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GENERAL INTRODUCTION

About 50 years ago, antibiotics were introduced for the treatment of microbial diseases.

Since then, the greatest threat to the use of antimicrobial agents for therapy of bacterial

infections has been the development of antimicrobial resistance in pathogenic bacteria.

Antibiotic resistance has been shown to have occurred rarely in bacteria collected before

the antibiotic era (Hughes and Datta, 1983). Shortly after the introduction of each new

antimicrobial compound, emergence of antimicrobial resistance is observed (Levy, 1997).

The magnitude of the problem is significantly increased by the possibility of bacteria to

transfer resistance determinants horizontally and by the mounting increase in the use (over-

use and misuse) of antibiotics, which has created an enormous selective pressure towards

resistant bacteria (Levy, 1992). The solution has long been the continuous appearance of

new antibiotics on the market. However, pharmaceutical companies cannot continue to

deliver new antibiotics at a fast enough rate and, currently, no antibiotics belonging to a

new class are expected to appear soon. Worldwide sensitising campaigns demand a less

frequent and a well-considered use in order to preserve antibiotics for the future.

It is clear that hospitals offer a prime opportunity for development and transfer of antibi-

otic resistance (Monroe and Polk, 2000). Another focus for the development of antibiotic

resistance is found in animal husbandry in which antimicrobial agents are used for prophy-

laxis, therapy and growth promotion. Already in the 1960s, a British committee expressed

its concern about the use of antibiotics as growth promoters in the SWANN report (Anon.,

1969). This has resulted in the European ban of some, and later in 1999 of most antibiotics

for the use as growth promoters. The few compounds that are still allowed in the EU,

represent antibiotics that are not used in human or veterinary medicine and are unlikely to

exhibit cross-resistance. But in other parts of the world, no such ban exists. Moreover, the

groups of antimicrobial agents currently used for animal therapy are essentially the same

classes of compounds that are used in human medicine, and may also generate a reservoir

of antibiotic resistant bacteria.
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The human and animal microbial ecosystems are inextricably interwinded, and there-

fore, microbial antibiotic resistance readily crosses both ecosystems. Foods of animal ori-

gin, mainly meat products, have been suggested to be the most probable vectors of trans-

mission of resistant bacteria to the human intestinal flora (Witte, 2000). In spite of the fairly

high hygienic standards in most developed countries, faecal contamination of meat prod-

ucts during slaughtering cannot be avoided completely. Clonal spread of resistant bacterial

strains from animals to humans is well documented for zoonotic pathogens like Salmonella

typhimurium, but it is less documented to what extent commensals contribute in the spread

of resistance determinants. However, non-pathogenic bacteria can be found on various foods

in high densities as a result of the natural production process. During the past decade, it has

become clear that commensal bacteria can act as reservoirs for resistance genes, and thus

can play an important role in the maintenance and transfer of resistance determinants within

and between bacterial populations in animal and human environments (Levy and Miller,

1989). The main threat associated with these bacteria is that they can transfer resistance

genes to pathogenic bacteria.

Most meat products are heat treated before consumption and hence no viable resistant

bacteria would be expected to be present in the final product. However, the production of

fermented meat products, regarded as stable and safe foods, does not include a heat treat-

ment step, and members of the raw meat microflora that are not inhibited by the conditions

created in the fermented product, such as lactic acid bacteria (LAB), might end up in the

final ready-to-eat product. Although most food-associated LAB have acquired the ‘Gener-

ally Regarded As Safe’ (GRAS) status, and are under certain circumstances desirable as a

‘protective culture’, the potential health risk, due to the transfer of antibiotic resistance

genes from LAB strains to bacteria in the resident microflora of the human gastrointestinal

tract and hence to pathogenic bacteria, has not been fully addressed. Moreover, LAB are

also the dominating flora of other, non-fermented ready-to-eat meat products that are packed

under modified atmosphere. Modified atmosphere packaging (MAP) of ready-to-eat meat

products has become common practice nowadays in order to obtain fresh, refrigerated foods

with an extended shelf life (Farber, 1991).
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OBJECTIVES OF THIS WORK

There is a need to obtain information on the extent to which commensals of foods con-

tribute to the spread of antibiotic resistance between the animal and human environment.

Therefore, the first aim of this work is to study the prevalence of antibiotic resistant LAB in

MAP ready-to-eat meat products. Tetracycline resistance (Tcr) is chosen as a focus because

this agent has been widely used during the past 40 years in both humans and animals and

are still important agents today, and the molecular basis of the resistance is well docu-

mented (Chopra and Roberts, 2001). Further, isolation of Tcr LAB allow an in-depth char-

acterization of the host, its resistance determinants and an analysis of the capacity of these

food-born bacteria to transfer their resistance. Finally, it is intended to learn more on the

origin and spread of Tcr LAB and, therefore, complete process lines of fermented dry sau-

sages (FDS) are studied.
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SHORT OVERVIEW OF THIS THESIS

Chapter 1  gives a general overview of the literature relevant to this work. In a first part, the

use of antibiotics in animal husbandry, and the possible consequences and risks

linked to it are discussed. Further, literature on the three focus points, tetracycline

resistance, lactic acid bacteria, and fermented sausage, is one-by-one summarized.

Thereby, special attention is drawn to the molecular biology of tetracycline resist-

ance, antibiotic resistance in food-associated LAB, and the microbiology of fer-

mented sausages.

Chapter 2 describes the prevalence of Tcr LAB from MAP ready-to-eat meat products, in-

cluding cooked ham, cooked chicken breast meat and fermented dry sausage, as

well as the isolation and identification of Tcr LAB from different fermented dry

sausage end products.

Chapter 3 reports on the implementation of the rep-PCR fingerprinting technique using the

(GTG)
5
 primer as a new tool for differentiation at the species, subspecies and po-

tentially up to the strain level of a wide range of food-associated lactobacilli.

Chapter 4 deals with the molecular analysis of the Tcr determinants in isolates from fer-

mented dry sausage end products and the capacity of these isolates to transfer their

resistance to other LAB.

Chapter 5 describes the prevalence and diversity of the Tcr LAB and their Tcr determinants

along the process line of fermented dry sausages.

Finally, in chapter 6, a summary, general conclusions and future perspectives are given.
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1.1.   ANTIBIOTIC RESISTANCE AND THE FOOD CHAIN:

FROM THE STABLE TO THE TABLE

1.1.1. USE OF ANTIBIOTICS IN ANIMAL HUSBANDRY

Antibiotics have been used with great success by veterinary surgeons and farmers for at

least five decades. According to data compiled by the European Federation of Animal Health

(FEDESA), animal use is nowadays responsible for well over one third of Europe’s total

antibiotic consumption (Fig. 1.1). There are three different applications for antimicrobial

use in animals: therapy, prophylaxis and growth promotion.

Fig. 1.1. Usage of antibiotics in humans and animals in the

EU, according to data compiled by the European Federation

of Animal Health (FEDESA [http://www.fedesa.be]).

Therapeutic use of antimicrobial agents is intended to control an existing bacterial

infection. The main infectious diseases treated are enteric and pulmonary infections, skin

and organ abscesses and mastitis. The modes of application of antimicrobial agents for

therapeutic purposes differ with respect to the size of the group of animals. Individual ani-

mal treatment is commonly performed in dairy cows and calves. Whereas, for food-produc-

ing animals which are kept in larger groups, e.g. 30,000 broilers in a flock or 100 pigs in
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CHAPTER 1

one group, preference is given to group treatment. Moreover, it is more economical to pre-

vent a disease, rather than to rely on treatment.  Therefore, veterinary intervention in such

large animal groups occurs when the first animal shows symptoms of the disease. Early

medication to the entire animal group may reduce the number of sick or dead animals and

may also decrease the amount of antimicrobial agents needed to treat large numbers of the

symptomatically ill population, consequently reducing treatment costs. With such treat-

ment regimes, the antimicrobials are commonly applied via feed or water. The antimicro-

bial agents currently used to treat or prevent bacterial infections in animals are essentially

the same classes of compounds that are used in human medicine (Table 1.1).

Prophylaxis is a solely preventive measure. Its application can be to both individual

animals and to groups of animals, and is widely accepted for surgical prophylaxis in animals.

In dairy cows, the prophylactic intramammary administration of antimicrobials at therapeutic

levels at the end of the lactation period prevents mastitis by releasing the antimicrobials in

the mammary gland tissue at high concentrations for long periods. In the pork- and beef-

producing industry, prophylactic use of antimicrobials occurs at key time intervals, such as

weaning, or mixing of animals from different herds. Antimicrobial prophylaxis at these

times is essential in many piggeries and cowhouses, as without it, frequently occurring

respiratory and enteric diseases in the pigs and cattle cannot be effectively controlled. As a

consequence, animal welfare would be severely compromised, the amounts of antimicrobials

required for therapy would be increased and profitability would be drastically reduced.

Therefore, antimicrobial prophylaxis at these key periods for disease incidence is an

unavoidable measure in the current pork and beef producing systems. However, prophylactic

herd treatment is criticized for providing the basis of selection of resistance.
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ANTIBIOTIC RESISTANCE AND THE FOOD CHAIN

Growth promotion may be regarded as the stimulation of an animal’s growth during

early life by the addition of small quantities of substances, e.g. antibiotics, to its diet. Ani-

mals receiving antibiotics in their feed gain 4 to 5% more body weight than animals that do

not receive antibiotics (Anon., 1997). The mechanisms of growth promotion are still not

fully elucidated, but it is supposed to be mediated by the antibacterial effect. The growth

promoting effect of antibiotics in chickens was discovered by feeding mycelial mass of

Streptomyces aureofaciens. It was later shown that residual chlortetracycline was the ac-

tive ingredient which so dramatically increased growth (Jukes and Williams, 1953). Since

then, the use of antibiotics as growth promoters has become widespread, in the beginning

even without any restrictions. The widespread use of antibiotics as growth promoters was

first criticized by the end of the 1960s, which resulted in the “Swann Report” (Anon.,

1969). Although the economical benefits of using antibiotics, whether for therapeutic, pro-

phylactic or growth promoting purposes were clearly highlighted, much concern was ex-

pressed about the possible induction of antibiotic resistance among bacteria of human and

animal origin and the subsequent loss of effectiveness in the treatment of human bacterial

disease. The main recommendation of the Swann Report was that the use of antibiotics for

growth promotion should be restricted to antibiotics that are of economic value for live-

stock, that have little or no application as therapeutic agents in man or animals and that will

not impair the efficacy of prescribed therapeutic drugs through the development of resistant

organisms. This report was the base for the European legislation in the Directive 70/524, in

which a list was published of admitted additives with their maximum and minimum dose,

withdrawal period, and animal species for which they are allowed. Worldwide differences

in the use and regulations of antibiotics are large. In some countries other than the members

of the EU, therapeutically used antibiotics like tetracyclines and penicillins are still allowed

for growth promoting. In 1986, Sweden decided to ban all antibiotics for growth promo-

tion. The EC legislation was amended on several occasions, and since 1997 several antibi-

otics have been forbidden. The decisions were based on an acknowledged point of ‘precau-

tionary principle’, mainly out of concern for cross-resistance with therapeutic compounds

used in human medicine. Currently, only four substances are allowed for animal growth

promotion in the EU, including flavophospholipol, monensin, salinomycin and avilamycin.

These antibiotics represent compounds that are not used in human or veterinary therapy and

are unlikely to exhibit cross-resistance.
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1.1.2.  RISKS OF ANTIBIOTIC USE IN ANIMAL HUSBANDRY

It is generally accepted that antibiotics should be available for use in animal husbandry,

thereby considering both the economical aspect and the animal welfare. However, possible

adverse effects to humans can be associated with the use of antibiotics for animals. These

effects can be divided into those related to the antibacterial effects of the substances

(microbiological aspects) and those related to the chemical nature of the substance (residual

aspects).

1.1.2.1.  Emergence and spread of antibiotic resistance

The greatest threat to the use of antibiotics is the emergence and spread of resistance in

pathogenic bacteria that consequently cannot be treated by previously successful regimens.

Development of antibiotic resistance in bacteria is mainly based on two factors, the pres-

ence of resistance genes and the selective pressure by the use of antibiotics (Levy, 1992).

Prior to discussing these two factors, a distinction between intrinsic and acquired resistance

has to be made. Resistance to a given antibiotic can be intrinsic to a bacterial species or

genus (inherent or natural resistance) which results in a bacterium’s ability to thrive in the

presence of an antimicrobial agent due to an inherent characteristic of the organism. Intrinsic

resistance is not horizontally transferable, and poses no risk in non-pathogenic bacteria. In

contrast, acquired resistance is present in some strains within a species usually susceptible

to the antibiotic under consideration, and might be horizontally spread amongst bacteria.

Acquired resistance to antimicrobial agents can arise either from mutations in the bacterial

genome or through the acquisition of additional genes coding for a resistance mechanism.

These genetic changes alter the defensive functions of the bacteria by changing the target of

the drug, by changing the membrane permeability, by detoxifying or ejecting the antibiotic,

or by routing metabolic pathways around the disrupted point (Poole, 2002). Resistances are

likely to have developed long before the clinical use of antibiotics. Such resistance genes

may originate from the antimicrobial producers that carry resistance genes for protecting

themselves from their antimicrobial products (Davies, 1997). Potentially, another origin of

resistance genes may be genes of which the products play a role in the bacterial metabolism.

Such genes may undergo stepwise mutations, which change the substrate spectrum from

substrates of biosynthetic or biodegradative pathways to antibiotics (Davies, 1994).
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ANTIBIOTIC RESISTANCE AND THE FOOD CHAIN

Antibiotic resistance determinants may be vertically or horizontally spread in natural

microbial communities. A vertical dissemination is mediated by the clonal spread of a

particular resistant strain. For horizontal gene transfer in bacteria three mechanisms have

been identified (Davison, 1999): natural transformation, involving the uptake and

incorporation of free DNA from the extracellular medium; conjugation, a cell contact

dependent DNA transfer mechanism found to occur in most bacterial genera; and

transduction, a transfer mediated by bacteriophages. The relative contribution of these

different mechanisms is unknown, but conjugation is thought to be the main mode of

antibiotic resistance gene transfer (Salyers, 1995). One reason for thinking this is that many

antibiotic resistance genes have been found on mobile elements like plasmids and conjugative

transposons. A second reason is that conjugation allows DNA to move across genus and

species lines, whereas transformation and transduction are usually restricted to within the

same species.

The selective pressure imposed by the use of antimicrobial agents plays a key role in

the emergence of resistant bacteria. Whenever a mixed bacterial population is exposed to

antimicrobial agents, it is likely that there will be bacteria that are resistant to the respective

drugs at the concentration applied. Under selective pressure, the numbers of these will

increase and some may pass their resistance genes to other members of the population

(Aarestrup, 1999). The following factors influence the emergence of antibiotic resistance in

bacteria in food producing animals: (a) the spectrum of activity of the antibiotic; (b) the

number of animals exposed to antibiotics; and (c) the total amount of antibiotic used (Anon.,

1999).

A single antibiotic may not only select for resistance to that particular drug. It can also

include resistance to other structurally-related compounds of the same class; e.g. resistance

to tetracycline by tet(M) includes also resistance to oxytetracycline, chlortetracycline,

doxycycline and minocycline (Chopra and Roberts, 2001). When antibiotics of different

classes share the same target site, and this target site is modified by the product of a resistance

gene, cross-resistance between structurally-unrelated antibiotics is observed; e.g. combined

resistance to macrolides, lincosamides and streptogramins B by the erm genes (Roberts et

al., 1999). In addition, a number of plasmids have been identified which carry multiple

resistance genes, resulting in co-transfer (Levy, 1992).
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Fifty years of increasing use of antimicrobial agents has created a situation leading to an

ecological imbalance resulting in the enrichment of (multiple) antibiotic resistant bacteria,

both pathogenic and commensal, in human and animal habitats (Levy, 1997). It is clear that

hospitals present a prime opportunity for development and transfer of antibiotic resistance

(Monroe and Polk, 2000). But, there is general agreement that the exposure of animals to

antibiotics selects for antibiotic resistance in animal pathogens and enteric commensal

bacteria (Witte, 1998; Anon., 1999). This raises a potential risk that is present on different

levels. Problems may be caused in the therapy of infections in animals through the selection

for resistance among pathogenic bacteria. In addition, animals frequently harbour bacteria

pathogenic for man in their intestinal tract (e.g. the zoonotic agents, Campylobacter, Yersinia,

Listeria). Development of resistance in these zoonotic bacteria constitutes a public health

risk, primarily through the increased risk of treatment failures. Furthermore, use of antibiotics

will select for resistance genes in non-pathogenic bacteria, which may transfer the acquired

resistance to different pathogenic bacterial species.

Many analyses state that we are facing an epidemic of bacterial resistance that is at least

partially due to overuse and misuse of antibiotics. The problems caused by inappropriate

use of antibiotics reach beyond the place of use (Witte, 1998). Meat products are traded

worldwide, and evolving bacterial populations transgress geographical boundaries. In the

countries of the developing world, which are responsible for about 25% of the world’s meat

production, policies regulating veterinary use of antibiotics are poorly developed or absent.

In Russia, chloramphenicol is still in veterinary use, although toxic for man and animal. In

Southeast Asia, use of antimicrobials in shrimp farming is unregulated (Witte, 1998).

1.1.2.2.  Antibiotic residues in food

The use of antibiotics may result in residues in edible tissues, milk and eggs. De Wasch

and co-workers (1998) reported that more than 5% of pork meat samples purchased from

Belgian retail outlets contained residues of tetracyclines in concentrations ranging between

50 and 1000 µg/kg. The consumption of antibiotic residues by man could produce harmful

effects from direct toxicity or from allergic reactions. Although a great deal of concern has

been expressed about the potential risk of hypersensitivity reactions in humans consuming

antibiotic residues in food, confirmed cases are extremely rare or nonexistent for most

antibiotics, including beta-lactams (Dayan, 1993).
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Undesirable consequence of residues in food could also result from antimicrobial activity

directed against the gastro-intestinal microflora of humans. It would manifest itself by

altering or reducing the protective barrier against infection provided by commensal gut

flora. From in vivo studies with human volunteers it was concluded that the amount of

residues left by drugs in veterinary practice or animal food supplements is too low to be a

major cause of the selection of bacterial resistance in the human gut (Tancrede and Barakat,

1989; Corpet, 1987).

Technological problems may arise as a consequence of antimicrobial residues in meat

used for the production of fermented dry sausage. The starter cultures used for fermentation

of meat might be inhibited, resulting in a fermentation failure. The presence of penicillin (>

2 IU/g) or erythromycin (> 0.125 µg/g) has been reported to delay or stop fermentation

(Holley and Blaszyk, 1997).

As for all drugs administered to food-producing animals, a maximum residue limit

(MRL) has been established for antibiotics, and included in the European Council Regulation

N° 2377/90. The purpose of the MRL was to determine the withdrawal time, which would

allow levels of the antimicrobial to drop to approved levels, before milk or eggs could be

sold, or before animals could be slaughtered for food. It is assumed that quantities below

the MRL mean no harm to the consumer. The MRL differs depending on the tissue (muscle,

liver, kidney, milk, skin, fat) and animal species. In cases in which the MRL is exceeded,

either the withdrawal time was not observed or an overdose was administered. If a random

check reveals residues above the MRL, the producer is responsible and juridical and

economical sanctions are applied.

In general, antibiotic residues in meat and other foodstuffs can be considered as a low

risk to public health.

1.1.3.  ROUTES OF DISSEMINATION OF ANTIBIOTIC RESISTANT BACTERIA

Antimicrobial resistance can emerge in bacteria residing in individual animals and humans

exposed to antimicrobial agents. Hospitals and animal husbandry sites are powerful foci of

antibiotic selective pressure, but antibiotic treatment in the human community should be

taken into consideration as well. Subsequent spread of the resistant bacteria between different

environments can occur directly by skin-to-skin contact; contact with bacteria-containing
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Of all antibiotic resistant zoonotic bacteria causing infections in humans, Salmonella,

Campylobacter, E. coli and Enterococcus are considered to be the major species that can

be traced to animal sources with a high degree of certainty (Witte, 1998). Their predominant

way of reaching humans is via the food chain. However, once established in a human

population (not always associated with disease), such pathogens can also be spread in

various ways between humans. Therefore, it is important to consider that the aforementioned

zoonotic bacteria isolated from a human source may not necessarily have originated directly

from animals shedding the bacteria or from contaminated animal products (Molbak et al.,

1999).

Fig. 1.2. Routes of transmission of antibiotic resistant bacteria and resistance genes. Adopted

from (Witte, 2000)

material (saliva, faeces, etc), or by the uptake of contaminated food, feed, air or water (Fig.

1.2). When reaching the new host, resistant bacteria can either colonize and infect, or remain

in that particular environment for only a very short period of time. During this period, the

resistant bacteria cannot only spread their resistance genes to other bacteria residing in the

new host (commensals or pathogens), but can also accept resistance genes from other bacteria

(Salyers, 1995).
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Compared to antibiotic resistance in pathogenic bacteria, relatively few studies have

investigated acquired antibiotic resistance in non-pathogenic bacteria, including commensal

bacteria of humans and animals, and plant and soil bacteria. It has been proposed that

commensals may act as a reservoir for antibiotic resistance genes found in human pathogens

and are thus very important in our understanding of how antibiotic resistance genes are

maintained and spread through bacterial populations (Levy and Miller, 1989). The main

threat associated with these bacteria is that they can transfer resistance genes to pathogenic

bacteria. In 1998, the Reservoirs of Antibiotic Resistance network project (ROAR network

[http://www.apua.org]) was set up in order to promote the studies on the selection and

dissemination of non-pathogenic antibiotic resistant bacteria in humans, during food

production and agricultural processes, and in the environment.

The transfer of resistant bacteria between animals and humans is often difficult to prove,

and evidence of the direction of transfer is even more difficult to obtain. Since antibiotics of

the same class such as tetracyclines, aminoglycosides, macrolides and beta-lactams, have

been used for decades in both humans and animals, resistance to these antibiotics has also

been selected for and transferred, and probably vice versa, in both groups of hosts. Once a

resistance gene has become widely disseminated, it is difficult to trace it back to its origin.

Characterization studies on resistance genes and plasmids in human and animal staphylococci

have revealed the presence of identical resistance genes located on indistinguishable plasmids

(Schwarz and Noble, 1994). Such studies produced strong evidence for the transfer of

plasmids between human and animal bacteria, but in most cases it is impossible to trace

where and when the original plasmid was developed, as well as the sequence of transfer

events that have taken place since. There is no question that the risk of acquisition of resistant

bacteria from animals is higher in humans who stay in close contact to animals or animal

products, such as farmers or abattoir workers. The highest risk is for veterinarians who

have daily contact with clinically ill animals that may shed resistant pathogens. Moreover,

they work in an environment where a high selective pressure resulting from the use of

antimicrobials, is common.

The spread of resistant bacteria from animals to humans is, in principle, possible, and

there is evidence in the literature that such transfer events occurred even bilaterally (Seguin

et al., 1999). The frequency with which resistance properties are transferred between animals

and humans is difficult to quantify. Therefore, little reliable data are available to develop a

quantitative risk assessment.
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1.1.4.  ANTIBIOTIC RESISTANT BACTERIA IN FOOD

It was suggested that the majority of antibiotic resistant bacteria in the gastro-intestinal

tract of healthy humans originate from contaminated food. In an experiment by Corpet

(1988), six healthy volunteers were given a control diet for three weeks, followed by a

sterile diet for 2.5 weeks. During both periods, total and antibiotic resistant Enterobacteriaceae

in stools were counted. A drastic drop in faecal concentrations of antibiotic resistant

enterobacteria was observed during the sterile-diet period (Corpet, 1988). As animals are in

many ways part of the human food chain, transfer of antibiotic resistant bacteria from animals

to humans via food would be expected to occur (Teuber and Perreten, 2000). In spite of the

fairly high hygienic standards in most developed countries, contamination of raw meat and

milk with skin and faecal microflora cannot be avoided completely during slaughtering and

milking. Enteric pathogens are readily transmitted through foods, as are antibiotic resistant

pathogens and commensals. Most foods are heat treated before consumption and hence, no

viable resistant bacteria would be expected to be present in the final product. However,

food-borne infections with infectious doses as high as 106 – 109 (as for salmonellosis) are

relatively common. This proves that recontamination is common and viable bacteria can be

present in relatively large numbers in food when consumed. The spread of resistant bacterial

strains is well documented for zoonotic pathogens, but not as much for commensals (Witte,

2000). Since the early 1990s there has been a dramatic increase in antibiotic resistance in

Salmonella and Campylobacter spp., and to a lesser extent in Vero cytotoxin-producing

Escherichia coli (VTEC) O157 from cases of human infection in developed countries

(Threlfall et al., 2000).

An important aspect in the observed increase of antibiotic resistance in Salmonella

species is due to the emergence and clonal spread of multidrug-resistant S. typhimurium

DT104 (with chromosomally-encoded resistances towards ampicillin, chloramphenicol,

streptomycin, sulphonamides and tetracycline), which now appears to have an almost

worldwide distribution (Threlfall, 2000). Human infection with multi-resistant DT104 has

been associated with the consumption of chicken, beef, pork sausages, and meat paste, and

to a lesser extent with contact with food animals. In Denmark an outbreak of multi-resistant

DT104 that could be traced back to a Danish swine herd, resulted in hospitalisation of

eleven patients. Two of them died because of the strain’s reduced susceptibility (Molbak et

al., 1999). For other common serotypes of Salmonella, food animals were also the primary
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reservoir from where they are spread through the food chain to humans (Threlfall et al.,

2000).

Infections with Campylobacter jejuni or C. coli are sporadic single cases resulting from

the consumption of contaminated food, milk or water. Undercooked of mishandled poultry

appears to be the most important source of infection (Nachamkin and Blaser, 2000). C.

jejuni and C. coli are generally susceptible to a variety of antibiotics. However, increasing

resistance to some antibiotics has been documented. The most common resistance phenotypes

observed were tetracycline, nalidixic acid and ciprofloxacin (White et al., 2002).

Although multiple resistance remains rare in verocytoxigenic Escherichia coli O157

(VTEC 0157), resistance to certain antibiotics and particularly to sulphonamides and

tetracyclines, is increasing in incidence (Schmidt et al., 1998).

Listeriosis is an emerging food-borne disease, and numerous outbreaks that occurred

during the last decade could be linked to contaminated food (Farber and Peterkin, 1991).

With the exception of tetracycline resistance (Facinelli et al., 1993), the proportion of Listeria

spp. resistant to antibiotics remains low (Charpentier and Courvalin, 1999; Roberts et al.,

1996). It has been suggested that, in humans and animals, the digestive tract was the

privileged site for acquisition by Listeria spp. of conjugative plasmids and transposons

coding for resistance from Enterococcus and Streptococcus (Doucet-Populaire et al., 1991).

Antibiotic resistant enterococci have been found in meat products, dairy products, ready-

to-eat foods and even within probiotics (Teuber and Perreten, 2000; Quednau et al., 1998;

Pavia et al., 2000; Giraffa, 2002; Giraffa and Sisto, 1997; Davies and Roberts, 1999; Wegener

et al., 1997; Franz et al., 2001). Once ingested, antibiotic resistant enterococci can survive

gastric passage and multiply, thus leading to sustained intestinal carriage. A dozen healthy

volunteers were fed a single dose in milk of either glycopeptide resistant or streptogramin

resistant strains of E. faecium obtained from raw chicken and pork. After ingestion, the

resistant enterococci not only survived but also multiplied in the intestinal tract, and were

present in the stool for up to 2 weeks (Sorensen et al., 2001; Bertrand et al., 2000).

Little information on antibiotic resistance in relation to non-pathogenic bacteria, the

‘normal’ flora in foods is available, although they may act as reservoirs of resistance genes.

Antibiotic resistant coagulase-negative staphylococci (CNS) commonly found on the body

of animals, may contaminate milk or meat and are subsequently to be found in fermented

food made with raw material (Teuber et al., 1996). Furthermore, the CNS were suggested

to be a reservoir of antibiotic resistance genes which can be transferred to Staphylococcus

aureus (Perreten et al., 1998). A streptomycin-, tetracycline-, and chloramphenicol-resistant
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Lactococcus lactis subsp. lactis was isolated from a raw milk soft cheese (2 x 108 CFU/ g)

containing a conjugative plasmid coding for the three resistances (Perreten et al., 1997b).

Also other lactic acid bacteria were reported to be resistant to antibiotics (Charteris et al.,

1998; Orberg and Sandine, 1985; Vidal and Collins-Thompson, 1987; Raccach et al., 1985;

Reinbold and Reddy, 1974; Olukoya et al., 1993; Katla et al., 2001).

Although it can be expected that meat eaters might have higher levels of resistant colif-

orms, raw vegetables and salads are likely to carry large numbers of resistant bacteria caused

by contamination with sewage and manure (Corpet, 1988; Fernandez-Astorga et al., 1995;

Levy, 1984; Linton, 1986).

1.1.5.  REDUCING THE USE OF ANTIMICROBIAL AGENTS IN ANIMAL

HUSBANDRY

The possession of a resistance gene can be considered beneficial to the bacterial host

when residing in an environment under antibiotic pressure. However, in the absence of

active antibiotic pressure, resistant genotypes may suffer a cost of resistance, and have

growth rates that are lower than their sensitive counterparts. Mutations that confer resistance

do so by disrupting some normal physiological process in the cell, thereby causing possible

disadvantageous side effects. In the case of plasmid-encoded resistance functions, bacteria

must synthesize additional nucleic acids and proteins; this synthesis imposes an energetic

weight and the products that are synthesized may also interfere with the cell’s physiology

(Lenski, 1997). Resistant bacteria may therefore be metabolically weaker compared to

sensitive genotypes in the absence of antibiotics. If so, then a possible strategy for containing

the spread of antibiotic resistance would be to suspend the use of a particular antibiotic

until the corresponding resistant genotypes had declined to low frequency. Langlois and co-

workers (1986) found that swine herds deprived of all exposure to antibiotics for 14 years

showed a decline of tetracycline resistance in coliforms from 94% to about 53%. However,

when the swine that did not get antibiotics for so long, were placed on a truck and moved

322 km to a new location, tetracycline resistance increased to 82% in the absence of antibiotic

exposure. Further, a single course of chlortetracycline raised the level of coliform resistance

to levels equivalent to a control herd receiving chlortetracycline in the diet for 13 years. The

authors concluded that only a complete deprivation of antibiotics would reduce the level of
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antibiotic resistance in the swine herd and that was not practicable, considering the occasional

need for therapy.

