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INTRODUCTION 

 

The Achilles tendon is the largest and strongest tendon in the human body (40). During 

sport activities, tendon forces are recorded equal to 12.5 times body weight (53). Therefore, 

it is not surprising that the Achilles tendon injury is one of the most common tendon 

disorders. Brunet et al. noted that 15 - 18 % of all running injuries concern the Achilles 

tendon (17). Achilles tendon disorders can be both acute or chronic. However, the chronic 

Achilles tendon injury seems to be a significant cause of concern for both physiotherapist 

and patient.  

 

The chronic Achilles tendon disorder is a condition that is most often seen among 

recreational male runners aged between 35 and 45 years, associated with overuse (2). 

Basketball, volleyball and badminton are examples of other sport activities with a high 

incidence of chronic Achilles tendon disorders (72). However, this injury is also seen in 

individuals who are not physically active (2,32).  

 

Most patients with a chronic Achilles tendon overuse injury report an exercise – induced 

pain 2 to 6 cm proximal to the tendon insertion on the calcaneal bone (2). According to the 

classification of Blazina et al. (16), pain most often occurs at the beginning and after 

exercise. When the pathology progresses, pain will continue during sports activity. Finally, 

pain can appear at rest and during activities. Morning stiffness is also a recurrent symptom 

of this pathology. Moreover, Cook et al. stated hypothetically that there is a good 

correlation between the severity of the injury and the degree of morning stiffness (20). The 

degree and time of stiffness are considered to be good indicators of tendon health and 

recovery from injury (20).  

 

Despite a high incidence, the exact aetiology and pain mechanism of the chronic Achilles 

tendon injury have not been scientifically clarified.  
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Definition and pain mechanism  

 

The absence of inflammatory cells in biopsies indicates that a chronic Achilles tendon 

injury is a non – inflammatory degenerative process (41,48,49). For example, Alfredson et 

al. observed by means of a microdialysis technique no significant difference in the 

concentration of prostaglandine E2 between painful Achilles tendons and normal tendons 

(6). Histopathology of painful tendons shows degeneration, a disordered arrangement of 

collagen fibers, and an increase in vascularity, with a singular absence of inflammatory cells 

and a tendency to poor healing (7,41). On magnetic resonance imaging (MRI), this type of 

tendon degeneration is evident as an increased signal (45,64). On ultrasound, a fusiform 

expansion of the tendon and hypoechoic regions are almost always visible (73).  

 

In this respect, the nomenclature around chronic painful tendons has changed over the last 

decades. Nowadays, the terms tendinitis and tendonitis should be avoided. Maffulli et al 

stated that the term tendinosis should be used when there are signs of degeneration on 

imaging (60). The term tendinopathy is used as a generic descriptor of the typical clinical 

conditions in and around tendons arising from overuse (50,60).  

 

Recent research has tried to identify new theories for the pain mechanism related to the 

Achilles tendinopathy. The biochemical model has become appealing, as many chemical 

irritants and neurotransmitters may generate pain in tendinopathy. Significantly higher 

concentrations of glutamate have been found in tendons with tendinosis compared to 

normal tendons (6). Recently, the importance of glutamate as a mediator of pain in the 

human central nervous system has been underlined (25). Alfredson and Lorentzon found 

that a treatment with eccentric training resulted in a decreased tendon pain in patients with 

an Achilles tendinopathy. In contradiction with their expectations, the concentration of 

glutamate did not decrease. They concluded that the unchanged glutamate concentration 

could possibly be explained by a decreased sensitivity to glutamate on receptor level (3). 

Substance P and chondroitin sulphate may also be involved in producing pain in 

tendinopathy (11, 34, 57, 79).  

 

Another hypothesis states that the presence of neovascularisation plays a key role in 

Achilles tendinopathy (21,70,92). In order to investigate the involvement of 
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neovascularisation in the pain mechanism in an Achilles tendinopathy, painful tendons 

were injected with the sclerosing agent Polidocanol (68). Öhberg et al. found that eight out 

of the ten patients were satisfied with the results of the treatment. They reported a 

significantly reduced pain during activity and no remaining neovascularisation was seen on 

the colour Doppler examination. On the other hand, they stated that the neovascularisation 

remained in the two patients who were not satisfied. Surprisingly, the results of a recent 

investigation state that immediately after a sclerosing injection it is possible that the pain is 

decreased but the intratendinous vascularity is increased (1). The same researchers have 

also observed a similar increased vascularisaty in the early period after eccentric training. In 

the majority of the observed tendons, this increased vascularity remains during 2 – 3 weeks 

and then gradually decreases in the succesfully treated cases. Further research should 

investigate if this increased vascularity might possibly be a part of a healing response 

induced by treatment (1).  

 

Function of the Achilles muscle – tendon unit  

 

A muscle - tendon unit can fulfil different functions. Firstly, a muscle – tendon unit acts as 

a spring during stretch – shortening cycles or plyometrics. It is common knowledge that 

performance is enhanced when a concentric muscle activity is preceded by an eccentric 

phase in comparison to an isolated concentric contraction (13,29). Several studies claimed 

that this better performance is due to a greater storage and re-utilisation of series elastic 

energy (30). The work that is done upon the muscle during stretch can be stored in elastic 

structures (mainly tendons) and subsequently re - utilised during shortening, which leads to 

a greater performance. During almost all sport activities, the Achilles muscle – tendon unit 

is exposed to many stretch – shortening cylces (52). Therefore, the elasticity of the tendon 

plays an important role in sport performance. It is claimed in the literature that both 

strength and elasticity of the muscle – tendon unit should be well - adapted in order to 

execute these stretch – shortening cycles in an energy – saving way (30). 

 

Secondly, in predominantly concentric contractions, a muscle - tendon unit acts as a 

convertor of metabolic energy into mechanical work. The force, generated by the muscle, 

should be transferred immediately to the bone, in order to make limb movement possible. 

By linking muscle to bone, a muscle – tendon unit transfers a contractile force across a 



Chapter 1 

 6 

joint (67). The stronger the muscle – tendon unit, the more work that could be generated 

during concentric contractions (30,13,87).  

 

Therefore, during daily and sports activities, a muscle – tendon unit has to be both strong 

and elastic. Consequently, in the construction of prevention or rehabilitation programs for 

an Achilles tendinopathy, both characteristics must be kept in mind.  

 

Aetiology of the Achilles tendinopathy 

 

Understanding the clinical features related to the load deformation curve is necessary when 

investigating the aetiological factors of a chronic Achilles tendon injury. If the tissue is 

elongated between 4 to 8 % change in length, microscopic failure occurs, when collagen 

fibers start to slide past one another and fail (44). Since frequent cumulative microtraumata 

obstruct adequate repair, an overuse injury of the Achilles tendon may occur even if the 

tendon is loaded within its physiologic limits (56). An unbalance between the load of the 

sport activities and the loading capacity of the tendon leads to the chronic character of the 

Achilles tendon injury. Many risk factors, as described below, are thought to accelerate this 

process (2,8,14,22,33,38,42,43,44,47,54,55,62,65,66,83).  

 

Prevention and intervention studies have become focal points for researchers and 

clinicians. For these types of studies can be designed well, the risk factors for the injury 

must be clearly established. As stated before, the aetiology of an Achilles tendinopathy 

remains unclear, but is multifactorial, resulting from a combination of intrinsic and 

extrinsic risk factors (55). Many injury risk factors, both extrinsic (those outside of the 

body) and intrinsic (these from within the body) have already been suggested. Changes in 

training patterns, poor technique, previous injuries, footwear, and environmental factors 

such as training on hard, slippery, or slanting surfaces are considered extrinsic factors that 

predispose an athlete to a tendon overuse injury (8,14,38,55,83).  

In addition to these extrinsic factors, possible intrinsic risk factors for an Achilles 

tendinopathy have been mentioned in literature. Almost all studies that investigate age as a 

possible risk factor agree that chronic tendon injuries in general are significantly more 

common in aging athletes. For example, Kannus et al. carried out a 3-year prospective, 

controlled study of sport injuries in elderly athletes in order to determine the  number, 
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profile, and specific features of these injures compared with those of ‘young’ athletes (43). 

They concluded that tendon complaints in the elderly athletes were significantly more 

common than among young athletes. In a review of Kvist the authors stated that Achilles 

tendon overuse injuries occur at a higher rate in older athletes than most other typical 

overuse injuries (55). No data were listed in this review article(55). The review article of 

Alfredson and Lorentzon state that the peak incidence for an Achilles tendon injury is 

situated between age 35 and 45 (2). Probably this hypothesis is made on the basis of the 

practical experience of the researchers. In another study, Fahlström examined competitive 

badminton players retrospectively and found that there was a correlation between age and 

tendon pain in that examined middle – aged group (33). The prevalence and characteristics 

of painful conditions in the Achilles tendon region were examined in 32 middle – aged 

competitive badminton players by means of questionnaire and physiotherapist’s 

examination. Pain in the Achilles region was reported by 44%, either presently or during 

the past 5 years, generally localized in the middle portion of the tendon. Age was found to 

be correlated to Achilles tendon pain in these middle – aged badminton players (33). The 

authors also concluded that there was no relationship between symptoms of pain and body 

mass index, gender, training quantity, or years of playing badminton (33). As a consequence 

of aging, a decreased blood supply to the tendon has been suggested as a causal factor (37). 

Kannus and Jozsa  evaluated specimens obtained from the biopsy of spontaneously 

ruptured tendons in 891 patients who were treated between 1968 and 1989 (44). The 

specimens included 397 Achilles tendons. Ninety – seven percent of the pathological 

changes were degenerative, and most of them included hypoxic degenerative tendinopathy 

(44).  

 

Several biomechanical ‘abnormalities’ are also mentioned as possible intrinsic risk factors. 

Increased foot pronation has been proposed to be associated with Achilles tendinopathy 

(66). The article of Nigg is based on a critical analysis of the literature on heel – toe running 

addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, 

subject and material characteristics, epidemiology, and biological reactions (66). In this 

review article, excessive foot eversion and/ or tibial rotation movements have been 

proposed to increase the chance of overuse syndromes such as patellofemoral pain 

syndromes, shin splints, Achilles tendinitis, plantar fasciitis, and stress fractures (66). No 

exact data were presented in this article. In the study of Clement and co – authors, 109 
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runners were treated conservatively for overuse injury to the Achilles tendon (22). 

Retrospectively some etiologic factors were examined. The three most prevalent etiological 

factors were overtraining (82 cases), functional overpronation (61 cases), and 

gastrocnemius/soleus insufficiency (41 cases). Komi and co – workers have shown that 

increased pronation can result in increased EMG amplitude in the dorsiflexor muscles and 

decreased EMG amplitude in the plantarflexor muscles (54). Moreover, the overpronation 

results in a ‘wringing’ or twisting action of the Achilles tendon (54). McCrory et al. 

concluded on the basis of a retrospective study that a varus deformity of the forefoot 

correlates with Achilles tendinopathy (62). The purpose of this study was to determine 

whether relationships exist between selected training, anthropometric, isokinetic muscular 

strength, and endurance, ground reaction force, and rearfoot movement variables in 

runners afflicted with Achilles tendinitis. The authors examined differences in selected 

measures between a noninjured cohort of runners and a cohort of injured runners (62). 

Isokinetic, kinetic and kinematic measures were collected. The goal of their study was to 

identify the factors that discriminate between the injured and control groups. Years of 

running, training pace, stretching habits, overpronation, plantar flexion peak torque at 

180°. s -1, and arch index were found to be significant discriminators (62).  

Also leg – length discrepancy is mentioned to be a potential contributing factor (42). However, 

in the referred article no exact data are proposed.  

In contrast, Aström has shown, in a thesis including 362 consecutive patients with chronic 

Achilles tendinopathy and 147 control patients, that biomechanical defaults were not 

important in chronic Achilles tendinopathy (8). It should be noted, however, that up to 

now only statistically significant associations have been found from retrospective studies. 

No prospective study has identified a definite cause – effect relationship.  

Consequently, studies mentioned an association between an altered  joint mobility and the 

occurrence of an Achilles tendinopathy. Kvist compared the mobility of athletes with 

Achilles tendinopathy and healthy athletes (55). He demonstrated that decreased mobility 

of the subtalar joint and limited range of motion of the ankle joint were significantly more 

frequent in athletes with Achilles tendinopathy (55). During 1976 – 1986, 3336 athletes 

consulted the Turku Sports Medical Research Unit, 455 (14%) of these athletes for Achilles 

tendon injuries. Achilles tendon problems were more frequent among joggers (66%), tennis 

players (32%), and runners (24%). A marked limited total passive subtalar joint mobility 

and/or ankle joint dorsiflexion with knee extended was found in 70% of the athletes with 
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Achilles tendon pain. Kaufman et al. investigated the relation between the foot structure 

and range of motion and lower extremity musculoskeletal overuse injuries among military 

recruits (47). The purpose of this prospective study was to determine whether an 

association exists between foot structure and the development of musculoskeletal overuse 

injuries. The study group was a well – defined cohort of 449 trainees at the Naval Sapatial 

Warfare Training Centre. Before beginning of the training, measurements were made of 

ankle motion, subtalar motion, and the static and dynamic characteristics of the foot arch. 

The subjects were tracked prospectively for injuries throughout training. The risk factors 

include dynamic pes planus, pes cavus, retricted ankle dorsiflexion, and increased hindfoot 

inversion (47). They concluded that an increased tightness of the gastrocnemius was also a 

risk factor for an Achilles injury (47). 

However, the relationship between range of motion and Achilles tendon injury remains 

controversial. In a review of Murphy et al (65), 3 studies (12,47,82) reported an association 

between increased range of motion and lower extremity injury, whereas 4 (9,63,84,86) 

reported no association. Soderman et al. found knee hyperextension greater than 10° to be 

a risk factor for lower extremity injury in female soccer players (82). However, ankle 

dorsiflexion range of motion and hamstrings flexibility were not risk factors. Beynnon et al. 

showed that increased calcaneal eversion motion was a risk factor for ankle injury in female 

collegiate athletes, but not for male athletes (12). Kaufman et al. found that increased 

hindfoot inversion was a risk factor for Achilles tendinitis, but ankle and hindfoot motion 

were not risk factors for lower extremity stress fractures in military recruits (47). As 

mentioned above, four studies in the review of Murphy et al. reported no association (65). 

Twellaar et al. found no significant differences in terms of range of motion about ankle, hip 

and knee between physical education students who sustained lower extremity injuries and 

those who did not (84). In a study of lower extremity injury among dancers, Wiesler et al. 

did not find a relation between ankle range of motion and injury (86). Barrett et al. reported 

no relation between plantar and dorsiflexion range of motion and ankle injury among 

basketball players (9). In addition, Milgrom et al found no relation between hip internal and 

external rotation in male infantry recruits who sustained ankle injuries compared with those 

who did not (63).  

A possible reason for the disagreement in the literature is that these studies investigated 

lower extremity injuries as a group and did not focus on the Achilles tendon in specific.  
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Finally, the importance of muscle weakness and imbalance in the development of a chronic 

Achilles tendon injury is also a matter of debate. Kannus stated that if a muscle is weak or 

fatigued, the energy – absorbing capacity of the muscle-tendon unit is reduced (42). In that 

case, the muscle no longer protects the tendon from strain injury (42). Alfredson et al. 

retrospectively found that the calf muscle strength on the injured side was significantly 

lower, both concentrically and eccentrically, compared with the non – injured side of 

middle -  aged patients (5). However, no prospective studies have been executed.  

 

In the current literature none of the discussed risk factors were confirmed by means of 

prospective cohort studies and studied an Achilles tendon injury in specific. A substantial 

problem of the frequently used retrospective investigations is that they do not provide 

conclusive evidence on whether the examined factors are the causes or the consequences 

of injuries (36). The lack of high – quality prospective studies limits the strength of the 

conclusions that can be drawn regarding these potential risk factors.  

 

In conclusion, many intrinsic risk factors, frequently mentioned in literature, have no or 

poor scientific evidence. Consequently, studies with a prospective character, focusing on 

the Achilles tendon in specific are recommended.  

 

Rehabilitation and prevention programs  

 

As a consequence of the recent histopathologic findings, the effectiveness of treatment 

regimens with an anti – inflammatory goal, are highly questioned in the current literature. 

Nowadays, most authors agree that an intervention program for Achilles tendinopathy 

should consist of a combination of strategies aimed at controlling overuse and correcting 

possible extrinsic and intrinsic risk factors such as limb alignement, muscle weakness and 

decreased flexibility (2). A muscle – tendon unit should be both strong and elastic. As 

mentioned above, Alfredson et al. found that the calf muscle strength on the injured side 

was significantly lower compared to the non–injured side of middle-aged patients with 

Achilles tendinopathy (5). Otherwise, the relationship between the range of motion and an 

Achilles tendinopathy remains controversial. Some articles state that an increased flexibility 

is a risk factor for Achilles tendinopathy (12,47,82). Other studies reveal no association 

between range of motion and an Achilles tendinopathy (9,63,84,86). Nevertheless, it is 
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stated in several review articles that the ankle joint should be stretched on a regular basis 

during the rehabilitation of an Achilles tendon injury (2,37,41,48).  

 

All these data resulted in the fact that strength training and stretching have become the two 

cornerstones of an intervention program for an Achilles tendinopathy in the current 

literature.  

 

In order to strengthen the muscle – tendon unit, eccentric training regimens have become 

very popular. Eccentric loading exercises involve active lengthening of the muscle – tendon 

unit. The Achilles tendon is loaded by having the subject stand at the edge of a step and 

allow the heel drop over the edge (4). Progression can be made by increasing the speed of 

movement or by increasing the magnitude of the tensile force through changing the 

external resistance. The overall progression of loading is determined by the clinical 

symptoms so that a “maximum load” is always applied (4). This means that the patient 

should feel some pain or little discomfort during the exercises. The clinical use of eccentric 

exercises was pioneered in the literature by Curwin & Stanish in 1984 (23). More recently, 

Alfredson et al. prospectively studied the effect of heavy load eccentric calf muscle training 

in Achilles tendinopathy. This patient group was compared to a control group that 

proceeded to surgery (4). The study found that all the subjects in the eccentric training 

group were back to their pre – injury levels with running activity and the effect in terms of 

pain reduction and prevention in strength deficits were significantly better compared to the 

control group (4). In comparison to previous studies, this study used only eccentric 

exercises and the exercises were executed with pain. However, despite promising results, 

many questions remain unanswered. For example, why is the program successful? 

Theoretically, it could be the effect of this training leading to tendon hypertrophy and 

increased tensile strength. Possibly, the effect of the stretching component of the eccentric 

exercise has a significant influence on the elastic tendon characteristics (2). Recent studies 

have also hypothesized that eccentric training has a sclerosing effect on the 

neovascularisation (69,71).  

 

Traditionally, it is generally accepted that stretching promotes better performances and 

decreases the number of injuries (15,26,27,35,88,89). However, today the scientific 

evidence concerning these effects of stretching seems unclear (80,90). Nevertheless, 
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exercises in order to increase flexibility are common practice on the athletic field. 

Therefore, stretching exercises are regularly included in warm-up sessions and cooling-

down exercises. The three most common stretching techniques include proprioceptive 

neuromuscular facilitation (PNF), static stretching and ballistic stretching (77). Stretching is 

often used in rehabilitation and prevention programs for Achilles tendinopathy. However, 

today the scientific evidence concerning the preventive and curative effect of stretching on 

injuries seems unclear. Also the question which stretching technique is preferable used 

remains unanswered. 

 

In conclusion, strength training and stretching are frequently used in conservative 

treatment programs and seems to lead to moderate and good clinical outcome.  

 

Background and aim of this dissertation 

 

The first aim of this dissertation was to gain a better insight into the intrinsic risk factors for 

the development of an Achilles tendinopathy (chapter 2 and 3).  

 

Since the aetiology remains obscure in the literature and most research has been executed 

retrospectively, there is need for prospective cohort studies. Consequently, in chapter 3, a 

prospective study of intrinsic risk factors was performed in male recruits. Male officer 

cadets followed the same basic military training. The factors examined included 

anthropometrical characteristics, isokinetic ankle muscle strength, ankle joint range of 

motion, Achilles tendon stiffness (reliability study chapter 2), explosive strength, and 

leisure and sports activity. These factors were chosen on the basis of 1) their reliability of 

the testing methods, 2) the availability of the appropiate testing material, 3) the time 

schedule of the recruits and 3) the results of previous studies (5,28,31,46,61,65).  

 

The second aim of this dissertation was to investigate which regimes could be used in 

prevention and rehabilitation programs (chapter 4 and 5).  

 

In earlier studies, several authors state that adequate intervention strategies are still lacking 

(74).   

 



 General introduction  

 13 

Since an important function of the Achilles tendon is to initiate ankle movements by 

transferring muscle force to the calcaneal bone, many authors stated that increasing the 

strength of the plantar flexors should be the focus of prevention and rehabilitation 

programs. Despite the fact that eccentric training has been accepted as an appropiate 

strengthening method, new commercial intervention methods are constantly suggested. 

Sport coaches and physiotherapists try new methods in order to offer their athletes or 

patients a large assortment of training options. However, some of these relatively new 

training alternatives are insufficiently based on scientific evidence. All kinds of positive 

effects are presented by advertising. It is the duty of research studies to inform athletes and 

patients which effects of these training technologies are evidence based. One of these 

training methods is whole - body vibration.  

