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Chapter 1. General introduction 

In this work, we present an extensive computational study of several radiation-
induced radicals of biomolecules. In particular, two specific types of molecular 
systems will be highlighted: amino acids and sugars. Both systems are abundantly 
present in the natural world and are vital to the existence of life in all its forms. 
Amino acids are the building blocks of polypeptides and proteins, which are involved 
in nearly all biochemical processes. Sugars (or carbohydrates) also play a key role, 
not merely as sweeteners but rather as essential components in the biological energy 
storage and transport systems of animals and as chief structural material in plants. 

As can be expected, the radical adducts of these compounds have an equal 
importance in biochemistry. These radicals can arise in chemical reactions or can be 
induced as the result of radiation damage. Such species are normally very short-
living in gas phase or solution. In crystals on the other hand, the radicals become 
“trapped” inside the amino-acid or carbohydrate lattice and their reactivity will be 
sharply reduced. The solid state therefore offers the opportunity to extensively study 
the nature and structure of the (radiation-)induced organic radicals using various 
experimental techniques, of which Electron Paramagnetic Resonance spectroscopy 
(EPR) can be favoured as it can access an abundance of structural information about 
the radical. However, this technique does not provide the information as such, 
instead it has to be deduced from the EPR spectroscopic parameters, an analysis that 
is often complex and open to ambiguity. 

In addition, the radiation chemistry of sugars and especially amino acids in the 
solid state is an elaborate field of study and requires a profound understanding of the 
different physical and chemical processes taking place inside the crystal. This area of 
interest has received considerable attention in view of interesting applications in EPR 
dosimetry. Within this respect, we refer to the success of the alanine dosimeter for 
reference- and routine dosimetry in radiation therapy, biological research and 
industrial high-dose irradiation facilities. However, it was only after the publication 
of a detailed EPR study on this amino acid that an enhanced understanding of its 
radiation chemistry was established. Three radical species were in this way identified 
as contributing significantly to the observed composite spectrum and hence also to 
the overall dosimetric characteristics of the alanine system. 
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As a result of the often-cumbersome analysis of the EPR parameters and the 

complexity of the associated radiation chemistry, the experimentalist is faced with a 
delicate task to propose appropriate models for the paramagnetic species present in 
the crystals. Over the last few years, it has become increasingly popular to rely on 
ab-initio molecular modeling techniques for this purpose. This success is in part due 
to the spectacular expansion of recent computer capabilities but is not in the least a 
result of the ongoing development of theoretical models and numerical algorithms in 
the field of quantum chemistry. Especially since the introduction of Density 
Functional Theory (DFT), a sharp quantitative as well as qualitative increase of 
theoretical calculations has been witnessed. The effectiveness of DFT can be largely 
attributed to a better incorporation of electron correlation as compared to more 
conventional ab-initio methods (such as e.g. Hartree Fock). Furthermore, this DFT 
algorithm does not require considerably more computer time as compared to 
conventional HF calculations but, in contrast, is significantly faster in comparison 
with other high-level correlation calculations (e.g. post HF), which renders it a very 
cost-effective method. Not only can these types of ab-initio calculations identify and 
verify proposed radical structures with the aid of optimization routines, predictions 
can also be made founded on entirely theoretical grounds. In addition, these methods 
offer the possibility to reproduce EPR quantities based on first principles. Evidently 
this presents a powerful tool to the experimentalist for the interpretation and analysis 
of EPR spectra. By now comparing measured and predicted spectroscopic parameters 
with each other, the true identity of an experimentally observed paramagnetic species 
can be linked directly to the structural characteristics of a theoretical model proposed 
for the specified radical. 

In this work, we will specifically make use of the link with experiment to 
characterize the radiation-induced radicals of amino acids and sugars from a 
theoretical point of view. A general computational strategy is reported, which 
outlines a basic procedure for the theoretical treatment and simulation of radicals in a 
solid state. This strategy is composed of four main steps. In an initial step, one or 
more radical models are proposed that might be consistent with the experimental 
EPR data of an observed paramagnetic species. The structures of these radical 
models are subsequently optimized within a well-defined model space, in either a 
DFT or semi-empirical framework. A third step concerns the determination of EPR 
parameters for the optimized structures, adopting an ab-initio level of theory. The 
results of these EPR calculations can also be sensitive to the used model space. In the 
final step, a conclusive analysis between calculated and measured EPR parameters is 
then possible. 

Applied on amino-acid and sugar systems, the drafted procedure will enable us to 
formulate specific conclusions with regard to the nature and identity of the radiation-
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induced radicals, on the condition that an appropriate approximation is made for the 
solid-state environment of the radical. The extent of the model space during the 
optimization and EPR calculations is therefore of particular importance. In this work, 
it is examined what effect the size of the model space and the applied level of theory 
have on the calculated structural and spectroscopic properties of a simulated radical. 
This is achieved by introducing several model space approaches – classified from 
“single molecule”, over “cluster” to “periodic” – which incorporate an increasing 
amount of intermolecular interactions between the radical and its crystalline 
environment. Eventually, it is argued that the model space indeed plays a 
considerable role for the determination of a radical geometry and its associated EPR 
parameters. This aspect must therefore be carefully considered when initiating a 
computational study of radicals in the solid state. 

 
This work is organized in two main sections. The first section contains chapters 2 

to 4 and outlines the conceptual framework of this thesis. In chapter 2, a concise 
overview is presented of some general principles in molecular modeling that are 
relevant to this work. The subsequent chapter deals with the basic concepts and 
theory of EPR spectroscopy. In the fourth chapter, we will introduce a general 
computational strategy that will be followed in the applications-section to determine 
EPR parameters on theoretical grounds. 

In the second, applied section (chapters 5 to 10), several investigations are made 
of radiation-induced radicals in solid-state systems. Chapters 5 and 6 deal with the 
amino-acid systems, alanine and glycine, respectively. After a general introduction 
into the applications and occurrence of radicals in sugar crystals (chapter 7), a report 
is given on the radicals in β-D-fructose (chapter 8), α-D-glucose (chapter 9) and α-
L-sorbose (chapter 10). In the final chapter, some general conclusions are 
formulated.
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Chapter 2. General principles of Molecular Modeling 

GENERAL REFERENCES: [1], [2], [3], [4] 

2.1 INTRODUCTION 

Molecular systems consist of electrons and nuclei and the essence in quantum 
chemistry is to solve the Schrödinger equation for this system. Since we are 
interested in a static description of the molecular system, we can restrict ourselves to 
the time-independent, non-relativistic Schrödinger equation: 

Ĥ EΦ = Φ  (1) 

The Hamilton operator Ĥ  describes the different interactions between M nuclei and 
N electrons in a molecular system in the absence of external magnetic or electric 
fields: 

2
2

1 1 1 1

1 11 1

ˆ1 1ˆ ˆ
2 2
1 1 1
2 2

N M N M
A A

i
i A i AA iA
N N M M

A B

j Bi Aij AB
i j A B

ZH
M r

Z Z
r R

= = = =

= == =
≠ ≠

∇
= − ∇ − −

+ +

∑ ∑ ∑∑

∑∑ ∑∑
 (2) 

The first two terms express the electronic and nuclear kinetic energy operators, 
respectively. The potential energy of the system is described by the last three terms, 
the nucleus-electron attraction (the external potential extV ), and the electron-electron 

and nucleus-nucleus Coulomb interactions. In the above equation, 2ˆ
i∇  and 2ˆ

A∇  are 
the Laplacian differential operators with respect to the electronic and nuclear 
coordinates. MA is the mass-ratio of nucleus A to the mass of an electron and ZA is 
the atomic number of nucleus A. 

If we take into consideration the significant difference in mass between electrons 
and nuclei (one proton weighs roughly 1800 times more than one electron), we can 
simplify the above Schrödinger equation by what is known as the Born-Oppenheimer 
approximation. This principle states that the electrons of a molecular system can be 
considered as moving in the field of fixed nuclei, since these move much slower due 



Chapter 2 

 6 

to their larger mass. This then reduces equation (2) to an electronic Hamiltonian: 
2

11 1 1 1

1 1 1ˆ ˆ
2 2

N N M N N
A

elec i
ji i A iiA ij
i j

ZH
r r== = = =

≠

= − ∇ − +∑ ∑∑ ∑∑  (3) 

and what remains is to solve the electronic Schrödinger equation: 
ˆ

elec elec elec elecH EΨ = Ψ  (4) 

in which the electronic wavefunction elecΨ  and energy elecE  depend parametrically 
on the nuclear coordinates and the associated external potential extV . To solve this 
equation, we must resort to the variational principle that the true energy 0E  of the 
ground state will be a lower bound to the expectation value of the Hamilton operator 
(which equals the “trial” energy) for a trial wavefunction: 

0 0 0
ˆ ˆ

trial trial trialH E E HΨ Ψ = ≥ = Ψ Ψ  (5) 
So, in order to find the (electronic) ground-state energy corresponding to a set of 
nuclear coordinates, we need to minimize the energy as a functional of Ψ by 
searching through all possible (and acceptable) N-electron wave functions. It is of 
course impossible to search over all functions, and therefore the variational principle 
is usually restricted to a subset of possible functions; this implies another 
approximation (e.g. the use of Slater determinants in Hartree Fock). This subset is 
very often split up further in basis sets, which make the calculation of (two-electron) 
integrals faster and easier. The search itself is often performed self-consistently. 

Once the electronic problem has been solved (or rather approximated), the total 
Hamiltonian is easily obtained and we get an energy value for the ensemble of nuclei 
generating the external potential extV . By iteratively solving the electronic 
Schrödinger equation for different coordinates of the nuclei, a potential energy 
surface is created for the molecular system under study. By expanding this surface, it 
is ideally possible to locate the absolute minimum, corresponding to the most stable 
molecular conformation. This optimization procedure is vital in molecular modeling. 
It allows us to postulate an initial guess for a molecular conformation which we can 
then optimise to a (local) minimum on the potential energy hypersurface. Only for 
these minimal conformations it is interesting to assess the molecular or nuclear 
properties, since they will determine the macroscopic observables of the system. As 
the validity of a calculated molecular conformation is determined by the solution of 
the electronic Schrödinger equation, we will now look in detail at different ways to 
approximate this solution. 
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2.2 OVERVIEW OF APPROXIMATE METHODS 

As the title of this section reveals, there is no exact method to solve the electronic 
Schrödinger equation. Instead, there is a vast amount of approximate methods and 
the first job in molecular modeling is to choose a level of theory that is able to 
describe the molecular system of interest with as less computational effort as 
possible. For static solutions of the molecular systems, three main groups of methods 
can be identified. 

(1) Molecular mechanics 
(2) Ab-initio methods 
(3) Semi-empirical methods 

2.2.1 Molecular mechanics 
The most crude approximation is simply to neglect any electronic effects. In that 

case, we end up with a purely classical system, in which the molecules are simplified 
to ensembles of interconnecting “balls” (nuclei) and “springs”. How the nuclei 
interact (the “springs”) is described by a force field, which comprises a set of 
potential energy functions describing all bonding and non-bonding interactions 
between atoms. The force field itself is a parametric function of only the nuclear 
coordinates and these parameters are fitted to experimental data. A plethora of 
different force fields exist, each often with specific parameter sets for different types 
of compounds. Some prominent and widely-used examples are the Amber [5] and 
MM2/MM3 [6] force fields. But even though some quantum chemical effects can be 
parameterised, molecular mechanics have hardly anything to do with quantum 
mechanics. Furthermore, the empirical input limits the general applicability of the 
method. It is mainly used to obtain geometries for extremely large (organic) 
molecular systems – such as polypeptides or polysaccharides – due to the high speed 
of these calculations. Spectroscopic properties or electronic effects can of course not 
be determined, although some efforts have been made to introduce force-field 
parameters for open-shell peptide residues [7]. 

2.2.2 Ab-initio methods 

The Hartree-Fock approximation 

In the Hartree-Fock approach, a first approximation is introduced in the search 
over all acceptable N-electron wave functions Ψ  in equation (5). More specifically, 
the search is limited to a subset of functions that are antisymmetrised products of N 
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one-electron wave functions ( )i ixχ . These products are usually referred to as Slater 

determinants SDΦ : 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2
1 2

1 2

1, ,
!

N

N
SD N

N N N N

x x x
x x x

x x x
N

x x x

χ χ χ

χ χ χ

χ χ χ

Ψ ≈ Φ =

K

K
K

M M M

K

 (6) 

Since an electron is not only described by its spatial coordinates ir  but also by its 

spin coordinate is , the one-electron wave functions ( )k ixχ  are called spin orbitals 

(or molecular orbitals) and they are composed of a spatial orbital ( )k irφ  and a spin 

function, ( )isα  or ( )isβ : 

( )
( ) ( )
( ) ( )

k i i
k i

k i i

r s
x

r s
φ α

χ
φ β

⋅
= 

⋅
 (7) 

Slater determinants are antisymmetric, which means that they change sign when two 
electrons are interchanged: 

( ) ( )1 2 2 1, , , ,SD N SD Nx x x x x xΦ = −ΦK K  (8) 
This is in fact a more general statement of the Pauli exclusion principle, which states 
that no two fermions are allowed to have the same spatial- and spin coordinates. 
Evidently, when 1x  and 2x  are equal in the above equation, the wave function must 
vanish. 

Within the assumption that the wave function can be written as a single Slater 
determinant, the Hartree-Fock energy is obviously a functional of the N spin orbitals, 
and we again can apply the variational theorem. In order to minimize the energy, we 
vary the molecular orbitals subject to the constraint that they remain orthonormal: 

( ) ( )k l k l klx x dxχ χ χ χ δ∗= =∫  (9) 

which introduces Lagrangian multipliers in the resulting N Hartree-Fock equations. 

î k i kf χ ε χ=  (10) 

In these equations – which are solved in a self-consistent way – the multipliers iε  

represent the molecular orbital energies and the one-electron Fock operator îf  is 
defined as: 

( )2

1

1ˆ
2

M
A

i i HF i
A iA

Zf x
r

υ
=

= − ∇ − +∑  (11) 
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with ( )HF ixυ  the Hartree-Fock potential, representing the average potential that one 
electron is subject to due to all other electrons. This potential is composed of two 
parts, which can be best understood when considering an expectation value of the 
Hartree-Fock potential: 

( )

( ) ( )

( ) ( ) ( ) ( )

22

1

1

Coulomb
1

Exchange

k HF i k

k i l j j
ijj

N

l
k i l j k j l i j

ijj

x

x x dx
r

x x x x dx
r

χ υ χ

χ χ

χ χ χ χ∗ ∗=

 
 
 
 

=  
 −
 
 
  

∫

∑
∫

14444244443

14444444244444443

 (12) 

The Coulomb part in equation (12) represents the local contribution to the total 
electron interaction energy due to the electrostatic repulsion between electron i and 
the averaged charge density of all electrons in the molecular system. Exchange 
effects have no classical interpretation. In the resulting interaction, the variables are 
exchanged in the two spin orbitals kχ  and lχ , which complicates matters since the 

expectation value for the i-th electron on spin orbital ( )k ixχ  now depends on the 

value of ( )k jxχ  over all space through the integrand jx . For this reason, the 

exchange interaction is called non-local. These so-called two-electron four-center 
integrals are difficult to solve and very time-consuming and are therefore prone to 
approximation. The resulting methodologies are termed semi-empirical and will be 
briefly treated in section 2.2.3. As exchange effects arise merely due to the 
antisymmetry prerequisite in Slater determinants, only electrons with parallel spins 
give rise to these effects. For electrons with antiparallel spins the integral vanishes. 

Self-interaction does not occur in the Hartree-Fock scheme. This is obvious if we 
take k l=  in equation (12). The Coulomb integral then describes the interaction of 
an electron with itself, which is clearly nonsense. The problem is elegantly solved 
however, since for k l= , the exchange integral cancels out the Coulomb integral 
exactly. 

HF correlation and higher order methods 

Due to the different approximations introduced, the Hartree-Fock ground-state 
energy of a molecular system will never be equal to the exact energy exactE  of the 
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system. According to the variational principle, HFE  will always be higher. The 
remainder part corrE  

corr exact HFE E E= −  
is called the correlation energy and can be considered as a measure for the error 
introduced through the approximations inherent to the HF scheme. The lack of 
electron correlation in HF is mainly the result of the only average treatment of 
electron-electron interaction (via HFυ ). Unfortunately, electron correlation effects 
(sometimes called “nature’s glue” [8]) are often very important in the treatment of 
molecular systems. 

To deal with this problem, a variety of wave function based computational 
schemes have been introduced, among which Moller-Plesset (MP2-4), Configuration 
Interaction (CI) or Coupled Cluster (CC) treatments are probably the most popular. 
An in-depth description of these methods is beyond the scope of this work and we 
refer to [1] for a more detailed description. Most of the higher order methods fall 
back on perturbation theory and therefore produce correction terms to the Hartree-
Fock energy. This perturbative approach, although it often delivers (more) correct 
energies, is extremely expensive in computer time, since both the HF and higher 
order routines have to be processed. 

Density Functional Theory (DFT) 

GENERAL REFERENCES: [9], [10], [11], [12], [13] 
 
The main problem with wavefunction-based theories is that calculations are very 

extensive.  The fact that, for an N electron molecular system, Ψ  depends on 3N 
spatial and N spin variables, makes these methods extremely time-consuming (and 
therefore expensive in computer time) if adequate accuracy is to be expected for 
large molecular systems. The basis of Density Functional Theory is to replace this 
complicated wavefunction by a much simpler quantity, the one particle electron 
density ( )rρ . This in fact reduces the number of variables to only 3 spatial 
variables, with the result that DFT ‘in se’ offers a more cost-effective treatment of 
electron correlation than Hartree-Fock and its systematic perturbative improvements. 

The transition to a density-based method comes of course at a price: practically, 
all information about excited states is lost! However, we lose no information about 
ground-state properties and this is exactly what we are interested in for a time-
independent, static description of molecular systems. The only thing we have to do to 
determine the energy or other properties of the molecular system, is to express them 
as a functional of the electron density. This density is defined as a multiplicative 
integral over the spin coordinates of all electrons and over the spatial variables of all 
but one electron: 
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( )

( )
2

1 2 1 1 1 2,

i

i i i N N

r

N dx dx dx ds dx dx x x x

ρ

− +

=

Ψ∫ ∫ ∫ ∫ ∫ ∫K K K
 (13) 

which represents the probability of finding any electron with arbitrary spin at 
position ir . Historically, Thomas and Fermi [14] were the first to express the 

ground-state energy of a system as a functional of ( )rρ . Their approach, dating 
back to 1927, was mainly aimed at solid-state physics and will be briefly discussed 
later on. 

The Hohenberg-Kohn theorems 

The main breakthrough of DFT came about when Hohenberg and Kohn published 
the proofs of two theorems [15]. These “Hohenberg-Kohn theorems” – as they are 
commonly called – are the basis on which all of modern density functional theory is 
founded. In the next section, these theorems and their implications are briefly 
discussed. For more elaborate treatments on this subject, we integrally refer to 
standard works [9, 13]. 

The first HK theorem 

The first theorem actually provides the proof that the electron density uniquely 
determines the ground-state properties of a (molecular) system. In other words, it 
proofs the validity of the switch from wavefunction to electron density, when dealing 
with the ground state. 

If we rewrite the electronic Hamiltonian in equation (3) as: 
ˆ ˆ ˆ ˆ

Ne eeH T V V= + +  (14) 

with T̂  the kinetic electron energy operator, êeV  the electron-electron interaction 

operator and N̂eV  the operator for the external (observable) potential ( )extV r , it is 
clear that through the Schrödinger equation for the (non-degenerate) ground state: 

0 0 0Ĥ EΨ = Ψ  (15) 

the wavefunction 0Ψ  and consequently the energy 0E  for the ground state are 

exclusively dependent on the external potential ( )extV r . We summarize this by: 

0 0extV E⇔Ψ ⇔  (16) 
The first Hohenberg-Kohn theorem now states that the ground-state density 
( )0 rρ  uniquely determines the external potential ( )extV r , which – considering 

equation (16) – amounts to: 
0 0 0extV Eρ ⇔ ⇔Ψ ⇔  (17) 
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This implies that 0Ψ  and 0E  are functionals of the electron density and we rewrite 
the expression for the ground-state energy:  

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

( ) ( ) [ ]

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

ˆ

ˆ ˆ ˆ
Ne ee

ext HK

E H

V T V

r V r dr F

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

= Ψ Ψ

= Ψ Ψ + Ψ + Ψ

= +∫

 (18) 

The first term in the above equation represents the interaction between the electrons 
and the external field generated by the nuclei in the molecular system (optionally it 
also includes contributions due to other external fields, either electric or magnetic). 
This term obviously depends on the actual system at hand. The second term, 
however, is system independent and is called the (universal) Hohenberg-Kohn 
functional, often divided into a functional for the electronic kinetic energy [ ]0T ρ  

and one for the electron-electron interaction [ ]0eeE ρ : 

[ ] [ ] [ ]0 0 0HK eeF T Eρ ρ ρ= +  (19) 

The [ ]0eeE ρ  functional can be further divided into the classical Coulomb part 

[ ]J ρ , which is known exactly, and a remaining non-classical functional [ ]nClE ρ . 

The second HK theorem 

The second Hohenberg-Kohn theorem simply states that the energy functional 
[ ]trialE ρ  for a trial density trialρ  will yield an energy for the (molecular) system that 

is upper bound to the true ground-state energy [ ]0 0E ρ  of that system: 

[ ] [ ]0 0 0 0
ˆ ˆ

trial trial trialH E E Hρ ρΨ Ψ = ≥ = Ψ Ψ  (20) 
This is obviously an adaptation of the variational procedure discussed earlier 
(equation (5)). Evidently, if we were able to search over all allowed antisymmetric 
wave functions, the trial function that yields the lowest expectation value for 
equation (20) would be the ground-state wave function. This “constrained search” 
approach would – in principle – allow us to solve the electronic many body problem 
exactly. Unfortunately only in principle because, even though these theorems prove 
that there is a unique mapping between the ground-state density and the ground-state 
energy, they do not tell us what the energy functional looks like or how it can be 
constructed. More specifically, the big unknown in equation (18) is the Hohenberg-
Kohn functional [ ]0HKF ρ , in which the form of both [ ]0T ρ  and [ ]0eeE ρ  is a 
mystery. For DFT to have any practical use, these functionals have to be 
approximated. Another, rather practical problem emerges in connection with the 
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constrained-search approach. It explicitly specifies to search over all possible wave 
functions, which is obviously impossible. 

The Kohn-Sham approach 

In short, the variational principle and the constrained-search scheme are only of 
theoretical value and present no feasible solution to get to the ground state. Shortly 
after the Hohenberg-Kohn publication, however, an approach was developed that 
elegantly bypassed these problems. In 1965, Kohn and Sham functionalized DFT by 
introducing orbitals and a self-consistency scheme to approximate the kinetic energy 
functional [16].  

The essence of this approach is to link the real N-electron molecular system with 
a fictitious system of N non-interacting electrons. For such a fictitious system, 
subject to an external potential ( )SV r , the Hamiltonian is simply: 

2

1 1

1ˆ ˆ ˆ
2

N N

S i Si
i i

H V
= =

= − ∇ +∑ ∑  

which obviously contains no electron-electron interactions. In analogy with equation 
(6), the wavefunction that satisfies the Schrödinger equation for this Hamiltonian can 
be written as a Slater determinant constructed of N spin orbitals or Kohn-Sham (KS) 
orbitals iϕ , that are determined by the N one-electron eigenvalue equations: 

21 ˆ ˆ
2 S i i iV ϕ ε ϕ − ∇ + =  

 (21) 

Using these orbitals, we can construct the exact kinetic energy functional for this 
non-interacting system: 

2

1

1
2

N

S i i
i

T ϕ ϕ
=

= − ∇∑  (22) 

Since the expression for this functional is known, Kohn and Sham suggested to use 
(22) as a first approximate for the real kinetic energy of the interacting system. This 
is only allowed if we choose the external potential ( )SV r  such that the electron 
density of the non-interacting system is mapped exactly onto the ground-state density 
of the real system. 

( ) ( ) ( )
2

0
1

N

S i
i

r r rρ ϕ ρ
=

= =∑  

The Hohenberg-Kohn functional (19) can then be rewritten as: 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]
HK S C nCl

S XC

F T T E J

T J E

ρ ρ ρ ρ ρ

ρ ρ ρ

= + + +

= + +
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where [ ]CT ρ , the residual part of the true kinetic energy, is taken up in the so-called 

exchange-correlation energy functional [ ]XCE ρ , along with [ ]nClE ρ . Thus, the 
bypass of the non-interacting system has led to an energy functional that can be 
expressed as a function of the KS orbitals: 

[ ]

( ) ( )

[ ] ( )

2
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2 2

1 1

2

1 1

1
2
1 1
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i i
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N N
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r r dr dr
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= − ∇
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+ −

∑

∑∑∫ ∫
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 (23) 

We can now minimise this energy functional by varying the orbitals, which results in 
N Kohn-Sham equations: 

( )2

1

1 ˆ ( )
2

ˆ

M
b A

b XC a i i i
Aab aAb

r Zdr V r
r r

Veff

ρ
ϕ ε ϕ

=

 
 
   − ∇ + + − =    
 
  

∑∫
1444442444443

 (24) 

where the effective potential ( )effV r  simply is the external potential ( )SV r  for the 
non-interacting system of electrons that we have introduced earlier, as is obvious by 
comparing equations (21) and (24). This clears the path for a self-consistent scheme: 

  
Introducing a trial external potential for the non-interacting system, the KS orbitals 
can be determined through equation (21) and so the density and energy. From the 
minimization procedure of the energy (23), we can then deduce the effective 
potential which we reinsert as a new trial external potential. This self-consistent 
scheme would ultimately provide us with the ground-state energy and electron 
density for the molecular system, if only the functional form of the exchange-
correlation contribution [ ]XCE ρ  were known. Therefore, again, considered 
approximations have to be used. 

( ) ( ){ } ( ) ( )S i effV trial trial E trial V trialϕ→ → →  
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The Functional Zoo 

Constructing an approximation for [ ]XCE ρ  is quite difficult, since it is simply 
not known what the functional form looks like. Furthermore, this functional must 
contain a residual kinetic energy part along with the exchange and correlation. As a 
consequence, better functionals are mainly found by trial-and-error based on physical 
grounds (and intuition). However, two overall approaches can be discerned for the 
construction of an exchange correlation functional [17]. 

Non-empirical approach 

Improved functionals are derived by imposing several known exact physical 
constraints on approximate functionals. Examples of these constraints are e.g. the 
requirement that the exchange correlation energy is always negative, sum rules for 
exchange correlation holes, etc. 

The resulting functional that satisfies these boundary conditions, is indeed better, 
although mostly from a purely theoretical point of view only. This does not 
necessarily mean that they will also give accurate results for specific (molecular) 
systems within an approximate density functional framework. 

Semi-empirical approach 

Existing functionals are adapted or new ones constructed to contain parameter 
sets. These parameterized functionals can then be fitted to exactly known data, such 
as energies, ionization potentials, … which were determined from experiment or 
high-level calculation (e.g. Coupled Cluster). Although the resulting functionals will 
not seldom violate the boundary conditions mentioned earlier, they will often 
perform better on accuracy, especially for those systems they were fitted to. For 
chemical systems, this approach is frequently the most successful, since it can draw 
on the physical improvements of the “non-empirical” approach and add a 
parameterization, which ensures practical applicability. 

Jacob’s ladder of approximations 

On a conceptual level, a plethora of approximations for [ ]XCE ρ  has been 
formulated, obtained through the above approaches. To classify this ever-increasing 
“Functional Zoo” [8], a useful scheme was introduced by J. Perdew which comprises 
the better part of all functionals [18]. By analogy with a biblical story, this “Jacob’s 
ladder” of approximations extends up to quantum chemical “heaven”, being a 
functional with chemical accuracy. The rungs along the ladder represent the various 
approximations, each rung improving the properties and accuracy of the lower rungs, 
but also increasing the computational cost. A pictorial overview of this concept is 
given in Figure 2.1: 
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Figure 2.1:  “Jacob’s ladder” according to Perdew. 

LDA 

The lowest rung on the ladder (above the Hartree world) is the Local Density 
Approximation (LDA). It is the chronologically first, and most elementary model, 
adapted from the early work of Thomas and Fermi [14]. These researchers 
formulated a quantum statistical model for simple solid-states (e.g. metals), based on 
the idea of a hypothetical uniform electron gas. In such a system, the electrons move 
on a homogeneous positive background charge distribution, such that the total charge 
of the system is neutral. By extension, a general form was derived for the LDA 
exchange correlation functional: 

[ ] ( ) ( )LDA
XC XCE r drρ ρ ε ρ= ∫  (25) 

where ( )( )XC rε ρ  indicates the exchange and correlation energy per particle of a 

uniform electron gas of density ( )rρ . The LDA scheme implies that each electron 
interacts with the other electrons as though they would generate a completely 
homogeneous density and therefore ( )( )XC rε ρ  is only dependent on the local 
density for each electron. Various analytical expressions have been proposed for 

XCε , often based on (semi-empirical) parameterizations. Perhaps the most widely 
used is that of the VWN functional, developed by Vosko, Wilk and Nusair [19]. 

Even though this approximation holds for systems with a locally uniform or 
slowly-varying electron density (such as various inorganic solids), most chemical 
systems are characterized by rapidly varying densities. The only moderate accuracy 
of LDA is therefore clearly insufficient for most applications in chemistry. 
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Nevertheless it is used as a starting point for other approximate methods, by adding 
various other local contributions to XCε . 

GGA 

Higher on the ladder is the Generalized Gradient Approximation (GGA). In this 
class of functionals, the inhomogeneity of actual electron systems is approximated to 
first order by carefully adding information about the local gradient of the density 
ρ∇  in equation (25): 

[ ] ( ) ( ),GGA
XC XCE r drρ ρ ε ρ ρ= ∇∫  (26) 

GGA’s offer better accuracy for chemical systems than LDA since they account for 
the non-homogeneity of the electron density to some degree. Some prominent 
examples are the PW91 [20], BLYP [21, 22], BP86 [23, 24, 25] or PBE [26] (non-
empirical) functionals. 

meta-GGA 

In the Meta-Generalized Gradient Approximation, the integrand in equation (26) 
is further extended to include additional semi-local information: 

[ ] ( ) ( ), ,meta GGA
XC XCE r drρ ρ ε ρ ρ τ− = ∇∫  (27) 

with 

( ) ( )
2occupied

i
i

r rτ ϕ= ∇∑  

the Kohn-Sham kinetic energy density as a more efficient alternative for the 
Laplacian of the density 2ρ∇ . 

Meta-GGA functionals are not often applied to study chemical systems but are 
rather considered as a step-up for the construction of other universal functionals 
(higher rungs on Jacob’s ladder). Applications are therefore mostly situated in purely 
theoretical systems, although some recent studies have focused on more chemical 
systems [27]. 

hyper-GGA 

On the fourth rung of Jacob’s ladder, exact exchange is introduced in the 
functional. This seems straightforward, since it is possible to calculate the exact 
exchange contribution to the energy via an adaptation of the Hartree-Fock equation 
(equation (12)) that fits within the Kohn-Sham scheme. One could then naively 
construct an exchange-correlation functional, where only the correlation contribution 
to the energy is expressed through an approximate functional: 

exact
XC X CE E E= +  
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Unfortunately, this approach does not perform well for molecular systems, which 
illustrates that the separation of XCE  in an exchange and correlation part is totally 
artificial and that in fact a cancellation of errors occurs for (meta-)GGA’s between 
the exchange and correlation contributions. 

A subset of functionals – known as hybrid functionals – rely on an adaptation of 
the hyper-GGA principle that does perform well. As a consequence, they are highly 
popular and widely used with success. The key concept here is to include only a 
certain amount of exact (HF) exchange besides the built-in (DFT) exchange in the 
functional (hence the term hybrid). Exactly how much exchange of both is included 
is determined by semi-empirical parameters, as illustrated in the expression for the 
popular B3LYP functional [28], which depends on 3 parameters: 

( ) ( )3 881 1B LYP LDA exact B LYP LDA
XC X X X C CE a E aE bE cE c E= − + + + + −  

This functional contains contributions from various existing exchange and 
correlation (DFT) functionals, apart from an amount of exact (HF) exchange. The 
fact that the values of the parameters were optimized on a large set of molecules, 
makes this functional very successful for molecular systems. Throughout this work, 
we will therefore often fall back on B3LYP. 

Summary 

It is clear from the sections above that DFT is a very useful theory which does 
provide us with a functional tool to do quantum chemistry. A lot of problems are still 
associated with the construction of the functional [ ]XCE ρ , which is probably the 
most delicate point in the theory. Things like self-interaction, semi-empirical fittings 
and the mere fact that we do not know what the exchange-correlation functional 
looks like, deserve an ungoing study. It is also clear that this theory is far from 
complete and other ab-initio theories (e.g. DMFT, see [13]) have been proposed to 
solve several problems in DFT. Surely, more accurate computational schemes exist 
(e.g. Coupled-Cluster methods), but DFT offers the most cost-effective incorporation 
of electron correlation. Therefore, up till now (and presumably for a long time to 
come), DFT is the method of choice that allows quantum chemists to accurately 
study molecular and chemical systems in an acceptable timeframe. 

Basis sets 

Since almost all quantum chemical ab-initio methods are based on self-consistent 
schemes, we must be able to obtain a relatively good initial trial wavefunction to start 
the iterative process with. Usually, a linear combination of atomic orbitals (LCAO) is 
chosen as a first approximation to the molecular orbitals, which is then gradually 
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improved self-consistently. Either way, the molecular orbitals are expanded in a so-
called basis set of L initial, predefined functions µη : 

1

L

i iCµ µ
µ

χ η
=

=∑  (28) 

This effectively reduces the solution of the Hartree-Fock or Kohn-Sham equations to 
calculating the coefficients iCµ , being the only variables left. 

If the basis set were complete (i.e. L =∞ ), every possible function iχ  could be 
expressed exactly through equation (28). In reality, L is finite and we must carefully 
chose the number and form of the µη  basis functions. Two types of basis functions 
have found common use, known as Slater type orbitals (STO) or Gaussian type 
orbitals (GTO). While some ab-initio packages – such as the Amsterdam Density 
Functional program (ADF) [29] – rely on STO orbitals, most programs (e.g. 
Gaussian98 [30] or Gaussian03 [31]) use contracted GTO basis sets. These are 
usually referred to with a cryptic shorthand, such as: 3-21G, 6-31G*, cc-pVQZ, etc. 

