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Chapter 1

Introduction

However, the logician’s commitment to truth–
functional connectives is not without its reasons.
How is one to characterize such an obscure notion
as that of [logical] dependence?1

1.1 Introduction

Although the title might have suggested otherwise, this dissertation does
not in the first place deal with relevance in reasoning. It deals with the fa-
mous problem of Chrysippus’ Dog in Relevance Logic.2 However, as what is
investigated in Relevance Logic is the dependence relation between premises
and conclusions in real deductive reasoning, this dissertation does indirectly
deals with relevance in reasoning.

In this chapter, I will both introduce Relevance Logic (in section 1.2)
and the problem related to Chrysippus’ Dog (in section 1.3).

Preliminary Remark. Before I can start, I need to make an important
preliminary remark: I will restrict myself to the branch of Relevance Logic
that sprung from the work of Anderson & Belnap’s [5]. This means that
I will not consider other kinds of Relevance Logic, such as for example
Parry’s Analytical Implication (see e.g. Parry [81], Dunn [51]), Verhoeven’s
Relevantly Assertable Disjunction (see e.g. Verhoeven [121, 122]),...

1See Suppes [104, p. 7].
2Besides “Relevance Logic”, also the term “Relevant Logic” is used in the literature and

it is often claimed that the preference of one term over the other is a geographical matter.
Americans would prefer “Relevance Logic”, while Australians and Europeans would prefer
“Relevant Logic”. Anyway, I will use “Relevance Logic” to denote the scientific research
area directed at the investigation of relevance in reasoning, while I will use “relevant
logics” to denote the particular logical systems.



4 Introduction

1.2 Relevance Logic

In Relevance Logic, a formula is only considered a relevant consequence of
a premise set whenever there is a proof expressing a substantial connection
between premises and conclusion:

So what is it all about? A short answer: connection. One state-
ment implies another [...], only if it is connected with it, only if the
statements have enough to do with one another;3

1.2.1 The Paradoxes of the Material Implication

The derivability relation of Classical Logic (CL) doesn’t express a substan-
tial connection between premises and conclusion, which is obvious from the
so–called paradoxes of the material implication.4 The best–known ones are
the following:

(1) |−CL A ⊃ (B ⊃ A)
(2) |−CL ¬A ⊃ (A ⊃ B)
(3) |−CL (A ∧ ¬A) ⊃ B
(4) |−CL A ⊃ (B ∨ ¬B)

The paradoxes of the material implication are interpreted as fallacies of
relevance, because they express an implicative connection between formulas
where there should be none. For example, (1) allows for the derivation of the
formula B ⊃ A from the formula A, while there is obviously no connection
between B and A. Hence, accepting (1) would make it possible to derive
“if I died yesterday, I’m writing my PhD today” from “I’m writing my PhD
today,” which is clearly absurd.5

In fact, Relevance Logic began as an attempt to avoid the paradoxes
of the material implication. As a consequence, in relevant logics (RL), the
material implication is replaced by a relevant implication (usually denoted
by →), an implication that doesn’t commit the fallacies of relevance.

More CL–Paradoxes. Besides the paradoxes of the material implication,
two other fallacies of relevance obtain in CL. The first one is the EQV–
paradox (Ex Quodlibet Verum), which states that some formulas (usually
called logical truths, tautologies or theorems) are derivable from any premise
set, even the empty one.

3Sic, see Sylvan and Norman [106, p. 3].
4Also Modal Logic (ML) doesn’t express a substantial connection between premises

and conclusion, as is shown by the the paradoxes of the strict implication. I will however
not consider the paradoxes of the strict implication.

5For a host of examples concerning the paradoxes of the material implication, see
Routley and Meyer [101, ch. 1].
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[EQV] ∀A : If |−CL A then ∀Γ : Γ |−CL A.

This is obviously a fallacy of relevance, as it can not be claimed that a logical
truth really follows from a premise set. In other words, the derivation of
logical truths is not dependent upon the premises.

The second additional fallacy of relevance is the EFQ–paradox (Ex Falso
Quodlibet), which states that anything follows from an inconsistency.6

[EFQ] When Γ |−CL B and Γ |−CL ¬B, then ∀A : Γ |−CL A.

This is a fallacy of relevance, as the consequences might have nothing to do
with the premises. Despite the fact that those consequences do follow from
the premises (in contradistinction with the EQV–paradoxes), no meaningful
connection between them and the premises is guaranteed.

The additional CL–paradoxes are avoided by going paraconsistent and
paracomplete. Usually, paraconsistency and paracompleteness are obtained
by extending the set of models, so that inconsistencies are true in some of
them (resulting in paraconsistency) and that no formula is true in all of
them (resulting in paracompleteness).

At first sight, RL do not seem to avoid all of the EQV– and EFQ–
paradoxes. For example, they allow for the derivation of logical truths:

(5) |−RL A→ A
(6) ...

However, RL also avoid the EQV– and EFQ–paradoxes, albeit not in the
usual way. This will be shown in the next section. As a consequence, rele-
vant logicians also try to capture relevant deduction, and not solely relevant
implication.

1.2.2 Relevant Deduction

In relevant logics (RL), relevant deduction (or relevant derivability) is not a
primitive, but a derivative notion. More specifically, it is defined as follows:7

Definition 1.1 A1, ..., An |→RL B is a relevant deduction of B from A1, ..., An

iff |−RL (A1 ∧ ... ∧An) → B.

Definition 1.1 clearly shows that in RL, relevant deduction is dependent
upon the implicational theorems. This in fact means that relevant logicians

6Some would prefer to state that anything follows from a contradiction. I however take
the difference to be immaterial.

7See Brady and Bunder [43, pp. 302–308] for an explicit treatment of this point.
Remark also that this definition is not possible for logics not containing the conjunction
connective. As I will not consider such logics, I am happy with definition 1.1.
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interpret implicational theorems — which they usually call entailments8 —
as “inference rules”. They are used to derive conclusions from a premise set,
but cannot be added to the premises in order to derive the conclusions.

Remark that this way of characterizing derivability clearly avoids the
EQV– and EFQ–paradoxes, as the CL–paradoxes (3) and (4) from the
foregoing section, are not RL–entailments.

Classical and Relevant Deduction. By taking relevant deduction to
be riding piggyback on the notion of entailment, relevant logicians actually
split up derivability into classical derivability (denoted by |−) and relevant
derivability (denoted by |→).9

Implication and Deduction. Because of the fact that relevant deriv-
ability is dependent upon classical derivability, and by consequence on RL–
entailments, relevant logician take their implication symbol to be equivalent
in meaning to the turnstile symbol (the one for relevant derivability ob-
viously). As such, the implication symbol is to be read as “is relevantly
derivable from”.10

Personally, I don’t like the identity of the turnstile and the implication.
I take deduction and implication to be two distinct notions. Moreover, it is
probably a good idea to state that in this dissertation I will be concerned
with relevant deduction and not with relevant implication. I take the latter
to be captured quite nicely in RL (in contradistinction to the latter).

1.2.3 Characterizing Entailments

As entailments are used to characterize relevant deduction, it should be
stated clearly what the criteria are for counting as an entailment. Although
other people have provided different criteria (for example Lance [63] and
Brady [41]), I will present the two relevance criteria that were provided by
Anderson & Belnap in [5].

The Use–Criterium

Anderson and Belnap’s first relevance criterium is the so–called use–criterium
(UC). It was first presented by Church in [50], and Meyer [75, p. 54] sum-
marized it as follows:

8Remark that calling the implicational theorems entailments is actually quite appro-
priate, as they are taken to express a deductive relation.

9This distinction was introduced by Batens and Van Bendegem in [27]. They also dis-
cuss the relation between both kinds of derivability and give an alternative characterization
of relevant derivability. I will stick with the one from the Relevance Logic literature.

10Maybe I am generalizing to quickly here. It might well be the case that not all relevant
logicians are adherents of this identity. In any case, Anderson & Belnap were (as they
explain in the grammatical propaedeutic of their [5]).
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(UC) A formula B is relevantly derivable from the bunch of premisses
A1, ..., An just in case there is a deduction of B from the premisses
in which each of the Ai is used.11

This criterium was first only applied to the purely implicational fragment of
the language and lead to the relevant logic R→, the implicational fragment
of the relevant logic R.

In [5], Anderson & Belnap presented their famous Fitch–style proof the-
ory for the logic R→. It captures UC in a fairly straightforward way. Shortly
stated, all introduced hypotheses are given an index set, corresponding to
their depth (meaning that the hypothesis of the n–th subproof gets the in-
dex set {n}). When the inference rule Modus Ponens (MP) is applied,
the index set of the resulting formula is the union of the index sets of its
premises. Finally, the Conditional Proof–rule (CP) may only be applied
when the index set of the hypothesis of the subproof is a subset of the index
set of the formula on the last line of that subproof, which expresses that the
hypothesis has been used in the derivation of that formula.12

In order to illustrate the proof theory and the use–criterium on which it
is based, let’s consider some examples. The first example shows us that the
formula (p→ (p→ q)) → (p→ q) is an RL–entailment.

1 p→ (p→ q){1} HYP1

2 p{2} HYP2

3 p→ (p→ q){1} 1;REIT
4 p→ q{1,2} 2,3;MP
5 q{1,2} 2,4;MP
6 p→ q{1} 2,5;CP
7 (p→ (p→ q)) → (p→ q){∅} 1,7;CP

It should be immediately clear that this indeed captures some of our intu-
itions about how hypothetical reasoning proceeds.

Moreover, the paradoxes of the material implication are avoided, as is
shown by the proof below. In it, the implicational formula p → (q → p) is
not derivable, as the hypothesis q on line 2 was not used in the derivation
of the formula p on line 3.

1 p{1} HYP1

2 q{2} HYP2

3 p{1} 1;REIT

11Sic.
12Obviously the proof theory differs for RL different from R, but those differences

should not concern us here.



8 Introduction

Although the use–criterium works quite nicely when the language is re-
stricted to the purely implicational fragment, it breaks down when the other
connectives are introduced in the language. At least, if the classical rules
governing those connectives are retained. In that case, the proof below
would allow us to consider (p ∧ ¬p) → q as an RL–entailment.

1 p ∧ ¬p{1} HYP1

2 p{1} 1;SIM
3 ¬p{1} 1;SIM
4 p ∨ q{1} 2;ADD
5 q{1} 1;DS
6 (p ∧ ¬p) → q∅ 1,5;CP

Although the formula on line 1 was clearly used in the derivation of the
formula on line 5, the resulting entailment can hardly be called a relevant
entailment. So, it seems that some extra relevance criterium is needed in
order to cope with the additional connectives. This criterium is the so–called
variable–sharing criterium.

Variable–Sharing Criterium

Intuitively, the variable-sharing criterium (VC) states that A → B should
only be an RL–entailment, when A and B share at least one sentential
letter.13 Consequently, (p ∧ ¬p) → q is not considered a valid entailment.

This criterium is defended by referring to the fact that in order for an
implication to be an entailment, some of the “meaning content” of the an-
tecedent should also be present in the consequent, which simply comes down
to the fact that both have to be related to each other in some way. In order
to grasp this “common meaning content” in a formal way, Anderson & Bel-
nap state that “commonality of meaning in propositional logic is carried by
commonality of propositional variables.”14

Tautological Entailments. The importance of the VC is to be situated
in the fact that it is the sole and sufficient criterium for tautological entail-
ments. Tautological entailments are entailments of the form A→ B in which
A and B do not contain any implications (the only connectives occurring in
A and B are ∧,∨ and ∼).15 As tautological entailments are also called first
degree entailments, I will take VC to capture first degree relevance.

However, the variable–sharing criterium does not demarcate relevant
from irrelevant tautological entailments by simply checking whether some

13This is of course my terminology. Anderson & Belnap use “propositional variables”.
14See Anderson & Belnap [5, p. 33].
15From now on, I will use ∼ in order to denote the negation of relevant logics, while ¬

will be used for other types of negation, such as for example classical negation.
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sentential letter occurs both in the antecedent and in the consequent. The
method is somewhat more demanding. First, a tautological entailment is
transformed into normal form. This comes down to the fact that the an-
tecedent is placed in disjunctive normal form, while the consequent is placed
in conjunctive normal form.16 The result is an entailment of the following
form:

A1 ∨ ... ∨An → B1 ∧ ... ∧Bm

Such an entailment in normal form is now considered a tautological entail-
ment iff for all its Ai and Bj share an atomic formulas (a sentential letter
or a negated sentential letter).

This characterization of tautological entailments is important as the tau-
tological entailments were used to determine the behavior of the truthfunc-
tional connectives17 in general. As such, VC provided the solution to the
problem with the use–criterium stated above.

Combining the Criteria

From the above, we can conclude that the use–criterium characterizes rele-
vant implication, while the variable-sharing criterium characterizes the be-
havior of the truthfunctional connectives. In the Fitch–style proof theory,
they are combined in the following way: the characterization of the im-
plication remains the same, while inside a subproof, the truthfunctional
connectives behave as is determined by the tautological entailments.

1.2.4 Conclusion

In this section, I have shown how standard Relevance Logic incorporated
certain relevance criteria in order to obtain a formal theory of relevant de-
duction. I have however not said anything about whether Relevance Logic
also succeeded in giving a satisfactory account of relevant deduction. To
this I will turn now, by considering the parable of Chrysippus’ dog.

1.3 Chrysippus’ Dog

[Chrysippus] declares that the dog makes use of the fifth complex
indemonstrable syllogism when, on arriving at a spot where three ways
meet, after smelling at the two roads by which the quarry did not pass,
he rushes off at once by the third without stopping to smell. For, says
the old writer, the dog implicitly reasons thus: “The creature either
went by this road, or by that, or by the other: but it did not go by
this road or by that: therefore it went by the other.’18

16I take these notions to be well–known, so that they don’t need any explanation.
17Anderson & Belnap refer to ∧,∨,∼ as to the truthfunctional connections.
18Sextus Empiricus, cited in [5, p. 296].
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1.3.1 To Muzzle the Dog

In modern formal logic, the parable of Chrysippus’ dog — presented in the
quote above — became famous because of its appearance in [5], in which
Anderson & Belnap stringently reject the validity of the dog’s reasoning.

Nevertheless, we do hold that the inference from ¬A and A ∨ B
to B is in error: it is a simple inferential mistake, such as only a dog
would make. Such an inference commits nothing less than a fallacy of
relevance.

The particular element in the dog’s reasoning that is rejected by Anderson &
Belnap, is the application of the inference rule Disjunctive Syllogism (DS),
which they do not consider a valid step in the deduction process.19

Why did Anderson & Belnap, and with them so many others, reject DS?
In this section, I will present two reasons they themselves have given, and
also two additional ones.

Relevance Considerations

Because of the equivalence of deduction and implication (see section 1.2.2),
the rejection of the inference rule DS in fact comes down to the fact that
the entailment EDS is not considered as a RL–entailment, as it clearly
expresses DS.

[EDS] |6−RL ((A ∨B) ∧ ∼A) → B

Why should EDS not be considered as a relevant RL–entailment? As An-
derson & Belnap themselves mention in the quote above, the primary reason
for rejecting (E)DS is that it commits “a fallacy of relevance”. At first, this
might seem odd, but when we recall the variable–sharing criterium, then it
becomes plainly obvious that EDS indeed commits a fallacy of relevance.
For, consider EDS in normal form:

(B ∧ ∼A) ∨ (A ∧ ∼A) → B

As the second disjunct of the antecedent (A ∧ ∼A) doesn’t share a vari-
able with the consequent (B), EDS can safely be rejected by means of the
variable–sharing criterium.

Moreover, if we would plainly add EDS to standard RL, without both-
ering about the variable–sharing criterium (after all, (A ∨ B) ∧ ∼A and B
do share a variable), we would end up with a lot of irrelevant entailments,
as the following proof makes clear:

19In fact, Anderson and Belnap not only consider DS as fallacious, but material detach-
ment (MD) in general. Besides DS, this also includes Modus Ponens and Modus Tollens
for the material implication. However, because of the identity in CL of an implicative
formula with a disjunctive formula (A ⊃ B =df ¬A ∨ B), all of these inference rules can
also be considered as instances of DS.



1.3 Chrysippus’ Dog 11

1 (A ∧ ∼A) → A RL–axiom
2 (A ∧ ∼A) → ∼A RL–axiom
3 A→ (A ∨B) RL–axiom
4 (A ∧ ∼A) → (A ∨B) 1,3;Transitivity
5 (A ∧ ∼A) → ((A ∨B) ∧ ∼A)) 2,4;RL–axiom and MP
6 ((A ∨B) ∧ ∼A) → B EDS
7 (A ∧ ∼A) → B 5,6;Transitivity

As it is the explicit aim of Relevance Logic to avoid the fallacies of relevance
obtaining in CL, it should be clear from the example that adding EDS to
relevant logics is not an option.

Deduction–Implication Equivalence

The arguments above made clear that EDS cannot be added to the axiom
system of RL. But, it might nevertheless be possible to add DS to the
proof theory of RL as a primitive inference rule, an inference rule that is
not represented by an entailment.20

when The Man accepts A∧ (¬A∨B) → B, he is making a s simple
inferential blunder. But surely The Man has something in mind, and
we may charitably suppose him to have been believing that, whereas
B clearly is not entailed by A and ¬A ∨ B, B on the other hand is
derivable from A and ¬A ∨ B, in the sense that from A and ¬A ∨ B
as premisses we can find a deduction of B.”21

However, this strategy obviously forces one to make a distinction between
relevant deduction and relevant implication, a distinction Anderson & Bel-
nap are not willing to make.

This charity, though welcome, is misplaced, at least for a plausible
understanding of what The Dog means by “derivable.” For as the En-
tailment theorem of §23.6 teaches us, if there were a proof that A and
¬A∨B entailed B, then we would have |− (A∧ (¬A∨B)) → B, which
we know is not so.22

Above, I already mentioned that I do not like the equivalence of relevant de-
duction and relevant implication. As a consequence, I do not really consider
this a good reason for not adding DS to the RL–proof theory. However,
there are other reasons as well. I will present them below.

20Let it be clear that the proof theory I here refer to, is the proof theory for relevant
derivability, and not the one for classical derivability (see section 1.2.2).

21See Anderson & Belnap [5, p. 297], sic.
22See Anderson & Belnap [5, p. 297], sic.
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The Paraconsistent Turn

The first reason for not adding DS as a primitive rule to the RL–proof
theory is the following: if DS can be applied unrestrictedly, it leads to
triviality in the face of inconsistencies. Consequently, adding DS to the
RL–proof theory would lead to the EFQ–paradoxes, which is most clearly
shown by Lewis’ independent proof:

1 A Premise
2 ∼A Premise
3 A ∨B 1;Addition
4 B 3,4;DS

In order to avoid the EFQ–fallacies, so one might reason, the inference rule
DS should be rejected. However, is it necessary to blame DS? In fact, in
Lewis’ independent proof two inference rules were used, Addition (ADD)
and DS, but it is not at all clear that DS is the one to blame for the EFQ–
fallacies. After all, it is ADD which allows to add possibly irrelevant parts
to formulas. As a consequence, it seems quite arbitrary to blame (only) DS.
However, let’s for the moment agree that DS is to blame.

Inconsistent Theories. Not all reasons in favor of the rejection of DS
are based on relevance considerations. In fact, all reasons given in favor of
paraconsistent logics will also do in this case. Paraconsistent logics are logics
that allow for inconsistent theories, which means that they do not lead to
triviality when applied to an inconsistent theory.

An obvious question to all this, is why this should concern us. Is it
necessary to allow for inconsistent theories? As a matter of fact, it is. In the
literature, several reasons have been given (see for example Priest [84, 86],
Priest et al. [87]), but the most convincing one is that there actually are
theories that are inconsistent, but non–trivial (a much–referred to example
is Bohr’s theory of the atom). Hence, the logic underlying these theories
will be paraconsistent.

I think that this should indeed be a sufficient reason to convinced anyone
of the importance of paraconsistent logics. However, the demand for para-
consistency is not the same as the rejection of DS. So, the question remains
whether it is justified to reject DS in order to obtain paraconsistency.

Garfield’s Dog

The second additional reason to reject DS as a valid rule of inference is pro-
vided by Jay Garfield [56, 57]. Garfield dismisses DS because, as he states,
“it is rational to reason Relevantly, but irrational to reason classically.”23 I

23See Garfield [56, pp. 97–98], sic.
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agree that it is irrational to reason classically, but this doesn’t automatically
mean that it is rational to reject the use of DS. Anyway, let’s have a closer
look at his argument.

In short, Garfield’s claim comes down to the following: as humans, we
live in an epistemically hostile environment, which means that

We are imperfect; we have false beliefs; we have limited inferential
powers; we have limited memory; we have suboptimal belief fixations
mechanisms; we inhabit an environment which does not go out of its
way to deliver the truth to us, and in fact often goes out of its way to
deceive us. I refer to this unfortunate state of inner and outer affairs
as an “epistemically hostile environment.”24

In such an environment, Garfield claims, it is not safe to reason by means
of the inference rule DS, as it must lead to a lot of unjustified beliefs.

Suppose that in these unfortunate but all too common circum-
stances you come to believe on the misleading information of a nor-
mally reliable source (A) that Albuquerque is the capital of Arizona.
Under the spell of the evil classical logician you freely disjoin (B) Bel-
nap is a classical logician (with no relevance index, of course). Since A
is justified, so is A∨B. Now, suppose that a bit later your geographical
source corrects himself, and you now come to believe ∼A. Now ∼A
and A ∨ B are both in your belief set, you have no positive reason to
reject A ∨ B, you are still classical, and so conclude B. B, of course,
is manifestly false. What’s more, from a suitably distant perspective
(ours) you have no real reason to believe it. What went wrong? The
answer is plain: you used classical disjunction rules.25

Garfield’s claim looks quite appealing at first. It is indeed true that people
do not keep track of all justifications of their beliefs, and this might indeed
lead to some faulty conclusions.

The problem with Garfield’s account is however that if the epistemic
hostility of the environment is a reason not to use DS, it is as good a reason
not to use Modus Ponens, Conjunction, or any other inference rule. For all
of those rules it is possible to construct an example as the one above, see
for example Mares [67, pp. 177–178]. Also Meyer made this point when he
stated the following:

Similarly, if there are reasons — in terms of unwelcome conse-
quences — to avoid ⊃E sometimes, the same will ultimately hold of
→E as well. The advantages of → over ⊃ are relative, not absolute.26

As a consequence, following Garfield’s argumentation, we should conclude
that under conditions of epistemic hostility, it is probably best not to reason

24See Garfield [56, p. 99].
25See Garfield [56, p. 104].
26See Meyer [76, p. 606]. Meyer is here not talking about DS, but about MD. However,

as I stated in an earlier footnote, I consider these equivalent.
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at all. Of course, this is exactly how Odie behaves, but it definitely is not
how humans behave (no, not even some of them).

Conclusion

In conclusion, it can be stated that there are two convincing reasons to reject
the dog’s reasoning. First of all, the entailment expressing DS (EDS) does
not pass the variable–sharing criterium. Moreover, if it is added to the axiom
system of RL, it leads to the derivation of irrelevant entailments. Secondly,
because of the need for paraconsistency, it is not even possible to add DS
as a primitive rule to the RL–proof theory, as this leads to triviality in the
case of inconsistencies.

1.3.2 The Dog Bites Back

The rejection of DS however encountered a lot of opposition. First of all,
because it seems extremely counterintuitive not to consider DS as a valid
reasoning step, a fact that is even recognized by Graham Priest in [83],
despite the fact that he also favors a logic (called LP) that doesn’t validate
DS.

The most obvious thing about the logic of paradox [LP] is that it
forces us to give up as invalid certain principles of deduction that one
would not normally suspect.27

However, an appeal to the intuitions is certainly not enough to grant DS
its right of existence. A lot of things which are at first counterintuitive,
are nevertheless true, for example that the earth is spinning around at high
speed. The main problem with the rejection of DS is that it is clearly in
contradiction with human practice. Even more, it is clearly in contradiction
with rational human practice.

In view of the fact that everyday arguments and mathematical
proofs abound in instances of disjunctive syllogism, one may won-
der how Anderson & Belnap could hope to reconcile their rejection
of disjunctive syllogism with the claim that their “relevant logic” is
compatible with commonsense and accepted mathematical practice.28

As logic is taken to explicate rational reasoning, this really constitutes a
problem.29 It means that RL do not adequately capture deductive relevance,

27See Priest [83, p. 231].
28See Burgess [46, p. 98]. Obviously, he is referring to DS.
29Explication consists in turning an unclear, intuitive concept into a very precise one.

In fact, the notion originated from the work of Carnap. In [49, p. 3], he defined it as
follows:

The task of explication consists in transforming a given more or less inexact
concept into an exact one or, rather, in replacing the first by the second. We call
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the way in which premises and conclusions are connected in real deductive
reasoning.

1.3.3 What the Dog Should Do

At this point, it seems that we are stuck in between the relevantists and
the classicalists. It doesn’t seem true that DS is unrestrictedly valid (the
classical claim), but it also doesn’t seem true that it is a fallacy of relevance
(the relevantist claim). This is what I will call the DS–problem.

Now, given the DS–problem, what should the dog do? Or better, what
should a logician do, when confronted with this problem? My answer is
plain and simple: he should try to find an alternative way to characterize
relevant deduction.

Being a logician, this is exactly what I will do in this dissertation. How-
ever, I will not start all over again and construct a completely new theory of
relevant deduction. As the DS–problem is situated at the first degree, I will
only present a new theory of first degree relevance, which will afterwards be
combined with the relevant implication of RL. That this is possible should
not surprise us, as it was shown above that relevant implication and first
degree relevance were handled by different relevance criteria (resp. UC and
VC). As such, they remained partly independent.

Remark that this means that I will not present a theory of relevant
implication. First of all, I do not consider it necessary, as I find that relevant
implication is captured quite nicely in RL. And secondly, this dissertation
is long enough as it is now.

1.4 The Aim of this Dissertation

As should be clear by now, this dissertation can be considered as a long–
winded afterthought to the parable of Chrysippus’ dog. More specifically, I
will show that it is possible to reintroduce DS in RL without reintroducing
any of the fallacies of relevance.

Overview of This Dissertation

In chapter 2, the second chapter of this part, I will discuss some of the
solutions to the DS–problem, proposed in the literature. It will turn out

the given concept (or the term used for it) the explicandum, and the exact concept
proposed to take the place of the first (or the term proposed for it) the explicatum.
The explicandum may belong to everyday language or to a previous stage in the
development of scientific language. The explicatum must be given by explicit rules
for its use, for example, by a definition which incorporates it into a well–constructed
system of scientific either logico–mathematical or empirical concepts.

Reasoning is taken to be explicated by a logic when its proof theory reflects the actual
reasoning processes.
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that none of the proposed solutions has really solved the problem, despite
the fact that some of them seem intuitively appealing.

In part II, I will present the logic background of this dissertation. First
of all, in chapter 3, I will present the adaptive logics programme (ALP).
Moreover, also the standard format of adaptive logics will be presented,
which is necessary as in later chapters, relevant deduction will be character-
ized by means of adaptive logics. Next, in chapters 4 and 5, I will introduce
respectively those paralogics and those relevant logics that will be used at a
certain point in this dissertation.

In part III, I will characterize relevant deduction at the first degree.
In chapter 6, an intuitive characterization of first degree relevance will be
given. Moreover, I will show that it is possible distinguish between two
kinds of relevant deduction, namely classical relevance (CR) and first degree
relevance (FDR). In chapters 7 and 8, I will present two adaptive logics
that both explicate CR, the first one in a straightforward way, the second
one in a way that can be extended to other logics as well. Finally, in chapter
9, the adaptive logic that explicates FDR will be presented.

In order to obtain a complete theory of relevant deduction, the theory
of first degree relevance presented in part III has to be combined with the
relevant implication from standard Relevance Logic. This is done in part
IV. More specifically, in chapter 10, some inconsistency–adaptive relevant
logics will be presented, which are used in chapter 11 to characterize the
adaptive logics that capture relevant deduction in an adequate way.

Finally, part V consists of two chapters that are rather unrelated to
the rest of this dissertation. However, as they make use of the logical sys-
tems presented in part III, they show that the presented logics are not only
suited to characterize relevant deduction, but can be used for other pur-
poses as well. In chapter 12, it is shown that (inconsistency–)adaptive logics
are based on only a partial insight in the premises, and it is shown how
adaptive logics can be constructed that are based on a complete insight in
the premises. Moreover, this is done by making use of the logic that was
presented in chapter 8. To conclude, in chapter 13, I will present some adap-
tive logics for explicating abductive reasoning. This will be done both for
abduction based on consistent and on inconsistent theories. To characterize
the latter, I will make use of the logic presented in chapter 7.



Chapter 2

Proposed Solutions

2.1 Introduction

The overt rejection by Anderson & Belnap of the inference rule disjunctive
syllogism, did not pass unnoticed. As was mentioned in chapter 1, it encoun-
tered a lot of opposition, not only from classically oriented logicians such as
Burgess [46, 47, 48], but even from within the Relevance Logic community,
see for example Meyer [75, 76].

In this chapter, I will discuss some of the solutions for the DS–problem,
proposed by relevant logicians. It will turn out that they are all incapable to
satisfactorily cope with the problem. However, by considering these propos-
als, it will become clear what the conditions are for a satisfactory solution.

Preliminary Remark. Below, I have included all proposed solutions
known to me. However, it is not improbable that I overlooked some of the
proposals. I nevertheless do remain quite confident that these will resemble
(one or more of) the discussed proposals.

2.2 Ambiguity of the Disjunction

Probably the best known attempt to solve the DS–problem is the one first
made by Anderson & Belnap themselves in [5, §16], and most firmly defended
by Stephen Read in [89, 90, 91, 92]. It consists in interpreting the natural
language disjunction as an ambiguous connective.

2.2.1 The Ambiguous Disjunction

The proponents of this approach claim that disjunction has two possible
interpretations, an extensional and an intensional one.1 The former, denoted

1Obviously, they completely leave aside the inclusive vs. exclusive discussion.
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by “ ∨ ”, is the usual truthfunctional disjunction, while the latter, denoted
by “ + ”, is actually an implication “in disguise”:

Definition 2.1 A+B =df ∼A→ B.

It is now easy to check that in relevant logics, the inference rule DS is valid
for the intensional disjunction (IDS), while it is invalid for the extensional
disjunction (EDS):

EDS A ∨B, ∼A |6−RL B
IDS A+B, ∼A |−RL B

Moreover, the inference rule ADD is only valid for the extensional disjunc-
tion:

EADD A |−RL A ∨B
IADD A |6−RL A+B

As a consequence, applying the inference rule IDS can never lead to irrele-
vant consequences.

Disjunctive Syllogism. How this approach actually solves the DS–problem
is now quite straightforward:

Furthermore, in rejecting the principle of the disjunctive syllogism,
we intend to restrict our rejection to the case in which the “or” is taken
truth functionally. in general and with respect to our ordinary reason-
ings this would not be the case; perhaps always when the principle
is used in reasoning one has in mind an intensional meaning of “or,”
where there is relevance between the disjuncts.2

As a consequence, irrelevant deductions that make use of DS — such as
for example, the Lewis Proof — should be interpreted, not as a fallacy of
relevance, but as a fallacy of ambiguity: the disjunction in the proof was
interpreted as an intensional disjunction, but should have been interpreted
as an extensional disjunction.

2.2.2 Problems with this Approach

There are nevertheless some problems with the above attempt at solving
the DS-problem. I will present three of them below, namely those which I
consider the most important ones.

2See Anderson & Belnap [5, p. 165].
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Relevant Connection. It is not possible to convincingly argue for the
fact that all instances of DS in real–life reasoning are instances of IDS,
at least if one takes the intensional disjunction to express “relevance be-
tween the disjuncts” as in the quote above. This was convincingly shown by
Burgess in [46, 47, 48], who points to the fact that in order for A+B to be
true, not only the truth of A∨B is required, but also some objective, “rele-
vant” connection between A and B. In order to make this clearer, consider
the following example:

Suppose that X has an insurance policy that pays off if X loses
either an arm or a leg. And suppose moreover that one knows both
that X is receiving payments and that he hasn’t lost an arm. “Well,
then,” one concludes, “he must have lost a leg.”3

Obviously, as Burgess correctly point out, there is no objective, “relevant”
connection between losing an arm and losing a leg. As a consequence, the
disjunction in this example should be interpreted as an extensional disjunc-
tion.

There are two possible reactions against this kind of counterargument.
The first one consists in taking the relevant connection as merely subjec-
tive (or psychological). As such, it might be triggered by the contextual
knowledge, which in the example above is the knowledge about the insur-
ance policy. This is a sensible reaction, but it nevertheless runs into trouble,
which will be made clear below. The second possible reaction is Stephen
Read’s. He reacted to Burgess’ objections by claiming that the only connec-
tion required between both disjuncts of an intensional disjunction, is not an
objective connection, but merely a deductive connection, expressed in the
object language by a relevant implication:

One cannot challenge a purported derivation of q from p by the
assertion that q is not in some sense relevant to p. If q has indeed
been derived from p, what greater connection of relevance could a
logician desire? None.

This indeed refutes Burgess’ objection, and justifies the interpretation of
each instance of DS as an instance of IDS. However, Read’s solution is
nevertheless not completely convincing, which is shown below.

Irrelevant Consequences. The second problem for the ‘ambiguous dis–
junction’–approach consists in the fact that interpreting the intensional dis-
junction as a relevant implication allows to derive some irrelevant conse-
quences. This is most easily shown by means of an example from Barker
[6, pp. 372–375]. First, consider a device consisting of a button B and two
light bulbs R and L. Whenever the button is pushed, one (and only one!)

3Apparently this is an example from Dunn, that was mentioned by Meyer in [75]. I
actually read it in Burgess [47, p. 46].
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of the light bulbs will light up. For each light bulb, the chance that it will
light up when the button is pushed, is 1/2. Next, consider the following two
arguments:

A1 If button B is pressed, then R or L will light up. Button B is pressed
and R does not light up. Hence, L lights up.

A2 If button B is pressed, then R or L will light up. Moreover, if R lights
up, then L will not light up. As a consequence, if button B is pressed
then R will light up, or if button B is pressed then L will light up.

It should be immediately clear that given the set–up described above, A1 is
clearly valid, while A2 is not. The latter is not valid, as it is not the case
that “if B is pressed R will light” is true or that “if B is pressed L will light”
is true. The only sensible hypothetical statement that can be made is that
“if B is pressed then R will light or L will light”.

As proponents of the “ambiguous disjunction”–approach claim that all
valid instances of DS should be interpreted as instances of IDS, the first
argument should be formalized as IA1 below, and not as IA2:

IA1 B → (R+ L), B, ∼R |−Rd
L

EA1 B → (R ∨ L), B, ∼R |6−Rd
L

But, now consider the second argument. It should be invalid, but this is
only possible if it is formalized as EA2 below and not as IA2:

IA2 B → (R+ L), R→ ∼L |−Rd
(B → R) ∨ (B → L)

EA2 B → (R ∨ L), R→ ∼L |6−Rd
(B → R) ∨ (B → L)

Obviously, the unsound argument A2 can only be avoided when the disjunc-
tion is interpreted as extensional, but then the sound argument A1 becomes
invalid. But, as the information included in both arguments is based on
the same set–up, the disjunction should be interpreted for both arguments
in the same way. Consequently, the “ambiguous disjunction”–approach is
facing a serious problem here: if the disjunction is taken to be an intensional
disjunction (as it should according to the proponents of this approach), then
some irrelevant consequences follow.

Incoherence. The third problem for this proposed solution to the DS–
problem is given by Meyer in [76], where he states that not for all theories
disjunction can be coherently interpreted as an intensional disjunction. He
gives the following example:

In the system of relevant arithmetic introduced in Meyer (1975),
one finds the theorem x 6= 0 ⊂ 0 < x. The system becomes incoherent
if one strengthens this to x 6= 0 → 0 < x. So we are stuck, at best, with
a material ⊂. But 7 6= 0. It seems to me a reasonable conclusion that
0 < 7 (which is, thank goodness, a theorem). And the task is to find
some systematic Relevant way of drawing such reasonable conclusions.
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Conclusion. Although the “ambiguous disjunction”–account might seem
intuitively appealing at first, it nevertheless breaks down, most importantly
because in some cases, it allows for the derivation of irrelevant consequences,
and because it seems not possible to interpret all theories in an intensional
way.

2.3 The Normality Assumption

Some relevant logicians solve the DS–problem by stating that the validity
of (extensional) DS as an inference rule, is dependent upon some of the
features of the deductive situation. More specifically, it is claimed that

disjunctive syllogism is valid in a proper subclass of reasoning con-
texts [or deductive situations], namely the “normal” ones.4

Obviously, not all logicians agreed on how to interpret the notions “deductive
situation” and “normal deductive situation”. Hence, these notions were
given numerous different interpretations, corresponding to different ways to
cope with DS. Nevertheless, in all of them DS is only applicable under
demand of the normality of the deductive situation.

Moreover, in all of them this normality assumption serves as a hidden
premise. This is why this approach is also called the Enthymematical Ap-
proach.

In this section, I will discuss two proposals from the literature. The
first one contains what I will call a global normality assumption and was
presented by Mortensen in [78, 79]. The second one on the contrary, only
contains a local normality assumption. It was presented by Lavers in [64].

2.3.1 Global Normality

As far as I know, Chris Mortensen was the first to propose that the appli-
cation of DS should be dependent upon the deductive situation. He stated
it as follows:

Human beings are often in the position of deducing sentences from
other sentences. Disputes as to the validity of a deduction from certain
premisses can, I propose, be thought of as disputes as to the exact
nature of the deductive situation containing those premisses.5

More specifically, Mortensen claims that a deductive situation, which he
interpreted as a theory (the deductive closure of a premise set under a certain
logic), will only be closed under DS when it is consistent and prime. But,
as people cannot know in advance whether or not a theory is consistent and

4See Lavers [64, p. 35].
5See Mortensen [78, p. 36].
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prime (which would presuppose logical omniscience). Hence, it should be the
case that people presuppose consistency and primeness for some deductive
situations.

The examples of DS which seem intuitive are often instances of
EDS [= extensional DS]; but this does not make EDS valid, and it is
not. Whenever it seems intuitive to infer using EDS, it is because there
is an extra assumption, that things are “normal”, which ensures the
truth of the conclusion and which explains the apparent intuitiveness
of EDS.6

This presupposition is taken to be metatheoretical. As such, it doesn’t
appear in the object language. Nevertheless, it has often been represented
as follows:

[C&P] (Con(Th) ∧ Pr(Th) ∧ (A ∨B) ∈ Th ∧ (∼A) ∈ Th) → (B ∈ Th).

There are two problems with Mortensen’s approach. First of all, presup-
posing the deductive situation to be consistent and prime doesn’t make it
consistent and prime. As a consequence, if Con(Th) and Pr(Th) are sup-
posed to be true, a fact which later turns out to be false, then this will allow
for the derivation of a lot of irrelevant and plainly false consequences. So,
two options are open for Mortensen, which are both not very attractive.7

The first option is to claim that people are omniscient. But, this is
clearly absurd, and I don’t think Mortensen would have chosen this option.
The second option is to claim that when confronted with the falsity of their
presupposition, people stop applying DS and retract all consequences that
were obtained by the use of DS. Although this seems a reasonable strategy,
it nevertheless limits reasoning capacities to an unjustified extent. A lot
of consequences obtained by DS might be considered safe consequences,
namely those that have nothing to do with the found abnormalities.8

2.3.2 Local Normality

Also Peter Lavers is a proponent of the enthymematical approach. He also
claims that when DS is used, some hidden premises were presupposed.
Those hidden premises are formulas of the form b(A,B), defined in the
following way:9

b(A,B) =df (A ∧B) + (A ∧ ∼B) + (∼A ∧B) + (∼A ∧ ∼B).

6See Mortensen [79, p. 195].
7Mortensen doesn’t mention these options!
8In adaptive terms, reasoning would behave in a way resembling flip–flop logics.
9The “+”–symbol again refers to the intensional disjunction. However, it is here used

for completely different purposes than in section 2.2.
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First of all, remark that these are object–language formulas, which means
that Lavers, in contradistinction with Mortensen, doesn’t interpret the nor-
mality assumption at the metatheoretical level.

So rather than moving a level up in order to address the question of
normality of a reasoning context, the question of normality is regarded
as simply part of the reasoning context.10

Next, Lavers shows that the hidden premises express local consistency and
completeness, which is shown by proving that the following entailments are
valid:

• |−R b(A,B) → ((A ∧ (∼A ∨B)) → B)
• |−R b(A,B) → ((A ∧ ∼A) → B)
• |−R b(A,B) → (A→ (B ∨ ∼B))

As a consequence, adding a formula b(A,B) to a premise makes it “locally
Boolean” with respect to A and B.

Although I prefer Lavers’ account over Mortensen’s because it treats
normality as a local phenomenon instead of a global one, it nevertheless
faces the same problem as Mortensen’s: presupposing normality does not
guarantee normality. In Lavers’ own words:

Whilst the b(A,B) are object-language expressions of local consis-
tency and completeness, assuming all instances of b(A,B) to be true is
of course no guarantee that the reasoning context is in fact consistent
and complete.

Remarkable as it may be, Lavers doesn’t consider this a disadvantage of his
approach.

(This does not constitute a weakness of the account. It simply
means that some theories are false in that they affirm b(A,B) when in
fact the theory is not consistent and complete, or they fail to affirm
b(A,B) (or they affirm its denial) when in fact they are consistent and
complete. So: some theories are false.) Whether or not one is in a
normal reasoning situation is simply another piece of information to
be deliberated by the reasoner and used in the reasoning process.

There is also a second problem with Lavers’ proposal. As some fragments
of the language will behave in a classical (Boolean) way, a lot of irrelevant
consequences (e.g. paradoxes of the material implication) will be derivable
in those fragments. As a consequence, one can hardly consider this a solution
to the DS–problem that takes relevance seriously.

10See Lavers [64, p. 35].
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2.3.3 Conclusion

I have shown that the enthymematical approach faces one general prob-
lem: adding hidden premises is not enough to cope relevantly with the DS–
problem. In the end, it remains necessary to rely on extra–logical means in
order to save the approach.

2.4 Pragmatic Disjunctive Syllogism

A final possible strategy to cope with the DS–problem is to treat DS as
a pragmatic inference rule, related to belief revision. This solution was
proposed by Ed Mares in [69] and [67, ch. 10].

Mares’ Pragmatism. First of all, Mares introduces the notions of denial
and assertion. These refer to speech acts which come down to respectively
the explicit rejection and the explicit acceptance of a formula. Next, he
states that rejecting a formula is not the same as accepting the negation of
that formula. More specifically, rejecting a formula is stronger, as it is not
possible to both reject and accept a formula at the same time. However, it
is possible to accept (but also to reject) both a formula and its negation.

By means of the notions of denial and assertion, Mares characterizes two
pragmatical versions of DS, which he calls respectively PDS and PDS′.
The former states that when a disjunction is accepted, while one of its
disjuncts is rejected, then the other disjunct should be accepted.

[PDS]
Acc(A ∨B)
Rej(A)
Acc(B)

The latter states that when a conjunction is rejected, while one of its con-
juncts is accepted, then the other conjunct should be rejected.

[PDS’]
Rej(A ∧B)
Acc(A)
Rej(B)

Remark however that these pragmatic versions of DS do not yet reintro-
duce the non–pragmatic version of the inference rule DS, which would mean
that the acceptance of a formula A ∨ B and the acceptance of the formula
∼A would necessitate the acceptance of the formula B. This is because,
according to Mares, there is no direct relation between the rejection of a
formula and the negation of that formula. Such a relation is nevertheless
necessary in order to reintroduce the non–pragmatic version of DS.
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The conclusion that we should draw, I think is that there isn’t what
we could call a ‘deductive connection’ between negation and rejection.
There should, however, be some relationship between them, but what
is it?11

The gap between the rejection of a formula and its negation is bridged by
the human inclination to reject contradictions. Mares takes this inclination
to be a human default tendency, expressed by the following two ‘ceteris
paribus’–laws:

(RC) All things being equal, reject contradictions.
(AC) All things being equal, modify your belief set in such a way as to

retain the rejection of contradictions.

This kind of behavior, together with the pragmatic rules PDS and PDS′,
indeed reintroduces the inference rule DS, as is shown by the example below:

1 Acc(A ∨B) PREM
2 Acc(∼A) PREM
3 Rej(A ∧ ∼A) RA
4 Rej(A) 2,3;PDS′

5 Acc(B) 1,4;PDS

Finally, remark that as they are ‘ceteris paribus’–laws, the above default
assumptions are defeasible. Nevertheless, according to Mares, it is justified
to use them, because of the fact that

In the vast majority of cases, using (RC) and (RA) help us to find
our way around in the world and manipulate things. They have been
reliable rules. We have good inductive justification for thinking them
to be reliable.12

Heuristics? In Mares’ account, DS is explicitly interpreted as conse-
quence of some default rules that are used for rationally changing an incon-
sistent belief set. As such, DS is considered as being part of the heuristics
that pertain in reasoning and not as being part of the deductive core.

Although I think Mares quite nicely captures the dynamics present in
reasoning contexts where people try to turn an inconsistent theory into
a consistent one, I am not convinced that DS should be interpreted as
a heuristic rule instead of as a deductive rule. The problem with Mares
approach is that probably all other inference rule can be treated in a heuristic
way as well. So, why specifically DS and only DS?

11See Mares [69, pp. 505–506].
12See Mares [69, p. 513].
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2.5 Conclusion

In this chapter, I have presented some of the proposals to solve the DS–
problem in relevant logics. Moreover, I have shown that none of them is
able to cope with the problem in a satisfactory way.

Necessary Conditions. By considering the proposed solutions to the
DS–problem, it has become clear which conditions a solution should satisfy
in order to be considered as a satisfactory solution. I will recapitulate them
below.

(1) No relevance between the disjuncts of a disjunction has to be presup-
posed in order to be able to apply DS (Anderson & Belnap).

(2) A solution to the DS–problem should not restrict DS to an unjustified
extent (Mortensen).

(3) A solution to the DS–problem should not lead to irrelevant conse-
quences (Read, Lavers).

(4) A solution to the DS–problem should not have to rely on extra–logical
means (Mortensen, Lavers, Mares?).

(5) A solution to the DS–problem should not consider DS as a heuristic
rule, but as a deductive rule, expressing a deductive connection (Mares).

(6) Finally, a condition that was not mentioned yet: a solution to the DS–
problem should treat hypothetical and non–hypothetical reasoning on
a par. This means that DS should also be applied within the scope of
an implication, as in the following example:

• A→ (B ∨ (C ∧ ∼C)) |→RL A→ B.

Because implications can be considered as the result of hypothetical
reasoning processes (which is most clearly shown in Fitch–style proof
theories where they are the result of subproofs), and because rationality
is not different for hypothetical reasoning, a solution to the DS–problem
should not distinguish between hypothetical and non–hypothetical rea-
soning.
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The Aim of Part II

In this part, I will introduce the logic background needed to understand the
remaining of this dissertation. Although this might seem quite reproductive,
this part also contains some new results. For example, a Fitch–style proof
theory is presented for the paralogics presented in chapter 4, and a new
semantic characterization is given for the standard relevant logics presented
in chapter 5.

Overview of Part II

In chapter 3, the Adaptive Logics Programme (ALP) is introduced, which
is the research tradition within which my research is to be situated. In
chapters 4 and 5, I will present respectively the paralogics and the relevant
logics that will be used in later parts of this dissertation.
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Chapter 3

The Adaptive Logics
Programme

3.1 Introduction

This first chapter of the logical preliminaries is intended as an introduction
into the Adaptive Logics Programme (ALP). In short, the intention of
the ALP is to restore formal precision in philosophy and in philosophy of
science in particular. More specifically, it’s central aim is the development of
adaptive logics that can explicate those reasoning processes that are central
in science (and in other interesting domains, such as for example ethics).

Adaptive logic are intended to explicate actual forms of reasoning
and only their dynamic proofs provide one with such an explication.1

In general, adaptive logics are very suitable tools to capture reasoning pro-
cesses that display an internal and/or an external dynamics (usually trig-
gered by the absence of a positive test). The external dynamics in fact
comes down to non–monotonicity: if a premise set is extended, some con-
sequences might not be derivable anymore.2 The internal dynamics is a
proof theoretical characteristic: growing insight in the premises, obtained
by deriving new consequences from the premises, may lead to the withdrawal
of earlier reached conclusions, or to the rehabilitation of earlier withdrawn
conclusions.

The first adaptive logics were introduced by Diderik Batens in the early
nineteen eighties with the intention to explicate reasoning processes based
on inconsistent theories. By now, adaptive logics for handling reasoning in
inconsistent contexts — the so–called inconsistency–adaptive logics — are
no longer the only ones around. There are also adaptive logics for induction,

1See Batens [15, p. 47], sic.
2Formally: there are Γ, ∆ and A such that Γ |−AL A and Γ ∪∆ |6−AL A.
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abduction, compatibility, question evocation,...3

Despite the enormous diversity among adaptive logics, they all share a
common structure.4 This common structure, labeled “the standard format”,
was first described in [15], and was extended and refined in [26] and [33, p.
6–11].5 As it is necessary for a proper understanding of this dissertation, I
will present the standard format in the sections below. The sole purpose of
this presentation is to safeguard the self–containment of this dissertation,
which means that readers who are already well acquainted with adaptive
logics can easily move on to the next chapter.

3.2 Flat Adaptive Logics

The dynamic behavior of an adaptive logic is generated by the interplay
between the three constitutive elements shared by all adaptive logics:

(1) A lower limit logic (LLL): a reflexive, transitive, monotonic, and com-
pact logic that has a characteristic semantics (with no trivial models).

(2) The set of abnormalities Ω of an AL is a set of formulas character-
ized by a (possibly restricted) logical form F. However, not only the
abnormalities themselves are important for the characterization of AL,
also (classical) disjunctions of abnormalities are. They are called Dab–
formulas, and are usually referred to by means of Dab(∆) (∆ ⊆ Ω).

(3) An adaptive strategy which determines how to interpret a premise set
Γ “as normally as possible”.

Intuitively, AL extend the LLL–consequence set of a premise set Γ by inter-
preting as false as many abnormal formulas (= elements of Ω) as possible.
More specifically, whenever a formula A ∨ Dab(∆) is LLL–derivable from
a premise set, the formula A will be considered an AL–consequence of the
premise set, unless the adaptive strategy has determined that it is not safe
to interpret some element(s) of ∆ as false.

Which abnormalities an AL will in the end interpret as false, depends
on how its adaptive strategy treats the Dab–consequences of a premise set.
These are the Dab–formulas that are LLL–derivable from the premise set.
Obviously, all disjuncts of a Dab–consequence can be interpreted as false,
as this would lead to triviality.

3A nice introduction into the ALP and a more or less exhaustive list of the existing
adaptive logics can be found at http://logica.ugent.be/adlog.

4To be honest, not all of them do, but as all AL in this dissertation are more or less
standard, I do not consider this to be a problem.

5Although [33] was not intended to be about the standard format, it adds some extra
elements to it, which are not mentioned in the other two papers, but which are nevertheless
important for the adaptive logics I will present in this dissertation.
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Self–evidently, every adaptive strategy will handle the Dab–consequences
of a premise set in a different way. Below, I will only discuss two of them,
the reliability strategy (RS) and the normal selections strategy (NS).6

The Upper Limit Logic. The upper limit logic (ULL) of an AL is
the logic which by definition interprets all abnormalities as false. As a
consequence, if Neg(Ω) = {¬A | A ∈ Ω} (with ¬ the classical negation),
then ULL–derivability is characterized as follows:

Definition 3.1 Γ |−ULL A iff Γ ∪Neg(Ω) |−LLL A.

Remark that from this definition, it follows that the LLL and the ULL are
related in the following way:

Theorem 3.1 Γ |−ULL A iff there is a finite ∆ ⊆ Ω such that Γ |−LLL

A ∨Dab(∆).

This theorem is called the Derivability Adjustment Theorem (DAT). It
makes clear in which sense the AL–consequence set of a premise set is always
situated in between the LLL–consequence set and the ULL–consequence set
of that premise set:

Theorem 3.2 CnLLL(Γ) ⊆ CnAL(Γ) ⊆ CnULL(Γ).

How close the AL–consequence set of a premise set will come to the ULL–
consequence set, depends on the Dab–consequences of the premise set. The
lesser Dab–consequences derivable from it, the bigger its AL–consequence
set will be. At the extreme, there are premise sets which have no Dab–
consequences. They are called normal premise sets, and evidently, their
AL–consequence set is equal to their ULL–consequence set:

Theorem 3.3 When Γ |6−LLL Dab(∆) for all ∆ ⊆ Ω, then CnAL(Γ) =
CnULL(Γ).

Of course, there are also premise sets that have an AL–consequence set
which is equal to their LLL–consequence set. They are called maximally
abnormal premise sets.

6There are still more adaptive strategies, most notably the minimal abnormality strat-
egy, but as I don’t need them in the remaining of my dissertation, I will not discuss them
here.
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3.2.1 Proof Theory

The proof theory of an adaptive logic consists of deduction rules and a
marking criterium. While the former determine how new lines may be added
to an AL–proof, the latter determines at every stage of an AL–proof which
lines are considered as ‘in’ and which are considered as ‘out’ of the proof.
When a line is considered as ‘out’ at a certain stage of the proof, its formula
is not considered as derivable at that stage.

Deduction Rules. One of the specific features of AL–proofs is that their
lines do not consist of three, but of four elements: a line number, a formula,
a justification (the line numbers of the formulas from which the formula
is derived and the rule by which the formula is derived), and an adaptive
condition. The latter is a finite subset of Ω, and is taken to express that
the formula of a line may be considered as derived, when the elements of its
condition may be interpreted as false.

As the deduction rules determine how to add new lines to an AL–proof,
they also determine how adaptive conditions are introduced.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−LLL B and each of A1, ..., An occurs in the proof on
lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−LLL B ∨Dab(Θ) and each of A1, ..., An occurs in the
proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RC, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Remark that the deduction rules are fully determined by the LLL–rules and
the set of abnormalities Ω. This makes clear that an adaptive proof is in
fact a LLL–proof ‘in disguise’:

Theorem 3.4 There is an AL–proof from Γ that contains a line on which
A is derived on the condition ∆ iff Γ |−LLL A ∨Dab(∆).

This theorem shows how the proof theory of adaptive logics is related to the
Derivability Adjustment Theorem from the foregoing section.

Marking Rules. A line i of an adaptive proof can be considered as ‘in’
at a certain stage of the proof, and considered as ‘out’ at an earlier or at
a later stage. As stated above, this dynamic behavior is governed by the
marking criterium, which is related to the adaptive strategy of an AL.
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The Reliability Strategy. The marking rule related to the reliability strategy
is based on the set Us(Γ), the set of unreliable formulas of Γ at stage s of
the proof. It is determined by relying on the minimal Dab–consequences of
Γ at stage s.

Definition 3.2 Dab(∆) is a minimal Dab–consequence at stage s of the
proof iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is also a Dab–consequence
at stage s of the proof.

Definition 3.3 Us(Γ) = ∆1∪∆2∪ ..., with Dab(∆1), Dab(∆2),... the min-
imal Dab–consequences of Γ at stage s of the proof.

The reliability–marking rule is now defined as follows:

Definition 3.4 Marking for Reliability: Line i is marked at stage s iff,
where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.

The Normal Selections Strategy. Marking for the normal selections strategy
is more straightforward.

Definition 3.5 Marking for Normal Selections: Line i is marked at stage
s iff, where ∆ is its condition, Dab(∆) has been derived at stage s on a line
with condition ∅.

Final Derivability. It should be clear by now that a formula will be con-
sidered as derivable from a premise set, when it occurs in a proof from that
premise set as the second element of an unmarked line. However, because
of the dynamical nature of adaptive proofs, this definition of derivability is
rather problematic. Markings may change at every stage, so that for ev-
ery new stage, it has to be reconsidered whether or not a formula is to be
considered as derivable. Despite this stage–dependency of derivability, it
still remains possible to define a stable notion of derivability. It is called
final derivability, which is a very appropriate name, as for some formulas,
derivability can only be decided at the final stage of a proof.

Definition 3.6 A is finally derived from Γ on line i of a proof at stage s
iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 3.7 Γ |−AL A (A is finally AL–derivable from Γ) iff A is finally
derived on a line of a proof from Γ.
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Notational Convention. Before discussing the semantics of adaptive log-
ics, first consider the following notational convention:

Convention 3.1 The strategy of an AL will be written as a superscript to
the name of the AL.

So, for example the adaptive logic ALr is based on the reliability strategy,
while ALs is based on the normal selections strategy.

3.2.2 Semantics

Validity and semantic consequence for AL are always defined with respect
to one or more subsets of the LLL–models of a premise set. They are called
the preferred sets of LLL–models of a premise set. How the preferred sets
are determined differs for each adaptive strategy.

In any case, whether or not a particular LLL–model will end up as the
element of some preferred set, will depend on its abnormal part, which is
the set of abnormalities that it verifies:7

Definition 3.8 Where M is a LLL–model, Ab(M) = {A ∈ Ω |M |= A}.

Reliability. Semantic consequence for AL based on the reliability strat-
egy, is defined with respect to the reliable LLL–models of a premise set
Γ. The latter are those LLL–models of Γ that verify only a subset of
the set U(Γ), the set of all abnormalities that occur in the minimal Dab–
consequences of Γ.

Definition 3.9 Dab(∆) is a minimal Dab–consequence of Γ iff Γ |=LLL

Dab(∆) and for all ∆′ ⊂ ∆, Γ |6=LLL Dab(∆′).

If Dab(∆1), Dab(∆2), ... are the minimal Dab–consequences of Γ, then U(Γ)
= ∆1 ∪∆2 ∪ ...

Definition 3.10 A LLL–model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 3.11 Γ |=ALr A iff A is verified by all reliable models of Γ.

Normal Selections. Semantic consequence for AL based on the normal
selections strategy is defined with respect to the so–called normal sets of
LLL–models of a premise set Γ. These are specific subsets of the set of
minimally abnormal LLL–models of a premise set.

