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Abstract

During a storm in October 2002, wind induced ovalling vibrations were observed

on several empty silos of a closely spaced group (pitch-to-diameter ratio of 1.05)

consisting of 8 by 5 silos in the port of Antwerp (Belgium). Numerical simulations

of the turbulent wind flow are performed to clarify the occurrence of the observed

ovalling vibrations near the lee side corner of the group by studying the dynamic

wind pressures on the silo surfaces and linking to the dynamic properties of the silo

structures. As the orientation of the group largely affects the pressure distribution

around the cylinders of the group, the influence of the angle of incidence of the

wind flow on these ovalling vibrations is examined while other parameters, such as

spacing ratio and Reynolds number are unchanged. To achieve results within a rea-
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sonable computation time, 2D unsteady Reynolds averaged Navier-Stokes (URANS)

equations using Menter’s shear stress transport turbulence model were performed.

In order to elucidate the influence of the applied turbulence model and to qualita-

tively validate the spatial and temporal discretization of the 2D highly turbulent

post-critical (Re = 1.24 × 107) flow simulations for the silo group, single cylinder

simulations were used. The geometric resemblance of the group arrangement with

rectangular cylinders on the one hand and of the interstitial spaces with tube ar-

rays (e.g. heat exchangers) on the other hand is used to qualitatively compare the

observed flow phenomena. The simulations show that the silo group can be treated

neither as a tube array nor as a solid bluff body. Subsequent linking of dynamic

wind pressures to dynamic properties of the silo structures reveals strong narrow

band frequency peaks in the turbulent pressure coefficient spectra of the silos near

the lee side corners of the group that match the structural natural frequencies of

the third and fourth ovalling mode shape of the silos. This match indicates a forced,

resonant response which corresponds with the observed pattern of ovalling vibra-

tions with three and four circumferential wavelengths. While the precise physical

excitation mechanism is not yet fully understood, the simulations exclude discrete

vortex shedding and since fluidelastic instability could not be considered, only tur-

bulent buffeting remains which could very well give rise to the narrow band wake

phenomena causing the ovalling silo wall vibrations.
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1 Introduction

Circular cylinders are encountered in numerous civil engineering constructions

as silos, chimneys, water towers, power transmission lines, offshore structures

and suspension bridge cables. Wind loading is an important design load for

these structures since transient wind loads may induce unexpected instabili-

ties, possibly leading to structural failure. During a storm in October 2002,

ovalling was observed on several empty silos near the lee side corner of a

group consisting of forty silos in the port of Antwerp (Belgium). Wind induced

ovalling vibrations are an aeroelastic phenomenon where the cross section of

the structure deforms as a shell without bending deformation with respect

to the longitudinal axis of symmetry (Päıdoussis et al., 1982). Hence, empty

silos are more susceptible to ovalling while shell deformations of filled silos are

suppressed.

Basic time averaged wind load cases as described in standards, e.g. Eurocode

1 - Part 1.4 (BIN, 2005), are unable to explain the mentioned transient aeroe-

lastic silo vibrations. A more realistic estimation of the forces and pressure

distributions on the silo group is required, especially since the specific group

arrangement drastically changes the fluid flow around the group. Computa-

tional fluid dynamics (CFD) is an interesting alternative to more expensive

wind tunnel tests or in situ experiments to get a thorough understanding of

the fluid flow around such groups.

In the present paper, numerical simulations of the turbulent wind flow, mod-

elled as incompressible (low Mach number) flow, are performed to clarify the

occurrence of the observed ovalling vibrations at the lee side corner silos of
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the group. By studying the dynamic wind pressures on the silo surfaces and

linking them to the dynamic properties of the silo structures, it is investigated

if ovalling vibrations can be excited in the silo group. No feedback of struc-

tural displacements to the fluid flow is included. The influence of the angle of

incidence α of the wind flow on these ovalling vibrations is examined. Other

parameters such as the spacing ratio and the Reynolds number are unchanged.

The outline of this paper is as follows. Details on the observed ovalling vibra-

tions and the structural properties of the silo group are discussed in the next

section. The applied computational model and assumptions are discussed in

the third section. The choice of a particular numerical method is very impor-

tant in CFD simulations and is therefore carefully explained. For validation

of the applied numerical procedure, the less complex and better documented

case of two-dimensional flow around a single silo in the post-critical regime is

considered. The results are compared with recommendations from standards,

experimental data and the few numerical results of both two-dimensional (2D)

and three-dimensional (3D) simulations available in literature. In the fourth

section, the complex flow around the silo group is analysed. The flow is cal-

culated for a range of angles of incidence α of the wind flow between 0◦ and

90◦. Similarities between the present wind flow, the flow within tube arrays

(e.g. heat exchangers) and the flow around rectangular cylinders are discussed.

Finally, the fluctuating pressure distributions on the silos are examined and

linked to the dynamic properties of the silos in order to elucidate the influ-

ence of the angle of incidence on the magnitude and location of the observed

ovalling vibrations.
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2 Observations and structural properties of the silo group

The forty silos are placed in five rows of eight silos with gaps of 0.3m between

two neighbouring silos (figures 1 and 2). The silos are circular cylindrical shell

structures with a diameter D = 5.5m and a height h = 25m while the bottom

of the silos is located at 16.66m above ground level (Dooms et al., 2006). The

spacing ratio of the pitch P (i.e. distance between the centres of two cylinders)

to the cylinder diameter D is P/D = 1.05.

[Fig. 1 about here.]

[Fig. 2 about here.]

The ovalling mode shapes and eigenfrequencies of a separate silo have been

determined. Each ovalling mode shape is referred to by a couple (m,n) where

m denotes the half wave number in the axial direction and n is the number

of circumferential waves (Dooms et al., 2006), as clarified in figure 3. Only

the mode shapes corresponding to the lowest eigenfrequencies feig are shown.

Higher eigenmodes would require more energy and are less easily excited.

[Fig. 3 about here.]

During the storm in October 2002, ovalling was observed on several silos near

the lee side corner of the silo group (i.e. silo 40 and neighbouring silos 24,

32, 38, 39, etc.). The global wind direction at the time of ovalling was at an

angle of incidence of approximately α = 30◦. The visually detected pattern of

oscillations seems to have excited ovalling mode shapes (1, 3) and (1, 4). During

normal wind loading, measurements have furthermore shown that eigenmodes

with n = 3 or n = 4 have the highest contribution to the response of the silos
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(Dooms et al., 2006).

Because the specific atmospheric conditions during the storm near the silo

group were not monitored, approximative wind conditions have to be set up.

The location of the silo group, in proximity of the river Scheldt and in vast

and flat surroundings, is classified in terrain category II of Eurocode 1 (BIN,

2005). Based on this standard, a mean wind velocity v∞ = 31.8m/s at half the

height of the silo, at 30m above ground level is found. The highly turbulent

regime of the flow around the group of silos is hence post-critical at Reynolds

number Re = v∞D/ν = 1.24 × 107 (Zdravkovich, 1997). No experimental or

numerical data applicable to this case are available in the literature because

of the specific character of the array with such a small spacing ratio and the

present high Reynolds number.