For the calculations with the Gaussian software package in this work, we will 
mainly rely on the double-ζ 6-31G** [32] and triple-ζ 6-311G*(*) [33] basis sets. 
Both are in fact split-valence sets, in which the core orbitals are described by one 
contraction each of six primitive Gaussian functions, while more contractions are 
considered to treat the valence shells. In the case of the 6-311G** basis for instance, 
there are three contractions of 3, 1 and 1 primitives, respectively, augmented with 
additional polarization functions (**). In some cases, the EPR-III basis set will be 
used, which was specifically designed by Barone for the calculation of hyperfine 
coupling constants with DFT methods [34]. In essence, it is also a triple-ζ set 
augmented with diffuse and polarization functions (including d and f type functions). 
Its functionality however is largely due to an enhancement of the s-part describing 
the core region: 8 contractions of Gaussian primitives in total. This would make this 
basis set very suitable to calculate hyperfine coupling constants, since these depend 
directly on the unpaired spin density at the nucleus, as will be mentioned later on (see 
Chapter 3). Unfortunately, the vast size of the basis goes along with an expensive 
computational cost. 

2.2.3 Semi-empirical methods 
Semi-empirical methods can be situated on an intermediate level between ab-

initio and purely empirical methodologies (e.g. force fields). In general, they rely on 
a kernel based on ab-initio theory, in which (often severe) approximations are 
introduced, complemented with empirical input. As a result, these approximate 
methods are considerably faster than pure ab-initio calculations and sometimes even 
more accurate, due to the incorporation of parameters derived from experimental 
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data. However, they lack a general applicability and can sometimes lead to serious 
errors, as will become apparent later on. 

The semi-empirical formalisms that are applied in this work invariably rely on a 
simplified Hartree-Fock Hamiltonian that is solved self-consistently, but in which 
only valence electrons are considered. All other electrons are accounted for in a 
“nuclear core” contribution that does not influence chemical bonding. Limited basis 
sets comprising Slater-type functions are used, but only s- and p-type orbitals are 
employed. More specifically, we will make use of the AM1 (Austin Model 1) [35] 
and PM3 [36] methods. Both are alternative parameterizations of the MNDO scheme 
(Modified Neglect of Diatomic Overlap) which, in turn, falls back on the NDDO 
(Neglect of Diatomic Differential Overlap). This last approximation means that 
differential overlap is neglected between atomic orbitals that are centered on 
different atoms: 

( ) ( )*
1 1 1 0r sx x dxη η =∫   

if rη  and sη  are on different atoms. Hence, NDDO effectively ignores all three- and 
four-center integrals resulting from (12). MNDO, AM1 and PM3 are mere 
adaptations of this scheme, in which mono-atomic parameters have been introduced. 
In addition, the remaining two- and one-center integrals are evaluated using 
approximate means, speeding up calculations tremendously. In AM1 (and MNDO) 
the values for these integrals are derived from atomic spectra, while in PM3 they are 
treated as an additional set of parameters and optimized to reproduce experimental 
molecular properties. 

We further refer to [37] for an elaborate discussion of these and other semi-
empirical methods. 
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Chapter 3. Electron Paramagnetic Resonance 

Probably the best method to study the chemical and structural nature of (organic) 
radicals is Electron Paramagnetic Resonance spectroscopy (EPR). In this section, we 
will discuss some relevant topics on this matter but we integrally refer to standard 
works for an in-depth treatment [38, 39, 40, 41, 42]. 

3.1 INTRODUCTION – RESONANCE CONDITION 

Even though the first EPR spectrum was made in 1945 by Zavoisky [43], the 
basis of the technique hinges on the much earlier discovery of an odd electron 
property known as spin. After the Stern-Gerlach [44] experiment and the work of 
Goudsmit and Uhlenbeck [45], it was recognised in the early 1920s that the electron 
was to have some sort of intrinsic angular momentum. Classically, this could be 
depicted as though the electron would rotate about its own axis. Quantum 
mechanically, the magnitude of the electron spin is defined through the observables 

( )1S S +  and SM , associated respectively with the spin angular momentum 

operator 2Ŝ  and its projected operator ˆ
ZS  along an arbitrary direction of 

quantization. This is represented in the following eigenvalue equations for the 
wavefunction 

S

S
Mχ  

( )2ˆ 1
ˆ

S S

S S

S S
M M

S S
z M S M

S S S

S M

χ χ

χ χ

= +

=
 (29) 

where SM  can take on the values ranging from S−  to S+ . As a consequence of 

this angular momentum, a magnetic spinmoment ˆ
Sµ  arises for the electron: 

ˆˆ
S e e= -g Sµ β  

with eg  the free electron g-value (2.0023) and eβ  the Bohr magneton. If now this 

electron is placed in a magnetic field B , the spinmoment will interact: 
ˆ

S S

S S
M S M

e e S

E B

g M B

χ µ χ

β

= − ⋅

=
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and the introduction of a direction of quantization (along B ) lifts the degeneracy of 
the ˆ

ZS  operator. Since 1
2S =  for the electron, two spinstates result from this 

Zeeman splitting corresponding with 1
2SM = +  (α- or spin-up state) and 

1
2SM = −  (β- or spin-down state), separated by an energy difference EΔ  that 

increases with the field strength ˆB B= , as illustrated in Figure 3.1. 

 

 
Figure 3.1: Resonance condition for a free electron. 

 
A transition from the lower β- to the higher α-state can be induced by an 

electromagnetic field (perpendicular to the direction of the magnetic field) whose 
energy quanta hν  match the energy gap EΔ : 

e eE g B hβ νΔ = =  (30) 
This resonance condition can, in principle, be met in two ways: 

• by applying a constant magnetic field and varying the frequency ν of the 
electromagnetic field 

• by subjecting the electron to an electromagnetic field with constant 
frequency an varying the magnitude B of the applied magnetic field. 

As most EPR experiments are carried out with electromagnetic field frequencies 
within the microwave region, the latter method is most often used for practical 
reasons. When a magnetic field sweep is performed within this regime, an absorption 
in microwave power is observed when the electron is in resonance with the 
electromagnetic field. This absorptive peak is recorded in a first derivative spectrum, 
as illustrated in Figure 3.1. 
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3.2 OVERVIEW OF AN EPR SPECTROMETER 

A typical setup to perform continuous-wave EPR experiments is shown in Figure 
3.2. It basically consists of a frequency-stable microwave source (in the figure, a 
“klystron”), a resonant cavity, which contains the sample, a magnet that is capable to 
produce an adjustable, but homogeneous magnetic field and a detection device to 
monitor and record the energy absorption in the EPR spectrum. 

 

 
Figure 3.2: Block diagram of a continuous wave electron paramagnetic resonance 

spectrometer (after Weil et al. [41]). 
 

Experiments can be performed at various frequencies, commonly called 
microwave bands. Some of the most used are the X-band (9.5 GHz), Q-band (35 
GHz) and W-band (95 GHz). Even though higher frequencies offer more sensitivity 
and better resolution, they impose severe restrictions on the dimensions of the 
resonant cavity, which is specifically designed to match the microwave wavelength 
to build up a standing wave pattern in it. A permanent magnetic field is applied 
perpendicular to the direction of the microwave field wave guide and is made 
adjustable by additional electromagnetic coils. Typical field values range from 820 
mT for K-band to 3.4 T in W-band (for g=2). As the magnetic field is swept, 
microwave power absorption will occur in the cavity at the resonant field value. A 
mismatch between wave-guide and cavity results in reflection of microwave power, 
which is registered in the monitoring detector, passing through a directional coupler. 

3.3 GENERAL HAMILTONIAN 

In the case of a free electron, its spin magnetic moment would indeed only 
interact with the external magnetic field. In a (paramagnetic) molecular system 
however, several electrons and nuclei are present, which will all interact with the 
field and with each other, leading to various interaction effects that have to be 
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considered. To further complicate things, as the electrons will move in the field of 
nuclei, an additional magnetic moment ˆ

Lµ  can be associated with the orbital 

momentum L̂  of the electron:  
ˆˆ

L e= - Lµ β  
This moment interacts with the spin moment through the so-called spin-orbit 
coupling interaction: 

ˆˆˆ
SOH L Sλ= ⋅  

which can be considered as an added perturbative term to the electronic Hamiltonian 
(with λ the spin-orbit coupling constant). This energy term will cause only the total 

electronic angular momentum ˆˆ ˆJ L S= +  to be an observable. Within the Russell-
Saunders coupling scheme, the magnetic moment ˆ

Lµ  must then be combined with 

the spin moment ˆ
Sµ  to form a resultant effective electron spin magnetic moment 

ˆ
Jµ : 

( )ˆˆ ˆˆ ˆ ˆ
J L S e e e JL g S g Jµ µ µ β β= + = − + = −  (31) 

In fact, it is this ˆ
Jµ  operator that should have been used in the above discussion of 

the Zeeman splitting and it is the effective Jg  factor – usually just slightly different 
from the ideal eg  – that is observed in experiments. But since we were then dealing 

with a non-interacting electron, the quantum number L would be 0 for L̂ , and ˆ
Jµ  

simply equaled ˆ
Sµ . 

Nevertheless, for other systems, higher multiplicities would be possible, ranging 
from L S−  to L S+ . In the systems that will be discussed in this work, strong 
crystal fields or covalent bonds are present that will lift the orbital degeneracy 
(formally 2 1L + ), leaving orbital sub-states that are widely separated as compared 
to normal Zeeman splittings. Consequently, no EPR transitions will be induced 
between these energy levels. The orbital ground state in these systems will usually be 
non-degenerate, in which only the electron spin is allowed to become oriented in the 
applied field, with resolvable components 1

2SM = ± . This is illustrated for the 

three p orbitals (L=1 so 2L+1=3-fold degenerate) of carbon in a •CH3 radical in 
Figure 3.3.  
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Figure 3.3: The covalent bond of carbon with the three hydrogens, gives rise to three bonding 

sp2 orbitals, three antibonding sp2* orbitals and one non-bonding orbital pz. The unpaired 

electron is localised on the latter orbital, giving rise to a single EPR transition, similar to that 
of Figure 3.1. 

This “a priori” treatment of L̂  quenches the effects of orbital momentum and as a 
result only one EPR transition is taken into account. Even though this approach 
succeeds in simplifying the complicated coupling scheme, (molecular) systems exist 
for which it does not hold. Furthermore, various other interactions between electron 
and nuclear spin- and orbital- magnetic moments are left unaccounted for.  

For the proper construction of a Hamiltonian and to unambiguously account for 
all interactions taking place, we must start from a relativistic treatment of a many-
particle (molecular) system in the presence of a magnetic field, since only in the 
relativistic Dirac equation electron (and nuclear) spin is explicitly introduced. 
Unfortunately, no fully satisfactory relativistic Hamiltonian has been derived yet, and 
therefore a perturbative approach to the problem is traditionally used, in which the 
unperturbed, non-relativistic Hamiltonian 0Ĥ  (see equation (2)) is expanded with 
additional operators (summed up in Ĥ ′ ) to account for relativistic properties: 

0ˆ ˆ ˆH H H ′= +  (32) 
In addition, the effect of the magnetic field must also be taken up. This is best 
achieved by expressing the Hamiltonian in terms of the vector potential A , 
associated with the magnetic field through: 

( )1
2

A B r= ×  

The electron experiences extra momentum due to this magnetic field and the 
resulting total electron momentum 

ep p A
c

→ +  
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is reinserted in the electronic kinetic energy part of the Hamiltonian (the first term of 
equation (2)). The complete expansion of this “minimal substitution” on an 
approximated relativistic Hamiltonian results in additional perturbative operators 
which are added to Ĥ ′  in equation (32). For a more detailed description of the 
expansion, we refer to [46] and [34]. Here, we will only give a brief overview of the 
resulting terms and the magnetic interactions they represent: 

( ) 100 200 010
,

1

110 020
, , ,

1 1 1

001 101 011
, , , ,

1 1 1 1

1ˆ ˆ ˆ ˆˆ ˆ ˆ, ,
2

1ˆ ˆˆ ˆ ˆ
2

ˆ ˆ ˆˆ ˆ ˆ ˆ

M

N S N A A
A

M M M

N A A N A AB N B
A A B
N N N M

S i i S i i S i iA N A
i i i A

H B H B B H B H

H B H

H H B H

µ µ µ

µ µ µ

µ µ µ µ

=

= = =

= = = =

′ = ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅ + ⋅ ⋅

∑

∑ ∑∑

∑ ∑ ∑∑

 (33) 

The perturbative operators ˆ klmH  in the above equation are expressed as dependent 
on the external magnetic field B  (k-th order dependency), nuclear magnetic 
moments ˆ

Nµ  (l-th order) and electronic spin magnetic moments ˆ
Sµ  (m-th order). 

• The 100Ĥ -term describes the interaction of the magnetic field B  with the 
electronic orbital angular momentum L . A possible permanent 
paramagnetic moment for the molecular system is determined by this 
interaction.  

• The second order 020Ĥ -term in B , represents the diamagnetic response 
of the electrons (through their orbital momentum L ) to the magnetic 
field, giving rise to magnetic susceptibility effects. Both the 100Ĥ - and 

020Ĥ -terms in equation (33) establish the overall magnetic characteristics 
of the molecular system. Since in most molecular systems, the orbital 
angular momentum L  will be “quenched” in a non-degenerate state, 
these terms can be largely ignored for our purposes. 

• The governing effects in Nuclear Magnetic Resonance (NMR) 
spectroscopy [47] are explained by the 110Ĥ  and 020Ĥ  terms. This 
technique is very similar to EPR, except that now nuclear spin transitions 
are induced. The main spectroscopic parameters in NMR are the chemical 
shielding and the nuclear spin-spin coupling, described by the former and 
latter operators, respectively. The 010Ĥ  term – describing the interaction 
of the electronic orbital motion with the nuclear spin magnetic moments – 
can be considered as a minor influence in this respect. 

• Finally, the last two terms will play a predominant role in EPR and their 
operators 101Ĥ  and 011Ĥ  will be the main components of respectively, 
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the electronic g-tensor and hyperfine interaction tensor, which will be 
discussed later on. 

• The sixth 001Ĥ  term describes the interaction of the electronic orbital 
motion with the electronic spin magnetic moments, which is the spin-
orbit interaction. As mentioned earlier, this term will have an impact on 
the g-tensor. 

In the above, we have assumed that no electronic spin-spin interactions have taken 
place. Disregarding these is of course only valid if the unpaired electrons in the 
molecular system are “diluted” so that they are widely separated from each other and 
do not interact. 

3.4 SPIN HAMILTONIAN 

The complete expansion of equation (32) with inclusion of Ĥ ′  from equation 
(33) within perturbation theory can be found elsewhere [46]. Obviously, the result is 
quite massive but nevertheless generally applicable for all sorts of (molecular) 
systems. For our purposes, however, the above Hamiltonian presents an extreme 
“overkill”, comprising interactions that are irrelevant in the studied biochemical 
systems. The magnetic resonance effects encountered in this work are therefore more 
easily interpreted in terms of a “phenomenological” Hamiltonian, which usually 

includes only electron-spin ( Ŝ ) and nuclear-spin operators ( Î ) together with 
(numerical) spectroscopic parameters. This so-called “spin Hamiltonian” ˆ

SH  in fact 
describes a model spin system, for which the solution of the Schrödinger equation: 

ˆ
SH EΘ = Θ  (34) 

renders eigenvalues in a basis of spin functions Θ  that will fit the observed energy 
levels of the real spin system, provided a proper choice for the numerical parameters. 
One could consider this an analogue of the “Kohn-Sham” approach for paramagnetic 
spin systems. 

For the crystalline biomolecules that are the subject of this work, the molecular 
system contains only one unpaired electron, i.e. 1

2S = . Furthermore, the present 

nuclei are characterised by an effective nuclear spin magnetic moment: 
ˆˆ

N N Ng Iµ β=  
where Ng  is the nuclear g-value (dependent on the type of nucleus and assumed 
isotropic) and Nβ  is a constant, known as the nuclear magneton. The eigenvalue 

equations for the nuclear spin angular momentum Î  are similar to those in equation 
(29):  
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( )2ˆ 1
ˆ

I I

I I

I I
M M

I I
z M I M

I I I

I M

χ χ

χ χ

= +

=
 

from which it is obvious that in the presence of a magnetic field a nuclear Zeeman 
effect can occur, lifting the degeneracy of the , 1, , 1,IM I I I I= − − + + − +K  states. 

In this work, only Zeeman interactions will occur for nuclear isotopes with 1
2I =  

(e.g. 1H  or 13C ). Therefore, since 1
2S =  and 1

2I =  for all the M interacting 

nuclei, the spin Hamiltonian will be: 

,
1 1

ˆ ˆˆ ˆ ˆ ˆˆ
M M

S e N N K K K K
K K

H B g S B g I S A Iβ β
= =

= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅∑ ∑  

This simple equation holds all relevant interactions taking place in the molecular 
system as resulting from the presence of a magnetic field. 

Electronic Zeeman interaction 

The electronic Zeeman interaction is now expressed by the Hamilton operator: 
ˆˆˆ

Z eH B g Sβ= ⋅ ⋅  

where the electron spin Ŝ  and the external magnetic field B̂  are linked together 
through a tensor g  of rank 2. Experimentally, it is found that the g-factor is 
dependent on the orientation of the solid-state sample in the magnetic field. The Jg  
factor from equation (31) is therefore rather a g-tensor, the anisotropy arising largely 
through the spin-orbit interactions from 001Ĥ  in equation (33). 

In the organic radicals that are the subject of the second part of this work, the g-
tensor shows relatively little anisotropy and therefore does not deviate substantially 
from the free electron value eg . This EPR parameter will not be very sensitive to 
(slight) changes in conformation or geometry, up to the point that the principal g-
tensor values for two different radicals can be virtually identical. In that case, 
differentiation will only be possible by looking at the orientations of the g-tensor 
axes. We have therefore chosen in this work to dismiss the g-tensor altogether as a 
probe for the structure determination of organic radicals. 

Nuclear Zeeman interaction 

In the presence of a magnetic field, nuclear Zeeman interactions will also occur in 
a molecular system. For nuclei with 1

2I =  the degeneracy is lifted for the 

1 1,2 2IM = + −  states, commonly known as (nuclear) spin up and spin down 
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states. The interaction of one nuclear spin angular momentum Î  with the magnetic 
field B̂ : 

ˆ ˆˆ
N N NH B g Iβ= − ⋅ ⋅  (35) 

is parameterised by the nuclear g-tensor Ng . The anisotropy effects will be seldom 

apparent and therefore Ng  is generally replaced by a scalar quantity known as the 
nuclear g-factor. This justified simplification reduces expression (35) to: 

ˆ ˆˆ
N N NH g B Iβ= − ⋅  

In the related NMR spectroscopic technique, interaction (35) is connected with the 
“chemical shift” parameter, a measure of the effective field experienced by a nucleus 
due to the presence of induced currents in the chemical environment. 

The nuclear Zeeman interaction(s) will thus cause an additional splitting of the 
energy levels for the spin functions Θ  in equation (34). Nevertheless, it will have 
no impact on the actual appearance of the EPR spectrum, since both the higher and 
lower energy levels are shifted with an equal amount of energy. Only in the ENDOR 
and EI-EPR techniques (briefly discussed further on), the indirect effect of this 
interaction on the EPR transitions will be exploited. 

Hyperfine interaction 

Most important from our point of view will be the coupling interaction between 

the spin angular momentum Ŝ  and the angular momentum Î  of a nucleus (or 
nuclei) present in the molecular system: 

ˆ ˆˆ
hfH S A I= ⋅ ⋅  (36) 

The hyperfine interaction tensor A  is often divided into an isotropic and an 
anisotropic part: 

1isoA A T= +  (37) 

with 1  the 3x3 unit matrix and isoA  the hyperfine coupling constant or Fermi 

contact term. Diagonalisation of the T -matrix yields three eigenvalues (or principal 
components) and corresponding eigenvectors (or principal axes) relative to the 
reference axes system. 

The hyperfine interaction arises due to the interaction of the magnetic moment of 
the unpaired electron eµ  with nearby nuclear magnetic moments. Such a nuclear 
moment Nµ  will induce a local field localB  which can either enhance or decrease the 
intensity of the applied magnetic field B  at the position of the unpaired electron. 
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This classical idea of interacting magnetic dipoles is illustrated in Figure 3.4, where 
the induced field lines of Nµ  counteract the applied magnetic field. 

 
Figure 3.4: The induced local field of the nuclear moment counteracts the intensity of the 

magnetic field at the position of the electron. 
 

Due to the nuclear moment, the electron will “feel” an effective field B′ , 
differing from the applied magnetic field. As a result, the resonance condition in (30) 
must be rewritten as: 

( )e e e e localh g B g B Bν β β′= = +  

and clearly the value of B  required to achieve resonance will depend on localB . As 
both the electronic and nuclear magnetic moments can assume either spin-up or spin-
down states, resonance will occur at different field values for B , causing a splitting 
in the observed EPR spectrum. 

Effect of all interactions on a simulated EPR spectrum 

The effect of the hyperfine and electronic/nuclear Zeeman interactions can be best 
understood by considering their separate contributions to the eigenvalues for a 
simplified spin Hamiltonian. For a molecular system with one unpaired electron and 
only one interacting nuclear magnetic moment, a schematic overview of the energy 
levels is presented in Figure 3.5. Also, the effect on the EPR spectrum is illustrated 
of “switching on” the separate contributing interaction terms in the spin Hamiltonian. 
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Figure 3.5: Effect of the contributing terms in the spin Hamiltonian on an example EPR 

spectrum (in which HN > Hhf). At the left side, relevant energy levels are represented for a 

system containing one electron and one nucleus. 
 

If only one electron would be present, the observed spectrum would show a single 
absorption ( ˆ

ZH ). The presence of a nucleus, however, introduces two perturbations. 

The nuclear Zeeman interaction ˆ
NH  in itself only causes an additional splitting of 

the individual energy levels for the spin Hamiltonian, which is not directly apparent 
in the spectrum. Only now, the single peak should be considered as the additive 
result of two peaks with half the original intensity that occur at the same field value. 
These are generated by absorptive transitions between the equally spaced energy 
levels, in compliance with the selection rules 1SMΔ =  and 0IMΔ = . By switching 

on the hyperfine interaction ˆ
hfH , the energy levels are shifted with respect to each 

other and the splitting becomes visible, since the two smaller peaks are now observed 
at different field values. 

3.5 ADVANCED MAGNETIC RESONANCE EXPERIMENTS 

Ever since the introduction of EPR, a variety of derivative experimental 
techniques has been established. As some of them will be mentioned in the course of 
this work, we report some key concepts behind these methods. For a more thorough 
discussion, we refer to other works [41, 48]. 

3.5.1 ENDOR (Electron Nuclear Double Resonance) 
This technique is typically applied to improve the spectral resolution or to 

disentangle between superimposed component spectra. Basically, an additional 
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radiofrequent field (typically of the order of MHz) is applied to the sample cavity, 
which allows the excitation of nuclear Zeeman energy levels. These transitions are 
labelled “NMR” in Figure 3.6, where the energy levels of Figure 3.5 are reproduced. 

 
Figure 3.6: EPR and NMR transitions in an ENDOR experiment. 

 
By applying sufficient microwave power, the EPR absorptions are saturated and 

the population difference between the corresponding states is driven toward zero. For 
the red transition in figure 3.6, this means that the 1 1

2 2;− +  and 1 1
2 2;+ +  states 

are equally occupied. Consecutively, the radiofrequent (NMR) field is swept with the 
objective of detecting a change in the EPR absorption. When now, for instance, the 

1ν  frequency is reached, additional transitions will be induced between the 
1 1

2 2;− +  and 1 1
2 2;− −  states. As a result, the population difference between the 

1 1
2 2;− +  and 1 1

2 2;+ +  states will become non-zero and an increased EPR 

absorption will be apparent. Since the same will occur at frequency 2ν , two lines 
will be observed in the ENDOR spectrum. It can be shown that: 

1

2

1
2
1
2

N N

N N

h A g B

h A g B

ν β

ν β

= +

= −

 

and therefore the ENDOR lines are separated by an amount A
h . The correlation 

between the observed ENDOR line separation and the hyperfine coupling allows a 
more accurate measurement of the latter parameter. Accordingly, this technique is 
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often used to examine the anisotropic hyperfine tensor in a crystalline sample, by 
consequently recording the hyperfine coupling while rotating the crystal e.g. about 
the a, b or c crystal axes. 

3.5.2 EI-EPR (ENDOR induced EPR) 
In a composite spectrum, where the EPR resonances of different species are 

overlapping, it is sometimes difficult to accurately resolve the individual spectra of 
these species separately. The EI-EPR method enables the experimentalist to single 
out the spectrum of one component species. To achieve this, one of the NMR 
transitions – obtained in an earlier ENDOR experiment – is saturated, by setting the 
applied radiofrequent field to that particular ENDOR frequency. The magnetic field 
is then swept while the intensity of the ENDOR transition is monitored. This way, an 
enhanced EPR spectrum is obtained but only for the component species of which the 
NMR transition was induced. EI-EPR is therefore somewhat the reverse of the 
ENDOR experiment, as it also involves a double-resonance technique. 

3.6 INTERPRETING THE HYPERFINE TENSOR  

It is clear from the above that the EPR spectrum – a cumulative result of at least 
three different interactions – contains a lot of information with regard to the 
paramagnetic species. Through the hyperfine interaction, in particular, the molecular 
and electronic structure of the radical can be examined. However, the analysis of 
hyperfine tensor data is quite complicated and rarely straightforward. In this 
paragraph we therefore present some practical issues regarding the interpretation of 
this parameter. Throughout, we will concentrate on the hyperfine interaction of a 
proton within an organic radical in the solid state. As this case will be most 
commonly encountered in the discussed paramagnetic species, these interactions will 
yield the majority of all structural evidence. 

3.6.1 Theoretical expressions 

As already stated in (37), the hyperfine interaction tensor A  can be decomposed 

into an isotropic coupling constant isoA  and an anisotropic T -matrix. The isoA  
coupling constant is a strictly local property, and depends solely on the unpaired spin 
density ∑ −

νµ

βα
νµ

,
,P  at the position of the nucleus concerned. An equation can be 

derived by incorporating (37) in (36) and expressing this as an expectation value, 
assuming an isotropic g-tensor: 
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( ) ( ) ( )0 ,
,

2
3

N
iso e N N Ni Ni NiA g g P r r rα β

µ ν µ ν
µ ν

β β µ ϕ δ ϕ−= ∑  

The Dirac ( )Nirδ  function (with Nir  the distance between nucleus N and electron i) 

ensures that the integral for the molecular/atomic orbitals ( )Nirµϕ  is evaluated at the 
position of nucleus N only. The isotropic contact interaction is of a purely quantum 
mechanical nature and has no classical analogue. The coupling constant is therefore 
best understood by examining the unpaired spin density at the nucleus. As this center 
is always located on a nodal plane for the p, d, f, etc. atomic orbitals, only an s-type 
orbital will contribute to the spin density at this position. 

The anisotropic part of the hyperfine matrix, on the other hand, is due to the 
(classical) interaction of magnetic dipoles, and is described by the following 
equation: 

( ) ( ) ( )5 20
, , ,

,
3

4
N e N N

uv Ni Ni Ni uv Ni u Ni v Ni
g gT P r r r r r rα β

µ η µ η
µ η

β β µ
ϕ δ ϕ

π
− −= − −∑  

for the uvth component of the T  matrix. Since s-type atomic orbitals are spherically 
symmetric it is only obvious that the anisotropic contribution to the hyperfine tensor 
will depend rather on the spin population of valence p, d, etc. orbitals. A conceptual 
understanding of the anisotropic interaction is best attained by oversimplifying the 
system at hand, based on symmetry grounds, and by relying on the classical point 
dipole interaction. 

3.6.2 The hyperfine tensor in organic systems 
The organic molecules that will be considered in this work typically consist of H, 

C, N and O atoms. For these compounds, all the induced radicals share a common 
feature: the paramagnetic electron is located on a carbon atom, where it will mainly 
occupy a p-orbital (as outlined in Figure 3.3), if we hold on to the basic valence bond 
picture. The carbon center and the surrounding nuclei in the molecule will then 
interact with this unpaired p-type spin density to generate different hyperfine 
interactions. Historically, this type of radical has attracted much attention with regard 
to the study of π-type radicals in conjugated hydrocarbon molecules, where the 
unpaired electron is delocalised as a π-system, built up by several adjacent p-orbitals 
in the molecular skeleton. In fact, it was first in a study of one such system that the 
true value of the EPR technique in the structural identification of radicals was fully 
established [49]. To gain a better insight into this link between radical structure and 
EPR parameters, we discuss in this section the isotropic and anisotropic contributions 
to the hyperfine tensor of some of the relevant atoms in a typical organic radical. The 
concepts presented here – although sometimes more intuitive than physical – can be 
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largely extended to the specific molecular systems discussed in the second part of 
this work.  

 

 
Figure 3.7: Representative structural component of a hydrocarbon radical. 

 
In Figure 3.7, a representative structural component of a typical hydrocarbon 

radical is presented. The characteristic nomenclature is also given, where an atom is 
labelled α, β, γ, etc. according to its position with respect to the location of the 
unpaired electron. The Cα carbon is called as such because it is the direct site for the 
paramagnetic center, the Hα proton because it is connected to this carbon atom. 
Similarly, β-, γ-, … carbons and protons can be distinguished, as they are 
consistently located one atom further away. The unpaired electron will to some 
extent interact with all these nuclei, provided they have a non-zero nuclear magnetic 
moment. In practice, this implies that – besides the proton 1H – only a minority 
isotope (1.1% natural occurrence) of the carbon atom – 13C – will couple with the 
electron, as the most abundant isotope 12C does not have a nuclear moment. 

Isotropic component 

The isotropic hyperfine coupling constants (or the unpaired spin density) for these 
atoms are the result of two different contributing effects: (1) direct delocalisation and 
(2) spin polarisation. The first contribution arises whenever the unpaired electron is 
in some way directly delocalised to the nucleus under consideration. Spin 
polarisation (or π-σ configuration interaction) refers to the fact that an unpaired 
electron interacts differently with the two electrons of a filled orbital. 
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(b) 

 
Figure 3.8: (a) valence bond description of the C-H bond, (b) spin polarization. 

 
The importance of this latter effect becomes apparent when examining the origin 

of the Cα or Hα hyperfine coupling constant. The Cα-Hα bond is illustrated in 
Figure 3.8(a) adopting the valence bond theory. While the unpaired electron resides 
in a 2p non-interacting orbital of carbon, the C-H bond is caused by the constructive 
overlap between the Cα sp2 with the Hα 1s orbital. However, both Cα and Hα are in 
the nodal plane of the 2p orbital and the direct delocalisation of the unpaired electron 
to Hα is simply non-existent. Yet, both nuclei are found to have considerable 
isotropic coupling constants and therefore some unpaired spin density must certainly 
be present. The origin of this density is spin polarisation. As shown in Figure 3.8(b), 
two configurations can be proposed: one in which the Cα sp2 spin is parallel to the 
unpaired p-electron (I) and one in which it is anti-parallel (II). Taking into account 
the Pauli principle, the Hα 1s electron spin is always opposite that of the sp2 orbital. 
However, both spin configurations do not have equal weights. The spin polarisation 
gives slightly greater weight to I, in which the two electrons at the carbon atom have 
parallel spins (following Hund’s rule). As a result, there is an imbalance between the 
amount of “up” and “down” electrons in the filled C-H bond orbital, causing a 
positive spin density in the case of Cα and a negative spin density for Hα. The 
resulting hyperfine coupling constants will therefore be positive, respectively, 
negative for Cα and Hα. The above situation only applies to carbon atoms that have 

perfect sp2 hybridisation. In reality, of course, this will seldom be the case, and the 
orbital containing the unpaired electron (sometimes referred to as “Lone Electron 

(a)
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Orbital” or LEO) will retain in part some s-character. In this case, the spin density at 
any point will be the net resultant of the direct delocalisation and spin polarisation 
effects. 

A β-proton (or γ, δ, … for that matter) is not necessarily located in a nodal plane 
of the paramagnetic p-orbital. Even though both effects will still play, spin 
polarisation will be less determining. It is rather direct delocalisation of spin density 
from the LEO to the sp3 orbital of the Cβ-Hβ bond – known as hyperconjugation – 
that will control the size of the hyperfine coupling for this proton. The magnitude of 
this hyperconjugation, in turn, depends on the local geometry of the molecular 
fragment. More specifically, it can be shown [38] to be proportional to 2cos θ , 
where θ is the dihedral angle between the Hβ-Cβ-Cα plane and that containing the 
Cα p-orbital and the Cα-Cβ bond, as illustrated in Figure 3.9. This conformational 
dependence of the isotropic hyperfine coupling constant highlights the validity of the 
EPR technique to examine the structure of radicals, from an experimental point of 
view. Even though significant γ-couplings will be observed in the course of this work 
(see Chapter 8), in general, the γ-proton and the unpaired electron are too far apart 
for the hyperfine coupling constant to be measurable. The same, obviously, applies 
for nuclei located even further away. 

 

 
Figure 3.9: Newman projection along the Cα-Cβ bond and definition of the dihedral angle θ. 

Anisotropic component 

Even though the isotropic hyperfine interaction already reveals a considerable 
link with the radical geometry, experimentalists most often rely on a careful analysis 
of the anisotropic hyperfine interactions to identify the structure of organic radicals. 

This is because the T  matrix contains an extensive amount of structural information. 
Its eigenvalues ( 1T , 2T  and 3T ) and eigenvectors ( ( )11 T , ( )21 T  and ( )31 T ) can 
also be determined for the coupling nuclei in an organic radical. The theoretical 
derivation (based on symmetry and a simplified treatment of the dipole interaction) is 
beyond the scope of this work and we only report the derived typical characteristics 
for Cα, Hα and Hβ as given in [39]. 
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Neglecting all perturbative or conjugating interactions in the radical, the p-orbital 
of a Cα center is axial symmetrical along its axis (hereafter designated the z-axis). It 
can therefore also be expected that the anisotropic tensor is axial symmetric, with one 
principal direction along the z-axis and the other two eigenvectors in the xy plane. 
This is illustrated in Figure 3.10, where also the characteristic pattern of coupling 
constants is given for the anisotropic eigenvalues. As the eigenvectors in the xy plane 
are degenerate, the corresponding anisotropic coupling components will equal an 
amount T b⊥ = − , whereas the principal hyperfine axis along z has a major 
anisotropic eigenvalue of 2T b= +� . In an actual radical this characteristic pattern 
will be slightly altered, as bonds or conjugative effects distort the ideal axial 
symmetry of the p-orbital. Nevertheless, the nearly degenerate nature of the 2T  and 

3T  components will still be quite pronounced. 

 
Figure 3.10: Anisotropic hyperfine eigenvectors and eigenvalues for a Cα carbon atom. 