Definition 3.12 A LLL–model M of Γ is minimally abnormal iff there is
no LLL–model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

7Obviously, M � A (resp. M � Γ) denotes that the model M verifies the formula A
(resp. all members of Γ).
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More specifically, a subset of the minimally abnormal LLL–models of Γ is
a normal set of LLL–models of Γ, when all its elements verify the same
abnormalities.

Definition 3.13 Φ(Γ) = {Ab(M) | M is a minimally abnormal model of
Γ}.

Definition 3.14 A set Σ of LLL–models of Γ is a normal set iff for some
φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Definition 3.15 Γ |=ALs A iff A is verified by all members of at least one
normal set of LLL–models of Γ.

3.2.3 Metatheory

Adaptive logics in standard format share a lot of metatheoretical character-
istics. I will only mention soundness and completeness, while for the other
characteristics, I refer the reader to [15, 26, 33].

Soundness and Completeness. Soundness and Completeness have been
proven in [26] for all standard adaptive logics based on the reliability strat-
egy, and in [33] for all standard adaptive logics based on the normal selections
strategy.

Theorem 3.5 Γ |−ALr A iff Γ |=ALr A.

Theorem 3.6 Γ |−ALs A iff Γ |=ALs A.

Conclusion. The advantage of the standard format is obvious: for all
adaptive logics that fall within the standard format, the proof theory, se-
mantics, and a lot of metatheoretical properties are plainly given!

3.3 Combined Adaptive Logics

It is sometimes very useful to combine (adaptive) logics. Although this can
be done in a number of ways, I will here limit myself to the case where the
adaptive logics AL1,...,ALn that are combined are based on the same LLL
and the same adaptive strategy, but which have different sets of abnormali-
ties Ω1, ...,Ωn. Their combination can result in a simple combined adaptive
logic or in a prioritized adaptive logic.
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3.3.1 Simple Combined Adaptive Logics

A simple combined adaptive logic AL adopts the LLL and the adaptive
strategy of the adaptive logics AL1,...,ALn on which it is based, but its set
of abnormalities Ω is the union of their sets of abnormalities:

Definition 3.16 Ω = Ω1 ∪ ... ∪ Ωn.

Both the proof theory and the semantics of simple combined adaptive logics
are equal to those for flat adaptive logics.

3.3.2 Prioritized Adaptive Logics

Prioritized adaptive logics are a special kind of combined adaptive logics.
They are well–studied in the literature — Most properly in [15, 34, 120]
— and can also be characterized by means of the standard format. As
such, a prioritized adaptive logic is also characterized by means of a lower
limit logic LLL, a set of abnormalities Ω and an adaptive strategy. The
difference with flat adaptive logics constitutes in the fact that the set of
abnormalities Ω of a prioritized adaptive logic is a structurally ordered set
of sets of abnormalities:

Definition 3.17 Ω = Ω1 < ... < Ωn.

The order imposed on the set of abnormalities expresses a priority relation,
which plays a decisive role in both the proof theory and the semantics of a
prioritized adaptive logic. Intuitively, a premise set will first be interpreted
“as normally as possible” with respect to the abnormalities of priority level
1, then with respect to abnormalities of priority level 2, etc.8

It is probably most convenient to interpret a prioritized adaptive logic as
a superposition of adaptive logics that are based on the same LLL and on
the same adaptive strategy, but which have different sets of abnormalities.
As such, the consequence set of a prioritized adaptive logic AL can also be
characterized as follows:

Definition 3.18 CnAL(Γ) = CnALn(...(CnAL2(CnAL1(Γ)))...).

Proof Theory. The proof theory of prioritized adaptive logics comes quite
close to the one for flat adaptive logics. The deduction rules PREM, RU
and RC are as for flat adaptive logics, so that the only difference resides in
the marking criterium.

8Normally the priorities are also expressed in the object language by means of the
modal operator ♦ (see [34]). However, this is only necessary for the characterization of
some prioritized adaptive logics, not for all of them. Hence, I will not express priorities in
the object language.
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In order to characterize the reliability–marking rule for prioritized adap-
tive logics (the only marking criterium I will consider here), first consider the
minimal Dabi–consequences of a premise set. When Dabi(∆) (1 6 i 6 n)
is used to denote a Dab–formula for which ∆ ⊆ Ωi, Dabi(∆) is a minimal
Dabi–consequence of a premise set Γ at stage s of a proof, when (1) it occurs
on an unmarked line at stage s, (2) all members of its adaptive condition
belong to a Ωj such that j < i, and (3) there is no ∆′ ⊂ ∆ for which the
same applies.

Next, for all priority levels i (1 6 i 6 n), the set U i
s(Γ) of unreliable

formulas of Γ with priority i is defined.

Definition 3.19 U i
s(Γ) = ∆i

1 ∪ ∆i
2 ∪ ... with Dabi(∆1), Dabi(∆2),... the

minimal Dabi–consequences of Γ at stage s of the proof.

Finally, marking for reliability is defined as for flat adaptive logics.

Definition 3.20 Marking for Reliability: Line i is marked at stage s iff,
where ∆ is its condition, ∆ ∩ U i

s(Γ) 6= ∅.

The difference with the reliability–marking rule for flat adaptive logics con-
sists in the fact that marking for prioritized adaptive logics proceeds stepwise:
first for level 1, then for level 2,...

To conclude the proof theory, final derivability for prioritized adaptive
logics is governed by definitions 3.6 and 3.7 from section 3.2.

Semantics. As the semantics for flat adaptive logics, the semantics for
prioritized adaptive logics is also based on a selection (or on multiple selec-
tions) of LLL–models of a premise set. First of all, the abnormal parts of
the LLL–models are determined. Each LLL–model has multiple abnormal
parts, one for each priority level i.

Definition 3.21 For every LLL–model M and for every priority level i:
Abi(M) = {A ∈ Ωi |M |= A}.

Next, consider the set M0, the set of all LLL–models of a premise set.

Definition 3.22 M0 =df {M |M |= Γ}.

For every priority level i, we can now define a set Mi which contains the
selected LLL–models of priority level i. For the reliability strategy (the only
strategy which I will consider), the set Mi is defined as follows:

Definition 3.23 Mi =df {M ∈ Mi−1 | Abi(M) ⊆ U i(Γ)}, where U i(Γ) =⋃
{∆ | Dabi(∆) a minimal Dab–consequence of Γ.
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Finally, the set of selected models of a premise set is defined as the section of
all sets Mi, and semantic consequence is defined by relying on those selected
models. Consider below the definitions for the reliability strategy.

Definition 3.24 M is a reliable model of Γ iff M ∈Mr
1 ∩Mr

2 ∩ ...

Definition 3.25 Γ |=PALr A iff A is verified by all reliable models of Γ.

Soundness and Completeness. Soundness and Completeness for pri-
oritized adaptive logics follows in a rather straightforward way from the
soundness and completeness of flat adaptive logics.

3.4 Conclusion

In this chapter, I have not only stated the main objectives of the Adaptive
Logics Programme, I have also presented the standard format of adaptive
logics. I found this necessary, as the logics I will present in later chapters,
will all be adaptive logics.



Chapter 4

Introducing Paralogics

4.1 Paralogics

Classical Logic (CL) presupposes both consistency and completeness. How-
ever, other logics do not. These are called paralogics, as they are either
paraconsistent (not presupposing consistency), paracomplete (not presup-
posing completeness), or both.

In this chapter, I will present those paralogics that will be used in later
chapters. These are the basic paralogics CLūNs, CLāNs and CLōNs (see
section 4.2), their full versions (see section 4.3), and their modal extensions
(see section 4.4).

Preliminary Remark. In this dissertation, I limit myself to propositional
logic, so that only the propositional fragments of the considered paralogics
will be discussed.

4.2 Basic Paralogics

The semantics of classical negation expresses both the consistency and com-
pleteness presupposition inherent in CL:

CONSISTENCY If v(¬A) = 1 then v(A) = 0.
COMPLETENESS If v(¬A) = 0 then v(A) = 1.

If one (or both) of these semantical clauses is dropped from CL, we obtain
the paralogics CLuN (by dropping the consistency requirement), CLaN
(by dropping the completeness requirement), or CLoN (by dropping both
requirements).

Although these paralogics contain the full positive part of CL, their
negation has become extremely weak. Not only are double negation and
the De Morgan–properties lost for it, within the scope of a negation the
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replacement of logically equivalent formulas is not even possible anymore,
e.g. ¬(A ∧B) |6− ¬(B ∧A).1

It is however possible to allow all properties that drive the negation
inwards, which results in the stronger paralogics CLūNs, CLāNs and
CLōNs. These are the logics that I will present below, and from now on, it
will be to them that I mean to refer when speaking about (basic) paralogics.

4.2.1 The Language Schema

The language L of CLūNs, CLāNs and CLōNs is the ¬,∧,∨,A–fragment
of the classical propositional language.2 Consequently, the set of well–formed
formulas W of the language L, is made up as follows:

(i) S ⊂ W for S the set of sentential letters,
(ii) If A ∈ W then ¬A ∈ W,
(iii) If A,B ∈ W then (A ∧B), (A ∨B), (A A B) ∈ W.

Classes of Well–Formed Formulas. Based on an idea from [37, 19], I
will subdivide the set of well–formed formulas into specific classes, named
a–, b–formulas. a– and b–formulas are assigned two other formulas, in ac-
cordance with the following table:

a a1 a2 b b1 b2

A ∧B A B ¬(A ∧B) ¬A ¬B
¬(A ∨B) ¬A ¬B A ∨B A B

¬(A A B) A ¬B A A B ¬A B

¬¬A A A

Table 4.1: a– and b–formulas for paralogics.

The formulas assigned to a particular a/b–formula, are called the con-
stituting parts of that a/b–formula. By using the constituting parts of a
formula in the semantics of paralogics, their non–truthfunctional semantics
gets a more classical (read: truthfunctional) outlook.

4.2.2 Semantics for Basic Paralogics

I will first present the semantics of the logic CLōNs, which allows for both
gluts and gaps for negation. In other words, it is both paraconsistent and

1For a thorough characterization of these logics and their extensions, see [7].
2For reasons not even completely clear to me, I leave out material equivalence. However,

material equivalence can easily be reintroduced by defining it in terms of the material
implication: (A ≡ B) =df (A A B) ∧ (B A A).
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paracomplete. As such, it is the weakest paralogic of the three I will present.3

Also remark that CLōNs is in fact equivalent to the logic FDE as presented
in Priest [86, ch. 8].4

A CLōNs–model for the language L, with S and ¬S respectively the set
of sentential letters and the set of negated sentential letters (¬S = {¬A |
A ∈ S}), is an assignment function v, characterized as follows:

AP1 v : S 7→ {0, 1}.
AP2 v : ¬S 7→ {0, 1}.

The valuation function vM determined by the model M is defined as follows:

SP1 vM : W 7→ {0, 1}.
SP2 For A ∈ S: vM (A) = 1 iff v(A) = 1.
SP3o For A ∈ S: vM (¬A) = 1 iff v(¬A) = 1.
SP4 vM (a)= 1 iff vM (a1) = 1 and vM (a2) = 1.
SP5 vM (b)= 1 iff vM (b1) = 1 or vM (b2) = 1.

Truth in a model, semantical consequence, and validity are defined as usual:

Definition 4.1 A is true in a model M iff vM (A) = 1.

Definition 4.2 Γ |=CLōNs A iff A is true in all models in which all elements
of Γ are true.

Definition 4.3 |=CLōNs A iff A is true in all models.

Consistency and Completeness. It is of course possible to reintroduce
the consistency and/or the completeness requirements into the logic CLōNs.
First, the completeness requirement is reintroduced by replacing the clause
SP3o in the above CLōNs–semantics by the semantical clause SP3u:

SP3u For A ∈ S: vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1.

This gives us the paraconsistent logic CLūNs (Classical Logic with gluts
for negation) which is in fact equivalent to the logic LP of Priest (see e.g.
Priest [83], and Priest [85, ch. 7–8]).

Secondly, to reintroduce the consistency requirement, replace the seman-
tical clause SP3o above by the following one:

SP3a For A ∈ S: vM (¬A) = 1 iff vM (A) = 0 and v(¬A) = 1.

3‘Weak’ interpreted here as giving the smallest consequence set for a particular premise
set.

4Moreover, the logic FDE characterizes tautological entailments, see [5].
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This gives us the paracomplete logic CLāNs (Classical Logic with gaps for
negation) which is actually equivalent to Kleene’s logic K3 (see Priest [85,
ch. 7–8]).

Finally, it is obvious that if we add both presuppositions to CLōNs, we
get CL again. This can also be done by replacing SP3o by SP3:

SP3 For A ∈ S: vM (¬A) = 1 iff vM (A) = 0.

Notational Convention. It is possible to construct logical systems that
contain more than one negation, e.g. both the CLāNs– and the CL–
negation. In order to keep them apart, I will use ¬! for classical negation,
¬u for the CLūNs–negation, ¬a for the CLāNs–negation, and ¬o for the
CLōNs–negation. However, in contexts where there is only one kind of
negation and no mix up is possible, I will always use ¬.

4.2.3 Proof Theory for Basic Paralogics

The proof theories I will present for the paralogics CLūNs, CLāNs and
CLōNs are Fitch–style natural deduction systems.

Structural Rules. The proof theories of CLūNs, CLāNs and CLōNs
all contain the same structural rules. These are quite standard, except for
the rule CSP, which allows to introduce pseudo–formulas into the proofs.
These are “formulas” of the form S(A,B) with A,B ∈ W, which express
that there is a subproof with hypothesis A on its first line and formula B
on its closing line.

PREM At any place in the proof, one may write down a premise.
HYP At any place in the proof, one may start a new subproof. This is

done by introducing a new hypothesis, together with a new vertical
line on its left.

CSP If the formula B is the formula on the last line of a subproof that
started with the hypothesis A, one may conclude to the pseudo–
formula S(A,B). This of course also closes the subproof.

REP In the main proof and in subproofs, formulas may be repeated.
REIT In subproofs, one may reiterate formulas from lines in the main

proof and from lines in unclosed subproofs.

Inference Rules. Also consider the inference rules for the logic CLōNs.
They allow one to derive a formula from other formulas. The inference rules
presented by means of JI allow for derivation in both directions.5

5Remark that the rules DIL,CONT, and ASS can be replaced by the following rule:
A ∨ B, S(A, C), S(B, C) ` C. I opted for the former three rules, as this will come out
handy later on in my dissertation.
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CON A, B I A ∧B
SIM A ∧B I A, A ∧B ` B
ADD A ` A ∨B, B I A ∨B
DIL A ∨B, S(A,C), S(B,D) I C ∨D
CONT A ∨A I A
ASS A ∨ (B ∨ C) JI (A ∨B) ∨ C
IMP A A B JI ¬A ∨B
DN ¬¬A JI A
NC ¬(A ∧B) JI ¬A ∨ ¬B
ND ¬(A ∨B) JI ¬A ∧ ¬B
NI ¬(A A B) JI ¬A ∧B

CLōNs–Derivability. A CLōNs–proof is defined as a finite sequence of
wffs (and pseudo–wffs), each of which is either a premise or follows from
wffs earlier in the list by means of a structural rule or a rule of inference.
Moreover, in order for such a sequence to be a proof, all its subproofs should
be closed.

Finally, CLōNs–derivability is defined as follows:

Definition 4.4 Γ |−CLōNs A (A is a CLōNs–consequence of Γ) iff there
is a proof of the formula A from B1, ..., Bn ∈ Γ so that A has been derived
on a line i of the main proof.

Example. In order to make the proof theory more concrete, consider the
following example for the logic CLōNs.

1 p ∨ q PREM
2 r ∨ s PREM M (p ∨ r) ∨ (q ∧ s)
3 p HYP
4 p 3;REP
5 S(p, p) 3,4;CSP
6 q HYP
7 r ∨ s 2;REIT
8 r HYP
9 r 8;REP
10 S(r, r) 8,9;CSP
11 s HYP
12 q 6;REIT
13 q ∧ s 11,12;CON
14 S(s, q ∧ s) 11,13;CSP
15 r ∨ (q ∧ s) 7,10,14;DIL
16 S(q, r ∨ (q ∧ s)) 6,15;CSP
17 p ∨ (r ∨ (q ∧ s)) 1,5,16;DIL
18 (p ∨ r) ∨ (q ∧ s) 17;ASS
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Extra Inference Rules. To obtain the proof theories of CLūNs and
CLāNs, add respectively the inference rule TH or DS to the proof theory
of CLōNs.

TH For C ∈ S: I A ∨ ¬A.
DS For C ∈ S: A ∨B, S(B,C ∧ ¬C) I A

It is obvious that if both rules are added, we get a proof theory for CL.

4.2.4 Pseudo–Deduction Theorem for Paralogics

Although the usual deduction theorem is not valid for paralogics (PL), a
variant of the usual deduction theorem is. Let’s call it the pseudo–deduction
theorem. Consider it below, together with its converse which is also valid.

Theorem 4.1 A1, ..., An |−PL B iff A1, ..., An−1 |−PL S(An, B).

Proof.=> Suppose A1, ..., An |−PL B. Hence, consider the following generic
proof:

1 A1 PREM
... ... PREM
n-1 An−1 PREM
n An HYP
n+1 A1 1;REIT
... ... REIT
n+(n-1) An−1 n-1;REIT
... ... ...
m B Supposition
m+1 S(An,B) n,m;CSP

<= Suppose A1, ..., An−1 |−PL S(An, B). Now, consider the following
generic proof:

1 A1 PREM
... ... PREM
n-1 An−1 PREM
n An PREM
n+1 An ∨An n;ADD
n+2 S(An, B) 1 till n-1;Supposition
n+3 S(An, B) n+2;REP
n+4 B ∨B n+1,n+2,n+3;DIL
n+5 B n+4;CONT
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The pseudo–deduction theorem will turn out to be very useful for proving
soundness and completeness of the presented paralogics.

4.2.5 Soundness and Completeness

The soundness and completeness proofs of the basic paralogics CLūNs,
CLāNs and CLōNs, are inspired by the soundness and completeness proofs
I found in Roy [103] and Priest [85]. I shall start with soundness and com-
pleteness for CLōNs, as the other paralogics in a sense all contain it.

Theorem 4.2 (Soundness) If Γ |−CLōNs A then Γ |=CLōNs A.

Before proving this theorem, first consider the following lemma:

Lemma 4.1 If Γ ⊆ Γ′ and Γ |=CLōNs A then Γ′ |=CLōNs A.

Proof. Suppose (1) Γ ⊆ Γ′, (2) Γ |=CLōNs A and (3) Γ′ |6=CLōNs A. From (3),
it follows that there is a CLōNs–model M such that vM (Γ′) = 1 and vM (A)
= 0.6 As Γ ⊆ Γ′ (by (1)), it also follows that vM (Γ) = 1. Consequently, as
there is a model M for which vM (Γ) = 1 and vM (A) = 0, it follows that
Γ |6=CLōNs A, which is impossible because of (2).

Next, consider some terminological remarks. Let Ai express that the
formula A is derived in a proof on line i, and let Γi stand for the set of all
free premises (premises that do not occur in a closed subproof) and all free
hypotheses (hypotheses of subproofs that are unclosed for the proof at line
i) that occur on those lines j of the proof for which j 6 i.

Finally, consider the proof of theorem 4.2. It is an induction proof on
the line numbers of a CLōNs–derivation.

Proof. Suppose Γ |−CLōNs A. This means that there is a proof of A from
Γ. In order to proof that this also gives us Γ |=CLōNs A, I will proof by
induction that for all lines i of the proof, it is the case that Γi |=CLōNs Bi.
This will give us the desired result, as Γi (with i the line on which A occurs)
cannot contain any hypotheses (because A is in the main proof), which
means that Γi ⊆ Γ, so that by lemma 4.1, it follows that Γ |=CLōNs A.

First, consider the base case: B0 is a premise or an assumption. This
means that B0 ∈ Γ0 such that it is impossible that vM (Γ0) = 1 and vM (B0)
= 0. Consequently, Γ0 |=CLōNs B0.

Next, consider the induction hypothesis:

Induction Hypothesis 4.1 For any i, 1 6 i < k: Γi |=CLōNs Bi.

6Obviously, vM (Γ′) = 1 means that for all formulas B ∈ Γ′: vM (B) = 1.
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It remains to be proven that Γk |=CLōNs Bk. Bk is either a premise, an
assumption or is derived from previous lines by means of REP, REIT,
CON, SIM, ADD, DIL, CONT, ASS, IMP, DN, NC, ND or NI. In
case Bk is a premise or an assumption, the proof is analogous to the base
case. Hence, Γk |=CLōNs Bk. So, we only need to show that this is also the
case when Bk is derived by means of one of the above rules. In fact, as the
proofs for most of them are trivial, I leave them to the reader. I will here
only prove it for the rule DIL.

DIL Suppose that (1) Bk = C ∨D and (2) that it has been derived from
Bi = A ∨ B, S(A,C) (with C on line g) and S(B,D) (with D on
line h) by means of DIL.
Consequence 1. From (2), it follows that Γi |=CLōNs A∨B (by the
induction hypothesis). Moreover, that i < k gives us that Γi ⊆ Γk.
From both the above, it follows that Γk |=CLōNs A ∨B (by lemma
4.1).
Consequence 2. That S(A,C), with C on line g (see (2)), gives us
that Γg |=CLōNs C (by the induction hypothesis). Moreover, that
g < k gives us that Γg ⊆ Γk ∪{A}. From both the above, it follows
that Γk ∪ {A} |=CLōNs C (by lemma 4.1).
Consequence 3. That S(B,D), with D on line h (see (2)), gives us
that Γh |=CLōNs D (by the induction hypothesis). Moreover, that
h < k gives us that Γh ⊆ Γk ∪{B}. From both the above, it follows
that Γk ∪ {B} |=CLōNs D (by lemma 4.1).

Supposition. Γk |6=CLōNs Bk. From this it follows that there
is a CLōNs–model M such that vM (Γk) = 1 and vM (Bk) = 0. As
Bk = C ∨ D, this means that vM (C ∨ D) = 0. By SP5, it now
follows that vM (C) = 0 and vM (D) = 0 (∗).
From the foregoing paragraph, it follows that for M : vM (Γk) =
1. This means also that vM (A ∨ B) = 1 (by consequence 1), such
that vM (A) = 1 or vM (B) = 1 (by SP5). This in fact means that
vM (Γk∪{A}) = 1 or that vM (Γk∪{B}) = 1. But, the former leads
to vM (C) = 1 (by consequence 2) and the latter leads to vM (D) =
1 (by consequence 3), which are both impossible because of (∗).

Theorem 4.3 (Completeness) If Γ |=CLōNs A then Γ |−CLōNs A.

Proof. Suppose Γ |6−CLōNs A. Consider a sequence B1,B2,... that contains
all wffs of the language L. We then define:

∆0 = CnCLōNs(Γ)
∆i+1 = CnCLōNs(∆i ∪ {Bi}) if A /∈ CnCLōNs(∆i ∪ {Bi}), and
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∆i+1 = ∆i otherwise.
∆ = ∆0 ∪∆1 ∪ ...

Each of the following is provable:

(i) Γ ⊆ ∆ (by the construction).
(ii) A /∈ ∆ (by the construction).
(iii) ∆ is deductively closed (by the definition of ∆).
(iv) ∆ is non–trivial (as A /∈ ∆).
(v) ∆ is prime, i.e. if C ∨D ∈ ∆, then C ∈ ∆ or D ∈ ∆.

Suppose that (1) C∨D ∈ ∆, but that (2) C /∈ ∆ and D /∈ ∆. From (2),
it follows that there must be anm and n such that ∆m∪{C} |−CLōNs A
and ∆n ∪ {D} |−CLōNs A (by the construction of ∆). From these,
it follows that ∆m |−CLōNs S(C,A) and ∆n |−CLōNs S(D,A) (by
theorem 4.1). But, this also means that ∆ |−CLōNs S(C,A) and
∆ |−CLōNs S(D,A) (by the construction of ∆ and the syntactic ver-
sion of lemma 4.1 which is left to the reader). From this, together
with (1), it follows that A ∈ ∆ (by the deductive closure of ∆), which
contradicts (ii).

I now define a CLōNs–model M from ∆ in the following way:

AP1 For all C ∈ S, v(C) = 1 iff C ∈ ∆.
AP2 For all C ∈ ¬S, v(C) = 1 iff C ∈ ∆.

Finally, I show that for all wffs C of the language L, vM (C) = 1 iff C ∈ ∆.
This is done by a straightforward induction on the complexity of the wffs.

The Base Case. For primitive formulas, the proof is immediate because
of AP1, AP2, SP2 and SP3.

The Induction Cases. As this is all completely standard, I will only show
how this is done for formulas of the form ¬(A ∧B). The remaining cases, I
leave to the reader.

¬(A ∧B) ∈ ∆ iff ¬A ∨ ¬B ∈ ∆ (as ∆ is deductively closed)
iff ¬A ∈ ∆ or ¬B ∈ ∆ (as ∆ is prime)
iff vM (¬A) = 1 or vM (¬B) = 1 (by the induction hypoth-

esis)
iff vM (¬(A ∧B)) = 1 (by SP5)

As vM (C) = 1 iff C ∈ ∆, (i) and (ii) give us that vM (Γ) = 1 and vM (A) =
0. Hence, Γ |6=CLōNs A.
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Because of the two theorems above, we can conclude to the following
corollary:

Corollary 4.1 Γ |−CLōNs A iff Γ |=CLōNs A.

The Remaining Paralogics. Now that I have proven soundness and
completeness for CLōNs, I can easily do so for CLūNs and CLāNs as
well.

Theorem 4.4 Γ |−CLūNs A iff Γ |=CLūNs A.

Proof. => The soundness proof for CLūNs is completely equivalent to the
one for CLōNs. I only need to prove one extra induction case, namely for
the rule TH. As this is a trivial case, I leave it to the reader.

<= The completeness proof for CLūNs also comes very close to the one
for CLōNs. The only difference with the proof for CLōNs concerns the
case for negations of sentential letters: vM (¬A) = 1 iff ¬A ∈ ∆ (for A ∈ S).
This case is proven as follows:

Right–Left Suppose for A ∈ S, ¬A ∈ ∆. By AP2, it follows that v(¬A) =
1, so that also vM (¬A) = 1 by SP3u.

Left–Right Suppose for A ∈ S, vM (¬A) = 1. By SP3u, it follows that (1)
vM (A) = 0 or (2) v(¬A) = 1. From (2), it follows immediately
that ¬A ∈ ∆ (by AP2), and from (1), it follows that A /∈ ∆
(also by AP2). From the latter, it also follows that ¬A ∈ ∆,
as A ∨ ¬A ∈ ∆ (by deductive closure of ∆) and ∆ is a prime
theory.

Theorem 4.5 Γ |−CLāNs A iff Γ |=CLāNs A.

Proof. => The soundness proof for CLāNs is also equivalent to the one for
CLōNs, except for one extra induction case, namely for the rule DS.

DS Suppose that (1) Ak = A and (2) that it has been derived from Ai

= A ∨ B and S(B,C ∧ ¬C) (with C ∧ ¬C on line j) by means of
DS.
Consequence 1. From (2), it follows that Γi |=CLāNs A∨B (by the
induction hypothesis). Moreover, that i < k gives us that Γi ⊆ Γk.
From both the above, it follows that Γk |=CLāNs A ∨B (by lemma
4.1).
Consequence 2. That S(B,C ∧ ¬C), with C on line j (see (2)),
gives us that Γj |=CLāNs C ∧ ¬C (by the induction hypothesis).
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Moreover, that j < k gives us that Γj ⊆ Γk ∪ {B}. From both the
above, it follows that Γk ∪ {B} |=CLāNs C ∧ ¬C (by lemma 4.1).
Supposition. Γk |6=CLāNs Ak. From this it follows that there is a
CLāNs–model M such that vM (Γk) = 1 and vM (Ak) = 0. As Ak

= A, this means that vM (A) = 0 (∗).
From the foregoing paragraph, it follows that for M : vM (Γk) =
1. This means also that vM (A ∨ B) = 1 (by consequence 1), such
that vM (A) = 1 or vM (B) = 1 (by SP5). This in fact means that
vM (Γk ∪ {A}) = 1 or that vM (Γk ∪ {B}) = 1. But, as the latter
leads to vM (C) = 1 and vM (C) = 0 (by consequence 2, SP4 and
SP3a), it follows that vM (Γk ∪ {A}) = 1 is the case. This however
contradicts with (∗).

<= Also the completeness proof for CLāNs differs only from the one for
CLōNs concerning the induction case for negations of sentential letters.

Right–Left Suppose for A ∈ S, ¬A ∈ ∆. It follows that v(¬A) = 1 (by
AP2), and it also follows that A /∈ ∆ (otherwise ∆ would be
trivial, which it is not). Hence, v(A) = 0 (by AP1), which
means that also vM (A) = 0 (by SP2). From the foregoing, it
follows that vM (¬A) = 1 (by SP3a).

Left–Right Suppose for A ∈ S, vM (¬A) = 1. By SP3a, it follows that
v(¬A) = 1, which means that ¬A ∈ ∆ (by AP2).

Classical Logic Again. Soundness and completeness for CL follows from
the soundness and completeness proofs for CLūNs and CLāNs.

Theorem 4.6 Γ |−CL A iff Γ |=CL A.

4.2.6 Some interesting Relations Between the Logics

The following theorems show us a very interesting relation between the logics
CLūNs and CL, and between the logics CLōNs and CLāNs. As these
relations will play an important role later on in this dissertation, I now
already state them.

Theorem 4.7 For B1, ..., Bn ∈ S: Γ |−CL A iff Γ |−CLūNs A∨(B1∧¬B1)∨
... ∨ (Bn ∧ ¬Bn).

Theorem 4.8 For B1, ..., Bn ∈ S: Γ |−CLāNs A iff Γ |−CLōNs A ∨ (B1 ∧
¬B1) ∨ ... ∨ (Bn ∧ ¬Bn).
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The proof of both theorems is completely equivalent, so that I will give it
only once. But first, consider the following lemma:

Lemma 4.2 A∨B, S(B,C) ` A∨C is a derived inference rule in the proof
theory of the presented paralogics.

Proof. Suppose A ∨ B, S(B,C). Because it is obvious that S(A,A) is
derivable, it also follows that A ∨ C by means of DIL.

In the proof of the theorems 4.7 and 4.8, I will make use of the above
derived rule. I will call it DIL′.

Proof.⇒ When A∨(B1∧¬B1)∨ ...∨(Bn∧¬Bn) (B1, ..., Bn ∈ S) is derivable
on a line in a CLūNs–proof (resp. CLōNs–proof), it is also derivable in
a CL–proof (resp. CLāNs–proof), as all rules for CLūNs (resp. CLōNs)
are also rules for CL (resp. CLāNs). Moreover, S(Bi ∧ ¬Bi, Bi ∧ ¬Bi) is
derivable for all i ∈ {1, n}, so that A will be derivable too in the CL–proof
(resp. CLāNs–proof) because of the extra rule DS.

⇐ Consider an arbitrary CL–proof (resp. CLāNs–proof) of A from Γ.
In order to prove there is also a CLūNs–proof (resp. CLōNs–proof) of
A ∨ (B1 ∧ ¬B1) ∨ ... ∨ (Bn ∧ ¬Bn), I will show how we can transform the
original CL–proof (resp. CLāNs–proof) of A into a CLūNs–proof (resp.
CLōNs–proof) of A ∨ (B1 ∧ ¬B1) ∨ ... ∨ (Bn ∧ ¬Bn).

Remind that the only CL–rule (resp. CLāNs–rule) that is not valid for
CLūNs (resp. CLōNs) is the rule DS. In order to get the transformation,
we will proceed as follows: we start the proof and proceed as the original
proof, until we arrive at a line i on which DS has been applied in the
original proof. This means that we have a formula A1 ∨ C1 and a subproof
S(C1, B1 ∧B1). In the original proof this leads to a line j with formula A1.
In the CLūNs–proof (resp. CLōNs–proof), we first apply DIL′, so that
we arrive at A1 ∨ (B1 ∧B1). Next, we start a subproof with hypothesis A1

and proceed within the subproof as we did in the original proof after the
application of DS. This procedure is repeated any time we arrive at a line
on which DS is applied in the original proof. At some point in the proof,
we will be able to derive A on the closing line of a subproof.

1 P1 PREM
... ... PREM
g Pn PREM
... ... PL–rules
h S(C1, B1 ∧B1) PL–rules
... ... PL–rules
i A1 ∨ C1 PL–rules
i+1 A1 ∨ (B1 ∧B1) h,i;DIL′

i+2 A1 HYP
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... ... PL–rules
m A2 ∨ (B2 ∧ ¬B2) DIL′

m+1 A2 HYP
... ... ...
n ... An HYP
... ... ... PL–rules
k ... A PL–rules

Once A has been derived in this way, we apply the rule DIL′ n times, which
gives us the formula A ∨ (B1 ∧ ¬B1) ∨ ... ∨ (Bn ∧ ¬Bn).

4.3 Full Paralogics

In the paralogics presented above, the implication is treated as a defined
connective (A A B =df ¬A∨B ). As a consequence, in CLūNs and CLōNs,
modus ponens is not a valid inference rule. It is nevertheless possible to add a
stronger implication to those logics, an implication for which modus ponens
is valid.

Actually, the logics that are obtained by adding this stronger implication
to the basic paralogics (and by leaving out the weaker one), are the logics
that are usually called CLuNs, CLaNs and CLoNs in the literature (see
e.g. Batens et al. [7, 28, 29]. I will also refer to them as to the full versions
of CLūNs, CLāNs and CLōNs.

4.3.1 Language Schema for Full Paralogics

The language Lf of full paralogics is the language L of basic paralogics,
extended with the implication symbol ⊃. Consequently, the set of wffs Wf

of Lf is constructed as follows:

(i) S ⊂ Wf for S the set of sentential letters,
(ii) When A ∈ Wf then ¬A ∈ Wf ,
(iii) When A,B ∈ Wf then (A ∧B), (A ∨B), (A A B), (A ⊃ B) ∈ Wf .

Classes of Well–Formed Formulas. The formulas of full paralogics are
also subdivided into a– and b–formulas. This is done as for basic paralogics
(see table 4.1), although extended with some extra a–formulas:

a a1 a2

¬(A ⊃ B) A ¬B

Table 4.2: Extra a–formulas for full paralogics.
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4.3.2 Semantics for Full Paralogics

To obtain a semantics for their full versions, we simply add the following
semantical clause to the semantics of respectively CLūNs, CLāNs and
CLōNs.

SP6 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1.

In fact, this interprets the implication in a classical way. In other words,
this stronger implication is nothing more nor less than good old material
implication.

Negated Implications. Remark that as negations of implications are
treated as a–formulas, they are semantically governed by clause SP4.

4.3.3 Proof Theory for Full Paralogics

Also the proof theory for full paralogics is easily obtained. It suffices to
add the inference rules below to the proof theory of CLūNs, CLāNs or
CLōNs.

CP S(A,B) I A ⊃ B
MP A, A ⊃ B I B
PC (A ⊃ B) ⊃ A I A
NMI ¬(A ⊃ B) JI A ∧ ¬B

CLuNs–, CLaNs– and CLoNs–derivability are defined as for CLōNs (see
section 4.2.3).

Deduction Theorem. Remark that in contradistinction with the basic
paralogics (see section 4.2.4), full paralogics have a traditional deduction
theorem.

Theorem 4.9 A1, ..., An |−PL B iff A1, ..., An−1 |−PL An ⊃ B.

The proof of theorem 4.9 is standard, so that it is not necessary to present
it here.

4.3.4 Soundness and Completeness

Soundness and completeness for full paralogics is easily proven. I will do it
here only for CLoNs, but the method is completely equivalent for CLuNs
and CLaNs.

Theorem 4.10 Γ |−CLoNs A iff Γ |=CLoNs A.
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Theorem 4.11 Γ |−CLuNs A iff Γ |=CLuNs A.

Theorem 4.12 Γ |−CLaNs A iff Γ |=CLaNs A.

Proof.=> Soundness for CLoNs is obtained by adding the induction cases
for the extra inference rules to the soundness proof for CLōNs. As the ones
for MP, PC and NMI are trivial, I will only prove the case for CP.

CP Suppose that (1) Ak = A ⊃ B and (2) that it has been derived
from S(A,B) (with B on line i) by means of CP.
Consequence 1. From (2), it follows that Γi |=CLoNs B (by the
induction hypothesis). Moreover, that i < k gives us that Γi ⊆
Γk∪{A}. From both the above, it follows that Γk∪{A} |=CLoNs B
(by lemma 4.1).
Supposition. Γk |6=CLoNs Ak. From this, it follows that there is
an CLoNs–model M such that vM (Γk) = 1 and vM (Ak) = 0. As
Ak = A ⊃ B, this means that vM (A ⊃ B) = 0, from which it follows
that vM (A) = 1 and vM (B) = 0 (∗) (by SP6). But, as vM (Γk) =
1 and vM (A) = 1, also vM (Γk ∪{A}) = 1 such that vM (B) = 1 (by
consequence 1). The latter however contradicts with (∗).

<= Completeness for CLoNs is proven in the same way as for CLōNs.
Only the induction cases for implications and negations of implications
should be added. As the case for negations of implicational formulas is
trivial, I will only prove it for implicational wffs.

First, I need to show that the constructed set ∆ that is used to define
a CLoNs–model, is not only non–trivial (see the completeness proof for
CLōNs), but that it is maximally so (meaning that any extension would
lead to the trivial set). In order to prove this, I will first show that A ⊃
C ∈ ∆, with A the formula we deliberately kept out of ∆ and with C an
arbitrary formula (representing triviality). If this were not the case, then
∆ ∪ {A ⊃ C} |−CLoNs A (by the construction for ∆), and also ∆ |−CLoNs

(A ⊃ C) ⊃ A (by theorem 4.9). But this would mean that ∆ |−CLoNs A
(by the deductive closure of ∆), which is impossible.

Secondly, take an arbitrary formula D for which D /∈ ∆. This gives us
∆ ∪ {D} |−CLoNs A (by the construction for ∆). So, adding D to ∆ would
give us A, but as A ⊃ C ∈ ∆ for all C, adding D to ∆ would also give us
all C (by the deductive closure of ∆). Conclusion: ∆ is max. non–trivial.

Knowing this, I can now also prove that vM (A ⊃ B) = 1 iff A ⊃ B ∈
∆. For the right–left direction, suppose A ⊃ B ∈ ∆. This means that
∆ |−CLoNs A ⊃ B, from which it follows that ∆ ∪ {A} |−CLoNs B (by
theorem 4.9). There are two possibilities concerning the formula A: A /∈ ∆
or A ∈ ∆. The latter would mean that B ∈ ∆ (by the deductive closure of
∆). From the foregoing, it now follows that vM (A) = 0 or vM (B) = 1 (by
the induction hypothesis). This gives us vM (A ⊃ B) = 1 (by SP6).
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For the left–right direction, suppose vM (A ⊃ B) = 1. By SP6, it follows
that vM (A) = 0 or vM (B) = 1, which also means that A /∈ ∆ or B ∈ ∆ (by
the induction hypothesis). Both of these lead to A ⊃ B ∈ ∆. The latter by
the deductive closure of ∆, and the former because ∆ is max. non–trivial
(As A /∈ ∆, adding A to ∆ would lead to triviality. From this follows that
∆ ∪ {A} |−CLoNs B, which gives us the desired result by means of theorem
4.9).

4.4 Modal Paralogics

Modal versions are possible for all paralogics presented in the foregoing
sections. Fot these modal paralogics, worlds are not consistent and complete,
but paraconsistent and/or paracomplete. As such, it is probably a good idea
not to call them worlds, but to call them set–ups, as is widely done in the
literature. Nevertheless, I will keep referring to them as to worlds.

Although there are a lot of modal paralogics, only the logic KōNs will
be discussed in full. The discussion of the other modal paralogics will be
restricted to side remarks.

4.4.1 The Modal Language Schema

The language LM of modal paralogics is obtained by extending the language
L of basic paralogics with the usual modal operators � and ♦. Consequently,
the set of well–formed formulas WM of LM is constructed as follows:

(i) S ⊂ WM for S the set of sentential letters,
(ii) When A ∈ WM then ¬A,�A,♦A ∈ WM,
(iii) When A,B ∈ WM then (A ∧B), (A ∨B), (A A B) ∈ WM.

Classes of Well–Formed Formulas. The a– and b–formulas of modal
paralogics are the same as for basic paralogics (see table 4.1), with the
following a–formulas added:

a a1 a2

¬�A ♦¬A ♦¬A
¬♦A �¬A �¬A

Table 4.3: Extra a–formulas for modal paralogics.

4.4.2 Semantics for Modal Paralogics

A KōNs–model for the language LM, with S and ¬S respectively the set
of sentential letters and the set of negated sentential letters (¬S = {¬A |
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A ∈ S}), is a quadruple < W, g,R, v >, with W a set of worlds, g the base
world, R a binary relation on W , and v a valuation function, characterized
as follows:

AP1 v : S ×W 7→ {0, 1}.
AP2 v : ¬S ×W 7→ {0, 1}.

The valuation function vM determined by the model M is defined as follows:

SP1 vM : WM ×W 7→ {0, 1}.
SP2 For A ∈ S: vM (A, a) = 1 iff v(A, a) = 1.
SP3o For A ∈ S: vM (¬A, a) = 1 iff v(¬A, a) = 1.
SP4 vM (a, a)= 1 iff vM (a1, a) = 1 and vM (a2, a) = 1.
SP5 vM (b, a)= 1 iff vM (b1, a) = 1 or vM (b2, a) = 1.
SP7 vM (�A, a) = 1 iff for all b ∈W : if Rab then vM (A, b) = 1.
SP8 vM (♦A, a) = 1 iff there is at least one b ∈ W : Rab and vM (A, b) =

1.

Truth in a model, semantical consequence, and validity are defined as usual:

Definition 4.5 A is true in a model M iff vM (A, g) = 1.

Definition 4.6 Γ |=KōNs A iff A is true in all models in which all elements
of Γ are true.

Definition 4.7 |=KōNs A iff A is true in all models.

Features of the Accessibility Relation. The accessibility relation of
the logic KōNs has no special characteristics. It is nevertheless possible to
strengthen the relation R in such a way that it becomes reflexive, symmet-
rical and/or transitive.7 We then obtain the following logics:

ToNs R is reflexive.
BoNs R is reflexive and symmetrical.
S4oNs R is reflexive and transitive.
S5oNs R is reflexive, symmetrical and transitive.

More Modal Paralogics. As stated above, KōNs–worlds are both para-
consistent and paracomplete. But, it is also possible to take worlds to be
only paraconsistent or only paracomplete. This is done by replacing the
semantical clause SP3o by respectively SP3u or SP3a (see section 4.2.2),
which gives us the modal versions of respectively CLūNs and CLāNs.

7Obviously, other characteristics are also possible, but I limit myself to the best–known
ones.
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4.4.3 Proof Theory for Modal Paralogics

Although the proof theory for the modal paralogic KōNs is quite resemblant
to the one for CLōNs, there are nevertheless some striking differences. First,
consider the structural rules.

HYP At any place in the proof, one may start a new subproof. This is
done by introducing a new hypothesis, together with a new vertical
line on its left.

�HYP At any place in the proof, one may start a new modal subproof.
This is done by introducing a new hypothesis, together with a new
vertical line on its left. Modal subproofs will be differentiated from
non–modal subproofs by writing a �–symbol next to their vertical
line.

i ... � A �HYP
i+1 ... ...

These subproofs show us what would follow from the hypothesis if
it were true in an arbitrary world.

CSP If the formula B is the formula on the last line of a subproof that
started with the hypothesis A, one may conclude to the pseudo–
formula S(A,B).

MCSP If the formula B is the formula on the last line of a modal sub-
proof that started with the hypothesis A, one may conclude to the
pseudo–formula �S(A,B).8

PREM Premises may be written down at any place in the proof, except
in modal subproofs. The reason is obvious: the premises are only
taken to be true at the base world g, and are not necessarily also
true in an arbitrary world.

REP In the main proof and in both modal and non–modal subproofs,
formulas may be repeated.

REIT Reiteration is restricted to non–modal subproofs, which means that
formulas can only be reiterated into unclosed non–modal subproofs.

Inference Rules. The inference rules for KōNs are obtained by adding
the rules below to the inference rules for CLōNs.

�I �A, �S(A,B) I �B
♦I ♦A, �S(A,B) I ♦B
�∨E �(A ∨B) I �A ∨ ♦B

8This means that in a modal proof, a modal subproof is represented by means of
�S(A, B), which is completely in accordance with the practice of representing a non–
modal subproof by means of S(A, B).
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♦∨E ♦(A ∨B) I ♦A ∨ ♦B
♦∧I �A ∧ ♦B I ♦(A ∧B)
�∧I �A ∧�B I �(A ∧B)
¬� ¬�A JI ♦¬A
¬♦ ¬♦A JI �¬A

KōNs–Derivability. A KōNs–proof is defined in the same way as a
CLōNs–proof, and also the definition of KōNs–derivability is equivalent
to the one for CLōNs.

Example. To make the KōNs–proof theory more concrete, consider the
following example:

1 �(p ∧ q) PREM
2 ♦(r ∨ s) PREM M ♦(r ∨ (q ∧ s))
3 � p ∧ q �HYP
4 q 3;SIM
5 �S(p ∧ q, q) 3,4;MCSP
6 �q 1,5;�I
7 (�q) ∧ (♦(r ∨ s)) 2,6;CON
8 ♦(q ∧ (r ∨ s)) 7;♦∧I
9 � q ∧ (r ∨ s) �HYP
10 r ∨ s 9;SIM
11 r HYP
12 r 11;REP
13 S(r, r) 11,12;CSP
14 s HYP
15 q 9;SIM
16 q ∧ s 14,15;CON
17 S(s, q ∧ s) 14,16;CSP
18 r ∨ (q ∧ s) 10,13,17;DIL
19 �S(q ∧ (r ∨ s), r ∨ (q ∧ s)) 9,18;MCSP
20 ♦(r ∨ (q ∧ s)) 8,19;♦I

Strengthening the Accessibility Relation. Modal paralogics with a
stronger accessibility relation have extra inference rules, rules that express
the specific features of the accessibility relation. When the relation R is
reflexive, the following inference rules should be added:

Refl� �A I A
Refl♦ A I ♦A

For a symmetrical accessibility relation, the extra inference rules are the
following:
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Sym� A I �♦A
Sym♦ ♦�A I A

Finally, when the accessibility relation is considered transitive, the following
inference rules should be added:

Tran� �A I ��A
Tran♦ ♦♦A I ♦A

To show that these rules give some adequate results, consider the example
below for the logic S5ōNs:

1 ♦p PREM M �♦p
2 �♦♦p 1;Sym�
3 � ♦♦p �HYP
4 ♦p 3;Tran♦
5 �S(♦♦p,♦p) 3,4;MCSP
6 �♦p 2,5;�I

More Modal Paralogics. Some extra inference rules are also required
to obtain the modal versions of CLūNs and CLāNs. To obtain modal
CLūNs–paralogics, add the rules TH and NEC, and to obtain modal
CLāNs–paralogics, add the rules DS and MDS.

TH For C ∈ S: I A ∨ ¬A
NEC |− A I |− �A
DS For C ∈ S: A ∨B, S(B,C ∧ ¬C) I A
MDS For C ∈ S: A ∨ ♦...♦B, �S(B,C ∧ ¬C) I A

I think it is also clear by now that the usual normal modal logics are reached
when all these rules are added to the modal CLōNs–paralogics.

4.4.4 Soundness and Completeness

In this section, I will prove soundness and completeness for the logic modal
paralogic KōNs. First, consider soundness.

Theorem 4.13 (Soundness) If Γ |−KōNs A then Γ |=KōNs A.

Before proving theorem 4.13, first consider the lemma below:

Lemma 4.3 If Γ ⊆ Γ′ and if for all KōNs–models M it is the case that
for all w ∈ W , if vM (Γ, w) = 1 then vM (A,w) = 1, then it follows for all
KōNs–models M that it is the case that for all w ∈ W , if vM (Γ′, w) = 1
then vM (A,w) = 1.
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As the proof of lemma 4.3 is straightforward, it is left to the reader.
Next, consider some terminological remarks. Let Ai express that the

formula A is derived in a proof on line i, and let Γi be the set of all premises
and all hypotheses that have the formula on line i in their scope, where a
formula A on line i is in the scope of a formula B on line j whenever (1)
j 6 i, and (2) B can be reiterated into the subproof were A is in.

Finally, consider the proof of theorem 4.13. It is an induction proof on
the line numbers of a KōNs–derivation.

Proof. Suppose Γ |−KōNs A. This means that there is a proof of A from Γ.
To proof that this also gives us Γ |=KōNs A, I will proof by induction that
for all lines i of the proof, it is the case for all KōNs–models that ∀w ∈W ,
if vM (Γi, w) = 1 then vM (Ai, w) = 1. As Γi (with i the line on which A
occurs) cannot contain any hypotheses (because A is only derivable when
it occurs in the main proof), Γi will be a subset of Γ so that by lemma
4.3, it will follow for all KōNs–models that ∀w ∈ W , if vM (Γ, w) = 1 then
vM (A,w) = 1. This gives us Γ |=KōNs A (because g ∈W ).

First, consider the base case: A0 is necessarily a premise or a hypothesis,
which means that A0 ∈ Γ0 so that for all KōNs–models, it is impossible
that ∃w ∈W such that vM (Γ0, w) = 1 and vM (A0, w) = 0.

Next, consider the induction hypothesis:

Induction Hypothesis 4.2 For any i, 1 6 i < k: For all KōNs–models
M , ∀w ∈W , if vM (Γi, w) = 1 then vM (Ai, w) = 0.

It remains to be proven that ∀M ∀w ∈W , if vM (Γk, w) = 1 then vM (Ak, w)
= 1. Ak is either a premise, an assumption or is derived from previous lines
by means of the inference rules. When Ak is a premise or an assumption,
the proof is analogous to the base case. Hence, ∀M ∀w ∈ W , if vM (Γk, w)
= 1 then vM (Ak, w) = 0. So, we only need to show that this is also the case
when Ak is derived by means of one of the inference rules. As the proofs for
most of them are fairly easy, I leave most of them to the reader, and will
only prove the case for the inference rule �I.

�I Suppose (1) that Ak = �B and (2) that it has been derived from
Ai = �A and �S(A,B) (with B on line j) by means of �I.
Consequence 1. From (2), it follows that ∀M ∀w ∈W , if vM (Γi, w)
= 1 then vM (�A,w) = 1 (by the induction hypothesis). Moreover,
that i < k and that they both belong to the same subproof, gives
us that Γi ⊆ Γk. From both the above, it follows that ∀M ∀w ∈W ,
if vM (Γi, w) = 1 then vM (�A,w) = 1 (by lemma 4.3).
Consequence 2. That �S(A,B), with B on line j (see (2)), gives
us that ∀M ∀w ∈ W , if vM (Γj , w) = 1 then vM (B,w) = 1 (by the
induction hypothesis). Moreover, because no premises can be intro-
duced in a modal subproof, and because reiteration is not possible
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for modal subproof, it follows that Γj = {A}, which means that
∀M ∀w ∈W , if vM (A,w) = 1 then vM (B,w) = 1.
Supposition. Suppose ∃a ∈ W , vM (Γk, a) = 1 and vM (Ak, a) =
0. As Ak = �B, this means that vM (�B, a) = 0, from which it
follows that there is a world b ∈ W such that Rab and vM (B, b) =
0 (∗) (by SP7).
From the foregoing paragraph, it follows that vM (Γk, a) = 1, which
means that also vM (�A, a) = 1 (by consequence 1). From the latter,
it follows that vM (A, b) = 1 (by SP7), which gives us that vM (B, b)
= 1 (by consequence 2). This contradicts (∗).

Next, also consider completeness for KōNs.

Theorem 4.14 (Completeness) If Γ |=KōNs A then Γ |−KōNs A.

Proof. Suppose Γ |6−KōNs A. It is now possible to extend Γ to a set Π such
that

(i) Γ ⊆ Π,
(ii) A /∈ Π,
(iii) Π is deductively closed,
(iv) Π is prime.

This is done in the same way as in the completeness proof for CLōNs (see
section 4.2.5).

A KōNs–model is now defined as the 4–tuple < W,Π,R, v >, with W
the set of all prime deductively closed theories, R a binary relation on W
such that RΓ∆ iff for all B ∈ WM:

RP1 if �B ∈ Γ then B ∈ ∆, and
RP2 if B ∈ ∆ then ♦B ∈ Γ.

and v an assignment function for which

AP1 For A ∈ S and Σ ∈W , v(A,Σ) = 1 iff A ∈ Σ.
AP2 For A ∈ S and Σ ∈W , v(¬A,Σ) = 1 iff ¬A ∈ Σ.

Notice that Π ∈W (because of (iii) and (iv)). By induction on the complex-
ity of wffs, it can be now shown that for all wffs C ∈ WM, vM (C,Σ) = 1 iff
C ∈ Σ. As the base case and most induction cases are quite straightforward,
I will only prove the induction cases for formulas of the form �A and ♦A,
as these require some extra work. First, consider the following two lemmas:

Lemma 4.4 �B ∈ Σ iff ∀Θ ∈W , if RΣΘ then B ∈ Θ.
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Proof.=> Suppose (1) �B ∈ Σ, (2) RΣΘ and (3) B /∈ Θ. From (1) and (2),
it follows that B ∈ Θ (by RP1), which contradicts with (3).

<= Suppose �B /∈ Σ. Construct Σ� = {C | �C ∈ Σ} and Σ♦ =
{D | ♦D /∈ Σ}. It follows that for all C1, ..., Cn ∈ Σ� and D1, ..., Dm ∈ Σ♦,
C1 ∧ ... ∧Cn |6−KōNs B ∨D1 ∨ ... ∨Dm (otherwise, because of the deductive
closure of Σ, �B ∨♦D1 ∨ ...∨♦Dm ∈ Σ, with D1, ..., Dm ∈ Σ♦. This would
mean that �B ∈ Σ or ♦D1 ∈ Σ or ... or ♦Dn ∈ Σ, as Σ is prime. The
latter contradicts with our supposition and with the construction of Σ♦).
Σ� can be extended to a deductively closed, prime theory Θ such that RΣΘ

and B /∈ Θ.

Lemma 4.5 ♦B ∈ Σ iff ∃Θ ∈W , RΣΘ and B ∈ Θ.

Proof.=> Suppose ♦B ∈ Σ. Construct Σ� = {C | �C ∈ Σ} and Σ♦ =
{D | ♦D /∈ Σ}. It follows that for all C1, ..., Cn ∈ Σ� and D1, ..., Dm ∈ Σ♦,
C1 ∧ ... ∧Cn ∧B |6−KōNs D1 ∨ ... ∨Dm (otherwise, because of the deductive
closure of Σ, ♦D1 ∨ ...∨♦Dm ∈ Σ, with D1, ..., Dm ∈ Σ♦. This would mean
that ♦D1 ∈ Σ or ... or ♦Dn ∈ Σ, as Σ is prime. The latter contradicts with
the construction of Σ♦). Σ� can be extended to a deductively closed, prime
theory Θ such that RΣΘ and B ∈ Θ

<= Suppose RΣΘ and B ∈ Θ. From these, it follows that ♦B ∈ Σ (by
RP2).

Next, consider the induction cases for formulas of the form �A and ♦A.

�A ∈ Σ iff ∀Θ ∈W , if RΣΘ then A ∈ Θ (by lemma 4.4).
iff ∀Θ ∈ W , if RΣΘ then vM (A,Θ) = 1 (by the induction hy-

pothesis).
iff vM (�A,Σ) = 1 (by SP7).

♦A ∈ Σ iff ∃Θ ∈W , RΣΘ and A ∈ Θ (by lemma 4.5).
iff ∃Θ ∈W , RΣΘ and vM (A,Θ) (by the induction hypothesis).
iff vM (♦A,Σ) = 1 (by SP8).

Finally, from the induction proof, together with (i) and (ii), it follows that
vM (Γ,Π) = 1 and vM (A,Π) = 0 such that Γ |6=KōNs A.

The corollary below now follows immediately from theorem 4.13 and
theorem 4.14.

Corollary 4.2 Γ |−KōNs A iff Γ |=KōNs A.

Other Modal Paralogics. Soundness and the completeness proofs for
other modal paralogics are simple adaptations of the proofs above. As this
is not the topic of this dissertation, I leave it to the reader to work out the
details.
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4.5 Conclusion

In this chapter, I have presented those paralogics that will be needed in later
chapters of this dissertation. More specifically, I have presented the basic
paralogics CLūNs, CLāNs and CLōNs, the paralogics CLuNs, CLaNs
and CLoNs, and some modal paralogics based on CLūNs–, CLāNs– and
CLōNs–worlds.



Chapter 5

Introducing Relevant Logics

5.1 Introduction

In this chapter, I will present a non–truthfunctional semantics for standard
relevant logics (RL). This will characterize RL–negation along the lines of
chapter 4. Special attention will be given to the semantic characterization
of the basic relevant logic BD and the well–known relevant logic R. More-
over, not only classical derivability will be characterized, but also relevant
derivability.

5.2 Relevant Logics

As made clear in chapter 1, Relevance Logic started off in an attempt to
avoid the paradoxes of the material and the strict implication. This was done
by constructing relevant logics (RL) for which only relevant entailments1 are
valid.2

Anderson and Belnap were the first to systematically discuss the topic
in their Entailment [5], in which they gave a full proof theoretical charac-
terization of the first relevant logics T, R and E. Only later a semantics
was devised for these logics. The best known semantical characterizations
are those of Urquhart [115], Fine [55], Dunn [52], and Routley & Meyer
[97, 98, 99, 100]. Of these, the Routley–Meyer semantics is without any
doubt the most popular one. Shortly put, it is a modal semantics that
makes use of a ternary accessibility relation between worlds to characterize
relevant implication:

Definition 5.1 A → B is true at a world a iff for all worlds b and c such
that Rabc, if A is true at b then B is true at c.