3 Computational model

The simulation of highly turbulent flows around complex geometries is a chal-

lenging task, requiring simplifications in the computational model. In order

to verify the accuracy and to validate the applied numerical procedure, the

case of a single cylinder in cross flow is also calculated. This approach, known

as the Building Block Approach and introduced by the AIAA (Versteeg and

Malalasekara, 2007), allows the proposed computational model to be validated

for the case of a simpler system for which experimental data are available. The

lack of experimental data for the 8 by 5 silo group makes this approach partic-

ularly interesting. The same numerical procedure and mesh design is applied

for both the single cylinder and the cylinder group simulations.
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3.1 Numerical procedure

The finite volume method is used for the discretization of the incompressible

Navier-Stokes equations in the CFD simulations. Since it is unnecessary for

engineering purposes to resolve the details of turbulent fluctuations in the flow,

techniques have been developed for the numerical treatment of turbulence, e.g.

the Reynolds averaged Navier-Stokes (RANS) procedure, large eddy simula-

tions (LES), detached eddy simulations (DES) or direct numerical simulation

(DNS). The choice of a particular technique depends on the complex geometry,

the highly turbulent character of the flow and the computation time. While

the time required for RANS computations is modest, it is well known that

conventional LES is extremely expensive at high Reynolds numbers since the

small but dynamically important near-wall flow structures have to be solved

numerically (Catalano et al., 2003). It is also important to assess whether

the chosen solution method is capable of solving the specific fluid problem.

Moulinec et al. (2004) for example warn that some phenomena present in

complex flows around tube bundles cannot be predicted by RANS models

while Ong et al. (2009) concluded that RANS gives satisfactory qualitative

agreement with published experimental data and numerical results for the

flow around a smooth circular cylinder at very high Reynolds numbers. When

applying the unsteady Reynolds averaged Navier-Stokes (URANS) approach

in the present simulations, physical validation of the results will therefore have

to be carefully executed.

In order to compute the flow phenomena leading to ovalling vibrations in the

silo group within a reasonable time, a 2D cross section of the silo group will

be considered. Although the flow around the entire silo group and its wake
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is clearly 3D, the flow will be much more 2D on the smaller scales around

the separate closely spaced silos at the lee side of the group. Moreover, 3D

flow simulations over complex bodies remain computationally very expensive

and are therefore limited to moderate Reynolds numbers while 2D simulations

are quite feasible, even for complex geometries and relatively high Reynolds

numbers.

In the general RANS procedure, the Navier-Stokes equations (continuity and

momentum equations) are modified through the procedure of Reynolds av-

eraging. The velocity field is split into an averaged and a fluctuating part

and two new variables are introduced in the equations: the turbulent kinetic

energy k and the kinematic turbulent viscosity νt that is often rewritten as

the turbulent dissipation ε or the specific dissipation rate ω. Two additional

transport equations, for either k and ε or k and ω, are added to the set of

governing equations. Menter (1994) suggests a hybrid shear-stress transport

(SST) turbulence model, blending the robust and accurate formulation of the

k − ω model in the near-wall region with the free stream independence of the

k− ε model in the far field, making it reliable for a wider class of flows. Since

the present study is primarily concerned with determining dynamic pressure

loads on the silo walls, this SST model will be used because of its efficient

near-wall modelling.

To solve the resulting discretized set of equations, a second order interpola-

tion of the pressure, a second order upwind interpolation of the momentum,

the turbulent kinetic energy k and the specific dissipation rate ω are applied,

while a second order implicit, unconditionally stable, time stepping method

is used. A coupled pressure-based calculation is performed to deal with the

pressure-velocity coupling between the momentum and the continuity equa-
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tions. Unlike segregated algorithms such as PISO (Issa, 1986) or SIMPLE

(Patankar and Spalding, 1972), the pressure-based coupled algorithm solves a

coupled system of equations consisting of the momentum equations and the

pressure based continuity equation, improving significantly the rate of conver-

gence. The iterative calculation process for the transient solution is truncated

when the normalized residuals for the continuity equation, the momentum

equations, the turbulent kinetic energy and the specific dissipation rate reach

a level below 10−5.

The software package Fluent 12.0 (Ansys, 2009) is used for the simulations.

The following paragraphs show, through verification and validation, that the

use of this commercial software package yields acceptable results for this study.

3.2 Computational domain and boundary conditions

The boundaries of the fluid domain should be sufficiently far from the near-

wall region where accuracy is important. For the flow around a single cylinder,

Behr et al. (1995) suggest a distance of at least 8D to the inlet of the domain

and the lateral boundaries and a distance of 22.5D to the outlet, with D the

diameter of the cylinder. Holloway et al. (2004) use similar distances to the

boundaries of the domain. As shown in figure 4, distances of 9D and 30D

are adopted for the single cylinder case and, equivalently, 9Dg and 30Dg for

the group configuration, where Dg represents the projected width of the silo

group (figure 2). The group is rotated in the flow to simulate different angles

of incidence.

[Fig. 4 about here.]
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For the spatial discretization, the computational domain is divided in three

zones, as shown in figure 4 for the single cylinder case. Zone 1 is located

close to the rigid body, where a highly refined body-fitted grid arrangement is

applied to calculate the near-wall behaviour with sufficient accuracy. In zone

2, located in the wake of the rigid body, the refinement of the non-orthogonal

grid gradually decreases towards the outlet of the domain. In zone 3, the

remainder of the domain, the refinement of the triangular unstructured grid

gradually decreases from the center of the domain towards the boundaries.

The size of the created finite volume cells depends on the required accuracy.

Details on mesh refinement are given in paragraph 3.3.

In the computations, the air density is ρ = 1.25 kg/m3 and its dynamic viscos-

ity is µ = 1.76 × 10−5 Pa s. At the inlet boundary, defined as a velocity inlet

with imposed free stream velocity v∞ = 31.8m/s, the turbulent energy k and

specific dissipation rate ω have to be defined. A turbulence intensity Tu = 1%

is assumed so that k = 3(v∞Tu)2/2 = 0.152 J/kg at the inlet. The turbulence

length scale l is chosen as a percentage of a characteristic dimension of the

problem (Sak et al., 2007), e.g. l = 0.06Dg = 1.8m for α = 0◦, and hence

a dissipation rate ω = C−1/4
µ

√
k/l = 0.395 s−1 is imposed at the inlet with

Cµ = 0.09 a k − ε model constant. Since Menter’s SST turbulence model is

based on a blend of the original k−ω model in the inner region of the bound-

ary layer and the standard k− ε model in the outer region of the flow domain,

it is reasoned that for the determination of the boundary conditions at the far

ends of the domain the application of this k − ε model constant is justified.

The applied inlet turbulence intensity is reasonably low when compared to val-

ues up to 20% on the earth surface while much larger (integral) length scales

are found in the atmospheric boundary layer as well (ESDU, 1985). However,
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while large turbulence length scales should be resolved in the simulations, they

are not in URANS simulations where turbulence models are used. Imposing

higher turbulence intensities associated with large length scales would result

in excessive turbulence viscosity of the flow and yield unphysical results. In

this study, large turbulence length scales in the atmospheric boundary layer

are therefore not considered and a length scale based on the considered geom-

etry is used. The use of these lower turbulence levels is justified in paragraph

4.1 where the effect of turbulence at the inlet of the domain is illustrated.