An important question is whether bacteria can overcome the cost of resistance by

evolving adaptations that counteract the harmful side effects of resistance genes. In fact,

several experiments have shown that the cost of antibiotic resistance may be substantially

diminished or even eliminated, by evolutionary changes in bacteria over rather short periods

of time (Andersson and Levin, 1999). Lenski and coworkers (1994) have shown that repeated

subculture of a plasmid-containing strain under selective conditions eventually gave rise to

a variant of the plasmid obtained by mutation(s) that was much more stable in the absence

of selection than the original form of the plasmid. Similar reductions in the cost of

chromosomal mutations that confer antibiotic resistance have been reported, including

streptomycin (Schrag and Perrot, 1996) and rifampicin (Cohan et al., 1994) resistance. As

a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly

difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.

Moreover, multiple resistance genes can be associated with a single mobile element,

consequently the non-use of a certain antibiotic will not necessarily result in a decrease in

resistance (Salyers and Amabile-Cuevas, 1997). This has been shown in the DANMAP

study, where glycopeptide resistance in Enterococcus spp. from broilers significantly

decreased after the ban of avoparcin (Bager et al., 1999). In pigs, however, it stayed at

similar levels due to the co-selection of multiresistance plasmids carrying the vanA gene

cluster by the use of the macrolides antibiotic tylosin (Bager et al., 1999). Following a

decrease of use in tylosin during 1998 and 1999, the occurrence of glycopeptide resistance

in pigs decreased in 2000 (Aarestrup et al., 2001).

Even with optimal antibiotic use, antibacterial resistances will probably not decline quickly

and existing resistances are unlikely to vanish. Therefore, the diffusion of existing antibacterial

resistance in the population should be limited, and the emergence of new strains of resistant

bacteria should be avoided, by considering the extent and type of antibiotic use for both

humans and animals. Worldwide, antibiotics that select for resistance against antibiotics

used for human therapy should no longer be used as animal growth promoters, as it is

currently the case in the EU (Witte, 1997). In addition, new classes of antimicrobials, such

as ketolides, glycylcyclines, or oxazolidinones, which are currently under development or

in clinical trials, have to be exclusively reserved for human therapy (Chopra, 2001).

Consequently, in the near future, no new classes of antimicrobial agents are expected to

become available in veterinary medicine, and veterinarians have to rely on those antimicrobial
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agents currently available. In the long run, an industrial investment in alternatives to

antimicrobials for animal growth promotion may pay off in more efficient production of

food animals as well as protection of the fragile resources that are critical to successful

management of infectious diseases (Witte, 1998). Alternatives such as (i) the implementation

of very high standards of hygiene to improve animal health status, e.g. an all-in-all-out

system of production, vaccination and (ii) the use of enzymes, probiotics or competitive

exclusion products for promoting growth and feed utilisation efficiency, may actually

represent additional preventive measures rather than real alternatives (Schwarz et al., 2001).

To retain the efficacy of the antimicrobial agents currently available for the control of bacterial

infections, an accurate diagnosis, a careful choice of the respective agents and prudent use

should be undertaken.
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MODE OF ACTION, APPLICATIONS & USE,
AND MOLECULAR BIOLOGY OF RESISTANCE

1.2.1. INTRODUCTION

Discovered in the late 1940s, the tetracycline family of antibiotics has now been used for

more than 40 years (Table 1.2). The tetracyclines were one of the first groups of antimicrobial

agents for which the term broad spectrum was used, because they inhibit protein synthesis

of a wide range of Gram-positive and Gram-negative bacteria, atypical organisms such as

Chlamydiae, mycoplasmas, Rickettsiae, and protozoan parasites. Because of the spectrum

of activity, the absence of major adverse side effects, and the low production cost, tetracyclines

have been widely used throughout the world in fighting infections in humans, animals,

fish, and plants. Given their long history of extensive use, resistance to tetracyclines has

become widespread (Levy, 1992), resulting in a reduced effectiveness. Nevertheless, they

retain to play important roles in both human and veterinary medicine. A new generation of

tetracyclines, the glycylcyclines, is specifically being developed to overcome problems of

resistance to first and second generation tetracyclines (Chopra, 2001).

Generation Generic name Origin Year of discovery Status

chlortetracycline S. aureofaciens 1948 marketed

oxytetracycline S. rimosus 1948 marketed

tetracycline S. aureofaciens, S. rimosus, S.

viridofaciens

1953 marketed

demethylchlortetracycline S. aureofaciens 1957 marketed

rolitetracycline semisynthetic 1958 marketed

limecycline semisynthetic 1961 marketed

methacycline semisynthetic 1965 marketed

doxycycline semisynthetic 1967 marketed

minocycline semisynthetic 1972 marketed

III glycylcyclines semisynthetic 1993
Phase III

clinical trials

Adapted from (Chopra and Roberts, 2001) S .: Streptomyces

Table 1.2. Principal members of the tetracycline family of antibiotics

I

II
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1.2.2.  MODE OF ACTION

Two different groups of tetracyclines are distinguishable by their mode of action: typical

tetracyclines such as tetracycline, chlortetracyclines, doxycycline, or minocycline exhibit

bacteriostatic activity, whereas some tetracycline derivatives are bactericidal (Chopra, 1994).

The bacteriostatic activity of typical tetracyclines is associated with the reversible inhibition

of protein synthesis (Schnappinger and Hillen, 1996). Atypical tetracycline derivatives

have been suggested to target the cytoplasmic membrane since they cause morphological

alterations of the bacterial cell and trigger release of beta-galactosidase from the cytoplasm

(Oliva et al., 1992). These derivatives have no therapeutic value because their action on the

membrane is not specific for the prokaryotic cell, and will be excluded from further discussion.

In order for tetracyclines to interact with their targets these molecules need to traverse

one or more membrane systems depending on whether the susceptible organism is Gram-

positive or Gram-negative (Schnappinger and Hillen, 1996). Tetracyclines traverse the outer

membrane of Gram-negative bacteria through porin channels, probably chelating a Mg2+

ion. The cationic metal ion-antibiotic complex is attracted by the Donnan potential across

the outer membrane, leading to accumulation in the periplasm, where the metal ion-

tetracycline complex probably dissociates. A weakly lipophilic molecule diffuses through

the lipid bilayer regions of the inner (cytoplasmic) membrane. Similarly, the electroneutral,

lipophilic form is transferred across the cytoplasmic membrane of Gram-positive bacteria.

Uptake of tetracyclines across the cytoplasmic membrane is energy dependent and driven

by the ∆pH component of the proton motive force (PMF = ∆pH + ∆ψ), consequently the

antibacterial activity is influenced by pH and Mg2+ concentration in the extracellular medium.

The molecular biochemistry of the mode of action of tetracyclines is not completely

understood. They probably act by reversible binding to the bacterial 30S ribosomal subunit

and thereby preventing the attachment of aminoacyl-tRNA to the ribosomal receptor, resulting

in an inhibition of protein synthesis. Further research on the ribosome-tetracycline interaction

and its correlation with the inhibition of protein synthesis is necessary to reveal the molecular

mechanism (Chopra and Roberts, 2001).

The absence of a major anti-eukaryotic activity explains the selective antimicrobial

properties of the tetracyclines. At the molecular level, this selectivity results from relatively

weak inhibition of protein synthesis by 80S ribosomes and poor accumulation in mammalian

cells (Chopra and Roberts, 2001).
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1.2.3.  APPLICATIONS & USE OF TETRACYCLINES

Tetracyclines have been used extensively since their introduction in the early 1950s.

They are the second most used group of antibiotics after the penicillins and they still have

different applications in various fields.

Humans. Nowadays, tetracyclines are still applied for treatment of infections by

Chlamydiae (lymhogranuloma), Rickettsiae (rickettsiosis), Leptospira spp. (leptospirosis),

Borrelia spp. (lyme disease, relapsing fever), Bartonella quintana (trench fever) and to

treat acne (Sanfordet al., 2002). Mainly doxycyclines are used and are of value primarily in

the prophylaxis and treatment of community-acquired infections, rather than for nosocomial

infections. A recent report on the use of antibiotics in Dutch hospitals supports this view

(Janknegt et al., 2000). New applications of tetracyclines include treatment of stomach

ulcers caused by Helicobacter pylori (one of the three components in a triple formulation),

treatment of rheumatoid arthritis, and treatment of infections with methicillin-resistant

Staphylococcus aureus (Hunter and Hill, 1997).

Animals. The agricultural market for tetracyclines far exceeds the use for humans. This

is particularly true in fish farming. In Germany for instance, oxytetracycline and

chlortetracycline are the only antibiotics licensed for use in aquaculture (Hunter and Hill,

1997). In some countries, regulations on the use of antimicrobials may exist, but are not

always effectively enforced, in others no regulatory regime exists (WHO, 1999). In addition,

the tetracyclines have applications for the treatment of infections in poultry, cattle, sheep,

and swine. In some cases, e.g. for therapeutic treatment of large numbers of poultry, the

antibiotics are added directly to feed or water or can be administered in aerosols. According

to data compiled by the European federation of animal health (FEDESA [http://

www.fedesa.be]) tetracyclines are the most frequently used antibiotics in animal husbandry

(66% of the total amount, corresponding to 2294 tons/year). Tetracyclines are also used for

treatment of infections in domestic pets (Kordick et al., 1997). Although tetracyclines were

banned as growth promoters in Europe in the early 1970s, no such ban has been imposed in

other parts of the world such as the United States and Australia (Chopra and Roberts,

2001). According to data collected from a survey by the Animal Health Institute (representing

companies in the US that make medicines for pet and farm animals) the volume of antibiotics
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used in animals in the US in 1999 amounts to 9280 tons of active ingredient. Approximately

15% is used as growth promoters, of which the majority are antibiotics banned in the EU.

Tetracyclines, the second most used antibiotics, count for 16% of the total amount

(corresponding to 1470 tons), whereof 5,4% (80 tons) is used as animal growth promoters.

Other uses. Tetracyclines are (i) sprayed onto fruit trees and other plants to treat infection

by Erwinia amylovora (lethal yellowing), (ii) injected in palm trees to treat mycoplasma

infections, and (iii) used to control infection of seeds by Xanthomonas campestris (black

rot) (Levy, 1992). They also have applications in the treatment of insects of commercial

value, e.g. oxytetracycline is used to treat foulbrood disease of the honeybee, which is caused

by either Bacillus larvae or Streptococcus pluton (Levy, 1992).

1.2.4.  RESISTANCE TO TETRACYCLINES

Bacterial resistance to tetracyclines was first reported in Shigella dysenteriae in 1953,

shortly after their discovery (Roberts, 1996). Prior to this, the majority of commensal and

pathogenic bacteria were susceptible to tetracyclines, as illustrated by the finding that among

433 different members of the Enterobacteriaceae collected between 1917 and 1954, only

2% were tetracycline resistant (Hughes and Datta, 1983). The emergence of resistance has

followed the introduction of these agents for human, animal, and agricultural use. Tetracycline

resistance (Tcr) has now become widespread in both Gram-negative and Gram-positive

species due to acquisition of tetracycline resistance genes (tet genes) located on transposons

or plasmids. So far, three different bacterial strategies of Tcr have been identified, and more

than 30 different genes have been reported.

1.2.4.1.  Nomenclature of tetracycline resistance determinants

Currently, two tet genes are considered to belong to the same class and are given the

same gene designation if they have ≥ 80% of their amino acid sequence in common (Levy et

al., 1999). The correct nomenclature is as shown in Table 1.3. A total of 29 classes of tet

genes and four classes of oxytetracycline resistance (otr) genes have been described and

characterized (Table 1.4). There is no inherent difference between a tet and an otr gene. The
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otr genes were first identified in oxytetracycline-producing Streptomyces, and thus the

nomenclature reflects the organisms first shown to carry the particular gene.

Gene Protein Gene Protei

n Tet n tet (n) Tet(n) tetR (n) TetR(n

Adopted from (Levy et al. , 1999);
a
Class n is used as an example, where n is a lette

not R) or a number (30, 31, 32, etc.);
b

Note the space between Tet and n;
c

In the

multiple structural genes, the following format is used tetA (n), tetB (n), etc.

Table 1.3. Nomenclature of tetracycline resistance determinants

Class 
a

Determinant 
b

Structural 
c

Regulatory (represso

1.2.4.2.  Mechanisms of tetracycline resistance

Resistance to tetracyclines is primarily due to acquisition of tet genes rather than to

mutation of existing chromosomal genes. There are three mechanisms by which organisms

become resistant to tetracyclines (Table 1.4): (i) reduction of the intracellular concentration

of tetracycline (efflux proteins), (ii) protection of the ribosome as the antibiotic target

(ribosomal protection proteins), and (iii) inactivation of the antibiotic by modifying enzymes.

Tetracycline specific efflux proteins. The efflux proteins are the best studied Tet

determinants. They belong to the major facilitator superfamily (MFS), of which products

include over 300 individual proteins (Paulsen et al., 1996). All the tetracycline efflux genes

(n = 20) code for membrane-associated proteins which export tetracycline from the cell.

Export of tetracycline reduces the intracellular drug concentrations and thus protects the

ribosomes within the cell. Most of these efflux proteins confer resistance to tetracycline but

not to minocycline or glycylcyclines. An exception is Tet(B), which confers resistance to

both tetracycline and minocycline but not to glycylcyclines. However, laboratory-derived

mutations in tet(A) and tet(B) have led to glycylcyclines resistance, suggesting that bacterial

resistance to this group of drugs may develop over time and with clinical use (Chopra and

Roberts, 2001). Each of the efflux genes code for an approximately 46-kDa membrane-

bound efflux protein with either 12 (Gram-negative) or 14 (Gram-positive) predicted

transmembrane α-helices. The efflux proteins exchange a proton for a tetracycline-cation

complex against a concentration gradient. Tetracycline efflux proteins share amino acid and

protein structure similarities with other efflux proteins involved in multiple-drug resistance,

quaternary ammonium resistance, chloramphenicol, and quinolones resistance (Sheridan

and Chopra, 1991).
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Genes coding for Fou

Efflux proteins

tet (A), tet (B), tet (C), tet (D), tet (E)

tet (F), tet (G), tet (H), tet (I), tet (J)

tet (Y), tet (30), tet (31), tet (34)
d
, tet (35)

tet P(A)
c
, tet (V)

c
, tet (Z), tet (33) G

otr (B)
d

G + & Stre

tet (K), tet (L) G - & G + & 

tcr 3
b

Strepto

Ribosomal protection proteins

tet P(B)
c
, tet (S), tet (T), tet (32)

c
G

tet (M), tet (O), tet (W), tet (Q) G - &

otr (A)
d

G + & Stre

tet
b

Strepto

Emzymatic inactivation of tetracycline

tet (X) G

Unknown
e

tet (U) G

otr (C)
 d

Strepto

Table 1.4. Mechanisms of resistance for characterized tet  and otr  g

G

a/ adapted from (Chopra and Roberts, 2001) and supplemented

(Melville et al., 2001; Nonaka and Suzuki, 2002; Teo et al., 20

positive, G-: Gram-negative; b/ these genes have not been given n

(Levy et al., 1999); c/ so far only reported in anaerobic species; d

resistance gene; e/ tet (U) has been sequenced but does not appear

Ribosomal protection proteins. Ribosomal protection is the most widespread of the

Tcr mechanisms. Ribosomal protection proteins (RPP) are cytoplasmic proteins (72-kDa)

which protect the ribosomes from the action of tetracycline, doxycycline and minocycline.

They confer a wider spectrum of resistance to tetracyclines than is seen for bacteria carrying

tetracycline efflux proteins. The RPP have homology to elongation factors EF-Tu and EF-G

(Taylor and Chau, 1996). The greatest homology is seen at the N-terminal area, which

contains the GTP-binding domain. Current data suggest that the ribosomal protection proteins

bind to the ribosome. This causes an alteration in ribosomal conformation which prevents

tetracycline from binding to the ribosome, without altering or stopping protein synthesis.

The hydrolysis of GTP may provide the energy for the ribosomal conformational change.
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The Tet(M) and Tet(O) proteins are the most extensively characterized members of the

ribosomal protection group. It has been assumed that the other proteins in the RPP group

have GTPase activity and interact with tetracycline and the ribosomes in similar ways,

because of the similarities at the amino acid sequence level. Based on the amino acid sequence

comparison, the ribosomal protection proteins can be divided into three groups. The first

group includes Tet(M), Tet(O), Tet(S), Tet(32), and Tet(W). The second group includes the

Tet(Q) and Tet(T) proteins, while the third group consists of TetB(P) and Otr(A). For most

tet genes, only one representative from each class has been sequenced. One exception is the

tet(M) gene, which has been sequenced from a number of Gram-positive and Gram-negative

species. By comparing these sequences, a mosaic structure was detected which could be

traced to two distinct alleles (Oggioni et al., 1996). The two alleles displayed a divergence

of 8% and a different %G+C content. The block structure of these genes provides evidence

for the contribution of homologous recombination to the evolution and the heterogeneity of

the tet(M) locus.

Enzymatic inactivation of tetracycline. The only example of tetracycline resistance

due to the enzymatic alteration of tetracycline is coded by the Tet X determinant, found in

the Gram-negative anaerobe Bacteroides sp. (Speer et al., 1991). The gene product was

shown to be a 44-kDa cytoplasmic protein that chemically modifies tetracycline in the

presence of both oxygen and NADPH. Sequence analysis indicated that this protein has

amino acid homology with other NADPH-requiring oxidoreductases. It does not function

in the natural anaerobic Bacteroides host, but has been shown to function after cloning in

E. coli (Speer et al., 1991).

Other/unknown mechanisms of resistance. The plasmid-borne Tet(U) determinant

that provides low-level resistance to both tetracycline and minocycline in Enterococcus

faecium, was tentatively categorized as related to the ribosomal protection protein family

(Ridenhour et al., 1996). However, the predicted protein of only 105 amino acids had little

sequence identity to any other tetracycline-resistant protein, and the mechanisms are thus

listed as unknown (Table 1.4). The otrC gene from Streptomyces sp. has not been sequenced,

and its mechanism is unknown. A new Mg2+-dependent oxytetracycline resistance gene

tet(34) was recently reported in Vibrio (Nonaka and Suzuki, 2002). The amino acid sequence

of the ORF was homologous to sequences of several bacterial xanthine-guanine

phosphoribosyltransferases (XPRT), which act in purine nucleotide synthesis. Mg2+ binding
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site residues and the active site were highly conserved in XPRT and the ORF of Tet 34.

Other efflux systems. Bacteria have a number of innate chromosomally-encoded proteins,

which transport molecules in and out of the cell. Some of these efflux pumps exhibit an

extremely wide specificity covering many antibiotics, chemotherapeutic agents, detergents,

dyes, and other inhibitors. These proteins have been divided into groups which include the

major facilitator superfamily (MFS), the resistance-nodulation-cell division (RND) family,

the small multidrug resistance (SMR) family, and the ATP-binding cassette (ABC) transport

family (Nikaido, 1998). The MFS, RND and SMR families use the proton motive force as

the driving force for efflux. In contrast, the ABC transporters use ATP hydrolysis. Some, but

not all of these efflux pumps confer resistance to tetracycline. Examples of these are the Acr

system found in E. coli, the multiple Mex systems in Pseudomonas aeruginosa and related

operons in Stenotrophomonas maltophilia, Burkholderia cepacia, Campylobacter jejuni

and Neisseria gonorrhoeae, and the mar locus and the emrE gene in E. coli (Chopra and

Roberts, 2001).

Point mutations. The first ribosomal mutation giving rise to clinical tetracycline resistance

was described in 1998 in isolates of Propionibacterium (Ross et al., 1998). A change of a

guanine to a cytosine at position 1058 in the 16S rRNA was found to be associated with an

increase in the MIC to tetracycline and doxycycline, and was not seen in any susceptible

strain. This region of the 16S rRNA, known as helix 34, is important for peptide chain

termination and translational accuracy. The mutation was re-created in rrnB, the E. coli

gene for 16S rRNA, and cloned on a multicopy plasmid (Ross et al., 1998).

An E. coli strain bearing this plasmid was more resistant to tetracycline and had a longer

lag-phase if grown without the drug, the latter reflecting a slight loss of ribosome function.

Mutations which alter the permeability of the outer membrane porins and/or

lipopolysaccharides can also affect bacterial susceptibility to tetracycline and other agents

(Schnappinger and Hillen, 1996). How often these mutations occur and whether they are of

clinical importance has not been established.
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1.2.4.3.  Incidence and distribution of tetracycline resistance

Tet determinants are found in a variety of bacteria isolated from man, animals, food and

environment (Chopra and Roberts, 2001). The majority of these determinants have been

associated with plasmids and/or transposons. Furthermore, tetracycline itself is able to

promote the mobility of some elements by stimulating the frequency of conjugation (Hunter

and Hill, 1997). These genetic properties of resistance determinants and the continued use

and misuse of tetracycline in medicine, veterinary medicine, and agriculture have probably

caused (or at least stimulated) their distribution to virtually all groups of bacteria formerly

susceptible to tetracyclines. The widespread distribution of specific tet genes such as tet(B)

or tet(M) support the hypothesis that the tet genes are exchanged by bacteria from many

different ecosystems.  The tet(B) gene has the widest host range of the Gram-negative tet

genes and has been identified in more than 20 Gram-negative genera, while tet(M) is found

in more than 25 genera including Gram-negative and Gram-positive bacteria. It was

suggested that some genes, such as tet(E), may have a more limited host range because they

are located on non-mobile plasmids, which reduces opportunities for transfer to other species

and genera (DePaola and Roberts, 1995). Obligatory intracellular pathogens such as

Chlamydiae and Rickettsiae have not yet acquired tetracycline resistance. Since these bacteria

grow only inside cells, it would require that cells be infected with two genera to allow gene

exchange into the obligate intercellular pathogen. Therefore, tetracyclines remain

antimicrobial agents of primary choice to treat infections with Chlamydiae and Rickettsiae

(Sanfordet al., 2002).

Based on current data, most tet genes may be divided in “Gram-negative tet genes” and

“Gram-positive tet genes” (Chopra and Roberts, 2001) (see also Table 1.4). The “Gram-

negative tet genes” are those which have (so far) been found exclusively in Gram-negative

bacteria, i.e. tet(A) – tet(E), tet(F), tet(G), tet(H) – tet(J), tet(Y), tet(30), and tet(31). These

genes have higher G+C contents (> 40%) than those of Gram-positive origin. All of the

Gram-negative tet genes encode efflux proteins and do not express well if moved into Gram-

positive hosts. The “Gram-positive tet genes” are those which are usually found in Gram-

positive species, but more importantly, have relatively low G+C contents (< 35%). The

genes exclusively found in Gram-positive bacteria are tetP(A), tetP(B), tet(S), tet(T), tet(U),

tet(V), tet(Z), tet(32), otr(B), and otr(A). Other tet genes, such as tet(K), tet(L), tet(M),

tet(O), tet(W), and tet(Q), are found in both Gram-positive and in an increasing number of

Gram-negative species. The ribosomal protection genes are generally thought to be of Gram-
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positive origin but are now often found in a variety of aerobic and anaerobic Gram-negative

species (Roberts, 1997). The Gram-positive genera and Streptomyces often have individual

isolates that carry multiple tet genes, which can have either the same mode of action (efflux

or ribosomal protection), or different modes of action (efflux and ribosomal protection)

(Roberts, 1997). This is uncommon in Gram-negative bacteria. The reason for this is

unknown, but a similar situation exists for the carriage of other antibiotic resistance genes

(Roberts, 1996).

 Commensal bacteria have the same tet genes, plasmids, and transposons as their

disease-producing counterparts among the opportunistic and pathogenic bacteria, e.g.

Haemophilus (Marshall et al., 1984), Neisseria (Knapp et al., 1988), Bacteroides (de

Barbeyrac et al., 1991), Bacillus (Sakaguchi and Shishido, 1988) and Streptococcus

(Fitzgerald and Clewell, 1985). However, these commensal bacteria have not yet been as

extensively examined as bacteria causing human diseases. Nevertheless, it has been proposed

that commensal bacteria may act as a reservoir for tet and other antibiotic resistance genes

found in human pathogens and are thus very important in our understanding of how antibiotic

resistance genes are maintained and spread through bacterial populations (Roberts, 1994).

The Gram-negative efflux determinants are normally found on transposons inserted into

a diverse group of plasmids from a variety of incompatibility groups, with restricted or

broad host ranges (Roberts, 1997). The Tet E determinant differs from the Tet A, Tet B, Tet

C, and Tet D because it is associated with large plasmids that are neither mobile nor

conjugative (DePaola and Roberts, 1995). The Gram-positive Tet K and Tet L determinants

are found on small transmissible plasmids that can become integrated into the chromosome

(McMurry and Levy, 2000). The ribosomal protection determinants Tet S and Tet O can be

found on conjugative plasmids, or in the chromosome, where they are not self mobile

(Charpentier et al., 1994; Luna and Roberts, 1998). The Tet M determinant is often associated

with conjugative chromosomal elements of the Tn916-Tn1545 family, which code for their

own transfer (Franke and Clewell, 1981; Courvalin and Carlier, 1987). This group of elements

form circular intermediates, which are essential for both intracellular transposition and

intercellular conjugative transfer (Flannagan et al., 1994). The two transposons Tn916 and

Tn1545 differ in size (18 versus 25.2 kb, respectively) and in the antimicrobial resistance

which they encode (resistance to tetracycline and to tetracycline/erythromycin/kanamycin,

respectively). Despite these differences, the two transposons are similar and even identical

in many respects, e.g. in the sequence of termini, and by the integrase and excisase genes

that encode transposition functions.  There appears to be few if any limits to the types of
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bacterial hosts into which conjugative transposons will transfer in vitro. The Tn916 family

was found naturally or could be transferred in the laboratory into over 50 different species

representing 24 bacterial genera (Clewell et al., 1995). Evidence of the transfer in vivo

exists as well, as it was demonstrated that Tn1545 could transfer from Enterococcus faecalis

to Listeria monocytogenes in the digestive tracts of gnotobiotic mice (Doucet-Populaire et

al., 1991). The Tn916 family can mobilize plasmids in trans, i.e. the transposon provides

all the proteins needed for mating and the plasmid provides the proteins that nick the plasmid

and initiate plasmid transfer (Clewell et al., 1995).

1.2.4.4.  Determination of resistance

The main objective of susceptibility testing is to predict the outcome of treatment with

the antimicrobial agents tested. The implication of the result “susceptible” is that there is a

high probability that the patient will respond to treatment with a specific concentration of

that antimicrobial agent. The result “resistant” implies that this treatment is likely to fail. In

this regard, a lot of efforts have been put into the establishment of susceptibility testing

methods for clinical microorganisms, including the publication of breakpoints to interpret

the susceptibility testing results. But different guidelines exist for performing antimicrobial

susceptibility testing created by national breakpoint committees, e.g. British Society of

Antimicrobial Chemotherapy (BSAC), Commissie Richtlijnen Gevoeligheidsbepalingen

(CRG), Deutscher Institut für Normung (DIN), Mesa Española de Normalización de la

Sensibilidad y Resistencia a Los Antimicrobianos (MENSURA), Norwegian Working Group

on Antibiotics (NWGA), Comité de l’antibiogramme de la Société Française de

Microbiologie (CA-SFM), and Swedish Reference Group of Antibiotics (SRGA). In 1997

a EUropean Committee on Antimicrobial Susceptibility Testing (EUCAST) was constituted

to achieve consensus on the practice of antimicrobial susceptibility testing by bringing

together the national committees and work out standardised methods and breakpoints. One

of their objectives is to work together with the National Committee for Clinical Laboratory

Standards (NCCLS, US) to achieve international consensus on susceptibility testing. One

shortcoming is that all published performance standards up to now are optimised only for a

limited spectrum of organisms, mainly clinical organisms, and it is not likely that the same

methods, reference tables, etc. will be applicable to others.
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Antimicrobial susceptibility testing may be performed reliably either by dilution or

diffusion methods (Jorgensen and Turnidge, 1999). The dilution methods determine the

minimal inhibitory concentration (MIC) of an antimicrobial agent required to inhibit or kill

a microorganism. Procedures for determining MICs can be carried out by either agar- or

broth-based methods. Antimicrobial agents are usually tested at twofold serial dilutions,

and the lowest concentration that inhibits the visible growth of an organism is regarded as

the MIC. The broth-based method can also be performed in microplates, which can contain

several antimicrobial agents to be tested simultaneously and which are suitable for automated

spectrophotometric reading of the susceptibility results. The disk diffusion method allows

categorization of bacterial isolates as susceptible, resistant or intermediate to a variety of

antimicrobial agents. To perform the test, commercially prepared filter paper disks

impregnated with a specified amount of an antimicrobial agent are applied to the surface of

an agar-based culture medium that has been inoculated with the test organism. The drug in

the disk diffuses through the agar upon contact with its surface. As the distance from the

edge of the disk increases, the concentration of the antimicrobial agent decreases

logarithmically, creating a drug concentration gradient in the agar medium surrounding the

disk. The disk diffusion method has the advantage that it is relatively inexpensive, flexible

regarding the selection of antimicrobial agents used for testing, and technically simple to

perform. However, only qualitative results are obtained, whereas the dilution methods produce

quantitative results that also can be used to categorise in susceptible, resistant or intermediate.