  

Whole-body vibration has become increasingly popular as a strength training tool. Whole-

body vibration (WBV) training is a training method which exposes the entire body to 

mechanical vibrations as the individual stands on a vibrating platform. Mechanical 

stimulations, characterized by a direction, an amplitude, a velocity and a frequency are 

transmitted through the entire body. Recent observations have shown the possibility of 

utilizing these vibration platforms as a training tool in an athletic setting (24,59,75). The 

observed improvements have been attributed to reflex muscle contractions as a result of a 

“tonic vibration reflex”. This reflex contraction is caused by an excitation of muscle 

spindles leading to an enhancement of the activity of the Ia loop (18,19,76).  

 

In chapter 4, a study was set up to examine the supplemental value of a whole-body 

vibration program in comparison to an equivalent traditional training program. The main 

purpose of the study was to investigate if a WBV program results in a higher strength gain 

compared to an equivalent exercise program performed without vibration. Because a 

decreased plantar flexor strength was detected as a risk factor for the development of an 

Achilles tendinopathy (chapter 3), the results of the study described in chapter 4 show 

wether or not WBV can be an interesting method to prevent an Achilles tendinopathy. 

However, further prospective studies should be done to confirm this hypothesis. In 

chapter 4, we also investigated the effect of whole-body vibration on postural control. 

This hypothesis does not directly relate to the main subject of this thesis. However, this 

parameter was chosen because in the literature concerning whole-body vibration it is highly 
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questioned if a vibration program could have an effect on the postural control of healthy 

subjects.  

 

Besides the strength management, obtaining an appropiate flexibility is seen as an second 

goal in the approach of tendon injuries. Therefore, stretching is often suggested as a 

second cornerstone of a prevention or rehabilitation program for an Achilles tendinopathy. 

Despite the fact that the preventive character of stretching is still debated in the literature 

(90), the two most commonly used stretching techniques ‘on the field’ are static and 

ballistic stretching. However, it has been stated in the past that ballistic stretching is 

disadvantageous, even harmful because the muscle may reflexively contract if restretched 

quickly (81). Therefore, many studies have been executed in order to define the real value 

of static and ballistic stretching (58,78,85,91). However, no single study has clarified if static 

and ballistic stretching have a different effect on different tissues. In chapter 5, different 

methods were used in order to detect the underlying mechanism for the increase in range 

of motion. The passive resistive torque of the plantar flexors during isokinetic passive 

motion of the ankle joint and the tendon stiffness measured by ultrasound imaging were 

assessed in order to define the effect of static and ballistic strething on the muscle – tendon 

tissue properties.  
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ABSTRACT 

 

The purpose of this study was to examine the test – retest reliability for the real time 

ultrasonic measurement method that is used to determine the stiffness of the Achilles 

tendon. Twenty-one healthy men and women aged 20-50 years took part in the study. The 

subjects underwent three identical test sessions held seven days apart. The lengthening of 

the tendon during maximal isometric plantar flexion was determined using 

ultrasonography. A dynamometer was used to measure torque output during isometric 

plantar flexion. The relationship between the muscle force and the elongation of the 

tendon was calculated to become a measure of the stiffness of the Achilles tendon. The 

ICC for the stiffness of the right and the left Achilles tendon was 0.80 and 0.82 

respectively, indicating a good reliability. The results demonstrate that this technique is 

reliable for the evaluation of the elastic properties of the Achilles tendon. This may be 

clinically important in the assessment of tendon properties.  

 

KEY WORDS  

Stiffness, tendon, ultrasonography, reliability  
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INTRODUCTION  

 

According to Hill’s classical model, the skeletal muscle – tendon complex consists of 

contractile and elastic components, the latter of which can be further divided into elements 

arranged in series with or parallel to muscle fibers [12,15,32,36]. The series elastic 

component is passively stretched by external force and interacts with the contractile 

component [43]. The series elastic component also functions as elastic energy storage and 

mechanical buffer. Anatomically, the series elastic component is composed of tendinous 

tissues (tendon and aponeurosis); epi -, peri -, and endomysium, sarcolemna, and 

endosarcomeric structures [38]. The tendon tissues play a very important part in the 

transmission of tension from the muscle fibre to the bone [29]. However, in most cases 

muscle fibres do not directly attach to the tendon but to the tendon plate or aponeurosis. 

An aponeurosis is an enveloping fascia that serves to bind muscles together. Since the 

aponeuroses are directly connected to the muscle fascicles, it is obvious that the strain 

distribution along the aponeurosis substantially affects the amount of fascicle shortening 

during contractions.   

The elastic properties of tendon structures have been so far determined on the basis of 

human cadaver and animal experiments [6,47]. Recently progress in technology has made it 

possible to study the dynamics of the tendon structures in vivo with the use of 

ultrasonography [11,17,19-29]. In 1995, Fukashiro et al [11] proposed an ultrasonographic 

method to determine elastic properties of tendon structures in vivo in humans from the 

observations of lengthening of the tendon and aponeurosis during isometric ramp 

contractions.  

In the literature concerning the mechanical properties of tendons, the quotient of the load 

to the elongation of the tendon has been calculated as an estimate of tendon stiffness [44]. 

Fukashiro et al. 1995 [11] claimed that one could determine the elastic properties of the 

Achilles tendon structures in vivo through the observation of the lengthening of the tendon 

and aponeurosis during isometric contractions of the plantar flexors.   

Isometric contraction literally means no change in muscle fibre length during contractions. 

However, because the tendon elastic properties, there could be some shortening of muscle 

fibres and lengthening of the tendon even during isometric contractions, i.e. when the total 

length of the muscle – tendon complex is kept constant. This implies that the muscle fibres 

produce mechanical work where there is no apparent work done by the whole muscle-
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tendon complex [17] . In case of the Achilles tendon, an increase in plantar flexion torque 

is accompanied by shortening of muscle fascicles and lengthening of tendon and 

aponeurosis. This is in agreement with the results of previous animal experiments which 

report that during a fixed-end contraction, internal shortening of muscle fibers occurred 

due to tendon and aponeurosis elongation [16,40].  

Moreover, Muramatsu et al. [38] measured and compared the strain of the human tendon 

and aponeurosis for human medial gastrocnemius muscle. There was no significant 

difference in strain between the Achilles tendon and aponeurosis. In addition,  no 

significant difference in strain was observed between the proximal and the distal regions of 

the aponeurosis. These results indicate that the tendinous tissues of the medial 

gastrocnemius muscle (tendon and aponeurosis) are homogenously stretched along their 

lengths by muscle contraction.  

The most important benefit of this technique is the fact that the measurements take place 

in vivo, in contrast with earlier studies on cadavers and animals [6,13,47]. In addition, the 

technique is non invasive. The technique can be used for several human tendons; the most 

commonly used is the Achilles tendon. Surprisingly, the test-retest reliability of the test has 

never been examined. The purpose of this study was hence to examine the test-retest 

reliability for the real time ultrasonic measurement method that is used to determine the 

stiffness of the Achilles tendon.  

 

MATERIALS AND METHODS 

 

Subjects 

Twenty-one healthy volunteers (9 males, 12 females) participated in this study. The mean 

age of the subjects was 30.5 years (range 20-50 years). The mean body weight was 64.4 kg 

(range 53 – 82 kg). Subjects with a history or complaints of Achilles tendinopathy or lower 

limb trauma were excluded from the study. None of the participants was training for an 

athletic even during this study. All subjects signed an informed consent. The Ethical 

Research Committee of Ghent University approved the study. Each subject underwent 

three identical test sessions, each session held seven days apart and taking place on the 

same day of the week and at the same time of the day in an attempt to ensure consistent 

activity levels. Both legs were tested. The same examiner familiar with the method did all 

the tests and verified that the subjects did the same physical activity prior to the test.  
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Measurement of the torque 

An isokinetic dynamometer (Biodex System 3) was used to determine torque output 

during isometric plantar flexion. The subject lay prone on a bench. First, the right ankle 

was placed in a 90° position (anatomical position) with the knee joint at full extension and 

the foot securely strapped to a footplate connected to the lever arm of the dynamometer 

(Fig.1). The standard Biodex ankle unit attachment with the Biodex provided Velcro 

straps was used in this study. To maintain the ankle joint and dynamometer axes alignment 

during plantar flexion contraction, the foot was firmly attached to the footplate of the 

dynamometer with a strap. The position and the height of the Biodex chair were recorded 

for each subject individually and were used in the following evaluations. Before the test, the 

subjects performed 3-5 submaximal contractions to be accustomed to the test procedure. 

After warm-up, the subjects were instructed to develop an isometric maximal voluntary 

contraction (MVC) during five seconds. The task was repeated three times per subject with 

30 s rest between the trials. Each subject was verbally encouraged to exert maximal 

voluntary effort by contracting as hard as possible. The same protocol was repeated 

similarly for the left leg. Isometric strength was expressed as peak torque. The force of the 

tendon was estimated from plantar flexion torque, the physiological cross-sectional area 

ratio of the medial gastrocnemius to all the plantarflexors, and the moment arm. 

Consequently, the value of the calculated force was used for the data analysis.  

 

Measurement of elongation of the tendon  

To obtain a measurement of the elongation of a tendon, the method of Fukashiro [11] was 

used.   The contractile component activates and the muscle-tendon unit shortens during a 

concentric activation but only the muscle belly shortens during an isometric activation. 

Therefore, increase in plantar flexion is accompanied by shortening of fascicles and 

lengthening of the tendon and the aponeurosis, this indicates that the muscle fibers 

produced mechanical work, which was observed in the tendon even in the so-called 

isometric contraction. In the present study, a real-time ultrasonic apparatus (Siemens 

Sonoline SL-1) was used to obtain a longitudinal ultrasonic image of the medial 

gastrocnemius (MG) muscle at 30 % of the lower leg (i.e. central).  An electronic linear 

array probe of 7.5 MHz wave frequency was secured with Velcro® straps on the skin (Fig. 

1). The ultrasonic images were recorded on videotape (Digital Camera Sony). The tester 

visually confirmed the echoes from the aponeurosis and the MG fascicles. Parallel echoes 
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running diagonally represent the collagen-rich connective tissue between the fascicles of 

the medial gastrocnemius. The darker areas between the bands of echoes represent the 

fascicles. The echo that runs longitudinally in the middle is from the aponeurosis. The 

point (x) at which one fascicle was attached to the aponeurosis was visualised on the 

ultrasonic image. This point (x) moved proximally during isometric torque output. The 

distance travelled by x (�x) is considered to indicate the lengthening of the aponeurosis 

and therefore also from the tendon [17,28,35,38] (Fig. 2). Measuring the displacement was 

done with the multimedia player, Light Alloy 1.D. The average score of the three 

measurements was used as a representative score for the elongation of the tendon 

(ELONG). Throughout the study, the same examiner who was familiar with the method 

performed all tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Measurement set-up. The subject lay prone on a bench. The ankle is placed in the anatomical 

position with the knee joint at full extension. A dynamometer (Biodex System 3) was used to determine 

torque output during isometric plantar flexion. A real-time ultrasonic apparatus (Siemens Sonoline SL-
1) was used to obtain a longitudinal ultrasonic image of the Achilles muscle-tendon unit. 
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Figure 2: Measurement of elongation of muscle-tendon unit structures 
Ultrasound images of longitudinal sections of the Achilles muscle-tendon unit at rest (A) and during 
isometric 100% maximal voluntary contraction (B). The distance travelled by the cross point (    ) was 
considered as the length change of the tendon structures during plantar flexion contraction. 
 

 

Calculation of the stiffness of the Achilles tendon 

The relationship between the supplied muscle force and the elongation of the Achilles 

tendon is calculated to become a measure of the stiffness of the Achilles tendon.  

First, the measured torque TQ (N.m) during maximal isometric plantar flexion was 

converted to muscle force Fm (N) by following equation:  

Fm = k. TQ. MA -1 

Where k is the relative contribution of the physiological cross-sectional area of the medial 

gastrocnemius within plantar flexor muscles (18%) [10] and MA is the moment arm length 

of triceps surae muscle at 90° of ankle joint (50mm) [33,39,46].  

Fm = 18/100 . TQ . (0.05)-1 

Secondly, the proportion between Fm and ELONG (N/mm) indicates the stiffness of the 

tendon (STIFFN). In this article, the calculations were used according to Kubo [28].  



Chapter 2 

 28 

Statistics 

Descriptive statistics were used to calculate the mean muscle force and the mean 

elongation values for the three testing sessions.   

Test – retest data were analysed using the Intraclass Correlation Coefficient (two – way 

mixed effects model average measure reliability – 3,k; in the nomenclature of Shrout and 

Fleiss [41]). Another indicator of reliability is the ‘Standard Error of Measurement’ (SEM). 

This within – subject standard deviation is also known as the typical error in a 

measurement. It expressed the band of confidence around an individual ‘s raw score. It is 

an estimate of error to use in interpreting an individual’s test score. The most common way 

of calculating this statistic that is cited in the sport science literature is by the means of the 

following equation: SEM = SD x (1- ICC) 0.5  where SD is the sample standard deviation 

and ICC is the calculated Intraclass Correlation Coefficient [5]. In case of a perfect 

agreement the SEM is zero and any change is a true one. The use of SD in the equation, in 

effect, partially ‘cancels out’ the interindividual variation that was used to the calculation of 

the ICC [3]. The 95% confidence range of Standard Error of Measurement was calculated 

using the expression 95%SEM = 1.96 x 20.5 x SEM0.5 where SEM is the calculated ‘Standard 

Error of Measurement’. The interpretation of the Standard Error of Measurement is 

analogous to the standard deviation; in the sense that the latter measures variability among 

individuals in the population, the former measures variability among samples [3,4,8,14].  

For comparison across sample, measurement error was also expressed as the SEM% 

(SEM% = (SEM/mean) x 100) to produce a unitless indicator of error magnitude.  

Stiffness as well as elongation and force were analysed in order to evaluate the different 

aspects of the method. In addition, differences in force, elongation and stiffness were 

analysed with a General Linear Model one-way ANOVA for repeated measures for each of 

our dependent variables with one within-subject factor (time - with three levels). The alpha 

level was set on 0.05. All statistical analysis was performed using SPSS for Windows 

(Version 10.0, SPSS, Inc., Chicago, IL) software.  

 

RESULTS  

 

The descriptive data for the muscle force (Fm), elongation (ELONG), and the stiffness 

values of the muscle – tendon unit (STIFFN = Fm/ELONG) for the three testing sessions 

are summarized in Table 1. The corresponding ICC–coefficients, p-values from the ICC-
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coefficients, SEM, 95%SEM and SEM% are summarized in Table 2. The test-retest 

Intraclass Correlation Coefficient values (ICC 3,k) were the highest for the muscle force 

values (0.95 and 0.96). The Intraclass Correlation Coefficient values for the elongation of 

the right and the left muscle-tendon unit of the subject were respectively 0.78 and 0.87. 

However, the clinically most important values were the Intraclass Correlation Coefficients 

for the stiffness of the muscle-tendon unit (0.80 and 0.82). SEM-values were 27.77 N and 

29.58 N, 0.89 mm and 0.68 mm, 6.89 N/mm and 8.06 N/mm respectively for the right 

and the left leg. The values for 95%SEM amounted to 14.61 N and 15.07 N, 2.61 mm and 

2.29 mm, 7.28 N/mm and 7.87 N/mm. SEM% - values were 8.51 % en 9.19 % for the 

muscle force, 13.90 % and 10.15 % for the elongation and 12.98 % and 15.83 % for the 

stiffness, respectively for the right and the left leg.  

 

Table 1: Mean and Standard Deviations (SD) for the muscle force (Fm), elongation (ELONG) and 
stiffness (STIFFN) of the left (L) and the right (R) muscle-tendon unit. 

Week 1 Week 2 Week 3  
Mean SD Mean SD Mean SD 

Fm L [N] 321.7 128.6 314.8 156.3 318.3 147.9 
Fm R [N] 326.2 120.6 299.5 139.6 309.8 124.2 
ELONG L [mm] 6.7 2.0 6.0 1.9 5.9 1.9 
ELONG R [mm] 6.4 2.0 5.4 1.9 6.2 1.9 
STIFFN L [N/mm]  50.9 24.4 55.8 25.2 54.7 19.0 
STIFFN R [N/mm] 53.1 19.6 56.7 19.4 51.3 15.4 
 

 

Table 2: Reliability indices for the muscle force (Fm), elongation (ELONG) and stiffness (STIFFN) of 
the left (L) and the right (R) muscle-tendon unit: Intraclass Correlation Coefficient (ICC), Standard Error 
of Measurement (SEM), 95% Confidence Range of Standard Error of Measurement (95%SEM) and 
SEM% (SEM/mean x 100). The p-values from the Intraclass Correlation Coefficients (ICC p-value) 
are also presented.  
 ICC  ICC p-value  SEM  95%SEM SEM%  
Fm L [N] 0.96 P< 0.001 29.58 15.07 9.19 % 
Fm R [N] 0.95 P< 0.001 27.77 14.61 8.51 % 
ELONG L [mm] 0.87 P < 0.001 0.68 2.29 10.15 % 
ELONG R [mm] 0.78 P < 0.001  0.89 2.61 13.90 % 
STIFFN L [N/mm] 0.82 P < 0.001 8.06 7.87 15.83 % 
STIFFN R [N/mm] 0.80 P < 0.001 6.89 7.28 12.98 % 
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DISCUSSION 

 

Establishing the reliability of a technique is an essential, though insufficient, prerequisite 

for its implementation as a clinical tool. Reproducibility may be expressed using different 

techniques but probably the most relevant is the error of measurement which indicates the 

amount of fluctuation at the individual level. For this purpose, the SEM is an effective tool. 

Using the average values as a denominator and the SEM of each of the parameters as the 

numerator, an estimate of the size of the error relative to the base measurement is 

obtained. Thus for example the relative SEM (SEM%) for Fm is less than 10% (e.g. 

(29,58/321.7) x100), indicating acceptable reproducibility. To render decision applicable at 

group level, the ICC is a suitable option. According to Fleiss [9], good reliability is 

demonstrated by an ICC of > 0.75. Intraclass Correlation Coefficients of > 0.90 are 

considered to indicate excellent reliability for clinical use [5,9,45]. Thus, the results of the 

present study support the hypothesis that the present technique has acceptable 

reproducibility required for evaluating the stiffness of the Achilles tendon.  

 

In this study, we calculated the stiffness of the Achilles tendon based on the elongation of 

the tendon and the muscle force. We found, in consistence with our expectations, that the 

reliability of the muscle force measurement was excellent, a finding indicated also in a 

previous study [7]. Our results show slightly lower values for the measurement of the 

elongation of the Achilles muscle-tendon unit. Magnusson [37] states that careful 

considerations need to be made about measuring the elongation. First, since the technique 

is based on the displacement of intramuscular fascicular structures that can be observed on 

the ultrasound image, the resulting deformation does not represent that of the muscle – 

tendon unit per se, but rather the total deformation of the combined tendon and 

aponeurosis (tendon structures) distal to the measurement site. Second, the method 

accounts only for two dimensions of structural deformation (i.e., in the sagittal plane), and 

cannot account for deformation in three dimensions. Third, although ultrasonography is 

applied during “isometric” conditions, it has been shown that the very slight joint rotation 

which was likely to take place could markedly affect the displacement measurements.  

In the present study, the delivered force of the plantar flexors was estimated from the 

plantarflexion torque, physiological cross – sectional area of the medial gastrocnemius to all 

the plantar flexors and the previously reported moment arm. Maganaris et. al. [31] defined 
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the moment arm as the distance between the joint center of rotation and the muscle line of 

action. We used one moment arm length for all subjects, despite variations in moment 

arms among subjects. However, we believe that the individual variations in a very 

homogenous population like our test population, play a secondary role. To determine the 

individual moment arm, sagittal plane MRIs could be obtained with the ankle in neutral 

position using the Reuleaux method as previously described [30,34]. It should be borne in 

mind that it is impossible to obtain an MRI on a regular basis. However, despite these 

limitations we suggest that the findings derived from present technique are clinically 

reproducible and should therefore be introduced appropriately while vindicating their 

validity.  

 

CONCLUSION 

 

It is well recognised that the muscle-tendon unit plays an important role in the mechanical 

energy storage and recovery during locomotion [1,2]. Increased stiffness of a tendon has 

been shown to be a predisposing factor for exercise-related injuries [42]. Consequently, 

examination of the elastic properties of the tendon may be indicated. For that to be a viable 

option the technique used must be shown to be reproducible and valid. This article 

indicates that real time ultrasonic measurement method yields reproducible measures of the 

Achilles tendon stiffness. The ability to measure the stiffness of a human tendon implies 

that several therapeutic interventions designed to alter the stiffness can be evaluated and 

compared. Moreover, understanding the exact role of the elastic properties could help in 

optimizing training and rehabilitation guidelines. 
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ABSTRACT   

 

Background:  Although Achilles tendon overuse injuries occur commonly, our 

understanding of the pathologic changes and the factors that predispose athletes to them is 

limited.  

Purpose: To indentify measurable intrinsic risk factors for Achilles tendon overuse 

injuries.   

Study Design: Cohort study (prognosis); Level of evidence, 2.   

