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based error variance estimator S2
P

RRK regional residual test based on intervals, with known variance σ2

RRUn unstandardized regional residual test with factor 1/
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RRUnij unstandardized regional residual test with factor 1/
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RRLR regional residual test based on raw residuals in the logistic regression
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RRLD regional residual test based on standardized deviance residuals

in the logistic regression context

RRLP regional residual test based on standardized Pearson residuals

in the logistic regression context

RRL. the collection of RRLR, RRLD and RRLP tests

sd(.) standard deviation of (.)
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CHAPTER 1

Introduction

Regression analysis is a very widely used statistical method, and its applica-

tions can be found in many different fields, like in biological or psychological

experiments, medical science, business and finance, and many others. In re-

gression analysis the effect of one or more predictor variables or covariates x,

like e.g. the geographical position of a city, on a response variable y, like e.g.

the temperature, is investigated by means of a statistical model,

y = m(x) + ǫ. (1.1)

The model consists of a systematic component m(x) and an error component

ǫ. The mean of the response variable is modeled conditional on the observed

value of the predictor variables, i.e. E(y |x ) = m(x). This function thus char-

acterizes the average value of y among subjects with the same covariate val-

ues or covariate pattern x. The response values y are assumed to be con-

ditionally independent. The error component on the other hand, represents

how much the value of the response variable y differs from the average value

among subjects with the same covariate pattern x. In practice, the true rela-

tionship (1.1) is rarely known. If the functional form of the systematic com-

ponent and the distributional form of the error component are known, pa-

rameters can be estimated based on a sample of size n, e.g. by means of the

least squares method. When the relationship between the mean response and

a single covariate x ∈ R is known to be linear, the simplest form for m(x)

is m(x, θ) = θ0 + θ1x. It belongs to a parametric family of regression func-

tions, M =
{

m(x, θ) : θ = (θ0, θ1) ∈ Θ ⊂ R
2
}

. If, in addition, the distribution

of the random error terms is specified, e.g. the error terms are independently

and identically normally distributed with zero mean and variance σ2, then the

model y = θ0 + θ1x + ǫ is referred to as a fully parametric model. On the other

hand, a regression model may be specified by infinitely many regression pa-

rameters, and then the model is called nonparametric. To illustrate the idea

of a nonparametric regression model, assume equally spaced design points

xi = (i − 0.5)/n, i = 1, . . . , n of a single covariate x ∈ [0, 1], and, let m(x)

1



Chapter 1. Introduction

be a square integrable function, that has the Fourier series representation,

m(x, φ) = φ0 + 2
∞

∑
j=1

φj cos(π jx), for almost all x in [0, 1], (1.2)

with Fourier coefficients

φj =
∫ 1

0
m(x) cos(π jx)dx, j = 1, 2, . . . . (1.3)

Note that m(x) contains an infinite dimensional vector of parameters φ and

is now thus said to be a nonparametric regression model. The previous

representation is only one possible illustration of a nonparametric regression

model, out of the wide class of nonparametric regression models. Of course

in practice, to fit a nonparametric regression model to the data, the number of

parameters has to be finite, and the model has to be approximated. The term

‘nonparametric’rather refers to the enormous variety of functions that can be

approximated by a nonparametric model without specifying a particular form

in advance. Despite their flexibility, data analysts still often prefer parametric

over nonparametric regression models. The popularity of the parametric

models is perhaps due to the fact that the regression coefficients are more easily

interpretable than those involved in nonparametric regression. Parametric

models are also more familiar to practitioners, and are very easily fitted by

statistical software packages. Estimation in nonparametric models, on the

other hand, always requires a subjective or data-driven choice of a smoothing

parameter.

Once the systematic component of the regression model is specified, the

data-analyst can fit the model to the data, and is further interested in infer-

ences on regression parameters and prediction. Before doing so, it is wise to

perform a model check to verify whether the specified regression model is

appropriate for the data at hand. Inferences and predictions can be wrong

when the specified parametric model is not appropriate. The discussion in

this dissertation will deal with the assessment of the fit of a parametric model,

with which the data-analyst is preliminarily satisfied. This means that to the

best of his knowledge, all relevant predictor variables are present in the model

and have been entered in the correct functional form (like log(x), or inclusion

of interaction terms). To validate the quality of the specified regression

model, distance measures between observed, y, and fitted values, ŷ, should be

examined both individually and collectively. If the model fits well, we expect

global summary measures to be small and individual contributions of each

pair (yi, ŷi), i = 1, . . . , n to be unsystematic and relatively small compared to

2



the error component. The particular field of statistics that is concerned with

assessing the fit of parametric regression models is known as Lack-of-Fit (LOF).

This will be the main focus of this dissertation. In the literature, there is not

always a clear distinction between Goodness-of-Fit (GOF) and LOF tests and

the two terms are sometimes mixed up. We would like GOF tests to correspond

to the null hypothesis stating that a given sample has arisen from a specified

distribution, while LOF tests are used to check whether a certain family of

parametric regression models appropriately describes the relationship between

the mean of a response variable y and one or more predictor variables x.

The simplest distance measure between observed, and fitted values, is their dif-

ference, y − ŷ, called residual, which provides an estimate of the error compo-

nent. Residuals or transformations of them are highly informative to assess the

fit of the specified model. Large values of properly standardized residuals may

indicate individually poorly fitting observations. When plotted with respect to

the fitted values, or with respect to included and/or omitted covariates, they

may

• visually show poorly fitting individual observations,

• allow the assessment of model assumptions like equal error variances or

homoscedasticity,

• even suggest possible ameliorations to the specified model, as they may

reveal effects of potential new covariates or suitable transformations of

predictor variables already included in the model.

Residuals or transformations of them may be combined into a single overall

LOF test statistic as a global measure of model quality. The fact that a LOF

test is a single value to summarize a considerable amount of information is

both an advantage as well as a disadvantage. Therefore, in any analysis, the

use of a LOF test should be complemented with a careful examination of some

individual measures or regression diagnostics. Diagnostics focus on individ-

ual observations and their influence on regression parameters and predictions.

When, for example, in linear regression the values of a certain subject are far

from the average predictor value, the design point is said to have a high lever-

age. Small perturbations of the response value of a high leverage point, may

have considerable influence on the regression parameter estimates, predictions

and inferences. Therefore, both LOF tests and regression diagnostics should be

considered before any conclusion concerning the model fit is drawn. Without

denying the importance of individual regression diagnostics, we only investi-

gate the use of LOF tests in this dissertation.
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Chapter 1. Introduction

A huge number of statistical tests in the literature are already available for

this purpose. Chapter 3 provides a selective overview of lack-of-fit tests.

We have no intention to give a complete overview, but we rather focus on

those tests that are of historical importance, that are widely used in practice

or that are related to our newly introduced tests in later chapters. First of

all, there is the well known classical F test (Fisher, 1922) which is based on

the pure sum of squared errors. This widely described and important test

is unfortunately only applicable when multiple observations with the same

covariate patterns are present in the data. This is however a severe limitation in

practice. A related test, called the reduction method, does not require replicates

of observations with the same covariate pattern, but requires the specification

of an alternative model in advance. This model is often not available, as we

believe that the model under study is appropriate to describe the relationship

between the mean response and the covariates. In addition, we would like

to test the appropriateness of the model under study to prevent us from

misleading or incorrect inferences, without having a particular alternative

model in mind. Nonparametric LOF tests answer this need. Two historically

important nonparametric tests, the von Neumann (1941) and Buckley (1991)

tests are discussed. Further, smoothing based LOF tests, nicely presented and

summarized in the monograph of Hart (1997), form an important part of this

section. In general, these tests are very powerful to a wide class of alternative

models, but, unfortunately, their performance depends on the subjective choice

of a smoothing parameter or type of smoother. However, data-driven selection

criteria for smoothing parameters are available nowadays. Further, in case of

multiple covariates, the performance highly depends on the order relation that

has to be chosen for the residuals before they can be smoothed, unless tests are

based on multivariate smoothers. Finally, LOF tests based on marked empirical

processes (e.g. Stute (1997), Diebolt and Zuber (1999), Lin et al. (2002)) are

introduced, as they are closely related to our tests described in Chapter 4 and

later chapters. LOF tests for logistic regression models are introduced in a

separate section, as the non-unique definition of the residuals have important

consequences on the construction of tests (Hosmer and Lemeshow, 2000). As

already briefly highlighted, graphical diagnostic displays are also very useful

for detecting and examining anomalous features in the fit of a model to data.

Among the graphical diagnostic tools, the classical residual plot is probably

the best known. Only a few authors also suggest plots directly related to

LOF tests. A brief overview is also provided. To conclude Chapter 3, we

provide an overview of bootstrap schemes that can be used to approximate the

null distribution of the test statistics described in this review chapter. Many

asymptotic null distributions of test statistics are not suitable for use in small
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samples. Further, some null distributions might be too complex, and therefore

the bootstrap is an alternative that is preferred by many authors, e.g. Hart

(1997), Stute et al. (1998), Fan and Huang (2001), among others. Also for our

new tests, we prefer to apply one of the bootstrap schemes in this section.

One could wonder why to propose more LOF tests when there are already so

many tests available. In the literature, the majority of tests focus on detecting

global deviations from the null model. In other words, when the model is not

appropriate, often the deviations occur over the entire range of the covariates.

Tests are constructed to detect these global deviations by combining discrep-

ancy measures of individual observations into an overall LOF test. Failure to

assess local deviations in a particular region of the predictor space is a major

problem of most tests. By local LOF, we thus mean the presence of small areas

in the predictor space, where the regression model does not fit well locally.

The goal of this dissertation is to construct LOF tests that are able to detect both

global and local deviations from a parametric regression model. In addition,

the tests should not depend on the subjective choice of a smoothing parameter.

They have to be applicable whether replicated observations are present or not.

Further, we aim to construct a formal diagnostic plot that is directly associated

with the LOF test. The plot should formally identify regions in the predictor

space where the regression model does not fit well.

We therefore propose to consider discrepancy measures over both local and

global regions in the predictor space, and to combine this information in one

test statistic. The new test is able to detect both global and local deviations. It is

independent of a subjective choice of a smoothing parameter and is applicable

whether replicated observations are present or not.

In addition, we believe that we could do better than solely reducing infor-

mation of an entire sample to a single test statistic. Therefore, we propose to

use the information that is available in the individual discrepancy measures,

calculated over both local and global regions in the predictor space, to construct

plots. In this way, the plots are clearly associated to the new tests, and provide

a better insight into the underlying deviations present in a certain model fit.

Moreover, the graphs allow formal conclusions, which is a major advantage

over other diagnostic plots directly associated to LOF tests. Possible local

deviations in the latter may be detected by the human eye, but the data analyst

does not know whether the observed discrepancies are statistically significant.

When LOF is detected by the new statistical test, the corresponding plot allows

the data-analyst to locate specific regions in the predictor space where the

model does not fit well and suggest in which area remedial measures may be

necessary. The new plots help the data-analyst to formally identify regions in
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Chapter 1. Introduction

the predictor space that deserve special attention of the experimenter.

