed, precisely for these values of λ one encounters the discrete states of expressions

(4.8) and (4.9).21 The continuum starts at the eigenvalue

λ∗ = 1 + (kw)2 (6.27)

and discrete states have eigenvalues lower than this bound since

2nk |w| − (n2 − 1) < 1 + (kw)2 ⇔ (k |w| − n)2 > 0 (6.28)

which is automatically satisfied obviously. As an illustration, we draw the wavefunctions

for the case kw = 6 in the following figures 12 and 13. Three bound state wavefunctions

are found, and indeed the inequality

k |w|
2
− l > 1

2
, l = 0, 1, 2, . . . (6.29)

has three solutions. The unitarity bound j̃ < k−1
2 is also satisfied for |w| < 1

2 as we have

shown earlier.

The equation of motion (6.22) provides another argument in favor of the fact that one

should not use the w → w+ 1 periodicity of the partition function to obtain the Hagedorn

divergence for the BTZ black hole. Equation (6.22) determines the dominant state for

21Again, with the remark that one should take k → k − 2 in the term associated to the Laplacian.
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(a) (b) (c)

Figure 12: Bound state solutions for kw = 6 as a function of radial distance ρ with

T (0) = 1 chosen as normalization. (a) Lowest bound state with λ = 12. (b) Second bound

state with λ = 28. (c) Final bound state with λ = 36.

Figure 13: Example of a continuous wavefunction for kw = 6 with λ = 50 as a function

of radial distance ρ with T (0) = 1 chosen as normalization.. Such states have eigenvalues

larger than those of the discrete spectrum.

w = 1
N for the ZN orbifold of the BTZ black hole. We expect that one need only continue

this wave equation to N = 1 to obtain the dominant behavior for the BTZ black hole itself.

This wave equation includes both continuous and discrete states (if present) and the lowest

eigenvalue determines the critical behavior of the string gas. It would be very strange

indeed if this equation would need to be drastically altered as soon as we are interested in

|w| > 1
2 .

6.7 Summary

In this section we have taken a field theory point of view. This allowed us to clearly observe

the physical meaning of the quantum numbers q and n that we introduced in section 2.3.

Since we have seen that the thermal scalar action is not modified (save for the k → k − 2

for bosonic strings) from the lowest α′ effective thermal scalar action, the random walk

picture exhibited in (2.6) is also at first sight not modified. However, there are infinitely

many string states becoming marginal at the Hagedorn temperature. Hence the random

walk should contain a sum over discrete momenta around the angular cigar. This random

walk is not localized to the AdS origin, since the Kalb-Ramond background field precisely

compensates the gravitational potential. These results solve the random walk problem in

the AdS3 WZW target space. Cigar-winding modes exhibit explicitly a discrete part in

their spectrum, precisely corresponding to the expected conformal weights.
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7 Conclusions and outlook

We have discussed thermal properties of the AdS3 and BTZ WZW models from the thermal

spectrum. Firstly we briefly analyzed the form of α′ corrections to the thermal scalar ac-

tion. Then we used CFT twisting techniques to fully determine the string spectrum on the

thermal manifolds. We explicitly found the thermal scalar in the string spectrum with the

correct mass. The thermal scalar is not localized to the AdS origin but instead fluctuates

all over space (it is in a continuous representation of the symmetry group). The reason is

the Kalb-Ramond flux whose repulsion precisely compensates the gravitational attraction.

For the BTZ black hole, the thermal scalar is not present in the string spectrum. The state

however reappears when considering sufficiently conical spaces. We discovered that the

twisted sectors on the cone also exhibit discrete modes. From a mathematical perspective,

these are found by properly performing the analytic continuation of Poisson’s summation

formula. We discovered that these discrete states, if they are present, dominate the contin-

uous states. Hence they are important for the critical thermodynamics. After that, using

techniques we employed to analyze the temporal BTZ orbifolds, we have analyzed the gen-

eralization of the AdS3 string gas by including a chemical potential corresponding to the

angular momentum on the cigar. We found the critical curve in the (µ, β) plane for the

AdS3 string gas and discovered a peculiar effect where the string gas alternated between

stable and unstable in a certain temperature interval. In the final section, we looked at the

field theory point of view. The lowest order α′ thermal scalar action reproduces the correct

conformal weights for the type II superstring and we expect it to be exact. Bosonic string

actions are nearly exact, the only difference is the shift k → k−2 in the kinetic term. With

all these techniques, we have written down the random walk picture of the string on AdS3

spacetime. A strange feature is that arbitrary q quantum numbers are all simultaneously

dominant.

Throughout this paper, we have presented four different methods to analyze the thermal

spectrum on AdS3 space and its orbifolds. Let us compare these.

• The first method we presented in section 2.3 utilized worldsheet CFT twisted operator

methods to twist the non-thermal Euclidean CFT into the thermal one. The approach

is elegant and computationally easy to carry out, though it has some subtle points

in that the derivation is not airtight: we needed to take a plausible guess when

considering the conserved charges in the twisted sectors. In spite of this, this approach

leads to a solid prediction of the thermal spectrum whose quantum numbers can be

directly related to physical quantities. However, this approach is not sensitive to

some constraints on the quantum numbers. We view it as a blueprint of the exact

result: the precise thermal spectrum needs to be taylored to the form predicted using

this vertex operator method.

• A second approach we followed utilized the (lowest order in α′) field theory equations

of motion in the curved background (using the SL(2,R) Laplacian). This approach is

a priori not sensitive to possible α′ corrections, and it misses the k → k−2 shift in the

denominator of the kinetic Laplacian term. For type II superstrings, this approach

– 42 –



does not have this problem. Modulo this difficulty, one correctly predicts all possible

string states. This method clearly demonstrated the possibility of discrete states

when w 6= 0. The downside is that, just like the vertex operator method, one is not

sensitive to constraints, although normalizability j̃ > 1
2 can be directly checked and

this constraint is most transparent when using this method.

• Thirdly, we looked at the exact partition function using numerical methods (i.e.

truncating the series and taking the large τ2 limit cautiously). This approach, when

utilized with care, is the most failsafe option we have. Of course, one is limited to

certain questions only, for instance the large τ2 limit is accessible but moderate values

of τ2 are hard to analyze. We detected the presence of discrete states with this and

this was our only way to analyze what the infinite product contributes to the final

result. It is of course difficult to analyze what one finds if we do not know where to

look in advance: the physical meaning of the results are obscured.

• Finally, we turned to the Hamiltonian formulation of the one-loop partition function.

This approach is in principle the best one, since one can distill all states and the uni-

tarity constraints should be visible. However, this approach is the most cumbersome

to use. Moreover, in order to rewrite this in the desired way, one needs to know in

advance what the conformal weights of the states might look like. It is at this point

that the vertex operator method is ideally suited to provide insight.

In this paper, we used a combination of all four of these methods to analyze the thermal

spectrum and the critical Hagedorn behavior.

Some open avenues that can be further explored are for instance a more elaborate treat-

ment of the type II superstring on these spaces. We have merely displayed the expected

changes, though a more thorough analysis would be welcome.

Another possibility is to try to get further insight in the Hagedorn temperature for the

BTZ black hole. The continuation in the orbifold integer N is somewhat dubious in this

case, more so than for the Euclidean Rindler case or the SL(2,R)/U(1) cigar CFT.

A further front on which progress can be made is the treatment of the infinite product of

oscillators in (4.2). Out of the four methods discussed above, the only approach we have

successfully applied to treat this product is the numerical approach. The difficulty is that

the factors in the infinite product must in principle be series-expanded in different series

depending on the value of l. But the sum over l needs to be treated all at once to be able

to apply the Poisson summation techniques to it. We leave a better treatment of this as

an open issue.

Another path that can be explored, is the treatment of the AdS3 string gas with chemical

potential using saddle point methods along the lines of [13] and see whether the critical

Hagedorn curve can be fully explained.

We have also merely provided a starting point for the treatment of BTZ black holes when

including chemical potentials. Also here progress can be made.

It is also known for quite some time now that the WZW AdS3 model is related to other

CFTs by exactly marginal perturbations on the worldsheet [58][59][43]. It would be inter-

– 43 –



esting to learn how the thermal spectrum and the critical Hagedorn thermodynamics of

the string gas behaves along this marginal line of CFTs.

To conclude, we have illustrated the general results of [22] in a concrete non-trivial exam-

ple. The apparently marginal behavior of all q ∈ Z states and the absence of the thermal

scalar for BTZ black holes studied here, urges us to be careful when considering non-trivial

geometries, especially spaces with topologically trivial thermal circles.
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A SL(2,R) and SL(2,C)/SU(2) WZW models

In this appendix we provide some background material concerning WZW models and in

particular the two models relevant for the AdS3 background. We also establish our con-

ventions and provide several formulas for later reference.

A.1 SL(2,R) model

We follow the conventions of [31][30]. The Wess-Zumino-Witten (WZW) model is given by

S =
k

8π

∫
d2σTr

(
g−1∂µgg

−1∂µg
)

+ kΓWZ , (A.1)

where

ΓWZ =
i

12π

∫
M3

Tr (ω ∧ ω ∧ ω) . (A.2)

The Maurer-Cartan 1-form is denoted by ω = g−1dg. The first term of the WZW action is

actually the traced square of the Maurer-Cartan 1-form and is as such the natural metric

to put on a group manifold (originating from the Cartan-Killing metric on the algebra).22

From this we conclude that the string model has a metric background equal to the Cartan-

Killing metric. The second Wess-Zumino term is necessary to ensure conformal invariance

at the quantum level and can be interpreted as a background Kalb-Ramond background

for the string model. In our case g is a SL(2,R) matrix. We choose the following basis of

generators for the sl(2,R) Lie algebra

τ1 =
i

2
σ3, τ2 =

i

2
σ1, τ3 =

1

2
σ2. (A.3)

where the σi are the Pauli matrices:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (A.4)

22This holds for semi-simple groups. For non-semi-simple groups, different bilinear symmetric forms exist

other than the Cartan-Killing form. The Cartan-Killing form itself is degenerate in this case and is not a

valid starting point to construct a metric on the group manifold. See [60].
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These generators satisfy the Lie algebra[
τa, τ b

]
= iεabcτ

c (A.5)

where ε123 = 1 and indices are raised and lowered with the metric ηab =diag(+1,+1,−1).