Methods: Sixty - nine male officer cadets followed the same six week basic military 

training. Before this training, each subject was evaluated for anthropometrical 

characteristics, isokinetic ankle muscle strength, ankle joint range of motion, Achilles 

tendon stiffness, explosive strength, and leisure and sports physical activity. During military 

training, Achilles tendon overuse injuries were registered and diagnosed by the same 

medical doctor. To identify the intrinsic risk factors in this study, a multivariate analysis 

with the use of stepwise logistic regression was performed. The sensitivity, the specificity 

,and cutoff values of the risk factors were evaluated by receiver operating characteristics 

curve analysis.   

Results: Ten of the 69 male recruits (14.5 %) sustained an Achilles tendon overuse injury 

diagnosed on the basis of medical history and clinical examination. Analysis revealed that 

male recruits with lower plantar flexor strength and increased dorsiflexion excursion were 

at greater risk of Achilles tendon overuse injury. The cutoff value of the plantar flexor 

strength at 85% sensitivity was 50 N.m with a 4.5% specificity; the cutoff value of the 

dorsiflexion range of motion at 85% sensitivity was 9.0°, with 24.2% specificity.  

Conclusion: The strength of the plantar flexors and amount of dorsiflexion excursion 

were identified as significant predictors of an Achilles tendon overuse injury. A plantar 

flexor strength lower than 50.0 N.m and dorsiflexion range of motion higher than 9.0° 

were possible thresholds for developing an Achilles tendon overuse injury.  

 

KEY WORDS 

muscle strength, ankle range of motion, prospective, Achilles tendon overuse injury, 

military recruits  
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INTRODUCTION  

 

Overuse injuries of the muscle- tendon unit, resulting from leisure activities, sports, and 

military training, represent a major problem. They account for approximately 30 to 50 % of 

all sports injuries 23,25. Of these overuse injuries, Achilles tendon problems are frequent, 

especially in people who run often27. In a cohort study with 11 years of follow – up, Kujala 

et al. reported that 79 (29%) of the 269 male orienteering runners and 7 (4%) of 188 

controls reported an Achilles tendon overuse injury on a questionnaire; the age – adjusted 

odds ratio was 10.0 in runners compared with controls 33.  

Although Achilles tendon overuse injuries occur commonly, the identification of the 

factors that predispose athletes to them is limited. The strength, imbalance, and flexibility 

of the muscles are frequently mentioned in the literature as possible intrinsic risk factors. 

However, these proposed risk factors have been based on the results of retrospective 

studies or the clinical experience of sports medicine experts 30,36. Review articles agree that 

well-devised prospective studies of the possible risk factors for an Achilles tendon overuse 

injury are lacking. Because no high - quality prospective studies are yet available, the 

conclusions that can be drawn regarding possible intrinsic risk factors are limited 48. 

 

The purpose of this study was therefore to investigate if some of these proposed intrinsic 

risk factors contribute to the development of Achilles tendon overuse injuries. To obtain 

this goal, we designed a comprehensive, prospective cohort study in military recruits.   

 

MATERIALS AND METHODS  

 

Study population  

Sixty – nine male officer cadets volunteered for the study; these persons were recruited 

from the 191 male cadets entering the Belgian Royal Military Academy in August 2003. 

Ethical approval was obtained from the Ethics Committee of the Belgian Department of 

Defense. All participants were orally briefed about the methods and aims of the study and 

gave written informed consent. The age of the subjects was 18.41 ± 1.29 years (mean ± 

SD). Height and weight measurements were obtained before the training. Body Mass Index 

(BMI) was calculated as weight x height – 2.  
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Basic Military Training  

All 69 male officer cadets in this study followed the same 6-week basic military training 

during the same period (August - September 2003). This training mainly consists of 

running, roadwork, military tactical exercises, drills, shooting, marching with backpacks, 

and some theoretical classes. Because all recruits followed the same training program with 

the same equipment, environmental conditions, food, and daily schedule, the extrinsic 

contributing factors that could affect the incidence of Achilles tendon overuse injuries were 

kept mainly under control.  

Before starting the 6-week training period, each subject completed a questionnaire and 

underwent the same physical tests (muscle strength, range of motion measurement, 

stiffness of the Achilles tendon, and explosive strength).  

 

Questionnaire  

The questionnaire was intended to assess the subject’s exercise, medical, and injury 

histories of the past 2 years. It was completed according to guidelines provided by an 

instructor, who was also present throughout the session. Subjects were briefed on each 

section of the questionnaire, were asked to answer each question honestly, and were 

informed that their responses would be kept strictly confidential and would be only seen by 

one of the study investigators (N.N.M.). This investigator was not related to the Belgian 

Department of Defense. The questionnaire also included a subjective assessment of the 

subject’s current physical fitness level 2. To estimate physical activity patterns, the Baecke 

questionnaire was used 2.This inventory quantifies work, sports and leisure activities using a 

5-point scale with descriptors ranging from never (1 point) to always (5 points). For instance, 

a sports activity index was calculated as intensity × time engaged and was proportional 

according to yearly participation. By adding the scores on the 3 items of the Baecke 

questionnaire, the global activity of each subject was calculated. Research has shown that 

this questionnaire is a valid and reliable tool to measure physical activity 49,50.  

 

Evaluation of muscular strength  

Before the beginning of the training, each cadet’s calf muscle strength was evaluated. The 

isokinetic performance of the calf muscles was measured with a Cybex Norm 

dynamometer (Lumex, Inc., Ronkonkoma, NY), which was calibrated as part of the regular 

schedule of equipment maintenance for the testing device 11. The same investigator (V.S.), 
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who was familiar with isokinetic testing, performed all tests. Plantar flexors and 

dorsiflexors were concentrically measured at 30 deg/s (3 repetitions) and 120 deg/s ( 5 

repetitions). Before the tests, subjects received instructions about the procedures and were 

asked to perform a warm – up familiarization exercise of 10 submaximal repetitions at 90 

deg/s. All subjects were tested in the standard position for testing ankle kinetic movement 

according to the guidelines of the Cybex system 11. For assessment, the subject lay supine 

with the knee fully extended, and the foot was placed on a footplate and strapped twice for 

further stabilization. The ankle joint was aligned with the axis of the dynamometer. The 

reference angle corresponded to the ankle’s neutral position (90°). The movement range 

covered the entire comfortable range of motion of subject’s ankle joint. The other leg was 

strapped with Velcro  (VELCRO USA Inc, Manchester, NH) to avoid compensatory 

movements. All testing was conducted with the subject’s hands placed on the hips. 

Subjects were instructed to give 100% effort and received positive feedback during testing. 

Between each test, the cadets were allowed to rest for 1 minute. The same protocol was 

repeated similarly for the other leg. Alternatively, the right leg and the left leg were tested 

first. The peak torque values of the plantar flexors and the dorsiflexors were used for data 

analysis.   

 

Range of motion measurement  

Ankle joint range of motion was measured with a universal goniometer (NV Gymna, 

Bilzen, Belgium) and by the same investigator (N.N.M) to provide consistent intrarater 

reliability. Both ankles were evaluated. For this measurement, the subject was positioned 

supine with both limbs supported and the foot projected off the end of the table so that 

the ankle movement was unimpeded. Maximal range of motion was evaluated with the 

knee in two positions, 45° flexed and extended. Measurements taken with the knee flexed 

were considered to represent primarily soleus extensibility, whereas the measurements with 

the knee in extension were considered to be influenced primarly by gastrocnemius 

extensibility 55. Care was taken to maintain a neutral calcaneal position during all 

evaluations. The bony landmarks used for these assessments were defined with the method 

used by Elveru et al 15. The proximal arm of the universal goniometer was aligned with the 

head of the fibula, and the axis of the goniometer was positioned 0.5 cm below the lateral 

malleolus. The distal arm was aligned parallel to an imaginary line joining the projected 

point of the heel and the base of the fifth metatarsal. The subject was asked to perform 
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maximal active plantar flexion and dorsiflexion. Consequently, the same measurements 

were taken passively. These measurement were found to be valid and reliable 
3,6,14,15,34,42,45,46,51-53; in a study of Elveru et al, the intraclass correlation coefficient (ICC) values 

were 0.85 for plantar flexion and 0.90 for dorsiflexion 15. 

 

Stiffness of the Achilles tendon 

To identify Achilles tendon stiffness, the ultrasonic measurement technique described by 

Fukashiro was used 18. These researchers determined the elastic properties of the Achilles 

tendon structures in vivo by observing the lengthening of the tendon and aponeurosis 

during isometric contractions of the plantar flexors 18. The test - retest reliability of 

measuring Achilles tendon stiffness using ultrasonography has been shown to be good 

(ICC, 0.80-0.82) 40.  

 

Measurement of torque 

A dynamometer (Biodex System 3, Biodex Medical Systems Inc, Shirley, NY) was used to 

determine torque output during isometric plantar flexion. The subject lay prone on a 

bench. First, the right ankle was placed in a 90° position (anatomical position) with the 

knee joint at full extension and the foot securely strapped to a footplate connected to the 

lever arm of the dynamometer. The standard Biodex ankle unit attachment with Biodex- 

provided Velcro straps was used in this study. To maintain ankle joint and dynamometer 

axis alignment during plantar flexion contraction, the foot was firmly attached to the 

footplate of the dynamometer with a strap. Before the test, the subjects performed 3 to 5 

submaximal contractions to become familiar with the procedure. After warm - up, subjects 

were instructed to develop an isometric maximal voluntary contraction during 5 seconds. 

The task was repeated 3 times per subject with a 30-second rest between the trials. Each 

subject was orally encouraged to exert maximal voluntary effort by contracting as hard as 

possible. The same protocol was repeated similarly for the left leg. Isometric strength was 

expressed as peak torque. The force of the tendon was estimated from plantar flexion 

torque, the physiological cross - sectional area ratio of the medial gastrocnemius to all the 

plantarflexors, and the moment arm 32. Consequently, the value of the calculated force was 

used to determine the stiffness of the Achilles tendon.  
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Measurement of elongation of the tendon 

As described earlier, the method of Fukashiro was used to obtain the measurement of 

tendon elongation18. The contractile component activates and the muscle - tendon unit 

shortens during a concentric activation, but only the muscle belly shortens during an 

isometric activation. Therefore, an increase in plantar flexion is accompanied by a 

shortening of the fascicles and lengthening of the tendon and aponeurosis. This process 

indicates that the muscle fibers produce mechanical work, which was observed in the 

tendon even in the so - called isometric contraction. During isometric plantar flexion on 

the Biodex dynamometer in the present study, a real - time ultrasonic apparatus (Sonoline 

SL-1, Siemens AG, Erlangen, Germany) was used to obtain a longitudinal ultrasonic image 

of the medial gastrocnemius muscle at 30 % of the lower leg (ie, central). An electronic 

linear array probe with a wave frequency of 7.5 MHz was secured with Velcro® straps to 

the skin. The ultrasonic images were recorded by a digital camera (Sony Corp, Tokyo, 

Japan). The tester visually confirmed the echoes from the aponeurosis and the medial 

gastronemius fascicles (Figure 1). The point at which 1 fascicle was attached to the 

aponeurosis was visualised on the ultrasonic image. This point (x) moved proximally during 

isometric torque output. The distance travelled by x (�x) indicated the lengthening of the 

aponeurosis and therefore also the tendon 21, 32, 39,43. The displacement was measured with a 

multimedia player, Light Alloy 1.D (Softdepia, Nicosia, Cyprus), and the average score of 

the 3 measurements was used as a representative score for tendon elongation (ELONG). 

The same examiner (N.N.M.) who was familiar with the method, performed all tests 

throughout the study. The obtained value, together with the calculated force was used to 

compute the stiffness of the Achilles tendon.  

 

Calculation of Achilles tendon stiffness 

The relationship between the supplied muscle force and the elongation of the Achilles 

tendon was calculated to obtain a measurement of Achilles tendon stiffness. First, the 

measured torque during maximal isometric plantar flexion, TQ, was converted to muscle 

force, Fm , by the following equation:  

Fm = k. TQ. MA 
- 1 ,  

where k is the relative contribution of the physiological cross - sectional area of the medial 

gastrocnemius within plantar flexor muscle (18%) and MA is the moment-arm length of 

triceps surae muscle at 90° of ankle joint (0.05m) 19,38,54,65.  
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Fm = 18/100 . TQ . (0.05)
- 1 

The proportion between Fm and ELONG (N/mm) indicates the stiffness of the tendon. In 

this article, the calculations used were according to Kubo 32.   

 

 

 

Figure 1: Parallel echoes running diagonally represent the collagen-rich connective tissue between the fascicles 
of the medial gastrocnemius. The darker areas between the bands of echoes represent the fascicles. The echo 
that runs longitudinally in the middle is from the aponeurosis.  
 

 

Explosive strength 

The standing broad jump was used to measure explosive strength. This test was chosen 

because it represents an explosive type of movement. In addition, it is commonly used in 

the training and testing of athletes in various sports, and was found to be highly reliable 

(ICC = 0.984) 16,28. The standing broad jump correlates well with the other types of 

explosive movement such as the vertical jump and sprinting 1,12,61.   

The jump required takeoff and landing from a single foot. Takeoff was from behind a line 

on the floor, and subjects were instructed to land on the same foot they used for takeoff. 

The distance from the takeoff to the point where the heel touched the mat was measured. 

The broad jump was executed 3 times for each leg, and the best of the 3 recorded trials was 

used as the performance score.  

 

Registration of injuries  

During the training, overuse injuries of the Achilles tendon were registered and diagnosed 

by the same doctor (P.R.) and were listed on separate sheets containing information about 

the injury. To be considered a patient with an Achilles tendon overuse injuy, the following 

criteria needed to be present: 1) characteristic history and symptoms of an Achilles tendon 
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overuse injury (stage I, II, III and IV of the injury criteria by Blazina et al 8); 2) impaired 

performance, and 3) pain. The combination of Achilles tendon pain and impaired 

performance indicated the clinical diagnosis of an Achilles tendon overuse injury. Patient 

history and the moment of onset indicated the overuse nature of the injury. Subjects with 

an insertional Achilles tendinopathy were excluded from the study. Local tenderness had to 

be present and was evaluated by palpating the tendon with the ankle in neutral position or 

slightly plantar flexed. The tendon had to be thickened over a length of 2 to 5 centimeters. 

This area may or may not have demonstrated increased warmth, depending on the extent 

and duration of the overuse injury. Resisted plantar flexion and passive dorsiflexion at the 

ankle had to worsen the pain, making it difficult for a patient to stand on the toes or to 

climb stairs. Morning stiffness needed to be present. An injury was only considered if it 

was serious enough for the subject to seek and obtain medical consultation and if it 

resulted in 1 or more days of limited duty. To be included in the study, a recruit had to 

have all of the listed characteristics. Persons with injuries to the skin and subcutaneous 

tissue, such as abrasions and blisters, were not included. In this study, we were primarily 

interested in studying first-incidence Achilles tendon overuse injuries. Because previous 

tendon injury is an important and well-established intrinsic risk factor for 

musculotendinous injuries, we excluded all recruits who had sustained a muscle injury to 

the lower extremities in the previous two years 10,17,23,24,36,37,48,59,60.   

 

Statistical procedures 

Statistical analysis was performed with SPSS version 11.0 (SPSS Inc, Chicago, Ill). To 

examine possible differences between the injured and uninjured group for each test 

parameter (interval or ratio data), we used either the Student t test (if the distribution of the 

data was normal) or the Mann-Whitney U test (if no normal distribution of the data was 

obtained). A P value less than 0.05 was considered significant.  

Logistic regression analysis was then performed to establish the presence of the major risk 

factors for Achilles tendon overuse injuries. Bivariate Ors of the variables with 95 % 

confidence intervals (CIs) were calculated for injured and noninjured subjects. The CIs 

were calculated using α = 0.05, meaning that we had a 95 % chance that the true OR was 

between those 2 boundary marks. Consequently, all variables were entered into a forward 

stepwise logistic regression analysis. A logistic model for the prediction of an Achilles 
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tendon overuse injury was obtained, with adjusted ORs of the variables with their 95% CIs. 

The Hosmer and Lemeshow test was used to test the fit of the models 20.  

The sensitivity, specificity and cutoff values of the obtained risk factors were evaluated by 

receiver operating characteristic (ROC) curve analysis. These ROC analyses allows an 

investigator to determine possible cutoff values. A list of specificities and sensitivities for 

subsequent cutoff values was calculated 29,41,67. To decide how likely these statistics would 

be able to detect significant effects in this given sample size, a power analysis was executed 

for the different variables.  

 

RESULTS   

 

Ten of the 69 male recruits (14.5 %) sustained a clinically diagnosed Achilles tendon 

overuse injury. According to the injury criteria of Blazina et al.8, 1 subject sustained a stage 

I, 4 subjects sustained a stage II, 5 subjects developed a stage III, and no one sustained a 

stage IV (complete rupture of the Achilles tendon) (Table 1).  

The characteristics of the 10 cadets who sustained an Achilles tendon overuse injury, 

measured before the start of the military training, were statistically compared with those of 

the cadets without an Achilles tendon overuse injury.  

 

Table 1: Classification of the Achilles tendon overuse injures a.   

Injury Stage   Criteria                                                       No. of Injured subjects (n = 10) 
 I Pain only after sports activity  1 
 II Pain at the beginning of sports activity, disappearing 

after warm-up, and reappearing with fatigue 
 4 

 III Constant pain at rest and during activity; subject 
unable to participate in sports at previous level 

 5 

 IV  Complete rupture of the Achilles tendon   0  
a  According to injury criteria used by Blazina et al. 8 

 

 

Anthropometric evaluation and physical activity  

Anthropometric data on the subjects are listed in Table 2. No significant differences were 

found between the injured and the uninjured recruits in height, weight or BMI (P = .107, 

.619, and .083, respectively). In addition, statistical analysis did not reveal any significant 
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difference in physical activity between the injured and the uninjured recruits (P = .639)  

(Table 2).  

 

Table 2: Anthropometric data and physical activity levels for injured and uninjured subjects.   

 
 
Variable 

Injured 
___________ 
Mean       SD 

Uninjured 
___________ 
Mean         SD 

 
 
t a 

  
 
P 

Age, y 18.00       1.49 18.47          1.26 1.070 0.288 
Height, cm  177.50     7.85  183.6          6.74 1.635 0.107 
Weight, kg 72.00     13.60 70.46          8.08 -0.499 0.619 
Body mass index 22.73       3.00 21.41          2.04  -1.759 0.083 
Baecke Questionnaire score  8.69         0.64 8.87            1.21 0.472 0.639 
a t, the test statistic for the Student t test.  

 

Muscular strength 

Significant differences were found for all plantar force measurements except for one ( 

plantar flexors of the left leg at 120 deg/s; P = .128). For all other plantar flexor 

measurements, the injured group produced significantly less plantar flexor force than the 

noninjured group before the military training. No statistical significant differences were 

observed between both groups for the dorsiflexion force measurements (P > .05) (Table 3). 

The statistical power for the plantar flexor strength measurement was .819.  

 

Range of motion  

Table 4 represents the evaluated range of motion data. Statistical analyses of the 

goniometric measurements revealed no significant differences between the groups. 

However,  a tendency towards significance (P = .076) was observed for the right passive 

dorsiflexion measurement with the knee extended. For this measurement, the injured 

recruits seem to have a higher dorsiflexion range of motion in comparison to the uninjured 

recruits at the start of the military training. The statistical power for the range of motion 

measurements was .314.  
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Table 3: Isokinetic muscle strength and jump performances for injured and uninjured subjects.  

 Injured 
_____________ 
Mean         SD 

Uninjured 
____________ 
Mean      SD 

  
 
t a 

  
 
P 

Dorsiflexion strength, N.m  
30 deg/s  

    

Right leg  22.20           4.18 21.24        4.72 -0.605 .547 
Left leg  21.80           6.53 21.44        5.29 -0.192 .848 

120 deg/s      
Right leg  11.70           1.57 11.14        3.19   -5.46 .587 
Left leg  11.30           2.98 11.66        3.38 0.317 .752 

Plantar flexion strength, N.m      
30 deg/s      

Right leg  66.60         12.04 83.42      25.05 2.074 .042b 
Left leg  69.00         19.10 87.56      26.19 2.141 .036b 

120 deg/s      
Right leg  33.90           9.46 43.76      13.37 2.232 .029b 
Left leg  37.80         12.04 45.19      14.30  1.541 .128 

SBJc performance, cm      
Right leg  162.00       17.35 163.05     17.79 0.173 .863 
Left leg  163.50       17.17 164.15     17.55 0.109 .913 

a t, the test statistic for the Student t test.  
b Significant difference between the 2 groups (P < .05).  
c SBJ, standing broad jump.  

 
 
 
Stiffness of the Achilles tendon  

Results of the analysis performed for Achilles tendon stiffness are presented in Table 5. No 

significant statistical differences were observed between groups in stiffness for the right 

and the left Achilles tendons ( P = .117 and .166, respectively). The statistical power for the 

stiffness measurement was .781.  

 

Explosive strength   

No statistical differences were found between the injured and uninjured recruits in standing 

broad jump performance (P = .863 and .913, for the right and left leg, respectively) (Table 

3). The statistical power for the explosive strength measurement was .069.  
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Table 4: Range of motion data (in degrees) for injured and uninjured subjects.   

