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Prediction of smoke filling in large volumes by means of data 

assimilation based numerical simulations 

 

ABSTRACT  

The concept of numerical simulations for real-time Numerical Fire Forecasting (NFF) is 

illustrated for the case of natural smoke filling of a large scale atrium in case of fire. The 

numerical simulations are performed within the Inverse Zone Modelling framework. The 

technique consists of assimilating collected data for a certain parameter, in casu the smoke layer 

height, into the zone model in order to estimate an unknown of the problem (‘model invariant’, 

MI), mainly the fire heat release rate. A forecast in terms of evolution of smoke level and 

temperature can then be produced. Because zone model calculations are very fast, positive lead 

times of several minutes are obtained. The developed model produces reliable forecasts for the 

cases considered. Equally important, the robustness of the technique is illustrated: the sensitivity 

of the results to the ‘initial guess’ of the MI(s) is small (i.e., the method converges easily); one MI 

is sufficient to obtain reliable predictions for smoke layer height evolution; the data assimilation 

window length does not affect the results significantly. The method automatically provides a 

different value for the plume entrainment constant, depending on the position of the fire (in the 

middle of the atrium or in a corner). 

KEYWORDS 

Numerical Fire Forecast (NFF), Data Assimilation (DA), inverse modeling, Tangent Linear 

Model (TLM), two-zone model, smoke filling 
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INTRODUCTION 

Producing a real-time ‘Numerical Fire Forecast’ (NFF) is one of the recent great challenges in the 

fire community today. Predicting fire evolution with a sufficiently large positive lead time can 

assist a decision support system and guide intervention strategies, as first illustrated in the 

‘FireGrid’ project [1]. The main idea consists of performing a continuous dynamic estimation of 

the fire evolution by incorporating live data from sensor readings [2]. This enables the display of 

future hazards in terms of smoke levels, structural collapse and flashover occurrence. Evacuation 

and fire service interventions can then be facilitated and/or adjusted ‘on the go’. Different aspects 

of the problem need to be tackled, e.g. sensing, modeling and forecasting. Recent developments 

on the sensing part, e.g. the use of video to provide information on flames and smoke [3-8], are 

not described here. Rather, we focus on the modeling and forecast parts. The technique applied is 

the Inverse Zone Modelling technique in conjunction with Data Assimilation (DA) [9-10]. The 

DA technique has already been used extensively in Numerical Weather Predictions (NWP). It 

consists of incorporating information from ‘observed data’ into an ‘assimilating model’. An 

‘analysis’ is performed, based on which a forecast is produced that matches best the ‘observed 

state’. This forecast gives in real time a display of future developments [11]. The ‘lead’ time of 

the forecast is determined by a certain accuracy (or reliability) criterion. Obviously, the 

computational time must be short enough, compared to this lead time, in order to generate a 

prediction, ahead of the event. Although theoretical work is undertaken to apply DA to the 

fundamental Navier-Stokes equations [12], which are solved in Computational Fluid Dynamics 

(CFD), Zone Modelling is a much better option from a computational point of view to predict the 

fire development in its early stages. Indeed, computing times are orders of magnitude smaller and 

the ‘loss’ of physics in a Zone Model compared to CFD is compensated, using the contribution of 

DA by the dynamic adjustment of model parameters.     
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As mentioned in [1], “the data assimilation philosophy needs to be subjected to great 

scrutiny prior to exploitation in fire applications”. The approach, carefully described in [9-10], is 

adopted here. For the scenario considered in this paper, we examine in detail the potential to 

predict the natural smoke filling process of an atrium due to a fire without prior knowledge of the 

fire location, size or heat release rate (HRR). This is a basic development step, prior to the 

prediction of fire development itself. The data used for assimilation stems from experiments [13], 

where the fire is constant in size and HRR. In addition to the illustration that reliable forecasts are 

obtained, including automatic ‘determination’ of the fire location, the following aspects are 

addressed in a sensitivity study: 

- impact of addition of a second MI; 

- impact of initial guess for MI(s) on the  convergence of the optimization process; 

- impact of the DA window (length and timing). 