Chapter 4 describes these new tests and plots in case of a single predictor

variable on the real line. Chapter 6 discusses extensions of the new tests to

multiple covariates, while in the literature often only the univariate case is

considered. The use of the new tests in generalized linear models has to be

studied in more detail as the residuals are not uniquely defined. This is done in

Chapter 7. To answer the need of a rarely discussed problem, the methodology

is applicable in the context of circular-linear regression models. When one of

the predictor variables is measured on a circular, rather than on a linear scale,

many classical LOF tests are no longer applicable as a specific origin for the

circular variate has to be chosen. As our methodology is origin-independent,

it is straightforward to consider LOF on a circle. All chapters include specific

data examples on which the tests and plots are illustrated. They all contain

a simulation study for comparing the performance of the new methods with

some classical tests, in the specific context of each chapter. As some general

guidelines for all simulation studies, we mention that all tests in this disser-

tation are performed at the 5% significance level. Typically, a larger number

of Monte Carlo and bootstrap samples than the ones used in this thesis are

necessary to accurately estimate the empirical powers. We believe, however,

that our results are indicative of the comparison between the different tests.

In particular, we obtain good empirical powers for our tests in case of local

deviations from the hypothesized model.

In the last chapter (Chapter 8), some large sample properties of the newly

introduced tests are discussed. Although we argue that the bootstrap is more

suitable for practical use, we provide some theoretical basis for our proposed

tests.

Before starting the discussion of LOF tests, we first introduce and discuss a

case study from the literature in Chapter 2 to fully appreciate the underlying

problem and goal.
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CHAPTER 2

The US temperature data set

The US Temperatures data (Peixoto, 1990) gives the normal average January

minimum temperature, y, in degrees Fahrenheit, between 1931 and 1960, with

the longitude, x1, and latitude, x2, of 56 United States (US) cities. The longitude

of the US cities is measured in degrees west of the prime meridian and the

latitude in degrees north of the equator. The geographical positions of the 56

US cities are illustrated in the map and scatter plot in Figure 2.1. Note that the

longitude is plotted in negative values to obtain the conventional map of the

US.
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FIGURE 2.1: US Temperature data (Peixoto, 1990), map and scatter plot that represents the

geographical positions of the 56 US cities. The latitude is measured in degrees north of

the equator and the longitude in degrees west of the prime meridian. The longitude is thus

plotted with negative values to obtain the conventional map of the US.
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Chapter 2. The US temperature data set

TABLE 2.1: Estimated parameters and their standard errors when the linear model (2.1) is fit

to the US temperature data, together with the calculated values of the statistical tests for

H0 : θ = 0 versus H1 : θ 6= 0 and their corresponding p-values.

Coefficients Estimate Std. Error t value Pr(> |t|)
(Intercept) 26.51786 0.92667 28.616 < 0.0001

Longitude 0.13396 0.06314 2.122 0.0386

Latitude -2.16355 0.17570 -12.314 < 0.0001

The data file is available online from the Data and Stories Library (DASL) at

http://lib.stat.cmu.edu/DASL/Stories/USTemperatures.html.

The simplest model of the average minimum temperature as a function of the

longitude and the latitude is the linear model,

y = θ0 + θ1x1 + θ2x2 + ǫ. (2.1)

Assuming normally distributed error terms with constant variances σ2, we fit

this model to the data using least squares. Note that the predictor variables

were centered before the model was fit, so as to reduce multicollinearity. We

summarize some results in Table 2.1, from which the fitted parametric model

can be written as

ŷ = 26.518 + 0.134x1 − 2.164x2. (2.2)

Figure 2.2 shows the observed data with the fitted linear regression plane. It is

very hard to visually find out whether the fitted model is appropriate for the

data, because the representation needs to be done in three dimensions. Before

valid inferences could be drawn from the model, or before the model could be

used for predictions, we need to be sure that no systematic deviations from the

fitted model are present. In other words, we need to check whether no lack-of-

fit is present. In what follows, we discuss the results of the regression analysis

and some traditional graphics to evaluate the quality of the fitted model.

In Table 2.1, both predictor variables, longitude and latitude, show significant

linear relationships at the 5 % significance level: p = 0.0386 for testing H0 : θ1 =

0 versus H1 : θ1 6= 0, and p ≤ 0.0001 for testing H0 : θ2 = 0 versus H1 : θ2 6=
0. It actually tests whether a model with this specific predictor tells us more

about the outcome variable, than a model that does not include that variable.

The F test for a regression relationship (F-statistic = 75.88 and corresponding

p-value ≤ 0.0001) indicates the existence of a regression relationship between

8



FIGURE 2.2: Observed (data) and fitted linear regression model (plane) of the US temperature

data (Peixoto, 1990).

the average January minimum temperature and longitude and latitude, but of

course it does not ensure that useful predictions can be made by using it. The

adjusted R-squared, which represents the percentage of the total variability of

the response variable that is explained by the regression model, is 0.73, which

is neither very good nor bad. The predicted values are a more or less accurate

representation of the observed values.

We plot several graphs to check the model assumptions and to validate the

model quality. The QQ plot in the upper left panel of Figure 2.3 does not indi-

cate severe deviations from normality for the residuals. The scatter plot of the

observed temperature versus the fitted values is shown in the lower left panel

of this figure. The dotted line represents the bisector, and the smoothed trend

line (full line) is a loess smoother with span = 0.75. When good model predic-

tions are available, we expect to see a narrow cloud around the bisector, which

indicate a good correspondence between the observed and the fitted response

variable. The smoothed line will then more or less coincide with the bisector.

This graph shows a rather good correspondence when fitting the linear model.

Although the cloud is not that narrow, most points are scattered nicely around

the bisector (dotted line) and the smoothed line does not deviate considerably

from the bisector.

Further, the left panels of Figure 2.4 show the residual plots against the fit-

ted values (upper panel), against latitude (middle panel) and against longitude

9



Chapter 2. The US temperature data set
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FIGURE 2.3: (Upper panels) QQ-plot of the residuals; (Lower panels) Scatter plots of the ob-

served temperature values versus the fitted values. The dotted line represents the bisector,

and the smoothed trend line (full line) is a loess smoother with span = 0.75. The plots in

the left panels are those for the linear model (2.2), while in the right panels are those for the

third order polynomial model (2.4) are plotted.

(lower panel) for the linear model fit. When no model deviations are present,

we expect the residuals to have zero mean and constant variance. In these scat-

ter plots, this can be translated into a random cloud of residuals around zero,

equally wide for small and large values of the variable on the x-axis. We ex-

pect then the solid line, a loess smoother with span = 0.75, to coincide with

the constant line at zero (dotted line). From these plots, we conclude that the

assumption of homoscedasticity or constant variances is reasonable.
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FIGURE 2.4: Scatter plots of the residuals versus the fitted values (upper panels), versus latitude

(middle panels) versus longitude (lower panels). The full line corresponds to a smoothed

trend line (loess smoother, span = 0.75), the dotted line is the constant mean model at zero.

The plots in the left panels are those for the linear model (2.2), while in the right panels are

those for the third order polynomial model (2.4).
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Chapter 2. The US temperature data set

The smoothed trend line for the residuals versus longitude, however, shows

a clear trend. It suggests that some regression model with higher order

polynomials might be more appropriate. For the fitted values and latitude,

the scatter plots are less clear. We also have to be aware of possible boundary

effects that drag the smoothed trend line unjustly towards one direction at

the boundaries. Partial regression plots might help to reveal the relationship

between average January minimum temperature and latitude and longitude.

The left panel in Figure 2.5 reveals that the relationship between January

temperature and latitude, after removing the effects of longitude, is linear

and negative. However, after removing the effects of latitude, the relationship

between January temperature and longitude is cubic polynomial (right panel).

Of course, these plots do not involve a statistical test, so no formal conclusions

can be drawn from them. Although we did not perform a statistical lack-of-fit

test yet, we could already suspect that the linear model is inappropriate to

describe the relationship between the normal average January minimum

temperature, and latitude and longitude. In Chapters 3 and 6 we will confirm

this suspicion with some statistical tests.
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FIGURE 2.5: Partial residual plots for latitude (left panel) and longitude (right panel). The

dashed line is the linear least squares fit, the full line is a loess smooth fit (span = 0.75).

According to Peixoto (1990), a cubic polynomial model in longitude and first

order in latitude is a more appropriate model for the US temperatures data

than the first order polynomial in both predictors.

For the parametric regression model,

y = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x2
1 + θ5x2

1x2 + θ6x3
1 + θ7x3

1x2 + ǫ, (2.3)

12



we obtain the least squares fit

ŷ = 22.83 − 0.518x1 − 2.522x2 − 0.0008x1x2

+ 0.0042x2
1 + 0.0003x2

1x2 + 0.001x3
1 + 0.00003x3

1x2. (2.4)

Previous measures and plots are reconsidered for the new model. We discuss

some remarkable changes. Firstly, the adjusted R-squared seriously improved

to 0.95 and this also results in a more narrow scatter around the diagonal in the

scatter plot of the observed temperature values versus the fitted values (Figure

2.3, lower right panel). The residual scatter plots versus the fitted values, lati-

tude and longitude (Figure 2.4, right panels) show a remarkable improvement

in the trend for longitude and a huge reduction in the range of the residuals

as compared to the plots in the left panels. Although it is very hard to judge

whether a trend is still present in the residual scatter plots versus fitted values

and latitude, we conclude that the model suggested by Peixoto is an enormous

improvement as compared to the linear regression model in Equation (2.1). To

conclude that the new model is really appropriate for the data at hand and no

lack-of-fit is present, we do need a statistical test to assess the parametric model

fit. Moreover, if there would be a lack-of-fit, it would be most welcome to have

some graphical tools that formally locate lack-of-fit in the predictor space. The

latter will be the main topic of this dissertation. So rather than dealing with

model building or variable selection techniques, we mainly focus in the follow-

ing chapters on the validation of the quality of a selected model that is assumed

to be useful by the data analyst.
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CHAPTER 3

Review of some lack-of-fit tests

In this chapter, a limited review of some lack-of-fit tests is provided. It is

not intended to be a complete literature review of LOF tests. There is a huge

amount of literature available, but not all of them are relevant for the research

presented in this dissertation. The selected tests are included because of there

historical importance, because they are frequently used in real case studies,

because of their good power properties or because of their relation with the

main results in this dissertation.

We consider the general setting where

yi = m(xi) + ǫi, i = 1, . . . , n, (3.1)

describes the regression relationship between the mean of the response variable

y and one single predictor x ∈ R, where the xi, i = 1, . . . , n are assumed to be

known and fixed, and n denotes the sample size. Assume the error terms ǫi, i =

1, . . . , n, where n denotes the sample size, to be independently and identically

distributed with mean zero and variance σ2. The central null hypothesis states

that m belongs to a given parametric family of functions,

H0 : m ∈ M = {m(x, θ) : θ ∈ Θ} , (3.2)

where Θ is a p-dimensional proper parameter set in R
p.