1Remember that entailments refer to logical truths in implicational form, see ch. 1.
2A very nice and short introduction into standard Relevance Logic is the one by Mares

[68] in the Standford Encyclopedia of Philosophy. Also Dunn & Restall [54] is nice, but
more tedious.
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In order to reach the exact semantical characterization of the logics T, R
and E, certain constraints have to be put upon this ternary accessibility
relation R. Of course, it is possible to alter these constraints in numerous
ways. This has lead to a whole bunch of relevant logics (see e.g. Routley et
al. [101]). These can be considered the “standard relevant logics”.

The ternary accessibility relation is not the only non–standard element
in the semantics of RL. As contradictions don’t imply everything, it is
not surprising that their semantics also makes use of paraconsistent and
paracomplete worlds.3 This immediately implies that negation in RL is not
characterized as in CL. In the literature, two ways to treat the RL–negation
have been proposed. The first one is called the Australian Plan (AUP) and
is originally due to Routley & Routley [102]. The second one is called the
American Plan (AMP) and is originally due to Dunn [52], but completed
in different ways by Routley [96] and Restall [94].

In this chapter, I will show that it is also possible to characterize the
RL–negation in a non–truthfunctional way, as it was done for paralogics in
chapter 4. I will call this the Ghent Plan (GP). Special attention will be
given to the characterization of the logic R, as it still has a role to play in
the remaining of this dissertation.

5.3 The Ghent Plan Completed

Before I start presenting the proof theory and semantics of RL, I feel obliged
to first give some extra reasons as to why I consider it necessary to develop
another semantical characterization of the RL–negation. I do not intend
to give a complete discussion of the topic, which is left for further research.
For the moment, some short remarks will suffice.

First of all, that all logics in this dissertation are characterized in a
uniform way, would be more elegant. This enables one to see the existing
relations between them more easily. Secondly, it can be argued that the
non–truthfunctional semantics avoids some nasty disadvantages of the other
two approaches.

Firstly, in the AUP, negation is handled by means of the so–called
“Routley Star”, which is a binary operator on worlds. Each world a is given
a star–world a∗. Negation is then characterized by the following definition:

Definition 5.2 (AUP) ∼A is true at world a iff A is false at a∗.

Obviously, some extra constraints can be placed upon the star operator.
This is also necessary to characterize the logic R. The biggest problem
with the AUP is that, despite numerous attempts (most notably the one
of Dunn [53], who interprets the star–world as the world that is maximally

3Remember that these are usually called set–ups.
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compatible with its non–starred counterpart), no satisfactory philosophical
interpretation has yet been found for the Routley Star. After all, it remains
quite strange to treat negation by relying on a relation between worlds.
This strange feature of the AUP is avoided in the GP, as the latter doesn’t
make use of the Routley Star, nor of any other relation on the set of worlds.
Negation is treated as a simple, one–world connective.

Secondly, in the AMP, negation is handled by extending the number
of truth values from two (True and False) to four (True, False, Neither,
and Both), which explains why the AMP is also called the “four–valued”–
approach. Negation is here characterized as follows:

Definition 5.3 (AMP) “True” is a truth value of ∼A at world a iff “False”
is a truth value of A at a.

It should be immediately clear that the AMP–approach avoids the problems
related to the Routley Star.4 Nevertheless, it has some problems of its own.
The first one being the enormous increase in technicality (see e.g. Routley
[96]), and the second one being that it has not been proved possible to
characterize all RL by means of a four–valued semantics. Especially the
richer relevant logics have caused some problems, most notably the logic R.5

Moreover, and this is the final objection towards AMP, it is quite counter–
intuitive to allow formulas to be both True and False. In reasoning contexts,
the contextual premises are considered the best ones available for solving the
problem of the context.6 As such, they are considered contextually True,
as are their consequences.7 In other contexts, they might be considered
contextually False, but it is never the case that they are considered both
True and False.8 If the contextual model is a good model to capture how
people reason, it is clear that a two valued approach has to be preferred over
a four valued one. It goes without saying that the semantics I will present
below is two valued. Moreover, its technicality is kept within boundaries
and it can be used to characterize a wide range of relevant logics, the richer
ones included.

4Remark that this is not always the case. Restall [94] also used the Routley Star in his
four–valued characterization of RL. This of course immediately raises the question as to
why we should use four values if two are enough.

5It is possible that the recent four-valued approach due to Mares [70] is able to avoid
this problem. For the moment, I am however not enough acquainted with this approach
to judge this correctly.

6I here adhere to the contextual approach in reasoning, proposed by Batens in [21, 9,
8]. The approach takes reasoning to proceed goal–directed, with the intention to solve
problems.

7True, it sometimes happens that they are considered both, but this is usually due to
an ambiguous interpretation of those formulas, which is not what is referred to here.

8Remark that truth is not taken as correspondence with the world, but as an instru-
mental, pragmatical notion.
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Does it now automatically follow that the non–truthfunctional semantics
is better off than its opponents? To be honest, I’m not sure, but the least
one can say is that it definitely is a valuable alternative to the existing
approaches and in a sense that should be enough to grant it its right of
existence.

5.4 Characterizing Standard Relevant Logics

In this section, I will give both the proof–theoretic and semantic character-
ization of a lot of standard relevant logics. Before I can get started, it is
necessary to give two final preliminary remarks.

Firstly, the derivability relation of the RL characterized in this section,
is the classical derivability relation (see chapter 1). The relevant derivability
relation will be discussed in section 5.5.

Secondly, the non–truthfunctonal semantics that will be presented in
this section is a modification of the simplified Routley–Meyer semantics for
RL, due to Priest & Sylvan [88], Restall [93], and Restall & Roy [95]. Be-
sides the fact that I owe a great deal to those papers (especially concerning
the soundness and completeness proofs), this also has two important conse-
quences. The first one being that the semantics of the positive fragments
of RL I will present, is equal to the one presented in those papers. The
second one being that the semantical characterization I will present below
is only useful to model disjunctive systems.9 These are systems for which
the following theorem is valid:

Theorem 5.1 If A |− B then C ∨A |− C ∨B.

It is important to notify this, as not all relevant logics are disjunctive sys-
tems. The most notable one being without any doubt the logic E, as it
well–known that ∼A∨A |6−E ∼A∨ ((A→ B) → B) is not valid, despite the
fact that A |−E (A→ B) → B is valid.

5.4.1 The Language Schema of RL

The language L of RL is the classical ∧,∨–fragment of standard proposi-
tional language,10 upgraded with a relevant negation and implication symbol
∼ and →. Consequently, the set of well–formed formulas W of the language
L, is made up as follows:

(i) S ⊂ W for S the set of sentential letters,
(ii) When A ∈ W then ∼A ∈ W,
(iii) When A,B ∈ W then (A ∧B), (A ∨B), (A→ B) ∈ W.

9See Brady [40] for an introduction to the notion of disjunctive systems.
10I will not discuss predicative RL. How these should be treated by the semantics I will

propose in this chapter, is left for further research.
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Classes of Well–Formed Formulas. As in chapter 4, I will make use of
a– and b–formulas, which represent classes of well–formed formulas.

a a1 a2 b b1 b2

A ∧B A B ∼(A ∧B) ∼A ∼B
∼(A ∨B) ∼A ∼B A ∨B A B

∼∼A A A

Table 5.1: a– and b–formulas for relevant logics

Remark that the classes of well-formed formulas for RL are the same as
those for basic paralogics. This will give us a good view on the relation(s)
between both kinds of logics.

5.4.2 The Basic Relevant Logic

In Routley et al. [101], the relevant logic B is put forth as the weakest, most
basic relevant logic (see table 5.5). The other relevant logics are obtained
by adding extra conditions on the ternary accessibility relation. Moreover,
as in the simplified Routley–Meyer semantics, no constraints are put upon
the ternary accessibility relation, it can be claimed that the relevant logic
B is for relevant logicians what the logic K is for modal logicians.11

Although the logic B is usually considered the weakest relevant logic,
this is not completely true. When also all constraints on the star operator
are removed, the logic BM is obtained (see table 5.5). Consequently, people
adhering to the Routley–Meyer semantics, might also claim this to be the
basic logic.

Because of the absence of the star–operator, the basic relevant logic in
the GP is not the logic B, nor the logic BM, but the logic BD, which
is also considered the basic relevant logic by adherents of the four–valued
approach. As such, I will first give a complete proof–theoretic and semantic
characterization of the logic BD, before doing the same for stronger relevant
logics.

The Basic Logic? Despite the fact that in this section, the logic BD will
be considered as the basic relevant logic, I will show in section 5.4.5 that
there are relevant logics that are even more basic than BD.

A. Proof Theory and Semantics

First, consider the proof theory of the logic BD. It is the axiom system
given in table 5.2 below.

11This is not the case in the original Routley–Meyer semantics, where there are several
conditions on the accessibility relation.
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A1 A→ A
A2 (A ∧B) → A, (A ∧B) → B
A3 A→ (A ∨B), B → (A ∨B)
A4 (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))
A5 ((A→ B) ∧ (A→ C)) → (A→ (B ∧ C))
A6 ((A→ C) ∧ (B → C)) → ((A ∨B) → C)
NA1 ∼∼A→ A, A→ ∼∼A
NA2 ∼(A ∨B) → (∼A ∧ ∼B), (∼A ∧ ∼B) → ∼(A ∨B)
NA3 ∼(A ∧B) → (∼A ∨ ∼B), (∼A ∨ ∼B) → ∼(A ∧B)
R1 A,A→ B I B
R2 A,B I A ∧B
R3 A→ B,C → D I (B → C) → (A→ D)
MR1 If A I B then C ∨A I C ∨B

Table 5.2: Axiom system of BD

A proof for the logic BD is defined in the standard way, as a sequence of
wffs each of which is either a premise, an axiom or follows from those earlier
in the list by a rule of inference.

Definition 5.4 Γ |−BD A iff there are B1, ..., Bn ∈ Γ such that there is a
BD–proof of A from B1, ..., Bn.12

Next, consider the semantics of the logic BD. Let L be the standard
language of relevant logics, with S the set of sentential letters, ∼S = {∼A |
A ∈ S} the set of negated sentential letters, and ∼I = {∼(A → B) | (A →
B) ∈ W} the set of negated implicational formulas.

A BD–model for the language L is than a 4–tuple < g,W,R, v >, where
W is a set of worlds, g ∈ W the base world, R a ternary relation on W ,
satisfying

FP0 For all a, b ∈W : Rgab iff a = b.

and v an assignment function such that:

AP1 v: S ×W 7→ {0, 1}.
AP2 v: ∼S ×W 7→ {0, 1}.
AP3 v: ∼I ×W 7→ {0, 1}.

The valuation function vM determined by the model M is defined as follows:
12Usually, when RL are characterized by means of an axiom system, the definitions of a

classical RL–proof and classical RL–derivability are not mentioned explicitly. However,
I am convinced that, as the definitions I have given are standard, they express what is
implicitly assumed.



5.4 Characterizing Standard Relevant Logics 71

SP0 vM : W ×W 7→ {0, 1}.
SP1 For A ∈ S: vM (A, a) = 1 iff v(A, a) = 1.
SP2 For A ∈ S: vM (∼A, a) = 1 iff v(∼A, a) = 1.
SP3 vM (a, a) = 1 iff vM (a1, a) = 1 and vM (a2, a) = 1.
SP4 vM (b, a) = 1 iff vM (b1, a) = 1 or vM (b2, a) = 1.
SP5 vM (A→ B, g) = 1 iff for all a, b ∈W : if Rgab then vM (A, a) = 0 or

vM (B, b) = 1.
SP6 vM (A→ B, a) = 1 (a 6= g) iff for all b, c ∈W : if Rabc then vM (A, b)

= 0 or vM (B, c) = 1.
NP1 vM (∼(A→ B), a) = 1 iff v(∼(A→ B), a) = 1.

The definitions for semantical validity and semantical consequence are the
following:

Definition 5.5 A valuation function vM verifies A iff vM (A, g) = 1, and
falsifies A iff vM (A, g) = 0.

Definition 5.6 A valuation function vM is a model of Γ iff it verifies all
A ∈ Γ.

Definition 5.7 Γ |=BD A (A is a BD–consequence of Γ) iff no model of Γ
falsifies A.

Definition 5.8 |=BD A (A is a BD–theorem) iff no BD–model falsifies A.

B. Soundness and Completeness

Although relevant logics are usually only studied for their theorems, I will
prove soundness and completeness in full, thus not only for theoremhood,
but also for logical consequence.

Theorem 5.2 (Soundness) If Γ |−BD A then Γ |=BD A

Proof. Soundness for BD is proven in the standard way, namely by proving
the semantical validity of all BD–axioms and –rules.

A1 Suppose vM (A → A, g) = 0. Hence, for at least one a ∈ W : Rgaa,
vM (A, a) = 1 and vM (A, a) = 0 (by SP5 and FP0), which is im-
possible.

A2 Suppose vM ((A ∧ B) → A, g) = 0. Hence, for at least one a ∈ W :
Rgaa, (1) vM (A∧B, a) = 1 and (2) vM (A, a) = 0 (by SP5 and FP0).
From (2), it follows by SP3 that vM (A, a) = 1, which contradicts
(2).

A3 Suppose vM (A → (A ∨ B), g) = 0. Then, for at least one a ∈ W :
Rgaa, (1) vM (A, a) = 1 and (2) vM (A∨B, a) = 0 (by SP5 and FP0).
From (2), it follows by SP4 that vM (A, a) = 0, which contradicts
(1).
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A4 Suppose vM ((A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)), g) = 0. Hence,
for at least one a ∈ W : Rgaa, (1) vM (A ∧ (B ∨ C), a) = 1 and (2)
vM ((A ∧ B) ∨ (A ∧ C), a) = 0 (by SP5 and FP0). From (1), it
follows by SP3 and SP4 that (1a) vM (A, a) = 1 and vM (B, a) = 1,
or that (1b) vM (A, a) =1 and vM (C, a) = 1. From (2), it follows by
SP3 and SP4 that (2a) vM (A, a) = 0, (2b) vM (A, a) = vM (C, a) =
0, (2c) vM (A, a) = vM (B, a) = 0, or (2d) vM (B, a) = vM (C, a) = 0,
which leads to a contradiction in all cases.

A5 Suppose vM (((A → B) ∧ (A → C)) → (A → (B ∧ C)), g) = 0.
Hence, for at least one a ∈ W : Rgaa, (1) vM (A → B, a) = 1, (2)
vM (A→ C, a) = 1, and (3) vM (A→ (B ∧ C), a) = 0 (by SP5,SP3
and FP0).

i. Suppose a = g
From (3), it follows that for at least one b ∈ W : Rgbb so that
(3a) vM (A, b) = 1 and vM (B, b) = 0, or (3b) vM (A, b) = 1 and
vM (C, b) = 0 (because of SP5, FP0 and SP3).
From (1), together with Rgbb, it follows by SP5 that vM (A, b)
= 0 or vM (B, b) = 1, which contradicts (3a) in both cases.
From (2), together with Rgbb, it follows by SP5 that vM (A, b)
= 0 or vM (C, b) = 1, which contradicts (3b) in both cases.

ii. Suppose a 6= g
From (3), it follows for at least one b, c ∈ W : Rabc, so that
(3a) vM (A, b) = 1 and vM (B, c) = 0, or (3b) vM (A, b) = 1 and
vM (C, c) = 0 (because of SP6, FP0 and SP3).
From (1), together with Rabc, it follows by SP6 that vM (A, b)
= 0 or vM (B, c) = 1, which contradicts (3a) in both cases.
From (2), together with Rabc, it follows by SP6 that vM (A, b)
= 0 or vM (C, c) = 1, which contradicts (3b) in both cases.

A6 Suppose vM (((A → C) ∧ (B → C)) → ((A ∨ B) → C), g) = 0.
Hence, for at least one a ∈ W : Rgaa, (1) vM (A → C, a) = 1, (2)
vM (B → C, a) = 1, and (3) vM ((A ∨B) → C, a) = 0 (by SP5,SP4
and FP0).

i. Suppose a = g
From (3), it follows that for at least one b ∈ W : Rgbb so that
(3a) vM (A, b) = 1 and vM (C, b) = 0, or (3b) vM (B, b) = 1 and
vM (C, b) = 0 (because of SP5, FP0 and SP4).
From (1), it also follows by SP5 that vM (A, b) = 0 or vM (C, b)
= 1, which contradicts (3a) in both cases.
From (2), it follows by SP5 that vM (B, b) = 0 or vM (C, b) = 1,
which contradicts (3b) in both cases.

ii. Suppose a 6= g
From (3), it follows that for at least one b, c ∈W : Rabc, so that
(3a) vM (A, b) = 1 and vM (C, c) = 0, or (3b) vM (B, b) = 1 and
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vM (C, c) = 0 (because of SP6, FP0 and SP4).
From (1), together with Rabc, it also follows by SP6 that
vM (A, b) = 0 or vM (C, c) = 1, which contradicts (3a) in both
cases.
From (2), together with Rabc, it follows by SP6 that vM (B, b)
= 0 or vM (C, c) = 1, which contradicts (3b) in both cases.

NA1 ⇐ Suppose v(∼∼A → A, g) = 0. Hence, for at least one a ∈ W :
Rgaa, (1) vM (∼∼A, a) = 1 and (2) vM (A, a) = 0 (by SP5 and FP0).
From (1), it follows by SP3 that vM (A, a) = 1, which contradicts
(2).
⇒ Suppose vM (A → ∼∼A, g) = 0. Hence, for at least one a ∈ W :
Rgaa, (1) vM (A, a) = 1 and (2) vM (∼∼A, a) = 0 (by SP5 and FP0).
From (2), it follows by SP3 that vM (A, a) = 0, which contradicts
(1).

NA2 ⇐ Suppose vM (∼(A∨B) → (∼A∧∼B), g) = 0. Hence, for at least
one a ∈W : Rgaa, (1) vM (∼(A∨B), a) = 1 and (2) vM (∼A∧∼B, a)
= 0 (by SP5 and FP0). From (1), it follows by SP3 that vM (∼A∧
∼B, a) = 1, which contradicts (2).
⇒ Suppose vM ((∼A∧∼B) → ∼(A∨B), g) = 0. Hence, for at least
one a ∈W : Rgaa, (1) vM (∼A∧∼B, a) = 1 and (2) vM (∼(A∨B), a)
= 0 (by SP5 and FP0). From (2), it follows by SP3 that vM (∼A∧
∼B, a) = 0, which contradicts (1).

NA3 ⇐ Suppose vM (∼(A∧B) → (∼A∨∼B), g) = 0. Hence, for at least
one a ∈W : Rgaa, (1) vM (∼(A∧B), a) = 1 and (2) vM (∼A∨∼B, a)
= 0 (by SP5 and FP0). From (1), it follows by SP4 that vM (∼A∨
∼B, a) = 1, which contradicts (2).
⇒ Suppose vM ((∼A∨∼B) → ∼(A∧B), g) = 0. Hence, for at least
one a ∈W : Rgaa, (1) vM (∼A∨∼B, a) = 1 and (2) vM (∼(A∧B), a)
= 0 (by SP5 and FP0). From (2), it follows by SP4 that vM (∼A∨
∼B, a) = 0, which contradicts (1).

R1 Suppose (1) vM (A, g) = 1, (2) vM (A→ B, g) = 1. From (2), together
with Rggg (which follows from FP0), it follows that vM (A, g) = 0
or vM (B, g) = 1 (by SP5). As the former is impossible (because of
(1)), it follows that vM (B, g) = 1.

R2 Suppose (1) vM (A, g) = 1, (2) vM (B, g) = 1 and (3) vM (A ∧ B, g)
= 0. From (3), it follows by SP3 that vM (A, g) = 0 or vM (B, g) =
0, which is impossible in both cases.

R3 Suppose (1) vM (A → B, g) = 1, (2) vM (C → D, g) = 1, and (3)
v((B → C) → (A → D), g) = 0. From (3), it follows that there
is at least one a ∈ W : Rgaa, (3a) vM (B → C, a) = 1 and (3b)
vM (A→ D, a) = 0 (by SP5 and FP0).

i. Suppose a = g
From (3a) and (3b), it follows that there is at least one b ∈ W
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such that Rgbb, (a) vM (A, b) = 1 and vM (B, b) = vM (D, b) =
0, or (b) vM (A, b) = vM (C, b) = 1 and vM (D, b) = 0 (by SP5
and FP0).
From (1), together with Rgbb, it follows by SP5 that vM (A, b)
= 0 or vM (B, b) = 1, which contradicts (a).
From (2), together with Rgbb, it follows by SP5 that vM (C, b)
= 0 or vM (D, b) = 1, which contradicts (b).

ii. Suppose a 6= g
From (3a) and (3b), it follows that there is at least one b, c ∈W
such that Rabc, (a) vM (A, b) = 1 and vM (B, b) = vM (D, c) =
0, or (b) vM (A, b) = vM (C, c) = 1 and vM (D, c) = 0 (by SP6).
From (1), together with Rgbb, it follows by SP6 that vM (A, b)
= 0 or vM (B, b) = 1, which contradicts (a)
From (2), together with Rgcc, it follows by SP6 that vM (C, c)
= 0 or vM (D, c) = 1, which contradicts (b).

MR1 Suppose A |= B and C ∨ A |6= C ∨ B. From these, it follows that
(1) for all B–models M , if vM (A, g) = 1 then vM (B, g) = 1, and
(2) there is at least one B–model M such that if vM (C ∨ A, g) =
1 then vM (C ∨ B, g) = 0. From (2), it follows by SP4 that (2a) if
vM (C, g) = 1 then vM (C, g) = vM (B, g) = 0 (which is impossible),
or (2b) if vM (A, g) = 1 then vM (C, g) = vM (B, g) = 0 (which is also
impossible because of (1)).

Theorem 5.3 (Strong Completeness) If Γ |=BD A then Γ |−BD A

Completeness will be proven for BD by relying on the completeness proof
from Priest & Sylvan [88]. First, consider the key notions:13

(i) If Π is a set of L–sentences, let Π→ be the set of all members of Π of
the form A→ B.

(ii) Σ |−π A iff Σ ∪Π→ |− A.
(iii) Σ is a Π–theory iff:

(a) if A,B ∈ Σ then A ∧B ∈ Σ,
(b) if |−π A→ B then (if A ∈ Σ then B ∈ Σ).

(iv) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).
(v) If X is any set of sets of formulas, the ternary relation R on X is

defined thus:

RΠΓ∆ iff Γ = ∆.
13I have slightly altered some of the definitions in view of what is to come. Nevertheless,

basically nothing changes.
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RΣΓ∆ (Σ 6= Π) iff (if A→ B ∈ Σ then (if A ∈ Γ then B ∈ ∆)).

(vi) Σ |−π ∆ iff for some B1, ..., Bn ∈ ∆: Σ |−π B1 ∨ ... ∨Bn.
(vii) |−π Σ → ∆ iff for some A1, ..., An ∈ Σ and B1, ..., Bm ∈ ∆ : |−π

A1 ∧ ... ∧An → B1 ∨ ... ∨Bm.
(viii) Σ is Π–deductively closed iff (if Σ |−π A then A ∈ Σ).
(ix) If Θ is the set of all formulas, < Σ,∆ > is a Π–partition iff:

(a) Σ ∪∆ = Θ,
(b) |6−π Σ → ∆.

Based on the BD–proof theory and the foregoing definitions, Priest & Sylvan
[88, pp. 222–226] have proven the following lemmas:14

Lemma 5.1 If A |− B then C ∨A |− C ∨B.

Lemma 5.2 If < Σ,∆ > is a Π–partition then Σ is a prime Π–theory.

Lemma 5.3 If |6−π Σ → ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that
< Σ′,∆′ > is a Π–partition.

Corollary 5.1 Let Σ be a Π–theory, ∆ be closed under disjunction, and
Σ ∩∆ = ∅. Then there is a Σ′ ⊃ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime
Π–theory.

Lemma 5.4 If Σ |6− ∆ then there is Σ′ ⊇ Σ, ∆′ ⊇ ∆ such that < Σ′,∆′ >
is a partition and Σ′ is deductively closed.

Corollary 5.2 If Σ |6− A then there is a Π ⊇ Σ such that A /∈ Π, Π is a
prime Π–theory and Π is Π–deductively closed.

Lemma 5.5 If Π is a prime Π–theory, is Π–deductively closed and A →
B /∈ Π, then there is a prime Π–theory, Γ, such that A ∈ Γ and B /∈ Γ.

Lemma 5.6 If Σ, Γ, ∆ are Π–theories (Σ 6= Π), RΣΓ∆ and A /∈ ∆ then
there are prime Π–theories, Γ′, ∆′, such that Γ′ ⊇ Γ, A /∈ ∆′ and RΣΓ′∆′.

Lemma 5.7 Let Σ be a prime Π–theory (Σ 6= Π) and A → B /∈ Σ. Then
there are prime Π–theories, Γ′, ∆′ such that RΣΓ′∆′, A ∈ Γ′, B /∈ ∆′.

14In view of the slight alterations I’ve made in the definitions above, also here, I had to
make some alterations in the extension lemmas. They are a bit more restrictive, which
means that they nevertheless still remain provable. I will not give the proofs here as the
changes are straightforward.
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By means of the above lemmas and corollaries, I’m now able to prove com-
pleteness for the logic BD.

Proof. Suppose Θ |6− A. By corollary 5.2 there is a Π ⊇ Θ such that A /∈ Π,
Π is a prime Π–theory and Π is Π–deductively closed. I can now define the
BD–model M = < Π, X,R, v >, where X is the set of all prime Π–theories
(= the set of worlds with Π the base world), R a ternary relation on X
satisfying the following constraints:

FC1 For all Γ,∆ ∈ X: RΠΓ∆ iff Γ = ∆
FC2 For all Σ,Γ,∆ ∈ X (Σ 6= Π): RΣΓ∆ iff (if A→ B ∈ Σ then (if A ∈ Γ

then B ∈ ∆)),

and v an assignment function defined as follows:

AC1 For all Σ ∈ X and for all A ∈ S: v(A,Σ) = 1 iff A ∈ Σ.
AC2 For all Σ ∈ X and for all A ∈ ∼S: v(A,Σ) = 1 iff A ∈ Σ.
AC3 For all Σ ∈ X and for all A ∈ ∼I: v(A,Σ) = 1 iff A ∈ Σ.

Finally, we can now define a valuation function vM based on the model M :

(∗) For all Σ ∈ X and for all A ∈ W: vM (A,Σ) = 1 iff A ∈ Σ.

Finally, as Θ ⊆ Π and A 6∈ Π, it follows that for all formulas B ∈ Θ,
vM (B,Π) = 1 and vM (A,Π) = 0, which means that Θ |6= A.

Remark that I still have to prove (∗). In other words, I still have to prove
that the function vM really is a valuation function of the logic BD. This
will be done by proving that the semantical clauses SP1–SP6 and NP1 are
valid for vM .

SP1 For A ∈ S, vM (A,Σ) = 1 iff v(A,Σ) = 1.

Proof. ⇒ Suppose vM (A,Σ) = 1 for A ∈ S. Hence, it follows that
A ∈ Σ (by ∗), so that also v(A,Σ) = 1 (by AP1).
⇐ Suppose v(A,Σ) = 1 for A ∈ S. Hence, it follows that A ∈ Σ (by
AP1), so that also vM (A,Σ) = 1 (by ∗).

SP2 For A ∈ S, vM (∼A,Σ) = 1 iff v(∼A,Σ) = 1.

Proof. ⇒ Suppose vM (∼A,Σ) = 1 for A ∈ S. Hence, it follows that
∼A ∈ Σ (by ∗), so that also v(∼A,Σ) = 1 (by AP2).
⇐ Suppose v(∼A,Σ) = 1 for A ∈ S. Hence, it follows that ∼A ∈ Σ
(by AP2), so that also vM (∼A,Σ) = 1 (by ∗).
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SP3 vM (a,Σ) = 1 iff vM (a1,Σ) = 1 and vM (a2,Σ) = 1.

Proof. ⇒ Suppose vM (a,Σ) = 1. Hence, it follows that a ∈ Σ (by
∗), so that also a1 ∈ Σ and a2 ∈ Σ (by A2, NA1, NA2 and the
fact that Σ is a Π–theory). It now follows that vM (a1,Σ) = 1 and
vM (a2,Σ) = 1 (by ∗).
⇐ Suppose vM (a1,Σ) = 1 and vM (a2,Σ) = 1. Hence, it follows that
a1, a2 ∈ Σ (by ∗), so that also a ∈ Σ (by R2, NA1, NA2 and the
fact that Σ is a Π–theory). It now follows that vM (a,Σ) = 1 (by ∗).

SP4 vM (b,Σ) = 1 iff vM (b1,Σ) = 1 or vM (b2,Σ) = 1.

Proof. ⇒ Suppose vM (b,Σ) = 1. Hence, it follows that b ∈ Σ (by
∗), so that also b1 ∈ Σ or b2 ∈ Σ (by NA3 and the fact that Σ is a
prime Π–theory). It now follows that vM (b1,Σ) = 1 or vM (b2,Σ) =
1 (by ∗).
⇐ Suppose vM (b1,Σ) = 1 or vM (b2,Σ) = 1. Hence, it follows that
b1 ∈ Σ or b2 ∈ Σ (by ∗), so that also b ∈ Σ (by A3, NA3 and the
fact that Σ is a Π–theory). It now follows that vM (b,Σ) = 1 (by ∗).

SP5 vM (A→ B,Π) = 1 iff for all Γ,∆ ∈ X: if RΠΓ∆ then vM (A,Γ) = 0
or vM (B,∆) = 1.

Proof. ⇒ Suppose (1) vM (A → B,Π) = 1 and suppose (2) that
there is a Γ,∆ ∈ X such that (2a) RΠΓ∆, (2b) vM (A,Γ) = 1 and
(2c) vM (B,∆) = 0. From (1), it follows that A → B ∈ Π (by ∗),
and, from (2a), it follows that Γ = ∆ (by FP0). From the foregoing,
it follows that (if A ∈ Γ then B ∈ ∆) (as Γ is a Π–theory), or, which
comes to the same (because of ∗): (if vM (A,Γ) = 1 then vM (B,∆)
= 1). From the latter, together with (2c), it follows that vM (A,Γ)
= 0, which contradicts (2b).
⇐ Suppose that (1) for all Γ,∆ ∈ X: if RΠΓ∆ then vM (A,Γ) = 0 or
vM (B,∆) = 1, and (2) vM (A→ B,Π) = 0. From (2), it follows that
A → B 6∈ Π (by ∗), so that there are prime Π–theories Γ′ and ∆′

for which (2a) RΠΓ′∆′ , (2b) A ∈ Γ′ and (2c) B 6∈ ∆′ (by lemma 5.5).
From (2a), together with (1) and (∗), it follows that (3a) A /∈ Γ′ or
(3b) B ∈ ∆′, which contradict respectively (2b) and (2c).

SP6 vM (A → B,Σ) = 1 (Σ 6= Π) iff for all Γ,∆ ∈ X: if RΣΓ∆ then
vM (A,Γ) = 0 or vM (B,∆) = 1.

Proof. ⇒ Suppose (1) vM (A→ B,Σ) = 1 (Σ 6= Π) and suppose (2)
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that there is a Γ,∆ ∈ X such that (2a) RΣΓ∆, (2b) vM (A,Γ) = 1
and (2c) vM (B,∆) = 0. From (1), it follows that A → B ∈ Σ (by
∗), and, from (2a), it follows that (if A → B ∈ Σ then (if A ∈ Γ
then B ∈ ∆)). From these, it follows that (if A ∈ Γ then B ∈ ∆),
or which comes to the same (because of ∗): (if vM (A,Γ) = 1 then
vM (B,∆) = 1). From the latter, together with (2c), it follows that
vM (A,Γ) = 0, which contradicts (2b).
⇐ Suppose that (1) for all Γ,∆ ∈ X: if RΣΓ∆ then vM (A,Γ) = 0 or
vM (B,∆) = 1, and (2) vM (A → B,Σ) = 0 (Σ 6= Π). From (2), it
follows that A→ B 6∈ Σ (by ∗). So that there are prime Π–theories
Γ′ and ∆′ such that (2a) RΣΓ′∆′ , (2b) A ∈ Γ′ and (2c) B 6∈ ∆′ (by
lemma 5.7). From (2a), together with (1) and (∗), it follows that
(3a) A 6∈ Γ′ or (3b) B ∈ ∆′, which contradict respectively (2b) and
(2c).

NP1 vM (∼(A→ B),Σ) = 1 iff v(∼(A→ B),Σ) = 1.

Proof. ⇒ Suppose vM (∼(A → B),Σ) = 1. Hence, it follows that
∼(A→ B) ∈ Σ (by ∗), so that also v(∼(A→ B),Σ) = 1 (by AP3).
⇐ Suppose v(∼(A → B),Σ) = 1. Hence, it follows that ∼(A →
B) ∈ Σ (by AP3), so that also vM (∼(A→ B),Σ) = 1 (by ∗).

Now that both soundness and completeness have been proven, the following
corollary follows immediately:

Corollary 5.3 Γ |−BD A iff Γ |=BD A.

5.4.3 Relevant Logics Extending BD

Being the basic relevant logic, BD can be strengthened in numerous ways
in order to obtain stronger relevant logics. In this section, I will show how
this can be done, both proof theoretically and semantically.

Proof Theory. Proof theoretically, the basic relevant logic BD is strength-
ened by adding certain axioms and/or rules to its axiom system (see section
5.4.2). Consider for example the axioms and rules that are stated in table
5.3.15

15The axioms and rules presented in table 5.3 are obtained from Restall [93], Restall &
Roy [95] and Brady [42]. More axioms and rules can be found in Routley et al. [101].
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A7 (A→ B) → ((B → C) → (A→ C))
A8 (A→ B) → ((C → B) → (C → A))
A9 (A→ (A→ B)) → (A→ B)
A10 A→ ((A→ B) → B)
A11 ((A→ B) ∧ (B → C)) → (A→ C)
A12 (A ∧ (A→ B)) → B
A13 (A→ (B → C)) → (B → (A→ C))
A14 (A→ (B → C)) → ((A→ B) → (A→ C))
A15 (A→ B) → ((A→ (B → C)) → (A→ C))
A16 A→ (B → B)
A17 B → (A→ B)
A18 A→ (B → (C → A))
A19 A→ (B → (A ∧B))
A20 ((A ∧B) → C) → (A→ (B → C))
A21 (A→ B) ∨ (B → A)
A22 A→ (A→ A)
A23 ((A ∧B) → C) → ((A→ C) ∨ (B → C))
R4 A I (A→ B) → B
NA4 A ∨ ∼A
NA5 (∼A ∧ (A ∨B)) → B
NA6 (A ∧ ∼B) → ∼(A→ B)
NR2 ∼A,A ∨B I B
NR3 A,∼B I ∼(A→ B)
NA6 (A→ ∼B) → (B → ∼A)
NA7 (A→ ∼A) → ∼A
NRP1 A→ B I ∼B → ∼A

Table 5.3: Axioms and rules for relevant logics

For all RL extending BD by adding some of the axioms and/or rules
from table 5.3, the proof theoretic characterization is equivalent to the one
for BD. First of all, an RL–proof is a sequence of wffs each of which is
either a premise, an axiom or follows from those earlier in the list by a rule
of inference. Secondly, RL–derivability is defined as follows:

Definition 5.9 Γ |−RL A iff there are B1, ..., Bn ∈ Γ such that there is a
RL–proof of A from B1, ..., Bn.

Semantics. The semantic characterization of the logics extending B in the
above specified way, is quite standard. At least, for all axioms and rules of
table 5.3, with exception of the last three of them (NA6,NA7,NRP1). In
this section, I will only consider the standard extensions. They are semanti-
cally obtained by putting certain constraints upon the ternary accessibility
relation R, or by some extra semantic clause. Table 5.4 gives an overview of



80 Introducing Relevant Logics

those constraints and clauses that correspond to the axioms and rules from
table 5.3. In order to understand all of them, first consider the following
definitions:

Definition 5.10 R2abcd = (∃x)(Rabx ∧ Rxcd)

Definition 5.11 R2a(bc)d = (∃x)(Rbcx ∧ Raxd)

Definition 5.12 R3ab(cd)e = (∃x)(R2abxe ∧ Rcdx)

Definition 5.13 If a 6 b then:

- if v(A, a) = 1 then v(A, b) = 1,
- if a 6= g and Rbcd then Racd, and
- if a = g and Rbcd then c 6 d.

SP7 For all a, b, c, d ∈W : if R2abcd then R2b(ac)d.
SP8 For all a, b, c, d ∈W : if R2abcd then R2a(bc)d.
SP9 For all a, b, c ∈W : if Rabc then R2abbc.
SP10 For all a, b, c ∈W : if Rabc then ∃x ∈W : a 6 x and Rbxc.
SP11 For all a, b, c ∈W : if Rabc then R2a(ab)c.
SP12 For all a ∈W : Raaa.
SP13 For all a, b, c, d ∈W : if R2abcd then ∃x, y ∈W : b 6 x, c 6 y and R2ayxd.
SP14 For all a, b, c, d ∈W : if R2abcd then R3ac(bc)d.
SP15 For all a, b, c, d ∈W : if R2abcd then R3bc(ac)d.
SP16 For all a, b, c ∈W : if Rabc then b 6 c.
SP17 For all a, b, c, d ∈W : if Rabc then a 6 c.
SP18 For all a, b, c, d ∈W : if R2abcd then a 6 d.
SP19 For all a, b, c ∈W : if Rabc then a 6 c and b 6 c.
SP20 For all a, b, c, d ∈W : if R2abcd then ∃x ∈W , b 6 x, c 6 x, and Raxd.
SP21 For all a, b ∈W : a 6 b or b 6 a.
SP22 For all a, b, c ∈W : if Rabc then a 6 b or b 6 c.
SP23 For all a, b, c, d, e ∈W : if Rabc and Rade then ∃x ∈W : b 6 x, d 6 x, and (Raxc or Raxe).
RP4 For all a ∈W : Raga.
NP4 vM (∼A, g) = 1 iff vM (A, g) = 1 or v(∼A, g) = 1.
NP5 vM (∼A, a) = 1 iff vM (A, a) = 0 and v(∼A, a) = 1.
NP6 vM (∼(A→ B), a) = 1 iff vM (A, a) = 1 and vM (∼B, a) = 1, or v(∼(A→ B), a) = 1.
NRP2 vM (∼A, g) = 1 iff vM (A, g) = 0 and v(∼A, g) = 1.
NRP3 vM (∼(A→ B), g) = 1 iff vM (A, g) = 1 and vM (∼B, g) = 1, or v(∼(A→ B), g) = 1.

Table 5.4: Semantic Postulates corresponding to axioms and rules

The soundness and completeness proofs for the straightforward exten-
sions of the logic BD are easy adaptations of the proofs for BD. I will not
give them here, as most of them are given in Priest & Sylvan [88], Restall
[93] and Restall & Roy [95], namely those for extensions based on SP7–
SP23 and RP4. The others are straightforward in view of chapter 4, and
are left to the reader.
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Some Known Relevant Logics. Some of the extensions of the logic
BD are better known than others. In table 5.5, an overview is given of
some of the better known ones. Remark that the axiom systems of most
of them include NRP1 or NA6, which means that their semantics cannot
be characterized by simply adding the corresponding semantic clauses from
table 5.4 to the semantics of BD. In section 5.4.4, I will however show how
to characterize one of them, namely the logic R.

BM BD - NA1 + NR1
B BD + NR1

BX B + NA6
BC BX + NR3

DW B + NA4
DWX DW + NA6
DWC DWX + NR2

DJ DW + A11
DK DJ + NA6
DL DK + NA5 - NA6
D DL + A9 + A12

DC D + NR2
RBC DC + A10
TW DW + A7 + A8 - R3

TWX TW + NA6
TWC TWX + NR2

RW TW + A10 - A8
RWK RW + A17

EW TW + R4
T TW + A9 + NA5
E T + R4
R T + A10

Table 5.5: Some relevant logics

5.4.4 The relevant logic R

In this section, I will give a semantic characterization of the logic R. There
are two reasons for doing so. The first one is that this will prove that the
non–truthfunctional approach can also characterize relevant logics that have
NA6, NA7 and NRP1 in their axiom system. The second one is that the
adaptive logics that I will present in chapters 10 and 11 are all based on the
relevant logic R.
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A. Proof Theory

First, consider the proof theory of the logic R. It is the axiom system given
in table 5.6 below.16

A1 A→ A
A2 (A ∧B) → A, (A ∧B) → B
A3 A→ (A ∨B), B → (A ∨B)
A4 (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))
A5 ((A→ B) ∧ (A→ C)) → (A→ (B ∧ C))
A6 ((A→ C) ∧ (B → C)) → ((A ∨B) → C)
A7 (A→ B) → ((B → C) → (A→ C))
A8 (A→ B) → ((C → A) → (C → B))
A9 (A→ (A→ B)) → (A→ B)
A10 A→ ((A→ B) → B)
NA1 ∼∼A→ A, A→ ∼∼A
NA2 ∼(A ∨B) → (∼A ∧ ∼B), (∼A ∧ ∼B) → ∼(A ∨B)
NA3 ∼(A ∧B) → (∼A ∨ ∼B), (∼A ∨ ∼B) → ∼(A ∧B)
NA6 (A→ B) → (∼B → ∼A)
NA7 (A→ ∼A) → ∼A
R1 A,A→ B I B
R2 A,B I A ∧B

Table 5.6: Axiom system of R

The definition of an R–proof and of R–derivability are as for all relevant
logics, and will not be repeated here.

B. Semantics

The semantics of the relevant logic R that I will present below, is a rather
unusual kind of semantics. It is an adaptive logics–semantics,17 which means
that the set of R–models will be a specific subset of some set MLLL(Γ) of
models of the premise set (the set of LLL–models, see chapter 3). I will call
the models that belong to MLLL(Γ), the RLLL–models of the premise set
Γ, and I will characterize them first.

Let L be the standard language of relevant logics, with S the set of sen-
tential letters, ∼S = {∼A | A ∈ S} the set of negated sentential letters, and
∼I = {∼(A→ B) | A,B ∈ W} the set of negated implicational formulas.

16Remark that some of the axioms are superfluous.
17By now, I have also found a way to characterize the R–semantics in a non–adaptive

way. It is done by introducing a second a new kind of relation between world ∼=, which in
a sense resembles 6 and which is used to put some extra constraints on the accessibility
relation. However, I did not find the time yet to prove completeness, so I have left it out
of this dissertation.
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An RLLL–model for the language L is a 5–tuple < g,W,R,6, v >, where
W is a set of worlds, with g ∈ W the base world, R a ternary relation on
W , satisfying

FP0 For all a, b ∈W : Rgab iff a = b,
FP7 For all a, b, c, d ∈W : if R2abcd then R2b(ac)d.
FP8 For all a, b, c, d ∈W : if R2abcd then R2a(bc)d.
FP9 For all a, b, c ∈W : if Rabc then R2abbc.
FP10 For all a, b, c ∈W : if Rabc then ∃x ∈W : a 6 x, x 6 a and Rbxc.

6 a reflexive and transitive binary relation on W (usually called a contain-
ment relation), satisfying:

C1 For all a, b ∈W such that a 6 b: if v(A, a) = 1 then v(A, b) = 1.
C2 For all a, b, c, d ∈W (a 6= g) such that a 6 b: if Rbcd then Racd.
C3 For all a, b, c ∈W such that g 6 a: if Rabc then b 6 c.

and v an assignment function such that:

AP1 v: S ×W 7→ {0, 1}.
AP2 v: ∼S ×W 7→ {0, 1}.
AP3 v: ∼I ×W 7→ {0, 1}.

The valuation function vM based on the interpretation M is characterized
as follows:

SP0 vM : W ×W 7→ {0, 1}.
SP1 For A ∈ S: vM (A, a) = 1 iff v(A, a) = 1.
SP2 For A ∈ S: vM (∼A, a) = 1 (a 6= g) iff v(∼A, a) = 1.
SP3 vM (a, a) = 1 iff vM (a1, a) = 1 and vM (a2, a) = 1.
SP4 vM (b, a) = 1 iff vM (b1, a) = 1 or vM (b2, a) = 1.
SP5 vM (A→ B, a) = 1 iff for all b, c ∈W : if Rabc then vM (A, b) = 0 or

vM (B, c) = 1.
NP1 vM (∼(A→ B), a) = 1 iff v(∼(A→ B), a) = 1.

As usual, a valuation function is called a model if it verifies all elements of
the premise set Γ.

Definition 5.14 A valuation function vM verifies A iff vM (A, g) = 1, and
falsifies A iff vM (A, g) = 0.

Definition 5.15 A valuation function vM is an RLLL–model of Γ iff it
verifies all A ∈ Γ.

Now, in order to distinguish the actual R–models from the RLLL–models,
it is necessary to define a set of abnormalities Ω. In this case, Ω is the union
of the following two sets:
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a) Ω1 = {(A→ ∼B) → (B → ∼A) | A,B ∈ W}
b) Ω2 = {(A→ ∼A) → ∼A | A ∈ W}

Remark that the abnormalities are the instances of the axiom schemas NA6
and NA7. But, in the logic R, those instances are all true! In fact, this
means that only those RLLL–models of a premise that verify all elements
of Ω can be considered as R–models of that premise set. Hence, the ab-
normal part of an RLLL–model should be defined not by reference to which
abnormalities it verifies, but to which it falsifies.

Definition 5.16 For each RLLL–model M , Ab(M) = {A ∈ Ω |M |6= A}.

As a consequence, an R–model of a premise set can now be defined as an
RLLL–model with an empty set of abnormalities.18

Definition 5.17 An RLLL–model M of Γ is an R–model of Γ iff Ab(M)
= ∅.

Finally, semantic consequence is defined by relying on the R–models of the
premise set.

Definition 5.18 Γ |=R A iff A is verified by all R–models of Γ.

Hereditariness Lemma. Remark that the so–called hereditariness lemma
can be proven by an easy induction over the complexity of formulas (see e.g.
Restall [93, p. 498]).

Lemma 5.8 For all A ∈ W, if a 6 b and vM (A, a) = 1 then vM (A, b) = 1.

Soundness and Completeness for R. The soundness and completeness
proofs for R are very resemblant to the ones for BD. As a consequence, the
proofs will not be given in full detail. Only the extra elements will be given.

Theorem 5.4 (Soundness) If Γ |−R A then Γ |=R A.

Proof. Soundness is proven for R by proving the semantical validity of all
its axioms and rules.

A7 Suppose vM ((A → B) → ((B → C) → (A → C)), g)= 0. Hence,
for at least one a ∈ W : Rgaa, (1) vM (A → B, a) = 1, and (2)
vM ((B → C) → (A→ C), a) = 0 (by SP5 and FP0).
From (2), it follows by SP5 that there is at least one b, c ∈W : Rabc,
(2a) vM (B → C, b) = 1 and (2b) vM (A→ C, c) = 0.

18In adaptive logics–terminology, this strategy is called the Blindness Strategy, as it
remains blind to any abnormalities derivable from the premise set (see Batens [14]).
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From (2b), it follows by SP5 that there is at least one d, e ∈ W :
Rcde, (2b1) vM (A, d) = 1 and (2b2) vM (C, e) = 0.
From Rabc and Rcde, it follows that there is at least one f ∈W such
that Radf and Rbfe (by FP7). It now also follows that vM (A, d) =
0 or vM (B, f) = 1, and vM (B, f) = 0 or vM (C, e) = 1 (by (1),(2a),
and SP5), which gives a contradiction in all cases.

A8 Suppose vM ((A → B) → ((C → A) → (C → B)), g)= 0. Hence,
for at least one a ∈ W : Rgaa, (1) vM (A → B, a) = 1, and (2)
vM ((C → A) → (C → B), a) = 0 (by SP5 and FP0).
From (2), it follows by SP5 that there is at least one b, c ∈W : Rabc,
(2a) vM (C → A, b) = 1 and (2b) vM (C → B, c) = 0.
From (2b), it follows by SP5 that there is at least one d, e ∈ W :
Rcde, (2b1) vM (C, d) = 1 and (2b2) vM (B, e) = 0.
From Rabc and Rdef , it follows that there is at least one f ∈W such
that Rbdf and Rafe (by FP8). It now also follows that vM (A, f) =
0 or vM (B, e) = 1, and vM (C, d) = 0 or vM (A, f) = 1 (by (1), (2a),
and SP5), which gives a contradiction in all cases.

A9 Suppose vM ((A → (A → B)) → (A → B), g) = 0. Hence, for at
least one a ∈ W : Rgaa, (1) vM (A → (A → B), a) = 1 and (2)
vM (A→ B, a) = 0 (by SP5 and FP0).
From (2), it follows by SP5 that there is at least one b, c ∈W : Rabc,
(2a) vM (A, b) = 1 and (2b) vM (B, c) = 0.
From Rabc, it follows that there is at least one d ∈ W such that
Rabd and Rdbc (by FP9). It now also follows that (1a) vM (A, b) =
0 or (1b) vM (A→ B, d) = 1 (by (1) and SP5). As (1a) is impossible
because of (2a), only (1b) remains.
From (1b), it follows that vM (A, b) = 0 or vM (B, c) = 1 (by SP5),
which contradict respectively (2a) and (2b).

A10 Suppose vM (A → ((A → B) → B), g) = 0. Hence, for at least one
a ∈ W : Rgaa, (1) vM (A, a) = 1 and (2) vM ((A → B) → B, a) = 0
(by SP5 and FP0).
From (2), it follows by SP5 that there is at least one b, c ∈W : Rabc,
(2a) vM (A→ B, b) = 1 and (2b) vM (B, c) = 0.
From Rabc, it follows that there is at least one d ∈ W such that
a 6 d and Rbdc (by FP10). It now follows that vM (A, d) = 1 and
vM (A, d) = 0 or vM (B, c) = 1 (by (1), (2a), C1 and SP5), which
gives a contradiction in all cases.

NA6 Suppose vM ((A→ ∼B) → (B → ∼A, g) = 0. This is impossible, as
it would mean that Ab(M) 6= ∅.

NA7 Suppose vM ((A → ∼A) → ∼A, g) = 0. This is impossible, as it
would mean that Ab(M) 6= ∅.

Theorem 5.5 (Strong Completeness) If Γ |=R A then Γ |−R A.
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In order to prove completeness for R, I will rely on the completeness proof
given in Restall [93] and Restall & Roy [95].19

Proof. Suppose Θ |6− A. By corollary 5.2 there is a Π ⊇ Θ such that A /∈ Π,
Π is a prime Π–theory and Π is Π–deductively closed. We can now define
the RLLL–model M = < Π, X,R,⊆, v >, where X is the set of all prime
Π–theories (= the set of worlds with Π the base world), R a ternary relation
on X satisfying the following constraints:

FC0 For all Γ,∆ ∈ X: RΠΓ∆ iff Γ = ∆
FC1 For all Σ,Γ,∆ ∈ X (Σ 6= Π): RΣΓ∆ iff (if A→ B ∈ Σ then (if A ∈ Γ

then B ∈ ∆)),

⊆ a subset relation between elements of X (corresponding to the contain-
ment relation in the semantics), and v an assignment function defined as
follows:

AC1 For all Σ ∈ X and all A ∈ S: v(A,Σ) = 1 iff A ∈ Σ.
AC2 For all Σ ∈ X and all A ∈ ∼S: v(A,Σ) = 1 iff A ∈ Σ.
AC3 For all Σ ∈ X and all A ∈ ∼I: v(A,Σ) = 1 iff A ∈ Σ.

A remark has to be made concerning the set of all prime Π–theories. It not
only contains the theory Π (corresponding to the base world), but also Πp

which has the following characteristics:20

PW1 For all Γ ∈ X: Π ⊆ Γ iff Πp ⊆ Γ,
PW2 For all Γ ∈ X: Γ ⊆ Π iff Γ ⊆ Πp,

Finally, we can now define a valuation function vM , based on the model M :

(∗) For all Σ ∈ X and for all A ∈ W: vM (A,Σ) = 1 iff A ∈ Σ.

As Θ ⊆ Π and A 6∈ Π, it follows that for all formula B ∈ Θ, vM (B,Π) = 1
and vM (A,Π) = 0. Moreover, as Π is Π–deductively closed, for all C ∈ Ω,
C ∈ Φ. Hence, for all C ∈ Ω, vM (C,Π) = 1, so that Ab(vM ) = ∅. As a
consequence, vM is an R–model, which means that Θ |6= A.

Remark that I still have to prove that (1) the valuation function vM

really is a valuation function of the logic R, (2) the subset relation ⊆ really
19It is interesting to remark that Tony Roy has found a mistake in Restall’s completeness

proof of [93]. It is a mistake that only has effect on rich relevant logics, e.g. the logic R.
For them, Restall’s semantics overgenerate. A solution has been proposed in Restall &
Roy [95].

20Restall has introduced such a theory in [93]. It corresponds to a world which is
different from the base world, but which has the same elements. Restall called it the
pseudo–base world.
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corresponds to the containment relation 6, and (3) the ternary relation R
satisfies the R–conditions FP7–FP10.

First of all, I need to prove that the valuation function vM really is a
valuation function of the logic R. This can be done by proving that it has
the features an R–valuation function should have. However, as SP1–SP5
and NP1 remain as for BD, I consider this done.

Next, I will show that ⊆ validates the conditions C1–C3. This suffices
to prove the correspondence between ⊆ and 6, as ⊆ is both reflexive and
transitive.

C1 For all Σ,Γ ∈ X such that Σ ⊆ Γ: if v(A,Σ) = 1 then v(A,Γ) = 1.

Proof. Suppose (1) Σ ⊆ Γ, (2) vM (A,Σ) = 1 and (3) vM (A,Γ) =
0. From (2) and (3), it follows by (∗) that A ∈ Σ and A /∈ Γ, which
contradicts (1).

C2 For all Θ,Σ,Γ,∆ ∈ X such that Θ ⊆ Σ (Θ 6= Π): if RΣΓ∆ then
RΘΓ∆.

Proof. Suppose (1) Θ ⊆ Σ (Θ 6= Π) and (2) RΣΓ∆. In order to show
that RΘΓ∆, consider an arbitrary formula A → B ∈ Θ and A ∈ Γ.
From the former, together with (1), it follows that A → B ∈ Σ,
which gives us B ∈ ∆ because of (2) and A ∈ Γ.

C3 For all Σ,Γ,∆ ∈ X such that Π ⊆ Σ: if RΣΓ∆ then Γ ⊆ ∆.

Proof. Suppose (1) Π ⊆ Σ and (2) RΣΓ∆. From (1), it follows
that all formulas of the form A → A ∈ Σ, which gives us, together
with (2) the certainty that all formulas that are in Γ are also in ∆.
Differently put, Γ ⊆ ∆.

Finally, I still have to prove that the relation R satisfies the constraints
that are put upon it. As FP0 follows immediately from the construction
above, I only need to prove FP7–FP10. In order to do so, I will make use
of the following priming lemmas:

Lemma 5.9 In [93], Restall has proven the following priming lemmas:21

1. If Σ, Γ, ∆ are Π–theories (Σ 6= Π), such that RΣΓ∆ and ∆ is prime,
then there is a prime Γ′ ⊇ Γ where RΣΓ′∆.

2. If Σ, Γ, ∆ are Π–theories (Σ 6= Π), such that RΣΓ∆ and ∆ is prime,
then there is a prime Σ′ ⊇ Σ where RΣ′Γ∆.

21Restall needed to prove these lemmas because his completeness proof doesn’t make
use of the canonical model, but of (as he calls it) the quasi–canonical model. It only differs
from the canonical model by the presence of the pseudo–base world.
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3.. If Σ, Γ, ∆ are Π–theories (Σ 6= Π), such that RΣΓ∆ and ∆ is prime,
then there are prime Σ′ ⊇ Σ and Γ′ ⊇ Γ where RΣ′Γ′∆.

4. If Σ, Γ, ∆ are Π–theories (Σ 6= Π), such that RΣΓ∆ and A 6∈ ∆, then
there are prime Π–theories Γ′ ⊇ Γ and ∆′ ⊇ ∆ where RΣΓ′∆′ and A 6∈ ∆′.

FP7 For Σ,Γ,Ξ,Θ and ∆ arbitrary prime Π–theories: if RΣΓΞ and RΞΘ∆,
then there is a prime Π–theory Ω′ such that RΣΘΩ′ and RΓΩ′∆.

Proof. Suppose (1) RΣΓΞ and (2) RΞΘ∆:

(i) Γ 6= Π and Σ 6= Π
First, construct Ω as follows: {B | (∃A)A → B ∈ Σ and
A ∈ Θ}. This is a Π–theory and RΣΘΩ follows from the con-
struction.
Secondly, in order to show that also RΓΩ∆ is the case, consider
an arbitrary A → B ∈ Γ and A ∈ Ω. It follows that there
is a formula C such that C → A ∈ Σ and C ∈ Θ (by the
construction of Ω). Because of A7 and the fact that Σ is a
Π–theory, it follows that (A → B) → (C → B) ∈ Σ. From
this, together with RΣΓΞ, it follows that C → B ∈ Ξ, so that
RΞΘ∆ gives us B ∈ ∆. From this, it follows that RΓΩ∆.
Finally, from the foregoing, together with lemma 5.9, it follows
that there is a prime Π–theory Ω′ ⊇ Ω such that RΓΩ′∆ and
RΣΘΩ′ .

(ii) Σ = Π and Γ 6= Π
First, set Ω = Θ. From this, it follows immediately that RΣΘΩ.
Secondly, as Γ = Ξ (because of (1) and FP0), RΓΩ∆ follows
immediately from (2).

(iii) Γ = Π and Σ 6= Π
First, set Ω = ∆. From this, it follows immediately that RΓΩ∆.
Secondly, in order to show that also RΣΘΩ is the case, consider
an arbitrary A → B ∈ Σ and A ∈ Ω. From the former,
together with A7 and the fact that Σ is a Π–theory, it follows
that (B → B) → (A→ B) ∈ Σ. As B → B ∈ Γ (Γ = Π) and
as RΣΓΞ holds, A → B ∈ Ξ. This, together with RΞΘ∆ and
A ∈ Θ, gives us B ∈ Ω (as ∆ = Ω).

(iv) Σ = Π and Γ = Π
Set Ω = ∆. Both RΣΘΩ and RΓΩ∆ follow immediately.