The Cartan-Killing metric is not proportional to the unit matrix in this case:

Tr(τaτ b) = −1

2
ηab. (A.6)

It is not negative definite due to the non-compactness of the SL(2,R) manifold. The

SL(2,R) group element can be written in general as23

g = ei
t+φ

2
σ2eρσ3ei

t−φ
2
σ2 (A.7)

=

[
cos(t) cosh(ρ) + cos(φ) sinh(ρ) sin(t) cosh(ρ)− sin(φ) sinh(ρ)

− sin(t) cosh(ρ)− sin(φ) sinh(ρ) cos(t) cosh(ρ)− cos(φ) sinh(ρ)

]
. (A.8)

This is a parameterization of the group manifold in coordinates (t, ρ, φ). Notice that

the WZW model is written in a manifestly coordinate invariant way (intrinsic on the

group manifold). Coordinate transformations simply correspond to choosing a different

parameterization of the element g.

A.1.1 String background field from WZW action

Let us first compute the background fields by identifying with the non-linear sigma model.

With the above parametrization of g, we can evaluate the WZW action here explicitly.

We need to read off the background metric and NS field by comparing with the standard

non-linear sigma model

S =
1

4πα′

∫
d2σ

(
δabGµν + iεabBµν

)
∂aX

µ∂bX
ν (A.9)

where ε12 = 1 and a flat worldsheet metric was chosen.

The first term in the WZW action corresponds indeed to the background metric since

Tr
(
g−1∂agg−1∂ag

)
= Tr

(
g−1 ∂g

∂Xµ
g−1 ∂g

∂Xν

)
∂Xµ

∂σa

∂Xν

∂σa
. (A.10)

Using the explicit parameterization of the SL(2,R) group element given above, we can

read off the metric as

ds2 = α′k
(
− cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dφ2

)
. (A.11)

We next focus on the WZ term. First we compute

Tr
(
ω3
)

= Tr

(
g−1 ∂g

∂Xµ
g−1 ∂g

∂Xν
g−1 ∂g

∂Xσ

)
∂Xµ

∂σi

∂Xν

∂σj

∂Xσ

∂σk
dσi ∧ dσj ∧ dσk (A.12)

= d

(
6 sinh2(ρ)

∂φ

∂σj

∂t

∂σk
dσj ∧ dσk

)
(A.13)

23For convenience, we now rescale the coordinate fields by
√
α′ to make them dimensionless.
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from which we can read off the Wess-Zumino term. The background Kalb-Ramond field is

given by

Btφ = −α′k sinh2(ρ) or B = −α′k sinh2(ρ)dt ∧ dφ. (A.14)

The corresponding H-field is then

H = dB = −α′k sinh(2ρ)dρ ∧ dt ∧ dφ. (A.15)

A.1.2 Currents, Ward identities and OPEs

From now on we go to complex worldsheet coordinates (σ1,σ2) → (z,z̄) as usual. The

general WZW model is invariant under

g(z, z̄)→ g′(z, z̄) = Ω(z)g(z, z̄)Ω(z̄)−1 (A.16)

where in this case Ω and Ω are two (independent) SL(2,R) matrices. This corresponds to an

isometry of the metric (and Kalb-Ramond background) since it states that g′ parametrized

by the transformed coordinates (t′, ρ′, φ′) gives the same metric as g parametrized by (t,

ρ, φ). The isometry group is thus SL(2,R)× SL(2,R). Infinitesimal transformations give

g → ωg − gω where ω(z) is traceless and real. The symmetry currents corresponding to

these symmetries are proportional to

J(z) ∝ ∂gg−1, J(z̄) ∝ g−1∂̄g. (A.17)

Following [61], we choose them as

J(z) = −k
2
∂gg−1, J(z̄) =

k

2
g−1∂̄g. (A.18)

The sign of the antiholomorphic currents is chosen differently than in [31] and these currents

give hence an extra minus sign in the flat space k → ∞ limit compared to those in [31].

This symmetry entails a corresponding Ward identity for a general field A given by

δA = −
∮
w

dz

2πi
ωaJ

a(z)A(w, w̄) +

∮
w

dz̄

2πi
ωaJa(z)A(w, w̄) (A.19)

where we have expanded the functions in the Lie algebra basis

J(z) = Jaτ
a, J(z̄) = Jaτ

a, ω(z) = ωaτ
a, ω(z̄) = ωaτ

a (A.20)

and we should be careful with indices since upper and lower indices are not equal. Note

that ωa is an imaginary number. Multiplying the J(z) expansion by τ b and tracing gives

Ja = kTr
(
τa∂gg−1

)
, (A.21)

J
a

= −kTr
(
τag−1∂̄g

)
. (A.22)

If we now take a WZW primary field for which δA = ω(z)A − Aω(z), we can match this

with the Ward identity and read off the following OPEs

Ja(z)A(w, w̄) ∼ −τ
aA(w, w̄)

z − w
, J

a
(z̄)A(w, w̄) ∼ A(w, w̄)τa

z̄ − w̄
, (A.23)
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which immediately lead to the commutation relations of the zero mode of the current with

the field A [
J3

0 , A
]

= −τ3A,
[
J

3
0, A

]
= Aτ3. (A.24)

The currents we have constructed satisfy the following Kac-Moody algebra relations:

Ja(z)Jb(w) ∼ kηab

2(z − w)2
+
ifabcJ

c(w)

z − w
, (A.25)

J
a
(z̄)J

b
(w̄) ∼ kηab

2(z̄ − w̄)2
+
ifabcJ

c
(w̄)

z̄ − w̄
. (A.26)

The reason we work with this sign-convention for the antiholomorphic currents is that in

this case we can identify them directly with the Ω transformations (and not their inverses).

Next, we identify the generator of spacetime time translations. This generator is defined

by

δtA = −iδt [Qt, A] . (A.27)

Since in the general parameterization it holds that

δtA = iδt
2 σ

2A+ iδt
2 Aσ

2

= iδtτ3A+ iδtAτ3

= −iδt
[
J3

0 − J
3
0, A

]
(A.28)

we see that Qt = J3
0 − J

3
0. Analogously one shows that Qφ = J3

0 + J
3
0. For later reference,

we state the currents in terms of the global coordinates:

J3 = ik
(
cosh(ρ)2∂t− sinh(ρ)2∂φ

)
(A.29)

J1 = ik (sin(φ+ t) cosh(ρ) sinh(ρ)∂t− sin(φ+ t) cosh(ρ) sinh(ρ)∂φ+ cos(t+ φ)∂ρ)

J2 = ik (cos(φ+ t) cosh(ρ) sinh(ρ)∂t− cos(φ+ t) cosh(ρ) sinh(ρ)∂φ− sin(t+ φ)∂ρ)

J
3

= −ik
(
cosh(ρ)2∂̄t+ sinh(ρ)2∂̄φ

)
(A.30)

J
1

= −ik
(
sin(t− φ) cosh(ρ) sinh(ρ)∂̄t+ sin(t− φ) cosh(ρ) sinh(ρ)∂̄φ+ cos(t− φ)∂̄ρ

)
J

2
= ik

(
cos(t− φ) cosh(ρ) sinh(ρ)∂̄t+ cos(t− φ) cosh(ρ) sinh(ρ)∂̄φ− sin(t− φ)∂̄ρ

)
.

A.2 SL(2,C)/SU(2) model

We describe the analytic continuation of this model and its relation to the SL(2,C)/SU(2)

model. Analytically continuing t→ iτ immediately gives

g = ei
iτ+φ

2
σ2eρσ3ei

iτ−φ
2

σ2 (A.31)

=

[
cosh(τ) cosh(ρ) + cos(φ) sinh(ρ) i sinh(τ) cosh(ρ)− sin(φ) sinh(ρ)

−i sinh(τ) cosh(ρ)− sin(φ) sinh(ρ) cosh(τ) cosh(ρ)− cos(φ) sinh(ρ)

]
. (A.32)

This group element obviously still has unit determinant, but is no longer real. It is however

Hermitian. This identifies the continuation in global coordinates as the SL(2,C)/SU(2)

model. It has previously been noted that analytic continuation in the Poincaré patch
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time coordinate of the AdS3 manifold corresponds to going from the SL(2,R) to the

SL(2,C)/SU(2) WZW model [36].

This WZW model is invariant under

g(z, z̄)→ g′(z, z̄) = Ω(z)g(z, z̄)Ω(z̄)−1 (A.33)

where Ω and Ω are SL(2,C) matrices such that g′ is a Hermitian matrix. This immediately

implies Ω =
(

Ω
†
)−1

. On an infinitesimal level, this means that ω(z) = −ω(z̄)†. So the

symmetry group is SL(2,C).

In general δτg = −iδτ [Qτ , g]. An infinitesimal Euclidean time translation corresponds in

our parameterization to

g → g − δτ

2
σ2g −

δτ

2
gσ2, (A.34)

which we can rewrite as

g → g + δτ
[
J3

0 − J
3
0, g
]
. (A.35)

This identifies the Euclidean time translation operator as

Qτ = i(J3
0 − J

3
0). (A.36)

Let us now take a closer look at the link between the SL(2,R) and the SL(2,C)/SU(2)

models in terms of the currents. To see the link, we first take a step back and consider

the SL(2,C) WZW model. As a Lie algebra basis we choose the same three generators

as for the SL(2,R) model and allow for complex expansion parameters. The infinitesimal

transformation ω(z) is a complex traceless matrix and the ωa are complex numbers. The

currents are still given by (A.21) and (A.21). So for arbitrary infinitesimal transformations

the Ward identity still reads as in equation (A.19), but now with complex ωa and with the

current Ja calculated with the Wick-rotated g matrix. This last step is simply the analytic

continuation in the currents directly.

The Euclidean model is however, not the general SL(2,C) model but a right coset of

this. So the left and right moving infinitesimal transformation are linked according to

ω(z) = −ω(z̄)†. This implies for the ωa

ω1 = ω1, ω2 = ω2, ω3 = −ω3. (A.37)

So in all, we double the number of effective currents by going to fully complex expansion

parameters, but we then retain only half of these due to the left-right identification.