To the best of the authors’ knowledge, it is the first time that DA based numerical simulations are 

applied to forecasting of smoke filling in case of fire, including such a sensitivity study. 

EXPERIMENTAL CONFIGURATION  

The numerical calculations are based on a series of fire tests conducted in a full-scale facility at 

The PolyU/USTC atrium located at the State Key Laboratory of Fire Science of University of 

Science and Technology of China [13, 14]. This atrium, constructed for experimental studies on 

smoke movement, has inner dimensions of 22.4 m × 11.9 m and 27 m ceiling height. The 

dimensions of the two side doors are 4 m × 2 m (Fig. 1). The fire is generated by means of an oil 

burner. The oil flow rate is defined at the surface to produce the specified fire intensity. In the 

cases considered in this work, the fire source is 2 m x 2 m with HRR per unit area of 1000 

kW/m2, generating therefore a total fire HRR of 4000 kW. Two different locations of the fire are 
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considered: in the center (Case A) and in the corner (Case C) of the atrium floor. The 

measurements include the smoke layer height and average temperature. 

For the sake of simplicity, the calculations performed here are made only for the natural 

filling cases. Natural and/or mechanical venting is not considered, although the method can deal 

with ventilation as well. The experimental data used in the present paper is shown in Fig. 2. 
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Figure 1. Schematic representation of the geometry [13]. Shafts, fans and windows for 

mechanical and natural ventilation are not represented. 
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Figure 2. Experimental data (every 20 s) for smoke filling in an atrium [13]. Smoke layer height 

(left) and mean smoke layer temperature (right) for two fire locations (centre, case A, and corner, 

case C). 
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MODEL FORMULATION 

 Zone Model 

Although less sophisticated than CFD, zone modeling has the important advantage of being much 

less time consuming. This is essential in the application at hand, since forecasts must be obtained 

sufficiently fast. Results from zone models are obtained practically instantaneously, since the 

problem formulation is reduced to the basic conservation equations for mass and energy, applied 

to only 2 zones (hot upper layer and cold lower layer). Compared to detailed CFD, there is a 

‘loss’ of correct physics in the sub-models, particularly plume entrainment in the cases at hand. 

This can be largely overcome by continuously updating model parameters in a dynamical system, 

through data assimilation, as explained below. It will, e.g., be illustrated that the method as 

presented automatically ‘determines’ whether the fire source is in a corner or not. 

Although the conservation equations for mass and energy for the upper layer are well-

known, they are briefly repeated here for the case of natural filling (i.e. no natural or mechanical 

venting): 

 ( )
p

uu m
dt

Vd
=

ρ  ,  c
dE Q
dt

α=   (1) 

where ρu, Vu, and E are respectively the density, the volume and the energy  level of the upper 

layer.  The variable t denotes the time,  the smoke mass flow rate as it enters the upper layer 

through the plume and Q

pm

c the convective heat release rate of the fire. α  is a coefficient which 

accounts for heat losses from the upper layer to the environment. 

The smoke mass flow rate can be described by several calculations, e.g. [15 - 17]. Here, we 

deliberately choose the simple expression from [15]: 
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where C is the entrainment rate, aρ  the ambient density, g the gravitational acceleration, Cp the 

specific heat, Ta the ambient temperature,  the convective heat release rate (expressed in kW) 

and h the smoke free height (i.e. the height, measured from floor level to the bottom of the smoke 

layer). The reason for this choice is that (a) parameter(s) can be adjusted, using the DA 

information, which makes the simple expression (2) sufficiently accurate, as shown below. 

cQ

Choosing the reference level for energy E equal to zero at ambient temperature Ta, the 

energy contents in the upper layer is: 

 ( )aupuu TTCVρE −=  (3) 

The upper layer volume  equals:  uV

 ( )hHAV atriumu −= 0   (4) 

where Aatrium is the floor area of the atrium, and  the ceiling height. 0H

The initial conditions are  (au TT = au ρρ = ) and 0Hh = ( 0=uV ). 