 Injured 
________________ 
Mean               SD 

Uninjured 
________________ 
Mean                SD 

 
 
t or Ua 

  
 
P 

Plantar flexion  
45° flexed  

    

Right active  38.20                   5.69 40.81                    6.25 t = 1.237 .220 
Right passive  42.00                   6.04 44.47                    6.35 t = 1.147 .255 
Left active  41.20                   9.81 40.83                    8.13 t = -0.129 .898 
Left passive  46.20                   9.82 45.05                    8.09 t = -0.403 .688 

Extended         
Right active  43.20                   6.05 45.05                    8.92 U = 261.00 .556 
Right passive  46.80                   5.35 47.83                  10.73 U = 273.50 .712 
Left active 38.20                 10.81 41.80                  11.48 U = 207.00 .131 
Left passive  42.00                 10.11 45.36                  12.16 U = 215.00 .171 

Dorsiflexion  
45° flexed  

      

Right active  16.10                   4.38 14.68                    6.41 t = -0.674 .503 
Right passive  20.60                   5.17 18.03                    5.68  t = -1.338 .186 
Left active  18.40                   4.79 15.19                    6.02 t = -1.584 .118 
Left passive  23.40                   4.43 20.00                    6.59 t = -1.567 .122 

Extended       
Right active  11.20                   4.92  9.69                      5.16 U = 220.50 .199 
Right passive  15.20                   5.35 12.95                    5.39 U = 192.00 .076 
Left active  13.00                 10.25 12.81                    9.67  U = 291.50 .953 
Left passive  17.60                 10.74 16.51                    9.91  U = 276.00 .744 

a t, the test statistic for the Student t test; U, the test statistic for the Mann-Whitney U Test.  
 

 

Intrinsic risk factors 

In many fields, the logistic regression model has become the standard method for analysis 

for studying the relationship between a binary response variable (in our case, presence of 

an Achilles tendon injury) and one or more explanatory variables (evaluated parameters) 19.   

To identify the intrinsic risk factors in this study, a multivariate analysis was performed 

with the use of stepwise logistic regression. Table 6 represents the risk model for the 

prediction of an injury of the Achilles tendon as a result of a stepwise logistic regression 

analysis.  

The strength of the plantar flexors and amount of dorsiflexion excursion were identified as 

significant predictors of an Achilles tendon overuse injury. The function of the best fitting 

model is as follows:  

g(x)= (-0.009) + ((-0.062) x (PlanLe30)) + 0.207 x (PassDor right-straight)), 
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where PlanLe30 is the isokinetic plantar flexor strength of the left leg at 30deg/s, and 

PassDor right-straight is passive dorsiflexion range of motion of the right ankle with the 

knee extended.   

After logit transformation, this following model predicts the risk of an Achilles tendon 

overuse injury.    

∏(x) =  e g(x) 

                  1+ e g(x) 

The outcome ranges between 0 and 1 and can therefore be interpreted as a percentage, 

where 0 represents no risk for an injury and 1 the highest possible risk. For example, if a 

recruit has a plantar flexor strength of 39 N.m and a dorsiflexion range of motion of 9° :  

g(x)= (-0.009) + ((-0.062) x (39)) + 0.207 x (9) 

g(x)= (-0.009)-0.555 

g(x)= -0.564 

After logit transformation,  

∏(x) = e –0.564           = 0.36 

1+ e –0.564 

The model predicts that this specific person has a 36% chance of developing an Achilles 

tendon overuse injury.  

With the help of the ROC analysis, possible cutoff values of the 2 intrinsic risk factors were 

determined at 85%, 90% and 95% sensitivities for detecting an Achilles tendon overuse 

injury. The results of the ROC analysis are presented in Table 7. 

The cutoff value of the plantar flexor strength at 85% sensitivity was 50 N.m with a 4.5% 

specificity. The cut – off value of the dorsiflexion range of motion at 85% sensitivity was 

9.0°, with 24.2% specificity.  

 

Table 5: Stiffness data (in N/mm) for injured and uninjured limbs.  

 Injured (n=20) 
____________ 
Mean           SD 

Uninjured (n=66) 
______________ 
Mean            SD 

t a 
 

P  

Right leg 35.69        13.86 47.59          22.85 1.590 .117 
Left leg  31.57          8.12 40.20          17.98 1.404 .166 
a t, the test statistic for the Student t test.  
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Table 6: Risk model for the prediction of an Achilles tendon injury versus no injurya.   

Predictive variable  B SE OR 95% CI P  

PlanLe30, N.m  -0.062 0.025 0.940 0.895-0.987 .014 

PassDor right-straight, deg 0.207 0.089 1.230 1.033-1.465 .020 

Constant -0.009     

a Model obtained by binary logistic regression. B, regression coefficient; SE, standard error ; OR, bivariate 
odds ratio ; 95%CI, 95% confidence interval ; PlanLe30, isokinetic plantar flexor strength of the left leg at 
30deg/s; PassDor right-straight, passive dorsiflexion range of motion of the right ankle with the knee 
extended.   

 

 

Table 7: Cutoff values of the risk factors with respect to the sensitivity and specificity a.  

85% sensitivity 

       _____________ 
90% sensitivity 

      ______________ 
95% sensitivity 
_____________ 

 
 
Parameter Cutoff Specificity, % Cutoff Specificity, % Cutoff Specificity, % 

PlanLe30, N.m 50.0 4.5 42 3.0 39 1.5 
PassDor  
right- straight, deg 

9.0 24.2 7.0 6.1 5.0 3.0 

a Sensitivity is defined as the proportion of all injured cases that were correctly identified as such; specificity is 
defined as the proportion of all uninjured cases that were correctly identified as such. PlanLe30, isokinetic 
plantar flexor strength of the left leg at 30 deg/s; PassDor right-straight, passive dorsiflexion range of motion 
of the right ankle with the knee extended.  

 

 

DISCUSSION  

 

Although Achilles tendon overuse injury is frequently encountered in the sports injury 

clinic, its risk factors remain obscure. Several authors cite both extrinsic and intrinsic 

parameters as causing Achilles tendon overuse injury 24,36,37,48,60.  Various extrinsic risk 

factors have already been clearly recognized; changes in training patterns, poor technique, 

previous injuries, footwear, and environmental factors such as training on hard, slippery, or 

slanting surfaces are extrinsic factors which may predispose the athlete to tendon overuse 

injury 24,36,37,48,60. However, the relationship between intrinsic parameters and the occurrence 

of an Achilles tendon overuse injury is still obscure. Therefore, the purpose of this study 

was to investigate which intrinsic risk factors play a part in the development of an Achilles 

tendon overuse injury. In order to obtain this goal, a prospective study with male military 

recruits was designed. Because all subjects followed the same training program with the 

same equipment, environmental conditions, food, and daily schedule, the impact of 
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extrinsic risk factors was kept to a minimum in the design of the present study. This was 

the reason we investigated a military population.  

One of the most striking findings in our study was that the strength of the plantar flexors 

was identified as a predictor for an Achilles tendon overuse injury, with subjects having a 

lower plantar flexor strength at greater risk. The cutoff value with the highest specificity, 

can be seen as a possible threshold value. Consequently, persons with a plantar flexor 

strength lower than 50.0 N.m were predisposed to an Achilles tendon overuse injury. 

Several previous prospective studies have shown muscle strength or muscle imbalance to 

be risk factors for an ankle injury 4,13,57. However, this is the first study that investigates the 

relationship between the strength of the plantar flexors and an Achilles tendon overuse 

injury in a prospective manner. The results reflect that persons with a lower plantar flexor 

strength have a significantly higher risk of developing an Achilles tendon overuse injury. 

Presumably, greater muscle strength produces stronger tendons that could deal better with 

high loads.  

During the basic military training, the muscle - tendon unit is exposed to many stretch - 

shortening cycles. During these cycles,  the muscle - tendon unit must be able to absorb 

high forces. A recruit with less plantar flexor strength is less able to absorb these forces and 

consequently has a higher risk for an overuse injury of the Achilles tendon simply because 

he has weaker tendons. In that way, it would be interesting to investigate which injury 

prevention programs would be able to incorporate the structure and mechanical properties 

of the Achilles tendon. In the literature, the experimental knowledge of the effect of 

strength training on tendon tissue is scarce and clinical human studies are lacking. With 

regard to human tendon structures, available information on the subject is limited to the 

cross – sectional observations 26, 31. Because the power of this parameter reached an 

accepted level (.819), we can conclude that the given sample size was large enough to 

detect a significant effect for plantar flexor strength.   

 

In the present study, greater dorsiflexion excursion has also been identified by the logistic 

regression analysis as a risk factor for an Achilles tendon overuse injury. Recruits with 

significant higher dorsiflexion range of motion have a greater risk of developing an Achilles 

tendon overuse injury. A possible threshold, defined from the ROC curve analysis, is a 

dorsiflexion range of motion of 9.0° (with a sensitivity of 85% and a specificity of 24.2%). 

Surprisingly, the Mann-Whitney U test revealed no significant difference between the 
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injured and the uninjured group. However, there was a tendency to significance and this 

may explain this statistical oddity. Another reason for the parameter being recognised as a 

risk factor despite the lack of a difference between the groups is the rather low power of 

the test (.314). This result implies that presumably a larger sample is needed to find 

significant differences between the injured and uninjured group for the flexibility 

measurements.  

Recently, Song et al. have shown that the severity of a strain injury in the gastrocnemius of 

rats depends on the excursion of the ankle 58. These authors observed that the larger the 

range of motion of the ankle joint, the more damage was seen after an eccentrically induced 

strain injury. This finding may explain the clinical findings in our military population, which 

suggest that the more an ankle can dorsiflex during stretch – shortening cycles, the more an 

Achilles tendon is susceptible to an overuse injury.  

Looking at the literature, the relation between range of motion and lower extremity injury 

remains controversial. In a review by Murphy et al, 3 studies reported an association 

between increased range of motion and lower extremity injury, whereas 4 reported no 

association 44. A possible reason for the disagreement in the literature, is that these studies 

investigated lower extremity injuries as a group and did not focus on specific pathologic 

factors.  

 

The results of this study revealed no significant relationship between any of the 

anthropometrical characteristics and the occurrence of Achilles tendon overuse injury. Our 

results are in agreement with a number of studies that have reported no association 

between body size and injury  4,5,7,35,47,62,66. For example, Knapik et al did not find height, 

weight, or BMI to be risk factors for musculoskeletal injuries among male and female 

military recruits 30.  

In our study, we did not find any relationship between the physical activity and the risk for 

an Achilles tendon injury. In contrast, other prospective studies on lower extremity injuries 

have shown a relationship between physical fitness and injury incidence 9,22,27,30,63. Chomiak 

et al found that poor physical condition was a predictor of overall injury in football players 
9. The different results between these previous studies and this one might be explained by 

the difference in the method that was used to obtain measurements of physical activity. 

The level of physical activity in our study was determined on the basis of a questionnaire; 

other studies used physical fitness tests suwh as run time measurements or VO2 (oxygen 
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consumption) determinations. In addition, potential candidates for a military career are 

aware that good physical condition is a prerequisite for a successful military study career. 

As a consequence, the physical condition of our study population was possibly higher and 

more homogeneous compared with the population used in other, nonmilitary prospective 

studies. However, determining the level of physical activity on the basis of a questionnaire 

can be considered as a weakness of the present study.    

In the present study, the stiffness of the Achilles tendon was not seen as an intrinsic risk 

factor for an Achilles tendon overuse injury. However, the power of this parameter was of 

an acceptable level (.781). The fact that no significant differences could be found between 

the injured and the uninjured group, was therefore not because of a low power. This 

finding might be in contrast with the conclusions of previous studies. In a review of Smith, 

increased stiffness of a tendon has been shown to be a predisposing factor for exercise–-

related injuries 56. Because most of the discussed studies were executed retrospectively 

however, one can not say with certainty if the altered stiffness of the tendon was a cause or 

a consequence of the overuse injury.  

 

Knowing that the contribution of the calf muscles and Achilles tendons is rather limited in 

the performance of the standing broad jump might be a possible explanation to why there 

a significant difference was not found between the injured and the uninjured recruits for 

explosive strength. Previous studies have demonstrated that the glutei, the hamstrings and 

the quadriceps muscle determine for the greater part of jump performance, more than the 

calf muscles 64. 

 

CONCLUSION  

 

Our study identified increased dorsiflexion range of motion and decreased plantar flexion 

strength as intrinsic risk factors for the development of an Achilles tendon overuse injury. 

The statistical analyses revealed that recruits with a plantar flexor strength lower than 50 

N.m and a dorsiflexion range of motion more than 9.0°, were predisposed to an Achilles 

tendon overuse injury during basic military training. When interpreting these results, 

however, not only the strengths but also the limitations of the study have to be considered. 

Therefore, we advise investigators to maintain the prospective character of the present 

study and to include a larger sample and to screen their population as best as they can. 
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Nevertheless, the results of the present study have important clinical implications, and 

adequate prevention strategies need to take the present results into account. 
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ABSTRACT   

 

Context: Several groups have undertaken studies to evaluate the physiologic effects of whole-

body vibration (WBV). However, the value of WBV in a training program remains unknown.  

Objective: To investigate whether a WBV program results in a better strength and postural 

control performance than an equivalent exercise program performed without vibration.   

Design: Randomized, controlled trial.  

Setting: Laboratory.  

Patients or other participants:  Thirty - three Belgian competitive skiers (ages 9 –15 years).  

Intervention(s): Subjects were assigned to either the WBV group or the equivalent resistance 

(ER) group for 6 weeks of training at 3 times per week.  

Main Outcome Measure(s): Isokinetic plantar and dorsiflexion peak torque, isokinetic knee 

flexion and extension peak torque, explosive strength (high box test), and postural control were 

assessed before and after the training period.  

Results: Both training programs significantly improved isokinetic ankle and knee muscle 

strength and explosive strength. Moreover, the increases in explosive strength and in plantar -

flexor strength at low speed were significantly higher in the WBV group than in the ER group 

after 6 weeks. However, neither WBV training nor ER training seemed to have an effect on 

postural control.   

Conclusions: A strength training program that includes WBV appears to have additive effects in 

young skiers compared with an equivalent program that does not include WBV. Therefore, our 

findings support the hypothesis that WBV training may be a beneficial supplementary training 

technique in strength programs for young athletes.   

 

KEY WORDS 

Balance, explosive strength, performance enhancement, skiing  
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INTRODUCTION   

  

Whole-body vibration (WBV) training is a training method that exposes the entire body to 

mechanical vibrations as the individual stands on a vibrating platform. Mechanical stimulations, 

characterized by direction, amplitude, velocity and frequency are transmitted through the entire 

body. Recent observations have shown the possibility of using these vibration platforms as a 

training tool in athletic settings 1-3. These improvements have been attributed to reflex muscle 

contractions as a result of a tonic vibration reflex. This reflex contraction is caused by an 

excitation of muscle spindles, leading to an enhancement of the activity of the Ia loop 4,5,6.  

Most of the authors who have evaluated the effects of WBV have shown that muscular 

properties can be improved with its use 3. For example, Bosco et al. showed that a single 

vibration bout of 5 repetitions lasting 1 minute each resulted in a significant temporary increase 

in muscle strength of the lower extremities and arm flexors 7. In another study, Bosco et al. 

trained volleyball players with 10 repetitions at 60 seconds each 8.  Bosco et al. also studied the 

effects of a 10-day vibration program on the muscular performance of physically active persons 

and noted enhanced explosive power 9. Other authors investigated the effects of WBV programs 

using randomized, controlled study designs 10-13. For example, Torvinen et al. randomized 56 

young adults to either a vibration group or a control (no training) group 11. Jumping power was 

enhanced 8.5 % after a 4-month WBV intervention. More recently, investigators demonstrated 

that WBV training has the potential to induce strength gains to the same extent as a traditional 

resistance training program 1,2,12,13. Consequently, on the basis of these studies, we can conclude 

that WBV is a training method equivalent to conventional resistance training.  

However, despite the growing popularity of WBV, authors of a recent review claimed that it still 

lacks randomized scientific research, especially concerning its adaptation to dynamic exercises 3. 

To date, only 1 author has undertaken a study to determine the supplemental value of WBV with 

an equivalent training program 14. Ronnestad compared the performance-enhancing effects of 

squats on a vibration platform with conventional squats executed on the ground 14. Thus, 

identical exercises were executed in both groups. The intervention period lasted 5 weeks. 

Although the results did not reach the level of statistical significance, the trend was toward better 

results in maximal strength and explosive power for the squats performed on a vibration 

platform. In order to further investigate this possibility, our purpose was to evaluate the training 

effects of a WBV program compared with an equivalent exercise program performed without 

vibration.  
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METHODS  

 

Experimental design  

We randomly divided 33 competitive skiers into a WBV group (n = 17) and an equivalent 

resistance (ER) training group (n = 16). Both groups trained for 6 weeks with a frequency of 3 

times a week, with at least 1 day of rest between sessions. Each training session  lasted  30 

minutes, including warm-up exercises, rest periods and cool-down. After each session, the 

subjects were asked to report possible side effects or adverse reactions in their personal training 

diaries. After every training week, they also completed a Borg scale, a simple method of rating 

perceived exertion 15. Before starting the study, as well as after the 6 weeks of training, we 

evaluated all subjects for postural control and isokinetic and explosive strength.  

 

Subjects  

The subjects were 33 competitive skiers (age = 12.36 ± 1.71 years; range = 9-15 years) of the 

Flemish Ski Federation: 12 girls and 21 boys (WBV = 11 boys and 6 girls; ER = 8 boys and 8 

girls). We excluded skiers with a history of any type of injury in the last 2 years or a possible 

contraindication for WBV (diabetes, epilepsy, metabolic or neuromuscular diseases, osteoporosis, 

osteoarthrosis, prosthesis, menstrual irregularities and orthopaedic injuries, according to Roelants 

et al 2). Persons who were already participating in another strength program were excluded from 

the study as well. All children and their parents gave written informed consent to participate. The 

study was approved by the Ethical Committee of Ghent University. The anthropometric and 

training characteristics of the subjects are presented in Table 1.  

 

Table 1. Subjects’ Anthropometric and Training Characteristics  
 

Whole-Body Vibration 
Training group 

(n = 17: 11 boys, 6 girls) 

Equivalent Resistance 
Training Group 

(n = 16: 8 boys, 8 girls) 

 

Mean  SD Mean  SD 

 
 
 
P 

Age, y 12.94 1.47 11.75 1.77 .044 
Height, m 1.6 0.12 1.49 0.14 .031 
Mass, kg 50.14 13.06 38.79 12.11 .015 
History of competitive skiing, y 4.03 1.55 3.75 2.58 .706 
Participation in other sports, h/wk 1.91 2.07 1.94 1.77 .970 
Training in summer, h/wk   2.32 2 2.46 1.9 .833 
Training in winter, h/wk 4.76 1.48 4.75 1.03 .974 
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Whole-Body Vibration Training  

Vibration loading was carried out on a WBV platform (Fitvibe; N.V. Gymna, Bilzen, Belgium) in 

a standing position. The program consisted of squatting, deep squatting, wide-stance squatting, 1-

legged squatting, calf raises, skiing movements, jumps onto the plate, and light jumping (Table 2). 

After each exercise, the skiers were allowed to rest 2 minutes before starting the following 

exercise. Training intensity was increased over the 6 weeks by increasing the amplitude (from 2 to 

4 mm) and frequency (from 24 to 28 Hz) of the vibration, the duration of the exercise, and the 

number of repetitions. Also the number of repetitions of 1 exercise and the number of different 

exercises increased systematically over the 6-week training period. During all training sessions, 

the subjects completed a personal exercise diary and were under the strict supervision of a 

physiotherapist.  

 

Equivalent resistance training  

In order to achieve the goal of our study, the ER training was composed of exactly the same 

exercises as the WBV training. The only difference was that the ER training group did not 

perform the exercises on a vibration platform but on the floor. Subjects in both groups wore 

sport shoes during the training sessions. They completed a personal exercise diary and were 

contacted every week for supervision of their training program. Every week, a physiotherapist 

conducted a joint training session with both groups to teach the new exercises being added to the 

programs.  
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Table 2. Whole-Body Vibration Training Program  
 
   

 
Exercise 

 
Frequency, 

Hz 

 
Amplitude, 

mm 

 
Duration, 

s 

 
Rest time,  

s 

 
Repetitions, 

No. 

