
Aspect-gerichte revitalisatie
van legacy software adhv.
logisch meta-programmeren

Aspect oriented revitalisation
of legacy software through
logic meta-programming

Kris De Schutter

Promotoren: Prof. dr. ir. H. Tromp
Prof. dr. T. D’Hondt

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen.

Vakgroep Informatietechnologie
Voorzitter: Prof. dr. ir. P. Lagasse
Faculteit Ingenieurswetenschappen
Academiejaar 2005–2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55853197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In memory of Ghislain.
February 14, 1943 – August 25, 2005.

The Road goes ever on and on
Down from the door where it began.

Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say.

J. R. R. TOLKIEN

Dedication

I feel a very unusual sensation.
If it is not indigestion,

I think it must be gratitude.

BENJAMIN DISRAELI

I would like to start of this downpour of gratitude by stating that
these past few years have been a blast. I have learned more about life
in general, and computer science in particular, during these last four
years than in all the time before that. Though I will graciously concede
that my schooling and upbringing probably had some amount of good
influence as well. —It’s a joke; laugh.—

If there was one reason that I have enjoyed getting my hands dirty
on Cobol, it was prof. Ghislain Hoffman. As a teacher he was probably
the one who got my ambitions up the most. I remember that it was
thanks to a remark from him that I installed my first version of Linux,
and made the switch to Windows NT. I also remember that I promptly
made my website in English, if for no other reason than that he stated
(in an interview for a newspaper) that our student’s proficiency in lan-
guages was rapidly declining. He was right, of course: I would never
have attempted to put up my site in French or German. Then there
was the time that I spent four weeks discussing the architecture of a
group project, before coding anything of it, much to the discomfort
of my fellow students. When we related this to Ghislain during our
exam he was actually quite pleased at that, which was another impulse
for moving into software engineering. As my promotor I learned from
Ghislain much of the realities of this discipline. —It is exactly these re-
alities which are the driving force behind the ARRIBA project, to which
I found myself assigned.— I also got a privileged view on the teaching

iv

thereof, and found that Ghislain and I were very much on the same
wavelength. It is easy to say that I, as well as my colleagues, found
myself in the most ideal environment thanks to Ghislain. It is needless
to say that his sudden departure from us was the single hardest blow I
have had to face. And so to him I say: thank you, and I will not forget.

I am especially indebted to prof. Herman Tromp and prof. Theo
D’Hondt, my current promoters, for taking over from Ghislain —not
an easy task—, and making sure that this dissertation you see before
you actually got finished. I thank them for their good advice, useful
pointers and good humour.

Thanks also to the members of the exam-committee for agreeing
to referee this dissertation: Herman Tromp, Theo DHondt, Serge De-
meyer, Ralf Lämmel, Frank Gielen, Bart Dhoedt, Albert Hoogewijs and
Tom Mens.

I would also like to thank Koenraad Vandenborre, who acted as a
tutor on my graduation thesis, for having been foolish enough to ask
me what I wanted to be doing after my graduation. I’m especially
grateful to him for allowing me to make my thesis my own; a luxury
which not all students had.

A big thank you goes out to everyone directly, or indirectly, in-
volved in the ARRIBA project: prof. Serge Demeyer, Andy Zaidman,
Alon Amsel, prof. Theo D’Hondt, Isabel Michiels, Wolfgang Demeuter,
Dirk Deridder, as well as all the members of the user committee. A
thank you also to the IWT, Flanders, for making ARRIBA possible.

Ralf Lämmel deserves a special mention as well. It were his tools
(and that of his colleagues at the CWI, Amsterdam) which helped me
to get a Cobol parser going; a prerequisite to all our further work. His
cooperation in helping define Cobble was also invaluable. Being an
ex-Cobol programmer, he had, of course, a much better understanding
than me of how this language works in real life. Though what I enjoy
most about working with Ralf is his sense of humour. And in that spirit
I should write: “Viva Cobol!”

I want to thank the members (past and present) of the Software
Engineering Lab —now the Ghislain Hoffman Software Engineering
Lab— for their support, their help, and for generally putting up with
my ranting and wild ideas: Maarten Moens, David Matthys, Stijn Van
Wonterghem, Bram Adams, Jan Van Besien and Mieke Creve. I would
also like to mention the members of the Formal Methods Lab, prof.
Raymond Boute, Hannes Verlinde and José Sampaio Faria, with whom

v

we are lucky to share office space, ideas and friendship.
Some extra words of gratitude to Bram Adams, Andy Zaidman and

Wolfgang Demeuter, for their useful comments on earlier versions of
this text. If I managed to get it anywhere near a half-decent text, it was
thanks to them.

I also enjoyed acting as tutor to the graduation thesis of several stu-
dents: Ruben Miguelez Garcia, Stijn Van Wonterghem, David Tas, Jan
Van Besien, Bram Adams, Stijn Baes, Bram Tassyns and Michiel Bo-
gaert. I think it’s also fair to mention those who still have to suffer
me in this role: Gregory Van Vooren, Bert Van Semmertier, Maria Laura
Botella Herran and Ives De Bruycker. There is something really reward-
ing about helping a student finish his thesis.

I wouldn’t have gotten anywhere without my parents, family and
friends. While my dad was always hoping for me to become a civil
engineer, it was probably his own fault that I ended up in computer
science: had he not bought an Apple II clone and allowed me to play
with it, this dissertation might have been on the restructuring of old
buildings rather than of old code. Thanks!

Finally, a great big whopping thank you to miss Kristin Waterplas,
who has been putting up with my sense of humour for three years now,
and still hasn’t grown bored with me. Thank you for allowing me to
escape myself and my work when I need to. You are the best thing that
has happened to me.

Kris De Schutter
Gent, March 2, 2006

Samenvatting

Een wetenschapper is een bijzondere vogel:
eerst broedt hij en vervolgens legt hij zijn ei.

FERWERDA

DIT doctoraatswerk stelt voor om een combinatie van Aspect-ge-
oriënteerd programmeren (AOP) met Logisch Meta-programme-

ren (LMP) te gebruiken als hulpmiddel bij de revitalisatie van bedri-
jfsapplicaties. De dynamiek van dergelijke applicaties wordt geken-
merkt door een groeiende vraag naar herstructurering en integratie.
Dit vergt een niet te onderschatten portie menselijk inzicht en exper-
tise, iets wat belemmerd wordt door een gebrek aan goede documen-
tatie van dergelijke applicaties. We stellen daarom voor om gebruik te
maken van de kracht en flexibiliteit van Logisch Meta-programmeren,
in combinatie met het gebruiksgemak van Aspect-georiënteerd pro-
grammeren, als hulp bij het terugwinnen van bedrijfsarchitecturen, al-
sook bij het omvormen en integreren van bedrijfsapplicaties.

Stelling

Bedrijfsapplicaties zijn verwezenlijkingen van welbepaalde bedrijfspro-
cessen, en zijn daardoor heel gevoelig voor de evolutie daarvan. Uit de
toegenomen globalisatie van bedrijven, en de groeiende vraag naar in-
terconnectiviteit tussen bedrijven, volgt eens steeds groter wordende
druk tot schaalvergroting en integratie van bedrijfsapplicaties. Los van
de moeilijkheden met betrekking tot de integratie van de verschillende
bedrijfsmodellen en de daaraan gekoppelde bedrijfsprocessen (wat buiten
het bereik van dit doctoraatswerk valt), vormt de samenwerking tussen

viii

bedrijfsapplicaties zelf al een groot struikelblok: op enkele uitzonderin-
gen na ontbreekt hiervoor de nodige documentatie en ondersteuning.

In het algemeen geldt dat de data-opslagplaatsen en de lopende ap-
plicaties de enige echte beschrijving vormen van de informatiestromen
en structuren. Dit betekent dat alleen de daadwerkelijke gegevens (en
de manier waarop ze verwerkt worden) samen met de broncode van
de applicaties de enige betrouwbare bron van informatie vormt.

Het samensmelten van bedrijfsapplicaties zal altijd menselijke ex-
pertise vereisen. Spijtig genoeg, in omgevingen waar zo los omge-
sprongen wordt met middelen, kan dergelijke expertise nooit ten volle
benut worden.

Als lid van het ARRIBA1 project, kijken we hoe Aspect-georiënteer-
de software-ontwikkeling ons kan helpen bij deze problematiek. Meer
specifiek stellen we dat de combinatie van Logisch Meta-programmeren
en Aspect-georiënteerd programmeren helpt bij het terugwinnen van
bedrijfsarchitecturen, alsook bij het hervormen en integreren van be-
drijfsapplicaties.

AOP voor Cobol

Wanneer we praten over legacy omgevingen, bevinden we ons meestal
in de context van Cobol. Dit wordt ondersteund door bevindingen bin-
nen het ARRIBA project [MDTZ03], alsook door een aantal statistieken
die de Gartner groep naar voor heeft gebracht: 75% van bedrijfsdata
wordt verwerkt door Cobol, met 180–200 miljard aan lijnen broncode
wereldwijd te vinden, en 15% van alle nieuwe applicaties wordt ge-
schreven in Cobol. Het is duidelijk dat Cobol de grootste speler is.

Cobble [LS05a] is onze Aspect-georiënteerde uitbreiding voor Cobol.
Het omvat LMP als een “pointcut”2 taal, en deze wordt gelinkt aan
AOP met behulp van een mechanisme van bindingen. Het volgende
voorbeeld van een tracerings-aspect verduidelijkt dit:

1 MY-PROCEDURE-TRACING SECTION.
USE AROUND PROCEDURE

3 AND BIND VAR-NAME TO NAME
AND BIND VAR-LOC TO LOCATION.

1Architectural Resources for the Restructuring and Integration of Business Applications; een GBOU
project van het IWT, Vlaanderen. (http://arriba.vub.ac.be/)

2Beschrijving van een interessant punt binnen de uitvoering van een applicatie.

ix

5 MY-TRACING-ADVICE.
DISPLAY "Before procedure ", VAR-NAME,

7 " at ", VAR-LOC.
PROCEED.

9 DISPLAY "After procedure", VAR-NAME,
" at ", VAR-LOC.

Deze notatie blijft dicht bij de stijl van Cobol, en dit om een betere in-
tegratie met de taal te verwezenlijken. We zien dus dat advies niets
meer is dan procedures in standaard Cobol. Het advies zelf leeft in
een sectie (lijn 1), met de quantificatie van het advies uitgewerkt in
een USE opdracht. Deze laatste steunt op de reeds beschikbare, zij het
beperkte, syntax voor het uitdrukken van “crosscutting concerns”3. We
zien dat bovenstaand advies wordt uitgevoerd “rond” alle procedures
(lijn 2). We extraheren van deze procedures de naam en locatie (lijnen 3
en 4), die dan beschikbaar zijn voor gebruik binnen het advies (lijn 6–
10). We voorzien daarbij een PROCEED opdracht voor het oproepen van
het originele “join point”4.

AOP voor ANSI-C

Naast een mastodont als Cobol blijft er voor de andere talen niet veel
marktaandeel meer over. Niettemin blijkt C een belangrijke en veel-
gebruikte taal —o.a. binnen de gebruikerscommissie van het ARRIBA
project.

Vanuit dit oogpunt startte ons werk aan Wicca [Won04], een Aspect-
georiënteerde uitbreiding voor C. Met het proceduraal programmeren
van C enerzijds, en het “zin”-georiënteerd5 programmeren van Cobol
anderzijds, bestrijken we zo toch een uitgebreid spectrum aan legacy
talen.

Volgende code is een voorbeeld van een tracerings-aspect in Wicca:

int advice on (.*) && ! on (printf) {
2 int r = 0;

printf ("before %s\n", this_joinpoint()->name);
4 r = proceed ();

printf ("after %s\n", this_joinpoint()->name);

3Overlappende facetten van een applicatie.
4Een uitvoeringspunt binnen de applicatie.
5“Zin” is hier te lezen als een zin in een tekst, als een grammaticaal gegeven.

x

6 return r;
}

Wicca blijft dicht bij de syntax en semantiek van AspectJ. Het boven-
staande advies werkt “rond” alle procedures, behalve die met als naam
“printf” (lijn 1). Adviezen bestaan uit gewone C code, en krijgen toe-
gang tot de context van het join point met behulp van de daarvoor be-
doelde this joinpoint() procedure (lijnen 3 en 5). Activatie van
het originele gebeurt met een oproep aan proceed (lijn 4).

Als Wicca eenvoudiger en beperkter lijkt dan Cobble, dan is dit
correct. Wicca is dan ook ontwikkeld vóór Cobble. Het maakt daar-
door nog geen gebruik van LMP, wat ons ervan weerhoudt om dit
advies op een generieke wijze te schrijven. Het bovenstaande advies
werkt namelijk uitsluitend als alle geselecteerde join points een int
waarde teruggeven. Dit is naturlijk een onrealistische voorwaarde voor
de gemiddelde applicatie. Dit toont dan ook al meteen één gebied waar
LMP nuttig kan zijn.

Hier volgt het zelfde voorbeeld uitgewerkt in Aspicere [AT05]. Dit
is een opvolger van Wicca, onder ontwikkeling door Bram Adams, die
wel LMP ingebed heeft.

1 Type around tracing (Type) on (Jp):
! call (Jp, "printf")

3 && type (Jp, Type)
&& ! str_matches ("void", Type)

5 {
Type r = 0;

7 printf ("before %s\n", Jp->name);
r = proceed ();

9 printf ("after %s\n", Jp->name);
return r;

11 }

Net als in Cobble slagen we er nu in om informatie te verkrijgen met
behulp van bindingen. Type is zo’n binding, die we hier gebruiken om
ons advies toepasbaar te maken op alle mogelijke procedures, ongeacht
het type van de teruggegeven waarde (afgezien van void, dat buiten
de normale typering valt).

xi

Figur A. Raamwerk zoals ingesteld voor Cobble.

Transformatie-raamwerk

Voor de weving van applicaties hebben we een raamwerk voorzien dat
gebaseerd is op XML-voorstellingen van broncode. Dankzij het XML-
formaat, en met wat hulp van de JVM, was het mogelijk om een mix
van technologieën te integreren tot een samenhangend en functioneel
geheel. (Figuur A toont hiervan een voorbeeld binnen de context van
Cobble.) Het vinden van adequate parsers voor de verschillende legacy
talen vormde hierbij nog de zwaarste opdracht, zeker in het geval van
Cobol.

De omvorming van de XML-voorstellingen heeft één beperking: het
eindresultaat moet een geldig programma voorstellen. Dit vormde een
struikelblok bij Cobol, waar deze voorwaarde ons belette om individu-
ele lees- en schrijfopdrachten te selecteren. Data items in Cobol kunnen
niet vervangen worden. In C kunnen we die tenminste nog omzetten
naar de aanroep van een functie. Deze beperking zouden we kun-
nen omzeilen door te opteren voor het weven van machinecode, maar
daarmee zouden we tevens onze platformonafhankelijkheid verliezen.

Het waarom van LMP

Om het schrijven van generiek advies mogelijk te maken hebben we
nood aan reflectie op het basis-programma. Bij talen als Java, die voorzien
in een API voor reflectie, moet de AOP taal daarbij niets speciaals meer
doen —hoewel bepaalde onderzoeken dit in vraag stellen [GB03, KR05,
De 01, HC03, HU03].

Cobol en C beschikken echter niet over dergelijke mogelijkheden,
wat ons er inderdaad van weerhoudt om generiek advies te schrijven.

xii

1 { LINKAGE SECTION.
01 METHOD-NAME PIC X(30) VALUE SPACES. },

3

findall(
5 [Name, Para, Wss],

(paragraph(Name, Para),
7 slice(Para, Slice),

wss(Slice, Wss)
9),

AllInOut
11),

13 max_size(AllInOut, VirtualStorageSize),
{ 01 VSPACE PIC X(<VirtualStorageSize>). },

15

all(member([Name, Para, Wss], AllInOut), (
17 { 01 SLICED-<Name> REDEFINES VSPACE.},

all((record(R, Wss), name(R, RName)), (
19 clone_and_shift(R, "<RName>-<Name>", SR),

{ <SR> }
21))
))

Figuur B. Encapsulatie van procedures (uittreksel).

Dit ondervonden Bruntink, Van Deursen en Tourwé in hun werk voor
ASML [BvDT04], de marktleider op het gebied van systemen voor li-
thografie. De aspecttalen moeten dit gebrek dus goed maken. LMP,
samen met een eenvoudig template mechanisme, maakte dit voor ons
mogelijk.

Bovendien biedt LMP ons de mogelijkheid om bedrijfskennis te re-
gistreren in een herbruikbare vorm. Zonder deze mogelijkheid zien
ontwikkelaars zich gedwongen om deze kennis met de hand toe te
passen binnen applicaties. LMP kan (heel eenvoudig) aangewend wor-
den om dit probleem op te lossen. In samenspel met AOP kunnen we
dit op een directe manier benutten.

Bij het inkapselen van bedrijfslogica bereikten we echter wel de
grenzen van wat LMP kan doen in AOP. We waren niet in staat om de
complexe en crosscutting gegevensdefinities uit te drukken, die nodig

xiii

waren om het probleem op te lossen. Dankzij LMP in AOP konden we
verregaand werken rond gedrag, maar niet rond structuur.

De oplossing kwam er door het omdraaien van de AOP/LMP ver-
gelijking. Door AOP in LMP in te passen werd het neerschrijven van
dergelijke structuren mogelijk. Deze techniek staat heel dicht bij het
werk rond parametrische introducties, zoals in [HU03] en [BMD02].
Figuur B. toont een deel van onze oplossing voor het inkapselen van
bedrijfslogica, als voorbeeld.

Een extra beperking kwam voort uit de beperkte ondersteuning van
Cobol voor data definities. Ondanks de mogelijkheid tot heel com-
plexe en specifieke definities van dataformaat —probeer maar eens een
getal met exact 11 decimalen te definiëren in Java—, laat het niet toe
deze definities te hergebruiken. Het is bijvoorbeeld niet mogelijk om te
weten te komen welke data items datums voorstellen. Elk getal van zes
of acht cijfers kan een datum zijn, maar is het niet noodzakelijk. Het is
al evenmin zo dat getallen van andere lengte daarom geen datum kun-
nen voorstellen.

Dit weerhoudt ons er nogmaals van om generiek advies te schrij-
ven. Hoe quantificeren we over types als er geen zijn? Het is met LMP
dan wel mogelijk om alle data items aan te duiden die datums bevatten,
maar erg handig is dat niet. We vinden dan ook dat de kracht van AOP
en LMP soms wordt ingeperkt door de onderliggende legacy taal.

Validatie

We bekeken vier problemen rond legacy software van dichtbij. Eerst
toonden we aan hoe we, met behulp van een eenvoudig traceer aspect,
dynamische analyses van legacy systemen mogelijk maakten. We de-
den dit binnen een reële case studie. [ZAD+06, ZAD05, ADZ05] LMP
werd daarbij gebruikt om het traceer advies zo generisch mogelijk te
maken.

Als tweede werkten we een scenario uit dat het terugwinnen van
bedrijfslogica als doel had. [MDDH04] AOP en LMP werden daarbij
toegepast op verschillende manieren: van slim en geconcentreerd tra-
ceren, tot verificatie van veronderstellingen en, uiteindelijk, het terug-
winnen van de logica.

Het derde probleem draaide rond de inkapseling van legacy ap-
plicaties, op basis van een generisch aspect. Een beperkte vorm van

xiv

inkapseling kon heel eenvoudig uitgewerkt worden, maar de doorge-
dreven vereisten, zoals besproken in [Sne96a], dwongen ons er toe om
een andere aanpak te bekijken. Dankzij het plaatsen van AOP binnen
LMP konden we ook dit opgelost te krijgen, en dit zonder echte prob-
lemen.

Bij het vierde probleem, dat van Y2K, kon onze bron-naar-bron we-
ving niet voorbij aan de beperkingen van de onderliggende taal. De
semantiek van Cobol, met name de beperkingen bij typering, vormde
een te groot struikelblok. Binnen C daarentegen bleek het Y2K38 prob-
leem beter handelbaar, juist omdat typering daar aanwezig is.

Conclusie

Door het inpassen van AOP en LMP binnen legacy talen, en daardoor
ook binnen bestaande bedrijfsomgevingen, beschikken we over een fle-
xibele en krachtige vorm van gereedschap. Er is daarbij geen nood om
af te stappen van bestaande ontwikkeltechnieken; onze oplossing kan
gebruikt worden in samenspel ermee.

Daarenboven kunnen we dankzij LMP bedrijfsconcepten en archi-
tecturale beschrijvingen van bedrijfsapplicaties uitdrukken op een ex-
ploiteerbare manier. Deze werkwijze maakt het mogelijk om met ap-
plicaties te werken op een hoger niveau van abstractie, en zal hopelijk
leiden tot een betere definitie van de architectuur.

Summary

The covers of this book are too far apart.

AMBROSE BIERCE

THIS work proposes the combination of Logic Meta-programming
and Aspect-oriented Programming as a tool to tackle the ills of

legacy business applications. The dynamics for such applications are
characterized by a need for restructuring and integration at a much
larger scale than was previously the case. This requires a non-trivial
amount of human insight and experience, something which is ham-
pered by a general lack of good documentation of these applications.
We therefore propose to adopt the power and flexibility of Logic Meta-
programming, combined with the ease-of-use of Aspect-oriented Pro-
gramming, to aid in the recovery of business architectures, as well as in
the restructuring and integration of business applications.

Thesis

Business applications are instantiations of specific business processes,
and as such they are highly susceptible to the evolution thereof. With
increased globalisation of enterprises, and ever greater demand for in-
terconnectivity between companies, comes increasing pressure to scale
up and integrate business applications. Aside from difficulties in inte-
grating the different business models and their associated business pro-
cesses (which is well outside the scope of this dissertation), getting the
business applications to cooperate is a major hurdle: in all but a few
cases the documentation and support of these applications is insuffi-
cient (or even absent).

xvi

In general, the data repositories and the running programs provide
the only true description of the information structures and applications
they implement. Hence, the actual data (and the way it is handled)
and the source code to those applications form the only dependable
documentation.

Merging business applications will always require the application
of human expertise. Unfortunately, in an environment where its assets
are so poorly understood this expertise can never be fully exploited.

As part of the ARRIBA6 project, we focus on how the emerging
paradigm of Aspect-oriented Software Development can be applied to
this problem. More precisely, we claim that the combination of Logic
Meta-programming and Aspect-oriented Programming aids in the re-
covery of business architectures, as well as in the restructuring and in-
tegration of business applications.

AOP for Cobol

When talking about legacy environments, we mostly find ourselves in
the realm of Cobol. This is corroborated by our findings within the
ARRIBA research project [MDTZ03], as well as by the numbers put
forward by the Gartner group: 75% of business data is processed in
COBOL, with 180–200 billion LOC in use worldwide, and 15% of new
applications written in COBOL. It is clear that Cobol is the major player.

Cobble [LS05a] is our aspectual extension to Cobol, which embeds
LMP as a pointcut language, and binds it to AOP through a mechanism
of bindings. Consider the following tracing aspect as an example:

MY-PROCEDURE-TRACING SECTION.
2 USE AROUND PROCEDURE

AND BIND VAR-NAME TO NAME
4 AND BIND VAR-LOC TO LOCATION.

MY-TRACING-ADVICE.
6 DISPLAY "Before procedure ", VAR-NAME,

" at ", VAR-LOC.
8 PROCEED.

DISPLAY "After procedure", VAR-NAME,
10 " at ", VAR-LOC.

6Architectural Resources for the Restructuring and Integration of Business Applications; a GBOU
project sponsored by the IWT, Flanders. (http://arriba.vub.ac.be/)

xvii

The syntax remains close to that of Cobol, in order to allow better inte-
gration. I.e., advice bodies are, in effect, regular Cobol procedures. The
advice itself is a “section” (line 1), with the quantification encoded in a
USE statement. This latter leverages the existing, though very limited,
syntax for crosscutting concerns. As can be seen we advice around all
procedures (line 2). We then extract the name and location of that proce-
dure (lines 3 and 4), which are available for use within the advice body
(lines 6–10). We provide a PROCEED statement (line 8) for invoking the
original join point.

AOP for ANSI-C

With only a limited market share left by Cobol for its competitors, C
does stand out as an important legacy language. Again, when turning
to the ARRIBA user committee, we find C is in active use, more so than
other languages.

We therefore worked on Wicca [Won04], an aspectual extension for
C. Between the procedural paradigm of ANSI-C, and the statement-
oriented (“English”) paradigm of Cobol, we feel we have thus covered
quite a broad spectrum of legacy languages.

Here is a very basic tracing aspect written in Wicca:

int advice on (.*) && ! on (printf) {
2 int r = 0;

printf ("before %s\n", this_joinpoint()->name);
4 r = proceed ();

printf ("after %s\n", this_joinpoint()->name);
6 return r;
}

Wicca remains close to AspectJ’s [KHH+01] syntax and semantics. As
such, the above aspect might look familiar. It advices around any pro-
cedure, except those named “printf” (line 1). The body itself is pure
C code, which is able to access join point context by means of a call to
the this joinpoint() procedure (lines 3 and 5). Activation of the
original join point occurs through a proceed call (line 4).

If Wicca appears simpler and more limited than Cobble, there is a
reason for this: it was developed some time before Cobble. Hence, it is
not using LMP, nor can we use it to write generic advice. I.e., the above
example will only work when procedures return an int value. This is,

xviii

of course, not very useful for tracing. It does however show one area
where LMP can help.

Here is the same example, but now written down in Aspicere [AT05],
a follow-up of Wicca, being developed by Bram Adams, which does
support LMP:

1 Type around tracing (Type) on (Jp):
! call (Jp, "printf")

3 && type (Jp, Type)
&& ! str_matches ("void", Type)

5 {
Type r = 0;

7 printf ("before %s\n", Jp->name);
r = proceed ();

9 printf ("after %s\n", Jp->name);
return r;

11 }

Much as in Cobble we are now able to extract information through
bindings. I.e. Type is a binding which is used to make our advice type
independent (though we do still need an advice for void procedures).

Transformation framework

On the weaving side, we have built a transformation framework based
on XML representations of source code. Through the XML format, and
with a little help from the JVM, we were able to bring together a mix
of disparate technologies and integrate them into a cohesive and func-
tional whole. (Figure A. shows an example of this in the context of
Cobble.) The hardest part lay in finding decent parsers for the legacy
languages, which proved especially tricky in the case of Cobol.

Transforming the XML representations is only limited in that the
end-result of that transformation must be a valid program. This proved
to be an obstacle for Cobol, where this well-formedness keeps us from
weaving individual getters and setters. Indeed, data items can not be
replaced by anything other than data items. In C we can at least replace
any reference to a variable with a call to a procedure. Not so in Cobol.
Machinecode weaving can hold the answer to this limitation for Cobol,
but it would mean sacrificing our platform-independence.

xix

Figure A. Framework setup for Cobble.

The why of LMP

In order to write generic aspects we need to be able to reflect on the
base programs, to extract information about that base program. With
languages such as Java, which offer a reflection API natively, the aspect
language need not do anything special —though there is research that
questions this [GB03, KR05, De 01, HC03, HU03].

Cobol and C have no reflective capabilities, which indeed limits us
from writing generic advice. This was experienced by Bruntink, Van
Deursen and Tourwé in their work for ASML, the world market leader
in lithography systems. [BvDT04] The associated aspect languages must
therefore make up for this. We have shown that LMP, together with a
simple template mechanism, can do this for us.

Furthermore, the ability of LMP to record business knowledge can
be of great advantage to legacy software. Where languages lack re-
flective capabilities, they must also lack the ability to encode informa-
tion about programs. Hence, programmers are forced into hacks and
workarounds. LMP can be used —very simply— to encode a wide
spectrum of information. In cooperation with AOP we were then able
to exploit this in a direct way.

When tackling the encapsulation of business logic, however, we en-
countered the limits of expressiveness when embedding LMP in AOP.
We were not able to describe the complex, though crosscutting, data
definitions required to solve the task at hand. When embedding LMP
in AOP, we can do great things when it comes to behaviour, but not
when it comes to structure.

We therefore turned the AOP/LMP equation around. By embed-
ding AOP in LMP, we can write down the complex crosscutting struc-
tures, a technique which is close to the idea of parametric introductions,

xx

{ LINKAGE SECTION.
24 01 METHOD-NAME PIC X(30) VALUE SPACES. },

26 findall(
[Name, Para, Wss],

28 (paragraph(Name, Para),
slice(Para, Slice),

30 wss(Slice, Wss)
),

32 AllInOut
),

34

max_size(AllInOut, VirtualStorageSize),
36 { 01 VSPACE PIC X(<VirtualStorageSize>). },

38 all(member([Name, Para, Wss], AllInOut), (
{ 01 SLICED-<Name> REDEFINES VSPACE.},

40 all((record(R, Wss), name(R, RName)), (
clone_and_shift(R, "<RName>-<Name>", SR),

42 { <SR> }
))

44))

Figure B. Full procedure encapsulation (excerpt).

as in [HU03] and [BMD02]. Figure B. shows an excerpt of this solution
as applied to encapsulation of business logic.

Another limitation for generic advice lies in Cobol’s support for
data definitions: it allows for very detailed descriptions of anything
from numbers to strings —consider having to write a number in Java
which has exactly 11 decimals—, yet it does not allow the reuse of these
definitions. There is, for instance, no easy way to figure out which data
items are dates. Any item holding six digits may be a date or it may
not. Nor is it said that any item which is not made up of six or eight
digits must therefore not be a date. . .

This again poses a limitation for writing generic advice: how do we
quantify over types (e.g. dates) when there are none? The only solution
seems to be that we should write down, as business knowledge, which
data items pertain to a certain type. This is tedious at best. So we

xxi

find that despite the strength of AOP and LMP, the legacy languages
sometimes get the overhand.

Validation

We have taken a closer look at four problems with legacy software.
First, we have shown how, through a simple tracing aspect, we man-
aged to enable dynamic analyses in a real case study. [ZAD+06, ZAD05,
ADZ05] LMP was used to make the tracing advice as generic as possi-
ble by overcoming a lack of reflection in the base language.

Second, we worked through a scenario for the recovery of business
knowledge from a legacy application. [MDDH04] AOP and LMP were
applied here in several ways: from smart and focused tracing, to veri-
fication of assumptions and, ultimately, the rediscovery of logic.

Thirdly, we tackled the problem of encapsulating legacy applica-
tions using a generic aspect. A basic form of encapsulation could be
done easily, but the full-on approach, as described in [Sne96a], required
us to take a step back. Still, by placing AOP within LMP, we were able
to tackle even this problem, and relatively straightforward at that.

Only in the fourth problem, Y2K, our source-to-source weaving ap-
proach was held back by the limitations of the base language. As it is,
the semantics of Cobol, especially its lack of typing, present too much of
a roadblock. In C, the Y2K38 problem can still be managed reasonably,
precisely because it features such typing.

Conclusion

By having embedded AOP and LMP in legacy languages, and hence in
existing business environments, we now have at our disposal a flexible
toolchain. There is no requirement to move away from the existing
development techniques; the toolchain can be used in addition to them.

Furthermore, through LMP we are able to express business concepts
and architectural descriptions of business applications. This makes
it possible to work with applications at a higher level of abstraction,
which we hope will also encourage better architectural descriptions to
emerge.