Equations (1) to (4) are discretized in time using a Forward Difference Formula (FDF), 

implemented in an in-house code: 
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where subscripts  n  and n+1 refer to time and tΔ  is the time step.  

 

Data Assimilation Model 

In Data Assimilation (DA), observed information is incorporated into an assimilating model to 

produce an accurate image of the true physical state of the system and make a forecast of its 

evolution in time.  

Similarly to [9, 18], the assimilating model in our DA application is the zone model that is 

also used as ‘forward model’ (FM) in the predictions. The unknown parameters of the problem 

are Qc, C and α . In the basic simulations below, we only consider smoke layer height (measured 

in [13]) for DA. As a result, two of the three unknowns must be prescribed, while the third 

unknown becomes a ‘model invariant’ (MI), e.g. θ = [C] (fixing Qc and α ) or θ = [Qc]  (fixing C 

and α ). This MI is then determined through the DA by means of an optimization process as 

described below. In the sensitivity study, we also examine the potential increase in quality of the 

predictions if both smoke layer height and temperature are ‘observed: 

 
⎟
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iu
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i

T

h
y

,
ˆ
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where  is the vector of observations at time tiŷ i. Then there are two MIs (e.g. θ = [Qc, C] or θ = 

[α ,Qc]). 
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To the vector of observations corresponds a vector (with the same dimensions), yi, of 

calculated values by the zone model. The purpose of the calculation process is therefore to find 

the optimized set of values for the MI(s), minimizing the cost function: 

   (7) ( ) ( )[ ] ( )[ ]∑
=

−−=
N

i
iii

T
ii yyWyyJ

1

ˆˆ θθθ

 where N is the number of observations and Wi is a weighting matrix, taken here as identity 

matrix. 

By using a gradient-based method and linearizing the forward model around the initial 

guess, the equation(s) to be solved become(s) [10]: 

 ( )1 Tk k A bθ θ+ −= + 1  (8) 
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=∑ )− i is the output of the forward model at 

time ti and . For the basic calculations, yii MH ∇= i = hi and i
i

hH
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∂

=
∂

. If we consider two 

observed variables, h and Tu, and two MIs to be estimated, e.g. Qc and C, the term iM∇  

becomes:  
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The derivatives are calculated numerically using the Tangent Linear (TL) technique [19]. 

Perturbations are introduced to the MI(s) and the observed/assimilated variable(s) in eqs. (5a) – 

(5g). Model parameters that are kept constant, are not perturbed. The solution of eq. (8) is 

assumed to be reached when the convergence criterion is met, set as: 

 k
i

k
i

k
i θθθ 01.01 ≤−+  (10). 
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If there is more than one MI, criterion (10) must be met for all MIs.  

The iterative optimization process starts, as mentioned, with an initial guess for the MI(s). If the 

initial guess is ‘too far’ from the ‘true values’, the calculations might not converge. We illustrate 

below that the method is very robust with respect to the initial guess(es).      

 

Structure of the Code 

The calculation procedure has been implemented in a FORTRAN in-house code. A flow chart is 

provided in Fig. 3 (without dynamic estimation of the MI value(s)). After reading the input 

information, cost function (7) is minimized using the Zone Model subroutine (ZM) and the 

Tangent Linear Zone Model subroutine (ZM_TL). After convergence has been reached, the 

forecast is made. 

 The required program inputs are: the maximum time of simulation, the time step, the height 

of the enclosure, its floor area, the ambient conditions, the number of observations, the time for 

the initial observation, the time step between two observations and the values of the observations 

for the data assimilation. The user must also define, among the model unknowns (Qc, C and α), 

the MI(s) and the constants, to which predefined values must be assigned.  
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START 

READ observed values of smoke layer height (and 
possibly smoke layer temperature) in the DA window 

READ Initial value(s) of the MI(s) 

START the MAIN LOOP       
to find the optimum value(s) 

for the MI(s) 

CALL ZM: forward Zone Model 

CALL ZM_TL: Tangent Linear Model 

Fill in the Jacobian (9) 

Calculation of new MI value(s) 

Convergence 
NO 

YES

Perform forecast 

STOP 

For each 
model 

invariant 

 
 
          

Figure 3. Structure of the code (without dynamic estimation of the MI value(s)). 
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The program outputs are the optimum value(s) for the MI(s) and the subsequent forecasts of 

smoke layer height and upper layer temperature. For the time being, the optimization process is 

performed only once and the forecast is made with steady values for the MI(s). This process can 

readily be made dynamic, but this is considered beyond the scope of the present paper. 