The outlet boundary of the domain is modelled as a pressure outlet where the

static pressure is set equal to the reference pressure. At the lateral boundaries

symmetry is imposed. The cylinder walls are considered smooth and no-slip

boundary conditions are applied.

3.3 Spatial and temporal grid refinement

For transient simulations, the governing equations must be discretized in both

space and time. The verification of convergence and grid independence is per-

formed for the single cylinder case.

Spatial grid independence is studied by changing the mesh size in the three

zones of the computational grid. In all three zones, the optimal grid size was

chosen after several stages of grid refinement. The near-wall treatment at

the solid cylinder walls is examined by changing the aspect ratio (AR) of

the first grid cell next to the wall. Grid refinement in this region affects the

dimensionless distance to the wall y+ = vτy/ν and the dimensionless velocity

v+ = v/vτ , with vτ =
√

τw/ρ, y the distance to the wall and τw the wall shear

stress. Indeed, when the mesh size is small enough and the wall-adjacent cell
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is located in the viscous sublayer (y+ < 5), the velocity v+ varies linearly

with y+ and the sublayer is explicitly computed with this linear (laminar)

law. For larger mesh sizes, when the wall-adjacent cell is located in the range

50 < y+ < 500, the well known logarithmic wall functions are used to model

the near-wall behaviour of the fluid flow:

v+ =
1

κ
ln y+ +B, (1)

with κ = 0.41 the von Kármán constant and B = 5.2. When the wall-adjacent

cell is located in the buffer layer (range 5 < y+ < 50) the logarithmic wall

functions do not apply anymore, nor is it accurate to use the linear (laminar)

law. As a result, simulations where the first grid cell is located in the buffer

layer are known to yield inaccurate results and should therefore be avoided.

In figure 5 several levels of refinement of the single cylinder mesh are com-

pared and the different near-wall approaches can be clearly discerned. In the

computationally most expensive case with y+max = 4, the entire boundary layer

is numerically resolved. In all other simulations, near-wall behaviour is sim-

ulated with logarithmic wall functions, significantly reducing the number of

cells and computational time. For four mesh resolutions, the use of the log law

is justified (y+max = 97, 130, 196 and 375) and convergence is observed. Similar

results are found as for the more expensive simulation with y+max = 4. In the

other cases (y+max = 17, 25 and 49), the wall-adjacent cell is located mainly

in the buffer layer, where the logarithmic wall functions are less accurate and

diverging results can be observed in figure 5.

[Fig. 5 about here.]

To minimize computational time and yet retain sound simulation results, the
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mesh with AR = 50 and y+max = 97 will be applied for all simulations, as shown

in figure 6. Since we are mainly interested in determining fluctuating pressures

on the cylinder walls, it is most important that amplitude and frequency

of time dependent properties (e.g. of drag or lift coefficient) are accurately

computed. Comparison of the present mesh (y+max = 97) with the highly refined

mesh (y+max = 4) yields negligible differences: 1.2% for the amplitude of drag,

5.2% for the amplitude of lift and 4.2% for the frequency of both drag and

lift.

[Fig. 6 about here.]

Figure 7 shows the maximal lift coefficient for multiple time step reductions

for the mesh with AR = 50 and y+max = 97. It can be seen that convergence is

reached for a time step of approximately 0.00125 s. The computational efforts

can be drastically reduced when a slightly larger time step ∆t = 0.005 s is

used. The relevant physical phenomena will prevail in simulations with this

time step, as will be illustrated when validating the simulation results.

[Fig. 7 about here.]

3.4 Validation of simulation results

The flow around a circular cylinder has been widely studied, mainly focus-

ing on the vortex shedding in the sub-critical regime and the drag crisis in

the critical regime. At post-critical Reynolds numbers, the wake and shear

layer are fully turbulent, the boundary layers become fully turbulent prior to

separation and coherent vortex shedding appears. Very few experiments or

computations have been performed for the cross flow around a cylinder in the
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post-critical regime. A short overview of data available for the validation of

the single cylinder simulation results is given.

The pressure coefficient Cp(θ, t) along the circumference of a cylinder at a

certain time t is defined as

Cp(θ, t) =
p(θ, t)− p∞

ρv2
∞
/2

, (2)

with p∞ the free stream pressure and v∞ the free stream velocity of the fluid.

The time averaged pressure coefficient Cp(θ) is calculated as:

Cp(θ) =
1

Tvs

Tvs
∫

t=0

Cp(θ, t)dt, (3)

with Tvs a vortex shedding period. In table 1, typical flow characteristics

are compared for the present simulations and for experiments and simula-

tions from the literature: the Reynolds number Re, the Strouhal number

St = fvsL/v∞ with fvs the vortex shedding frequency and L the characteristic

length, equal to the diameter D of the cylinder, the separation angle θs (figure

8), the minimum time averaged pressure coefficient C
min

p (figure 8), the time

averaged base pressure coefficient C
b

p (figure 8) and the time averaged drag co-

efficient Cd =
∫ 2π
0 Cp(θ)cos θ dθ. For the present simulation at Re = 1.24×107,

the time averaged pressure coefficient is shown in figure 8 with θs = 116◦ and

St = 0.32.

[Fig. 8 about here.]

Experimental data for high Reynolds number flows around circular cylinders

are only scarsely available in literature, e.g. James et al. (1980), Schewe (1983),

Shih et al. (1993) and Zan (2008). In an elaborate overview of wind tunnel
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experiments for Reynolds numbers from 0.73× 107 to 3.65× 107, gathered by

Zdravkovich (1997) (see figure 9), separation occurs between θ = 100◦ and

110◦ and Strouhal numbers are between St = 0.27 and 0.32 (see table 1).

For Reynolds numbers larger than 0.5× 107, smooth flow data of Zan (2008)

indicate that the Strouhal number remains at 0.2, whereas Schewe (1983)

indicates that it rises to about 0.3 as the Reynolds number approaches a value

of 107, consistent with the tendency of the Strouhal number to rise from 0.2

to 0.3 in the range of Reynolds numbers between 106 and 107 (Zdravkovich,

1997). Zan (2008) explains that these differences may be due to a different

length-diameter ratio of the model: a larger Reynolds number on a low length-

diameter ratio model would give rise to an increased Strouhal number. Indeed,

James et al. (1980) reported St = 0.22 for a model with a length-diameter ratio

lower than 5, while Schewe (1983) found St ≈ 0.27 for ratios larger than 10.

The situation is even more complex when the freestream turbulent flow is

considered: Zan (2008) reports vortex shedding with St ≈ 0.25 independent of

the Reynolds number in a flow with 13% turbulence intensity. The considerable

scatter in the experimental data can therefore not only be explained by the

difference in Reynolds number, but is also due to free stream turbulence and

length-diameter ratio of the model. Furthermore, other differences such as

the roughness of the cylinder walls and blocking ratio (i.e. the ratio of the

model area to the test section area), which have not been discussed here, also

influence the results of wind and water tunnel tests.