The quantitative results may be useful in the delineation of degrees of resistance among

isolates. The gradient diffusion method (Etest, AB Biodisk, Sweden) is a method for

quantitative antimicrobial susceptibility testing in which a preformed antimicrobial gradient

from a plastic-coated strip diffuses into an agar medium inoculated with the test organism.

In this test, the MIC is read directly from a scale on the strip, at the point where the ellipse

of organism growth inhibition intercepts the strip. There is a good agreement between the

MICs obtained by the Etest and those obtained by reference dilution methods. The Etest

combines the simplicity and flexibility of the disk diffusion test with the ability to determine

the MICs. However, Etest strips are much more expensive than the disks used for diffusion

testing.

There is no standard methodology for antimicrobial susceptibility testing applicable to

all organisms, because different species may require different culture conditions, and may

differ in the breakpoints for categorization as susceptible, resistant or intermediate. Phenotypic

resistance relates to arbitrarily chosen breakpoints and depends upon the experimental
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conditions, including (i) medium composition, (ii) concentration of inoculum, and (iii)

incubation parameters.

As the molecular basis of antimicrobial resistance has been partly or fully elucidated for

many antimicrobial agents, genetic methods for assessing antimicrobial resistance have

been developed (Cockerill, 1999). Compared to conventional susceptibility methods, the

genetic methods have some advantages. (1) They assess the genotype rather than the

phenotype (i.e. the expression of the genotype under artificial or laboratory conditions), and

are therefore independent of regulation of expression and, very important, of the culture

conditions. (2) They can be performed both on isolates and on samples. (3) They are faster.

(4) They are also applicable to slow-growing or non-culturable organisms. (5) Their outcome

is the presence or absence of resistance rather than a categorization of resistance. (6) And

they can be easily standardised. However, disadvantages of genetic testing methods are

that: (a) different assays are required for each antibiotic resistance gene, (b) these methods

only detect what one specifically is looking for, and will not detect new, unknown forms of

antibiotic resistance, (c) and that intrinsic resistance is not detected. The latter type of

resistance can be genetically undetectable because of lack of a specific target as is the case

of impermeability to the drugs. The major techniques used for genetic detection of antibiotic

resistance are DNA probe hybridisation and PCR.

In case of Tet determinants of which representatives of all known classes have been

sequenced (Levy et al., 1999), genetic methods for detecting tetracycline resistance have

been extensively applied (Tenover et al., 1995). Not only class-specific primers were

developed and validated (Pang et al., 1994; Marshall et al., 1983; Guillaume et al., 2000;

Roberts et al., 1993; Charpentier et al., 1994; Gascoyne-Binzi et al., 1994; Aminov et al.,

2002), but also mechanism-specific degenerated primers have been reported for detection

of all RPP genes (Clermont et al., 1997). In addition, these degenerated primers allow to

detect new members of the tet gene family, e.g. tet(T) (Clermont et al., 1997), and tet(32)

(Melville et al., 2001). More recently, PCR primers were described for a culture-independent

study of the molecular ecology of tetracycline resistance in samples of the rumen of cows,

and in swine feed and faeces (Aminov et al., 2001). In general, the choice of method has

to be based on the experimental set-up and is ideally a combination of phenotypic and

genetic methods.
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1.3.   LACTIC ACID BACTERIA:

IDENTIFICATION AND TYPING, AND A HOST FOR

ACQUIRED ANTIBIOTIC RESISTANCES

1.3.1.  INTRODUCTION

Lactic acid bacteria (LAB) comprise a heterogeneous group of Gram-positive, non-spore-

forming strictly fermentative bacteria. They occur as cocci, coccobacilli or rods and gener-

ally lack catalase, although pseudo-catalase activity has been reported in rare cases. Hexoses

are converted mainly to lactic acid (homofermentatives) or to lactic acid, carbon dioxide,

ethanol and/or acetic acid (heterofermentatives). LAB are commonly found in foods (dairy

products, fermented meat, sour dough, fermented vegetables, silage, beverages), on plants,

in sewage, but also in the genital, intestinal and respiratory tracts of man and animals. The

LAB in foods belong to the genera of Carnobacterium, Enterococcus, Lactobacillus,

Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus,

Vagococcus and Weissella (Stiles and Holzapfel, 1997).

Fig. 1.3. Phylogenetic tree of Gram-positive bacteria based on 16S rRNA sequence

comparison. The bar indicates 10% expected sequence divergence. Adopted from

(Schleifer and Ludwig, 1995)
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Based on 16S and 23S rDNA sequence data, the Gram-positive bacteria form two lines

of descent (Fig. 1.3). One phylum consists of Gram-positive bacteria with a DNA base

composition of less than 50 mol% G+C, the so-called Clostridium branch, whereas the

other branch (Actinomycetes) compromises organisms with a G+C content that is higher

than 50 mol%. The typical LAB have a G+C content of less than 50 mol%. While the genus

Bifidobacterium is considered to be a member of the LAB from a physiological point of

view, based on the high DNA G+C content and from 16S rRNA data it is quite clear now

that bifidobacteria belong to the Actinomycetes branch, comprising also Propionibacte-

rium and Brevibacterium (Fig. 1.3). There is little correlation between traditional classifi-

cation and phylogenetic relatedness of LAB. The morphologically distinct genera Lactoba-

cillus, Leuconostoc and Pediococcus are phylogenetically intermixed (Schleifer and Ludwig,

1996).

The LAB play a prominent role in many aspects of food development and health. Food

fermented with LAB is an important part of the human diet, including a wide variety of

fermented dairy products (e.g. cheese, yoghurt), fermented sausages, vegetables and olives,

sour dough breads, soda crackers, silage etc. (Wood, 1998). These organisms are particu-

larly suitable as antagonistic microorganisms in foods because they are capable of inhibit-

ing other food-borne bacteria by e.g. production of organic acids, hydrogen peroxide and/or

bacteriocins (De Vuyst and Vandamme, 1994; Holzapfel et al., 1995). Some species of

LAB are claimed to have a health or nutritional benefit; e.g. improved nutritional value of

food, control of intestinal infections, improved digestion of lactose, control of some types of

cancer, and control of serum cholesterol levels (Gilliland, 1990). Therefore, their use as

probiotics, i.e. dietary and therapeutic adjuncts, for man and animals is receiving increased

attention in the last decade.

With the exception of some streptococci, LAB are not considered to be pathogenic to

man and animals. However, there have been reports of the involvement of LAB in human

clinical infection (Aguirre and Collins, 1993). In the majority of these clinical cases, pa-

tients had a history of underlying disease, should be considered as immunocompromised

and/or may have been treated with antibiotics. Therefore, some LAB may fall into the cat-

egory of opportunistic pathogens. Nevertheless, there is no evidence to doubt the safety of

ingesting large numbers of LAB in fermented foods, and because of this long history of safe

use, the ‘Generally Regarded As Safe’ (GRAS) status has been ascribed to food-associ-

ated LAB.
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1.3.2. IDENTIFICATION AND TYPING OF LACTIC ACID BACTERIA

The classical approach to bacterial taxonomy of LAB was based on morphological and

physiological features. This was expanded to include chemotaxonomic markers (e.g. cellu-

lar fatty acids), whole-cell protein analysis and other characteristics of the cell. An im-

proved classification and identification is very much dependent on genotypic information.

Genotypic methods such as sequencing of rDNA, ribotyping, randomly amplified polymor-

phic DNA (RAPD), rep-PCR fingerprinting, amplified fragment length polymorphism

(AFLP), pulsed-field gel electrophoresis (PFGE) of whole digested chromosomal DNA

now constitute an important part of modern LAB taxonomy. Below, a concise overview is

presented of the most important techniques used for classification and identification of

LAB.

1.3.2.1. Phenotypic methods

The conventional phenotypic approach in LAB taxonomy still has its place in applied

(food) microbiology laboratories. Different key tests have been widely adopted and nowa-

days morphological characterization as well as physiological, metabolic/biochemical and

chemotaxonomic methods are used. Simple physiological tests, such as growth at different

temperatures, acid, alkaline and salt tolerance and gas production are useful for genus dif-

ferentiation. The determination of carbohydrate fermentation patterns is used in stand-

ard phenotypic tests to differentiate species. Although very useful, one should be aware of

the limitations of this method, notably the large degree of variation within species,

interlaboratory variation and poor reproducibility (Pot et al., 1994a). However, databases

prepared from results using standardized, commercially available systems (e.g. API 50 CH,

API systems, France) are valuable due to the increased standardization and the accumula-

tion of large numbers of strains. The use of identification systems based on biochemical and

physiological characteristics results often in disappointing identification results and

misidentification.

The comparison of whole-cell protein patterns obtained by highly standardized sodium

dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), or protein profiling,

has proved to be extremely reliable for identification on the species and/or subspecies level

provided that a database of digitised and normalized protein patterns of all known species
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of LAB is available (Pot et al., 1994b). For some species, the discriminatory power of

protein profiling is limited, as witnessed within the Lactobacillus acidophilus complex

(Gancheva et al., 1999), and the closely related species Lactobacillus plantarum, Lb.

pentosus and Lb. paraplantarum (Torriani et al., 2001).

1.3.2.2. Genotypic methods

DNA based techniques enable an improved insight in the identity of microorganisms on

different levels, varying from genus to strain level depending on the methods used. In gen-

eral they have the advantage over phenotypic identification methods of not being influenced

by the culture conditions. The direct sequencing of the 16S rRNA genes by PCR technol-

ogy is one of the most powerful methods in the classification of an unknown strain in one

single step. However, there are some pitfalls (Vandamme et al., 1996; Rossello-Mora and

Amann, 2001), e.g. some clearly different species may have the same 16S rDNA sequence

(Fox et al., 1992) and the reliability of some sequences in the databases can be questioned.

Also, it is still not clear to what extent there exists interoperon sequence variation (within

the same clone) and/or strain variation within species (Nubel et al., 1996).

Reliable strain typing methods will become increasingly important in the study of the

performance of LAB starter cultures and cultures used as additives in functional food type

products. Genotypic methods used for strain typing include PFGE of whole digested chro-

mosomal DNA, ribotyping, plasmid profiling and the PCR-based fingerprinting methods

such as RAPD, and AFLP.

PFGE of digested chromosomal DNA is often considered the “golden standard” of

molecular typing methods because it displays by far the greatest discriminatory power and

the highest reproducibility (Tenover et al., 1995). However, this rather laborious method

requires a species-specific approach (different restriction enzymes and electrophoresis con-

ditions) and is consequently mainly used to study the intra-species diversity and/or clonal

relatedness. Another PCR-independent typing method is ribotyping, which combines re-

striction enzyme analysis of chromosomal DNA with the use of rDNA probes, thereby

discriminating between various species (Johansson et al., 1995a; Rodtong and Tannock,

1993; Zhong et al., 1998; Bjorkroth and Korkeala, 1996; Lyhs et al., 1999). The discrimi-

natory power of the method depends on the number and type of oligonucleotide probes and

restriction enzymes used. In a comparison of PFGE and ribotyping, it was concluded that

PFGE was an efficient method to differentiate genetically closely related Lb. acidophilus
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strains whereas ribotyping was particularly useful for revealing heterogeneities between

strains with lower homology (Roussel et al., 1993). The variation in the number and the

sizes of plasmids harboured by strains of the same species, i.e. plasmid profiling, is useful

as a tool for typing in LAB, because most strains of this group seem to contain multiple

plasmids (Dykes and von Holy, 1994; Ahrne et al., 1989; Hill and Hill, 1986; Tannock et

al., 1990). However, this typing method is affected by the ability of the strains to loose or

gain plasmids making surveillance over longer time spans unreliable.

When a high-throughput, high discriminatory power both on the species and intra-spe-

cies level and low cost is opted for, than PCR-based genomic fingerprinting techniques are

believed to have the most potential (Olive and Bean, 1999). RAPD fingerprinting is by far

the most used PCR-based technique for identification of LAB.  RAPD has been used suc-

cessfully to differentiate LAB at the intra-species level (Johansson et al., 1995b; Berthier

and Ehrlich, 1999), at the inter-species level in enterococci (Descheemaeker et al., 1997),

pediococci (Nigatu et al., 1998), and lactobacilli (Du Plessis and Dicks, 1995; Gancheva et

al., 1999; Daud Khaled et al., 1997; Nigatu et al., 2001), and at the inter-genus level for

strains isolated from dairy products (Cocconcelli et al., 1995; Moschetti et al., 2001) and

meat products (Yost and Nattress, 2002). However, primers with a high discriminatory

power and a broad applicability within a large group of LAB species have not been de-

scribed. Moreover, because RAPD primers are not directed against a particular genetic

locus, the resulting band patterns often exhibit a poor reproducibility (Olive and Bean,

1999; Meunier and Grimont, 1993). Unless standardized (including DNA polymerase and

thermal cycler), the RAPD method is not suitable for the construction of identification

databases. Another PCR-based technique, AFLP has been reported to be a more reproduc-

ible tool to discriminate strains at the species and the intra-species level (Janssen et al.,

1996), and its use is increasing (Torriani et al., 2001; Gancheva et al., 1999; Bruinsma et

al., 2002; Borgen et al., 2002; Vancanneyt et al., 2002).
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1.3.3.  ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA

Only recently, LAB have gained interest regarding the spread of antibiotic resistance

(Teuber et al., 1999). Although most food-associated LAB bear the ‘Generally Regarded

As Safe’ (GRAS) status because of their long history of safe use, they may serve as hosts of

acquired antibiotic resistance genes, i.e. resistance genes located on conjugative or

mobilizable plasmids and transposons, which can be transferred to other (pathogenic) bac-

teria.

Different types of antibiotic resistance. Intrinsic resistance, in contrast with acquired

resistance, poses no hazard in non-pathogenic LAB, because it is not horizontally transfer-

able. However, the available data on intrinsic resistances in LAB are relatively scarce. En-

terococci are intrinsically resistant to cephalosporins and low levels of aminoglycoside and

clindamycin (Teuber et al., 1999; Knudtson and Hartman, 1993). Lactobacilli, pediococci

and Leuconostoc spp. have been reported to have a high natural resistance to vancomycin,

a property that is useful to separate them from other Gram-positive bacteria (Hamilton-

Miller and Shah, 1998; Simpson et al., 1988). Some lactobacilli have a high natural resist-

ance to bacitracin, cefoxitin, ciprofloxacin, fusidic acid, kanamycin, gentamicin, metroni-

dazole, nitrofurantoin, norfloxacin, streptomycin, sulphadiazine, teicoplanin trimethoprim/

sulphamethoxazole, and vancomycin (Danielsen and Wind, 2002). For a number of lacto-

bacilli a very high frequency of spontaneous mutation to nitrofurazone (10-5), kanamycin

and streptomycin was found (Curragh and Collins, 1992). From these data it is clear that

inter-genus and inter-species differences exist, and consequently identification at species

level is required in order to interpret phenotypic susceptibility data.

Mobile genetic elements. Plasmids are common in LAB, and differences are found in

size, function and distribution (Davidson et al., 1996; Wang and Lee, 1997). The functions

found on plasmids include hydrolysis of proteins, metabolism of carbohydrates, amino ac-

ids and citrate, production of bacteriocins and exopolysaccharides, and resistance to antibi-

otics, heavy metals and phages. At least 25 species of lactobacilli contain native plasmids

(Wang and Lee, 1997), and often appear to contain multiple (from 1 to 16) different plasmids

in a single strain. R-plasmids encoding tetracycline, erythromycin, chloramphenicol, or

macrolide-lincomycin-streptogramin resistance have been reported in Lb. reuteri (Vescovo

et al., 1982; Axelsson et al., 1988; Lin et al., 1996; Tannock et al., 1994), Lb. fermentum

(Ishiwa and Iwata, 1980; Fons et al., 1997), Lb. acidophilus (Vescovo et al., 1982), and Lb.
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plantarum (Ahn et al., 1992; Danielsen, 2002) isolated from raw meat, silage and faeces.

Most of these R-plasmids had a size smaller than 10 kb (5.7 – 18 kb). The reported preva-

lence of antibiotic resistance genes such as erythromycin, vancomycin, tetracycline, chlo-

ramphenicol, and gentamicin resistance genes, on transferable genetic elements in entero-

cocci is more extensive, both on plasmids (Christie et al., 1987; Rice et al., 1998; West and

Warner, 1985; Clewell et al., 1974; Murray et al., 1988) and transposons (Perreten et al.,

1997a; Clewell et al., 1995; Rice and Marshall, 1994). A multiple antibiotic resistance

plasmid was reported in a Lactococcus lactis strain isolated from cheese (Perreten et al.,

1997b), encoding streptomycin, tetracycline and chloramphenicol resistance.

Conjugative transfer among LAB. Some of the above listed R-plasmids and transposons

have been shown to be transferable to other LAB, Gram-positive bacteria and even Gram-

negative bacteria. Enterococci are known to be very well receptive for conjugation (Clewell

and Weaver, 1989), but are also successful donor organisms for the transfer of antibiotic

resistance genes to unrelated enterococci (Rice et al., 1998), lactobacilli (Shrago and

Dobrogosz, 1988), other Gram-positives including Bacillus subtilis (Christie et al., 1987),

Staphylococcus and Listeria (Perreten et al., 1997a), and even Gram-negative bacteria

(Courvalin, 1994; Brisson-Noel et al., 1988; Trieu-Cuot et al., 1988). Moreover, the trans-

fer of conjugative elements, including a plasmid-encoded kanamycin resistance (Doucet-

Populaire et al., 1992) and a transposon-encoded tetracycline and erythromycin resistance

(Doucet-Populaire et al., 1991), were shown to be transferable from Enterococcus faecalis

to Escherichia coli and Listeria monocytogenes, respectively, in the digestive tract of mice.

In contrast, reports of conjugative transfer of antibiotic resistance genes in other LAB are

rare. Two in vivo studies were performed, to examine the possibility of conjugative transfer

between native Gram-positive members of the gut. Therefore, the broad host range conju-

gative plasmid pAMβ1 was transferred in vitro to Lb. reuteri (Morelli et al., 1988) and

Lactococcus lactis (Igimi et al., 1996) and administered orally or using gastric intubation

to mice. By analysis of faecal content, plasmid transfer to Enterococcus faecalis was ob-

served in both studies. To improve existing properties or add new properties (e.g. bacteri-

ocin production or lactose fermentation) to strains with industrial applications, the transfer

of plasmids between different lactococci was studied (Gasson and de Vos, 1994; Neve et

al., 1984; Neve et al., 1987).
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Antibiotic resistance in LAB food isolates. There have been few systematic studies to

investigate acquired antibiotic resistance in LAB from food. Most data exist on opportunis-

tic pathogenic enterococci, while the number of reports on lactococci and lactobacilli is

limited. A lot of attention has been paid to glycopeptide resistance in enterococci. Vanco-

mycin resistant enterococci (VRE) have emerged in the last decade as a frequent cause of

nosocomial infections, mostly in the U.S, and it has been associated primarily with the use

of glycopeptides in hospitals (Jett et al., 1994; Moellering, 1998). Of considerable concern

is the possibility that VRE, selected and enriched by the use of avoparcin (with cross-

resistance to vancomycin) as a growth promoter in animal husbandry, are spread via the

food chain (Wegener et al., 1997; Klein et al., 1998; Pavia et al., 2000; Van Den Braak et

al., 1998; Giraffa and Sisto, 1997). A comparison of VRE from poultry and VRE from

humans by PFGE typing, did not reveal genetic overlap (Van Den Braak et al., 1998).

Sequencing of the vancomycin resistance genes, on the other hand, showed full sequence

conservation in more than 50% of the strains suggesting that dissemination of the resist-

ance genes carried on transferable elements may be of greater importance than clonal dis-

semination of resistant strains. Because of this concern, the use of avoparcin as growth

promoter in Europe has been banned (in Denmark in 1995, in the rest of Europe in 1997),

resulting in a significant decline of VRE between the end of 1995 and the first half of 1998

in broilers (Bager, 2000). Somewhat surprisingly, this ban appears not to have such an

effect in pigs (Bager, 2000). Enterococcal food isolates (mainly E. faecalis and E. faecium)

were analysed for resistances to a broader range of different antibiotics using phenotypic

susceptibility testing, both in raw meat (Klein et al., 1998; Quednau et al., 1998; Knudtson

and Hartman, 1993) and fermented milk and meat products (Teuber and Perreten, 2000;

Franz et al., 2001). Their data suggest a high prevalence of (multiple) antibiotic resistant

enterococci in foods, which nevertheless were mostly susceptible to the clinically relevant

antibiotics ampicillin and vancomycin. An overview of antibiotic resistances reported in

the other food-associated LAB is given in Table 1.5, which can be summarized by stating

that only a limited number of papers reported the prevalence of antibiotic resistance in

mainly Lactobacillus spp. isolated from raw meat and fermented food products. A few

studies have reported an overall susceptibility to antimicrobial agents (with exception of

intrinsic resistances) in strains used as meat starter cultures (Raccach et al., 1985; Holley

and Blaszyk, 1997) or dairy starter cultures (Katla et al., 2001; Reinbold and Reddy, 1974).
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Reviewing the scarce literature on antibiotic resistance in LAB resulted in the following

observations. A great diversity in methods for susceptibility testing has been used, includ-

ing disc diffusion, agar dilution, broth microdilution, and Etest. Whereas genotypic detec-

tion and identification of resistance genes provides direct evidence, phenotypic methods are

more problematic. The first problem one is confronted with is the choice of medium for

susceptibility testing of LAB. The recommended growth media by the National Committee

for Clinical Laboratory Standards (Mueller-Hinton agar) (NCCLS, 2002) and by the Brit-

ish Society for Antimicrobial Chemotherapy (Iso-Sensitest agar) (Andrews, 2001) do not

support growth of all LAB. MRS medium, that generally supports the growth of LAB much

better, is not always compatible to the Iso-Sensitest medium for use in susceptibility test-

ing, as was recently reported for various classes of antibiotics (Huys et al., 2002). Further-

more, there are as yet no guidelines available for the interpretation of susceptibility test

results of commensal or food-associated bacteria. Contributions to establish microbiologi-

cal breakpoints based on MIC determinations (by Etest) have recently been made for a

number of lactobacilli (Felten et al., 1999; Zarazaga et al., 1999; Danielsen and Wind,

2002). An important conclusion of these latter publications is that the natural levels of

resistance can differ between different species of the same genus. Identification to the spe-

cies level is important in order to enable a correct interpretation of the susceptibility results.
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1.4.   FERMENTED DRY SAUSAGE:

MANUFACTURE AND MICROBIOLOGY

1.4.1.  INTRODUCTION

Fermented sausages are cured meat products that are shelf stable (without cooling) and

are commonly consumed without application of any heating process. They probably origi-

nated in the countries around the Mediterranean Sea (Zeuthen, 1995). The Romans knew

that ground meat with added salt, sugar and spices turns into an appetizing product with a

long shelf life if prepared and ripened properly. Apparently the normal winter climate in the

Mediterranean countries is favourable for sausage ripening. In contrast, salting and drying

of unground meat was the traditional way of meat preservation in other European countries.

The microbiological stability and some organoleptic properties are owed to a fermentation

carried out by LAB, micrococci and moulds. Traditionally, the ground meat was pre-salted

in order to promote development of LAB. Alternatively, the ‘back slopping’ method was

used in which a small amount of meat from successful batches (before fermentation) was

mixed with fresh meat. Intensive research into the microbiology and chemistry of sausage

ripening was triggered when traditional empirical methods of manufacture no longer met

the requirements of large-scale, low-cost industrial production. This type of research com-

menced in the United States in the 1930s, whereas in Europe the first studies were pub-

lished in the 1950s. Jensen and Paddock (1940) were the first to describe the addition of

LAB (Lb. plantarum, Lb. brevis, and Lb. fermentum) as a starter culture in the production

of dry sausages. They used both pure and mixed cultures and claimed that the bacteria

reduced the ripening time, prevented the development of faulty products and improved the

flavour. Furthermore, the acid produced by the fermentation of added sugars contributed to

the control of pathogens or spoilage microorganisms and also improved texture. Nowa-

days, lactobacilli and pediococci are most commonly used as starter cultures for the produc-

tion of fermented meat products in Europe and USA, respectively (Jessen, 1995).
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Production and consumption figures are currently highest in Germany, Italy, Spain and

France (Fisher and Palmer, 1995). In fact, these four countries account for approximately

95% of the estimated EU production of fermented sausages.  In Germany most of the fer-

mented sausages are smoked, while in Italy, France and Spain air-dried, spicy sausages

predominate (Fisher and Palmer, 1995). Other types of fermented sausages emerged as a

consequence of advanced meat processing techniques and the availability of refrigeration.

1.4.2.  MANUFACTURE OF FERMENTED SAUSAGE

The manufacture of fermented sausage is a complicated and a labour-intensive process

(Vösgen, 1994). The slightest deviation in bringing together the meat, spices or other ingre-

dients or in the conditions applied determines a constant variation in the quality of the

products. From the microbiological point of view, fermented sausages can be characterized

on the basis of water activity, a
w
 (semi-dry or dry), and surface treatment (mould-ripened or

no mould growth) (Lücke, 1998). Additional criteria for classification include the casing

diameter, the degree of comminution of the ingredients, the type of the raw meat, the fat

content and type of tissue used, as well as spices, seasonings, starter culture and other non-

meat ingredients used.

An outline of the manufacture of fermented sausages is shown in Table 1.6. In principle,

there is no limit to the use of raw meats from different animal species, and sausages made

from or added with beef, poultry, turkey, horse, goose and deer meat in addition to pork may

be common. However, pork is by far the prime source of raw material for most sausage

processors worldwide. The process starts with chilled or partially frozen raw meat that is

comminuted in a meat grinder or cutter. Fatty tissue, most frequently firm pork back fat, is

comminuted in the frozen state and than added to the mixture. The size of the particles in

the sausage determines the product type. Curing salt, carbohydrates, starter culture and

seasonings are then mixed in. Fermentable carbohydrates are added as substrates for the

starter culture. Due to the post-mortem glycogenolysis, glycogen is degraded by meat en-

zymes to glucose and further to lactic acid, resulting in a lack of carbon source for the starter

culture; therefore addition of sugars is required. The mixture is than stuffed into casings,

which determine the product shape and size. Natural casings as well as casings made from

modified collagen and/or cellulose are most frequently used. They must allow evaporation
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of water from the sausage and penetration of smoke, and they must follow the shrinkage of

the sausage during drying. Further, they are stored in the ripening chamber, operated

under controlled temperature, humidity and air flow conditions. Sausage ripening is subdi-

vided into fermentation (lactic acid formation and concomitant processes) and ageing (dry-

ing, aroma formation, etc.), and the two main purposes are lowering the pH and lowering

the a
w
. For dry sausages with long shelf life and for mould-ripened sausages, fermentation

temperatures are usually below 22°C. Semi-dry sausages are usually fermented at 22–26

°C, and for American-style semi-dry sausages, even higher fermentation temperatures (38–

40 °C) along with shorter fermentation time are applied. The higher the temperature the

Additives
Semi-dry 

sausages

D

mo

<−−−−− Salt

<−−−−− Curing agents

<−−−−− Sugars 0.5 – 0.8% 0

<−−−−− Starter culture 

<−−−−− Seasonings

<−−−−− Casings

 ↓


Surface 

inoculu
<−−−−− Starter 

↓ ↓

 ↓
 Smoking

↓ ↓
< 15 °C 1

target aw 0.93 targ

15 °C

Fermentation

20 – 25 °C,      

2 – 3 days,      

target pH < 5.3

1

tar

(c

Ageing

↓
Storage

↓

LAB, Micrococc

Staphylococ

Filling

Mould cult

Meat/fat
Meat temperatur

pH 5.5 – 5

↓

Comminution and 

mixing

Target aw 0.955 

Table 1. 6. Outline of the manufacture of fermented sausages
a

Process steps
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more rapid the fermentation will proceed, but this holds a higher risk of growth of unde-

sired microorganisms if the fermentation is not strictly controlled. While the pH of the

sausage decreases near the isoelectric point of meat, the water holding capacity of meat

decreases. This favours the drying and consequently the weight losses of sausage, which

result in the firm texture and sliceability of the end product. Sausages are usually aged at

12–15 °C for two weeks (Lücke, 1998).

At present, modified atmosphere packing (MAP) of ready-to-eat products, such as

sliced cold meat products, has become common practice as food manufacturers have at-

tempted to meet consumer demands for fresh, refrigerated foods with extended shelf life

(Farber, 1991). In MAP meat products, the aerobic spoilage organisms are significantly

suppressed by the presence of CO
2

, which results in an autochthonous microflora that is

largely dominated by LAB (Borch et al., 1996). For packaging of meat products with low

a
w
 values, such as fermented sausages that are shelf stable but might still be subject to

spoilage by mould growth and chemical spoilage (oxidations), mixtures of high percent-

ages of N
2

 (80 – 90%) and a low percentage of CO
2
 (10 – 20%) are most useful. The

combination of an oxygen-free atmosphere and the activity of CO
2
 will inhibit possible

mould growth (Debevere, 1991). For comparison, meat products with high a
w
, such as

cooked meat products are mainly subject to spoilage by LAB and Brochotrix thermosphacta.

These Gram-positive bacteria can only be efficiently inhibited by high concentrations of

CO
2
. Mixtures of high percentages of CO

2
 (50 – 70%) and a lower percentage of N

2

 (50 –

30%) are successful (Debevere, 1991).