 
When a bond between a proton and the Cα radical center is taken into account, 

the hyperfine anisotropic tensor for Hα is far from axial. Three separate, non-
degenerate anisotropic components can be distinguished. The largest eigenvalue 
( 1T b= + ) is observed for an eigenvector pointing directly towards the carbon (along 
x-axis), an intermediate 2 0T =  is obtained for the vector parallel with the z axis and 
the remaining principal direction is perpendicular to the other two, with an 
eigenvalue of 3T b= − . Such a pattern of anisotropic coupling constants uniquely 
characterizes an α-hydrogen atom and can immediately be identified as such when 
observed from an EPR spectrum. The Hα-tensor is represented in Figure 3.11. 

 
Figure 3.11: Anisotropic hyperfine eigenvectors and eigenvalues for an Hα proton. 
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Because the Hβ proton is located much further away from the Cα center than the 
Hα proton, it is acceptable to disregard the asymmetrical shape of the p-orbital. By 
then approximating the orbital by an s-like structure, the Cα-Hβ fragment becomes 
axially symmetric. The tensor for the latter proton takes on the same symmetry and 
the resulting pattern of coupling constants bears a qualitative similarity with that of a 
Cα anisotropic hyperfine tensor. Again one major component 2T b= +�  and two 

minor, quasi-degenerate T b⊥ = −  eigenvalues are encountered. The main difference 
with the Cα coupling scheme is the magnitude of the eigenvalues, which are usually 
substantially smaller (often by a factor of ten or more). The eigenvector associated 
with the major component is parallel with the Cα --- Hβ direction and the two 
degenerate vectors lie in the xy plane. In reality, of course, pure axial symmetry will 
rarely be observed and the two minor principal axes will be non-degenerate. It is 
difficult however to associate the directions of these two eigenvectors with a specific 
structural aspect of the radical. Nevertheless, the ( )1 T�  eigenvector with major 
anisotropic component will persistently point more or less along Cα --- Hβ, as 
illustrated in Figure 3.12. 

 

 
Figure 3.12: Anisotropic hyperfine eigenvectors and eigenvalues for an Hβ proton. 
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Chapter 4. General strategy for the calculation of EPR 
parameters 

In this chapter we will outline the general computational strategy that is followed 
to determine theoretical EPR parameters through DFT calculations. In the second 
part of this thesis, we will apply this strategy to examine the radiation-induced 
radicals in amino acids and sugars. Although a detailed account of the computational 
results for these applied systems will be presented there, we will already refer to 
some of them in this chapter, as illustrative examples. 

In addition, a more general purpose of the specified strategy is to provide a base 
computational protocol for researchers interested in studying radicals in extended 
systems from a theoretical point of view. As a consequence, this scheme is – 
whenever possible – outlined from a general perspective and is therefore not 
necessarily solely applicable for radiation-induced radicals in amino acids and sugars 
– although specifically utilized for these systems in the next chapters. 

4.1 OVERVIEW 

In the experimental setup, structural information regarding a radiation-induced 
radical species is deduced by thorough analysis of resonance parameters, obtained 
through EPR, ENDOR and/or EIE studies. In molecular modeling this procedure is 
rather reversed and one starts out by proposing one or more radical models. This 
initial step will be called the “radical model selection” step throughout this thesis. 
Subsequently, a stable radical geometry is determined which is a global (or local) 
energetic minimum in terms of all possible degrees of freedom in the used model 
space. This is accomplished by a computational optimization procedure – generally 
known as “geometry optimization” – transforming an initial geometry to an 
optimized geometry for the considered radical model. Next, the EPR parameters can 
be calculated for these optimized geometries, in the “EPR calculation” procedure. 
These calculated parameters must evidently be subjected to a thorough analysis, 
which adds up to the final step. This general strategy is illustrated in Figure 4.1 for 
the experimentally observed radical species II of α-D-glucose (which will be 
discussed at length in Chapter 9). In what follows, we will discuss the separate steps 
of this general strategy in more detail, using α-D-glucose as an example. 
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Figure 4.1: General computational strategy for the calculation of EPR parameters. 
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4.1.1 Radical model selection 
The starting point for the generation of a radical model is always the crystal 

structure, as determined from X-ray or neutron diffraction studies. Preferably the 
crystal structures obtained through the latter method are used, mainly because the 
positions of hydrogen atoms are more accurately determined than through X-ray 
diffraction. The crystal structure thus provides us with the conformation of an 
“undamaged” biomolecule in the lattice – before a possible radiation-induced 
breakdown has taken place. 

In accordance with certain observations made in experiments or from other 
hypotheses, a number of radical models can then be proposed, depending on the goal 
of the molecular modeling study. If one aims to reproduce or verify the 
experimentally observed EPR parameters (as will be mostly the case in this work), it 
is not useful to consider radical models that are a priori incompatible with 
experimental results. For instance, in the case of glucose – where two β-type 
hyperfine couplings are observed – it would be pointless to consider a radical model 
that contains a C•-H fragment, as this would give rise to an easily identifiable α-type 
coupling. Therefore only radical models that could possibly explain the two β-
couplings should be considered. Two examples (RII-A and RII-B) conform this 
criterion are shown in Figure 4.1. On the other hand, if one aims to make predictions 
for a molecular system for which no (or only incomplete) experimental data is at 
hand, all possible radical models should be considered. This obviously implies that a 
huge amount of candidate structures must be examined, depending on the complexity 
of the system under investigation. The number can be reduced however, by making 
sound hypotheses based on radiation chemistry [39] or by analogy with existing, 
similar molecular systems. 

As a starting point for the geometry optimization, the undamaged crystal structure 
is modified to produce initial geometries, in accordance with the configuration of the 
proposed radical models. In both illustrated models for glucose, the model system 
differs from the undamaged molecule by the elimination of one hydrogen atom. 
Correspondingly, initial geometries for both radical models are obtained by 
selectively removing a hydrogen atom in a certain area of the glucose crystal 
structure. Obviously, for the radical models of other molecular systems, larger parts 
of the undamaged molecule – e.g. -OH or -CH2OH groups – may have to be 
removed to generate the initial geometries. Possibly, (groups of) atoms may even 
have to be added to the crystal structure, although this was never encountered in the 
present work.  

One could consider the outlined process of arriving at an initial geometry for a 
radical model, to be a rough analogy with the actual radiation-induced radical 
formation occurring in nature. The removed atoms would then correspond to the 
“waist”-products generated through the radiolysis reaction of the undamaged 
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molecule. In a real organic crystal, these products will most likely diffuse throughout 
the lattice and either reconnect with another neighbouring molecule or remain 
trapped. Depending on the distance between this reattached or trapped residue and 
the studied radiation-induced radical, certain interaction effects could be expected. 
Even though simulations of these are possible and have been performed (for an 
example see [50]), we have not treated these interactions throughout this work, as we 
expect them to be only slightly perturbative and therefore negligible. The removed 
atom groups in the above are therefore always considered as non-existent. 

4.1.2 Geometry optimization 
In these calculations, the initial geometry is transformed into an optimized 

geometry for the radical, by varying its degrees of freedom in the used model space 
until a conformation with minimal energy is reached. The level of theory at which 
this search is performed will obviously be a first determining factor for the accuracy 
of the eventual outcome. A second important factor will be the approach with which 
the model space is simulated. The latter term refers to the ensemble of the radical 
and the part of its solid-state environment that is explicitly accounted for in the 
calculation. This is schematically represented in Figure 4.2. 

 
Figure 4.2: The model space concept. 

The model space approach thus directly determines which interactions between 
the radiation-induced radical and its solid-state environment are explicitly accounted 
for, and at what level of theory they are treated. When the complete crystal lattice is 
chosen as model space, all interactions are – in principle – taken into account while, 
in contrast, all intermolecular interactions are totally ignored when considering only 
the radical itself in the model space. Naturally, we can expect calculations with a 
larger model space to be computationally more demanding. The different approaches 
that can be followed to treat the model space are discussed in detail in a subsequent 
paragraph. However, we already remark at this point that whatever approach was 
used during the different geometry optimizations reported in this work, the part of the 
model space responsible for mimicking the solid state was treated as completely 
static. This implies more specifically that during the optimization procedure only the 
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initial radical geometry was allowed to (partly) relax, while the simulated part of the 
crystalline environment – if included in the calculation – was kept fixed conform the 
experimental crystal lattice positions. 

As a side-step we remark that the determination of a radical conformation with 
absolute minimal energy is sometimes difficult, depending on the complexity of the 
studied radical and/or the used model space approach. In these cases, it is sometimes 
useful to perform as an initial step energy scans, in which the conformational space 
of the radical is sampled as a function of one or possibly more degrees of freedom. 
Typically, the repercussion of the rotation of a functional group (such as -OH, -
CH2OH, -NH3, …) on the total energy is examined. This is done by calculating the 
energy for radical structures with incrementally rotated functional groups (e.g. at 0º, 
15º, 30º, 45º, …). This slice of the energy hypersurface with respect to one degree of 
freedom, thus gives a good idea of the optimal conformation for this specific 
rotation. Adjusting this parameter manually and consequently initiating a geometry 
optimization often speeds up the optimization procedure. 

4.1.3 EPR calculation 
In a final calculation, the EPR parameters are derived from the electronic 

wavefunctions or spin densities, determined for the optimized geometry from the 
previous step. The Gaussian software (versions 1998 [30] and 2003 [31]) was used to 
perform these calculations, even though other packages (such as ADF [29]) are 
equally capable. However, since the employed level of theory for the wavefunctions 
or spin densities is of primordial importance for the accuracy of the EPR calculation, 
we specifically prefer the Gaussian software, as it offers a wide range of large basis 
sets and additional polarisation or diffuse functions, among other things. 

Even though both Gaussian (2003) and ADF are able to calculate the g-tensors of 
paramagnetic systems, we have not considered this information, since it shows 
relatively little anisotropy for organic radicals and therefore does not deviate 
substantially from the free electron value eg . In contrast, the hyperfine coupling 
tensor is a very sensitive probe for these biomolecules. The Gaussian software 
characterises these tensors by three main parameters (which we shall call EPR 
parameters from now on): the isotropic hyperfine coupling constant, three anisotropic 
hyperfine couplings and the associated principal axes. In the tables on Figure 4.1, 
these parameters are referenced as “Aiso”, “Taniso“ and “Axes” respectively. 

The accuracy of these calculated EPR parameters will first of all be determined by 
the accuracy of the optimized geometry. One cannot expect the calculated parameters 
to accord with e.g. experimental values, if the radical model is incorrect or if the 
optimized geometry does not correspond with the naturally occurring radical 
conformation. We also find, however, that the model space approach can be of 
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considerable importance in this type of calculation. This is actually quite plausible, as 
intermolecular interactions will affect the electron spin density distribution across the 
radical and consequently will have an effect on the calculated EPR parameters. 

As already mentioned, the level of theory argument is of major importance at this 
step. Numerous studies have been conducted, examining the effect of more elaborate 
basis sets, different computational approximate methods (e.g. HF, DFT, MP2) or – in 
the case of DFT – of various functionals [51]. Furthermore, the isotropic hyperfine 
coupling is directly proportional to the spin density at the point of the corresponding 
nucleus. As a result, the functions in the basis set describing the core region must be 
well described. 

4.1.4 Analysis 
The whole point of the EPR calculation is of course to make use of the resulting 

theoretical data. One can either compare it with experimentally obtained data, or 
otherwise predictions can be made. In this work, we will always cross-reference the 
calculated parameters with experimental ones. Based on the correspondence between 
theory and experiment, an assessment can then be made of, first, the validity of the 
proposed radical model and, second, of the accuracy of the optimized radical 
geometry within the model space. 

A comparison between calculated and experimental hyperfine tensor parameters 
is quite easy for Aiso and Taniso, where only values must be compared, but is more 
tricky for the principal anisotropic axes. We will therefore often present the angle (in 
degrees) between the experimental and the theoretically predicted directions. 
Although this angle will constitute an easy estimate for the match between theory 
and experiment, the actual direction cosines of the principal directions contain more 
structural information, as was specified in section 3.6. 

4.2 MODEL SPACE 

The model space determines how the solid-state environment of the radical is 
described, which intermolecular interactions are considered therein and at what level 
they are treated. Three types of model space approaches can be distinguished in this 
work. 

4.2.1 Single molecule approach 
The easiest way to simulate radicals in a solid-state environment is to simply 

ignore the solid state. This is the case in the single molecule (or isolated molecule) 
approach, where the model space solely consists of the studied radical. The 
crystalline molecular environment surrounding the radical is thus not incorporated in 
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any way and calculations on the radical are performed in the (ideal) gas phase, at 0 
K. Several successful applications of this approach appear throughout literature [52]. 
Despite the attractive computational advantage of dealing with only one molecule 
(the radical), several problematic issues are associated with this approach. 
Throughout this work, all calculations involving this approximated model space have 
been performed with the Gaussian software [30, 31]. 

Geometry Optimization 

Geometry optimization calculations may be often problematic. Indeed, the real 
structure and conformation of a radical is mostly determined by prevailing 
intermolecular forces between the radical and its solid-state neighbouring molecules. 
Since these forces are not accounted for in a single molecule geometry optimization, 
it is not likely that the radical will attain the correct solid-state conformation. Instead, 
it will rather assume a conformation with minimal energy in the gas phase. Still, the 
results of these full optimization calculations can often be satisfactory considering 
the minimal computational effort. This is mostly the case when mainly 
intramolecular interactions rather than intermolecular interactions determine the 
radical conformation, or when the absence of the former intermolecular interactions – 
possibly by chance – imposes only insignificant changes upon the geometry. For an 
example, we refer to the discussion of the radiation-induced radicals in glucose (see 
Chapter 9). Nevertheless, the result of full geometry optimizations within the single 
molecule approach can sometimes be very poor or even totally unphysical. In the 
radiation-induced radicals of sorbose, for instance, an incorrect conformation was 
obtained for the A-conformation of radical model S-I, resulting in bogus EPR 
parameters (Chapter 10). More dramatic illustrations are the amino acids, where a 
full geometry optimization of the radicals in the single molecule approach destroys 
their zwitterionic form in favour of a neutrally charged form (Chapter 5 and 6).  

This problem can – only in part – be solved by imposing additional constraints on 
the radical conformation during the geometry optimization. One could, for instance, 
impose the constraint that only the atoms in the direct vicinity of the paramagnetic 
center in the radical are allowed to relax, while all other atoms are kept at their 
original positions in accordance with the pristine crystal structure. In the case of the 
above illustrated RII-B glucose radical, this would imply that only the three atoms in 
the -C•-OH fragment are allowed to shift in position during the optimization, while 
all other atoms remain at their respective coordinates in the initial geometry (which is 
identical to the original glucose crystal structure, minus one hydrogen atom). In 
contrast with the full optimization scheme, where all atoms are allowed to relax 
(introduced in the previous paragraph), this rudimentary partial optimization 
scheme accounts in an artificial way for effects that are normally caused by 
intermolecular interactions. However, it will only render useful results if radical and 
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undamaged molecule are structurally much alike. We refer to the discussion of the 
radiation-induced radicals of sorbose (Chapter 10), where this scheme was 
successfully applied. One step further in this line of thought is to constrain all atoms, 
which actually means that no optimization is performed at all. In this no 
optimization scheme, the optimized geometry for the radical model simply equals 
the initial geometry. Although the results can hardly be expected to be in good 
quantitative agreement with the actual solid-state radical conformation, this 
oversimplified scheme allows for quick and easy initial assessments. We again refer 
to the discussion in Chapter 10 for an example. 

In Figure 4.3, the three optimization schemes are illustrated on the initial 
geometry of the RII-A glucose radical. Atoms that will be allowed to relax in the 
optimization calculation are marked green. 

 
 
 
 
 
 
 
 

Figure 4.3: Different Optimization Schemes. 

EPR calculation 

Usually, most EPR calculations are performed within the single molecule 
approach, even when the optimized geometries were obtained in geometry 
optimizations entailing more complicated model space approaches. Since all 
intermolecular interactions are neglected in this model space, the most determining 
factor in these calculations is the employed level of theory, as discussed above. 

However, when used for EPR calculations, there are some problems with the 
single molecule approach, more specifically for the calculation of the hyperfine 
tensor principal axes. For this particular calculated parameter to be of use, we must 
be able to compare it with experimental results. Yet, in experiments, the orientations 
of the measured hyperfine principal axes are specified as direction cosines with 
respect to a reference frame, usually coinciding with the crystal axes (or an 
orthogonal projection of them). To allow for a direct comparison between theory and 
experiment for this parameter, the calculated hyperfine tensor principal axes must 
therefore also be specified as direction cosines with respect to the same (or a parallel) 
reference frame. Unfortunately, the model space in a single molecule approach does 
not contain any explicit information about the crystal axes, including their 
orientations, and the EPR hyperfine tensor axes are calculated with respect to an 

No Optimization Partial Optimization Full Optimization 
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arbitrary “standard” reference frame, as determined by the (Gaussian) software. If 
however, the exact orientation is known of the optimized geometry of the radical 
with respect to the crystal axes, only a simple coordinate transformation is required 
to use these axes (or an orthonormal projection) instead as a reference frame. This 
then, straightforwardly delivers direction cosines that can be directly compared with 
the experiment. This is schematically illustrated in Figure 4.4 for the hyperfine 
tensors of one proton in a sugar-like radical. 

 
 
 
 
 
 
 
 
 
Figure 4.4: (a) The hyperfine tensor principal axes (represented by an ellipsoid) are 
calculated with respect to a standard reference frame <xyz>. (b) Only if the absolute 

orientation of the geometry optimized radical structure is known with respect to the original 
crystal axes <abc> (e.g. from earlier cluster calculations), (c) can the hyperfine tensor 
principal axes be referenced to the crystal axes reference frame (through a coordinate 

transformation). 

In geometry optimizations with either a periodic or a cluster approach, some part 
of the undamaged crystal is comprised in the calculation and consequently the 
orientation of the crystal axes is always known. Thus, whatever conformational 
changes the initial radical geometry has undergone during the optimization, the 
absolute orientation of the optimized structure with respect to the crystal axes can at 
all times be traced. In single molecule optimizations, on the other hand, no 
information about the crystal axes is retained during the optimization. As a result, the 
absolute orientation of the optimized radical structure with respect to the crystal axes 
is unknown, and an analysis of the calculated hyperfine tensor axes becomes 
problematic. 

One way to solve this problem is to artificially introduce the crystal axes in the 
model space during geometry optimization by imposing the additional constraint that 
the global orientation of the radical does not change dramatically, compared with that 
of its pristine molecular structure in the crystal lattice. Practically, this approximation 
is most easily imposed by adding the NOSYM keyword in a Gaussian (98 or 03) 
geometry optimization job, forcing the software to maintain the same reference frame 
throughout the calculation, as specified by the input of the initial geometry for the 

(a) (b) (c) 
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radical. Since we used the crystal structure coordinates to generate this geometry (by 
removing one or more atoms), we know exactly the orientation of the <abc> axes 
with respect to an initial reference frame <xinitialyinitialzinitial>. Since the 
orientation of this axes frame remains fixed during the geometry optimization 
procedure, we can now also relate the final, optimized geometry of the radical to the 
crystal axes. 

We stress that this Fixed Axes approximation only imposes a constraint on the 
orientation of the radical, but certainly not on its conformation. Indeed, the final 
optimized radical conformation would be exactly the same conformation as one 
obtained through a geometry optimization without a NOSYM keyword. Their global 
orientations on the other hand are not necessarily the same. This approximation is 
schematically outlined in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 

Figure 4.5: (a) In a single molecule approach, the orientation of the optimized radical 
geometry with respect to the crystal axes is not known. (b) The relative orientation of the 

latter axes frame, on the contrary, is well established for the undamaged crystal structure. (c) 
If the same initial reference frame is maintained throughout the geometry optimization, thus 
assuming that the global orientation of both radical and undamaged molecular structure are 
virtually identical, the hyperfine tensor principal directions can now also be calculated with 

respect to the crystal axes. 

The major value of this approximation is that it enables a direct and easy 
comparison between experimental and calculated hyperfine direction cosines with 
respect to the crystal axes, despite the use of a single molecule approach. We refer to 
the discussion on the radiation-induced radicals of glucose (Chapter 9) as a 
successful example. Unfortunately, the approximation is not universally valid, as it is 
only relevant when the actual radical species is indeed very much alike the 
undamaged biomolecule, both in structure and in orientation. 

There are biomolecular systems for which the Fixed Axes approximation does not 
hold and would even result in an unphysical representation of reality, since there are 
solid-state radicals that differ substantially from the undamaged crystal structure. 

(c) (b) (a) 
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Constraining the crystal axes for these systems, would lead to direction cosines for 
the principal hyperfine directions that are entirely erroneous if, for instance, the 
radical is in reality rotated away from the original undamaged crystal structure. In 
this case, we must revert to another methodology to analyse the tensor axes, 
illustrated in Figure 4.6. The point is to eliminate any choice of a reference axis 
system and simply determine the mutual angles between the calculated proton tensor 
axes and consequently compare these with similar mutual angles between the 
experimental hyperfine axes of the observed radicals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: (a) In the absence of a known reference frame, the hyperfine principal 

directions for e.g. two protons in a radical can be considered relative to each other, (b) and 
their mutual angles can be calculated. (c) The same procedure can be performed for 

experimentally determined hyperfine tensors, even though their orientations with respect to 
the crystal axes are known. (d) The resulting angles are best summarised in tables, which 

must then be subjected to a detailed comparative study.  

Analysis of the resulting tables is subject to some ambiguity in fixing the relative 
angles (ϕ or ϕ-π) due to the fact that the absolute sign of direction cosines cannot be 
determined. Furthermore, if several magnetically distinguishable sites in the crystal 
lattice are possible for the radical to reside in, the situation becomes even more 
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complicated. The analysis of the calculated EPR parameters within this relative 
method is therefore very complex in comparison with the Fixed Axes approach. In 
addition, less information remains accessible. For instance, in a radical characterised 
by two hyperfine coupling nuclei, only one informative parameter is available in the 
former method (one table with relative angles) while in the latter there are two (the 
direction cosine values of two separate hyperfine tensors). On the other hand, the 
approach is generally applicable and does not impose extra constraints. 

4.2.2 Cluster approach 
In cluster calculations, a part of the crystal lattice is explicitly modeled, by 

placing discrete molecules around the target radical. The atomic coordinates of the 
latter molecules are in accordance with experimental crystallographic data. The 
model space thus consists of a central radical and several neighbouring molecules 
from the lattice, and the total number of molecules (+radical) finally determines the 
extent of the model space. 

This kind of model was first introduced in the early seventies [53, 54] in its 
simplest form, where a central molecule was surrounded by atomic point charges, in 
positions as determined by an X-ray study. The lattice molecules in the cluster were 
thus reduced to ensembles of point charges, their values determined earlier in a 
calculation on one molecule. This simple “point charge cluster model” was 
extensively used, with relative success, not only to simulate the effects of the crystal 
field on the geometry of a central molecule, but also to examine non-structural 
properties, such as spectroscopic parameters [55]. Nowadays, point charge cluster 
models are still in use [56] although more commonly to further extend already 
elaborate clusters to a higher level of theory, as much has changed with regard to 
computer technology. Whereas in one of the first publications on the cluster model 
[54], only 4 “point charge” molecules were considered surrounding a “Hartree-Fock” 
central cyanoformamide molecule, more recent publications report the use of 
hundreds or even thousands of point charges, surrounding a central entity [57]. 

The major disadvantage of this point charge based approach is that it can only 
account for long-range electrostatic interactions, but totally neglects short-range 
interactions or electronic overlap between the central molecule (or radical) and its 
nearest neighbours [58]. Since all biomolecular systems considered in this work 
involve elaborate hydrogen bonding schemes, this counteractive argument definitely 
applies, and a complete quantum mechanical treatment of both the central radical and 
the environment is desired to model the intermolecular interactions correctly. This 
approach is better known as a “supermolecule or cluster approach” and is 
regularly used to determine both structural and spectroscopic properties [59, 60, 61]. 

Throughout this study, we will always refer to the supermolecule approach, 
applied to paramagnetic molecular systems. Hardly any studies have been performed 
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on radical species embedded in organic crystals, although the model is somewhat 
more popular for the description of defects or paramagnetic substances in inorganic 
systems [57, 61, 62, 63]. However, several issues have to be considered when 
applying a cluster model space, both for geometry optimization and EPR 
calculations. 

Geometry Optimization 

Cluster Size 

When performing geometry optimizations within a cluster approach, a first 
determining factor for the accuracy of the resulting optimized radical geometry, will 
be the number of molecules taken up in the model space, or cluster size. One can 
expect that, the larger this cluster size is, the more interactions between radical and 
simulated solid state are accounted for, and consequently the more accurate the 
modeling of the crystalline system will be. Unfortunately, calculations with larger 
cluster sizes impose substantially larger demands on computer resources and 
therefore a compromise between expected accuracy and computational cost has to be 
searched. The best way to limit the size of the cluster in a meaningful way is by 
critically evaluating which interactions between radical and crystal matrix are 
absolutely essential in a correct description of the radical geometry, and which 
interactions can be eliminated. 

These intermolecular interactions within the crystal lattice can be (roughly) 
classified into three types, based on the reach at which they are effective. 

Hydrogen bonds 

All organic crystals discussed in this work are basically held together by 
hydrogen bond interactions, forming actual networks between layers of molecules. In 
the case of amino acids, +N-H-----O-C fragments are involved, while in sugars the 
hydrogen bonds are strung up in O-H----O-C fragments. Hydrogen bond lengths (H--
---O or H----O distances) usually vary between 1.8 Å and 2.0 Å, although they can 
sometimes be larger in certain sugars, for instance. As these forces are of such 
importance in the lattice, we can only expect them to have an equally decisive impact 
on the geometry of the radical. The smallest, relevant cluster for the description of a 
radical within a crystal lattice is therefore one in which at least all hydrogen bond 
interactions between radical and lattice are accounted for. 

Short-range interactions  

Under this interaction type, we catalogue all non-hydrogen bond, intermolecular 
interactions, that are only significant at relatively close range to the radical site in the 
crystal. It encompasses dispersion or van der Waals, steric hindrance and other dipole 
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interactions taking place between the radical and closely neighbouring molecules in 
the crystal matrix.  

A problem arises when trying to account for these interactions within a cluster 
approach, as they are often not as easily identified as hydrogen bonds. Specifically, 
the number and selection of surrounding lattice molecules that have to be included 
within the cluster can be arbitrary and to avoid this, objective criteria must be 
introduced. 

Most easy is to consider one pristine crystal molecule as a perfect sphere, and 
calculate its radius. If we take this sphere as a rough measure for the molecular 
volume and put its center at the center of mass of a chosen central molecule within 
the lattice, we can make a selection by including all molecules in the cluster that have 
at least one atom within this sphere. Adding to this cluster any hydrogen bonding 
molecules (if necessary) already accounts for a good deal of short-range interactions 
in most cases, for a fairly limited cluster size. If the volume of the sphere is 
increased, more molecules will be selected and consequently larger cluster sizes can 
be reached, although this strategy is prone to bias. 

A more elaborate, independent selection criterion is again to choose one molecule 
of the lattice but now put similar spheres on every atom instead of only at the center 
of mass. A bigger cluster model space is then obtained by considering all 
surrounding molecules with at least one atom in one of the spheres. In the latter 
selection model, one can account for the possible asymmetry of the central radical. 

Long-range interactions 

Electrostatics and some dispersion effects are the only interactions that can 
influence the electrons of a central radical at a relatively large distance within the 
crystal. To account for these in a cluster approach would involve huge clusters, 
containing several hundreds of molecules. This is obviously computationally 
unfeasible within a supermolecule approach. Possibly, one could include these 
interactions by using point charges in addition to an already large supermolecule 
cluster, as mentioned earlier. In this work, however, we have never applied such 
schemes. 

Level of theory 

Of course, even calculations with extremely large clusters will render 
disappointing results, if they are not treated at a reasonable level of theory. In this 
work, all ab-initio cluster calculations have been performed within Density 
Functional Theory. Not only does this method provide a cost-effective 
implementation of electron correlation, it is also acceptable in the description of 
hydrogen bonds [4], which are of basic importance when dealing with organic 
crystals. In literature, some Van der Waals interactions have also been treated with 
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DFT, but this is far from routine, since tailor-made density functionals are often 
required for a correct description of weakly bound systems [64]. However, even 
when neglecting long-range interactions, full ab-initio calculations with the 
considered cluster approach model spaces can become quite intense and are often 
restricted due to the limits of computational resources. This problem can be 
circumvented by adopting additional approximations – similar to e.g. the 
“multiplicative integral” approximation (MIA) for Hartree Fock, which is used quite 
successfully to study crystals [59, 65] – or by using a simplified Hamiltonian, as in 
semi-empirical or molecular mechanics methods (see Chapter 2). But although these 
methods are very attractive from a computational point of view, their empirical input 
limits their general applicability. 

A possible alternative is the use of hybrid methods: the cluster model under study 
is subdivided into several parts or layers, each described at a different level of theory. 
The interesting parts of the system – the ‘inner’ layers – are treated at a high level of 
theory; the rest of the system – the ‘outer’ layers – are described by a 
computationally less demanding method. In this work we have in various cases 
employed a two-layered ONIOM approach [66] – as implemented in the Gaussian 
[30, 31] software packages – where the inner layer consists of the central radical and 
is treated at the ab-initio level. The outer layer, consisting of the other molecules in 
the cluster surrounding the radical, is treated at a semi-empirical level. The goal of 
this scheme is to describe the complete cluster at the highest level of theory through 
extrapolation, as illustrated in Figure 4.7. 

Since the calculation of the full ab-initio energy (or wavefunctions/densities for 
that matter) for the complete cluster (point 4) is computationally very demanding, it 
is approximated through the energies of points 1 to 3. The energies at these points are 
easier to determine, either because they can be obtained at a low (semi-empirical) 
level (1 and 3) or because only the radical is considered (2). This ONIOM 
extrapolated energy can be easily obtained via the formula 

( ) ( ) ( )2 1 3ONIOM Cluster Radical Radical
Extrapolated semi empirical semi empirical ab initioE E E E− − −= − +  

and is only an approximation to the true high-level full-cluster energy (point 4), 
differing from it by an amount D: 

( )4Cluster ONIOM
ab initio extrapolatedE E D− = + . 

However, if the error D of the extrapolation procedure is constant for two different 
structures (e.g. subsequent steps in a geometry optimization) their relative energy 
will be evaluated correctly within the ONIOM scheme. 
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Figure 4.7: Graphical representation of the ONIOM scheme. 

Convergence problems 

Ideally, one could expect the accuracy of the calculation to only increase when the 
cluster size is expanded. Therefore, one could argue that it is always better to use the 
largest clusters possible, in terms of available computer time. Unfortunately, quite 
often convergence problems occur when performing calculations on relatively large 
clusters. This is mainly caused by pushing the software capabilities to their limits and 
occurs especially whenever the global minimum on the conformational hyperenergy 
surface of the radical within the cluster is not easy to locate (e.g. when the energy 
surface around the minimum is relatively flat). Time, software enhancements and the 
ever-increasing complexity and availability of computer resources will eventually 
solve these problems and we have already witnessed such improvements in the 
transition from Gaussian 98 [30] to Gaussian 03 [31]. In the mean time one must be 
cautious with all cluster calculations and analyse their results thoroughly and make 
sure that no inconsistencies occur. 

EPR calculations 

Once an optimized geometry is obtained in a cluster approach, its spectroscopic 
parameters can be readily calculated. However, one is left with a choice for the size 
of the model space for this EPR calculation: either to incorporate the entire cluster, or 
to consider just the central radical. When adopting the latter strategy, the EPR 
parameters are actually determined in a single molecule approach, thus drastically 
reducing the original size of the cluster model space. This reduction is particularly 
attractive from a purely computational point of view, as it presents an effective way 
of reducing computer time, without losing too much of a qualitative insight on the 
EPR parameters of the radical. 
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Nevertheless, such a single molecule treatment is somewhat naïve because the 
surrounding molecules of the crystal lattice will exert – at least to some extent – a 
certain influence on the electronic ground-state configuration of the central radical. 
For instance, if a radical is subject to one or more hydrogen bonds within the crystal 
lattice, the unpaired spin density of the involved atom on the radical will be slightly 
altered by delocalization effects towards the lattice molecules [4]. Hence, it can be 
expected that the hyperfine coupling constants will change accordingly. Even more 
spectacular influences can be expected for the orientations of the hyperfine tensor 
principal axes. As was illustrated in section 3.6, several types of hyperfine tensors are 
characterized by (quasi-)axial symmetry, in which the two principal directions with 
intermediate and minor eigenvalues are degenerate. It is primarily the molecular 
environment of the radical that will break this degeneracy. Hence, if such a crucial 
part of the crystal is not incorporated in the model space of the EPR calculation, it is 
likely that the orientations of the latter two eigenvectors will be incorrectly predicted. 
In that case, only the plane of the degenerate eigenvectors – perpendicular to the 
principal direction with the major, non-degenerate eigenvalue – will be completely 
defined and a rotation of the former two principal axes about the latter well 
determined axis will be necessary. On the other hand, since the non-degenerate 
eigenvector will not be influenced as much by the intermolecular interactions, this 
axis is most indicative of the quality of the EPR calculation and the associated radical 
geometry. 

So, in general, an EPR calculation in which the full cluster is considered will 
normally result in more satisfying results than one that only deals with the central 
radical. The former model space approach, on the other hand, will require extensive 
computational resources, whereas the latter approach will be at least a hundred times 
faster and will usually generate representative EPR parameters that still allow a 
qualitative analysis. 

In any case, information regarding the precise orientation of the optimized radical 
geometry with respect to the crystal axes is known exactly from the preceding cluster 
geometry optimization. The determination of the hyperfine tensor axes therefore 
poses no immediate difficulty, since they can be easily referenced to the crystal axes 
reference frame by means of a simple coordinate transform, as outlined in Figure 4.4. 

4.2.3 Periodic approach 
In a periodic approach, the model space consists of the actual crystal lattice, in 

which a certain amount of radical defects has been introduced. This is usually done 
by creating, conform the crystal structure, a unit cell that contains one radical and 
several other intact molecules. This cell rarely corresponds with that of the original 
crystal (always containing four molecules in the discussed examples), because it 
must be ensured that the radical defects are well separated from each other. 
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Consequently, the initial unit cell of the crystal is usually doubled in one or more 
crystal directions (e.g. along the a- and c axes). This supercell is then repeated 
periodically in all directions, to simulate a crystal in which all intermolecular 
interactions between radical and lattice molecules are accounted for. This approach is 
clearly a more natural way of describing the solid state than the cluster approach, as 
it does not depend on an arbitrary selection of molecules with which a central radical 
may interact. As a result, less convergence problems occur. We have therefore 
applied such methods in this thesis for completeness and to primarily validate single 
molecule or cluster approach results. However, these methods and the underlying 
theoretical principles are not the scope of this work. We gladly refer to [10, 67], for 
more specific, technical details and an exhaustive discussion of this elegant 
approach.  