 
RESULTS AND DISCUSSION 

In the discussion of the results, the quality of the forecast  is evaluated by calculating the 

relative deviation, ε, between the prediction and the experimental measurements according 

to: 

 
( )

∑

∑

=

=

−
= n

i
i

n

i
ii

φ

φφ
ε

1

2

1

2

ˆ

ˆ
    (11) 

 

The variables  and  denote respectively the experimental measurements and the 

prediction (i.e. forecast)  of h or T

iφ̂ iφ

u. The index i varies from 1 to n, which is the number of 

data points obtained after data assimilation. 

 

Basic Simulations 

The basic calculations are performed for the USTC atrium [13] with the fire in the middle, 

using three data points (i.e. N = 3) for smoke layer height h at t = 20 s, 40 s and 60 s (the 

experimental data was provided every 20 s). Only one MI is chosen then, while the other 

parameters are kept constant, as summarized in Table 1. 
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Table 1. Basic simulations: choice of constants and MI. 
 

Case ID Fire location Constants Model Invariant Assimilation 
window 

Assimilated 
parameter 

      
USTC_A1 Centre Qc = 4000 kW 

 α   = 0.6 
θ=[C] N=3, t Є [20s, 60s] h 

USTC_A2 Centre Qc = 4000 kW 
C = 0.2 

θ=[ α] N=3, t Є [20s, 60s] h 

USTC_A3 Centre α   = 0.6 
C = 0.2 

θ=[ Qc] N=3, t Є [20s, 60s] h 

 
Table 2 provides the results for the value of the MI as obtained from eq. (8). Clearly, there is 

some variation in the values. Yet, Figure 4 reveals that hardly any differences are observed in the 

predictions of smoke layer height. The moment when the smoke reaches the floor (after about 

200 s) is well predicted. This implies a positive lead time of more than 2 minutes for the 

forecasts, regardless of the choice of MI. This illustrates that the method is not very sensitive to 

the choice of MI. Table 2 reveals a degree of automatic self-regulation in the method, which 

explains this robustness of the method. Indeed, comparing USTC_A2 to USTC_A1, it is seen that 

the entrainment coefficient C, prescribed as 0.2 for USTC_A2, is lower than the value obtained in 

the calculations for USTC_A1 (0.22, see Table 2). This leads to a lower smoke mass flow rate 

entering the smoke layer (eq. (2)) than in USTC_A1. As such, volume Vu would grow less 

rapidly, leading to a slower descent of the smoke layer height h. The DA for h then makes sure, 

though, that this effect due to the lower value for C is compensated by a reduction of the density 

ρu, so that the lower mass flow rate still leads to a comparable volume flow rate. The reduced 

density is obtained through an increase in temperature Tu. This is achieved by an increase in α 

(compared to USTC_A1), leading to a more rapid increase in energy level in the upper layer (eq. 

(1)). A similar reasoning holds for the comparison of USTC_A3 to USTC_A1. Now the fire HRR 

is higher, compared to USTC_A1, in order to have a sufficiently large volume flow rate. The 

forecast becomes somewhat less accurate when the fire HRR is the MI, since the HRR determines 

both the upper layer temperature and the smoke mass flow rate directly. 
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The forecasts of the upper layer temperature are less accurate. The reason for this is that only 

one MI is used and the DA is performed on the smoke layer height, not on the temperature. We 

illustrate below a substantial improvement of the temperature forecast when 2 MIs are used.    

 
Table 2. Basic simulations: value of MI. 
 