Several 2D URANS simulations have been reported in the literature for highly

turbulent cross flows around circular cylinders, listed in table 1. Celik and

Shaffer (1995) used URANS with an empirically fixed transition point to

compute the flow for Reynolds numbers up to 3.6 × 106. The predictions are
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strongly influenced by the grid size, especially in the boundary layer. The

best results are obtained when the wall-adjacent cell is located in the vis-

cous sublayer. Holloway et al. (2004) applied URANS simulations for flows

with increasing Reynolds numbers up to 107, showing that these are capa-

ble to correctly predict the boundary layer transitions from laminar to fully

turbulent. Saghafian et al. (2003) compared flow computations with the stan-

dard k− ε model and a nonlinear eddy-viscosity model where cubic terms are

introduced to account for effects of streamline curvature. Younis and Przulj

(2006) modified the k − ε model by adding a source term in the dissipation

rate equation to account for the direct energy input from the mean flow into

the random turbulence motions at the vortex shedding frequency. Compari-

son with the RNG k− ε model showed that the pressure coefficient along the

circumference at Reynolds number 3.5× 106 significantly decreases down to a

value between 150◦ and 180◦.

Travin et al. (2000) applied 3D DES for Reynolds numbers up to 3 × 106.

For turbulent separation cases, the results of 2D URANS computations are

very close to the results of 3D DES. Adding a curvature correction term to

the turbulence model improves the estimate of the separation angle, the base

pressure and the drag coefficient. Catalano et al. (2003) used 3D LES with

the dynamic Smagorinsky model to compute the flow for Reynolds numbers

up to 2 × 106 and compared it with 3D URANS results. The solutions of

both LES and URANS show relative insensitivity to the Reynolds number

and inaccurate predictions at higher Reynolds numbers which are probably

due to poor grid resolution.

[Table 1 about here.]
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All experimental and numerical data from literature, listed in table 1, show

considerable scatter due to differences in Reynolds number, applied turbulence

model, etc. The separation angle θs is slightly overestimated in 2D numerical

simulations in literature as well as in the present simulations and, probably

as a result of this, the minimum averaged pressure coefficient C
min

p on the

cylinder circumference is overestimated as well. However, the main interest in

this paper is to estimate fluctuating quantities reasonably well by numerical

simulation (e.g. St, pressure fluctuations on cylinder walls). It can therefore be

concluded that reasonable agreement is found between the present simulations

(St = 0.32) and data from literature (table 1). Figure 9 shows that fluctuations

between minimal and maximal pressure coefficients on the circumference of

the cylinder (y+ = 97)agree reasonably well with the experimental data gath-

ered by Zdravkovich (1997) and Shih et al. (1993). Although it is difficult to

compare all parameters, it is concluded that, for the present purposes, satis-

factory agreement is found between the present calculations at Re = 1.24×107

and available data.

[Fig. 9 about here.]

4 Turbulent air flow around the 8 by 5 cylinder group

The turbulent air flow around the 8 by 5 silo group is simulated for 7 angles of

incidence between 0◦ and 90◦ in steps of 15◦. In order to clarify the ovalling vi-

brations at the lee side corner silos of the group, a distinction is made between

vibrations related to the periodicity of the flow within the array and vibra-

tions caused by the large vortex structures behind the entire cylinder bundle.

Therefore, both the flow pattern around the cylinder group and the flow in the
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interstitial spaces between the cylinders are discussed separately. The former

is based upon the literature on fluid flows around rectangular cylinders and

the latter on fluid flow through tube bundles (e.g. in heat exchangers).

4.1 Computational domain and boundary conditions

The computational domain and grid are built up similarly to the single cylinder

numerical model. Since the separation structures in the wake of the group

configuration will be larger, it is expected that the time step (∆t = 0.005s) and

mesh size (AR = 50 and y+max = 102 for the silo group) as used for the single

cylinder will yield sufficiently accurate results for the entire group. Simulations

have been performed for an incidence angle α = 30◦ to verify this assumption.

As expected, it was found that a smaller time step ∆t = 0.00125s does not

significantly change the results. Changing the aspect ratio in the near-wall

region inevitably changes the modelling of the boundary layer (log-law wall

functions vs. modelling of viscous sublayer). It was found that modelling wall

functions for y+max = 102 yields good results when compared to simulations

with very low y+ where the viscous sublayer is resolved. The wall function

approach is not only much less time consuming, but also more reliable because

a mesh sufficiently refined in the near-wall region to resolve the entire viscous

sublayer is not easily generated for the entire group. The mesh for an angle of

incidence α = 30◦ with y+max = 102 is shown in figure 10.

[Fig. 10 about here.]

The same boundary conditions as for the single cylinder simulations have been

applied for the group simulations. As mentioned in paragraph 3.2, the effect of
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turbulence intensity at the velocity inlet of the domain has been investigated

for an incidence angle α = 30◦. When turbulence intensities associated with

large turbulence length scales as high as Tu = 10% are imposed, turbulence

viscosity increases. The incident flow acts as a much more viscous fluid in the

numerical simulations, altering for instance corner silo drag and lift, as shown

in figures 11 and 12. As expected, changing the inlet turbulence intensity from

Tu = 1% to Tu = 0.1% does not affect the results significantly.

[Fig. 11 about here.]

[Fig. 12 about here.]

4.2 Flow around the cylinder group

The flow pattern around the 8 by 5 silo group was calculated for 7 angles of

incidence (0◦ ≤ α ≤ 90◦). The velocity streamlines and vorticity contours for

α = 30◦ are shown in figure 13 at four time steps of approximately one vortex

shedding period (Tvs = 5.85 s for α = 30◦). At the top and bottom cylinder

of the group (cylinders 33 and 8 in figure 13), shear layers are shed from the

group while mass flow calculations indicate that about 10% of the incident

flow is forced through the group. This amount was determined by comparing

the incident mass flow at the inlet of the domain ṁin (figure 14) with the mass

flow deflected around the group ṁdef . The latter is calculated as the mass flow

passing through virtual lines drawn orthogonal to the inlet of the domain

and tangent to the outermost cylinders of the group (e.g. silos 8 and 33 for

α = 30◦), as shown in figure 14. The flow in the interstitial spaces emerges

at the lee side of the group and will be discussed in detail in paragraph 4.3.
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These emerging flows join up and form several local recirculation structures

in the wake, that coalesce as they are carried downstream, eventually creating

a single large scale vortex street in the wake of the entire group. Similarly as

for the single cylinder case, the periodicity in this vortex street is depicted by

the Strouhal number, summarized in table 2 for all angles of incidence and

calculated with the characteristic length L = Dg. The formation of large scale

recirculation zones, made up from shedding vortices of separate cylinders, is

also found in tube bundles.

[Fig. 13 about here.]

[Fig. 14 about here.]

[Table 2 about here.]

Figure 15 shows the instantaneous flow pattern for different angles of inci-

dence. For smaller angles of incidence (α = 0◦ and 15◦, figures 15a and 15b),

the emerging interstitial flows on the upper side of the group (cylinders 33 to

40) are joined up and dragged downstream without forming local recirculation

zones, due to the proximity of the separated shear layer. In a similar way, no

recirculation zones can be formed on the lower side of the group (cylinders 8,

16, 24, 32 and 40) for the higher angles of incidence (α = 75◦ and 90◦, figures

15e and 15f). For intermediate angles of incidence (α = 30◦ to 60◦, figures

15c and 15d), the free space between the shear layer and the cylinder group is

larger and local recirculation zones can be formed on both downstream sides

of the group, as explained for α = 30◦.