FP8 For Σ,Γ,Ξ,Θ and ∆ arbitrary prime Π–theories: if RΣΓΞ and RΞΘ∆,
then there is a prime Π–theory Ω′ such that RΓΘΩ′ and RΣΩ′∆.

Proof. Suppose (1) RΣΓΞ and (2) RΞΘ∆:
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(i) Γ 6= Π and Σ 6= Π.
First, construct Ω as follows: {B | (∃A)A → B ∈ Γ and
A ∈ Θ}. This is a Π–theory and RΓΘΩ follows from the con-
struction.
Secondly, in order to show that also RΣΩ∆ is the case, consider
an arbitrary A → B ∈ Σ and A ∈ Ω. From this, it follows
that there is a formula C such that C → A ∈ Γ and C ∈ Θ (by
the construction of Ω). Now, because of A8 and the fact that
Σ is a Π–theory, it follows that (C → A) → (C → B) ∈ Σ.
From this, together with RΣΓΞ and C → A ∈ Γ, it follows
that C → B ∈ Ξ, so that RΞΘ∆, together with C ∈ Θ, gives
us B ∈ ∆. From this, it follows that RΣΩ∆.
Finally, from the foregoing, together with lemma 5.9, it follows
that there is a prime Π–theory Ω′ ⊇ Ω such that that RΣΩ′∆

and RΓΘΩ′ .
(ii) Γ = Π and Σ 6= Π

First, set Ω = Θ. From this, it follows immediately that RΓΘΩ.
Secondly, in order to show that also RΣΩ∆ is the case, consider
an arbitrary A → B ∈ Σ and A ∈ Ω. From the former,
together with A8 and the fact that Σ is a Π–theory, it follows
that (A→ A) → (A→ B) ∈ Σ. As A→ A ∈ Γ (Γ = Π) and
as RΣΓΞ holds, A → B ∈ Ξ. This, together with RΞΘ∆ and
A ∈ Θ (because Θ = Ω), gives us B ∈ ∆.

(iii) Σ = Π and Γ 6= Π
First, set Ω = ∆. From this, it follows immediately that
RΣΩ∆. Secondly, as Γ = Ξ (because of (1) and FP0), RΓΘΩ

follows immediately from (2).
(iv) Γ = Π and Σ = Π

Set Ω = ∆. Both RΣΘΩ and RΓΩ∆ follow immediately.

FP9 For all Σ,Γ,∆ arbitrary prime Π–theories: if RΣΓ∆ then there is a
prime Π–theory Ω′ such that RΣΓΩ′ and RΩ′Γ∆.

Proof. First, notice that (T1) |−π (C → (A → B)) → ((A ∧ C) →
((A ∧ C) → B)) and (T2) |−π (C → (A → B)) → ((A ∧ C) →
((A ∧ C) → B)) are valid in B + A9:

1 |−π (A ∧ C) → A A2
2 |−π B → B A1
3 |−π (A→ B) → ((A ∧ C) → B) 1,2;R3
4 |−π C → C A1
5 |−π (C → (A→ B)) → (C → ((A ∧ C) → B)) 3,4;R3
6 |−π ((A ∧ C) → B) → ((A ∧ C) → B) A1
7 |−π (A ∧ C) → C A2
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8 |−π (C → ((A ∧ C) → B)) → ((A ∧ C) → ((A ∧ C) → B)) 6,7;R3
9 |−π (C → (A→ B)) → ((A ∧ C) → ((A ∧ C) → B)) 5,8;Trans

1 |−π (A ∧ (A→ B)) → A A2
2 |−π B → B A1
3 |−π (A→ B) → ((A ∧ (A→ B)) → B) 1,2;R3
4 |−π (A ∧ (A→ B)) → (A→ B) A2
5 |−π (A ∧ (A→ B)) → ((A ∧ (A→ B)) → B) 3,4;Trans
6 |−π ((A ∧ (A→ B)) → ((A ∧ (A→ B)) → B)) → ((A ∧ (A→ B)) → B) A9
7 |−π ((A ∧ (A→ B)) → B) 5,6;MP

Next, suppose (1) RΣΓ∆:

(i) Σ 6= Π
First, construct Ω as follows: {B | (∃A)A → B ∈ Σ and
A ∈ Γ}. This is a Π–theory and RΣΓΩ follows from the con-
struction.
Secondly, in order to show that also RΩΓ∆ is the case, consider
an arbitrary A → B ∈ Ω and A ∈ Γ. From this, it follows
that there is a formula C such that C → (A → B) ∈ Σ
and C ∈ Γ (by the construction of Ω). It now follows that
(A ∧C) → ((A ∧C) → B) ∈ Σ (by T1 and the fact that Σ is
a Π–theory). The latter gives us (A ∧ C) → B ∈ Σ (by A9),
from which it follows that B ∈ ∆ (because RΣΓ∆, A,C ∈ Γ
and because Γ is a Π–theory).
Finally, from the foregoing, together with lemma 5.9, it follows
that there is a prime Π–theory Ω′ ⊇ Ω such that that RΣΓΩ′

and RΩ′Γ∆. This will even be the case when Ω′ = Π (meaning
that it are equal sets), because in that case, we can take Ω′ to
be Πp.22

(ii) Σ = Π
First, set Ω = Γ. From this, it follows immediately that RΣΓΩ.
Secondly, in order to show that also RΩΓ∆ is the case (with Ω
= Γ = ∆, as Σ = Π), consider an arbitrary A → B ∈ Ω and
A ∈ Γ. From this, it follows that A ∧ (A→ B) ∈ ∆ (because
Γ = ∆, and because ∆ is a Π–theory). It now also follows
that B ∈ ∆ (by T2 and the fact that ∆ is a Π–theory).

FP10 For all Σ,Γ,∆ arbitrary Π–theories: if RΣΓ∆ then there is a prime
Π–theory Ω′ such that Σ ⊆ Ω′, Ω′ ⊆ Σ and RΓΩ′∆.

22This shows the necessity of the pseudo–base world, because if it would not be there,
it would not be guaranteed that RΠΓ∆ is the case, as it cannot be proven that Γ = ∆.
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Proof. Suppose (1) RΣΓ∆:

(i) Σ 6= Π and Γ 6= Π
First, set Ω = Σ. From this, it follows immediately that Σ ⊆ Ω
and Ω ⊆ Σ. Secondly, in order to show that also RΓΩ∆ is the
case, consider an arbitrary A → B ∈ Γ and A ∈ Ω. From
the latter, together with A10 and the fact that Ω is a Π–
theory, it follows that (A → B) → B ∈ Ω. This, together
with A→ B ∈ Γ and (1), gives us B ∈ ∆.

(ii) Σ = Π and Γ 6= Π
First, set Ω = Πp. From this, it follows immediately that
Σ ⊆ Ω and Ω ⊆ Σ (as Σ = Π and Ω = Πp). Secondly, in in
order to show that also RΓΩ∆ is the case (with Γ = ∆, as Σ =
Π), consider an arbitrary A → B ∈ Γ and A ∈ Ω. From the
latter, it follows that also A ∈ Σ (as Πp ⊆ Π). Now, from this,
together with A10 and the fact that Σ is a Π–theory, it follows
that (A → B) → B ∈ Ω. This, together with A → B ∈ Γ,
gives us B ∈ ∆.

(iii) Σ = Π and Γ = Π
Set Ω = Π, which gives the required results.

Now that both soundness and completeness have been proven, the following
corollary follows immediately:

Corollary 5.4 Γ |−R A iff Γ |=R A.

5.4.5 Relation with Paralogics

From the semantical characterization above, it is immediately clear that rel-
evant logics are intimately related to the paralogics from chapter 4. In fact,
the semantics of relevant logics makes use of paraworlds, which are worlds
in which negation, conjunction and disjunction are treated as for the logics
CLūNs, CLāNs or CLōNs. The worlds that are most frequently used for
RL are obviously CLōNs–worlds, because they are both paraconsistent and
paracomplete, which are necessary features for relevance (see chapter 1).

Remark however that for some relevant logics, most notably the logic
R, not all worlds treat negation, conjunction and disjunction on a par.
For example, although R makes use of CLōNs–worlds, its base world is a
CLūNs–world. This is obvious from the fact that all classical theorems are
valid for R, which is a well–known feature of this relevant logic.

Last Call for the Basic Relevant Logic. Because of the stated relation
between relevant logics and paralogics, it is also immediately clear that a lot
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of relevant logics can be constructed that are even weaker than BM, BD
and B. They are not based on CLūNs–, CLāNs– or CLōNs–worlds, but
on CLuN–, CLaN– or CLoN–worlds (see chapter 4).

Fitch–Style Proofs. In section 5.4.4, I presented an axiom system for the
logic R. There is however also a Fitch–style proof theory for R. It was given
in Anderson & Belnap [5]. I will here give the version from Brady [40], but
with some slight alterations in the light of the proof theories of CLūNs and
CLōNs presented in chapter 4. The alterations are straightforward, because
of the relation between those paralogics and the logic R. Consequently, I
will not explicitly prove the equivalence of the proof theory presented here
with the original one. I simply state that they are equivalent.23

Before I start presenting the proof rules, I have to make a final prelim-
inary remark: formulas occurring in the proof will have sets of numerals
attached to them. In accordance with Brady [40], I will these “index sets”.

As for the actual proof theory, first consider the structural rules below.

PREM Premises may be written down at any place in the proof, with the
index set ∅.

HYP At any place in the proof, one may start a new subproof. This is
done by introducing a new hypothesis A with an arbitrary index
set ∆ attached to it. That a new subproof has been started will be
denoted by a new vertical line to the left of the formula A.

RHYP At any place in the proof, one may start a new relevant subproof.
This is done by introducing a new hypothesis A with an index set
{k} attached to it. That a new relevant subproof has been started
will be denoted by a new vertical line to the left of the formula A. A
relevant subproof will be differentiated from an ordinary subproof
by writing an R–symbol next to this vertical line. Such lines will
be called R–lines.

i ... R A{k} RHYP
i+1 ... ...

The index set of a relevant hypothesis is not an arbitrary set, but
a singleton {k}, with k the rank of the new relevant subproof. The
rank of a relevant subproof is the number of vertical R–lines to the
left of the formula.

REP A formula A may be repeated in the same subproof, retaining its
index set ∆.

REIT A formula A may be reiterated in an unclosed subproof, retaining
its index set ∆.

23Obviously, critical readers can always try to prove the equivalence themselves.
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Next, consider the inference rules. As for the proof theory of paralogics (see
chapter 4), pseudo–formulas are introduced. Remark however that in all
inference rules below, A and B always represent formulas, never pseudo–
formulas.

CSP If the formula B∆ is the formula on the last line of an ordinary
subproof that started with the hypothesis A∆, one may add a new
line to the proof with the pseudo–formula S(A,B)∆.

CON A∆, B∆ I (A ∧B)∆
SIM (A ∧B)∆ I A∆; (A ∧B)∆ I B∆

ADD A∆ I (A ∨B)∆; B∆ I (A ∨B)∆
DIL (A ∨B)∆, S(A,C)∆, S(B,D)∆ I (C ∨D)∆
CONT (A ∨A)∆ I A∆

ASS (A ∨ (B ∨ C))∆ JI ((A ∨B) ∨ C)∆
DN (¬¬A)∆ JI A∆

NC (¬(A ∧B))∆ JI (¬A ∨ ¬B)∆
ND (¬(A ∨B))∆ JI (¬A ∧ ¬B)∆
EM S(A,B)∅, S(∼A,B)∅ I B∅
RCP If the formula B∆ is the formula on the last line of a relevant sub-

proof that started with the hypothesis A{k}, one may add a new
line to the proof with formula A→ B∆−{k}, provided that k ∈ ∆.

RMP A∆, (A→ B)Θ I B∆∪Θ

RMT (∼B)∆, (A→ B)Θ I (∼A)∆∪Θ

RDIL (A ∨B)∆, (A→ C)Θ, (B → C)Θ I C∆∪Θ

RRAA (A→ ∼A)∆ I (∼A)∆

The definition of an R–proof is now slightly different than before. A proof
is now a sequence of wffs each of which is either a premise or follows from
those earlier in the list by a stuctural rule or a rule of inference. Moreover,
in order for such a sequence to be a proof, all its subproofs should be closed.

Also the definition of R–derivability slightly differs from the one given
above:

Definition 5.19 Γ |−R A (A is an R–consequence of Γ) iff there is a proof
of the formula A∅ from B1, ..., Bn ∈ Γ so that A∅ has been derived on a line
i of the main proof.

Finally, consider the proof of the theorem (p→ (p→ (s ∧ t))) → (p→ s).

1 R p→ (p→ (s ∧ t)){1} RHYP
2 R p{2} RHYP
3 p→ (p→ (s ∧ t)){1} 1;RREIT
4 p→ (s ∧ t)){1,2} 2,3;RMP
5 s ∧ t{1,2} 2,4;RMP
6 s{1,2} 5;RSIM
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7 p→ s{1} 2,6;RCP
8 (p→ (p→ (s ∧ t))) → (p→ s)∅ 1,7;RCP

Reintroducing Material Implication. Even for relevant logics, which
make use of a relevant implication, it is possible to reintroduce the irrele-
vant material implication. This is done in the same way as for paralogics.
Semantically, the following semantic clauses are added:24

AP v: ∼MI ×W 7→ {0, 1}
SP vM (A ⊃ B, a) = 1 iff vM (A, a) = 0 or vM (B, a) = 1.
NP vM (A ⊃ B, a) = 1 iff v(A ⊃ B, a) = 1.

Proof theoretically, the following inference rules are added to the Fitch–style
proof theory:

CP S(A∆, B∆) I (A ⊃ B)∆
MP A∆, (A ⊃ B)∆ I B∆

PC ((A ⊃ B) ⊃ A)∆ I A∆

5.5 Characterizing Relevant Derivability

In chapter 1, I already mentioned that in Relevance Logic, the notion of
relevant derivability is dependent upon the notion of classical derivability.
In this section, I will discuss relevant derivability. This is important, as in
the remaining of this dissertation, I will solely be concerned with derivability
in the sense here discussed.

First, consider again the definition of relevant deduction, usually given
in the literature, e.g. by Brady in [43, pp. 302–308]:25

Definition 5.20 Γ |→RL A is a relevant deduction of A from Γ iff there
are B1, ..., Bn ∈ Γ such that |−RL (B1 ∧ ... ∧Bn) → A.

Below, I will show how this can be captured proof theoretically and even
semantically. This will however only be done for the logic R, but the results
can easily be extended to other relevant logics.

5.5.1 Proof Theories for Relevant Derivability

In the foregoing sections, I have given both an axiomatic and a Fitch–style
proof theory for classical R–derivability. Consequently, I will here also con-
sider both an axiomatic and a Fitch–style proof theory for relevant R–
derivability.

24The set ∼MI = {∼(A ⊃ B) | A, B ∈ W} is the set of negated material implications.
25An alternative one is given in Batens & Van Bendegem [27].
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Axiomatic Proof Theory. The proof theory for relevant R–derivability
is captured by two structural rules and some inference rules. Remark that
these are dependent upon the proof theory of classical R–derivability. First,
consider the structural rules.

PREM Premises may be written down at any place in the proof, always
with a star attached to them.

AX R–axioms (see table 5.6) may be written down at any place in the
proof, never with a star attached to them.

Next, consider the inference rules.

MP A→ B, A I B
MP∗ A→ B, A∗ I B∗

CON A, B I A ∧B
CON∗ A∗, B∗ I (A ∧B)∗

A relevant R–proof is now defined as a sequence of wffs each of which is either
a starred premise, a non–starred R–axiom or derived from those earlier in
the list by a rule of inference.

Relevant R–derivability is now defined as follows:

Definition 5.21 Γ |→R A iff there are B1, ..., Bn ∈ Γ such that there is a
relevant R–proof of the formula A∗ from B1, ..., Bn.

In order to show that the definition of relevant derivability given here is
equivalent with the one given in definition 5.20, consider the following proof:

Proof. => Suppose there are B1, ..., Bn ∈ Γ such that |−R (B1 ∧ ...∧Bn) →
A. It is now plainly obvious that there will be a proof of A∗ from Γ, because
of the fact that B1, ..., Bn ∈ Γ, and the rules PREM, AX, CON∗ and
MP∗.

<= Suppose there here are B1, ..., Bn ∈ Γ such that there is a relevant
R–proof of the formula A∗ from B1, ..., Bn. Suppose that 〈C1, ..., Cm〉 is
such a proof. It is now possible to transform this sequence into a different
one by placing “(B1 ∧ ... ∧ Bn) →” before its starred members. Moreover,
in the new sequence, the stars are removed so that all formulas in it are
now non–starred. It can now be shown that this new sequence is in fact a
classical R–proof.

This will be done as follows. First take notice of the fact that, in the
original proof, each Ci (1 6 i 6 m) is either a starred premise, a non–starred
R–axiom, or derived from earlier members by means of a rule of inference.
Let’s consider what happens with each of those cases in the new proof:

No Star For Ci a non–starred formula in the original proof, nothing changes
in the new proof. Moreover, it is obvious that all Ci remain deriv-
able.
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PREM For Ci a starred premise in the original proof (= an element of
{B1, ..., Bn}), it is obvious that (B1∧ ...∧Bn) → Ci can be derived
in the new proof (because of R–axiom A2).

CON∗ For Ci a starred formula derived in the original proof from Cj and
Ck by means of CON∗, it is obvious that (B1∧ ...∧Bn) → Ci can
be derived from (B1 ∧ ... ∧Bn) → Cj and (B1 ∧ ... ∧Bn) → Ck in
the new proof (because of R–axiom A5).

MP∗ For Ci a starred formula derived in the original proof from the non–
starred formula Ck → Ci and the starred formula Ck by means of
MP∗, it is obvious that (B1 ∧ ... ∧Bn) → Ci can be derived from
Ck → Ci and (B1 ∧ ... ∧ Bn) → Ck in the new proof (because
transitivity is valid).

As Cm = A∗, and as it has been proven that the new sequence is a classical
R–proof, it follows that |−R (B1 ∧ ... ∧Bn) → A.

Fitch–Style Proofs. The Fitch–style proof theory from section 5.4.5 can
also be used to characterize relevant derivability. In fact, it is reached by
changing the PREM–rule and the REIT–rule in the Fitch style–proof the-
ory for classical derivability. This should be done in the following way:

PREM Premises may be written down at any place in the main proof, with
the index set {0}.

REIT A formula A may be reiterated into a subproof retaining its index
set ∆, provided 0 /∈ ∆.

A relevant R–proof is here defined as a sequence of wffs, each of which is a
premise or follows from those earlier in the list by a stuctural rule or a rule
of inference. Moreover, in order for such a sequence to be a proof, all its
subproofs should be closed.

The definition of relevant R–derivability is here the following one:

Definition 5.22 Γ |−R A (A is an R–consequence of Γ) iff there is a proof
of the formula A{0} from B1, ..., Bn ∈ Γ so that A{0} has been derived on a
line i of the main proof.

I will not prove that this definition of relevant derivability is equivalent with
the foregoing ones, I merely state it.26

5.5.2 Semantics for Relevant Derivability

Relevant R–derivability has not only been characterized proof theoretically,
but also semantically, e.g. by Routley et al. [101, ch. 2] and by Read [92,
ch. 5]. In both of them, relevant R–derivability has been defined as follows:

26Again, critical readers may prove this equivalence themselves.
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Definition 5.23 Γ |⇒R A iff for all R–models M , ∀a ∈ W : if vM (Γ, a) =
1 then vM (A, a) = 1.

Soundness and Completeness. Also for relevant derivability, it is nec-
essary to prove soundness and completeness.

Theorem 5.6 Γ |→R A iff Γ |⇒R A.

Proof. => Suppose (1) Γ |→R A and (2) Γ |6⇒R A. From (1), it follows
that there are B1, ..., Bn ∈ Γ such that |−R (B1 ∧ ... ∧Bn) → A (because of
definition 5.20). From the latter, it follows that |=R (B1 ∧ ...∧Bn) → A (by
corollary 5.4), which means that for all R–models M , vM ((B1 ∧ ...∧Bn) →
A, g) = 1. This also means that for all worlds a ∈ W , vM (B1, a) = 0 or ...
or vM (B1, a) = 0 or vM (A, a) = 1. However, from (2), it follows there is an
R–model M such that ∃a ∈ W , vM (B1, a) = 1 and ... and vM (Bn, a) = 1
and vM (A, a) = 0 (by definition 5.23), which contradicts with the foregoing.

<= Suppose Γ |6→R A. From definition 5.20, it follows that the conse-
quence set Σ of Γ is a Π–theory (see section 5.4.2). As Σ∩{A} = ∅, it follows
by corollary 5.1, that there is a Σ′ ⊇ Σ such that Σ′ is a prime Π–theory
and A /∈ Σ′. An R–model M can now be defined in the same way as it was
done in section 5.4.4, for which it is the case that Σ′ ∈ X and Σ′ 6= Π. From
this, it follows that there is at least one R–model M for which there is a
world, namely Σ′ such that vM (Γ,Σ′) = 1 and vM (A,Σ′) = 0. This however
means that Γ |6⇒R A (by definition 5.23).

The Deductive World

In view of what is to come, I will slightly alter the definition of relevant
semantic consequence, as to make it useful in later chapters.

First, remember that in section 5.4.4, an R–model was characterized
as a 5–tuple 〈g,W,R,6, v〉. Next, I would like to add an extra element,
namely a deductive world. Consequently, an R–model becomes a 6–tuple
〈g, d,W,R,6, v〉, with d ∈ W the deductive world. Moreover, take it that
d 6= g! Obviously, this will not change anything to the soundness and the
completeness proofs, but it does make it easier to define relevant derivability.
This can now be done in the following way: first, the RLLL-models of a
premise set are characterized. This is done by reference to the deductive
world d.

Definition 5.24 A valuation function vM d–verifies A iff vM (A, d) = 1,
and d–falsifies A iff vM (A, d) = 0.

Definition 5.25 A valuation function vM is an RLLL–model of Γ iff it
d–verifies all A ∈ Γ.
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Next, the R–models are characterized as those RLLL–models that do not
falsify any abnormalities. This is of course not done by reference to the
deductive world d, but by reference to the base world g.

Definition 5.26 A valuation function vM g–verifies A iff vM (A, g) = 1,
and g–falsifies A iff vM (A, g) = 0.

Definition 5.27 For each RLLL–model M , Ab(M) = {A ∈ Ω | M g–
falsifies A}.

Definition 5.28 An RLLL–model of Γ is an R–model of Γ iff Ab(M) = ∅.

Finally, semantic consequence is defined by means of the R–models of a
premise set.

Definition 5.29 Γ |⇒R A iff A is d–verified by all R–models of Γ.

It is easily conceived that this way of characterizing relevant semantic con-
sequence is equivalent to the one stated above. As a consequence:

Theorem 5.7 Γ |→R A iff Γ |⇒R A.

Notational Convention. As both the semantics and the proof theory
for classical R–derivability (see section 5.4.4) and relevant R–derivability
(see section 5.5.2) differ, it seems odd to keep on talking as if it only con-
cerns one logic, namely the logic R. Obviously, it doesn’t concern only one,
but two logics! Consequently, in order to avoid confusion, I will give them
different names. From now on, the logic R will refer to the logic character-
izing classical derivability, while I will use Rd in order to refer to the logic
characterizing relevant derivability.

Definition 5.30 Γ |−Rd
A iff Γ |→R A.

Finally, in the remaining of this dissertation, I will only be concerned with
the logic Rd, as I still aim to characterize relevant deduction.

5.6 Conclusion

In this chapter, several objectives were met. First of all, I provided a new
semantic characterization of standard RL (see section 5.4). It treats RL–
negation in a non–truthfunctional way, and is meant as an alternative to
the Routley–star–characterization and the four valued–characterization of
RL–negation (see sections 5.2 and 5.3). Next, I also pointed to the striking
relations between the standard RL and the paralogics from chapter 4 (see
section 5.4.5). Finally, I also provided a new semantic characterization of
relevant derivability (see section 5.5.2).
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The Aim of Part III

In chapter 1, I stated that the main relevance criterium of standard Rele-
vance Logic (the use–criterium), is only appropriate to cope with the para-
doxes of the material implication. Moreover, it only gives nice results for
R→, the pure implicational fragment of R. Once the other connectives are
added to R→, the standard account of relevance breaks down. This became
most obvious from the blunt rejection of the entailment EDS.

|6−R (A ∧ (∼A ∨B)) → B

It was not rejected on grounds of any relevance criterium, but solely because
it reintroduces some of the paradoxes of the material implication. Moreover,
the choice to reject EDS was completely arbitrary. Rejecting some other
entailment might have lead to equally good results.

In Rd, the deductive counterpart of R, the entailment EDS corresponds
to the inference rule disjunctive syllogism (DS). As such, the latter is obvi-
ously not a valid rule of inference in Rd.

A,∼A ∨B |6−Rd
B

This is particularly damaging, as DS is a frequently used inference rule in
both scientific and common sense reasoning. Moreover, it usually doesn’t
lead to the derivation of irrelevant consequences, so that its rejection unnec-
essarily limits the deductive strength of relevant logics.

Consequently, I have claimed that standard Relevance Logic doesn’t cap-
ture relevant deduction in an adequate way. It only succeeds in giving a
more or less nice account of relevant implication. In order to capture rele-
vant deduction in full, it is also necessary to adequately cope with first degree
relevance. As there is no implication at the first degree, the only fallacies
of relevance that should be taken into consideration are the ones related to
the EQV– and EFQ–paradoxes. As a consequence, to capture first degree
relevance, it is necessary to avoid the EQV– and EFQ–paradoxes without
unnecessary limiting deductive strength.

In this part of my dissertation, I will look for a way to capture relevance
at the first degree. In part IV, the resulting theory of first degree relevance
will be combined with the relevant implication from standard Relevance
Logic, to obtain a complete and adequate theory of relevant deduction.

Overview of Part III

In the first chapter of this part (ch. 6), I will present a theory of first degree
relevance. In the next three chapters (ch. 7–9), I will show how the given
account of first degree relevance can be captured by means in a logically
stringent way.
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Chapter 6

Theory of First Degree
Relevance

6.1 First Degree Relevance

As said in chapter 1, Relevance Logic basically investigates deductive con-
nection.1 What is sought after, is a theory of deduction that explicates the
substantial connection between premises and conclusions in real deductive
proofs. This substantiality is definitely not captured by the use–criterium,
which is made clear by C.I. Lewis’ Independent Proof :

1 p PREM
2 ¬p PREM
3 p ∨ q 1;ADD
4 q 2,3;DS

Both premises were used in the derivation of the formula on line 4. Neverthe-
less, that formula is (and should be!) considered an irrelevant consequence
of the premise set. The question thus remains how it is possible to explicate
substantiality in an adequate way.

Preliminary Remark. Before I answer the question above, remark that
I will take Classical Logic as my starting point. Not all logicians (e.g. in-
tuitionists) might agree on this. I nevertheless do not consider this to be
that problematic, as I am quite confident that the approach below can be
adapted to fit their philosophical standpoints as well.

1Consequently, its first concern is not with relevance “an sich”. Relevance is merely
considered an epiphenomenon of any good derivability relation. This is most clearly stated
in Routley et al. [101, p. x].
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6.1.1 Transfer of Deductive Weight

As there should be something substantial to a relevant deductive connec-
tion, let’s suppose the premises carry some real (deductive) weight. More
specifically, the weight is carried by the sentential letters occurring in the
premises, and through them, it is passed over to their consequences. Con-
sequently, relevant deduction can be interpreted as the transfer of deductive
weight from premises to conclusions.

It is now possible to state that a formula carries full deductive weight
when all its sentential letters carry some weight (meaning that they were
part of the premises). Moreover, an inference rule transfers full deductive
weight from its premises to its conclusions when all sentential letters in the
latter still carry some deductive weight. This is not the case for all inference
rules. Consider for example the inference rule addition (ADD).

[ADD] A I A ∨B

Obviously, ADD allows to introduce sentential letters (those occurring in
B) that do not carry any deductive weight, as they were not physically
present in the premises (which is the only way to get some weight). This
of course doesn’t mean that ADD leads to irrelevant consequences. Its
consequences might still carry some weight (bundled in A), so that there
can be a substantial connection between them and the premises. Problems
only arise when some other inference rule, as for example DS, is applied to
formulas that do not carry full deductive weight anymore. This might lead to
formulas in which there do not occur any weighty sentential letters, meaning
that there is no substantial connection between them and the premises. It
are those consequences that are the real irrelevant consequences of a premise
set. In order to make this more concrete, let’s consider the example below.

Example. Take the premise set Γ = {p, p ∨ q,¬p}. The sentential letters
occurring in this premise set all carry some deductive weight, which will be
denoted by placing them between brackets. When we now consider a CL–
proof from this premise set, it is possible to see whether or not its conclusion
also carries some weight.

1 [p] PREM
2 ¬[p] PREM
3 [p] ∨ [q] PREM
4 [p] ∨ q 1;ADD
5 [p] HYP
6 ¬[p] 2;REIT
7 [p] ∧ ¬[p] 5,6;CON
8 S([p], [p] ∧ ¬[p]) 5,7;CON
9 [q] 3,8;DS
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10 q 4,8;DS

This example clearly illustrates what was stated above. On line 4, a formula
is derived by means of the inference rule ADD. Although it doesn’t carry
full deductive weight anymore, it is a relevantly obtained consequence of
the premise set (as it still carries some weight). This cannot be said of the
formula on line 10, which doesn’t carry any deductive weight anymore. It
has been derived from lines 4 and 8 by means of the inference rule DS.
This however doesn’t mean that all applications of DS lead to irrelevant
consequences, which is made clear by the formula on line 9. It has been
derived by means of DS and it definitely does carry deductive weight.

In fact, the example above makes clear that the fallacies of relevance are
not caused by some specific rule(s) of inference, as for example ADD or
DS. All of them can pass on deductive weight, so that none of them can be
blamed in particular. The problem really lies with their combined use.

Relevant Proofs. After all, it seems now that use indeed has something
to do with relevance. But, it is important to notify that what matters
is not the use that has been made of the premises (as the standard use–
criterium has it), but the use that has been made of the inference rules.
As a consequence, I consider relevance not in the first place a property
applicable to formulas (premises or consequences), but to proofs.2 A proof
is considered relevant when the inference rules have been used in such a way
that its conclusion still carries some deductive weight.3

The Classical Inference Rules. In order to be able to decide whether
or not the conclusion of a CL–proof still carries some deductive weight, it is
necessary to investigate in which sense the CL–inference rules are capable
of transferring it. Remark that not only the main rules, but also the most
important derived rules should be taken into consideration.

I will distinguish between four kinds of CL–inference rules, based on
the subdivision made by Meheus in [72]: analyzing rules, constructive rules,
adjunctive rules and transformation rules. First, consider the transformation
rules. They allow to replace a formula with a formula that is equivalent to
it.

(1) A ∨A JI A
(2) A ∨B JI B ∨A

2As far as I know, only Neil Tennant [107, 108] also attributed relevance to proofs.
There is a very interesting relation between his approach and the one described here,
which I will discuss in chapter 7.

3I will call the consequences of a premise set for which there exists a relevant proof,
the relevant consequences of that premise set.
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(3) A ∨ (B ∨ C) JI (A ∨B) ∨ C
(4) A ∧B JI B ∧A
(5) A ∧ (B ∧ C) JI (A ∧B) ∧ C
(6) ¬¬A JI A
(7) ¬(A ∨B) JI ¬A ∧ ¬B
(8) ¬(A ∧B) JI ¬A ∨ ¬B
(9) A ∨ (B ∧ C) JI (A ∨B) ∧ (A ∨ C)
(10) A ∧ (B ∨ C) JI (A ∧B) ∨ (A ∧ C)

As the sentential letters in the premises of a transformation rule are the
same as those in its conclusion, applying it will not change the deductive
weight of a formula. So, if their premises still carry full deductive weight,
then also their conclusions will do so. But, on the contrary, if their premises
contain some weightless sentential letters, then also their conclusions will do
so. As a consequence, there are no objections towards the use of those rules
in relevant proofs.

It is easily verified that the same situation also applies for the adjunctive
rules, which are the inference rules related to the conjunction connective.

(11) A, B I A ∧B
(12) A ∧B I A; A ∧B I B

Next, consider the constructive rules, which allow to derive formulas that
are more complex than their premises.

(13) A I A ∨B
(14) For A ∈ S: I A ∨ ¬A

As these rules introduce sentential letters that do not carry any deductive
weight, they need to be handled with care. Moreover, as relevant conse-
quences still carry some weight, these rules should not lead to the introduc-
tion of weightless formulas. Because, if they do so, it is impossible for them
to be used in a relevant proof. As such, they should be dropped from any
proof theory trying to capture first degree relevance.

Normative Statement 6.1 Inference rules that allow to introduce formu-
las which do not carry any deductive weight should be dropped altogether.

It is now clear that the second constructive rule (rule (14)) should be dropped
altogether. The first one (rule (13)) can be kept, because although it does
some weightless sentential letters, it also transfers the deductive weight of
its premises.

Finally, also consider the analyzing rules. Actually, there is only one,
namely DS. It is called an analyzing rule because it allows to derive con-
clusions which are less complex than its premises.
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(15) For C ∈ S: A ∨B, S(B,C ∧ ¬C) I A

It is obvious that there are no objections to its use, as long as one can be
sure that its conclusion still carries some weight. As this will always be the
case when it is applied to formulas that were derived without the use of a
constructive rule, it is possible to claim that:

Normative Statement 6.2 Analyzing rules should only be applied to for-
mulas that still carry full deductive weight.

Because, as long as no constructive rule has been applied, this will obviously
be the case.

First Degree Relevance. Relevant deduction is intuitively captured by
the normative statements 6.1 and 6.2. It is easily verified that the former
rules out the EQV–paradoxes, while the latter prevents the EFQ–paradoxes
from occurring.

6.1.2 Classical Relevance

It is fairly straightforward to incorporate the normative statements 6.1 and
6.2 into the CL–proof theory that was presented in chapter 4. In this section,
I will however only do so for normative statement 6.2. The resulting logic,
called CL∗, does not capture first degree relevance yet, but it does capture
what I’ve called classical relevance, which is the avoidance of the EFQ–
paradoxes without unnecessarily limiting deductive strength.

Proof Theory. The proof theory of CL∗ is obtained by changing the CL–
proof theory presented in chapter 4 in a straightforward way. First of all, in
order to denote that a formula carries full deductive weight, a star is attached
to it. Secondly, a distinction is made between those classical inference rules
that transfer the star from their premises to their conclusions, and those
that do not. Finally, the application of the analyzing rule DS is restricted
to formulas that have stars attached to them.

In order to make this intuitive description more clear, I will present the
CL∗–proof theory in full detail. First, consider the structural rules.

PREM Premises may be written down at any place in the proof. Moreover,
as a premise carries full deductive weight, it is always introduced
carrying a star.

HYP At any place in the proof, one may start a new subproof. This is
done by introducing a new hypothesis, together with a new vertical
line on its left. Hypotheses are also introduced carrying a star. This
might seem strange at first, as they are not part of the premises.
Nevertheless, it makes perfectly good sense to do so. If they aren’t
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supposed to carry some weight, why introduce them in the first
place?

REP In the main proof and in subproofs, formulas may be repeated.
Obviously, repeated formulas retain their star.

REIT In subproofs, one may reiterate formulas from lines in the main
proof and from lines in unclosed subproofs. However, reiterated
formulas do not retain their star!4

Secondly, consider the inference rules that allow to pass on stars from their
premises to their conclusions. It is easily verified that they correspond to
the transformation, the adjunctive and the analyzing rules.

CSP∗ If the formula B∗ is the formula on the last line of a subproof that
started with the hypothesis A∗, one may conclude to the pseudo–
formula S(A,B)∗. This of course also closes the subproof.

CON∗ A∗, B∗ I A ∧B∗

SIM∗ A ∧B∗ I A∗; A ∧B∗ I B∗

DIL∗ A ∨B∗, S(A,C)∗, S(B,D)∗ I C ∨D∗

CONT∗ A ∨A∗ I A∗

ASS∗ A ∨ (B ∨ C)∗ JI (A ∨B) ∨ C∗
IMP∗ A A B∗ JI ¬A ∨B∗

DN∗ ¬¬A∗ JI A∗

NC∗ ¬(A ∧B)∗ JI ¬A ∨ ¬B∗

ND∗ ¬(A ∨B)∗ JI ¬A ∧ ¬B∗

NI∗ ¬(A A B)∗ JI ¬A ∧B∗

DS∗ For C ∈ S: A ∨ C∗, ¬C∗ I A∗; A ∨ C∗, B ∨ ¬C∗ I A ∨B∗

Finally, also consider those inference rules that do not allow to pass on
stars to their consequences, and those inference rules that can be applied to
formulas without a star. They obviously correspond to the transformation
and the constructive rules.

CSP If the formula B is the formula on the last line of a subproof that
started with the hypothesis A∗, one may conclude to the pseudo–
formula S(A,B). This evidently closes the subproof.

CON A(∗), B(∗) I A ∧B
SIM A ∧B I A, A ∧B ` B
ADD A(∗) ` A ∨B, B(∗) I A ∨B
DIL A ∨B(∗), S(A,C)(∗), S(B,D)(∗) I C ∨D
CONT A ∨A I A

4If reiterated formulas were allowed to retain their star, a restricted kind of ADD
would be able to transfer stars (and as such, full deductive weight). For example, from
the formulas p ∨ q∗,¬r∗ and r∗, the formula r ∨ p∗ would be derivable, which would lead
eventually to p. But, this is obviously an irrelevant consequence, and as such, it should
not be derivable.
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ASS A ∨ (B ∨ C) JI (A ∨B) ∨ C
IMP A A B JI ¬A ∨B
DN ¬¬A JI A
NC ¬(A ∧B) JI ¬A ∨ ¬B
ND ¬(A ∨B) JI ¬A ∧ ¬B
NI ¬(A A B) JI ¬A ∧B
TH For C ∈ S: I A ∨ ¬A.

A CL∗–proof is defined as a sequence of wffs, each of which is a premise, a
hypothesis or a formula that follows from earlier ones in the list by a rule
of inference. Moreover, in order for such a sequence to be a proof, all its
subproofs should be closed.

Based on the above definition, CL∗–derivability can now be defined as
follows:

Definition 6.1 Γ |−CL∗ A (A is an CL∗–consequence of Γ) iff there is a
proof of the formula A from B1, ..., Bn ∈ Γ such that A occurs on a line of
the main proof. It is not necessary for A to be starred.

Examples. Consider the premise set Γ = {p, p∨ (¬p∨ q),¬p,¬(p∧ r), r}.
I will now show that it is possible to CL∗–derive the formulas q ∨ s and
¬p ∧ ¬r from Γ. First, consider the CL∗–proof for q ∨ s.

1 p ∨ (¬p ∨ q)∗ PREM
2 p∗ PREM
3 ¬p∗ PREM M q ∨ s
4 ¬p ∨ q∗ 1,3;DS∗

5 q∗ 3,4;DS∗

6 q ∨ s 5;ADD

Next, consider the CL∗–proof for ¬p ∧ ¬r.

1 ¬(p ∧ r)∗ PREM
2 p∗ PREM
3 r∗ PREM M ¬p ∧ ¬r
4 ¬p ∨ ¬r∗ 1;NC
5 ¬p∗ 3,4;DS∗

6 ¬r∗ 2,4DS∗

7 ¬p ∧ ¬r∗ 5,6;CON∗
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No Implication? Although this chapter is about first degree relevance,
the CL∗–proof theory described above does contain inference rules related
to the implication. Moreover, it is an irrelevant implication, as it is defined
in the usual way, by means of the disjunction:

A A B =df ¬A ∨B

Consequently, if one would ask for its meaning, I would state that it is
not to be interpreted as a real implication, but merely as a disjunction “in
disguise”. As such, I consider it harmless to incorporate it in a theory of
first degree relevance.

6.1.3 Relevant Deduction

In order to capture first degree relevance in full, it is not enough only to
incorporate normative statement 6.2 into the classical proof theory. Also
normative statement 6.1 should be incorporated. Obviously, this can be
done by dropping the inference rule TH from the CL∗–proof theory, as it is
the only inference rule that can introduce formulas lacking deductive weight.
The result is a proof theory which adequately captures relevant deduction
at the first degree.

Remark that the obtained proof theory is in fact the proof theory of
the paralogic CLāNs (see chapter 4) into which normative statement 6.2
has been incorporated. As such, it is appropriate to refer to the resulting
relevant logic as to the logic CLāNs∗.

6.1.4 Weak Relevance Criteria

The above theory of first degree relevance is based on weak relevance crite-
ria. The existence of a weak deductive connection, denoted by the presence
of some deductive weight, is sufficient to allow for derivation. Some peo-
ple might wonder whether these criteria are not too weak. They might
claim that in some reasoning contexts, it is more appropriate to opt for
stronger relevance criteria. In those contexts, they might claim, relevant
proofs should only lead to conclusions that still carry full deductive weight,
which would lead to a more restrictive attitude towards the inference rule
ADD.5

Although those people might be right, I here restrict myself to the weak
relevance criteria stated above and leave it open for discussion whether it is
really necessary to strengthen them in some reasoning contexts, and, if so,
in which sense this should be done.

5Based on previous writings, some possible candidates are Parry [81], Verhoeven [122,
121], Meheus [72],...



6.2 Some Metatheory 111

6.1.5 Relation with Other Logics

Both CL∗ and CLāNs∗ bear a lot of relations with other logics. In this
section, I will state some of those relations, but remark that none of the
claims I will make are proven yet (this is left for further research), except
when explicitly stated.

First of all, the logic CL∗ is equivalent to Tennant’s CR from [108,
109, 114]. This will be proven in chapter 7. Moreover, if in the CL∗–proof
theory, the inference rule ADD is replaced by the inference rule ADD′

stated below, then a proof theory is obtained for the logic AN from Meheus
[72, 73].

ADD′ A(∗) I A ∨A.

Moreover, if the inference rule REIT is also allowed to transfer stars (which
is now not the case), then a proof theory is obtained for the logic DAI from
Dunn [51] (see also Oller [80]).

Concerning CLāNs∗, I suppose that it is equivalent to Besnard and
Hunter’s Quasi–classical Logic (QCL) that was presented in Besnard and
Hunter [38] and Hunter [59, 60].

6.2 Some Metatheory

In this section, I will state some metatheoretical properties of CL∗. These
will provide a better understanding of the system, and moreover, they will
come out very handy in the next chapter(s).

The CL∗–Consequence Set. The first important metatheoretical char-
acteristic states that the CL∗–consequence set of a premise set is always
situated somewhere in between the CLūNs– and the CL–consequence set
of that premise set.

Theorem 6.1 For a premise set Γ, CnCLūNs(Γ) ⊆ CnCL∗(Γ) ⊆ CnCL(Γ).

Proof. Obvious from the fact that the CLūNs–rules are all admitted rules
in CL∗, and from the fact that the CL∗–rules are all admitted rules in CL.

Transitivity of CL∗–Deduction. It is easily verified that transitivity is
not in general valid for the CL∗–derivability relation. Consider the example
below:

Example 6.1 Although {p,¬p} |−CL∗ (p∨q)∧¬p and {(p∨q)∧¬p} |−CL∗ q,
it is not the case that {p,¬p} |−CL∗ q.
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Nevertheless, a restricted kind of transitivity is valid for CL∗. It is stated
as follows:6

Theorem 6.2 If Γ |−CL∗ A
∗ and Γ′ ∪ {A} |−CL∗ B

(∗), then Γ ∪ Γ′ |−CL∗

B(∗).

Proof. Suppose (1) Γ |−CL∗ A
∗ and (2) Γ′ ∪ {A} |−CL∗ B. From (2), it

follows that there is a CL∗–proof of B from Γ′ ∪ {A}. This can easily be
turned into a CL∗–proof of B from Γ′ ∪ Γ. It is done by replacing the line
where A∗ was introduced as a premise, by the CL∗–proof for the formula
A∗ from Γ. This is possible because of (1).

Relation with CLūNs and CL. The logic CL∗ bears some interesting
relations with the logics CLūNs and CL. In order to spell them out, I first
need to introduce some extra terminology.

Conjunctive Normal Forms. A formula is in conjunctive normal form (CNF)
when it is a conjunction of disjunctions of primitive formulas (sentential let-
ters or negated sentential letters).

Definition 6.2 CNF (A) refers to the conjunctive normal form of the for-
mula A.

Any formula can be transformed into a formula in CNF. This is done in a
3–step manner:

1. Replace all implications A A B in the original formula by disjunctions
¬A ∨B.

2. Drive the negation inwards by means of the De Morgan laws and double
negation.

3. Use the distributive laws to reach a formula in CNF.

It is a well–known fact that in CL a formula is completely equivalent with
its CNF.

Fact 6.1 A |−CL CNF (A) and CNF (A) |−CL A.

This is not only a fact for CL. It can easily be verified that it is also valid
for the paralogics CLōNs, CLūNs and CLāNs. Moreover, it is also valid
for CL∗.7

Fact 6.2 A |−CLx̄Ns CNF (A) and CNF (A) |−CLx̄Ns A.
6Obviously, Γ |−CL∗ A∗ means that there is a CL∗–proof of A from Γ such that A

occurs on a line of the main proof and A is starred.
7Proofs are straightforward and left to the reader.
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Fact 6.3 A |−CL∗ CNF (A)∗.

Fact 6.4 A |−CL∗ CNF (A) and CNF (A) |−CL∗ A.

Clauses. A clause is a finite disjunction of primitive formulas, which
means that a formula in CNF is a conjunction of clauses. Consequently, it
is possible to introduce the notion of a clause set, defined as follows:

Definition 6.3 CNF ◦(A) is the clause set of the formula A. It is the set
of clauses making up the conjunctive normal form of the formula A.

Below, clauses might be represented by making use of the following defini-
tion:

Definition 6.4
∨

(∆) refers to the disjunction of the elements of ∆.

Resolvents. Consider also the definition of the set ResCL(Γ), the set of
CL–resolvents of the premise set Γ:

Definition 6.5 ResCL(Γ) is the set of clauses that are characterized as
follows:

1. For all A ∈ Γ, if B ∈ CNF ◦(A) then B ∈ ResCL(Γ).
2. If

∨
(∆∪{A}) ∈ ResCL(Γ),

∨
(∆′ ∪{¬A}) ∈ ResCL(Γ) and ∆∪∆′ 6= ∅,

then also
∨

(∆ ∪∆′) ∈ ResCL(Γ).

It can easily be proven that the set of CL–resolvents of a premise set Γ leads
to the same CL–consequences as the premise set itself.

Theorem 6.3 Γ |−CL A iff ResCL(Γ) |−CL A.

Proof. => Suppose Γ |−CL A. Moreover, it is obvious that for all B ∈ Γ,
ResCL(Γ) |−CL B (by definition 6.5, fact 6.1 and the CL–proof theory). By
the transitivity of CL–deduction, it now follows that ResCL(Γ) |−CL A.

<= Suppose ResCL(Γ) |−CL A. Moreover, it is obvious that for all
B ∈ ResCL(Γ), Γ |−CL B (by definition 6.5, fact 6.1 and the CL–proof
theory). By the transitivity of CL–deduction, it now follows that Γ |−CL A.

Besides the set of CL–resolvents, a premise set Γ also has a set of CL∗–
resolvents. It is characterized as follows:

Definition 6.6 ResCL∗(Γ) = {
∨

(∆) |
∨

(∆) a clause and Γ |−CL∗
∨

(∆)∗}.
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It can now be shown that both sets of resolvents are completely equivalent
to one another. First, consider two preliminary lemmas.

Lemma 6.1 For all A ∈ ResCL(Γ), Γ |−CL∗ A
∗.

Proof. First of all, for all B ∈ Γ, Γ |−CL∗ CNF (B)∗ (by fact 6.3). From
this, it follows that for all A ∈ ResCL(Γ), Γ |−CL∗ A

∗, which is verified by
checking that all inference rules needed to derive the elements of ResCL(Γ)
from CNF (Γ)8 (most notably DS∗) also transfer stars to their conclusions.

Lemma 6.2 A ∈ ResCL∗(Γ) iff A ∈ ResCL(Γ).

Proof. ⇒ Suppose
∨

(∆) ∈ ResCL∗(Γ). Hence, Γ |−CL∗
∨

(∆)∗ (by defi-
nition 6.6). But, it is easily verified that this can only be true for

∨
(∆)

when:

1.
∨

(∆) ∈ CNF ◦(A), for A ∈ Γ.
2.

∨
(∆) is derived from CNF ◦(Γ)9 by applying DS∗ (possibly multiple

times). This means that
∨

(∆) is derived from two starred clauses in
ResCL(Γ),

∨
(Θ ∪ {C}) and

∨
(Θ′ ∪ {¬C}) for which Θ ∩Θ′ 6= ∅.

As a consequence, A ∈ ResCL(Γ) (by definition 6.5).
⇐ Suppose A ∈ ResCL(Γ). Hence, A ∈ ResCL∗(Γ) (by lemma 6.1).

From lemma 6.2 now immediately follows that the set of CL∗–resolvents
is equal to the set of CL–resolvents.

Theorem 6.4 ResCL∗(Γ) = ResCL(Γ).

Consistent Premise Sets. By means of the above definitions and their con-
sequences, some interesting properties of CL∗ can be explicated. The first
one is that consistent premise sets yield exactly the same consequence sets
as they would for CL. This is stated in theorem 6.5 below. To prove this
theorem, first consider the lemmas 6.3 and 6.4.

Lemma 6.3 If Γ is consistent and Γ |−CL A, then ResCL(Γ) |−CLūNs A.

Proof. Suppose (1) Γ is consistent, (2) Γ |−CL A and (3) ResCL(Γ) |6−CLūNs

A.

Consequence 1. From (1) and (2), it follows that ResCL(Γ) |−CL CNF (A)

8By CNF (Γ), I obviously mean the set {CNF (B) | B ∈ Γ}.
9By CNF ◦(Γ), I obviously mean the union of all sets CNF ◦(A) with A ∈ Γ.



6.2 Some Metatheory 115

(by theorem 6.3, fact 6.1, and the transitivity of CL–deduction). From this,
it follows that for all

∨
(∆) ∈ CNF ◦(A) there is a

∨
(∆′) with ∆′ ⊆ ∆

such that
∨

(∆′) ∈ ResCL(Γ) (otherwise, as Γ is consistent, ResCL(Γ) |6−CL

CNF (A)).
Consequence 2. From (3), it follows that ResCL(Γ) |6−CLūNs CNF (A) (by
fact 6.2). From the latter, it follows that there is a

∨
(∆) ∈ CNF ◦(A) such

that for all
∨

(∆′) with ∆′ ⊆ ∆, it is the case that
∨

(∆′) 6∈ ResCL(Γ) (oth-
erwise ResCL(Γ) |−CLūNs CNF (A) because of the inference rule ADD).

As consequence 1 and consequence 2 are contradictory, it follows thatResCL(Γ) |−CLūNs

A.

Lemma 6.4 If Γ is consistent, then Γ |−CL∗ A iff Γ |−CL A.

Proof. The left–right direction is obvious from theorem 6.1. The right–left
direction is a bit harder to prove. Suppose Γ is consistent and Γ |−CL A.
From this, it follows that:

(1) for all B ∈ ResCL(Γ), Γ |−CL∗ B
∗ (by lemma 6.1).

(2) ResCL(Γ) |−CLūNs A (by lemma 6.3). This gives us ResCL(Γ) |−CL∗ A
(by theorem 6.1).

From (1) and (2), it follows that Γ |−CL∗ A (by theorem 6.2).

From lemma 6.4, it immediately follows that for consistent premise sets,
CL∗ yields the same consequence set as CL.

Theorem 6.5 If Γ is consistent, then CnCL∗(Γ) = CnCL(Γ).

In Between CL and CLūNs. Theorem 6.1 already showed that the logic
CL∗ is situated somewhere in between the logics CLūNs and CL. It is
nevertheless possible to pin down its exact position. This is done by theorem
6.6 below. As such, this theorem shows us how CL∗ is related to both
CLūNs and CL.

Lemma 6.5 For
∨

(∆) a clause, if Γ |−CL∗
∨

(∆) and there is no ∆′ ⊂ ∆
such that Γ |−CL∗

∨
(∆′), then

∨
(∆) ∈ ResCL∗(Γ) or |−CL∗

∨
(∆).

Proof. Suppose (1) the antecedent is true, (2)
∨

(∆) /∈ ResCL∗(Γ) and (3)
|6−CL∗

∨
(∆′). From (2), it follows that Γ |6−CL∗

∨
(∆)∗ (by definition 6.6).

Hence, there is no CL∗–proof of
∨

(∆)∗ from Γ. As a consequence, it is
necessary to use ADD or TH in order to prove

∨
(∆), which means that

|−CL∗
∨

(∆) (which contradicts (3)), or that there is a ∆′ ⊂ ∆ such that
Γ |−CL∗

∨
(∆′) (which contradicts (1)). Consequently,

∨
(∆) ∈ ResCL∗(Γ)

or |−CL∗
∨

(∆).
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Theorem 6.6 Γ |−CL∗ A iff ResCL(Γ) |−CLūNs A.

Proof. ⇒ Suppose Γ |−CL∗ A. From this, it follows that Γ |−CL∗ CNF (A)
(by fact 6.4). Hence, for all

∨
(∆) ∈ CNF ◦(A), Γ |−CL∗

∨
(∆). As a con-

sequence, for all those
∨

(∆), there will a ∆′ ⊆ ∆, Γ |−CL∗
∨

(∆′) such
that there is no ∆′′ ⊂ ∆′, Γ |−CL∗

∨
(∆′′). As a consequence,

∨
(∆′) ∈

ResCL∗(Γ) or |−CL∗
∨

(∆′) (by lemma 6.5). From this, it follows that
ResCL∗(Γ) |−CLūNs A (by the CLūNs–inference rules TH and ADD and
fact 6.2), which also means that ResCL(Γ) |−CLūNs A (by theorem 6.4).

⇐ Suppose ResCL(Γ) |−CLūNs A. First of all, from this, it follows that
ResCL(Γ) |−CL∗ A (by theorem 6.1). Secondly, for all B ∈ ResCL(Γ),
Γ |−CL∗ B

∗ (by lemma 6.1). From both, it now follows that Γ |−CL∗ A (by
theorem 6.2).

Relevant Deduction. It goes without saying that similar metatheoretical
properties are also valid for CLāNs∗. I will not prove them anymore, as the
proofs are analogous to the ones for CL∗. Nevertheless, the most important
theorems are stated below.

Theorem 6.7 For a premise set Γ, CnCLōNs(Γ) ⊆ CnCLāNs∗(Γ) ⊆ CnCLāNs(Γ).

Theorem 6.8 If Γ |−CLāNs∗ A∗ and Γ′ ∪ {A} |−CLāNs∗ B(∗), then Γ ∪
Γ′ |−CLāNs∗ B

(∗).

Theorem 6.9 If Γ is consistent, then CnCLāNs∗(Γ) = CnCLāNs(Γ).

Theorem 6.10 Γ |−CLāNs∗ A iff ResCL(Γ) |−CLōNs A.

6.3 Conclusion

In this chapter, I have presented an intuitive theory of first degree relevance,
based on the transfer of deductive weight. But, although this also resulted
in a nice proof theoretical characterization of first degree relevance, I still
need to characterize the logic behind this proof theory, which will be done
in the next chapters.



Chapter 7

Classical Relevance: Part 1

7.1 Introduction

In the previous chapter, I presented the theory of classical relevance. More-
over, I also showed how it could be captured proof theoretically. But, a
proof theory alone does not make for a logic yet. One needs a semantics
too. Hence, in this chapter, I will present the adaptive logic ∃CLs of which
it will be proven that it is equivalent to the logic CL∗. As such, it can be
claimed that the logic ∃CLs is the logic behind the CL∗–proof theory.

7.2 The General Idea

The logic ∃CLs belongs to the class of the so–called ambiguity–adaptive
logics (AAL). These were first introduced by Vanackere in [117] and were
elaborated on in Vanackere [118, 119, 116] and Batens [17]. The basic idea
behind AAL is quite simple: as it is possible to interpret a word or sentence
in different ways, inconsistencies in a (scientific or common sense) theory
might be due to the (semantical) ambiguity of its non–logical constants. To
be able to distinguish between those different meanings, indices are attached
to them, so that the same sentential letter with two different indices is then
treated as two distinct letters.

[AMB] For all i, j ∈ N and For all A ∈ S: if i 6= j then Ai 6= Aj .

Ambiguity–adaptive logics were originally devised to interpret an ambiguous
premise set as unambiguously as possible. This means that two occurrences
of the same sentence letter with different indices, are supposed to mean the
same, until or unless it turns out otherwise.

Although the logic ∃CLs clearly belongs to the AAL, it has nothing do
do with ambiguity. It merely makes use of the techniques from AAL,1 and

1As such, it could be stated that it comes much closer to the intentions of Brown
[44, 45], despite the fact that he was merely interested in paraconsistency.
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was devised to capture classical relevance in a decent way. It is related to
the logic CL∗ from the foregoing chapter in the following way:

Definition 7.1 Γ |−CL∗ A iff Γ∃i |−∃CLs (∃i)A(i).

In order to understand definition 7.1, some extra definitions are necessary.
First, consider the one that shows how the premise set Γ∃i is constructed:

Definition 7.2 Γ∃i = {(∃i)B(i) | B ∈ Γ}

Remark that the existential quantifiers mentioned in both definitions above
are quantifiers over the indices, not over individual constants.2 The lan-
guage of ∃CLs remains the standard propositional language W, and is only
extended with indices (attached to sentential letters) and quantifiers over
those indices.

Next, also consider the definition that shows how to interpret the exis-
tential formulas in both definitions above:

Definition 7.3 When A(ξ1, ..., ξn) means that ξ1, ..., ξn ∈ S are the senten-
tial letters that occur in A ∈ W, (∃i)A(i) is taken to stand for (∃i1)...(∃in)
A(ξi1

1 , ..., ξ
in
n ).