Contents

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Context . 2
1.1.2 Change happens 3
1.1.3 Coping with change 4
1.1.4 Hurdles and inhibitions in evolving software . . . 5
1.1.5 Pitfall: lacking documentation 7
1.1.6 Legacy systems . 8
1.1.7 Goal . 9

1.2 Solution space . 9
1.2.1 Declarative meta-programming 10
1.2.2 Logic meta-programming 10
1.2.3 Aspect-oriented programming 12
1.2.4 Recording architectural models using LMP 14
1.2.5 Exploiting architectural models using AOP 15
1.2.6 Recovering architectural models using AOP and

LMP . 18
1.3 Hypothesis . 18
1.4 Approach . 19
1.5 Contributions . 20
1.6 Organisation of the dissertation 21

2 Enabling AOP in a legacy language: ANSI-C 23
2.1 A brief history of C . 23
2.2 Existing aspect languages for C 24

2.2.1 Coady’s AspectC 24
2.2.2 Spinczyk’s AspectC++ 25

2.3 Wicca . 25
2.4 The join point model for Wicca 26
2.5 Join point selection in Wicca 27

xxiv CONTENTS

2.5.1 Primitive pointcut designator 27
2.5.2 Pointcut composition 27

2.6 Advice in Wicca . 28
2.7 Accessing context information in Wicca 29
2.8 Weaving Wicca applications 30

2.8.1 The weaving process 30
2.8.2 Limitation . 31

2.9 Evaluation and critique . 32
2.10 Conclusion . 33

3 Enabling LMP in a legacy language: Cobol 35
3.1 A brief history of Cobol 35
3.2 Existing aspect languages 36
3.3 Cobble . 37
3.4 The join point model for Cobble 38
3.5 Join point selection in Cobble 39

3.5.1 Primitive pointcut designators 40
3.5.2 Pointcut composition 40
3.5.3 Join point conditions 42
3.5.4 Ambiguous pointcuts 44

3.6 Advice in Cobble . 45
3.6.1 Structure . 46
3.6.2 Scope . 46

3.7 Context information . 47
3.7.1 Structure . 47
3.7.2 Ambiguous context 48
3.7.3 Metadata . 50

3.8 Weaving Cobble programs 51
3.9 Evaluation and critique . 53

3.9.1 Logging/tracing 54
3.9.2 Handling unsafe access to file records 54
3.9.3 Enforcing a file access policy 57

3.10 Conclusion . 57

4 The transformation framework 61
4.1 XML representations of source code 61
4.2 Component integration framework 62
4.3 Front-end of the transformation framework: source to

XML . 64
4.3.1 The front-end for Cobble 65

CONTENTS xxv

4.3.2 The front-end for Wicca 66
4.3.3 XML-ification of the parse trees 66

4.4 Back-end: XML-based source code querying 69
4.4.1 Querying XML using PAL 70
4.4.2 Querying XML using XPath 75

4.5 Back-end: XML-based source code weaving 75
4.6 Supported platforms . 77
4.7 Applying the framework to other languages 78
4.8 Conclusion . 79

5 Validation of AOP and LMP for legacy software 81
5.1 Aspicere: aspectual extension for ANSI-C 81

5.1.1 Generic tracing advice 82
5.1.2 Generic parameter checking (ASML) 83
5.1.3 Conclusion . 86

5.2 Runya: source code visualisation 87
5.2.1 Approach . 87
5.2.2 Results . 89
5.2.3 Conclusion . 91

5.3 Aspect-enabled dynamic analysis 91
5.3.1 The environment 91
5.3.2 The case study . 92
5.3.3 Our approach . 92
5.3.4 Interference from the build system 93
5.3.5 Results . 98
5.3.6 Follow-up . 98
5.3.7 Conclusion . 98

5.4 Business rule mining . 99
5.4.1 Initial facts . 99
5.4.2 Finding the right data item 100
5.4.3 Checking the calculation 101
5.4.4 Verifying our assumption 102
5.4.5 Rediscovering the logic 103
5.4.6 Wrap-up of the investigation 105
5.4.7 Conclusion . 105

5.5 Encapsulating procedures 105
5.5.1 A basic wrapping aspect 106
5.5.2 Problems with introductions 107
5.5.3 A full encapsulation aspect 108
5.5.4 Conclusion . 112

xxvi CONTENTS

5.6 Year 2000 syndrome . 113
5.6.1 Finding dates . 113
5.6.2 Manipulating dates 114
5.6.3 Non-local data items 115
5.6.4 Weaving date access 115
5.6.5 Conclusion . 115

5.7 Conclusion . 116

6 Conclusions 117
6.1 AOP for legacy environments 117

6.1.1 AOP for Cobol and C 118
6.1.2 AOP in legacy environments 118
6.1.3 Weaving . 119
6.1.4 Related work . 119

6.2 A need for LMP . 120
6.2.1 Make up for a lack of reflection 120
6.2.2 Make knowledge explicit 120
6.2.3 Embedding AOP in LMP 121
6.2.4 Limited by underlying language 121

6.3 Validation of our approach 122
6.4 Hypothesis . 122
6.5 Future work . 123

A Cobol 125
A.1 Main structure . 125
A.2 Identification division . 126
A.3 Environment division . 126
A.4 Data division . 129
A.5 Procedure division . 131
A.6 Control flow . 132

Bibliography 135

List of Figures

1.1 Logging in Apache Tomcat. 13

2.1 Initial situation. 30
2.2 Advice chained in. 31
2.3 Meta-advice chained in. 31

3.1 An aspect for tracing Cobol applications. 55
3.2 An aspect for handling unsafe access to file records. . . . 56
3.3 Policy checking for the status of files to be open (part 1). 59
3.4 Policy checking for the status of files to be open (part 2). 60

4.1 The weaving process. 62
4.2 Component integration framework. 63
4.3 Lillambi setup for Cobble. 64
4.4 LLL Grammar fragment for the DISPLAY statement . . . 65
4.5 Excerpt of the transformation script for adding AOP con-

structs to a Cobol grammar. 67
4.6 LLL Grammar fragment for Wicca 68
4.7 XML element for DISPLAY "HELLO WORLD!" 69
4.8 Example of handwritten XML queries. 70
4.9 Fragment of the PAL description for extracting advices. . 71
4.10 Excerpt of Prolog code generated from figure 4.9. 74
4.11 Example of a DOM annotation. 76

5.1 Generic tracing advice, as we would like it. 82
5.2 Generic tracing advice, as Aspicere allows it. 82
5.3 Map of Pico v3. 88
5.4 Example of mapped control flow. 89
5.5 Possible code duplication. 90
5.6 Part of the tracing aspect for enabling dynamic analyses. 94
5.7 Original makefile. 95

xxviii LIST OF FIGURES

5.8 Adapted makefile. 95
5.9 Original esql makefile. 95
5.10 Adapted esql makefile. 95
5.11 Results of the webmining technique. 96
5.12 Part of the tracing aspect applied to the Kava case study. 97
5.13 Aspect for procedure encapsulation. 106
5.14 Full procedure encapsulation (part 1). 109
5.15 Full procedure encapsulation (part 2). 110

A.1 Keywords for Fujitsu-Siemens Cobol 2000 (part 1). 127
A.2 Keywords for Fujitsu-Siemens Cobol 2000 (part 2). 128
A.3 Cobol coding form. 129

Chapter 1

Introduction

It’s a dangerous business, Frodo, going out your front door.

J. R. R. TOLKIEN

IN this dissertation, we propose the combination of Logic Meta-
programming and Aspect-oriented Programming as a tool to tackle

the ills of legacy business applications. The dynamics for such appli-
cations are characterized by a need for restructuring and integration
at a much larger scale than was previously the case. This requires a
non-trivial amount of human insight and experience, something which
is hampered by a general lack of good documentation of these applica-
tions. We therefore propose to adopt the power and flexibility of Logic
Meta-programming, combined with the simplicity of Aspect-oriented
Programming, to aid in the recovery of business architectures, as well
as in the restructuring and integration of business applications.

1.1 Problem statement

This section sets the stage in which the contributions of this disserta-
tion were elaborated. The context, put briefly, is that of business appli-
cations which, being instantiations of specific business processes, are
highly susceptible to the evolution of these processes. Aside from dif-
ficulties in the evolution of different business models and their associ-
ated processes, getting these applications to evolve turns out to be far
from trivial.

2 Introduction

1.1.1 Context

The research which is being expanded upon in this dissertation is part
of an IWT-Flanders research project, named ARRIBA. Short for Archi-
tectural Resources for the Restructuring and Integration of Business Applica-
tions, its aim is:

“to provide a methodology and its associated tools in order to sup-
port the integration of disparate business applications that have
not necessarily been designed to coexist.”

While this would align the ARRIBA project closely with Enterprise
Application Integration (EAI) techniques, the project proposal further
states that:

“the current EAI-inspired methods and tools fail to provide a sat-
isfactory setting in which to proceed.”

So there is an incentive to look for solutions outside of the existing
EAI-toolchain. To this end the project is supported by a consortium
of research groups from the Vrije Universiteit Brussel, the University of
Antwerp and the University of Ghent, together with a user committee
consisting of eight companies:

• Inno.com: an ICT expertise center, advising and assisting its
clients and partners to cope with their technology and business
issues. (www.inno.com)

• Anubex: an expert in application modernisation through soft-
ware conversion and application migration. (www.anubex.com)

• Banksys: manages the Belgian network for electronic payments
for banks, merchants and consumers. (www.banksys.be)

• Christelijke Mutualiteit: largest Belgian social security provider.
(www.cm.be)

• KAVA: a non-profit organization grouping over a thousand Flem-
ish pharmacists. (www.kava.be)

• KBC Bank & Verzekering: banking and insurance company.
(www.kbc.be)

1.1 Problem statement 3

• PEFA.com: services European fresh fish companies by enabling
fish auctions to work over the internet. (www.pefa.com)

• Toyota Motor Europe: European branch of the Toyota motoring
company. (www.toyota.be)

At the heart of this project lies the recognition that modern business
applications are characterized by a need for restructuring and integra-
tion, and that at a much larger scale than ever before. [MDTZ03, Tic01]
This follows from the restructuring and integration of organizations
themselves, as they, among other things, strive to merge their activi-
ties and, hence, their ICT infrastructure.

1.1.2 Change happens

The recognition that business applications are faced with a need for
restructuring and integration is not new. There exists a widely ac-
cepted law stated that systems will either have to evolve (change) or
be scrapped:

“An E-type program that is used must be continually adapted else
it becomes progressively less satisfactory.” [Leh96]

Lehman first postulated this, what has become known as the “first law
of software evolution”, in the mid seventies. [Leh74] E-type systems he
considers to be, broadly speaking,

“software systems that solve a problem or implement a computer
application in the real world.” [Leh96]

The same principle is also found outside computer science. Evolution
theory talks about the Red Queen Equilibrium. This is due to a quote
from Lewis Carroll’s famous book ‘Alice through the looking glass’. In it
Carroll has the Red Queen remark: “here, you see, it takes all the running
you can do, to keep in the same place.” The principle reflects that in order
to keep up with an evolving environment you have to keep investing
energy to maintain your place within it.

Examples of the driving forces behind this process of change —in
the relatively safer world of software systems, that is— are:

• redefinition of corporate strategies,

4 Introduction

• take-overs and mergers,

• moving from data processing to service models (brought on by
the ever growing internet), [GKMM04]

• hardware (eg. mainframes) which will no longer be supported by
manufacturers,

• changes in legislation which force an update of business rules
and, possibly even, the workflow.

To this we can add such unforeseen global forces as the adoption of the
Euro, or even the Y2K problem. [Leh98]

Reaction time to these changes in business environments is critical.
New laws and regulations must be met by given deadlines, competitor
advances must be matched immediately, and customer wishes must be
fulfilled within a reasonable timeframe. [Sne96b]

This continuous process of modification results in a situation where
several software systems will have to be changed or collaborate in ways
that were never (or could never have been) anticipated in their original
design.

1.1.3 Coping with change

So, now knowing that a program must be evolved lest it become more
and more useless, we are faced with a second problem:

“As a program is evolved its complexity increases unless work is
done to maintain or reduce it.” [Leh96]

Apart from a “status-quo” scenario, in which the business adapts to
the software, a number of other approaches to cope with this problem
are frequently seen:

1. Rewrite the application from scratch using a new set of require-
ments. [Ben95]

2. Reverse engineer the application first, and only then rewrite it
from scratch. [Ben95]

3. Refactor the application. One can refactor the old application,
without migrating it, so that change requests can be efficiently
implemented; or refactor it to migrate it to a different platform.

1.1 Problem statement 5

4. Wrap it. Turn the old application into a component in, or a ser-
vice for, a new software system. In this scenario, the software
still delivers its useful functionality, with the flexibility of a new
environment. [Ben95, Sne96a]

5. A mix of the previous options, in which the old application is
seriously changed before being set-up as a component or service
in the new environment.

Certainly for all scenarios but the first, the software engineer would
ideally like to have:

• a good understanding of the application in order to start his or
her reengineering operation (or in order to write additional tests
before commencing reengineering), [Sne04]

• a well-covering (set of) regression test(s) to check whether the
adaptations that are made are behaviour-preserving. [DDN03]

Either way, any sort of change will require a great deal of human insight
and experience. [Leh98]

1.1.4 Hurdles and inhibitions in evolving software

Having learned that software must evolve, and that during this evo-
lution we must take care that its complexity remains manageable, we
must now consider how to go about this. When doing so, we find
that companies are faced with some recurring hurdles and inhibitions.
Within the ARRIBA project, we found this to include the following
things. [MDTZ03]

Proven technology. Large organisations, especially those which rely
on continuous uptime and timely service for their survival, depend
heavily on proven technology. This is why mainframe-technology re-
mains of such importance. While UNIX-like systems are also in use,
they are considered less reliable, and are therefore avoided for support-
ing essential business operations.

User resistance. There may be user resistance to change as well.
Existing software may be very reliable and responsive to customer

6 Introduction

needs (and those customers may be reliant on undocumented fea-
tures). [Ben95] In the short term, a replacement system may be less
reliable and require its customers to do a lot of relearning and re-
work. [Sne05]

Old programming languages. When we turn to the ARRIBA user
committee, mentioned in section 1.1.1, we find that most of their as-
sets are written in (some dialect of) Cobol. [MDTZ03] This finding is
corroborated by the numbers1 presented to us by the Gartner group:

• 75% of business data is processed in COBOL.

• There are 180 billion to 200 billion lines of COBOL in use world-
wide.

• 15% of new applications are written in COBOL.

These numbers are in stark contrast with the roll-out of new developers
which are familiar with Cobol.

Human resources. Where technology evolves quickly and has a short
life-span, humans have to keep up. For large companies with hundreds
of developers this means a huge investment in human resources. This
is, of course, an important issue when adopting technology: while new
developments may be of interest, one also has to be able to support
them. That means that you either need to retrain your staff, or replace
them. Under such circumstances, sticking close to what you are good
at is a valuable strategy.

Data storage. Large-scale software systems need to deal with large-
scale data. Unfortunately, in many such systems, the use of a Relational
Database Management System (RDBMS) is still rare. Proprietary, flat-
file systems are more likely to be the norm, even if use of an RDBMS
has received priority.

Data models. Aside from storing data there is also the problem of
interpreting it. In large companies there usually is no central ownership
of data or information. This means that data information models can

1These numbers are for the year 2003.

1.1 Problem statement 7

(and will) develop in different ways. When the time comes to realign
them, subtle differences in interpretation of the data can bring on big
problems.

Business-driven. IT development is usually well-defined within
companies, and a lot of attention is paid to it. It is not, however,
technology-driven. IT developments which do not have a relevant
business case will simply not be realized. This means that there is an
inherent mismatch in how technology evolves versus how businesses
evolve.

Again, it should be clear that there is an important need for human
insight and experience into the existing business applications, if we are
to work with, or overcome, the cited problems.

1.1.5 Pitfall: lacking documentation

It now is obvious that, in order to evolve software in a satisfactory way,
we are in need of a thorough understanding of the applications sup-
porting the business processes. Yet, in practice, we find this under-
standing to be lacking. Let’s consider why that might be so:

• Business applications are no longer understood, as major mission-
critical software was developed —sometimes decades ago— by
programmers who have moved on to other projects, or that are
no longer working at the company. The maintainers were not the
designers. [CC90]

• Code is badly structured and poorly documented. The amount of
code is huge [Ben95] and has been adapted many times for sev-
eral reasons (switching platforms, year 2000 conversions, transi-
tion to the Euro currency, etc.).

• Evolution of an implementation causes it to drift away from the
original architecture. [Men00, PW92, dOC98] Keeping the docu-
mentation synchronized with those evolutionary changes did not
always happen. [CC90, MW03]

• Logic (whether application logic or business rules) is spread out
over the entire application. Legacy languages often support only
limited modularity mechanisms. Therefore complex logic has to

8 Introduction

be manually distributed over the programs; a process which is
prone to errors. [DD99b]

• Legacy programming languages are no longer (well) understood.
COBOL is not popular with the new generation of programmers,
nor is it being actively taught to students. Dijkstra’s famous
quote, “the use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence”, captures the problem
nicely.

• Use of different (versions of) features offered by different vendors
makes it harder to understand code, and harder to evolve that
code. It also makes it harder for toolbuilders to support these
different platforms.

In general, the data repositories and the running programs them-
selves are the only true description of the information structures and
applications they implement. Hence, the only dependable documen-
tation is the actual data (and the way in which it is handled) and the
source code itself (barring extreme cases where code is out-of-sync, or
even gone). [Ben95]

1.1.6 Legacy systems

We have seen sofar that, on the one hand, software needs to evolve,
and that this requires knowledge of the applications involved, but that,
on the other hand, this knowledge is lacking. This problem is often
referred to as the problem of “legacy systems”. The term, legacy, brings
with it an intuitive understanding of the problem, yet it is hard to find
a single, fitting definition. Bennet defines legacy systems informally as,

“large software systems that we don’t know how to cope with but
that are vital to our organisation.” [Ben95]

Brodie and Stronbraker describe it as,

“any information system that significantly resists modification
and evolution to meet new and constantly changing business re-
quirements.” [BS95]

Nicholas Gold puts it as follows,

1.2 Solution space 9

“Legacy software is critical software that cannot be modified ef-
ficiently. A legacy system is a socio-technical system containing
legacy software.” [Gol98]

Put more succinct, we could say that: if software moves you forward
it is an asset; if it holds you back it is legacy. But rather than crank out
another definition for benefit of this dissertation, we will focus on two
properties that the above definitions share:

1. The software (or system) is in a state where any modification re-
quires a large (disproportionate) amount of effort.

2. The software (or system) is of such value to its stakeholders that
they can not put it aside.

1.1.7 Goal

As we have seen, companies are faced with software that needs to be
evolved for various reasons, yet for which it is hard (disproportion-
ately so) to do this. Putting this software aside is not a reasonable op-
tion to its stakeholders. We therefore have to make modification of
existing applications easier. This includes support for helping with
the modification itself, but also to make up for missing knowledge
about the system, which is crucial for proper evolution. Ideally, we
are looking for a technique which can cover both of these concerns. We
state that Aspect-oriented Programming, combined with Logic Meta-
programming is such a technique. The following section will delve into
the reasoning behind this statement.

1.2 Solution space

This section presents the techniques of Declarative Meta-programming,
Logic Meta-programming and Aspect-oriented Programming. It ex-
pands on the reasoning for applying these techniques to the problems
of evolving (legacy) business software (discussed in the previous sec-
tion), and as such provides the background for the upcoming chapters
on aspect-oriented extensions of ANSI-C and Cobol.

10 Introduction

1.2.1 Declarative meta-programming

Hill and Lloyd summarise declarative programming as being

“much more concerned with writing down what should be com-
puted and much less concerned with how it should be com-
puted.” [HL94]

The idea that the computation which has to take place is deduced from
declarations lies at the heart of declarative programming. The actual
way in which the computation proceeds should be of no concern to the
programmer. This is believed to make declarative programs easier to
understand and reason about than their imperative counterparts.

A meta-program, on the other hand, is a program that takes one or
more other programs as data. [Bow98] Or, to paraphrase Maes [Mae87]:
“All programs are about something. A meta-program is about pro-
grams.” A compiler is an excellent example of a meta-program.

Declarative Meta-programming (DMP) then combines the best of both
worlds: it is a program that acts upon other programs, but it does so
by declaring what should happen to them, rather than how it should
be done. Or, put differently, DMP is using a declarative programming
language at the meta-level to reason about and manipulate programs
built in some underlying base language.

DMP requires that the reification between the DMP-language and
the base language is made explicit, allowing base-level programs to be
expressed as declarations at the meta-level. [MMW00]

1.2.2 Logic meta-programming

Logic Meta-programming (LMP) is an instantiation of Declarative
Meta-programming where the meta-language is based on a logic pro-
gramming language. These are based on first-order logic with restric-
tions that make efficient proof procedures possible. Logic program-
ming developed out of work on automated theorem proving in the
1960s, particularly through the work of Robinson who introduced the
resolution principle. [Rob65]

In their most basic form, logic programs are finite sets of Horn
clauses, which are formulas of the form A ← W , where W is a con-
junction of atoms. The following presents a typical example of this in
Prolog:

1.2 Solution space 11

parent(A,B) :- father(A,B).
2 parent(A,B) :- mother(A,B).

4 ancestor(A,B) :- parent(A,B).
ancestor(A,B) :- parent(A,X),

6 ancestor(X,B).

These predicates define when one item is an ancestor of another. They
can be read as:

• A is a parent of B when A is a father of B. (Line 1.)

• A is a parent of B when A is a mother of B. (Line 2.)

• A is an ancestor of B when A is a parent of B. (Line 4.)

• A is an ancestor of B when there exists some X for which A is a
parent and which itself is an ancestor of B. (Lines 5 and 6.)

Now, given the facts:

father(marcel,an).
mother(an,antje).

A deduction that ancestor(marcel,antje) holds, can be made:

ancestor(marcel,antje)
:- parent(marcel, X), ancestor(X, antje)
:- parent(marcel, an), ancestor(an, antje)
:- father(marcel, an), parent(an, antje)
:- father(marcel, an), mother(an, antje).

How that deduction actually proceeds is, in principle, of no impor-
tance. While logic programming languages do, of course, have an op-
erational semantics, all that matters is that the deduction can be made.

Logic programming becomes Logic Meta-programming when the
facts about which we define predicates are themselves structures of
some program. For instance, by using facts on which classes extend
which other classes, we could write:

inherits(Sub,Base) :- extends(Sub,Base).
inherits(Sub,Base) :- extends(Sub,X),

inherits(X,Base).

12 Introduction

From this we could then, for example, start to reason about inheritance
chains. This is, of course, very similar to the parent/ancestor logic we
have shown above. Other things which fall in the realm of LMP in-
clude:

• Verification of source code to some higher-level description (for
example, conformance checking to coding conventions, design
models, architectural descriptions, etc.).

• Extraction of information from source code (for example, visual-
isation, software understanding, browsing, generation of higher-
level models or documentation, measurements, quality control,
etc.).

• Transformation of source code (for example, refactoring, transla-
tion, re-engineering, evolution, optimization, etc.).

• Generation of source code.

Examples of these can be found in the research by De Volder on
type-oriented LMP and TyRuBa. [Vol98] There is also the work by
Wuyts on SOUL, which integrates LMP with a Smalltalk environ-
ment. [Wuy01] Kim Mens applied LMP for automating architectural
conformance checking, and intentional views. [Men00, MMW02a] Tom
Mens and Tourwé did research on evolving design patterns on a higher
level by using LMP. [MT01]

1.2.3 Aspect-oriented programming

Aspect-orientation (AO) is a relatively new paradigm, which has
grown from the limitations of Object-orientation (OO). [Kic97] OO
takes an object-centric view to software development, where a pro-
grammer describes objects, how they should behave and in what ways
they should interact with other objects.2

The problem with OO is very simple: some concepts cannot be cleanly
captured in an object. Consider for instance logging —which has become
the hallmark of AO. All objects and actions needing to be logged have
to actively participate in order to achieve this goal. Any implementa-
tion of logging will therefore be spread out (or scattered) over the entire

2While typically achieved by constructing a hierarchy of classes, we should point out that OO
is not limited to class-based approaches.

1.2 Solution space 13

Figure 1.1: Logging in Apache Tomcat.

application. Figure 1.1 shows this for Apache Tomcat (a webserver im-
plemented in Java): each column represents a class, with red horizontal
bars indicating the presence of the logging concern. As can be seen,
the logging concern is scattered over the application. It is not even in
a small number of places. It is evident that such scattered concerns are
hard to implement, and harder still to maintain.

A more extensive list of similarly hard problems can be compiled
when working through AOSD resources:

logging, tracing, context-sensitive error handling, coordi-
nation of threads, remote access strategies, execution met-
rics, performance optimisation, persistence, authentication,
access control, data encryption, transaction management,
pre-/post-condition and invariant checking, enforcement of
policies for resource access and API usage, implementation
of design patterns, test-coverage analysis,. . .

AO proposes the concept of aspects to solve the problem. Aspects al-
low one to quantify which events in the flow of a program are of interest
(through so-called pointcuts), and what should happen at those points
(through advice). Hence we can ‘describe’ what logging means to an ap-
plication and have the aspect-weaver (a compiler for aspects) take care
of the hard and repetitive bits for us.

Filman and Friedman summarize it as follows:

“AOP can be understood as the desire to make quantified state-
ments about the behavior of programs, and to have these quan-

14 Introduction

tifications hold over programs written by oblivious program-
mers.” [FF05]

As an aspect is a (module of a) program that operates on other
(modules of) programs, we can say that AOP fits our definition of meta-
programming. This is put more strongly by Steimann, who states that:

“there can be no aspect without a meta-level.” [Ste05]

It is precisely through the quantification mechanism that this meta-level
exposes itself in AOP. And it is here that we have an opportunity for a
synthesis between AOP and LMP (explained in the previous section).
In fact, it has been argued that more than an opportunity, it is probably
the best approach to quantification. [GB03, OMB05]

Filman and Friedman’s summary also points to another property of
AOP: obliviousness. While the extent to which this has to be achieved,
or whether it can be achieved at all, is still under heavy debate, there is
one side to obliviousness that seems accepted: the base language need
not know about AOP for AOP to work. That is, any valid program
in the base language can have aspects applied to it. This makes AOP
directly applicable to existing applications.

1.2.4 Recording architectural models using LMP

We have seen that knowledge about applications is crucial for being
able to evolve them. Without this, software developers can only han-
dle change to the best of their abilities. This will likely involve code
duplication, reinvention of designs, or even breaches of the existing ar-
chitecture.

Knowing this, developers resort to reverse engineering before mak-
ing modifications. [CC90, Tic01] Indeed, it is stated that:

“Software forward engineering and reverse engineering are not
separate concerns.” [CC90]

Any kind of forward engineering requires an understanding (or model)
of the application. This entails a reverse engineering of that application
when that model is missing.

Models recovered in this way will most likely fall short of the orig-
inal architecture, as reverse engineering requires a huge intellectual ef-
fort: it takes many context switches and good concentration in order to

1.2 Solution space 15

form, and keep, a picture of the design. And all this will likely have to
be redone when the time comes for another modification.

It is therefore important that models which result from such reverse
engineering efforts be recorded, so that these models can become on-
line software documentation that can be exploited in subsequent ac-
tivities. [Hon98] Declarative meta-languages (and, hence, logic meta-
languages) offer a nice way to achieve this. In fact, this is exactly what
Kim Mens argues for in his work on conformance checking:

“[LMP] is very well suited to describe the mapping of architec-
tural concepts and relations to implementation artifacts and their
dependencies.” [Men00]

Also, in [DDMW00]:

“It seems intuitively clear that design information, and in par-
ticular architectural concerns, are best codified declaratively as
constraints or rules.”

That this is more than mere intuition has been shown by Wuyts and
colleagues in their work on SOUL, or the Smalltalk Open Unification Lan-
guage. [Wuy98, DMW99, Wuy01, MMW02b] There is, for instance the
excellent work on Intentional Views. [MMW02a]

Furthermore, Chikofsky and Cross state that being able to gener-
ate different views is a key objective for reverse engineering. [CC90]
Moise and Wong show an application of this idea in [MW03]. Again,
in [Men00], Kim Mens shows that LMP:

“allows the definition of multiple, potentially overlapping, archi-
tectural views, thus providing support for separation of concerns
at the architectural level.”

It is for these reasons that Logic Meta-programming becomes a key
technology for the work in this dissertation.

1.2.5 Exploiting architectural models using AOP

Models are a great way for representing knowledge about applications,
which, as we have seen, is a basic requirement for helping these appli-
cations evolve. A good model becomes even better as soon as one can
start to exploit it, not just at an architectural level, but also in code.
In [MMW02b], the authors argue for:

16 Introduction

“declarative programming as a basis for building sophisticated
development tools that aid a programmer in his programming
tasks.”

StarBrowser3, by Roel Wuyts, is a nice example of this idea put into
practice. What’s more, in [DFW00]:

“The resulting information can, for example, be used by meta-
components to drive code generation and refactoring.”

It is the idea that Aspect-oriented Programming can be used in the role
of such a meta-component that is the driving force for our thesis. One
argument in favour of AOP was made by Kim Mens, who notes that

“architectural descriptions, by their very nature, seem to cross-cut
the implementation.” [Men00]

In [DD99b], Maja D’Hondt and Theo D’Hondt argue that the same is
true for domain knowledge. If so, then AOP, which is aimed at dealing
with crosscutting concerns, should prove to be an invaluable tool in
conjunction with models.

Another argument can be found in the work by Murphy and Notkin
on lightweight source model extraction. [MN95] Part of their approach
to extracting models is to (1) define patterns of interest in the source
code, and (2) to define what action must be taken when such a pattern
is found. Here is a slightly reformatted example found in their paper:

1 [<type>] <name> \([{<arg>}+] \)
[{<type> <decl> ;}+] \{

3

<calledName> \([{<par>}+] \) (\) | ;)

Without going into the details, this matches procedures (pattern on
lines 1 and 2) and the procedure calls they contain (nested pattern on
line 4).

Defining the patterns of interest is the declarative bit, similar to
quantification in AOP. It is not a full DMP approach, as their pattern
matching language is restricted to EBNF-like notations. While this is
a limitation in the context of this dissertation, it has distinct benefits
for the work of Murphy and Notkin: it is simple and very tolerant of
syntactical deviations in source code.

3http://homepages.ulb.ac.be/∼rowuyts/StarBrowser/

1.2 Solution space 17

Defining the actions to take when a pattern is found is close to the
concept of advice in AOP. The main difference is that AOP-like advice
is woven into the application to act at run-time, whereas the action code
used by Murphy and Notkin acts during matching (what might be ten-
tatively called weave-time). Here is an example:

[<type>] <name> \([{<arg>}+] \)
2 [{<type> <decl> ;}+] \{

4 <calledName>
@ write (name, " calls ", calledName) @

6 \([{<par>}+] \) (\) | ;)

This again matches all procedures definitions and the procedure calls
they contain. For every embedded procedure call the name of the pro-
cedure doing the call (name, matched on line 1) and the name of the
procedure being called (calledName, matched on line 4) is output
(write statement on line 5) during the matching.

Whatever the limitations are, the point is this: a combination of dec-
larations on the structure of a program, combined with actions to take
on the results thereof provided a practical, flexible and useful tool for
developers.