A.3 WZW currents as differential operators

In this subsection we discuss how to associate differential operators to the action of the Lie

algebra currents. Vertex operators of the WZW model are functions of the field g which

in turn is parametrized by the group manifold coordinates. The zero-mode symmetry

operators have an action on functions as

Ja0 (f(g)) = i
∂

∂t
f
(
eitτ

a
g
)∣∣∣∣
t=0

(A.38)
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and

J
a
0(f(g)) = i

∂

∂t̄
f
(
ge−it̄τ

a
)∣∣∣∣
t̄=0

. (A.39)

This is in fact simply the action of vector fields as differential operators on functions. We

will denote the corresponding operators as D̂a and D̂
a
. Their action is defined through the

infinitesimal group transformations. This operator has to satisfy

D̂af(g) =
df

dg
(g)
(
D̂ag

)
=
df

dg
(g) (−τag) , (A.40)

or

D̂ag = −τag, (A.41)

D̂
a
g = gτa. (A.42)

One should compare this with the OPEs we derived earlier for the currents:

Ja(z)g(w, w̄) ∼ −τ
ag(w, w̄)

z − w
, J

a
(z̄)g(w, w̄) ∼ g(w, w̄)τa

z̄ − w̄
, (A.43)

and we conclude that indeed the normalization of the currents is precisely such that they

are the algebra generators in the sense of the operator equations above. These formulas

identify the differential operators as the dual vectors of the right (respectively left) invariant

Maurer-Cartan 1-forms, with an extra minus sign for the right-invariant vector.

This suggests a first method to compute these differential operators: find the Maurer-

Cartan forms and then dualize these into vector fields. We will however follow a more

pedestrian path and simply compute the operators from the above conditions using some

Pauli matrix algebra. From the above formula, one can see that these differential operators

satisfy the zero-mode Lie-algebra since[
D̂a, D̂b

]
g = −

[
τa, τ b

]
g = −ifabcτ cg = ifabc(D̂

cg), (A.44)[
D̂
a
, D̂

b
]
g = g

[
τa, τ b

]
= ifabcgτ

c = ifabc(D̂
c
g). (A.45)

The same algebra is satisfied when applying these operators on arbitrary functions on the

group manifold. The on-shell equation for a string state is simply L0 + L̄0 = 2 and when

one rewrites this using the Sugawara construction, we have the full stringy wave equation

for the state.

Let us discuss this in full detail for the holomorphic part of the symmetry algebra. The

general SL(2,C)/SU(2) element was parametrized as

g = e(−τ+iφ)τ3
e−2iρτ1

e(−τ−iφ)τ3
. (A.46)

This leads to

∂τg = −τ3g − gτ3, (A.47)

∂φg = iτ3g − igτ3, (A.48)

∂ρg = −2ie(−τ+iφ)τ3
τ1e
−2iρτ1

e(−τ−iφ)τ3
(A.49)
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Our goal now is to rewrite this in a form where all algebra generators are in front of the

group element. This requires some rearranging of the Pauli-matrices using the following

three lemmas:

eAτ
3
τ1 =

(
cosh(A)τ1 + i sinh(A)τ2

)
eAτ

3
, (A.50)

eBτ
1
τ3 =

(
cos(B)τ3 − i sin(B)τ2

)
eBτ

1
, (A.51)

eCτ
3
τ2 =

(
cosh(C)τ2 − i sinh(C)τ1

)
eCτ

3
. (A.52)

Using these, we obtain

∂τg = −τ3g − cos(2iρ)τ3g − i sin(2iρ) cosh(τ − iφ)τ2g + sin(2iρ) sinh(τ − iφ)τ1g, (A.53)

∂φg = iτ3g − i cos(2iρ)τ3g + sin(2iρ) cosh(τ − iφ)τ2g + i sin(2iρ) sinh(τ − iφ)τ1g, (A.54)

∂ρg = −2i cosh(τ − iφ)τ1g − 2 sinh(τ − iφ)τ2g. (A.55)

After solving the equalities D̂ag = −τag for a general first-order differential operator, we

obtain the unique solution for the differential operators:

D̂3 = − 1

2i
∂φ +

1

2
∂τ , (A.56)

D̂1 =
1

2
[i sinh(τ − iφ) tanh(ρ)∂τ − sinh(τ − iφ) coth(ρ)∂φ − i cosh(τ − iφ)∂ρ] , (A.57)

D̂2 =
1

2
[cosh(τ − iφ) tanh(ρ)∂τ + i cosh(τ − iφ) coth(ρ)∂φ − sinh(τ − iφ)∂ρ] , (A.58)

and for the + and − operators, defined as D̂± = D̂1 ± iD̂2, we obtain

D̂+ = i
eτ−iφ

2
[−∂ρ + i coth(ρ)∂φ + tanh(ρ)∂τ ] , (A.59)

D̂− = −ie
−τ+iφ

2
[∂ρ + i coth(ρ)∂φ + tanh(ρ)∂τ ] . (A.60)

One can explicity check using the above parametrization of g that indeed

D̂3g = −τ3g, D̂+g = −(τ1 + iτ2)g, D̂−g = −(τ1 − iτ2)g. (A.61)

One can also check that

D̂
3

= − 1

2i
∂φ −

1

2
∂τ , (A.62)

D̂
+

= i
e−τ−iφ

2
[∂ρ − i coth(ρ)∂φ + tanh(ρ)∂τ ] , (A.63)

D̂
−

= −ie
τ+iφ

2
[−∂ρ − i coth(ρ)∂φ + tanh(ρ)∂τ ] , (A.64)

satisfy

D̂
3
g = gτ3, D̂

+
g = g(τ1 + iτ2), D̂

−
g = g(τ1 − iτ2). (A.65)

We already saw above from the explicit construction that there is a unique solution to

these conditions.
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B Argument why the density of states does not influence the critical

behavior

In this appendix we argue that the density of states can not alter our conclusions about

the critical temperature.

So far in the main text we have not written down an explicit expression for the density of

states. The correct expression is given in equation (C.48) [28].

A first argument as to why the s-integration does not make a state more tachyonic is the

following. In general, the integration over s is of the following form:∫ +∞

0
dsρ(s)e−τ2s

2 → 0 for τ2 →∞ (B.1)

so this integral cannot yield a contribution that behaves as eAτ2 for positive A as long as

ρ(s) is well-behaved near s = 0 which it is.24

A more general argument goes as follows. Firstly, as remarked before, the τ1-integral forces

np = 0, which implies n = 0 for our purposes. Important to note is that the contribution

from q is an imaginary exponential. Consider the following general expression25:∫ +∞

0
ds
∑
q∈Z

ρ(s, q)eiqτ2e−s
2τ2 (B.2)

where ρ(s, q) denotes the density of states with n = 0. Performing the sum first, we can

rewrite this as ∫ +∞

0
dsF (s, τ2)e−s

2τ2 (B.3)

where F has Fourier coefficients ρ and is periodic in τ2. We are only interested in whether

the integral is capable of producing a τ2-dependent exponential after integration (like e±Cτ2

for some constant C). Laplace’s method gives∫ +∞

0
dsF (s, τ2)e−s

2τ2 ≈
√
π

τ2

F (0, τ2)

2
+ . . . (B.4)

since the periodic function does not correct the leading behavior. One simple way to see

this is to take a discrete limit with steps precisely equal to the periodicity of F in τ2. In

this case F becomes effectively independent of τ2 and one can use the textbook Laplace

method to get the above result. The τ2-dependence of the final result may indicate that the

limit itself is ill-defined but regardless it cannot influence the critical behavior and we only

care about this. Note that the assumption that the integration over s does not influence

the tachyonic nature of a state, was made implicitly by the authors of [11] and [30].

C Hamiltonian description of thermal AdS3 and its orbifolds

In this lengthy appendix, we describe in detail how the Hamiltonian description of the

spectrum is obtained. For clarity, we first use a trivial toy model to illustrate the strategy

that we will employ.

24This follows largely from equation (C.48) with n = 0: for any fixed q the limit s→ 0 is zero.
25The q quantum number and its prefactors are rescaled into a new number q.
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C.1 Flat space toy model to illustrate the strategy

Consider the 1d flat space Laplacian. The operator commutes with Ĵ = i∂x. We choose

eigenfunctions

ψk(x) ∝ eikx, (C.1)

satisfying

∆ψ = −k2ψ, (C.2)

Ĵψ = i∂xψ = −kψ. (C.3)

We then evaluate

Tr
[
et∆e2πiUĴ

]
(C.4)

for some fixed number U . Firstly, in configuration space this equals∫
dx 〈x| et∆ |x+ 2πU〉 = V

1

2
√
πt
e−

π2U2

t , (C.5)

where we used eiaĴ |x〉 = |x+ a〉 and the flat space heat kernel. Secondly, we can evaluate

it using the eigenfunctions (C.1) and the relations (C.2) and (C.3) as:∫
dkδ(0)e−tk

2
e−2πiUk =

V

2π

√
π/te−

π2U2

t . (C.6)

We see that both expressions are manifestly the same. Note that the density of states

is present in the form of δ(0). It is the second description that we are after, since then

the trace over the quantum numbers (in this case only k) is apparent. In the following

subsections, we will apply this same idea to the much more complicated AdS3 space and

its orbifolds.

C.2 AdS3 Thermal partition function

In this subsection we give a Hamiltonian description of the thermal AdS3 partition function.

With a suitable substitution of parameters, this is also the thermal BTZ partition function

as discussed in section 3. The partition function is given by

Z(τ) =
β
√
k − 2

8π
√
τ2

∑
l,p

e−kβ
2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2e

πτ2
2

|sin(πUlp)|2
∣∣∏+∞

r=1(1− qr)(1− qre2πiUlp)(1− qre−2πiUlp)
∣∣2 (C.7)

where q = e2πiτ and26

Ulp = − iβ
2π

(pτ − l). (C.8)

The quantum number p will correspond to thermal winding, whereas the quantum number

l will be Poisson-resummed into the discrete momentum. Our goal is to rewrite this in the

form

Z(τ) =
∑
i

Nĩiχi(τ)χ∗
ĩ
(τ) = TrqL0−c/24q̄L̄0−c/24, (C.9)

26This differs in two ways from the expression written down in [28]: firstly the (qq̄)−3/24 was inserted in

the above expression. Secondly, we utilize the complex conjugate of the Ulp as defined in [28]. This is in

accord with the Ray-Singer torsion [62] and this was noticed in [48] by one of the authors themselves.
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with the characters

χi(τ) = Triq
L0−c/24. (C.10)

The second equality in (C.9) traces over all primaries and their secondaries in the string

spectrum. In these expressions the conformal weights h and h̄ are possibly a subset of

those we determined in section 2.3 using CFT arguments.