[Fig. 15 about here.]
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The asymmetry in the number of local recirculation zones formed on the down-

stream sides of the group is related to the angle of incidence α and the side

ratio L/B = 1.6 of the group and results in asymmetry in the vortex street

in the wake of the group, as shown in figure 16. It should be mentioned that

in the present 2D simulations, the vortex street is artificially preserved, while

in 3D simulations and experiments, the vortex street would break up more

quickly. This flaw in the 2D simulation results does not influence the expla-

nation of the ovalling vibrations of the silos, since these vibrations are not

induced by vortex shedding around the group as a whole, as will be discussed

further on.

[Fig. 16 about here.]

The flow pattern around the cylinder group is clearly affected by the geometry

of the group arrangement. Kareem et al. (1998) found a similar behaviour

for two closely spaced cylinders in tandem arrangement: the separated shear

layers interact and roll up to form one large vortex, approaching the behaviour

of a single bluff body. It would therefore be interesting to compare the flow

around the silo group with the flow around bluff body rectangular cylinders

at the same Reynolds number. However, no experiments are available in the

literature for the flow around a rectangular cylinder at high Reynolds numbers

Re ≈ 107. The result of an experiment of Knisely (1990) on a rectangular

cylinder (L/B = 1.67) for different angles of incidence (0◦ < α < 90◦) at

1.2× 104 ≤ Re ≤ 2.4× 104 is compared with the present simulation results in

figure 17.

[Fig. 17 about here.]
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Apart from a slightly different side ratio for the present simulations (L/B =

1.6), significantly lower Strouhal numbers in the experiments of Knisely (1990)

are mainly due to the large difference in Reynolds number. Although compar-

ison of both data sets might be futile, two interesting discrepancies should be

mentioned. First, data on the effects of rounded corners of the rectangular

cylinders are somewhat limited and scattered but the general tendency for

the Strouhal number is to increase with increasing rounding radius (Knisely,

1990). Second, the most pronounced difference between a bluff rectangular

cylinder and the present cylinder group is the permeability of the latter. For

a rectangular cylinder, a sudden fall in the Strouhal number is observed for

very small or high angles of incidence and is interpreted as an indicator of

the reattachment of the separated shear layer (Knisely, 1990). For the perme-

able cylinder group, the emerging interstitial flows at the lee side of the group

prevent the shear layer from reattaching, explaining the absence of a sharp

decrease in Strouhal number for very small or high angles of incidence. The

decrease of the Strouhal number for intermediate angles of incidence (α = 30◦

to 60◦) in the present simulations is due to the lower vortex shedding fre-

quency for these angles. When the projected width of the cylinder group (Dg)

is increased, the distance between the free shear layers increases, resulting in

larger shedded vortices and reduced shedding frequencies.

4.3 Flow in the interstitial spaces of the cylinder group

Until now, the flow pattern around the cylinder group as a whole has been

discussed without consideration of the flow in the interstitial spaces between

the cylinders. The internal part of the cylinder group resembles the geometry
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of tube bundles (e.g. heat exchangers) but the physical behaviour of the flow

within the interstitial spaces of the silo group is fundamentally different. Two

simple but important explanations can be given. Firstly, in tube bundles, the

entire fluid flow is forced through the group to maximize the exchange of

heat while, in the case of the cylinder group, the major part of the fluid flow

is deflected around the group and approximately only 10% of the fluid flow

passes through the interstitial spaces. Secondly, the pitch between cylinders is

generally much larger in tube bundles than in this closely spaced silo group.

Nevertheless, a short account of the differences and similarities is given in the

following.

Tube arrays are typically divided in two categories (Zdravkovich, 2003): the in-

line category where cylinders are arranged in square or rectangle arrays and

the interstitial flow is typically straight through the array gaps (Zukauskas

et al., 1988) and the staggered category where cylinders are arranged in ro-

tated square or triangle arrays and the flow is forced along wavy paths. For the

latter, the near-wakes are cusped in shape, narrowed in width, and connected

to enlarged stagnation regions on the upstream side of the tubes. Depending

on the angle of incidence, the present silo group could be classified in either

category based on geometry: the in-line, square configuration applies to the

cases with α = 0◦ and 90◦ while for all other angles of incidence the stag-

gered, rotated square arrangement would be applicable. However, only a few

similarities in the interstital flow patterns, shown in figure 18, are found. The

straight flow patterns for α = 0◦ (figure 18a) and 90◦ are not detected. For

in-line tube bundles, the presence of the subsequent row prevents the tran-

sitional eddies to form and roll-up and the eddies are carried away between

the tubes by the jet-like interstitial flow. If the bodies are too closely packed,
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these eddies partially or completely disappear in the distorted flow (Hunt and

Eames, 2002). Instead, the interstitial flow is not separated from the cylinder

wall and follows a wavy path through the array, deflecting the flow up- and

downward to the sides of the group. This path emerges in the upper or lower

shear layer flow respectively and corresponds to the shortest path from the

high pressures at the upstream side of the group to the lower pressures at the

lee side of the group. For other angles of incidence, the interstitial flow resem-

bles the wavy interstitial flow pattern of staggered tube bundles (Zdravkovich,

2003). For α = 30◦ (figure 18c), a regular wavy pattern between the cylinders

with small eddies in the interstitial spaces is observed. For α = 15◦ (figure

18b), such regular wavy pattern is not observed at some points in the array:

the interstitial flow separates from the surface of the cylinder and reattaches

before leaving the same interstitial space. For α = 60◦ (figure 18d), this effect

is even more pronounced and the separating interstitial flows result in local

vortex shedding in the interstitial spaces at arbitrary points in the array. The

higher frequency peaks for these particular angles of incidence are odd and are

due to a fluctuating separation point on the cylinder surface at these locations

in the group.

[Fig. 18 about here.]

The presence of these small recirculation zones and vortex shedding patterns

may be directly related to the 2D character of the simulations. Mittal and

Balachandar (1995) mention simultaneous 2D and 3D simulations of the flow

past circular cylinders for a large range of Reynolds numbers (20 < Re < 106),

concluding that some secondary vortices in 2D simulations are absent in 3D

simulations where spanwise velocities are allowed. However, flow visualization

for tube bundles revealed the formation of eddies and possibly vortex shedding

24



in the interstitial spaces of tube arrays as well (Zdravkovich, 2003; Price et al.,

1995).

The variation of local velocities in the interstitial flow is closely related to the

dissipation and generation of turbulence in the array. In several experiments

on tube arrays (Zdravkovich, 2003; Moulinec et al., 2004), a quick decrease of

ambient turbulence intensity after the first row was observed (order of magni-

tude 20% intensity reduced to 2%) while turbulence was built up in subsequent

rows of the array until the rate of turbulence generation is balanced by the

turbulence dissipation (Zdravkovich, 2003). Experiments have also shown that

the tighter a bundle gets, the more rapidly the interstitial flow becomes tur-

bulized and a zone where the flow stabilizes extends to the last row of the

array (Zukauskas et al., 1988). Contour lines of the instantaneous turbulence

intensity for the present closely packed group of cylinders (figure 19) show sim-

ilar behaviour with a swift introduction of large turbulence intensities (mean

turbulence intensity values as high as 15 to 20%) after the first row of cylin-

ders at the upper and lower edges of the rectangular array, where the array is

‘shortest’ for the flow to pass.