In words, (∃i)A(i) expresses that all sentential letters in the formula A (∈ W)
have different variables as their index. Moreover, those variables are all
bound by an existential quantifier at the front of the formula. In order to
make this more concrete, consider the following example:

Example 7.1 (∃i)((p ∧ q) ∨ r)(i) =df (∃i1)(∃i2)(∃i3)((pi1 ∧ qi2) ∨ ri3)

The logic ∃CLs is an adaptive logic, which means that it is built on
three main components (remember chapter 3): a lower limit logic (LLL), a
set of abnormalities and an adaptive strategy. As a lot of metatheoretical
properties depend on the LLL, I will first describe the LLL of ∃CLs.

7.3 The Lower Limit Logic

The adaptive logic ∃CLs is based on the lower limit logic ∃CL. As its name
might have lead one to suspect, it is very resemblant of first order classical
logic. Moreover, as it can be shown that ∃CL is monotonic, transitive,
reflexive and compact, the adaptive logic ∃CLs will be a standard adaptive
logic.

2The language of the first AAL did not contain quantifiers. They were introduced in
AAL by Batens in [17].
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7.3.1 Language Schema

Let L∃i be the language of ∃CL. It is defined from 〈SI ,V〉, where SI =
{Ai | A ∈ S and i ∈ N} is the set of indexed (sentential) letters, and V the
set of variables. The set of well–formed formulas W∃i is the set of all closed
formulas of the language L∃i. It is defined as follows:

(i) SI ⊂ W∃i.
(ii) When A ∈ W∃i then ¬A ∈ W∃i.
(iii) When A,B ∈ W∃i then (A ∧B), (A ∨B), (A A B) ∈ W∃i.
(iv) When A ∈ W∃i and i ∈ V then (∃i)A[i], (∀i)A[i] ∈ W∃i.3

Classes of Well–formed Formulas. In the characterization of ∃CL, I
will also make use of a– and b–formulas. I’ve put them in table 7.1 below.

a a1 a2 b b1 b2

A ∧B A B ¬(A ∧B) ¬A ¬B
¬(A ∨B) ¬A ¬B A ∨B A B

¬(A A B) A ¬B A A B ¬A B

¬¬A A A

¬(∃i)A (∀i)¬A (∀i)¬A
¬(∀i)A (∃i)¬A (∃i)¬A

Table 7.1: a– and b–formulas for ∃CL.

Indexed Wffs. In view of what is to come, I will also introduce some
extra terminology. First, the set of indexed wffs WI ⊂ W∃i is the set of wffs
defined as follows:

(i) SI ⊂ WI .
(ii) When A ∈ WI then ¬A ∈ WI .
(iii) When A,B ∈ WI then (A ∧B), (A ∨B), (A A B) ∈ WI .

Next, the set of the set of interpretations of a formula A ∈ W will be
denoted by I(A). A formula AI is an element of I(A) iff

i. AI ∈ WI , and
ii. when we drop the indices from AI , we get the formula A ∈ W.

7.3.2 Proof Theory

The proof theory of ∃CL is very resemblant to the one for predicative CL
without identity. It is obtained by adding the inference rules below to the

3Obviously, A[i] means that i occurs in A.
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proof theory for propositional CL that was proposed in chapter 4 (section
4.2.3).

NU ¬(∀i)A[i] I (∃i)¬A[i]
NE ¬(∃i)A[i] I (∀i)¬A[i]
UI (∀i)A[i] I A[i/j] (j ∈ N)
EG A[i/j] I (∃i)A[i] (j ∈ N)
UG A[i/j] I (∀i)A[i], provided j ∈ N doesn’t occur in A, in a premise,

or in the hypothesis of an unclosed subproof.
MPE (∃i)A[i], S(A[i/j], B) I B, provided j ∈ N doesn’t occur in A, in

B, in a premise, or in the hypothesis of an unclosed subproof.

A ∃CL–proof is a sequence of wffs each of which is either a premise, a
hypothesis, or follows from those earlier in the list by a rule of inference.
∃CL–derivability can now be defined as follows:

Definition 7.4 Γ |−∃CL A iff there are B1, ..., Bn ∈ Γ, such that there is a
∃CL–proof of A from B1, ..., Bn so that A has been derived on a line i of
the main proof.

The compactness and (pseudo–)deduction theorem are obviously valid, and
can be proven in the standard way.

Theorem 7.1 (Compactness Theorem) Γ |−∃CL A iff there is a finite
∆ ⊆ Γ such that Γ |−∃CL A.

Theorem 7.2 (Deduction Theorem) If A1, ..., An |−∃CL B then A1, ...,
An−1 |−∃CL S(An, B).4

7.3.3 Semantics

The semantics of ∃CL is not characterized w.r.t. the language L∃i, but
w.r.t. the pseudo–language L∃i

+ . This might seem rather strange at first,
but it is a technique used quite regularly (and successfully) by people from
the Ghent Group, see for example [10, 28, ...].

Let N′ be a denumerable set of pseudo–indices, e.g. 1′, 2′, 3′, ... The
pseudo–language L∃i

+ is now defined from 〈SI+,V〉, with SI+ = {Aj | A ∈ S
and j ∈ N ∪ N′} the extended set of indexed letters, and V the set of
variables. The set of well–formed formulas W∃i

+ is defined for L∃i
+ in the

same way as W∃i is defined for L∃i.5

An ∃CL–model for the language L∃i
+ is an assignment function v, char-

acterized as follows:
4Remark that for ∃CL also the usual deduction theorem will be valid.
5The pseudo–indices are introduced to safeguard the compactness of the logic ∃CL.

Compactness is necessary, as (standard) adaptive logics are based on a compact LLL (see
chapter 3).
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AP1 v : SI+ 7→ {0, 1}.

The valuation function vM determined by the model M is defined as fol-
lows:

SP1 vM : W∃i
+ 7→ {0, 1}.

SP2 For A ∈ SI+, vM (A) = 1 iff v(A) = 1.
SP3 For A ∈ SI+, vM (¬A) = 1 iff vM (A) = 0.
SP4 vM (a)= 1 iff vM (a1) = 1 and vM (a2) = 1.
SP5 vM (b)= 1 iff vM (b2) = 1 or vM (b2) = 1.
SP6 For ξ ∈ S: vM ((∃i)A[ξj ]) = 1 iff vM (A[ξi]) = 1 for at least one

j ∈ N ∪N′.
SP7 For ξ ∈ S: vM ((∀i)A[ξi]) = 1 iff vM (A[ξj ]) = 1 for all j ∈ N ∪N′.

Truth in a model, semantical consequence and validity are defined as usual:

Definition 7.5 A is true in an ∃CL–model M iff vM (A) = 1.

Definition 7.6 Γ |=∃CL A iff A is true in all ∃CL–models in which all
elements of Γ are true.

Definition 7.7 |=∃CL A iff A is true in all ∃CL–models.

Soundness and Completeness. It is now quite easy to prove soundness
and completeness for ∃CL. Remark that for completeness to be valid, all
B ∈ Γ and A should be restricted to elements of L∃i.

Theorem 7.3 (Soundness) If Γ |−∃CL A than Γ |=∃CL A.

Proof. The soundness proof is an easy extension of the one for CL in chapter
4. Hence, it is left to the reader.

Theorem 7.4 (Strong Completeness) If Γ |=∃CL A than Γ |−∃CL A.

In order to prove the completeness theorem, first consider the following
lemma:

Lemma 7.1 If Γ ⊃ Γ′ and Γ′ |−∃CL A, then Γ |−∃CL A.

The proof of this lemma is obvious (because of definition 7.4) and left to the
reader. Next, consider the proof for the completeness theorem of ∃CL.

Proof. Suppose that Γ |6−∃CL A. Consider a sequence B1,B2,... that contains
all wffs of the language L∃i

+ and in which each wff of the form (∃i)A[i] is
followed immediately by an instance with an index that does not occur in
Γ, in A, or in any previous member of the sequence. We then define:
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∆0 = Cn∃CL(Γ)
∆i+1 = Cn∃CL(∆i ∪ {Bi}) if A /∈ Cn∃CL(∆i ∪ {Bi}), and
∆i+1 = ∆i otherwise.

∆ = ∆0 ∪∆1 ∪ ...

Each of the following is provable:

(i) Γ ⊆ ∆ (by the construction).
(ii) A /∈ ∆ (by the construction).
(iii) ∆ is deductively closed (by the definition of ∆).
(iv) ∆ is non–trivial (as A /∈ ∆).
(v) ∆ is prime, i.e. if C ∨D ∈ ∆, then C ∈ ∆ or D ∈ ∆.

Suppose that (1) C∨D ∈ ∆, but that (2) C /∈ ∆ and D /∈ ∆. From (2),
it follows that there must be an m and n such that ∆m∪{C} |−∃CL A
and ∆n ∪ {D} |−∃CL A (by the construction of ∆). From these, it
follows that ∆m |−∃CL S(C,A) and ∆n |−∃CL S(D,A) (by theorem
7.2). But, this also means that ∆ |−∃CL S(C,A) and ∆ |−∃CL S(D,A)
(by the construction of ∆ and lemma 7.1). From this, together with
(1), it follows that A ∈ ∆ (by the deductive closure of ∆), which is
impossible (because of the construction of ∆).

(vi) ∆ is ω–complete with respect to L∃i
+ .6

Suppose that ∆ is not ω–complete with respect to L∃i
+ . Hence, there

is a formula (∃i)C[i] ∈ ∆ for which there is no j ∈ N ∪N′ such that
C[i/j] ∈ ∆. Now, take the formula (∃i)C[i] to be the k–th formula
in the sequence B1, B2, ... of L∃i

+ –wffs. Hence, its successor is a for-
mula C[i/j] with j not occurring in Γ, in A, or in a previous member
of the sequence B1, B2, ... (because of the construction of ∆). More-
over, C[i/j] /∈ ∆ (because of our supposition). From the latter, it
follows that ∆i ∪ {C[i/j]} |− A (by the construction of ∆), so that
also ∆i |− S(C[i/j], A) (by theorem 7.2). But, this means that there
are D1, ..., Dn ∈ Γ such that D1, ..., Dn, B1, ..., Bk |− S(C[i/j], A) (by
definition 7.4). This means that also ∆k |− S(C[i/j], A) (by lemma
7.1), so that A ∈ ∆k (because (∃i)C[i] ∈ ∆k and the deductive closure
of ∆k), which is impossible.

I now define an ∃CL–model M from ∆ in the following way:

AP1 For all C ∈ SI+, v(C) = 1 iff C ∈ ∆.

Finally, I show that for all wffs C of the language L, vM (C) = 1 iff C ∈ ∆.
This is done by a straightforward induction on the complexity of the wffs.

6∆ is ω–complete iff, if (∃i)A(i) ∈ ∆ than A(j) ∈ ∆ for some j ∈ N ∪N′.
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The Base Case. For primitive formulas, the proof is immediate because
of AP1 and SP2.

The Induction Cases. As this is all completely standard, I will only show
how this is done for formulas of the form (∃i)C[i]. The remaining cases, I
leave to the reader.

(∃i)Cdie ∈ ∆ iff C[j] ∈ ∆, with j ∈ N ∪ N′ (as ∆ is ω–complete w.r.t.
L∃i

+ )
iff vM (C[j]) = 1, with j ∈ N∪N′ (by the induction hypoth-

esis)
iff vM ((∃i)C[i]) = 1 (by SP6)

As vM (C) = 1 iff C ∈ ∆, (i) and (ii) give us that vM (Γ) = 1 and vM (A) =
0. Hence, Γ |6=∃CL A.

Now that both soundness and completeness have been proven, the corol-
lary below follows immediately.

Corollary 7.1 Γ |−∃CL A iff Γ |=∃CL A.

7.3.4 The LLL of ∃CLs

From the foregoing sections, it is clear that ∃CL really is monotonic, tran-
sitive, reflexive and compact. But, ∃CL still has another very interesting
characteristic. In relation with the premise set Γ∃i, it is equivalent to the
paralogic CLūNs, which is made clear by the following theorem:7

Theorem 7.5 Γ∃i |=∃CL (∃i)A(i) iff Γ |=CLūNs A.

Proof. <= Suppose Γ∃i |6=∃CL (∃i)A(i) and suppose that M (a valuation
function v) is an ∃CL–model that verifies Γ∃i and falsifies (∃i)A(i). From
M , I can now define a CLūNs–model M ′ (a valuation function v′) such that
M ′ verifies Γ and falsifies A, which gives us the desired result.

In order to prove the equivalence between both models, define M ′ in the
following way:

(1) Where A ∈ S, v′(A) = 1 iff v(Aj) = 1 for some j ∈ N ∪N′.
(2) Where A ∈ S, v′(¬A) = 1 iff v(Aj) = 0 for some j ∈ N ∪N′.

Consider a formulaA ∈ S (the base case). Clearly, vM ′(A) = 1 iff vM ((∃i)(A)(i))
= 1, and vM ′(¬A) = 1 iff vM ((∃i)(¬A)(i)) = 1.

7The proof of theorem 8.4 is based on the proof of theorem 3 of Batens [17].
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This result is now easily generalized to all CLūNs–wffs, by a straightfor-
ward induction over the complexity of formulas. Consider for example the
induction case for the conjunction.

vM ′(A ∧B) = 1 iff vM ′(A) = 1 and vM ′(B) = 1 (by the CLūNs–semantics)
iff vM ((∃i)A(i)) = 1 and vM ((∃i)B(i)) = 1 (by the induc-

tion hypothesis)
iff vM ((∃i)(A∧B)(i)) = 1 (Obvious from the ∃CL–semantics

and definition 7.3)

=> Suppose Γ |6=CLūNs A and suppose that M ′ (a valuation function
v′) is an CLūNs–model that verifies Γ and falsifies A. From M ′, I can now
define a ∃CL–model M (a valuation function v) such that M verifies Γ∃iand
falsifies (∃i)A(i), which gives us the desired result.

In order to prove the equivalence between both models, define M in the
following way:

(1) Where A ∈ S, v(Aj) = 1 for some j ∈ N ∪N′ iff v′(A) = 1.
(2) Where A ∈ S, v(Aj) = 0 for some j ∈ N ∪N′ iff v′(¬A) = 1.

Consider a formula A ∈ S (the base case). Clearly, vM ((∃i)(A)(i)) = 1 iff
vM ′(A) = 1, and vM ((∃i)(¬A)(i)) = 1 iff vM ′(¬A) = 1.

This result is now easily generalized to all CLūNs–wffs, by a straightforward
induction over the complexity of formulas. Consider again the induction case
for the conjunction.

vM ((∃i)(A ∧B)(i)) = 1 iff vM ((∃i)A(i)) = 1 and vM ((∃i)B(i)) = 1 (by the
∃CL–semantics and definition 7.3)

iff vM ′(A) = 1 and vM ′(B) = 1 (by the induction
hypothesis)

iff vM ′(A ∧B) = 1 (by the CLūNs–semantics)

7.4 The Adaptive Logic ∃CLs

The logic ∃CLs is a standard (flat) adaptive logic, so that it is characterized
by three components:

(1) Its LLL is the logic ∃CL.
(2) Its set of abnormalities Ω is defined as follows:

Definition 7.8 Ω = {(∃i)A(i)∧¬AI | (∃i)A(i) ∈ Γ∃i and AI ∈ I(A)}.
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(3) Its adaptive strategy is the normal selections strategy.

As the logic ∃CLs is meant to be used in relation with a premise set Γ∃i

it is possible to add this premise set as the fourth element on which this
adaptive logic is built.

(4) A premise set Γ∃i, defined as in definition 7.2.

This completes the general characterization of ∃CLs, so that we can now
have a closer look at its proof theory and semantics.

7.4.1 Proof Theory of ∃CLs

The ∃CLs–proof theory is standard adaptive logics based on the normal
selections strategy. First, let’s have a look at the deduction rules.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃CL B and each of A1, ..., An occurs in the proof on
lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−∃CL B ∨Dab(Θ) and each of A1, ..., An occurs in the
proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Next, the marking criterium is characterized as follows:

Definition 7.9 Marking for Normal Selections: Line i is marked at stage
s iff, where ∆ is its condition, Dab(∆) has been derived at stage s on a line
with condition ∅.

Finally, also the definitions for final derivability are completely standard.

Definition 7.10 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 7.11 Γ |−∃CLs A (A is finally ∃CLs–derivable from Γ) iff A is
finally derived on a line of a proof from Γ.
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Example. The example below clearly illustrates the proof theory of the
logic ∃CLs. Remark that I use Ωi to refer to the adaptive condition on line
i, and that

∨
(∆) is used to refer to the disjunction of the members of ∆

(see also definition 6.4).

Consider the premise set Γ∃i = {(∃i)(p)(i), (∃i)(¬p)(i), (∃i)(¬q)(i), (∃i)(p ∨
q)(i), (∃i)(p ∨ q ∨ r)(i), (∃i)(p ∨ ¬p ∨ s)(i)}.

1 (∃i)(¬p)(i) PREM ∅
2 (∃i)(¬q)(i) PREM ∅
3 (∃i)(p ∨ q ∨ r)(i) PREM ∅
4 p1 ∨ q2 ∨ r1 3;RC {(∃i)(p ∨ q ∨ r)(i) ∧ ¬(p1 ∨ q2 ∨ r1)}
5 ¬p1 1;RC {(∃i)(¬p)(i) ∧ ¬(¬p1)}
6 ¬q2 2;RC {(∃i)(¬q)(i) ∧ ¬(¬q2)}
7 (∃i)(r)(i) 4,5,6;RU Ω4 ∪ Ω5 ∪ Ω6

8 (∃i)(p)(i) PREM ∅
9 (∃i)(p ∨ ¬p ∨ s)(i) PREM ∅
10 p2 8;RC {(∃i)(p)(i) ∧ ¬p2}
11 p1 ∨ ¬p2 ∨ s1 9;RC {(∃i)(p ∨ ¬p ∨ s)(i) ∧ ¬(p1 ∨ ¬p2 ∨ s1)}
12 (∃i)(s)(i) 5,10,11;RU Ω5 ∪ Ω10 ∪ Ω11

13 (∃i)(p ∨ q)(i) PREM ∅
14 p1 ∨ q2 13;RC {(∃i)(p ∨ q)(i) ∧ ¬(p1 ∨ q2)}
15 (∃i)(p ∧ q)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14

16 (∃i)(t)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14

Until now, no Dab–formulas have been derived, so that no lines are marked
yet. This also means that all formulas derived on lines 1–16 are still consid-
ered as derivable from the premise set Γ∃i. This however changes once we
add line 17 to the proof.

15 (∃i)(p ∧ q)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14 X
16 (∃i)(t)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14 X
17

∨
(Ω5,Ω6,Ω14) 1,2,13;RU ∅

Line 17 obviously leads to the marking of lines 15 and 16. All other lines
remain derivable.

Remark that the formula on line 15 is ultimately derived from the premises
introduced on lines 1,2 and 13. Although that formula is marked on line
15, it is nevertheless possible to derive it from those same premises. This is
done by extending the proof in the following way:

18 p3 ∨ q4 13;RC {(∃i)(p ∨ q)(i) ∧ ¬(p3 ∨ q4)}
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19 ¬q4 2;RC {(∃i)(¬q)(i) ∧ ¬(¬q4)}
20 (∃i)(p ∧ q)(i) 5,14,18,19;RU Ω5 ∪ Ω14 ∪ Ω18 ∪ Ω19

It can easily be checked that the formula on line 20 is finally derivable from
the premise set Γ∃i.

Some Metatheoretical Properties of ∃CLs

A lot of very interesting metatheoretical properties are provable from the
proof theoretical description of ∃CLs. The first one is given by the theorem
below.

Theorem 7.6 Γ∃i |−∃CLs (∃i)A(i) iff there is a finite ∆ ⊂ Ω such that
Γ∃i |−∃CL (∃i)A(i) ∨Dab(∆) and Γ∃i |6−∃CL Dab(∆).

This theorem is valid for ∃CLs, because it is an instantiation of theorem 11
from Batens et al. [33]. Consequently, the proof is not given here, and I will
concentrate on some other properties.

The Nature of Dab–Formulas. In the example above, the formula
(∃i)(p ∧ q)(i) is derived on both line 15 and line 20. Moreover, in both
cases, it is derived from exactly the same premises. But, only line 15 gets
marked. Although this might seem quite odd at first, it is a straightforward
consequence of (1) the logical form of the ∃CLs–abnormalities, and (2) the
construction of the premise set.

First, consider the set of abnormalities Ω. It only contains conjunctions
that consist of an existentially quantified formula and the negation of a
particular instantiation of that formula. Now, as the existential formulas
are taken to be a members of the premise set (which is clearly specified
in definition 7.8), they will always be derivable. This however also means
that it will solely depend on the instantiations of the existential formulas,
whether or not a Dab–consequence will be derivable from the premise set.
This is made clear by the following theorem:8

Theorem 7.7 For A ∈ Γ, Γ∃i |−∃CL ((∃i)A(i)
1 ∧¬AI1 )∨ ...∨((∃i)A(i)

n ∧¬AIn)
iff Γ∃i |−∃CL ¬AI1 ∨ ... ∨ ¬AIn.

Secondly, also take the premise set Γ∃i into account. As it cannot contain
indexed wffs (elements of WI), it can only lead to Dab–formulas when the
required disjunction of negated instantiations is a ∃CL–theorem. As such,
theorem 7.7 can be rewritten as follows:

8The proofs of theorems 7.7, 7.8, 7.9, 7.10 and 7.11 are obvious and left to the reader.
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Theorem 7.8 For A ∈ Γ, Γ∃i |−∃CL ((∃i)A(i)
1 ∧¬AI1 )∨ ...∨((∃i)A(i)

n ∧¬AIn)
iff |−∃CL ¬AI1 ∨ ... ∨ ¬AIn.

Because of the relation between ∃CL and CL, such a disjunction will only
be derivable when the set {AI1 , ..., AIn} is inconsistent. As a consequence,
theorem 7.8 is equivalent to the theorem below:

Theorem 7.9 For A ∈ Γ, Γ∃i |−∃CL ((∃i)A(i)
1 ∧¬AI1 )∨ ...∨((∃i)A(i)

n ∧¬AIn)
iff {AI1 , ..., AIn} is inconsistent.

From the above, and given the fact that we define Dab[AI1 , ..., A
I
n] as

in definition 7.12, both theorem 7.10 and 7.11 below can be proven in a
straightforward way.

Definition 7.12 Dab[AI1 , ..., A
I
n] =df ((∃i)A(i)

1 ∧¬AI1 )∨...∨((∃i)A(i)
n ∧¬AIn).

Theorem 7.10 Γ∃i |−∃CLs (∃i)A(i) iff there is a finite {BI
1 , .., B

I
n} ⊂ WI

such that Γ∃i |−∃CL (∃i)A(i) ∨Dab[BI
1 , ..., B

I
n ] and |6−∃CL ¬BI

1 ∨ ... ∨ ¬BI
n .

Theorem 7.11 Γ∃i |−∃CLs (∃i)A(i) iff there is a finite {BI
1 , .., B

I
n} ⊂ WI

such that Γ∃i |−∃CL (∃i)A(i)∨Dab[BI
1 , ..., B

I
n ] and {BI

1 , .., B
I
n} is consistent.

If we now again turn to the example, it has become clear why line 15
gets marked and line 20 doesn’t, even though both have the same formula
as their second element ((∃i)(p∧q)(i)) and are obtained by means of exactly
the same premises. On line 15, the formula was derived by presupposing the
falsity of a Dab–formula based on an inconsistent set of instantiations of the
premises. On the other hand, on line 20, it was derived by presupposing the
falsity of a Dab–formula based on a consistent set.

Monotonicity. From theorem 7.10, it follows that ∃CLs–derivability solely
depends on the set of ∃CL–theorems. Consequently, the logic ∃CLs will be
monotonic, as it is obvious that enlarging a premise set will not change the
set of ∃CL–theorems.

Theorem 7.12 If Γ∃i1 |−∃CLs (∃i)A(i) then (Γ1 ∪ Γ2)∃i |−∃CLs (∃i)A(i).

Proof. Suppose Γ∃i1 |−∃CLs (∃i)A(i). From this, it follows that there is a
finite {BI

1 , .., B
I
n} ⊂ WI such that Γ∃i

1 |−∃CL (∃i)A(i) ∨Dab[BI
1 , ..., B

I
n ] and

|6−∃CL ¬BI
1 ∨ ... ∨ ¬BI

n (by theorem 7.10). It is obvious that this formula
will not become derivable by extending the premise set. As a consequence,
(Γ1 ∪ Γ2)∃i |−∃CLs (∃i)A(i).
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Transitivity. The logic ∃CLs is obviously not transitive in general, as the
following example makes clear:

Example 7.2 Although {(∃i)(p)(i), (∃i)(¬p)(i)} |−∃CLs (∃i)((p ∨ q) ∧ ¬p)(i)
and {(∃i)((p∨q)∧¬p)(i)} |−∃CLs (∃i)(q)(i), it is not the case that {(∃i)(p)(i),
(∃i)(¬p)(i)} |−∃CLs (∃i)(q)(i).

Nevertheless, a restricted kind of transitivity is valid for ∃CLs, as is stated
in theorem 7.13 below.

Theorem 7.13 If for all (∃i)A(i) ∈ Γ∃i2 , Γ∃i1 |−∃CLs (∃i)A(i) and Γ∃i2 |−∃CL

(∃i)B(i) then Γ∃i1 |−∃CLs (∃i)B(i).

Proof. Suppose (1) for all (∃i)A(i) ∈ Γ∃i2 , Γ∃i1 |−∃CLs (∃i)A(i), and (2)
Γ∃i2 |−∃CL (∃i)B(i). From (2), it follows that there is a finite {(∃i)A(i)

1 , ..., (∃i)A(i)
n } ⊆

Γ∃i2 such that (∃i)A(i)
1 , ..., (∃i)A(i)

n |−∃CL (∃i)B(i) (†) (by theorem 7.1). From
this, together with (1), it follows that for all (∃i)A(i)

j (1 6 j 6 n), Γ∃i |−∃CL

(∃i)A(i)
j ∨Dab[BI

1j
, ..., BI

mj
] and {BI

1j
, ..., BI

mj
} is consistent (††) (by theorem

7.11). From (†) and (††), it follows that Γ∃i |−∃CL (∃i)B(i)∨Dab[BI
11
, ..., BI

m1
]∨

...∨Dab[BI
1n
, ..., BI

mn
], and {BI

11
, ..., BI

m1
} is consistent,..., and {BI

1n
, ..., BI

mn
}

is consistent (by theorem 7.2 and the transitivity of ∃CL). This would give
us the desired result (by theorem 7.11) if it could be guaranteed that the
set {BI

11
, ..., BI

m1
} ∪ ...∪ {BI

1n
, ..., BI

mn
} is also consistent. This however can

not be guaranteed.
It can nevertheless be guaranteed that there is an equivalent set which

does give us the desired result. It is constructed by mapping every set
{BI

1j
, ..., BI

mj
} ((1 6 j 6 n)) to an equivalent set {CI1j

, ..., CImj
} by substi-

tuting some or all indexed letters by different ones. This should be done
in such a way that (1) all sentential letters that had the same index in the
original set, still have the same index, and that (2) no index occurs in more
than one set. It is now easily verified that

1. all these sets {CI1j
, ..., CImj

} are consistent (if not, also the original set
should be inconsistent, which it is not). Moreover, as none of them have
indexed letters in common, also their union will be consistent.

2. for all (∃i)A(i)
j (1 6 i 6 n), it will be the case that Γ∃i |−∃CL (∃i)A(i)

j ∨
Dab[CI1j

, ..., CImj
] (This result is reached by simply changing the indices

in the proof based on the original set. Remark that this only yields the
desired result because no indices occur in (∃i)A(i)

j ).

As a consequence, Γ∃i1 |−∃CLs (∃i)B(i) (by theorem 7.11).
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7.4.2 Semantics of ∃CLs

The semantics of ∃CLs is a standard semantics for adaptive logics based
on the normal selections strategy. This means that it first selects those
LLL–models of the premise set that have minimal abnormal parts. They
are called the minimally abnormal models of the premise set.

Definition 7.13 Where M is a ∃CL–model: its abnormal part is the set
Ab(M) = {A ∈ Ω |M |= A}.

Definition 7.14 A ∃CL–model M of Γ is a minimal abnormal model iff
there is no ∃CL–model M ′ of Γ for which Ab(M ′) ⊂ Ab(M).

Next, all minimal abnormal models that have equal abnormal parts are
grouped together in a normal set.

Definition 7.15 Φ(Γ) = {Ab(M) | M is a minimally abnormal model of
Γ}.

Definition 7.16 A set Σ of ∃CL–models of Γ is a normal set iff for some
φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Finally, semantical consequence is defined by relying on the normal sets of
a premise set.

Definition 7.17 Γ |=∃CLs A iff A is verified by all members of at least one
normal set of ∃CL–models of Γ.

7.5 Does ∃CLs Capture Classical Relevance?

It can now be shown that the adaptive logic ∃CLs really captures classi-
cal relevance by proving its equivalence with CL∗. First, consider some
terminological remarks.

Terminological Remarks. In the lemmas below, I will make use of a
special kind of premise set ΓI , denoting the set of all possible interpretations
of a premise set Γ. More specifically, ΓI is defined as follows:

Definition 7.18 ΓI = {AI ∈ I(A) | A ∈ Γ}.

Moreover, I will also make use of the set I ′(A), the set of interpretations and
pseudo–interpretations of a formula A ∈ W. It will be denoted by I ′(A). A
formula AI is an element of I ′(A) iff

i. AI ∈ WI
+ (the set of indexed wffs of the language L∃i

+ ), and
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ii. when we drop the indices and pseudo–indices fromAI , we get the formula
A ∈ W.

Finally, also consider the following two definitions:

Definition 7.19 Ω∗ = {Ai ∧ ¬Aj | A ∈ S and i, j ∈ N}.

Definition 7.20 Γamb is a maximally ambiguous interpretation of Γ, which
means that all indexed letters occur maximally once in it.

Equivalence of CL∗ and ∃CLs. In order to prove the equivalence of
CL∗ and ∃CLs, it is necessary to first prove the lemmas below.

Lemma 7.2 Γ∃i |−∃CLs (∃i)(A)(i) iff there is a consistent {BI
1 , ..., B

I
n} ⊂

ΓI such that Γ∃i ∪ {BI
1 , ..., B

I
n} |−∃CL (∃i)(A)(i).

Proof. ⇒ Suppose Γ∃i |−∃CLs (∃i)(A)(i). From this, it follows that there is a
consistent {BI

1 , ..., B
I
n} ⊂ ΓI such that Γ∃i |−∃CL (∃i)(A)(i)∨Dab[BI

1 , ..., B
I
n ]

(by theorem 7.11). From the latter, it follows that Γ∃i |−∃CL (∃i)(A)(i) ∨
¬BI

1 ∨ ... ∨ ¬BI
n . This also gives us Γ∃i ∪ {BI

1 , ..., B
I
n} |−∃CL (∃i)(A)(i).

⇐ Suppose there is a consistent {BI
1 , ..., B

I
n} ⊂ ΓI such that Γ∃i ∪

{BI
1 , ..., B

I
n} |−∃CL (∃i)(A)(i). From this, it follows that Γ∃i |−∃CL (∃i)(A)(i)∨

¬BI
1 ∨ ...∨¬BI

n (by theorem 7.2 and the ∃CL–proof theory), which gives us
also Γ∃i |−∃CL (∃i)(A)(i) ∨Dab[BI

1 , ..., B
I
n ]. As {BI

1 , ..., B
I
n} is consistent, it

follows from the latter that Γ∃i |−∃CL (∃i)(A)(i) (by theorem 7.11).

Lemma 7.3 Γ∃i |−∃CLs (∃i)(A)(i) iff for some AI ∈ I ′(A), there is a con-
sistent {BI

1 , ..., B
I
n} ⊂ ΓI such that {BI

1 , ..., B
I
n} |−∃CL A

I .

Proof. ⇐ Suppose for some AI ∈ I ′(A), there is a consistent {BI
1 , ..., B

I
n} ⊂

ΓI such that {BI
1 , ..., B

I
n} |−∃CL AI . From this, it follows that |−∃CL

(∃i)A(i)∨¬BI
1 ∨ ...∨¬BI

n (by theorem 7.2 and the ∃CL–proof theory). This
now gives us that Γ∃i |−∃CL (∃i)A(i)∨Dab[BI

1 , ..., B
I
n ] (because {BI

1 , ..., B
I
n} ⊂

ΓI). As {BI
1 , ..., B

I
n} is consistent, it follows that Γ∃i |−∃CLs (∃i)A(i) (by

theorem 7.11).

⇒ Suppose that (1) for all AI ∈ I ′(A) and for all consistent {BI
1 , ..., B

I
n} ⊂

ΓI , it is the case that {BI
1 , ..., B

I
n} |6−∃CL A

I , and (2) Γ∃i |−∃CLs (∃i)(A)(i).
From (1), it follows that for all AI ∈ I ′(A) and for all {BI

1 , ..., B
I
n} ⊂ ΓI ,

it is also the case that Γ∃i ∪ {BI
1 , ..., B

I
n} |6−∃CL AI (as existential formu-

las cannot lead to non–existential ones, adding Γ∃i will not make some
AI ∈ I ′(A) derivable). As a consequence, also Γ∃i ∪ {BI

1 , ..., B
I
n} |6=∃CL

AI (by corollary 7.1), which means that not all ∃CL–models that verify
Γ∃i ∪ {BI

1 , ..., B
I
n} also verify some AI ∈ I ′(A) (†) (by definition 7.6).
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From (2), it follows that there is a consistent {BI
1 , ..., B

I
n} ⊂ ΓI such

that Γ∃i∪{BI
1 , ..., B

I
n} |−∃CL (∃i)A(i) (by lemma 7.2). This means that also

Γ∃i ∪ {BI
1 , ..., B

I
n} |=∃CL (∃i)A(i) (by corollary 7.1). This means that all

∃CL–models that verify Γ∃i∪{BI
1 , ..., B

I
n}, also verify (∃i)A(i) (by definition

7.6). From the latter, it follows that all models that verify Γ∃i∪{BI
1 , ..., B

I
n},

also verify some AI ∈ I ′(A) (††) (by the ∃CL–semantics).
As (†) and (††) are contradictory, it follows that Γ∃i |6−∃CLs (∃i)(A)(i).

Lemma 7.4 If for some AI ∈ I(A), Γamb |−∃CL A
I ∨

∨
(∆) (∆ ⊂ Ω∗) and

Γamb |6−∃CL
∨

(∆) then there is a consistent {BI
1 , ..., B

I
n} ⊂ ΓI such that

{BI
1 , ..., B

I
n} |−∃CL A

I .

Proof. Suppose that for some AI ∈ I(A), Γamb |−∃CL A
I ∨

∨
(∆) (∆ ⊂ Ω∗)

and Γamb |6−∃CL
∨

(∆). From this, it follows that there is some Θ = {¬(Ai ≡
Aj) | A ∈ S, and i, j ∈ N}, such that Γamb |−∃CL A

I∨
∨

(Θ) and Γamb |6−∃CL∨
(Θ) (because in CL, ¬(Ai ≡ Aj) is equivalent to (Ai∧¬Aj)∨ (Aj ∧¬Ai)).

Hence, for Θ′ = {A | ¬A ∈ Θ}, it follows that Γamb ∪ Θ′ |−∃CL AI (by the
metatheoretical characterization of ∃CL). Moreover, as Γamb |6−∃CL

∨
(Θ),

it follows that Γamb∪Θ′ will remain consistent. If all indices of those indexed
letters in Γamb that are identified in Θ′, are replaced by new indices (not
occurring in Γamb), a set Γamb′ is obtained that is still consistent and for
which it is the case that Γamb′ |−∃CL A

I , for some AI ∈ I(A). This means
that there is a consistent set {BI

1 , ..., B
I
n} ⊂ ΓI such that {BI

1 , ..., B
I
n} |−∃CL

AI (by the compactness of ∃CL).

Lemma 7.5 If A ∈ ResCL∗(Γ), then Γ∃i |−∃CLs (∃i)(A)(i).

Proof. Suppose A ∈ ResCL∗(Γ) Hence, it follows that Γ |−CL∗ A∗ (by
definition 6.6), which means that there is a CL∗–proof Φ of A∗ from Γ (by
definition 6.1). Remark that it is possible to transform the CL∗–proof Φ of
A∗ from Γ into an ∃CL–proof Φ′ of BI ∨

∨
(∆) from Γamb (†), so that A is

CL∗–derivable from B by means of the rule CONT (‡). The transformation
proceeds as in the second part of the proof of theorem 4.8 (see chapter 4),
which is possible because the indices only block the inference rules DS∗ and
CONT. Moreover, as Φ′ is a mirror proof of Φ, the rules ADD and TH are
not used in it. As a consequence, none of the indexed letters in BI occurs
in

∨
(∆). From this, it follows that Γamb |6−∃CL

∨
(∆) (††).

From (†) and (††), it now follows that there is a consistent {CI1 , ..., CIn} ⊂
ΓI such that {CI1 , ..., CIn} |−∃CL BI . (by lemma 7.4). From the latter, it
follows that Γ∃i ∪ {CI1 , ..., CIn} |−∃CL (∃i)A(i) (by ‡ and the ∃CL–proof
theory), which also gives us Γ∃i |−∃CLs (∃i)(A)(i) (by lemma 7.2).

Finally, it is possible to prove the equivalence of ∃CLs and CL∗.
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Theorem 7.14 Γ |−CL∗ A iff Γ∃i |−∃CLs (∃i)A(i).

Proof.⇒ Suppose Γ |−CL∗ A. From this, it follows that ResCL∗(Γ) |−CLūNs

A (by theorems 6.4 and 6.6), which gives us (ResCL∗(Γ))∃i |−∃CL (∃i)A(i)

(†) (by theorem 7.5). From lemma 7.5, it also follows that for all B ∈
ResCL∗(Γ), Γ∃i |−∃CLs (∃i)B(i) (††). From (†) and (††), it now follows that
Γ∃i |−∃CLs (∃i)A(i) (by theorem 7.13).

⇐ Suppose Γ∃i |−∃CLs (∃i)A(i). From this, it follows that for some AI ∈
I(A), there is a consistent {BI

1 , ..., B
I
n} ⊂ ΓI such that {BI

1 , ..., B
I
n} |−∃CL

AI (by lemma 7.3). However, this gives us also {BI
1 , ..., B

I
n} |−CL∗ A

I (by
lemma 6.4), which means that there is a CL∗–proof of AI from {BI

1 , ..., B
I
n}

(by definition 6.1). But, if we now drop the indices, we get a CL∗–proof of
A from {B1, ..., Bn} (what can be derived with the indices, can obviously
also be derived without them). As a consequence, {B1, ..., Bn} |−CL∗ A (by
definition 6.1), which means that also Γ |−CL∗ A (as {B1, ..., Bn} ⊆ Γ).

7.6 Compassionate Relevantism

In multiple publications, Neil Tennant has presented a logical system which
he called CR, standing for Compassionate Relevantism, see e.g. Tennant
[107, 108, 109, 111, 113, 114].9 In this section, I will show that his CR is in
some way equivalent to the logic CL∗.

Relevant Classical Proofs. In [108, 109], Neil Tennant split up CL–
proofs into explosive classical proofs and relevant classical proofs.10 Conclu-
sions of explosive CL–proofs are only derivable because of the inconsistency
of the premise set:

A ‘follows’ from Γ by dint of Γ’s inconsistency, rather than by dint
of any genuine deductive connection between Γ and A.11

On the contrary, conclusions of relevant CL–proofs follow from the premises
by “relevant use” of the classical derivation rules. In other words, relevant
classical proofs give us all and only those classical consequences of a premise
set that are somehow “in” the premises. Those are the relevant consequences
of that premise set.

It is immediately obvious that Tennant’s approach towards relevance
bears a lot of similarities with the approach I presented in chapter 6. As
such, it is not surprising that the resulting logical systems are equivalent.

9He also developed an intuitionistic variant, see e.g. Tennant [110, 112].
10My terminology!
11See [114, p. 706]. Remark that here and in the remaining of this section, I have

adapted Tennant’s logical notation to mine in order to preserve overall coherence.
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Semantics of CR. Although Tennant attached more importance to the
proof theoretical characterization of CR (stated in sequent calculus, see e.g.
[109]), I will only present the semantical characterization.

First, remark that Tennant makes use of set sequents to characterize
CR. These are “formulas” of the form Γ:∆ with Γ and ∆ sets of CL–wffs
in which the order and the repetition of elements are considered irrelevant.
In the following, I will always restrict the succedent set ∆ to a singleton.
This doesn’t lead to a change in the logic, and will make it easier to prove
the equivalence between CR and CL∗.

Next, in order to capture the notion of relevant classical proof in a se-
mantical way, Tennant makes use of the notion entailment :12

Definition 7.21 Γ |=CR A iff Γ:∆ is a CR–entailment.

Whether or not a set sequent is an entailment, depends on the following
definitions:13

Definition 7.22 A valid sequent Γ:A is a sequent for which there exists
no CL–model that makes all elements of Γ true and A false.

Definition 7.23 A perfectly valid sequent Γ:A is a valid sequent that
has no valid proper subsequents.

Definition 7.24 A proper subsequent of a sequent Γ:A is

(a) a valid sequent Γ′:A such that Γ′⊂Γ (meaning that not all elements of
Γ are needed in order to derive A), or

(b) the sequent Γ:∅ (meaning that Γ is inconsistent).

Definition 7.25 A sequent Γ′:A′ is a suprasequent of Γ:A, iff there is
a function s which replaces each sentential letter from Γ:A by a (possibly
complex) formula, so that s(Γ:A) = Γ′:A′.

Definition 7.26 A sequent Γ:A is an entailment iff Γ:A has a perfectly
valid suprasequent.

The semantic characterization of CR can now be clearly illustrated by
some examples. First, consider the following example.

Example 7.3 {p,¬p, p ∨ ¬p ∨ q} : q is an entailment, because {r,¬p, p ∨
¬r ∨ q} : q is a perfectly valid suprasequent of {p,¬p, p ∨ ¬p ∨ q} : q.

12Remark that Tennant uses the notion “entailment” slightly different than in standard
Relevance Logic. Nevertheless, he still refers to some kind of “theorem”, as in sequent
calculus, it is impossible to introduce CL–wffs. Only sequents can be introduced.

13See Tennant [109, pp. 184–187].
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This example is very straightforward. There are also examples that are more
demanding. Consider for example the one below.

Example 7.4 {p, q,¬(p∧q)} : ¬p∧¬q (†) is an entailment, because {r,¬(p∧
r), s,¬(q ∧ s)} : q (††) is a perfectly valid suprasequent of {p, q,¬(p ∧ q)} :
¬p ∧ ¬q.

It seems quite odd to consider (††) as a valid suprasequent of (†). Never-
theless, it becomes obvious when we take into account that Tennant has
made use of set sequents. For those, the order and repetition of the ele-
ments do not matter, so that the set sequents {p, q,¬(p ∧ q)}:¬p ∧ ¬q and
{p, q,¬(p ∧ q),¬(p ∧ q)}:¬p ∧ ¬q are equivalent.14

Relevant Deduction? Definition 7.24 shows that entailments always have
minimal antecedent sets. They contain only formulas that are really needed
for deriving the formula in the succedent part. Although this might capture
relevant classical proofs (which was Tennant’s objective), it certainly does
not capture relevant classical deduction. The following example shows us
why:

Example 7.5 Because {p,∼p ∨ q}:q is an entailment, {∼p, p,∼p ∨ q}:q is
not an entailment, even though {p∧∼p,∼p∨ q}:q, and {p,∼p∧ (∼p∨ q)}:q
are entailments.

Does this mean that there is no relevant proof of q from {∼p, p,∼p∨ q}? In
a sense, it does, as the antecedent set contains more elements than we really
need in order to derive q. But, as there is a relevant proof from a subset of
Γ, this obviously shouldn’t also mean that q cannot be relevantly deduced
from the premise set Γ = {∼p, p,∼p ∨ q}.

From the above, it is obvious that CR can be used in order to capture
relevant classical deduction: there is a relevant classical deduction of A from
Γ whenever there is a Γ′ ⊆ Γ such that Γ′:A is an entailment. I will call this
deductive Compassionate Relevantism (dCR).

Definition 7.27 Γ |=dCR iff there is a Γ′ ⊆ Γ such that Γ′:A is an entail-
ment.

Relation with CL∗. It can now easily be shown that dCR is equivalent
to CL∗. First, consider the lemma below.

Lemma 7.6 Γ |=dCR A iff Γ∃i |−∃CLs (∃i)A(i).

14This is a subtlety in Tennant’s approach that is easily overlooked. At least, I did so
in [65, 66]. As a consequence, the adaptive logic AALns presented in those papers, is not
equivalent to CR, but to some weaker variant.
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Proof. ⇒ Suppose Γ |=dCR A. From this, it follows that there is a Γ′ ⊆
Γ such that Γ′:A is an entailment (by definition 7.27), which means that
Γ′:A has a perfectly valid suprasequent (by definition 7.26). From this, it
follows that there is a {BI

1 , ..., B
I
n} ⊂ Γ′I such that {BI

1 , ..., B
I
n}:AI for

some AI ∈ I(A) (by the compactness of CL and the fact that indexed wffs
can be considered substitution instances of the ordinary sentential letters).
Moreover, {BI

1 , ..., B
I
n} has to be consistent, otherwise {BI

1 , ..., B
I
n}:AI is

not a perfectly valid suprasequent of Γ′:A (by definitions 7.23 and 7.24).
From this, it follows that Γ′∃i |−∃CLs (∃i)A(i) (by theorem 7.3), which also
gives us Γ∃i |−∃CLs (∃i)A(i) (by theorem 7.12).

⇐ Suppose Γ∃i |−∃CLs (∃i)A(i). From this, it follows that there is a
consistent and minimal {BI

1 , ..., B
I
n} ⊂ ΓI such that {BI

1 , ..., B
I
n} |−∃CL A

I

for some AI ∈ I ′(A) (by lemma 7.3). This means that {BI
1 , ..., B

I
n}:AI is a

perfectly valid suprasequent of some Γ′ ⊂ Γ (by corollary 7.1 and definitions
7.23 and 7.24), such that {B1, ..., Bn}:A will be an entailment (by definition
7.26). As {B1, ..., Bn} has to be a subset of Γ (because {BI

1 , ..., B
I
n} ⊂ ΓI

and definition 7.18), it now follows that Γ |=dCR A (by definition 7.27).

In view of lemma 7.6, the theorem below now follows immediately.

Theorem 7.15 Γ |−dCR A iff Γ |−CL∗ A.

7.7 Conclusion and Further Research

In this chapter, I have presented the adaptive logic ∃CLs, which is equivalent
to the logical system CL∗. As such, it captures classical relevance in a
logically stringent way. Moreover, I have also shown that the logic ∃CLs is
also equivalent to the logic dCR, the deductive variant of Tennant’s CR.

Further Research. There are two points of further research concerning
the material of this chapter. First of all, the logic ∃CLs should be ex-
tended to the predicative level. Secondly, also the relation between ∃CLs

and the goal directed proof procedure developed by Batens and Provijn in
[37], should be investigated. As said in chapter 1, this procedure pushes
some of the heuristics into the proof theory. If the (artificial) rule ex falso
quodlibet (EFQ) is dropped from the goal directed proof procedure for CL,
one reaches the proof procedure for an extremely rich paraconsistent logic,
called CL− in Batens [22, 24]. But, CL− seems to be equivalent to ∃CLs.
If this would be the case, then ∃CLs can not only be considered the logic
behind the goal directed proof procedure, it would also prove that deduc-
tive relevance and heuristic relevance are related to one another in a very
fundamental way.



Chapter 8

Classical Relevance: Part 2

8.1 Introduction

The adaptive logic ∃CLs from the foregoing chapter, was obtained by means
of a two–step procedure. The first step consisted in the ambiguization of
CL (resulting in the ambiguity logic ∃CL), the second step in the adaptive
treatment of this ambiguization (resulting in ∃CLs). As it was shown that
∃CLs nicely captures classical relevance, this two–step procedure in a sense
relevantized the non–relevant logic CL.

At first sight, it might appear that other irrelevant logics can be rele-
vantized in the same way. This would give us a general (or universal) logic
method for handling first degree (classical) relevance (FDR). Unfortenately,
it is not that straightforward, as is most easily shown be means of an exam-
ple.

Example 8.1 Suppose the logic ∃K is the ambiguity logic based on the
modal logic K (see chapter 4). If we now consider the adaptive logic ∃Ks,
constructed in the same way as ∃CLs, then we get the following results:

From the premise set Γ = {(∃i)(�p)(i), (∃i)(�¬p)(i)}, it is possible to ∃K–
derive the formula (∃i)(�q)(i)∨¬�p1∨¬�¬p1, while it is not possible to ∃K–
derive the formula ¬�p1∨¬�¬p1. As a consequence, the formula (∃i)(�q)(i)
is an ∃Ks–consequence of the premise set Γ. But, as this is clearly an ir-
relevant consequence, the logic ∃Ks cannot be considered a relevant modal
logic.

In this chapter, I will show that in order to reach a general method for
handling FDR, it is not necessary to profoundly alter the relevantizing pro-
cedure from above (some minor changes will be necessary though). What is
demanded, is a change of perspective. Remember that the logic CL∗ (the
logic expressing classical relevance) is situated somewhere in between the
logics CL and CLūNs (see chapter 6). The logic ∃CLs captures classical
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relevance by weakening the logic CL. But, and here’s the change of per-
spective, it is also possible to do so by strengthening the logic CLūNs. The
latter is done by the ambiguity–adaptive logic ∃CLūNss that I will present
below. In the subsequent chapters, it will be shown how this approach can
be extended to relevantize a lot of other logics. As such, it can be considered
a general method to approach first degree relevance.

8.2 The Lower Limit Logic

The LLL of the adaptive logic ∃CLūNss is the ambiguity logic ∃CLūNs,
based on the logic CLūNs. Its characterization bears a lot of similarities
with the one for ∃CL (see chapter 7, section 7.3), but there are never-
theless some important differences. First, consider the language schema of
∃CLūNs.

8.2.1 Language Schema

The ∃CLūNs–language schema is obtained from the one for ∃CL (see chap-
ter 7, section 7.3.1) by extending the ∃CL–language L∃i with an extra nega-
tion symbol. As a consequence, the ∃CLūNs–language L∃i

◦ contains two
negation symbols, the CLūNs–negation and the CL–negation. The former
will be denoted as usual (without a subscript), while the latter will be de-
noted by means of “¬!”. The set of ∃CLūNs–wffs W∃i

◦ is now constructed
in the usual way:

(i) SI ⊂ W∃i
◦ .

(ii) When A ∈ W∃i
◦ then ¬A, ¬!A ∈ W∃i

◦ .
(iii) When A,B ∈ W∃i

◦ then (A ∧B), (A ∨B), (A A B) ∈ W∃i
◦ .

(iv) When A ∈ W∃i
◦ and i ∈ V then (∃i)A[i], (∀i)A[i] ∈ W∃i

◦ .

Overview. Consider table 8.1. It clearly states the relations between the
languages L of CL∗, L∃i of ∃CL, and L∃i

◦ of ∃CLūNs.

language letters connectives set of formulas
L S ¬,∧,∨,A W
L∃i SI ¬,∧,∨,A,∃,∀ W∃i

L∃i
◦ SI ¬!,∼,∧,∨,A,∃,∀ W∃i

◦

Table 8.1: Relations between L, L∃i and L∃i
◦ .

8.2.2 Proof Theory and Semantics

First of all, the language schema of ∃CLūNs is the same as the one for ∃CL
(see chapter 7, section 7.3.1). Secondly, also the ∃CLūNs–proof theory and
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–semantics are very similar to those of ∃CL.

Proof Theory of ∃CLūNs. The proof theory of ∃CLūNs is obtained by
adding the inference rules below to the proof theory of CLūNs, presented
in chapter 4.

NU ¬(∀i)A[i] I (∃i)¬A[i]
NE ¬(∃i)A[i] I (∀i)¬A[i]
UI (∀i)A[i] I A[i/j] (j ∈ N)
EG A[i/j] I (∃i)A[i] (j ∈ N)
UG A[i/j] I (∀i)A[i], provided j ∈ N doesn’t occur in A, in a premise,

or in the hypothesis of an unclosed subproof.
MPE (∃i)A[i], S(A[i/j], B) I B, provided j ∈ N doesn’t occur in A, in

B, in a premise, or in the hypothesis of an unclosed subproof.
EFQ A, ¬!A I B.
EM I A ∨ ¬!A.

An ∃CLūNs–proof is a sequence of wffs each of which is either a premise,
a hypothesis, or follows from those earlier in the list by a rule of inference.
∃CLūNs–derivability can now be defined as follows:

Definition 8.1 Γ |−∃CLūNs A iff there is an ∃CLūNs–proof of A from
B1, ..., Bn ∈ Γ such that A has been derived on a line i of the main proof.

The compactness and (pseudo–)deduction theorem are obviously valid, and
can be proven in the standard way.

Theorem 8.1 (Compactness Theorem) Γ |−∃CLūNs A iff there is a fi-
nite ∆ ⊆ Γ such that ∆ |−∃CLūNs A.

Theorem 8.2 (Deduction Theorem) If A1, ..., An |−∃CLūNs B then A1, ...,
An−1 |−∃CLūNs S(An, B).

Semantics of ∃CLūNs. As for ∃CL, the ∃CLūNs–semantics is charac-
terized w.r.t. the pseudo–language L∃i

◦+ (see chapter 7, section 7.3.3).
An ∃CLūNs–model M is an assignment function v defined in the fol-

lowing way:

AP1 v : SI+ 7→ {0, 1}.
AP2 v : ¬SI+ 7→ {0, 1}.

The valuation function vM determined by the model M is characterized as
follows:

SP1 vM : W∃i
◦+ 7→ {0, 1}.
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SP2 For A ∈ SI+: vM (A) = 1 iff v(A) = 1.
SP3u For A ∈ SI+: vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1.
SP3! vM (¬!A) = 1 iff vM (A) = 0.
SP4 vM (a)= 1 iff vM (a1) = 1 and vM (a2) = 1.
SP5 vM (b)= 1 iff vM (b1) = 1 or vM (b2) = 1.
SP6 For ξ ∈ S: vM ((∃i)A[ξi]) = 1 iff vM (A[ξj ]) = 1 for at least one

j ∈ N ∪N′.
SP7 For ξ ∈ S: vM ((∀i)A[ξi]) = 1 iff vM (A[ξj ]) = 1 for all j ∈ N ∪N′.

Truth in a model, semantical consequence and validity are defined as for
∃CL from chapter 7.

Soundness and Completeness. The logic ∃CLūNs is sound and com-
plete with respect to its semantics.

Theorem 8.3 Γ |−∃CLūNs A iff Γ |=∃CLūNs A.

The soundness and completeness proofs for ∃CLūNs are easily obtained
from those for ∃CL (see chapter 7, theorem 7.3 and 7.4).

8.2.3 The LLL of ∃CLūNss

As the logic ∃CLūNs is reflexive, transitive, monotonic and compact, it is
capable to serve as the LLL of an adaptive logic.

Relation with CLūNs. If the ∃CLūNs–language is restricted to L∃i

(the language without the CL–negation), then ∃CLūNs captures CLūNs–
derivability:1

Theorem 8.4 Γ∃i |=∃CLūNs (∃i)A(i) iff Γ |−CLūNs A.

Proof. <= Suppose Γ∃i |6=∃CLūNs (∃i)A(i) and suppose that M (a valuation
function v) is an ∃CLūNs–model that verifies Γ∃i and falsifies (∃i)A(i).
From M , define a CLūNs–model M ′ (a valuation function v′) that verifies
Γ and falsifies A. This gives us the desired result.

In order to prove the equivalence between both models, define M ′ in the
following way:

(1) Where A ∈ S, v′(A) = 1 iff v(Aj) = 1 for some j ∈ N ∪N′.
(2) Where A ∈ S, v′(¬A) = 1 iff v(Aj) = 0 or v(¬Aj) = 1, for some

j ∈ N ∪N′.

1The proof of theorem 8.4 is based on the proof of theorem 3 of Batens [17].
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Consider a formulaA ∈ S (the base case). Clearly, vM ′(A) = 1 iff vM ((∃i)(A)(i))
= 1, and vM ′(¬A) = 1 iff vM ((∃i)(¬A)(i)) = 1.

This result is now easily generalized to all CLūNs–wffs, by a straightfor-
ward induction over the complexity of formulas. Consider for example the
induction case for the conjunction.

vM ′(A ∧B) = 1 iff vM ′(A) = 1 and vM ′(B) = 1 (by the CLūNs–semantics)
iff vM ((∃i)A(i)) = 1 and vM ((∃i)B(i)) = 1 (by the induc-

tion hypothesis)
iff vM ((∃i)(A∧B)(i)) = 1 (Obvious from the ∃CLūNs–

semantics and definition 7.3)

=> Suppose Γ |6=CLūNs A and suppose that M ′ (a valuation function
v′) is an CLūNs–model that verifies Γ and falsifies A. From M ′, I can now
define a ∃CLūNs–model M (a valuation function v) such that M verifies
Γ∃iand falsifies (∃i)A(i), which gives us the desired result.

In order to prove the equivalence between both models, define M in the
following way:

(1) Where A ∈ S, v(Aj) = 1 for some j ∈ N ∪N′ iff v′(A) = 1.
(2) Where A ∈ S, v(Aj) = 0 or v(¬Aj) = 1 for some j ∈ N∪N′ iff v′(¬A)

= 1.

Consider a formula A ∈ S (the base case). Clearly, vM ((∃i)(A)(i)) = 1 iff
vM ′(A) = 1, and vM ((∃i)(¬A)(i)) = 1 iff vM ′(¬A) = 1.

This result is now easily generalized to all CLūNs–wffs, by a straightforward
induction over the complexity of formulas. Consider again the induction case
for the conjunction.

vM ((∃i)(A ∧B)(i)) = 1 iff vM ((∃i)A(i)) = 1 and vM ((∃i)B(i)) = 1 (by the
∃CLūNs–semantics and definition 7.3)

iff vM ′(A) = 1 and vM ′(B) = 1 (by the induction
hypothesis)

iff vM ′(A ∧B) = 1 (by the CLūNs–semantics)

8.3 The Adaptive Logic ∃CLūNss

The adaptive logic ∃CLūNss is not a flat adaptive logic, but a simple com-
bined adaptive logic. As such, it is characterized by the following three
components:
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(1) Its LLL is the logic ∃CLūNs.
(2) Its set of abnormalities Ω is the union of the sets Ω1 and Ω2 below:

a) Ω1 = {(∃i)A(i) ∧ ¬!A
I | (∃i)A(i) ∈ Γ∃i and AI ∈ I(A)}.

b) Ω2 = {Ai ∧ ¬Aj | A ∈ S and i, j ∈ N}.