First of all, we have that

+∞∑
N=1

∑
P∈P (N)

qNe2πiUlpO(P) =

+∞∏
r=1

1

1− qre2πiUlp
(C.11)

where P (N) denotes the different partitions of the integer N and O(P) denotes the size of

the partition P. It is clear that the infinite product in (C.7) corresponds to the different

oscillator states and we will not be interested in this. Note though that this is a bit naive

since the Taylor expansion we should use depends on the precise value of Ulp. Nonetheless,

as a first step towards understanding the partition function (C.7) we choose to drop the

infinite product. Comments on this are provided in the main text.

The method to proceed was developed by [46][47] and we adapt it for our purposes.27 We

first evaluate the following trace (for fixed l and p):

Tr

[
exp

(
−τ2

β2kp2

4π

)
exp

(
4πτ2

∆

k − 2

)
exp(2πi(UlpJ

3
0 + ŪlpJ

3
0))

]
(C.12)

where we trace over a basis of all normalizable functions ψa(g) on H+
3 and J3

0 and J
3
0 are

differential operators acting on these functions. As a basis, we choose eigenfunctions of ∆,

J3
0 and J

3
0. The explicit form of these eigenfunctions will not be needed; the interested

reader can take a closer look at appendix A of [63] to find elaborate expressions. More

explicitly, consider the three operators ∆, J3
0 +J

3
0 = i∂φ and J3

0 −J
3
0 = −∂τ in coordinates

τ, φ, ρ. These mutually commute so let us choose functions ψs,m,q such that

∆ψ = (−s2 − 1/4)ψ, (C.13)

(J3
0 + J

3
0)ψ = qψ, (C.14)

−i(J3
0 − J

3
0)ψ = mψ. (C.15)

It can be shown that when m is real and q is an integer, ∆ is a Hermitian operator w.r.t.

the standard inner product on L2(H+
3 ). Therefore the ψs,m,q form a basis when restricting

to these quantum numbers. The starting point is then the evaluation of∑
s,m,q

〈ψs,m,q| Ô |ψs,m,q〉 (C.16)

with s a real positive number, m a real number and q an integer. So explicitly∑
s,m,q

=

∫
R+

ds

∫
R
dm
∑
q∈Z

. (C.17)

27Note that in [46], the author only considers twisting in one torus direction. Here we consider both.
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In our case, the operator Ô is given as:

Ô = e−τ2
β2kp2

4π e4πτ2
∆+ 1

4
k−2 e2πi(UlpJ

3
0 +ŪlpJ

3
0). (C.18)

We rewrite this as ∫
dg
∑
s,m,q

ψs,m,q(g)∗ψs,m,q(g)λs,m,q =
∑
s,m,q

δ(0)λs,m,q, (C.19)

where g denotes a group element of the H+
3 = SL(2,C)/SU(2) group manifold and λs,m,q

is the eigenvalue of Ô. Here δ(0) = ρ(s,m, q) is the density of states and depends on s,m

and q. The operator Ô is labeled by p, l quantum numbers and the entire expression is

then summed over l and p. The expression for the density of states on such spaces was

written down in [28]. We use a slight modification of this expression:

ρ(s,m, q) = 2
L

2π

[
1

2π
2 log(ε) +

1

2πi

d

2ds
log

(
Γ( 1

2 − is− q/2− im/2)Γ( 1
2 − is− q/2 + im/2)

Γ( 1
2 + is− q/2− im/2)Γ( 1

2 + is− q/2 + im/2)

)]
.

(C.20)

The expression in square brackets is the usual one, used in [28]. The parameter ε is an IR

regulator (ε → 0) corresponding to the radial direction. We here multiply this expression

by a further factor of L
2π where L is the IR regulator (L → ∞) of the Euclidean time

direction. The reason that we include it here, is that we are considering the Euclidean

space, for which the density of states also includes the temporal direction on the same foot

as the other space directions. A proper definition of L follows shortly. We also include an

extra factor of 2.28

We need to sum the trace (C.12) over l and p and divide by the range of this summation.

In this case, l and p run over Z so the range is infinite (let us call it P ), although this

infinity will cancel with L further on to yield a finite contribution.

As in the previous subsection C.1, we will evaluate this operator trace in two different

ways. Let us first focus on the configuration space evaluation. We choose the free-field

coordinates (Φ, v, v̄) introduced in [46] to parametrize the group element:

g =

[
eΦ(1 + vv̄)1/2 v

v̄ e−Φ(1 + vv̄)1/2

]
. (C.21)

for real Φ and complex v (and v̄). In these coordinates it was shown in [46] that the

zero-modes of the currents have the following form:

J3
0 − J

3
0 = −v∂v + v̄∂v̄ = i∂φ, (C.22)

J3
0 + J

3
0 = −∂Φ = −∂τ , (C.23)

28The reason is that we consider the entire prefactor of the s-integral and this includes an extra factor of

2. See e.g. [64][28] where this factor is written explicitly.
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where the first equality is in terms of the coordinates above, and the second equality is in

terms of the global coordinates.29 To conform to our conventions, we change the sign of

the antiholomorphic sector, such that:

J3
0 + J

3
0 = −v∂v + v̄∂v̄ = i∂φ, (C.25)

−i(J3
0 − J

3
0) = i∂Φ = i∂τ . (C.26)

Then these generators are indeed the angular and Euclidean time generators defined before.

From the form of the generator in terms of differential operators, we have that

exp(2πiUlpJ
3
0 )g = exp(−πiUlpσ3)g, (C.27)

exp(2πiŪlpJ
3
0)g = g exp(πiŪlpσ

3). (C.28)

We can rewrite the trace as∑
a

〈ψa| exp

(
−τ2

β2kp2

4π

)
exp

(
4πτ2

∆

k − 2

)
exp

(
2πi(UlpJ

3
0 + ŪlpJ

3
0)
)
|ψa〉 (C.29)

=

∫
dg 〈g| exp

(
−τ2

β2kp2

4π

)
exp

(
4πτ2

∆

k − 2

) ∣∣exp(−πiUlpσ3)g exp(πiŪlpσ
3)
〉
.

(C.30)

In the last line, we integrate the heat kernel over the group manifold, but with twisted

boundary conditions. Next we explicitly perform the integration on the group manifold,

i.e. over the v, v̄ and Φ coordinates. The measure is given by dg = dΦdvdv̄. The group

metric (to which the Laplacian above is associated) is given by

ds2 = dΦ̃2 + (dv + vdΦ̃)(dv̄ + v̄dΦ̃) (C.31)

and is independent of Φ̃ (or Φ itself). Thus integrating over Φ can be done by using this

fact: since the heat kernel is a sum over paths between two points, it is independent of the

‘center of mass’ Φ coordinate of both points.30 We define
∫
dΦ = L and combining it with

the 1
P present in the partition sum, it produces β; just like it does in the flat toroidal case.

The heat kernel on H+
3 is given by (see e.g. [65])

et∆(g1, g2) = (πt)−3/2 d

sinh d
e−t/4−d

2/t, (C.32)

29A few technicalities are in order here. The free-field coordinates (Φ, v, v̄) are related to the global AdS

coordinates as 
v = sinh(ρ)eiφ

v̄ = sinh(ρ)e−iφ

Φ = t− 2log cosh(ρ)

(C.24)

The Φ coordinate used in [46] is related to that used in [28] (denoted Φ̃ here) by Φ = Φ̃ + 1
2
log(1 + |v|2),

which explains the factor of 2 appearing in the final line of (C.24).
30Note also that both J3

0 and J
3
0 are independent of the Φ coordinate, which is a necessary condition for

this statement.
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where d is the geodesic (= hyperbolic) distance between the 2 points. In particular, between

exp(−πiUnpσ3)g exp(πiŪnpσ
3) and g with Φ = 0, this is given by:

cosh d =
(

1 + |v|2
)

cosh(2πU2)− |v|2 cos(2πU1). (C.33)

The integration can then be done by some simple substitutions and leads to∫
dg 〈g| exp

(
4πτ2

∆

k − 2

) ∣∣exp(−πiUlpσ3)g exp(πiŪlpσ
3)
〉

(C.34)

= L

√
k − 2

8π
√
τ2
e−πτ2/(k−2)e−π(k−2)=(Ulp)2/τ2 |sin(πUlp)|−2 . (C.35)

When we put everything together, we obtain

1

P
Tr

[
exp

(
−τ2

β2kp2

4π

)
exp

(
4πτ2

∆ + 1/4

k − 2

)
exp(2πi(UlpJ

3
0 + ŪlpJ

3
0))

]
(C.36)

=
β
√
k − 2

8π
√
τ2

exp

(
−τ2

β2kp2

4π

)
e−π(k−2)β2(pτ1−l)2/4π2τ2 |sin(πUlp)|−2 (C.37)

=
β
√
k − 2

8π
√
τ2

e−kβ
2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2 |sin(πUlp)|−2 . (C.38)

To fully agree with (C.7) we should multiply the trace by e
πτ2

2 and sum this expression over

l and p. This concludes the first computation: the partition function has been rewritten

in terms of a trace of some operator Ô.

Next we would like to rewrite it fully in terms of the quantum numbers of the states

we wrote down in section 2.3. So we start afresh with the operator trace (C.36) and we

evaluate the trace by using the basis of eigenfunctions that we discussed around equations

(C.13), (C.14) and (C.15). To proceed, we focus on the integral over m in equation (C.17)

and the summation over l. The part of the trace that depends on l gives us

1

P

∫
R
dm
∑
l∈Z

exp

(
2πi

(
βl

2π
m

))
=

1

P

2π

β

∫
R
dm
∑
n∈Z

δ

(
m− 2πn

β

)
(C.39)

=
2π

L

∫
R
dm
∑
n∈Z

δ

(
m− 2πn

β

)
. (C.40)

Note the appearance of a prefactor 2π
L . Hence the integral over m only has contributions

for m = 2πn
β for integer n. With this value of m and the fact that

J3
0 + J

3
0 = q (C.41)

on the eigenfunctions ψ, we obtain using (C.8) for the remaining parts of Ulp:

βpτ

(
q

2
+
iπn

β

)
⊂ 2πiUlpJ

3
0 , (C.42)

−βpτ̄
(
q

2
− iπn

β

)
⊂ 2πiŪlpJ

3
0. (C.43)
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This determines all different factors of the operator trace (C.36) in terms of the quantum

numbers we are interested in.