[Fig. 19 about here.]

For all angles of incidence α, multiple peaks in the frequency spectrum of the

pressure are observed through the array as shown in figure 20 for four arbitrary

points in and around the cylinder group (points A, B, C and D in figure 2). It

can be seen that the frequency spectrum of the interstitial flow is more or less

independent of the location. For each angle of incidence, the lowest peak in

the spectrum is identified with the Strouhal frequency (table 2). The higher

frequency peaks are multiples of the Strouhal frequency; for α = 0◦ (figure
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20a) and 90◦ the first two peaks are dominant, while for all other angles (e.g.

α = 30◦, figure 20c), only the first peak is clearly pronounced. Note that at the

lee side of the group, no higher frequency peaks are observed (e.g. in point D)

since no small vortex shedding exists in separate wakes of these cylinders. For

two angles of incidence, higher frequency peaks are found as well: for α = 15◦

(figure 20b) small peaks are distinguished at 6Hz but, more significantly, for

α = 60◦ (figure 20d) important frequency peaks are detected at 2Hz. These

frequency peaks are explained by the deviations of the regular wavy pattern

for these angles of incidence (figures 18b and 18d).

[Fig. 20 about here.]

Experiments by Polak and Weaver (1995) have shown that, as flow develops

in the interstitial spaces of tube bundles, local flow velocity changes in every

row and triggers vortex shedding at discrete, row dependent frequencies. A

few tube rows downstream the flow stabilizes, turbulence reaches a maximum

and measured results become row independent. This was for example found in

experiments by Price et al. (1987) where up to three frequency peaks, inter-

related with ratios 1:2:3, could be identified in the upstream rows of a staggered

tube array while only one frequency peak remained in the downstream rows.

Experiments by Weaver et al. (1993) yield similar results with two narrow

band peaks at 3.7Hz and 5.8Hz until the third row of a staggered tube array

and only the lower frequency peak persisting in subsequent rows. In small

pitch ratio tube bundles, these flow fluctuations become rapidly distorted and

diffused and coherent vortical structures cannot be detected as deeply into

the array (Polak and Weaver, 1995). Hence, in the present simulations of the

closely spaced silo group, different frequencies are expected depending on local

flow conditions and geometry. This is demonstrated by the different narrow
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band frequency spectra of the present data with flow orientation (figure 20).

However, the narrow band frequency spectra do not vary significantly with

progress through the array, although the point furthest downstream (point D,

figure 20) does show magnitude differences with the upstream perturbations

(points A, B and C).

4.4 Dynamic wind pressure loads on the cylinder surfaces of the group

To clarify the cause of the observed ovalling oscillations at the lee side cor-

ner silos of the present silo group, pressure distributions on the walls of the

cylinders are considered. For design purposes, both time averaged pressures

and fluctuating pressures should be considered, the first as an indication for

the static deflection and the latter for the dynamic excitation of the silos.

Since static, time averaged pressures are uncapable of triggering oscillations,

only the dynamic, fluctuating wind pressures on the silo surfaces should be

examined to clarify the observed ovalling vibrations in the 8 by 5 silo group.

Fluctuating pressure coefficients along the circumference of a cylinder and at

each time step are determined as follows:

C
′

p(θ, t) = Cp(θ, t)− Cp(θ). (4)

The fluctuating pressure coefficient C
′

p(θ, t) is harmonically decomposed at

every time step t into a series of cosine functions with circumferential wave-

number n, corresponding to the mode shapes of the axisymmetric structure:

C
′

p(θ, t) =
∞
∑

n=0

C
′n
p (t)cos(nθ + φn). (5)
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To assess the dynamic response of the cylinders, the time history of the ampli-

tudes C
′n
p (t) is subsequently transformed to the frequency domain by means

of a FFT algorithm, yielding C
′n
p (f). Wavenumber-frequency spectra of these

amplitudes C
′n
p (f) for an angle of incidence α = 30◦ are shown for all cylinders

of the group in figure 21.In these spectra, the colour of the band peaks is a

measure for the excitation level of the dynamic pressure loads on the cylinder

surfaces while the width is a measure for their steadiness. Thus, a dark nar-

row band peak close to a structural natural frequency is very likely to excite

resonance.

[Fig. 21 about here.]

[Fig. 22 about here.]

It is observed that the contribution in the spectrum of the pressure fluctuations

on the cylinder surfaces increases when moving downstream to the lee side

of the group (e.g. silo 1 and 10 vs. silos 31 and 40 in figure 21). At the

same time, it is clear that the frequency contribution rapidly decreases as the

wavenumber n and the frequency f increase (e.g. in the spectra for silo 1 and

33 in figure 21), corresponding to measured wind spectra with typically low

frequency components. One could hence already conclude that only structural

mode shapes with low natural frequencies feig and a limited circumferential

wavenumber n can possibly be excited by the dynamic wind pressures (figure

3).

Looking in more detail at the wavenumber-frequency spectra C
′n
p (f) in figure

21, it is observed that the spectra at the upstream part of the group show no

periodicities other than the low frequency contributions related to the large

vortex shedding in the wake of the group (fvs, table 2). However, following the
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wind motion towards the lee side of the group, irregularities appear, growing

onwards to cylinder 40. In this part of the group, e.g. for silo 30, two distinc-

tive narrow band higher frequency peaks can be observed between 3Hz and

4Hz and also at approximately 6.5Hz. Taking into account the corresponding

circumferential wavenumbers n on the vertical axis, it is concluded that the

third and fourth circumferential eigenmodes (1,3) and (1,4) of the silos (fig-

ure 3), both at eigenfrequencies of feig = 3.93Hz would probably be excited

by the dynamic wind pressures. The excitation of higher ovalling eigenmodes

is also possible but vibration amplitudes will be smaller since their eigenfre-

quencies feig are just below or above the frequency peaks at 6.5Hz. In the

case of α = 30◦, the ovalling eigenmodes are not only excited at the lee side

of the group, but also further upstream: e.g. for silos 6 to 8 the darker narrow

band peaks in the spectrum at 3Hz to 4Hz for n = 3 and n = 4 are already

observed.

In figure 22, wavenumber-frequency spectra are shown for the corner silos of

the group (silo 1, 8, 33 and 40) for different angles of incidence α to investigate

if the same tendencies are found as for α = 30◦. The wavenumber-frequency

spectra for α = 30◦ and α = 45◦ are very similar. In the spectrum for silo 40

at α = 45◦, the peak at approximately 4Hz is even more pronounced than

for α = 30◦. As mentioned previously, for α = 30◦ the excitation of ovalling

eigenmodes exists further upstream (e.g. already for silo 8) than for other

angles of incidence. The results for α = 15◦ and α = 60◦ deviate somewhat

from the general tendencies described until now, due to the higher frequency

peaks at respectively 6Hz and 2Hz. However, these irregular peaks are likely

inconsequential for the ovalling vibrations observed in this case, due to a sig-

nificant mismatch between the excitation frequency and the structural natural

29



frequencies. Besides these deviant peaks, the results for α = 15◦ and α = 60◦

agree qualitatively well with the results for α = 30◦ and α = 45◦. Finally, also

wavenumber-frequency spectra are shown for α = 0◦ and α = 90◦. Pressure

distributions on upstream cylinder surfaces are very similar as for other angles

of incidence. Note that for α = 0◦ the upstream corners of the group are at

silos 1 and 33 while for α = 90◦ the upstream corner silos are 1 and 8, explain-

ing the ‘switching’ of wavenumber-frequency spectra of these two cylinders.