Case ID Constants MI value 
USTC_A1 Qc = 4000 kW 

α   = 0.6 
C = 0.22 

USTC_A2 Qc = 4000 kW 
C = 0.2 

α = 0.77 

USTC_A3 α   = 0.6 
C = 0.2 

Qc =  4730 kW 
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Figure 4. Evolution of smoke layer height (left) and temperature (right) for the fire in the middle 

of the atrium floor. All symbols refer to experimental data, while lines correspond to simulation 

results. Only the first three measurements of smoke layer height have been assimilated; 

temperature data has not been assimilated, it is shown here only for comparison. Legend: see 

Table 2. 

 
Automatic ‘Determination’ of Fire Location 

In [13], experiments have also been conducted with the fire source placed in the corner of the 

atrium floor. Obviously, this strongly affects the entrainment of air into the smoke plume. A 
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general expression for entrainment coefficient C has been developed in [20]: , in 

which the entrainment coefficient C

2/3
m LFC C k −= ×

m is taken as constant (Cm = 0.21) and the variable  

accounts for the fire location ( = 1 for axisymmetric plumes, 2 for wall plumes, and 4 for 

corner plumes). This effectively reduces C from C

LFk

LFk

m = 0.21 to  for the corner 

location. Table 3 illustrates that the values obtained for ASTC_A1 and USTC_1 match these 

values quite well. The important feature is that this happens ‘automatically’ in the method, i.e. the 

different values for C are found by virtue of the DA of the observed valuables during the first 

minute. Figure 5 reveals a positive lead time in the forecast of 4 minutes, as far as the smoke 

layer height is concerned, when the fire is positioned in the corner. For USTC_A1, predictions 

match the experimental data within 26 % for the smoke layer height and 4 %  for the upper layer 

temperature. For USTC_C1, the relative deviation is 15 % for h and 44 % for T

083.0421.0 3/2 =× −

u.  The quality of 

the temperature predictions improves substantially when 2 MIs are used, as shown below. 

 

Table 3. Value of entrainment coefficient for fire in the centre (A) and in the corner (C). 

Case ID Constants MI value 
   
USTC_A1 Qc = 4000 kW 

 α   = 0.6 
C = 0.22 

USTC_C1 Qc = 4000 kW 
α   = 0.6 

 C = 0.08 
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Figure 5. Evolution of smoke layer height (left) and temperature (right) for the fire in the middle 

(top) and in the corner (bottom) of the atrium floor. All symbols refer to experimental data, while 

lines correspond to simulation results. Only the first three measurements of smoke layer height 

have been assimilated; temperature data has not been assimilated, it is shown here only for 

comparison. Legend: see Table 3. 

 

 

Data Assimilation for Smoke Layer Height and Temperature 

If more than one variable is observed and assimilated, more accuracy can be expected in the 

forecasts. Table 4 provides an overview of the cases examined. The values are presented for the 

MIs after the optimization process when only 1 model parameter is kept constant. If C is chosen 

as MI, it is clear that, as in the previous section, the method automatically determines whether the 
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fire is in the middle of the atrium floor or not (compare USTC_A6 to USTC_C6 or USTC_A7 to 

USTC_C7). Therefore, it is recommended to use C as one of the MIs.  

  

Table 4. Values obtained for MIs after the optimization process when only 1 model parameter is 

kept constant. 

Case ID Fire location Constant MIs Assimilation 
window 

Assimilated 
parameters 

      
USTC_A5 Centre C = 0.2 

 
Qc = 7293 kW 
α   = 0.273 

N=3, t Є [20s, 60s] h and Tu

USTC_A6 Centre α   = 0.6 Qc = 3323 kW 
C  = 0.260 

N=3, t Є [20s, 60s] h and Tu

USTC_A7 Centre Qc = 4000 kW C  = 0.244 
α   = 0.500 

N=3, t Є [20s, 60s] h and Tu

USTC_C5 Corner C = 0.1 
 

Qc = 3368 kW 
α   = 0.468 

N=3, t Є [20s, 60s] h and Tu

USTC_C6 Corner α   = 0.6 Qc = 2627 kW 
C  = 0.109 

N=3, t Є [20s, 60s] h and Tu

USTC_C7 Corner Qc = 4000 kW C  = 0.094 
α   = 0.394 

N=3, t Є [20s, 60s] h and Tu

 
 

Figure 6 illustrates that differences between the forecasts are marginal (invisible). 