Vibration 
Duration, 
min 

Week 1  Day 1  Squat 24 2 30 60 3 
  Calf raises 24 2 30 60 3 
  Wide-stance squat  24 2 30 60 3 

4.5 

 Day 2 Squat 24 2 30 60 3 
  Deep squat 24 2 30 60 3 
  Wide- stance squat 24 2 30 60 3 
  1-legged squat 24 2 30 60 2 x each leg 

6.5 

 Day 3 Squat  24 2 30 60 4 
  1-legged squat 24 2 30 60 2 x each leg 
  Dynamic squats 24 2 40 60 3 x 20 
  Dynamic calf raises 24 2 40 60 3 x 20 

8 

Week 2 Day 1 Calf raises  24 2 30 60 4 
  Deep squat 24 2 30 60 4 
  Dynanmic wide-

stance squat 
24 2 40 60 3 x 20 

  Dynamic squat 24 2 40 60 4 x 20 

8.7 

 Day 2 Squat 24 2 40 60 4 
  1-legged squat 24 2 40 60 2 x each leg 
  Dynamic calf raises 24 2 40 60 4 x 20 
  Jumps on plate 24 2 90 60 2 x 10 

11 

 Day 3 Squat 26 2 30 60 4 
  Calf raises 26 2 30 60 4 
  Dynamic wide-stance 

squat 
26 2 40 60 4 x 20 

  Dynamic 1-legged  
squat 

26 2 60 60 2 x 20 each leg 

8.7 

Week 3 Day 1 1- legged squat 26 2 30 60 2 x each leg 
  Jumps on plate 26 2 90 60 2 x 10 
  Dynamic calf raises 26 2 40 60 4 x 20 
  Dynamic squat 26 2 40 60 4 x 20 

10.3 

 Day 2 Wide-stance squat 26 2 40 60 4 
  Dynamic 1-legged 

squat  
26 2 60 60 2 x 20 each leg 

  Dynamic inversion-
eversion  

26 2 40 60 3 x 15 

  Jumps 26 2 30 60 3 x 10 

8.2 

 Day 3 Calf raises 26 2 40 60 4 
  Dynamic wide-stance 

squat  
26 2 60 60 4 x 30 

  Jumps on plate 26 2 100 60 2 x 10 
  Dynamic inversion-

eversion  
26 2 50 60 3 x 20 

  Squat 26 4 30 60 3 

14 

Week 4 Day 1 Deep squat 26 4 30 60 3 
  Dynamic squat 26 4 60 60 3 x 30 
  Wide-stance squat 26 4 30 60 3 
  1-legged squat  26 4 30 60 2 x each leg 

8 

 Day 2 Calf raises 26 4 40 60 4 
  Dynamic inversion-

eversion  
26 4 40 60 3 x 15 

  Dynamic 1-legged 
squat  

26 4 60 60 2 x 20 each leg 

  Dynamic wide-stande 
squat  

26 4 40 60 4 x 20 

9.3 

 Day 3 Squat 28 2 30 60 3 
  Dynamic calf raises 28 2 40 60 4 x 20 
  Dynamic wide-stande 

squat  
28 2 60 60 4 x 30  

  Dynamic inversion-
eversion  

28 2 40 60 3 x 15 

10.2 

Week 5 Day 1 Deep squat 28 2 40 60 3 
  1-legged  squat 28 2 40 60 2 x each leg 
  Jumps on plate 28 2 90 60 2 x 10 

13 
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  Dynamic squat 28 2 50 60 4 x 25 
  Dynamic skiing 28 2 40 60 3 x 15 

 

 Day 2 Wide-stance squat 28 4 30 60 3 8.2 
  Jumps 28 4 40 60 3 x 20 
  Dynamic inversion-

eversion  
28 4 40 60 3 x 15 

  Calf raises 28 4 40 60 4 

 

 Day 3 Jumps on plate and 
hold 

28 4 90 60 1 x 5 each leg  

  Jumps 28 4 40 60 3 x 20 
  Dynamic skiing  28 4 60 60 4 x 25 
  Wide-stance squat 28 4 60 60 2 

11 

Week 6 Day 1 Squat 28 4 60 60 2 
  Jumps on plate and 

hold 
28 4 90 60 1 x 10 each leg  

  Dynamic squat 28 4 60 60 2 x 40 
  Dynamic skiing 28 4 60 60 4 x 25 

11 

 Day 2 Dynamic calf raises 28 4 40 60 4 x 20 
  Dynamic wide-stance 

squat  
28 4 50 60 4 x 25 

  Jumps on plate 28 4 100 60 2 x 15 
  Dynamic skiing 28 4 60 60 4 x 25 

13.3 

 Day 3 Dynamic skiing 28 4 60 60 4 x 25 
  Dynamic 1-legged 

squat  
28 4 60 60 2 x 25 each leg  

  Dynamic squat 28 4 60 60 2 x 40 
  Jumps 28 4 40 60 4 x 20 

12.7 

 

 

Evaluation  

 

Isokinetic muscle strength  

Isokinetic performance of the right calf muscles was measured with a Biodex System 3 isokinetic 

dynamometer (Biodex Medical Systems Inc, Shirley, NY). The dynamometer was calibrated as 

part of the regular schedule for maintenance of equipment used for the testing device.  

Plantar flexors and dorsiflexors of the right ankle were concentrically measured at 30°. s -1 (3 

repetitions) and 120°. s -1 (5 repetitions). All subjects assumed the standard position for testing 

isokinetic ankle movement, according to the guidelines of Dvir 16. This protocol is reliable 17. The 

subject was positioned in the chair with the knee fully extended. The right foot was placed on a 

footplate and held in place with 2 tight straps for further stabilization. The ankle joint of the 

subject was aligned with the axis of the dynamometer. The reference angle corresponded to the 

ankle’s neutral position (90°). The movement range covered the entire comfortable active range 

of motion of  the subject’s ankle joint. Above the knee, the leg was restricted with hook-and-loop 

straps to avoid compensatory flexion movements. Before the tests, the subject received 

instructions about the procedures and was requested to perform a warm-up of 10 submaximal 

repetitions. This warm-up procedure allowed subjects to become familiar with performing 

isokinetic exercises on the Biodex dynamometer. The same investigator (N.N.M.), who was 

familiar with isokinetic testing, performed all tests. During the test, subjects were  instructed to 
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give 100% effort and received positive feedback. The values of the peak torque (N.m) of the 

right plantar flexors and dorsiflexors were used for the data analysis. The peak torque was 

determined as the single repetition with the highest muscular force output (Nm) of the multiple 

test trials.  

The right knee flexor and extensor muscles were tested concentrically at 60°. s -1 and 180°. s -1 , 

according to the guidelines of Dvir 16. The person was strapped into the chair, using the right 

lateral femoral condyle as an anatomical reference for the axis of rotation on the Biodex 16. This 

protocol is reliable 18. The subject completed 5 repetitions of knee flexion and extension at a 

speed of 60 °. s -1 and ten repetitions at 180 °. s -1. The upper leg, hips and shoulders were 

stabilized with safety belts. The subject was instructed to submaximally flex and extend the knee 

10 times at each speed to become familiar with the procedure. The principal investigator 

(N.N.M.) instructed the subject to extend and flex the knee at full force throughout the test. The 

values of the peak torque (Nm) of the right knee flexors and extensors were used for the data 

analysis. 

 

Explosive strength  

We chose the high box test to assess some more ski-specific explosive strength, agility and 

coordination 19,20. Significant correlations have been noted between the skiing performance time 

and the high box test 19,21. In our study, a box with a height of 30 cm was used. The subject 

started by standing beside the box. On command, the subject jumped laterally up onto the box 

and then down off the other side. This was done continuously for 90 seconds. Performance was 

the number of jumps completed in 90 seconds 19.   

 

Postural control  

We tested postural control with the Balance Master (NeuroCom International, Inc., Clackamas, 

OR). The vertical ground reaction forces were used to calculate the position of the center of 

pressure and the equivalent centre-of-gravity (COG) sway angles. The reproducibility of the 

postural control tests on the Balance Master has been reported to be good to excellent 22. Each 

subject was allowed to become familiar with the system and performed 1 test trial before 

proceeding to the tests. The tests for postural control in our study were the limits of stability test 

and the rhythmic weight shift test.   

 

The limits of stability test is a dynamic standing balance test that measures the stable support in a 

controlled manner 23. The test was performed in bipedal stance. We asked the subject to shift 
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COG from the centre to each of the 8 peripheral targets. These targets were positioned forward, 

forward right, right, backward right, backward, backward left, left, and forward left. During the 

assessment, the location of the subjects’ COG and the peripheral targets were displayed on a 

screen. The subject could control the COG by shifting weight. We instructed the subject to move 

the COG cursor on command as quickly and accurately as possible toward 1 of the targets 

located on the limits of stability perimeter and then hold a position as close to the target as 

possible. The subject was allowed up to 8 seconds to complete each trial. The subject was 

instructed to lean forward to the target as much as possible without bending the hips or lifting 

the heels or toes off the ground. Three values were used in the data analysis. The endpoint 

excursion is the distance travelled by the COG on the primary attempt to reach the target, 

expressed as a percentage of the limits of stability. The maximum excursion is the furthest 

distance travelled by the COG during the trial, and the directional control is a comparison of the 

amount of movement in the intended direction to the amount of  extraneous movement; both 

values are also expressed as percentages.  

 

The rhythmic weight shift test quantifies the subjects’ ability to rhythmically move the COG 

from left to right and from forward to backward between 2 targets 23. As in the limits of stability 

test, the subjects’ COG is displayed on a screen as a cursor providing visual feedback. We 

instructed the subject to rhythmically move the COG cursor from side to side or front to back 

between the 2 targets. With the COG cursor, the subject was asked to follow an on-screen cue at 

the same speed as it moved between the endpoints. The 2 values measured were the directional 

control in the left-right excursion and in the front-back excursion. Both values are expressed as 

percentages, ie, a perfect directional control score equaled 100%.  

 

Statistical procedures  

We peformed the statistical analysis with the Statistical Package for the Social Sciences (version 

11.0; SPSS Inc., Chicago, IL). The data were analyzed using the Kolmogorov-Smirnov test. 

Independent t tests were used to compare the baseline characteristics of the groups. Paired- 

sample t tests were calculated for within-group comparisons. Between-group differences were 

analyzed by means of independent t tests on the change scores of both groups. The change score 

of a group was defined as the increase or decrease from pretraining to posttraining by that group. 

We similarly evaluated the results of the Borg scales for perceived exertion on the basis of paired 

and independent t tests. The effect size associated with the changes for each measure in both 

groups was calculated by the following formula: (posttraining mean – pretraining mean) / pooled 
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SD of pretraining and posttraining. The effect size of the difference in change scores between the 

groups was calculated by the following formula: (WBV change score mean – ER change score 

mean) / pooled SD of WBV and ER change scores. According to Rhea 24, a value of less than 

0.25 represents a trivial effect size; 0.25 to 0.50, a small effect size; 0.50 to 1.00, a moderate effect 

size; and more than 1.0, a large effect size.  For all analyses, the level of statistical significance was 

set at P ≤ 0.05.  

 

RESULTS  

 

Pretraining results  

Independent t tests revealed no significant differences between the two groups at the beginning 

of the study (Table 3).  

 

Table 3. Baseline Characteristics   

Whole-Body Vibration  
Training Group (n = 17)  

Equivalent Resistance  
Training Group (n = 16)  

 
 
 

Test 
 
Mean  

 
SD 

 
Mean  

 
SD 

 
 
 
P value  

High box test, No. of repetitions  53.53 16.91 49.75 12.88 .478 
Limits of stability test, %       

End point Excursions  76.94 7.10 78.37 9.42 .624 
Maximum excursions  97.06 4.32 99.75 6.44 .167 
Directional control  71.06 9.28 71.75 5.78 .801 

Rhythmic weight shift test, %       
Right-left  75.24 7.65 72.94 21.41 .681 
Forward-backward  65.53 15.24 61.50 26.92 .598 

Knee strength, Nm      
Extension (60° . s -1)  92.35 30.68 78.50 48.27 .335 
Flexion (60°. s -1)  66.36 20.61 53.33 27.22 .135 
Extension (180°. s -1 )  66.66 19.72 55.87 28.32 .216 
Flexion (180°. s -1)  56.46 16.33 43.81 22.48 .076 

Ankle strength, Nm      
Plantar flexion (30°. s -1)  70.82 22.81 60.62 25.66 .236 
Dorsiflexion (30°. s -1) 11.20 5.37 7.76 5.04 .067 
Plantar flexion (120°. s -1)  44.20 14.50 36.04 14.30 .114 
Dorsiflexion (120°. s -1)  10.55 4.45 8.11 4.54 .286 
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Posttraining results  

 

Equivalent resistance training group  

Performance on the high box test increased significantly in the ER group after the training period 

(Table 4). Moreover, all isokinetic muscle strength values improved significantly except for 

dorsiflexion strength at low speed. None of the postural control measurements increased 

significantly except for the directional control during the limits of stability test. Most significant 

values showed a small effect size.  

 

Table 4. Training Effects Within the Equivalent Resistance Training group  

Pretraining Value Posttraining Value  
Test Mean  SD Mean  SD 

P value 
(Effect size) 

High box test, No. of repetitions  49.75 12.88 55.19 17.37 .012* (0.37) 
Limits of stability test, %       

End point Excursions 78.37 9.42 82.88 5.82 .086 (0.59) 
Maximum excursions  99.75 6.44 99.69 4.24 .973 (-0.01) 
Directional control  71.75 5.78 77.88 7.42 .002* (0.94) 

Rhythmic weight shift test, %      
Right-left  72.94 21.41 67.25 14.04 .212 (-0.32) 
Forward-backward  61.50 26.92 72.56 9.48 .105 (0.56) 

Knee strength, Nm       
Extension (60° . s -1)  78.50 48.27 94.08 44.74 .006* (0.35) 
Flexion (60°. s -1)  53.33 27.22 60.21 25.02 .012* (0.27) 
Extension (180°. s -1 )  55.87 28.32 63.81 23.71 .003* (0.32) 
Flexion (180°. s -1)  43.81 22.48 49.53 20.90 .006* (0.27) 

Ankle strength, Nm      
Plantar flexion (30°. s -1)  60.62 25.66 68.18 25.82 .008* (0.30) 
Dorsiflexion (30°. s -1)  7.76 5.04 12.92 13.77 .138 (0.51) 
Plantar flexion (120°. s -1)  36.04 14.30 41.62 13.40 .006* (0.41) 
Dorsiflexion (120°. s -1) 8.11 4.54 11.45 4.43 <0.001* (0.68) 

* Significant difference between pretraining and posttraining, P ≤ .05 

 

 

Whole-Body Vibration Group  

Performance on the high box test increased significantly after 6 weeks of vibration training 

(Table 5). Also, all ankle and knee isokinetic muscle strength measurements showed significant 

increases after the training period. Most postural control values did not increase significantly 

except for directional control during the limits of stability test and the left-right excursion of the 

rhythmic weight shift test. Most significant values showed a moderate effect size.  
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Table 5. Training Effects  Within the Whole-Body Vibration Group  

Pretraining Posttraining  
Test Mean  SD Mean  SD 

P value 
(Effect size) 

High box test, No. of repetitions  53.53 16.91 67.06 20.06 <0.001* (0.72) 
Limits of stability test, %      

End point Excursions  76.94 7.10 80.47 8.90 .246 (0.43) 
Maximum excursions  97.06 4.32 97.06 5.52 1.000 (0) 
Directional control  71.06 9.28 75.84 6.74 .006* (0.58) 

Rhythmic weight shift test, %       
Right-left  75.24 7.65 69.76 10.35 .007* (-0.60) 
Forward-backward  65.53 15.24 71.29 10.40 .079 (0.44) 

Knee strength, Nm      
Extension (60° . s -1)  92.35 30.68 114.98 40.00 .004* (0.63) 
Flexion (60°. s -1)  66.36 20.61 74.25 22.38 .001* (0.36) 
Extension (180°. s -1 )  66.66 19.72 82.38 28.41 <0.001* (0.63) 
Flexion (180°. s -1)  56.46 16.33 64.17 19.11 .011* (0.43) 

Ankle strength, Nm       
Plantar flexion (30°. s -1)  70.82 22.81 90.09 28.29 <0.001* (0.74) 
Dorsiflexion (30°. s -1)  11.20 5.37 16.99 9.99 .030* (0.71) 
Plantar flexion (120°. s -1)  44.20 14.50 52.06 16.62 .014* (0.50) 
Dorsiflexion (120°. s -1)  10.55 4.45 13.21 3.24 <0.001* (0.67) 

* Significant difference between pretraining and posttraining, P ≤ .05 

 

 

Comparison between both training programs 

The increased performance on the high box test in the WBV group was significantly greater than 

the increase in the ER group (Table 6). Moreover, the increase in plantar-flexor strength at low 

speed was also significantly higher in the WBV group. For all other values, we found no 

significant differences between the change scores of the groups. All significant values show a 

moderate effect size.  

 

Perception of Exertion of the Exercise Programs 

No significant differences wer noted between the WBV group and ER group, except for the 

Borg score of the fifth week, when the ER group rated the exercise program as more intense 

than the WBV group (Figure). Within each group, the Borg score in week 6 was significantly 

higher than the score in week 1.  
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Table 6. Comparison Between Training Programs   
 

Whole-Body Vibration 
Training Group 

Equivalent Resistance  
Training Group  

 
 

Test Change  score SD Change score SD 

 
P value 
(Effect size) 

High box testn No. of repetitions  13.53 9.79 5.44 7.66 .013* (0.92) 
Limits of stability test, %      

End point Excursions 3.53 12.07 4.50 9.78 .802 (-0.09) 
Maximum excursions  0.00 5.86 -0.06 7.38 .979 (0.01) 
Directional control  4.88 6.38 6.13 6.52 .584 (-0.19) 

Rhythmic weight shift test, %      
Right-left  -5.47 7.22 -5.69 17.46 .963 (0.02) 
Forward-backward  5.76 12.68 11.03 25.62 .453 ( -0.26) 

Knee strength, Nm      
Extension (60° . s -1)  22.62 27.72 16.29 19.34 .466 (0.27) 
Flexion (60°. s -1) 7.89 7.94 6.98 9.31 .766 (0.11) 
Extension (180°. s -1 )  15.71 14.74 8.61 9.34 .119 (0.58) 
Flexion (180°. s -1)  7.71 10.98 5.61 6.68 .526 (0.23) 

Ankle strength, Nm      
Plantar flexion (30°. s -1)  19.27 14.91 7.56 9.96 .013* ( 0.92) 
Dorsiflexion (30°. s -1) 5.79 10.02 5.16 13.18 .879 (0.05) 
Plantar flexion (120°. s -1)  7.87 11.74 5.59 6.94 .501 (0.23) 
Dorsiflexion (120°. s -1)  3.01 4.17 3.12 4.46 .938 (-0.03) 

* Significant difference between the change scores of the groups, P ≤ .05 
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Perceived exertion of the training programs. Each value 
represents the mean Borg score of each training week. No 
significant differences were noted between the groups except during 
week 5 (P = .015). WBV indicates whole-body vibration 
training group; ER, equivalent resistance training group.  
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DISCUSSION  

 

Both a WBV program and an ER training program improved isokinetic ankle and knee muscle 

strength and the explosive strength of the subjects after a 6-week training period. These findings 

are in accordance with those of several authors, affirming that WBV increases the dynamic 

strength of the lower extremity muscles 1,2,8,11. Roelants et al. investigated the effects of 24 weeks 

of WBV on the knee extension strength in 89 postmenopausal women in a randomized 

controlled study 2. Isokinetic and dynamic strength of the knee extensors increased both WBV  

and traditional resistance training groups, with the training effects not significantly different 

between the groups. Similarly, Delecluse et al. concluded that a WBV program can induce a 

strength gain in the knee extensors of previously untrained females to the same extent as a 

traditional resistance training program 1. In these studies, the traditional resistance training 

programs and vibration programs consisted of different exercises. Therefore, whether WBV 

training had an additional training in value remains uncertain.   

 

In our study, the ER training program consisted of exactly the same exercises as in the WBV 

group in order to evaluate the supplemental value of vibration training. Interestingly, our results 

reveal that the gains in explosive strength and in plantar-flexor strength at low speed were 

significantly higher in the WBV group than in the ER group after 6 weeks of training.  

Using the same study design, Ronnestad concluded that the maximal strength of recreationally 

resistance-trained men increased significantly more after 5 weeks of a vibration program than 

after an equivalent training program 14.  

Previous authors have tried to find a plausible explanation for these positive effects of vibration 

training. Some investigators have suggested that the large strength gain is the result of the result 

of the tonic vibration reflex 1,2,14,25. They stated that standing on a vibration plate provokes length 

changes in the muscle that stimulate the muscle spindles. (In these studies, knee flexion and 

extension muscles were tested.) These receptors would elicit the tonic vibration reflex. In 

addition, it has been proposed that the recruitment thresholds of the motor units during WBV 

are expected to be lower than during voluntary contractions, probably resulting in a more rapid 

activation and training of high-threshold motor units 1. Therefore, it has been suggested that 

WBV training specially trains fast – twitch fibers 1,26, which are responsible for explosive power.  

 

In our results, the WBV group showed a significantly greater gain on the high box test than the 

ER group after 6 weeks of training. This finding is in agreement with the results of previous 



Whole – body vibration 

 71 

studies, that showed that WBV training has a positive effect on explosive strength. Delecluse et 

al. reported that jumping height increased significantly over 12 weeks in the WBV group and 

remained unchanged in the 3 other groups (control, placebo, and traditional resistance training) 1 . 

Also Ronnestad found a significant improvement of the vertical jumping height after subjects 

performed squats on a vibration platform for 5 weeks 14.  

 

In our study, neither WBV nor ER training for 6 weeks resulted in a convincing effect on 

postural control. This finding is in agreement with that of Torvinen et al.11, who showed that 4 

months of vibration training produced no effect on the dynamic or static balance of young, 

healthy subjects. However, stroke patients with unilateral impairment showed an increase in their 

weight – shifting speed at the balance assessment after 1 session of WBV training 27. In geriatric 

patients, WBV improved postural control 10. After 4 months of training, chair-rising time 

improved 18 % in fit elderly participants, whereas the control group showed no significant 

differences. Consequently, we can speculate that WBV training only has a positive significant 

effect when the postural control of the subjects is disturbed.  