We assume rather severe distributional conditions at first sight, but these are

mainly to obtain nice limit distributions for the different statistics described in

this chapter. Throughout this chapter, possible extensions, such as random de-

signs, multiple covariates, or heteroscedasticity, will be discussed wherever rel-

evant. However, for most test statistics, one of the bootstrap schemes described

in Section 3.5 will be appropriate, so that most of them are easily applicable in

real case studies.
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Chapter 3. Review of some lack-of-fit tests

3.1 Classical lack-of-fit F test and similar approaches

3.1.1 Pure error lack-of-fit F test

Probably the best known and most frequently described lack-of-fit test in re-

gression textbooks (e.g. Neter et al. (1996), Draper and Smith (1998)) is the

classical LOF F test, or the pure error F test (Fisher, 1922). This test is able to

detect any kind of deviations from a parametric linear regression model, but

assumes ideal circumstances for lack-of-fit testing. More precisely, more than

one replicate should be available for at least one of the different design points.

To highlight the need for repeated observations, we rewrite Model (3.1) as

yij = m(xi, θ) + ǫij, i = 1, . . . , c, j = 1, . . . , ni, (3.3)

where the index j stresses the presence of ni replicates at the ith design point.

Note that y is not a matrix but represents the n × 1 vector of observable re-

sponse values with n = ∑
c
i=1 ni. As we assume m(xi, θ) to be linear, m(xi, θ) =

p−1

∑
j=0

mj(xi)θj, where θ is a p vector of unknown parameters, m0(xi) = 1 for all i,

and mj(xi), j = 1, . . . , p − 1, are known functional forms of the predictor value

x for the ith covariate pattern, e.g. a power function or a logarithmic transform

of x, etc. Note that the value of the latter are the same for all replicates in design

point i. The errors are assumed to be i.i.d. N(0, σ2). The pure error LOF test

statistic contrasts the error sum of squares of a so-called full model with respect

to a reduced model. Let F denote the full model that imposes no restrictions on

the means of different design points,

yij = µi + ǫij, i = 1, . . . , c, (3.4)

where the µi are parameters which may be different for each design point. This

model does not assume any predefined relationship between the mean of the re-

sponse variable and the values of the regressors, which is actually the one-way

analysis of variance model. Model (3.3) is the model under the null hypothe-

sis and is referred to as the reduced model, denoted by R. The F test allows

a formal decision about whether the more complex, full model should be pre-

ferred over the reduced model under the null hypothesis. The corresponding

hypotheses have the form

H0 : m(xi) =
p−1

∑
j=0

mj(xi)θj versus Ha : m(xi) = µi, i = 1, . . . , c.

Note that we assume that p ≤ c so that the reduced model involves less param-

eters than the full model. In addition, assume n − p > c − 1. This means that
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3.1. Classical lack-of-fit F test and similar approaches

a sufficient amount of replicates, compared to the number of groups, have to

be available in the data set. By finding the error sums of squares (SSE) in both

models, the test statistic,

F =

SSE(R)−SSE(F)
d fR−d fF

SSE(F)
d fF

, (3.5)

can be computed, with d fR and d fF the degrees of freedom of SSE(R) and

SSE(F) respectively. The denominator corresponds to the pure error mean

squares,
∑

c
i=1 ∑

ni
j=1(yij−yi)

2

n−c , where yi denotes the mean of the response variable at

design point i. Whether the null model is appropriate or not, this estimator al-

ways provides an unbiased estimator of the error variance σ2. It is a model-free

variance estimator, since no parametric model for m is involved. The numera-

tor equals the LOF mean sum of squares,
∑

c
i=1 ni(yi−ŷi)

2

c−p , with ŷi the fitted value

of the response variable for the ith group of replicates, obtained by least squares

regression of the reduced model. Under the null, this estimator is also an un-

biased estimator of σ2. This one requires a predefined parametric model for m

and is therefore called a model-based variance estimator. However, when the

true relationship between the response and the predictor variable considerably

deviates from the specified null model, the estimator will tend to overestimate

the error variance. These two measures of deviations are illustrated in Figure

3.1. The F-ratio is a good measure of lack-of-fit, since the estimator in the de-

nominator is an unbiased estimator of the error term variance, no matter what

the true regression function is, i.e. under both the null and the alternative hy-

pothesis. The estimator in the numerator is constructed to be unbiased under

the null hypothesis, but is biased upwards if the hypothesized regression model

is not appropriate. Thus, when say a higher order polynomial model would be

more appropriate compared to a simple linear regression model, large values

of the test statistic will probably show up. The null hypothesis is only rejected

when the ratio is sufficiently larger than one. Under the null hypothesis of no

lack-of-fit, this statistic is F distributed with d fR − d fF and d fF degrees of free-

dom.

The idea of considering a test statistic which is a ratio of a model-based vari-

ance estimator and a model-free variance estimator as a measure for deviations

from the null model, will be frequently used in this and further sections.

Example 1 Ice crystal data. The ice crystal data set is discussed in Draper and Smith

(1981), example R on p. 66, but originally the data comes from Ryan et al. (1976). Ice

crystals are introduced into a chamber, the interior of which is maintained at a fixed

temperature (−5◦C) and a fixed level of saturation of air with water. The growth of
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FIGURE 3.1: Illustration of the decomposition of the error deviation yij − ŷi, with j indicating

the jth replicate of xi, i = 1, . . . , c, j = 1, . . . , ni and yi the mean of the response variable in

the ith group of replicates.

crystals with time is observed. The 43 sets of measurements are of axial length of the

crystals (A) in micrometers for times (T) of 50 seconds to 180 seconds from the intro-

duction of the crystals. Each measurement represents a single complete experiment.

The experiments were conducted over a number of days, and were randomized with

respect to observations time. It was desired to learn whether a straight line model,

A = θ0 + θ1T + ǫ provided an adequate representation of the growth with time of the

mean axial length of the ice crystal.

Exact replicates are available for this example, thus the classical F-test is applicable.

The pure error lack-of-fit test statistic equals 0.79 (p=0.70). Although the fit of a loess

smoother in Figure 3.2 indicates the presence of a small bump in the mid range of

the predictor variable time, no sufficient evidence of lack-of-fit is found for this example.

Example 2 Motorcycle data. Figure 3.3 shows the motorcycle data (Härdle, 1990).

The x-values denote time (in milliseconds) after a simulated impact with motorcycles.

The response variable y is the head acceleration (in g) of a post mortem human test
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FIGURE 3.2: Ice Crystal Data (Ryan et al., 1976); A = axial length of the ice crystal in microm-

eters; T = times in seconds from the introduction of the crystals. The straight line represents

the least squares fit of a linear model, the smoothed line is the fit of a loess smoother to the

data (span=0.75).

subject. The smoothed line is the fit of a loess smoother to the data (span=0.30). When

the no-effect hypothesis is tested against a full model for the motorcycle data, a clear

lack-of-fit is found in both the graphical representation and by means of the pure error

LOF test. The value for the test statistic equals 4.56, which corresponds to a p-value

smaller than 0.0001.

Although well known and easily applicable, this test is subject to a number

of constraints which makes it only applicable in a limited number of datasets.

Firstly, repeated observations at one or more x levels are required. Secondly,

the null distribution of the test statistic is only exact when the error terms are

Gaussian with constant variance σ2, the model is linear, and the parameters are

estimated by least squares.

To overcome the limitations caused by the requirement of replicates, an exten-

sive research has been done during the nineteen seventies and eighties to pro-
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FIGURE 3.3: Motorcycle Data (Härdle, 1990); y = the head acceleration (in g) of a post mortem

human test object; x = time (in milliseconds) after a simulated impact with motorcycles.

The smoothed line is the fit of a loess smoother to the data (span=0.30).

vide tests that work when replicates are not available, e.g. in non-designed or

observational experiments. Many of these procedures use the concept of pseudo-

pure error estimates of the error variance. These estimates can be constructed

based on clusters of near-replicates, near-neighbour pairs, piecewise regression

or low leverage points. For a detailed review of these procedures, the reader

is referred to e.g. Neill and Johnson (1984), Joglekar et al. (1989), Christensen

(1991), Su and Yang (2006), and the references therein. Another option in case

of a sufficiently smooth regression function is to replace the pure error mean

sum of squares in test statistic (3.5) by the consistent variance estimator sug-

gested by Gasser et al. (1986) based on pseudo-residuals. It uses the same idea of

treating neighbouring design points as near-replicates, but does not involve the

subjective choice of defining clusters of near-replicates. Pseudo-residuals, say

ẽi, i = 2, . . . , n − 1, are obtained by taking triples of subsequent design points,

i.e. xi−1, xi, xi+1, and fitting a straight line between the outer two. The pseudo-
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3.1. Classical lack-of-fit F test and similar approaches

residual ẽi is the difference between the observed value and the one predicted

by the straight line,

ẽi =
xi+1 − xi

xi+1 − xi−1
yi−1 +

xi − xi−1

xi+1 − xi−1
yi+1 − yi

= aiyi−1 + biyi+1 − yi.

The variance estimator σ̂2
P based on these pseudo-residuals is defined as

σ̂2
P =

1

n − 2

n−1

∑
i=2

c2
i ẽ2

i , (3.6)

where c2
i = (a2

i + b2
i + 1)−1. If some multiple measurements are present in

practice, a modification of this estimator is suggested by Gasser et al. (1986).

The probability distribution for this alternative test statistic needs to be derived

before a formal test can be conducted, or it needs to be approximated by one

of the procedures described later in this chapter. Other model-free variance

estimators may be used as well (Hart, 1997).

Concerning the second remark about the normality and the linearity of the null

model, one can in practice often bootstrap the null distribution instead of using

large sample distribution theory. This issue will be discussed in Section 3.5.

The extension to multiple predictor variables x ∈ R
d is straightforward.

3.1.2 Reduction method

Another closely related approach to assess the fit of a parametric model that

does not require exact replicates is the reduction method. The idea is to over-

fit the data by introducing supplementary regression terms to the null model.

When both the null and supplementary terms are linear in the parameters, the

alternative model can be written as

yi =
p−1

∑
j=0

mj(xi)θj +
q

∑
k=1

gk(xi)γk + ǫi, i = 1, . . . , n, (3.7)

where mj and gk are known functions and θj and γk are unknown parameters.

The null hypothesis reduces to H0:γ1 = . . . = γk = 0. It is now straightforward

to fit both models by least squares and to compare the corresponding variance

estimators as in (3.5). Consider thus the alternative model as the full model in

the classical F-test and obtain the test statistic

F =

SSE0−SSEa
q

SSEa
n−p−q

, (3.8)
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Chapter 3. Review of some lack-of-fit tests

in accordance with Equation (3.5), where SSE0 and SSEa represent the error

sums of squares under the null and the alternative model, respectively. This

ratio actually measures the reduction of the error sum of squares by fitting the

alternative model, which explains the name “reduction method”. No exact

replicates are necessary in this setting. In the special case of Gaussian error

terms with constant variance σ2, and under H0, the test statistic is F distributed

with q and n − p − q degrees of freedom. Among a class of invariant tests,

the reduction test is uniformly most powerful for testing nested linear models

(Lehmann, 1959).

Example 3 The reduction method is extremely useful if one has a particular alternative

in mind, like for example in case of the US temperatures data. To illustrate this method,

the null model, a first order polynomial model in longitude, x1, and latitude, x2,

y = θ0 + θ1x1 + θ2x2 + ǫ,

is tested against an alternative model suggested by Peixoto (1990), a third order poly-

nomial model in longitude and first order in latitude,

y = θ0 + θ1x1 + θ2x2 + γ1x1x2 + γ2x2
1 + γ3x2

1x2 + γ4x3
1 + γ5x3

1x2 + ǫ.