Geometry Optimization 

Throughout this work, we will make use of the “Ab-Initio Quantum Molecular 
Dynamics (AIMD)” [68] and the “Car-Parrinello Molecular Dynamics (CPMD)” 
[69] software codes to perform geometry optimizations in a periodic framework. 
Both methods rely on a simulated annealing technique – proposed by Car and 
Parrinello [70] – in which the interatomic forces are calculated on the "fly" from the 
instantaneous electronic potential. This way, the electronic and nuclear degrees of 
freedom are minimized simultaneously, basing on the DFT formalism. For these very 
complex calculations to be computationally feasible, pseudopotentials are used to 
describe the core region of an atom and only valence electrons are treated explicitly. 
Their corresponding single particle orbitals are expanded in plane waves, which 
make a maximal advantage of the periodicity of the crystal. The fluctuations that can 
be described by the plane wave expansion are determined by the energy cutoff in the 
momentum space of the kinetic energy. The lower this value, the more plane waves 
are taken into account. 

EPR calculation 

Up to now, no program packages are available that allow the calculation of EPR 
data using the full periodic model space. This is regrettable because such an approach 
would provide spectroscopic parameters that take into account all possible intra- and 
intermolecular interactions taking place in the crystal. The implementation of such a 
routine in current periodic codes presents a great challenge in theoretical chemistry. 

In absence of such a method, we must perform in the mean time the EPR 
calculations in a single molecule approach. This is quite easy because the hyperfine 
tensor axes can again be referenced directly to the crystal axes, which were 
comprised in the model space during optimization. Evidently, such a treatment 
implies that all intermolecular interactions in the crystal lattice will be neglected. 
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Although it could be proposed to incorporate some of the neighbouring molecules 
along with the radical in a cluster approach for the EPR calculation, the arbitrariness 
of the selection procedure makes such a method unfavorable. Furthermore, this 
cluster model space does no longer represent an actual energetic minimum for the 
conformational space of the radical, because its structure was optimized at a superior 
level of theory.  
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Chapter 5. Radiation-induced radicals in L-α-alanine 
REFERENCE: [71], [72]. 

5.1 BACKGROUND 

The amino acid L-α-alanine is one of the most intensively studied amino acids, 
mainly because of the properties it displays in the solid-state form. More specifically, 
upon irradiation of solid alanine, a variety of stable radicals is produced within the 
lattice. These radicals are ideally suited for Electron Paramagnetic Resonance (EPR) 
dosimetry, owing to several interesting dosimetric characterics, such as good dose-
yield factors, linear signal response over a wide range of radiation doses, excellent 
fading characteristics and small dependency of temperature, humidity, and other 
environmental factors [73]. Due to its overall high quality and small costs, it is 
therefore widely used for reference and routine dosimetry in radiation therapy, 
biological research, as well as in industrial facilities for high-dose irradiation, 
including applications in food preservation or sterilization of medical supplies. 

 

 
Figure 5.1: An example of an alanine dosimeter system (here in the form of pellets), as 

supplied by the National Physics Laboratory (http://www.npl.co.uk). 

With respect to this application, numerous EPR and ENDOR studies on L-α-
alanine have produced large amounts of experimental data concerning the electronic 
g-factor and the hyperfine coupling constants (hfcc’s) of magnetic nuclei in alanine-
derived radicals [74]. 

It has been commonly assumed that the solid-state radical population of L-α-
alanine at room temperature consisted of only one radical type, the so-called Stable 
Alanine Radical (SAR) or R1 as shown in Figure 5.2, and that all variations in the 
EPR spectrum could be ascribed to various properties of this radical [75]. This 
radical is formed by deamination from a protonated alanine radical anion, and was 
first detected in a single crystal by van Roggen et al. [76] and later refined by 
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Miyagawa et al. [77]. Speculations had been made on the possible co-existence of 
several stable radical species [78]. Only recently however, Sagstuen et al. [79, 80] 
presented compelling experimental evidence in a combined EPR, ENDOR and EIE 
study of irradiated solid-state alanine for the existence of two more radiation-induced 
radicals, R2 and R3 (Figure 5.2). The figure also includes the primary radical anion, 
which can only be observed at low temperature (77 K). Radical R2 is a hydrogen-
abstraction product, and contributes substantially (40%) to the solid-state radical 
population, while R1 is the most found species (60%) [79]. Radical R3 is a minority 
species, which is produced by hydrogen-abstraction followed by proton-transfer. 

 

 
Figure 5.2: L-α-alanine and derived radicals. 

Due to the importance and applications of the alanine dosimetric system, quite a 
few theoretical studies have been performed on their radiation-induced radicals. 
While some have rather concentrated on the mechanisms of radical formation within 
the solid state [81, 50], others have tried to reproduce the experimental EPR data and 
consequently confirm the proposed structures [82, 83]. Here, we also adhere to the 
second point of view and we will focus on model systems of alanine in the presence 
of its molecular environment in the crystal lattice. We specifically target the R2 
radical, as it is the simplest adduct of alanine, and we can expect the abstracted 
hydrogen to disturb the crystal lattice in a minor way. We will use the experimental 
data from [79] to compare our calculations with. These are – in part – reproduced in 
Table 5.1. 
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Aiso Taniso Axes
-1.8 - - -
0.9 - - -
1.0 - - -
-6.9 0.709 0.289 0.643
-2.7 0.182 0.806 -0.563
9.5 0.681 -0.516 -0.519
-6.1 0.310 -0.949 0.061
-4.7 0.314 0.163 0.935
10.7 0.897 0.270 -0.349
-4.9 0.862 0.481 0.159
-4.8 0.466 -0.876 0.123
9.7 0.199 -0.032 -0.980

Experimental results for alanine R2

β3(NH3) 10.2

Ν 7.3

β1(NH3) 86.3

β2(NH3) 30.2

 
Table 5.1: Aiso, Taniso are given in MHz; direction cosines with respect to a, b and c 

crystal axes are also presented here. 

Since alanine – as all other amino acids – adopts the zwitterionic form in the 
crystalline state and in solution, zwitterionic radicals can be formed upon irradiation, 
such as R2. Numerous theoretical studies have been performed on amino acids and 
their derived radicals in the zwitterionic form [84]. But high-level ab-initio 
calculations on the simplest amino acid glycine have shown that the zwitterionic 
form is not the energetically most favoured structure in vacuo. Instead, the molecule 
undergoes intramolecular proton transfer from the amino group to one of the oxygen 
atoms to adopt the non-ionic form [85]. Similar conclusions have been formulated 
for alanine [86]. Correspondingly, Barone and Adamo showed that the zwitterionic 
form for an isolated glycine radical does not correspond to a stationary point [87]. 
Consequently, in order to study amino acids, like alanine or one of its derived 
radicals in solid state or solution, it is essential to account for intermolecular 
environmental effects. 

In fairly recent ab-initio DFT calculations the hfcc's of selected nuclei in alanine-
derived radicals were determined and analysed, consistently based on a single 
molecule approach. Lahorte et al. [83] performed calculations on alanine radicals in 
vacuo, where the radical structures were proposed from the experimentally available 
atomic positions of undamaged alanine and constrained geometry optimizations had 
to be performed on this structure in order to prevent the intramolecular hydrogen 
transfer. Ban et al. [82] kept the radicals in their zwitterionic forms during geometry 
optimization by using a continuum model [88]. In this Onsager model, the radical 
under study is placed in a cavity surrounded by a continuum with a uniform dielectric 
constant.  

 
Despite the fact that environmental modeling in both approaches of Ban and 

Lahorte is inadequately described or even completely omitted, both studies succeed 
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in reproducing in a satisfactory way the experimental isotropic hfcc values, albeit 
only after adopting some crucial but acceptable assumptions. The agreement is only 
achieved after rotating the amino group about a specific angle, as will be discussed 
later. This assumption is justified to account for the missing environmental forces in 
the models like hydrogen bridges, but they remain speculative and deserve a more 
elaborate study by taking into account an adequate modeling of the crystalline 
environment, as the neighbouring molecules will affect the geometry of the radicals 
in the solid state and hence the hyperfine coupling constants. To this end, we have 
performed a similar theoretical study of the radiation-induced R2 radical in alanine, 
but in which enhanced model spaces were used and higher levels of theory were 
accessed.  

5.2 MODEL SELECTION AND COMPUTATIONAL DETAILS 

More specifically, an enhanced model space for alanine was obtained by placing 
discrete molecules around the target radical, either in a cluster approach or using a 
periodic treatment. In both approaches, full geometry optimizations were performed 
on the central radical, while keeping the coordinates of the surrounding alanine 
molecules fixed in space at the experimental geometry. 

5.2.1 Cluster approach 
One central molecule was surrounded by alanine molecules according to the space 

group symmetry P2⊥2⊥2⊥ of the L-α-alanine crystal [89]. The orthorhombic unit 
cell contains four alanine molecules and has unit cell constants of a=6.025 Å, 
b=12.324 Å and c=5.783 Å. Both the number of neighbours taken into account and 
the level of theory at which they are described, were varied. Table 5.2 gives an 
overview of all applied methods, and their short abbreviations for later reference. The 
methods used in earlier theoretical calculations [82, 83] are also added for 
comparison (B3LYP/0/0 and B3LYP/Onsager/0). 
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Software package Central radical/molecule Surrounding alanine cluster Notation
Gaussian98 PM3 14 molecules, PM3 PM3/PM3/14
Gaussian98 PM3 6 molecules, PM3 PM3/PM3/6
Gaussian98 B3LYP/6-31G** 14 molecules, PM3 B3LYP/PM3/14
Gaussian98 B3LYP/6-31G** 6 molecules, PM3 B3LYP/PM3/6
Gaussian98 B3LYP/6-31G** 14 molecules, AM1 B3LYP/AM1/14
Gaussian98 B3LYP/6-31G** 6 molecules, AM1 B3LYP/AM1/6
ADF1999 BLYP/I 6 molecules, BLYP/I BLYP/I/6
ADF1999 BLYP/II 6 molecules, BLYP/II BLYP/II/6
ADF1999 BLYP/III 6 molecules, BLYP/III BLYP/III/6

AIMD BP86/PW 15 molecules, BP86/PW BP86/PW
Gaussian94 B3LYP/6-31G* 0 molecules B3LYP/0/0
Gaussian94 B3LYP/6-31+G** Onsager model of water B3LYP/Onsager/0  

Table 5.2: Schematic overview of applied methods. 
 

Two clusters with different sizes were constructed, one containing only 7 alanine 
molecules and one containing 15 molecules. The small cluster was obtained by 
considering only those molecules that are engaged in hydrogen bonds with atoms of 
the central molecule. The structure of the resulting hydrogen bond cluster model is 
shown in Figure 5.3, where the six hydrogen bonds are apparent between the 
hydrogen and oxygen atoms of the central alanine and those of the six neighbouring 
molecules. The me thods PM3/PM3/6, B3LYP/PM3/6, B3LYP/AM1/6, BLYP/I/6, 
BLYP/II/6 and BLYP/III/6 refer to this cluster model. 

 
Figure 5.3: Cluster  model  accounting  for  all hydrogen  bonds  with  a central  alanine  

molecule.  

A larger cluster of 15 L-α-alanine molecules was built by considering all 
surrounding molecules with at least one atom in one of the spheres with radius 3.7 Å, 
encircling every atom of the central molecule. The methods labelled PM3/PM3/14, 
B3LYP/PM3/14 and B3LYP/AM1/14 in Table 5.2 are based on this nearest 
neighbouring cluster model. To obtain initial geometries for the radical R2, one 
hydrogen atom (H7) was abstracted from the central alanine molecule in both 
clusters. 
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Considering alanine as a benchmark system for the accuracy of cluster 
calculations on amino acids, the level of theory describing the central molecule (or 
radical) and its surrounding molecules was varied to determine its influence on the 
optimized geometry. A first set of calculations was done using a semi-empirical PM3 
Hamiltonian [36], as implemented in the Gaussian 98 package [30]. The methods 
labelled PM3/PM3/6 and PM3/PM3/14 refer to this level of theory. Although the use 
of this simplified Hamiltonian circumvents common problems associated with high-
level ab-initio modeling of chemical systems with a large number of atoms, their 
empirical input limits their general applicability [90]. A full ab-initio treatment of the 
cluster is more widely applicable, but is unfortunately very time consuming due to 
the limits on computational resources. 

Several computations were nevertheless performed at this level, labelled by 
BLYP/I/6, BLYP/II/6 and BLYP/III/6 but only on the small cluster with six 
surrounding molecules. We used the Amsterdam Density Functional program 
(ADF1999) developed by Baerends et al. [29], as similar calculations performed with 
the Gaussian 98 software package posed some serious convergence problems in the 
SCF procedure. All the atoms of the system were described within the DFT 
framework with the use of the BLYP functional, featuring Becke's non-local 
exchange potential [21], combined with a correlation potential as proposed by Lee, 
Yang and Parr [22]. The I, II and III notations refer to the increasing size of the basis 
set in ADF nomenclature, employing Slater type orbitals as basis functions. They 
roughly correspond roughly to a single-ζ basis set, a double-ζ basis set and a double-
ζ basis set extended with polarisation functions, respectively. To accelerate SCF 
convergence, we used the electron-smearing option [91]: electrons were smeared out 
in an interval of 0.02 a. u. over orbitals that lie around the Fermi level. 

Calculations were also performed using hybrid methods, which contain 
ingredients of both extreme methods. A two-layered ONIOM approach was used [66] 
– as implemented in the Gaussian software package – with the inner layer consisting 
of the central alanine, which was described at the density functional level, engaging 
Becke's three parameter hybrid B3LYP functional [28] and expanding the molecular 
orbitals in a double-ζ 6-31G split valence basis augmented with single d and p 
polarisation functions [32]. Several studies [92] have indicated that this functional 
gives a reliable description of the geometry. The outer layer, consisting of either 6 or 
14 alanine molecules, was treated at the semi-empirical level (PM3 [36] or AM1 
Hamiltonian [35]). These ‘layered’ methods are referred to as B3LYP/PM3/6, 
B3LYP/PM3/14, B3LYP/AM1/6 and B3LYP/AM1/14. Intermolecular interactions 
(such as hydrogen bridges) between the central alanine molecule and its neighbors 
are always treated at the semi-empirical level in these methods. 
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5.2.2 Periodic approach 
In the second approach – which shall be referred to as BP86/PW – the crystal 

phase was modeled by performing periodic calculations. To simulate a radical R2 in 
the crystal lattice, we doubled the unit cell in the a and c direction to ensure that the 
radical defects are well separated from each other. The resulting orthorhombic 
extended unit cell contains 15 alanine molecules and a central R2 radical, as is shown 
in Figure 5.4. 

 
Figure 5.4: Two enlarged unit cells, as applied in the periodic approach.  

The software package used for these calculations is the Ab-Initio Quantum 
Molecular Dynamics (AIMD) Package [93] based on the Car-Parrinello code [94]. 
This algorithm was first proposed in a broader context of molecular dynamics 
simulations, with interatomic forces calculated ‘on the fly’ from the instantaneous 
electronic potential. The simulated annealing technique was further used for the 
simultaneous optimization of the electronic and nuclear degrees of freedom towards 
a global energy minimum. This optimization scheme is based on a conjugate gradient 
minimisation of the energy functional [95]. In our calculations only the structure of 
the radical was optimized, while the coordinates of all other atoms of surrounding 
alanine molecules were kept fixed at the experimental geometry by use of the 
SHAKE algorithm [96]. 

The quantum mechanical description of the electronic structure is also based on 
the DFT formalism. The exchange-correlation energy functional is treated within the 
local density approximation for which we employed the Perdew-Zunger 
parameterisation for the homogeneous electron gas [23]. In addition, gradient 
corrections were included according to the schemes proposed by Perdew [24] and 
Becke [25], known as BP86. Only valence electrons are treated explicitly and their 
corresponding single particle orbitals are expanded in plane waves. Very soft 
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pseudopotentials of the Vanderbilt type [97] are used to account for the core. An 
energy cut-off of 25 Ry (1 Ry = 1314 kJ/mol) is taken for the plane-wave expansion. 
Several other studies [98] have shown that this value is sufficient to describe the 
structure accurately. 

5.2.3 EPR calculations 
For all optimized geometries, the EPR parameters of the central radical have been 

calculated, using the Gaussian 98 software package within the DFT framework. The 
B3LYP [28] functional was used and all atoms were assigned a triple-ζ 6-311G basis 
augmented with single first d and p polarisation functions [33]. The electronic wave 
functions for the optimized geometries were thus recalculated at a high and uniform 
level in order to get EPR parameters constructed on the same basis. A DFT 
procedure with a BLYP or B3LYP functional was chosen in accordance with other 
studies [99], for the reason that the initial analysis of the EPR parameters will be 
mainly based on the correspondence between calculated and experimental (isotropic) 
hyperfine coupling constants.  

5.3 VERIFICATION OF THE CLUSTER MODEL SPACE 

To test the validity of the proposed cluster models, a first set of calculations was 
performed, in which the structure of one undamaged (!) L-α-alanine molecule was 
optimized within a cluster of alanine molecules, adopting the mentioned cluster 
methods and levels of theory. By mutually comparing the resulting geometrical 
parameters of the optimized central molecule, the various levels of theory can be 
assessed on their applicability and accuracy to model the crystal. In particular, those 
methods will be considered inaccurate or unreliable that drastically alter the 
geometrical parameters of the original crystal structure during the geometry 
optimization. In other words, the less structural changes a cluster model exacts 
during optimization, the better it will be. In Table 5.3, a summary is given of selected 
geometrical parameters as determined in various levels of theory and in experiment. 
For the optimized geometries, all values are reported relative to the absolute 
experimental value (calculated – experimental). 

On average, all methods reproduce quite accurately the bond lengths. The 
PM3/PM3/6-14, B3LYP/PM3/6-14, B3LYP/AM1/6-14 and the BLYP/III/6 
optimized geometries have an rms bond length error of about 0.005 Å, which is 
comparable with the average experimental standard deviation of 0.002 Å. We only 
notice some quite significant discrepancies in the BLYP/I/6 results; deviations in 
bond lengths of the order of 0.2 Å with experiment (e.g. N5-H13) are too high to be 
acceptable in any way. These large errors are probably due to the small sizes of the 
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employed basis sets. The bond angles are on the average equally well reproduced by 
all methods, keeping in mind that the average standard deviation is 0.16º for the 
experimental bond angles. 
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Bond Lenghts
O1 - C2 1.242 0.011 0.008 0.017 0.014 0.026 0.020 0.061 0.047 0.018
C2 - O3 1.258 0.013 0.008 0.023 0.017 0.008 0.004 0.114 0.063 0.033
C2 - C4 1.531 0.007 0.016 -0.017 -0.009 0.003 0.007 0.134 0.008 0.011
C4 - N5 1.487 0.026 0.026 0.051 0.051 0.029 0.025 0.077 0.031 0.013
C4 - C6 1.524 -0.005 -0.008 0.005 0.002 0.006 0.005 0.048 0.025 0.012
C4 - H7 1.093 0.038 0.032 0.006 0.002 0.007 0.003 0.035 0.003 0.003

N5 - H11 1.029 -0.010 -0.006 0.018 0.025 0.013 0.022 0.054 0.010 0.005
N5 - H12 1.047 -0.026 -0.023 -0.001 0.003 -0.017 -0.016 0.165 0.009 0.006
N5 - H13 1.031 -0.006 -0.009 0.017 0.015 0.000 -0.005 0.194 0.038 0.040
C6 - H8 1.081 0.017 0.021 0.013 0.017 0.015 0.015 0.026 0.020 0.017
C6 - H9 1.082 0.017 0.021 0.009 0.013 0.007 0.011 0.022 0.014 0.012
C6 - H10 1.081 0.019 0.019 0.017 0.018 0.016 0.017 0.025 0.016 0.014

RMS 0.005 0.005 0.006 0.006 0.004 0.004 0.028 0.008 0.005
Bond Angles

O1 - C2 - O3 125.6 -7.2 -4.9 1.4 2.9 0.9 2.0 -2.5 -2.1 -0.6
O1 - C2 - C4 118.4 2.8 0.9 -0.7 -2.3 -0.6 -2.1 2.8 1.6 0.5
O3 - C2 - C4 116.0 4.4 3.9 -0.6 -0.6 -0.3 0.1 -0.2 0.5 0.1
C2 - C4 - N5 110.0 -0.1 -0.4 -2.0 -2.4 -2.9 -4.6 4.3 -0.7 -1.0
C2 - C4 - C6 111.1 -1.2 -1.3 1.3 1.2 0.2 0.8 -2.4 1.2 1.1
C2 - C4 - H7 108.6 0.5 0.3 2.3 2.1 1.9 1.6 1.0 1.1 1.2

C4 - N5 - H11 111.3 -0.8 -0.3 -4.6 -4.3 -7.7 -8.6 -5.1 -0.7 -1.1
C4 - N5 - H12 109.4 -1.8 -1.8 1.1 1.0 4.0 4.8 0.3 -1.6 -0.2
C4 - N5 - H13 109.1 -0.3 -0.7 -1.2 -1.6 2.4 2.2 -0.5 0.2 0.6
C4 - C6 - H8 110.3 2.1 2.2 0.3 0.1 0.0 0.4 0.1 -0.2 0.0
C4 - C6 - H9 110.6 -0.8 -0.4 -2.7 -2.2 -2.2 -1.4 -0.4 -0.4 -0.5
C4 - C6 - H10 110.4 1.2 1.4 1.7 2.1 0.6 0.8 -0.3 -1.3 -0.9
N5 - C4 - H7 106.9 0.7 0.6 -1.8 -1.9 0.7 1.1 -1.0 -1.4 -1.1
C6 - C4 - H7 110.4 -1.7 -1.1 0.3 1.2 0.0 0.5 -1.0 -0.3 -0.3
H8 - C6 - H9 108.3 -0.5 -1.3 0.5 -0.2 0.8 0.0 0.6 1.0 1.0

H8 - C6 - H10 108.4 -0.1 -0.6 1.2 0.6 0.9 0.6 1.0 2.1 1.7
H9 - C6 - H10 108.9 -2.1 -1.5 -1.0 -0.3 -0.2 -0.5 -0.9 -1.2 -1.3

H11 - N5 - H12 108.1 1.3 1.6 5.6 6.1 3.4 3.2 -2.9 1.4 0.9
H11 - N5 - H13 110.7 0.0 -0.4 -4.1 -4.3 -1.7 -0.9 0.1 0.9 -0.7
H12 - N5 - H13 108.2 1.6 1.6 3.0 2.8 -0.5 -0.7 7.8 -0.3 0.6

RMS 0.5 0.4 0.5 0.6 0.5 0.6 0.6 0.3 0.2
Dihedral Angles

O1 - C2 - C4 - N5 -18.7 -13.5 -12.3 -7.2 -8.2 0.6 -3.0 -21.3 -8.5 -8.1
O1 - C2 - C4 - C6 103.1 -12.1 -11.0 -8.1 -9.5 -1.2 -4.9 -21.2 -8.2 -8.0
O1 - C2 - C4 - H7 -135.4 -14.6 -12.9 -5.2 -5.7 0.2 -2.6 -23.3 -7.0 -6.9
O1 - O3 - C4 - C2 -0.1 1.4 2.0 -0.3 0.0 -1.0 0.3 -0.7 0.5 0.4
C2 - N5 - C6 - C4 34.0 0.5 0.8 0.1 0.5 1.6 2.4 -0.6 -0.5 -0.1

H11 - N5 - C4 - C2 58.3 9.0 7.4 -5.1 -4.8 -39.0 -36.4 -1.1 0.1 -0.7
H8 - C6 - C4 - C2 -64.4 3.9 0.6 6.8 5.3 2.1 5.5 3.1 -1.3 0.9

RMS 3.6 3.2 2.1 2.2 5.6 5.3 5.5 2.0 1.9
Hydrogen Bond Distances

O1 - H177/H86 1.861 -0.025 -0.016 -0.030 -0.026 0.232 0.179 -0.199 0.073 0.098
O3 - H49/H23 1.828 -0.069 -0.068 -0.062 -0.058 0.067 0.020 -0.101 -0.146 -0.131
O3 - H113/H48 1.780 -0.033 0.011 -0.040 0.005 0.137 0.140 -0.206 -0.018 -0.016
H11 - O144/O66 1.861 0.055 -0.017 0.096 0.013 0.701 0.363 0.337 0.236 0.276
H12 - O54/O28 1.780 0.006 -0.006 -0.002 -0.011 0.428 0.362 -0.330 -0.108 -0.075
H13 - O119/O54 1.828 -0.051 0.005 -0.059 0.006 0.208 0.279 -0.477 -0.201 -0.211

RMS 0.018 0.012 0.023 0.011 0.149 0.104 0.123 0.061 0.065  
Table 5.3: Summary of selected geometrical parameters for the various optimized geometries 

of an undamaged alanine. Units of bond lengths are Angströms. The H- and O- hydrogen 
bond partners in the last section are labeled conform their numbering in the 15 and 7 

molecule clusters, respectively. 
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In the table, only those dihedral angles are shown that give essential insight into 
the chemical structure of the optimized central molecule. The position of the amino- 
and methyl group relative to the rest of the central alanine is characterized by the 
dihedral angles H11-N5-C4-C2 and H8-C6-C4-C2 respectively. The other hydrogen 
atoms lie in planes that form approximately 120° or 240° with respect to the (H11, 
N5, C4) and (H8, C6, C4) planes for the amino- and methyl group, respectively. The 
BLYP/II-III/6 calculations succeed in reproducing almost exactly the experimental 
dihedral angles. On the contrary, the B3LYP/AM1/6-14 calculations totally fail in 
reproducing the H11-N5-C4-C2 dihedral angle, indicating that hydrogen bonds are 
poorly described by the AM1 Hamiltonian. All methods succeed in predicting a 
satisfactory H8-C6-C4-C2 dihedral angle. The position of the methyl group is well 
described and this is probably due to the absence of any hydrogen bonds with one of 
the hydrogens of the methyl group. Two “improper” torsional angles are also 
included in Table 5.3: O1-O3-C4-C2 and C2-N5-C6-C4. The former is a measure of 
deviation from planarity of the C2 carbon center. All optimized geometries point 
toward an almost planar conformation for the CO2 group. The second improper 

torsional angle is a measure for the overall sp3 character of the C4 carbon center. 
Apart from the B3LYP/AM1/6-14 results, all other theoretical predictions are in 
excellent agreement with experiment. However, all these geometries show a 
significant and almost uniform deviation in the dihedral angles associated with 
oxygen O1 (the first three dihedral angles reported in Table 5.3). Since the CO2 

group is planar and the overall sp3 character of C4 is preserved, the deviation of the 
dihedral angles indicates a rotation of the CO2 group along the C2-C4 axis. 

A further measure for the adequacy of the cluster models in giving a plausible 
description of the crystalline environment is the reproduction of the hydrogen bond 
lengths. These intermolecular distances are more sensitive to the method used to 
describe the cluster. They are also presented in Table 5.3, but in Figure 5.5, a 
graphical representation is given, where the hydrogen bond lengths in the various 
optimized geometries are cross-referenced with the actual bond lengths in the crystal 
structure. While Figure 5.5(a) presents these distances for all geometries obtained at 
levels of theory involving the 7 molecule cluster; similarly, those involving the 15 
molecule cluster are given in Figure 5.5(b). The crystalline hydrogen bond lengths 
are represented by a thick black line, sided by two dashed lines corresponding to an 
error margin of ±0.01 Å. 

 
 
 
 
 



Radiation-Induced Radicals in L-α-Alanine 

 71 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Experimental hydrogen bond lengths in relation to those of the optimized 
geometries. (a) presents information about the PM3/PM3/6 (  ), B3LYP/PM3/6 (�), 

B3LYP/AM1/6 (  ), BLYP/I/6 (+), BLYP/II/6 (×) and BLYP/III/6 (∗) levels of theory; (b) 
those of PM3/PM3/14 (! ), B3LYP/PM3/14 (�) and B3LYP/AM1/14 ( ). 

For this geometrical feature, the largest deviations are noticed at the 
B3LYP/AM1/6-14 and BLYP/I/6 levels of theory. This again indicates that the AM1 
semi-empirical methods are inadequate to describe the hydrogen bonds. Deviations at 
the BLYP/I/6 level can probably be attributed to the small basis set used. Of all 
levels, only the hydrogen bonds of the PM3/PM3/6-14 and B3LYP/PM3/6-14 
optimized geometries remain more or less within the ±0.01 Å interval, with rms 
errors of 0.01-0.02 Å. The corresponding rms errors for BLYP/II/6 and BLYP/III/6 
are not as good (about 0.06 Å). The hydrogen bonds for these optimized geometries 
are therefore outside the ±0.01 Å accuracy region, but not as excessive as those of 
e.g. B3LYP/AM1/6-14. 

 
Concluding, the proposed cluster models perform overall relatively well in 

describing the crystal, apart from the B3LYP/AM1/6-14 and BLYP/I/6 methods. The 
poor performance of the latter method can be ascribed to an inadequate basis size, 
while the former methods completely fail to correctly describe hydrogen bonding, 
owing to the AM1 parameterized Hamiltonian. Cluster methods involving the PM3 
Hamiltonian perform somewhat better in the description of hydrogen bonds, 
undeniably a manifestation of its valid semi-empirical input. 
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5.4 IDENTIFICATION OF THE RADIATION-INDUCED RADICAL R2 OF 
L-α-ALANINE 

In a second set of calculations, the radiation-induced radical R2 was examined, by 
taking into account an adequate modeling of the alanine crystalline environment 
through the use of the proposed (and validated) model spaces. Starting from an initial 
radical geometry, optimizations were performed using either a cluster or periodic 
approach and consequently EPR calculations were carried out on the resulting 
optimized geometries, as sketched in the computational details. For the cluster model 
calculations, we will again refer to the same notations as mentioned earlier but with 
the difference that now a central R2 radical is considered instead of an intact alanine 
molecule. Even cluster models that were previously deemed not apt to simulate the 
solid state were still employed, in an attempt to extend the previous conclusions with 
respect to radical systems. 

In this section, we will first discuss the impact of the different model space 
approaches on the geometry of the studied radical, in comparison with the results of 
other theoretical studies. In a second part, the isotropic and anisotropic hfcc's of the 
magnetic nuclei in the radical R2 are reported for all optimized geometries and a 
detailed evaluation of the theoretically predicted EPR parameters will be made, 
mainly based on the agreement of the calculated isotropic hyperfine coupling 
constants with experimental values. 

5.4.1 Effect of model space on radical geometry 
In Table 5.4, a summary of selected geometrical parameters is given for the 

various optimized geometries. We also report on the geometries predicted by Lahorte 
et al. [83] and Ban et al. [82]. These parameters include bond lengths, selected bond- 
and dihedral angles and hydrogen bond distances. The numbering of the atoms in the 
radical is conform that in Figure 5.6. 
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O1-C2 1.271 1.277 1.254 1.251 1.261 1.264 1.272 1.277 1.335 1.317 1.278 1.285
C2-O3 1.242 1.295 1.264 1.272 1.282 1.292 1.270 1.277 1.399 1.339 1.302 1.307
C2-C4 1.511 1.507 1.507 1.500 1.466 1.455 1.468 1.464 1.540 1.450 1.465 1.467
C4-N5 1.492 1.478 1.460 1.458 1.503 1.503 1.465 1.466 1.563 1.489 1.472 1.464
C4-C6 1.479 1.478 1.463 1.461 1.487 1.484 1.478 1.475 1.547 1.492 1.484 1.483
H7-C6 1.102 1.100 1.105 1.099 1.107 1.103 1.104 1.101 1.118 1.110 1.107 1.114
H8-C6 1.093 1.090 1.103 1.097 1.094 1.090 1.092 1.087 1.105 1.096 1.093 1.103
H9-C6 1.102 1.100 1.102 1.133 1.102 1.107 1.104 1.112 1.110 1.104 1.102 1.106

H10-N5 1.023 1.030 1.024 1.005 1.058 1.053 1.044 1.040 1.100 1.047 1.043 1.064
H11-N5 1.025 1.030 1.025 1.015 1.055 1.051 1.038 1.034 1.125 1.057 1.054 1.109
H12-N5 1.037 1.052 1.024 1.025 1.052 1.057 1.039 1.043 1.222 1.076 1.078 1.054

O1-C2-O3 133.0 128.1 120.6 118.0 126.7 124.9 127.1 125.0 117.7 121.8 123.8 124.2
O1-C2-C4 111.3 113.5 117.0 120.6 116.4 118.2 116.2 117.3 127.6 119.1 117.9 116.2
C2-C4-N5 108.4 111.4 116.2 115.3 112.7 114.2 112.2 113.3 116.4 115.7 115.5 114.8
C2-C4-C6 131.8 130.2 122.1 124.1 124.5 126.7 128.4 128.9 114.7 125.7 125.1 119.6

O1-C2-C4-C6 180.0 180.0 122.7 120.5 115.3 125.7 153.8 163.8 99.5 137.8 134.4 114.7
O1-C2-C4-N5 0.0 0.0 -46.2 -56.9 -32.8 -32.1 -24.0 -25.3 -32.2 -27.8 -27.4 -29.7
O3-C2-C4-C6 0.0 0.0 -59.9 -63.9 -66.2 -55.6 -28.2 -17.3 -83.9 -43.0 -46.0 -61.5
H8-C6-C4-C2 0.0 0.0 26.2 351.3 34.6 23.1 9.2 355.6 42.5 9.0 14.1 42.6

H10-N5-C4-C2 82.4 79.0 82.4 80.4 71.0 73.5 10.8 10.8 60.4 77.8 75.2 71.8

O1-O3-C4-C2 0.0 0.0 1.5 2.5 0.8 0.7 1.1 0.6 1.7 0.4 0.2 -2.2
C2-N5-C6-C4 0.0 0.0 6.6 1.6 17.2 11.6 1.2 -4.8 26.0 7.7 9.9 20.1

O1-H176/H85 ? ? 1.835 1.831 1.871 1.863 2.128 2.128 1.611 2.103 2.102 2.015
O3-H48/H22 ? ? 1.781 1.734 1.777 1.800 1.915 1.943 1.787 1.740 1.762 1.778

O3-H112/H47 ? ? 1.813 1.745 1.790 1.758 1.947 1.969 1.474 1.739 1.743 1.490
H10-O143/O65 ? ? 1.842 2.510 1.813 1.870 2.700 2.929 2.038 1.944 1.995 1.832
H11-O53/O27 ? ? 1.763 1.758 1.757 1.786 2.466 2.516 1.753 1.752 1.773 1.522

H12-O118/O53 ? ? 1.835 1.745 1.833 1.780 2.384 2.278 1.374 1.708 1.679 1.847

Hydrogen bonding distances

Bond lenghts

Bonding angles

Dihedral angles

Improper torsion angles

 
Table 5.4: Summary of selected geometrical parameters for the various optimized radical 

geometries. 