The factor of eπτ2/2 that we manually added after equation (C.38) can be written as

eπτ2/2 = (qq̄)−3/24. (C.44)

Also multiplying (and dividing) the trace by e
−πτ2
k−2 , we have precisely rewritten the partition

function as

TrqL0−c/24q̄L̄0−c/24, (C.45)

where

h =
s2 + 1/4

k − 2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
, (C.46)

h̄ =
s2 + 1/4

k − 2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
, (C.47)

and with c = 3 + 6/(k − 2), the central charge of the SL(2,R) model. We trace only over

the continuous states with the density of states:

ρ(s, n, q) = 2

[
1

2π
2 log(ε) +

1

2πi

d

2ds
log

(
Γ(1

2 − is− q/2− i
πn
β )Γ(1

2 − is− q/2 + iπnβ )

Γ(1
2 + is− q/2− iπnβ )Γ(1

2 + is− q/2 + iπnβ )

)]
.

(C.48)

The factor L
2π has dropped out in this expression: this makes sense, since this direction

has become compact due to the thermal identification and compact dimensions do not give

volume-scaling prefactors when considering the Hamiltonian formulation of the partition

function (see for instance any textbook on string theory).

No discrete states are present and there are also no states that wind the angular cigar.

C.3 Angular orbifolds

We consider orbifolds obtained by identifying φ ∼ φ + 2π
N . These angular orbifolds were

extensively studied in [48] and [31]. The thermal partition function was computed in [48].

It was shown there that the thermal partition function on such orbifolds has the form

Z =
1

N

∑
a,b

Zab, (C.49)

where each Zab is obtained from the untwisted partition function (C.7) by the simple

substitution

Ulp → Ulp +
a

N
τ +

b

N
. (C.50)

These parameters are hence given by

Ulp =
b

N
+
a

N
τ1 − i

β

2π
(pτ1 − l) + i

a

N
τ2 +

pβ

2π
τ2, (C.51)

whose imaginary part equals

=(Ulp) = − β

2π
(pτ1 − l) +

a

N
τ2. (C.52)

– 57 –



Performing the above heat kernel computation again, we obtain

Tr

[
exp

(
−τ2

β2kp2

4π

)
exp

(
4πτ2

∆ + 1/4

k − 2

)
exp(2πi(UlpJ

3
0 + ŪlpJ

3
0))

]
(C.53)

=
β
√
k − 2

8π
√
τ2

e
−kβ2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2−πkτ2

(
−(pτ1−l) aN

β
π
τ2+ a2

N2 τ
2
2

)
|sin(πUlp)|−2 . (C.54)

By a slight rearrangement of this expression, we get

Tr

[
exp

(
−(pτ1 − l)k

a

N
β + πk

a2

N2
τ2

)
exp

(
−τ2

β2kp2

4π

)
× exp

(
4πτ2

∆ + 1/4

k − 2

)
exp(2πi(UlpJ

3
0 + ŪlpJ

3
0))

]
(C.55)

=
β
√
k − 2

8π
√
τ2

e−kβ
2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2 |sin(πUlp)|−2 . (C.56)

Let us again interpret this from a CFT point of view. Firstly we determine and solve the

analogous conditions as (C.39) for this case. These will be called the projection conditions

in what follows. These are given by ∑
b

exp

(
2πi

b

N
(J3

0 + J
3
0)

)
, (C.57)

∑
l

exp

(
2πi

(
iβ

2π
lJ3

0 −
iβ

2π
lJ

3
0

)
+ lkwβ

)
, (C.58)

where w = a
N . We already have that mJ +mJ ∈ Z from the covering space. Then the sum

over b gives us

1

N

N−1∑
b=0

e2πi b
N

(mJ+mJ ) = 1 iff mJ +mJ ∈ NZ (C.59)

and it vanishes in the other cases. The sum over l is more problematic: the elkwβ contri-

bution is real. We will nevertheless utilize formally the same strategy as in the previous

subsection. The treatment we present here is not rigorous. We will come back to this in the

next few sections, but for now let us continue this line of thought. The above conditions

project the values of mJ and mJ on a discrete set given by

mJ =
q

2
+
iπn

β
+
kw

2
, (C.60)

mJ =
q

2
− iπn

β
− kw

2
, (C.61)

for n,w ∈ Z and q ∈ NZ. The prefactor of the Poisson summation in l again precisely

cancels the L
2π present in the density of states. We remark that for the twisted sectors,

the above J3
0 operators are not the same as the J3

0 operators we used to determine the

spectrum in section 2.3. Thus the above operators are not the actual J operators and
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should be better denoted by J ′ but we refrain from doing this. With the above form for

Ulp and these eigenvalues of the J3
0 and J

3
0 operators, one finds

hwpjqn =
s2 + 1/4

k − 2
+
qw

2
+
iπnw

β
+
kw2

4
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
, (C.62)

h̄wpjqn =
s2 + 1/4

k − 2
− qw

2
+
iπnw

β
+
kw2

4
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
, (C.63)

which, upon setting q → −q, n → −n and p → −p, coincides with equations (2.68) and

(2.69) where w = a
N . Which values of a should we sum over? The partition function

itself (C.49) is periodic under a → a + N . This symmetry is absent in our analysis since

we dropped the infinite product. This issue is settled in subsection 4.2 where we take a

numerical approach to analyze the infinite product. The result is that one should restrict

to |w| < 1
2 , which is indeed an interval of length 1. Only in this interval does the infinite

product not yield a contribution that corrects the conformal weights of the primaries. This

implies the following range for a:

a = −N − 1

2
→ N − 1

2
, N odd, (C.64)

a = −N − 2

2
→ N

2
, N even. (C.65)

Strings that are wound more times than this are not in the spectrum. Discrete momentum

on the cigar on the other hand is present for all q ∈ NZ. As a consistency check, note that

the resulting spectrum satisfies h− h̄ ∈ Z. To arrive at the Euclidean BTZ orbifold string

spectrum, one should simply replace β → 4π2

βBTZ
as discussed in section 3.

Is this the end of the story? Not quite, our analysis of the projection exponential was not

complete. In principle, the summation over l gives a divergent result on its own. After-

wards we integrate m over the real axis which is only sensitive to dirac-poles at real values.

These two operations, while separately nonsense, are given meaning by Poisson’s sum-

mation formula, in which we naively substitute complex arguments instead of real ones.

The answer then turns out to be related to the proper analytic continuation of Poisson’s

summation formula to which we now turn.

C.4 Interlude: analytic continuation of Poisson’s summation formula

The Poisson summation formula on the real axis reads

2π
∑
k∈Z

f(x+ 2πk) =
∑
n∈Z

einxf̂(n). (C.66)

We are interested here in deriving the analogous formula for arbitrary complex x. Let us

evaluate

I =
∑
n∈Z

einz
∫
R
dxe−inxf(x) (C.67)

where z is an arbitrary complex number and f is a complex function evaluated on the real

axis. Firstly, this equals

I =
∑
n∈Z

einz f̂(n), (C.68)
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where f̂ respresents the Fourier transform of f . Secondly, we shift the integration contour

up to +i=(z) as shown in figure 14. Assuming no contributions from the short strips at

Figure 14: Integration contour. The blue contour is the original one. The red contour is

the result of the upwards shift. Possible poles of f need to be accounted for and the two

vertical segments need to be handled properly as well.

infinity, then up to possible pole contributions, the resulting integral equals

I =
∑
n∈Z

ein<(z)

∫
R
dxe−inxf(x+ i=(z)). (C.69)

Now, the sum over n can be readily evaluated as∑
n∈Z

ein<(z)e−inx = 2π
∑
k∈Z

δ(−x+ <(z) + 2πk). (C.70)

We obtain

I = 2π
∑
k∈Z

f(<(z) + i=(z) + 2πk) = 2π
∑
k∈Z

f(z + 2πk). (C.71)

Denote the collection of simple poles of f whose imaginary part lies between 0 and =(z)

as P, then the upwards contour shift also produces

2πi
∑
pi∈P

Respi(f). (C.72)

Putting the pieces together, we finally obtain

∑
n∈Z

einz f̂(n) = 2π
∑
k∈Z

f(z + 2πk) + i
∑
pi∈P

Respi(f)eik(z−pi)

 . (C.73)

One sees that Poisson’s summation formula still holds, up to the series of the second term.

In our case, it is precisely this series that we have neglected.

Example

Let us discuss a small example that will help us rewrite the above formula. We choose

f(z) = δ(z). Obviously the two vertical segments do not contribute. The function also has
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no simple poles. Hence, the above reasoning yields∑
n∈Z

einz = 2π
∑
k∈Z

δ(z + 2πk), (C.74)

which is an analytic continuation of Dirac’s comb function. We can utilize this formula to

rewrite the general Poisson summation formula as

∑
n∈Z

einz f̂(n) = 2π
∑
k∈Z

f(z + 2πk) + 2πi
∑
pi∈P

Respi(f)δ(z − pi + 2πk)

 . (C.75)

This formula is actually a quite nice example of the identity theorem from elementary

complex analysis. Using this theorem, one immediately infers that Poisson’s summation

formula (C.66) should hold on the entire complex plane except on the poles and across

branch cuts of the complex function f (and their 2πk shifts). The above formula (C.75)

describes, in a distributional sense, what the correct formula is when incorporating the

poles of the function f . Note that if branch points are present in f , the above formula does

not hold, though it is clear what one should do to obtain the correct formula.

C.5 Elaborate treatment

Equiped with this knowledge on the correct analytic continuation of Poisson’s summation

formula, let us now re-analyze the expression (C.55) in a more rigorous way. For clarity,

let us lump together all l- and b-independent exponentials into a function F and let us call

G = Fρ where ρ is the density of states on H+
3 as given by equation (C.20). For fixed w

and p, we are interested in:

1

N

∑
l

∑
b

∑
q

∫
R+

ds

∫
R
dme−4πτ2s2/(k−2)e2πi b

N
qe−iβlm+lkwβF (w, p,m, q)ρ(s,m, q) (C.76)

=
∑
l

∑
q∈NZ

∫
R+

ds

∫
R
dme−4πτ2s2/(k−2)e−iβlm+lkwβG(w, p,m, q, s) (C.77)

=
1

β

∑
l

∑
q∈NZ

∫
R+

dse−4πτ2s2/(k−2)elkwβĜ(w, p, l, q, s), (C.78)

where Ĝ is the Fourier transform of G(w, p, mβ , q, s). Using naive Poisson summation in l,

we would get

2π

β

∑
n

∑
q∈NZ

∫
R+

dse−4πτ2s2/(k−2)F

(
w, p,−ikw +

2πn

β
, q

)
ρ

(
s,−ikw +

2πn

β
, q

)
. (C.79)

We see from this that we should substitute m→ −ikw + 2πn
β in both F (representing the

remaining l- and b-independent exponentials) and in ρ, given by expression (C.20). We

hence obtain for the continuous states the following density of states

ρ(s,m, q) = 2

[
1

2π
2 log(ε) +

1

2πi

d

2ds
log

(
Γ( 1

2 − is−
q
2 −

iπn
β −

kw
2 )Γ( 1

2 − is−
q
2 + iπn

β + kw
2 )

Γ( 1
2 + is− q

2 −
iπn
β −

kw
2 )Γ( 1

2 + is− q
2 + iπn

β + kw
2 )

)]
.