Using least squares, the reduction test statistic equals to 53.23 (p < 0.0001). Their is

no doubt that the alternative model is superior to the first order polynomial model in

longitude and latitude.

3.2 Nonparametric and smoothing based lack-of-fit tests

Most of this section is taken from the monograph of Hart (1997).

The reduction method turns out to be very useful, as it does not require any

replicates and has optimal power for testing nested linear models. However,

it might have no power at all against certain other types of alternatives. In

the literature, this is called a directional test. Omnibus tests, on the other

hand, have some power against all kinds of alternatives, and thus do not

need the specification of any kind of alternative model in advance. The ideal

setting would thus be to find an omnibus test, that has rather high power

against a wide range of important or interesting alternatives. Tests based on

nonparametric regression models are designed with this purpose in mind.

Many nonparametric test statistics are constructed as the ratio of two variance

estimators of which one no longer depends on the fit of a particular parametric
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3.2. Nonparametric and smoothing based lack-of-fit tests

alternative that has been suggested beforehand by the data-analyst.

The true regression model (3.1) and the central null hypothesis (3.2) remain the

focus of this section, though several tests are only designed to test the no-effect

hypothesis,

H0 : m(x, θ) = θ0. (3.9)

3.2.1 Some historical nonparametric tests

von Neumann test

The von Neumann statistic dates to 1941, and is used in a LOF test for testing

the no-effects null hypothesis in case of a single predictor variable x. von Neu-

mann et al. (1941) pointed out that for observations with a constant variance,

but with a smooth trend in mean, it is not appropriate to calculate the variance

without a correction. This results in an overestimation of the true population

variance. Instead they suggested to use the mean sum of squares of successive

differences, i.e. δ̂2 =
∑

n−1
i=1 (yi+1−yi)

2

n−1 , where yi corresponds to the concomitant of

the ith order statistic of the covariate x, i.e. the response values y are ordered

with respect to x. This variance estimator is less sensitive to the effect of the

trend than the conventional sample variance estimator. Originally, von Neu-

mann (1941) suggested to use the ratio of the mean sum of squares of successive

differences and the biased sample variance, σ̂2
b ,

δ̂2

σ̂2
b

=

∑
n−1
i=1 (yi+1−yi)

2

(n−1)

∑
n
i=1(yi−y)2

n

,

to detect possible trends as opposed to the no effect hypothesis. Small values

of the test statistic indicate possible deviations from the null model.

Over the years, this statistic was adjusted several times. Since both estimators

are biased, E(δ̂2) = 2σ2 and E(σ̂2
b ) = n−1

n σ2, Harper (1967), among others,

suggested the ratio of unbiased estimators

δ̂2

2

σ̂2
u

=

∑
n−1
i=1 (yi+1−yi)

2

2(n−1)

∑
n
i=1(yi−y)2

n−1

.

In order to obtain the more familiar ratio of two unbiased estimators, where

the numerator is more sensitive to model deviations than the denominator, the

more common version of the test statistic becomes

TN =
σ̂2

u

σ̂2
D

=

∑
n
i=1(yi−y)2

n−1

∑
n−1
i=1 (yi+1−yi)2

2(n−1)

, (3.10)
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but it is still referred to as the von Neumann test statistic (see e.g. Hart (1997)

and others) due to the minor adjustments.

Note that half the mean sum of squares of successive differences,

σ̂2
D =

∑
n−1
i=1 (yi+1 − yi)

2

2(n − 1)
, (3.11)

is an unbiased estimator of σ2 which is actually the variance estimator that is

nowadays well known as the Rice variance estimator (Rice, 1984).

The TN statistic can be rewritten in matrix notation,

TN =

Yt(In−n−1Jn)Y

tr(In−n−1Jn)

YtDY
tr(D)

, (3.12)

where Y is the n × 1 response matrix, In the n × n identity matrix, Jn an n × n

matrix of all 1’s, and D the n × n tridiagonal matrix

D =




1 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 1




.

The use of D in (3.12) is to obtain the first differences. The degrees of freedom

corresponding with the variance estimators are expressed in terms of the trace

of the matrices, tr(D) = 2tr(In − n−1Jn) = 2(n − 1).

von Neumann’s test is equivalent to the Durbin Watson test (Durbin and

Watson, 1950) for testing for positive serial correlation in a sequence of

constant-mean variables.

Generalization of the von Neumann test

Consider the (p − 1)th order polynomial regression model yi =
p−1

∑
j=0

x
j
i θj + ǫi

in a single predictor x, which is to be tested against an unspecified alternative

model. Let X denote the n × p design matrix for the polynomial regression

model, and H = X(XTX)−1XT the n × n hat matrix. In this setting, the mean
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squared error,

σ̂2
M =

Yt(In − H)Y

tr(In − H)
, (3.13)

could be used as the model based variance estimator in the generalized statistic,

while a generalization of the half mean sum of squares of successive differences

variance estimator, σ̂2
D = Yt(In−H)tD(In−H)Y

tr(D(In−H))
, is utilized as a model free estima-

tor. The generalized test statistic is thus the ratio

TN =
σ̂2

M

σ̂2
D

=

Yt(In−H)Y
tr(In−H)

Yt(In−H)tD(In−H)Y
tr(D(In−H))

. (3.14)

Distribution of a ratio of two quadratic forms

Hart (1997) describes a procedure to obtain the probability distribution of any

ratio of quadratic forms. In particular, let

Vn =
YtAY

YtBY
, (3.15)

where A and B are known matrices, and assume the error terms to be Gaussian

random variables. Under the null hypothesis, for an observed value v of the

statistic Vn,

P(Vn ≤ v) = P

(
r

∑
j=1

λjn(v)Z2
j ≤ 0

)
,

where r = rank(A − vB), λjn(j = 1, . . . , r) are the non-zero eigenvalues of the

matrix A − vB, and Z1, . . . , Zr are i.i.d. N(0, σ2). In this way, the p-value that

corresponds to an observed value v of any test statistic Vn can be numerically

approximated.

When the error terms are non-Gaussian, many of these tests must rely on the

bootstrap methods described in Section 3.5.

This simple and powerful von Neumann test to assess the fit of linear models

against unspecified alternatives, will be included further in this dissertation in

the analysis of data examples and simulation studies with a single predictor

variable.
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Remark

Basically, for generalizations of the von Neumann test, the original idea is

applied to the residuals from the linear model. The same idea could be used

in testing the fit of a nonlinear model (Hart, 1997). The test statistic is based

on the residuals obtained from the nonlinear model fit, say ei = yi − m(xi, θ̂n),

and has the form
∑

n
i=1 e2

i

∑
n
i=2(ei−ei−1)2 . The nonlinearity of the model results in the

additional problem that the null distribution becomes dependent on the values

of the unknown regression parameters. A double bootstrap procedure as

described in Section 3.5 provides a suitable solution.

As a second remark, note that the von Neumann test implicitly assumes that

no replicates are present in the data, as the performance of the test would

depend on the order of the response values among tied observations.

Cusum test of Buckley

The numerator of the von Neumann statistic measures departures from the

hypothesized model in a rather non smooth way. In particular, it squares in-

dividual residuals and then sums them. Buckley (1991) proposed a first at-

tempt to measure deviations in a smoother way by using cumulative sums of

residuals to obtain an estimate of the residual variance. For equally spaced

data and to test the no-effect hypothesis, this estimate is proportional to

n−2 ∑
n
j=1(∑

j
i=1 yi − y)2. Here, the residuals are first summed, and then squared.

For smooth departures from the null model, this estimator is more sensitive

than for example the mean squared error. From the previous section we know

that the difference based estimator is rather insensitive to smooth model de-

partures. As Buckley’s statistic is another example of a variance ratio of two

unbiased estimators under the null hypothesis, it can be written as a ratio of

two quadratic forms, so that the null distribution can be easily approximated.

To test for the (p − 1)th order polynomial regression model, yi =
p−1

∑
j=0

x
j
i θj + ǫi,

against an unspecified alternative model, this test statistic has the form

TB =

Yt(In−H)tStS(In−H)Y
tr(S(In−H)Y)

YtDY
tr(D)

, (3.16)

where S is the pth order cusum operator as defined in Buckley (1991).

26



3.2. Nonparametric and smoothing based lack-of-fit tests

Example 4 Windmill data. The windmill data (Montgomery and Peck, 1982) con-

tain information on the Direct Current (DC) Output, and the wind velocity (miles per

hour). The data are shown in the left panel of Figure 3.4, together with the least squares

fit of a simple linear regression model of the mean of the DC output as a function of the

wind velocity. This scatterplot already suggests that the linear model is not appropriate

to describe this relationship. Both the von Neumann test and Buckley’s cusum test are

applied to test for a linear relationship between the DC Output, y, and the wind veloc-

ity, x. Their p-values are found by means of the procedure to determine the probability

distribution of a ratio of two quadratic forms. The value of the test statistics are 3.888

(p < 0.0001) and 54.478 (p < 0.0001) for the the von Neumann test and Buckley’s

cusum test, respectively. Both tests allow us to formally conclude an inadequate model

fit.
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FIGURE 3.4: (Left panel) Windmill Data (Montgomery and Peck, 1992); y = Direct Current

(DC) Output; x = Wind Velocity (miles per hour). (Right panel) Windmill Data; y = Direct

Current (DC) Output; x = Reciprocal Transformation on Wind Velocity. The line represents

the fitted linear regression line.

In the literature, it has already been suggested that for this particular dataset, a recip-

rocal transformation on x is appropriate to fit a linear relationship with the mean of

y. The result is shown in the right panel of Figure 3.4. If we apply both tests on the

transformed data, the corresponding values of the test statistics become, TN = 0.919

(p=0.843) and TB = 0.654 (p=0.505). The p-values and the graph no longer suggest

any evidence of LOF.

Both tests are simple and can be used to assess the fit of linear models against

unspecified alternatives. Small sample power properties are studied later in

this and following chapters.
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Weighted sums of squared sample Fourier coefficients

Eubank and Hart (1993) provided a canonical decomposition of both the von

Neumann and the Buckley statistics in terms of sample Fourier coefficients for

testing the no effect null hypothesis (3.9). Assume equally spaced design points

xi = i−0.5
n , (i = 1, . . . , n) of a single covariate x ∈ [0, 1]. Both test statistics may

be represented as

T =
2 ∑

n−1
j=1 wj,nφ̂2

j,n

σ̂2
, (3.17)

where

φ̂j,n =
1

n

n

∑
i=1

yi cos(π jxi), j = 1, . . . , n − 1, (3.18)

are the sample Fourier coefficients obtained by least squares and σ̂2 is a con-

sistent estimator of σ2. The von Neumann and Buckley statistics are obtained

by assigning different weights wj,n to the Fourier coefficients in Equation

(3.17). The von Neumann statistic weights all n − 1 Fourier coefficients

equally, more precisely, wj,n = 1. The weights for the Buckley statistic are

wj,n = n
(2n sin(jπ/(2n)))2 , and thus put more weights on the first coefficients,

which correspond to low frequency alternatives or smooth deviations. Buck-

ley’s test is therefore more powerful to detect smooth deviations from the null

model and is in this case superior to the von Neumann statistic. The latter,

on the other hand, has equally good power for both low and high frequency

alternatives and is thus favourable in case of high frequency alternatives.