Comparison to Figure 5 reveals that the temperature predictions substantially improve when two 

MIs are used instead of only one, especially for the corner fire. This is confirmed by using Eq. 

(11). The latter gives a relative deviation in temperature of  44% with 1 MI and 6 % with 2 MIs. 

However, it can be argued that the smoke layer height is a more important parameter than its 

temperature (since the temperatures are low). Therefore, the method, using only one MI, is 

considered to be reliable, i.e. not much accuracy is lost when the number of MIs is reduced from 

two to one. This makes the method attractive for use in practice, where DA can often be done for 

only one parameter.      
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Figure 6. Evolution of smoke layer height (left) and temperature (right) for the fire in the middle 

(top) and in the corner (bottom) of the atrium floor – Use of 2 MIs. All symbols refer to 

experimental data, while lines correspond to simulation results. Only the first three measurements 

of smoke layer height and temperature have been assimilated. Legend: see Table 4.   

  

Initial Guess and Convergence 

For cases USTC_A6 and USTC_C6, Figure 7 shows that, starting from different initial guesses 

for Qc, convergence is obtained very quickly. Except for very low (or high) initial guesses, the 

end value is obtained after 4 iterations or less. This end value does not depend on the initial guess 

value.  
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Figure 8 shows the ranges of initial Qc for which the method converges. The lower the initial 

guess for C, the wider the interval for initial guess of Qc for which the method converges. 

Therefore, a low value is recommended for C as initial guess. For Qc a value of e.g. 500kW can 

be recommended as initial guess for the case at hand.  The range for initial guess of α is also very 

wide, [0.01, 1.00] (not shown). A value α = 0.6 or 0.7 could be recommended as initial guess, 

which is, in general, a reasonable estimate for the radiative fraction of a fire for most common 

fuels. 
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Figure 7. Convergence towards the optimized value of Qc for USTC_A6 (C = 0.2) and 

USTC_C6 (C = 0.1). 
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Figure 8. Intervals of convergence for the initial guess of Qc as a function of the initial guess of C 

for the cases USTC_A6 and USTC_C6. 

 
 
 
  
Sensitivity of Results to DA Window 

In this section we examine the effect of the assimilation window length and the positioning of the 

assimilation window on the time axis. Table 5 summarizes the results for the MIs. 

Table 5. Effect of DA window on values for MIs.  
 

Case ID Assimilation window Constant(s) Optimized values of MIs 
USTC_A6 N = 3, t Є [20s, 60s] α = 0.6 Qc = 3323 kW , C = 0.260 

USTC_A6_1 N = 2, t Є [20s, 40s] α = 0.6 Qc = 2903 kW , C = 0.273 
USTC_A6_2 N = 4, t Є [20s, 80s] α = 0.6 Qc = 3583 kW , C = 0.252 

USTC_C6 N = 3, t Є [20s, 60s] α = 0.6 Qc = 2627 kW , C = 0.109 
USTC_C6_1 N = 2, t Є [20s, 40s] α = 0.6 Qc = 2189 kW , C = 0.107 
USTC_C6_2 N = 4, t Є [20s, 80s] α = 0.6 Qc = 2846 kW , C = 0.106 
USTC_C6_3 N = 3, t Є [80s, 120s] α = 0.6 Qc = 2730 kW , C = 0.080 
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Figure 9. Effect of the DA window length for USTC_A6 (top) and USTC_C6 (bottom). Smoke 

layer height (left) and mean temperature (right). Legend: see Table 5.  