In analogy with the earlier discussion, the position of the amino- and methyl 
group relative to the rest of the central radical is given by the dihedral angles H10-
N5-C4-C2 and H8-C6-C4-C2 respectively. The other hydrogen atoms again lie in 
planes at approximately 120° or 240°. No bond angles involving hydrogen atoms are 
mentioned as they all lie around 110°. Two 'improper' torsion angles are also 
presented, namely O1-O3-C4-C2 and C2-N5-C6-C4. The first is a measure of 
deviation from planarity of the C2 carbon center. As is clear from Table 5.4, all 
optimized geometries point towards an almost planar conformation for the CO2 
group. The second improper torsion angle C2-N5-C6-C4 indicates the deviation from 
planarity of the radical backbone, which is formed by the atoms N5, C4, C6 and C2, 

and is thus a measure for the sp3 character of the radical center C4. It turns out that 
all optimized geometries deviate from planarity but that the deviation largely 
depends on the employed level of theory. The maximum deviation amounts to 26° in 
the BLYP/I/6 optimized geometry, while it is close to 0° in B3LYP/AM1/14 and 
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PM3/PM3/6. On average, the deviation from planarity remains still 7° and this is 
remarkable as it was previously always assumed in both experimental and theoretical 
studies, that upon hydrogen abstraction from C4, the carbon atom transforms from an 

sp3 to a perfectly planar sp2 center. Our calculations do not support this picture. The 
interactions with the neighbouring molecules force the central radical into a non-
planar conformation. This non-planarity of the radical backbone can be observed in 
Figure 5.6, displaying the optimized geometry of only the central radical at the 
B3LYP/PM3/6 level. 

 

 
Figure 5.6: B3LYP/PM3/6 optimized geometry of the central alanine radical. 

We notice a strong correlation between the non-planarity of the radical backbone 
and the rotation of the CO2 group relative to the reference (C2, N5, C6) plane of the 
radical backbone. This is best illustrated in Figure 5.7 where we plot the two relevant 
parameters characterizing the two above-mentioned features for each level of theory. 

 
Figure 5.7: Relation between the torsion angle O1-C2-C4-C6 with respect to the C2-N5-C6-

C4 angle in the various optimized geometries, obtained at different levels of theory: the 

ONIOM or ab-initio optimized geometries (�) and the purely semi-empirical optimized 
geometries (  ). In addition, the results of earlier theoretical calculations are indicated (�). 
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The dihedral angle O1-C2-C4-C6 determines the rotation angle of the almost 
planar O1-O3-C2-C4 constellation with an angle of 180° referring to the planar 
conformation. We observe an almost linear behaviour between the non-planarity of 
the radical backbone and the CO2-rotation. This is a very striking result, which can 
be explained by considering the π-system of the CO2 group. When the position of 
this group would not be influenced by attracting hydrogen bonds, the associated π-
cloud would be oriented parallel to the lone electron orbital (LEO) on carbon C4. 
The LEO conjugates with the π-cloud of CO2 and the radical carbon center is 
stabilised by the effect of resonance stabilisation. However, when strong hydrogen 
bonds force the CO2 group to shift out of the plane of the radical backbone, the π-
cloud gets rotated relative to the direction of the LEO and is no longer parallel, 
resulting in a diminished conjugation. Since, in this case, sp2 hybridisation of the C4 

carbon does not cause an overall stabilisation of the radical, the atom has some sp3 
character as well. 

Methods which substantially differ from the quasi-linear pattern in Figure 5.7 are 
systematically described at a lower level of theory. Both PM3/PM3/6-14 models 
describe the central molecule within the semi-empirical approach of PM3, which is 
clearly insufficient. Hence, the deviation from planarity of the radical backbone is a 
direct consequence of the appearance of hydrogen bonds which induce a rotation of 
the CO2 group, forcing the radical center to a non-planar conformation. It should be 
stressed that the strong hydrogen bonds only take place between the oxygen atoms 
and the amino protons, as was already apparent in Figures 5.3 and 5.4. Methyl 
protons are not involved in any hydrogen bond and remain submitted to quasi-free 
rotations, in contrast to the amino protons whose internal rotations are completely 
hindered by the hydrogen bonds. The strength of the hydrogen bond is therefore a 
determining factor to which extent the radical backbone deviates from planarity. 

The stern effect of the simulated molecular environment on the optimized radical 
geometry is illustrated in Figure 5.8, where the relative B3LYP and ONIOM 
extrapolated energies are plotted as a function of the rotation angle of both the 
methyl and amino groups. 
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Figure 5.8: B3LYP/6-31G** energies versus ONIOM extrapolated energies relative to the 

energy of the optimized B3LYP/PM3/14 geometry as a function of the rotation angle for both 
the methyl (  ) and amino (  ) group (ONIOM extrapolated energy = -324.877522 a.u.; 

B3LYP/631G** energy = -323.034459 a.u.). 

This plot was obtained by gradually rotating the methyl and amino group, starting 
from the B3LYP/PM3/14 optimized geometry, while keeping all other geometrical 
parameters fixed, and along the way determining the B3LYP/6-31G** energies for 
the central radical alone and the ONIOM extrapolated energies for the whole cluster. 
Quite striking in this figure is the fact that the starting geometry at 0º (the actual 
B3LYP/PM3/14 optimized geometry) does not represent a minimum for the amino 
group rotation. On the other hand, the ONIOM extrapolated energy of the starting 
geometry turns out to be a minimum, since in this case the molecular environment is 
included. Consequently, the surrounding alanine molecules in the cluster force the 
central radical to attain a conformation that does not correspond to an energetically 
most favoured structure in vacuo (at the B3LYP level). A similar effect is not 
observed for the methyl group rotation, corroborating that this internal motion is a 
quasi-free rotation in the crystal lattice. 

5.4.2 Analysis of the calculated EPR parameters 
Based on the match between calculated EPR parameters and experimental data, a 

final assessment was made of the considered model space approaches and their 
performance to yield correct structures for the radiation-induced radicals in L-α-
alanine. Since all EPR parameters were calculated at a high and uniform level, the 
possible differences between the approaches can hence be solely attributed to 
geometrical features rather than to methodological grounds. However, the assessment 
was based predominantly on the agreement of the isotropic and anisotropic hyperfine 
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coupling constants. The calculated values for these parameters are listed in Table 5.5 
for all optimized geometries. 

 

Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz

O1 -2.6 -48.8 22.4 26.3 -0.4 -47.1 21.7 25.5
C2 -28.6 -5.9 2.5 3.4 -30.7 -5.7 2.6 3.1
O3 -0.7 -44.0 19.4 24.6 -2.6 -59.4 28.1 31.3
C4 94.0 -77.5 -76.4 153.9 82.0 -70.0 -68.2 138.2 71.5 -67.8 -66.4 134.2
N5 7.3 -1.8 0.9 1.0 -8.0 -0.5 0.2 0.4 -3.7 -0.4 -0.1 0.5 -6.5 -0.3 -0.1 0.4
C6 -31.6 -2.4 -0.4 1.9 -28.9 -1.9 -0.1 2.1 -28.7 -1.7 -0.4 2.1
H7 95.5 -4.6 -3.4 8.0 114.3 -4.4 -2.8 7.3 61.4 -4.0 -3.2 7.2
H8 2.2 -4.1 -3.9 8.0 11.6 -3.9 -3.5 7.4 6.5 -3.9 -3.0 6.9
H9 95.7 -4.6 -3.4 8.0 53.9 -4.1 -3.7 7.7 111.7 -3.9 -3.2 7.1
H10 86.3 -6.9 -2.7 9.5 80.3 -5.5 -4.8 10.3 86.0 -4.8 -4.5 9.3 86.8 -5.2 -4.8 9.9 76.2 -5.3 -4.7 10.1
H11 10.2 -4.9 -4.8 9.7 13.9 -5.2 -4.4 9.6 12.0 -4.9 -4.5 9.4 12.1 -5.5 -4.4 9.9 8.0 -5.2 -4.0 9.2
H12 30.2 -6.1 -4.7 10.7 29.9 -5.9 -5.3 11.3 30.0 -5.6 -4.9 10.6 23.8 -5.4 -4.6 9.9 32.6 -4.8 -4.5 9.3

Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz

O1 -0.9 -37.6 15.0 22.6 -0.7 -37.7 14.6 23.2 -2.1 -28.5 12.3 16.2 -1.0 -29.1 12.3 16.8 1.0 -43.9 15.3 28.6
C2 -23.9 -7.5 2.4 5.1 -28.4 -8.1 3.2 5.0 -32.8 -8.6 3.4 5.2 -33.1 -9.1 3.4 5.7 -21.0 -8.8 3.5 5.3
O3 -4.8 -49.5 23.4 26.2 -6.2 -62.0 29.3 32.7 -4.8 -48.5 21.8 26.7 -6.6 -58.1 26.3 31.9 -10.7 -106.0 50.3 55.8
C4 152.3 -67.8 -66.3 134.1 116.9 -67.0 -65.8 132.8 81.2 -72.7 -71.5 144.2 74.5 -70.3 -69.3 139.6 271.9 -49.1 -47.1 96.2
N5 7.7 -0.8 -0.2 1.0 2.7 -0.6 -0.2 0.8 -7.2 -0.5 -0.1 0.6 -8.4 -0.3 -0.3 0.5 15.5 -1.0 -0.3 1.4
C6 -21.7 -2.0 -0.7 2.8 -25.4 -1.9 -0.3 2.2 -28.6 -2.0 0.2 1.8 -25.2 -2.0 -0.2 2.1 -7.0 -2.1 -1.2 3.3
H7 100.2 -4.0 -2.2 6.3 90.4 -4.0 -2.4 6.4 95.9 -4.5 -3.2 7.7 77.2 -4.5 -3.4 7.8 58.8 -3.0 -1.4 4.3
H8 4.2 -4.2 -3.8 8.0 2.0 -3.9 -3.7 7.6 2.8 -4.0 -3.9 7.9 1.7 -4.0 -3.6 7.6 0.8 -3.4 -2.5 6.0
H9 54.5 -4.3 -4.2 8.5 69.0 -4.2 -3.9 8.0 81.7 -4.3 -3.4 7.7 95.7 -4.1 -3.0 7.1 23.8 -3.8 -3.4 7.2
H10 84.6 -4.3 -3.8 8.1 80.7 -4.3 -3.9 8.2 4.5 -5.4 -4.8 10.3 2.7 -5.3 -4.5 9.7 61.3 -2.9 -2.5 5.4
H11 5.2 -5.7 -4.4 10.1 4.8 -5.4 -4.2 9.5 65.9 -4.5 -4.3 8.8 65.7 -4.7 -4.4 9.1 -1.4 -4.6 -3.2 7.8
H12 17.6 -5.9 -4.7 10.6 22.3 -5.4 -4.6 10.0 72.3 -5.3 -4.6 9.9 69.8 -4.8 -4.3 9.0 10.4 -4.4 -3.4 7.8

Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz Aiso Txx Tyy Tzz

O1 0.1 -43.6 15.1 28.5 -1.2 -38.6 15.2 23.5 -1.8 -45.4 18.6 26.8
C2 -35.1 -10.6 4.2 6.4 -31.2 -8.9 3.5 5.4 -23.8 -8.6 2.3 6.3
O3 -8.7 -81.8 39.1 42.6 -4.7 -58.8 27.8 31.0 -4.0 -46.7 21.8 24.9
C4 84.7 -63.0 -62.0 125.0 99.0 -68.1 -66.6 134.7 143.4 -66.1 -64.3 130.3
N5 -2.0 -0.4 -0.1 0.5 -1.6 -0.5 -0.2 0.7 6.6 -1.0 -0.2 1.2
C6 -24.9 -1.7 0.3 1.4 -26.7 -2.0 0.2 1.8 -20.9 -1.8 -0.8 2.6
H7 71.6 -4.0 -2.5 6.5 84.7 -4.3 -2.6 6.9 105.1 -3.8 -2.2 6.0
H8 1.6 -3.8 -2.7 6.5 1.4 -3.9 -3.3 7.1 9.6 -3.9 -3.6 7.5
H9 74.9 -3.8 -3.4 7.2 77.8 -4.2 -3.7 7.9 41.0 -4.2 -4.0 8.2
H10 74.3 -4.2 -3.8 8.1 85.1 -4.5 -4.1 8.6 95.2 -4.4 -3.6 7.9
H11 4.9 -4.9 -3.8 8.7 6.0 -5.3 -4.1 9.3 6.7 -5.4 -3.9 9.3
H12 26.4 -4.5 -4.1 8.6 30.0 -4.9 -4.4 9.4 17.0 -5.6 -4.4 10.0

BLYP/I/6

BLYP/II/6 BLYP/III/6 BP86/PW

B3LYP/PM3/14 B3LYP/PM3/6 B3LYP/AM1/14 B3LYP/AM1/6

PM3/PM3/6

70.8 -2.9 -2.7 5.6 68.4 -4.7 -3.8 8.5

Experimental B3LYP/0/0 B3LYP/Onsager/0 PM3/PM3/14

 
Table 5.5: Summary of the isotropic and anisotropic components of the hyperfine coupling 

tensor, calculated for all optimized radical geometries. 

The partial sp3 character of the radical center C4 in most optimized geometries 
has a considerable effect on the EPR hyperfine coupling constants of the surrounding 
atoms. In Figure 5.9 the isotropic hfcc of nitrogen, calculated at the different levels 
of theory is plotted as a function of the improper torsion angle C2-N5-C6-C4, which 
stands for a measure of deviation from planarity of the radical backbone. 
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Figure 5.9: The nitrogen isotropic hyperfine coupling constant is plotted as a function of the 

torsion angle C2-N5-C6-C4 at different levels of theory. The dotted line represents the 

experimental value, while the asterisk (*) stands for the B3LYP/I/6 result with a constraint on 
the improper torsion angle C2-N5-C6-C4. 

The plot clearly indicates that the N hfcc exhibits an almost linear dependence 
with the non-planarity of the radical backbone: the more the radical backbone 
deviates from the planar conformation, the larger the N-hfcc prediction becomes. The 
experimental value of 7.3 MHz [79] is best reproduced by the B3LYP/PM3/14 and 
the periodic BP86/PW calculations. Only few calculations succeed in reproducing 
the N-hfcc in a satisfactory way. The B3LYP/AM1/6-14 and PM3/PM3/6 models 
even underestimate the experimental value by 14 to 15 MHz. The striking correlation 
between the hfcc of the nitrogen atom and the non-planarity of the radical backbone 
is confirmed by additional calculations based on models whose ab-initio prediction 
of the N-hfcc differs significantly from the experimental value but where we 
constraint the improper torsional angle C2-N5-C6-C4 to be 17.22°, as resulting from 
the B3LYP/PM3/14 optimized geometry. Applied to the BLYP/I/6 optimized 
geometry, we get a new value for the N-hfcc (indicated by the asterisk * in Figure 
5.9) close to the experimental estimate and obeying the linear correlation as 
suggested. 

As the methyl group acts as a quasi-free rotor even in a crystalline environment 
only computed averages of the methyl proton couplings have sense. Their absolute 
differences between calculated and experimental isotropic coupling constants are 
displayed in Figure 5.10 for all optimized geometries. 
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Figure 5.10: Overview of the different hyperfine coupling constants calculated at various 

levels of theory relative to the experimental values. Note that the B3LYP/Onsager/0 
prediction for the N-hfcc has not been reported in ref. [82] and is accordingly not indicated. 

A striking feature in this figure is the excellent reproduction of these average 
hfcc's by the calculations in the absence of any neighbours. All cluster and periodic 
models predict values which are not of that level of agreement. This is an unlike 
feature, as this points towards the necessity of a planar radical structure for getting 
satisfactory reproduction of the methyl proton hfcc’s, and is apparently in contrast to 
preceding conclusions. This stimulated us to study into more details the underlying 
reasons of this apparent contradiction. Therefore we performed some additional 
calculations in an attempt to search for the geometrical parameters with the greatest 
impact on the averaged value of the methyl hydrogen coupling constants. Starting 
from the B3LYP/PM3/14 optimized geometry the planarity of the radical was 
gradually increased by reducing the improper torsional angle C2-N5-C6-C4 to zero, 
while keeping all other variables at their optimized values. In a subsequent step, the 
CO2 group was rotated gradually towards a fully planar conformation of the radical 
backbone. During these geometry changes, the average methyl proton hfcc values 
were systematically calculated and reported in Figure 5.11. 
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Figure 5.11: The averaged methyl proton hyperfine coupling constants as a function of the 

planarity of the radical backbone and rotation of the CO2 group. 

In the first part of the figure, the average hfcc is plotted versus the improper 
torsion angle C2-N5-C6-C4 reflecting the measure of non-planarity of the radical 
backbone. This change in geometry induces already an increase of 10 MHz. In the 
second part of Figure 5.11, the isotropic hfcc is shown with respect to the O1-C2-C4-
N5 torsional angle. This rotation of the CO2 group towards planarity gives rise to an 
additional increase of 5 MHz. The remaining discrepancy between the experimental 
and the average methyl proton hfcc can probably be attributed to the other 
geometrical parameters that were not optimized. This calculation suggests that the 
experimental (rotationally averaged) value of the methyl proton hfcc originates from 
a planar radical structure, as suggested by both experimental and earlier theoretical 
studies [82, 83]. We believe that this apparent contradiction with earlier conclusions 
is due to temperature effects on the geometry of the central radical. 

The situation is different for the amino protons. Their isotropic hyperfine 
coupling constants are also displayed in Figure 5.10. The amino protons are involved 
in intermolecular hydrogen bridges, each proton participating in one hydrogen bond 
with an oxygen atom from a neighbouring alanine molecule. Due to these 
interactions, the amino group cannot freely rotate, resulting in three individual 
hyperfine coupling tensors for the amino protons. Hydrogen bond distances fluctuate 
around 1.8 Å, except for the B3LYP/AM1/6-14 structures where they are 
overestimated, in accordance with our earlier observations. Furthermore, the 
hydrogen bonds cause a rotation of the amino group about the C4-N5 axis. This 
torsional motion is described by the dihedral angle H10-N5-C4-C2. From Table 5.4, 
it follows that most levels of theory yield comparable values for this dihedral angle. 
Apart from the B3LYP/AM1/6-14 levels and the BLYP/I/6 level, the torsional angle 
always varies between 70° and 80°. Our earlier conclusions about the minute basis 
size in the case of BLYP/I/6 and the inaccurate modeling of hydrogen bonds in the 
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case of B3LYP/AM1/6-14 are thus sustained for radical systems. In earlier studies by 
Lahorte et al. [83] and Ban et al. [82], a geometry was proposed in which one of the 
hydrogen atoms of the amino group lies in the plane of the fully planar radical 
backbone. In order to get good agreement with experimental results, the amino group 
had to be rotated about the C4-N5 axis, as is illustrated in Figure 5.12. 

 

 
  
 
 
 
 
 
 
 
 

 

Figure 5.12: For the R2 radical in a single molecule approach, agreement between 
experiment and theory is only possible when the amino group is rotated about a specific angle 
α=H10-N5-C4-C2. In the case of [82], α equals about 40º while in [83] π−α was determined 

at 22.4º. Figures are taken from the respective papers, and in the latter paper a different 
rotation angle was defined (hence π−α). 

Both studies proposed final geometries with H10-N5-C4-C2 dihedral angles that 
apparently differ substantially from the approximate 80° of our ab-initio results. 
However, since the amino group rotation of these geometries was altered to fit the 
experimentally proposed hyperfine coupling constants and considering the symmetry 
of the plots in Figure 5.12, equally sound agreements between experiment and 
calculation can be obtained at a rotation angle between 70° and 80°. In contrast, by 
explicitly accounting for the molecular environment of the central radical this 
‘manual’ adjustment of the amino group rotation is no longer necessary. 

The overview of the different results and discrepancies with experiment in Figure 
5.10 learns that most of the cluster and the periodic calculations succeed in a very 
satisfactory reproduction of the amino-proton hfcc's. Two calculations emerge from 
the general pattern: those corresponding to the B3LYP/AM1/6-14 methods. Their 
optimized geometries are very unrealistic, as already mentioned, and they obviously 
result into large discrepancies as noticed in the unsound coupling constants of the 

π−α = 22.4º α = 40º 
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three amino protons. The PM3/PM3/14, B3LYP/PM3/6-14 and BP86/PW geometries 
produce a comparable absolute error over all amino proton hfcc’s (15 to 25 MHz in 
total). For the PM3/PM3/6 geometry they are in somewhat better agreement with 
experiment, although the error is still quite large for proton H12. Figure 5.10 also 
learns that the size of the basis set has a substantial impact on the accuracy of the 
results. Among the three BLYP/I-III/6 geometries, the best agreement with 
experiment is reached by the model corresponding to the most extended basis set. 
This is probably due to a more reliable reproduction of the hydrogen bridges. 

5.5 CONCLUSIONS 

The geometries and hyperfine coupling constants of the R2 radical of L-α alanine 
have been computed using primarily density functional theory in both cluster and 
periodic models. The calculated results have been compared with the experimental 
values obtained from X-irradiated crystals of L-α alanine at 295 K. A detailed 
investigation has been made on the optimized geometries in a variety of model space 
approaches using different levels of theory and their impact on the various hyperfine 
coupling constants has been studied. This work can be regarded as an extension of 
previously done work [82, 83] where the lack of environmental effects was 
commonly accepted as inadequate for an accurate description and reproduction of 
quantities that are strongly geometry-dependent. The most dramatic change in the 
geometry due to the crystal environment on the alanine radical in its zwitterionic 
form is the deviation of the radical backbone from its planar skeleton. This deviation 
of planarity is a prerequisite for the satisfactory reproduction of the isotropic 
hyperfine coupling constants of the nitrogen atom and the amino protons. On the 
other hand the non-planarity hinders the reproduction of the experimental averaged 
methyl proton hfcc's. We attribute this discrepancy to temperature effects, since the 
present static calculations correspond to a situation at zero temperature, while the 
experimental measurement has taken place at room temperature. Thermal agitation 
probably weakens the strength of the intermolecular hydrogen bridges, breaking 
down the forces keeping the central radical R2 in the non-planar conformation. This 
picture would suggest a tendency to a more planar structure as the average 
conformation, giving a probable interpretation of the relatively good results obtained 
from the B3LYP/0/0 and B3LYP/Onsager/0 calculations on isolated molecules. We 
stress the overall-success of the periodic calculations. They have posed considerably 
less convergence problems than most of the cluster calculations. The optimized 
geometries resemble those of the most advanced cluster results and the overall 
agreement with the experimental hfcc's should be emphasized and is best illustrated 
in Figure 5.10. 
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Chapter 6. Radiation-induced radicals in α-glycine 
REFERENCE: [100], [101]. 

6.1 BACKGROUND 

Ever since the first EPR analyses of the radiation-induced radicals in solid-state 
α-glycine – the simplest amino acid – a vast amount of studies have appeared 
concerning their precise structure, both from an experimental and theoretical point of 
view. 

In the mid 1950’s, two groups first observed a triplet in the EPR spectrum of 
glycine crystals, irradiated with either X-rays [102] or γ-rays [103], and both 
attributed this signal to a radical of type R-•CH2. Even so, the existence of a second 
radical in the glycine lattice was suggested, based on unresolved fine structure in the 
spectrum. Ghosh and Whiffen [104] suggested this species to be a radical in its 
zwitterionic form, +NH3-•CH-CO2- (or R1), and were the first to analyze nitrogen 
and several proton hyperfine coupling tensors for this radical. This structure – 
generated by hydrogen abstraction from the central carbon atom of glycine – was 
later confirmed [105], and eventually all proton hyperfine coupling tensors were 
determined accurately using the ENDOR technique [106]. The R-•CH2 radical was 

subject to some controversy [102, 107], but eventually the •CH2COOH structure was 
proposed [108], a deamination product of glycine (labeled R2). Later on, several 
other – minor or transient – radicals were detected in the irradiated lattice [109, 110]. 
Glycine radicals have also been reported in liquid phase [111] and even in the gas-
phase [112], but only in solution an EPR analysis was performed. In this study, 
however, we will solely concentrate on the R1 radical +NH3-•CH-CO2- in solid-
state glycine as it is the major paramagnetic species formed at room temperature and 
because it closely resembles the zwitterionic glycine molecule in the solid state. 
Based on the work of Ghosh and Whiffen [104], several other EPR analyses were 
made for this glycine radical. Hedberg and Ehrenberg [113] suggested some 
corrections for the proton hyperfine tensors, based on a spectral resolution 
enhancement technique. More recently, Sanderud and Sagstuen [114] made an 
elaborate study of irradiated glycine crystals, using EPR, ENDOR and ENDOR-
induced EPR (EIE). They measured enhanced hyperfine tensors for the discussed 
radical, but also detected three new paramagnetic species (among which R3 and R5). 
An overview of four of the proposed structures in that paper is presented in Figure 
6.1 and is illustrative of the complexity of the glycine radiation chemistry. 
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Figure 6.1: Overview of radicals identified in [114].  

Prompted by the wealth of experimental results, several theoretical studies have 
been performed on glycine and its associated radicals [115, 116, 117, 118]. However, 
for calculated EPR parameters to be in accordance with experiment, a decent radical 
conformation has to be obtained first and this is somewhat problematic with 
zwitterionic amino acids. As mentioned earlier, it has been shown that the 
zwitterionic form of a single glycine molecule in vacuo is not stable and is subject to 
an intramolecular proton transfer thus adopting a non-ionic form [115]. Similarly, the 
zwitterionic form of an isolated glycine radical also does not correspond to an 
energetic minimum [116]. Therefore, in order to study glycine or one of its derived 
radicals in solid state (or solution), it is essential to account for intermolecular 
environmental effects in one way or another. Barone et al. addressed this problem by 
imposing constraints on a single glycine radical during optimization in vacuo [116]. 
Others have kept the radical in its zwitterionic form by using continuum models 
[119]. Within this methodology, Ban et al. [117] obtained the isotropic and 
anisotropic hyperfine couplings for all glycine radicals of Figure 6.1 and compared 
these with experimental solid-state data. Using a conductor-like variant of the 
polarisable continuum model (CPCM), Rega et al. [118] calculated the vibrationally 
averaged isotropic hyperfine coupling constants for comparison with solution EPR 
couplings. 

Despite the evident usefulness of these single molecule calculations, one very 
important experimental parameter is not analyzed in this approach: the principal axes 
of the hyperfine interaction tensor. The analysis of this parameter is complicated 
within a single molecule approach, as it is very tricky to insert the same reference 
axis system as was done in the experiment. Still, it is possible, using either of the two 
schemes mentioned in section 4.2.1. Another way to insert the reference frame is to 
include an explicit part of the surrounding crystal lattice in the calculation, as in 
cluster models or in a periodic approach. 
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In this study, therefore, we have modeled the +NH3-•CH-CO2- radical in solid-
state glycine, using most of the model space approaches introduced earlier. In a first 
attempt, the radical defect in glycine is modeled using an adapted single molecule 
approach. In the second approach, high-level DFT cluster models are employed to 
obtain a valid conformation of the radical. In the third approach, ab-initio periodic 
calculations are performed. The results of all these optimizations are then used to 
calculate the EPR parameters for the different conformations. To also examine the 
influence of the neighboring lattice on the electronic structure of the central radical, 
EPR calculations were performed both on the single radical and on the radical in its 
cluster environment. During the subsequent analysis of the spectroscopic properties, 
special attention is paid to the reproduction of the calculated principal axes of the 
hyperfine tensor. 

6.2 MODEL SELECTION AND COMPUTATIONAL DETAILS 

The α-glycine crystal reveals space group symmetry P21/n and has four glycine 
molecules in the monoclinic unit cell. In what follows, we refer to the atomic lattice 
coordinates of a recent X-ray diffraction study at 23 K [120] where also the unit cell 
constants were determined as a=5.087 Å, b=11.773 Å, c=5.460 Å and β=111.99º at 
the specified temperature. 
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Figure 6.2: Four enlarged unit cells (original unit cell doubled in a- and c-directions), 

illustrating the hydrogen bonding scheme in solid-state α-glycine. (a) Layers of glycine 
molecules are formed within the crystal by short hydrogen bonds (interactions a and c). (b) 
One long hydrogen bond and a short Van der Waals contact hold together adjacent layers 

(interactions b and d, respectively). 

As is illustrated in Figure 6.2(a), the glycine crystal structure can be best 
described as consisting of layers, perpendicular to the b axis, which are formed by 
two short hydrogen bonds (O4-Ha=H6-Oa=1.748 Å and O5-Hc=H7-Oc=1.821 Å). 
The atomic numbering is defined in Figure 6.3. Adjacent layers are held together by 
a slightly weaker hydrogen bond (O5-Hd=H8-Od=2.04 Å) and a short van der Waals 

contact (O4-Hb=H8-Ob=2.387 Å), as shown in Figure 6.2(b). Considering the last 
interaction to be an extremely weak hydrogen bond, an actual network of bifurcated 
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hydrogen bonds mainly keeps the glycine crystal structure together. These and other 
representative geometrical features are listed in the left column of Table 6.1. 

Table 6.1: Overview of selected geometrical features for optimized crystal and radical 
geometries, in comparison with experimental crystal structure data, taken from [120]. Units of 
bond lengths are Angstroms. The atomic numbering scheme refers to that presented in Figure 

6.3. The B3LYP/Onsager/1 geometry is taken from Ban et al. in [117]. 

Based on the crystal geometry, three different model space approaches were put 
together to describe the glycine radical within the crystal lattice, each with increasing 
complexity. In all models, (partial) geometry optimizations were only performed on 
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the central radical. For the calculations incorporating explicit crystal lattice 
molecules (cluster and periodic approaches), the atomic coordinates of these were 
fixed in space at the experimental geometry. 

6.2.1 Single molecule approach 
An initial geometry for the radical was obtained by removing a -CH2- hydrogen 

from the original glycine crystal structure as to obtain a +NH3-•CH-CO2- structure. 
Geometry optimization calculations were then performed within a “Partial 
Optimization” computational regime, outlined in detail in section 4.2.1. Applied to 
glycine, this scheme essentially implies that only the C2 and H9 atoms were allowed 
to relax, while all other atoms were kept fixed at their original position in the crystal 
structure during optimization. To allow for the determination of the hyperfine tensor 
principal directions later on, the partial geometry optimizations were performed 
using the “Fixed Axes” approximation (see also section 4.2.1) with the Gaussian03 
software package [31]. This keyword constrains the software package not to shift or 
rotate the Cartesian coordinates of the radical model with respect to the reference 
frame and so a direct link with the original crystal axes is preserved. 

The calculations were performed within a Density DFT framework, employing 
the B3LYP functional [28]. Molecular orbitals were expanded in a triple-ζ 6-311G** 
basis augmented with single d and p polarisation functions [33]. In what follows, we 
will refer to the results of these calculations with the B3LYP/1 shorthand. 

6.2.2 Cluster approach 
A cluster model of glycine molecules was constructed in accordance with the 

structure of the α-glycine crystal as determined from X-ray diffraction [120]. In this 
lattice, an initial cluster was obtained by considering all molecules that are engaged 
in hydrogen bonds with a central glycine molecule. This way, a model space of 7 
molecules was constructed, involving all hydrogen bonding interactions taking place 
between one glycine and its crystalline environment. Again a starting geometry for 
the radical +NH3-•CH-CO2- was obtained by abstracting one -CH2- hydrogen atom 
from the central glycine molecule. This model is shown in Figure 6.3. 

 



Radiation-Induced Radicals in α-Glycine 

 89 

 
Figure 6.3: B3LYP/PM3/7 optimized geometry for the glycine radical, illustrating the model 

space in the cluster approach. Yellow dashed lines give an enhanced view of the hydrogen 
bonds presented in Figure 6.2. 

The radical structure was then fully optimized within the cluster in search for 
conformations with minimal energy. Initially, a layered ONIOM approach of the 
system was adopted, since it proved quite successful and cost-effective in the 
analogous study on the radiation products of L-α-alanine. In this ONIOM scheme, 
the central radical makes up the ‘inner’ layer and is treated at a high level of theory 
(DFT-B3LYP [28] with 6-311G** basis set [33]) while the surrounding glycine 
molecules – the ‘outer’ layer – are described using a semi-empirical PM3 
Hamiltonian [36]. The optimized glycine conformation thus obtained will be referred 
to with the abbreviation B3LYP/PM3/7. 

Subsequently, a second, larger cluster was also considered within this 
methodology, obtained by extending the original cluster of six with four additional 
lattice molecules, all having at least one atom closer than 4.0 Å from the center of 
mass of the central glycine radical. The resulting model space – thus consisting of 
one radical and nine surrounding molecules – was also subjected to the ONIOM 
optimization mentioned above, and the resulting conformation is referred to as 
B3LYP/PM3/10. 

Additional calculations were performed on the small cluster, treating both glycine 
radical and lattice molecules at a full ab-initio B3LYP level, with a 6-311G** basis. 
The results of these quite exhaustive calculations will be labeled B3LYP/7. No 
calculations were performed on the large cluster at this level, as it would impose 
severe stress on computational resources.  

To assess the accuracy and validity of the ONIOM and full ab-initio levels of 
theory to describe the intermolecular interactions within the crystal, complementary 
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calculations were performed on a small cluster of 7 undamaged glycine molecules. 
Analogous to the L-α-alanine study, the optimization procedure presented above for 
the B3LYP/PM3/7 and B3LYP/7 approaches was reapplied on an intact central 
glycine molecule. The resulting geometrical parameters (which are given in the left 
side of Table 6.1) allow for a direct comparison with the experimentally determined 
conformation in the crystal lattice. 

6.2.3 Periodic approach 
To properly simulate the radical in the crystal lattice within a periodic approach, it 

is necessary to double the unit cell in the a- and c directions to ensure that the radical 
defects are well separated from each other. The resulting orthorhombic supercell 
contains 15 glycine molecules and the central radical. The structure of the radical 
was optimized by using a simulated annealing technique as proposed by Car and 
Parrinello [70]. In this scheme, the interatomic forces are calculated on the "fly" from 
the instantaneous electronic potential. For glycine, the global minima of the radicals 
at T=0K were localized by simultaneously optimizing the electronic and nuclear 
degrees of freedom. For the geometry optimizations the structure of the radical was 
allowed to relax, while the coordinates of all other atoms were kept fixed at their 
experimental geometries. All periodic calculations were performed with the CPMD 
molecular dynamics program [69]. Very soft pseudopotentials of the Vanderbilt type 
were used to account for the core, with use of an energy cutoff of 25 Ry (1Ry=1314 
kJ/mol) for the plane wave expansion [97]. The electronic structure is described 
within the DFT formalism with use of the BP86 gradient corrected functional [23, 
24, 25]. 

Similarly as for the cluster approach we also adopted the periodic model on the 
undamaged glycine crystal lattice in which a central molecule was allowed to relax 
and its neighbors were kept fixed at their experimental positions. The resulting 
geometrical parameters are also given in Table 6.1 and a comparative study of the 
experimental and theoretical geometry enables us to assess the accuracy of these type 
of calculations. 