 

In order to rate the perceived exertion of both training programs, each subject completed a Borg 

scale after each training week. No significant differences were noted between the groups, except 

during week 5, when the WBV group rated the exercises lower (easier). We know that the 

amplitude of the vibrations was reduced from 4 mm to 2 mm just before week 5, whereas the 

frequency was increased from 26 Hz to 28 Hz. It is possible that the amplitude of the vibrations 

had an important influence on the perceived exertion of the subjects. In previous studies, 

attention was only paid to the frequency of the vibrations.  

 

The limitations of our study should be noted. Although the WBV training showed a significantly 

greater gain in explosive strength and in plantar flexor strength at low speed, we should take into 

account the fact that the WBV group was bigger and older than the ER group at baseline. 

Therefore, we have analyzed the change scores of both groups and not the absolute end values. 

In our study, no true control group was included. One could suggest that the young subjects 

might have had strength improvements regardless of training. Another limitation of our study 

was that we have not studied the length of the training effects. Therefore, future researchers 

should include a follow-up of the length of the training effects. Finally, not performing a 

Bonferroni correction in order to take type I errors into account when analyzing several 

dependent variables is also an important limitation of our study.  



Chapter 4 

 72

In conclusion, neither WBV training nor ER training seemed to have an effect on the postural 

control of young healthy skiers. However, both training programs improved isokinetic ankle and 

knee muscle strength and explosive strength after 6 weeks of training. Moreover, WBV training 

resulted in a significantly greater gain in explosive strength and plantar flexor strength at low 

speed compared with ER training after 6 weeks. Therefore, our findings support the hypothesis 

that WBV training can be a beneficial addition to traditional strength programs.  
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ABSTRACT 

 

Purpose: Many studies have been undertaken to define the effects of static and ballistic 

stretching. However, most researchers have focused their attention on joint range of 

motion measures. The objective of the present study was to investigate if static and ballistic 

stretching programs had different effects on passive resistive torque measured during 

isokinetic passive motion of the ankle joint and tendon stiffness measured by ultrasound 

imaging.  

Methods: Eighty – one healthy subjects were randomised into three groups: a static stretch 

group, a ballistic stretch group and a control group. Both stretching groups performed a six 

week stretching program for the calf muscles. Before and after this period, all subjects were 

evaluated for ankle range of motion, passive resistive torque of the plantar flexors and the 

stiffness of the Achilles tendon.  

Results: The results of the study revealed that the dorsiflexion range of motion was 

increased significantly in all groups. Static stretching resulted in a significant decrease of the 

passive resistive torque, but no change in Achilles tendon stiffness. In contrast, ballistic 

stretching had no significant effect on the passive resistive torque of the plantar flexors. 

However, a significant decrease in stiffness of the Achilles tendon was observed in the 

ballistic stretch group. 

Conclusion: These findings provide evidence that static and ballistic stretching have 

different effects on passive resistive torque and tendon stiffness and both types of 

stretching should be considered for training and rehabilitation programmes.  

 

KEY WORDS 

Flexibility, muscle, tendon, stiffness  
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INTRODUCTION 

 

It is controversial whether stretching promotes better performances and decreases the 

number of injuries (34). However, stretching exercises are regularly included in warm – up 

and cooling – down activities. On the sports field, the two most commonly used stretching 

techniques are static and ballistic stretching. Static stretching involves a slow, controlled 

lengthening of a relaxed muscle (1). A ballistic stretch is a bouncing rhythmic motion and 

uses the momentum of a swinging body segment to lengthen the muscle. Guissard et al. 

(11) reported that ballistic stretching caused the facilitation of the stretch reflex, which is 

mediated by the facilitatory influences of muscle spindles type Ia and II receptors upon 

homonymous alpha motor neuron excitability. This activation of the stretch reflex causes a 

contraction in the muscle being stretched. Thus, it has been stated that ballistic stretching is 

disadvantageous for improving range of motion, and perhaps even harmful because the 

muscle may reflexively contract if restretched quickly and create injury to the muscle fibres 

(30).  

Many studies have attempted to determine whether outcomes such as range of motion or 

task performance are different depending upon the type of stretching undertaken. Sady et 

al. compared ballistic, static and proprioceptive neuromuscular facilitation (PNF) and 

showed that all techniques were able to improve range of motion but PNF was seen as the 

preferred technique (29). Similarly, Lucas and Koslow also concluded that all three 

techniques were able to increase flexibility after a training period of seven weeks (19).  

Wallin et al. compared the effects of a modified contract – relax method and a traditional 

ballistic stretch method (33).  These authors showed that the contract – relax method was 

significantly better than the ballistic stretch method for improving range of motion. More 

recently some authors have examined the effects of stretching on performance in tasks.  

For instance, Woolstenhulme et al. determined the effects of four different warm – up 

protocols (ballistic stretching, static stretching, sprinting and basketball shooting (control 

group)) on range of motion and vertical jump height in basketball players (35). The findings 

showed that the ballistic stretch group had the greatest increase in range of motion. 

However, vertical jump height was not different after six weeks in any of the groups. More 

recently, Unick et al. also found no significant difference in vertical jump performance 

following either static or ballistic stretching (31).  
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Most previous work has focused their outcome upon range of motion.  However, 

dynamometers have allowed the measurement of passive resistive torque associated with 

the range of motion changes (21,23,24). Furthermore dynamometer mesurements, 

combined with ultrasonography (7,15,16,17,25) have allowed the appreciation of stretch 

within tendon structures. To date, no studies have used these techniques to examine 

whether ballistic or static stretching have different effects upon measurements of passive 

resistive torque and stiffness. Theoretically, the rhythmical bouncing of ballistic stretching 

has different temporal characteristics in the applied forces, (eg: rate of application of force), 

compared to the sustained and steady force involved in a static stretch.  As such, it might 

be expected that the contractile elements together with the serial and parallel elements 

within the muscle might over time respond differently to these types of stretch. 

Therefore, the objective of the present study was to investigate if a static and ballistic 

stretching program had different effects on passive resistive torque measured during 

isokinetic passive motion of the ankle joint, and tendon stiffness measured by ultrasound 

imaging. 

 

MATERIALS AND METHODS  

 

Experimental Design  

A randomised controlled pretest – posttest trial was utilised to assess two common 

stretching techniques during a 6 week training program. Ninety-six volunteers were 

prepared to take part in the study. The subjects were randomly assigned into three groups: 

a static stretch group (n = 33), a ballistic stretch group (n = 33) and a control group (n = 

30). Randomization was performed independently. Thirty cards for the control group and 

33 cards for both stretching regimes were shuffled in a container. After completion of all 

pre – intervention assessments, each subject picked one card in a blinded manner. Both 

stretching groups performed a stretching program with a duration of six weeks. They were 

asked to stretch their calf muscles every day. In order to supervise their training program, 

each person had to complete a personalized calendar of their stretching activity and was 

contacted every week by one of the investigators. The control group did not receive a 

training program. In order to supervise this group, the participants were contacted every 

week and were asked to complete a questionnaire at the end of the study. The main goal of 

this questionnaire was to make to sure that the subjects of the control group did not 
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undertake additional stretching exercises over the intervention period. Unsatisfactory 

compliance with the prescribed regimes resulted in exclusion from the study. Before and 

after the six weeks of stretching, all subjects were evaluated for ankle range of motion, 

passive resistive torque of the plantar flexors and the stiffness of the Achilles tendon.  

 

Subjects  

The Ethical Committee of the Ghent University Hospital approved the study, and each 

participant gave a written informed consent prior to participating. Subjects were informed 

that the study was for research purposes and were encouraged to give maximal effort 

throughout the entire testing procedure. Subjects with a history of lower leg injuries were 

excluded from the study. Only recreational athletes were included in the study, competitive 

elite athletes were excluded. The personal stretching habits beyond the scope of the study 

protocol were questioned. During the study, all subjects were asked to maintain normal 

activity. The anthropometric characteristics of the subjects are presented in Table 1.  

 

Table 1: The anthropometric characteristics of the 81 subjects 

 Static Stretch Group 
(n = 31)  

Ballistic Stretch Group (n 
= 21)  

Control Group  
(n = 29)  

Sex (M/F)  21/10 8/13 8/21  

Age (years ± SD)  22.03 ±  1.11  21.90 ±  1.73  22.31 ±  1.91 

Height (cm ± SD)  174.85 ±  7.71 177.33 ± 8.87 171.41 ±  8.44 

Weight (kg ± SD)  67.71 ±  9.38 68.69 ±  9.83 64.78 ± 11.09  
SD = standard deviation; n = number  

 

 

 

Measures  

 
Questionnaire  

Prior to testing, all subjects completed a questionnaire to assess their medical history, their 

physical activity and their experience with stretching. In order to assess possible changes in 

their lifestyle and to detect the presence of injuries during the six weeks of training, this 

questionnaire was completed again after the six weeks of training. This was done in order 

to verify the compliance of each subject. The results of the questionnaires indicated that 

one person of the control group did additional stretching exercises, eight persons did not 
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complete the stretching program successfully and 6 persons became sick or injured during 

the intervention period. Consequently, eighty-one of the 96 volunteers were included in the 

statistical analysis (37 males, 44 females) (static n = 31; ballistic n = 21; control n = 29).   

 

Range of Motion Measurement  

Dorsiflexion range of motion was measured with a universal goniometer (accurate to one 

degree) by the same investigator to provide good intra – rater reliability. This person did 

not know the group allocation of the subjects. Previous research using radiography has 

established the validity of goniometric measurements (10). Each measurement was repeated 

three times and the mean was used for statistical analyses. The left ankle was evaluated in a 

weight bearing position. The measurement was performed according to the method of 

Ekstrand et al. (5). The subject was standing upright with the feet parallel. The subject was 

asked to step back with the left foot and bring the ankle into maximum dorsiflexion, 

keeping the left  knee straight and the heel on the ground. The subject was aware that the 

front leg must be flexed, the back leg must be kept straight and the feet must be facing 

forwards. The weight bearing measurement was also examined with the knee flexed (5).  

The subject was asked to stand on the floor with the left foot on a bench. Then, the subject 

was asked to lean forward in order to produce a maximal dorsiflexion in the left ankle, with 

the heel in contact with the bench and the knee maximally flexed. The bony landmarks 

used for these measurements were defined using the method of Elveru (6). The proximal 

arm of the universal goniometer was aligned with the head of the fibula. The axis of the 

goniometer was positioned 0.5 cm below the lateral malleolus. The distal arm was aligned 

parallel to an imaginary line joining the projected point of the heel and the base of the fifth 

metatarsal. This measurement has been found to be valid and reliable (5,6). 

 

Passive Resistive Torque Measurement  

For testing the passive resistive torque, a Biodex System 3 isokinetic dynamometer was 

used. The subject was placed in a supine position with the knee maximally extended. The 

foot was securely strapped to a footplate connected to the lever arm of the dynamometer. 

The standard Biodex ankle unit attachment with the provided Velcro straps was used. All 

subjects were asked to wear the same sport shoes with a low cut in both test sessions. The 

same investigator strapped the foot prior to and after the stretching period. The attachment 

of the foot was also such that the movement of the ankle joint was not impeded, in order 
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to avoid an overestimation of the passive resistive torque. The height and the distance of 

the foot attachment was registered in order to make the assessment reproducible in the 

post test session. During the testing session, the dynamometer moved the ankle passively 

through 4 continuous cycles of motion between 20° plantar flexion to 10° dorsiflexion at 

5°/ sec, with neutral being the line of the tibia perpendicular to the footplate. These range 

of motion limits were used in the pre-testing session and the post-testing session. This 

range of motion is used during many functional activities (3). A slow stretch speed was 

used in an attempt to ensure that the stretch did not elicit reflexive muscle activity. Most 

authors agree that 5°/sec achieves this purpose (9). The subjects were instructed to relax, 

and before data collection, each person performed a test trial to become familiar with the 

system. During the test session, electromyographic activity from the plantar and dorsiflexor 

muscles was recorded (MyoSystem 1400, Noraxon USA Inc., Scotssdale, AZ). Surface 

electrodes with an electrical surface contact of 1 cm2 (Ag-AgCl, BlueSensor, Medicotest 

GmbH, Germany) were placed on the soleus, the tibialis anterior and the medial head of 

the gastrocnemius muscle according to the guidelines of Basmajian with an interelectrode 

distance of 10 mm (2). The EMG tracings were monitored during the tests in an effort to 

ensure that calf muscle activity was less than 0.05 mV above baseline during the passive 

stretch cycles (9). This EMG activity corresponds to approximately 2% MVC. The 

bandwidth of the frequency response was 20Hz to 4 kHz (9). Similar to Gajdosik et al., the 

raw EMG signals were relayed to an amplifier (x 5,000) and high pass filtered at 20Hz, and 

the analog signals were converted to digital data at a sampling rate of 500 Hz (9). The test 

was repeated if the subject was not relaxed sufficiently, i.e. if the muscle activity was higher 

than 0.05 mV. The peak passive resistance torque (N.m) recorded from the dynamometer 

over four cycles of motion was used in the statistical analysis.  A pilot study demonstrated 

that the reproducibility was high (ICC = 0.93-0.94, p < 0.001).  

 

Measurement of the passive stiffness of the Achilles tendon  

The ratio of the calculated muscle force (Fm) and the elongation of the Achilles tendon 

(ELONG) provided a measure of the stiffness of the Achilles tendon. In respect to the 

muscle force, firstly, the measured torque TQ (N.m) during maximal isometric plantar 

flexion was converted to muscle force Fm (N) using the following equation:  

Fm = k. TQ. MA 
-1 
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Where k is the relative contribution of the physiological cross-sectional area of the medial 

gastrocnemius within plantar flexor muscles (18%) (8) and MA is the moment arm length 

of triceps surae muscle at 90° of ankle joint (50mm) (28,32).  Therefore: 

Fm = 18/100 . TQ. (0.05)
-1 

Secondly, the ratio of Fm and ELONG provided the stiffness of the tendon (STIFFN, 

N/mm). In this study, the calculations were based upon those of Kubo (18). Both legs 

were tested. The test - retest reliability of measuring the stiffness of the Achilles tendon 

using ultrasonography has been shown to be good (ICC = 0.80-0.82) (22).  

 

Measurement of the torque 

The dynamometer (Biodex System 3) was used to determine torque output during 

isometric plantar flexion. The subject lay prone on a bench. First, the left ankle was placed 

in a 90° position (anatomical position) with the knee joint at full extension and the foot 

securely strapped to a footplate connected to the lever arm of the dynamometer. The 

standard Biodex ankle unit attachment with the Biodex provided Velcro straps was used 

in this study.  In order to prevent ankle joint changes, the foot was firmly attached to the 

footplate of the dynamometer with a strap. The position and the height of the Biodex chair 

were also recorded for each subject individually and were used in the following evaluations. 

Before the test, the subjects performed 3-5 submaximal contractions to be accustomed to 

the test procedure. After this warm-up, the subjects were instructed to develop an 

isometric maximal voluntary contraction (MVC) during five seconds. The task was 

repeated three times per subject with 30 s rest between the trials. Visual examination was 

undertaken to ensure that the subject’s ankle joint did not move during this muscle work.  

When motion was observed, the trial was discarded. Each subject was verbally encouraged 

to exert maximal voluntary effort by contracting as hard as possible. The maximal isometric 

strength was defined as the peak torque recorded. The force of the tendon was estimated 

from the plantar flexion torque, the physiological cross-sectional area ratio of the medial 

gastrocnemius to all the plantarflexors, and the moment arm (see formula above).  

 

Measurement of elongation of the tendon   

To obtain a measurement of the elongation of a tendon, the method of Fukashiro (7) was 

used. In the present study, a real-time ultrasonic apparatus (Siemens Sonoline SL-1) was 

used to obtain a longitudinal ultrasonic image of the medial gastrocnemius (MG) muscle at 
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30 % of the lower leg (i.e. from the popliteal crease to the centre of the lateral malleolus 

(17). An electronic linear array probe of 7.5 MHz wave frequency was secured with Velcro® 

straps on the skin. The ultrasonic images were recorded on videotape (Digital Camera 

Sony). One tester who was not aware of the group allocation of the subjects visually 

identified the echoes from the aponeurosis and the MG fascicles. Parallel echoes running 

diagonally represent the collagen-rich connective tissue between the fascicles of the medial 

gastrocnemius. The darker areas between the bands of echoes represent the fascicles. The 

echo that runs longitudinally in the middle is from the aponeurosis. The point (x) at which 

one fascicle was attached to the aponeurosis was visualised on the ultrasonic image. This 

point (x) moved proximally during isometric torque output. The distance travelled by x 

(�x) is considered to indicate the lengthening of the aponeurosis and therefore also of the 

tendon (14,25). Measuring the displacement was done with the multimedia player, Light 

Alloy 1.D. The mean value of the three measurements was used as a representative value 

for the elongation of the tendon (ELONG).  

 

Stretching program  

The two stretching groups performed calf stretching exercises every day for an intervention 

period of six weeks. The exercises were comprised of a classical “standing wall push”, 

performed successively on both legs. The same information and instructions were given to 

each subject. For example, the subjects were instructed that the holding point of the stretch 

be at the point “just before discomfort”. The static stretch group was instructed to hold the 

back knee completely extended. The subjects in the ballistic stretching group followed an 

identical stretching protocol except once these subject had reached the initial stretching 

position, they were instructed to move up and down at a pace of one movement per 

second with the front knee. After four weeks, all subjects received a wedge to perform the 

stretching exercise. Hence, subjects could increase the stretching intensity. This wedge 

(with a height of 5.7 cm) was placed under the forefoot of the back leg. During each 

stretching session, the stretch was repeated five times at each leg. After performing the 

stretch for 20 seconds, the subject rested 20 seconds before that leg was stretched again. 

Each subject received an audio-CD with the stretch duration, the rest duration and the 

rhythm of the exercise in order to standardize the program as much as possible.  
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Statistical Analyses  

Statistical analysis was performed with Statistical Package for the Social Sciences (version 

11.0; SPSS Inc., Chicago, IL). The data were assessed for normality using the Kolmogorov 

– Smirnov test. One–way ANOVA’s were used to compare the baseline characteristics of 

the three groups. To determine a significance of an interaction effect (time x group) or 

main effect for time, a General Linear Model for Repeated Measures (GLM) was 

performed. Gender and the pre – treatment measures were entered as covariates in the 

model. In these analyses, the Mauchly’s test of Sphericity was significant, indicating that the 

assumption of sphericity had been violated. Therefore, a Greenhouse – Geisser correction 

factor was applied to all p–values. Pair–wise differences were examined using Bonferroni 

tests and the alpha level was set at 0.05 for all hypotheses.  

 

RESULTS  

 

Pretraining results  

The left ankle of 81 subjects was included in the statistical analyses. No significant 

differences were observed between the three groups at baseline. The baseline 

characteristics of the three groups are presented in Table 2.  

 

Table 2: The baseline characteristics of the three groups  

Static stretch 
group  

Ballistic stretch  
group 

Control group  

Mean  SD Mean  SD Mean  SD  

P 

ROM ext (°) 28.06 6.50 28.76 6.79 28.00 5.21 0.896 
ROM flex (°) 36.03 9.17 36.05 9.17 37.38 6.67 0.788 
PRT (N.m) 17.99 3.76 17.99 4.47 17.12 3.81 0.641 
STF (N/mm) 59.42 37.09 66.27 41.27 46.04 25.11 0.261 
(ROM: dorsiflexion range of motion, ext: with the knee extended, flex: with the knee flexed, PRT: passive 
resistive torque of the plantar flexors, STF: passive stiffness of the Achilles tendon, SD: standard deviation, α 
= 0.05)   
 
 

Posttraining results 

 
Range of motion  

Table 3A and 3B show that both stretching groups had a significantly increased 

dorsiflexion ROM for both measurements, with the knee flexed and extended. The control 
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group also showed a significant increase in dorsiflexion range of motion. There were no 

significant interaction effects. 

 

Table 3A: The results of the GLM – model on the range of motion measurements of the left leg.  

Pre Post  Group  Measurement 
Mean 
(°)   

SD Mean  
(°)  

SD 
Main effect time  
p < 0.000 
Post hoc: p-value 

ROM ext  28.06 6.50 30.64 6.35 <0.001 Static  
ROM flex 36.03 9.17 39.03 8.13 <0.001 
ROM ext  28.76 6.80 32.00 7.29 0.001 Ballistic 
ROM flex  36.05 9.17 39.43 8.56 <0.001 
ROM ext  28.00 5.21 30.21 5.02 0.013 Control  
ROM flex  37.38 6.68 39.24 6.36 0.001 

(ROM: dorsiflexion range of motion, ext: with the knee extended, flex: with the knee flexed, SD: standard 
deviation, α = 0.05)   

 

 

Table 3B: The results of the GLM – model on the range of motion measurements of the left leg, after 

covariate – adjustment.  