1.4.3.  MICROBIOLOGY OF FERMENTED SAUSAGE

The microflora of refrigerated raw meat largely consists of Gram-negative, oxidase-posi-

tive rods, particularly psychrotrophic pseudomonads (Holzapfel, 1998). Psychrotrophic

Enterobacteriaceae are also present, while Gram-positive organisms including LAB usu-

ally occur only in small numbers. If the meat is processed into raw sausage mixture, the

water activity is reduced to 0.96 – 0.97, and the oxygen present within the mixture is rap-

idly consumed. Thus, the pseudomonads, which require oxygen and are usually sensitive to

salt and nitrite, are inhibited. Similarly, the competitiveness of the Enterobacteriaceae is

reduced at low oxygen tension, low pH and in the presence of salt. This results in a shift in
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microflora composition towards the LAB and catalase-positive cocci (micrococci and sta-

phylococci). Although this natural shift in microflora towards LAB is the basis of the tradi-

tional manufacture of fermented sausages and has been applied for centuries, the most

dependable fermentations come from the addition of a starter culture. This will make sure

that undesired or hazardous acid-sensitive bacteria are suppressed even if few LAB are

present in the raw materials. Figure 1.4 shows the behaviour of the most important groups

of microorganisms during normal raw-sausage ripening.

Fig. 1.4. Diagrammatic representation of ‘normal’

ripening of fermented sausage. Adopted from (Lücke,

1998)



68

CHAPTER 1

1.4.3.1. Starter cultures for meat fermentation

The role of and benefits from different groups of microorganisms available as starter

cultures for sausage fermentation are compiled in Table 1.7. The presence of 106–107 rather

than 102 active LAB per gram of fresh sausage mixture leads to a more predictable and

more rapid pH decrease and to earlier development of firmness, and may improve product

safety. Lactobacillus and Pediococcus are the two genera of LAB used for acidification of

meat to prepare fermented sausages. Although a very high number of preparations are com-

mercially available, the number of species is limited. LAB strains currently most employed

are Lb. sakei, Lb. curvatus, Lb. plantarum, P. pentosaceus and P. acidilactici (Jessen,

1995). In addition, catalase-positive cocci (Staphylococcus, Micrococcus/Kocuria) are

essential for nitrate reduction and aroma formation, and they play a role in protecting the

Microbial 

group

Species available 

as starters 
b

Desired metabolic activities Benefits 

Lb. plantarum

Lb. pentosus

Lb. sakei

Lb. curvatus

P. pentosaceus

P. acidilactici

St. carnosus

St. xylosus

M. varians

Nitrite reduction Removal o

Oxygen consumption, peroxide    

destruction

Delay of ra

stabilizatio

Formation of carbonyls and 

esters

Aroma and

developme

Pen. nalgiovense 

Pen. chrysogenum

Oxygen consumption Delay of ra

stabilizatio

Lactate oxidation, degradation 

of proteins and amino acids

Flavour dev

Deb. hansenii

Not known in detail Aroma and

developme

Moulds Surface colonization Suppressio

moulds; fac

a/ Adopted from (Lücke, 1998); b/ Lb .: Lactobacillus ; P .: Pediococcus, St .: St

Micrococcus; Deb .: Debaryomyces; Pen .: Penicillium

Yeasts Oxygen consumption Delay of ra

stabilizatio

Catalase-

positive cocci

Nitrate reduction Colour for

stabilizatio

Table 1.7. Starter cultures for sausage fermentation 
a

Lactic acid 

bacteria

Formation of lactic acid Inhibition o

spoilage ba

of colour f
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product from detrimental effects of oxygen. Yeast and mould strains are available as starter

cultures for air-dried sausages. Debaryomyces hansenii appears to be the only yeast spe-

cies in meat starter cultures because it grows at low a
w 

and can affect colour and flavour

when added to the sausage mixture. Moulds contribute to the characteristic aroma, flavour

and appearance of air-dried sausages. However, colonization of the sausage surface with

the ‘wrong’ mould leads to unsatisfactory product quality and increases the risk of myco-

toxin formation. The sausage should therefore be dipped into a suspension of conidia of an

appropriate starter mould, such as Penicillium nalgiovense and Pen. chrysogenum, before

ripening. Starter cultures are distributed frozen or freeze-dried. Combinations of LAB with

catalase-positive cocci proved most useful for fermented sausages and are now most widely

used throughout Europe.

1.4.3.2. Hurdles in fermented sausage

Fermented dry sausages are microbiologically stable and safe products. This is achieved

by the combination and timing of different factors referred to as the ‘hurdle effect’ (Leistner,

1995). Figure 1.5 shows that there are several hurdles in a raw sausage, which take effect

one after the other in a specific sequence.

FIG. 1.5. Sequence of hurdles in fermented sausage. Adopted from (Leistner, 1995)

The addition of nitrite to the raw sausage mix, together with the nitrite-curing salt, or

which is formed from added nitrate by microorganisms, is particularly important at the start

of fermentation for the microbiological stability of the product, especially for inhibiting any

salmonellae and many other pathogens e.g. E. coli, Listeria monocytogenes, etc., that may

be present in the raw sausage mix. The main functions of nitrite are the development of the
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curing colour and the inhibition of auto-oxidative processes leading to rancidity. This is a

short-lived hurdle, because nitrite is broken down to oxides of nitrogen during the course of

raw-sausage fermentation, and in the end product only a few mg nitrite per kg dry sausage

may be traced.

The next important hurdle is the redox potential (E
h
). During the first day of fermenta-

tion the growth of microbes in sausage material uses up all the oxygen mixed in the sausage

matrix during the chopping. This reduces the E
h
 making the nitrite more effective as a

bactericidal substance (nitrite is more effective under anaerobic conditions), and restricts

the growth of aerobic spoilage bacteria (particularly members of the family

Pseudomonadaceae). Under conditions of reduced redox potential, the desirable lactic acid

bacteria have a selective advantage over other microorganisms.

After the E
h
, the competitive flora becomes the most important hurdle in a raw sausage

during fermentation. These are lactic acid bacteria, which suppress undesirable microor-

ganisms, such as pathogens (Listeria, Salmonella, and pathogenic Staphylococci) and spoil-

age bacteria (Pseudomonas), by the production of lactic acid, H
2
O

2

 and possibly also through

the formation of bacteriocins, and by competing for available nutrients (De Vuyst and

Vandamme, 1994; Holzapfel et al., 1995).

The pH value is undoubtedly a very important hurdle in the stability of many raw sau-

sages. Particularly with fast-ripened products that still contain a lot of water and, therefore

have a relatively high a
w
, the pH is an important hurdle. How fast and how far the pH in a

raw sausage drops can be affected by the amount of added sugar, the ripening temperature

and the type of starter culture.

The a
w
 value of a raw sausage continues to fall as ripening progresses, so that the a

w
 is

the only hurdle in a raw sausage which steadily increases in importance. How quickly and

how far the a
w
 in a raw sausage falls is influenced by the recipe and the ripening tempera-

ture, but above all by the relative air humidity in the ripening chamber relative to the ripen-

ing time.

It is important to note that ‘lowering’ one hurdle may be compensated for by ‘fortifying’

another hurdle. For example, increasing the initial a
w
 within certain limits may be compen-

sated by a higher rate of acid formation, or a lower fermentation temperature.
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ISOLATION AND IDENTIFICATION OF TETRACYCLINE

RESISTANT LACTIC ACID BACTERIA FROM MODIFIED

ATMOSPHERE PACKED READY-TO-EAT MEAT

PRODUCTS

Parts of this chapter were published as:

GEVERS, D., HUYS, G., DEVLIEGHERE, F., UYTTENDAELE, M., DEBEVERE, J. & SWINGS, J.

(2000) Isolation and identification of tetracycline resistant lactic acid bacteria from pre-

packed sliced meat products. Systematic and Applied Microbiology 23, 279-284.
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SUMMARY

In recent years, the food chain, and meat products in particular, has been

recognised as one of the main routes for transmission of antibiotic resistant

bacteria between the animal and human population. In this regard, the current

study aimed to investigate if tetracycline resistant (Tcr) lactic acid bacteria (LAB)

are present in modified atmosphere packed (MAP) meat products including

fermented dry sausage, cooked chicken breast meat and cooked ham. From

breakpoint experiments, only fermented dry sausage (FDS) was shown to con-

tain a high-level Tcr LAB population. Further, 26 samples of 13 different types

of FDS end products were analysed for the presence of Tcr LAB, of which 14

(54%) were positive. From these positive samples, a total of 139 strains were

isolated on MRS-S agar without tetracycline (n = 45) and on MRS-S agar sup-

plemented with tetracycline in a breakpoint concentration of 64 µg ml-1 (n =

94). By antibiotic susceptibility testing it was shown that isolates from the non-

selective plates were Tcs, and from the selective plates Tcr. Identification using

protein profiling revealed that all Tcr LAB belonged to the genus Lactobacillus,

including the species Lb. plantarum, Lb. sakei, and Lb. curvatus, whereas the

Tcs isolates were either Pediococcus pentosaceus or Lb. sakei subsp. carnosus.

Protein profiling was found to be limited in resolving power, and in order to

study the intraspecies diversity the use of a genotypic fingerprinting method is

certainly warranted. Different batches of the same FDS type were found to be

variable in the presence of Tcr LAB and composition of the Tcr LAB

subpopulation. This study has clearly demonstrated that various Tcr lactobacilli

species occur in MAP FDS sold in Belgian retail shops, and yielded an interest-

ing set of isolates for an in-depth molecular analysis of the acquired resistance

genes and their transferability.
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INTRODUCTION

The emergence and epidemiological spread of antimicrobial resistance genes through-

out the human environment represents a major public health problem in developed and

developing countries (Levy, 1992).  So far, research on the horizontal transfer of drug resist-

ance determinants has mainly focussed on opportunistic and primary pathogenic bacteria

and less attention has been drawn to the possible role of human and animal commensal

bacteria as reservoir organisms for drug resistance genes (Salyers, 1995).  Such reservoir

organisms could possibly be found in various foods and food products containing high

densities of non-pathogenic bacteria as a result of their natural production process. The

food chain can be considered as the main route of transmission of antibiotic resistant bacte-

ria between the animal and human population (Witte, 1997). More specifically, raw milk

dairy products and fermented meats that are not heat-treated before consumption, provide a

vehicle for antibiotic resistant bacteria with a direct link between the animal indigenous

microflora and the human gastrointestinal tract.

At present, modified atmosphere packing (MAP) of ready-to-eat meat products has be-

come common practice as food manufacturers have attempted to meet consumer demands

for fresh, refrigerated foods with extended shelf life (Farber, 1991).  In MAP meat products,

the aerobic spoilage organisms are significantly suppressed by the presence of CO
2
 which

results in an autochthonous microflora that is largely dominated by lactic acid bacteria

(LAB) (Borch et al., 1996). Although most food-associated LAB have acquired the ‘Gener-

ally Regarded As Safe’ (GRAS) status, the potential health risk due to the transfer of anti-

biotic resistance genes from LAB reservoir strains to bacteria in the resident microflora of

the human gastrointestinal tract and hence to pathogenic bacteria has not been fully ad-

dressed.

During the past decade, the incidence of antibiotic resistant LAB in food and food prod-

ucts has been reported.  As such, Perreten and co-workers isolated a multi-resistant

Lactococcus lactis subsp. lactis strain, carrying a conjugative plasmid, from a raw milk

soft cheese (Perreten et al., 1997). Antibiotic-resistant LAB isolates have also been recov-

ered from raw meat, including mainly enterococci (Knudtson and Hartman, 1993; Wegener

et al., 1997; Klein et al., 1998; Quednau et al., 1998) and lactobacilli (Vidal and Collins-

Thompson, 1987; Tannock et al., 1994; Lin et al., 1996). The horizontal transfer of antibi-

otic resistance genes located on conjugative transposons and plasmids by LAB has been
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reported in literature and is reviewed by Teuber et al. (1999). The incidence of resistance to

the broad-spectrum antibiotic tetracycline is high in the above-mentioned literature.  In

fact, the emergence of tetracycline resistant strains has nowadays limited its widely use of

the past decades (Chopra and Roberts, 2001). Because of this widespread prevalence and

because the molecular basis of tetracycline resistance is relatively well studied and docu-

mented (Chopra and Roberts, 2001), this agent was chosen as a model for the purpose of

this study.

The current study was undertaken to document the incidence of tetracycline resistant

LAB in ready-to-eat MAP meat products including fermented dry sausage, cooked ham

and cooked chicken breast meat.
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MATERIALS AND METHODS

Determination of the tetracycline breakpoint concentration: The tetracycline break-

point concentration is defined here as the minimal concentration of tetracycline that has to

be supplemented to de Man, Rogosa and Sharpe-Sorbic acid agar plates (MRS-S agar,

0882210, BD, Franklin Lakes, US) for the preparation of an isolation medium selective for

high-level Tcr LAB, and was determined as follows. Modified atmosphere packed sliced

meat products including fermented dry sausage (7 batches of 2 types), cooked ham (4 batches

of 2 types), and cooked chicken breast meat (3 batches of 2 types) investigated in this study,

were purchased from local supermarkets and stored at 4 °C until further research. At the

end of its indicated shelf life, a 25 g sample was taken from each meat product, added to

225 ml sterile peptone physiological saline solution (PPS) (8.5 g/l NaCl and 1 g/l neutral-

ised bacteriological peptone [LP0034, Oxoid, Basingstoke, UK]) and homogenised in a

Stomacher® (Seward, London, UK). Serial decimal dilutions (10-1–10-8) in PPS were pre-

pared and 1 ml samples of appropriate dilutions were poured in a series of MRS-S agar

plates supplemented with tetracycline (T-3383, Sigma, Bornem, Belgium) in doubling con-

centrations ranging between 0 and 256 µg/ml. After incubation for five days at 30 °C under

microaerophilic conditions (3.75% CO
2
, 5% O

2
, 7.5% H

2
, 83.75% N

2
), counts were per-

formed manually. From these results, the breakpoint concentration was deduced.

Susceptibility testing: A modified version of the Kirby-Bauer disc diffusion method

(Kirby et al., 1966), in which Meuller-Hinton medium was replaced by MRS-S agar, was

used for determination of antibiograms. Oxoid susceptibility test discs of tetracycline (30

µg) were applied on inoculated MRS-S agar plates using the Oxoid Disc Dispenser. Diam-

eters of the respective inhibition zones were measured using a digital calliper (Mauser

digital 2, Ludwigsburg, Germany) following a 16-18 h incubation of the antibiograms at

30°C and recorded. Classification of the isolates into sensitive and resistant groups was

based on resistance histograms (i.e. number of strains versus size of the inhibition zone).

Cut-off values to differentiate among resistant and susceptible groups were defined on the

basis of the bimodal distribution of the population in the resistance histograms.
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Screening of fermented dry sausage end products. In this study, a total of 26 samples

of 13 different types of modified atmosphere packed FDS end products were purchased

from local supermarkets in Belgium and analysed for the presence of a Tcr LAB

subpopulation. At the end of its indicated shelf life, appropriate dilutions of meat homogenates

were prepared as described above. These dilutions were poured in MRS-S agar plates sup-

plemented with or without a breakpoint concentration (64 µg/ml) of tetracycline. Plates

were incubated as described above.

Selection and storage of strains: Colonies were randomly selected from non-selective

MRS-S plates (without antibiotics) and from selective MRS-S plates (supplemented with

64 µg ml-1 tetracycline) and further purified under aerobic conditions on non-selective MRS-

S plates. Isolates were stored in a bead storage system (Microbank system, Pro-Lab Diag-

nostics, Wirral, UK) at –80°C.

Protein profiling: Sodiumdodecylsulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) of whole-cell bacterial proteins was done as described previously (Pot et al., 1994).

Identification of the isolates was performed by comparison of their protein patterns with a

laboratory database containing over 6000 reference strains encompassing all known LAB

species. Pattern storage and database comparisons were performed using the software pack-

age BioNumerics v2.5 (Applied Maths, Sint-Martens Latem, Belgium).
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RESULTS AND DISCUSSION

Three kinds of MAP sliced meat products, i.e. fermented dry sausage, cooked chicken

breast meat and cooked ham, were tested for the presence of high-level Tcr LAB using

breakpoint experiments. As shown in Fig. 2.1, fermented dry sausage clearly contains a

high-level Tcr LAB population. Concentrations of tetracycline up to 32 µg/ml have a mod-

erate influence on the number of CFU that grow under standard conditions. A concentration

of tetracycline of 64 µg/ml diminishes the number of CFU with 5 log units. For tetracycline

concentrations as high as 256 µg/ml (the upper limit of tested range), a significant number

(2 to 3 log CFU/g) of LAB was observed after 5 days of incubation. These results indicate

a tetracycline breakpoint concentration for the LAB population in fermented dry sausage

between 32 and 64 µg/ml. This finding was confirmed when screening other fermented dry

sausages. Recently, tetracycline, erythromycin, lincomycin and penicillin resistant Entero-

coccus faecalis and E. casseliflavus strains were found in FDS end products (Teuber et al.,

1999). Moreover, the authors speculated that fermented foods made from raw milk and

meat may contain antibiotic resistant LAB from the originating animals including entero-

cocci, lactobacilli and lactococci.

Fig. 2.1. Determination of the tetracycline breakpoint concentration for the lactic acid bacteria populations

in cooked chicken breast meat (black), cooked ham (white) and fermented dry sausage (grey). Standard

deviations are based on counts in triplicate.
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Cooked ham and cooked chicken breast meat samples, on the other hand, did not con-

tain a high-level Tcr LAB population at the end of the shelf life (Fig. 2.1). In fact, a concen-

tration of 8 and 16 µg/ml tetracycline, respectively, was sufficient to inhibit growth of LAB

on MRS-S agar. A possible explanation for the lack of high-level resistant LAB in cooked

ham and cooked chicken breast meat might be related to the heat treatment during the

production process that eliminates most of the viable bacteria naturally present on the raw

meat. In fact, the main cause of spoilage of these products lies with the environmental

microflora recontaminating the products after cooking, during slicing and packaging

(Bjorkroth and Korkeala, 1997; Samelis et al., 1998).

In order to verify the breakpoint concentration as determined by the two-fold dilution

technique, colonies were isolated from different MRS-S plates (poured with meat

homogenates of FDS-01 and FDS-08) supplemented with 0, 32 and 64 µg/ml of tetracy-

cline, and subjected to susceptibility testing using the disc diffusion method (Fig. 2.2).

Strains isolated from non-selective MRS-S plates (i.e. 0 µg/ml tetracycline) were all tetra-

cycline sensitive (Tcs), whereas the isolates recovered from plates supplemented with 32

µg/ml of tetracycline were divided in Tcr and Tcs strains. A concentration of 64 µg/ml of

tetracycline was chosen as the breakpoint concentration to prepare the selective isolation

medium, because 100% of the strains isolated from plates with this concentration of tetra-

cycline are Tcr.

Fig 2.2. Resistance histogram for tetracycline (Tc). The histogram displays a bimodal distribution of the

population enabling the differentiation among a resistant (R) and an intermediate (I) to susceptible (S)

group.
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These experiments has provided evidence for the possible presence of Tcr LAB in MAP

ready-to-eat FDS and the absence in cooked chicken breast meat and cooked ham sold in

Belgian retail shops. Based on these findings, further research focus on Tcr LAB in FDS.

Using a tetracycline breakpoint concentration set at 64 µg/ml, a total of 26 samples of 13

different types of fermented dry sausage were analysed for the presence of Tcr LAB in two

separate periods. In a first isolation round, 10 types of FDS were tested. The total number of

LAB in the examined sausages typically ranged between 6 and 9 log CFU/g. Four out of

these 10 samples contained Tcr LAB in different concentrations ranging between 1.70 and

4.35 log CFU/g (Table 2.1). A total of 97 colonies were randomly isolated from both non-

selective (n = 45) and selective plates (n = 52) and stored in a bead storage system. All

strains from the non-selective plates were found to be susceptible to tetracycline; whereas

all strains from the selective plates were Tcr. These results clearly confirm the selectivity of

the primary isolation medium supplemented with 64 µg/ml tetracycline for high-level Tcr

LAB. These isolates were subjected to protein profiling and could be unequivocally allo-

cated to a specific (sub)species by comparison of their unknown profiles with the protein

profiles of reference strains in the laboratory database (Table 2.2; Fig. 2.3). Among the Tcr

isolates only Lactobacillus species were found, including Lb. sakei subsp. carnosus (FDS-

07A, -08A, -11A), Lb. plantarum (FDS-01A) and Lb. curvatus (FDS-07A), whereas the

Tcs isolates were identified as Pediococcus pentosaceus (FDS-01A, -07A, -08A) or Lb.

sakei subsp. carnosus (FDS-08A, -11A). These four species are known to be very well

adapted to the specific conditions of fermented sausage (low pH and a
w
) and are therefore

readily used as meat starter cultures (Jessen, 1995). When comparing per FDS the protein

profiles of the Tcr and Tcs isolates, either a difference at the genus level (as is the case for

FDS-01A and FDS-07A) or at the intra-species level (FDS-08A and FDS-11A) was found

(Fig. 2.4). It is reasonable to assume that the dominating microflora that is recovered from

FDS on non-selective plates are strains that were added in high densities to the FDS as

starter cultures; consequently, the differences in protein profiles between the strains from

the non-selective plates and the selective plates suggest that the Tcr LAB isolates are no

members of the starter culture or are starter cultures that acquired Tcr determinants during

fermentation. However, this observation needs further research in order to obtain indisput-

able proof.
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Cluster analysis combined with visual inspection of digitised protein fingerprints clearly

shows that several isolates originating from the same sausage and belonging to the same

species can display highly similar if not identical patterns (Fig. 2.3). In order to verify the

intraspecies diversity of these isolates, the use of a genotypic fingerprinting technique with

a higher discriminatory power is certainly warranted.

Fig. 2.3. Dendrogram based on the cluster analysis of the digitized protein profiles of a subset of

the Tcr Lactobacillus strains isolated from four different types of fermented dry sausage (FDS-

01A, -07A, -08A, and -11A). The dendrogram was constructed using clustering with the

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) with correlation levels expressed

as % values of the pearson correlation coefficient. Cophenetic correlations (shown on the branch

of the dendrogram) indicate how faithfully the dendrogram represents the similarity matrix.
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In a second isolation round, new batches of the same 10 types as in round one and three

additional types (FDS-06, -13, -14) were examined for the presence of Tcr LAB (Table 2.1).

For one particular FDS (FDS-08), a more extensive analysis was performed and four new

batches (B to E) were examined in this round. This resulted in a total of 16 batches that

were investigated in this second round, of which ten samples contained a high-level Tcr

LAB subpopulation in different concentrations ranging between 2.04 and 5.05 log CFU/g.

One type that originally exhibited high-level Tcr LAB (FDS-01) did not contain any Tcr

LAB following a second analysis. Three types previously lacking Tcr LAB were now clearly

positive (FDS-02, -09, -12). Of the four new batches of FDS-08, three were positive (FDS-

08 batches C, D and E). These data indicate that the presence of Tcr LAB in different batches

of a given fermented dry sausage is subject to variation. To explain this instability observed

with the presence of Tcr LAB an analysis encompassing the complete process line of a

Fig. 2.4. Comparison between the protein profiles of

representatives of Tcr and Tcs isolates from FDS-08A

and FDS-11A. Differences in profiles are marked with a

triangle.

1 7 8

No of strains isolated and identified 20 20 21

Tc
r

/Tc
s

P. pentosaceus -/4 -/17 -/3

Lb. plantarum 16/- -/- -/-

Lb. sakei  subsp. carnosus -/- 1/- 9/9

Lb. curvatus -/- 2/- -/-

Table 2.2. Comparison between the Tc
r

 and Tc
s

 population from four different sa

FDS No

Distinction between tetracycline susceptible (Tc
s

) and resistant (Tc
r

) is based on

susceptibility testing using the disc diffusion method. Identification was based on

protein profiling.

DG 028 Tc
s

DG 048 Tc
r

DG 160 Tc
s

DG 165 Tc
r

FDS-08A

FDS-11A



102

CHAPTER 2

fermented dry sausage will be necessary. This is to determine the origin of Tcr LAB in the

fermented meat product, which could be the cause of the instability itself, and to study the

ecology of the microorganisms (i.e. natural or contaminating flora and the added starter

culture) in relation to their environment (i.e. from the raw meat until the fermented prod-

uct). The collection of Tcr LAB isolates of the first round was extended with 42 new Tcr

LAB isolates recovered similarly from the ten positive batches out of this second isolation

round.

In conclusion, this study has provided evidence for the presence of a subpopulation of

Tcr LAB in 54% of the samples of MAP ready-to-eat FDS and the absence in cooked chicken

breast meat and cooked ham. Isolation and identification of Tcr LAB revealed that only Tcr

lactobacilli could be recovered and that the Tcr microflora is clearly different from the Tcs

microflora. Identification using protein profiling was found to be rather laborious and had

an inadequate discriminatory power, therefore the use of a genotypic fingerprinting tech-

nique to verify the intraspecies diversity of the isolates is certainly warranted. Variability in

the presence of Tcr LAB was found when comparing different batches of the same FDS

type, suggesting a variable source. Further research will focus on the confirmation of the

phenotypically determined resistance to tetracycline by molecular analysis of the tetracy-

cline resistance genes and on the study of the transferability of these resistances to other

bacterial hosts.
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SUMMARY

The rep-PCR fingerprinting technique using the (GTG)
5
 primer ((GTG)

5
-

PCR fingerprinting) was proven to be useful for differentiation of a wide range

of lactobacilli (i.e. 26 different (sub)species) at the species, subspecies and

potentially up to the strain level. Using this rapid and reproducible genotypic

technique new Lactobacillus isolates recovered from different types of fermented

dry sausage could be reliable identified at the (sub)species level. In conclusion,

(GTG)
5
-PCR was found to be a promising genotypic tool for rapid and reliable

speciation and typing of lactobacilli and other lactic acid bacteria important in

food fermentations.
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INTRODUCTION

Lactic acid bacteria (LAB) are of great economical importance to the dairy industry and

for the production of other fermented foods and food supplements.  Next to their functional

characteristics, reliable identification and high-resolution typing of LAB strains is essential

in nutritional sciences and fundamental food research.  Traditionally, LAB have been clas-

sified on the basis of phenotypic properties including physiological parameters and sugar

fermentation patterns (Pot et al., 1994a; Vandamme et al., 1996).  However, as witnessed

within the Lactobacillus acidophilus complex and the Lactobacillus casei complex, a cor-

rect classification and identification of LAB is difficult without the support of genotypic

techniques (Gancheva et al., 1999; Tynkkynen et al., 1999; Kandler and Weiss, 1986). The

currently used methods for the study of LAB such as protein profiling (Pot et al., 1994b),

16S rRNA sequencing (Collins et al., 1991), ribotyping (Zhong et al., 1998), and pulsed-

field gel electrophoresis (Tenover et al., 1995) are either too laborious, are limited in their

resolving power or require a species-specific methodology. Therefore, a method that is uni-

versally suitable for the LAB with a high-resolving power both on species and intraspecies

level would be a highly valuable tool. In this regard, PCR-based genomic fingerprinting

techniques are believed to have the most potential, and are easy-to-perform (Olive and

Bean, 1999).

So far, randomly amplified polymorphic DNA (RAPD) fingerprinting is by far the most

used PCR-based genomic technique for identification of LAB (Daud Khaled et al., 1997;

Bjorkroth et al., 1996; Johansson et al., 1995; Cocconcelli et al., 1997; Du Plessis and

Dicks, 1995). However, primers with a high discriminatory power and a broad applicability

within a large group of LAB species have not been described. Moreover, because RAPD

primers are not directed against a particular genetic locus, the resulting band patterns often

exhibit a poor reproducibility (Olive and Bean, 1999; Meunier and Grimont, 1993). Alter-

natively, PCR amplification of repetitive bacterial DNA elements (rep-PCR) has been rec-

ognized as a simple PCR-based technique with the following characteristics: (i) a high

discriminatory power, (ii) low cost, (iii) suitable for a high-throughput of strains, and (iv)

considered to be a reliable tool for classifying and typing a wide range of Gram-negative

and several Gram-positive bacteria (Versalovic et al., 1994; Olive and Bean, 1999). To our

knowledge, the use of the rep-PCR fingerprinting technique on lactic acid bacteria has been
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described in three papers. De Urraza and co-workers (De Urraza et al., 2000) demonstrated

the usefulness of the BOXA1R primer for typing thermophilic LAB associated with dairy

products. Hyytiä-Trees and co-workers (Hyytiä-Trees et al., 1999) suggest that an adequate

level of discrimination among Lactobacillus sakei strains can be achieved by using a com-

bination of rep-PCR using BOX and REP primers and RAPD. Sohier and co-workers (Sohier

et al., 1999) reported on the applicability of rep-PCR to differentiate the species Lb. hilgardii

and Lb. brevis.

The aim of the current study was to assess the applicability of rep-PCR fingerprinting for

the genotypic differentiation of a broad range of Lactobacillus species.  For this purpose, a

set of oligonucleotide primers targeting various repetitive DNA elements was evaluated.

The method was tested on both reference strains and newly isolated lactobacilli from differ-

ent types of fermented dry sausage.
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MATERIALS AND METHODS

Strains and growth conditions. The taxonomical framework of reference strains con-

sisted of facultatively heterofermentative lactobacilli (39 strains representing 20 species),

obligately homo- and heterofermentative lactobacilli (15 strains representing 6 species),

other LAB (7 strains including Enterococcus faecalis, Lactococcus lactis, Pediococcus

acidilactici, Pediococcus pentosaceus, Weissella viridescens, Weissella halotolerans). All

reference strains were obtained from the BCCM™/LMG bacteria collection (http://

www.belspo.be/bccm/lmg) (Fig. 3.1). Two sets of Lactobacillus isolates, recovered from

different types of fermented dry sausages, were investigated in this study. For the first set of

isolates (n = 52), the isolation and the identification at the (sub)species level by means of

protein profiling were described in a previous paper (Gevers et al., 2000; Chapter 2). The

isolates of the second set (n = 42) were obtained in a similar way, but were not identified

prior to this study.  All LAB strains were grown overnight at 30°C on MRS agar (0882210,

BD, Franklin Lakes, US), except for the Lactococcus lactis strains, which were grown

overnight at 30°C on M17 agar (CM785, Oxoid, Basingstoke, UK).