The performance of both tests can also be discussed by studying their large

sample powers. The von Neumann and Buckley tests are both consistent

against any non constant, sufficiently smooth function. The von Neumann test

has non-trivial power against alternatives converging to the null model at the

rate n1/4, while the Buckley test is superior in the sense that it achieves the

parametric rate of n1/2. Note that these results are only valid for large samples

in the limit. More details on the local alternatives considered for these tests can

be found in Eubank and Hart (1993) or in Hart (1997).

Simulation Study 1 To get an idea about the agreement between the large and small

sample powers of the tests, we will add from time to time in this chapter a small sim-

ulation study, originally performed by Eubank and Hart (1993), but now applied to a

selected number of LOF tests discussed in this chapter. In the literature, an important

distinction is made between low and high frequency alternatives. As an example of a
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low frequency alternative, the function m1 is chosen as

m1(x) = β

(
e4x − e4 − 1

4

)(
e8 − 1

8
−
(

e4 − 1

4

)2
)− 1

2

,

and as a representative of high frequency alternatives,

m2(x) = 2β

(
20

(
x − 1

2

)3

− 3

(
x − 1

2

))
,

where β = 0, 0.1, . . . , 1.0 is the degree of LOF. In particular β = 0 corresponds to

the no effect null hypothesis (3.9) and β = 1 results in the functions shown in the

left panel of Figure 3.5. The simulation results are obtained for an evenly spaced, fixed

design xi = i−0.5
n , i = 1, . . . , n, with n = 40 and standard normally distributed

error terms. The plots are based on 5000 Monte Carlo simulation runs. All tests are

performed at the 5% significance level. In the middle panel, one can clearly see the

power advantage of Buckley’s cusum test against low frequency alternatives, where as

the von Neumann test is remarkably superior in case of the high frequency alternative

(right panel).
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FIGURE 3.5: (Left panel) Illustration of the low (m1) and high frequency (m2) alternative model

with parameter β = 1.0. (Middle panel) Empirical power curves for the different values

of the parameter β for m1. (Right Panel) Empirical power curves for the high frequency

alternative m2.

Neyman smooth test

The Neyman smooth test is well known in the goodness-of-fit context (Rayner

and Best, 1989), but also has an equivalent in the regression context. Consider
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the kth order smooth alternative,

m(x, θ) = θ0 +
k

∑
j=1

θjψj,n(x), (3.19)

where the functions ψj,n (j = 1, . . . , k) form a set of orthonormal functions, over

equally spaced fixed design points xr = r−0.5
n , (r = 1, . . . , n) such that for any

0 ≤ i, j ≤ k,

1

n

n

∑
r=1

ψi,n(xr)ψj,n(xr) =

{
0, if i 6= j,

1, if i = j,

and ψ0,n ≡ 1. The Neyman smooth test now tests the no effect hypothesis

(3.9) against the kth order smooth alternative model (3.19) by means of the test

statistic

TN,k =
n ∑

k
j=1 θ̂2

j

σ̂2
, (3.20)

where σ̂2 is some consistent estimator of σ2 and θ̂j is the least squares estima-

tor θ̂j = 1
n ∑

n
i=1 yiψj,n(xi). Under the null hypothesis, TN,k is asymptotically

distributed as a χ2 random variable with k degrees of freedom. The kth order

Neyman smooth test has power against kth order local alternatives converging

to H0 at the parametric rate n
1
2 .

If the set of orthonormal functions are cosine functions, then the Neyman test

statistic is a weighted sum of Fourier coefficients as in (3.17) with weighting

scheme

wj,n =

{
1, 1 ≤ j ≤ k

0, k < j < n.
(3.21)

Recall that Buckley’s test was powerful in detecting low frequency alternatives,

i.e. when most energy is situated in the first two Fourier coefficients, but failed

to detect high frequency alternatives. The von Neumann test, on the other

hand, achieves lower power than Buckley’s test for low frequency alternatives,

but has equally good power for low and high frequency alternatives, because

it puts equal weight on all Fourier coefficients. Taking weighting scheme (3.21)

into account, it becomes clear that the Neyman test can be seen as a compro-

mise between these two tests by putting equal weights on the first k Fourier

coefficients, but ignoring the higher order terms. We refer to Hart (1997) for

more details on the Neyman smooth test.

This test will however not be used in practice since it requires a predefined

alternative, and a poor choice of the order k can severely diminish the power. It

was mentioned here because of its historical importance. Finally, note that the

parameter k is basically a smoothing parameter.
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3.2.2 Smooth lack-of-fit tests with fixed smoothing parameters

The Neyman smooth test presented in the previous subsection can be seen

as a smoothing based test with fixed smoothing parameter k. An alternative

way is to compare a parametric fit mθ̂n
versus a non parametric fit, say mn.

This nonparametric fit can be based on an orthonormal series expansion as

in (3.19), or it can be based on, e.g., kernel or spline estimators. A proper

distance measure d(mθ̂n
, mn) is taken as a test statistic. If the observed value

of the distance measure exceeds a critical value, the null hypothesis of no

lack-of-fit is rejected (e.g. Azzalini et al. (1989), Hart (1997) and the references

therein). Unfortunately, bias related problems may occur due to the bias in the

nonparametric estimate mn. le Cessie and van Houwelingen (1991) avoided

the bias problem by using smoothed function of the residuals, instead of a

smoothed version of the regression function. When a test statistic is based on

a smooth estimate of the residuals, the bias disappears as these residuals have

expectation zero. The tests of le Cessie and van Houwelingen (1991, 1995) are

discussed in more detail in Section 7.1 in the special case of logistic regression

models.

One major disadvantage of this kind of test is its dependence on the smoothing

parameter, which needs to be specified in advance. The performance of these

tests is highly sensitive to a wrong choice of this parameter. We do not provide

more details on these tests, but a wide literature on data-driven smoothing-

based test is available. Many of these data driven tests do no longer suffer from

this shortcoming. They are presented in the next subsection.

3.2.3 Tests based on data-driven smoothing parameters

All tests in the previous subsection involve choosing a fixed smoothing param-

eter. Different choices of this parameter result in different p-values, which is

an undesirable property. Therefore, we next describe a class of tests that utilize

data-driven smoothing parameters. This means that the smoothing parame-

ter is selected from the data by means of a selection criterion, e.g. cross val-

idation, Akaike’s information criterion (AIC), the Bayes information criterion

(BIC), estimators of risk, etc. The latter have been widely studied in the re-

gression context by, among others, Yanagimoto and Yanagimoto (1987), Barry

and Hartigan (1990), Eubank and Hart (1992), Barry (1993), Eubank et al. (1995),

Fan (1996), Kuchibhatla and Hart (1996), Hart (1997), Lee and Hart (1998), Aerts

et al. (1999), Aerts et al. (2000), Fan and Huang (2001). In this subsection, we

only describe a few of the proposed data-driven smooth tests.

Any orthonormal series estimator could be used in these smoothing based tests,
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but to keep the discussion as lucid as possible, we only consider trigonometric

series estimators in what follows. Nevertheless, the set of basis functions has

considerable impact on the power properties of these tests under different types

of alternatives (Hart, 1997).

The descriptions of the test statistics are as in Eubank and Hart (1992), Kuchib-

hatla and Hart (1996) and Hart (1997), and therefore focus on testing the no ef-

fect hypothesis (3.9) against a smooth alternative, over an equally spaced fixed

design xi = i−0.5
n , i = 1, . . . , n.

The Order Selection Test

To address the bothersome aspect of smooth tests based on a predefined

smoothing parameter, Eubank and Hart (1992) proposed to use the data-driven

selected smoothing parameter itself as a test statistic. Let k̂ denote the selected

smoothing parameter. It is defined as the maximizer of the risk criterion

r(k, cα) =

{
0 k = 0

∑
k
j=1

2nφ̂2
j,n

σ̂2 − kcα k = 1, . . . , n − 1,
(3.22)

where φ̂2
j,n is defined in Equation 3.18, σ̂2 is a consistent estimator, and cα > 1

is a constant so that the desired level of the test can be asymptotically obtained.

For an asymptotic level of α = 0.05, cα equals 4.18. We sometimes write kα

and k̂α to stress the dependence on the level α. This risk criterion is referred

to as the Mallows-like criterion since maximizing this risk function for cα = 2,

corresponds to Mallows’ criterion for selecting the order of terms added in the

regression smoother

m̂(x, φ̂, k̂α) = φ̂0,n +
k̂α

∑
j=1

φ̂j,n cos(π jx). (3.23)

Under the null hypothesis, r(kα, cα) is very likely to be maximized at kα equal

to zero, as m̂(x, φ̂) then equals φ̂0,n = ȳ. This means that the null hypothesis is

rejected at level α only if k̂α > 0. In this case, the absolute value of at least one

of the sample Fourier coefficients
∣∣φ̂j,n

∣∣ is nonzero, which entails a nonconstant

mean function. This test will be referred to as the Order Selection (OS) test.

When the null hypothesis is rejected, the graph of the smooth estimate of the

regression function, m̂(x, φ̂, k̂α), provides an impression of the true nature of

the relationship between x and y. If the graph is non constant, there is evidence

against the null hypothesis.
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Kuchibhatla and Hart (1996) provided an equivalent form of the test statistic k̂α

that allows a straightforward computation of the p-value. Note that k̂α = 0 if

and only if

1

m

m

∑
j=1

2nφ̂2
j,n

σ̂2
≤ cα for all m = 1, . . . , n − 1.

Let TOS denote the equivalent test statistic,

TOS = max
1≤m≤n−1

1

m

m

∑
j=1

2nφ̂2
j,n

σ̂2
. (3.24)

The null hypothesis is rejected if TOS is larger than cα. When tobs denotes the

observed value of TOS for a particular data set, the p-value, p = 1 − P(TOS ≤
tobs), can be approximated by the limiting distribution provided in Eubank and

Hart (1992). In particular,

p ≈ 1 − exp

{
−

M

∑
j=1

P(χ2
j ≤ jtobs)

j

}
,

where χ2
j denotes a χ2 distributed random variable with j degrees of freedom

and M has to be taken sufficiently large to obtain the desired accuracy. In small

sample sizes, one might prefer the bootstrap procedure described in Section

3.5 to obtain a better approximation (Chen et al., 2001).

Eubank and Hart (1992) showed that their OS test is consistent against smooth

departures from the null hypothesis and is able to detect local alternatives that

converge to the null at the parametric rate of n1/2. Finally, the performance

of the OS test depends on the choice of the consistent estimator σ̂2 of σ2.

Examples include the unbiased sample variance estimator, σ̂2
u , σ̂2

P (Equation

3.6), σ̂2
M (Equation 3.13) and σ̂2

D (Equation 3.11).

Extensions to (non)linear models and random designs

If the null model is a polynomial or nonlinear model in the single predictor

variable, the previous data-driven smooth tests can be applied to the residuals

rather than to the response variable y. More specifically, the sample Fourier

coefficients in the test statistics are now defined as

φ̂j,n =
1

n

n

∑
i=1

ei cos(π jxi), j = 1, . . . , n − 1, (3.25)
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where ei are the residuals yi − m(xi, θ̂n).