(C.80)

– 61 –



This is again the result of our previous naive treatment in C.3. We now know that this

is not entirely correct as possible poles might be present. It is known from earlier work

on related models that discrete modes typically arise by crossing poles [28][64][43]. In full

generality, the computations that follow are quite tedious. We will hence first study the

simple case where τ1 = q = p = 0 and w > 0 to demonstrate the procedure and then slowly

‘turn up the heat’ to work towards the general case.

Simplest case as a warm-up

In this paragraph only we set τ1 = q = p = 0 and w > 0. Right before the Poisson

resummation, we have the expression (C.77):31

∑
l

∫
R+

ds

∫
R
dme−4πτ2s2/(k−2)e−iβlm+lkwβρ(s,m)e−2πiwmτ2 . (C.81)

We now analyze this step by step. The integration over m is on the real axis. Just like

in the proof of the analytic continuation of Poisson’s summation formula, we wish to shift

the contour to imaginary value −ikw. The horizontal piece of the resulting contour and its

analysis are what we have done above: they generate the continuous spectrum of states.32

What we are interested in in this section, is the possibility of a pole in the complex m

plane. Can this occur? Obviously the exponentials in expression (C.81) have no poles.

The density of states is given by

ρ(s,m) = 2
L

2π

[
1

2π
2 log(ε) +

1

2πi

d

2ds
log

(
Γ(1

2 − is− im/2)Γ(1
2 − is+ im/2)

Γ(1
2 + is− im/2)Γ(1

2 + is+ im/2)

)]
. (C.82)

The first part is divergent, but has no poles as a function of m. This part hence entirely

translates to the contour-shifted contribution. The second part however does allow poles.

Firstly we split the logarithm in four parts, then we perform the derivative. The result is

four terms of the form of a Digamma function, schematically:

Γ
′

Γ
= Ψ. (C.83)

The Gamma function has no zeros. It has simple poles at all negative integers (including

zero). The above combination hence has only simple poles when the imaginary part of m

equals ±1, ±3, ±5, . . .. The poles then occur for

m = ±2s+ (2n+ 1)i, n ∈ Z. (C.84)

The contour and some of the poles are illustrated in figure 15 below.33 We hence see that

if kw < 1, no poles are crossed and the analysis presented in C.3 remains valid. However,

31An overall factor of eπkw
2τ2 was not written down here. We will reincorporate this factor in the end.

32This is indeed simply obtained by substituting complex arguments in the real Poisson summation

formula and this is what we did in the previous sections.
33The two vertical contour segments are more problematic. If fact, the original complex function evaluated

on the real axis which we started with, has an ill-defined limit for large real values of m. It is of the form

limm→±∞ e
imx ln(|Cm|) where the density of states has a logarithmic form for large values of m (and we
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Figure 15: The complex m plane with the original integration contour in blue. The shifted

contour is drawn in red. Two poles are crossed when 1 < kw < 3 as is illustrated.

when kw > 1, at least two poles are present in the region and discrete states appear. Both

poles have the same residue and one readily finds that the part of the residue coming from

the density of states (C.82) equals34

− 2πiResρ(s,m) = −2πi2
β

2π

(
−2

4πi

)
=
β

π
. (C.86)

In the remainder of this paragraph, we focus on the case where exactly two poles are

crossed. We generalize this in the next paragraphs. Next we sum the residues of both

poles. These differ only in the sign preceding s, so schematically we can write∫ +∞

0
dseAse−Bs

2
+

∫ +∞

0
dse−Ase−Bs

2
=

∫ +∞

−∞
dseAse−Bs

2
, (C.87)

and both poles are taken care of simultaneously by simply integrating s over the entire real

axis. We obtain

β

π

∑
l

∫
R
dse−4πτ2s2/(k−2)e−iβl(2s−i)+lkwβe−2πiw(2s−i)τ2 . (C.88)

only care for the functional form of this equation) and C is some constant. This same asymptotic form

holds also on the two vertical contour segments. In a distributional sense, such limits are finite though and

are equal to zero. In fact, it holds that limn→∞ e
inxf(n) = 0 as long as f(n) is of order O(np) for large

enough n and for some p ∈ R. For completeness, let us provide a small proof of the statement we need. To

have limm→±∞ e
imx ln(|Cm|) = 0 for continuous m, it needs to hold for every subsequence so we focus on

a subsequence mn for n ∈ N which satisfies limn→∞mn = ±∞. For any testfunction ϕ of compact support

(say L), we then have∣∣∣∣∫ dxeimnx ln(|Cmn|)ϕ(x)

∣∣∣∣ =

∣∣∣∣∫ dxeimnx
ln(|Cmn|)

mn
ϕ′(x)

∣∣∣∣ ≤ maxL(
∣∣ϕ′∣∣)L ∣∣∣∣ ln(|Cmn|)

mn

∣∣∣∣ , (C.85)

which goes to zero as n goes to infinity.
34We again set L

P
= β, with P introduced in subsection C.2.
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The integral over s is a simple Gaussian, yielding

β

2π

√
k − 2

τ2

∑
l

eβl(kw−1)e−2πwτ2e
− (βl+2πwτ2)2(k−2)

4πτ2 . (C.89)

A last Poisson resummation will yield the desired result. For the reader’s comfort, we write

down the Poisson resummation formula:∑
l∈Z

exp
[
−πal2 + 2πibl

]
= a−1/2

∑
n∈Z

exp

[
−π (n− b)2

a

]
. (C.90)

One then finds ∑
n∈Z

e
− 4π3n2

β2(k−2)
τ2
e
− 4π2i(kw−1)n

β(k−2)
τ2e

4π2iwn
β

τ2eπ
(kw−1)2

k−2
τ2e−2πkw2τ2 . (C.91)

From this, one needs to distill a factor e
πτ2
k−2 to serve as (part of) the central charge factor

in the partition function. Extracting this and including the extra piece eπkw
2τ2 we inserted

in the operator trace (C.55), one can see that the following conformal weights can be read

off:

h = h̄ = −(kw − 1)2

4(k − 2)
+

1

4(k − 2)
+

π2n2

β2(k − 2)
+
πi(kw − 1)n

β(k − 2)
− πiwn

β
+
kw2

4
. (C.92)

We will rewrite this in a more clear way after we incorporate the other quantum numbers.

The general case for w > 0

We now turn to the general case. We need to incorporate non-zero τ1, p and q quantum

numbers, though we still focus on w > 0. From now on, we also allow a general number of

crossed poles. Let us first take a look at non-zero q quantum numbers since these present

the most elaborate modifications. The effect of q is to shift the location of the poles of the

Gamma function. The density of states is given by

ρ(s,m, q) = 2
L

2π

[
1

2π
2 log(ε) +

1

2πi

d

2ds
log

(
Γ( 1

2 − is− q/2− im/2)Γ( 1
2 − is− q/2 + im/2)

Γ( 1
2 + is− q/2− im/2)Γ( 1

2 + is− q/2 + im/2)

)]
.

(C.93)

Poles can be found whenever

m = ±2s+ (−(2n+ 1) + q)i, n ∈ N, (C.94)

m = ±2s+ ((2n+ 1)− q)i, n ∈ N, (C.95)

where n equals {0, 1, 2, . . .}. The poles hence shift as shown in the figure 16(a).

Poles originally in the upper half plane shift downwards (for positive q) and poles originally

in the lower half plane shift upwards.

Since q is an integer, one of two situations can occur.

• q is odd. The poles go halfway in between where they are at q = 0. However,

depending on the value of q, several poles closest to the real axis become ‘degenerate’.

Computing the residue at these double poles shows that they cancel. The situation

is illustrated in figure 16(b).
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• q is even. The resulting set of poles is exactly equal to those with q = 0. Likewise,

multiply degenerate poles can occur and if they do, the residue becomes zero. The

situation is illustrated in figure 16(c).

Figure 16: (a) Poles in the complex m plane for q = 0. The big green arrows depict

how the poles shift when q > 0. (b) Poles when q = 3. The bold red poles are doubly

degenerate. The residues cancel out and the pole is effectively absent alltogether. General

odd values of q produce the same pattern of poles but with more (or less) poles doubly

degenerate and hence absent. (c) Poles when q = 2. All even values of q produce the same

pole pattern with again more poles doubly degenerate for increasing q.

For q negative, the poles in the upper and lower half plane move away from each other.

The resulting picture of poles is actually the same as that for −q (which is positive). Hence

we can combine both case of q and only consider negative q and the resulting set of poles

is then labeled by a positive (or zero) integer l, the quantum number associated to the

SL(2,R) discrete representation. The net effect is thus to replace +q/2→ −|q| /2.

The computation is not that hard, though it is important to keep track of all different

contributions. Therefore let us first write down a list of every contribution we have. Firstly,

we have explicit factors inserted in the operator trace (C.55). These are

eπkw
2τ2e−pτ1kwβe−

β2kp2

4π
τ2elkwβ . (C.96)

Secondly, the contributions from the e2πiUJ factors give

e2πiqwτ1e−4πτ2(−ipqβ4π ) (C.97)

and

e−iβlme−2πiwmτ2epβmiτ1 . (C.98)

The poles we cross are of the form m = ±2s − (odd)i − |q| i with odd an odd integer

= 1, 3, 5, . . .. We start with∑
l

∫
R
ds

∫
R
dme−4πτ2s2/(k−2)e−iβlm+lkwβρ(s,m)e−2πiwmτ2epβimτ1 . (C.99)
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The first step is extracting the residues of this expression for the poles of the m-integral.