(3) Its adaptive strategy is the normal selections strategy.

8.3.1 Proof Theory of ∃CLūNss

As ∃CLūNss is a simple combined AL, its proof theory is the standard
proof theory of flat AL. First, consider the deduction rules.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃CLūNs B and each of A1, ..., An occurs in the proof
on lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one
may add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−∃CLūNs B ∨Dab(Θ) and each of A1, ..., An occurs in
the proof on lines i1, ..., in that have conditions ∆1, ...,∆n respec-
tively, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ...∪
∆n ∪Θ.

Next, consider the normal selections–marking criterium:

Definition 8.2 Marking for Normal Selections: Line i is marked at stage
s iff, where ∆ is its condition, Dab(∆) has been derived at stage s on a line
i with condition ∅.

Finally, also consider the definitions for final derivability:

Definition 8.3 A is finally derived from Γ on line i of a proof at stage s
iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 8.4 Γ |−∃CLūNss A (A is finally ∃CLūNss–derivable from Γ)
iff A is finally derived on a line of a proof from Γ.

As for all adaptive logics based on the normal selections strategy, the
core of the proof theory of ∃CLūNss is captured by the following theorem:2

Theorem 8.5 Γ∃i |−∃CLūNss (∃i)A(i) iff there are finite ∆ ⊂ Ω1 and Θ ⊂
Ω2 such that Γ∃i |−∃CLūNs (∃i)A(i)∨Dab(∆∪Θ) and Γ∃i |6−∃CLūNs Dab(∆∪
Θ).

2This is proven for all AL in Batens et al. [33, pp. 10–11].
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Example. In order to make it easier to compare ∃CLūNss with ∃CLs,
I’ll give the same example as I gave for ∃CLs in section 7.4.1. First, consider
again the premise set Γ∃i:

Γ∃i = {(∃i)(p)(i), (∃i)(¬p)(i), (∃i)(¬q)(i), (∃i)(p∨q)(i), (∃i)(p∨q∨r)(i), (∃i)(p∨
¬p ∨ s)(i)}.

Next, consider the ∃CLūNss–proof below:

1 (∃i)(¬p)(i) PREM ∅
2 (∃i)(¬q)(i) PREM ∅
3 (∃i)(p ∨ q ∨ r)(i) PREM ∅
4 p1 ∨ q2 ∨ r1 3;RC {(∃i)(p ∨ q ∨ r)(i) ∧ ¬!(p

1 ∨ q2 ∨ r1)}
5 ¬p1 1;RC {(∃i)(¬p)(i) ∧ ¬!(¬p1)}
6 ¬q2 2;RC {(∃i)(¬q)(i) ∧ ¬!(¬q2)}
7 (∃i)(r)(i) 4,5,6;RU Ω4 ∪ Ω5 ∪ Ω6 ∪ {p1 ∧ ¬p1, q2 ∧ ¬q2}
8 (∃i)(p)(i) PREM ∅
9 (∃i)(p ∨ ¬p ∨ s)(i) PREM ∅
10 p3 8;RC {(∃i)(p)(i) ∧ ¬!p

5}
11 p1 ∨ ¬p3 ∨ s1 9;RC {(∃i)(p ∨ ¬p ∨ s)(i) ∧ ¬!(p

1 ∨ ¬p3 ∨ s1)}
12 (∃i)(s)(i) 5,10,11;RU Ω5 ∪ Ω10 ∪ Ω11 ∪ {p1 ∧ ¬p1, p3 ∧ ¬p3}
13 (∃i)(p ∨ q)(i) PREM ∅
14 p1 ∨ q2 13;RC {(∃i)(p ∨ q)(i) ∧ ¬!(p

1 ∨ q2)}
15 (∃i)(p ∧ q)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14 ∪ {p1 ∧ ¬p1, q2 ∧ ¬q2} X
16 (∃i)(t)(i) 5,6,14;RU Ω5 ∪ Ω6 ∪ Ω14 ∪ {p1 ∧ ¬p1, q2 ∧ ¬q2} X
17

W
(Ω5, Ω6, Ω14 ∪ {p1 ∧ ¬p1, q2 ∧ ¬q2}) 1,2,13;RU ∅

18 p3 ∨ q4 13;RC {(∃i)(p ∨ q)(i) ∧ ¬!(p
3 ∨ q4)}

19 ¬q4 2;RC {(∃i)(¬q)(i) ∧ ¬!(¬q4)}
20 (∃i)(p ∧ q)(i) 5,14,18,19;RU Ω5 ∪ Ω14 ∪ Ω18 ∪ Ω19 ∪ {p1 ∧ ¬p1, q4 ∧ ¬q4}

8.3.2 Semantics of ∃CLūNss

The semantics of ∃CLūNss is a standard AL–semantics for AL based on
the normal selections strategy. This means that it first selects the minimal
abnormal LLL–models of the premise set.

Definition 8.5 Where M is a ∃CLūNs–model: its abnormal part is the
set Ab(M) = {A ∈ Ω |M |= A}.

Definition 8.6 A ∃CLūNs–model M of Γ is a minimal abnormal model
iff there is no ∃CLūNs–model M ′ of Γ for which Ab(M ′) ⊂ Ab(M).

Next, all minimal abnormal models that have equal abnormal parts are
grouped together in normal sets.

Definition 8.7 Φ(Γ) = {Ab(M) |M is a minimally abnormal model of Γ}.



144 Classical Relevance: Part 2

Definition 8.8 A set Σ of ∃CLūNs–models of Γ is a normal set iff for
some φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Finally, semantic consequence is defined by relying on the normal sets of a
premise set.

Definition 8.9 Γ |=∃CLūNss A iff A is verified by all members of at least
one normal set of ∃CLūNs–models of Γ.

Soundness and Completeness. As ∃CLūNss is a standard adaptive
logic, soundness and completeness follow immediately.

Theorem 8.6 Γ |−∃CLūNss A iff Γ |=∃CLūNss A.

8.4 Equivalence of ∃CLs and ∃CLūNss

The equivalence of ∃CLūNss and ∃CLs is stated by theorem 8.7 below.
In order to prove the correctness of that theorem, it is necessary to first
consider definition 8.10 and lemma 8.1.

Definition 8.10 Dab[BI
1 , ..., B

I
n ] =df Dab({(∃i)B(i)

1 ∧ ¬!B
I
1 , ..., (∃i)B

(i)
n ∧

¬!B
I
n}).

Lemma 8.1 Γ∃i |−∃CLūNss (∃i)A(i) iff there is a {BI
1 , ..., B

I
n} ⊂ ΓI such

that Γ∃i |−∃CLūNs (∃i)A(i)∨Dab[BI
1 , ..., B

I
n ]∨Dab(Θ) (∆ ⊂ Ω2) and {BI

1 , ...,
BI

n} |6−∃CLūNs Dab(∆).

Proof. ⇒ Suppose Γ∃i |−∃CLūNss (∃i)A(i). Hence, there are finite ∆ ⊂ Ω1

and Θ ⊂ Ω2 such that Γ∃i |−∃CLūNs (∃i)A(i)∨Dab(∆∪Θ) and Γ∃i |6−∃CLūNs

Dab(∆∪Θ). (by theorem 8.5), which also means that there is a {BI
1 , ..., B

I
n} ⊂

ΓI such that Γ∃i |−∃CLūNs (∃i)A(i)∨Dab[BI
1 , ..., B

I
n ]∨Dab(Θ) and Γ∃i |6−∃CLūNs

Dab[BI
1 , ..., B

I
n ] ∨Dab(Θ) (by definition 8.10). As existential formulas can

never lead to non–existential formulas, it immediately follows that |6−∃CLūNs

¬!B
I
1 ∨ ... ∨ ¬!B

I
n ∨Dab(Θ). Consequently, {BI

1 , ..., B
I
n} |6−∃CLūNs Dab(Θ).

⇐ Suppose there is a {BI
1 , ..., B

I
n} ⊂ ΓI such that (1) Γ∃i |−∃CLūNs

(∃i)A(i)∨Dab[BI
1 , ..., B

I
n ]∨Dab(Θ) (Θ ⊂ Ω2) and (2) {BI

1 , ..., B
I
n} |6−∃CLūNs

Dab(∆). From (1), it follows that there are finite ∆ ⊂ Ω1 and Θ ⊂ Ω2 such
that Γ∃i |−∃CLūNs (∃i)A(i) ∨ Dab(∆ ∪ Θ) (by definition 8.10). Moreover,
from (2), it follows that |6−∃CLūNs ¬!B

I
1 ∨ ...∨¬!B

I
n ∨Dab(Θ). As existential

formulas can never lead to non–existential formulas, it immediately follows
that Γ∃i |6−∃CLūNs ¬!B

I
1∨...∨¬!B

I
n∨Dab(Θ), which means that Γ∃i |6−∃CLūNs

Dab(∆ ∪Θ).

Theorem 8.7 Γ∃i |−∃CLūNss (∃i)A(i) iff Γ∃i |−∃CLs (∃i)A(i).
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Proof. ⇒ I have to admit that I have not found the left–right part of this
proof yet. As such, I leave it open for further research, and I will only give
the proof of the right–left side.

⇐ Suppose Γ∃i |−∃CLs (∃i)A(i). Hence, it follows that there is a consis-
tent {BI

1 , ..., B
I
n} ⊂ ΓI such that {BI

1 , ..., B
I
n} |−∃CL (∃i)A(i) (by lemma 7.3

and the ∃CL–proof theory). From this, it follows that {BI
1 , ..., B

I
n} |−∃CLūNs

(∃i)A(i) ∨ (Ci1
1 ∧ ¬Ci1

1 ) ∨ ... ∨ (Cim
m ∧ ¬Cim

m ) (†) (by theorem 4.7).
Consequence 1. From (†), if follows that |−∃CLūNs (∃i)A(i) ∨¬!B

I
1 ∨ ...∨

¬!B
I
n ∨ (Ci1

1 ∧ ¬Ci1
1 ) ∨ ... ∨ (Cim

m ∧ ¬Cim
m ). As a consequence, Γ∃i |−∃CLūNs

(∃i)A(i) ∨ Dab[BI
1 , ..., B

I
n ] ∨ Dab(∆), with ∆ ⊂ Ω2 (by definition 8.10 and

the characterization of Ω2).
Consequence 2. As {BI

1 , ..., B
I
n} is consistent, it follows that {BI

1 , ..., B
I
n}

|6−∃CLūNs (Ci1
1 ∧ ¬Ci1

1 ) ∨ ... ∨ (Cim
m ∧ ¬Cim

m ). Hence, {BI
1 , ..., B

I
n} |6−∃CLūNs

Dab(∆).
Result. From consequence 1 and 2, it now follows that Γ∃i |−∃CLūNss

(∃i)A(i) (by lemma 8.1).

8.5 Conclusion

From theorem 8.7, it immediately follows that the logic ∃CLūNss also cap-
tures classical relevance, which is stated by the theorem below.

Theorem 8.8 Γ |−CL∗ A iff Γ∃i |−∃CLūNss (∃i)A(i).

Moreover, the logic ∃CLūNss has cleared the way for a general logical
theory of first degree relevance, as it can now be shown that the relevantizing
procedure used to obtain ∃CLūNss, can be used to construct a large set of
relevant logics. This will be done in the subsequent chapters.
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Chapter 9

First Degree Relevance

9.1 Introduction

In the previous two chapters, I was solely concerned with classical relevance,
mostly because of its simplicity. In this chapter, I finally turn to real first de-
gree relevance (FDR), the actual aim of this dissertation. More specifically,
I will present the logic ∃CLōNss which nicely explicates FDR, because of
its equivalence with the logic CLāNs∗ from chapter 6.

Relevantizing Procedure. The logic ∃CLōNss is based on the relevan-
tizing procedure from the foregoing chapter. As such, it captures FDR
in the same way as ∃CLūNss captured classical relevance: by means of
an ambiguity logic (the logic ∃CLōNs), which is used as the LLL of an
ambiguity–adaptive logic (the logic ∃CLōNss).

9.2 The Lower Limit Logic

The LLL of the adaptive logic ∃CLōNss is the ambiguity logic ∃CLōNs.
As ∃CLōNs resembles ∃CLūNs (see chapter 8) in numerous ways, it is
possible to present it rather quickly.

9.2.1 Proof Theory and Semantics

First of all, the language schema of ∃CLōNs is the same as the one for
∃CLūNs (see chapter 8, section 8.2.1). Secondly, also the ∃CLōNs–proof
theory and –semantics are very similar to those of ∃CLūNs.

Proof Theory of ∃CLōNs. The proof theory of ∃CLōNs is obtained by
adding the inference rules below to the proof theory of the logic CLōNs.

NU ¬(∀i)A[i] I (∃i)¬A[i]
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NE ¬(∃i)A[i] I (∀i)¬A[i]
UI (∀i)A[i] I A[i/j] (j ∈ N)
EG A[i/j] I (∃i)A[i] (j ∈ N)
UG A[i/j] I (∀i)A[i], provided j ∈ N doesn’t occur in A, in a premise,

or in the hypothesis of an unclosed subproof.
MPE (∃i)A[i], S(A[i/j], B) I B, provided j ∈ N doesn’t occur in A, in

B, in a premise, or in the hypothesis of an unclosed subproof.
EFQ A, ¬!A I B.
EM I A ∨ ¬!A.

An ∃CLōNs–proof is a sequence of wffs each of which is either a premise,
a hypothesis, or follows from those earlier in the list by a rule of inference.
∃CLōNs–derivability is now defined as follows:

Definition 9.1 Γ |−∃CLōNs A iff there is an ∃CLōNs–proof of A from
B1, ..., Bn ∈ Γ such that A has been derived on a line i of the main proof.

The compactness and (pseudo–)deduction theorem are also valid, and can
be proven in the standard way.

Theorem 9.1 (Compactness Theorem) Γ |−∃CLōNs A iff there is a fi-
nite ∆ ⊆ Γ such that Γ |−∃CLōNs A.

Theorem 9.2 (Deduction Theorem) If A1, ..., An |−∃CLōNs B then A1, ...,
An−1 |−∃CLōNs S(An, B).

Semantics of ∃CLōNs. The ∃CLōNs–semantics is characterized with
respect to the pseudo–language L∃i

◦+. It is obtained from L∃i
◦ in the same

way the pseudo–language L∃i
+ is obtained from L∃i (see chapter 7, section

7.3.3). Let W∃i
◦+ be the set of wffs of L∃i

◦+.
An ∃CLōNs–model M is now characterized by an assignment function

v, defined as follows:

AP1 v : SI+ 7→ {0, 1}.
AP2 v : ¬SI+ 7→ {0, 1}.

The valuation function vM determined by the model M is characterized as
follows:1

SP1 vM : W∃i
◦+ 7→ {0, 1}.

SP2 For A ∈ SI+: vM (A) = 1 iff v(A) = 1.
SP3o For A ∈ SI+: vM (¬A) = 1 iff v(¬A) = 1.
SP3! vM (¬!A) = 1 iff vM (A) = 0.

1Remark that the classes of wffs in ∃CLōNs are the same as for ∃CL, which means
that there are no a– or b–formulas of the form ¬!A.
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SP2 vM (a)= 1 iff vM (a1) = 1 and vM (a2) = 1.
SP3 vM (b)= 1 iff vM (b1) = 1 or vM (b2) = 1.
SP5 For ξ ∈ S: vM ((∃i)A[ξi]) = 1 iff vM (A[ξj ]) = 1 for at least one

j ∈ N ∪N′.
SP6 For ξ ∈ S: vM ((∀i)A[ξi]) = 1 iff vM (A[ξj ]) = 1 for all j ∈ N ∪N′.

Truth in a model, semantical consequence and validity are defined as for
∃CL (see chapter 7).

Soundness and Completeness. It is easy to prove soundness and com-
pleteness for the logic ∃CLōNs. Both proofs are obtained from those for
∃CL in a straightforward way.

Theorem 9.3 Γ |−∃CLōNs A iff Γ |=∃CLōNs A.

∃CLōNs–Theorems. A lot of theorems are valid in ∃CLōNs. Consider
for example the theorems below:

• |−∃CLōNs ¬!(p1 ∨ ¬q2) ∨ ¬!(¬p3) ∨ ¬!(r2 ∧ q4) ∨ (p1 ∧ ¬p3) ∨ (q4 ∧ ¬q2).
• |−∃CLōNs ¬!(p1 ∧ ¬p1) ∨ (p1 ∧ ¬p1).
• |−∃CLōNs ¬!(p1) ∨ ¬(r2 ∧ ¬p1).

As the paralogic CLōNs on which ∃CLōNs is based, doesn’t validate any
theorems (see chapter 4), all theorems are the result of the fact that the
language was extended with the classical negation. Hence, it is the classical
negation that makes the adaptive treatment of an ambiguous premise set
possible in ∃CLōNss, as in the foregoing chapters it became clear that this
adaptive treatment is heavily dependent on the derivability of theorems (see
chapters 7 and 8).

Relation with CLōNs. If the ∃CLōNs–language is restricted to the
language L∃i (the language without the CL–negation), then it can be shown
that the logic ∃CLōNs is in a certain way equivalent to the logic CLōNs.

Theorem 9.4 Γ∃i |=∃CLōNs (∃i)A(i) iff Γ |−CLōNs A.

The proof of this theorem is completely equivalent to the proof of theorem
8.4 (see chapter 8, section 8.2.3).

9.3 The Adaptive Logic ∃CLōNss

The adaptive logic ∃CLōNss is a simple combined ambiguity–adaptive logic.
As such, it is characterized by means of the following four components:

(1) Its LLL is the reflexive, transitive, monotonic and compact logic ∃CLōNs.
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(2) Its set of abnormalities Ω = Ω1 ∪ Ω2, with

a) Ω1 = {(∃i)A(i) ∧ ¬!A
I | (∃i)A(i) ∈ Γ∃i}.

b) Ω2 = {Ai ∧ ¬Aj | A ∈ S and i, j ∈ N}

(3) The adaptive strategy is the normal selections strategy.
(4) The premise set Γ∃i = {(∃i)A(i) ∈ L∃i | A ∈ Γ}.

Proof Theory and Semantics of ∃CLōNss. The proof theory and se-
mantics of ∃CLōNss are completely equivalent to those of ∃CLūNss (see
chapter 8, sections 8.3.1 and 8.3.2). As such, I will not present them any-
more.

First Degree Relevance. The logic ∃CLōNss now captures first degree
relevance in the following way:2

Theorem 9.5 Γ |−CLāNs∗ A iff Γ∃i |−∃CLōNss (∃i)A(i), for Γ ⊂ W and
A ∈ W.

Remember that W is the set of wffs of the CLōNs–language L (see ch. 4).
Intuitively, it is immediately clear that the above theorem should be

true, because of the fact that the only difference between the adaptive logics
∃CLūNss and ∃CLōNss consists in the fact that the LLL of the former
allows the derivation of L–theorems (theorems in which no classical negation
occurs), while the LLL of the latter doesn’t. As a consequence, the only
difference between the adaptive logics is also that the former allows the
derivation of L–theorems, while the latter doesn’t. As this is exactly the
only difference between CL∗ and CLāNs∗ (see chapter 6), and the logic
∃CLūNss is equivalent to the logic CL∗, the logic ∃CLōNss should be
equivalent to the logic CLāNs∗.

Example. The example below clearly illustrates how first degree relevance
is captured by the adaptive logic ∃CLōNss. First, consider the premise set
Γ = {p ∨ q,¬p, p,¬s, s ∨ r,¬r}. Next, consider the ambiguous premise set
Γ∃i, based on Γ:

Γ∃i=
{(∃i)(p ∨ q)(i), (∃i)(¬p)(i), (∃i)(p)(i), (∃i)(¬s)(i), (∃i)(s ∨ r)(i), (∃i)(¬r)(i)}.

It can now be shown that the formulas (∃i)(q)(i) and (∃i)(r ∧ s)(i) are
∃CLōNss–derivable from Γ∃i.

2In this chapter, I will not prove any metatheory anymore, as all metatheoretical proofs
are straightforwardly obtained by equivalence to the proofs for ∃CLs and ∃CLūNss.
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1 (∃i)(p ∨ q)(i) —;PREM ∅
2 (∃i)(¬p)(i) —;PREM ∅
3 (∃i)(p)(i) —;PREM ∅
4 (∃i)(s ∨ r)(i) —;PREM ∅
5 (∃i)(¬s)(i) —;PREM ∅
6 (∃i)(¬r)(i) —;PREM ∅
7 p1 ∨ q1 1;RC {(∃i)(p ∨ q)(i) ∧ ¬!(p

1 ∨ q1)}
8 ¬p2 2;RC {(∃i)(¬p)(i) ∧ ¬!(¬p2)}
9 p1 3;RC {(∃i)(p)(i) ∧ ¬!(p

1)}
10 (∃i)(q)(i) 7,8;RU Ω7 ∪ Ω8 ∪ {p1 ∧ ¬p2}
11

W
(Ω8 ∪ Ω9 ∪ {p1 ∧ ¬p2}) 2,3;RU ∅

It is easily verified that the formula on line 10 is finally derived, despite
the fact that it is possible to derive Dab–formulas by means of the premises
on which that line was derived. Remark that this is also the case for the
formula on line 16 below.

12 s1 ∨ r1 4;RC {(∃i)(s ∨ r)(i) ∧ ¬!(s
1 ∨ r1)}

13 ¬s2 5;RC {(∃i)(¬s)(i) ∧ ¬!(¬s2)}
14 ¬r3 6;RC {(∃i)(¬r)(i) ∧ ¬!(¬r3)}
15 s4 ∨ r4 4;RC {(∃i)(s ∨ r)(i) ∧ ¬!(s

4 ∨ r4)}
16 (∃i)(r ∧ s)(i) 12,13,14,15;RU Ω12 ∪ Ω13 ∪ Ω14 ∪ Ω15 ∪ {s1 ∧ ¬s2, r4 ∧ ¬r3}
17

W
(Ω12, Ω13, Ω14 ∪ {s1 ∧ ¬s2, r1 ∧ ¬r3}) 4,5,6;RU ∅

18
W

(Ω13, Ω14, Ω15 ∪ {s4 ∧ ¬s2, r4 ∧ ¬r3}) 4,5,6;RU ∅

9.4 Conclusion

In this chapter, I presented the ambiguity–adaptive logic ∃CLōNss. It
nicely explicates deductive relevance at the first degree, as it is equivalent
with the logic CLāNs∗ from chapter 6.

Further Research. The logic ∃CLōNss only explicates deductive rele-
vance. This is however not the only kind of relevance in reasoning. Also
heuristical relevance is important, which is logically captured by the goal
directed proof procedure from Batens and Provijn [36] (see chapter 1). As
a consequence, it is necessary to investigate whether it is possible to devise
a goal directed proof procedure for the logic ∃CLōNss. This would then
combine both deductive and heuristic relevance into a general formal theory
of relevance in reasoning.
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Part IV

Relevant Deduction:
the return of the disjunctive

syllogism
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The Aim of Part IV

In the foregoing part, I presented a philosophically motivated account of
first degree relevant deduction based on the transfer of deductive weight.
Moreover, I also showed how this transfer of deductive weight is captured
by the adaptive logic ∃CLōNss. Now, the aim of this part is to combine the
insights from part III with the relevant implication from standard Relevance
Logic. This will result in relevant logics combining a satisfactory notion of
relevance at the first degree with a relevant implication.

Overview of Part IV

However, before this combination can be made, I will first show in chap-
ter 10 that it is possible to construct inconsistency–adaptive relevant log-
ics (IARL), adaptive logics that combine the insights from inconsistency–
adaptive logics with a relevant implication. But, as they already integrate
some heuristical elements of reasoning (remember chapter ??, section ??),
they do not completely capture the dependence relation between premises
and conclusion expressed in real deductive reasoning. Nevertheless, they will
turn out to be a useful intermediate step towards the adaptive logics that
do capture this dependence relation, and that will be presented in chapter
11.
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Chapter 10

Inconsistency–Adaptive
Relevant Logics

10.1 Introduction

In this chapter, the insights from inconsistency–adaptive logics (IAL)1 will
be put to work for standard relevant logics (RL) (see chapter 5). This will
result in inconsistency–adaptive relevant logics (IARL), relevant logics in
which the inference rule DS has been reintroduced in a conditional way.

However, despite the fact that IARL reintroduce DS in relevant log-
ics, they do not capture (first degree) deductive relevance yet, as they still
unnecessarily limit the deductive strength of those logics. In this, they com-
pletely resemble the usual IAL . Nevertheless, as the latter, IARL might
be the right logics to capture the heuristic behavior people display when
trying to turn an inconsistent theory into a consistent one (see chapter 2).

Inconsistency–Adaptive Logics. Although IAL are well–known, I will
nevertheless shortly summarize their most important characteristics. First
of all, IAL are based on a paraconsistent lower limit logic, a set of abnor-
malities whose elements are inconsistencies (formulas of the form A∧¬A),2

and an adaptive strategy.
Proof theoretically, IAL allow the application of the inference rule DS in

a conditional way: if a formula of the form A∨(B∧¬B) has been derived on a
line of an IAL–proof, the formula A may be derived on a new line, under the
condition that (B∧¬B) is not proven problematic.3 As a consequence, IAL

1Inconsistency–adaptive logics are the oldest adaptive logics around and are very well–
studied, see e.g. Batens [12, 13] and Batens and Meheus [32].

2Sometimes the set of abnormalities has to be restricted to a specific subset of the set
of inconsistencies. This is necessary in order to avoid flip–flop logics (see e.g. Batens [25]).

3Under which conditions a particular inconsistency is considered as problematic de-
pends on the adaptive strategy.



158 Inconsistency–Adaptive Relevant Logics

do not invalidate the inference rule DS in general. They merely invalidate
those applications of DS that are (heuristically) problematic.

Two Possibilities. It is important to notice that there are two possible
ways to interpret the inference rule DS. First of all, it is possible to consider
DS as an inference rule which is only valid outside the scope of an impli-
cation. I will call this rule disjunctive syllogism (RDS).4 It is not to be
confused with hypothetical disjunctive syllogism (HDS) which also allows
for DS within the scope of an implication.

RDS A ∨ (B ∧ ∼B) |− A.
HDS A1 → ...→ An → (B ∨ (C ∧ ∼C)) |− A → ...→ An → B.

As implications can be interpreted as the result of hypothetical reasoning
processes (usually represented by means of subproofs), the restriction of DS
to RDS would imply that other “laws” obtain in hypothetical and non–
hypothetical reasoning. This however seems quite unlikely, as it is clearly
in contradiction with human practice. Hence, in order to obtain interesting
IARL also HDS should be allowed.

Overview. In this chapter, I will present the inconsistency–adaptive rel-
evant logics Rr

d and Ria
d , respectively in section 10.2 and 10.3. The former

only captures RDS, while the latter also captures HDS. As such, both
these logics succeed in reintroducing DS in relevant logics.

Remark that I will only present IARL based on the relevant logic Rd.
But, IARL based on alternative RL, are obtained along the same lines, so
that it is not necessary to also present them.

10.2 The Adaptive logic Rr
d

The adaptive logic Rr
d is a standard (flat) adaptive logic. As such, it can

be characterized by the usual three components: a lower limit logic, a set of
abnormalities and an adaptive strategy. For Rr

d, these are the following:

(1) Its LLL is the relevant logic Rd (see chapter 5, section 5.5.2).
(2) Its set of abnormalities Ω = {A ∧ ∼A | A ∈ S}.
(3) Its adaptive strategy is the normal selections strategy.5

Remark that by taking the logic Rd as the LLL, I only aim at strengthening
relevant derivability. This also means that the adaptive logic will not change
the set of entailments of the logic R.

4Remark that this resembles Ackermann’s treatment of DS. In [1], he introduced DS
as an independent rule, which he called γ.

5It is also possible to use one of the other adaptive strategies. I however prefer the
normal selections strategy.
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10.2.1 Proof Theory and Semantics of Rr
d

Both the proof theory and the semantics of Rr
d are completely standard.

First, consider the proof theory.

Proof Theory. The Rr
d–proof theory consists of the usual deduction rules,

and the standard marking rule for the normal selections strategy.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−Rd
B and each of A1, ..., An occurs in the proof on

lines i1, ..., in, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪
... ∪∆n.

RC If A1, ..., An |−Rd
B ∨Dab(Θ) and each of A1, ..., An occurs in the

proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Definition 10.1 Marking for Normal Selections: Line i is marked at stage
s iff, where ∆ is its condition, Dab(∆) has been derived at stage s on a line
with condition ∅.

As the definitions for final Rr
d–derivability are also standard, I will not

mention them anymore.

Example. Consider the example below, it is based on the premise set Γ
= {p → (r ∨ s), p → ∼r,∼p, p ∨ q}, and clearly illustrates the proof theory
of Rr

d.

1 p→ (r ∨ s) —;PREM ∅
2 p→ ∼r —;PREM ∅
3 ∼p —;PREM ∅
4 p ∨ q —;PREM ∅
5 q 3,4;RC {p ∧ ∼p}
6 ∼p ∨ (r ∨ s) 1;RU ∅
7 ∼p ∨ ∼s 2;RU ∅
8 ∼p ∨ r 6,7;RC {s ∧ ∼s}

Remark that all lines derived until now are also finally derived, at least if
the premise set is not extended. Moreover, also notice that the inference
rule HDS can never be applied, so that it is for example not possible to
derive p→ s from the formulas on lines 1 and 2.
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Semantics. As Rr
d is based on the normal selections strategy, semantic

consequence for Rr
d is defined by relying on the normal sets of Rd–models

of a premise set. I will content in only given the relevant definitions.

Definition 10.2 Where M is an Rd–model: its abnormal part is the set
Ab(M) = {A ∈ Ω |M |= A}.6

Definition 10.3 An Rd–model M of Γ is a minimal abnormal model iff
there is no Rd–model M ′ of Γ for which Ab(M ′) ⊂ Ab(M).

Definition 10.4 Φ(Γ) = {Ab(M) | M is a minimally abnormal model of
Γ}.

Definition 10.5 A set Σ of Rd–models of Γ is a normal set iff for some
φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Definition 10.6 Γ |=Rr
d
A iff A is verified by all members of at least one

normal set of Rd–models of Γ.

Soundness and Completeness. As Rr
d is a standard adaptive logic,

based on the normal selections strategy, soundness and completeness is guar-
anteed.

Theorem 10.1 Γ |−Rr
d
A iff Γ |=Rr

d
A.

10.3 The Adaptive Logic Ria
d

The adaptive logic Rr
d from the foregoing section, only reintroduces RDS in

Rd, which means that in Rr
d–proofs, the inference rule DS is only applicable

outside the scope of an implication. The logic Ria
d that will be presented

in this section, also reintroduces HDS in Rd, so that in Ria
d –proofs, the

inference rule DS will also be applicable inside the scope of an implication.
As such, the logic Ria

d is also able to capture hypothetical reasoning processes
that makes use of the inference rule DS.

6Remember section 5.5.2, where I introduced the deductive world in order to charac-
terize Rd–derivability (there it is still called relevant R–derivability). By now, it should
be clear why it was necessary to do so. If Rd–derivability is defined in the usual way (by
reference to all worlds of an Rd–model), then it is not possible to define the abnormal set
of an R–model. By introducing a deductive world d, this problem has been solved, as for
all Rd–models M |= A just comes down to vM (A, d) = 1.
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General Characterization. The logic Ria
d is characterized by means of

the adaptive logic AR♦
d. More specifically, where L is the language of Ria

d ,
and W the set of wffs of L (see section 10.3.1), Ria

d is defined as follows:

Definition 10.7 Γ |−Ria
d
A iff Γ |−AR♦

d
A, for Γ ⊆ W and A ∈ W.

In the remaining of this section, I will present the logic AR♦
d, starting with

its lower limit logic.

10.3.1 The Lower Limit Logic

The lower limit logic of the logic AR♦
d is the logic R♦

d, which is in fact the
logic Rd, extended with some extra connectives.

Language Schema. The logic R♦
d is based on the language L♦, which is

the standard language L of relevant logics (see chapter 5, section 5.4.1), ex-
tended with the classical negation “¬!” and a new implication symbol “♦→”.
The set of well–formed formulas W♦ of the language L♦ is constructed as
usual.

language letters connectives set of formulas
L S ∼,∧,∨,→ W
L♦ S ¬!,∼,∧,∨,→,♦→ W♦

Table 10.1: Relations between L and L♦.

Some words on the new implication symbol ♦→. It is a define connective,
which means that its meaning is completely determined by the meaning of
the other connectives. More specifically, the implication ♦→ is defined as
follows:

Definition 10.8 A ♦→ B =df ¬!(A→ ¬!B) ∨ (¬!A ∨B).

Boolean Relevant Logic. Because the language L♦ contains classical
negation, the logic R♦

d will be a so–called Boolean relevant logic. Boolean
RL are well–known and were studied most extensively by Bob Meyer, see
for example Meyer & Routley [77] and Giambrone & Meyer [58].7

Moreover, as the implication ♦→ is a defined connective, the logic R♦
d

is in fact equivalent to the Boolean relevant logic R
¬

from Giambrone &
Meyer [58].

7In [93], Restall also made some interesting comments concerning Boolean RL.
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Semantics. The semantics of the logic R♦
d is obtained by adding the fol-

lowing clauses to the Rd–semantics (see chapter 5, section 5.4.4):8

AP4 v: N 7→ {0, 1}.
BP1 vM (¬!A, a) = 1 iff vM (A, a) = 0.
BP2 vM (∼¬!A, a) = 1 iff v(∼¬!A, a) = 1.
BP3 vM (A ♦→ B, a) = 1 iff vM (¬!(A→ ¬!B) ∨ (¬!A ∨B), a) = 1.

The definitions of semantical consequence are the same as for Rd.

Definition 10.9 A valuation function vM verifies A iff vM (A, d) = 1, and
falsifies A iff vM (A, d) = 0.

Definition 10.10 A valuation function vM is a model of Γ iff it verifies all
A ∈ Γ.

Definition 10.11 Γ |=R♦
d
A iff no model of Γ falsifies A.

Proof Theory. The proof theory of R♦
d is obtained by adding the axiom

schemas from table 10.2 to the axiom system of Rd (see chapter 5, section
5.4.4). The definitions of an R♦

d–proof and of R♦
d–derivability remain as for

Rd.

BA1 A→ (B → (C ∨ ¬!C))
BA2 ¬!(A→ B) ∨ (¬!A ∨B)
BA3 (A ∧ ¬!A) → B
BA4 (A ♦→ B) → (¬!(A→ ¬!B) ∨ (¬!A ∨B))
BA5 (¬!(A→ ¬!B) ∨ (¬!A ∨B)) → (A ♦→ B)
BR1 (A ∧B) → C I (A ∧ ¬!C) → ¬!B

Table 10.2: Axioms for Boolean Relevant Logics.

In order to get a better grasp on the behavior of the implication ♦→,
consider the following examples:

• A |−R♦
d
B ♦→ A

• A→ B |−R♦
d
A ♦→ B

• A→ (B ∨ C) |−R♦
d

(A→ B) ∨ (A ♦→ C)
• ¬!A ∨B |−R♦

d
A ♦→ B

8The set N = {∼¬!A | A ∈ W♦}.
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Soundness and Completeness. Soundness and completeness proofs for
R♦

d are easily obtained from the soundness and completeness proofs for Rd,
and will not be given here.

Theorem 10.2 Γ |−R♦
d
A iff Γ |=R♦

d
A.

10.3.2 Abnormal Formulas

In the foregoing section, I presented the LLL of the logic AR♦
d. In this

section, I will present its set of abnormalities Ω. It is the union of two
sets, Ω∗ and Ω�. The former set of abnormalities is particularly easy to
characterize, as it is the set of abnormalities of the adaptive logic Rr

d (see
section 10.2):

Definition 10.12 Ω∗ = {A ∧ ∼A | A ∈ S}.

The latter set of abnormalities is not that easily characterized. In order to
do so, first consider WΩ ⊂ W, the set of all formulas of the following form:

[B1∨]A1 → ([B2∨]A2 → (...([Bn−1∨]An → (Bn ∨
∨

(∆)))...)),

with A1, ..., An, B1, ..., Bn ∈ W, 1 6 n and ∆ ⊂ Ω∗. That some parts of
the above (generic) formula are placed between brackets, means that those
parts are not necessary in order for a formula to belong to WΩ. As this will
become clearer by considering some examples, consider the formulas below.
It is easily conceived that these formulas all belong to WΩ.

• p→ (q ∨ (r ∧ ∼r))
• r ∨ p→ (q ∨ (r ∧ ∼r))
• p→ (q → (s ∨ (r ∧ ∼r)))
• p→ ((t→ s) ∨ (q → (s ∨ (r ∧ ∼r))))

Next, for all formulas A ∈ WΩ, there is a formula A�, which is obtained
from A in the following way:

1. replace in A the implication symbols outside A1, ..., An, B1, ..., Bn by an
implication symbol “♦→”, and

2. replace in A the subformula Bn ∨
∨

(∆) by the formula
∨

(∆).

As a consequence, a formula A� will always be of the following form:9

[B1∨]A1 ♦→ ([B2∨]A2 ♦→ (...([Bn−1∨]An ♦→
∨

(∆))...)),

9W
(∆) refers to the disjunction of the elements of ∆.
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with A1, ..., An, B1, ..., Bn ∈ W and ∆ ⊂ Ω∗.10 For example, consider again
the examples from above:

• p ♦→ (q ∨ (r ∧ ∼r))
• r ∨ p ♦→ (q ∨ (r ∧ ∼r))
• p ♦→ (q ♦→ (s ∨ (r ∧ ∼r)))
• p ♦→ ((t→ s) ∨ (q ♦→ (s ∨ (r ∧ ∼r))))

Finally, the second set of abnormal formulas, Ω�, can now be defined:

Definition 10.14 Ω� = {A ∧A� | A ∈ WΩ, and A ∈ CnR♦
d
(Γ)}.

Remark that the elements of Ω� are non–standard abnormalities, as they are
not solely characterized by means of their logical form, but also by reference
to the R♦

d–consequence set (see chapter 3, section 3.2). Anyway, despite
the dodgy abnormalities, the adaptive logic AR♦

d remains quite standard,
as will become clear below.

10.3.3 The Adaptive Logic AR♦
d

The adaptive logic AR♦
d is a simple combined adaptive logic (see chapter

3, section 3.3.1). As such, it can be characterized by the following three
components:

(1) The LLL is the logic R♦
d from section 10.3.1.

(2) The set of abnormalities Ω = Ω∗ ∪ Ω�, with Ω∗ and Ω� defined as in
section 10.3.2.

(3) The adaptive strategy is the normal selections strategy.11

10For relevant logics with a non–reflexive accessibility relation — which means that not
for all worlds a ∈ W , it is the case that Raaa — A ♦→ B does not follow from A → B.
Consequently, for those RL, it is necessary to define A� in a slightly different way.

First, a new connective is defined, namely “�→”:

Definition 10.13 A �→ B =df (A → B) ∨ (A ♦→ B).

Next, A� is now obtained from the formula A ∈ WΩ in the following way:

1. replace in A the implication symbols outside A1, ..., An, B1, ..., Bn by an implication
symbol “�→”, and

2. replace in A the subformula Bn ∨
W

(∆) by the formula
W

(∆).

As a consequence, a formula A� will always be of the following form:

[B1∨]A1 �→ ([B2∨]A2 �→ (...([Bn−1∨]An �→
W

(∆))...)),

with A1, ..., An, B1, ..., Bn ∈ W and ∆ ⊂ Ω∗.
11It is also possible to use an alternative strategy.
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As I have already characterized both the lower limit logic and the set of
abnormalities of AR♦

d, I can directly move on to the proof theory and the
semantics.12

A. Proof Theory of AR♦
d

Because of its rather unusual abnormalities, the AR♦
d–proof theory is not

completely standard. To characterize it more easily, I first introduce a new
way of referring to Dab–formulas. Besides the usual Dab(∆), I will also make
use of Dab(C1, ..., Cn), which is taken to stand for (C1∧C�

1 )∨ ...∨(Cn∧C�
n ).

Deduction Rules. It’s now possible to present the deduction rules of
AR♦

d. Notice that the conditional rule RC is non–standard.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−R♦
d
B and each of A1, ..., An occurs in the proof on

lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

12Remark that it is possible to construct inconsistency–adaptive (normal) modal logics
in approximately the same way. Their LLL is a modal paralogic (see chapter 4, section
4.4). Their set of abnormalities is the set Ω = Ω∗ ∪ Ω�, with

(1) Ω∗ = {A ∧ ∼A | A ∈ S}, and
(2) Ω� = {A ∧A� | A ∈ WΩ and A ∈ CnLLL(Γ)}.

Their strategy is any of the known adaptive strategies.
Of course, the set WΩ is not defined as for relevant logics. It is now defined as the set

of all formulas of the standard modal language WM, having the following form:

[B1∨]M(B2 ∨M(...M(Bn ∨
W

(∆))...)),

with B1, ..., Bn ∈ WM, 1 6 n, ∆ ⊂ Ω∗, and M denoting an arbitrary string of modal
operators.

As a consequence, also the formula A� gets a different characterization. First, a new
(defined) connective is introduced:

Definition 10.15 �A =df �A ∨ ♦A.

Next, a formula A� is now obtained from a formula A ∈ WΩ in the following way:

1. replace in A all modal operators outside B1, ..., Bn by the modal operator �, and
2. replace in A the subformula Bn ∨

W
(∆) by the formula

W
(∆).

Hence, a formula A� will be of the following form:

[B1∨]�...�(B2 ∨ �...�(...(Bn−1 ∨ �...�(
W

(∆))...)),

with B1, ..., Bn−1 ∈ WM and ∆ ⊂ Ω∗.
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RC1 If A1, ..., An |−R♦
d
B ∨ Dab(Θ) (∆ ⊂ Ω∗) and each of A1, ..., An

occurs in the proof on lines i1, ..., in that have conditions ∆1, ...,∆n

respectively, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪
... ∪∆n ∪Θ.

RC2 If A1, ..., An |−R♦
d
B ∨ Dab({C1 ∧ C�

1 , ..., Cm ∧ C�
m}) and each of

A1, ..., An, C1, ..., Cm occurs in the proof on lines i1, ..., in, j1, ..., jm
that have conditions ∆1, ...,∆n, ∅, ..., ∅ respectively, one may add
a line comprising the following elements: (i) an appropriate line
number, (ii) B, (iii) i1, ..., in, j1, ..., jm;RU, (iv) ∆1∪ ...∪∆n∪{C1∧
C�

1 , ..., Cm ∧ C�
m}.

Marking Criterium. The marking criterium only consists of one marking
rule, namely the standard marking rule for adaptive logics based on the
normal selections strategy. However, the way to decide whether or not a
Dab–formula is also a Dab–consequence of a premise set, is not standard.

Definition 10.16 Dab(C1, ..., Cn) is a Dab–consequence of Γ at stage s of
the proof iff Dab(C1, ..., Cn), C1, ..., Cn−1 and Cn have all been derived on
the condition ∅ at stage s of the proof.

Definition 10.17 Marking for Normal Selections: Line i is marked at
stage s iff, where ∆ is its condition, Dab(∆) is a Dab–consequence of Γ
at stage s.

Final Derivability. The definitions for final AR♦
d–derivability remain

standard and as such, I do not consider it necessary to mention them again.

Example. Consider the example below, it is based on the premise set Γ
= {p→ (r ∨ s), p→ ∼r, q ∨ (s→ (r ∨ t)), s→ ∼r, q ∨ (s→ r)}.

1 p → (r ∨ s) —;PREM ∅
2 p → ∼r —;PREM ∅
3 q ∨ (s → (r ∨ t)) —;PREM ∅
4 s → ∼r —;PREM ∅
5 q ∨ (s → r) —;PREM ∅
6 p → (s ∨ (r ∧ ∼r)) 1,2;RU ∅
7 q ∨ (s → (t ∨ (r ∧ ∼r))) 3,4;RU ∅
8 p → s 6;RC {(p → (s ∨ (r ∧ ∼r))) ∧ (p ♦→ (r ∧ ∼r))}
9 q ∨ (s → t) 7;RC {(q ∨ s → (t ∨ (r ∧ ∼r))) ∧ (q ∨ s ♦→ (r ∧ ∼r))} X
10 q ∨ (s → (t ∨ (r ∧ ∼r))) ∧ (q ∨ s ♦→ (r ∧ ∼r)) 4,5;RU ∅

At stage 10 of the proof, the formula on line 9 has been marked, because of
the Dab–consequence that was derived at line 10.
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Remark that it is now also possible to show why it is necessary to demand
of abnormal formulas that a part of them is R♦

d–derivable. Suppose the proof
above is extended in the following way:

11 (q ∨ s → u) ∨ ((s → (u ∨ (r ∧ ∼r))) ∧ (s ♦→ (r ∧ ∼r))) 4,5;RU ∅

If it were not demanded that (s → (u ∨ (r ∧ ∼r)) is R♦
d–derivable in order

to consider (s→ (u ∨ (r ∧∼r))) ∧ (s ♦→ (r ∧∼r)) as an abnormal formula,
the formula q ∨ s → u would be AR♦

d–derivable. Even more, it would be
finally derivable! But, this is an irrelevant consequence of the premise set!
Hence, it should definitely not be derivable.

B. Semantics of AR♦
d

Despite the fact that the AR♦
d–proof theory is not completely standard, its

semantic characterization remains completely standard. As such, it first se-
lects the minimally abnormal R♦

d–models of a premise set. After that, those
models are grouped together in normal sets. Finally, semantic consequence
is defined by means of those normal sets.

Definition 10.18 Where M is a R♦
d–model: its abnormal part is the set

Ab(M) = {A ∈ Ω |M |= A}.

Definition 10.19 An R♦
d–model M of Γ is a minimally abnormal model iff

there is no R♦
d–model M ′ of Γ for which Ab(M ′) ⊂ Ab(M).

Definition 10.20 Φ(Γ) = {Ab(M) | M is a minimally abnormal model of
Γ}.

Definition 10.21 A set Σ of R♦
d–models of Γ is a normal set iff for some

φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Definition 10.22 Γ |=AR♦
d
A iff A is verified by all members of at least

one normal set of R♦
d–models of Γ.

Soundness and Completeness. Also the soundness and completeness
proof for AR♦

d is completely equivalent to the one for standard adaptive
logics based on the normal selections strategy. As a consequence:

Theorem 10.3 Γ |−AR♦
d
A iff Γ |=AR♦

d
A.
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10.4 Conclusion

In this chapter, I showed that it is possible to turn the relevant logic Rd

into an inconsistency–adaptive logic. As such, the inference rule DS is rein-
troduced in Rd, without also reintroducing any of the fallacies of relevance.
Moreover, it is easily conceived that this can also be done for a lot of other
relevant logics, if not for all of them.

However, although DS is reintroduced in RL as presented in this chap-
ter, the obtained IARL do not capture deductive relevance yet. They will
nevertheless turn out to be a decisive step in the right direction.



Chapter 11

Relevant Relevance Logic

11.1 Introduction

In this chapter, I will finally show how the theory of first degree relevance
(FDR) that was presented in part III can be combined with the relevant im-
plication from standard Relevance Logic. More specifically, this will be done
by “combining” the logic ∃CLōNss from chapter 9, with the inconsistency–
adaptive logics (IARL) from the foregoing chapter. As will be shown in
section 11.5, this will result in relevant logics (RL) that truly solve the
DS–problem in Relevance Logic, and hence capture relevant deduction in
an adequate way.

Two Possibilities. Just as there are two possible ways to reintroduce DS
into RL (see ch. 10), there are also two possible ways to combine FDR with
a relevant implication: one that only introduces FDR outside the scope of
an implication, and one that also introduces FDR inside the scope of an
implication.

Moreover, in the foregoing chapter, I mentioned that I strongly prefer
RL that allow for both RDS and HDS, because these treat hypothetical
and non–hypothetical reasoning on a par. For the same reason, I also prefer
RL that both express FDR outside and inside the scope of an implication.

Overview. In this chapter, I will characterize the relevant logics Rγ
d and

R∗
d. The former expresses FDR only outside the scope of an implication,

while the latter also expresses FDR inside the scope of an implication. As
such, I take the latter to explicate relevant deduction.

Both Rγ
d and R∗

d are defined by means of a translation to an ambiguity–
adaptive logic. More specifically, if W is the set of wffs of the relevant logic
R (see ch. 5), they are defined as follows:

Definition 11.1 Γ |−Rγ
d
A iff Γ∃i |−∃Rγ

d
(∃i)A(i), for Γ ⊆ W and A ∈ W.
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Definition 11.2 Γ |−R∗
d
A iff Γ∃i |−∃R♦

d
(∃i)A(i), for Γ ⊆ W and A ∈ W.

Consequently, in order to characterize the logics Rγ
d and R∗

d, I need to
present the ambiguity–adaptive logics ∃Rγ

d and ∃R♦
d. This will be done

respectively in section 11.3 and section 11.4.

Preliminary Remarks. In order to be complete, three preliminary re-
marks have to be made. First, I want to repeat that I am only interested in
relevant deduction, and that I am not interested in entailments (the impli-
cational theorems of RL). Hence, the latter will not be discussed. Secondly,
I will restrict myself to adaptive logics based on the relevant logic R. Adap-
tive logics based on other RL can be obtained along the same lines. Thirdly,
that I restrict myself to adaptive logics based on the relevant logic R, doesn’t
mean that I (implicitly) take stand in the discussion on which (relevant) im-
plication best expresses the natural–language implication (see e.g. Lance
[63], Brady [41]).

11.2 The Lower Limit Logic

Both the adaptive logics ∃Rγ
d and ∃R♦

d are based on the same lower limit
logic, namely the logic ∃Rd, an ambiguity logic based on the logic Rd (see
chapter 5, section 5.4.4).

Language Schema. Let L∃i be the language of ∃Rd. It is defined from
〈SI ,V〉, with SI = {Ai | A ∈ S and i ∈ N} the set of indexed (sentential)
letters, and V the set of variables. The set of well–formed formulas W∃i of
the language L∃i is constructed as follows:

(i) SI ⊂ W∃i.
(ii) When A ∈ W∃i then ¬!A,∼A ∈ W∃i.
(iii) When A,B ∈ W∃i then (A ∧B), (A ∨B), (A→ B), (A ♦→ B) ∈ W∃i.
(iv) When A ∈ W∃i and i ∈ V then (∃i)A[i], (∀i)A[i] ∈ W∃i.

As in chapter 10, the implication connective ♦→ is a defined connective:

Definition 11.3 A ♦→ B =df ¬!(A→ ¬!B) ∨ (¬!A ∨B).

Overview. Consider table 11.1. It clearly states the relations between the
languages L, LI and L∃i. All of them will be used in the remaining of this
chapter.
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language letters connectives set of formulas
L S ∼,∧,∨,→ W
LI SI ¬!,∼,∧,∨,→ WI

L∃i SI ¬!,∼,∧,∨,→,∃,∀ W∃i

Table 11.1: Relations between L, LI and L∃i.

Classes of Well–formed Formulas. For the semantic characterization
of ∃Rd, I will also make use of a– and b–formulas. I’ve put them in table
11.2 below.

a a1 a2 b b1 b2

A ∧B A B ∼(A ∧B) ∼A ∼B
∼(A ∨B) ∼A ∼B A ∨B A B

∼∼A A A

∼(∃i)A (∀i)∼A (∀i)∼A
∼(∀i)A (∃i)∼A (∃i)∼A

Table 11.2: a– and b–formulas for ∃Rd.

Semantics. The semantics of ∃Rd is constructed along the lines of the
semantics of R (see chapter 5). As such, the ∃Rd–models of a premise set
will be a subset of the ∃RLLL

d –models of that premise set.
Let N′ be a denumerable set of pseudo–indices, e.g. 1′, 2′, 3′, ... The

pseudo–language L∃i
+ is now defined from 〈SI+,V〉, with SI+ = {Ai | A ∈ S

and i ∈ N∪N′} the extended set of indexed letters and V the set of variables.
The set of well–formed formulas W∃i

+ is defined for L∃i
+ in the same way as

W∃i is defined for L∃i. Finally, also consider the following sets of formulas:

- ∼SI+ = {∼A | A ∈ SI+},
- ∼I = {∼(A→ B) | A,B ∈ W∃i

+ },
- ∼N = {∼¬!A | A ∈ W∃i

+ }, and

An ∃RLLL
d –model for the language L∃i

+ is a 6–tuple < g, d,W,R,6, v >,
where W is a set of worlds, with g ∈W the base world, d ∈W the deductive
world, R a ternary relation on W , satisfying

FP0 For all a, b ∈W : Rgab iff a = b,
FP7 For all a, b, c, d ∈W : if R2abcd then R2b(ac)d.
FP8 For all a, b, c, d ∈W : if R2abcd then R2a(bc)d.
FP9 For all a, b, c ∈W : if Rabc then R2abbc.
FP10 For all a, b, c ∈W : if Rabc then ∃x ∈W : a 6 x, x 6 a and Rbxc.
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6 a reflexive and transitive binary (containment) relation on W , satisfying:

C1 For all a, b ∈W such that a 6 b: if v(A, a) = 1 then v(A, b) = 1.
C2 For all a, b, c, d ∈W (a 6= g) such that a 6 b: if Rbcd then Racd.
C3 For all a, b, c ∈W such that g 6 a: if Rabc then b 6 c.

and v an assignment function such that:

AP1 v: S ×W 7→ {0, 1}.
AP2 v: ∼S ×W 7→ {0, 1}.
AP3 v: ∼I ×W 7→ {0, 1}.
AP4 v: ∼N ×W 7→ {0, 1}.

The valuation function vM based on the interpretation M is characterized
as follows:

SP0 vM : W∃i
+ ×W 7→ {0, 1}.

SP1 For A ∈ SI+: vM (A, a) = 1 iff v(A, a) = 1.
SP2 For A ∈ SI+: vM (∼A, a) = 1 iff v(∼A, a) = 1.
SP3 vM (a, a) = 1 iff vM (a1, a) = 1 and vM (a2, a) = 1.
SP4 vM (b, a) = 1 iff vM (b1, a) = 1 or vM (b2, a) = 1.
SP5 vM (A→ B, a) = 1 iff for all b, c ∈W : if Rabc then vM (A, b) = 0 or

vM (B, c) = 1.
NP1 vM (∼(A→ B), a) = 1 iff v(∼(A→ B), a) = 1.
BP1 vM (¬!A, a) = 1 iff vM (A, a) = 0.
BP2 vM (∼¬!A, a) = 1 iff v(∼¬!A, a) = 1.
EP1 For ξ ∈ S, vM ((∃i)A[i], a) = 1 iff vM ((∃i)A[ξi], a) = 1, for at least

one i ∈ N ∪N.
EP2 For ξ ∈ S, vM ((∀i)A[i], a) = 1 iff vM ((∃i)A[ξi], a) = 1 for all i ∈

N ∪N.

The definitions for semantical validity and semantical consequence are the
same as for Rd (see chapter 5). First, the ∃RLLL

d –models of a premise set
are characterized.

Definition 11.4 A valuation function vM d–verifies A iff vM (A, d) = 1,
and d–falsifies A iff vM (A, d) = 0.

Definition 11.5 A valuation function vM is an ∃RLLL
d –model of Γ iff it

d–verifies all A ∈ Γ.

Next, the set of abnormalities Ω is defined as the union of the following two
sets:

a) Ω1 = {(A→ ∼B) → (B → ∼A) | A,B ∈ W∃i}
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b) Ω2 = {(A→ ∼A) → ∼A | A ∈ W∃i}

The ∃Rd–models are now characterized as those ∃RLLL
d –models of the

premise set that do not falsify any abnormalities.

Definition 11.6 A valuation function vM g–verifies A iff vM (A, g) = 1,
and g–falsifies A iff vM (A, g) = 0.

Definition 11.7 For each ∃RLLL
d –model M , Ab(M) = {A ∈ Ω | M g–

falsifies A}.

Definition 11.8 An ∃RLLL
d –model of Γ is an ∃Rd–model of Γ iff Ab(M)

= ∅.

Finally, semantic consequence is defined by means of the ∃Rd–models of a
premise set.

Definition 11.9 Γ |=∃Rd
A iff A is d–verified by all ∃Rd–models of Γ.

Proof Theory. To be honest, I don’t know exactly which axioms should
be added to the axiom system of R in order to obtain the proof theory of
∃Rd. Nevertheless, the axioms and rule stated in table 10.2 below, definitely
have to be added. They govern the behavior of the classical negation and
the second implication.

BA1 A→ (B → (C ∨ ¬!C))
BA2 ¬!(A→ B) ∨ (¬!A ∨B)
BA3 (A ∧ ¬!A) → B
BR1 (A ∧B) → C I (A ∧ ¬!C) → ¬!B
P1 (A ♦→ B) → (¬!(A→ ¬!B) ∨ (¬!A ∨B))
P2 (¬!(A→ ¬!B) ∨ (¬!A ∨B)) → (A ♦→ B)

Table 11.3: Axioms for ∃Rd 1.

As a consequence, the problem I have with the ∃Rd–proof theory con-
cerns the behavior of the quantifiers. Anyway, I will leave this for further
research and only state the axioms of which I am sure that they should be
added. They are stated in the table below.

QA1 ∼(∃i)A→ (∀i)∼A; (∀i)∼A→ ∼(∃i)A
QA2 ∼(∀i)A→ (∃i)∼A; (∃i)∼A→ ∼(∀i)A
QA3 (∀i)A[i] → A[i/j] (j ∈ N)
QA4 A[i/j] → (∃i)A[i] (j ∈ N)

Table 11.4: Axioms for ∃Rd 2.
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Soundness and Completeness. As a result of what I have stated above,
also soundness and completeness have not been proven yet. This is also left
for further research.