At the lee side of the group, similar results are found as for other angles of

incidence, e.g. silo 40.

[Fig. 23 about here.]

5 Ovalling vibrations in the 8 by 5 silo group

From the above results, the existence of ovalling vibrations at the lee side

corner silos of a silo group can be demonstrated. Considering the dynamic

excitation of the silos, ovalling vibrations will preferentially be induced at the

lee side of the group while the third and fourth eigenmode of the silos are most

likely to be excited. This corresponds with the observed pattern of ovalling

vibrations with three and four circumferential wavelengths during the 2002

storm in Antwerp. Depending on the orientation of the group, these ovalling

oscillations may not only exist at the lee side of the group but also further

upstream (e.g. silos 7 and 8 for α = 30◦).

Although the existence of these ovalling vibrations was demonstrated, the

physical phenomenon causing these vibrations has not yet been explained.

Many researchers have detected periodic forces on cylinders in arrays when
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subject to cross flow (Price et al., 1987). It is generally accepted that there are

three distinct mechanisms leading to vibrations in a tube array (Price et al.,

1987; Weaver et al., 1993; Zukauskas et al., 1988):

(1) Forces in tube arrays arise due to turbulent fluctuations of the flow pres-

sure. Turbulent buffeting fluctuations of flow velocity, either initiated

upstream or induced within the array itself, are converted into pressure

fluctuations on the cylinder surfaces (Price et al., 1987).

(2) Forces are induced by fluidelastic instability (FEI). These self-excited

forces arise when the tubes move out of their equilibrium position and

tube motion and fluid flow start to interact. The fluidelastic forces are

proportional to tube displacement at the onset of instability and are su-

perimposed by a second type of forces, proportional to tube vibration

velocities (Schroder and Gelbe, 1999).

(3) Forces in cylinder arrays can be due to periodic vortex shedding.While

there used to be debate in the literature whether there was sufficient

space for vortices to develop in interstitial spaces or not (Price et al.,

1995), it is now known that coherent vortex shedding exists in tube ar-

rays but the coherent vorticity has no room to produce a vortex street.

Vortex shedding and FEI generally coexist as separate and independent

phenomena in tube arrays but, in certain array geometries in water flows,

coupling may occur and it becomes difficult to separate the two (Weaver

et al., 2000).

It should be noted that typical vibration phenomena in tube arrays reported

in the literature, where the entire ‘rigid’ tube moves out of its equilibrium
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position, are very different from the ovalling vibrations in this study, where

only the tube wall is vibrating. While the prevailing physical phenomena are

expected to be similar, the specific excitation mechanisms causing large ampli-

tude vibrations of heat exchanger tubes and ovalling oscillations of silo struc-

tures are almost certainly different. In the following it is investigated which of

these physical phenomena can cause the observed ovalling vibrations.

Previous research has convincingly shown that conventional vortex shedding

cannot excite ovalling oscillations of cylindrical shells in cross flow since ovalling

of a single cylinder also occurs when a long splitter plate in the wake sup-

presses periodic vortex shedding(Päıdoussis et al., 1988). This is confirmed by

later experimental research (Laneville and Mazouzi, 1995) as well as in the

present simulations since the structural natural frequencies (feig, figure 3) do

not match the global vortex shedding frequency in the wake of the entire group

(fvs in table 2). No higher frequencies due to vortex shedding in individual

silo wakes of the type typically found in heat exchangers have been detected

either (e.g. point D in figure 20). Since no coupling of fluid and structural

motions is included, FEI is not considered and can therefore not be ruled out

entirely by this study. Hence, only turbulent buffeting remains which could

cause the narrow band wake phenomena. The numerical analysis suggests that

there is significant narrow band energy in the flow at frequencies very close to

the structural frequencies that could explain the observed silo vibrations.

From an engineering point of view, alternative arrangements of the cylinders

could be considered to reduce the risk of structural damage. This is however

a difficult task, since wind directions change and different silos will hence be

located at the lee side of the group for different wind directions. A more eco-

nomical solution to prevent ovalling vibrations is to stiffen the silo structures,
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e.g. by thickening the walls of the silos, to shift the structural natural fre-

quencies of the structures to higher values. However, if flow-excited resonance

with narrow band wake phenomena, as discussed above, is the source of the

problem, one then has to prevent that the modified, higher natural frequencies

match a higher frequency in the flow (e.g. 6.5Hz for silos 29, 30, etc. in figure

21).

6 Conclusions

In order to elucidate the occurence of ovalling vibrations on the empty lee side

corner silos of a 8 by 5 group in the port of Antwerp, the post-critical flow for

7 angles of incidence α between 0◦ and 90◦ around this closely spaced cylinder

group was modelled using 2D URANS simulations. For the validation of the

computational model and its spatial and temporal grid refinement, simulations

for a single cylinder were performed and qualitative validation was done by

comparing the present results with the flow around bluff rectangular cylinders

and the flow through tube bundles.

The simulations have shown that the silo group can be treated neither as a

tube array nor as a solid bluff body. While the group configuration drasti-

cally changes the flow regime around the group, similar to bluff rectangular

cylinders, the permeability allows about 10% of the mass flow to pass through

the group. Compared to heat exchangers where the entire mass flow is forced

through the array, it is almost certain that the excitation mechanisms causing

tube vibrations in heat exchangers and the present silo wall oscillations will be

different. The interstitial flows in the silo group follow wavy patterns through

the array for all angles of incidence, from high upstream pressures to lower
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pressures at the lee side of the group. Some irregularities at arbitrary locations

in the array for α = 15◦ and for α = 60◦ are attributed to the 2D character

of the simulations where spanwise velocities are suppressed. The interstitial

flows emerge at the lee side of the group and form local recirculation zones

which coalesce to form a large vortex street in the wake of the group.

The observed ovalling vibrations in the silo group are investigated by linking

the dynamic wind pressures on the silo surfaces to the dynamic properties

of the structures. For all orientations of the group (0◦ < α < 90◦), strong

narrow band frequency peaks are identified in the turbulent pressure coeffi-

cient spectra of the silos near the lee side corners of the group that match the

structural natural frequencies of the third and fourth ovalling mode shape of

the silos. This match indicates a forced, resonant response which corresponds

with the observed pattern of ovalling vibrations with three and four circumfer-

ential wavelenghts near the lee side corners of the silo group during the 2002

storm in Antwerp. While the precise physical excitation mechanism is not yet

fully understood, the simulations confirm that discrete vortex shedding (in

the wake of the entire group or by vortices in the individual silo wakes of the

type found in heat exchangers) can be excluded. Since no coupling of fluid and

structural motions was included in this study, FEI could not be considered.