Protein profiling. Both reference strains and the first set of isolates were identified

using sodiumdodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole-

cell bacterial proteins. Preparation of protein extracts, SDS-PAGE of whole-cell bacterial

proteins and computer processing were done as described previously (Pot et al., 1994b).

Total DNA preparation. Total DNA was extracted from 10 ml of cultures harvested in

the exponential phase (A
600

 of 0.5 – 1). Cells were collected by centrifugation (3000 g, 4 °C,

10 min) and frozen for at least 1 hour at –20 °C. The thawed pellet was washed in 1 ml TES

buffer (6.7% sucrose, 50 mM Tris/HCl pH 8.0, 1 mM EDTA) and resuspended in 300 µl

STET buffer (8% sucrose, 5% Triton-X-100, 50 mM Tris/HCl pH 8.0, 50 mM EDTA).

Seventy-five microliters of Lysis buffer (TES containing 1330 U ml-1 mutanolysine and 40

mg ml-1 lysozyme) was added and the suspension incubated at 37 °C for 1 hour. After

addition of 40 µl preheated (37 °C) 20% SDS in TE buffer (10 mM Tris/HCl, 1 mM EDTA,

pH 8.0) and glass beads, cells were vortexed for 60 s and incubated at 37 °C for 10 min

followed by 10 min incubation at 65 °C. One hundred microliters of TE-buffer were added
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and the lysate was extracted with 1 volume phenol/chloroform/isoamylalcohol (49:49:1).

Phases were separated by centrifugation (18000 g, 5 min) using Phase Lock GelTM tubes

(Eppendorf, Hamburg, Germany). The aqueous phase was carefully mixed with 70 µl 5 M

NaCl and 1 ml isopropanol and DNA precipitated on ice for at least 15 min. DNA was

collected by centrifugation (20000 g, 4 °C, 30 min) and the pellet washed in ice-cold 70%

ethanol. DNA was dried by vacuum centrifugation and resuspended in 100 µl TE. One

microliter RNAse (10 mg ml-1) was added and the solution was incubated at 37 °C for 10

min and stored at 4 °C.

rep-PCR genomic fingerprinting. The rep-PCR oligonucleotide primers evaluated in

this study were REP1R-I (5’-IIIICGICGICATCIGGC-3’) and REP2-I (5’-

IIICGNCGNCATCNGGC-3’), BOXA1R (5’-CTACGGCAAGGCGACGCTGACG-3’),

and (GTG)
5
 (5’-GTGGTGGTGGTGGTG-3’) each with its own optimal PCR program

(Versalovic et al., 1994). PCR amplifications were performed with a DNA thermal cycler

Perkin Elmer 9600 as described before (Versalovic et al., 1994), using Goldstar DNA

polymerase (Eurogentec, Seraing, Belgium).

The PCR products were electrophorized in a 1.5% agarose gel (15 cm by 20 cm) for 16

hours at a constant voltage of 2 V cm-1 in 1 x TAE (40 mM Tris-acetate, 1 mM EDTA, pH

8.0) at 4 °C. The rep-PCR profiles were visualised after staining with ethidium bromide

under ultraviolet light, followed by digital image capturing using a CCD camera. The re-

sulting fingerprints were analysed by the BioNumerics V2.5 software package (Applied

Maths, Sint-Martens Latem, Belgium). A dendrogram was constructed from the digitised

profiles using clustering with the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) with correlation levels expressed as % values of the Pearson correlation coeffi-

cient.
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RESULTS AND DISCUSSION

EVALUATION OF DIFFERENT PRIMER SETS

For the evaluation of the rep-PCR fingerprinting technique, two single oligonucleotide

primers (BOXA1R and (GTG)
5
) and one primer pair (REP1R-I and REP2-I) were initially

tested for their ability to type a subset of 30 LAB isolates that had already been identified

using protein profiling (results not shown). In comparison with the BOXA1R primer and

the REP1R-I and REP2-I primer set, the (GTG)
5
 primer clearly generated banding patterns

with the highest complexity. The use of BOX and REP primers resulted in a banding pat-

tern containing approximately 0 to 6, and 1 to 10 visualised PCR products, respectively,

while the (GTG)
5
 primer generated fingerprints containing between 10 and 20 visualised

PCR products with an average of 16.5 bands. The size of the DNA fragments obtained after

amplification using the (GTG)
5
 primer ranged between 300 and 4000bp. We found that the

discriminatory power did not seem to be significantly enhanced when combining BOX,

REP and (GTG)
5
 banding patterns compared to the increase in amount of work. Because it

was intended to optimise an easy-to-perform, rapid and reproducible method for cost-effi-

cient speciation and typing of unknown LAB isolates, the use of the (GTG)
5
 primer was

preferred above a PCR assay combining multiple primers. To date, very few studies are

available on the use of the (GTG)
5
 primer for rep-PCR fingerprinting (Versalovic et al.,

1994).  In this regard, Nick and co-workers (Nick et al., 1999) recently demonstrated the

usefulness of rep-PCR fingerprinting with the (GTG)
5
 primer in combination with REP,

ERIC and BOX primers for typing of rhizobial strains. A combined

REP+ERIC+BOX+(GTG)
5
 dendrogram was generated because a maximized specificity of

the patterns was preferred.

REPRODUCIBILITY OF REP-PCR FINGERPRINTING

A selection of 16 isolates and 5 reference strains was used to assess the reproducibility

of the banding pattern with rep-PCR fingerprinting using the (GTG)
5
 primer ((GTG)

5
-PCR).

PCR amplification and electrophoresis were performed in three separate trials starting from

the same DNA preparation and using the same PCR reagents. None of the strains tested
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showed qualitative differences in banding patterns, i.e. presence versus absence of a band.

On the other hand, minor quantitative variations in band intensity were occasionally found,

but with no pronounced effect on the stability of cluster analysis. The similarity index be-

tween three separately obtained banding patterns of the same strain ranged between 91 and

97%. In a second reproducibility test, we investigated the influence of the DNA prepara-

tion, and again, no qualitative differences in banding patterns could be detected. Moreover,

each PCR reaction was controlled for reproducibility by inclusion of the reference strains

LMG 6907Tand LMG 17302T. In a series of ten PCR reactions, an average of 93% similar-

ity between the corresponding banding patterns of each reference strain was found, and no

qualitative variations were noticed. In order to maintain a high reproducibility in (GTG)
5
-

PCR fingerprinting we strongly recommend the use of filter tips, small aliquots of PCR

reagents, and the same thermal cycler for all PCR reactions. From our experience, and in

contrast to the original protocol of Versalovic and co-workers (Versalovic et al., 1994),

working on ice to prepare the PCR reaction mixture was preferred above room temperature

performance.

IDENTIFICATION AND TYPING OF LACTOBACILLI WITH (GTG)
5
-PCR

A total of 61 reference strains were subjected to (GTG)
5
-PCR fingerprinting. The results

of numerical analysis of the generated (GTG)
5
-PCR banding patterns are shown in a

dendrogram (Fig. 3.1). All reference strains clearly grouped in separate clusters according

to their respective taxonomic designations, except for representatives of Lb. brevis, which

were dispersed in two clusters. Lb. brevis is known to be a phenotypically and genotypically

heterogeneous species, as observed from protein profiling (D. Gevers, unpublished data)

and DNA-DNA hybridisation data (Kandler and Weiss, 1986). The newly obtained (GTG)
5
-

PCR fingerprinting results confirm this previous finding, hereby indicating the need for a

revision of the species status of Lb. brevis. In a number of cases, it was also noted that the

taxonomic resolution of the (GTG)
5
-PCR method was higher than that of protein profiling.

The closely related species Lb. pentosus, Lb. plantarum and Lb. paraplantarum cannot be

differentiated using protein profiling (data not shown).
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Fig. 3.1 Dendrogram generated after cluster analysis of the digitised (GTG)5-PCR fingerprints of the

reference strains. The dendrogram was constructed using the unweighted pair-group method using

arithmetic averages with correlation levels expressed as percentage values of the Pearson correlation

coefficient. a LMG: BCCM™/LMG bacteria collection (Laboratory of Microbiology, Ghent University,

Belgium), T: type strainb LAB: lactic acid bacteria, Group A: obligately homofermentative lactobacilli,

Group B: facultatively heterofermentative lactobacilli, Group C: obligately heterofermentative lactobacilli.
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Fig. 3.2. Dendrogram generated after cluster analysis of the digitised (GTG)5-PCR fingerprints of the

61 reference strains and 94 isolates. The dendrogram was constructed using the unweighted pair-group

method using arithmetic averages with correlation levels expressed as percentage values of the Pearson

correlation coefficient.  Block clusters I to IV contain reference strains and isolates.
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As shown in Fig. 3.1, this was not a problem in numerical analysis of (GTG)
5
-PCR

fingerprints. For each of the investigated taxa, group-specific bands could be observed that

allowed visual verification of the clusters obtained with numerical analysis. It was found

that the complexity of the (GTG)
5
-PCR band pattern was not the same for all species. Gen-

erally, the number of bands ranged between 10 and 20, with an average of 16.5 bands. For

Lb. alimentarius and Lb. intestinalis, however, the number of bands was lower, i.e. six and

five respectively. The banding patterns of seven strains belonging to other LAB genera (i.e.

Enterococcus, Lactococcus, Pediococcus and Weissella) displayed a comparable complexity

as seen among the majority of Lactobacillus fingerprints. On the other hand, the grouping

obtained in Fig. 3.1 clearly did not reflect classification in different genera as lactobacilli

were not clearly separated from strains of other Gram-positive genera. A fairly high dis-

criminatory power up to the strain level was found for the set of 61 reference strains as all of

these strains could be differentiated from each other on the basis of at least one band differ-

ence in their respective (GTG)
5
-PCR fingerprints (Fig. 3.1)

In order to evaluate the applicability of (GTG)
5
-PCR for identification of unknown iso-

lates, two different sets of isolates were subjected to (GTG)
5
-PCR fingerprinting (Fig. 3.2).

The first set contained 52 isolates that were previously identified at the (sub)species level

by means of protein profiling (Gevers et al., 2000; chapter 2). The results of numerical

analysis of the generated (GTG)
5
-PCR banding patterns confirms identification and the

clustering based on the protein profiles for all 52 isolates. For the second set of 42 previ-

ously unidentified isolates, the (GTG)
5
-PCR banding patterns were clustered together with

the reference strains and isolates of the first set. The previously unidentified LAB isolates

were assigned to the clusters representing Lactobacillus alimentarius, Lb. curvatus, Lb.

plantarum, Lb. sakei subsp. carnosus and Lb. sakei subsp. sakei. Clearly, the addition of

these isolates had no pronounced effect on the stability of cluster analysis based on the

(GTG)
5
-PCR banding patterns of the reference strains. Overall, (GTG)

5
-PCR banding pat-

terns displayed a much higher heterogeneity among isolates, compared to the correspond-

ing protein profiles (data not shown). In this way, (GTG)
5
-PCR analysis revealed that a

given species was represented by different strains within the same sample of fermented dry

sausage. On the other hand, isolates with highly similar or even identical (GTG)
5
-PCR

fingerprints were frequently found within the set of isolates recovered from the same sam-

ple of fermented dry sausage. From our experience, (GTG)
5
-PCR fingerprinting can be used

for identification and possibly for intraspecies differentiation and is especially useful for

screening a large number of strains. In specific cases, however, it may be necessary to
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further subtype a cluster of similar (GTG)
5
-PCR fingerprints using pulsed field gel electro-

phoresis (PFGE). Further research will include more strains of a broader group of lactic

acid bacteria and investigate the usefulness of (GTG)
5
-PCR for high-resolution typing.

In conclusion, the rep-PCR fingerprinting technique using the (GTG)
5
 primer ((GTG)

5
-

PCR) is a rapid, easy-to-perform, and reproducible tool for differentiation of a wide range

of food-associated lactobacilli at the species, subspecies and potentially up to the strain

level with a single-performance protocol. In our hands, this technique is a promising geno-

typic tool for rapid and reliable speciation and typing of lactobacilli and other lactic acid

bacteria in food fermentations.
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Fig. 3.3. (opposite page) Dendrogram based on the cluster analysis of the digitized (GTG)5-PCR

fingerprints of 24 representative Tcr Lactobacillus isolates from 14 different FDS end products.

The dendrogram was constructed using clustering with the Unweighted Pair Group Method with

Arithmetic Mean (UPGMA) with correlation levels expressed as % values of the pearson

correlation coefficient. Cophenetic correlations (shown on each branch of the dendrogram) indicate

how faithfully the dendrogram represents the similarity matrix.

3.2.

ADDITIONAL REMARKS

In section 3.1, the (GTG)
5
-PCR fingerprinting results of the Tcr LAB isolates were inter-

preted towards the applicability of the method. In this paragraph, further interpretation and

conclusions are made concerning the diversity of the Tcr LAB subpopulation in FDS end

products.

In five batches (FDS-08C, -08D, -9B, -11B, and -12B) (GTG)
5
-PCR fingerprinting re-

vealed an intraspecies diversity among the isolates. Different batches of a particular FDS

type were not found to contain identical (GTG)
5
-PCR fingerprints, except for FDS-08C

(DG 520) and FDS-08D (DG 533), but the two isolates were shown to have different plas-

mid profiles (chapter 4). In some cases even different species compositions were obtained

in the different batches, indicating that the source of Tcr lactobacilli is highly variable.

Interestingly, isolates DG 165, DG 485 and DG 516 originating from three different FDS

types (FDS-06, -09B and -11B) displayed identical fingerprints, suggesting a possible com-

mon source of Tcr Lactobacillus contamination. Numerical analysis of the (GTG)
5
-PCR

fingerprints showed that isolates originating from the same batch often displayed identical

banding patterns (results not shown). In order not to select multiple isogenic strains, one

isolate per unique (GTG)
5
-PCR fingerprint type was selected, resulting in a collection of 24

Tcr Lactobacillus isolates for further research (Fig. 3.3).
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SUMMARY

Little is known about the genetics of the acquired antibiotic resistances in

lactobacilli from food products. Therefore a set of 24 tetracycline resistance

(Tcr) lactobacilli recovered from nine different fermented dry sausage types was

subjected to a polyphasic molecular study with the aim to detect, identify and

localise the genes conferring Tcr. The tet genes were determined by means of

PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and

ScaI revealed two different tet(M) allele types. This grouping was confirmed

by partial sequencing of the tet(M) ORF, which indicated that the two allele

types displayed high sequence similarities with tet(M) genes previously re-

ported in two pathogenic species. Southern hybridisation of the plasmid pro-

files with a tet(M) probe revealed that most of the detected tet(M) genes were

located on plasmids. One isolate harboured, in addition to the tet(M) gene, an

erm(B) gene on a different plasmid than the one coding for the Tcr. It was also

shown by PCR that none of the tet(M) genes in the 24 Tcr isolates were located

on a transposon of the Tn916/Tn1545 family. In the second part of the molecu-

lar analysis of the Tcr, the ability of the Tcr lactobacilli to transfer their resist-

ance by conjugation was examined by using filter mating experiments. Out of

these 24 Tcr lactobacilli, seven were able to transfer their Tcr to Enterococcus

faecalis at relatively high frequencies (10-4 – 10-5). Two of them could also

transfer their R-plasmid to Lc. lactis subsp. lactis. These data suggest that

lactobacilli may be reservoir organisms for acquired resistance genes that can

be spread to other bacteria.





131

MOLECULAR ANALYSIS OF THE TETRACYCLINE RESISTANCE IN LACTOBACILLUS SPP.

4.1.

MOLECULAR CHARACTERIZATION OF TET(M) GENES IN LACTOBACILLUS

ISOLATES FROM DIFFERENT TYPES OF FERMENTED DRY SAUSAGE

Published as:

GEVERS, D., DANIELSEN, M., HUYS, G. & SWINGS, J. (2002) Molecular characterization of tet(M)

genes in Lactobacillus isolates from different types of fermented dry sausage. Appl. Environ.

Microbioliol. (Revised manuscript submitted)
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INTRODUCTION

For several decades, studies on the selection and dissemination of antibiotic resistance

have mainly focussed on clinically relevant bacterial species. More recently many investi-

gators speculated that commensal bacteria may act as reservoirs of antibiotic resistance

genes similar to those found in human pathogens (Salyers, 1995; Levy and Salyers, 1998).

Such commensal reservoir bacteria can be present in the intestines of farmed animals ex-

posed to antibiotics (Witte, 1998; Aminov et al., 2001) and may subsequently contaminate

the raw meat produced from these animals even when hygiene regulations are respected.

Several examples of antibiotic resistant lactic acid bacteria (LAB) isolated from raw meat

exist (Klein et al., 1998; Quednau et al., 1998; Vidal and Collins-Thompson, 1987; Pavia

et al., 2000). Fermented foods prepared from raw meat or milk can therefore be considered

as potential vehicles for the spread of antibiotic resistant LAB along the food chain to the

consumer (Teuber and Perreten, 2000). Genes conferring resistance to tetracycline, chlo-

ramphenicol, erythromycin, and vancomycin, have been detected and characterized in

Lactococcus lactis (Perreten et al., 1997) and enterococci (Teuber and Perreten, 2000; Giraffa

and Sisto, 1997) isolated from fermented meat and milk products. In contrast, no molecular

data are available on the occurrence of antibiotic resistance genes in lactobacilli present in

fermented food products. Members of the genus Lactobacillus also constitute an important

part of the natural microflora associated with fermented products and are indigenous to the

animal and human gastro-intestinal tract. Along with enterococci, these properties make

lactobacilli interesting indicator organisms to study the molecular ecology of antibiotic re-

sistance determinants in food fermentations.

Foregoing, we have isolated tetracycline resistant (Tcr) strains of various Lactobacillus

species from different types of modified atmosphere packed fermented dry sausage sold in

Belgian retail shops (Gevers et al., 2000; chapter 2). All Lactobacillus isolates collected in

this way were resistant to at least 64 µg/ml of tetracycline as determined with the MRS agar

dilution method (Gevers et al., 2000; chapter 2). The aim of this study was to perform a

molecular characterization of the tet genes conferring the high-level phenotypic resistance

to tetracycline in these isolates.
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MATERIALS AND METHODS

Bacterial isolates. In this study a total of 24 Tcr LAB isolates recovered from 14 batches

of 9 different fermented dry sausage types were included. A type is defined here as a specific

variety distributed under a specific commercial brand and each type is designated a number

(i.e. FDS-01, FDS-02, FDS-06, FDS-07, FDS-08, FDS-09, FDS-11, FDS-12, and FDS-

14); whereas a batch (i.e. a group of the same product made at one time) is indicated with

a letter from A to E. Isolates were recovered on the basis of colony morphology rather than

relative abundance in order to obtain a set of isolates with the highest diversity. All these

FDS were prepared using a starter culture. The isolation and identification of the Tcr LAB

isolates are described in Chapter 2 and 3, respectively.  All isolates were stored in a bead

storage system (Microbank system, Pro-LAB Diagnostics, Wirral, UK) at –80°C and grown

in MRS at 30°C under microaerophilic conditions (3.75% CO
2
, 5% O

2
, 7.5% H

2
, and 83.75%

N
2
).

Antibiotic susceptibility testing and MIC determination. A modified version of the

Kirby-Bauer disc diffusion method (Kirby et al., 1966), in which Meuller-Hinton medium

was replaced by MRS agar, was used for antibiotic sensitivity testing. Oxoid (Basingstoke,

UK) susceptibility test discs of ampicillin (25 µg), chloramphenicol (30 µg), clindamycin

(10 µg), erythromycin (10 µg), penicillin G (10 U), rifampicin (30 µg) and tetracycline (30

µg) were applied on inoculated MRS plates using the Oxoid Disc Dispenser. Diameters of

the respective inhibition zones were measured using a digital callipers (Mauser digital 2,

Ludwigsburg, Germany) following a 16-18 h incubation of the plates at 30°C. For each of

the antibiotics tested, classification of the isolates into sensitive and resistant groups was

based on resistance histograms (i.e. number of strains versus size of the inhibition zone).

Cut-off values to differentiate among resistant and susceptible groups were defined on the

basis of the bimodal distribution of the population in the resistance histograms. The MIC of

tetracycline was determined by applying an Etest® strip (AB Biodisk, Solna, Sweden) on an

inoculated MRS plate according to manufacturer’s instructions. The Etest strip was read

following 16-18 h incubation at 30°C.
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DNA preparation and manipulations. Total genomic DNA of each isolate was ex-

tracted and purified as described previously (Gevers et al., 2001; chapter 3). Isolation of

plasmid DNA was based on the alkaline lysis method of Anderson and McKay (Anderson

and McKay, 1983). Restriction endonuclease digestions of the tet(M) gene, agarose gel

electrophoresis and Southern blotting were carried out following standard procedures

(Sambrook et al., 1989). The labelling of DNA probes with horseradish peroxidase using

the ECL Direct Nucleic Acid Labelling kit (RPN3000, Amersham Biosciences,Uppsala,

Sweden), was performed according to the manufacturer’s instructions.

PCR detection of tet, erm and int genes. PCR assays (total volume, 50 µl) contained

20 pmol of each primer (Table 4.1), 1 x PCR buffer (Applied Biosystems, Warrington, UK),

each dNTPs at a concentration of 200 µM, and 1 U of AmpliTaq® DNA Polymerase (N808-

0160, Applied Biosystems, Warrington, UK). A 50 ng portion of purified total DNA was

used as a template. In a first PCR assay, tet genes encoding ribosomal protection proteins

(RPP) were detected using degenerate primers DI and DII (Clermont et al., 1997). If posi-

tive for RPP genes, additional PCR assays were performed using specific primers for tet(M),

tet(O), and tet(S) ( 4.1). Next to RPP tet genes, isolates were also tested for the presence of

the tetracycline efflux genes tet(K) and tet(L), and for transposon integrase (int) gene of the

Tn916/Tn1545 family (Table 4.1). One strain that expressed an erythromycin resistance

was analysed with erm(B) specific primers as described previously (Jensen et al., 1999).

All PCR amplifications were performed in a GeneAmp 9600 PCR system (Perkin-Elmer,

Wellesley, US) using the following temperature program: initial denaturation at 94 °C for 5

min, 30 cycles of 94 °C for 1 min, for 1 min at the annealing temperature (T
an

) as indicated

in  Table 4.1, and 72 °C for 2 min, and a final extension step at 72 °C for 10 min. PCR

products (5 µl) were separated by electrophoresis on a 1% agarose gel and visualized by

ethidium bromide staining.

Sequencing of PCR products. For tet(M) positive isolates, the purified PCR products

(obtained with DI and tet(M)-R primers) were directly sequenced using the primers DI, DII

and tet(M)-R (Table 4.1). Sequencing was performed using a BigDye® Terminator v2 Ready

Reaction Cycle Sequencing Kit (Applied Biosystems) on an ABI PRISM® 310 Genetic

Analyzer (Applied Biosystems). On-line similarity searches were performed by using the

BLAST (Basic Local Alignment Search Tool) family of programs in GenBank (National

Center for Biotechnology Information, Bethesda, US).
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Nucleotide sequence accession numbers. Sequences of tet(M) genes described in this

paper have been assigned GenBank Accession numbers AY149574 to AY149597.

DI 5’-GAYACNCCNGGNCAYRTNGAYTT-3’

DII 5’-GCCCARWANGGRTTNGGNGGNACYTC-3’

DI 5’-GAYACNCCNGGNCAYRTNGAYTT-3’

TetM-R 5’-CACCGAGCAGGGATTTCTCCAC-3’

TetS-FWT 1 5’-ATCAAGATATTAAGGAC-3’

TetS-RVT 2 5’-TTCTCTATGTGGTAATC-3’

TetO-FW 1 5’- AATGAAGATTCCGACAATTT-3’

TetO-RV 1 5’- CTCATGCGTTGTAGTATTCCA-3’

TetK-FW 1 5’-TTATGGTGGTTGTAGCTAGAAA-3’

TetK-RV 1 5’-AAAGGGTTAGAAACTCTTGAAA-3’

TetL-FW 3 5’-GTMGTTGCGCGCTATATTCC-3’

TetL-RV 3 5’-GTGAAMGRWAGCCCACCTAA-3’

Int-FW 5’-GCGTGATTGTATCTCACT-3’

Int-RV 5’-GACGCTCCTGTTGCTTCT-3’

ErmB-FW 5’-CATTTAACGACGAAACTGGC-3’

ErmB-RV 5’-GGAACATCTGTGGTATGGCG-3’

Collard J.M.

Collard J.M.

pAT121 (Collard J.M.)

pAT102 (Courvalin P.)

pAT103 (Courvalin P.)

erm (B) 55°C 405 Jensen et al. (1999)Tn1545 (Courvalin P.)

int 50°C 1028 Doherty et al. (2000)Tn1545 (Courvalin P.)

tet (K) 55°C 348

tet (L) 55°C 696

Charpentier et al. (1993)

tet (O) 55°C 781 Sougakoff et al. (1987)

tet (S) 55°C 573 pVP2 (Perreten et al. , 1997)

Clermont et al. (1997)

tet (M) 55°C 1513 pJI3 (Morse et al. , 1986) Clermont et al. (1997)

RPP 45°C 1083 pJI3 (Morse et al. , 1986)

Table 4.1. Primers for PCR detection of tet, erm, and int genes

Primer Class targeted Sequence Tan

Amplicon

size (bp)

Reference or source

of primers

Positive control strain

and reference
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RESULTS

Phenotypic characterization of resistance. Etests revealed that the MIC of tetracy-

cline ranged between 32 and > 256 µg/ml (upper limit of test), and the MIC
50

 is > 256 µg/

ml (Fig. 4.1). Next to a high-level tetracycline resistance found among the 24 selected

isolates, some strains showed in disc diffusion susceptibility testing an additional phenotypic

resistance towards erythromycin (n = 1), rifampicin (n = 4) and penicillin (n = 1).

Detection, characterization and localisation of tet genes. Total genomic DNA prepa-

rations from all 24 Tcr Lactobacillus isolates were subjected to PCR amplification with the

RPP set of primers, with class-specific primers for tet(M), tet(O), tet(S), tet(K) and tet(L),

and with primers for detection of int genes of the Tn916/Tn1545 family of transposons, all

using appropriate positive controls as indicated in Table 4.1. In all 24 isolates, only tet(M)

was detected, and no int genes were found. Positive controls were included and results were

conclusive. Restriction enzyme analysis (REA) of the tet(M) PCR product (74% of ORF)

with AccI and ScaI revealed two different tet(M) allele types, i.e. tet(M)-1 and tet(M)-2

respectively (Fig. 4.1). Most batches contained strains belonging to one allele type, except

for batches FDS-02B, FDS-07A and FDS-14 that contained strains displaying both allele

types (Fig. 4.1). In order to characterise the tet(M) genes more profoundly, the ORF was

partially (74%) sequenced from approximately position 280 (DI primer) to position 1700

(TetM-R primer). Sequence alignments revealed two sequence homology groups and one

mosaic gene (Fig. 4.2). Between the homology groups a difference of at least 25 bases was

found. A first group comprised 9 isolates in which the sequenced part of the tet(M) gene

showed maximum five base differences with the tet(M) gene of Neisseria meningitidis

(GenBank Accession No X75073) (Gascoyne-Binzi et al., 1994). This group corresponds

to tet(M)-1 found by REA. A second group of 14 isolates with maximum 3 base differences

with the tet(M) gene of Staphylococcus aureus MRSA 101 (GenBank Accession No

M21136) (Nesin et al., 1990) corresponded to tet(M)-2 defined by REA. The tet(M) gene

of isolate DG 013 exhibited a mosaic structure combining partial sequences of the two

foregoing homology groups. The sequence up to position 1508 of the ORF displayed 1 base

difference with the tet(M) gene of N. meningitidis and is identical to the tet(M) gene of S.

aureus MRSA 101 in the remaining part. REA classified the tet(M) gene of this strain as a

tet(M)-2. The one isolate expressing a phenotypic erythromycin resistance (DG 507) was
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shown to contain an erm(B) gene, by PCR and partial sequencing of the PCR product.

Plasmid profiling of the 24 Tcr Lactobacillus isolates showed that 23 isolates (excluding

DG 524) contained at least one and usually more than one plasmid (Fig. 4.1). Using South-

ern blotting and hybridisation with a specific tet(M) and/ or erm(B) probe, the tet(M) genes

of 20 isolates and the erm(B) gene in isolate DG 507 could be localised on a plasmid. Most

of these R-plasmids had a size of approximately 10 kb, and in a few cases the R-plasmid

was larger than 25 kb. Most plasmid profiles showed more than one band (up to three) that

hybridised with the tet(M) probe (Fig. 4.1), due to hybridisation with (low concentrations

of) open circular and/or linear plasmid forms. For the remaining four Tcr Lactobacillus

isolates that did not carry the tet(M) gene on a plasmid (i.e. DG 142, DG 484, DG 524 and

DG 525), Southern blots of EcoRI digested DNA hybridised to the tet(M) probe with frag-

ments between 8 and 12 kb (results not shown).
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Fig. 4.2. Single most parsimonious tree (unrooted) for tet(M) gene relationships of the 24

Tcr LAB isolates and two reference strains [Neisseria meningitidis (X75073) and

Staphylococcus aureus MRSA 101 (M21136)]. The recently published tet(M) gene of

Lb. plantarum 5057 (AF440277) was included (Danielsen, 2002). The numbers of

nucleotide changes are indicated on each branch. The bootstrap percentages (500 replicates)

are indicated for the separation between the two homology groups

Fig. 4.1. (opposite page) Inverted plasmid profiles of the 24 Tcr Lactobacillus isolates from

fermented dry sausage (FDS) end products. A small triangle or circle indicates the position where

the tet(M) or erm(B) probe, respectively, hybridized on the Southern blot of the plasmid DNA.