After this, we perform the Gaussian integral. The result of this step is

β

2π

∑
l

e−βl(odd+|q|)+lkwβe−2πw(odd+|q|)τ2epβ(odd+|q|)τ1e
− (k−2)

4πτ2
(βl+2πwτ2−βpτ1)2

. (C.100)

Finally, we Poisson resum this expression. The parameters to be used in formula (C.90)

are

a =
β2(k − 2)

4π2τ2
, (C.101)

b =
β(kw − odd− |q|)

2πi
− (k − 2)β

4π2iτ2
[2πwτ2 − βpτ1] . (C.102)

A careful, but straightforward analysis of the resulting factors in combination with the

remaining prefactors written in (C.96) and (C.97) shows that

h = − j̃(j̃ − 1)

k − 2
+
qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
− pn

2
+
kp2β2

4(2π)2
, (C.103)

h̄ = − j̃(j̃ − 1)

k − 2
− qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
+
pn

2
+
kp2β2

4(2π)2
, (C.104)

where j̃ = m̃ − l = kw
2 −

|q|
2 −

iπn
β − l where l = 0, 1, 2, . . .. The relation between the

parameter odd, labeling the poles, and the SL(2,R) parameter l is l = odd−1
2 .

Negative w

Now we briefly mention the differences for the case w < 0. In this case, the contour needs

to be shifted to the upper half plane. The pole also has its q-contribution reversed.

A first feature is the overall sign: the contour surrounding the poles is oriented in the

opposite direction as before, but also the residue itself has the opposite sign. In all, no

overall sign is present.

The changes with respect to the case w > 0 are that for the pole contributions: kw−odd→
kw + odd and q → −q.35

Everything combined

In all, the conformal weights in the most general case are given by

h = − j̃(j̃ − 1)

k − 2
+
qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
− pn

2
+
kp2β2

4(2π)2
, (C.105)

h̄ = − j̃(j̃ − 1)

k − 2
− qw

2
− πiwn

β
+
kw2

4
− iβpq

4π
+
pn

2
+
kp2β2

4(2π)2
, (C.106)

where j̃ = M − l = k|w|
2 −

|q|
2 ±

iπn
β − l where l = 0, 1, 2, . . . and the ± symbol equals + if

w < 0 and − if w > 0.

35This swap of sign of q is only present obviously for the factors originating from an m quantum number,

and not for the factors coming from e2πiUJ contributions.
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A simple substitution n → −n allows us to compare these expressions to the continuous

weights of equations (C.62) and (C.63): all terms are the same except the first one.

Since we have a set of discrete states, let us see whether they satisfy the ‘improved’ unitarity

constraints [11]: 1
2 < j̃ < k−1

2 with j̃ = k|w|
2 −

|q|
2 ±

iπn
β − l. Since j̃ is a complex quantity,

we consider instead <(j̃) and it is this number that obeys the inequality in our case as we

now show.

The first inequality 1
2 < <(j̃) corresponds precisely to the pole-crossing properties of the

contour and is hence indeed satisfied in our case.

The second inequality <(j̃) < k−1
2 requires some input from the infinite product. We have

previously argued that (due to brute force numerical computations) |w| < 1/2. It is clear

that the worst case scenario for this inequality occurs when |w| = 1/2 and q = l = 0. But

then we have
k

4
<
k − 1

2
⇔ k > 2, (C.107)

which is obviously satisfied.36 Thus every discrete state we constructed as a pole that was

crossed by the contour shift, satisfies indeed the unitarity constraints.

When taking a larger perspective on this derivation, we find it quite remarkable to find

discrete representations, since our original starting point used only the complete set of

continuous representations on H+
3 . Somehow, these wavefunctions ‘know’ in advance what

the discrete representations should look like.

C.6 Chemical potential

For the sake of brevity, we will only discuss here the additional steps required compared

to the derivations presented in the above analysis.

Firstly, we have

Ulp = − iβ
2π

(pτ − l)(1 + iµ), (C.108)

=(Ulp) = − β

2π
(pτ1 − l) +

µpβ

2π
τ2. (C.109)

Two aspects should be taken care of to evaluate such partition functions. Firstly, one

can relate the partition function to that of the conical spaces discussed in the previous

subsections by taking w → µβ
2π p in that analysis. The q quantum number however runs

over Z and not NZ in this case. Secondly, one should add an extra l-dependent exponential

e−iβµql, (C.110)

36Note that the less strict upper bound j < k/2 which follows from the no-ghost theorem would yield an

inequality in our case that is satisfied as long as |w| < 1.
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compared to the above analysis. The trace we should evaluate to agree with the path

integral derivation is then

Tr

[
exp

(
−(pτ1 − l)k

µpβ

2π
β + πk

(
µpβ

2π

)2

τ2

)
exp

(
−τ2

β2kp2

4π

)
× exp

(
4πτ2

∆ + 1/4

k − 2

)
exp(2πi(UlpJ

3
0 + ŪlpJ

3
0))

]
(C.111)

=
β
√
k − 2

8π
√
τ2

e−kβ
2|l−pτ |2/4πτ2+2π=(Ulp)2/τ2 |sin(πUlp)|−2 . (C.112)

Again we first analyze the continuous representations, obtained by the naive analytic con-

tinuation of Poisson’s summation formula. The projection conditions now require

J3
0 + J

3
0 ∈ Z, (C.113)

iβ

2π
(J3

0 − J
3
0)− βµ

2π
(J3

0 + J
3
0) +

kβ

2πi

µpβ

2π
∈ Z, (C.114)

which is solved by

mJ =
q

2
(1− iµ) +

iπn

β
+
kµpβ

4π
, (C.115)

mJ =
q

2
(1 + iµ)− iπn

β
− kµpβ

4π
, (C.116)

for q, n ∈ Z. Again these states are associated with the horizontal part of the shifted

contour. The additional factor (C.110), although l-dependent, is of modulus one and hence

it does not affect the location of the shifted contour. For the continuous states, this is

relevant since the location of the shifted contour also dictates the substitution one needs to

do in the density of states. Hence we see that here we can simply take the density of states

(C.80) with the replacement w → µβ
2π p. The analysis of the resulting conformal weights is

identical to the analysis for the angular orbifolds presented in C.3, except one extra term

corresponding to the ∓iµ q2 in the above relations. This final term gives the corrections to

the conformal weights

hextra = −βµqp
4π
− iµ2qpβ

4π
, (C.117)

h̄extra =
βµqp

4π
− iµ2qpβ

4π
, (C.118)

finally yielding

hpjqn =
s2 + 1/4

k − 2
+ i

µnp

2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ hint, (C.119)

h̄pjqn =
s2 + 1/4

k − 2
+ i

µnp

2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ h̄int. (C.120)

As a check, we see that h− h̄ ∈ Z, a necessary condition for modular invariance.
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Discrete states can be found by the same strategy as the one used before. Again, we

only need to take a closer look at one contribution (C.110) while the remaining terms

can be readily found from the conical spaces by taking w → µβ
2π p. One can then go

through exactly the same computations as before to handle the discrete states. The extra

exponential (C.110) simply goes along for the ride during the computations and only makes

its appearance when the Poisson resummation needs to be applied. The new Poisson

resummation parameters to be used in (C.90) are now

a =
β2(k − 2)

4π2τ2
, b =

β(kw − odd− |q| − iµq))
2πi

− (k − 2)β

4π2iτ2
[2πwτ2 − βpτ1] . (C.121)

The only difference is hence the replacement |q| → |q| + iµq. Without going into details,

we report the final result:

hpjqn = − j̃(j̃ − 1)

k − 2
− iµnp

2
− iqpβ

4π
− pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ hint, (C.122)

h̄pjqn = − j̃(j̃ − 1)

k − 2
− iµnp

2
− iqpβ

4π
+
pn

2
+
kp2β2

4(2π)2
(1 + µ2)− iµ

2βqp

4π
+ h̄int, (C.123)

where now j̃ = k|µp|β
4π − |q|2 −

iµq
2 ±

inβ
π − l. Again the imaginary part of j̃ is irrelevant for

satisfying the unitarity constraints. We also note that the +iµq/2 term does not contain

an absolute value.

References

[1] J. Balog, L. O’Raifeartaigh, P. Forgacs and A. Wipf, “Consistency of String Propagation on

Curved Space-Times: An SU(1,1) Based Counterexample,” Nucl. Phys. B 325 (1989) 225.

[2] P. M. S. Petropoulos, “Comments On Su(1,1) String Theory,” Phys. Lett. B 236 (1990) 151.

[3] S. Hwang, “No ghost theorem for SU(1,1) string theories,” Nucl. Phys. B 354 (1991) 100.

[4] S. Hwang, “Cosets as gauge slices in SU(1,1) strings,” Phys. Lett. B 276 (1992) 451

[hep-th/9110039].

[5] I. Bars, “Ghost - free spectrum of a quantum string in SL(2,R) curved space-time,” Phys.

Rev. D 53 (1996) 3308 [hep-th/9503205].

[6] I. Bars, C. Deliduman and D. Minic, “String theory on AdS(3) revisited,” hep-th/9907087.

[7] J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, “String theory on AdS(3),” JHEP

9812 (1998) 026 [hep-th/9812046].

[8] A. Giveon, D. Kutasov and N. Seiberg, “Comments on string theory on AdS(3),” Adv.

Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194].

[9] D. Kutasov and N. Seiberg, “More comments on string theory on AdS(3),” JHEP 9904

(1999) 008 [hep-th/9903219].

[10] J. M. Evans, M. R. Gaberdiel and M. J. Perry, “The no ghost theorem for AdS(3) and the

stringy exclusion principle,” Nucl. Phys. B 535 (1998) 152 [hep-th/9806024].

[11] J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and SL(2,R) WZW model 1.: The

Spectrum,” J. Math. Phys. 42 (2001) 2929 [hep-th/0001053].

– 69 –



[12] M. Berkooz, Z. Komargodski and D. Reichmann, “Thermal AdS(3), BTZ and competing

winding modes condensation,” JHEP 0712 (2007) 020 [arXiv:0706.0610 [hep-th]].

[13] F. -L. Lin, T. Matsuo and D. Tomino, “Hagedorn Strings and Correspondence Principle in

AdS(3),” JHEP 0709 (2007) 042 [arXiv:0705.4514 [hep-th]].

[14] R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

[15] J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of Freedom

of String Theory,” Nucl. Phys. B 310 (1988) 291.

[16] G. T. Horowitz and J. Polchinski, “Selfgravitating fundamental strings,” Phys. Rev. D 57

(1998) 2557 [hep-th/9707170].