Note that the intuitive motivation of all these tests does not depend on the

assumption of a fixed design. The only concern is the effect that weakening the

assumptions has on the null distribution of the test statistic. For more details on

this issue, we refer to the cited references. However, no practical implications

are involved, since most authors suggest to bootstrap the sampling distribution

anyway.

Extensions to a more general context

The order selection test is extended by Aerts et al. (1999) and Aerts et al. (2000)

to more a general context. Their lack-of-fit tests are also based on orthogo-

nal series estimators and use data-driven selection criteria. Next to penalized

likelihood criteria, they use penalized score statistics, which only require com-

putation of null parameter estimates. Their methodology is more widely appli-

cable, e.g. in generalized linear models, spectral analysis, the goodness-of-fit

problem, and longitudinal data analysis. Alternatives to the null hypothesis

are modeled by a sequence of nested orthogonal series or some other appropri-

ate function approximators. For multiple predictor variables, this means that a

path in the alternative model space has to be chosen, as many model sequences

are possible. They also suggested robust versions of their test statistics against

likelihood misspecification.

More data-driven Neyman smooth tests

The Neyman Smooth test as it was presented in (3.20) can be seen as a smooth-

ing based test with fixed smoothing parameter k. The same general idea of

maximizing a risk criterion to obtain a data-driven choice of this parameter

applies to this test statistic. Kuchibhatla and Hart (1996) suggested use of the

Mallows-like criterion (3.22) with cα = 2 defined for the OS test, to obtain a

data-driven choice of the smoothing parameter k. They used

TKH =

{
0 k̂ = 0

∑
k̂
j=1

2nφ̂2
j,n

σ̂2 k̂ > 0

as a test statistic. The asymptotic probability distribution under H0 is a mix-

ture of a continuous distribution and one that is degenerate at 0 and is dis-

cussed in Kuchibhatla and Hart (1996). However, the authors suggested use of

the bootstrap procedure in Section 3.5. Based on their simulation results, they

also reported that their test performs in general best when the natural unbiased
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3.2. Nonparametric and smoothing based lack-of-fit tests

variance estimator σ̂2
u is used in the risk function and the half mean difference

estimator σ̂2
D in the denominator of the test statistic. In particular, the test turns

out to have very good power against high frequency alternatives. This test is

referred to as the KH test.

Instead of the Mallows-like criterion (3.22), one could also use the Schwarz cri-

terion (Ledwina, 1994).

Simulation Study 2 We extend the small simulation study 1 with the OS test and

the adaptive Neyman test described by Kuchibhatla and Hart (1996). Empirical powers

are approximated by taking 499 Monte Carlo loops and 159 bootstrap loops. Typically,

a larger number of Monte Carlo and bootstrap samples are necessary to accurately

estimate the power, but we believe that our results are indicative of the comparison

between the different tests. In Figure 3.6 one can clearly see the good power of the

OS test for the studied alternatives. The OS test performs very well for both the low

and high frequency alternative. However, Aerts et al. (2000) showed that for higher

frequency alternatives its power decreases rapidly. For the low frequency alternative

m1, Buckley’s cusum test seems to remain the highest power in general, while for the

high frequency alternative m2, the adaptive Neyman test seems to perform best overall.

0.0 0.4 0.8

−
2

0
1

2
3

x

m
(x

)

m2

m1

0.0 0.4 0.8

0.
0

0.
4

0.
8

LOF parameter

po
w

er
 m

1

Tb
Tos
Tkh
Tn

0.0 0.4 0.8

0.
0

0.
4

0.
8

LOF parameter

po
w

er
 m

2

Tkh
Tos
Tn
Tb

FIGURE 3.6: (Left panel) Illustration of the low (m1) and high frequency (m2) alternative model

with parameter β = 1.0. (Middle panel) Empirical power curves for the different values

of the parameter β for m1. (Right Panel) Empirical power curves for the high frequency

alternative m2.

Many more variations on this theme are available. Fan and Huang (2001) also

formalized the traditional residual plot where a covariate xj is plotted against

the residual, ej, by testing whether the bias of the vector of residuals is negli-

gible. Instead of using a trigonometric series estimator that is only based on

cosine functions, let γ̂ = (γ̂1, . . . , γ̂n) be the discrete Fourier transform of the
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Chapter 3. Review of some lack-of-fit tests

residual vector e, based on both a cosine and sine bases,

γ̂2j−1 = (2/n)1/2
n

∑
i=1

cos(2πij/n)ei,

γ̂2j = (2/n)1/2
n

∑
i=1

sin(2πij/n)ei, j = 1, . . . , [n/2].

When n is odd, an additional term γ̂n = (1/
√

n/2) ∑
n
i=1 ei is needed, but for

linear regression with an intercept, this term is simply zero. The test statistic of

this adaptive Neyman test is defined as

TFH = max
i≤m≤n

1√
2mσ̂4

m

∑
i=1

(γ̂2
i − σ̂2),

where σ̂2 is a n1/2 consistent estimator of σ2 under both the null and the alter-

native hypotheses. For example,

σ̂2 =
1

n − in

n

∑
i=in+1

γ̂2
i −

(
1

n − in

n

∑
i=in+1

γ̂i

)2

,

for some given in (= [n/4], say). The asymptotic null distribution of TFH is

given by Fan and Huang (2001), but the approximation is not so good in small

samples. Therefore, the bootstrap approximation (Section 3.5) is recommended

in practice.

The FH test looks similar to the test proposed by Kuchibhatla and Hart (1996),

but tends to select a smaller smoothing parameter. As a consequence this

adaptive Neyman test is more powerful than the KH test in detecting very

smooth alternatives.

Fan and Huang (2001) further introduced the wavelet-thresholding test. This

test combines truncation and thresholding. More specifically, the order of the

series is not important, but instead the absolute values of the estimators of the

series coefficients are. The term with the largest coefficient estimate enters first

in the model, the second largest next, and so forth until the coefficients become

lower than a certain threshold. Instead of using the Fourier transform, LOF

tests are constructed based on the discrete wavelet transforms. For more details,

the reader is referred to Fan and Huang (2001).

Extensions to multiple covariates

If multiple covariates are involved in the null model, the extensions are not

straightforward. The performances of the data-driven smooth tests depend
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3.2. Nonparametric and smoothing based lack-of-fit tests

highly on the order of the residuals according to which they are arranged before

computing the test statistics. The performance will be optimal if the sequence

of the residuals is as smooth as possible, so that large Fourier coefficients are

concentrated on low frequencies. One approach suggested in Kuchibhatla and

Hart (1996), Hart (1997) and Fan and Huang (2001) is to use these tests by re-

gressing residuals on a scalar function of x. For x ∈ R
d, the order relation may

be defined as xi ≤ xj if

• all components of xi are smaller than or equal to those of xj, this means

xik ≤ xjk, where k = 1, . . . , d,

• the kth component of xi is smaller than or equal to that of xj, thus xik ≤ xjk

for a specified k ≤ d,

• si ≤ sj, where si is the score of a specified function of xi, e.g. the first

principal component.

• ŷi ≤ ŷj, where ŷ denotes the predicted values of the fitted regression

model.

When the tests are calculated in several directions, for example, with respect

to each covariate direction separately, the Bonferroni adjustment should be ap-

plied to the combined test to obtain a global conclusion with a family-wise error

rate.

Instead of fitting a smooth trigonometric series to the sequence of residuals,

one could apply a multidimensional smoother to the residuals over the predic-

tor space, see le Cessie and van Houwelingen (1991).

Further, Aerts et al. (2000) constructed lack-of-fit tests based on orthogonal se-

ries estimators which involve choosing a nested model sequence in the multiple

regression setting. They described different orders of model sequences in the

case of two covariates.

In Chapter 6 of this dissertation, we will introduce another solution based on a

distance measure in the predictor space, which avoids an ordering of the resid-

uals in advance, or the choice of a smoothing parameter and has nevertheless

nice smoothing properties. The price that has to be paid is a rather heavy com-

putational burden.

3.2.4 Tests based on residual cusum processes

In the nineteen nineties, a series of methods were proposed that avoid smooth-

ing. Motivated by the fact that the least squares residuals in case of no lack-of-fit

should fluctuate randomly around zero, a number of authors suggested using

test statistics based on cumulative sums of residuals to validate the quality of
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a model fit. To be more specific, such tests are based on the residual cusum

process,

B̂n(x) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xi ≤ x), x ∈ R, (3.26)

which constitutes a marked empirical process, where the marks are given by the

residuals. If the model is not appropriate, large sequences of positive or nega-

tive residuals will occur, provided that the true model and the model under the

null hypothesis do not intersect too much. This will result in large values of a

predefined norm of the cumulative sums of residuals, which turns out to be a

useful test statistic to detect LOF.

Zuber (1996) studied such tests for testing the no-effect hypothesis with

constant variance σ2 and fixed design points. He compared the performance

of Kolmogorov-Smirnov and Cramér-von Mises type tests, and concluded

that they perform rather similarly for the alternatives under study, with a

slight advantage of the Cramér-von Mises type test. Stute (1997) investigated

the Kolmogorov-Smirnov type to assess the fit of linear regression models

in case of homoscedasticity and random design points, while Su and Wei

(1991) described this procedure specifically to assess the fit of generalized

linear models (McCullagh and Nelder, 1989). They obtained a sensitive test

to detect both missing predictor variables in the hypothesized model and a

misspecified link function. For linear regression models, they expect their test

to be very powerful against quadratic deviations and less powerful against

higher order polynomials. A number of mistakes in their distributional theory

were pointed out by Stute (1997). Finally, Diebolt and Zuber (1999), and Zuber

(1999) extended the results for possibly nonlinear, heteroscedastic regression

models on fixed designs.

In case of multiple predictor variables, Su and Wei (1991) suggested considering

the supremum of the process

B̂n(x) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xi ≤ x), x ∈ R
d,

where the order relation is defined as xi ≤ x if all components of xi are smaller

than or equal to those of x, i.e. xij ≤ xj, (j = 1, . . . , d). In particular, this

includes the special case suggested in Lin et al. (2002), who advise checking the

functional form of the jth component of the covariate vector x, by the process

B̂n,j(xj) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xij ≤ xj).
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Since processes based on cumulative sums of residuals tend to be dominated

by observations with small covariate values, they further discuss the use of

moving sums of residuals with respect to one component of the covariate vector

x. For blocks with fixed size b, they suggest using the modified process

B̂n,j(xj, b) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xj − b ≤ xij ≤ xj). (3.27)

However, the moving sums are based on blocks of the same size b, so the num-

ber of observations in the blocks can be quite different when the covariate val-

ues are not evenly distributed. Therefore, moving averages were also studied,

B̂n,j(xj, b) =

n1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xj − b ≤ xij ≤ xj)

n

∑
i=1

I(xj − b ≤ xij ≤ xj)

. (3.28)

The performance of these different processes will be further discussed in Chap-

ter 4. We expect LOF tests based on the latter two processes to be powerful in

detecting deviations in the functional form of the jth component of the same

size as the fixed block size b. Large block sizes are favourable to detect global

LOF, over more or less the entire range of a component of the covariate vector

x, while small block sizes will be sensitive to local deviations. Of course, the

block size has to be chosen in advance and different block sizes may lead to

conflicting conclusions.