One more argument can be found in an experiment using the
SOUL environment. SOUL, or Smalltalk Open Unification Language,
provides a framework that uses Prolog to reason about the struc-
ture of Smalltalk programs, as well as interact with those programs.
In [DMW99] the authors use this in an AOP-like approach to sepa-
rate domain knowledge from a path-finding algorithm. In fact, they
go quite a bit beyond AOP as the Prolog language will engage the
Smalltalk program at run-time as well. While this grants the authors
greater expressivity and flexibility, this level of integration becomes
hard to achieve when dealing with legacy business applications writ-
ten in languages lacking the meta-programming features present in
Smalltalk.

All in all, AOP provides a practical tool for allowing developers to
exploit architectural models, which in itself provides a catalyst for the
development and recording of such models.

18 Introduction

1.2.6 Recovering architectural models using AOP and LMP

In the previous sections we have argued that Declarative Meta-Pro-
gramming, in conjunction with Aspect-oriented Programming, can
help with forward engineering. It can however also provide the basis
from which to do reverse engineering, and from which to build up our
models of the software which is to be evolved.

We do not advocate an approach wherein reverse engineering tech-
niques and toolchains are (re-)implemented using DMP/AOP, though
there is some point to that. The SOUL framework, for instance, has
been used to extract design patterns present in Smalltalk applica-
tions. [Wuy98] Murphy and Notkin used a lightweight declarative
approach to mine for source models. [MN95] The work on Intentional
Views demonstrates this as well. [MMW02a]

Rather than reworking reverse engineering techniques to fit the
DMP/AOP approach, it should be easier to use DMP/AOP in order
to enable such techniques. Information on program structure can be
extracted using DMP. Information on its run-time behaviour can be
retrieved using aspects. An example of the latter will be shown in
chapter 5, where we enabled the frequency clustering technique found
in [ZD04] through a simple tracing aspect.

The argument here is not that DMP/AOP is the ideal tool to do
reverse engineering. The argument is that DMP/AOP can provide a
uniform medium from which to start using these techniques without
having to integrate them directly into the runtime environment.

1.3 Hypothesis

We have seen that business applications, which are instantiations of
specific business processes, are highly susceptible to the evolution of
these processes. With increased globalization of enterprises, and ever
greater demand for interconnectivity between companies, comes in-
creasing pressure to scale up and integrate business applications. This
means that these applications will have to evolve. Aside from diffi-
culties in integrating the different business models and their associated
business processes (which is well outside the scope of this dissertation),
getting the business applications to cooperate is a major hurdle: in all
but a few cases the documentation and support of these applications is
insufficient (or even absent). Yet, in order to get applications to evolve

1.4 Approach 19

in a manageable way, information about its structure and behaviour is
required.

When we considered this required information in the form of
models, we found that their recording and exploitation is important.
Furthermore, we have indications that, in this respect, Logic Meta-
programming and Aspect-oriented Programming can help us out. This
idea, put more strongly, is the thesis of this dissertation:

Hypothesis. The combination of Logic Meta-programming and Aspect-
oriented Programming aids in the recovery of business architectures from
source code, as well as in the restructuring and integration of business appli-
cations.

We make this claim based on two observations. First, by embed-
ding Aspect-oriented Programming in existing business environments
we can empower software developers with a flexible toolchain while
avoiding a steep learning curve. In using this toolchain, there is no
requirement to move away from the existing development techniques;
there is only the incentive to work with something that augments them.
This can make for a faster turn-around based on available expertise.

Second, Logic Meta-programming (a form of Declarative Meta-
programming) can be used for expressing business concepts and archi-
tectural descriptions of business applications in a declarative way. This
makes it possible to work with applications at a higher level of abstrac-
tion, which will allow better architectural descriptions to emerge. By
making these descriptions available for practical use we can actively
encourage development and understanding thereof.

1.4 Approach

Testing of our hypothesis requires the availability of Aspect-oriented
extensions to programming languages that are in use for business ap-
plications today. For this we choose Cobol (accounting for over 80%
of such applications) and ANSI-C. We choose these languages because
they represent two very different approaches to structuring program-
ming. By showing that our hypothesis will work in these two lan-
guages, we can thus be assured that our approach can reasonably be

20 Introduction

applied to most other languages.
At the start of our research there were no readily available Aspect

implementations for either C or Cobol, which meant that our primary
focus had to shift to extending these programming languages with
Aspect-oriented constructs. This became the major brunt of our work,
and will account for most of this dissertation.

Apart from the addition of the aspectual constructs themselves, we
then extended these constructs themselves by embedding LMP. This
requires the definition of bindings and backtracking semantics to the
quantification mechanism. We discuss how this was done.

Apart from the definition of (the semantics of) these extensions, we
also discuss how to actually implement this in tools. The toolchain
which was developed for this is based on XML representations of the
abstract syntax trees of the source code. We discuss the reasoning be-
hind this choice, as well as how the toolchain was built around it.

Using the resulting tools we then present several scenarios, some on
restructuring and integration, some on recovery, to show how AOP and
DMP can help. We also report on an industrial recovery case, which has
been performed in cooperation with the LORE4 research lab from the
University of Antwerp.

1.5 Contributions

Summarizing, the main contributions of this dissertation are:

1. We show that the Aspect-oriented Paradigm can be successfully
embedded in legacy (non-OO) environments.

2. We show that logic-based pointcuts, in conjunction with access to
a meta-“object” protocol, are able to fully enable Aspect-oriented
Programming in legacy environments lacking reflective capabili-
ties.

3. We argue that Aspect-oriented Programming, together with logic-
based pointcuts, is an ideal tool for tackling major issues in busi-
ness applications: recovery, restructuring, integration, evolution,
etc.

4Lab On REengineering (http://www.lore.ua.ac.be/)

1.6 Organisation of the dissertation 21

1.6 Organisation of the dissertation

The organisation of this dissertation is as follows. Chapter 2 takes the
first step toward proving our hypothesis by enabling Aspect-oriented
Programming in a legacy language, namely ANSI-C. The choice for C
is a pragmatic one: it is found within many business applications and
presents a non-Object Oriented approach to programming. It is also
greatly different from Cobol, which is the language focussed on in the
next chapter. We discuss the different steps to take for adding AOP to
ANSI-C, as well as how the weaving process can be implemented.

Chapter 3 takes the next step by enabling Logic Meta-programming
in a legacy language. The choice is for doing this in Cobol, which is
the language found most in legacy contexts. It is also very different
from C, so that we must re-evaluate the addition of AOP constructs to
the language. This will also revalidate our approach from the previous
chapter. Furthermore, we show how LMP can be enabled within the
pointcut language of the AOP extension, as well as what impact this
has on the semantics thereof.

Chapter 4 then presents the transformation framework which was
used to implement the aspectual extensions from the previous chap-
ters. The framework itself is based on XML representations of the ab-
stract syntax trees of the legacy source code, and we discuss the reason
for this choice. We also present how the framework may be used in
different ways, using different technologies and for different purposes.

Having seen how AOP+LMP can be designed and implemented
with respect to different legacy languages, chapter 5 explores what
these tools can do for us. We show how AOP and LMP can be fully
enabled in ANSI-C, thereby completing the discussion of chapter 2
with the insights from chapter 3. Furthermore, we present how the
transformation framework from chapter 4 was applied to source code
visualisations, thereby showing the flexibility of our this framework.
Most importantly, we discuss the application of AOP and LMP to sev-
eral, very different problems with legacy software, thus arguing in
favour of our hypothesis. We do this in the context of re-engineering,
restructuring and integration of legacy applications.

Finally, in chapter 6, we round up and present our conclusions.

22 Introduction

Chapter 2

Enabling AOP in a legacy
language: ANSI-C

C is quirky, flawed and an enormous success.

DENNIS M. RITCHIE

OUR first step toward proving our hypothesis is to enable Aspect-
oriented Programming in a legacy language. Without this ability,

the question of whether AOP and Logic Meta-programming can help
with the ills of legacy software would become moot. Hence this first
chapter. The choice for C is a pragmatic one: it is found within many
business applications and presents a non-Object Oriented approach to
programming. It is also greatly different from Cobol, which is the lan-
guage we will focus on in the next chapter on embedding LMP. Be-
tween enabling AOP+LMP in C and Cobol we have shown that our
approach scales to a wide range of programming languages.

2.1 A brief history of C

The C programming language started life as an extension, by Dennis
M. Ritchie, of the B programming language. [Rit93, BG96] B was itself a
rewrite of a still older language, BCPL, in an attempt to fit it into 8KB of
memory (while also reworking some of its features). Though success-
ful, the machines running B were too small and too slow to allow more
than mere experimentation.

24 Enabling AOP in a legacy language: ANSI-C

In the early seventies Ricthie extended B by adding a character type,
and also chose to rewrite its compiler to generate PDP-11 machine in-
structions instead of threaded1 code. This resulted in a compiler ca-
pable of producing small enough programs which could compete with
their hand-coded assembly counterparts. He dubbed this new version
NB, or “new B”.

Ritchie continued work on NB by extending the type mechanism
and adding support for structured (record) types. He allowed these
record types to be constructed from other record types, rather than re-
stricting their definition to the basic primitives (int and char, together
with arrays of them, and pointers to them). After this came a final re-
naming, in which Ritchie decided to follow the single-letter style, leav-
ing open the question of whether the name represented a progression
through the alphabet or through the letters in BCPL.

The language and compiler were now strong enough to rewrite the
Unix-kernel for the PDP-11. The compiler was subsequently retargeted
to other machines (the Honeywell 635, IBM 360/370,. . .), and libraries
were being developed (among them the “Standard I/O routine”).

In 1978, Kernighan and Ritchie published The C Programming Lan-
guage [KR78], which became the de-facto standard for C programming.
This standard remained in effect until 1989, when the X3J11 committee,
established by ANSI, produced the first ANSI-C standard. [Ame89]

2.2 Existing aspect languages for C

While there now exist several different aspectual extensions to C
(Arachne [DFL+05], TOSKANA [EF05], TinyC [ZJ03]), at the time when
our own work started there really were only two options: AspectC by
Coady et al., or AspectC++ by Spinczyk et al.

2.2.1 Coady’s AspectC

The first AOP extension to appear for C was (aptly named) AspectC.
Developed by Coady et al., it was developed for a research project, in
which they tried to improve the modularity of path-specific customiza-
tions in operating systems code. [CKFS01] The authors reported As-

1An interpretative scheme in which the compiler outputs a sequence of addresses of code
fragments that perform the elementary operations.

2.3 Wicca 25

pectC to be:

“a simple subset of AspectJ [KHH+01]. Aspect code, known
as advice, interacts with primary functionality at function call
boundaries and can run before, after or around the call.”

Where at that time AspectC code was still hand-compiled to na-
tive C, in a follow-up paper the development of a prototype weaver is
reported. [CK03] Unfortunately, we could not get this weaver up and
running in our own environment, which made further evaluation diffi-
cult.

2.2.2 Spinczyk’s AspectC++

The second option for an existing tool is Spinczyk’s AspectC++, an as-
pectual extension of C++. [SGSp02, LS05b] While in theory you might
be able to tackle C code using this tool as well (C++ originally being an
extension on C), in practice this is not (yet) supported. The develop-
ers of AspectC++ do have support for C in mind, but, according to the
FAQ published on their website2, preliminary support was only to be
available from January 2006.

2.3 Wicca

Wicca3 is the name for our4 aspectual extension of ANSI-C. It features a
pointcut language which is close to that of AspectJ, but which has been
tweaked for the context of ANSI-C. As with AspectJ, it also chooses to
stay as close as possible to the original language. We do this so that
users of the language may get up to speed with it more quickly, and
need to do as few “context switches” as possible.

Wicca was tested in-house against some academic examples. It was
also applied successfully by Tom Tourwé to some industrial C code
(from ASML; see also section 5.1.2).

2http://www.aspectc.org/
3http://allserv.ugent.be/∼kdschutt/aspicere/
4Developed with the help of Stijn Van Wonterghem, in the context of his graduation the-

sis [Won04] (in Dutch), with the author acting as tutor.

26 Enabling AOP in a legacy language: ANSI-C

2.4 The join point model for Wicca

The goal of this chapter is to evaluate the possibility of enabling an
existing (legacy) language with Aspect-oriented Programming. Now,
the expressiveness of any AO programming language is defined first
and foremost by the run-time events it can capture and work on. These
events are, what is called in AOP, the join points. A description of which
join points matter, forms the join point model of the language.

The join point model itself is totally reliant on the semantics of the
base language to which the aspectual extension applies; it is a function
thereof. When it comes to procedural languages (i.e. C) the possibilities
for a join point model prove quite limited: events surrounding proce-
dures. Note that this does not have to exclude access (reading and writ-
ing) to variables. These can be covered by equating such accesses to the
use of some implicit getter and setter procedures, something which is
allowed in C. In this way we can unify, and simplify, the join point
model. One could argue for going more fine-grained than procedures
(i.e. down to the statement- or expression-level). However, current best
practice in AOP seems to suggest that this is not necessary. While we
consider it a point open for debate, we chose to follow current practice;
also because it simplified the problem domain.

Furthermore, we will limit ourselves to consider only calls of pro-
cedures. We do not make a distinction between call- and execution-
join points as in AspectJ-like languages. Semantically speaking, there
is no difference between the two: they cover the same points. From
the point-of-view of the weaver, however, there are times when being
able to make the difference is useful. Consider having to build an ap-
plication while making use of a library which is only available to you
in binary form. Unless binary weaving is an option, this means that
weaving at execution-side is off limits. Having call join points can then
solve the problem by forcing call-side weaving (at least partially; rele-
vant calls within the library will still be discarded). The choice we made
for Wicca was to place the burden of finding the most appropriate join
point-weaving scheme (call- or execution-side) with the weaver. Given
the choice, we prefer a simpler semantics and a smarter weaver over
more complex semantics and a simpler weaver.

In summary, Wicca’s join point model is based on an overlay of a
message model on C, where messages are aligned with the activation of
procedures. This approach can be applied to any procedural language.

2.5 Join point selection in Wicca 27

2.5 Join point selection in Wicca

Given a join point model for a legacy language, the next most impor-
tant factor in the definition of an aspect language is how we can select
(quantify) the relevant join points. In AOP terms, this is the pointcut
mechanism. With Wicca we decided to go for an AspectJ-like pointcut
mechanism, as will be explored in the following subsections. This ap-
proach can be equally easy applied to other languages which allow for
a message model.

2.5.1 Primitive pointcut designator

There is only one basic pointcut designator, and it is one which selects
messages based on the message name. The syntax is:

on (regexp)

This pointcut selects any message whose message name matches the
regexp pattern (which is a standard regular expression, e.g. “set.*”
would match any name starting with “set”).

There are no pointcuts allowing selection based on argument-
and/or return types in the original Wicca. These could, however,
be added to the language. Selecting on return types can be done easily:

returning (type)

A pointcut expression for checking for argument types is also straight-
forward:

args (type)
args (type, type)
args (type, type, type)
/* And so on */

2.5.2 Pointcut composition

Pointcuts can be combined using the standard logic operators in C (&&,
|| and !), in the same way as in AspectJ. The following presents the
EBNF-grammar for this syntax:

pointcut ::= conj_pc ("||" conj_pc)*
conj_pc ::= prim_pc ("&&" prim_pc)*

28 Enabling AOP in a legacy language: ANSI-C

prim_pc ::= "(" pointcut ")"
prim_pc ::= "!" prim_pc
prim_pc ::= "on" (regexp)

Having defined the syntax, and thus, implicitly, the precedence of
the combination operators, we now turn to the semantics. First:

pc_a || pc_b

This disjunction will match a join point when either pc a or pc b
matches. Similarly:

pc_a && pc_b

This conjunction matches only when both pc a and pc b succeed. And:

! pc

This negation will match only when matching pc fails. As a combined
example, consider:

on (.*) && ! (on (main) || on (printf))

This will select all messages, except for those named “main” or “printf”.

2.6 Advice in Wicca

Having defined a join point model for C, as well as the pointcut lan-
guage for quantifying over the right join points, we are now ready to
turn our attention to defining behaviour at join point sites. In AOP, this
is done through advice. In Wicca, the syntax is as follows:

returntype advice pointcut { advice_body }

Hence, advice is identified through the advice keyword. This is fol-
lowed by the pointcut definition, which will select the relevant join
points at which the advice should activate. What should happen is
defined by the advice body, which is written down in ANSI-C. So, for
instance, we might write:

void advice on (print.*) {
/* advice body goes here */

}

This captures calls to all procedures whose name starts with “print”.

2.7 Accessing context information in Wicca 29

Such advice acts as around advice. That is, it replaces the join point
on which it acts, and is made responsible for forwarding to the join
point at the right time (through a proceed call). As such, the advice
needs to handle the value returned by the original join point. It also
needs to return a value itself, which means that its type must be de-
clared. This is what returntype is for.

The choice for limiting advice to around is one of convenience re-
garding the implementation. However, as before and after advice can be
seen as special cases of around (with the proceed call at the end or at the
beginning respectively), this does not restrict expressivity. It only has
an impact on ease-of-use.

The major limitation is having to declare the return type. Wicca
does not provide any form of auto-casting or auto-boxing, and so the
burden of getting the typing right is put squarely on the shoulders of
the programmer. While it is true that by using before and after advice
one does not have to suffer this return-type problem, it is equally true
that not all advices can be refactored to using only these two variants
(e.g. conditional execution of a join point would not be possible in this
scheme). Hence, the support for around advice remains necessary.

2.7 Accessing context information in Wicca

Having extended C with the basics for writing aspects, there is still
one thing we have to provide: access to the execution context. This is
something which is needed in even basic tracing advice. For Wicca, we
allow context information to be accessed through a special function,
named this joinpoint, which returns a structure representing the
captured join point:

typedef struct _jp_info {
char *name;

} _jp_info;

As can be seen from the definition, this structure only holds the name
(that is, the message name, or the name of the selected procedure) of
the activated join point. Access to return types, argument types, and
argument values was not made available.

30 Enabling AOP in a legacy language: ANSI-C

Figure 2.1: Initial situation.

2.8 Weaving Wicca applications

Sofar, we have only tackled the syntax and semantics of our aspectual
extension to ANSI-C. There remains however the question of how this
is transformed into executable form. This is what weaving is all about.

Weaving of advice on join points is based on the idea of call chain-
ing. In short: we instantiate advices into procedures, and place them
between the procedures participating in a call by redirecting those calls.
This can be done easily in any procedural language.

2.8.1 The weaving process

We will now illustrate call chaining, to make the technique more clear.
Consider two procedures, f and g, where f makes a call to g (fig-
ure 2.1). The message which is overlaid on this call/return sequence
is advised by some aspect.

This advise will then be woven using the following steps:

1. Procedure g is renamed to g’, where g’ is a new, unique name.

2. The advice is instantiated as a procedure with a signature match-
ing that of the original g. This procedure is named g.

3. Any proceed calls in the instantiated advice are replaced by calls
to g’.

This process is repeated for all advices acting on g. In case of a single
advice, we end up with figure 2.2. When dealing with multiple advices,
the order in which they are activated (or woven in) is dictated by the
order in which they appear in the source code.

2.8 Weaving Wicca applications 31

Figure 2.2: Advice chained in.

Figure 2.3: Meta-advice chained in.

The weaving is then rounded up with the addition of one more ad-
vice: a meta-advice which registers information on the currently acti-
vated join point (made accessible through this joinpoint; see the
previous section). This brings us to the end result of figure 2.3.

Note that, due to the way advice is woven into the application, we
can also handle function-pointers. These will now simply point to the
meta-advice at the front of the advice stack, as this meta-advice replaces
the original procedure.

2.8.2 Limitation

The call chaining approach to weaving that has been described here is
one which matches execution-side weaving. The assumption here is that
this side is available to the weaver. When the sources are available,
this is not a problem. However, when the execution-side is part of a
pre-compiled library, we are forced to find other approaches.

As was stated in section 2.4, we expect the weaver to be able to
choose between call-side and execution-side weaving as appropriate.
This choice, however, is not a trivial one, as it requires knowledge of

32 Enabling AOP in a legacy language: ANSI-C

the full build scheme. In C it is pretty common to first build separate
object files, and only then link them all together. This means that at
any given step, we may not yet know if the execution side is available
to us. It may be that the execution side resides in an object file which
is still to be built. Hence, for our weaver to take the right decision
we would need to integrate it more closely into the build process. An
alternative may be to go for a two-phase process where the first phase is
for collecting all the needed information, and the second step is where
the actual building takes place. But even this is hard when the build
process has to take other tools into account. [ZAD+06]

Until we have delved more deeply into this subject matter, we de-
cided to have Wicca always do execution-side weaving. Given the ini-
tial intent for Wicca (see section 2.3), this was a reasonable choice.

2.9 Evaluation and critique

While limited in its features, Wicca can already express some basic as-
pects. Here is an example:

1 int advice on (.*) && ! on (printf) {
int r = 0;

3 printf ("before %s\n", this_joinpoint()->name);
r = proceed ();

5 printf ("after %s\n", this_joinpoint()->name);
return r;

7 }

This shows the, in AOSD-literature omni-present, tracing aspect. It
captures all procedures, except for printf (line 1). This exclusion is
needed so as to prevent an infinite loop, in which the advice would
keep triggering itself over and over. It surrounds the original join point
(activated through a proceed call at line 4) with trace-printing code
(printf’s at lines 3 and 5). Line 1 declares a variable, which captures
the value returned by the original join point (assignment at line 4), and
is then returned (unchanged) as the result of the advice (line 6).

As an aside, restricting traces to message/procedure names is not
unrealistic. In C there is no overloading of procedures allowed. This
means that any procedure name can be tied to only one signature, and,
hence, that every name maps onto one uniquely defined procedure.

2.10 Conclusion 33

The real problem with Wicca’s advice structure, as it is presented
here, is the need to declare return types. The above example works, but
only on the assumption that all join points return integer values. This
is only likely to be true in a few academic examples.

One possible solution to this problem is the addition of a pointcut
selector which will discriminate on return type. For instance:

on (.*) && ! on (printf) && returning (int)

While this would make it safe to apply our advice to any code base,
it does not solve the more essential problem: the tracing advice does
not really care about the return types. On the contrary, it should be ap-
plicable to any and all procedures regardless of return type. Attaining
this through a returning pointcut would mean (1) knowing all possi-
ble return types in advance, and (2) writing down the advice for every
such return type. This is clearly more trouble than it is worth. What we
would really like is something in the vain of:

1 any advice on (.*) && ! on (printf) {
any r = 0;

3 printf ("before %s\n", this_joinpoint()->name);
r = proceed ();

5 printf ("after %s\n", this_joinpoint()->name);
return r;

7 }

I.e. we would prefer to use a generic type (any), and have the language
take care of the necessary casting.

Logic Meta-programming provides us with a similar solution, with-
out having to resort to hidden type casts. We will present this technique
in the discussion on Aspicere (section 5.1).

The other pitfall is that Wicca will always do execution-site weav-
ing (see the previous section), which means that our primitive pointcut
(on (...)) is no more than an execution join point, as in AspectJ. This
limitation, however, is caused by the integration of the weaver into the
build process; not by the semantics of the join point model.

2.10 Conclusion

In this chapter we considered the addition of AOP constructs to an ex-
isting (legacy) language, in casu ANSI-C. We find that we can represent

34 Enabling AOP in a legacy language: ANSI-C

join points of interest by overlaying them with a message model. Based
on this we have then set up a pointcut language, and integrated it with
the original language through the means of advice definitions. Adding
AOP to an existing language turns out to be straightforward, and stays
close to existing AOP approaches. It turns out however that our abil-
ity to write generic advice is hampered by the lack of reflection and a
limitation of type conversions of the underlying language. As this is
something we can rightly expect to find in most legacy languages, our
solution sofar, while already effective, is still incomplete. The addition
of LMP techniques in the next chapter will remedy this.

Chapter 3

Enabling LMP in a legacy
language: Cobol

COBOL is a very bad language,
but all the others (for business data processing)

are so much worse.

ROBERT GLASS

SOFAR we have shown that an existing legacy language (in casu
ANSI-C) can be extended with Aspect-oriented Programming. We

have however found that this extension is limited in its use by the lack
of reflective capabilities of the underlying language, as well as the lim-
ited support for type conversions. This chapter takes the next step by
now also enabling Logic Meta-programming. This time the choice is
for doing this in Cobol, which is the language found most in legacy
contexts. It is also very different from C, so that we must re-evaluate
the addition of AOP constructs to the language. This also revalidates
our approach sofar.

3.1 A brief history of Cobol

On May 28 and 29, 1959, a meeting was called in the Pentagon by
Charles A. Philips of the Department of Defense. [Sam69, Sam85] It was
attended by representatives from users, government installations, com-
puter manufacturers, and other interested parties; a group which has

36 Enabling LMP in a legacy language: Cobol

since become known as the CODASYL (COnference on DAta SYstems
Languages) committee. The goal of this meeting was simple: to discuss
the problem of developing a common business language. The word
common was interpreted to mean that source programs should be com-
patible among a significant group of computers.

The committee decided that such a project was both desirable and
feasible, and so they set up a more thorough project. The first step was
to be performed by the “Short Range” committee, whose job was to do a
fact finding study of what was wrong and right with existing business
compilers (FLOW-MATIC, AIMACO, COMTRAN,. . .). This commit-
tee, however, decided to go for the more ambitious goal of specifying a
language instead.

The Short Range committee did so, and presented its work on
September 4 of the same year. The language it presented was quickly
adopted by CODASYL, and was baptised Cobol, or COmmon Business
Oriented Language. In the subsequent years Cobol went through sev-
eral standardization phases, though this did not prevent the appear-
ance of many dialects. Its popularity is undeniable: in 1997 the Gartner
Group estimated that Cobol accounted for over 80% of all running
systems. Recent statistics for 2004-2005 still estimate the use of Cobol
for new software at 15%, where 80% of all applications will have to
co-operate in some way with existing legacy programs. At the age of
46 this makes the language very much alive-and-kicking.

This chapter won’t delve into Cobol specifics. For an introduction
to Cobol, albeit a brief one, we refer the reader to appendix A.

3.2 Existing aspect languages

While there exist no specialized aspect extensions for Cobol, Cobol it-
self is perhaps the oldest Aspect-oriented programming language. The
procedure division of a Cobol program can hold so-called declaratives
with special USE1 statements, which provide a method of invoking
procedures that are executed when some distinguished condition oc-
curs during program execution. I.e., Cobol allows the association of be-
haviour to some quantified events. This is, in essence, a form of AOP.
The following fragment shows a typical example of this.

1The USE verb is in all Cobol standards, e.g., in the Cobol 74 standard. [Ame74] It was already
present in some form in CODASYL’s Cobol 60. [Sam78]

3.3 Cobble 37

1 DECLARATIVES.
HANDLE-F0815-ASPECT SECTION.

3 USE AFTER ERROR ON FILE-F0815.
HANDLE-F0815-ADVICE.

5 MOVE "F0815" TO PANIC-RESOURCE.
MOVE "FILE ERROR" TO PANIC-CATEGORY.

7 MOVE FILE-STATUS TO PANIC-CODE.
GO TO PANIC-STOP.

9 END DECLARATIVES.

Without going into too much detail, this code makes sure that each
file I/O error related to FILE-F0815 is caught (line 3; quantification).
Paragraph HANDLE-F0815-ADVICE (lines 4–8; advice) encodes what
should subsequently happen: registration of the error, followed by a
jump to the PANIC-STOP procedure, which will display a decent error
message and then stop execution.

From the viewpoint of AOP, the incompleteness of Cobol’s acciden-
tal pointcut language is evident: we cannot advise successful file I/O
statements, subprogram calls and field access. Also, Cobol’s acciden-
tal join point control and join point reflection are very limited. For in-
stance, we cannot re-execute an offending statement within a handler
section, which hampers error repair. As such, Cobol’s “AOP mecha-
nism” is not able to tackle arbitrary aspects. Its design is simply too
specialized to allow this.

3.3 Cobble

Cobble2 is the name for our3 aspectual extension to Cobol. It presents
an extensive definition of AO constructs for Cobol, which is very dif-
ferent from other aspect languages. This is, of course, due to the very
different nature of Cobol itself. As with AspectJ-like aspect languages,
though, it also chooses to stay as close as possible to the original lan-
guage. We do this so that users of the language may get up to speed
with it more quickly, and need to do as few “context switches” as pos-
sible.

2Etymology: http://dictionary.reference.com/search?q=Cobble
Download: http://allserv.ugent.be/∼kdschutt/cobble/

3Exploration of this design was done in cooperation with Ralf Lämmel (then: Free University
& CWI, Amsterdam; at the time of writing: Microsoft, Redmond). Work started from a prelimi-
nary exploration done by David Tas for his graduation thesis ([Tas04]; in Dutch), with the author
acting as tutor.

38 Enabling LMP in a legacy language: Cobol

Cobble was tested in-house against some academic examples, using
the OpenCobol4 compiler.

3.4 The join point model for Cobble

We have seen in the previous chapter that any definition of an aspec-
tual extension to a language must start by defining the join points of
interest. Now, Cobol does not support the modern concept of proce-
dures or functions when it comes to structuring control flow of pro-
grams. It does talk about some form of “procedures”, but these are of
a different form. Cobol relies on a structure which is close to handwrit-
ten texts: sections, subdivided into paragraphs, subdivided further into
sentences, and again into statements.5 As such, it follows pretty much
the pattern of, say, a standard Ph.D. dissertation:

program ::= section*
section ::= identifier "SECTION" "."

sentence* paragraph*
paragraph ::= identifier "." sentence*
sentence ::= statement* "."

When we talk about procedures in Cobol, we are really talking about
paragraphs and sections. From this we find that a message model
would not match Cobol’s structure, and so we must go for another ap-
proach.

In Cobol, new functionality (e.g. working with XML) is, in gen-
eral, made available through the addition of new statements (or new
‘clauses’ in existing statements). The result is that a typical Cobol di-
alect will sport over 500 keywords. While it is possible to modular-
ize applications into subprograms —Cobol programs may be called
from other Cobol programs—, each of which is structured as described
above, this is not very easy or practical. As such, the creation of APIs
by programmers is not encouraged, and is left to the compiler construc-
tors. Therefore, most events which may be of interest are available at
the statement level. Hence, the basic join point Cobble exposes are exe-
cutions of statements. Nevertheless, the structure provided for by para-
graphs and sections is equally of importance, as they define the general

4http://www.opencobol.org/
5Also see appendix A for more details.

3.5 Join point selection in Cobble 39

control flow. Cobble therefore exposes execution of paragraphs, sec-
tions and programs as well.

Now, statements can be divided further into clauses, but this de-
pends entirely on the kind of statement. A MOVE statement, for in-
stance, has a compulsary TO clause, whereas a DIVIDE statement has
(among other things) an optional REMAINDER clause. Even more fine-
grained we arrive at naming the data items (or variables). These can be
used in one of two modes: sending or receiving. [ISO02, § 14.5.7; p. 389]
For instance, x is a sending data item in MOVE x TO y, while y is a re-
ceiving one. Still, we choose not to go more fine-grained than the state-
ment level. This is mostly for practical reasons: weaving clauses using
a source to source technique is extremely hard —if at all possible. There
is, for instance, no way to replace the reference to a data item with a call
to a procedure. First, it is not allowed syntactically. Second, procedures
cannot return values, and so cannot act as a data source.6 We also dis-
regard the concept of sentences as a form of join point, as we cannot
identify any scenario where they might be of importance.