Hence, only turbulent buffeting remains which could very well give rise to the

narrow band wake phenomena causing the ovalling silo wall vibrations.
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θ on the circumference of an individual cylinder.
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(a) (b) (c) (d) (e)

Fig. 3. Top view of the displacements of the shell sections between 15m and 17.5m
above the bottom cone, and a 3D view of selected ovalling mode shapes of a single
silo, (a) mode (1, 3) at 3.93Hz, (b) mode (1, 4) also at 3.93Hz, (c) mode (1, 5) at
5.25Hz, (d) mode (1, 6) at 7.37Hz and (e) mode (1, 2) at 7.75Hz (Dooms et al.,
2006).
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Fig. 6. Computational mesh for the single cylinder case with AR = 50 and y+max = 97
(a) for the entire computational domain and details of (b) the near-wake region and
(c) the near-wall region of the cylinder.
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(b) (c) (d)

Fig. 10. Computational mesh for the 8 by 5 silo group at an angle of incidence
α = 30◦, shown for (a) the entire computational domain and details of (b,c) the
near-wake region and (d) the near-wall region.
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Fig. 11. Time history of drag coefficients for the corner silos of the 8 by 5 silo group
(silo 1 - dashed black line; silo 8 - solid black line; silo 33 - dashed grey line; silo 40 -
solid grey line) with wind flow at angle of incidence α = 30◦ and for inlet turbulence
intensities of (a) Tu = 0.1%, (b) Tu = 1% and (c) Tu = 10%.
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Fig. 12. Time history of lift coefficients for the corner silos of the 8 by 5 silo group
(silo 1 - dashed black line; silo 8 - solid black line; silo 33 - dashed grey line; silo 40 -
solid grey line) with wind flow at angle of incidence α = 30◦ and for inlet turbulence
intensities of (a) Tu = 0.1%, (b) Tu = 1% and (c) Tu = 10%.
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Fig. 13. Velocity streamlines and vorticity contours (filled) of the flow around the 8
by 5 cylinder group for an angle of incidence α = 30◦ at (a) t = 77.0 s, (b) t = 78.5 s,
(c) t = 80.0 s, and (d) t = 81.5 s.
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ṁin
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ṁdef

Fig. 14. Schematic representation of the incident mass flow at the inlet of the domain
ṁin and the mass flow deflected around the silo group ṁdef .
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Fig. 15. Velocity streamlines and vorticity contours (filled) of the flow around the 8
by 5 cylinder group for an angle of incidence (a) α = 0◦ at t = 80.0 s, (b) α = 15◦

at t = 82.5 s, (c) α = 30◦ at t = 77.0 s, (d) α = 60◦ at t = 76.5 s, (e) α = 75◦ at
t = 80.5 s, and (f) α = 90◦ at t = 83.5 s.
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Fig. 16. Turbulence intensity in the flow around the 8 by 5 cylinder group for an
angle of incidence (a) α = 0◦ at t = 78.5 s and (b) α = 30◦ at t = 77.0 s.
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Fig. 17. Comparison of Strouhal numbers for the present 8 by 5 silo group at
Re = 1.24 × 107 (◦) and a rectangular cylinder with side ratio L/B = 1.67 at
Re between 1.2 and 2.4× 104 (4) (Knisely, 1990) for angles of incidence α between
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Fig. 18. Detail of velocity streamlines and vorticity contours (filled) for the inter-
stitial space in the 8 by 5 cylinder group for an angle of incidence (a) α = 0◦ at
t = 78.5 s, (b) α = 15◦ at t = 77.0 s, (c) α = 30◦ at t = 79.0 s, and (d) α = 60◦ at
t = 85.0 s.
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Fig. 19. Contour plot of the turbulence intensity within the cylinder array, for an
angle of incidence α = 30◦ at t = 77.0 s.
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Fig. 20. Frequency spectra for the pressure in points A, B, C and D (figure 2) for
angles of incidence (a) α = 0◦, (b) α = 15◦, (c) α = 30◦, and (d) α = 60◦.
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Fig. 21. Wavenumber-frequency spectra of the amplitude C
′n
p (f) for angle of inci-

dence α = 30◦: upstream part of the group.
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Fig. 21. Wavenumber-frequency spectra of the amplitude C
′n
p (f) for angle of inci-

dence α = 30◦: downstream part of the group.
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Fig. 22. Wavenumber-frequency spectra of the amplitude C
′n
p (f) on the corner cylin-

ders (1, 8, 33 and 40) of the group for angle of incidence (a) α = 0◦, (b) α = 15◦,
(c) α = 30◦, (d) α = 45◦, (e) α = 60◦ and (f) α = 90◦.
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Re St θs -C
b

p -C
min

p Cd

[×107] [◦]

Present numerical simulations

2D URANS SST, y+=97 1.24 0.32 116 0.52 2.54 0.42

2D URANS SST, y+=4 1.24 0.34 116 0.49 2.62 0.39

Experimental data from literature

Zan (2008) 0.20-0.50 0.20

Schewe (1983) 0.50-0.60 0.27 0.52

James et al. (1980) 0.01-1.09 0.22

Zdravkovich (1997) 0.73-3.65 0.27-0.32 100-110 0.5-0.8 0.4-0.8

Eurocode 1 - Part 1.4 (BIN, 2005) 1.00 0.18 105 0.80 1.5

Numerical simulations from literature

2D URANS k − ε transition (Celik and Shaffer, 1995) 0.36 118 0.35 2.3

2D URANS realizable k − ε (Holloway et al., 2004) 1.00 120 0.26

2D URANS transition (Holloway et al., 2004) 1.00 119 0.25

2D URANS k − ε (Saghafian et al., 2003) 0.84 0.25 104 0.72 1.8 0.66

2D URANS nonlinear (Saghafian et al., 2003) 0.84 0.33 125 1.15 2.6 0.61

2D URANS RNG k − ε (Younis and Przulj, 2006) 0.35 0.28 122 0.80 2.5 0.56

2D URANS modified k − ε (Younis and Przulj, 2006) 0.35 0.28 120 1.25 2.5 0.72

3D DES (Travin et al., 2000) 0.30 0.35 111 0.53 2.2 0.41

3D DES + curvature (Travin et al., 2000) 0.30 0.33 106 0.64 2.1 0.51

3D URANS k − ε (Catalano et al., 2003) 0.10 0.31 0.41 2.3 0.40

3D LES Smagorinsky (Catalano et al., 2003) 0.10 0.35 0.32 2.4 0.31

Table 1
Comparison of the Reynolds number Re, the Strouhal number St, the separation

angle θs, the averaged base pressure coefficient C
b

p, the minimum averaged pressure

coefficient −C
min

p and the averaged drag coefficient Cd for the present simulations
and experimental and numerical results available in literature.
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α [◦] 0 15 30 45 60 75 90

Dg [m] 28.7 38.4 45.9 50.6 52.3 50.7 46.1

Tvs [s] 3.23 4.18 5.85 6.32 6.93 5.70 5.14

fvs [Hz] 0.31 0.24 0.17 0.16 0.14 0.18 0.20

St 0.28 0.29 0.25 0.25 0.23 0.29 0.29

Table 2
Vortex shedding frequencies (fvs) and Strouhal numbers (St) for all different angles
of incidence (α) with respective projected width of the silo group (Dg).
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