The authors try to get an indication of the nature of the deviations by studying

prototype mean functions for the moving sums of residuals for several block

sizes. Resemblance of an observed pattern of the residual processes with one

of the prototype functions may suggest the nature of the misspecification.

One of the newly proposed approaches in this dissertation, outlined in Chap-

ter 4, solves the dependencies on the fixed block size of the LOF tests based

on processes (3.27) and (3.28) by considering all possible intervals obtained

with respect to each covariate xj, which results in powerful tests for both global

and local lack-of-fit. Since our new tests are closely related to these processes,

we provide some more distributional details on the marked empirical process

based on residuals (3.26). The large sample results in Chapter 4 and Chapter 8

are mainly based on the next theorems, which are taken from Diebolt and Zu-

ber (1999) and Zuber (1999). The distributional theory is subject to a number of

assumptions.

39



Chapter 3. Review of some lack-of-fit tests

Assumption 1 The moment E(ǫ2
1) is finite.

Assumption 2 The distribution of the design, say F(x), x ∈ R, is continuous and

strictly increasing.

Assumption 3 The function σ∗(u) = σ(F−1(u)), u ∈ [0, 1] is positive and continu-

ous on [0, 1].

Assumption 4 The regression function m(x; θ) and its first two partial derivatives

with respect to θ are continuous in x ∈ R for each θ, its first partial derivative is

bounded for each θ and the integrals
∫ ∞

−∞

∣∣∣∣
∂m(y;θ)
∂θk |θ=θ0

∣∣∣∣ dF(y) are finite for k = 0, . . . , p −
1. There exist

• a real number r0 > 0 such that the closed ball B(θ0, r0) ⊂ Θ, and

• a known function M2 ≥ 0 such that
∫ ∞

−∞
M2(y)dF(y) < ∞,

that satisfy the condition

sup
θ∈B(θ0,r0)

∣∣∣∣∣
∂2m(x; θ)

∂θj∂θk

∣∣∣∣∣ ≤ M2(x)

for all x ∈ R and for all j, k = 0, . . . , p − 1.

Assumption 5 The sequence of estimators {θ̂n} of θ0 converges almost surely to θ0,

and satisfies the condition

n1/2(θ̂n − θ0) = n−1/2
n

∑
i=1

ϕ0(xi)ǫi + oP(1),

with ϕ0 a function such that
∫ ∞

−∞
‖ϕ0‖

2 dF is finite for a certain norm on R
p.

For the discussion of the distributional properties, we will from now on assume

that x ∈ [0, 1]. This includes no restrictions, since for x ∈ R, and by putting

B̂n(−∞) = 0 and B̂n(∞) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n)), B̂n takes its values in the

Skorokhod Space D[−∞, ∞]. A classical quantile transformation, ui = F(xi),

allows us to work in the more familiar space D[0, 1] by considering the marked

empirical process based on residuals from a uniform design on the unit interval

[0, 1], B̂
′
n(u) = n−1/2

n

∑
i=1

(yi − m(F−1(ui); θ̂n))I(ui ≤ u). Assumption 2, allows

us to work with the inverse function F−1 of F, without ambiguity.
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Under Assumption 5, as n → ∞, n1/2(θ̂n − θ0) converges to a p-

dimensional normal random variable with zero mean and variance matrix

Γ0 =
∫ ∞

−∞
ϕ0ϕT

0 dF.

Theorem 1 establishes the limiting centered Gaussian process B̂ of B̂n.

Theorem 1 Under H0 and the Assumptions 1 - 5, B̂n
w→ B̂, as n → ∞, in the

Skorokhod space D[−∞, ∞], where B̂ is a centered Gaussian process with covariance

function

r(x, y) = G(x ∧ y) − gT
0 (x)h0(y) − gT

0 (y)h0(x) + gT
0 (x)Γ0g0(y),

where

G(x) =
∫ x

−∞
σ2(u)dF(u),

g0(x) =
∫ x

−∞
∇m0(u)dF(u),

h0(x) =
∫ x

−∞
σ(u)ϕ0(u)dF(u),

with ∇m0 = ∇mθ|θ=θ0
the gradient with respect to θ of m(x, θ) at θ0.

However, Theorem 1 shows that the limit process depends on the null model

and can take rather complicated structures. Obtaining critical values by means

of the bootstrap seems to be more straightforward. Stute et al. (1998) showed

that the wild bootstrap (Section 3.5.3) yields a consistent approximation of the

distribution of the limit process. The simpler residual based bootstrap (Section

3.5.2) is only valid in case of homoscedasticity.

Simulation Study 3 Finally, we add the cusum based test of Zuber (1996) to simu-

lation study 2. Let TZ,KS denote the Kolmogorov-Smirnov type and TZ,CM denote the

Cramér von Mises type of test statistic based on process B̂n(.). More specifically,

TZ,KS = sup
x∈R

∣∣B̂n(x)
∣∣ (3.29)

and

TZ,CM =

(∫ +∞

−∞
B̂n(x)2dx

)1/2

≈
(

1

n

n

∑
i=1

B̂n(xi)
2

)1/2

. (3.30)

Empirical powers are approximated by taking 499 Monte Carlo loops and 159 bootstrap

loops. In Figure 3.7, both tests show very good powers for the low frequency alternative

under study, with a slight power advantage for the Cramér von Mises type. On the

41



Chapter 3. Review of some lack-of-fit tests

other hand, they have hardly any power at all for the high frequency alternative. This

can be expected, since systematic patterns of negative and positive values will cancel

out. However, to show that much depends on the sample size n, we redo the simulation

study for n = 200. The OS test performs very well for both the low and high frequency

alternative. For the low frequency alternative m1, Buckley’s cusum test seems to remain

the highest power in general, while for the high frequency alternative m2, the adaptive

Neyman test (KH) seems to perform best overall.
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FIGURE 3.7: (Left panel) Illustration of the low (m1) and high frequency (m2) alternative model

with parameter β = 1.0. (Middle panel) Empirical power curves for the different values

of the parameter β for m1 and n = 40. (Right Panel) Empirical power curves for the high

frequency alternative m2.
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FIGURE 3.8: (Left panel) Illustration of the low (m1) and high frequency (m2) alternative model

with parameter β = 1.0. (Middle panel) Empirical power curves for the different values

of the parameter β for m1 and n = 200.(Right Panel) Empirical power curves for the high

frequency alternative m2.

Instead of taking the norm of the process B̂n as a test statistic, Diebolt and Zuber
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3.3. LOF tests in the context of logistic regression models

(1999) and Zuber (1999) proposed to use the Karhunen-Loève expansion of the

Gaussian limit process to obtain a χ2 test statistic. Their test has equal power

against low and high frequency alternatives and is able to detect alternatives

that approach the null hypothesis at rate n1/2. The Karhunen-Loève expan-

sion can be seen as the principal components analysis of the Gaussian process

B̂(.) and allows large sample power investigations, as well as the derivation of

smooth and directional tests (Stute, 1997). For more details, we refer the reader

to Diebolt and Zuber (1999) and Zuber (1999).

In practice, the principal components are often difficult to obtain. Therefore,

Stute et al. (1998) proposed to replace the cusum process by its innovation mar-

tingale. For the new processes, principal components are readily available and

the resulting tests turn out to be asymptotically distribution free under com-

posite null models. The authors showed how to derive optimal directional tests

based on their innovation process approach.

3.3 LOF tests in the context of logistic regression models

Logistic regression models belong to the family of generalized linear models

(McCullagh and Nelder, 1989). In logistic regression analysis, the error terms

are no longer continuously distributed. The response variable, yi is binary and

thus only takes the values 0 or 1, often called failure and success, respectively.

In particular, the conditional distribution of this response is Bernoulli with pa-

rameter π(xi) = P{yi = 1 |x = xi }. When no replicates are available, the resid-

uals only take the values

ei = yi − π̂(xi) =

{
1 − π̂(xi) if yi = 1,

−π̂(xi) if yi = 0,

where π̂ denotes an estimator of π. In the logistic model, the logit of this prob-

ability is modeled as a linear function of the predictor variables,

logit(π(xi)) = log

(
π(xi)

1 − π(xi)

)
=

p−1

∑
j=0

mj(xi)θj,

where m(xi)
t is the p−dimensional vector of the functional forms of d fixed

covariates. The estimator π̂(x) is obtained by replacing the θj’s in this linear

function by their maximum likelihood or weighted least squares estimators.

More generally, we will denote by ni the number of replicated observations

available at the ith design point, called covariate pattern, nT = ∑
n
i=1 ni the total

number of observations for the n different covariate patterns, and yi the num-

ber of successes for the specified design point. In logistic regression there are
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several possible ways to measure the difference between the observed and the

fitted values. Three different types of residuals are frequently used in the liter-

ature,

• the raw or working residuals, er,i = yi − niπ̂(xi),

• the Pearson residuals, eP,i = yi−niπ̂(xi)√
niπ̂(xi)(1−π̂(xi))

,

• the deviance residuals,

ed,i = sign(yi − niπ̂(xi))

√
2
[
yi log

(
yi

niπ̂(xi)

)
+ (ni − yi) log

(
ni−yi

ni−niπ̂(xi)

)]
.

The Pearson residuals are the scaled measures of the differences of observed

to fitted values. The deviance residuals are the contributions to the deviance

due to the difference in the observed and fitted values. Note that both Pearson

and deviance residuals, are the signed square roots of the individual contribu-

tions of the different design points to the Pearson test statistic and the deviance

function respectively, i.e.

χ2
P =

n

∑
i=1

e2
P,i and D =

n

∑
i=1

e2
d,i.

Both statistics could be used as measures of lack-of-fit. Under a number

of assumptions these two statistics are assumed to be asymptotically or

approximately distributed as χ2
n−p, where p denotes the number of parameter

estimates under the null hypothesis. However, as pointed out in McCullagh

and Nelder (1989), these assumptions are certainly not met when most of

the ni are small. Therefore, Hosmer et al. (1991) suggested comparing the

value of both test statistics with their degrees of freedom. If the value of

the test statistic is much larger than the corresponding degrees of freedom,

a strong indication of LOF is present. There is no doubt that more appro-

priate LOF tests should be used in the assessment of a logistic regression model.

3.3.1 Early alternatives to the Pearson χ2 test statistic

To solve the distributional problem for the Pearson χ2 test statistic that occurs

when most ni are small, Tsiatis (1980) suggested a partitioning of the predictor

space into k distinct regions. However, the choice of the k distinct regions is

arbitrary and the performance of this test is greatly affected by this subjective

choice (Su and Wei (1991)).
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Unweighted residual sum-of-squares test

Copas (1989) introduced a very simple LOF test, the Unweighted Residual

Sum-of-Squares (URSS) test, which is based on S =
n

∑
i=1

(yi − niπ̂(xi))
2. Since

the χ2 test is only asymptotically valid when the expected frequencies niπ(xi)

and ni(1 − π(xi)) are sufficiently large, Copas suggested to give less weight to

those covariate patterns with small values of ni. In simulation studies later on,

we calculate the asymptotic moments of S as suggested in Hosmer et al. (1997)

and use the standardized test statistic

S − tr(V̂)

d̂tV̂1/2(In − H)V̂1/2d̂
,

where d̂ is a vector with ith element d̂i = (1 − 2π̂(xi)) and V̂ is the n × n

diagonal variance covariance matrix of y with ith-element niπ̂(xi)(1 − π̂(xi)).