Concerning the distinguishing between call or execution sites, as
with Wicca, Cobble does not do this. The rationale, again, is that there
can be no difference of “sender” and “receiver” in Cobol: there exist
no objects.7 An argument for distinction of call and execution could
be made for Cobol’s subprograms mechanism. However, this case is
already covered, as calls to subprograms are achieved through a special
CALL statement. Because of our choice for exposing statements, we can
already handle subprogram calls.

3.5 Join point selection in Cobble

Given the join point model for Cobol, the next most thing we must de-
cide on is the definition of an pointcut language for the selection of the
relevant join points. The pointcut mechanism for Cobble is decidedly
different from that of AspectJ-like languages. For one, there is the focus
on Logic Meta-programming, which has an impact on the expressive-
ness of the pointcuts. Then there is also the choice of syntax: “English”,
to follow Cobol’s existing conventions.

6More recent Cobol standards do support the concept of “functions”, but these are defined as
a separate module, using the FUNCTION-ID keyword.

7While the latest Cobol standard does cover OO constructs (cfr. [Läm98]), our focus is on legacy
business applications, which predate this.

40 Enabling LMP in a legacy language: Cobol

3.5.1 Primitive pointcut designators

The most basic pointcut designators are those which pick out the indi-
vidual join points: specific statements, (sub-) programs or procedures
(sections and paragraphs).

jp ::= (verb | "ANY") "STATEMENT"?
jp ::= "PROCEDURE" procedure_name?
jp ::= "PROGRAM" program_name?

The nonterminal verb is a placeholder for Cobol’s many statement
verbs: ACCEPT, ADD, ALTER, . . . , WRITE. Aspects for screen I/O deal
with the verbs ACCEPT and DISPLAY. Aspects for file I/O deal with all
the file I/O statements. Aspects for test coverage analysis deal with the
verbs IF and EVALUATE. These aspects can specify which verbs are of
interest to them, or choose ANY to capture them all.

We can also quantify over programs and procedures. By default all
such constructs are matched. However, by naming them we can narrow
the selection process down. E.g.:

PROCEDURE CALCULATE-PAYMENTS

This will only select paragraphs or sections named “CALCULATE-
PAYMENTS”.

By definition, we intercept the execution of a procedure using the
PROCEDURE syntax. We also note that we can intercept procedures that
are encountered ‘by fall-through’ rather than by PERFORM and GO, us-
ing the PROCEDURE syntax (for more details on how Cobol structures
control flow see appendix A). More subtly, using the STATEMENT syn-
tax, we can intercept (the execution of) the statement that performs a
procedure (cf. the PERFORM verb) or jumps to it (cf. the GO verb). Like-
wise, we can intercept both (the execution of) a CALL statement and the
execution of a subprogram.

We note that the syntax, given so far, does not yet accommodate
constraints on the operands involved in the statements, neither can we
access the parameters of intercepted subprogram executions. We will
discuss such expressiveness shortly.

3.5.2 Pointcut composition

Pointcuts can be combined using the standard logic operators in Cobol
(AND, OR and NOT), in the same way as in AspectJ. The following

3.5 Join point selection in Cobble 41

presents the EBNF-grammar for this syntax:

pointcut ::= conj_pc ("OR" conj_pc)*
conj_pc ::= term ("AND" term)*
term ::= "NOT" term
term ::= "(" pointcut ")"
term ::= jp

Where jp refers to the definition in the previous subsection.
It is important to note that the logic deductions which can be spec-

ified using this syntax are based on failure and backtracking. That is,
whenever a certain branch of deduction fails, the pointcut will back-
track to its previous branch-point and attempt another solution. This
provides the basis for our Logic Meta-programming approach. The im-
portance of this will become evident when we discuss the notion of
ambiguous pointcuts (section 3.5.4).

Having defined the syntax, and thus, implicitly, the precedence of
the combination operators, we now turn to the semantics. First:

pc_a OR pc_b

This disjunction will match a join point when either pc a or pc b
matches. Similarly:

pc_a AND pc_b

This conjunction matches only when both pc a and pc b succeed. And:

NOT pc

This negation will match only when matching pc fails. As a combined
example, consider:

EXECUTION OF ANY STATEMENT
AND NOT EXECUTION OF CALL STATEMENT

This will select (execution of) all statements, except for CALLs.
As an aside, the previous could also have been written as:

ANY AND NOT CALL

Optional keywords are very much a part of Cobol’s flavour, and as such
this example would not look out of place.

42 Enabling LMP in a legacy language: Cobol

3.5.3 Join point conditions

AspectJ provides notational support for method-calling patterns, which
resemble the syntactical structure of method calls, and which take ad-
vantage of the fact that method arguments are typed and named. In the
case of Cobol, we face a much richer syntax, weaker typing, non-flat ar-
gument lists in subprogram calls, anonymous operands in statements
and other complications. We have found that selector-based access to pro-
gram contexts is more appropriate for Cobol than a plethora of patterns.

Selector-based access starts from the join point shadow8, which must
be a statement, a procedure or a program, and allows querying of its
context. A selector’s applicability depends, of course, on the category at
hand. For instance, an attempt to extract a name is only valid when we
face a named entity. Here are Cobble’s selectors:

• NAME – The alphanumeric literal for the name of the selected en-
tity.

• VERB – The alphanumeric literal for the statement verb at hand.

• TYPE – The type of a selected data item (a picture string).

• PROCEDURE – Navigation to the hosting procedure.

• PROGRAM – Navigation to the hosting program, i.e., to the root.

• LEVEL 01 – Navigation to the hosting top-level data entry.

• FILE – Selection of the file in a file I/O statement.

• RECORD – Selection of the record in a file I/O statement.

• FILE-STATUS – Selection of the file-status field for the selected
file.

• SENDER – Selection of a sending data item.

• RECEIVER – Selection of a receiving item.

• PARAMETER – Selection of a parameter for a subprogram or a call.

• LOCATION – The location in the source-code file.
8Where a join point is an event in the dynamic call graph a running program, a join point

shadow is the code responsible for this event. [HH04]

3.5 Join point selection in Cobble 43

• IDREF – An opaque identity —e.g. a unique number— for refer-
ring to the selected entity.

The list clarifies that there are selectors for the extraction of basic prop-
erties, such as names or references, and there are other selectors, which
cater for the navigation from one program context to another. For instance:

NAME OF FILE-STATUS OF FILE

This will navigate from a file being accessed to the data-item holding
the I/O status, and then to the name of that data-item.

We note that some selectors can be ambiguous. For instance, a state-
ment can involve several sending items. We will handle such ambigu-
ous selection in the next section.

Selection can be nested as in:

selector OF ... selector OF SHADOW

The final “OF SHADOW” can be omitted.
The result of selections can be bound to variables:

BIND var_name TO selection

These can then form the target of new selections:

selector OF ... selector OF var_name

As an example, the following binds THE-PROC to the procedure host-
ing the join point shadow:

BIND THE-PROC TO PROCEDURE OF SHADOW

This can then be used to, for instance access its name:

NAME OF THE-PROC

Or we can ask for its location in the source code:

LOCATION OF THE-PROC

And so on. . .
The list of selectors, as given above, is incomplete. Additional se-

lectors can be derived systematically from the Cobol grammar. The
difficulty lies in finding the right amount of details to be exposed to
the Cobble programmer. E.g. do we expose details on individual arith-
metic statements (ADD, SUBTRACT, MULTIPLY, DIVIDE and COMPUTE),

44 Enabling LMP in a legacy language: Cobol

or do we hide this behind the generic concept of a computation? In its
current form Cobble does the former. When there is a need for working
with the generic concept this can be added to the language as another
selector.

Apart from the selectors, we also need a few condition forms that
perform classification tests on a given syntactical entity, e.g.:

• x IS FILE-DATA – x is a data item declared in the file section.

• x IS WORKING-STORAGE-DATA – x is a data item declared in the
working-storage section.

• x IS LINKAGE-DATA – x is a data item declared in the linkage
section.

• x IS SENDER – x is a sending item.

• x IS RECEIVER – x is a receiving item.

• x IS LIKE regexp – x is an alphanumeric matching the pattern in
regexp.

Put together, we can now write some very expressive pointcuts.
Here is an example:

1 ANY STATEMENT
AND BIND VAR-ITEM TO SENDER

3 AND VAR-ITEM IS FILE-DATA
AND NAME OF FILE OF VAR-ITEM IS "CLASS-RECORDS"

This will capture execution of any statement (line 1) which reads data
(test for SENDER on line 2) from a variable (“VAR-ITEM” on line 2)
which is part of a record in a file (condition on line 3) named “CLASS-
RECORDS” (test on line 4). As is evident from this example, Cob-
ble’s design strongly suggests that join point reflection on the join point
shadow should be viewed as part of the pointcut — as opposed to using
reflection in the advice code.

3.5.4 Ambiguous pointcuts

Some of the selectors presented in the previous section are ambiguous.
Consider SENDER. The following ADD statement has three sending data
items:

3.6 Advice in Cobble 45

ADD A B TO C.

I.e., A, B and C are all variables from which data will be read. This
means that the following selection will have three possible solutions:

BIND VAR-ITEM TO SENDER

This ambiguousness is not a bug. It is a feature. Remember from
section 3.5.2 that the pointcut matching mechanism is based on failure
and backtracking to choice points. It is exactly through the ambiguous
selectors that these points of choice are established. Consider again the
example from the previous section:

1 ANY STATEMENT
AND BIND VAR-ITEM TO SENDER

3 AND VAR-ITEM IS FILE-DATA
AND NAME OF FILE OF VAR-ITEM IS "CLASS-RECORDS"

The selection on line 2 will bind VAR-ITEM to one of the sending data
items in our ADD statement. When the tests on lines 3 and 4 succeed,
this solution is accepted and the pointcut is matched to the join point.
When any one of the tests fail, the matching will backtrack to the se-
lection on line 2 and attempt another binding for VAR-ITEM. This will
repeat itself until all possible bindings have been exhausted, at which
time we can conclude that the pointcut could not be matched to the join
point.

Of course, given the ambiguous selectors, there may be several
valid ways of matching a certain pointcut, each of which may present
different solutions for the bindings. What happens in such a case is
related to the way in which we access the join point context, which will
discussed in section 3.7. First, we turn our attention to the structure for
advice.

3.6 Advice in Cobble

Given a join point model and a pointcut language for picking out join
points, we must now consider how to embed this into the underlying
language. Our approach here is based on Cobol’s DECLARATIVES sec-
tion (see section 3.2). In the design of Cobble we have chosen to stay
close to Cobol, so that both can integrate as seamlessly as possible.

46 Enabling LMP in a legacy language: Cobol

3.6.1 Structure

The overall structure of an advice looks as follows:

MY-ADVICE SECTION.
2 USE AFTER

*> The pointcut designator.
4 MY-ADVICE-BODY.

*> The advice code.

This declares an advice named “MY-ADVICE”, which is an after ad-
vice (before and around are also allowed). The pointcut is declared in-
side a USE statement —generalizing existing uses for this statement.
The expected behavior at the selected join points is encoded in one or
more paragraphs following the USE statement (here: “MY-ADVICE-
BODY”). The programmer is, of course, free to choose any names he
wants. In the case of around advice, the original join point can be in-
voked through the PROCEED statement. The following shows a more
complete example.

1 MY-ADVICE SECTION.
USE AROUND

3 EXECUTION OF PROCEDURE.
MY-ADVICE-BODY.

5 ADD 1 TO DEPTH.
DISPLAY DEPTH, ": before procedure.".

7 PROCEED.
DISPLAY DEPTH, ": after procedure.".

9 SUBTRACT 1 FROM DEPTH.

This is, in essence, a primitive tracing aspect. It is an around advice
(line 2) which captures all procedure executions (line 3). The advice
itself surrounds the original join point (invoked through a PROCEED
at line 7) with some printing statements (DISPLAYs at lines 6 and 8),
showing the current depth of the call stack (variable DEPTH which gets
updated at lines 5 and 9).

3.6.2 Scope

The scope of Cobol’s original declaratives is restricted to the hosting
program. Our advices therefore resemble intra-program aspects. How-
ever, Cobble must also deal with inter-program aspects, as crosscut-

3.7 Context information 47

ting concerns are unlikely to align with subprogram boundaries. Inter-
program aspects affect some or all Cobol programs in a given project.

Cobble provides a new form of compilation unit for inter-program
aspects, which complements the pre-existing forms for programs and
classes. The inter-program version requires a compilation unit as fol-
lows:

IDENTIFICATION DIVISION.
ASPECT-ID. ASPECTS/LOGFILE.

This is similar to the CLASS-ID keyword for defining classes, as well
as its FUNCTION-ID keyword for defining special functions, which are
present in today’s Cobol standard.

An aspectual compilation unit applies to all programs in a project.
Of course, a program is affected only in case its execution exhibits rel-
evant join points. Still, restricting this applicability to certain files is
already possible using the given constructs. For instance, to prevent a
logging aspect from logging its own behaviour we could write:

NOT NAME OF PROGRAM IS LIKE "ASPECTS/LOGFILE"

This idiom mimics AspectJ-like “within” pointcuts, which restricts join
point selection to join points in a certain file.9

The environment and data divisions of the aspectual unit extend
the affected programs. By default, Cobble separates the name-spaces
of aspectual unit and affected program. Thereby, we avoid unintended
name capture.

3.7 Context information

Again, advice often needs access to the execution context in which it is
being activated. In Cobble it can do this by making use of the bindings
that have been made in the pointcut (see section 3.5.3). The following
subsections will elaborate on this.

3.7.1 Structure

Consider the following pointcut:
9More details can be found at http://www.eclipse.org/aspectj/doc/released/

progguide/semantics-pointcuts.html, under the header “Program text-based point-
cuts”.

48 Enabling LMP in a legacy language: Cobol

EXECUTION OF PROCEDURE
AND BIND PROC-NAME TO NAME OF SHADOW

The first line selects execution of any procedure. The second line
binds the name of this procedure to a variable named “PROC-NAME”.
Again, this could have been written more succinctly as:

PROCEDURE AND BIND PROC-NAME TO NAME

The added effect of this binding is that the variable which has been
bound is now available for (read-only) use in advice. E.g., we could
now write a tracing aspect which is able to output the names of the
activated procedures:

1 MY-ADVICE SECTION.
USE AROUND PROCEDURE

3 AND BIND PROC-NAME TO NAME.
MY-ADVICE-BODY.

5 DISPLAY "Before ", PROC-NAME.
PROCEED.

7 DISPLAY "After ", PROC-NAME.

As expected, the variable PROC-NAME which gets bound (at weave-
time) on line 3, is available for use (at run-time) in the advice (lines 5
and 7).

3.7.2 Ambiguous context

Some selectors are ambiguous (see section 3.5.4): they return one of a
set of possible results. Consider the following example of an aspect that
counts certain sending operands in ADD and SUBTRACT statements:

1 USE BEFORE (ADD OR SUBTRACT)
AND BIND VAR-ITEM TO SENDER

3 *> Disregard the item if it

*> is a receiving data item, too.
5 AND NOT VAR-ITEM IS RECEIVER.

MY-SENDER-ADVICE.
7 *> Count the sending data item

*> if it equals zero.
9 IF VAR-ITEM = ZERO

ADD 1 TO COUNT-ZERO-ITEMS.

3.7 Context information 49

Before any addition or subtraction (line 1), this aspect adds 1 to a
counter (line 10) when the value of VAR-ITEM, a variable being read
from (line 2) but not being written to (line 5), is zero (line 9). Putting
this together, we see that this aspect detects superfluous additions and
subtractions. Now take a look at the following addition:

ADD A B TO C.

This statement has two sending items which are not receiving data
items: A and B. As such, this means that the variable referred to inside
the advice (VAR-ITEM on line 9) can be either one.

Cobble solves this by assuming a universally quantified (‘for all’) se-
mantics for the pointcut. That is, advice is issued for all successful point-
cut evaluations, where ambiguous selections give rise to multiple solu-
tions for the capturing BIND phrases. For the case of the above addi-
tion, this will be preceded by two executions of MY-SENDER-ADVICE;
one for data item A and another one for B.

One might argue that some multi-valued selections can be avoided
once the join point model of Cobble provides corresponding categories
of join point shadows. (In the example, we would then formulate a
pointcut on data items rather than on statements.) However, as was
discussed in section 3.4, we disfavour this option. For instance, how to
handle AROUND advice for access to data items? Advice, as it is based on
paragraphs and sections, cannot return values, and so cannot act as a
data source. Nor could a data item be replaced by a call to either advice
or a procedure: Cobol does not allow this. Trying to get around this
restriction while still generating legal Cobol code is a mind-boggling
exercise, where statements must be split up (and be duplicated) in such
a way that accesses to data items become separated. Here is a basic
example:

IF A EQUAL TO 1 OR B EQUAL TO C THEN

*> code ...
END-IF

In order to separate accesses to data items A, B and C, this would have
to become:

IF A EQUAL TO 1 THEN

*> code ...
ELSE

IF B EQUAL TO C THEN

*> code ...

50 Enabling LMP in a legacy language: Cobol

END-IF
END-IF

Already we are seeing code duplication: the body of the original if-
statement has to be cloned for all possible cases. Now consider that this
body itself may also contain conditional statements. This would lead
to an exponential explosion of code. Of course, we would not have to
write this down ourselves; the weaver should take care of this. But then
consider that Cobol has many more conditional statements than the
simple IF statement. There are also the control flow statements which
have to be taken into account. Not to mention the plethora of many
other statements with their optional clauses and their own very differ-
ent semantics. Each of these cases should be treated by the weaver.
While we cannot prove this task to be an impossible one, we consider
the complexity of attempting this to require extensive research on its
own.

3.7.3 Metadata

One other type of context information comes in the form of metadata.
This can be used to encode business information, or other things of
interest. For instance:

1 META-DATA DIVISION.
FACTS SECTION.

3 PARA-OF-INTEREST VALUE BIZ-AAB.
PARA-OF-INTEREST VALUE BIZ-CDD.

This defines PARA-OF-INTEREST as a piece of metadata, whose value
may be either BIZ-AAB or BIZ-CCD. These are then available for use
within the pointcuts. E.g.:

USE BEFORE (ADD OR SUBTRACT)
2 AND BIND VAR-ITEM TO SENDER

AND PARAGRAPH EQUAL TO PARA-OF-INTEREST
4 AND NOT VAR-ITEM IS RECEIVER.

MY-SENDER-ADVICE.
6 IF VAR-ITEM = ZERO

ADD 1 TO COUNT-ZERO-ITEMS.

This is a reprisal of the aspect detecting spurious arithmetic from the
previous section, only this time its scope is limited to certain para-

3.8 Weaving Cobble programs 51

graphs (line 3). Exactly which paragraphs these are, comes from the
metadate we defined previously.

3.8 Weaving Cobble programs

Sofar we have only tackled the syntax and semantics of Cobble. We
must now face the question of how this functionality will get enabled in
the woven application. We do this by illustrating how advice is woven
in Cobble using the following intra-program aspect:

1 *> Print file name before file is read.
USE BEFORE READ

3 AND BIND VAR-NAME TO NAME OF FILE.
FILE-ADVICE.

5 DISPLAY "Reading ", VAR-NAME, ".".

We are about to weave advice for this statement:

READ ORDER-FILE.

The most basic weaving scheme starts as follows: the advice is
cloned per join point shadow (or source code responsible for activat-
ing a join point [HH04]), and placed within a newly created section.
The cloned version is also subjected to substitution such that all vari-
ables (i.e. VAR-NAME on line 5) are replaced by the values that were
obtained by pointcut evaluation (binding on line 3). Weaving advice
for the sample READ statement, we obtain the following clone:

AOP42-FILE-ADVICE SECTION.
FILE-ADVICE.

DISPLAY "Reading ", "ORDER-FILE", ".".

The name, “AOP42-FILE-ADVICE”, is only meant as an example. It
is generated by the weaver. The final step is to extend the actual join
point shadow by a PERFORM statement such that the cloned paragraph
is executed:

PERFORM AOP42-FILE-ADVICE
READ ORDER-FILE.

The same steps apply to AFTER advice.
When it comes to AROUND advice, effort is needed to handle the

PROCEED statement. Consider this variation of the previous advice:

52 Enabling LMP in a legacy language: Cobol

USE AROUND READ
2 AND BIND VAR-NAME TO NAME OF FILE.

FILE-ADVICE.
4 DISPLAY "Reading ", VAR-NAME, ".".

PROCEED.
6 DISPLAY "Done reading.".

First the original join point shadow is moved to a newly created section.
For the example READ statement, this becomes:

READ16-JOIN-POINT SECTION.
JOIN POINT.

READ ORDER-FILE.

Again, the names shown here are only indicative. Then, when cloning
the body of the AROUND advice, all PROCEED statements are replaced
by a PERFORM statement that executes the moved shadow:

AOP43-FILE-ADVICE SECTION.
FILE-ADVICE.

DISPLAY "Reading ", "ORDER-FILE", ".".
PERFORM READ16-JOIN-POINT.
DISPLAY "Done reading.".

Finally, the original paragraph for the shadow is re-implemented such
that the cloned advice is invoked.

PERFORM AOP43-FILE-ADVICE.

Note that we have to prevent accidental fall-through of the control
flow from the original sections into the added sections, which are there-
fore placed at the end of the procedure division after a special section
that is also generated by the weaver:

DO-NOT-CROSS SECTION.
DO-NOT-CROSS-PARAGRAPH.

GOBACK.

As for weaving an inter-program aspect, we can easily reduce this
problem to the intra-program case by preparing each single program
as follows: the program is composed with the environment and data
divisions of the aspectual unit. This composition can be reverted if we
fail to identify any relevant join point shadow for the program. This
composition is subject to alpha conversion so that unintended name
capture is avoided.

3.9 Evaluation and critique 53

The weaving semantics, discussed so far, exhibits one scalability
problem. Consider an aspect whose pointcut applies to many different
shadows and whose advice code is of substantial size. In this (not too
unrealistic) case, the pervasive cloning approach, as described above,
will imply code explosion. If we want to reuse the advice code, as is,
we can try to declare data items for the variables so that parameters are
passed through global data items to the advice code. In the example,
we would need this data declaration:

01 VAR-NAME PIC X(31).

The original advice would then be mapped onto:

AOP-FILE-ADVICE SECTION.
FILE-ADVICE.

DISPLAY "Reading ", VAR-NAME, ".".

Finally, the join point shadow is transformed as follows:

MOVE "ORDER-FILE" TO VAR-NAME
PERFORM AOP-FILE-ADVICE
READ ORDER-FILE.

This technique does not readily generalise for bindings that cannot
be stored in Cobol data items, e.g., symbolic file names, even though
the amount of cloning can still be reduced by reusing sub-paragraphs
that do not refer to such problematic bindings. The technique is also
challenged by AROUND advice as this would require parameterisation of
procedure names. In fact, Cobol offers some related idioms. There exist
vendor extensions for data items with USAGE PROCEDURE-POINTER,
though this would make the weaver vendor-specific. There is also
the possibility of using nested subprograms instead of procedures for
join point shadows, for which the alphanumeric names can readily be
stored. Even simpler, the weaver could just assign literal codes to all
paragraphs, and then use a single ‘monster switch’ to map literal codes
to actual PERFORM statements (see [Sne96a, p. 111] for an example of
this).

3.9 Evaluation and critique

To give the reader a feel for the expressiveness of AOP+LMP in general,
and of Cobble in particular, we will now present and discuss a few

54 Enabling LMP in a legacy language: Cobol

example aspects. The first will be a logging/tracing aspect. The others
will be closer to the real uses for Cobol; i.e. file-data manipulation.

3.9.1 Logging/tracing

The obvious example, is, of course, one of logging/tracing. Figure 3.1
shows a possible implementation for such a tracing aspect. Tracing is
implemented to occur on two levels: tracing of statements (lines 7–16),
and tracing of procedures (lines 18–27).

The first advice (MY-STATEMENT-TRACING, line 7) is set up to cap-
ture all statements (line 8). It then extracts information on the kind
of statement which will be executed (VERB-selector on line 9), as well
as the location in the source file (LOCATION-selector on line 10). This
information is then used within the advice body to generate the trace
(DISPLAY statements on lines 12 and 15).

The second advice (MY-PROCEDURE-TRACING, line 18) is put up in
a similar fashion, only this time selecting all procedures (line 19). Also,
we now extract the name of this procedure (NAME-selector on line 20)
for use in the advice body.

Finally, the aspect has been defined as an inter-aspect (see sec-
tion 3.6.2) by naming it as such (through the ASPECT-ID keyword
on line 2). This will make it fit for easy reuse in a multitude of applica-
tions.

3.9.2 Handling unsafe access to file records

We will now devise an aspect that determines an error condition —
even though Cobol’s runtime system does not report any error whatso-
ever. We face the following assignment:

Any read access to a file’s record (not to be confused with access
to the file itself) is to be guarded by a test for the FILE-STATUS
field to be equal to ZERO (meaning no unhandled error occurred
previously).

An implementation of this concern can be seen in figure 3.2. It fea-
tures one advice (MY-UNSAFEREAD-CONCERN on line 9). As the sce-
nario requires from us to shadow sending data items, we capture all
statements and bind their sending data items (lines 10 and 11). Note

3.9 Evaluation and critique 55

1 IDENTIFICATION DIVISION.
ASPECT-ID. ASPECTS/TRACING.

3

PROCEDURE DIVISION.
5 DECLARATIVES.

7 MY-STATEMENT-TRACING SECTION.
USE AROUND ANY STATEMENT

9 AND BIND VAR-VERB TO VERB
AND BIND VAR-LOC TO LOCATION.

11 MY-TRACING-ADVICE.
DISPLAY "Before ", VAR-VERB,

13 " statement at ", VAR-LOC.
PROCEED.

15 DISPLAY "After ", VAR-VERB,
" statement at ", VAR-LOC.

17

MY-PROCEDURE-TRACING SECTION.
19 USE AROUND PROCEDURE

AND BIND VAR-NAME TO NAME
21 AND BIND VAR-LOC TO LOCATION.

MY-TRACING-ADVICE.
23 DISPLAY "Before procedure ", VAR-NAME,

" at ", VAR-LOC.
25 PROCEED.

DISPLAY "After procedure", VAR-NAME,
27 " at ", VAR-LOC.

29 END DECLARATIVES.

Figure 3.1: An aspect for tracing Cobol applications.

that if a statement has no sending data items, this selection will fail,
and therefore the pointcut will not match.

The pointcut must be restricted to data items whose declaration is
hosted in the file section. To this end, we use the IS FILE DATA condi-
tion (line 12; see also section 3.5.3). All that now remains is to select the
relevant file-status field to be tested in the advice. This selection starts
from the sending data item, and walks through the involved file to the

56 Enabling LMP in a legacy language: Cobol

1 IDENTIFICATION DIVISION.
ASPECT-ID. ASPECTS/UNSAFEREAD.

3 DATA DIVISION.
WORKING-STORAGE SECTION.

5 COPY "BOOKS/PANIC.DD".
PROCEDURE DIVISION.

7 DECLARATIVES.

9 MY-UNSAFEREAD-CONCERN SECTION.
USE BEFORE ANY STATEMENT

11 AND BIND VAR-ITEM TO SENDER
AND VAR-ITEM IS FILE-DATA

13 AND BIND VAR-FILE TO FILE OF VAR-ITEM
AND BIND VAR-STATUS TO FILE-STATUS

15 OF VAR-FILE
AND BIND VAR-NAME TO NAME OF VAR-FILE

17 AND BIND VAR-LOC TO LOCATION.
MY-UNSAFEREAD-ADVICE.

19 IF VAR-STATUS NOT = ZERO
INITIALIZE PANIC-FIELD

21 MOVE VAR-NAME TO PANIC-RESOURCE
MOVE "UNSAFE READ" TO PANIC-CATEGORY

23 MOVE VAR-LOC TO PANIC-LOCATION
MOVE VAR-STATUS TO PANIC-CODE

25 GO TO PANIC-STOP.

27 END DECLARATIVES.

Figure 3.2: An aspect for handling unsafe access to file records.

status field (lines 13–15). We also extract the name of the file involved
(line 16), as well as the location of the (possibly offending) statement
(line 17). Finally, the advice checks to make sure that the status field is
zero. If it is not, then the context information is placed into some data
fields, and control is handed over to a PANIC-STOP procedure.

3.10 Conclusion 57

3.9.3 Enforcing a file access policy

Let us consider an example for policy enforcement. In the previous sec-
tion, we studied an aspect that caught unsafe read access to file records.
This aspect exhibits several shortcomings. First, reading from the file
record without a prior READ statement appears to be inappropriate, but
the aspect will not spot this problem (false negative). Also, file-status
fields can be shared among different files, in which case the aspect’s
insistence on a zero status prior to record access might be unnecessar-
ily restrictive (false positive). What is needed is a waterproof file-access
policy, where each file I/O statement must be executed in accordance
to restrictions on the history of file access and record access in the given
program. In figures 3.3 and 3.4, we cover part of this problem: we only
care about the open/closed status of files. Other concerns can be han-
dled in a similar way.

The aspect consists of three concerns — OPEN statements, CLOSE
statements and other file I/O statements are treated differently. The
open concern establishes that the file is not yet open, and marks it as
open (lines 48–56). The close concern establishes that the file is still
open, and marks it as closed (lines 58–66). The concern for other state-
ments insists on the file being marked as open (lines 67–77). The imple-
mentation makes use of the IDREF-selector (see section 3.5.3), which
delivers a unique reference to the given program entity. In the specific
example, we need such unique references to distinguish the various
files in the program at hand. We can maintain these IDREFs and the
file-open status per file in a dynamic table —these will only be available
in the Cobol 2008 standard though. If we know the maximum numbers
of files beforehand (or set a limit), we can of course use a table of fixed
size.

3.10 Conclusion

This chapter has shown how AOP and LMP can be integrated in an ex-
isting legacy language, in casu Cobol. We have extended the pointcut
language of the aspectual extension in two ways. First we have given
the pointcut structures backtracking and unification semantics. This
can be done by overlaying the existing logic descriptions with this func-
tionality. Secondly, we have added a mechanism for binding data from
the pointcut matches to variables, and allowed these variables to act as

58 Enabling LMP in a legacy language: Cobol

template parameters within the advice code. This made it possible to
write generic advice which has access to the execution context. There is
nothing in either of these extensions which would prevent them from
being applied to other legacy languages. In fact, in section 5.1 we show
this with another visit to ANSI-C.

3.10 Conclusion 59

1 IDENTIFICATION DIVISION.
ASPECT-ID. ASPECTS/CHECKOPEN.

3

DATA DIVISION.
5 WORKING-STORAGE SECTION.

01 MY-IDREF PIC 9(10).
7 01 CHECKOPEN-IDX PIC 999.

01 CHECKOPEN-MAX PIC 999 VALUE ZERO.
9 01 CHECKOPEN-ENTRY OCCURS ANY TIMES

INDEXED BY CHECKOPEN-IDX.
11 05 CHECKOPEN-IDREF PIC 9(10).

05 CHECKOPEN-STATE PIC 9.
13 88 CHECKOPEN-CLOSED VALUE 0.

88 CHECKOPEN-OPEN VALUE 1.
15

PROCEDURE DIVISION.
17 DECLARATIVES.