Lactococcus lactis subsp. cremoris strain AC1 was used as a plasmid size marker (Neve et al.,

1984). Tet(M)-1 and tet(M)-2 allele types correspond with the tet(M) genes found in Neisseria

meningitidis (X75073) and Staphylococcus aureus MRSA 101 (M21136), respectively, based

on restriction enzyme analysis (REA) using AccI and ScaI. Tet(M) localisation: as was determined

by Southern hybridisation. MIC of tetracycline: minimum inhibitory concentration as was

determined by Etest. Chr.: chromosomal band

DG 142, DG 484, DG 488, DG 498
DG 499, DG 515, DG 524

DG 013

DG 048

1

DG 520
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DISCUSSION

To our knowledge, this is the first detailed molecular study of antibiotic resistance genes

in Lactobacillus species isolated from fermented dry sausages (FDS). The presence of an-

tibiotic resistant Lactobacillus species has been documented in wine, cheese (Teuber et al.,

1999; Herrero et al., 1996), poultry, calf, swine (Lin et al., 1996; Tannock et al., 1994; Frei

et al., 2001; Vescovo et al., 1982), pig faeces (Fons et al., 1997; Axelsson et al., 1988;

Rinckel and Savage, 1990), faeces of healthy humans (Ishiwa and Iwata, 1980) and maize

silage (Danielsen, 2002). As described in chapter 2 and 3, a total of 94 Tcr LAB isolates

was recovered from 14 batches representing nine different FDS types and identified by

(GTG)
5
-PCR fingerprinting. All strains could be allocated to five different Lactobacillus

taxa commonly associated with fermented meat products, i.e. Lb. plantarum, Lb. sakei

subsp. carnosus, Lb. sakei subsp. sakei, Lb. curvatus and Lb. alimentarius (Hammes et

al., 1990). To avoid selection of multiple isogenic strains, one strain of each of the 24

unique (GTG)
5
-PCR fingerprint type was selected for further molecular research.

Given the fact that the set of Tcr Lactobacillus isolates was heterogeneous composed, it

was somewhat surprising that in all isolates only tet(M) out of the 5 tet genes tested, was

detected. According to current insights, tet(M) is the most widely distributed tet gene being

detected in at least eight Gram-negative and 18 Gram-positive genera including Enterococ-

cus, Streptococcus, and Bifidobacterium (Chopra and Roberts, 2001). It was suggested

that the origin of tet(M) is most probably the tetracycline-producing species of Streptomy-

ces, and that its integration into mobile genetic elements (plasmids and transposons) has

led to its widespread distribution (Oggioni et al., 1996; Chopra and Roberts, 2001). At the

moment of discovery, only tet(O) and tet(Q) have been reported in members of the genus

Lactobacillus (Chopra and Roberts, 2001), but recently also a tet(M) gene was found in a

Lb. plantarum strain (Danielsen, 2002). Partial sequencing revealed that the tet(M) genes

in the Tcr Lactobacillus isolates belonged to two homology groups and one individual. The

two homology groups corresponds to sequences that were published before, i.e. group I

correspond with the tet(M) found in Neisseria meningitidis (Gascoyne-Binzi et al., 1994),

and group II corresponds with tet(M) of Staphylococcus aureus MRSA 101 (Nesin et al.,

1990). Isolate DG 13 represents a new allelic variation, showing high partial similarities

with both the N. meningitidis and S. aureus tet(M) genes. This group may have arisen from

homologous recombination and corresponds to the mosaic structures exhibited by the tet(M)

 E
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gene, as previously described (Oggioni et al., 1996). The tet(M) genes found in these Lacto-

bacillus isolates differ from those found in other lactic acid bacteria including Enterococ-

cus faecalis (X56353; M85225; X92947; X04388) with a base difference ranging between

12 and 115 bases; and Streptococcus pneumoniae (X90939) with a base difference ranging

between 69 and 86 bases.

The tet(M) genes of N. meningitidis and S. aureus MRSA 101 are located on a plasmid

and on the chromosome, respectively (Gascoyne-Binzi et al., 1994; Nesin et al., 1990).

Within the set of Tcr Lactobacillus isolates, the tet(M) genes of sequence homology group

I and isolate DG13 were exclusively found on plasmids (n = 10), whereas for sequence

homology group II tet(M) genes were localised on the chromosome (n = 4) or on a plasmid

(n = 10). R-plasmids encoding tetracycline, chloramphenicol, gentamicin, or macrolide-

lincosamide-streptogramine (MLS) resistance have been reported previously in Lb. reuteri

(Axelsson et al., 1988; Lin et al., 1996; Tannock et al., 1994; Vescovo et al., 1982), Lb.

fermentum (Fons et al., 1997; Ishiwa and Iwata, 1980), Lb. acidophilus (Vescovo et al.,

1982), and Lb. plantarum (Ahn et al., 1992) isolated from raw meat and faeces. Most of

these R-plasmids had a size smaller than 10 kb. The Tcr Lactobacillus isolates with a chro-

mosomal tet gene of this study show a significant lower MIC compared to the plasmid-

encoded tetracycline resistance, i.e. 32 - 48 µg/ml and > 192 µg/ml respectively, with ex-

ception of two Lactobacillus sakei subsp. carnosus isolates (DG 488 and DG 489). More

research is needed to investigate to what extent this marked difference in phenotypic resist-

ance levels is linked to the location of the tet(M) gene.

In conclusion, the results of the current study indicate that Lactobacillus species from

fermented meat products can harbour acquired Tcr encoded by a tet(M) gene, most of which

were located on plasmids and displayed very high genotypic similarities with tet(M) genes

previously reported in two pathogenic species.  Further research may focus on the diversity

and transferability of these Lactobacillus plasmids into other commensal bacteria, on the

source of Tcr lactobacilli in the production process of FDS and can include in vivo transfer

experiments in fermented dry sausage and/or gastro-intestinal tract.
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4.2.

CONJUGAL TRANSFER OF TETRACYCLINE RESISTANCE FROM

LACTOBACILLUS ISOLATES RECOVERED FROM FERMENTED DRY SAUSAGE

TO OTHER LACTIC ACID BACTERIA
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INTRODUCTION

Lactobacilli are common in foods and are members of the resident microflora of the

gastrointestinal tracts of humans and animals. Because of their broad environmental distri-

bution, these commensal bacteria may function as vectors for the dissemination of antibi-

otic resistance determinants via the food chain to the consumer (Teuber et al., 1999). In

addition, this normal flora might be capable of supplying drug resistance genes to food-

borne or enteric pathogens (Salyers, 1995). Although plasmids are very common in lacto-

bacilli (Wang and Lee, 1997), and even plasmid located antibiotic resistance determinants

have been reported in lactobacilli (Ahn et al., 1992; Lin et al., 1996; Tannock et al., 1994;

Danielsen, 2002), the literature on the conjugal transfer of native Lactobacillus plasmids is

limited. So far, only the conjugal transfer of plasmid-encoded lactose metabolism from Lb.

casei (Chassy and Rokaw, 1981) and of plasmid-encoded bacteriocin production and re-

sistance from Lb. acidophilus (Klaenhammer, 1988) have been reported before. Therefore,

this study was performed to analyse the possibility of Tcr Lactobacillus isolates recovered

from fermented dry sausage end products to transfer their tet genes to other lactic acid

bacteria, including Enterococcus faecalis and Lactococcus lactis subsp. lactis.
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MATERIALS AND METHODS

Bacterial strains. The cultures used in this work are listed in Table 4.2. The Tcr lactoba-

cilli, used as donor strains for mating experiments, were isolated from fermented dry sau-

sage end products as described in chapter 2, and grown on MRS at 30 °C. The recipient

strains: (i) Enterococcus faecalis JH2-2 (Jacob and Hobbs, 1974) was grown in brain heart

infusion medium (BHI, BD, Franklin Lakes, US) at 37 °C and (ii) for the cultivation of the

lactose-negative Lactococcus lactis subsp. lactis Bu2-60 (Neve et al., 1984), M17 broth

medium (CM0817, Oxoid, Basingstoke, UK) was used in which lactose was replaced by

glucose (GM17), and incubated at 30 °C. Antibiotics (Sigma, Bornem, Belgium) were used

in the following concentrations to maintain the resistance genes or for the selection of

transconjugants: tetracycline 10 µg/ml; rifampicin 50 µg/ml. All strains were stored in a

bead storage system (Microbank system, Pro-LAB Diagnostics, Wirral, UK) at –80°C.

Mating procedure. Transferability of resistance genes was examined by using filter

mating experiments. Donor and recipient strains were grown in non-selective broth me-

dium to the mid-logarithmic phase of growth (approx. 4 h). The donor culture (1 ml) was

added to the recipient culture (1 ml) and the mixture was filtrated through a sterile mixed

Strain Relevant properties Remarks References

Lactobacillus spp.

DG 013, 048, 143, 165, 483, 485,

488, 489, 493, 498, 499, 500, 507,

509, 512, 515, 516, 520, 522, 533

Plasmid located tet (M) gene

DG 142, 484, 524, 525 Chromosomal located tet (M) gene

DG 507
Plasmid located tet (M) and erm (B)

gene (2 different plasmids)

Enterococcus faecalis

JH2-2 Fus
r
, Rif

r
, plasmid free Recipient Jacob and Hobbs (1974)

Lactococcus lactis subsp. lactis

Bu2-60 Str
r
, Rif

r
, plasmid free Recipient Neve et al. (1984)

Lactococcus lactis subsp. cremoris

AC1 Used as plasmid size marker Neve et al. (1984)

Table 4.2. Bacterial strains used in this study

Fus.: fusidic acid; Rif.: rifampicin; Str.: streptomycin

This study (chapter

2)

Donor strains,

Source: fermented dry

sausage end products
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cellulose esters filter (0.45 µm) (MF-Millipore membrane filter, HAWP 02500, Millipore,

Bedford, US) using the Swinnex® filter holders (SX00 025 00, Millipore). After donor and

recipient cells were filtrated, sterilized pepton physiological saline solution (PPS) (8.5 g/l

NaCl and 1 g/l neutralised bacteriological peptone [LP0034, Oxoid] was passed through

the filter to trap the cells more tightly into the membrane, according to Sasaki et al. (1988).

The filters were incubated overnight on non-selective agar medium corresponding with the

growth medium and conditions of the recipient strain. The bacteria were washed from the

filters with 2 ml PPS. Dilutions of the mating mixtures were spread onto agar plates con-

taining appropriate selective antibiotics (double selective medium) and incubated for 24 to

48 h. Control cultures of donor and recipient strains alone were also plated on the double

selective agar plates.

Antibiotic susceptibility testing and MIC determination. Possible transconjugants

were screened for their antibiotic resistance pattern, using a modified version of the Kirby-

Bauer disc diffusion method, in which Meuller-Hinton medium was replaced by MRS agar,

as described in chapter 2. The MIC of tetracycline was determined by the Etest® (AB Biodisk,

Solna, Sweden) according to the manufacturer’s instructions with slight modifications as

previously described (Gevers et al., 2002, chapter 4.1).

Typing of transconjugants. The fingerprints of transconjugants, obtained by high-reso-

lution (GTG)
5
-PCR fingerprinting as described in chapter 3, were compared to the finger-

prints of recipient strains for confirmation purposes.

DNA preparation and manipulations. Total genomic DNA of each isolate was ex-

tracted and purified as described in chapter 3. Isolation of plasmid DNA was based on the

alkaline lysis method of Anderson and McKay (1983). Restriction endonuclease digestions

of the tet(M) gene, agarose gel electrophoresis and Southern blotting were carried out fol-

lowing standard procedures (Sambrook et al., 1989). Labelling of DNA probes with horse-

radish peroxidase using the ECL Direct Nucleic Acid Labelling kit (RPN3000, Amersham

Biosciences, Uppsala, Sweden) was performed according to the manufacturer’s instruc-

tions.

PCR detection of tet genes. PCR assays are as described in section 4.1.
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RESULTS

A total of 24 Tcr Lactobacillus isolates (Table 4.2) all containing a tet(M) gene, was

used to test their ability to transfer tetracycline resistance genes to Enterococcus faecalis

JH2-2 by conjugation. Several attempts to transfer the R-plasmids by filter mating using a

0.2 µm pore size filter were ineffective (data not shown), whereas the use of a 0.45 µm

membrane with a sponge-like structure was more successful. Tetracycline resistant

transconjugants were obtained from matings with seven isolates, including four Lb.

plantarum strains (DG 013, DG 507, DG 515 and DG 522), two Lb. alimentarius strains

(DG 498 and DG 500), and one Lb. sakei subsp. sakei strain (DG 493) at frequencies

ranging between 10-4 and 10-6 transconjugants per recipient. Higher transfer frequencies

were found when cells were grown until the mid-logarithmic phase (4–6 h) in comparison

to overnight cultures (data not shown).  For two out of these seven Tcr Lactobacillus iso-

lates (DG 493 and DG 515) transfer of Tcr was also shown when using Lactococcus lactis

subsp. lactis Bu2-60 as a recipient at frequencies ranging between 10-5 and  10-7

transconjugants per recipient. Potential transconjugant colonies (approx. 5 per experiment)

were isolated from the double selective medium at the end of the filter mating experiment

and checked for coccoid cell morphology using standard phase-contrast microscopy. Using

disc diffusion testing, susceptibility to tetracycline and rifampicin was compared between

donor (Tcr/Rif s), recipient (Tcs/Rif r) and a selection of transconjugants (Tcr/Rif r). All se-

lected Tcr cocci had the Tcr/Rif r pattern. Further confirmation of transconjugants identity

was obtained by comparing the (GTG)
5
-PCR fingerprints of donor, recipient and

transconjugants, and by checking the presence of the tet(M) gene by PCR. On the basis of

these criteria, all Tcr cocci that were isolated from the double selective medium were con-

firmed as true transconjugants.

Genotypic characterization of the transferred plasmids was obtained by plasmid profil-

ing in combination with Southern blotting and hybridisation. In most cases, all

transconjugants resulting from a particular donor/recipient combination exhibited the same

plasmid profile, and from those, only one transconjugant was selected for blotting and

hybridisation experiments. Among transconjugants obtained from mating of donor strains

DG 493, DG 500 and DG 507 with the E. faecalis JH2-2 recipient strain, however, more

than one different plasmid profile per combination was found. In these cases, one strain for

each different plasmid profile was selected. A total of 13 transconjugants from 9 different
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Fig. 4.3. (opposite page) Southern hybridisation analysis of the plasmid profiles of the donor (DG),

recipient (LMG) and transconjugants (TC). Small triangle/circle indicates the position where the tet(M)/

erm(B) probe, respectively, hybridised on the Southern blot of the plasmid DNA. Lactococcus lactis

subsp. cremoris strain AC1 was used as a plasmid size marker (Neve et al., 1984). MIC: minimum

inhibitory concentration as was determined by Etest; Chr.: chromosomal band

donor/recipient combinations was selected for blotting and hybridisation experiments (Fig.

4.3). In six transconjugants, the plasmid band that hybridised with the tet(M) probe was

different in size compared to the original R-plasmid of the donor strain. Next to the plasmid

of approx. 10 kb encoding the tetracycline resistance, two out of three transconjugants from

the matings with DG 507 as donor strain, also received a second plasmid (approx. 8.5 kb)

containing an erm(B) gene. This was also reflected in the MICs for erythromycin, that

increased from 1 µg/ml for the erythromycin susceptible transconjugants to > 256 µg/ml for

those that received the plasmid containing the erm(B) gene (Fig. 4.3). The MICs for tetra-

cycline of the E. faecalis JH2-2 transconjugants were more than 3 times lower than the

MIC of the corresponding donor strain, whereas the MICs of the Lc. lactis Bu2-60

transconjugants were comparable to those of the corresponding donor strain.
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DISCUSSION

The mating experiments described here demonstrate that intergeneric transfer of R-

plasmids from Lactobacillus spp. to other LAB can occur at a relatively high frequency

under laboratory conditions of intimate cell-to-cell contact. From the practical point of view,

two factors seemed to significantly affect the transfer frequency, namely the type of mem-

brane filter (type, pore size and side of membrane) and the age of donor and recipient

cultures. Similar filter dependent transfer frequencies were reported before by Sasaki and

co-workers (1988), who indicated that the use of a sponge-like membrane with a pore size

of 0.45 µm and front side up, resulted in the highest transfer frequencies. Moreover, they

indicated that these frequencies could be increased when cells were trapped more tightly in

the spongy structure of the membrane by passing sterile water or buffer through the filter.

The host range of the transferable R-plasmids was clearly variable, as not all plasmids

that could be transferred to E. faecalis could also be transferred to Lc. lactis. In a few

transconjugants (TC 500-3, TC 507-1, TC 507-4 and TC 515-1) additional plasmids other

than the plasmid that was selected for, i.e. the R-plasmid coding for the tetracycline resist-

ance, seemed to have co-transferred spontaneously. This resulted for example in a co-trans-

fer of the erythromycin resistance determinant from DG 507 into E. faecalis. Remarkably,

in six of the investigated transconjugants the band that hybridised with the tet(M) probe

displayed a different size than the R-plasmid of the donor strain. These bands were two (TC

507-4) to three (TC 493-1, TC 493-21, TC 498-1, TC 500-1 and TC 500-3) times the size of

the R-plasmid of the donor strain. So far, no further research has been undertaken to eluci-

date this finding. In the transconjugants TC 493-1 and TC 493-21, the band that hybridises

with the tet(M) probe coincides with the chromosomal band, which might suggest a chro-

mosomal integration of the resistance determinant. However, location on a plasmid that

migrates at the same height as the chromosomal band cannot be excluded as yet.

This is the first report on conjugal transfer of native Lactobacillus plasmids encoding an

antibiotic resistance determinant. A few studies have shown the transfer of an introduced

plasmid, such as pAMβ1 (encoding an erythromycin resistance) from Lb. reuteri and Lb.

plantarum to other Gram-positive bacteria in vitro (Tannock, 1987; West and Warner, 1985)

and in vivo (Morelli et al., 1988). Conjugation of the broad host range plasmid pAMβ1

into different Lactobacillus spp. has been reported in the framework of optimising

recombinant DNA technologies to improve strain properties and has been reviewed by



153

MOLECULAR ANALYSIS OF THE TETRACYCLINE RESISTANCE IN LACTOBACILLUS SPP.

Wang and Lee (1997). The mobilization of a non-conjugative, native plasmid encoding

chloramphenicol resistance from Lb. plantarum to Carnobacterium piscicola was achieved

by co-mobilization with the conjugative plasmid pAMβ1 (Ahn et al., 1992).

In conclusion, our data suggest that Lactobacillus spp. may be reservoir organisms for

acquired resistance genes that can be spread to other bacteria, a possibility that so far was

not fully addressed. Further research may elaborate on the host range of these R-plasmids

by transferring to a broader range of bacteria including the characterization of the R-plasmids.
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SUMMARY

In order to study the prevalence and diversity of tetracycline resistant lactic

acid bacteria (Tcr LAB) along the process line of two different fermented dry

sausage (FDS) types, samples from the raw meat, the meat batter and the fer-

mented end product were analysed quantitatively and qualitatively by using a

culture-dependent approach. Both the diversity of the tet genes and their bacte-

rial hosts in the different stages of FDS production were determined. Quantita-

tive analysis showed that all raw meat components of both FDS types (FDS-01

and FDS-08) contained a subpopulation of Tcr LAB, and that for FDS-01 no Tcr

LAB could be recovered from the samples after fermentation. Qualitative analysis

of the Tcr LAB subpopulation in FDS-08 included identification and typing of

Tcr LAB isolates by (GTG)
5
-PCR fingerprinting, plasmid profiling, protein pro-

filing and a characterization of the resistance by PCR detection of tet genes.

Two remarks can be made when the results of this analysis for the different

samples are compared. (i) The taxonomic diversity of Tcr LAB varies along the

process line, with a higher diversity in the raw meat (lactococci, lactobacilli,

streptococci, and enterococci), and a decrease after fermentation (only lactoba-

cilli). (ii) Also the genetic diversity of the tet genes varies along the process

line. Both tet(M) and tet(S) were found in the raw meat, whereas only tet(M)

was found after fermentation. A possible relationship was found between the

disappearing of species other than lactobacilli and tet(S), because tet(S) was

only found in lactococci, enterococci, and streptococci. These data suggest that

fermented dry sausages are among those food products that can serve as vehi-

cles for Tcr LAB and that the raw meat already contains a subpopulation of

these bacteria. Whether these results reflect the transfer of resistant bacteria or

of bacterial resistance genes from animals to man via the food chain is difficult

to ascertain and may require a combination of cultivation-dependant and culti-

vation-independent approaches.
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INTRODUCTION

In recent years, the selection of antibiotic resistance genes by antimicrobial use in food

animals has been of great public concern, especially with regard to the prevalence of antibi-

otic therapy failures in humans (Gustafson and Bowen, 1997).  Clinical practices and ani-

mal husbandry are powerful foci of selective antibiotic pressure, and reservoirs of antibiotic

resistance determinants in humans and animals have been shown to interact via various

ecological routes, including the human food chain (Witte, 2000). Enteric bacteria can be

readily transmitted through foods, as are antibiotic resistant pathogens and commensals.

Although well documented for zoonotic pathogens (Threlfall et al., 2000), very few at-

tempts have been made to study the spread of antibiotic resistance genes by commensal

bacteria.

During the past decade, it has become clear that commensal bacteria can act as reser-

voirs for resistance genes, and are thus important in our understanding of how antibiotic

resistance genes are maintained and spread through bacterial populations. The high inci-

dence of antibiotic resistant commensals is clearly illustrated by the fact that the majority of

human individuals is known to carry oral tetracycline-resistant (Tcr) viridans streptococci

regardless of tetracycline therapy history or age, whereas Tcr pathogenic streptococci are

significantly less common in most human populations (Luna and Roberts, 1998). Although

tetracyclines are still important agents in both human and animal (veterinary and

aquacultural) medicine, the emergence of Tcr pathogens, opportunistic microbes and mem-

bers of the normal flora has certainly limited their effectiveness (Chopra and Roberts, 2001).

However, our current understanding of the bacterial hosts and environmental dissemination

of tetracycline resistance genes (tet genes) and Tcr plasmids has clearly demonstrated that

Tcr is one of the model markers to monitor the molecular ecology of antibiotic resistance

genes. The widespread distribution of specific tet genes like tet(M) in Gram-negative and

Gram-positive hosts supports the hypothesis that tet genes are exchanged by bacteria from

many different ecosystems and between humans and animals. Previously, we reported on

the presence of Tcr lactic acid bacteria (LAB) in fermented dry sausage (FDS) end products

(Gevers et al., 2000, 2002; chapter 2 and 3). In the latter paper, it was shown that the Tcr

LAB flora in FDS sold in Belgian retail markets was dominated by Lactobacillus isolates

that carried plasmid-encoded tet(M) genes.  The current study was undertaken to analyse

the prevalence of Tcr LAB and their tet genes along the process line of different FDS types,



161

TETRACYCLINE RESISTANCE ALONG THE PROCESS LINE OF FERMENTED DRY SAUSAGES

from the raw meat components to the end products. By using a culture-dependent approach,

we determined the diversity of tet genes and their bacterial hosts in the different stages of

FDS production.
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MATERIALS AND METHODS

Fermented dry sausages (FDS). Two types of FDS that were previously found to con-

tain lactobacilli exhibiting high-level resistance to tetracycline (Gevers et al., 2000; chapter

2) were investigated in this study: one batch of FDS-01 composed of 1/3 beef, 1/3 pork, and

1/3 lard, and two batches (I and II) of FDS-08 composed of 2/3 pork, and 1/3 lard.

Processing of meat samples. To study the process line of FDS-01, samples of lard

(1A), fresh pork (1C), fresh beef (1D), the meat batter (2A), the meat batter after addition of

the starter culture (2B), the fermented sausage (3A), and the dry end product (3B) were

obtained from a local FDS production facility. Samples that were obtained from the process

line of FDS-08 included frozen lard (1A), frozen pork (1B), fresh pork (1C), the meat batter

after addition of the starter culture and spices (2B), the fermented sausage (3A) and the

sliced and packed dry end product (4). Of the latter process line, two batches with a time

interval of one week were sampled. A 25 g sample was taken, added to 225 ml sterile

peptone physiological saline solution (PPS) (8.5 g/l NaCl and 1 g/l neutralised bacterio-

logical peptone [LP0034, Oxoid, Basingstoke, UK]) and homogenised in a Stomacher®

(Seward, London, UK). Serial decimal dilutions (10-1 - 10-8) in PPS were prepared and 1 ml

samples of appropriate dilutions were poured in triplicate on de Man, Rogosa and Sharpe-

Sorbic acid agar (MRS-S agar, 0882210, BD, Franklin Lakes, US) supplemented with or

without 64 µg/ml tetracycline (T-3383, Sigma, Bornem, Belgium). Plates were incubated

for five days at a temperature of 30°C under microaerophilic conditions (3.75% CO
2
, 5%

O
2
, 7.5% H

2
, and 83.75% N

2
).

Selection and storage of strains. For both batches of FDS-08, colonies were randomly

selected from MRS-S plates supplemented with 64 µg/ml tetracycline and further purified

on non-selective MRS-S plates. Isolates were stored in a bead storage system (Microbank

system, Pro-Lab Diagnostics, Wirral, UK) at –80°C.

Identification and typing of isolates. All Tcr LAB isolates were subjected to rep-PCR

fingerprinting with the (GTG)
5
 primer as previously described (Gevers et al., 2000; chapter

3). Some clusters of digitised profiles remained unidentified after comparison with the lim-

ited (GTG)
5
-PCR database of reference strains (Gevers et al., 2000; chapter 3). Representa-

tives of these clusters were further identified with protein profiling as described before

(Gevers et al., 2000; chapter 2).
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DNA preparation and manipulations. Total genomic DNA of each isolate was ex-

tracted and purified as described previously (Gevers et al., 2000; chapter 3). Isolation of

plasmid DNA was based on the alkaline lysis method of Anderson and McKay (Anderson

and McKay, 1983). Restriction endonuclease digestions of the tet(M) gene, agarose gel

electrophoresis and Southern blotting were carried out following standard procedures

(Sambrook et al., 1989). Labelling of DNA probes with horseradish peroxidase using the

ECL Direct Nucleic Acid Labelling kit (RPN3000, Amersham Biosciences, Uppsala, Swe-

den) was performed according to the manufacturer’s instructions.

PCR detection of tet genes. PCR reaction mixes (total volume, 50 µl) contained 20

pmol of each primer, 1 x PCR buffer (Applied Biosystems, Warrington, UK), each of the

four dNTPs at a concentration of 200 µM, and 1 U of AmpliTaq(R) DNA Polymerase (N808-

0160, Applied Biosystems, Warrington, UK). A 50 ng portion of purified total genomic

DNA was used as a template. In a first PCR assay, tet genes encoding ribosomal protection

proteins (RPP) were detected using degenerate primers DI and DII (Clermont et al., 1997).

If positive for RPP genes, additional PCR assays were performed using specific primers for

tet(M), tet(O), and tet(S) as described before (Gevers et al., 2002). Next to RPP tet genes,

isolates were also tested for the presence of the tetracycline efflux genes tet(K) and tet(L)

(Gevers et al., 2002). All PCR amplifications were performed in a GeneAmp 9600 PCR

system (Perkin-Elmer) using the following temperature program: initial denaturation at 94

°C for 5 min, 30 cycles of 94 °C for 1 min, for 1 min at the appropriate annealing tempera-

ture (T
an

), and 72 °C for 2 min, and a final extension step at 72 °C for 10 min. PCR products

(5 µl) were separated by electrophoresis on a 1% agarose gel and visualized by ethidium

bromide staining.

Analysis of meat samples for tetracycline residues. The presence of tetracycline resi-

dues was analysed as described before (Croubels et al., 1997). Essentially, animal tissue

was homogenised in sodium succinate buffer and methanol, followed by centrifugation and

clean-up of tetracycline residues using a metal chelate affinity chromatography with further

concentration of tetracyclines using cation exchange membrane. The final extract was ana-

lysed by reversed-phase high-performance liquid chromatography (HPLC) with fluores-

cence detection. The detection limit of the method was estimated at 0.42 ng/g and the meas-

ured limits of quantification were 2 ng/g for oxytetracycline.
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Fig. 5.1. (opposite page) Quantitative analysis of the total LAB population (white) and the Tcr

LAB population (black) along the process line of two fermented dry sausages (FDS-01 and FDS-

08).   1A: (frozen) lard; 1B: frozen raw pork; 1C: fresh raw pork; 1D: fresh raw beef; 2A: meat

batter; 2B: meat batter after addition of the starter culture and spices; 3A: the fermented sausage;

3B: the dry end product and 4: the sliced and packed end product. The plating was done in

triplicate and values shown are the average of three counts ± standard deviation. NA: not analysed

because no samples could be obtained from the plant.