Pre Post  Group  Measurement 
Adjusted 
Mean 
(°)   

Adjusted 
SD 

Adjusted 
Mean  
(°)  

Adjusted 
SD 

Main effect time  
p = 0.049 (ext)  
p < 0.001 (flex) 
Post hoc: p-value 

ROM ext  28.15 6.69 30.85 6.20 0.002 Static  
ROM flex 36.12 8.87 39.23 7.65 0.002 
ROM ext  28.21 6.92 31.89 6.67 0.001 Ballistic 
ROM flex  35.32 9.35 39.16 8.98 0.005 
ROM ext  28.25 5.48 29.83 5.10 0.009 Control  
ROM flex  37.33 6.09 39.50 6.25 0.064 

(ROM: dorsiflexion range of motion, ext: with the knee extended, flex: with the knee flexed, SD: standard 
deviation, covariates: gender and pre –treatment stiffness measures, α = 0.05)   

 

 

Passive resistive torque  

The results showed a significant main effect for time. Post hoc testing revealed that the 

PRT decreased significantly in the static stretch group after six weeks of stretching. The 

PRT of the ballistic stretch group and the control group was not changed significantly. 

There was no significant interaction effect. The results of these analyses are presented in 

Table 4A and 4B.  
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Table 4A: The results of the GLM – model on the passive resistive torque measurements of the left leg.  

Pre  Post Group  
Mean  
(N.m) 

SD Mean  
(N.m) 

SD  
Main effect time 
p=0.017 
Post hoc: p-value 

Static  PRT 17.99 3.77 16.61 3.30 0.040 
Ballistic PRT 17.99 4.48 17.86 4.49 0.609 
Control  PRT  17.12 3.81 16.23 4.29 0.081 
(PRT: passive resistive torque of the plantar flexors, SD: standard deviation, α = 0.05) 

 

 

Table 4B: The results of the GLM – model on the passive resistive torque measurements of the left leg, 

after covariate – adjustment.  

Pre  Post Group  
Adjusted 
Mean  
(N.m) 

Adjusted 
SD 

Adjusted 
Mean  
(N.m) 

Adjusted 
SD  

Main effect time 
p=0.005 
Post hoc: p-value 

Static  PRT 17.65 3.43 16.39 3.28 0.026 
Ballistic PRT 17.94 4.55 18.25 4.49 0.863 
Control  PRT  16.97 3.49 16.13 3.98 0.160 
(PRT: passive resistive torque of the plantar flexors, SD: standard deviation, covariates: gender and pre –
treatment stiffness measures, α = 0.05) 

 

 

Passive stiffness of the Achilles tendon  

There was a significant main effect for time. Post hoc testing revealed that the stiffness of 

the Achilles tendon decreased significantly in the ballistic stretch group. In the static stretch 

group and the control group, no significant changes were found after the six weeks of 

stretching. There was no significant interaction effect. Table 5A and 5B show these results.   

 

Table 5A: The results of the GLM – model on the measurements of the passive stiffness of the left Achilles 

tendon. 

Pre  Post Group  
Mean  
(N/mm) 

SD Mean 
(N/mm) 

SD  
Main effect time 
p = 0.007 
Post hoc: p-
value 

Static  STF 59.42 37.09 53.40 24.52 0.231 
Ballistic STF 66.27 41.27 48.56 29.66 0.008 
Control  STF 46.04 25.11 45.03 21.33 0.100 
(STF: passive stiffness of the Achilles tendon, SD: standard deviation, α = 0.05) 
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Table 5B: The results of the GLM – model on the measurements of the passive stiffness of the left Achilles 

tendon, after covariate – adjustment. 

Pre  Post Group  
Adjusted 
Mean  
(N/mm) 

Adjusted  
SD 

Adjusted  
Mean 
(N/mm) 

Adjusted 
SD  

Main effect time 
p < 0.001 
Post hoc: p-
value 

Static  STF 53.13 29.11 54.75 24.79 0.812 
Ballistic STF 65.83 42.65 47.53 31.28 0.022 
Control  STF 46.75 27.30 46.24 23.20 0.942 
(STF: passive stiffness of the Achilles tendon, SD: standard deviation, covariates: gender and pre-treatment 

measures, α = 0.05) 

 

 

DISCUSSION  

 

The results of the study revealed that dorsiflexion range of motion was increased 

significantly in all groups. Previous studies, using goniometry confirm that joint range of 

motion can be increased by stretching (27,29). In order to assess the effects of static and 

ballistic stretching more completely, resistive torque during passive motion was examined 

together with the stiffness of the Achilles tendon.  

The results related to the passive resistive torque show that after six weeks of stretching, it 

was significantly decreased albeit by a relatively small amount in the static stretch group, 

and remained unchanged in the ballistic stretch group. The finding related to the static 

stretching group was in agreement with some previous studies (16), but not all (21,27). 

Where no change has been observed, authors generally argue that the viscoelastic 

parameters have not been altered, and changes in torque and range of motion have 

occurred due to increased stretch tolerance.  Since the range of motion in which the 

passive resistive torque was measured was the same in the pre – and post testing, the small 

but significant decrease in passive resistive torque observed in the static stretch group has 

to be due to structural changes (21). While it is beyond the methods of the current study to 

define what structures changed, the most commonly reported would be an increase in 

sarcomeres (4,9,26). Indeed, Coutinho et al. investigated the effect of passive stretching 

applied every 3 days to the soleus muscle of rats and found an increase in serial sarcomere 

number over a three week period (4). Interestingly, in the current study, no change was 

observed with ballistic stretching which might indicate that the tension placed on the 
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muscle should be continuous and not intermittent as would have been occcuring with the 

ballistic techniques used in the current study.  Alternatively, it may be that the forces 

generated in the range of motion tested did not elicit or show the effects of ballistic 

stretching. 

In the present study we observed no significant changes in tendon stiffness after six weeks 

of static stretching. In contrast, after six weeks of ballistic stretching, the stiffness of the 

Achilles tendon decreased significantly. Only one previous study has examined the effects 

of a stretching programme on tendon stiffness in vivo. In that study, Kubo et al. (16) 

investigated the effects of a 3 week static stretching program, and found that tendon 

stiffness was unchanged, a finding in agreement with the current study. Why these different 

responses occurred is not clear, but may be related to the effect of stretching on the 

contractile elements versus the tendon. While the resting contractile elements have been 

shown to be more compliant than tendon for a particular length, the much greater length 

of tendon attached to the plantarflexor muscles in-vivo means that when these muscles are 

stretched, much greater strains are observed in the tendon compared to the contractile 

elements (12). It may be that these larger strains induce an adaptation in the collagen fibres 

within the tendon, and this adaptation may require a repetitive changing stimulus (applied 

force) such as seen in ballistic stretching as compared to the sustained steady force 

associated with static stretching.   

Another possible mechanism for the different effect of static and ballistic stretching on 

tendon stiffness is related to the viscosity of the muscle tendon complex. Recently McNair 

et al. (23) reported that stiffness was decreased significantly more during cyclic motion 

compared to static stretching within a single stretching session, and these authors 

speculated that the more mobile constituents of soft tissues such as the polysaccharides 

and water are redistributed within the collagen framework more rapidly during cyclic 

motion. In this respect, Hutton (13) has commented that muscles display thixotropic 

behaviour, a rheological term related to the viscosity of a gel and resistance to molecular 

deformation, and that motion leads to a decrease in the viscosity of the system.  It may be 

that there are perennial changes in the viscosity of the system as a result of longer term 

stretching affecting the composition of these components.    

In respect to the findings, it should be kept in mind that the passive resistive torque and 

the measures of Achilles tendon stiffness cannot be compared directly, primarily due to the 

extremely different forces associated with these tests.  In the range of motion that passive 
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resistive torque was measured, the forces are many times less than those associated with a 

maximum effort activation of the plantar-flexor muscles.  There were also some limitations 

to the methodology of the present study. First of all, the position at which the isometric 

contraction was undertaken was 90 degrees (anatomical position), and it was assumed that 

there was zero strain in the tendon at this point.  However, Muramatsu et al. (25) have 

shown that this is not so and hence the amount of displacement in the tendon will be 

underestimated and the subsequent measurement of stiffness would be overestimated.  

That said, Figure 8 in their paper shows that the effect upon strain between 10-90% MVC 

is relatively small.  The ramifications in respect to measurements before and after stretching 

is that any decrease in stiffness might be overestimated. In respect to the calculation of Fm, 

we used the same moment arm for all our subjects, a technique used by others 

(8,14,16,17,18).  For the measurement of individual moment arms, either direct 

measurements by MRI using the Reuleaux method as previously described (20,22); or by 

indirect measurement involving the calculation of the ratio of change in tendon length to 

change in joint rotation would be required. Similarly, individual measurements of k which is 

the relative contribution of the physiological cross-sectional area of the medial 

gastrocnemius within plantar flexor muscles would be more accurately assessed by MRI. It 

should also be noted that although tendon displacement changes were measured during 

“isometric” muscle activation, it has been shown that small amounts of ankle joint rotation 

(3-7 degrees) can take place, and these can markedly affect the displacement measurements, 

particularly at high levels of a MVC leading to an overestimation of displacement and 

hence an underestimation of stiffness (21,25). In the present study, we looked for these 

joint motion changes, but only by visual observation, and if they were observed, then those 

data were discarded and the test repeated. Finally, why there was an increase in ROM in the 

control group should be considered.  In this regard, as the responses to the questionnaires 

of the control group subjects indicated that they had undertaken no additional stretching 

exercise over the intervention period, we believe the observed changes represent a learning 

effect. That is, at the second testing session, the subjects were able to undertake the ROM 

test with greater skill as a result of the practice they had received in the baseline testing 

session.  

In summary, in the present study static stretching resulted in a small decrease of the passive 

resistive torque in combination with no change in tendon stiffness. In contrast, ballistic 

stretching had no significant effect on the passive resistive torque. However, a decrease in 
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stiffness of the Achilles tendon was observed after ballistic stretching. These findings have 

implications for the prevention of injury and for performance. They indicate that a 

combination of ballistic motion and holds may be most appropriate for training and 

rehabilitation programs. 
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GENERAL DISCUSSION 

 

The first aim of this dissertation was to gain a better insight into the intrinsic risk factors 

for the development of an Achilles tendinopathy. Secondly we wanted to investigate which 

regimes could be used in prevention and rehabilitation programs. Therefore, this chapter 

focuses on the possible risk factors for the development of an Achilles tendinopathy and 

the derived appropriate prevention and rehabilitation programs. The strengths and 

limitations of this dissertation and directions for future research will complete this chapter.  

 

Although Achilles tendinopathy is frequently encountered in the sports injury clinic, its risk 

factors remain obscure. As outlined in the general introduction, various extrinsic risk 

factors have already been clearly recognized: changes in training patterns, poor technique, 

previous injuries, footwear and environmental factors. However, the relationship between 

the intrinsic risk factors and the occurrence of an Achilles tendinopathy is still obscure.  

 

In chapter 3 of this dissertation, a prospective study in male military recruits was set up to 

obtain a better insight in possible mechanical intrinsic risk factors. Sixty – nine male officer 

cadets followed the same 6-week basic military training. Before this training, each subject 

was evaluated for anthropometrical characteristics, isokinetic muscle strength, ankle joint 

range of motion, Achilles tendon stiffness, explosive strength, and leisure and sports 

activity. Ten of the 69 male officer recruits (14.5%) sustained an Achilles tendinopathy. 

Because all recruits followed the same training program with the same equipment, 

environmental conditions, food, and daily schedule, the impact of the extrinsic risk factors 

was kept to a minimum.  

 

The anthropometrical characteristics of the recruits, their level of physical activity nor their 

explosive strength were identified as predisposing factors for the development of an 

Achilles tendinopathy.  Neither was the stiffness of the Achilles tendon seen as an intrinsic 

risk factor for an Achilles tendinopathy. In chapter 3, the ultrasonic measurement 

technique described by Fukashiro et al. (11) was used to identify tendon stiffness. During 

isometric contractions of the plantar flexors, the lengthening of the tendon and the 

aponeurosis was observed. The relationship between the supplied muscle force and the 

elongation of the Achilles tendon was calculated to obtain a measurement of the tendon 
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stiffness. The test – retest reliability of this technique was investigated in chapter 2 of this 

dissertation. Twenty – one healthy men and women took part in the study. The subjects 

underwent three identical test sessions held seven days apart. The Intraclass Correlation 

Coefficient for the stiffness of the right and the left Achilles tendon was 0.80 and 0.82 

respectively. These results demonstrate that this technique is reliable for the evaluation of 

the elastic properties of the Achilles tendon. It is a clinically useful tool for the assessment 

of tendon properties. 

 

Unlike the above parameters, the results of chapter 3 do reveal that the male recruits with 

lower isokinetic plantar flexor strength and increased dorsiflexion excursion were at a 

greater risk for developing an Achilles tendon overuse injury. These findings shaped the 

subsequent development of this dissertation. One chapter concerns a strengthening 

program and the other chapter concerns a stretching program. An important remark 

should be made. In chapter 3 significant differences in plantar flexor strength could be 

found between the injured and the uninjured recruits. Moreover, a decreased plantar flexor 

strength was found to be a risk factor for the development of an Achilles tendinopathy. In 

contrast, no significant differences in range of motion could be found between the injured 

and the uninjured recruits. Therefore, it could be questioned why an increased dorsiflexion 

range of motion was still indicated as a risk factor for an Achilles tendinopathy. Moreover, 

in the literature, a decreased range of motion was indicated to be correlated with an 

overuse injury (15,18). Making an attempt to clarify this ‘statistical oddity’ we believe that 

the combination of a decreased plantar flexor strength and an increased dorsiflexion range 

of motion seems to be a risk factor for the development of an Achilles tendinopathy. 

Figure 1 shows that 20% (2/10) of the injured persons had a combination of a decreased 

plantar flexor strength and an increased dorsiflexion range of motion. However, these 

preliminary results should be confirmed by further research.  
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Figure 1 shows how many of the recruits who developed an Achilles tendinopathy had a combination of a 

plantar flexor strength lower than 50.0 N.m and a dorsiflexion range of motion higher than 9°.  
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Decreased plantar flexor strength was identified as an intrinsic risk factor for the development of an 

Achilles tendinopathy   

 

One of the most striking findings of the prospective study (chapter 3) was that the 

isokinetic strength of the plantar flexors was identified as a predictor for an Achilles 

tendinopathy. Subjects with a plantar flexor strength lower than 50.0 N.m in our study 

were predisposed to an Achilles tendinopathy. Figure 2 shows how many of the persons 

who developed an Achilles tendinopathy had a plantar flexor strength lower than 50.0 N.m. 

Presumably, greater muscle strength produces stronger tendons that could deal better with 

high loads. During daily and sports activities, the muscle – tendon unit is exposed to many 

stretch – shortening cycles. During these cycles, the muscle – tendon must be able to 

absorb high forces. Several previous studies have suggested muscle strength to be a risk 

factor for an ankle injury in general (3,9,43). However, this is the first study that 

investigates the relationship between the strength of the plantar flexors and an Achilles 

tendinopathy in a prospective manner.  
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Figure 2 shows how many of  the persons who developed an Achilles tendinopathy had a plantar flexor 

strength lower than 50.0 N.m.  
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Consequently, because a strength deficit of the plantar flexors was identified as a risk factor 

for the development of an Achilles tendinopathy, strengthening the calf muscles must 

definitely be a cornerstone in prevention and rehabilitation programs. In the literature, 

several intervention programs have shown to be effective to increase muscle strength. 

Isokinetic training programs, eccentric and plyometric training programs are able to 

increase the strength of the calf muscles (1, 31). All of these modalities are well provided 

with evidence - based research. Some other, relatively new modalities, lack scientific 

evidence. One of these methods is vibration training. Because the effect of whole-body 

vibration on muscle strength and explosive power are questioned in the current literature, 

we found it interesting and clinically relevant to investigate these effects of whole-body 

vibration in chapter 4. Moreover, it was shown in the literature that the injured side of a 

patient with Achilles tendinopathy had a significantly lower muscle calf strength compared 

to the uninjured side (2). Therefore, new technologies in strength training can provide new 

possibilities for prevention and rehabilitation of an Achilles tendinopathy.  

In addition, whole-body vibration is used in daily practice for different other reasons. For 

example, it is still unclear if vibration training has an effect on the postural control of both 

healthy persons and patients (29,40,44,45). That is why also the effect of whole – body 
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vibration on postural control was investigated in chapter 4. Because this parameter does 

not directly correlate with the subject of this dissertation, it will not be further discussed in 

this section. 

 

In chapter 4, the supplemental value of a whole - body vibration program in comparison 

to an equivalent traditional resistance program was investigated. Thirty – three competitive 

skiers were randomly divided into a whole - body vibration group and an equivalent 

resistance group. Prior to the start of the study, as well as after the six weeks of training, all 

subjects were evaluated for isokinetic plantar and dorsiflexion strength, isokinetic knee 

flexion and extension strength and explosive strength. 

 

The results of the study showed that both the whole - body vibration program and the 

equivalent resistance training program improved the isokinetic ankle and knee muscle 

strength, and the explosive strength of the subjects after the training period. These findings 

were in accordance with those of several authors, affirming that whole - body vibration 

increases the dynamic strength of the lower extremity muscles (5,10,37,44). However, there 

is only one study with the same study design, i.e. using the same exercises on the vibration 

platform and on the ground in both intervention groups. This study design was choosen in 

order to detect the supplemental value of vibration training. Ronnestad (39) concluded that 

there was a trend toward better results in maximal strength and explosive power for the 

squats performed on a vibration platform. Correspondingly, the results of our study 

revealed that the gains in explosive strength and in plantar flexor strength at low speed 

were significantly higher in the whole - body vibration group after six weeks of training. 

For all other parameters there were no significant differences between the change scores of 

the whole-body vibration group and the equivalent traditional resistance training group. As 

a result, it can be concluded that the training effects of vibration training are quite similar 

to a traditional training program for most of the strengthening parameters. Further studies 

should be executed in order to define the real supplemental value of whole – body 

vibration concerning explosive strength.  

 

Besides the occurrence of the “tonic vibration reflex” (38), it has been proposed that the 

recruitment thresholds of the motor units during whole - body vibration are lower than 

during voluntary muscle contractions. This results probably in a more rapid activation and 
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training of high- threshold motor units (36). Therefore, it has been suggested that vibration 

training specifically trains fast-twitch fibers, which are responsible for explosive power. 

Strangely enough, in chapter 4, there was a gain in explosive strength and in plantar flexor 

strength at low speed. Based on the occurrence of the “tonic vibration reflex”, it is 

remarkable that no gain was found in plantar flexor strength, measured at high speed. We 

have no explanation for this finding. It is possible that the isokinetic test at a speed of 120°. 

s-1 was not ‘fast’ enough to detect possible changes in the fast – twitch fibers. Maybe an 

isokinetic test at even a higher speed would be more appropriate.   

 

It could also be questioned why the best results were found in the plantar flexor muscles. It 

is known in literature that the muscles in a stretched position are stimulated the most on a 

vibration platform (12,23). That could be an explanation for the fact that the plantar flexor 

muscles show better results that the dorsiflexor muscles. Secondly, the effect was also 

greater in the calf muscles in comparison to knee joint muscles. A plausible explanation is 

probably the closer position of the calf muscles to the vibration source.  

 

Because the incidence of Achilles tendinopathy is high in explosive sport types (18) and 

because decreased calf muscle strength was identified as a risk factor we believe that 

vibration training can be an interesting additional tool in the prevention and rehabilitation 

of an Achilles tendinopathy. For example, exercises on the vibration plate could be 

presented to the athlete or the patient in order to change the training stimulus.   

 

Greater dorsiflexion excursion was identified as an intrinsic risk factor for the development of an Achilles 

tendinopathy   

 

In the prospective study of chapter 3, an increased dorsiflexion range of motion was also 

identified as a risk factor for an Achilles tendon overuse injury. Recruits with a significantly 

higher dorsiflexion range of motion had a significant greater risk of developing an Achilles 

tendinopathy. The calculated threshold was a dorsiflexion range of motion of 9.0 degrees. 

Figure 3 shows how many of recruits who developed an Achilles tendinopathy had a 

dorsiflexion range of motion higher than 9°.  
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Figure 3 shows how many of the military recruits who developed an Achilles tendinopathy had a 

dorsiflexion excursion higher than 9°.  
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However, when looking at the literature, the relationship between range of motion and 

lower extremity injury remains controversial. In a review by Murphy et al. (32), three 

studies reported an association between an increased range of motion and lower extremity 

injury, whereas four studies reported no association. Other studies even mention a 

decreased range of motion as a possible risk factor for a musculoskeletal injury (50). A 

possible reason for the disagreement in literature is that most studies investigated lower 

extremity injuries as a group and did not focus on a specific pathology.  

 

Another reason is that the combination of a decreased muscle strength and an altered 

dorsiflexion mobility in our study  is probably the worst case scenario for the development 

of an Achilles tendinopathy (Figure 1). If the same person already has a lower plantar 

flexor strength, the altered joint mobility only making him/her more suspectible for the 

development of an Achilles tendinopathy. Therefore, a good balance between muscle 

strength and joint mobility seems important. 

 

Despite the inconsistency in the literature concerning range of motion and Achilles tendon 

problems, stretching is common practice in the prevention and the rehabilitation of 
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patients with an Achilles tendinopathy. However, it has to be noticed that the preventive 

character of stretching is still discussed in literature (51).  

On the sports field the most commonly used stretching techniques are static and ballistic 

stretching. Many authors have tried to define the real value of the different stretching 

techniques (22,41,46). Most authors (22,25,28,41,46,48) agree that both stretching 

techniques can improve joint range of motion. However, it has not yet been clarified 

whether these different stretching techniques have different effects on the muscle – tendon 

tissue properties. Therefore, the objective of chapter 5 was to investigate if static and 

ballistic stretching program had different effects on passive resistive torque measured 

during isokinetic passive motion of the ankle joint and tendon stiffness measured by 

ultrasound imaging.   