19 MY-OPEN-CONCERN SECTION.
USE BEFORE OPEN

21 AND BIND VAR-IDREF TO IDREF OF FILE.
MY-OPEN-ADVICE.

23 MOVE VAR-IDREF TO MY-IDREF.
PERFORM GET-CHECKOPEN-IDX.

25 IF CHECKOPEN-OPEN(VAR-IDREF)
PERFORM CHECKOPEN-PANICS.

27 SET CHECKOPEN-OPEN(VAR-IDREF) TO TRUE.

29 MY-CLOSE-CONCERN SECTION.
USE BEFORE CLOSE

31 BIND VAR-IDREF TO IDREF OF FILE.
MY-CLOSE-ADVICE.

33 MOVE VAR-IDREF TO MY-IDREF.
PERFORM GET-CHECKOPEN-IDX.

35 IF CHECKOPEN-CLOSED(MY-IDREF)
PERFORM CHECKOPEN-PANICS.

37 SET CHECKOPEN-CLOSED(MY-IDREF) TO TRUE.

Figure 3.3: Policy checking for the status of files to be open (part 1).

60 Enabling LMP in a legacy language: Cobol

38 MY-ACCESS-CONCERN SECTION.
USE BEFORE

40 (READ OR REWRITE OR WRITE
OR DELETE OR START)

42 AND BIND VAR-IDREF TO IDREF OF FILE.
MY-ACCESS-ADVICE.

44 MOVE VAR-IDREF TO WORK-IDREF.
PERFORM GET-CHECKOPEN-IDX.

46 IF CHECKOPEN-CLOSED(MY-IDREF)
PERFORM CHECKOPEN-PANICS.

48 END DECLARATIVES.

50 GET-CHECKOPEN-IDX.

*> Find or allocate entry for VAR-IDREF
52 *> in dynamic table.

54 CHECKOPEN-PANICS.

*> Print error message and stop execution.

Figure 3.4: Policy checking for the status of files to be open (part 2).

Chapter 4

The transformation
framework

If you want to make an apple pie from scratch,
you must first create the universe.

CARL SAGAN

UP until now we have considered how to bring Aspect-oriented
Programming and Logic Meta-programming into legacy lan-

guages, only from the point of view of those languages. In doing
so we have described in what ways the original languages should be
modified, and in what ways the advice code should be woven. It is now
time to ask how this is achieved in practice. To this end this chapter
now presents the transformation framework which is used to do this.

4.1 XML representations of source code

The framework which will be expanded on in the following sections, is
one which was custom built in the context of the ARRIBA project (see
section 1.1.1): Yerna Lindale.1 It is governed by one major design deci-
sion which was of importance to the project: it operates at the level of
source code and uses XML for the internal representation of that code.

1Yerna Lindale: Quenya (High Elvish) for ‘old music’ — this for fans of J. R. R. Tolkien.
Download: http://users.ugent.be/∼kdschutt/yernalindale/

62 The transformation framework

Figure 4.1: The weaving process.

Put in another way: the abstract syntax tree (AST) for the source code
is made accessible in XML form. Weaving then takes place through
transformations of this XML structure. Figure 4.1 captures this idea.

What about alternatives? Weaving compiled code would imply
commitment to a specific vendor including dialect and object format.
Language-independent load-time weavers [LC03] (for .NET or other-
wise) would be challenged by the distance between bytecode and the
pointcut descriptions. Language-independent weavers at the source-
code level, such as SourceWeave.NET [JC04], would require specific
language front-ends that appeal to the underlying source-code models
(i.e., CodeDOM for SourceWeave.NET).

The use of XML for the intermediate representation of source
code is not uncommon; it is practised for ‘normal’ languages (such
as Java [Bad00] and C [ZK01]) and also for languages with a weaving
semantics. [GBNT01, SPS02] Note that the focus on XML does not mean
that it is the only viable option for these things. Rather, any format for
representing trees will do. The important advantage of using XML is
that standard APIs and tools for XML processing can be readily used.
This buys us great flexibility and opportunities for experimentation
with different technologies (this indeed was the major reason it was
chosen for use in ARRIBA).

4.2 Component integration framework

The actual weavers are implemented around the XML structure using
a number of different languages:

• A Prolog component is used for matching pointcuts to join-point
shadows. We use a specific Prolog implementation, TuProlog2,
which is fully inter-operable with Java. (For the record, there is
no proper obstacle to reconstructing the component for matching

2http://lia.deis.unibo.it/research/tuprolog/

4.2 Component integration framework 63

Figure 4.2: Component integration framework.

pointcuts in plain Java.)

• The actual weavers are implemented in Java/BeanShell3 using
XML APIs for DOM. DOM is a standardized representation of
the XML trees, together with a standardized interface for access-
ing and modifying it.

• The source code parsers and, hence, the translators to XML, are
implemented in C (using BTYACC for the Cobol parser) and Java
(ANTLR, for the C parser).

Integrating these various components, each of which may have
been written in a language of its own, is in fact quite straightforward.
The component integration framework, Lillambi4, leverages the fact
that all components are written in some language that operates on
the Java Virtual Machine, or can be accessed from it (see figure 4.2).
The main advantage is that all data being processed is in the form of
Java objects. Hence, communication between components requires no
exotic technologies.

Structurally, each component gets wrapped in an “Agent” interface:

public interface Agent {
public Object [] act (Object [] args)

throws AgentException;
}

As can be seen, each agent has one entry point: the act method. It
accepts an array of objects, which can be used to pass any number of
arguments to the agent. The agent will respond by returning a similar
array.

3http://www.beanshell.org/
4Lillambi: Quenya (High Elvish) for ‘many tongues’ — this, again, for fans of J. R. R. Tolkien.

Download: http://allserv.ugent.be/∼kdschutt/lillambi/

64 The transformation framework

Figure 4.3: Lillambi setup for Cobble.

As an aside, we invoke agents written in C using system calls. The
use of Java Native Interfaces (JNI) would, of course, provide a more
tightly integrated solution. When it becomes necessary we can easily
do this switch.

The idea is that each agent performs one specific kind of functional-
ity. Thus, we have one agent doing the parse to XML, one agent doing
the join point shadow extraction, one doing the advice extraction, one
doing the matching between join points and advice, one doing the ac-
tual weaving, one doing the transformation back to source code, and, fi-
nally, one which orchestrates all the others. Figure 4.3 shows this setup
as it is for Cobble.

Agents are associated with distinct names, and can be retrieved
through the main registry class:

public class Lillambi {
public static Agent find (String agentID)

throws AgentNotFound, AgentNotLoaded {...}
}

The result is a simple framework in which different concerns can be
tackled using the most appropriate technique, while still being able to
integrate each component into a functional whole.

4.3 Front-end of the transformation framework:
source to XML

According to Gray and Roychoudhury in [GR04], the first obstacle for
AOP support lies in getting a handle on a front-end for the relevant
legacy language (i.e. the parsers). In the context of the Yerna Lindale
framework this means parsing source code into an XML format. This

4.3 Front-end of the transformation framework: source to XML 65

display :
"DISPLAY"
(what_to_display

where_to_display? display_option*)+
("ON"? "EXCEPTION" statement+)?
("NOT" "ON"? "EXCEPTION" statement+)?
"END-DISPLAY"?;

what_to_display : identifier | literal;

Figure 4.4: LLL Grammar fragment for the DISPLAY statement

is indeed a major challenge in the case of Cobol, as has been argued
elsewhere. [LV01].

4.3.1 The front-end for Cobble

Cobble’s front-end is based on a consolidated VS Cobol II grammar5,
which was recovered from IBM’s language reference in a project by the
Vrije Universiteit Amsterdam. [LV01] Recovery of this grammar was
based on the Grammar Recovery Kit6 (GRK), which uses scripts for
transforming grammars, and the Grammar Deployment Kit7 (GDK),
which can transform grammars into usable parsers. The parser for
Cobble is based on a grammar (recovered in a similar way) for Acu-
CobolGT, a choice which was made based on the availability of the
ACUCobolGT compilers and tools.

The GRK and the GDK interoperate via an EBNF-like grammar for-
malism, LLL, from which the GDK can generate parsers based on dif-
ferent technologies. (Fig. 4.4 shows an LLL excerpt of one of our Cobol
grammars.) This in turn is transformed by the GDK into a BTYACC8

parser. The choice for BTYACC is a pragmatic one: the recovered Cobol
grammars are still ambiguous (no context-free grammars for Cobol ex-
ist), and BTYACC can cope with this ambiguousness through the use
of a backtracking mechanism.

The grammars were subsequently extended to offer concrete syn-

5http://www.cs.vu.nl/grammars/vs-cobol-ii/
6http://www.cs.vu.nl/grammarware/grk/
7http://gdk.sourceforge.net/
8http://www.siber.com/btyacc/

66 The transformation framework

tax for all AOP language elements (as opposed to AOP technologies
that use XML for join-point description, such as JBoss AOP and As-
pectWerkz). This was achieved by making use of the GRK’s transfor-
mation scripts. Figure 4.5 shows part of this script, namely the redefi-
nition of the declaratives section, and the (start of) the addition of the
aspect grammar.

One extra complication lay with Cobol’s pre-processor directives;
most especially regarding its COPY statement, which acts in a similar
way to #include directives in C. As the parser we generate cannot
deal with these directives, and as the grammars can not reasonably be
extended to cover all possible positions for them, this requires us to
pre-process Cobol sources before feeding them to the parser.

4.3.2 The front-end for Wicca

Development of the front-end for Wicca was performed along similar
lines as the previous section. A first grammar was found online9, and
was subsequently transformed to comply to the GDK’s format. As the
grammar for C is significantly more manageable than that for Cobol,
this time we opted to modify this grammar in-situ in order to add AOP
constructs. Fig. 4.6 shows part of the result of this effort. From this,
we again generated a BTYACC-based parser. However, as we could
have a context-free C grammar, there really was no need for BTYACC’s
backtracking solution. Instead, we preferred a more strict parser which
could detect errors in input more quickly and with more authority. For
this reason, Aspicere (Wicca’s follow-up, see section 5.1) discarded our
first parser in favour for one based entirely on ANTLR.10

4.3.3 XML-ification of the parse trees

In all cases, the parser is extended by a transformer that maps the ab-
stract syntax trees to XML (step 1 in Fig. 4.1). The XML representation
encodes all details of layout and comments, which is less important for
AOP, since a user is not supposed to study the woven code. Figure 4.7
illustrates this XML representation.

There are known scalability problems here, which require extra ef-
fort for compact XML representations or the use of tool-to-tool XML

9http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
10http://www.antlr.org/grammar/cgram

4.3 Front-end of the transformation framework: source to XML 67

1 % Rewriting the declaratives...
Reject declaratives;

3

% Extend the original declaratives...
5 Add

declaratives =
7 "DECLARATIVES" "."

(declarative-section | advice)+
9 "END" "DECLARATIVES" "."

;
11

% Make sure the old definition still works...
13 Add

declarative-section =
15 section-name "SECTION" segment-no? "."

declarative-sentence
17 paragraph*

;
19

% Definition for advice...
21 Add

advice =
23 section-name "SECTION" "."

advice-quantification
25 paragraph*

;
27

% The AOP version of the use statement...
29 Add

advice-quantification =
31 "USE" advice-when pointcut "."

;
33

Add
35 advice-when = "AFTER" | "BEFORE" | "AROUND"

;

Figure 4.5: Excerpt of the transformation script for adding AOP constructs to
a Cobol grammar.

68 The transformation framework

wicca_application
2 : (function_definition

| declaration
4 | advice_definition)+

;
6

advice_definition
8 : return_type

"advice" pointcut compound_statement
10 ;

12 pointcut
: and_ppc

14 | and_ppc righthand_or_ppc+
;

16 righthand_or_ppc : "||" and_ppc ;

18 and_ppc
: unary_ppc

20 | unary_ppc righthand_and_ppc+
;

22 righthand_and_ppc : "&&" unary_ppc ;

24 unary_ppc
: "!" primitive_ppc

26 | primitive_ppc
;

28

primitive_ppc
30 : on_ppc

| "(" pointcut ")"
32 ;

34 on_ppc
: "on" "(" (identifier | regexp) ")"

36 ;

Figure 4.6: LLL Grammar fragment for Wicca

4.4 Back-end: XML-based source code querying 69

<display>
<string>DISPLAY</string> <!-- -->
<what_to_display>
<literal>

<string>"HELLO WORLD!"</string>
</literal>

</what_to_display>
</display>

Figure 4.7: XML element for DISPLAY "HELLO WORLD!"

APIs without intermediate textual XML content. [Sim00] In our proto-
type, we currently neglect these issues. We can report that the ratio
concrete syntax to XML format (both in text representation) is typically
10, which is still quite tractable.

As can be seen in figure 4.7, the XML format is expressed in terms
of the grammar (see figure 4.4 for the corresponding grammar frag-
ment). As a consequence, all functionality that operates on the XML
representation does not resist grammar changes. Also, we cannot di-
rectly serve multiple language-dialects (i.e. Cobol). Existing work on
language-independent source-level weavers [JC04], and, more gener-
ally, on language implementation should be of use in this context.

The transformation to XML is complemented with an unparser
(step 3 in Fig. 4.1) which maps XML data back to concrete (Cobol,
C,. . .) syntax. The various XML element types correspond to the non-
terminals in the grammars.

While it may seem that Yerna Lindale relies heavily on GDK-ge-
nerated parsers this is not really the case. As long as we have a parser
which can generate XML dumps of its ASTs our framework will be able
to handle things.

4.4 Back-end: XML-based source code querying

The second obstacle for AOP support, put forward by Gray and Roy-
choudhury [GR04], concerns the weaving framework. At the very least,
we require a basic transformation framework, which allows us to ex-
press and apply the weaving semantics (by which we mean the elimi-
nation of Aspect-oriented constructs in terms of transformations). The

70 The transformation framework

function_definition_name(Def, Name) :-
2 child1_named(Def, ’declarator’, Decl),

child1_named(Decl, ’direct_declarator’, DD1),
4 child1_named(DD1, ’direct_declarator’, DD2),

child1_named(DD2, ’identifier’, Identifier),
6 child1_named(Identifier, ’string’, String),

child1(String, Text),
8 node_value(Text, Name),

!.
10

function_call_name(Call, Name) :-
12 child1_named(Call, ’postfix_expression’, PF),

child1_named(PF, ’primary_expression’, Prim),
14 child1_named(Prim, ’identifier’, Identifier),

child1_named(Identifier, ’string’, String),
16 child1(String, Text),

node_value(Text, Name),
18 !.

Figure 4.8: Example of handwritten XML queries.

weavers in Yerna Lindale process XML via DOM, and generate new
XML (step 2 in Fig. 4.1). This section will focus on the task of querying
the structure.

4.4.1 Querying XML using PAL

The first incarnation of the weaving framework was driven entirely
from Prolog. This meant that we had to extract information out of the
XML through Prolog predicates. Writing this navigation and extrac-
tion code by hand proved labour intensive and error prone. Figure 4.8
shows an example of this. It features two queries, the first for finding a
name of a procedure definition (that is, the name of the defined proce-
dure), the second for finding the name of a procedure call (that is, the
name of the procedure being called).

To make XML queries and the extraction of data from XML easier,
we developed the PAL format. A pal-file is in essence nothing more
than an lll grammar which has been annotated with Prolog code (hence:
PAL, or Prolog-Annotated LLL). There is a tool, “pal to pl”, which takes

4.4 Back-end: XML-based source code querying 71

#> wicca.lll
2 #@ advice

#- cutdown
4 #: wicca_application

6 wicca_application {= Advice}
: <Collected:

8 (function_definition
| declaration

10 | advice_definition)+
>

12 { no_empties(Collected, Advice) }
;

14

advice_definition {= [PC, RVal, Body, This]}
16 : <RVal: declaration_specifiers?>

"advice" <PC: pointcut>
18 <Body: compound_statement>

;
20

pointcut {= Collected }
22 : <Collected: and_ppc>

| <Left: and_ppc> <Right: righthand_or_ppc+>
24 { Collected = [or, Left, Right] }

;
26

righthand_or_ppc {= PPC}
28 : "||" <PPC: and_ppc> ;

30 % and_ppc, unary_ppc and primitive_ppc...

32 on_ppc {= [on, Pointcut] }
: "on" "("

34 <Pointcut: (identifier | regexp)>
")"

36 ;

Figure 4.9: Fragment of the PAL description for extracting advices.

72 The transformation framework

pal-files, and outputs the equivalent Prolog navigation and extraction
code. Put differently, PAL applies a technique of attribute grammars
(similar to Yacc) to facilitate extraction of data.

An example pal-file (used for Wicca) is shown in figure 4.9. Lines 6
through 36 make up the annotated grammar (compare this to the orig-
inal grammar in figure 4.6). These are preceded by some directives.

Line 1 names the reference grammar which the pal-file is tied to.
This enables the tool to find any grammar rules which have not been
repeated in the pal-file, thus allowing the annotations-writer to focus
his/her work on the task at hand.

As we want to extract different kinds of information (e.g. join point
shadows, advice definitions, function definitions,. . .) from the same
structure using the same grammar, we need a way to disambiguate
these different tasks. This is done by naming this task in an annota-
tion, which is what happens on line 2.

Line 3 lets the tool know that the generated prolog code should only
do matching on children if the value which that child returns is bound
to a name (as Pointcut is on line 34). In addition, cutdown will not
generate predicates for grammar rules which are not active (i.e. whose
return value is never bound). This helps minimize the size of the gen-
erated prolog code, as well as the time spent extracting information.
Of course, to know which grammar rules are active we need to know
which rules are used by the programmer in the first place. This is what
the starter directive on line 4 is for.

Note that not doing a cutdown has its uses: it will match the full
structure of the DOM tree against the grammar. This allows one to ver-
ify whether or not the DOM tree is correct with respect to the associated
grammar (similar to a DTD verification), which can prevent otherwise
mysterious errors.

The directives are then followed by the annotated grammar. To
show what happens here, let us start by taking a closer look at the def-
inition for righthand or ppc on line 27. Here it is again:

righthand_or_ppc {= PPC}
: "||" <PPC: and_ppc> ;

The first line declares that the value returned when matching this struc-
ture is the value associated with PPC. The second line shows that this
variable is tied to and ppc. The net effect is this: when matching the
structure for righthand or ppc, the result obtained from matching

4.4 Back-end: XML-based source code querying 73

and ppc is tied to the PPC variable, which is then returned as the re-
sult of the match.

The basic values which can be passed along are either references to
XML nodes which have been matched (this is the default return value
for grammar rules which were not annotated), or Prolog structures. For
an example of the latter, see the definition of on ppc (line 32), which
returns:

[on, Pointcut]

This is a basic Prolog list. The first element is simply the symbol ‘on’
(used here as a tag). The second element captures the pattern from the
binding named Pointcut.

Similarly we can see that pointcut (line 21) builds a list repre-
senting the disjunctions in a pointcut. This is further composed in
advice definition (line 15) in a structure representing the full ad-
vice. E.g., given a source advice as in:

int advice on (.*) && ! on (printf) {
/* body */

}

This would have advice definition return (with R, B and A as
placeholders for references to XML nodes):

[[and,[on, ’.*’],[not,[on,’printf’]]], R, B, A]

Figure 4.10 shows a fragment11 of what gets generated behind the
scenes to make all this work. It features the Prolog translations of
matching the wicca application grammar rule (lines 1–9, and sub-
phrase on lines 28–37), as well as the advice definition grammar
rule (lines 11–26).

Given all this, matching the DOM tree and extracting information
becomes straightforward. Starting from a reference to the root node of
the DOM tree, we can now find all advices, simply by writing:

match_term(
advice, %> name of the set of annotations
wicca_application, %> grammar rule to match
Root, %> node which is to be matched
Advices %> the structure which gets built

)

11The fragment has been edited to make it fit into the available space.

74 The transformation framework

1 % Matching ’wicca_application’...
match_term(advice, wicca_application,

3 This, Advice) :-
xml_name(This, ’wicca_application’),

5 pal_first_element(This, PAL_1ST),
match_term(advice, phrase1,

7 plus, PAL_1ST, none, C0),
Collected = C0,

9 no_empties(Collected, Advice), !.

11 % Matching ’advice_definition’...
match_term(advice, advice_definition,

13 This, [PC, RVal, Body, This]) :-
xml_name(This, ’advice_definition’),

15 pal_first_element(This, PAL_1ST),
match_term(advice, declaration_specifiers,

17 opt, PAL_1ST, PAL_NXT_0, C0),
RVal = C0,

19 scan_literal(advice, ’advice’,
once, PAL_NXT_0, PAL_NXT_1),

21 match_term(advice, pointcut,
once, PAL_NXT_1, PAL_NXT_2, C2),

23 PC = C2,
match_term(advice, compound_statement,

25 once, PAL_NXT_2, none, C3),
Body = C3, !.

27

% Matching phrases nested in rules...
29 match_term(advice, phrase1,

PAL_1ST, PAL_COMPOSITE) :-
31 (match_term(advice, function_definition,

once, PAL_1ST, PAL_NXT, C0)
33 ; match_term(advice, declaration,

once, PAL_1ST, PAL_NXT, C0)
35 ; match_term(advice, advice_definition,

once, PAL_1ST, PAL_NXT, C0)
37), PAL_COMPOSITE = C0, !.

Figure 4.10: Excerpt of Prolog code generated from figure 4.9.

4.5 Back-end: XML-based source code weaving 75

If the match can be made, then Advices will be unified with a list of all
advices in the DOM tree, each represented through a structure as the
one above.

4.4.2 Querying XML using XPath

When working with XML structures we can make use of the technolo-
gies and tools surrounding them. One of these is XPath. Using XPath,
which can be used to locate pointcuts, advice and potential join-point
shadows in a DOM tree. For instance, to find all Cobol paragraphs in a
DOM tree, the following query suffices:

//paragraph

This selects all XML nodes named “paragraph”, anywhere in the tree
(“//” means: at this level or any sublevel in the tree). The result of
such queries will always be a set of XML nodes. To move from these
to a structured representation of, for instance, pointcut descriptions (as
was done in the previous subsection), the user still has to extract this
data manually from those nodes (e.g. using getNodeValue calls in
Java). Hence, a tool such as PAL is still of value. In fact, this is almost
how Cobble and Wicca are implemented. But rather than using a full-
fledged XPath engine, it uses the DOM API to perform the above query:

NodeList list
= document.getElementsByTagName("paragraph");

The result set is subsequently iterated over, and each item gets matched,
and its data extracted, by using the PAL rules.

4.5 Back-end: XML-based source code weaving

In Yerna Lindale, weaving source code entails the transformation of
DOM structures. This means that a lot of code gets written which gen-
erates such structures. To do this all by hand is tedious and error-prone.
We therefore opted for bringing in a tool to aid the programmer. We de-
fined a special syntax which allows the programmer to write down new
DOM structures quickly and concisely, within the hosting programming
language12 (sofar: Prolog and Java are supported). An example of this

12XJ is a more advanced example of the same principle, but one which was not available at the
time of the construction of our framework. http://www.alphaworks.ibm.com/tech/xj

76 The transformation framework

<< @Document | function_definition @Func :
2 @DeclSpec

declarator (
4 direct_declarator (

direct_declarator (
6 identifier (

@FunctionNameNode
8)

)
10 "("

@ParTypeList
12 ")"

)
14)

@AdviceBody
16 >>

Figure 4.11: Example of a DOM annotation.

can be seen in figure 4.11.
This notation is called a DOM annotation. The start and end of such

a structure are indicated by double “fish-grates” (lines 1 and 16). The
first line identifies the root node which gets built. In this case, we are
constructing a function definition. This root node will be bound
to the Func variable, which is a variable defined in the hosting lan-
guage. In order to be able to create anything in DOM, we need access
to the document. This is the very first parameter, Document, which can
be seen in the example.

After these preliminaries, following the colon on line 1, comes a
definition of the structure as it should be built. The syntax here distin-
guishes between two types: node-names, and actual nodes (indicated
with a leading “@”). The first declare what the name of a new node
must be. The latter are references to existing nodes, and are used to
place such nodes in the new structure.

Parent-child relationships are indicated through parentheses. That
is, if a node has children, then these children are defined enclosed in
braces and immediately follow the parent node:

parent (child_node other_child_node)

4.6 Supported platforms 77

The example adds extra visibility to this by also indenting child nodes.
Barring these braces, a sibling relationship is assumed:

node sibling_node

There is one extra piece of syntactic sugar. As can be seen in the
example on lines 10 and 12, string literals may also be included. These
will be transformed into textual data for the DOM structure.

The obvious alternative to these DOM annotations would be the use
of XSLT. This however has the disadvantage of being less closely inte-
grated with the language, which makes it therefore harder to embed
into the transformation algorithms. It would also entail duplication of
a lot of data, as XSLT does not modify the original DOM structure, but
instead generates a new one.

4.6 Supported platforms

As the core of Yerna Lindale relies on Java technology, the transforma-
tion framework is platform-independent to a large degree. Whether
or not it can be made to run on a certain system depends mostly on
whether the tools Yerna Lindale relies on (the Grammar Deployment
Kit, BTYACC, Bash, etc.) are available, or can be made available, on
that system.

Sofar, the framework has been tested on several distributions of
Linux (among them Redhat, Mandrake, Ubuntu), and there is no tech-
nical reason why it shouldn’t work on others. We have also got the
framework up and running on Mac OS X machines. Support for Win-
dows has not been tested yet, but given environments such as Cygwin
this too should work.

The Cobol parsers were tested against a large portfolio of industrial
Fujitsu-Siemens 2000 Cobol code (959 KLOC in 35MB of code, 21.8MB
of which is dedicated to copy files), as well as against the examples pro-
vided by AcuCobol in their distribution. The C parser has been tested
against several applications, one of which was an industrial legacy sys-
tem (453 KLOC).

78 The transformation framework

4.7 Applying the framework to other languages

We have seen that the transformation framework is built around XML
representations of the abstract syntax trees (AST) of source code. The
framework itself can then be built out of different components, using
different technologies, which may then be integrated through a special
interface (see section 4.2).

In order to apply this framework to another language (i.e. a lan-
guage which is not already supported), in essence al that’s needed is a
source code parser which can dump the ASTs to XML. The format for
this XML tree is very straightforward:

• XML nodes represent the grammar rules as which its children
have been classified. I.e. if a token is name which is part of a
function definition, then that token will be a child of a “name”
node, which in turn is a child of a “function-definition” node.

• Whitespace is (optionally) encoded in XML comments, with new-
lines in whitespace represented as “@n”.

This parser can then be wrapped as an agent (see section 4.2), after
which it is accessible from other agents/components.

The addition of AOP and LMP requires some extra effort, of course.
First one must define the join points of interest, and based on those
construct a pointcut language and its semantics. (Chapters 2 and 3 did
exactly this for ANSI-C and Cobol). From this one must distill a gram-
mar, and turn it into a parser which generates XML (as above). Once
this step is completed it can be integrated into the framework. From
then on the tools and techniques presented in this chapter can be ap-
plied to query and transform (and thus weave) source code in the new
language.

Reuse of existing weavers for weaving code in new languages is
only possible if the XML format for source code of the new language
matches that of another language. As this format is strongly tied to
the grammars of those languages, this is unlikely to be the case. This
might be solved by defining a common abstraction between languages,
and have the weavers work on this abstraction, but the question is how
arbitrary transformations of the abstracted representations should map
back to equivalent transformations of the concrete representations. A
lot of important details which are required to generate correct source

4.8 Conclusion 79

code have to be left out at the abstracted level, and as such are lost
when performing transformations. It is unclear as to how this detail
should re-emerge.

4.8 Conclusion

This chapter presented a transformation framework which has success-
fully been applied to enable AOP and LMP in two very different pro-
gramming languages: C and Cobol. As such it has proven its usability
across a wider range of languages. The framework is based around
XML DOM-tree representations of the abstract syntax trees of source
code, and the transformation thereof. The advantage of this approach is
that it may be integrated with a lot of different tools which are capable
of working with XML, something which can be seen in its application
to C and Cobol. A framework based on XML is, of course, not a neces-
sary requirement for enabling AOP and LMP in legacy languages. Any
tool which is capable of transforming source code may be used. The
added advantage of the framework is that it is flexible enough to work
on many different kinds of languages.

80 The transformation framework

Chapter 5

Validation of AOP and LMP
for legacy software

Knowledge is of no value unless you put it into practice.

HEBER J.GRANT

WE have seen how Aspect-oriented Programming and Logic Meta-
programming can be embedded in legacy languages, both con-

ceptually and practically. In this chapter we now delve further into
what these tools can do for us. We show how AOP and LMP can be
fully enabled in ANSI-C. We present how the transformation frame-
work was used for source code visualisations. We also discuss the
application of AOP and LMP to several, very different problems with
legacy software. We present the problems themselves, and explore how
we might code our aspects, using the languages discussed in earlier
chapters.

5.1 Aspicere: aspectual extension for ANSI-C

Aspicere1 is a spin-off2 of the work on aspectual extensions for C (chap-
ter 2), integrating the meta-programming approach to pointcuts seen in
the work on aspectual extensions for Cobol (chapter 3). As such it acts

1Download: http://users.ugent.be/∼badams/aspicere/
2Work done by Bram Adams, GH-SEL, INTEC, UGent.

82 Validation of AOP and LMP for legacy software

1 any advice on (.*) && ! on (printf) {
any r = 0;

3 printf ("before %s\n", this_joinpoint()->name);
r = proceed ();

5 printf ("after %s\n", this_joinpoint()->name);
return r;

7 }

Figure 5.1: Generic tracing advice, as we would like it.

1 Type around tracing (Type) on (Jp):
call (Jp, ".*") && ! call (Jp, "printf")

3 && type (Jp, Type)
&& ! str_matches ("void", Type)

5 {
Type r = 0;

7 printf ("before %s\n", Jp->name);
r = proceed ();

9 printf ("after %s\n", Jp->name);
return r;

11 }

Figure 5.2: Generic tracing advice, as Aspicere allows it.

as another validation that the AOP+LMP concept can be embedded in
legacy languages.

5.1.1 Generic tracing advice

As was discussed in section 2.9, the first incarnation of aspects in C,
Wicca, had some important limitations. A generic tracing advice, for
instance, was not attainable. Consider again the code in figure 5.1.
The any type shown in this example was wishful thinking. C does
not know it, and Wicca provided no auto-casting feature to support
it. However, through the use of LMP in the pointcut-mechanism, As-
picere will allow us to write generic advice, even without the need for
an auto-casting feature. Figure 5.2 shows how we can achieve this.

As can be seen, the fictitious any type has been replaced with a

5.1 Aspicere: aspectual extension for ANSI-C 83

kind of template parameter, Type. This variable is declared as a template
parameter in the advice parameter list on line 1. Its value is extracted
from within the pointcut (line 3), in a similar way as bindings in Cobble
(section 3.5.3). The result is that whenever this advice is matched to a
join point, it will get bound to the correct type.

It is important to note the type restriction on line 4. This is needed
because the advice, as it is written here, can not be instantiated for void
types: the variable definition on line 6 would not make sense. Hence,
we need a second advice for void procedures. This limitation is caused
by how C treats the void type, not by how Aspicere integrates its LMP
mechanism.

Apart from the extended pointcut mechanism, and its associated
propagation of bindings, Aspicere is very similar to Wicca. There is a
small difference in the declaration of advices, where Aspicere opts for
named advices. There is also the choice to explicitly declare advice pa-
rameters for use within the advice (i.e. only the values for these param-
eters are made accessible from within the advice). This small cosmetic
difference, however, hides a much greater flexibility and expressive-
ness. The following subsection will try to showcase this.

5.1.2 Generic parameter checking (ASML)

The following discussion is based on work done by Bruntink, Van
Deursen and Tourwé, in the context of ASML, the world market leader
in lithography systems. We will not repeat all details here, apart from
those relevant to our discussion. For more details, we refer the reader
to [BvDT04].