Final Remark. The fact that I do not have characterized the proof theory
of ∃Rd completely will not affect the characterization of the adaptive logics
that are based on ∃Rd, as these make use of generic deduction rules.

However, the fact that soundness and completeness for ∃Rd have not
been proven yet, does constitute a problem, but only for the metatheoret-
ical characterization of the AL. Their soundness and completeness proofs
presuppose soundness and completeness of the LLL. As such, in those sec-
tions, I will just presuppose the soundness and completeness of ∃Rd, so that
once it has been proven, it is also immediately proven that the AL that are
based on it are also sound and complete.

11.3 The Adaptive Logic ∃Rγ
d

The adaptive logic ∃Rγ
d is a simple combined adaptive logic (see chapter 3,

section 3.3.1). It is characterized by the following three components:

(1) Its LLL is the logic ∃Rd from section 11.2.
(2) Its set of abnormalities Ω is the union of the following two sets:

a) Ω1 = {(∃i)A(i) ∧ ¬!A
I | (∃i)A(i) ∈ Γ∃i}.

b) Ω2 = {Ai ∧ ∼Aj | A ∈ S and i, j ∈ N}.

(3) The adaptive strategy is the normal selections strategy.

11.3.1 Proof Theory of ∃Rγ
d

The proof theory of ∃Rγ
d is the standard proof theory for AL based on the

normal selections strategy. First, consider the deduction rules.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃Rd
B and each of A1, ..., An occurs in the proof on

lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−∃Rd
B ∨Dab(Θ) and each of A1, ..., An occurs in the

proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Next, consider the marking criterium, it consists of one marking rule.
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Definition 11.10 Marking for Normal Selections: Line i is marked at
stage s iff, where ∆ is its condition, Dab(∆) has been derived at stage s
on a line with condition ∅.

Finally, consider also the definitions for final ∃Rγ
d–derivability. Also these

are completely standard.

Definition 11.11 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 11.12 Γ |−∃Rγ
d
A iff A is finally derived on a line of a proof

from Γ.

Example. Before I state the example, remember that
∨

(∆) refers to the
disjunction of the elements of ∆ and that Ωi refers to the adaptive condition
of line i.

Next, consider the example below. It is based on the ambiguous premise
set Γ∃i = {(∃i)(p→ (r∨s))(i), (∃i)(p→ ∼r)(i), (∃i)(q)(i), (∃i)(∼q)(i), (∃i)(t∨
q)(i)}.

1 (∃i)(p→ (r ∨ s))(i) —;PREM ∅
2 (∃i)(p→ ∼r)(i) —;PREM ∅
3 (∃i)(q)(i) —;PREM ∅
4 (∃i)(∼q)(i) —;PREM ∅
5 (∃i)(t ∨ q)(i) —;PREM ∅
6 p1 → (r1 ∨ s1) 1;RC {(∃i)(p→ (r ∨ s))(i) ∧ ¬!(p1 → (r1 ∨ s1))}
7 p1 → ∼r2 2;RC {(∃i)(p→ ∼r)(i) ∧ ¬!(p1 → ∼r2)}
8 q2 3;RC {(∃i)(q)(i) ∧ ¬!(q2)}
9 ∼q1 4;RC {(∃i)(∼q)(i) ∧ ¬!(∼q1)}
10 t1 ∨ q2 5;RC {(∃i)(t ∨ q)(i) ∧ ¬!(t1 ∨ q2)}
11 ∼p1 ∨ (r1 ∨ s1) 6;RU Ω6

12 ∼p1 ∨ ∼r1 7;RU Ω7

13 (∃i)(t)(i) 9,10;RC Ω9 ∪ Ω10 ∪ {q2 ∧ ∼q1}
14 (∃i)(u)(i) 8,9;RC Ω8 ∪ Ω9 ∪ {q2 ∧ ∼q1} X
15 (∃i)(∼p ∨ s)(i) 11,12;RC Ω11 ∪ Ω12 ∪ {r1 ∧ ∼r1}
16

∨
(Ω8 ∪ Ω9 ∪ {q2 ∧ ∼q1}) 3,4;RU ∅

17 (∃i)(p→ (s ∨ (r ∧ ∼r)))) 6,7;RU Ω6 ∪ Ω7

This proof clearly shows how FDR is combined with a relevant implication.
Moreover, notice that the example also shows that the logic ∃Rγ

d only cap-
tures FDR outside the scope of the implication. This is obvious, as it is not
possible to derive (∃i)(p→ s), despite the fact that (∃i)(p→ (s ∨ (r ∧ ∼r))
is derived on line 17.
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11.3.2 Semantics of ∃Rγ
d

Just as the proof theory, also the semantics of ∃Rγ
d is completely standard.

As such, I will only give the necessary definitions.

Definition 11.13 Where M is a ∃Rd–model: its abnormal part is the set
Ab(M) = {A ∈ Ω |M |= A}.

Definition 11.14 A ∃Rd–model M of Γ is a minimally abnormal model iff
there is no ∃Rd–model M ′ of Γ for which Ab(M ′) ⊂ Ab(M).

Definition 11.15 Φ(Γ) = {Ab(M) | M is a minimally abnormal model of
Γ}.

Definition 11.16 A set Σ of ∃Rd–models of Γ is a normal set iff for some
φ ∈ Φ(Γ), Σ = {M |M |= Γ; Ab(M) = φ}.

Definition 11.17 Γ |=∃Rγ
d
A iff A is verified by all members of at least one

normal set of ∃Rd–models of Γ.

Soundness and Completeness. Again, as ∃Rγ
d is a standard adaptive

logic, soundness and completeness follows immediately.

Theorem 11.1 Γ |−∃Rγ
d
A iff Γ |=∃Rγ

d
A

11.4 The Adaptive Logic ∃R♦
d

The adaptive logic ∃R♦
d is a non–standard combined adaptive logic. Never-

theless, to characterize ∃R♦
d, I will keep as close as possible to the standard

format. Before I will give a general characterization, I first need to charac-
terize its set of abnormalities.

Abnormal Formulas. The set of abnormalities of the adaptive logic ∃R♦
d

is the union of the sets Ω!, Ω∗ and Ω�, of which the former two sets are quite
easily characterized:

Definition 11.18 Ω! = {(∃i)A(i) ∧ ¬!A
I | (∃i)A(i) ∈ Γ∃i}.

Definition 11.19 Ω∗ = {Ai ∧ ∼Aj | A ∈ S and i, j ∈ N}.

The set Ω� is more demanding. First, consider the set WΩ ⊂ WI , which is
the set of all formulas having the following form:

[B1∨]A1 → ([B2∨]A2 → (...([Bn−1∨]An → (Bn ∨
∨

(∆)))...)),1

1Remember that
W

(∆) refers to the disjunction of the members of ∆. Moreover,
also remember that the brackets occurring in the formula mean that those parts are not
necessary for a formula to belong to WΩ.
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with A1, ..., An, B1, ..., Bn ∈ WI , 1 6 n and ∆ ⊂ Ω∗.
Next, every element A of WΩ has a counterpart A�, which is the formula

obtained from A in the following way:

1. replace in A the implication symbols outside A1, ..., An, B1, ..., Bn by an
implication symbol “♦→”, and

2. replace in A the subformula Bn ∨
∨

(∆) by the formula
∨

(∆).

Hence, a formula A� will be of the following form:

[B1∨]A1 ♦→ ([B2∨]A2 ♦→ (...([Bn−1∨]An ♦→ (
∨

(∆)))...)),

with A1, ..., An, B1, ..., Bn−1 ∈ W and ∆ ⊂ Ω∗.
Finally, it is now possible to define the third set of abnormalities of the

adaptive logic ∃R♦
d, the set Ω�:

Definition 11.20 Ω� = {A ∧A� | A ∈ WΩ}.

General Characterization of ∃R♦
d. Despite the fact that the logic ∃R♦

d

is a non–standard adaptive logic, it can be characterized by means of the
usual three elements:

(1) Its LLL is the logic ∃Rd from section 11.2.
(2) Its set of abnormalities Ω is the union of the following three sets:

a) Ω1 = Ω! ∪ Ω∗, with Ω! and Ω∗ defined as in section 11.4, and
b) Ω2 = Ω�, with Ω� defined as in section 11.4.

(3) The adaptive strategy is a variant of the normal selections strategy. As
there is however no need to change the name, I will just keep it.

11.4.1 Proof Theory of ∃R♦
d

The proof theory of ∃R♦
d is not a standard AL–proof theory, which will

become clear by considering the deduction rules and the marking criterium.

Deduction Rules. Instead of the usual three deduction rules, there are
now four of them. Remarkable is that there are two conditional rules, one
related to Ω1 and one related to Ω2.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃Rd
B and each of A1, ..., An occurs in the proof on

lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.
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RC1 If A1, ..., An |−∃Rd
B ∨ Dab(Θ) (Θ ⊂ Ω1) and each of A1, ..., An

occurs in the proof on lines i1, ..., in that have conditions ∆1, ...,∆n

respectively, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, ..., in;RC1, (iv) ∆1 ∪
... ∪∆n ∪Θ.

RC2 If A1, ..., An |−∃Rd
B ∨ Dab({C1 ∧ C�

1 , ..., Cm ∧ C�
m}) and each of

A1, ..., An, C1, ..., Cm occurs in the proof on lines i1, ..., in, j1, ..., jm
that have conditions ∆1, ...,∆n,Θ1 ⊂ Ω1, ...,Θm ⊂ Ω1 respectively,
one may add a line comprising the following elements: (i) an ap-
propriate line number, (ii) B, (iii) i1, ..., in, j1, ..., jm;RC2, (iv) ∆1∪
... ∪∆n ∪Θ1 ∪ ... ∪Θm ∪ {C1 ∧ C�

1 , ..., Cm ∧ C�
m}.

Marking Criterium. The marking criterium consists of one marking
rule, the standard marking rule related to the normal selections strategy.
However, the way in which a Dab–consequence is defined is not standard
and should be considered first.

Definition 11.21 Dab(∆ ∪ {C1 ∧ C�
1 , ..., Cn ∧ C�

n }) (∆ ⊆ Ω1) is a Dab–
consequence of Γ at stage s of the proof iff Dab(∆∪{C1 ∧C�

1 , ..., Cn ∧C�
n })

has been derived on the condition ∅ at stage s of the proof, and C1, ..., Cn

have been derived respectively on the conditions Θ1 ⊂ ∆, ...,Θn ⊂ ∆ at stage
s of the proof.

It is now possible to state the marking rule for ∃R♦
d.

Definition 11.22 Marking for Normal Selections: Line i is marked at
stage s iff, where ∆ ⊂ Ω is its condition, Dab(∆) is a Dab–consequence
of Γ at stage s.

Final Derivability. Despite the non–standardness of the ∃R♦
d–proof the-

ory, the definitions for final ∃R♦
d–derivability are completely standard.

Definition 11.23 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 11.24 Γ |−∃R♦
d
A iff A is finally derived on a line of a proof

from Γ.

Example. The example below is based on the following premise set:

Γ∃i = {(∃i)(p→ (r∨s))(i), (∃i)(p→ ∼r)(i), (∃i)(q∨(s→ (r∨t)))(i), (∃i)(s→
∼r)(i), (∃i)(q ∨ (s→ r))(i)}.
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1 (∃i)(p → (r ∨ s))(i) —;PREM ∅
2 (∃i)(p → ∼r)(i) —;PREM ∅
3 (∃i)(q ∨ (s → (r ∨ t)))(i) —;PREM ∅
4 (∃i)(s → ∼r)(i) —;PREM ∅
5 (∃i)(q ∨ (s → r))(i) —;PREM ∅
6 p1 → (r1 ∨ s1) 1;RC1 {(∃i)(p → (r ∨ s))(i) ∧ ¬!(p

1 → (r1 ∨ s1))}
7 p1 → ∼r2 2;RC1 {(∃i)(p → ∼r)(i) ∧ ¬!(p

1 → ∼r2)}
8 q1 ∨ (s1 → (r1 ∨ t1)) 3;RC1 {(∃i)(q ∨ s → (r ∨ t))(i) ∧ ¬!(q

1 ∨ s1 → (r1 ∨ t1))}
9 s1 → ∼r2 4;RC1 {(∃i)(s → ∼r)(i) ∧ ¬!(s

1 → ∼r2)}
10 q1 ∨ (s1 → r1) 5;RC1 {(∃i)(q ∨ s → r)(i) ∧ ¬!(q

1 ∨ s1 → r1)}
11 p1 → (s1 ∨ (r1 ∧ ∼r2)) 6,7;RU Ω6 ∪ Ω7

12 q1 ∨ (s1 → (t1 ∨ (r1 ∧ ∼r2))) 8,9;RU Ω8 ∪ Ω9

13 (∃i)(p → s)(i) 11;RC2 Ω11 ∪ {(p1 → (s1 ∨ (r1 ∧ ∼r2))) ∧ (p1 ♦→ (r1 ∧ ∼r2))}
14 (∃i)(q ∨ (s → t))(i) 12;RC2 Ω12 ∪ {(q1 ∨ (s1 → (t1 ∨ (r1 ∧ ∼r2))))∧

(q1 ∨ (s1 ♦→ (r1 ∧ ∼r1)))}
15 (∃i)(q ∨ (s → u))(i) 9,10;RC2 Ω9 ∪ Ω10 ∪ {(q1 ∨ (s1 → (t1 ∨ (r1 ∧ ∼r2))))∧

(q1 ∨ (s1 ♦→ (r1 ∧ ∼r1)))} X
16 q1 ∨ (s1 → (t1 ∨ (r1 ∧ ∼r2))) 9,10;RC1 Ω9 ∪ Ω10

17
W

(Ω9 ∪ Ω10∪
{(q1 ∨ (s1 → (t1 ∨ (r1 ∧ ∼r2))))∧

(q1 ∨ (s1 ♦→ (r1 ∧ ∼r1)))}) 4,5,15;RU ∅

11.4.2 Semantics of ∃R♦
d

Also the semantics of ∃R♦
d is not a standard AL–semantics. Nevertheless,

it comes quite close to the semantics of a prioritized adaptive logic.

Step One. First, consider the definition of the Ω1–abnormal part of an
∃Rd–model.

Definition 11.25 Where M is a ∃Rd–model: its Ω1–abnormal part is the
set Ab1(M) = {A ∈ Ω1 |M |= A}.

Now, the first step of the ∃R♦
d–semantics consists in selecting the ∃Rd–

models of a premise set that are minimally abnormal with respect to Ω1,
and to divide them into normal sets. From now on, those normal sets will
be called the normal Ω1–sets of a premise set.

Definition 11.26 An ∃Rd–model M of Γ is a minimally abnormal Ω1–
model iff there is no ∃Rd–model M ′ of Γ for which Ab1(M ′) ⊂ Ab1(M).

Definition 11.27 Φ1(Γ) = {Ab1(M) | M is a minimally abnormal Ω1–
model of Γ}.

Definition 11.28 A set Σ of ∃Rd–models of Γ is a normal Ω1–set iff for
some φ ∈ Φ1(Γ), Σ = {M |M |= Γ; Ab1(M) = φ}.
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Step Two. The normal Ω1–sets of a premise set can now be used to
construct what I will call normal Ω2–sets. First, consider the Ω2–abnormal
part of an ∃Rd–model M of Γ. It is related to the normal Ω1–set Σ to which
M belongs, because Σ determines a set of Ω2–abnormalities ΩΣ.

Definition 11.29 ΩΣ = {A ∧A� ∈ Ω2 | Σ |= A}.

Definition 11.30 Where M is an ∃Rd–model of Γ that belongs to the nor-
mal Ω1–set Σ: its Ω2–abnormal part is the set Ab2Σ(M) = {A ∈ ΩΣ | M |=
A}.

Next, within each normal Ω1–set Σ those models are selected that are min-
imally abnormal with respect to ΩΣ.

Definition 11.31 An ∃Rd–model M of Γ that belongs to the normal Ω1–
set Σ is a minimally abnormal Ω2–model of Σ iff there is no ∃Rd–model
M ′ ∈ Σ for which Ab2Σ(M ′) ⊂ Ab2Σ(M).

The minimally abnormal Ω2–models of a normal Ω1–set Σ are now grouped
together in a normal Ω2–set ΞΣ.

Definition 11.32 Φ2
Σ(Γ) = {Ab2Σ(M) | M is a minimally abnormal Ω2–

model of Σ, with Σ a normal Ω1–set of Γ}.

Definition 11.33 A set ΞΣ of ∃Rd–models of Γ is a normal Ω2–set iff for
some φ ∈ Φ2

Σ(Γ), ΞΣ = {M ∈ Σ |M |= Γ; Ab2Σ(M) = φ}.

Finally, semantic consequence for ∃R♦
d is defined with respect to the normal

Ω2–sets of a premise set Γ.

Definition 11.34 Γ |=∃R♦
d
A iff A is verified by all members of at least one

normal Ω2–set of ∃Rd–models of Γ.

11.4.3 Soundness and Completeness

As the adaptive logic ∃R♦
d is not a standard adaptive logic, soundness and

completeness are not immediately given. Hence, I will prove them below.
First, consider the lemmas below.

Lemma 11.1 Γ |−∃R♦
d
A iff there is a ∆ ⊂ Ω1 and there are C1, ..., Cn ∈

WΩ such that Γ |−∃Rd
A ∨Dab(∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n }), Γ |−∃Rd

C1 ∨
Dab(∆),..., Γ |−∃Rd

Cn ∨Dab(∆), and Γ |6−∃Rd
Dab(∆∪ {C1 ∧C�

1 , ..., Cn ∧
C�

n }).
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Proof. ⇒ Suppose Γ |−∃R♦
d
A. Hence, A is finally derived on a line i of

an ∃R♦
d–proof from Γ. Let ∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n } (∆ ⊂ Ω1) be the

condition of line i. But then Γ |−∃Rd
A∨Dab(∆∪ {C1 ∧C�

1 , ..., Cn ∧C�
n }),

Γ |−∃Rd
C1∨Dab(∆) (†1),..., Γ |−∃Rd

Cn∨Dab(∆) (†n) (proven in the same
way as [26, lemma 1]).

Suppose Γ |−∃Rd
Dab(∆∪{C1 ∧C�

1 , ..., Cn ∧C�
n }). As a consequence, it

is possible to extend the proof in such a way that it contains a line at which
Dab(∆∪{C1∧C�

1 , ..., Cn∧C�
n }) is derived on the condition ∅. Moreover, from

(†1),...,(†n), it follows that the proof can be extended such that C1, ..., Cn

are derived on lines with condition ∆. From this extension on, Dab(∆ ∪
{C1 ∧ C�

1 , ..., Cn ∧ C�
n }) is a Dab–consequence of Γ (by definition 11.21),

which means that in all extensions of this extension, line i is marked in view
of definition 11.22. But this contradicts that A is finally derived at stage s
on a line i with condition ∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n }.

⇐ Suppose there is a ∆ ⊂ Ω1 and there are C1, ..., Cn ∈ WΩ such that
Γ |−∃Rd

A∨Dab(∆∪{C1∧C�
1 , ..., Cn∧C�

n }), Γ |−∃Rd
C1∨Dab(∆),..., Γ |−∃Rd

Cn∨Dab(∆), and Γ |6−∃Rd
Dab(∆∪{C1∧C�

1 , ..., Cn∧C�
n }). Because of [26,

lemma 1], there is a ∃R♦
d–proof from Γ such that A∨Dab({C1∧C�

1 , ..., Cn∧
C�

n }), C1, ..., Cn−1 and Cn have been derived on lines with condition ∆. In
view of the deduction rules RC1 and RC2, it is now possible to extent
the proof in such a way that A has been derived on a line with condition
∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n . Moreover, because Γ |6−∃Rd

Dab(∆ ∪ {C1 ∧
C�

1 , ..., Cn ∧ C�
n }), Dab(∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n }) cannot be derived on

a line with the condition ∅. Hence, by definitions 11.21, 11.22, 11.23 and
11.24, Γ |−∃R♦

d
A.

Lemma 11.2 A model M verifies Dab(∆) (∆ ⊂ Ω) iff ∆ ∩Ab(M) 6= ∅.

Proof. Obvious and left to the reader.

Lemma 11.3 Where M is a set of models, M |= Dab(∆) (∆ ⊂ Ω) iff
Dab(∆) is verified by all members of M that are minimally abnormal with
respect to Ω.

Proof. ⇒ Suppose M |= Dab(∆) (∆ ⊂ Ω). Hence, all elements of M verify
Dab(∆). As the set of minimally abnormal elements of M is a subset of all
elements of M, Dab(∆) is verified by all members of M that are minimally
abnormal with respect to Ω.

⇐ Suppose Dab(∆) is verified by all members of M that are minimally
abnormal with respect to Ω. All those models verify at least one element of
∆. As this set is the set of minimal abnormal models with respect to Ω, all
elements of M will at least also verify one element of ∆ (by the definition
of a minimally abnormal model). As a consequence, M |= Dab(∆).

Let Neg(∆) = {¬!A | A ∈ ∆}.
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Lemma 11.4 Γ |=∃R♦
d
A iff there is a ∆ ⊂ Ω1 and there are C1, ..., Cn ∈

WΩ such that Γ |=∃Rd
A ∨Dab(∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n }), Γ |=∃Rd

C1 ∨
Dab(∆),..., Γ |=∃Rd

Cn ∨Dab(∆), and Γ |6=∃Rd
Dab(∆∪ {C1 ∧C�

1 , ..., Cn ∧
C�

n }).

Proof. ⇒ Suppose Γ |=∃R♦
d
A. Hence, by definitions 11.32, 11.33 and

11.34, there is a φ ∈ Φ2
Σ(Γ) such that all members of the Ω2–set ΞΣ =

{M ∈ Σ | M |= Γ; Ab2Σ(M) = φ} verify A. Now, because Σ is a normal
Ω1–set of Γ, there is some ψ ∈ Φ1(Γ) such that Σ = {M |M |= Γ; Ab(M) =
ψ} (by definitions 11.27 and 11.28). From this, it follows that all ∃Rd–
models of Γ ∪ Neg(Ω1 − ψ) ∪ Neg(ΩΣ − φ) verify A. This means that
Γ ∪ Neg(Ω1 − ψ) ∪ Neg(ΩΣ − φ) |−∃Rd

A (by the completeness of ∃Rd

with respect to its semantics). By the compactness of ∃Rd, there is a finite
Γ′ ⊆ Γ, a finite ψ′ ⊂ (Ω1−ψ), and a finite {C1∧C�

1 , ..., Cn∧C�
n } ⊂ (ΩΣ−φ)

(‡) such that Γ′ ∪Neg(ψ′ ∪ {C1 ∧ C�
1 , ..., Cn ∧ C�

n }) |−∃Rd
A (†).

Consequence 1. From (†), it follows that Γ′ |−∃Rd
A ∨ Dab(ψ′ ∪ {C1 ∧

C�
1 , ..., Cn∧C�

n }) and hence that Γ |−∃Rd
A∨Dab(ψ′∪{C1∧C�

1 , ..., Cn∧C�
n }).

Consequence 2. From (‡), it follows that Σ |= C1,...,Σ |= Cn (by defini-
tion 11.29). As a consequence, by the same reasoning as above, there are
finite ψ1 ⊂ (Ω1 − ψ),...,ψn ⊂ (Ω1 − ψ) such that Γ |−∃Rd

C1 ∨Dab(ψ1),...,
Γ |−∃Rd

Cn ∨Dab(ψn).
Result. Let ∆ = ψ′ ∪ ψ1 ∪ ... ∪ ψn. Now, as (∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧
C�

n }) ∩ (ψ ∪ φ) = ∅, it follows that Γ |6− Dab(∆ ∪ {C1 ∧ C�
1 , ..., Cn ∧ C�

n }).
This, together with consequence 1 and 2, gives us that Γ |=∃Rd

A∨Dab(∆∪
{C1 ∧C�

1 , ..., Cn ∧C�
n }), Γ |6=∃Rd

Dab(∆∪ {C1 ∧C�
1 , ..., Cn ∧C�

n }), Γ |=∃Rd

C1 ∨Dab(∆),..., Γ |=∃Rd
Cn ∨Dab(∆) (because of the completeness of ∃Rd

with respect to its semantics).
⇐ Suppose there is a ∆ ⊂ Ω1 and there are C1, ..., Cn ∈ WΩ such that

(1) Γ |=∃Rd
A∨Dab(∆∪{C1∧C�

1 , ..., Cn∧C�
n }), (2) Γ |=∃Rd

C1∨Dab(∆),...,
Γ |=∃Rd

Cn ∨ Dab(∆), and (3) Γ |6=∃Rd
Dab(∆ ∪ {C1 ∧ C�

1 , ..., Cn ∧ C�
n }).

From (3), it follows that Γ |6=∃Rd
Dab(∆) (otherwise also Γ |6=∃Rd

Dab(∆ ∪
{C1 ∧ C�

1 , ..., Cn ∧ C�
n })). By lemmas 11.2 and 11.3, it follows that there

are some ψ ∈ Φ1(Γ) such that ψ ∩ ∆ = ∅. Suppose that this is the case
for ψ1, ..., ψn. As a consequence, every member of Σi = {M | M |= Γ;
Ab1(M) = ψi} (1 6 i 6 n) falsifies Dab(∆), and hence also verifies A ∨
Dab({C1 ∧ C�

1 , ..., Cn ∧ C�
n }), C1, ..., Cn−1 and Cn.

Moreover, for some Σi, it has to be the case that Σi |6= Dab({C1 ∧
C�

1 , ..., Cn∧C�
n }) (otherwise Γ |=∃Rd

Dab(∆∪{C1∧C�
1 , ..., Cn∧C�

n }, which
contradicts (3)). Suppose Σ1 |6= Dab({C1 ∧ C�

1 , ..., Cn ∧ C�
n }). By lemmas

11.2 and 11.3, it now follows that there is a φ ∈ Φ2
Σ1

(Γ) such that φ∩ {C1 ∧
C�

1 , ..., Cn∧C�
n } = ∅. As a consequence, every member of {M ∈ Σ |M |= Γ;

Ab2Σ1
(M) = φ} falsifies Dab(C1 ∧ C�

1 , ..., Cn ∧ C�
n ), and hence also verifies

A. So, Γ |=∃R♦
d
A (by definitions 11.32 and 11.34).
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Now, because of the soundness and completeness of the logic ∃Rd, lemma
11.1 and lemma 11.4, it immediately follows that the logic ∃R♦

d is sound and
complete with respect to its semantics.

Theorem 11.2 Γ |−∃R♦
d
A iff Γ |−∃R♦

d
A.

11.5 Relevant Deduction?

In chapter 2 (section 2.5), I presented the conditions a solution to the DS–
problem should satisfy. As I explicitly claim that the logic R∗

d provides a
nice solution to the problem, it is necessary to look whether it satisfies all
the conditions.

(1) As the disjunctions in the logic R∗
d are extensionally characterized dis-

junctions,2 it is immediately clear that no relevance between the dis-
juncts has to be presupposed in order to be able to apply DS.

(2) The logic R∗
d is obtained by combining the relevant implication with

the theory of first degree relevance that was presented in chapter 6. As
the latter doesn’t restrict DS to an unjustified extent, also the logic R∗

d

doesn’t do so.
(3) The logic R∗

d does reintroduce DS in relevant logics, but it does not
reintroduce any of the fallacies of relevance. First of all, in R∗

d the im-
plication behaves exactly as in the relevant logic Rd. Hence, irrelevant
implications cannot be derived. Secondly, as none of the EQV– and
EFQ–paradoxes are derivable at the first degree, also these can not be
obtained in R∗

d.
(4) In my approach, the DS–problem is solved by logical means. Conse-

quently, no reference is made to extra–logical features of reasoning.
(5) In R∗

d, the inference rule DS is taken to express some deductive connec-
tion. As such, it is considered as a deductive rule, and not a heuristic
one.

(6) That the logic R∗
d treats hypothetical and non–hypothetical reasoning

on a par, is clearly stated in section 11.1.

11.6 Conclusion

In this chapter, I have shown how the theory of first degree deductive rele-
vance that was presented in chapter 6, can be combined with the relevant
implication of the logic R. Moreover, I have also shown that this adequately
solves the DS–problem of RL. Consequently, it can be claimed that the log-
ics presented in this chapter capture deductive relevance in a better way than
the standard RL.

2Here, I obviously refer to the semantic characterization of the disjunction in the adap-
tive logic ∃R♦

d !
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The Aim of Part V

This final part of my dissertation is more or less unrelated to the other parts,
as it does not deal with deductive relevance. There are however two reasons
why it should nevertheless be included in this dissertation. Firstly, it treats
with a different kind of relevance, namely relevant insight in the premises.
Secondly, most of the adaptive logics that will be presented in this part, are
based on logics presented in earlier chapters.

Overview of Part V

In chapter 12, I will show how adaptive logics can be characterized whose
strategy is not based on the minimal Dab–consequences, but on the Dab–
consequences that are truly contained in the premises (they can be obtained
from the premises by mere analyzing steps).

In chapter 13, I will present adaptive logics that are able to explicate
abductive reasoning processes based on both consistent and inconsistent
background theories.
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Chapter 12

Relevant Insight in the
Premises

12.1 Introduction

In chapter 3, I already mentioned that adaptive logics (AL) express a two–
fold dynamics: an external and an internal one. The external dynamics
is expressed by the non–monotonicity of the AL–consequence relation: if
a premise set is extended, some AL–consequences of the original premise
set may not be derivable anymore.1 The internal dynamics is expressed by
the AL–proof theory. At every stage of an AL–proof, some earlier drawn
consequences may be withdrawn, and some earlier withdrawn consequences
may be considered as derivable again. As a consequence, AL are able to
capture interesting reasoning processes that cannot be captured by means
of other logics:

Several aspects of real–life reasoning (argumentation) are dynamic.
We not only drop conclusions after obtaining more information, but
also after we analyzed the premises better.2

Remark that these are normally reasoning processes for which there doesn’t
exist a positive test, such as for example some reasoning processes based on
inconsistent theories, induction, abduction, compatibility,...

Internal Dynamics. It has often been claimed by adaptive logicians that
the internal dynamics is guided by a growing insight in the premises:

In the case of the internal dynamics, it is caused by the reasoning
process itself: as it proceeds, our insight into the premises increases.3

1Formally: there are Γ, ∆ and A such that Γ |−AL A and Γ ∪∆ |6−AL A.
2See Batens [11, p. 286].
3Sic, see Batens [20, p. 149]. This claim was defended most thoroughly (and satisfac-

torily) in Batens [11].
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In this chapter, I will explain what adaptive logicians normally mean by “an
increasing insight in the premises.” This will make clear that AL are usually
based on only a partial insight in the premises. However, I will show that it
is also possible to construct AL that are based on a complete insight in the
premises.

Preliminary Remark. I will restrict the discussion below to inconsistency–
adaptive logics.4 Nevertheless, I remain hopeful that the obtained results
can be extended to other kinds of AL as well. Moreover, in the remain-
ing of this chapter, all inconsistency–adaptive logics will be represented by
means of the logic ACLūNsr.5 However, all remarks made also hold for all
(standard) inconsistency–adaptive logics.

12.2 Insight in the Premises

In order to show what is usually meant by “gaining a better insight in the
premises,” consider the ACLūNsr–proof below. It is based on the premise
set Γ = {p,¬p,¬q, p ∨ q, q ∨ r,¬s, s ∨ t}.

1 q ∨ r PREM ∅
2 ¬q PREM ∅
3 r 1,2;RC {q ∧ ¬q} X
4 ¬s PREM ∅
5 s ∨ t PREM ∅
6 t 4,5;RC {s ∧ ¬s}
7 p ∨ q PREM ∅
8 ¬p PREM ∅
9 (p ∧ ¬p) ∨ (q ∧ ¬q) 2,7,8;RU ∅

Remark that line 3 is marked at stage 9 of the proof, because its condition
contains one of the disjuncts of a minimal Dab–formula derived at stage
9 of the proof (the Dab–formula on line 9). Formally, this comes down
to {q ∧ ¬q} ∩ U9(Γ) 6= ∅,6 which means that the formula on line 3 is not
considered as derivable at stage 9. However, suppose the proof is extended
in the following way:

4For an introduction into inconsistency–adaptive logics, see Batens [12]. Other in-
teresting papers concerning inconsistency–adaptive logics are Batens [13] and Batens &
Meheus [32].

5This inconsistency–adaptive logic is a standard flat adaptive logic based on the par-
alogic CLūNs (the LLL), the set Ω = {A ∧ ¬A | A ∈ S} (the set of abnormalities), and
the reliability strategy.

6See chapter 3, section 3.2.1
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10 p PREM ∅
11 p ∧ ¬p 8,10;RU ∅

The formula on line 3 has become unmarked, as the Dab–formula on line 9
is no longer a minimal Dab–consequence of the premise set at stage 11. As
a consequence, {q ∧ ¬q} ∩U11(Γ) = ∅ such that at stage 11, the formula on
line 3 is considered as derivable from the premise set Γ.

This example clearly illustrates why only the derivation of minimal Dab–
consequences can change the markings in an AL–proof: only their derivation
can alter the set Ui(Γ) (for i a stage of the proof), which is necessary to
change the markings. As a consequence, the internal dynamics of AL is
completely dependent upon the Dab–formulas that are derivable from a
premise set. This also means that “gaining a better insight in the premises”
actually comes down to “obtaining a clearer view on the minimal Dab–
formulas that are derivable from the premise set.”

Moreover, remark that in an AL–proof, the insight in the premises can
never decrease. If no extra minimal Dab–consequence has been derived after
moving on to a next stage of the proof, the insight in the premises remains
the same as in the previous stage. But, on the contrary, if some extra mini-
mal Dab–consequence has been derived, the insight in the premises definitely
has increased. As such, extending an AL–proof might really improve the
insight in the premises.

Partial Insight. Despite the fact that the insight in the premises can
never decrease, it can now easily be shown that the obtained insight is only
a partial insight. In order to see this, consider again the ACLūNsr–proof
from above. At stage 11 of the proof, line 3 becomes unmarked because
the Dab–consequence on line 9 is not a minimal Dab–consequence anymore.
However, it is easily verified that this Dab–formula is really “contained in”
the premises, which means that it can be derived by analyzing the premises
(in other words, no inconsistencies were added by means of the inference
rule addition). This makes it difficult to see why the abnormality q ∧ ¬q is
not considered as unreliable. True, the minimal Dab–consequences are more
likely to lead us to the flaw(s) in an inconsistent theory,7 but they do not
guarantee that the overlooked inconsistencies have nothing to do with it.
Why? Because all Dab–consequences that are contained in the premises are

7I here presuppose that people usually consider inconsistent theories as problematic,
and that they will aim to change inconsistent theories into consistent ones. Moreover, I
also presuppose that the inconsistencies themselves are not taken as the core problem of
a problematic theory. If this were the case, then an inconsistent theory could simply be
turned consistent by rejecting one half of the inconsistency, which is obviously not a good
strategy. As a consequence, I think inconsistencies are interpreted more as symptoms of
a sick theory which can help us to diagnose correctly.
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partly or completely independent of each other, and as such, they are also
partly or completely justified on different grounds (which is obviously not
the case for Dab–consequences obtained from smaller Dab–consequences by
means of addition). In the ACLūNsr–proof above for example, the Dab–
consequences derived on lines 9 and 11 are derived partly from different
premises and might be considered as independent of each other for that
reason.

As a consequence, it is necessary to look for a way to construct AL
that are based on a relevant insight in the premises, which means that their
marking criterium is not based solely on the minimal Dab–consequences of
a premise set, but on the relevant Dab–consequences of a premise set, which
are those Dab–consequences that are contained in the premise set and can
be obtained by analyzing the premises.

Irrelevant Abnormalities. In order to construct AL that are based on
a complete insight in the premises, a serious technical problem has to be
overcome. Consider again the ACLūNsr–proof above and suppose it is
extended by the following line:

12 (p ∧ ¬p) ∨ (s ∧ ¬s) 11;RU ∅

The formula on this line is obtained from the formula on line 11 by means
of the inference rule addition. Because of the simplicity of the premise
set, it can now easily be verified that the added inconsistency (s ∧ ¬s)
is not contained in the premises, so that it should not be considered as
unreliable. But, how can we in general sensibly distinguish between those
inconsistencies that were added to existing ones by means of addition and
those that are really contained in the premise set? In fact, we can’t, which
is probably why adaptive logicians originally opted to consider only minimal
Dab–consequences of a premise set. Of these, at least one can be sure that
they are contained in the premises.

Final Remark. Remark that partial insight in the premises has nothing
to do with what I will call fallible insight in the premises. The latter is
unavoidable, while the former is not.

Fallible insight is the result of the fact that in AL–proofs, it always re-
mains possible that by extending the proof, some new (minimal or relevant)
Dab–consequences are derived. As such, it is fundamentally impossible to
reach a complete insight in the premises, or better: it is fundamentally im-
possible to know if or when a complete insight in the premises has been
reached (unless logical omniscience is presupposed, which is not the case).

Remark that this also implies that for some conditionally derived for-
mulas (formulas derived at a certain stage), it will be impossible to decide
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whether or not they are also finally derived.8 This might seem quite damag-
ing at first, but actually, this is exactly what one might expect from logics
capturing reasoning processes that lack a positive test. As a consequence,
anyone who would consider this to be a problem, should blame human rea-
soning and not the logics trying to capture them.9 Moreover, as the insight
in the premises can never decrease (as was explained above), derivability at
a stage offers a sensible estimate of final derivability. As a consequence, at
any stage of the proof, one has to choose whether to continue the proof or to
rely on the obtained insights. This is not so bad either, as it is completely in
accordance with contemporary theories of rationality (for example Batens
[?]): as absolute knowledge cannot be obtained by humans, human decisions
are never based on certain or complete knowledge, but “merely” on the best
insights available at a certain moment. These insights are fallible, but that
doesn’t prevent them from being the best ones around at that particular
time.

12.3 Relevant Insight in the Premises

In this section, I will show that it is possible to obtain AL based on relevant
insight in the premises. I will do so by presenting the inconsistency–adaptive
logic ACLūNsi, obtained by translation to the ambiguity–adaptive logic
∃CLūNssr:10

Definition 12.1 Γ |−ACLūNsi A iff Γ∃i |−∃CLūNssr (∃i)A(i), for Γ ∪ {A} ⊂
W.

The logic ACLūNsi is an adaptive logic based on the reliability strategy.
Although I will not present a similar adaptive logic based on any other
adaptive strategy, they can be obtained in a similar way.

12.3.1 The Adaptive Logic ∃CLūNssr

The adaptive logic ∃CLūNssr is a somewhat unusual adaptive logic, as it is
somewhere in between a simple combined and a prioritized adaptive logic.
Nevertheless, it is characterized by the usual three elements:

(1) Its LLL is the logic ∃CLūNs (see chapter 8, section 8.2).
(2) Its set of abnormalities Ω is the union of the following two sets:

8This has caused a search for efficient criteria that can allow us to decide whether or not
a conditionally derived formula is also finally derived (see especially Batens [11, 16, 18, 23]).
However, these criteria always remain metatheoretical, which means that they do not solve
the undecidability problem at the proof theoretical level.

9See also Batens et al. [30].
10W is defined as for ∃CLūNs (see chapter 8, section 8.2.2), Γ∃i and (∃i)A(i) are defined

as for ∃CLūNs (see chapter 7, section 7.2).
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a) Ω1 = {(∃i)A(i) ∧ ¬!A
I | (∃i)A(i) ∈ Γ∃i}.

b) Ω2 = {Ai ∧ ¬Aj | A ∈ S and i, j ∈ N such that i 6= j}.

(3) Its adaptive strategy is the reliable normal selections strategy, which is
in fact a combination of the reliability strategy and the normal selections
strategy.

It is immediately clear that the logic ∃CLūNssr will only differ from the
logic ∃CLūNss (see chapter 8, section 8.3) with respect to its adaptive
strategy. As a consequence, the proof theory and the semantics of both
logics have a lot in common.

12.3.2 Proof Theory of ∃CLūNssr

The proof theory of ∃CLūNssr is not the standard proof theory of flat AL.
It demands some slight modifications, all related to the marking criterium.

Deduction Rules. The deduction rules for ∃CLūNssr are equivalent to
those for ∃CLūNss, and as such, they are completely standard.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃CLūNs B and each of A1, ..., An occurs in the proof
on lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one
may add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−∃CLūNs B ∨Dab(Θ) and each of A1, ..., An occurs in
the proof on lines i1, ..., in that have conditions ∆1, ...,∆n respec-
tively, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ...∪
∆n ∪Θ.

Marking Rules. The distinctive feature of this adaptive logic is its mark-
ing criterium. It consists of two marking rules, each related to a specific
subset of the set of abnormalities Ω. The subsets referred to are of course
Ω1 and Ω2.

Readers well–acquainted with adaptive logics, might now suspect that
the minimal Dab–consequences will be defined with respect to a particu-
lar set of abnormalities, as is the case for prioritized adaptive logics (see
chapter 3, section 3.3.2). This is however not the case here. Minimal Dab–
consequences are instead defined as usual, with respect to the complete set
of abnormalities Ω.

Definition 12.2 Dab(∆) (∆ ⊂ Ω) is a minimal Dab–consequence at stage
s of the proof iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is also a Dab–
consequence at stage s of the proof.
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The first marking rule is a normal selections–marking rule, based on
those minimal Dab–consequences that only consist of elements of Ω1.

Definition 12.3 NS–marking for ∃CLūNssr: Line i is marked at stage s
of the proof iff where ∆ is its condition, Dab(Θ) has been derived at stage
s, Θ ⊂ Ω1 and Θ ⊆ ∆.

The second marking rule is a reliability–marking rule, based on the set
Us(Γ), the set of elements of Ω2 that are considered unreliable at stage s of
the proof.

Definition 12.4 Us(Γ) = {A ∈ Ω2 | A ∈ ∆ and Dab(∆) is a minimal
Dab–consequence of Γ at stage s of the proof}.

The reliability–marking rule itself is now plainly straightforward:

Definition 12.5 R–marking for ∃CLūNssr: Line i is marked at stage s
of the proof iff where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.

Final Derivability. As for all adaptive logics, I should also mention the
definitions for final derivability. They are completely standard, and do not
need any further explanation.

Definition 12.6 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 12.7 Γ |−∃CLūNssr A (A is finally ∃CLūNssr–derivable from
Γ) iff A is finally derived on a line of a proof from Γ.

Example. Consider again the premise set Γ = {p,¬p,¬q, p∨q, q∨r,¬s, s∨
t}. In section 12.2, it was shown that the formula r is ACLūNsr–derivable
from Γ, even though its derivation is based on the supposition that q ∧ ¬q
is a reliable abnormality. However, as the latter occurs in a relevant Dab–
consequence of Γ, it should not be considered as reliable.

So, if ACLūNsi really captures relevant insight in the premises, it should
be able to identify q ∧ ¬q as an unreliable abnormality. As such, it should
also not allow the derivation of the formula r. This is indeed the case, as
the ∃CLūNssr–proof below shows us.

First, construct the premise set Γ∃i from the premise set Γ above:

Γ∃i = {(∃i)(p)(i), (∃i)(¬p)(i), (∃i)(¬q)(i), (∃i)(p∨q)(i), (∃i)(q∨r)(i), (∃i)(¬s)(i),
(∃i)(s ∨ t)(i)}.
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1 (∃i)(q ∨ r)(i) PREM ∅
2 (∃i)(¬q)(i) PREM ∅
3 (∃i)(p ∨ q)(i) PREM ∅
4 (∃i)(¬p)(i) PREM ∅
5 (∃i)(p)(i) PREM ∅
6 q1 ∨ r1 1;RC {(∃i)(q ∨ r)(i) ∧ ¬!(q1 ∨ r1)}
7 ¬q2 2;RC {(∃i)(¬q)(i) ∧ ¬!(¬q2)}
8 (∃i)(r)(i) 6,7;RC Ω3 ∪ Ω4 ∪ {q1 ∧ ¬q2}

At this stage of the proof, the formula (∃i)(r)(i) is ∃CLūNssr–derived on line
8. But, (∃i)(r)(i) is not finally ∃CLūNssr–derivable, which can be shown
by extending the proof in the following way:

8 (∃i)(r)(i) 6,7;RC Ω3 ∪ Ω4 ∪ {q1 ∧ ¬q2} X
9 ((∃i)(¬q)(i) ∧ ¬!(¬q2))

∨((∃i)(p ∨ q)(i) ∧ ¬!(p3 ∨ q1))
∨((∃i)(¬p)(i) ∧ ¬!(¬p4))
∨((p3 ∧ ¬p4))
∨((q1 ∧ ¬q2)) 2,6,7;RU ∅

10 ((∃i)(p)(i) ∧ ¬!(p3))
∨((∃i)(¬p)(i) ∧ ¬!(¬p4))
∨(p3 ∧ ¬p4) 7,8;RU ∅

It can now easily be verified that the Dab–formula derived on line 9 is a
minimal Dab–formula, so that line 8 will remain marked.

11 (∃i)(¬s)(i) PREM ∅
12 ((∃i)(s ∨ t)(i) PREM ∅
13 ¬s1 11;RC {(∃i)(¬s)(i) ∧ ¬!(s1)}
14 s2 ∨ t1 12;RC {(∃i)(s ∨ t)(i) ∧ ¬!(s2 ∨ t1)}
15 (∃i)(t)(i) 13,14;RC Ω13 ∪ Ω14 ∪ {s2 ∧ ¬s1}

At stage 15 of the proof, line 15 is unmarked, and it is easily verified that it
will remain unmarked. Hence, the formula on line 15 is finally ∃CLūNssr–
derivable from Γ∃i.

Relevant Insight. In order to show that ACLūNsi is based on relevant
insight in the premises, it has to be shown that the marking criterium of
∃CLūNssr is based on the relevant Dab–consequences of the premise set
Γ. Remark that this actually means that the minimal Dab–consequences
derivable from an ambiguous premise set Γ∃i by means of ∃CLūNs (the LLL
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of the logic ∃CLūNssr) should correspond to the relevant Dab–consequences
derivable from the premise set Γ by means of the logic CLūNs (the LLL
of the adaptive logic ACLūNsi). Try to keep this in mind, otherwise the
explanation below will be quite incomprehensible.

Now, let’s show that these two kind of Dab–consequences indeed corre-
spond to one another. First of all, as an ambiguous premise set Γ∃i never
contains any formulas without existential quantifiers, the minimal Dab–
consequences derivable from Γ∃i can only be obtained by combining the
elements of Γ∃i with minimal ∃CLūNs–theorems of the form

¬!A
I
1 ∨ ... ∨ ¬!A

I
n ∨ (Bi1

1 ∧Bi2
1 ) ∨ ... ∨ (Bi2m−1

m ∧Bi2m
m ),

with AI1 , ..., A
I
n ∈ WI and Bi1

1 , ..., B
i2m
m ∈ SI .11 Moreover, notice that the

AI1 , ..., A
I
n in these theorems are instantiations of elements of Γ∃i (by the

definition of the set of abnormalities Ω).
Secondly, in some of the above statements, the formulas AI1 , ..., A

I
n will

be maximally ambiguous, which means that each index only occurs once in
them. But, it can now easily be verified that for those minimal ∃CLūNs–
theorems for which AI1 , ..., A

I
n are maximally ambiguous, the other part of

the theorem (the disjunction of Ω2–abnormalities) will always correspond
to a relevant Dab–consequence of the premise set Γ. In order to make
this claim more easily comprehensible, consider the premise set Γ = {p ∧
¬p, p ∨ q,¬q}. It contains two relevant Dab–consequences, namely p ∧ ¬p
and (p ∧ ¬p) ∨ (q ∧ ¬q). Now, consider the ambiguous premise set based on
Γ: Γ∃i = {(∃i)(p∧¬p)(i), (∃i)(p∨ q)(i), (∃i)(¬q)(i)}. It will lead to minimal
Dab–consequences when combined with the following minimal ∃CLūNs–
theorems:

• ¬!(pi0 ∧ ¬pi1) ∨ ¬!(qi2 ∨ pi3) ∨ ¬!(¬qi4) ∨ (pi2 ∧ ¬pi1) ∨ (qi3 ∧ ¬qi4)
• ¬!(pi0 ∧ ¬pi1) ∨ (pi0 ∧ ¬pi1)

Indeed, the disjunctions of Ω2–abnormalities in these theorems correspond
to the relevant Dab–consequences of the premise set Γ. Finally, remark that
also the theorem below is derivable. It will however not give rise to a min-
imal Dab–consequence of Γ∃i, because it is itself not a minimal ∃CLūNs–
theorem.

• ¬!(pi0 ∧ ¬pi1) ∨ ¬!(qi2 ∨ pi3) ∨ ¬!(¬qi4) ∨ (pi0 ∧ ¬pi1)

12.3.3 Semantics of ∃CLūNssr

Also the ∃CLūNssr–semantics is not the standard AL–semantics. Never-
theless, it does work according to the same basic principle: the selection of
preferred sets of LLL–models of a premise set.

11SI and WI are defined as in chapter 8, section 8.2.2.
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First, we define the abnormal parts of the ∃CLūNs–models of a premise
set Γ. Each model has two abnormal parts, one related to Ω1 and one related
to Ω2:

Definition 12.8 Where M is a ∃CLūNs–model of Γ, its Ω1–abnormal part
is the set Ab1(M) = {A ∈ Ω1 |M |= A}.

Definition 12.9 Where M is a ∃CLūNs–model of Γ, its Ω2–abnormal part
is the set Ab2(M) = {A ∈ Ω2 |M |= A}.

In order to reach the preferred sets of ∃CLūNs–models of Γ, first consider
the set M0, the set of all ∃CLūNs–models of Γ.

Definition 12.10 M0 =df {M |M |= Γ}.

By means of the set M0 and the set U(Γ) of unreliable elements of Ω2, we
can now construct the set Mr which contains the ∃CLūNs–models of Γ
that are reliable with respect to Ω2.

Definition 12.11 Dab(∆) (∆ ⊂ Ω) is a minimal Dab–consequence of Γ iff
Γ |−∃CLūNs Dab(∆) and for all ∆′ ⊂ ∆, Γ |6−∃CLūNs Dab(∆′).

Definition 12.12 U(Γ) = {A ∈ Ω2 | A ∈ ∆ and Dab(∆) is a minimal
Dab–consequence of Γ}.

Definition 12.13 Mr =df {M ∈M0 | Ab2(M) ⊆ U(Γ)}.

Next, from the set Mr, only those ∃CLūNs–models are selected that are
minimally abnormal with respect to their Ω1–abnormal part.

Definition 12.14 Mm =df {M ∈ Mr | for no M ′ ∈ Mr, Ab1(M ′) ⊂
Ab1(M)}.

Finally, all elements of Mm that verify the same elements of Ω1 are bundled
into a reliable normal set. Semantic consequence is now defined with respect
to those reliable normal sets of ∃CLūNs–models of Γ.

Definition 12.15 Φ(Γ) = {Ab1(M) |M ∈Mm}.

Definition 12.16 A set Σ of LLL–models of Γ is a reliable normal set iff
Σ = {M ∈Mm | Ab1(M) = φ, for some φ ∈ Φ(Γ)}.

Definition 12.17 Γ |=∃CLūNs A iff A is verified by all members of at least
one reliable normal set of ∃CLūNs–models of Γ.
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12.3.4 Soundness and Completeness

In this section, soundness and completeness for ∃CLūNssr is proven. This
is necessary, as the logic ∃CLūNssr is not a standard adaptive logic, so that
soundness and completeness are not provided by the standard format.

Consider the lemmas below. From them, soundness and completeness
for ∃CLūNssr follows immediately.

Lemma 12.1 If A is finally derived at line i of an ∃CLūNs–proof from Γ,
and ∆∪Θ (∆ ⊂ Ω1 and Θ ⊂ Ω2) is the condition of line i, then Γ |6−∃CLūNs

Dab(∆), and Θ ∩ U(Γ) = ∅.

Proof. Suppose (1) the antecedent is true, but (2a) Γ |−∃CLūNs Dab(∆) or
(2b) Θ ∩ U(Γ) 6= ∅. If (2a) is the case, line i will be NS–marked, and as
it is impossible to become NS–unmarked again (as NS–marking does not
depend on minimal Dab–consequences), it is also impossible for A to be
finally derived at line i (by definition 12.6). As a consequence, (2b) will be
the case, which means that there is a minimal Dab–consequence of Γ, say
Dab(∆′∪Θ′) (∆′ ⊂ Ω1 and Θ′ ⊂ Ω2), for which Θ∩Θ′ 6= ∅. So the ∃CLūNs–
proof has an extension in which Dab(∆′∪Θ′) has been derived on an empty
condition. But then, where s is the last stage of the extension, Θ′ ⊆ Us(Γ)
and Θ ∩ Us(Γ) 6= ∅. Hence, line i is marked at stage s (by definition 12.5).
As Dab(Θ′) is a minimal Dab–consequence of Γ, Θ′ ⊆ Us′(Γ) for all stages
following s. So the extension has no further extension in which line i is
unmarked again. In view of definition 12.6, this contradicts (1), which states
that A is finally derived at line i of the ∃CLūNs–proof from Γ.

Theorem 12.1 Γ |−∃CLūNssr A iff there are finite ∆ ⊂ Ω1 and Θ ⊂ Ω2,
such that Γ∃i |−∃CLūNs A∨Dab(∆∪Θ), Γ |6−∃CLūNs Dab(∆), and Θ∩U(Γ)
= ∅.

Proof. ⇒ Suppose that Γ |−∃CLūNssr A. So A is finally derived on a line i
of an ∃CLūNssr–proof from Γ. Let ∆ ∪ Θ (∆ ⊂ Ω1 and Θ ⊂ Ω2) be the
condition of line i. But then Γ |−∃CLūNs A ∨ Dab(∆ ∪ Θ) (by [26, lemma
1]),12 Γ |6−∃CLūNs Dab(∆) and Θ ∩ U(Γ) = ∅ (by lemma 12.1).

⇐ Suppose that for some finite ∆ ⊂ Ω1 and Θ ⊂ Ω2, (1) Γ∃i |−∃CLūNs

A∨Dab(∆∪Θ), (2) Γ |6−∃CLūNs Dab(∆), and (3) Θ∩U(Γ) = ∅. From (1), it
follows that there is an ∃CLūNs–proof from Γ (containing only applications
of PREM and RU) in which A ∨Dab(∆ ∪Θ) is derived on the condition ∅.

12The lemma referred to is the following:

Lemma 12.2 Γ |−LLL A ∨Dab(∆) iff there is an AL–proof from Γ that contains a line
on which A is derived on the condition ∆.

It has been proven for all standard AL.
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By an application of RC a line i can be added that has A as its formula and
∆∪Θ as its condition. Moreover, this line is unmarked. In any extension of
this proof in which line i is marked, it is the case that (a) Dab(∆) is derived
on an empty condition, or (b) a Dab(∆′ ∪ Θ′) (∆′ ⊂ Ω1 and Θ′ ⊂ Ω2)
is derived on an empty condition such that Θ ∩ Θ′ 6= ∅. But, (a) would
mean that Γ |−∃CLūNs Dab(∆), which is impossible in view of (2). As a
consequence, only (b) remains possible. Now, as Θ ∩ U(Γ) = ∅, there will
be a (∆′′ ∪ Θ′′) ⊂ (∆′ ∪ Θ′) such that Dab(∆′′ ∪ Θ′′) is a minimal Dab–
consequence of Γ and Θ ∩ Θ′′ = ∅. So the proof–extension can be further
extended in such a way that Dab(∆′′ ∪Θ′′) occurs in the proof on an empty
condition. But then A is finally derived at line i in view of definition 12.6.

Lemma 12.3 An ∃CLūNs–model M of Γ verifies Dab(∆) (∆ ⊂ Ω1) iff
∆ ∩Ab1(M) 6= ∅.

Proof. Obvious and left to the reader.

Lemma 12.4 Γ |=∃CLūNs Dab(∆) (∆ ⊂ Ω1) iff Mm |= Dab(∆).

Proof. ⇒ Suppose Γ |=∃CLūNs Dab(∆) (∆ ⊂ Ω1). Hence, all ∃CLūNs–
models of Γ verify Dab(∆). As Mm is a subset of all ∃CLūNs–models of
Γ, Mm |= Dab(∆).

⇐ Suppose Mm |= Dab(∆). All elements of Mm verify at least one
element of ∆. As this set is the set of minimal abnormal models with
respect to Ω1, all ∃CLūNs–models of Γ will at least also verify one element
of ∆. As a consequence, Γ |=∃CLūNs Dab(∆).

Let Neg(∆) = {¬!A | A ∈ ∆}.

Theorem 12.2 Γ |=∃CLūNssr A iff there are finite ∆ ⊂ Ω1 and Θ ⊂ Ω2,
such that Γ∃i |=∃CLūNs A∨Dab(∆∪Θ), Γ |6=∃CLūNs Dab(∆), and Θ∩U(Γ)
= ∅.

Proof. ⇒ Suppose that Γ |=∃CLūNssr A. Hence, there is a φ ∈ Φ(Γ) such
that all members of {M ∈Mm | Ab2 ⊆ U(Γ) and Ab1(M) = φ} verify A (by
definitions 12.13, 12.14, 12.15 and 12.16). As a consequence, all ∃CLūNs–
models of Γ ∪ Neg(Ω − U(Γ) − φ) verify A, and, by the completeness of
∃CLūNs with respect to its semantics, Γ∪Neg(Ω−U(Γ)−φ) |−∃CLūNs A.
By the compactness of ∃CLūNs, there is a finite Γ′ ⊆ Γ and a finite ∆∪Θ ⊆
(Ω−U(Γ)−φ) (∆ ⊂ Ω1 and Θ ⊂ Ω2) such that Γ′∪Neg(∆∪Θ) |−∃CLūNs A.
It follows that Γ′ |−∃CLūNs A∨Dab(∆∪Θ) and hence that Γ |−∃CLūNs A∨
Dab(∆∪Θ) (†). Moreover, as ∆∩φ = ∅, it follows that Γ |6−∃CLūNs Dab(∆)
(††). Finally, remark that it is also the case that Θ ∩ U(Γ) = ∅ († † †).
From (†),(††) and († † †), it now follows that Γ |=∃CLūNs A ∨Dab(∆ ∪ Θ),
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Γ |6=∃CLūNs Dab(∆), and Θ∩U(Γ) = ∅ (by the soundness and completeness
of ∃CLūNs).