6.2.4 EPR calculations 
The Gaussian03 software package [31] was used to calculate isotropic and 

anisotropic hyperfine couplings, as well as the associated principal axes. This was 
done using a B3LYP functional [28] within the DFT framework and employing a 6-
311G** basis set [33]. 

For cluster or periodic lattice models, the EPR parameters were initially 
determined solely on the optimized structure of the central radical, without taking 
into account the neighbors. Hence, these are effectively single molecule EPR 
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calculations. To evaluate the influence of neighboring lattice molecules on the EPR 
parameters of the central radical and thus on its electronic structure, the paramagnetic 
properties were also calculated for the full cluster. The results of these calculations 
will be referred to with the additional label “(full)”, as the complete model space was 
accounted for in the EPR calculation. Similar calculations within a periodic approach 
were, however, impossible as these are not yet implemented in the CPMD code. 

6.3 GEOMETRICAL ANALYSIS 

6.3.1 Radical geometry in single molecule approach 
Considering the main conformational properties of the B3LYP/1 optimized 

radical geometry in the right side of Table 6.1, it is quite obvious that large 
similarities appear with the crystal geometry, apart from the planarity of the radical 
backbone – expressed by the C1-N3-H9-C2 improper torsional angle, that is a direct 
measure of the deviation from planarity for the C2 carbon radical center. For 
completeness, we have also included in Table 6.1 geometrical information on the 
conformation proposed by Ban et al. [117]. This structure was also obtained at the 
DFT level of theory, using a B3LYP functional and a double-ζ 6-31+G** basis, 
within the Onsager solvent simulation approach [119]. The structure – hence labelled 
B3LYP/Onsager/1 – is quite similar to our single molecule geometry, although a 
substantial deviation from the crystal structure is evident for the CO2-group. Both 
the O4-C1-C2-N3 and O5-C1-C2-N3 torsional angles indicate a rotation of about 
20°. These geometrical features can not be reproduced in our single molecule 
approach since only C2 and H9 are allowed to relax. 

6.3.2 Model assessment for cluster and periodic approach 
As mentioned, separate geometry optimization calculations were performed on an 

undamaged glycine molecule adopting both cluster and periodic approaches. By 
consecutively evaluating the difference between these optimized crystal geometries 
and the original crystal structure, an assessment was possible of the capabilities of 
either model approach to treat intermolecular interactions within solid-state glycine. 
The resulting geometrical features of the optimized crystal geometries are given in 
the left side of Table 6.1. 

Bond lengths are most accurately reproduced at the B3LYP/7 level of theory. The 
largest deviation is found for the N3-H7 bond and is limited to 0.02 Å. In contrast, 
substantially larger deviations are reported when part of the cluster is treated at the 
semi-empirical level: the B3LYP/PM3/7 optimized central glycine molecule displays 
particularly elongated N3-H7, N3-H8 and C2-N3 bonds that are up to 0.05 Å longer. 
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Surprisingly, apart from C2-N3 and N3-H7, all predicted bond lengths at the 
BP86/PW level of theory deviate with about 0.03 Å from the crystal structure. 

A similar qualitative pattern can be observed for the dihedral angles. Those of the 
B3LYP/7 optimized central glycine are in remarkable correspondence with the 
crystal, while those of the B3LYP/PM3/7 geometry show that the CO2 group is 
rotated some 10° counter-clockwise about the C1-C2 bond. At the BP86/PW level, 
this rotation is instead reversed to about -10° and also the position of the NH3 group 
is altered, the H8-N3-C2-C1 dihedral angle exhibiting the largest change (12°).  

Hydrogen bond distances are perhaps the most sensitive and powerful indicators 
of the model approach performance to describe intermolecular interactions. These 
distances, both from experiment and theory, are plotted in figure 6.4, subdivided by 
the four types of hydrogen bond interactions occurring in the crystal. Both cluster 
methods accurately reproduce the two short interactions a and c, which are the 
strongest hydrogen bonds. In the periodic approach, on the other hand, their strength 
is significantly overestimated at the side of the amino protons H6 and H7, while it is 
instead underestimated at the O4 and O5 side. This tightening of the hydrogen bond 
at one end and an elongation at the other consequently shifts the whole glycine 
molecule in the direction of the Oa and Oc matrix atoms. Neither cluster nor periodic 
approach succeeds in a very accurate prediction of the long hydrogen bond distance 
(interaction d). The B3LYP/7 method is closest, with roughly a 0.1 Å deviation for 
both H8-Od and O5-Hd. In the BP86/PW optimized geometry, the strength of the 
hydrogen bond is again overestimated at the side of the amino proton, with a 
dramatic 0.3 Å shortening of the H8-Od distance. In the case of a periodic approach, 
clearly the hydrogen bond network of glycine is completely disturbed, which is 
corroborated even further by the erroneously predicted H8-Ob and O4-Hb distances. 
Nevertheless, the latter short van der Waals contact (interaction b) is treated quite 
properly at the B3LYP/PM3/7 or B3LYP/7 level of theory. 
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Figure 6.4: Schematic representation of hydrogen bond distances (in Å) between an 

optimized glycine molecule and the simulated crystal matrix. The four types of hydrogen 
bond interactions are considered separately. 

From this initial assessment it is clear that cluster methods are likely to provide 
the best description of intermolecular forces within the glycine solid state. Among 
these methods, a full ab-initio (B3LYP/7) model is preferable. Despite their only 
limited level of theory, hybrid cluster models (B3LYP/PM3/7) offer an overall better 
description of this crystal than a periodic approach. The latter method is 
computationally quite expensive and predicts too large deviations for the hydrogen 
bonds while the internal structure of the glycine molecule is fairly accurate. 
However, it first has to be established that these results also apply to the interaction 
between a (central) glycine radical and a simulated crystal lattice.  

The failure of the periodic method to describe the weak forces must probably be 
assigned to the use of the gradient corrected functional BP86. However, the results as 
given do not allow a systematic rejection of periodic approaches, but stress the 
importance of the use of a correct functional for the right application. Most periodic 
packages do not include yet the use of hybrid functionals, but improvement can be 
expected in the near future which will allow us then to reassess the accuracy of the 
periodic calculations with more advanced functionals [121]. 

6.3.3 Radical geometry in Cluster Approach 
Nearly identical bond lengths and dihedral angles can be observed for both 

ONIOM optimized structures (indicated as B3LYP/PM3/7 and B3LYP/PM3/10). 
The hydrogen bond lengths in both geometries are also comparable to those of the 
crystal, the O5-Hd and H8-Od distances notwithstanding. Apparently, the effects 
observed in the initial assessment on the optimized crystal geometry do also apply 
here. 
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Figure 6.5: ONIOM extrapolated energies (in 10-3 a.u.) of B3LYP/PM3/7 (x) and 

B3LYP/PM3/10 (!) clusters, as a function of a scan for the C1-N3-H9-C2 dihedral angle. 

Energies are reported relative to a base level of -284.83 a.u. 

Only one feature is clearly differing in both ONIOM approaches: the C1-N3-H9-
C2 dihedral angle, describing the planarity of the radical backbone, switches from 
+11.3° in the B3LYP/PM3/7 structure to –7.7° for B3LYP/PM3/10. This apparent 
incoherency as a result of cluster size expansion prompted us to investigate the effect 
of the radical planarity on the total cluster energy. In Figure 6.5 the total ONIOM 
extrapolated energies of both small (×) and large (!) clusters are plotted as a 
function of the C1-N3-H9-C2 dihedral (relative to a base level of –284.83 a.u.). In 
the upper and lower parts of the graph distinct energetic minima are visible, roughly 
corresponding to the representative planarity values for the optimized B3LYP/PM3/7 
and B3LYP/PM3/10 geometries, respectively. However, for the latter cluster, 
inconsistent energies are obtained for some specific C1-N3-H9-C2 values. This 
discontinuity in the groundstate energy behaviour is obviously unphysical and needs 
special attention. We observe that in these specific unphysical cases, something 
wrong happens with the electronic PM3 wave function. An investigation of the spin 
density learns that a redistribution of the spin has taken place over different 
molecules in the cluster. Summing up all atomic spin densities per molecule, two 
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molecules contribute to the total unpaired spin density (ρα - ρβ) with about 1
2+  

and 1
2− , respectively, in addition to the 1

2+  of the central radical. Although the 

net unpaired spin density of the complete cluster ( 1
2  in total) is still maintained in 

this scheme, a completely unphysical electronic configuration is thus obtained. 
Similar unphysical solutions with the PM3 method – besides convergence difficulties 
– were encountered in a preliminary study (taken up in [101]) on even larger glycine 
clusters – including up to 18 molecules – and have also been recognized in a study of 
the cation radicals in L-α-alanine [50]. Based on these indications of numerical 
instability with increasing cluster size and of the geometrical discrepancies with the 
B3LYP/PM3/7 structure, we decided to reject the B3LYP/PM3/10 optimized 
geometry altogether. 

Comparing the full-B3LYP optimized geometry B3LYP/7 with the 
B3LYP/PM3/7 structure, several subtle, but striking differences can be noticed. 
Apart from an enhanced radical planarity (7.0° instead of 11.3° for C1-N3-H9-C2), 
the overall rotation of the amino group is altered as well. Whereas in the 
B3LYP/PM3/7 structure, this group is rotated 4° about the N3-C2 bond in a 
clockwise direction with respect to the original crystal structure, in the B3LYP/7 
structure it is rotated 4° in a counter-clockwise direction. A similar observation can 
be made for the CO2 group rotation, which is now virtually parallel with its original 
orientation in the crystal for B3LYP/7. These effects are most likely correlated with a 
more correct description within DFT of the O5-Hd and H8-Od weak hydrogen bonds 
between radical and lattice, as observed in the previous section. In fact, all 
geometrical features of the glycine radical and the optimized crystal are comparable, 
apart from the C2-H9 distance and the C1-N3-H9-C2 improper torsion angle, 
evidently. 

6.3.4 Radical geometry in Periodic Approach 
The same observation can be made at the BP86/PW level of theory, where the 

structural parameters of the radical now closely resemble those of the optimized 
crystal geometry. In contrast with the cluster models, the radical backbone is nearly 
planar (almost 0° for C1-N3-H9-C2). The shortening and lengthening effects on the 
hydrogen bonds (see model assessment section) are even more pronounced for the 
radical geometry. Most remarkably, the H6-Oa, H7-Oc and H8-Od hydrogen bonds 
at the side of the amino group are lowered below 1.6 Å. 



Chapter 6 

 96 

6.4 EPR PARAMETERS 

In this section, we will compare the different experimental EPR results with 
calculated EPR parameters for all optimized geometries, as summarized in Table 6.2. 
Here, all hyperfine couplings are presented in MHz and the principal axes of the 
tensors are always given by means of direction cosines with respect to the orthogonal 
reference frame <oa*bc>. 

For reference, we have also summarised the calculated EPR parameters, obtained 
in earlier theoretical (single molecule) studies. The UQCISD/1, B3LYP/CPCM/1 and 
B3LYP/Onsager/1 labels thus refer to the results of Barone et al. [116], Rega et al. 
[118] and Ban et al. [117], respectively. 
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Table 6.2: Calculated EPR parameters for all optimized radical geometries. A summary is 

also presented of relevant EPR parameters reported in earlier experimental (references 
[104], [105], [106], [113], [114]) and theoretical studies (respectively [116], [118], [117]). 
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6.4.1 Comments on the experimental results 
Concerning the overview of past experimental work, several points have to be 

addressed first: 
(i) Although most experimental studies reported temperature-averaged proton 

tensors for the ammonium group [104, 106, 110, 113 and 114], these are not analysed 
nor taken up in the table. 

(ii) The couplings, determined by Ghosh & Whiffen [104], are reduced by 12% as 
suggested in a later communication, to correct a field calibration error [122]. 
Furthermore, the a- and c-axes of the crystal in the original work were later found to 
be misidentified [105] and the direction cosines have been adjusted accordingly in 
the table. 

(iii) In the work of Hedberg & Ehrenberg [113], the positions of the hyperfine 
principal axes were reported with respect to the <oabc*> orthogonal reference frame. 
To allow for comparison, the direction cosines were recalculated with respect to the 
<oa*bc> frame. 

(iv) In a preliminary study of the direction cosines, an incongruence was found 
for the Hexp(β2) and Hexp(β3) principal axes between the Collins & Whiffen paper 
[106] and that of Sanderud & Sagstuen [114]. This was due to a typographical error 
[123] and the anisotropic hyperfine couplings and the direction cosines for the proton 
signals were accordingly adjusted. Only the corrected values and cosines are listed in 
the table. 

(v) As the directions of principal axes cannot be determined absolutely, several 
sign reversals have been made for the direction cosines to improve congruence 
between the different experimental data. Furthermore, all corresponding tensors are 
reported for the same crystal site, whenever possible. There are four molecules per 
unit cell in glycine, but due to its monoclinic nature there are two magnetically 
different classes of crystal sites. The tensors can be distinguished by reversal of the 
sign of the direction cosine with the b axis. 

The collected experimental data thus identify six hyperfine coupling tensors for 
the +NH3-•CH-CO2- glycine radical: one carbon-, one nitrogen- and four proton 
tensors. However, as there is a vast amount of experimental data available, we prefer 
to make first a comparative study of them, facilitating the further analysis and 
comparison with the theoretical predictions. 

Since only one measurement exists of the 13C hyperfine tensor (performed by 
Morton), all calculated EPR results for C2 in the model radical are compared with 
respect to this Cexp signal. 

One of the protons in the radical exhibits α-coupling characteristics. The different 
experiments are in good agreement with each other for this Hexp(α) tensor, except 
for the results of Ghosh & Whiffen [104], where the anisotropic components and 
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especially the direction cosines diverge substantially. As this experimental work is 
quite old (1959) and considering the fact that several errors were identified (cf. 
supra), its results can be considered as outdated by the more recent studies. The 
eigenvectors of the other studies never deviate more than 5º and we will therefore 
retain the most recent study by Sanderud & Sagstuen to compare with the 
computational results of proton H9 in the radical model. 

A similar conclusion can be formulated for the experiments pertaining the 
nitrogen hyperfine tensor Nexp. The results of Collins & Whiffen and those of 
Hedberg & Ehrenberg are in fair accordance with each other, in particular for the 
anisotropic principal values since information of two principal axes is missing in the 
former study. The anisotropic data recorded by Ghosh & Whiffen is not kept for 
further consideration as they completely differ from the two former experimental 
works. We retain the work of Hedberg & Ehrenberg as this is the most recent and 
complete study of the nitrogen hyperfine tensor. 

Merely two studies report on the β-coupling protons in the glycine radical species. 
Only the 1966 paper by Collins & Whiffen accounted for all three β-proton tensors, 
but its Hexp(β2) signal differs substantially from the one reported by Sanderud & 
Sagstuen [123], even though no quantitative analysis was made for Hexp(β1) in this 
last study. In order to present the analysis of the theoretical EPR parameters without 
any bias, we have therefore preferred to compare the calculated parameters of amino 
group protons H6 through H8 with the results of both experimental studies. 

6.4.2 Analysis of the predicted EPR parameters 
All relevant EPR data are displayed in Figure 6.6. The red bars at the top of each 

plot represent the absolute differences (in MHz) between the experimental hyperfine 
coupling constants and the calculated values for the optimized geometries, obtained 
at various levels of theory. The deviation (in degrees) of the three calculated 
hyperfine principal directions with the three corresponding experimental directions is 
schematically presented as black bars at the bottom of each plot. In order to 
systematically retain or reject a theoretical procedure for the reproduction of EPR 
data, i.e. both hyperfine couplings and tensor axes, we introduced two criteria to 
which accepted methods must fulfil. For the isotropic couplings, a maximum 
deviation of 10 MHz is accepted (criterion I), while a deviation of 20° at maximum 
is assumed to be acceptable for the tensor axes (criterion II). These thresholds are 
indicated in Figure 6.6 by horizontal lines. A model approach that violates either of 
these criteria must be considered as unable to reproduce the experimental data in a 
satisfactory way. As a result, they have been assessed in function of criterion I and II. 
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Figure 6.6: Experimental versus calculated hyperfine tensors for the geometries obtained at 
various levels of theory. Absolute differences (in MHz) between calculated and experimental 

isotropic hyperfine couplings are represented as red bars at the top of each graph. The 
deviations of the measured and predicted hyperfine tensor principal directions (in degrees) are 

given as black bars, with - from left to right - minor, intermediate and major anisotropic 
eigenvalues. 

Single molecule calculations 

Based solely on isotropic hyperfine coupling constants, the B3LYP/1 conformer 
offers a moderate agreement with experimental data. For the C2 and H8 couplings, 
substantial errors (about 50 MHz and 20 MHz, respectively) are observed, violating 
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criterion I. The calculated couplings are furthermore quite similar to those predicted 
in earlier single molecule calculations (see table 6.2), apart from the C2 carbon 
coupling which is seriously underestimated in our B3LYP/1 calculation but nicely 
reproduced by the UQCISD/1 and B3LYP/CPCM/1. This disagreement looks 
somewhat surprising but is due to vibrational averaging effects, which are taken into 
account in the latter two studies. The B3LYP/Onsager/1 of Ban et al. [117] and our 
B3LYP/1 approach both predict almost identical couplings. Some slight differences 
appear for the H7 and H8 amino protons (77 MHz versus 60 MHz) but the somewhat 
better experimental accordance for the B3LYP/Onsager/1 prediction can be traced 
back to the additional rotation of the amino group about the C2-N3 bond, which is 
imposed in the model of Ban et al. This internal rotation is not based on first 
principles, but gives an indication of how to improve the agreement with experiment. 

Moreover, the B3LYP/1 geometry does not succeed in predicting overall 
satisfactory principal hyperfine directions. Large discrepancies are noticeable and 
criterion II is violated in all but two cases. A quite good agreement is found with the 
Cexp directions and for H7. The calculated principal axes differ only 10° from those 
of the Hexp(β2) tensor measured by Sanderud & Sagstuen [114]. The largest 
deviations from experiment, on the other hand, are obtained for the N3 and H8 
principal axes. They can rise up to 70° and more. 

If we consider the proton EPR parameters in particular as key probes for the 
accuracy of the proposed structure, a poor result is achieved since both criteria I and 
II are not met for the H8 proton. Therefore, the B3LYP/1 geometry must be rejected 
as is does not yield a good prediction of the EPR data for the considered glycine 
radical. 

Cluster calculations – B3LYP/PM3/7 and B3LYP/7 

In comparison with the very simplified single molecule approach, an important 
improvement is obtained for the H7 and H8 isotropic hyperfine coupling constants in 
both the B3LYP/PM3/7 and B3LYP/7 cluster calculations. The latter geometry 
almost perfectly reproduces the experimentally observed difference in coupling 
constants (20 MHz). On the other hand, the B3LYP/PM3/7 geometry fails for the α-
hydrogen (H9) and the description of the C2 coupling is even worse with respect to 
all other calculations. Apart from the particular C2 hyperfine interaction, B3LYP/7 is 
the only level of theory able to predict isotropic coupling values that meet criterion 
I. 

A similar discussion can be held on the reproduction of the hyperfine principal 
directions. A careful review of the black bars in Figure 6.6 learns that the cluster 
calculations are completely missing the hyperfine principal axes for the nitrogen 
atom N3, but that they nicely succeed in predicting the axes for the four hydrogen 
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atoms. One large discrepancy attracts attention: the two axes belonging to the two 
minor anisotropic coupling components predicted for the H7 proton in the 
B3LYP/PM3/7 approach. The orientations of these axes differ by more than 45° from 
experiment (either Collins & Whiffen [106] or Sanderud & Sagstuen [114]). 
However, we notice that the minor and intermediate anisotropic coupling eigenvalues 
are close to degeneracy (-4.2 versus –4.7 MHz). Eigenvectors of degenerate 
eigenvalues are not uniquely determined. Only the plane of the axes perpendicular to 
the principal axis corresponding to the major (non-degenerate) eigenvalue (+8.9 
MHz) is completely defined, and this plane seems to be reproduced within the 20° 
threshold of criterion II. 

This is a striking phenomenon, which also arises at other levels of theory: one 
component (corresponding to the largest Taniso) which is in excellent agreement 
with experiment, and the two minor components exhibiting large, but equal 
discrepancies with experiment. In all these cases, the two minor Taniso values are 
close to each other, generating large inaccuracies in the determination of the 
eigenvectors. A simple rotation of the last two principal axes about the former well 
determined axis would be sufficient to get an excellent reproduction of all hyperfine 
principal directions. 

Cluster calculations – B3LYP/PM3/7(full) and B3LYP/7(full) 

In an attempt to break this quasi-degeneracy, the size of the model space was 
increased. This is achieved by taking explicitly into account the nearest molecular 
environment of the radical for the evaluation of the EPR parameters. The results of 
these additional cluster calculations are labeled B3LYP/PM3/7(full) and 
B3LYP/7(full), as stated earlier. What could be expected indeed happens: the 
degeneracy of the two lowest eigenvalues of the Taniso tensor is completely 
removed, and the agreement with experiment becomes excellent. This spectacular 
change is observed for H7 in B3LYP/PM3/7(full), for H8 in B3LYP/7(full) and to a 
lesser degree for H6 in B3LYP/7(full). As visible in Figure 6.6, criterion II is well 
met for these protons. 

All discussed cluster approaches utterly fail to correctly predict the N3 nitrogen 
hyperfine tensor principal directions. In addition, any sign of improvement upon 
increasing the level of theory is indiscernible (e.g. comparing the B3LYP/PM3/7 and 
B3LYP/7(full) results). This suggests that either DFT is completely unstable to 
calculate nitrogen hyperfine tensor axes, or that an ambiguity persists in the 
description of the experimental tensor principal directions. Taking into account the 
satisfactory reproduction of the nitrogen hyperfine coupling constant using DFT 
methods on the one hand, and the contradictions between the different experimental 
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studies concerning the nitrogen tensor axes on the other, we tend to assume the latter 
suggestion to be correct. 

The enlargement of the model space has also a beneficial influence on the 
reproduction of the C2 isotropic coupling constant: the value of 64.6 MHz is raised 
to 87.7 MHz in B3LYP/PM3/7(full). This isotropic carbon coupling is still too small 
however to achieve criterion I, but as similar low values are reported throughout all 
other calculations, this can be attributed to the only moderate basis size, as opposed 
to the more specialized basis sets (EPR-II) used in, for instance, the B3LYP/CPCM/1 
approach [118]. Another contributing factor to the underestimation of this coupling is 
the absence of any temperature consideration in our model approaches. Since 
calculations are performed at 0 K in vacuo, temperature effects – such as vibrational 
averaging motions treated in the B3LYP/CPCM/1 and UQCISD/1 models – are not 
taken into account. As reported in [116] and [101], these effects will also 
significantly alter the isotropic hyperfine coupling constants. All other reported 
couplings remain quite comparable. The best agreement for all protons is obtained 
within the B3LYP/7(full) cluster approach, which makes sense considering the 
superior level of theory. 

The improvement of the calculated hyperfine directions restricts to some extent 
the validity of the observation formulated in [118] that “the magnetic properties of a 
glycine radical in its zwitterionic form are scarcely affected by the crystalline 
environment”. As corroborated by the differences between the B3LYP/7 and 
B3LYP/7(full) calculations, only the (proton) hyperfine couplings are largely 
unaffected by the presence of a crystal lattice, but this may not be extended to the 
hyperfine principal directions, where a more elaborate description of the surrounding 
may lift the possible degeneracy, leading to a more accurate determination of the 
axes. 

Periodic calculations 

A good overall agreement with experiment is obtained for the calculated isotropic 
coupling constants of the BP86/PW structure, apart from the Cexp coupling, but this 
is common to all calculations. Nevertheless, criterion I is violated for the H8 and H9 
couplings, although a qualitative agreement with the experimental amino proton 
coupling scheme is maintained. 

On the other hand, the predicted hyperfine tensor principal directions for these 
amino protons largely deviate from the experimental principal axes. Apart from a 
moderate agreement between the BP86/PW H7 directions and the results of Sanderud 
& Sagstuen, a deviation of 30° to 40° on average is obtained for all β-protons. This 
failure to meet criterion II is undoubtedly linked to the incorrect description of 
hydrogen bonds – as argued in sections 3.2 and 3.4 – and confirms that periodic 
calculations with the use of gradient corrected functionals do not meet the 
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requirements of a viable model to predict EPR parameters of a radiation-induced 
radical in glycine. We do, however, want to stress that the EPR parameters in the 
periodic approaches are obtained by performing calculations on the single radical. Up 
to now, no program packages are available that allow the calculation of EPR data 
using the full model space, i.e. a periodic model, with plane waves. Even though 
such calculations are likely to cause an improvement, the hydrogen bonds deviate too 
much in this approach to retain the model. Further model development is therefore 
needed for this type of calculations. 

6.5 CONCLUSIONS 

In this study, we have computed the geometries and EPR parameters of the 
+NH3-•CH-CO2- radiation-induced radical of α-glycine in the solid state. Several 
model spaces were considered, including a single molecule approach, cluster models 
and periodic calculations, all basing on density functional theory. The structural 
characteristics of the obtained geometries have been compared with the experimental 
values obtained from X-irradiated crystals of α-glycine at 23 K. 

In an initial assessment of the efficiency for each approach, it was found that the 
level of theory has a most distinct effect on the description of hydrogen bonds 
interconnecting adjacent glycine molecules within the crystal. It was established that 
a full ab-initio cluster model is the most favorable method and that periodic 
calculations with use of GGA functionals inaccurately account for the hydrogen bond 
interactions. Subsequently, these methods were applied to determine the optimal 
geometry of the glycine radical within the crystal. In this application, however, a 
correct description of hydrogen bond interactions appears essential to yield 
representative EPR parameters for the glycine amino protons, whose internal rotation 
with respect to the crystal is mainly determined by hydrogen-bonding forces. 

In an ensuing, comprehensive study of the EPR parameters, calculated on the 
optimized geometries, both the hyperfine coupling constants and the hyperfine tensor 
principal directions were cross-referenced with selected data, taken from a wealth of 
(albeit sometimes rather old) experimental studies on glycine. In general, the 
isotropic hyperfine couplings are not exactly reproduced, although a qualitative 
agreement is always acquired. Especially the calculated isotropic carbon couplings 
are only a fraction of the actual experimental value. According to literature, these 
deviations must be attributed to other factors such as temperature effects or, to a 
minor extent, basis size effects. Since the trends observed for the calculated isotropic 
hyperfine constants could be transferred to the anisotropic couplings, they have 
consequently not been dealt with in detail. 

In this paper, the relevance of a good reproduction of the hyperfine tensor 
principal axes has been stressed. It can be regarded as a sensitive probe for the 
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accuracy of the proposed methodology to describe the glycine radical. Few levels of 
theory turn out to reproduce the experimental hyperfine principal directions in a 
satisfactory way. Only cluster methods were able to achieve this goal, the B3LYP/7 
model in particular. This agreement was substantially further improved by also 
incorporating the explicit molecular environment of the cluster model in the EPR 
calculations. Predominantly in case of a quasi-degeneracy of the two lowest 
eigenvalues of the anisotropic tensor for the β-protons, the enlargement of the model 
space removes the degeneracy and predicts the axes of the two nearly degenerate 
values within 10° to 15° from the experimental directions. 

The best overall agreement between theory and experiment is observed for the 
B3LYP/7(full) calculations. The isotropic coupling constants are in fair accordance 
with experiment (except for the Cexp coupling) and the hyperfine tensor principal 
directions deviate not much from the experimental ones, in particular for the protons 
where the agreement is very good (always below 13° deviation) and also for C2, 
where the agreement is moderate (never more than 22°). The Nexp principal axes are 
by far not reproduced by any of the proposed models. A possible explanation for this 
failure lies in the inconsistencies in the experimental data. Large discrepancies are 
noticed between the various experiments, which make the validity of the nitrogen 
tensor data questionable. 
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Chapter 7. Radiation-induced radicals in sugar 
systems 

Saccharides play an essential role in most biological processes. They are 
extremely abundant in plants and are vital in the biological energy storage and 
transport systems of animals. The simple sugars D-fructose and D-glucose are of 
particular interest in this respect, since they are the monomeric units of the 
disaccharide sucrose, one of the most widespread sugars in nature. 

 

 
Figure 7.1: Chemical structures for some widespread sugars. 

In recent years, considerable attention has been given to radiation-induced free 
radicals in solid-state sugars, in the light of the radiation treatment of sugar-
containing food. This treatment improves the hygienic quality, as ionizing radiation 
sterilizes and reduces the bioburden. In Belgium alone, about 10000 tons of food per 
year is irradiated on these grounds. From the safety and regulatory point of view, 
identification of irradiated food and determination of irradiation doses is therefore a 
major concern. This has spawned research into the development of dosimetric 
protocols for the various foodstuffs that are suitable for radiation treatment. 
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Figure 7.2: In Belgium, food treated with irradiation should be labeled accordingly. 

In this respect, Electron Paramagnetic Resonance (EPR) spectroscopy might be 
one of the most reliable methods to detect irradiation, because of the relative stability 
of radiation-induced radicals in solid or dried parts of certain foodstuffs. The 
presence of these radicals constitutes a suitable probe for the absorbed doses of 
irradiation, whether applied on purpose or contracted by accident – e.g. after the 
1986 Chernobyl nuclear disaster. Several dosimetric protocols have already been 
established for a number of foodstuffs, such as bone-containing [124] or cellulose-
containing food [125] and more recently, for a limited number of sugar-containing 
foods [126]. Nevertheless, a more general protocol for foodstuffs containing sugar is 
still in a developing stage. Consequently, a number of studies examine the overall 
dosimetric characteristics and the ensuing applications of the sugar system [127]. 
Other studies have – on a more fundamental level – rather focused on trying to 
understand on a fundamental level the nature of the sugar EPR spectra by elucidating 
the identity and structural characteristics of the radicals involved. For this purpose, 
sucrose has been examined using EPR techniques under various experimental 
conditions, such as (frozen) solution [128], powders [129] and single crystals [130, 
131, 132]. Up to now, however, an unambiguous identification of the radiation-
induced solid-state sucrose radicals has yet to be made. Gräsland and Löfroth [131] 
were the first to postulate that in fact two types of radical species coexist in sucrose, 
each located respectively in the glucose and fructose monosaccharide units of 
sucrose. In later studies [132], the number of possible sucrose radicals even 
increased. However, the fact that radicals in the irradiated sucrose crystal may be 
located on the separate monomer sugars, prompted researchers to first investigate the 
EPR characteristics of these simple sugars in detail. 

From another viewpoint, the study of free, radiation-induced radicals in 
carbohydrates is also important for the understanding of radiation damage processes 
in DNA [133, 134], eventually causing cell degradation. It is now widely accepted 
that single-strand breaks in DNA occur via sugar radical intermediates [134, 135, 
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136], derived from deoxyribose in the phosphate sugar backbone, as illustrated in 
Figure 7.3. 

Figure 7.3: The deoxyribose backbone sugar in DNA is a receptive site for possible radiation 
damage. 

Better insights in the radiation damage processes for sugars in general and the 
resulting radical structures may even further improve this understanding of DNA 
damage as a result of irradiation. 

 
Mindful of either viewpoint, we will examine in this work some of the radiation-

induced radicals of β-D-fructose, α-D-glucose and α-L-sorbose. These sugars are all 
isomers of C6H12O6, and their structures are presented in Figure 7.1. Taking into 
consideration that even monomer carbohydrates are substantially larger than the 
average amino acid, cluster or periodic calculations for these systems would require 
considerably more computational resources. For that reason, we have in this work 
only performed single molecule calculations. Yet, as will become clear, even such a 
fairly simple model space approach can render quite good qualitative (and sometimes 
quantitative) results. 
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Chapter 8. Radiation-induced radicals in β-D-fructose 
REFERENCE: [137]. 

8.1 BACKGROUND 

It was only recently that an EPR study was conducted on irradiated solid-state β-
D-fructose using ENDOR and EIE [138]. This work reports the identification of two 
dominant radicals indicated as F1 and F2. Both radicals are characterized by three β-
type proton hyperfine couplings, as detected by the EI-EPR experiment. This would 
suggest that the unpaired electron of both fructose radicals interacts with three 
protons yielding six hydrogen hyperfine tensors. However, only five tensors have 
been determined with ENDOR, since the missing tensor in F2 probably corresponds 
with a small hyperfine interaction that could not be determined unambiguously (see 
Table 8.1). 

 
Experiment

Aiso Taniso Aaniso Axes
-4.2 92.7 -0.448 -0.253 0.858
-2.9 94 0.675 -0.724 0.139
7.1 104 0.586 0.642 0.495
-4.1 33.2 -0.476 0.86 0.185
-2.4 34.9 -0.78 -0.51 0.362
6.6 43.9 0.406 0.028 0.914
-3.3 6 -0.318 -0.946 -0.066
-1.7 7.6 -0.225 0.008 0.974

5 14.3 -0.921 0.325 -0.215
-3.6 83.9 -0.479 -0.365 0.798
-3.2 84.3 0.642 -0.766 0.035
6.8 94.3 0.598 0.529 0.601
-3.9 39.2 -0.262 0.929 0.263
-2.7 40.4 -0.852 -0.351 0.389
6.5 49.6 0.453 -0.122 0.883

F2_β1 87.50

F1_β1 96.90

F1_β2 37.30

F2_β2 43.10

F1_β3 9.30

 
Table 8.1: Experimental hyperfine coupling constants and direction cosines of radicals F1 

and F2 as determined in [138]. Aiso, Taniso and A values are in MHz; direction cosines are 

referred to the abc reference axis system of the crystal. 

In a preliminary computational study on the radiation-induced radicals in fructose 
and sucrose [139], a model structure conform Figure 8.1 was tentatively 

proposed for both radical species in fructose. This identification relied mainly on 
a close match between experimental and calculated isotropic hyperfine couplings in 
four distinct conformations, differing only in a rotated position of the CH2OH group. 
However, the best fit of the theoretical isotropic hfcc’s with the experimental data 
was never found sufficient to distinguish between any of these four conformations. 
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Furthermore, it was suggested that both paramagnetic species are in fact 
manifestations of the same type of radical – generated in two slightly different 
orientations with respect to the crystal matrix – which would explain the significant 
similarity between the principal values and axes of the β1 and β2 hyperfine tensors in 
F1 and F2 [138]. An unambiguous differentiation between these two species was 
nevertheless impossible, as the accuracy of the adopted computational approach 
proved insufficient. 

O

COH
H

H

OH
H

OH H

H

OH

 
Figure 8.1: model structure for the fructose radical as proposed in [138]. 