The context, put briefly, is this: the code produced by ASML has,
among other things, three programming conventions tangled into it:
error handling, parameter tracing and parameter checking. As the lan-
guage they use, C, does not provide support for crosscutting concerns,
ASML resorts to an idiomatic approach for implementing these con-
cerns. I.e., programmers have to follow strict guidelines, and add these
concerns manually.

Code for the parameter checking concern, which is what we will
focus on for the remainder of this section, looks as follows:

1 if (queue == (CC_queue *) NULL) {
r = CC_PARAMETER_ERR;

3 CC_LOG (r, 0,

84 Validation of AOP and LMP for legacy software

("%s: Input parameter error (NULL)",
5 func_name));
}

This checks whether queue, an input parameter, has been properly ini-
tialized. If not, an error code is set, and the error is logged.

Aside from input parameters, there are also output parameters,
which are checked in the exact same way. The code differs only in the
string that gets logged.

Additionally, there is a special class of output parameters, output
pointer parameters, which are used as pointers to locations where the
output should be placed. A check needs to be made that these loca-
tions contain no other data, or memory leaks may occur. The code for
this looks like:

if (*item_data != (void *) NULL) {
2 r = CC_PARAMETER_ERR;

CC_LOG (r, 0,
4 ("%s: may already have data (!NULL).",

func_name));
6 }

This is the same code as with other parameters, apart from the need of
an extra dereference (line 1).

Bruntink et al. then go on to show how this concern may be encoded
using an AOP approach, using AspectC (see 2.2.1). They are however
hampered by the inability to generically handle parameters and their
types, which forces them to write one advice per possible variation of
the parameter list. E.g.:

pointcut pc50 (void ** x) :
2 args (x) &&

(execution (* CC_queue_data (..)) ||
4 execution (* CC_ReadMsg (..)) ||

execution (* queue_extract (..)) ||
6 execution (* CC_iterator_peek (..)));

8 before (void ** x) : pc50 (x) {
if (*x != (void *) NULL) {

10 r = CC_PARAMETER_ERR;
CC_LOG (r, 0,

12 ("%s: may already have data (!NULL).",

5.1 Aspicere: aspectual extension for ANSI-C 85

func_name));
14 }
}

This captures execution of four different procedures (lines 3–6), each
of which expects one argument of type int (line 2). Similar advices
must be written for all possible variations of parameter lists. For the
component they experimented on, this leaves them with 39 advices to
cover the checking of all output pointer parameters. Again, this is due to
the inability of quantifying over the structure of parameter lists and the
types thereof. (Note that this is a problem for ANSI-C. Other languages
may not necessarily suffer from this.)

Aspicere, with its LMP approach embedded into it, can do better.
By quantifying the pointcut over all parameters at a join point, along
with extracting its type information, we can cut the number further
down to two. Here is the main one:

1 ProcType around leak_check
(ProcType, ProcName, DerefType, Arg)

3 on (Jp):
call (Jp, ProcName, Arguments)

5 && member (Arg, Arguments)
&& is_outputpointer (Arg)

7 && type (Arg, ArgType)
&& dereferenced (ArgType, DerefType)

9 && type (Jp, ProcType)
&& ! str_matches ("void", ProcType)

11 {
if (* Arg != (DerefType) NULL) {

13 r = CC_PARAMETER_ERR;
CC_LOG (r, 0,

15 ("%s: may already have data (!NULL).",
ProcName));

17 }
return proceed ();

19 }

The key to this advice can be found on lines 4 and 5. Line 4 captures
all arguments a call may have, in Arguments. Line 5 then selects one
of these, through the Prolog member/2 predicate, and binds it to Arg.
Note that member/2 is ambiguous, and may have multiple solutions.
According to the matching semantics as described in section 3.7.2, the

86 Validation of AOP and LMP for legacy software

pointcut will match all possibilities in turn, and the advice will be in-
stantiated for each of these solutions.

Line 6 asserts that the argument is an output pointer. This assertion
can be done in one of two ways:

• Best-case scenario: checking whether a parameter is an output
pointer parameter can be done by analysing (the structure of) the
code. We could then encode this analysis into a rule, which would
then be invoked during the matching of the join point.

• Worst-case scenario: the check relies on domain information,
which is locked up in the heads of the developers. This means
that we have to manually specify3 one fact for each output pointer
parameter which exists. These facts can then be used during the
join point matching. The added advantage is that the previously
implicit domain knowledge has now been made explicit, and is
directly available for practical use by anyone.

Note that the test is made on the original argument and not on its type;
ie. on Arg rather than on ArgType. This is needed because the analysis
which may have to take place will require knowledge about the original
argument; the type alone will most likely be insufficient.

The remainder of the pointcut is there to capture the right context
information (mostly type information) for use in the advice. E.g. the
type cast on line 12, and the procedure name on line 16.

As we said, two advices are necessary. The second one is needed to
handle void procedures, for reasons discussed in the previous subsec-
tion.

The above advice provides only a basic example of what can be
achieved using the technique of LMP embedded in AOP. In [AT05],
Adams and Tourwé delve deeper into the parameter checking concern,
making use of Aspicere to, among other things, prevent spurious pa-
rameter checks.

5.1.3 Conclusion

We have shown that AOP and LMP can be fully integrated into ANSI-
C, and that, in doing so, we are able to write down truly generic as-
pects. We have argued this point by discussing the features of Aspicere

3The use of annotations might be of value here.

5.2 Runya: source code visualisation 87

against a real-life industrial case, and have demonstrated how LMP
helped make up for the lack of reflection in ANSI-C.

5.2 Runya: source code visualisation

As we have seen in section 1.1.1, a good understanding of the legacy
applications is crucial to their further evolution. Yet, as such knowl-
edge is missing, and as documentation is most often (at best) not up
to date, reverse engineering is necessary. Runya4 is an experiment5 in
the visualisation of legacy source code, and this in order to help reverse
engineering efforts.

Inspiration for this project came from Rusty Russell’s “Linux Ker-
nel Graphing Project” (LKGP6), which processes the Linux kernel code,
and outputs a visualisation thereof, down to the control flow within the
different procedures. The nice thing about such a visualisation is that
it makes it much easier for a human to grasp the scope and structure of
the underlying source code. It provides a useful birds-eye view in one
image. When it comes to grasping the structure of legacy source code,
which often has but very little up-to-date documentation, extracting
such a global picture from the sources could provide a useful starting
point. Hence this experiment.

5.2.1 Approach

The tool developed for the LKGP project, however, was not directly
useful to us. For one, it was targeted at the Linux kernel code, making
use of its style-guide. For another, its visualisation lacked flexibility for
displaying other projects. So we set off building a new tool, starting
from the XML representations of source code which we could already
generate with ease (see chapter 4).

The approach used for the tool is very simple. We start from the
XML structures, and query these to extract the necessary information
(control flow, procedure size, etc.). This is then put into a new (scene-
graph) structure, which can be readily displayed using Garp, a custom
derivative of the “G graphics library7”.

4Runya: Quenya (High Elvish) for ‘footprint’ — this for fans of J. R. R. Tolkien.
5Prototype implemented by Stijn Van Wonterghem, GH-SEL, INTEC, UGent.
6http://fcgp.sourceforge.net/lgp/index.html
7http://geosoft.no/graphics/

88 Validation of AOP and LMP for legacy software

Figure 5.3: Map of Pico v3.

5.2 Runya: source code visualisation 89

Figure 5.4: Example of mapped control flow.

5.2.2 Results

The results that we can get from the visualisation tool can be seen in fig-
ure 5.3. This shows a visualisation of the source code for the interpreter
of Pico8, a programming language developed at the Vrije Universiteit
Brussel. Each vertical bar represents one source file. Each box within
a source file represents a procedure definition. The size of each proce-
dure box is determined by the number of statements in that procedure.

Figure 5.4 shows an example visualisation of such a procedure. As
can be seen here, the control flow is charted within this box. Execution
starts on the left hand side, and flows to the right. Branch points indi-
cate branch points in the control flow, for instance due to conditional
statements. Circles indicate repetition of the subpath, for instance due
to for-loops. From this we can already visualise the complexity of pro-
cedures, as well as make an assessment of which procedures/modules
are most important. We have also been able to use it to identify basic
code duplication, which presents similar visualisations (see figure 5.5
as an example).

Future plans for this tool include the visualisation of join points and
pointcuts, as well as the addition of more complex metrics and layouts.

8http://pico.vub.ac.be/

90 Validation of AOP and LMP for legacy software

Figure 5.5: Possible code duplication.

5.3 Aspect-enabled dynamic analysis 91

The latter is intended to find visualisations which can be used to convey
more information while maximising cognition.

5.2.3 Conclusion

The implementation of Runya has acted as another validation of the
flexibility of the transformation framework as described in chapter 4.
The choice for an XML representation of abstract syntax trees in this
framework is what made the easy development and integration of
Runya possible. In this it shows how the framework may be extended
for purposes other than aspect weaving.

5.3 Aspect-enabled dynamic analysis

As a first example of what Aspect-oriented Programming and Logic
Meta-programming makes possible, we will now describe how it
helped to enable dynamic analyses in a real-life case study. This study
was performed in cooperation with the LORE9 research lab from the
University of Antwerp.

The focus of this section will lie on the support we can get from
AOP and LMP, not on the dynamic analyses themselves. More informa-
tion on the case study in its entirety can be found in [ZAD+06, ZAD05,
ADZ05].

5.3.1 The environment

The industrial partner that we cooperated with in the context of this
research experiment is Kava10. Kava is a non-profit organization that
groups over a thousand Flemish pharmacists. While originally safe-
guarding the interests of the pharmaceutical profession, it has evolved
into a full fledged service-oriented provider. Among the services they
offer is a tarification service —determining the price of medication
based on the patient’s medical insurance. As such they act as a finan-
cial and administrative go-between between the pharmacists and the
national healthcare insurance institutions.

9Lab On REengineering (http://www.lore.ua.ac.be/)
10KAVA, Koninklijke ApothekersVereniging van Antwerpen, http://www.kava.be/. See

also section 1.1.1.

92 Validation of AOP and LMP for legacy software

Kava was among the first to realize the need for an automated tari-
fication process, and have taken it on themselves to deliver this to their
members. Some 10 years ago, they developed a suite of applications
written in non-ANSI-C for this purpose. Due to successive healthcare
regulation changes and forthcoming changes in the dataflow, they feel
the necessity to reengineer their applications.

Kava has ported their application portfolio to a fully ANSI-C com-
pliant version, running on Linux. Over the course of this migration
effort it was noted that documentation of the application was out-
dated. This provided us with the perfect opportunity to undertake
a re-documentation experiment, thus tackling the pitfall described in
section 1.1.5.

5.3.2 The case study

Recently a number of novel dynamic analysis techniques that deal
with program comprehension have been developed [GD05, HLBAL05,
ZD04, ZCDP05]. Most of these techniques have been explored in the
context of Object Orientation, but we considered it worthwhile to ver-
ify whether these techniques could be “transplanted” to the context of
procedural systems.

As a scenario to test our dynamic analysis, the developers at Kava
referred to the so-called “TDFS”11 application. This is a batch-like ap-
plication, which produces a digital and detailed invoice of all prescrip-
tions for the healthcare insurance institutions. It is the end-stage of
a monthly control- and tariffing process, and also acts as a control-
procedure as the results are matched against the aggregate data that is
collected earlier in the process. As such, it is used as a final check to see
whether adaptations in the system have any unforeseen consequences
—a form of regression testing.

5.3.3 Our approach

To analyse the dynamic behaviour of the TDFS application, a detailed
trace of some representative runs of the system was required. To this
end we applied a simple tracing aspect for instrumentation of the code.

11TDFS (Dutch): TariferingsDienst Factuur en Statistiek

5.3 Aspect-enabled dynamic analysis 93

Figure 5.6, shows part12 of this aspect13, written in Aspicere14.
The idea is to trace calls to all procedures except for the printf-

and scanf-families (line 4), and stream tracing information into a file
(fp, declared on line 1) before and after each call (lines 10 and 17).
Opening and closing of the file pointer on line 1 is achieved by advising
the main-procedure (line 24).

In figure 5.6, LMP is used to parameterize the return type of the
advised procedure calls: Type is bound on line 5, and subsequently
used in the advice’s signature (line 3) as well as in its bodies (line 7).
This way, the tracing advice is not limited to one particular type of
procedures. The information needed for the trace is accessed through a
thisJoinPoint construct, similar to those in AspectJ-like languages,
which is really a join point-specific binding (Jp on lines 3 and 23) and
used as such (lines 11 and 18).

Applied to reverse-engineering contexts, using AOP, LMP and a
template mechanism allows non-invasive and intuitive extraction of
knowledge hidden inside legacy systems, without prior investigation
or exploration of the source code. One does not first have to extract
all available types and duplicate the tracing advice for each of them, as
was experienced in [BvDT04].

5.3.4 Interference from the build system

When applying this to the Kava case study, we encountered one major
obstacle: the build system. Aspicere’s weaver transforms base code
and aspects into woven C code, and as such acts as a pre-processor to a
normal C compiler. Because the original makefile hierarchy drives the
production of object files, libraries and executables, using a myriad of
other tools and pre-processors (e.g. embedded SQL), and all of these
potentially process advised input, it turns out that Aspicere’s weaver
crosscuts the makefile system.

To overcome this, we needed to find out what is produced at ev-
ery stage of the build and unravel accompanying linker dependencies.

12We do not show advice for void procedures, as these are equivalent to the advices shown,
less the need for a temporary variable to hold the return value.

13Note that the pointcut uses call(Jp,"(̂?!.*printf$|.*scanf$).*$"), rather than
!call(Jp,"printf") and !call(Jp,"scanf"). This is because Aspicere does not really
support the second version, as it will only bind Jp through the call predicate. It is not bound
by the on (Jp), and so the negation of calls would fail.

14Aspicere was dicussed in section 5.1.

94 Validation of AOP and LMP for legacy software

1 static FILE* fp;

3 Type around tracing (Type) on (Jp):
call(Jp,"ˆ(?!.*printf$|.*scanf$).*$")

5 && type(Jp,Type) && !is_void(Type)
{

7 Type i;

9 /* call sequence */
fprintf (fp, "before (%s in %s)\n",

11 Jp->functionName, Jp->fileName);

13 /* continue normal control flow */
i = proceed ();

15

/* return sequence */
17 fprintf (fp, "after (%s in %s)\n",

Jp->functionName, Jp->fileName);
19

return i;
21 }

23 int around cleanup () on (Jp):
execution(Jp,"main")

25 {
int i;

27

/* open logfile */
29 fp = fopen ("mylog.txt", "a");

31 /* continue with main program */
i = proceed ();

33

/* close logfile */
35 fclose (fp);

37 return i;
}

Figure 5.6: Part of the tracing aspect for enabling dynamic analyses.

5.3 Aspect-enabled dynamic analysis 95

$(CC) -c -o file.o file.c

Figure 5.7: Original makefile.

$(CC) -E -o tempfile.c file.c
cp tempfile.c file.c
aspicere -i file.c -o file.c

-aspects aspects.lst
$(CC) -c -o file.o file.c

Figure 5.8: Adapted makefile.

.ec.o:
$(ESQL) -c $*.ec
rm -f @$*.c

Figure 5.9: Original esql makefile.

.ec.o:
$(ESQL) -e $*.ec
chmod 777 *
cp ‘ectoc.sh $*.ec‘ $*.ec
$(ESQL) -nup $*.ec $(C_INCLUDE)
chmod 777 *
cp ‘ectoicp.sh $*.ec‘ $*.ec
aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ \
-aspects aspects.lst

$(CC) -c ‘ectoc.sh $*.ec‘
rm -f @$*.c

Figure 5.10: Adapted esql makefile.

This requires an inventory of the included tools, and their interplay.
For each of these we must then find a way to plug in the weaver. More
specifically, Aspicere’s weaver needs one (pre-processed) input at a
time and its output will be another tool’s input. Additionally, the nor-
mal weaving habit is to transform aspects into genuine C compilation
units by converting the advices into (multiple) procedures. This en-
ables the normal C visibility rules in a natural way, i.e. the visibility
of fp on figure 5.6 is tied to the module containing the aspect. To ac-
complish this modularisation, we need to link this single transformed
aspect into each advised application.

In case all makefiles are automatically generated using, for instance,
automake, one could try to replace (i.e. alias) the tools in use by wrap-
per scripts which invoke the weaving process prior to calling the origi-
nal tool. The problem here is that this is an all-or-nothing approach. It
may be that in some cases weaving is needed (e.g. a direct call to gcc,
as in figures 5.7 and 5.8), and in others not (e.g. when gcc is called
from within esql, as in figures 5.9 and 5.10). Making the replacement
smart enough to know when to do what is not a trivial task.

In our case, many of the 267 makefiles were indeed generated. Still,
some were manually adapted afterwards, while others were written

96 Validation of AOP and LMP for legacy software

Module Value
e tdfs mut1.c 0.81
tdfs mut1 form.c 0.45
tdfs bord.c 0.40
tdfs mut2.c 0.16
tools.c 0.16
io.c 0.13
csrout.c 0.03
tarpargeg.c 0
csroutines.c 0
UW strncpy.c 0
td.ec 0
cache.c 0
decfties.c 0
weglf.c 0
get request.c 0

Figure 5.11: Results of the webmining technique.

from scratch. Due to issues with the embedded SQL pre-processor and
the irregular presence of certain environment variables, we wrote some
scripts to directly alter the makefiles and “weave in” the right oper-
ations on Aspicere’s weaver instead of aliasing the tools themselves.
However, detecting where exactly our tool failed (due to the heteroge-
neously structured makefiles) and making the necessary manual adap-
tations still took several hours.

Without intimate knowledge of the build system, it was hard to tell
whether source files are first compiled before linking all applications, or
(more likely) whether all applications are compiled and linked one after
the other. As such, our weaving approach was not viable. As an ad hoc
solution, we opted to move the transformed advice into the advised
base modules themselves. This meant that we had to declare the file
pointer fp as a local variable of the tracing advice (see figure 5.12,
line 8), resulting in huge run-time overhead due to repeated opening
and closing of the file.

5.3 Aspect-enabled dynamic analysis 97

Type around tracing (Type) on (Jp):
2 call(Jp,"ˆ(?!.*printf$|.*scanf$).*$")

&& type(Jp,Type) && !is_void(Type)
4 {

Type i;
6

/* open logfile */
8 FILE* fp = fopen ("mylog.txt", "a");

10 /* call sequence */
fprintf (fp, "before (%s in %s)\n",

12 Jp->functionName, Jp->fileName);
fflush (fp);

14

/* continue normal control flow */
16 i = proceed ();

18 /* return sequence */
fprintf (fp, "after (%s in %s)\n",

20 Jp->functionName, Jp->fileName);

22 /* close logfile */
fclose (fp);

24

return i;
26 }

Figure 5.12: Part of the tracing aspect applied to the Kava case study.

98 Validation of AOP and LMP for legacy software

5.3.5 Results

Having applied the aspect in figure 5.12 to the 407 C modules of the
Kava application, and having run the TDFS scenario as described ear-
lier, we wound up with a trace file of over 90GB of data. This data was
then processed by the analysis tools, which were successful in identi-
fying the most important modules of the system. Figure 5.11 shows
these results as they were extracted by a webmining technique. The
top ranking is in agreement with that of the domain experts. More on
these results can be found in [ZAD+06, ZAD05, ADZ05]. They are out
of the scope of this dissertation.

5.3.6 Follow-up

So far we have been able to identify what are the most important mod-
ules of an application through our aspect-enabled dynamic analysis
technique. While a step in the right direction, this information is still
quite coarse-grained (i.e. collections of procedures, rather than individ-
ual procedures). We would like to look at ways to delve deeper into the
code. We would like to have more detailed introspection of the code
but only with respect to the previously identified modules.

We can achieve this goal by setting up our pointcuts to match only
join points in these modules. We ignore modules which we consider
unimportant; we are “slicing” away what is of no immediate interest.
We therefore call this approach aspect-enabled slicing.

By extending our advice to be a lot more verbose, we can output
information concerning parameters and return values. This, together
with the control flow reasoning, should allow us to get a more detailed
view of how the most important modules interact with their immedi-
ately collaborating modules. Once more detailed information has been
learned we can again feed this into our slicing approach. By factoring
in the newly gained information we can again extend the logic in our
pointcuts to either delve even deeper, or to validate our information.

5.3.7 Conclusion

AOP allowed us to quickly and easily instrument a legacy application,
and for it to output the required information on its runtime behaviour.
It was thanks to LMP that this instrumentation aspect could be written

5.4 Business rule mining 99

down concisely, and that we could access information about the exe-
cution context in a very straightforward manner. We have also shown
that this can be used to enable several different dynamic analyses of
existing legacy applications without the need for integrating various
different tools.

5.4 Business rule mining

In [MDDH04], Isabel Michiels and the author discuss the possibility
of using dynamic aspects for mining business rules from legacy appli-
cations. Some suggestions as to how this may be done are presented
based on the following fictitious, though realistic case:

“Our accounting department reports that several of our employ-
ees were accredited an unexpected and unexplained bonus of 500
euro. Accounting rightfully requests to know the reason for this
unforeseen expense.”

We will now revisit this case, showing the actual Cobble advices which
may be used to achieve the ideas set forth in [MDDH04]. In doing so
we present another argument in favour of how AOP+LMP may help
with the recovery of the design of an existing application.

5.4.1 Initial facts

We start off with the information present in the problem statement. The
accounting department can give us a list of the employees which got
“lucky” (or rather unlucky, as their unexpected bonus did not go by
unnoticed). We can encode this knowledge as facts:

META-DATA DIVISION.
2 FACTS SECTION.

LUCKY-EID VALUE 7777.
4 LUCKY-EID VALUE 3141.

*> etc.

Furthermore, we can also find the definition of the employee file
which was being processed, in the copy books:

1 ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

100 Validation of AOP and LMP for legacy software

3 FILE CONTROL.
SELECT EMPLOYEE-FILE ASSIGN TO EFILE.

5

DATA DIVISION.
7 FILE SECTION.

FD EMPLOYEE-FILE.
9 01 EMPLOYEE.

05 EID PIC 9(4).
11 *> etc.

Lastly, from the output we can figure out, by looking at the output
generating statements (i.e. DISPLAY), the name of the data item hold-
ing the total value. This data item, BNS-EUR, turns out to be an edited
picture. From this we conclude that it is only used for pretty print-
ing the output, and not for performing actual calculations. At some
time during execution the correct value for the bonus was moved to
BNS-EUR, and subsequently printed. E.g.:

MOVE MYSTERY-FIELD TO BNS-EUR.

*> ...
DISPLAY BNS-EUR.

So our first task is to find what variable that was.

5.4.2 Finding the right data item

We go at this by tracing all moves to BNS-EUR, but only while processing
one of our lucky employees:

1 FIND-SOURCE-ITEM SECTION.
USE BEFORE ANY STATEMENT

3 AND NAME OF RECEIVER EQUAL TO "BNS-EUR"
AND BIND LOC TO LOCATION

5 AND IF EID EQUAL TO LUCKY-EID.
MY-ADVICE.

7 DISPLAY EID, ": ", LOC.

In short, this advice states that before all statements (line 2) which have
BNS-EUR as a receiving data item (line 3), and if EID (id for the em-
ployee being currently processed; see data definition higher up) equals
a lucky id (runtime condition on line 5), we display the location of that
statement as well as the current id.

5.4 Business rule mining 101

The runtime condition on line 5 is similar to AspectJ’s if condition.
We could equally well have coded this aspect without it:

1 FIND-SOURCE-ITEM-ALT SECTION.
USE BEFORE ANY STATEMENT

3 AND NAME OF RECEIVER EQUAL TO "BNS-EUR"
AND BIND LOC TO LOCATION

5 AND BIND LUCKY TO LUCKY-EID.
MY-ADVICE.

7 IF EID EQUAL TO LUCKY
DISPLAY EID, ": ", LOC.

The semantics of this would have been identical to the previous ex-
ample. The difference lies in the optimisations the weaver is able to
perform. This last version will instantiate the advice for each lucky id,
as the advice body is quantified in terms of this. The first version can
prevent this as its advice body does not need this information, and we
can therefore collect all run-time conditions and group them together.

Back to the experiment: we now find the possibilities to be one of
several string literals (which we can therefore immediately disregard)
and a variable named BNS-EOY, whose name suggests it holds the full
value for the end-of-year bonus.

5.4.3 Checking the calculation

Our next step is to figure out how the end value was calculated. This
allows us to check the figures and maybe detect an error. We set up
another aspect to trace all statements modifying the variable BNS-EOY,
but again only while processing a lucky employee. We do this in three
steps. First:

TRACE-BNS-EOY SECTION.
2 USE BEFORE ANY STATEMENT

AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
4 AND BIND LOC TO LOCATION

AND IF EID EQUAL TO LUCKY-EID.
6 MY-ADVICE.

DISPLAY EID, ": statement at ", LOC.

Before execution of any statement (line 2) having BNS-EOY as a receiv-
ing data item (line 3), and when processing a lucky employee (line 5),
this would output the location of that statement. Next:

102 Validation of AOP and LMP for legacy software

1 TRACE-BNS-EOY-SENDERS SECTION.
USE BEFORE ANY STATEMENT

3 AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
AND BIND SENDING TO SENDER

5 AND BIND SENDING-NAME TO NAME OF SENDING
AND IF EID EQUAL TO LUCKY-EID.

7 MY-ADVICE.
DISPLAY SENDING-NAME, " sends ", SENDING.

This outputs the name and value for all sending data items (lines 4
and 5) before execution of any of the above statements. This allows us
to see the contributing values. Lastly, we want to know the new value
for BNS-EOY which has been calculated.

TRACE-BNS-EOY-VALUES SECTION.
2 USE AFTER ANY STATEMENT

AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
4 AND IF EID EQUAL TO LUCKY-EID.

MY-ADVICE.
6 DISPLAY "BNS-EOY = ", BNS-EOY.

We now find a data item (cryptically) named B31241, which is con-
sistently valued 500, and is added to BNS-EOY in every trace.

5.4.4 Verifying our assumption

Before moving on we would like to make sure we are on the right track.
We want to verify that this addition of B31241 is only triggered for our
list of lucky employees. Again, a dynamic aspect allows us to trace
execution of exactly this addition and helps us verify that our basic
assumption holds indeed. We start by recording the location of the
“culprit” statement as a usable fact:

META-DATA DIVISION.
2 FACTS SECTION.

CULPRIT-LOCATION VALUE 666.
4 *> other facts as before

The test for our assumption may then be encoded as:

TRACE-BNS-EOY-SENDERS SECTION.
2 USE BEFORE ANY STATEMENT

AND LOCATION EQUAL TO CULPRIT-LOCATION

5.4 Business rule mining 103

4 AND IF EID NOT EQUAL TO LUCKY-EID.
MY-ADVICE.

6 DISPLAY EID, ": back to the drawing board.".

This tests whether the culprit statement gets triggered during the pro-
cess of any of the other employees. If it does, then something about our
assumption is wrong. Or it may be that the accounting department has
missed one of the lucky employees.

5.4.5 Rediscovering the logic

Given the verification that we are indeed on the right track, the question
now becomes: why was this value added for the lucky employees and
not for the others? Unfortunately, the logic behind this seems spread
out over the entire application. So to try to figure this out we would like
to have an execution trace of each lucky employee, including a report of
all tests made and passed, up to and including the point where B31241
is added. Dynamic aspects allow us to get these specific traces.

First, some preliminary work:

WORKING-STORAGE SECTION.
2 01 FLAG PIC 9 VALUE 0.

88 FLAG-SET VALUE 1.
4 88 FLAG-NOT-SET VALUE 0.

The FLAG data item will be used to indicate when tracing should be
active and when not. For ease of use we also define two “conditional”
data items: FLAG-SET and FLAG-NOT-SET15. These reflect the current
state of our flag.

Our first advice is used to trigger the start of the trace:

TRACE-START SECTION.
2 USE AFTER READ STATEMENT

AND NAME OF FILE EQUAL TO "EMPLOYEE-FILE"
4 AND BIND LOC TO LOCATION

AND IF EID EQUAL TO LUCKY-EID.
6 MY-ADVICE.

15A negative flag is needed as one can not set a flag to FALSE in (legacy) Cobol. While this
may feel like a silly restriction, the semantics of this are not as straightforward as may seem. The
question is what the value of FLAG should become when FLAG-SET is set to false. It could be any
value other than 1. But there may be more than one conditional data item reacting to this value.
Which of those should then be made “true”? Modern day Cobol solves this problem by allowing
a conditional data item to have a “WHEN SET TO FALSE” clause.

104 Validation of AOP and LMP for legacy software

SET FLAG-SET TO TRUE.
8 DISPLAY EID, ": start at ", LOC.

I.e., whenever a new employee record has been read (line 2 and 3), and
that record is one for a lucky employee (line 5), we set the flag to true
(line 7). We also do some initial logging (line 8).

The next advice is needed for stopping the trace when we have
reached the culprit statement:

TRACE-STOP SECTION.
2 USE AFTER ANY STATEMENT

AND LOCATION EQUAL TO CULPRIT-LOCATION.
4 MY-ADVICE.

SET FLAG-NOT-SET TO TRUE.
6 DISPLAY EID, ": stop at ", LOC.

Then it is up to the actual tracing. We capture the flow of proce-
dures, as well as execution of all conditional statements:

TRACE-PROCEDURES SECTION.
2 USE AROUND PROCEDURE

AND BIND PROC TO NAME
4 AND BIND LOC TO LOCATION

AND IF FLAG-SET.
6 MY-ADVICE.

DISPLAY EID, ": before ", PROC, " at ", LOC.
8 PROCEED.

DISPLAY EID, ": after ", PROC, " at ", LOC.
10

TRACE-CONDITIONS SECTION.
12 USE AROUND ANY STATEMENT

AND CONDITION
14 AND BIND LOC TO LOCATION

AND IF FLAG-SET.
16 MY-ADVICE.

DISPLAY EID, ": before condition at ", LOC.
18 PROCEED.

DISPLAY EID, ": after condition at ", LOC.

From this trace we can then deduce the path that was followed from
the start of processing a lucky employee, to the addition of the unex-
pected bonus. More importantly, we can see the conditions which were
passed, from which we can (hopefully) deduce the exact cause.

5.5 Encapsulating procedures 105

5.4.6 Wrap-up of the investigation

This is where the investigation ends. We find that B31241 is part of a
business rule: it is a bonus an employee receives when he or she has
sold at least 100 items of the product with number 31241. Apparently
this product code had been assigned to a new product the year before.
It was once associated to another product which had been discontinued
for several years. The associated bonus was left behind in the code, and
never triggered until employees started selling the new product. AOP
and LMP provided us with a flexible and powerful tool to perform our
investigation.

5.4.7 Conclusion

This section has shown how AOP+LMP can be used for rediscovering
business logic in existing legacy applications, something which is of
importance for the further evolution of such applications. To this end,
we applied AOP and LMP in several ways: from smart and focused
tracing, to verification of assumptions and, ultimately, the rediscovery
of logic. It is exactly the flexibility of aspects, enhanced with LMP for
reasoning about and reflecting on join points which makes it suitable
for this task.

5.5 Encapsulating procedures

Business applications are faced, more and more, with the integration
with other applications and services. One way to achieve this is by
wrapping the original applications. In [SS03], Harry and Stephan
Sneed propose creating web services from legacy host programs. They
argue that while there exist tools for wrapping presentation access and
database access for use in distributed environments,

“the accessing of existing programs, specifically the business logic
of these programs, has not really been solved.”