⇐ Suppose that there are finite ∆ ⊂ Ω1 and Θ ⊂ Ω2, such that (1)
Γ∃i |=∃CLūNs A∨Dab(∆∪Θ), (2) Γ |6=∃CLūNs Dab(∆), and (3) Θ∩U(Γ) =
∅. Γ |=∃CLūNssr A holds vacuously if M0 = ∅. So, suppose M0 6= ∅. From
(1), it now follows that all members of M0 verify A ∨Dab(∆ ∪Θ). By [26,
theorem 5],13 it follows that Mr 6= ∅. As Θ∩U(Γ) = ∅ (because of (3)), all
elements ofMr falsify Θ. So, all elements ofMr verify A∨Dab(∆) (†). From
(2), it follows that there is a φ ∈ Φ(Γ) such that φ∩∆ = ∅ (by lemmas 12.3
and 12.4). From this, it follows that every member of {M ∈ Mm | Ab1(M)
= φ} falsifies Dab(∆). But, from (†), it also follows that every member of
{M ∈ Mm | Ab1(M) = φ} verifies A ∨ Dab(∆). Hence, every member of
{M ∈ Mm | Ab1(M) = φ} verifies A. As a consequence, Γ |=∃CLūNssr A
(by definitions 12.16 and 12.17).

As ∃CLūNs was proven sound and complete (see theorem 8.3), the
soundness and completeness of the adaptive logic ∃CLūNssr now follows
immediately from theorem 12.1 and theorem 12.2 above.

Corollary 12.1 Γ |−∃CLūNssr A iff Γ |=∃CLūNssr A.

12.4 Conclusion

In this chapter, I have shown that the internal dynamics of adaptive logics
is only based on a partial insight in the premises, namely the insight pro-
vided by the minimal Dab–consequences of the premise set. This however
overlooks some of the Dab–consequences that are contained in the premises,
which is particularly damaging, as there are not always good reasons not to
consider those Dab–consequences as unreliable.

However, by presenting the adaptive logic ACLūNsi, I have shown that
it is also possible to construct adaptive logics that are based on a complete
insight in the premises.

13The theorem referred to states that strong reassurance is a feature of all adaptive
logics based on the reliability strategy:

Theorem 12.3 (Strong Reassurance for Reliability) If M ∈ MLLL
Γ − Mr

Γ, then
there is a M ′ ∈Mr

Γ such that Ab(M ′) ⊂ Ab(M).
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Chapter 13

Relevance and Abductive
Reasoning

13.1 Introduction

When searching an explanation for a (puzzling) phenomenon, people often
reason backwards, from the phenomenon to be explained to possible expla-
nations. As such, they perform a reasoning process usually called abduction:

by abduction I mean the reasoning process from the evidence base
and background knowledge to the hypothesis or explanans that ex-
plains the relevant evidence.1

Examples are legion: a physician in search of the right diagnose for a pa-
tients symptoms, a technician trying to find out why a machine broke down,
a scientist trying to find an explanation for an empirical phenomenon con-
tradicting some predictions derived from an accepted theory,...

Although not all abduction processes are similar, they all share a com-
mon element: inferences based on the argumentation schema known as Af-
firming the Consequent (AC):

[AC] A A B,B ` A

The Irrelevance Problem. If the classical inference relation is consid-
ered, AC is clearly not deductively valid. Moreover, because Irrelevance
(Irr) is a valid inference step in Classical Logic (CL), adding AC to CL as
an extra axiom would result in the trivial logic.

[Irr] B |−CL A A B

1See Kiikeri [62, p. 1].
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I will call this the irrelevance problem for formal approaches towards abduc-
tion. In order to provide a nice formal account of abduction processes, this
problem has to be faced.

In this chapter, I will first discuss some of the proposed solutions to this
problem (see section 13.2), and I will also present my own solution, based
on the adaptive logics programme (see section 13.3 and 13.4).

13.2 Formal Approaches towards Abduction

Although there are a lot of formal approaches towards abduction (for an
overview, see Paul [82]), I will only discuss two of them, namely the so–
called logic–based approaches and the adaptive approach.

13.2.1 Logic–Based Approaches

In order to avoid irrelevant abductions (abductions based on implications
obtained by means of Irr), most logic–based approaches characterize ab-
duction as a kind of backwards deduction with additional conditions, which
means that a number of conditions is specified that enable one to decide
whether or not a particular abductive inference is sound. The most com-
mon conditions are the following:

(i) Γ ∪ {A} ` B
(ii) Γ 0 ¬A
(iii) Γ 0 B; A 0 B
(iv) A is ‘minimal’
(v) A is the best among the possible explanations

Condition (i) states that addingA to the background knowledge (represented
by Γ) has to make B derivable. Obviously, if it would not, one could hardly
claim A to be an explanation of B. Condition (ii) states that an explana-
tion has to be compatible with the background knowledge. Condition (iii)
does not allow the explanandum to be derivable solely from the background
theory or from the explanans. This in order to avoid self–explanations. Fi-
nally, also conditions (iv) and (v) place further restrictions upon possible
explanations. However, as there are different possibilities to specify what is
meant by them, I will leave it like that.

Remark that not all of the above conditions have to be fulfilled in order to
characterize abduction processes. Different combinations of the conditions
will lead to different kinds of abduction. A non–exhaustive taxonomy of
these kinds of abduction is provided by Atocha Aliseda–Llera in [2, 3, 4].

Features of Abduction Processes. Remark also that, given the spec-
ified conditions, abduction processes will be non–monotonic: as new infor-
mation becomes available, some abductive conclusions might be withdrawn.
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For example, this will the case when a possible explanation for a phenomenon
that was derived by means of abduction, is proven incorrect by further tests.

Moreover, abduction processes are not only non–monotonic, they also
do not have a positive test, which means that it can not always be decided
in a finite number of steps that a formula is a sound abductive conclusion.
This is a consequence of the fact that CL lacks a negative test (for some
formulas it can not be decided that they are not a CL–consequence of a
premise set), and that some of the conditions above are stated in a negative
way.

Problematic Features. Although the above described logic–based ap-
proaches succeed in specifying which formulas may count as valid conse-
quences of abductive inference steps, they do nevertheless have some serious
disadvantages. As they are satisfactorily discussed in Meheus [71], I will
only state them.

First of all, in order to cope with the lack of a positive test, logic–based
approaches are usually restricted to decidable fragments of CL (or some
other logic). But, as most interesting (real–life) theories are undecidable,
this seems an unjustified restriction.

Secondly, logic–based approaches do not explicate the way in which peo-
ple actually reason by means of abductive inferences. This is most clearly
shown by the absence of a decent proof theory. Even the search procedures
that are sometimes provided to obtain the right abductive conclusions, are
based on systems that do not even by far resemble human reasoning (for
example, the tableaux method developed by Aliseda–Llera in [2, 4]).

13.2.2 The Adaptive Approach

Although the adaptive approach is strictly speaking also a logic–based ap-
proach, I distinguish it from the usual logic–based approaches because it
avoids the disadvantages of the latter.

A. The Adaptive Logic LAr

In Meheus & Batens [74], Meheus and Batens presented the adaptive logic
LAr. Shortly summarized, LAr is a standard (flat) adaptive logic that
has the logic CL as its LLL and the set Ω (see def. 13.1) as its set of
abnormalities, and is based on the reliability strategy.

Definition 13.1 Ω = {(∀α)(A(α) A B(α)) ∧ B(β) ∧ ¬A(β) | B(β) ∈
We, A(β) ∈ Wa and |6−CL (∀α)(A(α) A B(α))}.2

2We and Wa are respectively the set of explananda and the set of explanantia.
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In [74], Meheus and Batens show that LAr only allows for the unproblematic
applications of AC. Intuitively, this is done by accepting the consequences
reached by applying AC only for as long as it has not been proven that
they should be rejected (for example, because their negation is deductively
derivable from the background theory).

Moreover, they also showed that LAr not only incorporates the most im-
portant conditions of the usual logic–based approaches towards abduction
((i)–(iv)), but also avoids their disadvantages: LAr can be applied to un-
decidable theories, and it provides us with a proof theory that comes much
closer to actual reasoning processes.3

Disadvantage of LAr. Despite the mentioned advantages, the logic LAr

also has one major disadvantage: the possible abductive inferences are re-
stricted to those of the form

(∀α)(A(α) A B(α)), B(β) ` A(β).

This restriction was introduced in order to avoid the irrelevance problem. I
leave out the technical details, but what it comes down to is the following: if
the restriction would not have been introduced, and instead there was opted
to conditionally allow abductive inferences of the form

A A B, B |− A,

then, because of Irr, no abductive consequences would follow from a premise
set. In proof theoretical terms: all conditionally derived formulas would
get marked. That this doesn’t happen when the abductive inferences are
restricted to the ones above, is a consequence of the specific features of
universally quantified formulas.4

But, despite the fact that there are good technical reasons to restrict the
applications of AC to the ones above, it nevertheless remains a fact that as a
consequence, LAr only allows for a specific subset of the possible abductive
inferences. This means that it can not cover all possible kinds of abduction
processes. For example, abduction at the purely propositional level is not
possible.

B. The Adaptive Logic AbL

In the remaining of this chapter, I will present the adaptive logic AbL.
It avoids the irrelevance problem not by relying on the specific features of

3This was clearly illustrated by Meheus in [71].
4More specifically, it is a consequence of the fact that formulas that are not universally

quantified can not lead to universally quantified formulas, so that Irr cannot affect the
abductive situation.
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universally quantified formulas as does LAr, but by introducing a specific
modal operator (see section 13.3.1).

It will be shown that AbL is able to capture abductive inference in
a more general way than LAr. For example, in AbL, abduction is also
possible at the purely propositional level. Moreover, as AbL also keeps all
the advantages of the logic LAr, I feel quite confident to claim that it should
be preferred over LAr.

Practical and Theoretical Abduction. In [74], Meheus & Batens dis-
tinguish between two kinds of abduction. I will call them practical and
theoretical abduction. The difference between both comes down to the fol-
lowing: in case there are multiple possible explanations for a particular
phenomenon, practical abduction only allows to derive the disjunction of
those explanations. Theoretical abduction on the contrary, allows to derive
all of them. The distinction between practical and theoretical abduction is
justified by Meheus & Batens by means of the following example:

Consider the case of a patient a displaying some symptom P who
consults a physician to get cured. Suppose that the physician’s theo-
retical knowledge contains (∀x)(Qx A Px) and (∀x)(Rx A Px), and
no other (sensible) candidates for an abductive step. It would be rather
stupid of the physician to conclude to Qa and to act accordingly. This
would be stupid because, if Ra is the case, rather than Qa, the patient
would not be cured. So, the appropriate behaviour for the physician
would be to draw the conclusion Qa∨Ra and to test whether Qa, Ra
or both are true, or to act in such a way that the patient gets cured in
either case.

Compare this situation to one in which a ‘theoretician’ has the same
knowledge, but is merely interested in finding and testing explanatory
hypotheses for Pa. In this case, there would be no harm if the theoreti-
cian derived, say, Qa and tested it. if it turns out true, an explanation
is produced. If it turns out false, Ra might be the next hypothesis
derived.5

Despite the fact that two kinds of abduction are distinguished, the logic
LAr is only able to capture practical abduction, and no other logic has
been presented by Meheus & Batens that captures theoretical abduction.

On the contrary, the logic AbL can capture both kinds of abduction.
More precisely, I should say that AbL has two variants, AbLp and AbLt,
such that the former captures practical abduction and the latter captures
theoretical abduction.

5See Meheus & Batens [74, p. 224].
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13.3 The Adaptive Logic AbL

As the adaptive logic AbL was already introduced in the foregoing section,
I can limit myself here to its characterization. First of all, AbL makes
use of two distinct premise sets: Γ and Γe. The former represents the
background theory, while the latter contains phenomena that are in need of
an explanation (the explananda).

Secondly, if Γ♦ is defined as in definition 13.2, then AbL is characterized
as in definition 13.3 below.6

Definition 13.2 Γ♦ = {♦A | A ∈ Γe}.

Definition 13.3 〈Γ,Γe〉 |−AbL A iff 〈Γ,Γ♦〉 |−CLabd A.

Finally, as there are two variants of the logic AbL (one for practical and
one for theoretical abduction), there will also be two variants of the logic
CLabd. I will however use CLabd to refer to both of them. As such, I do
not always have to distinguish them explicitly.

Preliminary Remark 1. To retain the overall coherence of this disser-
tation, I will restrict myself to the propositional case. Nevertheless, the
extension to the predicative case is completely straightforward.

Preliminary Remark 2. For reasons of simplicity, I will not refer to the
premises as to a couple. I will just treat them as a single set. It should
however be kept in mind that this is only a matter of speech.

13.3.1 The Lower Limit Logic CL♦

The lower limit logic of the logic CLabd is the “modal” logic CL♦. First,
consider its language schema.

Language Schema. CL♦ is based on the language LM, which is the stan-
dard propositional language L (see chapter 4, section 4.2.1), extended with
the modal operator ♦. The set WM of well–formed formulas of the language
LM is constructed as usual. Table 13.1 below clearly states the relation be-
tween L and L♦.

6The elements of Γ, Γe and the formula A are all elements of the standard propositional
language L (see also section 13.3.1). Hence, they do not contain the modal operator ♦.
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language letters connectives set of formulas
L S ¬,∧,∨,A W
LM S ¬,∧,∨,A,♦ WM

Table 13.1: Relation between L and L♦.

The set of primitive formulas of the language L is the set S ∪¬ S, with
¬S = {¬A | A ∈ S}. Now, consider the following definitions, they will turn
out to be useful in the remaining of this chapter:

Definition 13.4 A formula is in disjunctive normal form (DNF) when it
is a disjunction of conjunctions of primitive formulas.

Definition 13.5 DNF (L) = {A ∈ W | A is in DNF}.

Definition 13.6 CON(L) = {A1 ∧ ... ∧An ∈ W | A1, ..., An ∈ S∪¬S}.

Semantics. Semantically, the logic CL♦ is characterized as follows: a
CL♦–model for the language L, with S the set of sentential letters, ¬S =
{¬A | A ∈ S} the set of negated sentential letters, and W♦ = {♦A | A ∈
WM}, is an assignment function v:

AP1 v : S 7→ {0, 1}.
AP2 v : ¬S 7→ {0, 1}.
AP3 v : W♦ 7→ {0, 1}.

The valuation function vM determined by the model M is defined as follows:7

SP1 vM : W 7→ {0, 1}.
SP2 For A ∈ S: vM (A) = 1 iff v(A) = 1.
SP3 For A ∈ S: vM (¬A) = 1 iff vM (¬A) = 0.
SP4 vM (a)= 1 iff vM (a1) = 1 and vM (a2) = 1.
SP5 vM (b)= 1 iff vM (b1) = 1 or vM (b2) = 1.
SP6 vM (♦A) = 1 iff v(♦A) = 1.

Truth in a model, semantical consequence, and validity are defined as usual.

Proof Theory. The CL♦–proof theory is the same as the one for CL
(see chapter 4, section 4.2.3). Hence, there are no inference rules related
to the modal operator, which means that even Replacement of Identicals is
not possible within the reach of a modal operator. In other words: “modal
formulas have no modal consequences.”8 What this comes down to, will
become clear by considering some examples:

7a– and b–formulas are defined as in chapter 4, table 4.1.
8In fact, CL♦ resembles the modal logic IM from Batens & Haesaert [31]. Semantically,

IM is obtained from CL♦ by replacing clause SP6 by the following one:



210 Relevance and Abductive Reasoning

(1) ♦(A ∧B) |6−CL♦ ♦A
(2) ♦A |6−CL♦ ♦(A ∨B)
(3) ♦A, ♦B |−CL♦ ♦A ∧ ♦B
(4) ♦(A ∧B) |6−CL♦ ♦(B ∧A)
(5) ♦A |6−CL♦ ♦(B A A)
(6) ♦A |−CL♦ B A ♦A

The last two examples make clear how the irrelevance problem will be
avoided in the adaptive logics based on CL♦: if the abductive inferences
are limited to those of the following form

A A B, ♦B |− A,

then the implication A A B cannot have been derived from the formula ♦B,
but has to follow from the background theory.

13.3.2 The Adaptive Logic CLabd

As stated above, the logic CLabd has two variants, one for practical ab-
duction and one for theoretical abduction. They will be called respectively
CLabd

p and CLabd
t . Both have the logic CL♦ as their LLL, but differ

concerning the set of abnormalities and the adaptive strategy.

Practical Abduction. The logic CLabd
p is a standard (flat) adaptive

logic, with the set Ωp as its set of abnormalities.

Ωp = {(A A B) ∧ (♦B ∧ ¬A) | A ∈ DNF (L) and |6−CL♦ A A B}.

Its adaptive strategy is the standard reliability strategy.

Theoretical Abduction. The logic CLabd
t is also a standard adaptive

logic, with the set Ωt as its set of abnormalities.

Ωt = {(A A B) ∧ (♦B ∧ ¬A) | A ∈ CON(L) and |6−CL♦ A A B}.

The adaptive strategy of the logic CLabd
t is the relevant reliability strategy,

a particular variant of the standard reliability strategy.

SP6’ vM (♦A) = 1 iff vM (A) = 1 or v(♦A) = 1.

Proof theoretically, the following inference rule should be added to the CL♦–proof theory:

Refl♦ A I ♦A.

As a consequence, one could claim that IM is CL♦ with “a reflexive accessibility relation”.
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13.3.3 Proof Theory of CLabd

The proof theories of CLabd
p and CLabd

t are obviously quite resemblant.
First, consider the deduction rules, which are the same for both logics.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−CL♦ B and each of A1, ..., An occurs in the proof on
lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−CL♦ B ∨Dab(Θ) and each of A1, ..., An occurs in the
proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Next, consider the marking criterium. For both logics, it consists of one
marking rule. Nevertheless, there is an important difference between both
logics.

Practical Abduction. The logic CLabd
p is based on the standard reli-

ability strategy, so that at every stage of the proof, the set of unreliable
formulas is constructed by means of the minimal Dab–consequence derived
at that stage.

Definition 13.7 Dab(∆) (∆ ⊂ Ω) is a minimal Dab–consequence at stage
s of the proof iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is also a Dab–
consequence at stage s of the proof.

Definition 13.8 Us(Γ) = {A ∈ Ω | A ∈ ∆ and Dab(∆) is a minimal Dab–
consequence of Γ at stage s of the proof}.

As usual, whether or not a line is marked at a stage of the proof, now depends
on the intersection of its condition and the set of unreliable formulas at that
stage.

Definition 13.9 Line i is marked at stage s of the proof iff where ∆ is its
condition, ∆ ∩ Us(Γ) 6= ∅.

Theoretical Abduction. Marking for CLabd
t is slightly more compli-

cated. First, I need to introduce the notion of homogenous Dab–formulas,
which are Dab–formulas based on the same explanandum, and constructed
by means of the same sentential letters.

Definition 13.10 s(A) = {B ∈ S | B occurs in the formula A}.
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Definition 13.11 Dab–formulas (A A B) ∧ (♦B ∧ ¬A) and (A′ A B′) ∧
(♦B′ ∧ ¬A′) are homogenous iff B = B′ and s(A) = s(A′).

In order to make this more concrete, consider the examples below.

Example 13.1 The following Dab–formulas are homogenous:

• ((p∧¬r∧s) A q)∧♦q∧¬(p∧¬r∧s) and ((¬p∧r∧s) A q)∧♦q∧¬(¬p∧r∧s)
• ((¬p∧ s) A ¬(q ∧ r))∧♦¬(q ∧ r)∧¬(¬p∧ s) and ((p∧¬s) A ¬(q ∧ r))∧

♦¬(q ∧ r) ∧ ¬(p ∧ ¬s)

Next, it is possible to separate the homogenous from the non–homogenous
Dab–consequences of a premise set. The former obviously being those Dab–
consequences which consist of homogenous abnormalities.

Definition 13.12 Dab(∆) is a homogenous Dab–consequence of Γ at stage
s of the proof iff Dab(∆) is a minimal Dab–consequence of Γ at stage s of
the proof and all elements in ∆ are homogenous.

Finally, the set of unreliable abnormalities at a stage of the proof can be
constructed by relying on the relevant Dab–consequences of a premise set
at that stage.

Definition 13.13 Dab(∆) (∆ ⊂ Ω) is a relevant Dab–consequence of Γ at
stage s of the proof iff Dab(∆) is a minimal Dab–consequence at stage s
of the proof and there is no ∆′ such that Dab(∆′) is a homogenous Dab–
consequence of Γ at stage s of the proof and ∆ ∩∆′ 6= ∅.

Definition 13.14 U r
s (Γ) = {A ∈ Ω | A ∈ ∆ and Dab(∆) is a homogenous

or a relevant Dab–consequence of Γ at stage s of the proof}.

The marking rule for the relevant reliability strategy is now plainly
straightforward, as it is the same as for the standard reliability strategy:

Definition 13.15 Line i is marked at stage s of the proof iff where ∆ is its
condition, ∆ ∩ U r

s (Γ) 6= ∅.

Final Derivability. As for all adaptive logics, I should also mention the
definitions for final CLabd–derivability. As they are completely standard,
they do not need any further explanation.

Definition 13.16 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 13.17 Γ |−CLabd A (A is finally CLabd–derivable from Γ) iff
A is finally derived on a line of a proof from Γ.
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Example. Because the deduction rules of CLabd
p and CLabd

t are the same,
the example below will do for both of them. Consider the premise couple
〈Γ,Γ♦〉, with Γ = {p A q, r A q, s A t, u A z, s,¬z} and Γ♦ = {♦q,♦t}.

Finally, some terminological remarks. Marking for CLabd
p and CLabd

t

will be denoted by respectively Xp and Xt, and Dab–formulas will be ab-
breviated as follows 〈A,B〉 =df (A A B) ∧ (♦B ∧ ¬A).

1 p A q –;PREM ∅
2 r A q –;PREM ∅
3 s A t –;PREM ∅
4 u A z –;PREM ∅
5 s –;PREM ∅
6 ¬z –;PREM ∅
7 ♦q –;PREM ∅
8 ♦t –;PREM ∅
9 p 1, 7;RC 〈p, q〉
10 r 2, 7;RC 〈r, q〉
11 s 3, 8;RC 〈s, t〉
12 u 4, 8;RC 〈u, z〉

At stage 12 of the proof, line 9 to 12 have been derived conditionally. None
of them is marked yet. This however changes when the proof is extended as
follows.

11 s 3, 8;RC 〈s, t〉 Xp Xt

12 u 4, 8;RC 〈u, t〉 Xp Xt

13 〈u, z〉 4, 6, 8;RU ∅
14 〈s, t〉 ∨ 〈¬s, t〉 3, 5, 8;RU ∅

At stage 14 of the proof, line 11 and 12 are marked for both reliability and
relevant reliability. Moreover, as both Dab–consequences on line 13 and 14
are relevant Dab–consequences, line 11 and 12 will remain marked.

9 p 1, 7;RC 〈p, q〉 Xp Xt

10 r 2, 7;RC 〈r, q〉 Xp Xt

... ... ... ...
15 〈p, q〉 ∨ 〈r ∧ ¬p, q〉 1, 2, 7;RU ∅
16 〈r, q〉 ∨ 〈p ∧ ¬r, q〉 1, 2, 7;RU ∅

At stage 16 of the proof, line 9 and 10 have also become marked for both
reliability and relevant reliability. Moreover, the Dab–consequences on line
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15 and 16 are minimal Dab–consequences, which means that line 9 and
10 will not become unmarked again for reliability. Hence, the formulas on
those lines are not finally derivable for the logic CLabd

p . But, the Dab–
consequences on line 15 and 16 are not homogenous, and it is possible to
extent the proof in such a way that they are not considered relevant Dab–
consequences anymore.

9 p 1, 7;RC 〈p, q〉 Xp

10 r 2, 7;RC 〈r, q〉 Xp

... ... ... ...
15 〈p, q〉 ∨ 〈r ∧ ¬p, q〉 1, 2, 7;RU ∅
16 〈r, q〉 ∨ 〈p ∧ ¬r, q〉 1, 2, 7;RU ∅
17 〈r ∧ p, q〉 ∨ 〈r ∧ ¬p, q〉 1, 2, 7;RU ∅
18 〈p ∧ r, q〉 ∨ 〈p ∧ ¬r, q〉 1, 2, 7;RU ∅

As a consequence, at stage 18 of the proof, line 9 and 10 have become
unmarked again with respect to the relevant reliability strategy. Hence, the
formulas on those lines are finally derivable for the logic CLabd

t . Moreover,
their disjunction is finally derivable for the logic CLabd

p .

19 r ∨ p 1, 2, 7;RC 〈r ∨ p, q〉

13.3.4 Semantics of CLabd

As the semantics of CLabd
p and CLabd

t differ in some respect, they will be
treated separately.

Practical Abduction. The CLabd
p –semantics is the standard semantics

for adaptive logics based on the reliability strategy. This means that seman-
tical CLabd

p –consequence is defined with respect to the reliable CL♦–models
of a premise set Γ.

Definition 13.18 Where M is a CL♦–model, Ab(M) = {A ∈ Ωp | M |=
A}.

Definition 13.19 Dab(∆) is a minimal Dab–consequence of Γ iff Γ |=CL♦

Dab(∆) and for all ∆′ ⊂ ∆, Γ |6=CL♦ Dab(∆′).

Definition 13.20 U(Γ) = ∆1 ∪ ∆2 ∪ ..., with Dab(∆1), Dab(∆2), ... the
minimal Dab–consequences of Γ.

Definition 13.21 A CL♦–model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 13.22 Γ |=CLabd
p

A iff A is verified by all reliable models of Γ.
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Theoretical Abduction. The CLabd
t –semantics is obviously a little more

complicated, as it is not based on the reliable CL♦–models of a premise set,
but on the relevant reliable models of a premise set.

Definition 13.23 Where M is a CL♦–model, Ab(M) = {A ∈ Ωt | M |=
A}.

Definition 13.24 Dab(∆) is a minimal Dab–consequence of Γ iff Γ |=CL♦

Dab(∆) and for all ∆′ ⊂ ∆, Γ |6=CL♦ Dab(∆′).

Definition 13.25 Dab(∆) is a homogenous Dab–consequence of Γ iff Dab(∆)
is a minimal Dab–consequence of Γ and all elements in ∆ are homogenous.

Definition 13.26 Dab(∆) is a relevant Dab–consequence of Γ iff Dab(∆)
is a minimal Dab–consequence of Γ and there is no ∆′ such that Dab(∆′)
is a homogenous Dab–consequence of Γ and ∆ ∩∆′ 6= ∅.

Definition 13.27 U r(Γ) = ∆1 ∪ ∆2 ∪ ..., with Dab(∆1), Dab(∆2), ... the
homogenous and relevant Dab–consequences of Γ.

Definition 13.28 A CL♦–model M of Γ is relevant reliable iff Ab(M) ⊆
U r(Γ).

Definition 13.29 Γ |=CLabd
t

A iff A is verified by all relevant reliable mod-
els of Γ.

13.3.5 Soundness and Completeness

As the logic CLabd
p is a standard adaptive logic, soundness and completeness

are implied by the standard format (see chapter 3).

Theorem 13.1 〈Γ,Γ♦〉 |−CLabd
p

A iff 〈Γ,Γ♦〉 |=CLabd
p

A.

Soundness and completeness for the logic CLabd
t is a bit more demanding.

In fact, the soundness and completeness proof given in Batens [26, pp. 232–
233] for adaptive logics based on the reliability strategy will also work for
CLabd

t , but only if Reassurance can be proven for relevant reliability. As a
consequence, I will do this below.

Theorem 13.2 (Reassurance) If Γ has CL♦–models, Γ also has CLabd
t –

models.

Proof. Suppose Γ has CL♦–models. Hence, where MCL♦

Γ and Mrr
Γ are

respectively the set of CL♦–models of Γ and the set of relevant reliable
models of Γ, the theorem obviously holds if Mrr

Γ = MCL♦

Γ . Next, consider
Γ ∪∆, with ∆ = Neg(Ω− U r(Γ)).9 The proof now proceeds in two steps:

9Remember that Neg(∆) = {¬A | A ∈ ∆} (see chapter 12).
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1. Γ ∪∆ has CL♦–models.
Suppose Γ ∪ ∆ has no CL♦–models. This can only be true when an
inconsistency is derivable from Γ∪∆. As Γ has CL♦–models, no incon-
sistencies follow from Γ alone. This means that some of the elements of
∆ should lead to an inconsistency. This implies that the negation of a
minimal Dab–consequence is derivable from ∆. But, this is impossible,
as for all minimal Dab–consequences of Γ, there is at least one disjunct
in U r(Γ) (by definition 13.26), which means that its negation has not
been allowed in ∆. This contradicts the supposition, which means that
Γ ∪∆ has CL♦–models.

2. If M is a CL♦–model of Γ ∪∆, then M ∈Mrr
Γ .

Suppose M is a CL♦–model of Γ∪∆ and M /∈Mrr
Γ . From the latter, it

follows that Ab(M) * U r(Γ), which means that Ab(M)∩(Ω−U r(Γ)) 6= ∅.
Now, suppose D ∈ (Ab(M) ∩ (Ω − U r(Γ))). Hence, (1) D ∈ Ab(M)
and (2) D ∈ (Ω − U r(Γ)). From (1), it follows that M verifies D (by
definition 13.23), and from (2), it follows that ¬D ∈ ∆, which means
that M verifies ¬D (as M is a model of Γ ∪ ∆). But, in view of the
CL♦–semantics, this is impossible, so that our supposition is rejected.

From the above, it now follows that Γ also has CLabd
t –models.

Now, because of theorem 13.2, soundness and completeness also follows
for the logic CLabd

t :

Theorem 13.3 〈Γ,Γ♦〉 |−CLabd
t

A iff 〈Γ,Γ♦〉 |=CLabd
t

A.

13.4 Paraconsistent Abduction

The adaptive logic AbL presented in the foregoing section, can only capture
abductive inferences based on a consistent background theory. When applied
to an inconsistent background theory, the logic AbL will unavoidably lead
to the trivial consequence set. This is a consequence of the fact that AbL
is characterized by translation to the logic CLabd, which has an explosive
LLL (see section 13.3.1).

However, it is a well–known fact that most of the interesting real–life
theories are inconsistent. Moreover, this will not prevent anyone from trying
to use them to explain certain (puzzling) phenomena, especially if those
theories appear to be the best ones around. As a consequence, if one wants
to explicate abductive reasoning, one should also consider paraconsistent
abduction, abduction based on an inconsistent background theory.

The Logic PAbL. In this section, I will present the adaptive logic PAbL,
the paraconsistent version of the logic AbL. It captures abductive inference
based on an inconsistent background theory. As for AbL, there are also two
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variants of PAbL, one that captures practical abduction (the logic PAbLp)
and one that captures theoretical abduction (the logic PAbLt).

When Γ∃i and Γ∃i♦ are defined respectively as in definitions 13.30 and
13.31, the logics PAbLp and PAbLt are characterized respectively as in
definitions 13.32 and 13.33 below.10

Definition 13.30 Γ∃i = {(∃i)A(i) | A ∈ Γ}.

Definition 13.31 Γ∃i♦ = {♦(∃i)A(i) | A ∈ Γe}.

Definition 13.32 〈Γ,Γe〉 |−PAbLp A iff 〈Γ∃i,Γ∃i♦〉 |−∃CLabd
p

(∃i)A(i).

Definition 13.33 〈Γ,Γe〉 |−PAbLt A iff 〈Γ∃i,Γ∃i♦〉 |−∃CLabd
t

(∃i)A(i).

In the remaining of this section, I will present the adaptive logics ∃CLabd
p

and ∃CLabd
t , starting with their lower limit logic, the logic ∃CL♦.

Preliminary Remark. As for the logic AbL, I will not refer to the
premises as to a couple, but will treat them as a single set. Again, this
is only a matter of speech.

13.4.1 The Lower Limit Logic ∃CL♦

The LLL of the logics ∃CLabd
p and ∃CLabd

t is the logic ∃CL♦, the ambiguity
logic based on the logic CL♦ from section 13.3.1.

Language Schema. The logic ∃CL♦ is based on the language L∃i♦. This
is the language L∃i (see chapter 7, section 7.3.1), extended with the peculiar
modal operator ♦ from above. The set of well–formed formulas of L∃i is
constructed in the usual way.

language letters connectives set of wffs
L S ¬,∧,∨,A W
L∃i SI ¬,∧,∨,A,∃,∀ W∃i

LI SI ¬,∧,∨,A WI

L∃i♦ SI ¬,∧,∨,A,∃,∀,♦ W∃i♦

LI♦ SI ¬,∧,∨,A,♦ WI♦

Table 13.2: Relations between L∃i, LI , L∃i♦ and LI♦.

Quite unsurprisingly, the set of primitive formulas of L∃i♦ is the set
SI∪¬SI , with ¬SI = {¬A | A ∈ SI}. As such, also the following definitions
can now be stated:

10Remark that in all those definitions, the elements of Γ,Γe and the formula A are wffs
of the standard propositional language L.



218 Relevance and Abductive Reasoning

Definition 13.34 A formula is in disjunctive normal form (DNF) when
it is a disjunction of conjunctions of primitive formulas.

Definition 13.35 DNF (LI) = {A ∈ WI | A is in DNF}.

Definition 13.36 CON(LI) = {A1∧...∧An ∈ WI | A1, ..., An ∈ SI∪¬SI}.

Semantics and Proof Theory. Both the semantics and the proof theory
can easily be reconstructed by relying on the information from sections 7.3
(chapter 7) and 13.3.1. As such, I will not discuss them anymore.

13.4.2 The Adaptive Logic ∃CLabd

Also for the paraconsistent case, there are two variants of ∃CLabd, one for
practical and one for theoretical abduction. In analogy with their consistent
counterparts, they will be called ∃CLabd

p and ∃CLabd
t . Both are based

on the logic ∃CL♦, but differ concerning set of abnormalities and adaptive
strategy.

Practical Abduction. The set of abnormalities of the logic ∃CLabd
p is

the set Ωp, the union of the sets Ωp
1 and Ω1

2.

a) Ωp
1 = {(∃i)A(i) ∧ ¬AI | (∃i)A(i) ∈ Γ∃i and AI ∈ I(A)}.

b) Ωp
2 = {(AI A (∃i)B(i)∧ (♦(∃i)B(i)∧¬AI) | AI ∈ DNF (LI) and |6−∃CL♦

(∃i)(A A B)(i)}.

The adaptive strategy of the logic ∃CLabd
p is the reliable normal selections

strategy (see chapter 12).

Theoretical Abduction. The set of abnormalities of the logic ∃CLabd
t

is the set Ωt, which is the union of the sets Ωp
1 and Ω1

2.

a) Ωt
1 = {(∃i)A(i) ∧ ¬AI | (∃i)A(i) ∈ Γ∃i and AI ∈ I(A)}.

b) Ωt
2 = {(AI A (∃i)B(i)) ∧ (♦(∃i)B(i) ∧ ¬AI) | AI ∈ CON(LI) and

|6−∃CL♦ (∃i)(A A B)(i)}.

The adaptive strategy of ∃CLabd
t is the relevant reliable normal selections

strategy, in which the relevant reliability strategy (see section 13.3.2) is
combined with the normal selections strategy in the same way as it is done
for reliability and normal selections in the reliable normal selections strategy.
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13.4.3 Proof Theory of ∃CLabd

As for CLabd
p and CLabd

t , the proof theories of ∃CLabd
p and ∃CLabd

t are
based on the same deduction rules, but have different marking criteria. First,
consider the deduction rules.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i)
an appropriate line number, (ii) A, (iii) —;PREM, (iv) ∅.

RU If A1, ..., An |−∃CL♦ B and each of A1, ..., An occurs in the proof on
lines i1, ..., in that have conditions ∆1, ...,∆n respectively, one may
add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n.

RC If A1, ..., An |−∃CL♦ B∨Dab(Θ) and each of A1, ..., An occurs in the
proof on lines i1, ..., in that have conditions ∆1, ...,∆n respectively,
one may add a line comprising the following elements: (i) an appro-
priate line number, (ii) B, (iii) i1, ..., in;RU, (iv) ∆1 ∪ ... ∪∆n ∪Θ.

Next, consider the marking criteria. As they differ, they will be treated
separately.

Practical Abduction. As ∃CLabd
p is based on the reliable normal selec-

tions strategy, its marking criterium consists of two marking rules, a reli-
ability marking rule and a normal selections marking rule. First, consider
the normal selections–marking rule. It is based on those Dab–consequences
of a premise set that only consist of elements of Ωp

1.

Definition 13.37 NS–marking for ∃CLabd
p : Line i is marked at stage s of

the proof iff where ∆ is its condition, Dab(Θ) has been derived at stage s,
Θ ⊂ Ωp

1 and Θ ⊆ ∆.

Next, consider the reliability–marking rule of ∃CLabd
p . It is based on the

set Us(Γ), the set of elements of Ωp
2 that are considered unreliable at stage

s of the proof.

Definition 13.38 Dab(∆) (∆ ⊂ Ω) is a minimal Dab–consequence at stage
s of the proof iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is also a Dab–
consequence at stage s of the proof.

Definition 13.39 Us(Γ) = {A ∈ Ωp
2 | A ∈ ∆ and Dab(∆) is a minimal

Dab–consequence of Γ at stage s of the proof}.

Definition 13.40 R–marking for ∃CLabd
p : Line i is marked at stage s of

the proof iff where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.
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Theoretical Abduction. Also the marking criterium for ∃CLabd
t con-

sists of two marking rules, a relevant reliability marking rule and a normal
selections marking rule. First, consider the normal selections marking rule,
it is the same one as for ∃CLabd

p :

Definition 13.41 NS–marking for ∃CLabd
t : Line i is marked at stage s of

the proof iff where ∆ is its condition, Dab(Θ) has been derived at stage s,
Θ ⊂ Ωp

1 and Θ ⊆ ∆.

Next, consider the relevant reliability marking rule. As for the relevant
reliability marking rule for CLabd(see section 13.3.3), it is based on the
relevant Dab–consequences of Γ at a stage of the proof. But, to be able to
select out the relevant Dab–consequences, first consider the minimal Dab–
consequences of Γ:

Definition 13.42 Dab(∆) (∆ ⊂ (Ωt
1 ∪Ωt

2)) is a minimal Dab–consequence
at stage s of the proof iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is also a
Dab–consequence at stage s of the proof.

It is now also possible to separate the homogenous from the non–homogenous
Dab–consequences of a premise set.

Definition 13.43 For AI ∈ WI , s(AI) = {B ∈ SI | B occurs in the
formula AI}.

Definition 13.44 Two Dab–formulas (AI A (∃i)B(i)) ∧ (♦(∃i)B(i) ∧ ¬AI)
and (A

′I A (∃i)B′(i)) ∧ (♦(∃i)B′(i) ∧ ¬A′I) are homogenous iff B = B′ and
s(AI) = s(A

′I).

Definition 13.45 Dab(∆ ∪ Θ) is a homogenous Dab–consequence of Γ at
stage s of the proof iff Dab(∆ ∪ Θ) is a minimal Dab–consequence of Γ at
stage s of the proof and all elements in Θ are homogenous.

Finally, it is possible to define the set U r
s (Γ), the set of unreliable abnor-

malities at a stage of the proof. It is constructed by relying on the relevant
Dab–consequences of the premise set at that stage.

Definition 13.46 Dab(∆ ∪ Θ) (∆ ⊂ Ωt
1 and Θ ⊂ Ωt

2) is a relevant Dab–
consequence of Γ at stage s of the proof iff Dab(∆ ∪Θ) is a minimal Dab–
consequence at stage s of the proof and there is no ∆′ ∪ Θ′ (∆′ ⊂ Ωt

1 and
Θ′ ⊂ Ωt

2) such that Dab(∆′ ∪Θ′) is a homogenous Dab–consequence of Γ at
stage s of the proof and Θ ∩Θ′ 6= ∅.

Definition 13.47 U r
s (Γ) = {A ∈ Ωt

2 | A ∈ ∆ and Dab(∆) is a homogenous
or a relevant Dab–consequence of Γ at stage s of the proof}.
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The marking rule for the relevant reliability strategy (RR) is now plainly
straightforward:

Definition 13.48 RR–marking for ∃CLabd
t : line i is marked at stage s of

the proof iff where ∆ is its condition, ∆ ∩ U r
s (Γ) 6= ∅.

Final Derivability. The definitions for final ∃CLabd–derivability are com-
pletely standard, so that I only need to mention them.

Definition 13.49 A is finally derived from Γ on line i of a proof at stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked again.

Definition 13.50 Γ |−∃CLabd A (A is finally ∃CLabd–derivable from Γ) iff
A is finally derived on a line of a proof from Γ.

Example. Before I start with the example, remember that
∨

(∆) refers to
the disjunction of all members of ∆, and that Ωi refers to the adaptive con-
dition of line i of the proof.11 Moreover, Dab–formulas will be abbreviated
as follows: 〈AI , B〉 = (AI A (∃i)B(i)) ∧ (♦(∃i)B(i) ∧ ¬AI).

Now, consider the example below, based on the premise couple 〈Γ∃i,Γ∃i♦〉 =
〈{(∃i)(p A q)(i), (∃i)(r A q)(i), (∃i)(¬q)(i), (∃i)(s)(i), (∃i)(¬s)(i)}, {(∃i)(♦q)(i)}〉.

1 (∃i)(p A q)(i) —;PREM ∅
2 (∃i)(r A q)(i) —;PREM ∅
3 (∃i)(¬q)(i) —;PREM ∅
4 (∃i)(s)(i) —;PREM ∅
5 (∃i)(¬s)(i) —;PREM ∅
6 (∃i)(♦q)(i) —;PREM ∅
7 p1 A q1 1;RC {(∃i)(p A q)(i) ∧ ¬(p1 A q1)}
8 r2 A q2 2;RC {(∃i)(r A q)(i) ∧ ¬(r2 A q2)}
9 (∃i)p(i) 6, 7;RC Ω7 ∪ {〈p1, q〉}
10 (∃i)r(i) 6, 8;RC Ω8 ∪ {〈r2, q〉}
11 s1 4;RC {(∃i)(s)(i) ∧ ¬(s1)}
12 ¬s1 5;RC {(∃i)(¬s)(i) ∧ ¬(¬s1)}

At stage 12 of the proof, lines 7–12 have been derived conditionally. No
markings occur yet. This however changes when the proof is extended as
follows:

11See chapter 7, section 7.4.1.
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9 (∃i)p(i) 3, 7;RC Ω7 ∪ {〈p1, q〉} Xp Xt

10 (∃i)r(i) 3, 8;RC Ω8 ∪ {〈r2, q〉} Xp Xt

... ... ... ...
13

∨
(Ω7 ∪ Ω8 ∪ {〈p1, q〉, 〈r2 ∧ ¬p1, q〉}) 1, 2, 6;RU ∅

14
∨

(Ω7 ∪ Ω8 ∪ {〈p2, q〉, 〈p1 ∧ ¬r2, q〉}) 1, 2, 6;RU ∅

At stage 14 of the proof, line 9 and 10 are marked for both reliability and
relevant reliability. Moreover, as the Dab–consequences on line 13 and 14
are minimal Dab–consequences of the premise set, line 9 and 10 will re-
main marked for reliability. But, they do not remain marked for relevant
reliability, for suppose the proof is extended in the following way:

9 (∃i)p(i) 3, 7;RC Ω7 ∪ {〈p1, q〉} Xp

10 (∃i)r(i) 3, 8;RC Ω8 ∪ {〈r2, q〉} Xp

... ... ... ...
15

∨
(Ω7 ∪ {〈p1 ∧ r2, q〉, 〈p1 ∧ ¬r2, q〉}) 1, 6;RU ∅

16
∨

(Ω8 ∪ {〈r2 ∧ p1, q〉, 〈r2 ∧ ¬p1, q〉}) 2, 6;RU ∅

At stage 16 of the proof, the Dab–consequences on line 13 and 14 are no
longer relevant Dab–consequences, so that line 9 and 10 become unmarked
again for relevant reliability. As a consequence, the formulas on those lines
are finally derivable for the logic ∃CLabd

t .
Also remark that the “disjunction” of the formulas on line 9 and 10 is

finally derivable for ∃CLabd
p .

17 (∃i)(p ∨ r)(i) 7, 8;RC Ω7 ∪ Ω8 ∪ {〈p1 ∨ r2, q〉}

Finally, the lines below show us that the inconsistencies in the premise set
do not influence the markings for reliability or relevant reliability. They can
only lead to NS–markings.

18
∨

(Ω11 ∪ Ω12 ∪ {〈p1, q〉}) 4, 5;RU ∅
19

∨
(Ω11 ∪ Ω12) 4, 5;RU ∅

13.4.4 Semantics of ∃CLabd

The semantics of both ∃CLabd
p and ∃CLabd

t resembles the semantics of the
logic ∃CLūNssr of chapter 12. As such, their semantics should be quite
understandable.

As the semantics of ∃CLabd
p and ∃CLabd

t differ in some respect, I will
treat them separately. However, I will first state some definitions that are
equivalent for both logics.
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First of all, consider the definitions for the Ω1– and Ω2–abnormal part
of an ∃CL♦–model of the premise set Γ.

Definition 13.51 Where M is a ∃CL♦–model of Γ, its Ω1–abnormal part
is the set Ab1(M) = {A ∈ Ω1 |M |= A}.

Definition 13.52 Where M is a ∃CL♦–model of Γ, its Ω2–abnormal part
is the set Ab2(M) = {A ∈ Ω2 |M |= A}.

Next, consider the definition of a minimal Dab–consequence of the premise
set.

Definition 13.53 Dab(∆) (∆ ⊂ (Ω1 ∪Ω2)) is a minimal Dab–consequence
of Γ iff Γ |−∃CL♦ Dab(∆) and for all ∆′ ⊂ ∆, Γ |6−∃CL♦ Dab(∆′).

Finally, consider the set of ∃CL♦–models of the premise set.

Definition 13.54 M0 =df {M |M |= Γ}.

Practical Abduction. As the semantics of the logic ∃CLabd
p is com-

pletely equivalent to the semantics of the logic ∃CLūNssr (chapter 12), I
will only state the necessary definitions.

Definition 13.55 U(Γ) = {A ∈ Ωp
2 | A ∈ ∆ and Dab(∆) is a minimal

Dab–consequence of Γ}.

Definition 13.56 Mr =df {M ∈M0 | Ab2(M) ⊆ U(Γ)}.

Definition 13.57 Mm =df {M ∈ Mr | for no M ′ ∈ Mr, Ab1(M ′) ⊂
Ab1(M)}.

Definition 13.58 Φ(Γ) = {Ab1(M) |M ∈Mm}.

Definition 13.59 A set Σ of ∃CL♦–models of Γ is a reliable normal set iff
for some φ ∈ Φ(Γ), Σ = {M ∈Mm | Ab1(M) = φ}.

Definition 13.60 Γ |=∃CLabd
p

A iff A is verified by all members of at least
one reliable normal set of ∃CL♦–models of Γ.

Theoretical Abduction. The semantics of the logic ∃CLabd
t is slightly

more demanding. First, as for the proof theory, it is necessary to distinguish
between homogenous and relevant Dab–consequences of a premise set.

Definition 13.61 Dab(∆ ∪ Θ) (∆ ⊂ Ωt
1 and Θ ⊂ Ωt

2) is a homogenous
Dab–consequence of Γ iff Dab(∆ ∪ Θ) is a minimal Dab–consequence of Γ
and all elements in Θ are homogenous.
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Definition 13.62 Dab(∆ ∪ Θ) (∆ ⊂ Ωt
1 and Θ ⊂ Ωt

2) is a relevant Dab–
consequence of Γ iff Dab(∆ ∪ Θ) is a minimal Dab–consequence of Γ and
there is no ∆′ ∪ Θ′ (∆′ ⊂ Ωt

1 and Θ′ ⊂ Ωt
2) such that Dab(∆′ ∪ Θ′) is a

homogenous Dab–consequence of Γ and Θ ∩Θ′ 6= ∅.

Next, the set of unreliable abnormalities U r(Γ) is based on the homogenous
and the relevant Dab–consequences of a premise set.

Definition 13.63 U r(Γ) = {A ∈ Ωt
2 | A ∈ ∆ and Dab(∆) is a homogenous

or a relevant Dab–consequence of Γ}.

From now on the characterization of the ∃CLabd
t –semantics is equivalent to

the one for ∃CLabd
p , which means that from the set of ∃CL♦–models of Γ

those models are selected that are reliable with respect to Ωt
2 and minimally

abnormal with respect to Ωt
1.

Definition 13.64 Mr =df {M ∈M0 | Ab2(M) ⊆ U r(Γ)}.

Definition 13.65 Mm =df {M ∈ Mr | for no M ′ ∈ Mr, Ab1(M ′) ⊂
Ab1(M)}.

Next, the set Mr is subdivided into relevant normal sets.

Definition 13.66 Φ(Γ) = {Ab1(M) |M ∈Mm}.

Definition 13.67 A set Σ of ∃CL♦–models of Γ is a relevant reliable nor-
mal set iff for some φ ∈ Φ(Γ), Σ = {M ∈Mm | Ab1(M) = φ}.

Finally, semantic consequence is defined by means of those relevant normal
sets of ∃CL♦-models of the premise set.

Definition 13.68 Γ |=∃CLabd
t

A iff A is verified by all members of at least
one relevant reliable normal set of ∃CL♦–models of Γ.

13.4.5 Soundness and Completeness

As the logic ∃CLabd
p is based on the relevant reliability theory, soundness

and completeness is proven in the same way as for the logic ∃CLūNssr from
chapter 12. As a consequence, I will not present the proofs here, but leave
them to the reader.

Theorem 13.4 Γ |−∃CLabd
p

A iff Γ |=∃CLabd
p

A.

Soundness and completeness for the logic ∃CLabd
t has not been proven yet,

but I suppose soundness and completeness for ∃CLabd
t simply follows from

the soundness and completeness of the logics ∃CLūNssr (chapter 12) and
CLabd

t (section 13.3.5).

Theorem 13.5 Γ |−∃CLabd
t

A iff Γ |=∃CLabd
t

A.
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13.5 Conclusion

In this final chapter, I have presented the adaptive logics AbL and PAbL
that capture abductive reasoning respectively based on consistent and on
inconsistent background theories. Moreover, of both adaptive logics, I have
presented two variants, one that captures practical abduction and one that
captures theoretical abduction.
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The Aim of this Dissertation Bis

The main objective of this dissertation was to solve (once and for all) the
famous DS–problem in Relevance Logic. In fact, this objective was attained
by presenting the adaptive logic R∗

d in chapter 11. This logic succeeds in
reintroducing DS in standard relevant logics without reintroducing any of
the fallacies of relevance.

Other Results

Besides the main objective, some other results were reached in this disser-
tation. Consider a short overview stating the most important ones.

• Fitch–style proof theories were presented for a lot of paralogics (ch. 4).
• A non–truthfunctional semantic characterization was presented for stan-

dard relevant logics (ch. 5).
• A theory of classical and first degree relevance was presented and char-

acterized proof theoretically (ch. 6).
• An adaptive logic for classical relevance was presented, and proven equiv-

alent to Tennant’s Compassionate Relevantism (ch. 7).
• A universal logic method was presented for capturing classical and first

degree relevance (ch. 8).
• An adaptive logic for first degree relevance was presented (ch. 9).
• It was shown how the insights from inconsistency–adaptive logics can be

put to work for standard relevant logics. This resulted in inconsistency-
adaptive relevant logics (ch. 10).

• The logic for first degree relevance presented in ch. 9 was combined with
the implication from standard relevant logics (ch. 11).

• An (inconsistency–)adaptive logic was presented whose adaptive strategy
is not based on the minimal Dab–consequences of a premise set, but on
its relevant Dab–consequences (ch. 12).

• Some adaptive logics were presented for explicating abductive reasoning
processes (ch. 13).
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Appendix A

After All, Disjunction is An
Ambiguous Connective

Introduction. In chapter 2, I showed that the DS–problem in relevant
logics (RL) cannot be coherently solved by interpreting the disjunction as
an ambiguous connective. In this small appendix, I will however show that
it is nevertheless possible to treat the disjunction in relevant logics as an
ambiguous connective. But, in order to avoid the problems of the “ambigu-
ous connective”–approach that was presented in chapter 2, the intensional
disjunction cannot be defined by means of the relevant implication. I claim
that it should be defined by means of the material implication:

Definition A.1 A⊕B =df (∼A ⊃ B) ∧ (∼B ⊃ A) ∧ (A ∨B).

Moreover, as in Read’s account, intensional disjunction merely expresses de-
ductive dependency, and not some kind of relevance between the disjuncts.1

The Language Schema. In order to characterize relevant deduction by
treating the disjunction as an ambiguous connective, first extend the lan-
guage schema L of standard relevant logics with the material implication ⊃
and with the intensional disjunction ⊕. This gives us the language L⊕.

language letters connectives set of formulas
L S ∼,∧,∨,→ W
L⊕ S ∼,∧,∨,→,⊃,⊕ W⊕

Table A.1: Relations between L and L⊕.

1Do notice that Read would probably be horrified by definition A.1, which has to do
with the fact that he completely turns away from classically oriented logic.
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The Relevant Logics. The relevant logic R⊕ based on the language L⊕,
is equivalent to the logic R extended with the material implication. As this
logic was already presented in chapter 5 (section 5.4.5), I will not present
the proof theory and the semantics anymore.

Moreover, as is done throughout this dissertation, the logic R⊕ is taken
to stand for classical R⊕–derivability, while the logic R⊕

d is taken to capture
relevant R⊕–derivability.

The Entailments. It is now easily verified that the logic R⊕ validates
some entailments that are not validated by the logic R, among others the
intensional version of DS (IDS).

Entailment No Entailment
((A⊕B) ∧ ∼A) → B ((A ∨B) ∧ ∼A) → B

A→ (A ∨B) A→ (A⊕B)
(∼A ∧ ∼B) → ∼(A⊕B) ∼(A⊕B) → (∼A ∧ ∼B)

Relevant Deduction. Of course, characterizing the relevant entailments
is not equal to characterizing relevant deduction. In order to character-
ize R⊕

d –derivability, first consider the definitions below. They determine
whether a formula is a positive or a negative part of another formula.2

1. A is a positive part of A, A ∨B, B ∨A, A ∧B, B ∧A and B → A.
2. A is a negative part of ¬A and A→ B.
3. If A is a positive part of B and B is a positive part of C, then A is a

positive part of C.
4. If A is a positive part of B and B is a negative part of C, then A is a

negative part of C.
5. If A is a negative part of B and B is a positive part of C, then A is a

negative part of C.
6. If A is a negative part of B and B is a negative part of C, then A is a

positive part of C.

For every formula A of the language W, there can now be constructed
an intensional counterpart A⊕.

Definition A.2 The formula A⊕ ∈ L⊕ is obtained from the formula A ∈ W
by replacing

(i) every subformula B ∨ C (resp. B A C) that is a positive part of A by
the formula B ⊕ C (resp. ¬B ⊕ C), and

2The notion of positive part (resp. negative part) which I present here, is the same as
the one that was given by Batens & Provijn in [37].
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(ii) every subformula B ∧ C that is a negative part of A by the formula
¬(¬B ⊕ ¬C).

Next, the premise set Γ ⊂ W should be translated to the premise set
Γ⊕, which is defined in the following way:

Definition A.3 Γ⊕ = {A⊕ | A ∈ Γ}.

Remark that this translation is necessary in order to be able to actually use
the inference rule IDS in actual proofs. In other words, if a premise set
doesn’t contain any intensional disjunctions, then the R⊕

d –consequence set
of that premise set will be equal to its Rd–consequence set.

Finally, relevant deduction can now be captured by presenting a proof
theory for R⊕

d . Consider its deduction rules.

PREM If A ∈ Γ⊕, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) —;PREM.

RU If |−R⊕ (A1 ∧ ... ∧ An) → B and each of A1, ..., An occurs in the
proof on lines i1, ..., in, one may add a line comprising the following
elements: (i) an appropriate line number, (ii) B, (iii) i1, ..., in;RU.

As an R⊕
d –proof is defined in the usual way, R⊕

d –derivability can now be
defined as follows:

Definition A.4 Γ⊕ |−R⊕
d
A iff there is a R⊕

d–proof of A from B1, ..., Bn ∈
Γ⊕.

Example. Consider the example below, based on the premise set Γ⊕ =
{p→ (s⊕ r), q → ∼s, p,∼r,∼(q ⊕∼p) → s}.

1 p→ (s⊕ r) —;PREM
2 q → ∼s —;PREM
3 p —;PREM
4 ∼r —;PREM
5 ∼(q ⊕∼p) → s —;PREM
6 (p ∧ q) → ((s⊕ r) ∧ ∼s) 1,2;RU
7 (p ∧ q) → r 6;RU
8 s⊕ r 1,3;RU
9 s 4,8;RU
10 (∼q ∧ p) → s 5;RU
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Relation with R∗
d. Probably the most remarkable fact about R⊕

d –deriva-
bility, is that it appears to be equivalent to R∗

d–derivability.

Definition A.5 Γ |−R∗
d
A iff Γ⊕ |−R⊕

d
A, for Γ ⊂ W and A ∈ W.

Although all evidence seems to support this theorem, I have not been able to
prove it yet. As a consequence, the truth of this theorem remains uncertain.3

Conclusion. In this appendix, I have shown that in spite of appearances,
the disjunction can be interpreted as an ambiguous connective. Nevertheless,
this can only be done by defining the intensional disjunction by means of the
material implication, and not as it is usually done (by means of the relevant
implication).

3Suppose that relevant deduction is characterized in the same way as it is done in this
appendix, but by taking the logic CLoNs as the underlying logic instead of the logic Rd.
The result will be the logic CLoNs⊕, of which I claim that the following can be stated:

Definition A.6 Γ |−CLāNs∗ A iff Γ⊕ |−CLoNs⊕ A, for Γ ⊂ W and A ∈ W.

Also for this theorem, no proof has been found yet, so it should remain provisional.
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