RESULTS

Quantitative analysis. In order to study the prevalence of Tcr LAB along the process

line of FDS, samples of the raw meat ingredients (lard, pork, beef), the meat batter (before

and after addition of the starter culture), the fermented sausage and the dry end product

were analysed quantitatively. The quantitative analysis of the total number of LAB and the

number of Tcr LAB for FDS-01 and FDS-08 batch I is shown in Fig. 5.1. Analysis of the

second batch (II) of FDS-08 showed comparable quantitative results as obtained with batch

I (data not shown). All raw meat components (1A, 1B, 1C and 1D) of both FDS types

contained a subpopulation of Tcr LAB ranging between 1 and 3 log CFU per g of meat. In

FDS-01, the prevalence of the Tcr LAB in the pork sample was somewhat higher (1 log

unit) compared to the beef sample. For both sausage types, samples of the meat batter (2B)

showed an increase in the number of LAB (approximately 2 log units) compared to previ-

ous samples, which reflects the addition of the starter culture. The number of Tcr LAB in

samples of the meat batter after addition of the starter culture (2B) does not show a similar

increase. The quantitative results of the samples after fermentation were remarkably differ-

ent between the two sausage types. In case of FDS-01, no Tcr LAB could be recovered from

the samples after fermentation, whereas for FDS-08 a comparable increase in number of

LAB and Tcr LAB was found after fermentation (Fig. 5.1). The total number of LAB in both

FDS types remained relatively constant after the drying process of four weeks. In compari-

son, the number of Tcr LAB in FDS-08 decreased with one log unit throughout the drying

process.
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Identification and typing of isolates. For identification purposes, only the two batches

of FDS-08 were considered.  A total of 220 Tcr LAB isolates, i.e. 136 and 84 for batch I and

II, respectively, was taxonomically characterized using a polyphasic approach including

(GTG)
5
-PCR fingerprinting, plasmid profiling, and protein profiling. Based on the com-

bined profile of (GTG)
5
-PCR fingerprinting and plasmid profiling, isolates that displayed

an unique genotypic profile were selected from each sample for further research.  In this

way, the original set of 220 Tcr LAB isolates was reduced to 85 unique strains originating

from batch I (n=53) and batch II (n=32) (Table 5.1 and 5.2).  The results obtained from both

batches indicated a clear shift in species and strain diversity along the process line. A rela-

tively high taxonomic diversity was observed in the strain set originating from raw meat

components (samples 1A, 1B, 1C) which was dominated by Lactococcus spp. (> 60%),

followed by strains of Streptococcus parauberis, Enterococcus sp., Leuconostoc citreum,

Pediococcus pentosaceus and different Lactobacillus spp. In the samples collected after

fermentation (samples 3 and 4), however, only Lactobacillus spp. were recovered. In the

freshly fermented sausage (sample 3), Lactobacillus plantarum was the main species found.

Species
a

1A 1B 1C 2B 3A 4

Lc. garvieae 8 7

Lc. lactis subsp. lactis 6 2 1

Lc. lactis subsp. cremoris 1 2

S. parauberis 1

Enterococcus sp. 1

P. pentosaceus 1

Lb. curvatus 1 4 1 2

Lb. reuteri 1

Lb. plantarum 1 3 4

Lb. sakei subsp. sakei 1 1

Lb. sakei subsp. carnosus 1

Lb. paracasei 1

Lb. brevis -like 2

Table 5.1. Diversity among the Tc
r
LAB isolates (n = 53) along the process line of fermented dry

sausage FDS-08 (batch I)

Process line sample
b

a
Lc .: Lactococcus ; S .: Streptococcus ; P .: Pediococcus ; Lb .: Lactobacillus ; Leuc .: Leuconostoc

b
For each sample the number of isolates with a unique combined profile of (GTG)5-PCR fingerprinting

and plasmid profiling is shown. Numbers as in Fig. 5.1.
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Molecular analysis of tet genes. Total genomic DNA preparations from 86 selected Tcr

LAB isolates were subjected to PCR screening for the presence of RPP genes with degener-

ated primers DI and DII, and with primers specific for tet(M), tet(O), and tet(S), and for the

presence of efflux genes with primers specific for tet(K) and tet(L) (Table 5.3). For both

batches, it was found that the majority of the isolates recovered from the raw meat compo-

nents (sample 1A, 1B and 1C) contained a tet(S) gene, i.e. 64% and 68% in batch I and II,

respectively. Furthermore, in approximately 30% of the isolates originating from the raw

meat samples, a tet(M) gene was detected. In three lactococci recovered from batch I –

sample 1A (n = 2) and from batch II – sample 2B (n = 1), both tet(M) and tet(S) were

detected. None of the isolates were found to contain tet(K), tet(L), or tet(O), whereas one

isolate from the raw meat components of batch I possessed an RPP gene other than tet(M),

tet(O) or tet(S). In all isolates recovered from samples 3 and 4 obtained after fermentation

only tet(M) was found.

The tet(M) genes of 11 isolates from batch I were localised on the genome and character-

ized with restriction enzyme analysis (REA) using AccI and ScaI. REA of the tet(M) PCR

product (74% of ORF) revealed two different tet(M) allele types that appeared mixed along

the process line. Using Southern blotting of plasmid profiles and chromosomal EcoRI di-

gested DNA and hybridisation with a tet(M) probe, 9 of the tet(M) genes were found to be

located on plasmids.

Species
a

1A 1B 1C 2B 3A 4

Lc. garvieae 2 7 2

Lc. lactis subsp. lactis 1

Lc. lactis subsp. cremoris 1

S. parauberis 1

Leuc. citreum 1

P. pentosaceus 2

Lb. plantarum 1 7

Lb. sakei subsp. sakei 1 1

Lb. sakei subsp. carnosus 1

Lb. brevis -like 1 1 2

Table 5.2. Diversity among the Tc
r
LAB isolates (n = 32) along the process line of fermented dry

sausage FDS-08 (batch II)

Process line sample
b

Abbreviations and numbers as in Table 5.1.
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Tetracycline residues in meat samples. The three raw meat components (1A, 1B and

1C) of the two batches of FDS-08 were analysed for the presence of tetracycline residues

(Table 5.4). In one fresh pork sample used in batch II, a residual concentration of 368.1 ng/

g was detected.  Based on EEC regulation N° 2377/90, this value clearly exceeds the im-

posed maximum residue limit (MRL) of 100 ng/g muscle tissue for tetracycline residues

allowed in foodstuffs of animal origin. In addition, four other raw meat components con-

tained trace amounts (< 100 ng/g) of tetracyclines. All residues could be identified as ox-

ytetracycline. Because of the high value in a raw meat component of batch II, also the end

product (sample 4) of this batch was analysed. In this sample, only a trace amount of ox-

ytetracycline (11.5 ng/g) was found.

Batch 1A 1B 1C 4

I 21.6 < 10 <10 NT

II < DL 14.8 368.1 11.5

Table 5.4. Concentration of oxytetracycline residues in meat 

samples used for production of fermented dry sausage FDS-08

Process line sample
a

a

 Values expressed in ng/g; NT: not tested; DL: detection limit 

(0,42 ng/g); Numbers as in Fig. 5.1.

tet gene

9

3

1

Table 5.3. The tet gene diversity among the Tc
r
LAB isolates along the process line of a fermented dry sausage

Process line sample
a

Species 1 2B 3A 4

tet (M) and tet (S) 2

tet (S) 25 1

tet (M) 1

Lactobacilli

tet (M) 10 3

tet (S)

Cocci

ND
b

RPP 1

2 1

tet (M) and tet (S) 1

a/ Numbers as in Fig. 5.1. b/ ND: not defined gene other than RPP, tet (K), tet (L), RPP: determinants encoding a

ribosomal protection protein

Lactobacilli
tet (M) 3 1 8

tet (S)

Cocci

Batch I

(n = 53)

Batch II

(n = 32)

tet (S) 11 2

tet (M)
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DISCUSSION

In the course of previous studies, we have demonstrated that several types of sliced

modified atmosphere packed fermented dry sausage (FDS) end products contain a

subpopulation of Tcr lactobacilli carrying plasmid-located tet(M) genes (Gevers et al., 2000,

2002; chapter 2 and 3). From these data, the question arose at what stage these Tcr bacteria

actually enter the production process. The results of the quantitative analyses in this study

suggest that Tcr LAB are introduced into the FDS process line along with the raw meat

components. Although these data indicate that the raw meat may be a major source of

antibiotic resistant bacteria in FDS fermentation, it is currently unclear what the origin of

these bacteria is. Amongst other sources, it cannot be excluded that human handling and

the production environment introduce Tcr bacteria in the FDS fermentation process. Most

likely Tcr LAB originate from contamination with animal bacteria when considering that

faecal contamination of raw meat during slaughtering cannot be completely avoided in

spite of the fairly high hygienic standards in most developed countries. In addition, the fact

that a significant part of the European livestock is being treated with or exposed to

tetracyclines (FEDESA) is likely to exert a selective pressure stimulating the selection and

dissemination of Tcr bacteria in the animal gut flora (Aarestrup, 1999). De Wasch and co-

workers (1998) reported that >5% of pork meat samples purchased from Belgian retail

outlets contained residues of tetracyclines in the range of 50-1000 µg/kg. High concentra-

tions of antibiotic residues could be of concern, because the (local) inhibition of the starter

culture during fermentation might result in a (local) fermentation failure and growth of

spoilage or pathogenic bacteria (Holley and Blaszyk, 1997). For the human consumer, any

of the potentially hazardous effects due to presence of tetracycline residues in the final

product as reported in the present study are probably negligible because of the very low

concentrations. Tancrede and Bacaret (1989) titrated oxytetracycline in human volunteers

and reported that a slight shift in antibiotic susceptibility of faecal anaerobes could be seen

at 20 mg/d, but not at 2 mg/d. Theoretically, an amount of 2000 kg of the end product of

FDS-08 batch II would be necessary to reach a dose of 20 mg.

Since most meat products are heat treated before consumption, no viable (resistant) bac-

teria are expected to be present in the final product. During manufacturing and ripening of

FDS, however, no proper heat treatment is performed and antibiotic resistant bacteria origi-

nating from the raw meat may end up in the final ready-to-eat product (Teuber and Perreten,
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2000). Until now, very few data are available on the survival of resistant bacteria during

meat fermentation processes. In the current study, Tcr LAB were recovered from post-fer-

mentation samples of both batches of FDS-08 whereas the end product of FDS-01 was

negative for the presence of Tcr LAB although the raw meat used for fermentation of the

latter type was contaminated with Tcr LAB (Fig. 5.1). In a previous study (Gevers et al.,

2000; chapter 2), one out of two batches and four out of five batches of FDS-01 and FDS-08

were found to contain Tcr LAB, respectively. These findings point to the fact that the preva-

lence of Tcr LAB in batches from different production periods of a given FDS type can be

variable. The differences between batches in the composition of the Tcr microflora on the

raw meat and, as a consequence, its variable ability to compete with the starter culture can

be put forward as possible explanations for this variability.

The composition of the Tcr LAB microflora isolated from the raw meat components used

for production of the FDS-08 type appeared to be predominated mainly by lactococci and

lactobacilli (Table 5.1-2). In contrast, only Tcr lactobacilli could be recovered from the end

products. From all LAB species recovered in this study, the species Lb. reuteri, Lb. plantarum,

Lb. brevis and Lc. garvieae have been found in the porcine gut before (Leser et al., 2002).

The relative dominance of lactobacilli in post-fermentation samples may be explained by

the fact that lactobacilli and especially those species that are also used as meat starters are

better adapted to the physico-chemical conditions created after fermentation, i.e. an in-

creased lactic acid concentration, a lowered pH and water activity, and the possible pres-

ence of bacteriocins (Hammes et al., 1990). During the drying of the fermented sausage, the

water activity drops further which may cause shifts in the composition of the natural micro-

flora.

As a result of pronounced survival of lactobacilli towards the end of fermentation, only

tet(M) genes were found at this stage of the process line. In contrast, tet(S) genes appeared

to be confined to LAB cocci in the raw meat components (Table 5.3),but were no longer

found in the end product, which is congruent with the fact that lactococci, pediococci, ente-

rococci or streptococci could not be recovered in post-fermentation samples. In a previous

study on end products of nine different FDS types (Gevers et al., 2002), only tet(M) was

detected in Tcr lactobacilli. The majority of these tet(M) genes was located on 10 kb plasmids

and displayed very high genotypic similarities with tet(M) genes previously reported in

Neisseria meningitidis and Staphylococcus aureus MRSA 101. Based on restriction en-

zyme analysis of the tet(M) genes reported in this study, similar allele types are found in

isolates along the process line compared to isolates from the end products. Likewise, Teuber
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and co-workers (1999) reported only tet(M) in Tcr enterococci from fermented sausage end

products. Recently, a culture-independent survey of the pig intestinal contents and swine

feed demonstrated the presence of various RPP tet genes including tet(M), tet(O), tet(Q),

tet(S) and tet(W) (Aminov et al., 2001). Compared to the current insights on the taxonomic

distribution of tet genes (Chopra and Roberts, 2001), this study revealed new host organ-

isms for tet(M) and tet(S). To our knowledge, tet(M) genes have not been reported in

lactococci, and neither has tet(S) been detected in Leuconostoc and Pediococcus.

From the quantitative data shown in Fig. 5.1, it was clear that the addition of the meat

starter culture was not linked to an increase in Tcr LAB numbers. Together with the fact that

a panel of commercially available European meat starter cultures were all found to be sus-

ceptible to tetracyclines (D. Gevers, unpublished data), it is very likely that the starters

should not be regarded as sources of Tcr bacteria in FDS. Previously, other researchers have

reported on the absence of antibiotic resistances in meat starter cultures (Holley and Blaszyk,

1997; Raccach et al., 1985). However, to our knowledge no regulations or guidelines have

been officially accepted on the presence of transferable resistance genes in starter cultures

for human food production. To some extent this is due to the lack of conformity in method-

ologies and breakpoint values for susceptibility testing of non-pathogenic LAB. Recently,

antimicrobial breakpoints were proposed for resistance screening of different Lactobacillus

spp. (Danielsen and Wind, 2002).

In conclusion, the present study has shown that fermented dry sausages are among those

food products that can serve as vehicles for Tcr LAB and that the raw meat already contains

a subpopulation of these bacteria.  Furthermore, it is clear that the prevalence and diversity

of Tcr LAB along the process line changes significantly towards a dominance of tet(M)-

carrying lactobacilli although previously also tet(M) containing enterococci have been re-

ported in FDS end products (Teuber et al., 1999). Whether these results reflect the transfer

of either resistant bacteria or of bacterial resistance genes from animals to humans via the

food chain is difficult to ascertain and definitely requires more research. In this regard, the

combined efforts of conventional cultivation and identification techniques and of cultiva-

tion-independent methods such as DGGE may be the optimal route to follow (Aminov et

al., 2001).
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In conclusion, this work has demonstrated that (i) acquired antibiotic resistance genes

can be present in lactobacilli associated with ready-to-eat fermented dry sausage (FDS) end

products, (ii) these resistance genes are highly similar to genes found in pathogenic species,

(iii) most of them are plasmid located and some of them are transferable by conjugation,

and (iv) similar genes and host organisms can be found along the process line of FDS from

the end product to the raw meat components. Taken together, this study is an elaborated

example of the role that the normal bacterial flora may play in the maintenance and spread

of antibiotic resistance via the food chain, a topic that has long been largely underestimated

but which is nowadays growing in interest of food microbiologists. According to Teuber

(1999), the resistance problem in human medicine will not be solved if there is a constant

influx of resistance genes into the human microflora via the food chain. With the estab-

lished genetic mechanisms for exchange of DNA between bacteria, the normal flora is

capable of supplying drug resistance genes to their pathogenic counterpart. Therefore, an

important preventive action against antibiotic resistance in bacteria causing infections is to

keep the level of antibiotic resistant bacteria in the normal flora at a low level.

Although this study has identified a potential hazard with the finding that ready-to-eat

food products contain transferable antibiotic resistance genes, the magnitude of the risk is

yet to be established. The risk represents the theoretical frequency and severity of an ad-

verse effect due to the hazard. In order to be able to perform a risk analysis, not only more

data but also more knowledge on acquired antibiotic resistance in non-pathogenic bacteria

is required, mainly on two topics: (1) from a safety point of view, it is crucial to be able to

differentiate between intrinsic and acquired resistance and (2) the in vitro and in vivo trans-

ferability of the acquired resistance genes to pathogenic bacteria needs an in-depth analysis

to be able to model a dose-response reaction. In this regard, the set of isolates obtained in

this study can be subjected to further characterization of the R-plasmids and to in vivo

transfer experiments. Risk analysis within the field of food safety is a strongly evolving

activity and is mainly applied for pathogens-food combinations, but in the case of antibiotic

resistance as a hazard, a risk analysis is still lacking. Up to now, decisions by the authori-

ties in regard to antibiotic resistance are made on the basis of the ‘precautionary principle’

to protect public health, e.g. the ban of use of most antibiotics as growth promoters by the

European Commission.
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Our findings points out that in fermented meat products, next to enterococci (Teuber et

al., 1999), also lactobacilli can be a host for acquired resistance genes and may spread their

resistances through bacterial populations. However, the basic scientific knowledge of the

mechanisms of antibiotic resistance in LAB and its transmissibility still remain very lim-

ited. Because LAB are extensively used for food and feed, including starter cultures for

fermentation, probiotic cultures as food and feed ingredients, and protective cultures to

inhibit specific spoilage organisms, this knowledge is becoming increasingly important

with regard to food safety issues. LAB added in traditional foods have a ‘long history of

safe use’ and are considered as GRAS (Generally Regarded As Safe) organisms. But the

use of a newly developed LAB in a food lacks this history of safe use, which leads to the

need for the evaluation of its safety prior to its market approval. In order to gain an authori-

zation for a microorganism as a feed additive, the following safety issues must be addressed:

genetic stability, toxins and virulence factors, antibiotic production and antibiotic resist-

ance, tolerance in target species, effect of the microflora in the digestive tract, genotoxicity,

oral toxicity, worker safety and environmental risk assessment. In a recent report by the

Scientific Committee on Animal Nutrition (SCAN, 2002), criteria for assessing the safety

of microorganisms resistant to antibiotics are given. If a high level of phenotypical ex-

pressed antibiotic resistance is found, they request that transferability is examined and the

genetic basis of the resistance (intrinsic or acquired) is determined. The guidelines for feed

additives are far more stringent than those currently applied to live microorganisms used in

foods and consumed directly by humans. Therefore, SCAN urges the European Commis-

sion to adopt a consistent approach to all microbial products entering the food chain. The

current large attention on food safety and future legislative perspectives insist on more

basic scientific knowledge on antibiotic resistance in LAB and its transferability, in order to

be able to perform reliable antibiotic susceptibility tests.

Realizing their practical significance in fermentation, bioprocessing, agriculture, food,

and more recently medicine, the LAB have been the subject of considerable research and

commercial development over the past decade. Contributing to this increased interest have

been the recent efforts to determine the genome sequences of a representative collection of

LAB species. Currently, one LAB genome is completely sequenced, annotated and publicly

available, and 27 projects are ongoing of which up to 15 LAB genomes are expected to be

available in the public domain by the end of 2003 (Klaenhammer et al., 2002). Compara-

tive and functional genomic approaches of multiple LAB species will provide a better un-

derstanding of core functions such as production of lactic acid, proteolytic and peptidase
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activities, survival at low pH, stress tolerance, production of antimicrobials, transport sys-

tems, and cell signalling, which will create the ability to improve LAB strains used in the

industry. Genomics are also a tool to detect unwanted genes, e.g. antibiotic resistance genes,

potential virulence genes, and metabolic pathways that could lead to hazardous or undesir-

able metabolites. The whole genome sequence enables to screen for such unwanted genes

and reveal whether or not they are located on potential mobile genetic elements, but pro-

vides also the data to design DNA hybridisation assays (DNA-microarray). DNA-

microarrays, in their turn, are useful tools to perform a high-throughput sequence compari-

son of a large set of strains to document the prevalence of unwanted genes in the environ-

ment. In addition, DNA-microarrays can be used for transcriptome analysis to create a

view on the abundance of all mRNA in a cell and document the expression of (unwanted)

genes under different conditions.

Antibiotic resistance in food-associated bacteria reflects the resistance situation in bac-

teria from all the various environments from where food for human consumption originates.

Efforts towards keeping antibiotics effective for medical treatment of infections for the coming

years should penetrate to all parts of this ‘food web’. The debate about which part of the

food web has the greater impact on the development of antibiotic resistance in the human

flora is still unresolved. One important fact that cannot be ignored is that a large number of

studies point to an ever increasing level of antibiotic resistance in food-associated bacteria.

The obvious way to act against this emergence of antibiotic resistance is to think globally

and act locally.
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SUMMARY

In this study, the possible role of commensal microorganisms associated with ready-to-

eat meat products, in the spread of antibiotic resistance determinants was investigated. For

this purpose, we have chosen to focus on tetracycline resistant (Tcr) lactic acid bacteria

(LAB) in modified atmosphere packed pre-sliced fermented dry sausage, cooked chicken

breast meat and cooked ham. A first screening of these three types of meat products by

tetracycline breakpoint experiments clearly indicated that some types of fermented dry sau-

sage contained a high-level Tcr LAB population. Cooked ham and cooked chicken breast

meat samples, on the other hand, were not found to contain a Tcr LAB subpopulation,

although high densities of susceptible LAB (5–8 log CFU/g of meat) were found. A possi-

ble explanation for the lack of high-level resistant LAB in the latter two meat types might

be related to a fundamental difference in the manufacturing of these products, namely whether

or not a heat treatment step is applied during the production process. During their produc-

tion, fermented sausages are not heat treated before consumption, and the microflora of the

end product might, at least partially, originate from the raw meat components. In contrast,

most viable bacteria naturally present on raw ham and chicken breast meat are eliminated

by a heat treatment, leaving the main source of bacteria on the cooked end products with the

environmental microflora re-contaminating the products after cooking, during slicing and

packaging. By packaging under modified atmosphere, the aerobic spoilage organisms are

significantly suppressed by the presence of CO
2
 which results in an autochthonous micro-

flora that is largely dominated by LAB. The presence of LAB improves the microbiological

safety of these cooked meat products by inhibiting the spoilage and pathogenic microorgan-

isms, and our findings suggest that these organisms do not contain any high-level Tcr

subpopulations. For this reason, subsequent research was focussed on fermented dry sau-

sage (FDS). Based on the results of the breakpoint experiments (agar dilution), a concentra-

tion of 64 µg/ml of tetracycline was chosen as the concentration to prepare a selective

medium for the isolation of Tcr LAB from FDS, i.e. the breakpoint concentration.
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Using the newly defined selective isolation medium, a total of 26 samples, i.e. different

batches of 13 different types of FDS, was analysed for the presence of Tcr LAB.  The total

number of LAB in the examined sausages counted on non-selective MRS ranged between

6 and 9 log CFU/g of meat, which are typical densities found in FDS. Fourteen samples

(54%) contained Tcr LAB in different concentrations ranging between 1.7 and 5.1 log CFU/

g of meat. Our data indicate that the presence of Tcr LAB in a given type of FDS is subject

to variation. From the 10 FDS types of which more than one batch was sampled, three were

always negative, two were always positive and five were variable for the presence of Tcr

LAB. In order to explain this variation, an analysis encompassing the complete process line

of a FDS was performed at a later stage of this study.

Out of the fourteen positive samples, a total of 94 Tcr LAB was randomly isolated and

stored for further research. These isolates were all identified as members of the genus Lacto-

bacillus, including Lb. sakei subsp. carnosus (49%), Lb. plantarum (33%), Lb. curvatus

(8%), Lb. sakei subsp. sakei (5%), and Lb. alimentarius (5%). All these species have been

associated with fermented meat and, except for Lb. alimentarius, these species are particu-

larly well adopted to conditions created in FDS and are therefore frequently used in meat

starter cultures. At the start of the project, the most obvious technique for identification

seemed protein profiling, because the Laboratory of Microbiology has set up an up-to-date

and extended database of digitised and normalized protein profiles of all known (sub)species

of LAB and the technique has been shown to give reliable identifications at the (sub)species

level in most cases. But the identification of a first subset of isolates showed that the dis-

criminatory power of this technique was insufficient within the framework of this study.

Isolates originating from the same sausage and belonging to the same species displayed

highly similar, if not identical, protein profiles, and no information was obtained on the

intra-species diversity. Therefore a technique with a higher taxonomical resolution was

chosen. From our data, it was concluded that the rep-PCR fingerprinting technique using

the (GTG)
5
 primer is a rapid, easy-to-perform, and reproducible tool for differentiation of a

wide range of food-associated lactobacilli at the (sub)species and potentially up to the strain

level, with a single protocol. So far, rep-PCR fingerprinting was only limited used for LAB

and no reports on the use of the (GTG)
5
 primer were found. Overall, (GTG)

5
-PCR banding

patterns displayed a much higher heterogeneity among isolates, compared to the corre-

sponding protein profiles. In this way, (GTG)
5
-PCR analysis revealed that among the Tcr

LAB population of a particular FDS sample not only different species occur, but that a

given species can be represented by different strains. Different batches of one FDS type
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were not found to contain identical DNA fingerprints, indicating that the source of Tcr

lactobacilli is variable. The diversity within a batch and between different batches suggests

that the starter culture is not likely to be a source of Tcr LAB. On the other hand, isolates

with highly similar or even identical (GTG)
5
-PCR fingerprints were frequently found within

the set of isolates recovered from the same sample of FDS. To avoid the selection of multi-

ple isogenic strains, one strain of each of the 24 unique (GTG)
5
-PCR fingerprint types was

selected.

In this work it was shown that in the 24 selected Tcr Lactobacillus isolates from nine

different FDS types, representing five different species, only tet(M) was detected. These

tet(M) genes could be localised mainly on plasmids, except in four strains which had a

chromosomal resistance. Most of these R-plasmids ranged in size of approximately 10 kb,

and in three cases the R-plasmid was larger than 25 kb. Using PCR detection, no transposons

of the Tn916/Tn1545-family were found in either one of the isolates. One isolate (DG 507)

contained a second R-plasmid with an erm(B) gene. Further characterization of the tet(M)

genes by REA and sequencing revealed high sequence homology with the previously re-

ported tet(M) gene of either Neisseria meningitidis or Staphylococcus aureus MRSA 101,

and significant differences with tet(M) genes found in the closest related species Entero-

coccus faecalis and Streptococcus pneumoniae.

Although plasmids are very common in lactobacilli, and even plasmid located antibiotic

resistance determinants have been reported in lactobacilli, almost no literature is available

on the conjugal transfer of native lactobacilli plasmids. We found that seven out of 24 Tcr

Lactobacillus isolates could transfer their tet(M) gene to Enterococcus faecalis at frequen-

cies ranging between 10-4 and 10-5 transconjugants per recipient. Further, two of them were

able to transfer their resistance also to Lactococcus lactis subsp. lactis. In a few

transconjugants spontaneous co-transfer of native plasmids other than the plasmid selected

for, i.e. the R-plasmid encoding the tetracycline resistance, was found. This resulted for

example in a spontaneous co-transfer of the erythromycin resistance determinant from DG

507 into E. faecalis.

In order to better understand the source of the Tcr LAB subpopulation in FDS end prod-

ucts, the prevalence and diversity of Tcr LAB and their tet genes along the process line of

two different FDS types, from the raw meat components to the end product, were deter-

mined in a culture-dependent approach. Based on the findings of this study, it was con-

cluded that Tcr LAB enter the FDS process line, at least partially, via the raw meat compo-

nents and that the starter culture is not a source of the Tcr determinants. Subpopulations of
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Tcr LAB are most likely to originate from contamination of the carcass with animal faecal

bacteria during slaughtering, even when fairly high hygienic standards are applied. The fact

that a significant part of the European livestock is being treated with or exposed to

tetracyclines (FEDESA), is likely to exert a selective pressure stimulating the selection and

dissemination of Tcr bacteria in animal gut flora.  According to data of the European federa-

tion of animal health (FEDESA), in 1997 an amount of 1,646 tons of tetracycline was used

in Europe. The frequent use is also reflected in the finding that at least three out of six tested

raw meat components contained trace amounts of oxytetracycline, suggesting a history of

treatment with this agent. Amongst other sources, it cannot be excluded that human han-

dling and the environment introduce Tcr bacteria into the process line. The composition of

the Tcr LAB subpopulation as well as the diversity of the tet genes are changing along the

process line: the raw meat components are predominated mainly by lactococci (containing

tet(S) or tet(M)) and to a lesser extent by lactobacilli (tet(M)), whereas from the samples

after fermentation only Tcr lactobacilli containing tet(M) could be recovered.

Taking into account the data on the Tcr LAB prevalence and diversity along the process

line of two different FDS types and in the 26 samples of FDS end products, the variable

presence of Tcr LAB in end products between batches from different production periods of

a given FDS type, can be explained as follows. The contaminating microflora of the raw

meat batter used to prepare fermented sausages will be variable between different produc-

tion batches as a consequence of its variable composition. Consequently, also the Tcr LAB

subpopulation will be variable in composition as well as its ability to compete with the

starter culture, that is added in high densities (6 log CFU/g of meat) before fermentation.

The presence of Tcr LAB in the end product is determined by factors such as the density of

the Tcr subpopulation before fermentation, the competitiveness with the starter culture, and

the adaptability to the fermented meat conditions, i.e. an increased lactic acid concentration

and lowered pH and a
w
 value, and the possible presence of bacteriocins. The competition

with the starter culture and the adaptability of the Tcr LAB subpopulation to the conditions

created after fermentation is also an explanation for the shift towards lactobacilli after fer-

mentation. Lactobacilli and especially Lb. sakei, Lb. curvatus and Lb. plantarum are better

adapted to these conditions.
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Het ontstaan en de snelle verspreiding van antibiotica-resistenties binnen en tussen

verschillende populaties van onze samenleving behoort ongetwijfeld tot de meest actuele

problemen in de publieke gezondheidssector. Hospitalen zijn daarbij ongetwijfeld een

belangrijke kern van ontwikkeling en verspreiding van antibiotica resistentie. Daarnaast

echter, draagt het (overmatig) gebruik van antibiotica in de veeteelt hieraan bij, en wordt er

gesuggereerd dat levensmiddelen van dierlijke oorsprong, en dan vnl. vleesproducten, een

belangrijk vector vertegenwoordigen voor de verspreiding van resistente bacteriën en/of

hun resistentiegenen tussen de dierlijke en menselijke populatie. Onze huidige kennis beperkt

zich hoofdzakelijk tot de aanwezigheid van antibiotica-resistenties in voedselpathogene

bacteriën zoals Salmonella, Campylobacter, Listeria, Staphylococcus en Clostridium.