8.2 MODEL SELECTION 

β-D-Fructose adopts the pyranose form in the crystalline state. Its structure was 
thoroughly examined by Takagi and Jeffrey in a neutron diffraction study [140]. 
They reported that the crystal is orthorhombic (space group P2⊥2⊥2⊥) and that its 
unit cell – with dimensions a=9.191, b=10.046 and c=8.095 – contains four fructose 
molecules. The structure of one of these molecules is visualized in Figure 8.2. In 
view of the fact that Vanhaelewyn et al. [138] reported three β-type couplings for 
both detected radical species, only a limited number of initial radical geometries can 
be proposed from the undamaged fructose crystal structure that meet the 
experimental requirements. Radical models were selected, starting from the 
assumption that in the process of radiation-induced radical formation, the pyranose 
ring structure of fructose was preserved. Furthermore, we required the models to be 
neutral. Starting from these assumptions, all possible homolytic cleavages of the 
fructose ring substituents had to be considered. 
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Figure 8.2: Molecular structure of β-D-Fructose as determined by neutron diffraction [140] 
and the optimized geometries of the proposed model radicals. 

First, we looked at the possible radiation products with an abstracted hydroxyl 
group. By removing the OH group from carbon atoms C2 through C6 in the 
undamaged molecular structure of fructose, these carbon atoms become radical 
centers. In the case of C2, C3, C4 and C6 a structure is generated with one hydrogen 
directly bound to the carbon carrying the unpaired electron. The hyperfine coupling 
of this proton would undeniably be visible experimentally as it displays the α-type 
characteristics. Since both F1 and F2 only display three β-type couplings in the 
experiment, the aforementioned radiation products can be eliminated. Abstraction of 
the OH group from C5 does not yield a structure with an α-type proton, but is instead 
characterised by an unpaired electron that is presumably delocalised over C5 and O1. 
Furthermore, at least three protons are suitably located to produce a β-type coupling 
with the radical center: the protons of the hydroxymethyl group at C6, the proton at 
C4, and – through the probable delocalisation over the ring oxygen – both protons at 
C1. Since this structure was potentially consistent with the experimental results, it 
has been retained as a possible candidate for the experimentally observed radicals 
(FA in Figure 1).  
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A second set of possible radicals is formed with the extraction of a hydrogen from 
the undamaged β-D-fructose structure. Hydrogen abstraction from C1 and C6 yields 
structures with an α-type proton so these can be eliminated. The radical created by 
abstracting a hydrogen from C4 can also be rejected as a possibility, since no three 
protons can be found that are in a β-position relative to the unpaired electron. The 
structures with one hydrogen removed from either C2 or C3 – respectively denoted 
by FB and FC in Figure 1 – were further examined in our calculations. Both 
structures are potentially consistent with the experimental data, since at least three β-
type protons can be identified. In FB both C1 protons, the hydroxyproton at O2 and 
the proton at C3 can produce a β-type coupling with the unpaired electron, while in 
model structure FC the protons at C2 and C4 together with the hydroxyproton at O3 
are in a β-position relative to the unpaired electron. 

Finally, a fourth model radical structure was proposed that was generated by 
homolytic cleavage of the hydroxymethyl group from carbon C5. This leaves a 
hydroxygroup directly bound to the radical center, which is most probably 
delocalised over ring oxygen O1 and carbon C5. Four possible β-type couplings can 
be generated in this structure by ring protons H1A, H1B through delocalisation of the 
radical center, ring proton H4 and by the hydroxyproton HO5. This candidate 
structure was labelled FD and is also included in Figure 8.2. 

8.3 COMPUTATIONAL DETAILS 

In total, four model radical structures were proposed that could potentially yield 
EPR parameters in agreement with the experimental results. Extensive single 
molecule calculations were performed on these models to assess the value of each 
model separately. Hence, the four initial geometries for the fructose radicals were 
first further refined by optimization in a DFT framework using the B3LYP functional 
[28]. Molecular orbitals were expanded in a triple-ζ 6-311G basis augmented with 
single d polarisation functions [33]. All calculations were performed with the 
Gaussian 98 package [30]. Subsequently, isotropic and anisotropic components of the 
hyperfine tensor were calculated, as well as the associated eigenvectors. To allow for 
the analysis of the latter parameter, a relative approach – as outlined in section 4.2.1 
– was adopted. In a separate set of calculations (not taken up) an attempt was made 
to perform EPR calculations using the “Fixed Axes” method, but this approach 
proved invalid. 

The EPR calculation was also done using a B3LYP functional in Gaussian 98. 
Even though specialized basis sets exist for EPR calculations (such as the EPR-III 
basis set of Barone [34]), we chose to perform our calculations in a triple-ζ 6-311G 
basis augmented with single d polarisation functions. Representative test calculations 
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with the EPR-III set were performed, but only slight changes in the calculated EPR 
parameters were observed, despite a substantially larger computational cost. A more 
detailed discussion on these test calculations will be given in the next section. 

8.4 RESULTS AND DISCUSSION 

8.4.1 Model structure FA 

As already noted, the model radical FA is obtained by removal of the hydroxyl 
group from the carbon C5 in the fructose molecule. In the optimized radical 
structure, the unpaired spin is mainly located at the carbon atom C5 and to a smaller 
extent at the oxygen O1 with respective spin densities of 0.83 and 0.12. We also 
notice that in the optimized radical geometry the sp3 hybridisation on C5 is partly 
retained with respect to the undamaged fructose molecule. This can roughly be 
verified by the out of plane deviation of the C5 carbon center, as measured by the 
angle between the planes through atoms C6-C4-O1 and C4-O1-C5 respectively. In 
the fructose molecule this angle amounts to –37.4°, while in the optimized radical 
geometry of FA it reduces to –19.2°.  

The most relevant degree of freedom in the single molecule approach of FA is the 
internal rotation of the hydroxymethyl group about the C5–C6 single bond, 
characterized by the O6-C6-C5-C4 torsional angle. As this torsional angle will only 
be fixed in a cluster model calculation due to the formation of hydrogen bonds with 
the surrounding molecules, we investigated the fluctuation of the isotropic hyperfine 
coupling constants of the hydrogen atoms in FA as a function of the torsional angle 
O6-C6-C5-C4. This constitutes just the advantage of the single molecule approach: 
to scan all geometries – allowed by the degrees of freedom – in an attempt to search 
for specific geometries that are suitable for a fair reproduction of the experimental 
data. This should allow us to put forward a fairly accurate conformation for the 
radical in the crystalline state. 
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Figure 8.3: Isotropic proton hfcc’s in model radical FA as a function of the hydroxymethyl 
group rotation (� H1A; × H1B;  H4;    H6A;   H6B; all other proton hfcc’s were close to 

zero throughout the rotation and are therefore not included). The experimental hfcc values are 
indicated by thick solid lines. 

The results of the variation of the torsional angle O6-C6-C5-C4 are given in 
Figure 8.3. As could be expected, the hydroxymethyl proton hfcc's of H6A en H6B 
are largely affected by their position. They show a somewhat sinusoidal behaviour in 
function of the torsional angle. The experimentally measured isotropic hfcc values 
are also displayed in this figure (thick solid lines), and we easily observe that eight 
conformations may possibly lead to a fair reproduction of the experimental results. 
We will first compare the theoretical results with the couplings of the experimental 
F1 species. The large F1_β1 coupling of 96.6 MHz most likely corresponds to the H4 
hfcc, which fluctuates about 90 MHz throughout the rotation of the 
hydroxymethylgroup. The H1A and H1B proton hfcc's remain practically constant 
during the rotation (roughly 8 MHz and –3 MHz respectively), but the H1B proton 
displays a smaller coupling than H1A. If we assign the H1A hfcc to the experimental 
F1_β3 coupling (9.3 MHz), it is clear that one of the hydroxymethyl proton hfcc's 
should correspond with the F1_β2 coupling (37.3 MHz) while the other should be 
close to zero and consequently not detectable experimentally. Figure 8.3 reveals that 
only four conformations succeed in reproducing the three experimental signals of F1 
theoretically:  

• a torsional angle of 49° yields an H6A hfcc of 37.8 MHz corresponding 
with the experimental F1_β2 coupling of 37.3 MHz;  

• a torsional angle of 92° meets the H6B hfcc of 37.8 MHz with the 
experimental estimate; 
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• at 234° a correspondence is found for the H6A hfcc (36.8 MHz), while 
• at 270° the H6B hfcc yields 37.6 MHz.  

The four proposed cases all predict an hfcc for the counterpart proton (H6A or 
H6B) below 6 MHz agreeing with the fact that these signals have not been detected 
experimentally. This observation of four possible conformations is quite analogous to 
the conclusion of an earlier, preliminary study on fructose [139]. 

To disentangle between these four proposed conformations, a detailed study was 
made of the anisotropic components of the calculated hyperfine coupling tensors and 
their corresponding spatial directions. The anisotropic components of the hyperfine 
tensor, however, were all in close agreement with the experimental results and did 
not differ significantly from each other. So, in order to single out the conformations 
that correspond with reality, it is necessary to look at the direction cosines of the 
associated eigenvectors. 

The three principal axes of the experimental hyperfine tensors are specified by 
their corresponding direction cosines with respect to the reference frame, which 
usually coincides with the crystal axes (schematically shown in Figure 8.4(a)). The 
experimental values for the two observed radicals F1 and F2 are reported in Table 
8.1. Since the crystalline environment was not simulated in the present single 
molecule calculations, it is impossible to insert the same reference axis system as was 
done in the experiment. To solve this ambiguity, we adopt a relative method for 
analysing these EPR parameters, as explained in section 4.2.1. This requires that the 
mutual angles between the calculated proton tensor axes are compared with the 
mutual angles between the experimental principal axes of the observed radicals, as 
illustrated in Figure 8.4(b) for the β1 and β3 signals in radical F1. 
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Figure 8.4: (a) The principal axes of the experimental β1 and β3 signals as given by their 
direction cosines with respect to the abc reference frame. (b) displays the mutual angles; the 
principal axes of the hyperfine tensors are specified by their corresponding anisotropic value 

(in MHz). 

In this way we eliminate the choice of the reference axis system and we obtain an 
additional reliable tool to differentiate between the four conformations proposed by 
the theory. It should be stressed that there is still some ambiguity in fixing the 
relative angles (ϕ or π-ϕ) due to the fact that the absolute sign of the experimental 
direction cosines cannot be determined. Furthermore, it was not determined in the 
experiment whether all reported proton tensors refer to the same magnetically 
distinguishable site in the crystal lattice. In the case of fructose, there are four such 
sites, as the orthorhombic unit cell contains four molecules. Consequently, we must 
take into account that the tensor eigenvectors can be located in different spatial 
quadrants. These ambiguities were taken into consideration in our analysis of the 
relative angles, which are reported in Table 8.2 along with their calculated 
counterparts. 

 
 
 
 
 
 

(a) 

(b) 
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Table 8.2: Comparison of the angles between the calculated principal axes of the FA proton 

hyperfine tensors (calculated for a torsional angle of 234º) and the angles between their 
experimental counterparts. 

It is found that the angles between the principal axes, calculated for the 
conformation at 234° are in close agreement with the angles between the 
experimental F1 signals. The other conformations do not succeed by far in 
reproducing the experimental findings. It should be noted, however, that the smallest 
two anisotropic components for the H4 proton have been switched to allow for a fair 
comparison. This means that, for the conformation at 234°, the eigenvector for the –
2.0 MHz anisotropic component of H4 matches with the eigenvector of the –4.2 
MHz experimental component of F1 and likewise the –5.3 MHz eigenvector of H4 
matches with the –2.9 MHz F1 experimental component. This interchange is not 
dramatic since both components can be considered near degenerate, and is supported 
by a theoretical analysis of the angles formed by the H4 principal axes with those of 
the two other protons H6A and H1A. The reason for this switch between the two low 
anisotropic component axes can be attributed to the fact that the present calculations 
did not involve any simulation of the molecular environment. Apart from this 
interchange, all anisotropic and isotropic proton hyperfine couplings in experimental 
species F1 are in close agreement with the coupling values in model radical FA, as 
summarized in Table 8.3. 

 

F1_β1
Aiso 96.9

Taniso -4.2 -2.9 7.1
-3.3 71.036 62.536 145.684
-1.7 20.876 91.278 69.181

5 81.614 152.525 115.934
F1_β3 9.3

F1_β1
Aiso 96.9

Taniso -4.2 -2.9 7.1
-4.1 81.124 156.700 68.618
-2.4 37.917 96.143 127.248
6.6 53.510 67.617 44.947

F1_β2 37.3

F1_β2
Aiso 37.3

Taniso -4.1 -2.4 6.6
-3.3 132.387 45.039 102.461
-1.7 72.890 58.379 36.969

5 47.316 61.648 124.127
F1_β3 9.3

F2_β1
Aiso 87.5

Taniso -3.6 -3.2 6.8
-3.9 90.213 150.479 60.465
-2.7 32.147 105.333 117.490
6.5 57.834 65.468 42.471

F2_β2 43.1

H4
Aiso 87.410

Taniso -2.005 -5.274 7.279
-4.309 84.201 75.447 164.286
-2.886 10.147 83.388 82.338
7.195 81.705 163.958 103.634

7.864H1A

H4
Aiso 87.410

Taniso -2.005 -5.274 7.279
-4.678 76.356 125.998 39.295
-2.979 35.393 108.291 119.132
7.657 58.060 41.787 66.103

H6A 36.768

H6A
Aiso 36.768

Taniso -4.678 -2.979 7.657
-4.309 124.991 50.963 121.595
-2.886 66.230 39.317 60.729
7.195 44.502 86.029 134.223

7.864H1A
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Aiso Taniso A Aiso Taniso A
-4.3 3.6 -4.4 4.1 1.489
-2.9 5.0 -2.7 5.8 1.495
7.2 15.1 7.1 15.6 0.172
-3.1 -5.5 -3.0 -5.7 5.348
-2.6 -5.0 -2.5 -5.2 5.352
5.7 3.3 5.6 2.9 0.183
-2.0 85.4 -2.2 92.7 3.656
-5.3 82.1 -5.2 89.7 3.652
7.3 94.7 7.4 102.3 0.343
-4.7 32.1 -4.8 34.7 1.002
-3.0 33.8 -2.9 36.6 1.026
7.7 44.5 7.7 47.2 0.212
-5.1 -3.4 -5.3 -3.3 4.972
-4.0 -2.3 -4.0 -2.0 4.978
9.1 10.8 9.3 11.3 0.285

-2.7

94.9

H1B -2.4

H1A 7.9

H6B 1.7 2.0

F1_β1

H6A 36.8 39.5 F1_β2

H4 87.4

8.5 F1_β3

Conformation at 234º
Experimental 

Match6-311G* EPR-III
Δdirection

 
Table 8.3: Summary of calculated proton hyperfine tensor components for the FA 

conformation with a torsional angle of 234º. The Aiso, Taniso and A values (in MHz) are 

reported for a 6-311G* and an EPR-III basis. No direction cosines are given, but anisotropic 
values are ordered in comparison with their experimental counterparts in Table 1. Δdirection 

is the difference (in degrees) between the anisotropic principal axes calculated with both basis 
sets. 

The fair reproduction of the mutual angles between the anisotropic principal axes 
strengthens the identification of the experimental species F1 as having a radical 
structure conform model FA and with a hydroxymethyl torsional angle of 234º for 
O6-C6-C5-C4. An additional calculation was performed on this conformation to 
assess the choice of the basis set used in the calculation of the EPR parameters. EPR 
parameters calculated with an (extended) EPR-III basis – which has been constructed 
by Barone for specific use in this field [34] – are compared to those obtained with a 
6-311G* basis (Table 8.3). We notice only small discrepancies, apart from the H4 
coupling which is substantially higher in the (EPR-III) large basis and is in fact in 
much better agreement with the experimental β1 hfcc (Table 1). The anisotropic 
principal values are nearly identical for both basis sets and the relevant principal 
directions diverge with a maximum of some 4º. So, only for the isotropic hyperfine 
couplings, a better agreement with experimental data is obtained for the EPR-III 
basis. However, since the hfcc’s of H6A and H6B change only in a minor way with 
respect to the 6-311G* calculation, the use of a larger basis set has no effect on the 
final identification of the hydroxymethyl torsional angle at 234º. 

The experimental F2 species also shows three β-type couplings in the EI-EPR 
spectrum that are very similar to the first F1 species. However, only two β-type 
couplings could be determined unambiguously with ENDOR. From Figure 8.3 it is 
clear that the experimental isotropic hyperfine coupling constants of F2 are 
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reproduced at four possible conformations of FA, differing from the previous four 
conformations by only a small fraction of the hydroxymethyl torsional angle (about 
4º). This minor difference is due to the extreme sensitivity of the isotropic hfcc’s to 
slight changes in the relative position of the hydroxymethyl protons with respect to 
the unpaired spin density on the sp3-like lobe of C5. A study of the anisotropic 
hyperfine eigenvectors is again required to disentangle the four conformations. In F2 
however, only the mutual angles between the β1 and β2 anisotropic components are 
available for comparison with calculated results (also taken up in Table 8.2). In 
addition, there is a striking resemblance between these values and those between the 
β1 and β2 signals in radical F1. This indicates that the F2 conformation is very 
similar to the F1 conformation. A detailed investigation of the experimental data 
reveals that the difference in spatial direction of the observed anisotropic components 
are very small (Table 8.4) and are almost all of the same magnitude for β1 and β2. 
Due to the missing β3 signal in F2, there is insufficient ground to make an essential 
difference between the two experimentally observed F1 and F2 species and we 
sustain the conclusion that both exhibit the same radical structure according to the 
proposed FA configuration, but with slightly altered conformations. 

 

Aiso
Taniso -4.2 -2.9 7.1 -4.1 -2.4 6.6
Angle 7.5 6.7 8.9 13.7 10.1 9.2
Taniso -3.6 -3.2 6.8 -3.9 -2.7 6.5
Aiso 87.5 43.1

F2_β1 F2_β2

F1_β1 F1_β2
96.6 37.3

 
Table 8.4: Angles between corresponding principal axes for both β1 and β2 tensors in 

experimental radicals F1 and F2; Aiso and Taniso values are in MHz. 

8.4.2 Model structures FB and FC 

By hydrogen abstraction from C2 and C3 respectively, the model radicals FB and 
FC are formed. In both optimized radical geometries, the unpaired electron is 
predominantly located on the carbon atoms – C2 and C3 have spin densities of 0.80 
and 0.81, respectively – but is to some extent delocalised over the attached oxygen 
atoms O2 and O3 with respective spin densities 0.15 and 0.13. Both optimized 
radical geometries display a carbon radical center that retains its original sp3 
hybridisation for the larger part. In FB, C2 has an out of plane deviation of 23.3º 
versus 34.7º in the crystal, as measured by the angle between the planes O2-C3-C1 
and C3-C1-C2. The radical center in FC is also far from planar with an angle of 20.5º 
between the planes O3-C4-C2 and C4-C2-C3 versus 33.9º in the crystal. 
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Since in both FB and FC, the radical center is not located near the hydroxymethyl 
group, rotation about the C5-C6 axis has little or no effect on the spin density 
distribution throughout the radicals and consequently on the proton hfcc’s. This 
degree of freedom can therefore be totally eliminated. On the other hand, rotation of 
the hydroxygroup about the C2-O2 and C3-O3 axes in FB and FC respectively does 
influence the spin density distribution. The isotropic hyperfine coupling constants of 
the principal protons are therefore plotted in Figure 8.5 as a function of these degrees 
of freedom. Both plots display a striking similarity for the hfcc’s of the 
hydroxyprotons (HO2 and HO3) as a function of hydroxygroup rotation. The two 
large maxima in each plot are encountered when the hydroxyproton is either coplanar 
or antiperiplanar to the orbital containing the unpaired electron. The asymmetry in 
both maxima is due to the non-planarity of the radical center and the largest 
maximum is found when the hydroxyproton is antiperiplanar to the partial sp3 lobe of 
the orbital with the unpaired electron. While in only two conformations of model 
radical FB the experimental results are possibly reproduced, model radical FC has 
eight possible conformations. 

 

 
Figure 8.5: Isotropic proton hfcc’s in model radicals  FB and FC as a function of the 

hydroxygroup rotation (� H1A; × H1B; * H2;   HO2;    H3; + HO3;  H4; all other proton 

hfcc’s were close to zero throughout the rotation and are therefore not included). The 
experimental hfcc values are indicated by thick solid lines. 
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In FB, three proton hfcc’s vary significantly upon rotation of the hydroxygroup. 
The hyperfine coupling constants of H1A, HO2 and H3 show a sinusoidal pattern, 
while that of H1B remains practically constant throughout the rotation. In the search 
for a conformation that possibly reproduces the experimental results, H3 most likely 
can account for the β2 signals in both F1 and F2, and H1A can be associated with the 
β3 signal in F1. However, because H1A becomes rather large (up to 30 MHz) at 
some conformations, only the region between 300º and 360º seems acceptable. In 
this interval, the conformation at 319º displays a HO2 hfcc in accordance with the β1 
signal of the experimentally observed F1 radical. Even though experimentally no 
F2_β3 signal was quantitatively detected, Vanhaelewyn et al. [138] report a third 
hyperfine coupling for F2 similar to the β3 coupling in F1. It is therefore safe to 
assume that a conformation in accordance with F2 must be searched for in the same 
region between 300º and 360º. At a HO3-O3-C3-C4 torsional angle value of 323º a 
conformation is found that conclusively exhibits an HO2 hfcc in close agreement 
with the β1 signal of the F2 radical.  

The model radical FC only has three protons with significant hfcc values. The H4 
proton hfcc corresponds with the β1 signals of F1 and F2 and fluctuates around 100 
MHz. The hfcc of H2 remains more or less constant throughout the hydroxygroup 
rotation and accords with the β3 signal of F1. At four conformations – with HO3-O3-
C3-C4 torsional angles of 62º, 151º, 233º and 339º – the HO3 hfcc accords with the 
F1_β2 signal. Similarly, four conformations can be found that have an HO3 hfcc in 
agreement with the F2_β2 signal – at 66º, 147º, 236º and at 337º. 
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Figure 8.6: Anisotropic components of hydroxyproton hyperfine tensors in model radicals 
FB and FC as a function of the hydroxygroup rotation. 

However, particularly large anisotropic components for the hydroxyproton 
hyperfine tensors in all conformations of both FB and FC instructed us to further 
examine these components. Figure 8.6 shows the variation of the anisotropic 
hydroxyproton components as a function of the hydroxygroup rotation. The largest 
component in both charts fluctuates at 20-25 MHz and only drops to 12-13 MHz in 
the region where the hydroxyproton is antiperiplanar to the unpaired electron sp3 
orbital. Similarly, the smaller anisotropic components display couplings of -10 and -
15 MHz respectively, and rise to –5 and –7 MHz in the antiperiplanar region. 
Comparison with the experimental anisotropic components in Table 8.1 clearly 
shows that the theoretical predictions are far too high. Even in conformations where 
the hydroxyproton is more or less antiperiplanar to the unpaired electron orbital, the 
predicted anisotropic components are roughly twice the experimental values. This is 
most likely due to the high spin density on the hydroxygroup oxygen, which assigns 
the hydroxyproton with some α-proton character. 

Despite the large anisotropic components, a number of conformations of both FB 
and FC was further analysed on the basis of the hyperfine coupling tensor direction 
cosines. The FB conformations with a HO2-O2-C2-C3 torsional angle of 319º and 
323º were examined, as were the FC conformations at 233º, 236º, 337º and 339º for 
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the HO3-O3-C3-C4 torsional angle. In all of these conformations, the hydroxyproton 
is more or less antiperiplanar to the unpaired electron orbital and the hydroxyproton 
anisotropic components bear at least some resemblance with the experimental 
components. However, evaluation of the mutual angles between the calculated proton 
tensor components and the angles between the experimental tensor components led 
to no comparison at all. For no conformation theoretical angles were obtained that 
were in agreement with the experimental ones. This fact, together with the 
overestimated anisotropic components, led us to the conclusion that model radicals 
FB and FC are not realistic models for the experimental radicals F1 and F2. 

8.4.3 Model structures FD 

FD is the smallest of all model radicals examined and is created by abstraction of 
the hydroxymethyl group from (undamaged) fructose. The unpaired spin is mainly 
located on the C5 carbon atom with a spin density of 0.80, but is to some extent 
delocalised to the O5 atom (0.12 spin density). Surprisingly, little or no spin density 
resides on the ring oxygen O1, in contrast with the ring oxygen in model radical FA, 
where the unpaired electron was also mainly located on C5, but partially delocalised 
to O1. This is probably due to the large sp3 hybridisation character of the C5 radical 
center in FD. The out of plane deviation of this center, as expressed by the angle 
between the planes O5-C4-O1 and C4-O1-C5, is 24.7º in the model radical versus 
34.5º in the fructose crystal. 
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Figure 8.7: Isotropic hfcc’s and HO5 hydroxyproton anisotropic hyperfine tensor 

components in model radical  FD as a function of the hydroxygroup rotation (* H2;  H4;  
HO5; all other proton hfcc’s were close to zero throughout the rotation and are therefore not 

included). The experimental hfcc values are indicated by solid lines. 

As was the case in FB and FC, the hydroxygroup rotation is the relevant degree of 
freedom that must be examined in the search for a conformation that suitably 
reproduces the experimental data. In Figure 8.7, the significant proton hfcc’s are 
plotted as a function of the rotation of the hydroxygroup about the O5-C5 axis (as 
expressed by the torsional angle HO5-O5-C5-C4). Surprisingly, the H2 proton yields 
a considerable hfcc of about 10 MHz throughout the hydroxygroup rotation, while 
the H1A and H1B protons do not generate substantial isotropic hfcc’s. These proton 
couplings amount to –3 MHz at best and they were therefore not included in Figure 
8.7. This is altogether quite remarkable since the H1A and H1B protons are in a γ-
position with respect to the radical center at C5, while the H2 proton is in a δ-
position. So, only three protons produce a significant hfcc that can be matched with 
the experimental values. The H2 proton hfcc is in accordance with the F1_β3 signal 
throughout the plot and conformations can be found (for instance, at about 270º and 
320º) where the HO5 proton hfcc could correspond with the β1 coupling of either F1 
or F2. The H4 proton hfcc however, fluctuates at about 25 MHz, which is quite small 
in comparison with the experimental F1_β2 and F2_β2 isotropic couplings (37.3 
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MHz and 43.10 MHz respectively). In addition, we found that the anisotropic 
components of the HO5 proton hyperfine tensor are far too large in comparison with 
β1. In Figure 8.7, a plot of these components is also presented as a function of the 
hydroxygroup torsional angle. The similarity with both charts in Figure 8.6 is 
obvious. As a result, no further analysis of the hyperfine tensor eigenvectors was 
conducted and it was concluded that model radical FD is not consistent with the 
experimental results. 

8.5 CONCLUSIONS 

In this study single molecule DFT calculations were used to identify the structure 
of the radiation-induced radicals in solid-state β-D-fructose. Four tentative structures 
were proposed and EPR calculations were performed on the optimized geometries. In 
all four model radicals, the main degrees of freedom – rotation of the 
hydroxymethylgroup or hydroxygroup – were selectively varied and isotropic 
hyperfine coupling constants were recalculated at each point. From these plots, 
insight was gained on the conformations of which hfcc’s were in possible accordance 
with the experimental values. Analysis of the anisotropic hyperfine tensor 
components for all significant protons conclusively led to the elimination of model 
radicals FB, FC and FD. The relevant anisotropic components in model radical FA 
were however in close agreement with experiment. 

Subsequently, four possible FA conformations were selected with isotropic and 
anisotropic hfcc’s conform the experimental values of radical species F1. Based on 
the analysis of the tensor direction cosines of these four conformers, one structure 
was identified that closely matched the experimental direction cosines. The EPR 
parameters of this conformation, with a torsional angle O6-C6-C5-C4 of 234°, 
correspond quite accurately with those of the experimental F1 radical species, both 
for the isotropic and anisotropic hyperfine components as well as for the relative 
directions of the principal axes. 

By comparison of the experimental information on the spatial orientation of the 
measured hyperfine axes between the two radical species F1 and F2, this study is not 
able to differentiate both and sustains the conclusion that the F1 and F2 species are in 
fact manifestations of the same radical, with a structure conform FA, but with 
slightly altered conformations. To further assess this difference, four conformations 
were examined, which were in close accordance with the F2 experimental data, both 
for the isotropic and anisotropic hfcc’s. However, due to the high sensitivity of the 
isotropic hydroxymethyl proton hfcc’s for small changes of the O6-C6-C5-C4 
torsional angle, these conformers are very close to the previous conformers 
associated with F1, which is not surprising. On the basis of the experimental 
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isotropic values, only minor conformational changes are found (about 4º) which are 
not of that extent to further differentiate between radical species F1 and F2, based on 
the single molecule approach. We therefore conclude that both radical species F1 and 
F2, found in the experiments of Vanhaelewyn et al. [138], can be identified as having 
the radical structure FA, possibly with a O6-C6-C5-C4 torsional angle at about 234°. 

Since the absence of a reference axis system introduces an ambiguity in the above 
results, further calculations are necessary to make a clear distinction between F1 and 
F2 in relation to their conformations. A preliminary attempt has already been made, 
adopting a more advanced ONIOM cluster methodology [141]. However, even 
though it initially confirms the findings made in this work, still no clear 
differentiation between both radical species is reported possible. This is most likely 
connected with the occurrence of severe convergence problems in the ONIOM 
approach. Consequently, a periodic approach is perhaps preferable to distinguish 
between F1 and F2. 
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Chapter 9. Radiation-induced radicals in α-D-glucose 
REFERENCE: [142]. 

9.1 BACKGROUND 

The α-D-glucose crystal [143, 144] was already analysed in the early eighties by 
Madden & Bernhard, with a combination of EPR and ENDOR techniques. Aside 
from transient paramagnetic species, four stable radicals have been identified in 
solid-state glucose: two carbon-centered radicals (species I and II), for which both 
EPR and ENDOR data were obtained, and two minor oxygen-centered radicals, for 
which only EPR data were determined. From their experiments, structures were 
suggested for species I and II, based mainly on the near concurrence of some 
hyperfine principal directions in the radical with atom-atom directions in the 
undamaged glucose crystal structure. These proposed structures are represented in 
Figure 9.1 and correspond respectively with the RI-A and RII-C models in Figure 
9.2, which will be discussed later on. 

Figure 9.1: Species I and II, as proposed by Madden & Bernhard. 

The objective of this study is to assess the validity of these models for the carbon-
centered radicals proposed by Madden and Bernhard using DFT methods. As no 
previous theoretical works exist on this matter, we will use – as a first step – a single 
molecule approach to calculate the EPR parameters for the experimentally suggested 
hypothetical structures. Since the required ENDOR data are available for the glucose 
radicals, special attention will be paid to the analysis of the principal axes for the 
calculated hyperfine tensors in addition to the hyperfine coupling constants.
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9.2 MODEL SELECTION 

The crystalline structure of α-D-glucose was obtained from a neutron diffraction 
study by Brown & Levy [145], which is visualized in the center of Figure 9.2. 
Starting from the assumption that the radiation-induced radicals in glucose are 
neutral and that their pyranose ring structure is not broken, several radical models 
can be proposed that could meet the experimental EPR and ENDOR requirements. 
Altogether, seven models were obtained for radical species I and five for radical 
species II, considering all the possible homolytic cleavages of the glucose ring 
substituents. They are all displayed in Figure 9.2. 

 

 

Figure 9.2: Molecular structure of crystalline α-D-glucose and all proposed model radicals. 

Species I is characterised by one α-type and one β-type proton coupling besides a 
weak coupling attributed to a hydroxyproton. The relevant experimental data from 
[144] is listed in Table 9.1(a). To display a similar coupling pattern, a model radical 
structure must contain one proton bound directly to the carbon with an unpaired 
electron and (at least) one other proton further away. The most evident way to obtain 
such a model is to remove a single hydroxygroup. This gives rise to models RI-C, 
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RI-D, RI-E, RI-F and RI-G, which are formed by removing an hydroxygroup from 
respectively C4, C3, C2, C1 and C6. Yet, other groups or atoms can be removed to 
produce a model structure that meets the experimental prerequisites. If we 
homolytically cleave the C5-C6 bond, model radical RI-B results. Finally, model RI-
A is obtained through simple H18 hydrogen abstraction from C6. 

In a similar fashion, model structures can be created with similar characteristics as 
the experimental species II. For this radical, two large β-type proton couplings have 
been identified and no α-type couplings. This pattern is consistent with a partial 
structure CHa-C•OH-CHb where Ha and Hb provide both β-couplings. This 
substructure is present in radical models RII-A through RII-D, which have been 
created by removing a hydrogen atom from the crystal structure on radical centers C5 
through C2, respectively. RII-E appears to have only one β-proton, but in an earlier 
study [137] it was found that the unpaired electron on a carbon atom adjacent to the 
ring oxygen often delocalises over the oxygen. This fact makes RII-E also a valid 
candidate as it imparts proton H17 with some β character. 
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(a) 
Signal Aiso Taniso

(+)-31.4 0.096 0.156 0.983
(+)-2.2 0.974 0.190 -0.125
(-)34.8 -0.206 0.969 -0.134

-5.7 -0.100 0.760 0.640
-4.2 0.990 0.110 0.040
10.0 0.040 -0.638 0.769
-4.8 0.370 0.880 0.320
-2.0 0.240 -0.420 0.880
6.7 0.898 -0.240 -0.370
-5.1 0.770 0.430 0.470
-1.6 -0.630 0.380 0.680
7.1 -0.120 0.815 -0.570

II_β1 95.3

II_β2 89.4

Axes vs. <oabc>

I_α (-)57.8

I_β 19.3

 
(b) 

Proton Aiso Taniso
36.9 -0.175 0.197 0.965
-2.7 0.981 0.114 0.155
-34.2 -0.079 0.974 -0.213
-6.0 0.063 0.725 0.686
-4.1 0.996 0.002 -0.093
10.2 0.069 -0.689 0.722
-14.9 -0.1476 0.3287 0.9328
-9.8 0.9845 -0.0417 0.1704
24.6 0.0949 0.9435 -0.3175
-4.9 0.416 0.840 0.350
-2.4 0.297 -0.489 0.821
7.3 0.860 -0.237 -0.452
-4.9 0.695 0.543 0.472
-3.1 -0.706 0.386 0.595
8.0 -0.141 0.746 -0.651

Proton Aiso Taniso
35.7 -0.201 0.151 0.968
-2.6 0.973 0.148 0.179
-33.1 -0.116 0.977 -0.177
-6.0 0.063 0.746 0.663
-4.0 0.998 -0.036 -0.054
10.0 0.016 -0.665 0.747
-15.4 -0.1537 0.3851 0.91
-9.7 0.9756 -0.0871 0.2016
25.1 0.1569 0.9188 -0.3623
-4.7 0.418 0.849 0.323
-2.4 0.181 -0.426 0.887
7.1 0.890 -0.312 -0.332
-4.8 0.690 0.523 0.500
-3.0 -0.698 0.299 0.650
7.8 -0.191 0.798 -0.572

Partial Optimisation
Axes vs. <oabc>

RI-A  H19 -32.1

RI-A  H17 3.5

RI-A  H24 -12.4

RII-C  H14 83.4

RII-C  H16 78.9

Full Optimisation
Axes vs. <oabc>

RI-A  H19 -30.3

RI-A  H17 3.3

RI-A  H24 -13.4

RII-C  H14 84.6

RII-C  H16 80.1

 
Table 9.1: (a) review of the experimental data published in [144] (b) Overview of the 

calculated EPR parameters for radical models RI-A and RII-C. Results are given for both the 
“Partial Optimization” and “Full Optimization” regimes. All isotropic constants (Aiso) and 

anisotropic couplings (Taniso) are given in MHz. Hyperfine principal axes are always 

specified as direction cosines with respect to the crystal axes <a>, <b> and <c>, respectively. 
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9.3 COMPUTATIONAL DETAILS 

Single molecule DFT calculations were performed on these 12 models using the 
Gaussian 98 software package [30]. Molecular orbitals were expanded in a triple-ζ 6-
311G basis augmented with single d and p polarisation functions [33] and the 
B3LYP functional [28] was used. Initial geometries for the radical models were 
obtained by removing the corresponding atoms from the glucose crystal structure. 
Geometry optimization calculations were then performed on the single molecules 
within two computational regimes. In the first, “Partial Optimization” scheme, only 
the atoms of the substituent groups that are connected with the carbon-centered 
radical are allowed to relax alongside with the involved carbon itself. In the case of 
RII-A, for instance, this means that C5, C6, O12, H18, H19 and H24 are allowed to 
relax, while all other atoms of the molecule are kept fixed at their original position in 
the crystal structure. As the unpaired electron is located on a carbon atom outside the 
glucose ring, an exception was made for model RI-A, where also C5 was allowed to 
relax during optimization, next to C6, O12, H19 and H24. The second, “Full 
Optimization” scheme simply imposes no restrictions on the number of atoms 
allowed to relax. 