[17] D. Mitchell and N. Turok, “Statistical Mechanics Of Cosmic Strings,” Phys. Rev. Lett. 58

(1987) 1577.

[18] D. Mitchell and N. Turok, “Statistical Properties of Cosmic Strings,” Nucl. Phys. B 294

(1987) 1138.

[19] N. Deo, S. Jain and C. -ITan, “String Statistical Mechanics Above Hagedorn Energy

Density,” Phys. Rev. D 40 (1989) 2626.

[20] M. J. Bowick and S. B. Giddings, “High Temperature Strings,” Nucl. Phys. B 325 (1989)

631.

[21] J. L. F. Barbon and E. Rabinovici, “Touring the Hagedorn ridge,” In *Shifman, M. (ed.) et

al.: From fields to strings, vol. 3* 1973-2008 [hep-th/0407236].

[22] T. G. Mertens, H. Verschelde and V. I. Zakharov, “Near-Hagedorn Thermodynamics and

Random Walks: a General Formalism in Curved Backgrounds,” JHEP 1402 (2014) 127

[arXiv:1305.7443 [hep-th]].

[23] T. G. Mertens, H. Verschelde and V. I. Zakharov, “Random Walks in Rindler Spacetime and

String Theory at the Tip of the Cigar,” JHEP 1403 (2014) 086 [arXiv:1307.3491 [hep-th]].

[24] B. Sundborg, “The Hagedorn transition, deconfinement and N=4 SYM theory,” Nucl. Phys.

B 573 (2000) 349 [hep-th/9908001].

[25] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, “The

Hagedorn - deconfinement phase transition in weakly coupled large N gauge theories,” Adv.

Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285].

[26] M. Kruczenski and A. Lawrence, “Random walks and the Hagedorn transition,” JHEP 0607

(2006) 031 [hep-th/0508148].

[27] J. Polchinski, “Evaluation of the One Loop String Path Integral,” Commun. Math. Phys.

104 (1986) 37.

[28] J. M. Maldacena, H. Ooguri and J. Son, “Strings in AdS(3) and the SL(2,R) WZW model.

Part 2. Euclidean black hole,” J. Math. Phys. 42 (2001) 2961 [hep-th/0005183].

[29] R. Argurio, A. Giveon and A. Shomer, “Superstrings on AdS(3) and symmetric products,”

JHEP 0012 (2000) 003 [hep-th/0009242].

[30] M. Rangamani and S. F. Ross, “Winding tachyons in BTZ,” Phys. Rev. D 77 (2008) 026010

[arXiv:0706.0663 [hep-th]].

[31] E. J. Martinec and W. McElgin, “String theory on AdS orbifolds,” JHEP 0204 (2002) 029

[hep-th/0106171].

– 70 –



[32] L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, “The Conformal Field Theory of

Orbifolds,” Nucl. Phys. B 282 (1987) 13.

[33] J. Parsons and S. F. Ross, “Strings in extremal BTZ black holes,” JHEP 0904 (2009) 134

[arXiv:0901.3044 [hep-th]].

[34] S. B. Giddings, J. Polchinski and A. Strominger, “Four-dimensional black holes in string

theory,” Phys. Rev. D 48 (1993) 5784 [hep-th/9305083].

[35] M. Natsuume and Y. Satoh, “String theory on three-dimensional black holes,” Int. J. Mod.

Phys. A 13 (1998) 1229 [hep-th/9611041].

[36] S. Hemming, E. Keski-Vakkuri and P. Kraus, “Strings in the extended BTZ space-time,”

JHEP 0210 (2002) 006 [hep-th/0208003].

[37] J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and the SL(2,R) WZW model. Part 3.

Correlation functions,” Phys. Rev. D 65 (2002) 106006 [hep-th/0111180].

[38] J. Teschner, “On structure constants and fusion rules in the SL(2,C) / SU(2) WZNW

model,” Nucl. Phys. B 546 (1999) 390 [hep-th/9712256].

[39] T. G. Mertens, H. Verschelde and V. I. Zakharov, In preparation

[40] D. Kutasov and N. Seiberg, “Number of degrees of freedom, density of states and tachyons in

string theory and CFT,” Nucl. Phys. B 358 (1991) 600.

[41] A. Giveon and D. Kutasov, “Little string theory in a double scaling limit,” JHEP 9910

(1999) 034 [hep-th/9909110].

[42] O. Aharony, A. Giveon and D. Kutasov, “LSZ in LST,” Nucl. Phys. B 691 (2004) 3

[hep-th/0404016].

[43] D. Israel, C. Kounnas and M. P. Petropoulos, “Superstrings on NS5 backgrounds, deformed

AdS(3) and holography,” JHEP 0310 (2003) 028 [hep-th/0306053].

[44] D. Israel, C. Kounnas, A. Pakman and J. Troost, “The Partition function of the

supersymmetric two-dimensional black hole and little string theory,” JHEP 0406 (2004) 033

[hep-th/0403237].

[45] J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy exclusion principle,”

JHEP 9812 (1998) 005 [hep-th/9804085].

[46] K. Gawedzki, “Noncompact WZW conformal field theories,” In *Cargese 1991, Proceedings,

New symmetry principles in quantum field theory* 247-274 and Bures-sur-Yvette Inst. High

Sci. Stud. - IHES-P-91-73 (91/10) 31 p. (116407) [hep-th/9110076].

[47] K. Gawedzki and A. Kupiainen, “Coset Construction from Functional Integrals,” Nucl. Phys.

B 320 (1989) 625.

[48] J. Son, “String theory on AdS(3) / Z(N),” hep-th/0107131.

[49] R. Dijkgraaf, H. L. Verlinde and E. P. Verlinde, “String propagation in a black hole

geometry,” Nucl. Phys. B 371 (1992) 269.

[50] A. Dabholkar, “Strings on a cone and black hole entropy,” Nucl. Phys. B 439 (1995) 650

[hep-th/9408098].

[51] D. A. Lowe and A. Strominger, “Strings near a Rindler or black hole horizon,” Phys. Rev. D

51 (1995) 1793 [hep-th/9410215].

– 71 –



[52] L. Susskind and J. Uglum, “Black hole entropy in canonical quantum gravity and superstring

theory,” Phys. Rev. D 50 (1994) 2700 [hep-th/9401070].

[53] A. Maloney and E. Witten, “Quantum Gravity Partition Functions in Three Dimensions,”

JHEP 1002 (2010) 029 [arXiv:0712.0155 [hep-th]].

[54] K. H. O’Brien and C. I. Tan, “Modular Invariance of Thermopartition Function and Global

Phase Structure of Heterotic String,” Phys. Rev. D 36 (1987) 1184.

[55] A. Giveon and N. Itzhaki, “String theory at the tip of the cigar,” JHEP 1309 (2013) 079

[arXiv:1305.4799 [hep-th]].

[56] A. Giveon, N. Itzhaki and J. Troost, “Lessons on Black Holes from the Elliptic Genus,”

arXiv:1401.3104 [hep-th].

[57] A. Giveon and N. Itzhaki, “String Theory Versus Black Hole Complementarity,” JHEP 1212

(2012) 094 [arXiv:1208.3930 [hep-th]].

[58] S. Forste, “A Truly marginal deformation of SL(2, R) in a null direction,” Phys. Lett. B 338

(1994) 36 [hep-th/9407198].

[59] A. Giveon and E. Kiritsis, “Axial vector duality as a gauge symmetry and topology change

in string theory,” Nucl. Phys. B 411 (1994) 487 [hep-th/9303016].

[60] C. R. Nappi and E. Witten, “A WZW model based on a nonsemisimple group,” Phys. Rev.

Lett. 71 (1993) 3751 [hep-th/9310112].

[61] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal field theory,” New York, USA:

Springer (1997) 890 p

[62] D. B. Ray and I. M. Singer, “Analytic torsion for complex manifolds,” Annals Math. 98

(1973) 154.

[63] J. Teschner, “The Minisuperspace limit of the sl(2,C) / SU(2) WZNW model,” Nucl. Phys.

B 546 (1999) 369 [hep-th/9712258].

[64] A. Hanany, N. Prezas and J. Troost, “The Partition function of the two-dimensional black

hole conformal field theory,” JHEP 0204 (2002) 014 [hep-th/0202129].

[65] J. R. David, M. RGaberdiel and R. Gopakumar, “The Heat Kernel on AdS(3) and its

Applications,” JHEP 1004 (2010) 125 [arXiv:0911.5085 [hep-th]].

– 72 –


	1 Introduction
	2 Exact AdS3 WZW model
	2.1 Random walks in AdS3
	2.2 General analysis of ' corrections
	2.3 Thermal string spectrum from a SL(2,R) point of view
	2.4 Comments on the Euclidean SL(2,C)/SU(2) point of view
	2.5 Atick-Witten tachyon
	2.6 Type II Superstring in AdS3 space
	2.7 Summary

	3 Euclidean BTZ model
	3.1 Thermal tachyons
	3.2 Cylinder-winding tachyons
	3.3 Summary

	4 AdS3 orbifolds: conical spaces
	4.1 Thermal spectrum
	4.2 Numerical analysis
	4.3 A brief look back at the AdS3 string gas
	4.4 Dominant state
	4.5 Hagedorn temperature
	4.6 Summary

	5 The inclusion of a chemical potential for the AdS3 string gas
	5.1 Thermal spectrum
	5.2 Dominant state and critical Hagedorn thermodynamics
	5.3 BTZ with =0
	5.4 Summary

	6 The AdS3 field theory point of view
	6.1 Winding states from the field theory action
	6.2 Exact WZW analysis for non-winding states
	6.3 Thermal scalar action
	6.4 Flat space limit
	6.5 Random walk behavior in AdS3
	6.6 Cigar-winding states
	6.7 Summary

	7 Conclusions and outlook
	A SL(2,R) and SL(2,C)/SU(2) WZW models
	A.1 SL(2,R) model
	A.1.1 String background field from WZW action
	A.1.2 Currents, Ward identities and OPEs

	A.2 SL(2,C)/SU(2) model
	A.3 WZW currents as differential operators

	B Argument why the density of states does not influence the critical behavior
	C Hamiltonian description of thermal AdS3 and its orbifolds
	C.1 Flat space toy model to illustrate the strategy
	C.2 AdS3 Thermal partition function
	C.3 Angular orbifolds
	C.4 Interlude: analytic continuation of Poisson's summation formula
	C.5 Elaborate treatment
	C.6 Chemical potential