In an earlier paper, [Sne96a], Harry Sneed discusses a custom tool
which allowed the encapsulation of Cobol procedures, to be able to
treat them as “methods”, a first step towards wrapping business logic.
Part of that tool has the responsibility of creating a switch statement
at the start of the program, which performs the requested procedure,

106 Validation of AOP and LMP for legacy software

1 DISPATCHING SECTION.
USE AROUND PROGRAM

3 AND BIND PARA TO PARAGRAPH
AND BIND PARA-NAME TO NAME OF PARA

5 AND IF METHOD-NAME EQUAL TO PARA-NAME.
MY-ADVICE.

7 PERFORM PARA.

9 ENCAPSULATION SECTION.
USE AROUND PROGRAM.

11 MY-ADVICE.
PERFORM ERROR-HANDLING.

13 EXIT PROGRAM.

Figure 5.13: Aspect for procedure encapsulation.

depending on the method name. This section shows how the same
effect can be achieved using AOP and LMP, without the need for a
specialized tool.

5.5.1 A basic wrapping aspect

Figure 5.13 shows how encapsulation of procedures (or “business
logic”) can be achieved, in a generic way, using AOP and LMP. The
aspect shown here, written in Cobble, consists of two advices: one
named DISPATCHING, the other ENCAPSULATION.

The first advice (lines 1–7) takes care of the dispatching. It acts
around the execution of the entire program (line 2), and once for ev-
ery paragraph in this program (line 3). The latter effect is caused by
the ambiguousness of the PARAGRAPH selector. This can be any of a
number of values. Rather than just picking one, what Cobble does is
pick them all: the advice gets activated for every possible solution to its
pointcut, one after the other (see also section 3.7.2). This is due to the
backtracking semantics embedded in the pointcut language.

Furthermore, the DISPATCHING advice will only get triggered
when METHOD-NAME matches the name of the selected paragraph (ex-
traction of this name is seen on line 4). This is encoded in a runtime
condition on line 5. Finally, the advice body, when activated, simply

5.5 Encapsulating procedures 107

calls the right paragraph (PERFORM statement on line 7).
The second advice (lines 9–13) serves as a generic catch-all. It cap-

tures execution of the entire program (line 10), but replaces this with a
call to an error handling paragraph (line 12) and an exit of the program
(line 13). The net effect is that whenever the value in METHOD-NAME
does not match any paragraph name in the program, the error will be
flagged and execution will end. This, together with the first advice,
gives us the desired effect.

We are left with the question of where METHOD-NAME is defined,
and how it enters our program. The answer to the first question is
simply this: any arguments which get passed into a Cobol program
from the outside must be defined in a linkage section. I.e.:

LINKAGE SECTION.
01 METHOD-NAME PIC X(30) VALUE SPACES.

Furthermore, the program division needs to declare that it expects this
data item as an input from outside:

PROGRAM DIVISION USING METHOD-NAME.

5.5.2 Problems with introductions

This begs the question as to how the input parameter used in the pre-
vious subsection was inserted in an AOP-like way. Simply: it was not.
We tacitly assumed our aspect to be defined inside the target program (a
so-called “intra-aspect”), which dismissed the need for any added in-
troduction mechanism. Of course, for a truly generic aspect (an “inter-
aspect”) we need to remedy this.

Definition of the METHOD-NAME data item is no big problem. We can
simply define it within an aspect module, which, upon weaving, would
extend the target program (modulo some alpha-renaming to prevent
unintended name capture):

IDENTIFICATION DIVISION.
ASPECT-ID. PROCEDURE-WRAPPING.

DATA DIVISION.
LINKAGE SECTION.

01 METHOD-NAME PIC X(30) VALUE SPACES.

108 Validation of AOP and LMP for legacy software

From this, it becomes pretty obvious that METHOD-NAME should be
used as an input parameter. The concept of a linkage section makes no
sense for an external aspect module, as an aspect will never be called
in such a way. Indeed, we might even say that it should not be used
that way. Therefore the appearance of a linkage section is a sufficient
declaration of intent.

The hard part lies with the semantics of declaring extra input data
items on another program. What do we expect to happen?

• Does the introduction of an input data item by the aspect replace
existing input items in the advised program, or is it seen as an
addition to them? Either way we are invalidating the original
contract/interface expected by others.

• If it is added to them, then where does it go into the existing list
of inputs? At the front? At the back?

• What happens when multiple aspects define such input items? In
what order do they appear? Relying on a precedence rule seems
a reasonable solution.

• How do we handle updating the sites where the woven program
gets called? The addition of an extra input item will have broken
these.

Consider the C/Java/. . . equivalent of this: what does it mean to in-
troduce new parameters on procedures/methods? More to the point,
should we allow this? Sofar, the above example is the only case in which
it is required.

5.5.3 A full encapsulation aspect

The complexity of encapsulating Cobol procedures increases when we
consider another important feature of Sneed’s tool (ignored until now):

“For each [encapsulated] method a data structure is created which
includes all variables processed as inputs and outputs. This
area is then redefined upon a virtual linkage area. The input
variables become the arguments and the output variables the re-
sults.” [Sne96a]

5.5 Encapsulating procedures 109

{ IDENTIFICATION DIVISION.
46 ASPECT-ID. PROCEDURE-WRAPPING.

48 DATA DIVISION.
LINKAGE SECTION.

50 01 METHOD-NAME PIC X(30) VALUE SPACES. },

52 findall(
[Name, Para, Wss],

54 (paragraph(Name, Para),
slice(Para, Slice),

56 wss(Slice, Wss)
),

58 AllInOut
),

60

max_size(AllInOut, VirtualStorageSize),
62 { 01 VSPACE PIC X(<VirtualStorageSize>). },

64 all(member([Name, Para, Wss], AllInOut), (
{ 01 SLICED-<Name> REDEFINES VSPACE.},

66 all((record(R, Wss), name(R, RName)), (
clone_and_shift(R, "<RName>-<Name>", SR),

68 { <SR> }
))

70)),

Figure 5.14: Full procedure encapsulation (part 1).

110 Validation of AOP and LMP for legacy software

72 { PROGRAM DIVISION USING METHOD-NAME, VSPACE.
DECLARATIVES. },

74

all(member([Name, Para, Wss], AllInOut), (
76 { WRAPPING-FOR-<Name> SECTION.

USE AROUND PROGRAM
78 AND IF METHOD-NAME EQUAL TO "<Name>".

WRAPPING-BODY.
80 },

all((top_record(R, Wss), name(R, RName)),
82 { MOVE <RName>-<Name> TO <RName>.}

),
84 { PERFORM <Name>.}

all((top_record(R, Wss), name(R, RName)),
86 { MOVE <RName> TO <RName>-<Name>.}

)
88)),

90 { ENCAPSULATION SECTION.
USE AROUND PROGRAM.

92 MY-ADVICE.
PERFORM ERROR-HANDLING.

94 EXIT PROGRAM.
END DECLARATIVES. }

Figure 5.15: Full procedure encapsulation (part 2).

5.5 Encapsulating procedures 111

Put another way, we must find all data items on which the encapsu-
lated procedures depend. These are then gathered in a new record (one
per procedure), which redefines a “virtual linkage area” (in C terms: a
union over all newly generated typedefs). This linkage area must then
also be introduced as an input data item of the whole program. Such
a requirement seems far out of the scope of AOP. While it has a cross-
cutting concern in it (cfr. “for each method”), this concern can not be
readily defined using existing AOP constructs.

Instead, figures 5.14 and 5.15 show a different approach to the prob-
lem. It is encoded neither in Cobble or Aspicere, opting for a differ-
ent view on the AOP+LMP equation. Whereas the previous examples
were based on LMP embedded in AOP, the new example is based on
using a generative programming technique, similar to the approach
in [BMD02, DD99a, ZHS04].

The code can be read as follows. Whatever is enclosed in curly
brackets ({. . .}) is (aspect-)code which is to be generated. This can
be further parameterized by placing variables in “fishgrates” (<. . . >),
which will get expanded during processing. Everything else is Prolog,
used here to drive the code generation.

Let us apply this to the code in figures 5.14 and 5.15. Lines 1 and 2
declare the header of our aspect, while lines 4–6 define the linkage sec-
tion as discussed before. Lines 8–15 calculate all slices (slice/2 on
line 11) for all paragraphs (paragraph/2 on line 10). From each of
these we extract the working-storage section (wss/2 on line 12), which
gives us the required in- and output parameters, collected in AllInOut
(line 14). From this we extract the size of the largest one (max size/2
on line 17) which is used next in the definition of the virtual storage
space (line 18).

Next, for each paragraph (i.e. for each member of AllInOut),
we generate a redefinition of the virtual space to include all data
items on which that paragraph depends (lines 20–26). The redefi-
nition can be seen on line 21, where it is given a unique name (i.e.
SLICED-paragraph-name). Its structure is defined by going over all
records in the working-storage section for that paragraph (line 22),
cloning each record under a new, unique name while updating the
level number16 (line 23), and then outputting this new record (line 24).
This concludes the data definition.

16Level numbers are used to indicate nesting of records. As existing records, which may have
been top level records, must now be nested inside another, their level numbers must be updated.

112 Validation of AOP and LMP for legacy software

Next, the procedure division is put down, declaring the necessary
parameters (line 28). We then generate advice similar to that in fig-
ure 5.13, but now they need to perform some extra work. First, they
must transfer the data from the virtual storage space as redefined for
the paragraph, to the original records defined for the program (lines 37–
39). The original paragraph may then be called without worry (line 40).
Afterwards, the calculated values are retrieved by moving them back to
the virtual storage space, again as redefined for the paragraph (lines 41–
43). All that is left is the generic catch-all (lines 46–50), and the closing
of the aspect (line 51).

Despite the inherent complexity of the problem, AOP+LMP al-
lowed us to write down our crosscutting concern. LMP was leveraged
to define our aspect by reasoning over the program. AOP was lever-
aged to tackle the actual weaving semantics, unburdening us from
writing program transformations. Granted, we made use of a slicing
predicate to do most of the hard work (line 11). Still, the use of libraries
which hide such algorithms is another bonus we can get from LMP.

5.5.4 Conclusion

Business applications are faced with ever greater demands for inte-
gration with other systems. One approach to solving this problem is
by means of wrapping the original applications. In this section we
have shown how AOP+LMP is flexible enough to allow this, without
the need for specialized tools. We have, however, had to take a step
back when we found that merely embedding LMP within the pointcut
language proved not flexible enough to handle the full encapsulation
approach. Indeed, while this technique is simple, and allows greater
flexibility in defining behaviour, it is not able to handler the definition
of crosscutting data structures. By embedding AOP within LMP and,
in essence, by turning the AOP+LMP equation into a code generation
scheme, we can handle these definitions.

The choice of whether to use LMP embedded in AOP, or AOP em-
bedded in LMP, is a pragmatic one. While the second approach is the
stronger one, it is also the more complex one. We therefore argue that
it is best to choose the first, unless it can not handle the required cross-
cutting (as in the case of crosscutting data definitions).

5.6 Year 2000 syndrome 113

5.6 Year 2000 syndrome

The Y2K-bug is probably the best-known example of problems related
to legacy systems. It nicely shows how applications are sometimes
forced to evolve. It is important to understand that at the heart of this
was not a lack of technology or maturity thereof, but rather the under-
standable failure to recognize that code written as early as the sixties
would still be around some forty years later.

So might AOP+LMP have helped us out? The problem statement
certainly presents a crosscutting concern: whenever a date is accessed
in some way, make sure the year is extended.

5.6.1 Finding dates

This presents our first problem: how do we recognize data items for
dates in Cobol? While Cobol has structured records, and stringent rules
for how data is transferred between them, they carry no semantic infor-
mation whatsoever. Knowing which items are dates and which are not
requires human expertise. The nice thing about LMP is that we could
have used it to encode this. E.g., using the meta-data structure pre-
sented in section 3.7.3:

META-DATA DIVISION.
2 FACTS SECTION.

DATE-ITEM VALUE DATE-DUE.
4 DATE-ITEM VALUE DEADLINE.

*> etc.

In C, where a disaster is expected in 203817 (hence Y2K38) due to
the overflowing of the 32-bit time-format, the recognition problem is
less serious because of C’s more advanced typing mechanisms. A date
in (ANSI-)C could be built around the standard time provisions (in
“time.h”), or otherwise some (hopefully sensibly named) custom type-
def. In the former case, recompiling the source code on a system us-
ing more than 32 bits to represent integers solves everything immedi-
ately. Whereas all variables in Cobol have to be declared in terms of
the same, low-level Cobol primitives, C allows variables to be declared
as instances of user-defined types. In this sense, the latter case (cus-
tom date type) represents much less of a problem. The check for a date

17More details on http://www.merlyn.demon.co.uk/critdate.htm

114 Validation of AOP and LMP for legacy software

would be equivalent to a check for a certain type.

5.6.2 Manipulating dates

There is a second problem for tackling the Y2K problem in Cobol: given
the knowledge of which data items carry date information, how do we
know which part encodes the year? It may be that some item holds
only the current year, or that it holds everything up to the day. A data
item may be in Gregorian form (i.e. “yyddd”) rather than standard form
(“yymmdd”). Of course, that “standard” may vary from locale to locale
(the authors would write it as “ddmmyy”). But again, we could use
LMP to encode this knowledge.

Let us assume we can check for data items which hold dates, and
that these have a uniform structure (in casu “yymmdd”). Then we
might write something like:

1 AN-YYMMDD-FIX SECTION RETURNING MY-DATE.
USE AROUND SENDING-DATA-ITEM

3 AND SENDING-DATA-ITEM IS DATE.
MY-ADVICE.

5 MOVE PROCEED TO MY-DATE(3:8).
IF MY-DATE(3:4) GREATER THAN 50 THEN

7 MOVE 19 TO MY-DATE(1:2)
ELSE

9 MOVE 20 TO MY-DATE(1:2).

This is a variation on Cobble’s around advice. It differs in that it
may return a value (RETURNING-clause on line 1). It also differs in the
sense that normal Cobble advice acts on the statement level, whereas
the above advice must apply to individual getters (or sending data
items, picked out by the SENDING-DATA-ITEM condition on line 2).
As it captures sending data items the PROCEED statement is used in
that fashion as well (line 5). Apart from this the advice is written as
usual. In this case the logic is based on a date expansion scheme using
a century window. I.e. all dates with a year greater than 50 are seen as
lying in the 20th century. The others are bumped to the 21st century.
While this just shifts the Y2K problem to a Y2K50 problem, it allows
legacy applications to work with their updated, Y2K-ready friends.

5.6 Year 2000 syndrome 115

5.6.3 Non-local data items

The previous advice has some problems though. One is the definition
of MY-DATE (referred to as a return value on line 1, and assumed to
have a “yyyymmdd” format). In Cobol, all data definitions are global.
Hence, MY-DATE is a unique data item which gets shared between all
advices. While this is probably safe most of the time, it could lead to
subtle bugs whenever we have nested execution of such advice.18 The
same is true for all advices in Cobble. It is just that the need for a specific
return value makes it surface more easily. Of course, in this case, the fix
is to require duplication of this data item for all advice instantiations.

5.6.4 Weaving date access

The greater problem with the AN-YYMMDD-FIX advice lies in the weav-
ing. When committed to a source-to-source approach, as we are with
Cobble, weaving anything below the statement level becomes hard. As
Cobol lacks the idea of functions19, we can not replace access to a data
item with a call to a procedure (whether advice or the original kind) as
we could do in C. One remedy for this would be to divide up the origi-
nal statements into subparts so that each data-item access becomes sep-
arated. This seeems hard, and we are not sure this is possible. Another
possible remedy for would be to switch to machine-code weaving, but
we are reluctant to do so, as we would lose platform independence.
Common virtual machine solutions (e.g. as with ACUCobol) are not
widespread either. The conclusion is, therefore, that the Y2K problem
can not be tackled in Cobol using AOP and LMP, if the weaving is lim-
ited to a source-to-source approach.

5.6.5 Conclusion

This section has shown that the underlying language of a legacy appli-
cation does, in fact, limit the expressivity of our AOP+LMP technique.
We have seen that, in Cobol, we could not weave around accesses of
data items. It is important to note the reason why this is so: because of
our source-to-source approach to weaving. This entails that the woven

18Though not in this case, as the structure of the advice body only refers to the data item after
the PROCEED statement.

19Functions can be written in later versions of Cobol. Our focus on legacy systems, however,
rules these out for use here.

116 Validation of AOP and LMP for legacy software

version of an application must be well-formed in the underlying lan-
guage. In the case of Cobol this means that we must somehow wrap
data item accesses in a way allowed by Cobol. Unfortunately, there is
no way to do this in (legacy) Cobol. As a consequence, we had to take
this into account in the design of the aspect language, which treats get-
ters and setters as the statements (possibly) doing the getting or setting.
These limitations are something which have to be considered for every
language which one wants to extend using AOP, unless one is willing
to move away from source-to-source weaving.

5.7 Conclusion

We have shown how AOP+LMP may be embedded in ANSI-C. This
acts as another validation that this approach is flexible enough to be
applied to very different languages (as Cobol and C are).

We have also demonstrated the flexibility of the transformation
framework by enabling visualisations of legacy source code. These
renderings of existing applications can help in regaining knowledge
and understanding about them.

We then discussed four problems with legacy software, and showed
how three of these might be aided through a mix of AOP and LMP.
Tracing in C and business rule mining in Cobol went smoothly, using
LMP as a pointcut mechanism in AOP. Encapsulation of procedures
in Cobol required a more generative approach, by embedding AOP in
LMP.

As for the Y2K problem in Cobol, only very advanced, nearly
weaver-level pointcuts in synergy with various cooperating introduc-
tions might manage this. As it is, the semantics of Cobol, especially its
lack of typing, presents too much of a limitation. In C, the Y2K38 prob-
lem can still be managed reasonably, precisely because it does feature
such typing.

Chapter 6

Conclusions

It’s a job that’s never started that takes the longest to finish.

J. R. R. TOLKIEN

THIS dissertation has been arguing in favour of using a mix of
Aspect-oriented Programming and Logic Meta-programming for

the revitalisation of legacy software. The previous chapters have laid
down the groundwork for this discussion. This chapter turns the atten-
tion back to the larger picture, and shows how everything fits together.
We do so by re-iterating over the list of contributions of this disserta-
tion, as it was declared in the introduction.

6.1 AOP for legacy environments

“We show that the Aspect-oriented Paradigm can be successfully
embedded in legacy (non-OO) environments.”

When talking about legacy environments, we mostly find ourselves
in the realm of Cobol. This is corroborated by our findings within the
ARRIBA research project [MDTZ03], as well as by the numbers put
forward by the Gartner group: 75% of business data is processed in
COBOL, with 180–200 billion LOC in use worldwide, and 15% of new
applications written in COBOL. It is clear that Cobol still is the major
player.

With only a limited market share left for the others, C does stand

118 Conclusions

out as an important legacy language. Again, when turning to the AR-
RIBA user committee, we find C is in active use, more so than other
languages. Its popularity is also attested by other sources, such as the
Tiobe Programming Community Index1 and the analysis by DedaSys
Consulting2.

6.1.1 AOP for Cobol and C

This dissertation has covered the integration of AOP for both of these
languages. In chapter 3 we presented Cobble, an aspectual extension
for Cobol. Chapter 2 presented Wicca, an aspectual extension for C. Be-
tween the procedural paradigm of ANSI-C, and the statement-oriented
(“English”) paradigm of Cobol, we have shown our approach to be able
to cover quite a broad spectrum of legacy languages.

6.1.2 AOP in legacy environments

What can we learn from this about AOP? Well, if AOP is quantification
and obliviousness —as is argued in [FF05]— we find that AOP for legacy
languages differs mainly in the kinds of quantification which can be
made. I.e., rather than method execution we talk about procedures,
which may not even have parameters or return values (cfr. Cobol).
For lack of objects, there is also no talk about “sender” and “receiver”.
Despite these apparent simplifications, we do not necessarily end up
with simpler languages: Cobol requires an extensive library of point-
cuts in order to be able to quantify over all events of interest. Given
the very different and much more extensive semantics of Cobol, this
should come as no surprise.

As for obliviousness, there seems to be no impact on AOP. Rather
the reverse, obliviousness in AOP brings extra modularity mechanisms
to the table (namely aspects). This is interesting, especially for Cobol,
which has only limited support for this —basically entire programs or
nothing.

1http://www.tiobe.com/tpci.htm
2http://www.dedasys.com/articles/language popularity.html

6.1 AOP for legacy environments 119

6.1.3 Weaving

On the weaving side, as explored in chapter 4, we have shown that
a transformation framework based on XML representations can work,
and work well at that. Through the XML format, and with a little help
from the JVM, we were able to bring together a mix of disparate tech-
nologies and integrate them into a cohesive and functional whole (as
can be seen in figure 4.3 of section 4.2). The hardest part lay in finding
decent parsers for the legacy languages, which proved especially tricky
in the case of Cobol (see section 4.3.1).

Transforming the XML representations is only limited in that the
end-result of that transformation must be a valid program. This proved
to be an obstacle for Cobol, where this well-formedness keeps us from
weaving individual getters and setters (as discussed in section 3.5, as
well as in section 5.6.4). Indeed, data items can not be replaced by any-
thing other than data items. In C we can at least replace any reference
to a variable with a call to a procedure. Not so in Cobol. Machine code
weaving can hold the answer to this limitation for Cobol, but it would
mean sacrificing our platform-independence —as well as push us far
outside the scope of this dissertation.

6.1.4 Related work

AspectC and AspectC++ were introduced in section 2.2. Apart from
these two, there now also are:

• Arachne [DFL+05] is a dynamic weaver based on code splicing.
Advised procedure calls are replaced by a jump to advice code. It
features an expressive pointcut language (inspired by Prolog) and
an extensible weaver (both for join point types as well as PCD’s).
A unique feature in Arachne are sequence-like pointcut defini-
tions in which advice is just a C procedure.

• TOSKANA [EF05] applies the same technique of code splicing.
Targeted mainly at autonomic computing, aspects are kernel
modules woven in at run-time. The aspect language is very
limited, as is the join point model.

• TinyC [ZJ03] implements advices as programs calling the Dyninst
API (an instrumentation library) at the right join points. Sofar,

120 Conclusions

only call join points are supported, through regular expression
matching.

• C4 [FGCW05] attempts to replace a traditional patch system with
a simplified AOP-driven, semantic approach. The programmer
writes down advice in situ in the base program, without any
quantification. The C4 unweaver extracts the changes into a sep-
arate C4 file (a semantic patch) which can then be distributed,
and applied by others.

6.2 A need for LMP

“We show that logic-based pointcuts, in conjunction with access
to a meta-object protocol, are able to fully enable Aspect-oriented
Programming in legacy environments lacking reflective capabili-
ties.”

In order to write generic aspects we need to be able to reflect on the
base programs, to extract information about that base program. With
languages such as Java, which offer a reflection API natively, the aspect
language need not do anything special —though there is research that
questions this [GB03, KR05, De 01, HC03, HU03].

6.2.1 Make up for a lack of reflection

Cobol and C have no reflective capabilities, which indeed limits us
from writing generic advice. This was experienced by Bruntink, Van
Deursen and Tourwé in their work for ASML, the world market leader
in lithography systems (see [BvDT04], as well as section 5.1.2 in this
dissertation). The associated aspect languages must therefore make up
for this. As we have argued in sections 1.2.4, 1.2.5, 1.2.6, 3.7, 3.9, and
chapter 5, LMP, together with a simple template mechanism, can do
this for us.

6.2.2 Make knowledge explicit

As we argued in section 1.2.4, the ability of LMP to record business
knowledge can be of great advantage to legacy software. Where lan-
guages lack reflective capabilities, they must also lack the ability to en-

6.2 A need for LMP 121

code information about programs. Hence, programmers are forced into
hacks and workarounds.

During our discussion on business rule mining in section 5.4, we
have demonstrated that LMP can be used —very simply— to encode
such information. In cooperation with AOP we were then able to ex-
ploit this in a direct way.

6.2.3 Embedding AOP in LMP

When tackling the encapsulation of business logic (section 5.5) we en-
countered the limits of expressiveness when embedding LMP in AOP.
We were not able to describe the complex, though crosscutting, data
definitions required to solve the task at hand. When embedding LMP
in AOP, we can extensively quantify behaviour, but we cannot quantify
structure.

We therefore turned the AOP/LMP equation around. By embed-
ding AOP in LMP, we can write down the complex crosscutting struc-
tures, as is demonstrated by figures 5.14 and 5.15 in section 5.5.3. This
technique is close to the idea of parametric introductions, as in [HU03]
and [BMD02].

6.2.4 Limited by underlying language

Cobol’s support for data definitions is at once empowering and limit-
ing. It allows for very detailed descriptions of anything from numbers
to strings —consider having to write a number in Java/C/. . . which has
exactly 11 decimals. Yet it does not allow the reuse of these definitions.
As we noted in section 5.6, there is no easy way to figure out, for in-
stance, which data items are dates. Any item holding six digits may be
a date or it may not. Nor is it said that any item which is not made up
of six or eight digits must therefore not be a date.

This again poses a limitation for writing generic advice: how do we
quantify over types (e.g. dates) when there are none? The only solution
seems to be that we should write down, as business knowledge, which
data items pertain to a certain type. This is tedious at best.

122 Conclusions

6.3 Validation of our approach

“We argue that Aspect-oriented Programming, together with
logic-based pointcuts, is an ideal tool for tackling major issues
in business applications: recovery, restructuring, integration,
evolution, etc.”

In chapter 5, we discussed four problems with legacy software, and
showed how these might be aided through a mix of AOP and LMP.

First, we showed how, through a simple tracing aspect, we man-
aged to enable dynamic analyses in a real case study (section 5.3). LMP
was used to make the tracing advice as generic as possible by overcom-
ing a lack of reflection in the base language.

Second, we worked through a scenario for recovering business
knowledge from a legacy application (section 5.4). AOP and LMP
were applied here in several ways: from smart and focused tracing, to
verification of assumptions and, ultimately, the rediscovery of logic.

Thirdly, we tackled the problem of encapsulating legacy applica-
tions using a generic aspect (section 5.5). A basic form of encapsulation
could be done easily (as in figure 5.13), but the full-on approach re-
quired us to take a step back. Still, by placing AOP within LMP, we
were able to tackle even this problem, and relatively straightforward at
that (see figures 5.14 and 5.15).

Only in the fourth problem, Y2K, our source-to-source weaving ap-
proach was held back by the limitations of the base language (sec-
tion 5.6). As it is, the semantics of Cobol, especially its lack of typing,
present too much of a roadblock. In C, the Y2K38 problem can still be
managed reasonably, precisely because it does feature such typing.

6.4 Hypothesis

“The combination of Logic Meta-programming and Aspect-
oriented Programming aids in the recovery of business archi-
tectures from source code, as well as in the restructuring and
integration of business applications.”

By having embedded AOP and LMP in legacy languages, and hence
in existing business environments, we now have at our disposal a flex-
ible toolchain. There is no requirement to move away from the existing

6.5 Future work 123

development techniques; the toolchain can be used in addition to them,
as we have seen in chapter 5.

Furthermore, through LMP we are able to express business concepts
and architectural descriptions of business applications. This makes
it possible to work with applications at a higher level of abstraction,
which we hope will also encourage better architectural descriptions to
emerge.

6.5 Future work

Further work remains to be done on two fronts. First, we should bring
the aspect languages for C and Cobol up to an acceptable maturity. For
C, this is now being done by Bram Adams in his work on Aspicere.
This has already reached the stage where it was successfully applied to
a real case study. For Cobol, a lot of work remains to be done. At the
moment, Cobble only supports weaving of statements. The weaving
of procedures remains to be done. Also, the querying and matching of
Cobol structures remains to be completed. Given the complexities of
Cobol, and the extent of its structures, this is not an easy task.

Secondly, given tools of a certain maturity, we need to do further
validation of the AOP/LMP approach in the field. Sofar, we have only
had one chance at doing this —the other examples being only academic
discussions. Though successful, one sample does not make a trend.

Apart from this, we should also try to find out to what extent we
need the AOP-embedded-in-LMP technique (see section 5.5.3) in our
toolchain. This, again, is something which should become clear from
real-life experimentation.

One more fundamental problem lies in the amount of reuse which
the transformation framework allows. While it enables the integra-
tion, and therefore the possible reuse, of existing components, few of
these can be directly applied to XML trees for code of differing lan-
guages. Indeed, querying and transforming of XML trees is tied to
the structure thereof, and this is directly tied to the grammars for the
original languages. As these are unlikely to match this means that the
XML trees will be structured differently, which in turn will likely break
any components working with this structure. Figuring out how we
might increase the potential reuse here, for instance by implementing
“language-agnostic” weavers, would be helpful.

124 Conclusions

Appendix A

Cobol

COBOL - A plump secretary.
She talks far too much,

and most of what she says can be ignored.
She works hard and long hours,

but can’t handle really complicated jobs.
She has a short and unpredictable temper,

so no one really likes working with her.
She can cook meals for a huge family,

but only knows bland recipes.

FROM “PROGRAMMING LANGUAGES ARE LIKE WOMEN”

COBOL is English, but there are (a lot of) strict rules which govern
its structure. This chapter gives a short introduction to this struc-

ture. The focus is not on completeness, but rather on giving the reader
a feel for the language.

A.1 Main structure

All Cobol programs are made up of four “divisions”. These are:

1. IDENTIFICATION DIVISION.

2. ENVIRONMENT DIVISION.

3. DATA DIVISION.

126 Cobol

4. PROCEDURE DIVISION.

The order of these divisions is strict. They must appear as in the above
sequence. Furthermore, divisions 2 and 3 are optional.

A.2 Identification division

The main goal of the identification division is very simple: to name the
program. E.g.:

IDENTIFICATION DIVISION.
PROGRAM-ID. MY-FIRST-COBOL-APPLICATION.

The rules for forming a program name (or any other name) are:

• Start with a letter.

• Use only letters, digits and hyphens.

One must however take care not to use one of the reserved keywords.
Figures A.1 and A.2 show the reserved keywords for Fujitsu-Siemens
Cobol 2000. There are over five hundred of these. To make matters
worse, some are only reserved within a certain context.

A.3 Environment division

The environment division’s main intent is to identify any disk files that
are used by the program. For example:

ENVIRONMENT DIVISION.
2 INPUT-OUTPUT SECTION.
FILE-CONTROL.

4 SELECT STUDENT-FILE ASSIGN TO "STUDENTS.DAT"
ORGANIZATION IS LINE SEQUENTIAL.

This defines STUDENT-FILE to be a handle for the “students.dat” file
(line 4), in which the data is stored in a sequential way, with newlines
between each record (line 5).