Subsequently, isotropic and anisotropic components of the hyperfine tensor, as 
well as the associated eigenvectors were calculated for the (partially) optimized 
structures, adopting the same level of theory. To allow for the determination of the 
hyperfine tensor principal directions, both (partial) geometry optimizations and EPR 
calculations were performed within the Fixed Axes approximation, as outlined in 
section 4.2.1. For glucose, this restriction specifically implies that the orientations of 
the different radicals are constrained to be similar to that of the undamaged sugar in 
the crystal. This way, the calculated tensor directions can also be evaluated with 
respect to crystal axes, albeit those taken from the undamaged crystal structure [145]. 

9.4 ASSESSMENT OF MODEL RADICAL STRUCTURES BASED ON 
EPR HYPERFINE PARAMETERS 

In Figure 9.3, the results of the EPR calculations are summarised for all radical 
models. For each model, the hyperfine coupling constants (in MHz) of the relevant 
protons are mentioned at the top. The deviation (in degrees) of the three calculated 
hyperfine principal directions with the three corresponding experimental directions is 
schematically presented at the bottom. For the radiation-induced radicals of glucose, 
we have primarily concentrated on a correct reproduction of the hyperfine tensor 
principal axes and the deviation from their experimental counterparts. We consider 
the hyperfine coupling constants to be somewhat less reliable when dealing with the 
solid state, as the presence of a Fermi contact term in the expression of the hfcc (see 
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section 3.6), makes this parameter very sensitive to the level of theory. The principal 
axes on the other hand do not depend on this term and the requirement of 
complicated, high-level calculations with extended basis sets (e.g. EPR-III [34]) can 
be eliminated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3: Summary of the results for the EPR calculations with reference to (a) radical 
species I and (b) radical species II. The deviation (in degrees) of the experimental hyperfine 
principal axes from the calculated ones is visualised as a black bar for each eigenvector with 

– from left to right – minor, intermediate and major anisotropic eigenvalue. The hfcc (in 
MHz) for the coupling proton involved is indicated at the top. 

9.4.1 Radical species I 
Taking into consideration the quality of the calculated principal directions for the 

“partial optimization” scheme, two radical models can be found for which the 
deviations from the experimental directions are lower than 30º for the α-proton: 
model RI-A characterised by one α coupling (-32.1 MHz) and one β coupling (3.5 
MHz), and model RI-C with also one α coupling (-46.7 MHz), but with two β-type 
couplings (68.5 MHz and 34.7 MHz). All other model structures produce hyperfine 
principal directions that deviate more than 30º from the experimental α-proton axes. 
Therefore, based on these EPR properties, model structures RI-B, RI-D, RI-E and RI-
G can be rejected as candidates for species I. The principal directions for H19 of RI-
A and H16 of RI-C closely match those of the I_α signal, although the theoretical 
predictions for the hfcc’s are not agreeing quite well with the experimental (-)57.8 
MHz value. With respect to the I_β signal, the principal directions for H17 of RI-A 
deviate not more than 10º, while the average deviation for H17 in model RI-C is 
more than double. Also taking into account that for this latter model, one other, 

(a) (b) 
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rather large β coupling is predicted (H15 with 68.5 MHz), and only one small β 
coupling is observed in the experiment, we come to the conclusion that model RI-C 
can no longer be retained. Model RI-A on the other hand is a viable candidate for 
species I and the agreement with experimental data is even more apparent in Table 
9.1(b). Apart from the hyperfine coupling constants, most values are in close 
agreement with their experimental counterparts in Table 9.1(a). 

The corresponding graph for the “full optimization” scheme in Figure 9.3(a) is 
almost identical to the “partial optimization” graph. Consequently, we come to the 
same conclusion that experimental species I can be identified as having a structure 
conform model I-A. No significant improvement for the hyperfine coupling constants 
is attained in comparison with the “partial optimization” scheme, as is apparent from 
Table 9.1(b).  

Apparently, the reorientations of side chain groups in the “full optimization” 
scheme have no drastic impact on the EPR parameters of glucose. This explains the 
small difference between the calculated parameters in both optimization schemes. 

9.4.2 Radical species II 
The theoretical results are visualized in Figure 9.3(b) and it is quite obvious that 

only for one radical model the calculated hyperfine principal directions are in 
accordance with experiment. For RII-C, the deviation of all proton tensor 
components stays below 10º, in contrast with the other radical models, where 
deviations are systematically larger. This observation can be made in both the 
“partial optimization” and “full optimization” schemes, and is corroborated by the 
hyperfine coupling constants that are in good agreement with the experimental 
values. This conclusively gives evidence that model RII-C presents the actual 
structure for radical species II. 

We note for this specific case the predictive power of the hyperfine tensor 
principal axes. In fact, if only hfcc’s were considered, models RII-B and RII-D 
would also be viable candidates for species II. Analysis of the calculated direction 
cosines however unambiguously refutes these models. 

9.5 CONCLUSIONS 

In 1979, Madden & Bernhard [144] suggested structure RI-A for the experimental 
species I and structure RII-C for species II. In this work, we have confirmed these 
suggestions, by performing single molecule DFT calculations on several possible 
radical models and comparing the resulting theoretical parameters with experimental 
values. Conclusive support for models RI-A and RII-C was found based on the 
accuracy of reproducing the hyperfine principal axes rather than focussing on the 
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exact prediction of the isotropic coupling constants. This criterium is found to be 
highly suitable for the validation of radical models, especially since it is not as 
dependent on the level of theory as the hfcc.  

The case of the radiation-induced radicals of glucose smartly illustrates that single 
molecule calculations within a fixed axes approximation can be quite accurate for the 
calculation and analysis of the hyperfine principal axes. Also, given the fact that 
these calculations are straightforward and very fast, this method can offer a cost-
effective tool for a preliminary, quick-and-easy identification or verification of 
organic radicals in the solid state. However, it is only applicable when radical and 
undamaged sugar molecule are much alike, both in structure and in overall 
orientation with respect to the crystal axes. 
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Chapter 10. Radiation-induced radicals in α-L-sorbose 
REFERENCE: [146]. 

10.1 BACKGROUND 

In a recent combined EPR, ENDOR and EI-EPR study, the paramagnetic adducts 
of irradiated α-L-sorbose were examined [146]. The molecular structure of this sugar 
is shown in Figure 10.1. 
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Figure 10.1: The molecular structure and numbering scheme for α-L-sorbose. 

At 120 K, this system reveals a multitude of radiation-induced radicals, even 
though these species are of a transient nature and decay upon long time storage or 
upon increasing the temperature. ENDOR and EI-EPR have effectively uncovered 
that at least 10 stable radical species contribute to the spectra, which are 
consequently quite complex due to multiple signal overlap. Immediately after 
irradiation, a doublet was found most prominent in the spectra, and this feature was 
examined in more detail. ENDOR revealed that this doublet was in fact due to three 
very similar β-type hyperfine interactions, but it was only possible to quantitatively 
analyze two of the three tensors with EI-EPR. From Table 10.1, it is clear that both 
are very much alike with regard to couplings and tensor axes. 

These interactions can be explained by either the presence of one radical species 
that produces both β-type couplings or by the occurrence of two (similar) radicals R1 
and R1’ within the crystal matrix that account for one hyperfine interaction each. The 
second explanation was eventually favored, based on the combination of 
experimental data and DFT calculations, the latter of which are presented in this 
work.
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a b c
-4,6 0,77 0,14 -0,62
-2,4 0,55 -0,64 0,54
7,0 0,32 0,76 0,57
-4,6 0,63 0,28 -0,73
-2,4 0,70 -0,60 0,38
7,0 0,33 0,75 0,57

R1 67,1

R1' 70,0

Aiso Taniso Eigenvectors

 
Table 10.1: Experimental hyperfine coupling constants and direction cosines of suggested 

radicals R1 and R1’ as determined in [146]. Aiso, Taniso and A values are in MHz; direction 

cosines are referred to the abc reference axis system of the crystal. 

10.2 MODEL SELECTION 

The α-L-sorbose crystal is orthorhombic, with space group symmetry P2⊥2⊥2⊥ 
and per unit cell (dimensions a=6.545 Å, b=18.062 Å and c=6.310 Å) four molecules 
occur, all in a pyranose form [147]. Crystalline disorder has been found for the 
orientation of the sorbose primary alcohol group between two of three possible 
staggered positions. Consequently, two sorbose molecular conformations A and B 
exist in the lattice, each exhibiting one of the two orientations for the primary alcohol 
(O2-H(O2)). This is apparent in Figure 10.2, where also the Newman projections 
along the C1-C2 bonds are given for both conformers. 

Figure 10.2: A and B conformations of the sorbopyranose molecules, illustrating the disorder 
in the structure (top) and Newman projections along the C1-C2 bond (bottom). 



Radiation-Induced Radicals in α-L-Sorbose 

 139 

The occupancy of the A and B conformations in crystalline sorbose is 0.625:0.375 
proportionally. This implies that two hydrogen-bonding arrangements of comparable 
energy are possible in the crystal. 

Starting from the α-L-sorbopyranose structures in Figure 10.2, a few plausible 
radical models can be proposed to account for the R1 and R1’ hyperfine data. Since 
no α-proton hyperfine couplings are observed in the measurements, only radical 
models that lead to β-couplings are relevant. In Figure 10.3, five such radical models 
are proposed, in the supposition that their pyranose ring structures remain intact. 
Radicals formed by hydrogen abstraction at C3, C4 and C5 have been referred to as 
S-I, S-II and S-III, respectively. Also, the irradiation products formed by hydroxyl 
abstraction (model S-IV) or even by hydroxymethylgroup abstraction at C2 (model 
S-V) can be considered. 

 

 
Figure 10.3: Possible radical models by net hydrogen, hydroxyl and hydroxymethylgroup 

abstraction from the intact sorbose molecule. 

10.3 COMPUTATIONAL DETAILS 

Using the Gaussian 98 software package [30], DFT calculations were performed 
within the single molecule approach. The B3LYP functional [28] was employed and 
molecular orbitals were expanded in a triple-ζ 6-311G basis augmented with single d 
and p polarization functions [33]. Initial geometries for the five radical models were 
first generated by removing the atoms involved from the sorbose crystal structure. 
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Geometry optimizations were then performed on these geometries using all three 
optimization schemes mentioned under section 4.2.1 and EPR parameters were 
subsequently determined at the same level-of-theory, using the fixed axes 
approximation. Applied to sorbose, the first “No Optimization” scheme implies that 
EPR parameters are just calculated for the initial geometries. Conversely, no 
geometrical restrictions whatsoever have been implied during optimization in the 
“Full Optimization” scheme. In the intermediate “Partial Optimization” scheme 
on the other hand, only the atoms of the substituent groups that are connected with 
the carbon-centered radical are allowed to relax alongside with the involved carbon 
itself. 

Since two conformations A and B occur in the crystal, all stated calculations have 
been performed for both conformations and are labeled accordingly. 

10.4 ASSESSMENT OF MODEL RADICAL STRUCTURES BASED ON 
EPR HYPERFINE PARAMETERS 

Using the results of the “No Optimization” calculations, an initial assessment was 
made of the validity of the five proposed model radicals. This constitutes just the 
advantage of this primitive approach: to quickly examine all models in an attempt to 
more or less reproduce the experimental data. In table 10.2, the in this way calculated 
isotropic hyperfine coupling constants are presented for all relevant protons of the 
model radicals. 

 

A B
S-I H16 76.8 77.5

H15 70.6 75.1

H17 68.0 67.9

H16 68.4 68.3

H18 80.9 80.1

H19 28.9 28.9

H13 0.0 6.3

H14 50.8 1.0

H15 64.3 69.2

S-V H16 12.8 12.8

S-II

S-III

S-IV

AisoNo Optimization

 
Table 10.2: Isotropic hyperfine coupling constants (in MHz) for all model radicals, obtained 

through the “No Optimization” scheme. 
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It is clear from these “No Optimization” calculations that radical models S-III, S-
IV and S-V are incompatible with the experimental observation of two similar β-type 
proton couplings. While S-III displays three couplings in both conformations A and 
B, S-IV shows only two of significant magnitude, of which, however, one is 
consistently too low (H14 for conformation A and H13 for conformation B) to 
measure up to the experimental 70 MHz. The same applies for S-V where only one 
coupling of a mere 13 MHz is predicted for both A and B conformations in the 
crystal.  

This just leaves S-I and S-II. These radical models were a priori deemed 
interesting as the crystallographic C3---H(C4) and C4---H(C3) directions are quite 
close to the experimental eigenvectors associated with the major anisotropic 
components of both β-type hyperfine tensors, as illustrated in Figure 10.4. Hence, if 
an unpaired electron were mainly located on carbons C3 or C4 (as in radical models 
S-I and S-II), this could result in a hyperfine tensor for H(C4) and H(C3) in which 
the eigenvector corresponding to the major anisotropic component would match 
either of both mentioned experimentally observed eigenvectors. This, of course, will 
only be the case if this particular fragment of the radical geometry is nearly identical 
to that in the crystal structure. 

 

 
Figure 10.4: The eigenvectors corresponding to the major anisotropic components of R1 and 
R1’ closely resemble the crystallographic C4-H(C3) and C3-H(C4) directions, both presented 

as direction cosines with respect to the crystal axes. 
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10.4.1 Radical model S-II 
For radical model S-II, all calculations predict two β-interactions with similar, 

large isotropic couplings in the range of 70-80 MHz. The difference between 
conformations A and B with regard to the calculated EPR parameters is negligible 
and hence we have limited this discussion to conformation A. Disregarding the 
experimental bias towards the occurrence of two distinct radical species, it is 
conceivable that the hyperfine interacting protons H(C3) and H(C5) might account 
for the measured R1 and R1’ signals. In view of the similar magnitudes of both 
experimental and calculated hyperfine coupling constants (the latter presented in 
Figure 10.5(a)), two assignments can be carefully considered: H(C3)"R1 and 
H(C5)"R1’, or H(C3)"R1’ and H(C5)"R1. To verify their possible validity, the 
orientations of the experimental hyperfine principal axes were compared with the 
axes calculated within the three different optimization schemes. 

In Figure 10.5(b), this deviation (in degrees) is schematically presented as a black 
bar for each eigenvector with – from left to right – minor, intermediate and major 
anisotropic eigenvalues. For all optimization schemes, an equivalent pattern can be 
observed. With a deviation lower than 10°, the axis corresponding to the major 
anisotropic component of H(C3) is always quite close to that of either R1 or R1’. The 
match between the minor anisotropic component axis of H(C5) and that of R1’ is 
also quite good but considerably worse with R1. In spite of these moderate 
agreements, all other tensor axes of both H(C3) and H(C5) are way off their 
experimental counterparts with deviations up to 70°. Hence, these dramatic 
discrepancies imply that – regardless of any possible assignment – model S-II must 
be ruled out as a viable candidate for the radiation-induced radical in sorbose. 
Consequently, the potential presence of one radical species that would account for 
both observed β-couplings can also be indisputably rejected, in accordance with the 
experimental postulation. 
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Figure 10.5: (a) Summary of the hyperfine coupling constants (in MHz) for model radical S-
II obtrained with all optimization schemes. (b) Schematic of the deviation (in degrees) 
between the experimental and predited hyperfine principal axes, presented for the two 

possible assignments. 

10.4.2 Radical model S-I 
As Table 10.2 substantiates for the “No Optimization” scheme, both the A and B 

conformations of S-I are characterized by a single, relatively large β-coupling which 
can be assigned to either R1 or R1’. Given that the similarity of the experimental 
hyperfine tensors suggests the occurrence of two comparable radical species, it could 
be further hypothesized that their near identical structures are associated with the 
conformational disorder in the sorbose crystal. Such a link between the R1 and R1’ 
radical species and the A and B crystal conformations would also be detectable, since 
the intensity ratio of the experimental spectra should then correspond to about 
0.625:0.375. Unfortunately, the ENDOR intensity ratio could not be reliably 
determined, and this possibility can hence only be evaluated by way of molecular 
modeling. 

Accordingly, the hyperfine coupling constants as well as the principal tensor 
directions for the A and B conformations of S-I were cross-referenced with the 
measured data of either R1 and R1’, as represented in Figure 10.6. For all 
optimization schemes, the calculated isotropic couplings are given at the top for 
conformation A and at the bottom for conformation B. Conform Figure 10.5(b), the 

H(C3) H(C5) Optimization
70.6 68.0 No
78.4 74.3 Partial
82.2 81.4 Full

Aiso

(a) 

(b) 
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deviation (in degrees) between experimental and predicted principal axes is 
schematically presented as a black bar for each eigenvector with – from left to right – 
minor, intermediate and major anisotropic eigenvalues. 

 

 
Figure 10.6: Summary of the results for the EPR calculations with reference to radical model 
S-I. Calculated hyperfine principal axes are cross-referenced with the experimental axes from 

either R1 and R1’. The deviation (in degrees) is visualised as a black bar for each 
eigenvector. The hfcc’s (in MHz) for the H3 proton in both conformations are indicated at the 

top and bottom. 

The EPR parameters of the not optimized structure are already in quite good 
agreement with experiment. Not only are the coupling constants (76.8 MHz and 77.5 
MHz) very close to those of R1 and R1’, there is an extremely good match between 
the experimental principal axis with major eigenvalue and the calculated axis 
direction. The latter agreement is of course due to the near coincidence of the H(C4)-
C3 direction in the crystal with the concerned R1 or R1’ eigenvectors, as argued 
earlier. For both the A and B conformers, a better overall correspondence is obtained 
with the R1’ experimental data, for which all axis deviations are well below 20°. 

This accordance in particular is even improved in the partially optimized 
structure, where calculated and experimental axes now scarcely deviate 10° at most. 
The predicted isotropic coupling constants, on the other hand, gravely exceed the 
experimental 67-70 MHz. This can mainly be attributed to the conformational 
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changes the radical geometry has undergone during (partial) optimization. In both A 
and B, the C3-C2-C4-O3 improper torsional angle – which can be considered as a 
measure for the planarity of the C3 carbon atom – is reduced from 33.5° in the 
crystal to about 19°. This clearly shows that the atom on which the unpaired electron 
is mainly located – while still far from planar – already indicates some sp2 character. 
Consequently, it can be expected that the spin density in the LEO, the “Lone Electron 
Orbital” virtually perpendicular to the C2-C4-O3 plane and containing the unpaired 
electron for the most part, is increased in the “Partial Optimization” structure as 
compared to that of the “No Optimization” scheme. This effect can explain the 
enlarged isotropic couplings, through the relation specified in Chapter 3 for β-
coupling protons. Again, the experimental data of R1’ best fit the calculated results 
of both the A and B conformers, with axis deviations not surpassing 10°. 

In the fully optimized A and B structures, the planarity of the C3 center is further 
enhanced with C3-C2-C4-O3 angles of 12.3° and 10.7°, respectively. Yet, only for 
the B conformation, a matching increase in the hyperfine coupling constant is 
apparent. The absence of such an increment in the case of A is the result of a drastic 
structural alteration, which is apparent in Figure 10.7, where the latter conformation 
is visibly distorted from the partially optimized structure (also presented). This 
change is brought about by the formation of an intramolecular hydrogen bond 
between H(O3) and O2, which transforms the original chair conformation of the 
pyranose ring into an envelope conformation. Such an interaction would of course 
hardly occur within the solid state, where intermolecular hydrogen bonds retain a 
firm grasp on the orientations of the side chains. The obvious failure of the “Full 
Optimization” scheme in this particular case is further indicated by the deviation 
between the experimental and theoretical hyperfine tensor axes: differences of more 
than 40° are recorded. For B, on the other hand, the optimization scheme is 
successful but no major changes are observed for the axes with respect to the “Partial 
Optimization” structure. 
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Figure 10.7: Geometry of the A and B radical conformations after “Partial Optimization” and 

“Full Optimization”. 

In conclusion, it is clear that radical model S-I can account for the experimentally 
observed radiation-induced radicals in α-L-sorbose. Since all calculations on the A 
and B conformations yield EPR parameters that are in slightly better agreement with 
R1’ than with R1, a direct link between the conformational disorder in the crystal and 
the two measured hyperfine interactions is not very likely. Instead, it is more 
probable that the distinction between R1 and R1’ is caused by the close association 
of the radical with one or more neighboring molecules within the crystal lattice. This 
association can be covalent in nature (i.e. bond rearrangements between radical and 
molecule(s)), but is more likely due to altered hydrogen bonds or Van der Waals 
interactions. 

Under the assumption that a connection could occur between the radical and only 
one molecule of the crystal lattice, four possible radical-molecule pairs (A-A, A-B, 
B-A and B-B) can be considered. Their occurrence is a mere result of the crystal 
disorder, which is present throughout the lattice. Hence, not only the radical species 
can take on either A or B crystal conformations, but also the molecule(s) of the 
crystal surrounding. Taking into account the A:B ratio of occupancy in the crystal 
(see above), the probabilities for the occurrence of the radical-molecule pairs can be 
easily derived: 0.391% for A-A, 0.234% for A-B and B-A, and 0.141% for B-B. As 
the radical structures in these four pairs can be assumed to show minute differences, 
four distinct hyperfine interactions can be expected. Such an interpretation may 
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explain the initial experimental observation of more than two β-interactions in the 
ENDOR spectra: the A-A, A-B and B-A pairs can account for the three observed β-
couplings, while the B-B pair is likely to remain undetected due to its lower 
probability. 

However, it must be emphasized that such an argumentation is completely 
hypothetical and must be thoroughly checked. More advanced calculations on this 
matter are duly necessary, in which the model space will be extended to include at 
least some molecules of the crystal environment. Cluster or periodic calculations are 
the obvious choice, since they are highly suitable to take into account the complex 
hydrogen-bonding network of the sorbose crystal (Figure 10.8). Hence, these 
methods are likely to provide a better insight into the possible association of the 
radical with one or more molecules of the crystal lattice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. 8: Six types of hydrogen bond interactions occur in crystalline α-L-sorbose. 

Interactions a, b, e and f generate layers within the lattice, perpendicular to the b axis. These 
are held together by the “infinite hydrogen bonding scheme” of interactions c and d [147]. 

10.5 CONCLUSIONS 

Using single molecule DFT calculations on several possible radical models, the 
identity of one of the radiation-induced radicals in α-L-sorbose was established. Both 
theory and experiment accord on the existence of two separate radicals in the sorbose 
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crystal lattice, with identical structures but with slightly different conformations. The 
observed R1 and R1’ species were thus assigned a structure conform radical model 
S-I. Although the specific conformational difference was not addressed, it is assumed 
that this is related to the occurrence of crystal disorder in solid-state α-L-sorbose. 
Hence, the theoretically predicted EPR parameters of a radical with either 
conformation A or B were compared with the R1 and R1’ spectroscopic data, and 
were consistently found in slightly better agreement with the latter. As this rules out 
a direct link between the crystal disorder and the radical site, it is likely that the R1-
R1’ difference is due to the association of one or more A/B molecules of the crystal 
lattice with the radical site. However, modeling techniques with a larger model space 
will be required to assess the validity of that assumption. 

The single molecule calculations on sorbose radicals once more confirm their 
validity and usefulness to reproduce the experimental EPR parameters to a certain 
degree of accuracy. Even the simplest “No Optimization” scheme can render results 
that are valuable. Still, great care should be taken in the selection and execution of an 
optimization scheme, as illustrated by the failure of the “Full Optimization” scheme 
for conformation A of S-I. 
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Chapter 11. General conclusions 
In this work, we have given an overview of how computational methods can help 

to reveal the identity of radiation-induced radicals in organic crystals. We have 
specifically focused on two types of molecular systems: sugars and amino acids. 
Both types of biomolecules have diverse applications and their associated radicals 
have an equal importance in biochemistry. In addition, several industrial applications 
exist that rely on these paramagnetic systems, especially when they occur within a 
solid-state crystal lattice. 

Whereas these radical species are usually studied with the aid of Electron 
Paramagnetic Resonance experiments, we have adopted a reverse methodology and 
calculated the EPR spectroscopic parameters on theoretical grounds. To this end, a 
general strategy was first stipulated that allows a good description of the radical 
geometry and its associated spectroscopic characteristics. This methodology – 
consisting of the four successive steps “radical model selection”, “geometry 
optimization”, “EPR calculation” and “analysis” – relies mainly on ab-initio Density 
Functional calculations. 

 
This strategy was applied to examine the radiation-induced radicals in five solid-

state molecular systems: two amino acids (L-α-alanine and α-glycine) and three 
carbohydrates (β-D-fructose, α-D-glucose and α-L-sorbose). In the treatment of 
these systems, special attention was paid to the construction and extent of the model 
space. The latter refers to the ensemble of the radical and the part of its solid-state 
environment that is explicitly accounted for in the calculations. It was established in 
this work that the treatment of this model space has a significant impact on the 
accuracy of both the optimized radical geometry and its associated EPR parameters 
and, accordingly, must be carefully considered in a computational study of radicals in 
the solid state. Three main model space approaches were introduced, differing by the 
size and level of theory treatment of the model space. In a “single molecule” 
approach, the solid-state environment of the radical is completely neglected, as only 
the latter paramagnetic molecule is considered. In a “cluster“ approach, an explicit 
part of the crystal lattice is taken up in the model space, by placing discrete 
molecules around the target radical. Finally, the full periodicity of the entire crystal is 
accounted for in the “periodic” approach, in which the radical defect is embedded 
in an artificially enlarged unit cell. 

Several issues must be carefully resolved in each model space approach with 
regard to the “geometry optimization” step. In the single molecule approach a 
suitable optimization scheme (No-, Partial- or Full Optimization) must be selected to 
overcome the lack of a crystalline environment. A cluster calculation not only 
requires the choice of a suitable level of theory (semi-empirical, hybrid or full ab-
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initio) but also a physically relevant selection criterion for determining the cluster 
size. Such an arbitrary choice is not necessary in a periodic treatment, but care must 
be taken that the radical is embedded in large enough a supercell so that the mutual 
interactions between the paramagnetic defects can be neglected. 

 
After the geometry optimization step, the EPR calculations may be tackled. 

Although two main types of spectroscopic EPR parameters are usually obtained from 
experimental studies, we have concentrated on a theoretical reproduction of the 
complete hyperfine tensor, because the g-tensor for the considered amino acids and 
sugars is always found to be nearly isotropic and close to the free electron value. 
Consequently, only the former parameter presents a sensitive probe. Even though 
most theoretical studies in literature concentrate mainly on a correct reproduction of 
the isotropic hyperfine coupling constants, in this work the eigenvalues and principal 
axes of the anisotropic hyperfine tensors often proved an additional informative 
parameter for an accurate identification of radical structures. However, the model 
space also plays an important role in the calculation of these EPR parameters and this 
concept is seldomly considered in literature. Intermolecular interactions will have an 
influence both on the isotropic coupling constants as well as on the orientations of 
the principal axes for a hyperfine tensor. Such effects can – at least for now – only be 
revealed by performing EPR calculations within a cluster approach, because the 
calculation of spectroscopic properties is not yet implemented in any periodic code. 
Single molecule EPR calculations, on the other hand, present a fast and easy 
alternative from the computational point of view. Only when the optimized radical 
geometry was obtained from an earlier single molecule optimization, a problem 
arises, since no information is available on the crystal axes, to which the hyperfine 
tensor directions are referenced. This can be bypassed by either analyzing these 
tensor directions with respect to each other, in a “relative” approach, or by 
maintaining the original reference frame from the undamaged crystal in a “Fixed 
Axes” approximation. Although the latter method is not as generally applicable as 
the former – the approximation is in fact only valid when the radical is very much 
alike the undamaged molecule in the crystal – it allows for a much easier analysis. 

 
Both amino acids and sugars exhibit in the solid state a dense hydrogen bond 

network within their crystal lattice. As a result, the geometry and spectroscopic 
properties of an induced radical will be largely determined by these hydrogen bonds 
and it could be suggested that a similar computational approach should apply to both 
systems. However, amino acids differ significantly from sugars in the sense that they 
adopt a zwitterionic form in the solid state. The former systems are therefore rather 
delicate, since spin and charge polarization effects will be much more important for 
these partially charged species. Also, they will be more sensitive to the extent of the 
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model space and the level of theory. Further taking into account that amino acids 
have been extensively characterized and are well documented, we have first 
examined the alanine and glycine systems, with the additional aim of validating the 
different model space approaches. For both amino acids, the more advanced methods 
– cluster- and periodic approaches – proved preferable for a good description of the 
radical geometry and its EPR parameters. This way, the sometimes artificial 
adjustments in the single molecule approach, such as intramolecular restraints and 
rotations or solvent models to keep the radical in its zwitterionic form, can also be 
avoided. Yet, the preferred methods still have shortcomings. The periodic approach, 
for one, utterly failed to correctly describe the weak intermolecular forces in the 
glycine crystal lattice. This failure is probably related to the fact that hybrid (hyper-
GGA) functionals are not generally implemented in periodic software packages. 
Although progress may be expected in the near future, for the time being, this model 
space approach is unsuitable to handle the glycine system. Cluster methods, on the 
other hand, often suffer from convergence problems, which make it difficult to obtain 
a geometry that corresponds to the absolute minimum on the energy hypersurface of 
the radical within its cluster environment. Nevertheless, using either method, we 
were able to refine existing structural information for the radical models of alanine 
and glycine. In this respect, the observation of a non-planar radical backbone in both 
amino acids is remarkable and points to the existence of vibrational and/or 
temperature effects in these lattices, as argued in Chapters 5 and 6. 

 
Carbohydrate crystals are basically held together by hydrogen bonds, but the 

individual sugar molecules also occur in a neutral form in vacuum. Due to absence of 
complicating structural features, such as a zwitterionic form, and bearing in mind that 
sugars require more computational resources than amino acids, only single molecule 
calculations have been performed for these species. However, even such a fairly 
simple model space approach rendered good qualitative results for the geometry and 
EPR parameters of the radiation-induced sugar radicals. In the case of the glucose 
radicals, the agreement between experiment and calculation was even quantitatively 
very good. Contrary to the work on amino acids, the main goal in the study of sugar 
systems was not a validation of a proposed methodology, but rather the identification 
and verification of radical structures that were proposed from the experiment. For 
this purpose, a single molecule approach turns out more than sufficient. In the study 
of the radiation-induced radicals in β-D-fructose and α-D-glucose, the model 
structures previously proposed by experimentalists were properly verified. Moreover, 
for α-L-sorbose, a completely new radical structure was put forward, as the result of 
a successful synergy between theory and experiment. 

The “Fixed Axes” approximation within the single molecule approach proved 
valid in the case of glucose and sorbose. This indicates that each of these sugar 
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radicals closely resembles the undamaged molecular structure in the crystal. For 
fructose, in contrast, this assumption was not applicable and a relative treatment of 
the anisotropic hyperfine tensor axes was required. This distinction is clearly related 
to the location of the unpaired electron in the pyranose ring of the sugar involved. 
Whereas for glucose and sorbose, the paramagnetic electron is primarily located on a 
framework carbon center of the six-membered ring, it is situated on a side-chain 
carbon for fructose. The side-chain in the latter system evidently has much more 
degrees of freedom while the former two sugar radicals are rather restricted in their 
conformation. This is corroborated by the success of the “Partial Optimization” 
scheme and – to a lesser degree – of the “No Optimization” routine in these cases. 

A remarkably similar conclusion is obtained for two sugars: both the F1 and F2 
radicals in fructose and the R1 and R1’ species in sorbose are identified as having an 
identical structure, but with slightly different conformations. Yet, the single molecule 
approach proved inadequate to address this conformational difference. For sorbose 
the distinction between R1 and R1’ was hypothetically attributed to the association of 
the radical site with one or more intact molecules of the surrounding. Due to the 
crystal disorder in the sorbose crystal, such a connection could potentially result in 
different “associated” radical sites to be observed. But in the fructose lattice, no such 
crystal disorder has been observed so far. If now the foundation for the occurrence of 
similar radicals is the same in fructose and sorbose, it must be concluded that either 
the hypothesis postulated for sorbose is false, or else that crystal disorder 
nevertheless must occur in the fructose crystal. These speculations must however be 
verified with calculations in a more advanced model space approach. 

 
It might be expected that the different methodologies and model space approaches 

outlined in this work are suitable for the study of other organic radicals in the solid 
state, and perhaps even in solutions, where intermolecular interactions are also 
present in abundance. Hence, they present a powerful tool, complementary to the 
EPR experiment, because the true identity of an experimentally observed 
paramagnetic species can be linked directly to the structural characteristics of a 
proposed theoretical model. Still, it is not easy to propose a generally applicable 
methodology, since this would depend to a large extent on the nature of the 
molecular system concerned. Probably the most efficient way is to start out with a 
single molecule approach (perhaps even using the “No Optimization” scheme) and 
gradually adopting more complicated model space approaches, depending on the 
desired accuracy for the structural or spectroscopic data. 
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