 

Eighty – one healthy subjects were randomised into three groups: a static stretch group, a 

ballistic stretch group and a control group. Before and after the intervention period, all 

subjects were evaluated for ankle range of motion, passive resistive torque of the plantar 

flexors and passive stiffness of the Achilles tendon.  

 

The results of the study revealed that dorsiflexion range of motion was significantly 

increased in all groups. The passive resistive torque of the plantar flexors decreased 

significantly in the static stretch group and remained unchanged in the ballistic stretch 

group. It is stated in literature that this decrease  has to be due to structural changes within 

the muscle – tendon unit (25). While it was beyond the methods of the study in chapter 5 

to define which structures changed, the most likely would be an increase in sarcomeres.   

 

No significant changes were observed in tendon stiffness after six weeks of static 

stretching. In contrast, after six weeks of ballistic stretching the stiffness of the Achilles 

tendon decreased significantly. Why these different responses occur is not clear, but it may 

be related to the effect of stretching on the contractile elements versus the tendon. While 

the resting contractile elements have been shown to be more compliant than tendon for a 

particular length, the much greater length of the tendon attached to the plantarflexor 

muscle in – vivo means that when these muscles are stretched, much greater strains are 

observed in the tendon compared to the contractile elements. It may be that these larger 
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strains induce an adaptation in collagen fibers within the tendon, and this adaptation may 

require a repetitive changing stimulus.  

The viscosity of muscle-tendon complex is another possible explanation for the different 

effects of static and ballistic stretching on tendon stiffness. McNair et al. (28) reported that 

stiffness was decreased significantly more during cyclic motion compared to static 

stretching within a single stretching session. These authors speculate that the more mobile 

constituents of soft tissues such as polysaccharides and water are redistributed within the 

collagen framework more rapidly during cyclic motion. The results of chapter 5 suggest 

that static stretching possibly has a greater impact on the structures within the muscle 

compared to those of the tendon.  

 

Therefore, ballistic stretching might have a greater effect on the tendon tissue structures 

and can therefore be used when our goal is reducing the tendon stiffness. A combination 

of ballistic motion and static stretching is probably the most appropiate when “warming 

up” for many activities. However, this hypothesis should be confirmed by future studies.  

 

Strengths and limitations of the studies  

 

Establishing the reliability of a technique is an essential prerequisite for its implementation 

as a clinical tool. Therefore, chapter 2 investigates the test – retest reliability of measuring 

the stiffness of the Achilles tendon. The most important benefits of the technique are that 

the measurement can take place in vivo and that the technique is non-invasive. However, 

some careful considerations need to be made. First, since the technique is based on the 

displacement of intramuscular fascicular structures that can be observed on the ultrasound 

image, the resulting deformation does not represent that of the muscle-tendon unit per se, 

but rather the total deformation of the combined tendon and aponeurosis (tendon 

structures) distal to the measurement site. Second, in order to calculate Fm the same 

moment arm and relative contribution of the medial gastrocnemius was used for all the 

subjects, despite variations among subjects. To determine the individual moment arm, 

sagittal plane MRIs should be obtained with the ankle in neutral position using the 

Reuleaux method (24,26). Also the relative contribution of the physiological cross – 

sectional area of the medial gastrocnemius within the plantar flexors should be determined 

individually in further research. Third, although ultrasonography is applied during 
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“isometric” conditions, it has been shown that the very slight ankle rotation which is likely 

to take place, could markedly affect the displacement measurements. Also the two 

dimensional movement on ultrasonography could be seen as limitation of the study. 

Despite these limitations, the ability to measure the stiffness of a human tendon implies 

that several intervention programs designed to alter the stiffness can be evaluated and 

compared.  

 

Chapter 3 is the first prospective study on the aetiology of an Achilles tendinopathy. The 

well – conducted design, the study population and the adequate definition of an Achilles 

tendinopathy are the strengths of the study. The influence of extrinsic risk factors was 

minimized because all military recruits followed the same military training in the same 

conditions, with the same equipment. Also the proper statistical analysis adds to the value 

of the study. It is the first study defining possible cutoff values for the obtained risk 

factors. However, there are also some limitations of the study. A limitation that will always 

be present in injury epidemiological research is the fact that not all contributing factors can 

be measured. The selection of the investigated potential risk factors was based on possible 

associations between observed variables and the injury showed in previous retrospective 

studies. The methods used to measure these variables were selected according to the 

reliability of the procedures and the availability of the equipment. In addition, it must be 

mentioned that other intrinsic risk factors can also, and probably will play a significant role 

in the aetiology. One of these factors are biomechanical ‘abnormalities’. For example an 

increased foot pronation, a leg – length discrepancy and a decreased mobility of the 

subtalar joint have also been proposed as possible intrinsic risk factors for the development 

of an Achilles tendinopathy (8,13,14,18,19,27,33,34). Another limitation of the study is that 

the age of the subjects does not correspond with the peak age of athletes developing an 

Achilles tendinopathy. An Achilles tendinopathy is most often seen among subjects aged 

between 35 and 45 years (1), while the mean age of the military recruits was 18.41 years. 

Therefore, the extrapolation of our results to a general population must be performed with 

some caution In the future, the study should be repeated in an older population. A third 

limitation of the study is that the pathology was not controlled by the means of medical 

imaging. However, all injuries were registered and diagnosed by the same medical doctor. 

He used strict criteria based on history and symptoms of the injury, impaired performance 
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and pain characteristics. Future research should take these limitations into account when 

setting up a new study design.  

 

In chapter 4, the equivalent resistance training program consisted of exactly the same 

exercises as the whole - body vibration program. This advantage makes it possible to 

evaluate the supplemental value of whole - body vibration. It can be concluded that whole - 

body vibration training can be seen as a good ‘substitute training method’ to increase 

muscle strength. A limitation of the study was that no true control group was included. 

However, because all skiers were in preparation for the winter season, it was not possible 

to include a control group without any strength training. Another limitation of the study 

was that the duration of the training effects was not studied. A further limitation is that the 

most appropiate prescription for whole - body vibration are not known. The vibration 

amplitude and the frequency of the vibrations are very important in vibration training 

because they determine the load that the vibration imposes on the neuromuscular system 

during training. However, in previous studies, most attention was paid to the frequency of 

the vibrations (6,7). However, the results of our study demonstrated that the amplitude of 

the vibrations had some influence on the perceived exertion of the subjects. Secondly, the 

frequency was only increased in our population to 28 Hz because of the relatively young 

age of the skiers. Further studies should investigate the effects of a further increase of the 

vibration frequency.  

Since general acceptance exists that dynamic training is more beneficial to neuromuscular 

development in athletes than isometric training, more studies should employ dynamic 

exercises on the vibration platform. If possible, the training should also be sport specific. 

Studies which investigate the effects of vibration training in patients with Achilles 

tendinopathy are lacking in current literature. Also the possible preventive character of 

whole – body vibration should be further investigated. Therefore, conclusions must be 

carefully interpreted when using whole - body vibration in rehabilitation programs and 

future research concerning this topic is certainly needed.  

 

Because a greater dorsiflexion range of motion was identified as an intrinsic risk factor for 

an Achilles tendinopathy in chapter 3, it may be at first glance appear unusual to 

investigate the effect of two stretching techniques in chapter 5. However, the relationship 
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between an altered flexibility and injury is unclear in the literature and stretching is 

common practice in the rehabilitation of a tendinopathy.  

Furthermore, the different effects of static and ballistic stretching on different tissue 

properties have not been investigated previously. Two relatively new methods were used in 

order to measure the passive resistive torque of the plantar flexors and the passive stiffness 

of the Achilles tendon. Future research should optimize these measurement techniques. It 

is hypothesized in chapter 5 that static stretching causes structural changes, i.e. an increase 

in sarcomeres. However, this could not be concluded with certainty on the basis of the 

study procedures. Future studies using biopsy techniques should be executed.   

 

An important limitation of all chapters in this dissertation, is that very different and specific 

study populations were examined. For example in chapter 3 young military recruits were 

observed while in chapter 4 young skiers were investigated. It has to be noticed that we 

have to be careful when extrapolating our results to a general population. The more so, as 

we know that the peak incidence of an Achilles tendinopathy is situated between age 35 

and 45. On the other hand, sometimes it is necessary in a research study, to choose a 

clearly defined study sample. For example, the military population in chapter 3 made it 

possible to control many possible risk factors which were not investigated.  

 

Directions for future research  

 

The aim of this dissertation was to obtain a better insight in the intrinsic risk factors for the 

development of an Achilles tendinopathy. It was also our purpose to highlight some 

possible prevention or rehabilitation programs. However, these aims do not exist in 

isolation but constitute as a part of a bigger entity. Van Mechelen et al. described this entity 

as a ‘sequence of prevention’ (Figure 4). A strategy of four stages in the sequence for the 

investigation of sports injuries was suggested (47).  
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Figure 4: The ‘sequence of prevention’ of sports injuries (47) 

 

 

In this dissertation not all steps of the model were executed. Step 1 includes the 

identification of the magnitude of the problem. In chapter 3, a prospective epidemiological 

study in a very specific population was executed. In this study, we only focused on one 

specific injury, e.g. an Achilles tendon overuse injury. In future research, it would be 

interesting to study a more general population to get some more insight into the incidence 

of other injuries. For example, there could be a link between Achilles tendon injuries and 

other injuries (ankle sprains, fasciitis plantaris …). Secondly, not all possible intrinsic risk 

factors were investigated in chapter 3. It should be kept in mind that an Achilles 

tendinopathy is multifactorial and that probably other possible risk factors should be 

investigated in future research. As mentioned in step 3 of the model, preventive measures 

have to be introduced. In chapter 4 and 5 of this dissertation, this was tried. However, 

step 4 reveals that intervention studies should be designed in order to examine if the 

proposed strategies really work. In future research, prospective studies of possible 

intervention programs (whole - body vibration, stretching, eccentric training) on the 

incidence of Achilles tendinopathy might reveal its real preventive value. Future studies 

should prescribe their training protocols in more detail, so that comparison between 

different studies becomes possible.  
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In earlier days, tendons were considered to be relatively non-vascular, inert and inelastic 

structures. It is only over the last decade that the dynamic nature of the extracellular matrix 

of tendon and skeletal muscle was appreciated. At his time, one believes that tendons are 

able to respond to mechanical forces by altering their structure, composition, and 

mechanical process. This process is called tissue mechanical adaptation or 

mechanotransduction (16,49). For example, Langberg et al. concluded that the blood flow 

within and around the Achilles tendon could increase three- to seven- fold with dynamic 

exercise (20). It has been shown that metabolic activity, the uptake of metabolic substrates 

and blood flow in the tendon are regulated in a specialized way that is independent of that 

occuring in skeletal muscle (17).  

Moreover, collagen synthesis in human tendons rises with just one bout (60 min) of acute 

exercise, and the elevated collagen synthesis is still present 3 days after exercise (29). 

Langberg et al. investigated the effects of an eccentric heel drop program on the turnover 

of peritendinous connective tissue (21). They found that the collagen synthesis rate 

increased in the injured Achilles tendons.  

It became clear that the amount of mechanical loading is very crucial in this process. For 

example, appropiate mechanical loading results in positive changes in tendons, whereas 

excessive loading leads to tendon degeneration. Therefore, further research studies should 

try to determine the most appropiate amount of mechanical loading, i.e. the border 

between too much or too little loading.  

Like any other connective tissue, tendon does not undergo neovascularisation under 

normal conditions. As previously mentioned in this dissertation, this is the case in an 

Achilles tendinopathy. Boesen et al. concluded that eccentric exercise did not distinguish 

the flow during or after one training session in patients with chronic Achilles tendinopathy 

(4). They measured the immediate response after the eccentric exercise. These findings 

seem to be in contradiction with the long term effects of Öhberg et al (35). Future studies 

are needed to answer the question if exercise can have an effect on the neovascularisation. 

Secondly, the exact characteristics of the mechanical loading are unknown. It has been 

shown in in vitro studies that cyclic mechanical stretching increases protein expression. 

Therefore, it might be hypothesized that cyclic loading with a stretching component is 

probably a trigger to start the mechanotransduction. Further studies should compare 

different types of mechanical loading (cyclic motions or holds, stretching or non – 

stretching) with different intensities in order to find out which modalities stimulate tendon 
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regeneration the most. Once this is known, the existing intervention programs (eccentric 

training, whole-body vibration,  ballistic stretching) should be compared with these optimal 

modalities. Knowing the most effective type and dose of mechanical loading is a 

prerequisite to improve prevention and rehabilitation programs for an Achilles 

tendinopathy.  
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NEDERLANDSTALIGE SAMENVATTING  

 

Een achillespeestendinopathie is één van de meest voorkomende peesletsels. Ondanks het 

frequent voorkomen blijft de aanpak van een achillespeesletsel dikwijls een bron van 

frustratie zowel voor de therapeut als voor de patiënt. Onduidelijkheid met betrekking tot 

de etiologie en het pijnmechanisme ligt hiervoor aan de basis.  

 

In een eerste luik van dit werk was het de bedoeling om mechanische intrinsieke 

risicofactoren die kunnen leiden tot het ontstaan van een achillespeestendinopathie in kaart 

te brengen. Omdat er onduidelijkheid in de literatuur bestaat over mogelijke risicofactoren 

en omdat de meeste voorgaande studies op een retrospectieve basis gebeurden, werd in 

hoofdstuk 3 van dit werk een prospectieve studie opgezet. Negenenzestig mannelijke 

militaire recruten werden opgevolgd tijdens hun militaire training van zes weken. Voor de 

aanvang van de trainingsperiode, werden verschillende parameters bij de proefpersonen 

opgemeten, zoals hun lichaamskenmerken, de isokinetische kracht van de 

onderbeenspieren, de bewegingsuitslag van het enkelgewricht, de stijfheid van de 

achillespees, de explosieve kracht en hun activiteitenniveau. Tijdens de zes weken militaire 

training werden alle achillespeesletsels nauwkeurig geregistreerd. Tien van de 69 recruten 

ontwikkelden een achillespeestendinopathie. Uit statistische analyse bleek dat recruiten met 

een lagere isokinetische kuitspierkracht en een grotere dorsiflexiemobiliteit een groter risico 

hebben om een achillespeestendinopathie te ontwikkelen. Deze bevindingen bepaalden de 

verdere opbouw van de thesis. 

 

De betrouwbaarheid van de methode om de stijfheid van de achillespees te bepalen 

(gebruikt in hoofstuk 3 en 5) werd nagegaan in hoofdstuk 2. Eenentwintig gezonde 

proefpersonen namen deel aan de betrouwbaarheidsstudie. De proefpersonen ondergingen 

drie identieke testsessies met telkens één week als testinterval. De intraclass correlatie 

coëfficiënt voor de stijfheid van de rechter en de linker achillespees was respectievelijk 0.80 

en 0.82. Deze resultaten tonen aan dat de echografische methode een betrouwbaar middel 

is om de stijfheid van de achillespees te bepalen.  
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In een tweede luik van dit werk was het de bedoeling om een aantal programma’s te 

evalueren die mogelijks gebruikt kunnen worden als behandelings- of preventiestrategie 

voor een achillespeestendinopathie.  

 

Verschillende onderzoekers duiden op het belang van krachttraining binnen de aanpak van 

een achillespeestendinopathie. Vandaag de dag wordt het excentrisch oefenprogramma als 

‘gouden standaard’ gezien binnen de revalidatie van een patiënt met een 

achillespeestendinopathie. Toch worden we vanuit commerciële hoek overstelpt met 

nieuwe, recentere alternatieven. Trainers en therapeuten wensen de waarde van deze 

‘hypes’ te kennen om hun atleten en patiënten een zo breed mogelijk gamma aan 

krachttrainingsmiddelen te kunnen aanbieden. Eén van deze recentere alternatieven is 

triltraining of Whole-body vibration.  

 

Whole-body vibration is een trainingsmethode waarbij het gehele lichaam aan trillingen 

wordt blootgesteld. De persoon neemt hiervoor plaats op een trilplaat. Mechanische 

vibraties, gekenmerkt door een richting, een amplitude, een snelheid en een frequentie, 

worden gegenereerd door de plaat. Recente onderzoeken toonden reeds aan dat triltraining 

leidt tot verschillende positieve effecten.  

 

In hoofdstuk 4 van dit werk werd een studie opgezet om de meerwaarde van een 

trilprogramma na te gaan in vergelijking met een traditioneel krachtprogramma. 

Drieëndertig competitieve skiërs werden ingedeeld in een trilgroep en een gelijkwaardige 

krachtgroep. In beide groepen werden gedurende zes weken identiek dezelfde oefeningen 

uitgevoerd. De ene groep oefende op de plaat, de andere groep op de grond. Bij aanvang 

en na afloop van de interventieperiode, werden verschillende parameters opgemeten bij de 

proefpersonen. De isokinetische kracht van de onderbeen – en de bovenbeenspieren, de 

explosieve kracht en de posturale controle van de proefpersonen werden geregistreerd. De 

resultaten van de studie tonen aan dat zowel de triltraining als de gelijkwaardige 

krachttraining aanleiding geeft tot een significante verbetering van de isokinetische 

onderbeen - en bovenbeenspierkracht. Ook de explosieve kracht van de skiërs verbetert in 

beide groepen. Uit de analyse blijkt dat de toename in explosieve kracht en de toename in 

kuitspierkracht, gemeten aan lage snelheid, groter is in de trilgroep in vergelijking met de 

toename in de traditionele krachtgroep na zes weken training. Aangezien in hoofdstuk 3 is 
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aangetoond dat een verminderde kuitspierkracht aanleiding kan geven tot het ontstaan van 

een achillespeestendinopathie, kan besloten worden dat Whole-body vibration als 

preventiemiddel kan worden aangewend. Verder prospectief onderzoek dient dit gegeven 

te bevestigen.  

 

Stretching wordt algemeen aanvaard als een belangrijk onderdeel van een preventie - of 

revalidatieprogramma voor een achillespeestendinopathie. Op het sportveld zijn de twee 

meest gebruikte stretchingstechnieken het statisch en het ballistisch stretchen. 

Verscheidene auteurs hebben reeds in het verleden getracht om de werkelijke effecten van 

het stretchen na te gaan. De meeste onderzoekers zijn het erover eens dat beide 

stretchingstechnieken kunnen leiden tot een toename van de enkelmobiliteit. Het is echter 

nog niet duidelijk welke effecten het statisch en het ballistisch stretchen precies hebben op 

de verschillende spierpeeseigenschappen.  

 

In hoofdstuk 5 werd het effect van het statisch en ballistisch stretchen op de passieve 

weerstand van de plantairflexoren en op de stijfheid van de achillespees met elkaar 

vergeleken. Eenentachtig gezonde proefpersonen werden gerandomiseerd in drie groepen: 

een statische stretchgroep, een ballistische stretchgroep en een controlegroep. Voor en na 

de interventieperiode van zes weken, werd de bewegingsuitslag van de enkel, de passieve 

weerstand van de plantairflexoren en de stijfheid van de achillespees opgemeten. De 

resultaten van de studie duiden aan dat de dorsiflexiemobiliteit toegenomen was in alle drie 

de groepen. De passieve weerstand van de plantairflexoren verminderde significant in de 

statische stretchgroep en bleef onveranderd in de ballistische stretchgroep en de 

controlegroep. In de literatuur wordt verondersteld dat deze afname in passieve weerstand 

te wijten zou zijn aan structurele veranderingen binnenin de spierpeeseenheid. Verder 

onderzoek dient te bevestigen dat een toename van het aantal sarcomeren in serie hier 

wellicht aan de basis ligt.  

Er werd geen significante verandering aangetoond in de stijfheid van de achillespees na zes 

weken statisch stretchen. Wel blijkt uit de resultaten dat het ballistisch stretchen aanleiding 

gaf tot een significante daling in stijfheid van de achillespees. Mogelijks leidt het cyclisch 

karakter van het ballistisch stretchen tot een specifiek effect op de pees en minder op de 

spier. Het statisch stretchen, daarentegen, zou een groter effect vertonen op de structuren 

binnen de spier. 
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In dit werk werden twee mogelijke preventie – of revalidatieprogramma’s voorgesteld. 

Verder prospectief onderzoek dient echter de werkelijke preventieve en therapeutische 

waarde van beide programma’s te bevestigen. Tevens is het van het allergrootste belang dat 

de ideale modaliteiten voor dergelijke protocollen verder bestudeerd worden. Kennis 

omtrent het ideale type en de ideale dosis van trainingsbelasting is onontbeerlijk om 

preventie – en revalidatieprogramma’s te optimaliseren.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Greek mythology, Achilles was considered to be the bravest, 

handsomest, and swiftest in the army of Agamemnon.  

It is written that, his mother Thetis, dipped the child  

in the waters of the river Styx, rendering him invulnerable  

except for the part of his heel by which she had held him.  

In the tenth year of the war with Troy, Achilles slew Hector.  

The Aethiopis tells how Achilles was himself slain by Paris, 

 whose arrow guided to Achilles’ heel by Apollo 

(Homer, Iliad) 



 

 

 



 

 

 