There are many possible variations for identifying disk files. Here
is one more:

A.3 Environment division 127

ACCEPT, ACCESS, ACTIVE-CLASS, ADD, ADDRESS, ADVANCING, AFTER, ALL, ALLOCATE, ALPHABET,

ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, ALPHANUMERIC, ALPHANUMERIC-EDITED, ALSO,

ALTER, ALTERNATE, AND, ANY, ANYCASE, ARE, AREA, AREAS, AS, ASCENDING, ASSIGN, AT, AUTHOR,

B-AND, B-NOT, B-OR, B-XOR, BASED, BEFORE, BEGINNING, BINARY, BINARY-CHAR, BINARY-DOUBLE,

BINARY-LONG, BINARY-SHORT, BIT, BLANK, BLOCK, BOOLEAN, BOTTOM, BY, CALL, CANCEL, CBL-CTR,

CF, CH, CHARACTER, CHARACTERS, CHECKING, CLASS, CLASS-ID, CLOCK-UNITS, CLOSE, CODE,

CODE-SET, COL, COLLATING, COLS, COLUMN, COLUMNS, COMMA, COMMIT, COMMON, COMMUNICATION,

COMP, COMP-1, COMP-2, COMP-3, COMP-5, COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2,

COMPUTATIONAL-3, COMPUTATIONAL-5, COMPUTE, CONDITION, CONFIGURATION, CONSTANT, CONTAINS,

CONTENT, CONTINUE, CONTROL, CONTROLS, CONVERTING, COPY, CORR, CORRESPONDING, COUNT,

CREATING, CRT, CURRENCY, CURSOR, DATA, DATA-POINTER, DATABASE-KEY, DATABASE-KEY-LONG, DATE,

DATE-COMPILED, DATE-WRITTEN, DAY, DAY-OF-WEEK, DE, DEBUG-CONTENTS, DEBUG-ITEM, DEBUG-LINE,

DEBUG-NAME, DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3, DEBUGGING, DECIMAL-POINT, DECLARATIVES,

DEFAULT, DELETE, DELIMITED, DELIMITER, DEPENDING, DESCENDING, DETAIL, DISABLE, DISC, DISPLAY,

DIVIDE, DIVISION, DOWN, DUPLICATES, DYNAMIC, EBCDIC, EC, ELSE, ENABLE, END, END-ACCEPT,

END-ADD, END-CALL, END-COMPUTE, END-DELETE, END-DISPLAY, END-DIVIDE, END-EVALUATE, END-IF,

END-INVOKE, END-MULTIPLY, END-OF-PAGE, END-PERFORM, END-READ, END-RECEIVE, END-RETURN,

END-REWRITE, END-SEARCH, END-START, END-STRING, END-SUBTRACT, END-UNSTRING, END-WRITE, ENDING,

ENTRY, ENVIRONMENT, EO, EOP, EQUAL, EO, EOP, EQUAL, ERASE, ERROR, ESCAPE, EVALUATE, EVERY,

EXCEPTION, EXCEPTION-OBJECT, EXIT, EXTEND, EXTENDED, EXTERNAL, FACTORY, FALSE, FD, FILE,

FILE-CONTROL, FILLER, FINAL, FIRST, FLOAT-EXTENDED, FLOAT-LONG, FLOAT-SHORT, FOOTING, FOR,

FORMAT, FREE, FROM, FUNCTION, FUNCTION-ID, GENERATE, GET, GIVING, GLOBAL, GO, GOBACK, GREATER,

GROUP, GROUP-USAGE, HEADING, HIGH-VALUE, HIGH-VALUES, I-O, I-O-CONTROL, ID, IDENTIFICATION,

IF, IGNORING, IN, INDEX, INDEXED, INDICATE, INHERITS, INITIAL, INITIALIZE, INITIATE, INPUT,

INPUT-OUTPUT, INSPECT, INSTALLATION, INTERFACE, INTERFACE-ID, INTO, INVALID, INVOKE, IS,

JUST, JUSTIFIED, KEY, LABEL, LAST, LEADING, LEFT, LENGTH, LESS, LIMIT, LIMITS, LINAGE,

LINE, LINE-COUNTER, LINES, LINKAGE, LOCAL-STORAGE, LOCALE, LOCK, LOW-VALUE, LOW-VALUES,

MEMORY, MERGE, MESSAGE, METHOD, METHOD-ID, MINUS, MODE, MODULES, MORE-LABELS, MOVE, MULTIPLE,

MULTIPLY, NATIONAL, NATIONAL-EDITED, NATIVE, NEGATIVE, NESTED, NEXT, NO, NOT, NULL, NUMBER,

NUMERIC, NUMERIC-EDITED, OBJECT, OBJECT-COMPUTER, OCCURS, OF, OFF, OMITTED, ON, OPEN,

OPTIONAL, OPTIONS, OR, ORDER, ORGANIZATION, OTHER, OUTPUT, OVERFLOW, OVERRIDE, PACKED-DECIMAL,

PADDING, PAGE, PAGE-COUNTER, PERFORM, PF, PH, PIC, PICTURE, PLUS, POINTER, POSITION, POSITIVE,

PRESENT, PRINT-SWITCH, PRINTING, PROCEDURE, PROCEED, PROGRAM, PROGRAM-ID, PROGRAM-POINTER,

PROPERTY, PROTOTYPE, PURGE, QUOTE, QUOTES, RAISE, RAISING, RANDOM, RD, READ, RECEIVE, RECORD,

RECORDING, RECORDS, REDEFINES, REEL, REFERENCE, RELATIVE, RELEASE, REMAINDER, REMOVAL,

RENAMES, REPEATED, REPLACE, REPLACING, REPORT, REPORTING, REPORTS, REPOSITORY, RERUN, RESERVE,

RESET, RESUME, RETRY, RETURN, RETURNING, REVERSED, REWIND, REWRITE, RF, RH, RIGHT, ROLLBACK,

ROUNDED, RUN, SAME, SCREEN, SD, SEARCH,...

Figure A.1: Keywords for Fujitsu-Siemens Cobol 2000 (part 1).

128 Cobol

..., SECTION, SECURITY, SEGMENT-LIMIT, SELECT, SELF, SEND, SENTENCE, SEPARATE, SEQUENCE,

SEQUENTIAL, SET, SHARING, SIGN, SIZE, SORT, SORT-MERGE, SORT-TAPE, SORT-TAPES, SOURCE,

SOURCE-COMPUTER, SOURCES, SPACE, SPACES, SPECIAL-NAMES, STANDARD, STANDARD-1, STANDARD-2,

START, STATUS, STOP, STRING, SUBTRACT, SUM, SUPER, SUPPRESS, SUPPRESSING, SYMBOLIC, SYNC,

SYNCHRONIZED, SYSTEM-DEFAULT, TABLE, TALLY, TALLYING, TAPE, TAPES, TERMINAL, TERMINATE,

TEST, THAN, THEN, THROUGH, THRU, TIME, TIMES, TO, TOP, TRAILING, TRUE, TRY, TYPE, TYPEDEF,

UNIT, UNITS, UNIVERSAL, UNLOCK, UNSTRING, UNTIL, UP, UPON, USAGE, USE, USER-DEFAULT, USING,

VAL-STATUS, VALID, VALIDATE, VALIDATE-STATUS, VALUE, VALUES, VARYING, WHEN, WITH, WORDS,

WORKING-STORAGE, WRITE, ZERO, ZEROES, ZEROS, ALL, AND, AS, B-AND, B-NOT, B-OR, B-XOR,

BYTE-LENGTH, CALL-CONVENTION, CHECKING, COBOL, DE-EDITING, DEFINE, DEFINED, DIVIDE, ELSE,

END-IF, END-EVALUATE, EQUAL, EVALUATE, FIXED, FLAG-85, FLAG-NATIVE-ARITHMETIC, FORMAT, FREE,

FUNCTION-ARGUMENT, GREATER, IF, IMP, IS, LEAP-SECOND, LESS, LISTING, LOCATION, MOVE, NOT,

NUMVAL, OFF, ON, OR, OTHER, OVERRIDE, PAGE, PARAMETER, PROPAGATE, SET, SIZE, SOURCE, THAN,

THROUGH, THRU, TO, TRUE, TURN, WHEN, ZERO-LENGTH

Figure A.2: Keywords for Fujitsu-Siemens Cobol 2000 (part 2).

1 ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

3 FILE-CONTROL.
SELECT INVMAST ASSIGN TO "INVMASTI.DAT"

5 ORGANIZATION IS INDEXED
ACCESS IS RANDOM

7 RECORD KEY IS IM-INDX.

This declares INVMAST (line 4) as an indexed file (line 5), which may
be accessed in a random (i.e. non-sequential) way (line 6). The right
record is selected based on the value in IM-INDX.

A short note on indentation: while for modern Cobol compilers in-
dentation is of no matter, there was a time when this was not the case.
Originally, Cobol code was entered on so-called “coding forms” (an ex-
ample can be seen in figure A.3). These were limited to a width of 80
characters, where certain columns had special meanings. Columns 1–
6, for instance, were regarded as whitespace, and were mainly used
for line numbers. Column 7 was used to indicate comments (place an
asterisk), or continuation lines (place a hyphen; useful when the previ-
ous line didn’t fit within the limited space). Columns 8–71 was where
the actual Cobol code could be written. This was again divided in two
parts: column A and B, where certain statements could only appear in
column B. Columns 72–80 were, again, treated as whitespace.

A.4 Data division 129

Figure A.3: Cobol coding form.

A.4 Data division

The data division is where one declares all data items (or variables) to
be used in the program. There is one major rule here: all data definitions
are global.

A data item itself is defined using the following ingredients:

1. Level number. This is used for defining nested records. If a data
item is a top-level record, and has no subrecords, then this should
be 77. Otherwise, choose a value in the range of 1–49.

2. Name. May be chosen freely (as long as it conforms to the naming
rules), or it may be FILLER, which acts as a “don’t care”.

3. Picture. Defines the structure of the data. E.g. 999 would make it
a number of 3 digits, A(7) a “string” of seven characters, etc.

130 Cobol

4. An initial value. This may be the exact data, or one of the sym-
bolic representations thereof: ZERO, ZEROES, SPACE, SPACES.

Some examples will clarify things:

77 STUDENT-NAME PIC A(64) VALUE SPACES.

This defines a data item named STUDENT-NAME which is made up of
64 characters, which will initially be spaces. Next:

01 STUDENT-RECORD.
02 FIRST-NAME PIC A(32) VALUE SPACES.
02 LAST-NAME PIC A(64) VALUE SPACES.

This defines one record, which is named STUDENT-RECORD. It is made
up of two subparts, FIRST-NAME and LAST-NAME. This is not because
of the indentation, but due to the increased level numbers in their defi-
nition.

It is also possible for one data item to redefine another:

77 PERCENTAGE PIC ZZ9.9.
77 RATIO REDEFINES PERCENTAGE

PIC X(4).

The first data item, PERCENTAGE, defines a decimal value of four dig-
its. (The Z’s indicate digits, which are not to be printed if they are zero.)
RATIO redefines this data item as consisting of four alphanumeric char-
acters. Both definitions, however, refer to the exact same storage space.
That is, a change of one data item will be seen in the other. If you are
familiar with the concept of unions in C, then this is pretty much the
same.

Finally, data definitions may be placed in one of three sections:

• WORKING-STORAGE SECTION. This is for data which belongs to
the program.

• FILE SECTION. This is where the record structure of files is de-
fined.

• LINKAGE SECTION. This is for data items which may be passed
to the program. Any Cobol program may be called from another
Cobol program, and it is the data in the linkage section which
allows them to communicate.

A.5 Procedure division 131

A.5 Procedure division

The procedure division is where we write down the program logic. It
too has a very specific substructure. This is, from high-level to low-
level:

• Sections.

• Paragraphs.

• Sentences.

• Statements.

It is the statements which define the low-level behaviour. A sen-
tence starts with a verb, and may be followed by one or more clauses.
The exact syntax differs for each verb. For instance, to print something
on the display, one would write:

DISPLAY "HELLO WORLD"

To add two numbers, one might write:

ADD INTEREST TO AMOUNT

Alternatively we could have written:

COMPUTE AMOUNT = AMOUNT + INTEREST

Statements may be included in sentences. These are really nothing
more than a bunch of statements followed by a dot. E.g.:

ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER.

Some statements may also include other statements. The most ob-
vious example of this is the conditional statement:

IF DO-NEW-ITERATION THEN
ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER.

Note that in this case the dot is very relevant: it limits the scope of the
IF statement. It is, however, better practice to write:

IF DO-NEW-ITERATION THEN
ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER

END-IF

132 Cobol

The END-IF keyword makes that we can dispense with the dot.
Sentences may be include in paragraphs or sections. Paragraphs

may also be included in sections. A paragraph is nothing more than a
labelled set of sentences. E.g.:

NEXT-ITERATION.
ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER.

This defines a paragraph named NEXT-ITERATION. Similarly, a sec-
tion is a labeled set of sentences and/or paragraphs. The label, how-
ever, is followed by a SECTION keyword, so as to differentiate it from
paragraphs. E.g.:

NEXT-ITERATION SECTION.
INCREMENT-COUNTER.

ADD 1 TO COUNTER.
DISPLAY-ITERATION.

DISPLAY "Iteration #", COUNTER.

This shows a section named NEXT-ITERATION, consisting of two para-
graphs, INCREMENT-COUNTER and DISPLAY-ITERATION, each of
which has one sentence.

A.6 Control flow

Control flows from the top most statement, down to the bottom. Jumps
of control flow can be done in several ways.

First, there is the GO TO statement. This jumps to the paragraph or
section which is indicated by the argument, and starts executing from
there. E.g.:

GO TO NEXT-ITERATION

The exact target may depend on a variable, as in:

GO TO NEXT-ITERATION
END-OF-PROGRAM

DEPENDING ON USER-INPUT

This would jump to either NEXT-ITERATION or END-OF-PROGRAM
depending on the value of USER-INPUT (similar to a switch expres-
sion in Java).

A.6 Control flow 133

As GO TO is considered harmful —rightfully so— there is another
way of making jumps: PERFORM them.

PERFORM NEXT-ITERATION

This again starts executing from within the NEXT-ITERATION para-
graph (or section). But, most importantly, when we reach the end of
this procedure, the control flow returns to the statement immediately
following the PERFORM statement.

There are several variations on the PERFORM statement for using it
as a loop construct. E.g.:

PERFORM DO-ITERATION
UNTIL END-OF-SESSION

This is a “do-while” loop. To turn it into a “while-do” loop we can
write:

PERFORM DO-ITERATION
UNTIL END-OF-SESSION
WITH TEST BEFORE

We are not limited to jumping to paragraphs or sections. It is al-
lowed to place the statements which should be looped directly into the
PERFORM statement. E.g.:

PERFORM UNTIL END-OF-SESSION
WITH TEST BEFORE

ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER
ACCEPT USER-INPUT

END-PERFORM

Note the different order of the clauses (here they are placed before the
statements, rather than after the procedure name), as well as the com-
pulsory END-PERFORM keyword.

Of course, there is also a variation which allows “for” loops:

PERFORM VARYING COUNTER FROM 1 BY 1
UNTIL COUNTER EQUALS 10

DISPLAY "Iteration #", COUNTER
END-PERFORM

Which would loop the DISPLAY statement ten times. When the num-
ber of iterations can be predetermined, as it can be here, we can also
write:

134 Cobol

PERFORM 10 TIMES
ADD 1 TO COUNTER
DISPLAY "Iteration #", COUNTER

END-PERFORM

Finally, a program ends when it has finished with the bottom-most
statement, or when it encounters a STOP RUN or EXIT PROGRAM state-
ment. There is a reason for the two different statements: the first will
exit the entire run, whereas the second one will only exit from a sub-
program, but will leave the calling program running. That means that
the best way to end a Cobol program is:

EXIT PROGRAM
END RUN

This will exit the subprogram if this code was called as a subprogram.
If not, then it will end the “run”, i.e. do an exit to the operating system.

Bibliography

[ADZ05] Bram Adams, Kris De Schutter, and Andy Zaidman. AOP
for legacy environments, a case study, 2005. European In-
teractive Workshop on Aspects in Software, EIWAS ’05.

[Ame74] American National Standards Institute, 1430 Broadway,
New York, NY 10018, USA. American National Standard
Programming Language Cobol X3.23–1974, 1974.

[Ame89] American National Standards Institute, 1430 Broadway,
New York, NY 10018, USA. American National Standard
Programming Language C, ANSI X3.159-1989, dec 1989.

[AT05] Bram Adams and Tom Tourwé. Aspect Orientation for C:
Express yourself. In SPLAT, 2005.

[Bad00] G.J. Badros. JavaML: a markup language for Java source
code. Computer Networks, 33(1-6):159–177, 2000.

[Ben95] Keith Bennett. Legacy systems: Coping with success. IEEE
Software, 12(1):19–23, 1995.

[BG96] Thomas J. Bergin and Richard G. Gibson. History of Pro-
gramming Languages. ACM Press

[BMD02] Johan Brichau, Kim Mens, and Kris De Volder. Building
composable aspect-specific languages with logic metapro-
gramming. In GPCE, pages 110–127, 2002.

[Bow98] Antony Bowers. Effective Meta-programming in Declarative
Languages. PhD thesis, Department of Computer Science,
University of Bristol, January 1998.

[BS95] Michael L. Brodie and Michael Stonebraker. Migrating
Legacy Systems. Morgan Kaufmann, 1995.

136 BIBLIOGRAPHY

[BvDT04] Magiel Bruntink, Arie van Deursen, and Tom Tourwé.
An initial experiment in reverse engineering aspects. In
WCRE, pages 306–307, 2004.

[CC90] Elliot J. Chikofsky and James H. Cross II. Reverse engi-
neering and design recovery: A taxonomy. IEEE Software,
pages 13–17, jan 1990.

[CK03] Yvonne Coady and Gregor Kiczales. Back to the future: a
retroactive study of aspect evolution in operating system
code. In AOSD, pages 50–59, 2003.

[CKFS01] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to improve the modularity
of path-specific customization in operating system code.
SIGSOFT Softw. Eng. Notes, 26(5):88–98, 2001.

[DD99a] Kris De Volder and Theo D’Hondt. Aspect-oriented logic
meta programming. In P. Cointe, editor, Meta-Level Ar-
chitectures and Reflection, 2nd Int’l Conf. Reflection, volume
1616 of LNCS, pages 250–272. Springer Verlag, 1999.

[DD99b] Maja D’Hondt and Theo D’Hondt. Is domain knowledge
an aspect? In ECOOP Workshops, pages 293–294, 1999.

[DDMW00] Theo D’Hondt, Kris De Volder, Kim Mens, and Roel
Wuyts. Co-evolution of object-oriented software design
and implementation. In Proceedings of the international sym-
posium on Software Architectures and Component Technology
2000., 2000.

[DDN03] Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan Kaufmann,
2003.

[De 01] Kris De Volder. Code reuse, an essential concern in the
design of aspect languages? In Workshop on Advanced Sep-
aration of Concerns (ECOOP 2001), jun 2001.

[DFL+05] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc
Menaud, Marc Ségura-Devillechaise, and Mario Südholt.
An expressive aspect language for system applications
with Arachne. In AOSD, pages 27–38. ACM Press, 2005.

BIBLIOGRAPHY 137

[DFW00] Kris De Volder, Johan Fabry, and Roel Wuyts. Logic meta
components as a generic component model. In Proceed-
ings of the ECOOP ’2000: Fifth International Workshop on
Component-Oriented Programming, 2000.

[DMW99] Maja D’Hondt, Wolfgang De Meuter, and Roel Wuyts. Us-
ing reflective programming to describe domain knowl-
edge as an aspect. In Proceedings of GCSE ’99, 1999.

[dOC98] Carlos Montes de Oca and Doris L. Carver. Identifica-
tion of data cohesive subsystems using data mining tech-
niques. In ICSM, pages 16–23, 1998.

[EF05] Michael Engel and Bernd Freisleben. Supporting au-
tonomic computing functionality via dynamic operating
system kernel aspects. In AOSD ’05, pages 51–62. ACM
Press, 2005.

[FF05] Robert E. Filman and Daniel P. Friedman. Aspect-
oriented programming is quantification and oblivious-
ness. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke,
and Mehmet Akşit, editors, Aspect-Oriented Software Devel-
opment, pages 21–35. Addison-Wesley, Boston, 2005.

[FGCW05] Marc Fiuczynksi, Robert Grimm, Yvonne Coady, and
David Walker. patch (1) Considered Harmful. In Proceed-
ings of the 10th Workshop on Hot Topics in Operating Systems,
2005.

[GB03] Kris Gybels and Johan Brichau. Arranging language fea-
tures for more robust pattern-based crosscuts. In AOSD,
pages 60–69. ACM Press, 2003.

[GBNT01] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling cross-
cutting constraints in domain-specific modeling. CACM,
44(10):87–93, 2001.

[GD05] Orla Greevy and Stephane Ducasse. Correlating features
and code using a compact two-sided trace analysis ap-
proach. In CSMR, pages 314–323. IEEE, 2005.

[GKMM04] Nicolas Gold, Claire Knight, Andrew Mohan, and Mal-
colm Munro. Understanding service-oriented software.
IEEE Softw., 21(2):71–77, 2004.

138 BIBLIOGRAPHY

[Gol98] Nicholas Gold. The meaning of “legacy systems”, 1998.

[GR04] J. Gray and S. Roychoudhury. A technique for construct-
ing aspect weavers using a program transformation en-
gine. In AOSD 2004: Proc. of the 3rd International Conf. on
Aspect-Oriented Software Development, pages 36–45. ACM
Press, 2004.

[HC03] Youssef Hassoun and Constantinos Constantinides. Vis-
ibility considerations and code reusability in AspectJ.
In 3rd Workshop on Aspect-Oriented Software Development
(AOSD-GI) of the SIG Object-Oriented Software Development,
German Informatics Society, mar 2003.

[HH04] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.
In AOSD 2004: Proc. of the 3rd International Conf. on Aspect-
Oriented Software Development, pages 26–35. ACM Press,
2004.

[HL94] Patricia Hill and John Lloyd. The Gödel Programming Lan-
guage. MIT Press, 1994.

[HLBAL05] Wahab Hamou-Lhadj, Edna Braun, Danien Amyot, and
Timothy Lethbridge. Recovering behavioral design mod-
els from execution traces. In CSMR, pages 112–121, 2005.

[Hon98] Koen De Hondt. A Novel Approach to Architectural Recovery
in Evolving Object-Oriented Systems. PhD thesis, Vrije Uni-
versiteit Brussel, Departement of Computer Science, dec
1998.

[HU03] Stefan Hanenberg and Rainer Unland. Parametric intro-
ductions. In AOSD, pages 80–89, 2003.

[ISO02] ISO/IEC. Information technology — Programming lan-
guages — COBOL, 2002. Reference number ISO/IEC
1989:2002(E).

[JC04] A. Jackson and S. Clarke. Sourceweave.net: Source-level
cross-language aspect-oriented programming. In G. Kar-
sai and E. Visser, editors, Proc. of the 3rd International
Conf. on Generative Programming and Component Engineer-
ing (GPCE 2004), volume 3286 of LNCS, pages 115–134.
Springer, oct 2004.

BIBLIOGRAPHY 139

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. LNCS, 2072:327–355, 2001.

[Kic97] Gregor Kiczales. Aspect-oriented programming. In Pro-
ceedings of the Eighth Workshop on Institutionalizing Software
Reuse, 1997.

[KR78] B. Kernighan and D. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[KR05] Günter Kniesel and Tobias Rho. Generic aspect languages
- needs, options and challenges. In Journée Francophone
sur le Développement de Logiciels Par Aspects (JFDLPA). Sep
2005.

[Läm98] Ralf Lämmel. Object-oriented cobol: Concepts & imple-
mentation. In J. Wessler et al., editors, COBOL Unleashed.
Macmillan Computer Publishing, sep 1998.

[LC03] D. Lafferty and V. Cahill. Language-independent aspect-
oriented programming. In OOPSLA 2003: Proc. of the
18th Annual ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 1–12.
ACM Press, 2003.

[Leh74] M. Lehman. Programs, cities, students, limits to growth?
In Imperial College of Science, Technology and Medicine Inau-
gural Lecture Series, volume 9, pages 211–229, 1974.

[Leh96] M. Lehman. Laws of software evolution revisited. In Eu-
ropean Workshop on Software Process Technology, pages 108–
124, 1996.

[Leh98] M. M. Lehman. Software’s future: Managing evolution.
IEEE Software, 15(1):40–44, 1998.

[LS05a] Ralf Lämmel and Kris De Schutter. What does Aspect Ori-
ented Programming mean to Cobol? In AOSD ’05, pages
99–110, New York, NY, USA, 2005. ACM Press.

[LS05b] Daniel Lohmann and Olaf Spinczyk. On typesafe aspect
implementations in C++. In SC ’05, 2005.

140 BIBLIOGRAPHY

[LV01] R. Lämmel and C. Verhoef. Semi-automatic grammar re-
covery. Software—Practice & Experience, 31(15):1395–1438,
December 2001.

[Mae87] Pattie Maes. Concepts and experiments in computational
reflection. In OOPSLA, pages 147–155, 1987.

[MDDH04] Isabel Michiels, Theo D’Hondt, Kris De Schutter, and
Ghislain Hoffman. Using dynamic aspects to distill busi-
ness rules from legacy code. In DAW: Dynamic Aspects
Workshop, pages 98–102, mar 2004.

[MDTZ03] Isabel Michiels, Dirk Deridder, Herman Tromp, and Andy
Zaidman. Identifying problems in legacy software: Pre-
liminary findings of the ARRIBA project. In ELISA work-
shop at ICSM 2003, 2003.

[Men00] Kim Mens. Automating Architectural Conformance Checking
by means of Logic Meta Programming. PhD thesis, Vrije Uni-
versiteit Brussel, 2000.

[MMW00] Tom Mens, Kim Mens, and Roel Wuyts. On the use
of declarative meta programming for managing architec-
tural software evolution. In Proceedings of the ECOOP
’2000 Workshop on Object-Oriented Architectural Evolution,
jun 2000.

[MMW02a] Kim Mens, Tom Mens, and Michel Wermelinger. Main-
taining software through intentional source-code views.
In SEKE, pages 289–296, 2002.

[MMW02b] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting
software development through declaratively codified pro-
gramming patterns. Expert Syst. Appl, 23(4):405–413, 2002.

[MN95] Gail C. Murphy and David Notkin. Lightweight source
model extraction. In SIGSOFT FSE, pages 116–127, 1995.

[MT01] Tom Mens and Tom Tourwé. A declarative evolution
framework for object-oriented design patterns. In ICSM,
pages 570–579, 2001.

[MW03] Daniel L. Moise and Kenny Wong. An industrial expe-
rience in reverse engineering. In WCRE, pages 275–284,
2003.

BIBLIOGRAPHY 141

[OMB05] Klaus Ostermann, Mira Mezini, and Christoph Bockisch.
Expressive pointcuts for increased modularity. In ECOOP,
pages 214–240, 2005.

[PW92] D. Perry and A. Wolf. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, oct 1992.

[Rit93] Denis M. Ritchie. The development of the C language. In
Proceedings of the Conference on History of Programming Lan-
guages, volume 28(3) of ACM Sigplan Notices, pages 201–
208, New York, NY, USA, apr 1993. ACM Press.

[Rob65] J. A. Robinson. A machine oriented logic based on the
resolution principle. JACM, 12(1):23–41, 1965.

[Sam69] Jean E. Sammet. Programming Languages: History and Fun-
damentals. Prentice Hall, Englewood Cliffs, 1969.

[Sam78] Jean E. Sammet. The early history of COBOL. In The first
ACM SIGPLAN Conf. on History of programming languages,
pages 121–161. ACM Press, 1978.

[Sam85] Jean E. Sammet. Brief summary of the early history of
COBOL. j-ANN-HIST-COMPUT, 7(4):288–303, oct /dec
1985.

[SGSp02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-
preikschat. AspectC++: An aspect-oriented extension to
the C++ programming language. In TOOLS, jan 2002.

[Sim00] S.E. Sim. Next generation data interchange: Tool-to-tool
application program interfaces. In Proc. of Working Conf. on
Reverse Engineering (WCRE’00), pages 278–283. IEEE Com-
puter Society, nov 2000.

[Sne96a] Harry M. Sneed. Encapsulating legacy software for use in
client/server systems. In WCRE, page 104, 1996.

[Sne96b] Harry M. Sneed. Modelling the maintenance process at
Zurich Life Insurance. In ICSM, page 217, 1996.

[Sne04] Harry M. Sneed. Program comprehension for the purpose
of testing. In IWPC, pages 162–171, 2004.

142 BIBLIOGRAPHY

[Sne05] Harry M. Sneed. An incremental approach to system re-
placement and integration. In CSMR, pages 196–206, 2005.

[SPS02] S. Schonger, E. Pulvermüller, and S. Sarstedt. Aspect-
oriented programming and component weaving: Using
XML representations of abstract syntax trees. In Proc. of the
2nd German GI Workshop on Aspect-Oriented Software Devel-
opment, pages 59 – 64, feb 2002. Technical Report No. IAI-
TR-2002-1, University of Bonn, Computer Science Dept.

[SS03] Harry M. Sneed and Stephan H. Sneed. Creating web ser-
vices from legacy host programs. In WSE, pages 59–65,
2003.

[Ste05] Friedrich Steimann. Domain models are aspect free. In
Model Driven Engineering Languages and Systems, 8th Inter-
national Conference, MoDELS 2005, Montego Bay, Jamaica,
October 2-7, 2005, Proceedings, volume 3713 of Lecture Notes
in Computer Science, pages 171–185. Springer, 2005.

[Tas04] David Tas. Aspect-oriëntatie in Cobol, (graduation thesis,
in Dutch), 2004.

[Tic01] Sander Tichelaar. Modeling Object-Oriented Software for Re-
verse Engineering and Refactoring. PhD thesis, University of
Berne, 2001.

[Vol98] Kris De Volder. Type-Oriented Logic Meta Programming.
PhD thesis, Vrije Universiteit Brussel, 1998.

[Won04] Stijn Van Wonterghem. Aspect-orientatie bij procedurele
programmeertalen, zoals C, (graduation thesis, in Dutch),
2004.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Proceedings of the TOOLS
USA ’98 Conference, pages 112–124. IEEE Computer Soci-
ety Press, 1998.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implementa-
tion. PhD thesis, Vrije Universiteit Brussel, 2001.

BIBLIOGRAPHY 143

[ZAD05] Andy Zaidman, Bram Adams, and Kris De Schutter. Ap-
plying dynamic analysis in a legacy context: An industrial
experience report. In 1st International Workshop on Program
Comprehension Through Dynamic Analysis (PCODA), 2005.

[ZAD+06] Andy Zaidman, Bram Adams, Kris De Schutter, Serge De-
meyer, Ghislain Hoffman, and Bernard De Ruyck. Regain-
ing lost knowledge through dynamic analysis and Aspect
Orientation - an industrial experience report. In CSMR,
pages 91–102, 2006.

[ZCDP05] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan
Paredaens. Applying webmining techniques to execution
traces to support the program comprehension process. In
CSMR, pages 134–142. IEEE, 2005.

[ZD04] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event ex-
ecution frequency. In Proceedings of the 8th European Confer-
ence on Software Maintenance and Reengineering, pages 329–
338, mar 2004.

[ZHS04] David Zook, Shan Shan Huang, and Yannis Smaragdakis.
Generating aspectJ programs with meta-aspectJ. In GPCE,
pages 1–18, 2004.

[ZJ03] Charles Zhang and Hans-Arno Jacobsen. TinyC2: To-
wards building a dynamic weaving aspect language for
C. In FOAL 2003, Boston, MA, USA, 2003.

[ZK01] Y. Zou and K. Kontogiannis. A framework for migrating
procedural code to object-oriented platforms. In 8th Asia-
Pacific Software Engineering Conf. (APSEC 2001), 4-7 Decem-
ber 2001, Macau, China, pages 390–499. IEEE Computer So-
ciety, 2001.