Weinig of geen informatie is echter beschikbaar over de mogelijke rol van de niet-pathogene

‘commensale’ microflora in en op levensmiddelen als reservoir organismen voor

resistentiegenen. Het potentieel gevaar schuilt in de mogelijkheid van directe of indirecte

transfer van antibiotica resistentiegenen naar pathogene bacteriën. In dit proefschrift wordt

het onderzoek naar de aanwezigheid van niet-pathogene antibiotica-resistente bacteriën op

de menselijke voeding en de capaciteit om hun resistenties te verspreiden, gepresenteerd.

Er werd gefocusseerd op tetracycline-resistente (Tcr) melkzuurbacteriën (MZB) in

gemodificeerde atmosfeer verpakte fijne vleeswaren zoals gefermenteerde droge worst,

gekookte kippewit en gekookte ham.

Een screening van deze drie verschillende vleeswaren door middel van tetracycline

breekpuntexperimenten, zoals die beschreven staat in hoofdstuk 2, toonde aan dat sommige

stalen van gefermenteerde droge worst een Tcr MZB subpopulatie bevatten. De gekookte

vleeswaren daarentegen, vertoonde geen aanwezigheid van een Tcr subpopulatie, hoewel

hoge aantallen van MZB (5-8 log KVE/g vlees) gevonden werden. Een mogelijke verklaring

hiervoor kan te vinden zijn in de fundamentele verschillen in de bereidingswijze van deze

vleeswaren, nl. het al dan niet toepassen van een hittebehandeling in het productieproces.
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Gefermenteerde droge worst wordt op geen enkel moment verhit, en de microflora van het

eindproduct kan, op zijn minst gedeeltelijk, afkomstig zijn van de rauwe grondstoffen. De

meeste micro-organismen op rauwe ham en kipvlees worden daarentegen geëlimineerd

door de kookstap. Bijgevolg is de belangrijkste bron van bacteriën op het gekookte

eindproduct toe te wijzen aan postcontaminatie van het product tijdens het versnijden en

verpakken. Omwille van deze resultaten, werd in het hierop volgende onderzoek gefocusseerd

op gefermenteerde droge worst (GDW). Gebaseerd op de resultaten van de

breekpuntexperimenten werd een concentratie van 64 µg/ml tetracycline gekozen als de

breekpuntconcentratie voor het aanmaken van een selectief medium voor de isolatie van Tcr

MZB uit GDW.

Gebruik makend van dit selectieve isolatiemedium, werd een totaal van 26 stalen van 13

verschillende GDW types geanalyseerd op de aanwezigheid van Tcr MZB. Het totaal aantal

KVE geteld op een niet selectief medium varieerde tussen 6 en 9 log KVE/g vlees, wat

normale aantallen zijn voor GDW. Veertien stalen (54%) bevatten een Tcr MZB subpopulatie

in verschillende concentraties variërend tussen  1,7 en 5,1 log KVE/g vlees. Onze data

suggereren dat de aanwezigheid van een Tcr subpopulatie in een bepaald type GDW

onderhevig is aan variatie. Van de tien GDW types waarvan meer dan één batch werd

onderzocht, waren er drie steeds negatief, twee steeds positief en vijf types waren variabel

voor de aanwezigheid van Tcr MZB. Om deze variatie te kunnen verklaren, dringt een

analyse van een volledige GDW proceslijn zich op.

Uit de veertien positieve stalen, werd een totaal van 94 Tcr MZB geïsoleerd en bewaard

voor verder onderzoek. Deze isolaten werden geïdentificeerd en behoren allen tot het genus

Lactobacillus: Lb. sakei subsp. sakei (49%), Lb. plantarum (33%), Lb. curvatus (8%), Lb.

sakei subsp. sakei (5%) en Lb. alimentarius (5%). Bij de aanvang van dit project leek

eiwitprofilering de meest voor de hand liggende identificatie techniek, en dit omdat reeds

werd aangetoond dat deze techniek in staat is om in de meeste gevallen een betrouwbare

(sub)species identificatie te bekomen. Bovendien beschikt het Laboratorium voor

Microbiologie over een up-to-date en uitgebreide databank van gedigitaliseerde en

genormaliseerde eiwitprofielen van alle gekende (sub)species behorend tot de MZB. De

identificatie van een eerste subset van isolaten toonde echter aan dat het discriminerend

vermogen van deze techniek onvoldoende was in het kader van deze studie. Isolaten afkomstig

uit hetzelfde staal en behorend tot hetzelfde species vertoonde namelijk zeer gelijke of zelfs

identieke eiwitprofielen, zodat geen informatie omtrent de intraspecies diversiteit kon worden

bekomen. Daartoe werd een techniek met een hogere taxonomische resolutie gekozen. Uit
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de resultaten zoals beschreven in hoofdstuk 3, kon worden besloten dat rep-PCR finger-

printing met de (GTG)
5
-primer een snelle, eenvoudige en reproduceerbare methode is ter

onderscheiding van een breed spectrum van voedselgeassocieerde lactobacilli op het

(sub)species en intraspecies niveau, en dit met één enkel protocol. In het algemeen vertoonde

(GTG)
5
-PCR patronen een grotere heterogeniteit bij de isolaten in vergelijking met de

overeenkomstige eiwitprofielen. Zo kon worden aangetoond dat een Tcr MZB subpopulatie

niet enkel meerdere species kan bevatten, maar ook dat een bepaald species kan worden

vertegenwoordigd door verschillende stammen. Hiertegenover staat wel dat isolaten met

identieke (GTG)
5
-PCR profielen frequent werden gevonden binnen een staal. Voor verder

onderzoek werd daarom per staal een set van representatieve stammen geselecteerd, met

één stam voor elke (GTG)
5
-PCR fingerprint type, resulterend in een set van 24 Tcr MZB

stammen.

In hoofdstuk 4 word beschreven dat in de 24 geselecteerde Tcr Lactobacillus isolaten

afkomstig uit 14 verschillende stalen en behorend tot vijf verschillende species, enkel tet(M)

werd gevonden. Het merendeel van deze tet(M) genen kon worden gelokaliseerd op

plasmiden, behalve bij vier stammen die een chromosomaal tet(M) gen hebben. De meeste

van deze R-plasmiden hebben een grootte van ongeveer 10 kb, en drie stammen hebben een

R-plasmide van met een grootte van meer dan 25 kb. Door middel van PCR detectie werd

aangetoond dat deze tet(M) genen niet op een transposon van de Tn916/Tn1545-familie

gelegen zijn, hoewel dit gen hiermee vaak wordt geassocieerd. Eén isolaat (DG 507) bevat

naast het tet(M) gen, ook een plasmide gelokaliseerd erm(B) gen. Door een verdere

karakterisering van de tet(M) genen met restrictie-enzym analyse (REA) en DNA sequenering

kon een hoge homologie worden aangetoond met de tet(M) genen voorheen gevonden in

Neisseria meningitidis, of Staphylococcus aureus MRSA 101, en werden significante

verschillen gevonden met de tet(M) genen gevonden in de meest nauw verwante species

Enterococcus faecalis en Streptococcus pneumoniae.

Hoewel plasmiden frequent voorkomen in lactobacilli, en zelfs plasmide gelokaliseerde

antibiotica-resistentie determinanten werden gerapporteerd, is de literatuur omtrent de

conjugatieve transfer van natuurlijke plasmiden bij lactobacilli beperkt. Wij vonden dat

zeven van de 24 Tcr Lactobacillus isolaten in staat zijn om hun plasmide gelokaliseerd

tet(M) gen te transfereren naar Enterococcus faecalis. Verder, waren twee van deze zeven

isolaten eveneens in staat om hun resistentie te transfereren naar Lactococcus lactis subsp.

lactis. In een aantal transconjuganten werd spontane co-transfer van andere natuurlijke

plasmide, dan diegene waarvoor werd geselecteerd (d.i. R-plasmide coderend voor de Tcr),
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vastgesteld. Dit resulteerde bijvoorbeeld in een spontane co-transfer van de erythromycine-

resistentie determinant vanuit Lb. plantarum DG 507 in E. faecalis.

Met het oog op een beter inzicht in de bron van de Tcr MZB subpopulatie in GDW

eindproducten, werd de mate van voorkomen en diversiteit van Tcr MZB en hun tet genen

langsheen het productieproces van twee verschillende GDW types, van het rauwe vlees tot

aan het eindproduct, bepaald door middel van een cultuur-afhankelijke benadering. In

hoofdstuk 5 werd geconcludeerd dat Tcr MZB op zijn minst gedeeltelijk via het rauwe vlees

worden geïntroduceerd in het productieproces van GDW en dat de startercultuur niet de

bron is van de Tcr determinanten. Subpopulaties van Tcr MZB zijn hoogst waarschijnlijk

afkomstig van karkassen gecontamineerd met dierlijke fecale bacteriën tijdens het slachten

wat zelfs onder zeer strenge hygiënische condities niet te vermijden is. Het voorkomen van

Tcr bacteriën in de dierlijke fecale flora is eveneens zeer waarschijnlijk, aangezien dat

tetracyclines de meest frequent gebruikte therapeutische antibiotica in de veeteelt zijn. Volgens

gegevens van de Europese Federatie voor Dierenwelzijn (FEDESA), werd in het jaar 1997

een hoeveelheid van 1.646 ton tetracycline gebruikt in Europa, d.i. 66% van de totale

antibiotica consumptie in dat jaar. Dit frequent gebruik wordt nog benadrukt door onze

bevinding dat minstens drie van de zes stalen van het rauwe vlees sporen van oxytetracy-

cline bevatten, wat een behandeling met dit antibioticum doet vermoeden. Het kan echter

niet worden uitgesloten dat menselijke handelingen en productie-omgeving Tcr bacteriën

introduceren in de proceslijn. De samenstelling van de Tcr MZB subpopulatie en de diversiteit

van de tet genen wijzigde tijdens het productieproces: de stalen van het rauwe vlees bevatten

in hoofdzaak lactococci (met tet(S) en tet(M) genen) en in mindere mate lactobacilli (met

tet(M)), waar de stalen na fermentatie enkel Tcr lactobacilli (met tet(M))  bevatten.

Indien alle resultaten bekomen in onze studie wordt samengenomen, kan de variatie in

de aanwezigheid van Tcr MZB tussen verschillende batches van GDW eindproducten als

volgt verklaard worden. De contaminerende microflora van het gemalen vlees dat wordt

gebruikt om darmen af te vullen is verschillend tussen verschillende batches als gevolg van

de variabele samenstelling van dit gemalen vlees. Bijgevolg zal de samenstelling van de

eventueel aanwezige Tcr MZB subpopulatie verschillen, en met de samenstelling ook het

competitief vermogen van de subpopulatie ten opzichte van de startercultuur, die in overmaat

wordt toegevoegd (6 log KVE/g vlees). De aanwezigheid van Tcr MZB in het eindproduct

wordt bepaald door factoren zoals de densiteit van de Tcr subpopulatie voor fermentatie, het

competitief vermogen t.o.v. de startercultuur, de leefbaarheid onder de condities van GDW,
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zijnde een verhoogde melkzuur concentratie, een verlaagde pH en a
w
 waarde, en de mogelijke

aanwezigheid van bacteriocines. Het competitief vermogen en de leefbaarheid in GDW

condities zijn tevens een verklaring voor de verschuiving naar een dominerende Lactoba-

cillus flora na fermentatie. Lactobacilli, en Lb. sakei, Lb. curvatus en Lb. plantarum in het

bijzonder, zijn goed aangepast aan deze condities.

Er kan geconcludeerd worden dat dit werk heeft aangetoond dat (i) verworven antibiotica-

resistentie genen aanwezig kunnen zijn in lactobacilli geassocieerd met GDW eindproducten,

(ii) dat deze resistentie genen zeer hoge sequentiegelijkenissen vertonen met genen van

pathogene species, (iii) dat deze resistentie genen voornamelijk op plasmide zijn gelegen,

waarvan een aantal kon worden getransfereerd via conjugatie, en (iv) dat gelijke genen en

gastheer organismen kunnen worden teruggevonden langsheen het productieproces van

GDW. Bijgevolg is dit een gedetailleerde uitwerking van de mogelijke rol die de niet-

pathogene bacteriële flora kan hebben in het behoud en de verspreiding van antibiotica-

resistentie via de voedselketen.
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TABLES OF ISOLATES/STRAINS RECOVERED/USED IN THIS STUDY

Strain number
a

Other number
b

Source
c

Taxon Antibiotic resistance profile

DG 013 LMG 21677 FDS-01A Lb. plantarum Tc
r
, tet (M)-1 on transferable R-plasmid

DG 048 LMG 21678 FDS-08A Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-1

DG 142 LMG 21679 FDS-07A Lb. curvatus Tc
r
, chromosomal tet (M)-2

DG 143 R-12148 FDS-07A Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-1 , and Rif

r

DG 165 LMG 21680 FDS-11A Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 483 R-12482 FDS-09B Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 484 LMG 21681 FDS-09B Lb. curvatus Tc
r
, chromosomal tet (M)-2

DG 485 R-12484 FDS-09B Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 488 R-12487 FDS-11B Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 489 R-12488 FDS-11B Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 493 LMG 21682 FDS-07B Lb. sakei subsp. sakei Tc
r
, tet (M)-1 on transferable R-plasmid, and Rif

r

DG 498 R-12497 FDS-12B Lb. alimentarius Tc
r
, tet (M)-2 on transferable R-plasmid

DG 499 R-12498 FDS-12B Lb. alimentarius Tc
r
, plasmid located tet (M)-2

DG 500 LMG 21683 FDS-12B Lb. alimentarius Tc
r
, tet (M)-2 on transferable R-plasmid

DG 507 LMG 21684 FDS-02B Lb. plantarum Tc
r
, tet (M)-1 and erm (B) on 2 different transferable R-plasmid

DG 509 LMG 21685 FDS-08C Lb. plantarum Tc
r
, plasmid located tet (M)-1 , and Pen

r

DG 512 R-12511 FDS-08C Lb. plantarum Tc
r
, plasmid located tet (M)-1

DG 515 LMG 21686 FDS-06 Lb. plantarum Tc
r
, tet (M)-2 on transferable R-plasmid

DG 516 R-12515 FDS-06 Lb. sakei subsp. carnosus Tc
r
, plasmid located tet (M)-2

DG 520 R-15519 FDS-08D Lb. plantarum Tc
r
, plasmid located tet (M)-1

DG 522 LMG 21687 FDS-08D Lb. plantarum Tc
r
, tet (M)-1 on transferable R-plasmid

DG 524 LMG 21688 FDS-14 Lb. curvatus Tc
r
, chromosomal tet (M)-2

DG 525 R-12886 FDS-14 Lb. sakei subsp. sakei Tc
r
, chromosomal tet (M)-1 , and Rif

r

DG 533 R-12894 FDS-08E Lb. plantarum Tc
r
, plasmid located tet (M)-1

Table A.1. Selection of Tc
r
LAB isolates from fermented dry sausage end products (n = 24) (Chapter 2, 3 and 4)

a/ DG numbers are the original numbers that were assigned to the isolates; b/ All isolates were included in the research database of the Laboratory of

Microbiology and received a R-number, whereas a selection was deposited in the BCCM
TM

/LMG Bacteria Collection and received a LMG number; c/

FDS: fermented dry sausage, the numbers correspond to a type and the letter to a batch
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Strain number Source
a

Taxon tet genes

DG 830 3A Lb. plantarum Plasmid located tet (M)-1

DG 842 3A Lb. plantarum tet (M)

DG 850 3A Lb. plantarum Plasmid located tet (M)-1

DG 862 1C Lb. curvatus tet (M)-1

DG 864 1C Lb. reuteri RPP

DG 866 1C St. parauberis tet (S)

DG 867 1C Lc. garvieae tet (S)

DG 869 1C Lc. garvieae tet (S)

DG 870 1C Lc. garvieae tet (S)

DG 872 1C Lc. lactis subsp. lactis tet (S)

DG 873 1C Lc. garvieae tet (S)

DG 876 1C Lc. garvieae tet (S)

DG 878 1C Lc. lactis subsp. lactis tet (S)

DG 881 1C Lc. garvieae tet (S)

DG 883 1C Lc. garvieae tet (S)

DG 884 1C Lb. plantarum tet (M)

DG 887 1C Lb. brevis -like Plasmid located tet (M)-1

DG 888 1C Lb. brevis -like tet (M)

DG 893 1A Lc. lactis subsp. lactis tet (M)-1 & tet (S)

DG 906 1A Lc. lactis subsp. lactis tet (S)

DG 909 1A Lc. lactis subsp. lactis tet (S)

DG 910 1A Lc. lactis subsp. lactis tet (M) & tet (S)

DG 914 1A Lc. lactis subsp. cremoris tet (M)

DG 915 1A Lc. lactis subsp. lactis tet (S)

DG 916 1A Lc. lactis subsp. lactis tet (S)

DG 919 1A Lb. curvatus tet (M)

DG 923 1B Lc. garvieae tet (S)

DG 926 1B Lb. sakei subsp. sakei Plasmid located tet (M)-1

DG 928 1B Lc. lactis subsp. cremoris tet (S)

DG 929 1B Lc. lactis subsp. cremoris tet (S)

DG 931 1B Lc. garvieae tet (S)

DG 933 1B Lc. garvieae tet (S)

DG 935 1B Lc. garvieae tet (S)

DG 937 1B Enterococcus sp. tet (S)

DG 938 1B Lc. garvieae tet (S)

DG 939 1B Lc. garvieae tet (S)

DG 941 1B Lc. garvieae tet (S)

DG 942 1B Lc. garvieae tet (S)

DG 944 1B Lb. curvatus Plasmid located tet (M)-2

DG 945 1B Lb. curvatus Chromosomal located tet (M)-2

DG 947 1B Lb. curvatus tet (M)

DG 948 1B Lb. curvatus tet (M)

DG 954 2B P. pentosaceus No RPP, tet (K) or tet (L)

DG 957 2B Lc. lactis subsp. lactis tet (S)

Table A.2. Selection of Tc
r
LAB isolates from FDS-08 process line batch I

(n = 53) (Chapter 5)
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Strain number Source
a

Taxon tet genes

DG 973 4 Lb. plantarum Plasmid located tet (M)-1

DG 974 4 Lb. plantarum Plasmid located tet (M)-1

DG 976 4 Lb. sakei subsp. sakei tet (M)

DG 978 4 Lb. curvatus

Chromosomal located

tet (M)-2

DG 985 4 Lb. plantarum Plasmid located tet (M)-1

DG 986 4 Lb. paracasei tet (M)-2

DG 989 4 Lb. sakei subsp. carnosus Plasmid located tet (M)-2

DG 990 4 Lb. curvatus tet (M)

DG 997 4 Lb. plantarum tet (M)

a/ 1A: frozen lard; 1B: frozen raw pork; 1C: fresh raw pork; 2B: meat batter after

addition of the starter culture and spices; 3A: fermented sausage; 4: sliced and packed

end product

Table A.2. (continued)
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Strain number Source 
a

Taxon tet  gene(s)

DG 678 3A Lb. plantarum tet (M)

DG 681 3A Lb. plantarum tet (M)

DG 693 3A Lb. plantarum tet (M)

DG 696 3A Lb. plantarum tet (M)

DG 697 3A Lb. plantarum tet (M)

DG 700 3A Lb. plantarum tet (M)

DG 704 3A Lb. plantarum tet (M)

DG 706 3A Lb. brevis -like tet (M)

DG 708 1C Lc. garvieae tet (S)

DG 709 1C Lc. garvieae tet (S)

DG 710 1C Lc. lactis subsp. lactis tet (S)

DG 718 1C Lc. garvieae tet (S)

DG 719 1C Lc. garvieae tet (S)

DG 721 1C Lb. plantarum tet (M)

DG 730 1C Lc. garvieae tet (S)

DG 731 1C Lc. garvieae tet (S)

DG 734 1C Lc. garvieae tet (S)

DG 737 1C Lb. brevis -like tet (M)

DG 759 1B Leuc. citreum tet (S)

DG 775 1B Lb. sakei  subsp. sakei tet (M)

DG 761 1B Lb. sakei  subsp. sakei tet (M)

DG 786 1B P. pentosaceus tet (M)

DG 787 1B P. pentosaceus tet (S)

DG 788 1B Lc. garvieae tet (S)

DG 790 1B Lc. garvieae tet (M) & tet (S)

DG 794 1A St. parauberis tet (M)

DG 796 1A Lc. lactis subsp. cremoris tet (M)

DG 798 1A Lc. garvieae tet (S)

DG 799 1A Lc. garvieae tet (S)

DG 800 4 Lb. sakei  subsp. carnosus tet (M)

DG 806 4 Lb. brevis -like tet (M)

DG 807 4 Lb. brevis -like tet (M)

a/ 1A: frozen lard; 1B: frozen raw pork; 1C: fresh raw pork; 2B: meat batter 

Table A.3. Selection of Tc
r 

LAB isolates from FDS-08 process line batch II 

(n = 32) (Chapter 5)
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Recipient X Donor Strain No Transferred resistance gene(s)

E. faecalis  JH2-2 X

DG 013 TC 013-1 tet (M) 

DG 493 TC 493-1 tet (M)

TC 493-4 tet (M)

DG 498 TC 498-1 tet (M)

TC 498-2 tet (M)

DG 500 TC 500-1 tet (M)

TC 500-3 tet (M)

TC 500-5 tet (M)

DG 507 TC 507-1 tet (M) and erm (B)

TC 507-2 tet (M)

TC 507-4 tet (M) and erm (B)

DG 515 TC 515-1 tet (M)

DG 522 TC 522 tet (M)

Lc. lactis  subsp. lactis  Bu2-60 X

DG 493 TC 493-21 tet (M)

DG 515 TC 515-21 tet (M)

Table A.4. Transconjugants obtained in this study (chapter 4)

Recipient strain for conjugation experiments

E. faecalis JH2-2 (LMG 19456) No plasmids, Rif
r
, Fus

r Jacob and Hobbs (1974)

Lc. lactis subsp. lactis Bu2-60 (LMG 19460) No plasmids, Rif
r
, Fus

r
, Str

r Neve et al. (1984)

Other strains

Lc. lactis subsp. cremoris AC1 Plasmid size marker Neve et al. (1984)

Lb. plantarum 5057 Plasmid located tet (M)-1 Danielsen (2002)

Plasmids/transposons

Tn1545 Reference construct for erm (B) and int Courvalin P.

pJI3 Reference construct for tet (M) Morse et al. (1986)

pAT121 Reference construct for tet (O) Collard J.-M.

pVP2 Reference construct for tet (S) Perreten et al. (1997)

pAT102 Reference construct for tet (K) Courvalin P.

pAT103 Reference construct for tet (L) Courvalin P.

Table A.5. Other strains and plasmids used in this study
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Jacob, A. E. and S. J. Hobbs. 1974. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis

var. zymogenes . Journal of Bacteriology 117:360-372.
Morse, S. A., S. R. Johnson, J. W. Biddle, and M. C. Roberts. 1986. High-level tetracycline resistance in Neisseria gonorrhoeae

is result of acquisition of streptococcal tetM determinant. Antimicrobial Agents and Chemotherapy 30:664-670.
Neve, H., A. Geis, and M. Teuber. 1984. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid)

streptococci. Journal of Bacteriology 157 :833-838.





203

CURRICULUM VITAE

Full name: Dirk Maria Ludovicus Gevers

Date of Birth: June 8th, 1976

Place of Birth: Turnhout, Belgium

Present place of residence: Gent

Nationality: Belgian

EDUCATIONAL BACKGROUND

1998-2002: Ghent University, Gent, Belgium

Ph. D. student, Laboratory of Microbiology, Department of Biochemistry,

Physiology and Microbiology, Faculty of Sciences, Ghent University

Specialization grant IWT (Flemish government institution)

Dissertation: Tetracycline resistance in lactic acid bacteria isolated from fermented

dry sausages

1996-1998: Ghent University, Gent, Belgium

Licentiate Biochemistry

Dissertation: Isolation, characterization and identification of oxytetracycline

resistant bacteria from hospital sewage

1994-1996: Limburg University, Diepenbeek, Belgium

Candidate Chemistry

1982-1994: Sint-Jozefscollege, Turnhout

Wetenschappelijke A



204

APPENDIX

SCIENTIFIC ACTIVITIES

·  Supervision of students

·  Assistance in practical courses of microbiology

·  Stay in foreign lab

December 2000: Applied Biotechnology, Chr. Hansen A/S, Denmark.

·  Oral presentation at international conferences

 Gevers, D., Huys, G., Debevere, J., Swings, J. (1999). Antibiotic resistance in

lactic acid bacteria isolated on sliced prepacked meat products. Food

microbiology and food safety into the next millennium, 17th International

Conference of the International Committee on Food Microbiology and Hygiene

(ICFMH), Veldhoven, Nl, 13-17 September 1999.

Gevers, D., Huys, G., Rasschaert, G., Masco, L., Baert, L., Debevere, J., and

Swings,J. (2002). Tetracycline resistance in lactic acid bacteria from fermented

dry sausages. Necessary and unwanted bacteria in food-microbial adaptation to

changing environments, 18th International Conference of the International

Committee on Food Microbiology and Hygiene (ICFMH), Lillehammer,

Norway, 18-23 August 2002.

·  Honours / awards

2001: The Organon Teknika Prize for best poster presentation, 2nd prize for the

poster presented on the SfAM summer conference, Swansea, UK

2001: Scholarship for EuroLAB conference, Cork, Ireland

2002: Scholarship for 18th international ICFMH symposium, Food Micro 2002,

Lillehammer, Norway



205

CURRICULUM VITAE

LIST OF PUBLICATIONS (PEER-REVIEWED)

2000

·  Gevers, D., Huys, G., Devlieghere, F., Uyttendaele, M., Debevere J., Swings, J. 2000. Isolation

and identification of antibiotic resistant lactic acid bacteria from pre-packed sliced meat

products. Systematic and Applied Microbiology 23: 279-284.

2001

·  Gevers, D., Huys, G., Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of

Lactobacillus species. FEMS Microbiology Letters 205: 31-36

·  Huys, G., Gevers, D., Temmerman, R., Cnockaert, M., Denys, R., Rhodes, G., Pickup, R.,

McGann, P., Hiney, M., Smith, P., Swings, J. 2001. Comparison of the antimicrobial

tolerance of oxytetracycline-resistant heterotrophic bacteria isolated from hospital sewage and

freshwater fishfarm water in Belgium. Systematic and Applied Microbiology 24 (1), 122-130.

2002

·  Gevers, D., Danielsen, M., Huys, G., Swings, J. 2002. Molecular characterization of tet(M) genes

in Lactobacillus isolates from different types of fermented dry sausage. Applied and Environ-

mental Microbiology (revised version submitted).

·  Neysens, P., Messens, W., Gevers, D., Swings, J., De Vuyst, L. 2002. Lactobacillus amylovorus

DCE471, a potential strain for use in type II sourdough fermentations, displays biphasic

growth patterns and a reduced amylovorin L production in the presence of sodium chloride.

Microbiology (submitted).

·  Gevers, D., Masco, L., Baert, L., Huys, G., Debevere, J., Swings, J. 2002. Prevalence and

diversity of tetracycline resistant lactic acid bacteria and their tet genes along the process line

of fermented dry sausages. Systematic and Applied Microbiology (submitted).




	Contents
	General introduction 
	Objectives of this work 
	Short overview of this thesis 
	1.   Overview of the Literature
	1.1.   Antibiotic resistance and the food chain: from the stable to the table
	1.1.1. Use of antibiotics in animal husbandry 
	1.1.2.  Risks of antibiotic use in animal husbandry 
	1.1.3.  Routes of dissemination of antibiotic resistant bacteria 
	1.1.4.  Antibiotic resistant bacteria in food 
	1.1.5.  Reducing the use of antimicrobial agents in animal husbandry 
	1.2.   Tetracyclines: mode of action, applications & use, and molecular biology of resistance
	1.2.1. Introduction 
	1.2.2.  Mode of action 
	1.2.3.  Applications & use of tetracyclines 
	1.2.4.  Resistance to tetracyclines 
	1.3.   Lactic acid bacteria: identification and typing, and a host for acquired antibiotic resistances
	1.3.1.  Introduction 
	1.3.2. Identification and typing of lactic acid bacteria 
	1.3.3.  Antibiotic resistance in lactic acid bacteria  
	1.4.   Fermented dry sausage: manufacture and microbiology
	1.4.1.  Introduction 
	1.4.2.  Manufacture of fermented sausage 
	1.4.3.  Microbiology of fermented sausage 
	1.5.   References 
	2. Isolation and identification of tetracycline resistant lactic acid bacteria  from modified atmosphere packed ready-to-eat me
	3. Identification and typing of lactobacillus species using (GTG)5-PCR  fingerprinting 
	3.1. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species 
	3.2. Additional remarks 
	4. Molecular analysis of the tetracycline resistance in lactobacillus isolates from different types of fermented dry sausage en
	4.1. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage 
	4.2.  Conjugal transfer of tetracycline resistance from Lactobacillus isolates recovered from fermented dry sausage to other la
	5. Prevalence and diversity of tetracycline resistant lactic acid bacteria and their tet genes along the process line of fermen
	6.  Conclusions and perspectives 
	Summary 
	Appendix
	