 

Figure 9 shows that modifying the length of the DA window only, hardly affects the predictions 

for smoke layer height evolution (deviations in h are between 13 and 22 %). If ‘quality’ 

observations are provided over a given period of time, widening the assimilation window does 

not significantly improve the quality of the forecast for the smoke layer height. This is in line 

with the conclusion by Jahn et al. [9] who suggested the existence of an ‘optimal assimilation 

window width’. The temperature predictions (which are, however, as explained above, less 

important), improve as the DA window widens, especially for the case USTC_A6.  

One could also consider keeping the same DA window length, but moving it in time. The 

idea is then to replace ‘old’ information by more recent observations to improve the forecast. 

Figure 10 shows that indeed the forecast changes with the second assimilation window (i.e. N = 

3, t Є [80s, 120s]). Table 5 shows a decrease by 26.61 % in the optimized value of C from 0.109 

for case USTC_C2 to 0.080 for USTC_C2_3. The change in the optimized value of Qc is not 

significant.  
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Figure 10. Effect of the DA window position for USTC_C6. Smoke layer height (left) and mean 

temperature (right).  Legend: see Table 5. 

 

 

CONCLUSIONS 

The concept of numerical fire forecasting using live data from sensor readings has been applied to 

the case of natural smoke filling of a large atrium in case of fire.   

The method of determining the values for the model invariant(s) (MI(s)) from the data 

assimilation (DA) for the observed variables has been explained. 

Accurate forecasting of the smoke layer height evolution has been illustrated, with positive 

lead times of several minutes. This has been achieved by assimilating observations of smoke 

layer height over 60 s. Moreover, a simple expression for the smoke plume mass flow rate has 

been used. Due to the automatic adjustment of the entrainment coefficient, taking advantage of 

the DA process, the simple expression provides a sufficient level of quality. Another advantage of 

using the entrainment coefficient as MI, is the automatic ‘determination’ of the fire location. 

Indeed, the strong difference in entrainment between a plume originating from the middle of the 

floor as compared to a plume originating from a corner, is automatically reflected in a much 
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higher value for the entrainment coefficient in the former case. Therefore, it is recommended to 

use the entrainment coefficient as MI. 

Forecasts for the smoke layer temperature improve substantially when 2 MIs are used, instead 

of 1, and DA is also performed for the smoke layer temperature. Since often the smoke layer 

height is more important than its temperature for the case at hand, the method is considered 

sufficiently accurate, using only 1 MI. 

The method has been illustrated to be very robust with respect to the initial guess for the 

MI(s) and rapid convergence to the same values is obtained, independent of the initial guess. 

Making the DA window longer did not lead to a substantial improvement in the accuracy of the 

forecasts. Shifting the DA window in time does modify the results. This is a relevant feature for a 

dynamic DA procedure, but this is considered beyond the scope of the present paper.  
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NOMENCLATURE 

A           intermediate calculation matrix 

Aatrium    atrium floor area (m2) 

C           variable plume entrainment coefficient  

Cm         constant plume entrainment coefficient (Cm = 0.21, Eq. (16)) 

Cp          gas specific heat (=1 kJ/kg.K) 

E           energy (kJ) 
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H0              ceiling height (m) 

Hi           intermediate calculation matrix 

J            cost function (m2) 

Mi          output matrix of the forward model 

N           number of observations 

Qc         convective heat release rate (kW) 

T           temperature (K) 

V          volume (m3) 

Wi         weight matrix (taken as Identity) 

b           intermediate calculation matrix 

g           gravitational acceleration (=9.81 m/s2) 

h           smoke layer height (m) 

kLF        fire location factor (see Eq. (16)) 

m          mass flux (kg/s) 

t            time (s) 

yi           vector of observations or calculated values 

z            elevation above the fire (m) 

tΔ         time step (s) 

α                heat coefficient taking into account radiative losses 

ε           relative deviation between experiments and predictions 

θ           vector of model invariants 

ρ           density (kg/m3)       

Subscripts 

a          ambient conditions 
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p          plume 

u         upper layer 

Superscripts 

ˆ          observation data 

'          perturbed value 

T         transpose matrix 
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