The standard normal distribution can now be used as an approximate null

distribution.

The Hosmer - Lemeshow tests

Hosmer and Lemeshow (1980), Lemeshow and Hosmer (1982) and Hosmer

et al. (1988) proposed and discussed the use of χ2-like lack-of-fit tests based

on grouping the values of the estimated probabilities. In summary, they advise

using g = 10 groups based on the percentiles of the estimated probabilities,

especially when many of the estimated probabilities are small. This means that

the first group contains the n1 = nT/10 subjects having the smallest estimated

probabilities and so on. The Hosmer-Lemeshow test statistic, is given by

C =
g

∑
k=1

(ok − nkπk)
2

nkπk(1 − πk)
,

where for the kth decile, nk denotes the total number of subjects, ck is the number

of different covariate patterns, ok denotes the observed number of successes,

ok =
ck

∑
j=1

yj, and πk = ∑
ck
j=1

njπ̂j

nk
, the average estimated probability. Under the

null hypothesis of no LOF, the distribution of the test statistic C is approximated

by the χ2 distribution with g − 2 degrees of freedom. If the null hypothesis is

rejected, inspection of the g individual components may indicate regions where

the model does not fit satisfactorily.
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Although very valuable and well known among practitioners, important local

deviations in regions of the covariate space that yield the same estimated prob-

abilities, may be missed by this test statistic. To overcome this disadvantage,

the authors suggested using the individual contributions to the test statistic as

a first check for possible local deviations within one of the deciles. Further,

groups constructed by means of a grouping strategy like the one suggested

above, may contain subjects with widely different values of covariates.

Many extensions are suggested to overcome this problem, e.g. Pulkstenis and

Robinson suggested to perform this grouping within the cross-classification of

all categorical covariates in the model. However, this extension is only useful

when the logistic regression model contains both categorical and continuous

covariates. Moons et al. (2004) suggested to construct groups based on the re-

cursive partitioning algorithm underlying classification trees. This approach

has a beneficial effect on the power characteristics of the test, and can easily

handle large datasets with a high dimensional covariate space. However, many

have to be made for the practical implementation. For example, the choice of

partitioning scheme and pruning process, including the number of final nodes

and the number of observations in final nodes.

3.3.2 Smoothing based LOF in logistic regression

To address the issue of a subjective choice of partitioning the predictor space,

a smoothing based approach for generalized linear models was introduced by

le Cessie and van Houwelingen (1991 and 1995). They used smoothed residu-

als, i.e. weighted averages of residuals in the neighbourhood of a design point

xi,

r̂s,i =
n

∑
j=1

wij

(yj − π̂j)√
π̂j(1 − π̂j)

,

where the weights wij depend on the type and size of smoothing. Their test

statistic is a weighted sum of squares of the smoothed standardized residuals,

T =
n

∑
i=1

r̂2
s,i

v̂ar(r̂2
s,i)

.

In this way, they obtain a procedure that adequately handles continuous

covariates rather than subjectively partitioning the range of the covariate.

However, the problems of partitioning the predictor space as in Tsiatis (1980)

or Hosmer and Lemeshow (1980) more or less remain, because the issue is now

choosing the type of kernel and the bandwidth. The authors report that the

performance of T depends heavily on the bandwidth. If it is chosen too small,
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3.3. LOF tests in the context of logistic regression models

the test has no power and if it is too large, local deviations are smoothed away.

We include the test based on smoothed residuals in our simulation studies in

Chapter 7. The residuals are smoothed in the predictor space, using a uniform

kernel as suggested in Hosmer et al. (1997). The weights wij, defined by the

distance between the ith and jth covariate pattern, are

wij =
p

∏
k=1

u(xik, xjk), where u(xik, xjk) =

{
1 if

∣∣∣xik − xjk

∣∣∣ /sk ≤ cu,

0 otherwise,

where sk denotes the sample standard deviation of the kth covariate and cu is

taken to be cu = 1
2 (4/n1/(2p)), so that about

√
n subjects have non-zero weights.

In addition, we consider a similar test that uses smoothed residuals in the re-

sponse space, as described in Hosmer et al. (1997). They used cubic weights

wij,

wij =

{
1 − (

∣∣π̂i − π̂j

∣∣ /cci)
3 if

∣∣π̂i − π̂j

∣∣ ≤ cci,

0 otherwise,
,

where cci depends on i and is chosen such that again about
√

n subjects have

non-zero weights for each subject.

Information about why the model does not fit can be found by plotting the

smooth residuals.

The asymptotic null distribution of these test statistics is a scaled χ2 distribu-

tion. For computational details, we refer to le Cessie and van Houwelingen

(1991) and Hosmer et al. (1997).

3.3.3 Tests based on residual cusum processes

The tests of Su and Wei (1991), described in Section 3.2.4, were actually intro-

duced in the context of generalized linear models and are thus in particular

applicable in the logistic regression context. We refer to Section 3.2.4 for the

general description of the test, but we would like to add that the authors claim

that their methodology is sensitive to detect a misspecified link function or to

detect the omission of relevant independent variables.

Hosmer and Hjort (2002) extended the ideas of Su and Wei (1991) and proposed

the partial sums to be computed over partitions of the estimated logit. In addi-

tion, the individual residuals are weighted by functions that are derived to be

optimal for detecting particular alternatives to the fitted model. Both authors

suggested a bootstrap simulation approach (Section 3.5.1) to approximate the

limiting distribution.

The test of Su and Wei (1991) is extended to generalized linear mixed models

by Pan and Lin (2005).
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3.4 Graphical diagnostic tools

Residuals are not only the basic building block for LOF tests, they are also

widely used in graphical diagnostic tools. Most graphics to assess the adequacy

of regression models are illustrative and indicative, and the results depend on

the data analyst. In general, graphical methods allow visualization of possi-

ble discrepancies between the fitted model and the data. Nevertheless, judging

whether the observed discrepancies are really present or not is often a major

problem and systematic departures smaller than the noise level can often not

be observed. Among the graphical diagnostic tools, the classical residual plot,

where the residuals are plotted against a covariate or the fitted values, is proba-

bly the best known. It is often used as a descriptive method to assess lack-of-fit

in a regression analysis. The OS, KH and FH tests in Section 3.2.3 formalize the

classical residual plot. When the null hypothesis is rejected, the graph of the

smooth estimate of the regression function provides an impression of the true

nature of the relationship between x and y. If the graph is non constant, there

is evidence against the null hypothesis. This approach is an attempt to obtain

a graphical diagnostic tool, that is directly associated with a lack-of-fit test, but

a major disadvantage of this procedure is its dependence on the choice of the

smoother and the bandwidth. Sometimes the procedure can be made adaptive

by using a data-driven choice of the bandwidth.

Landwehr et al. (1984) introduced a variety of residual and partial residual plots

appropriate for logistic regression. Further, the smooth residuals of le Cessie

and van Houwelingen (1991) are plotted to collect information about why the

model does not fit or to get an idea of where the LOF is located in the predictor

space. However, no formal interpretation can be given to deviations that are

observed from this plot.

Another approach is to contrast the fit of a consistent nonparametric estimate

with the fit of a parametric model to assess the parametric fit. The discrepan-

cies between the two fits can be visualized by comparing two curves graphi-

cally over the range of data (e.g. by creating reference bands as described by

Bowman and Young (1996)). The graphs can however not be used as an in-

ferential tool on there own. A test statistic (e.g. a pseudolikelihood ratio test

by Azzalini and Bowman (1993)) is needed to judge the observed discrepan-

cies in a formal way. Pardoe (2001) introduced a Bayesian sampling approach

to regression model checking that uses Bayes Marginal Model Plots (BMMP’s),

based on earlier work by Cook and Weisberg (1997). Unfortunately, no formal

interpretation is given to the BMMP’s.

Finally, Lin et al. (2002) introduced prototype plots of their cumulative sums of

residuals for different types of LOF. Resemblance of an observed pattern of the
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residual processes with one of the prototype functions may suggest the nature

of the misspecification.

As it is most welcome to have a diagnostic plot that formally locates LOF in the

predictor space, we introduce a LOF test and its associated formal graphical

diagnostic tool in Chapter 4.

3.5 Bootstrap methods in regression

Approximating the sampling distribution in practice by a limit distribution, as

is done in the previous section, might not work well in small samples. Much

depends on the sample size, the error distribution, the design and the choice of

the error variance estimators. Often severe assumptions, like fixed and equally

spaced designs or restrictive distributional assumptions on the error distribu-

tion, are necessary for obtaining nice limit distributions and other favourable

asymptotic properties. Nevertheless, most of these assumptions cannot be jus-

tified in a random design setup in real case studies. In addition, the limit dis-

tribution of a test statistic is often available, but the convergence might be very

slow. Therefore, many authors (Hart (1997), Stute et al. (1998), Fan and Huang

(2001), Chen et al. (2001), Hosmer and Hjort (2002), among others) suggested

to approximate the sampling distribution of LOF test statistics by means of a

bootstrap procedure. Often, better approximations are obtained and bootstrap

p-values are then used in hypothesis testing. This is often an elegant solution,

which is easy to implement, though sometimes computationally heavy. Al-

though this issue may become of minor importance in the near future, due to

the rapidly growing gain in computer power nowadays.

Several bootstrap schemes will be discussed in this section. Which one to

choose in practice depends on the distributional assumptions of the error terms

and on the regression model under the null hypothesis. In fact, to approximate

the limit distribution of the test statistic under the null hypothesis, we need to

simulate data from a model specified under the null hypothesis. We follow the

advice in Davison and Hinkley (1997) and take the design points in the resam-

pling model the same as in the original data. This means that even when they

are randomly sampled, they are not bootstrapped themselves, but treated as

fixed. This basically means that the conditional distribution Fx of y given x is

studied.

3.5.1 Parametric versus nonparametric bootstrap schemes

Parametric bootstrap schemes involve some distributional assumptions. For

example, assume that it is known that the true regression model is linear,

m(x, θ) = θ0 + θ1x and that the error terms are normally distributed random
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variables with zero means and common, but unknown variances σ2. A boot-

strap sample based on parametric bootstrapping is obtained by sampling from

a normal distribution N(m(xi, θ̂n), σ̂2) for all i, where θ̂n is the least squares es-

timator of θ and σ̂2 is one of the consistent variance estimators discussed in this

chapter.

For logistic regression models, a parametric bootstrap sample for the binomial

response y could be constructed by sampling from Bin(ni, π̂(xi)), for all i. More

specifically, to obtain the parametric bootstrap distribution of a specific test

statistic T in logistic regression models, we proceed as described in Hosmer

and Hjort (2002).

For b = 1, . . . B,

1. Obtain a random bootstrap sample of new outcomes, say y∗i , i = 1, . . . , n

using the fitted values π̂i. Take

y∗i =

{
1 if ui ≤ π̂i

0 otherwise
, where ui ∼ U(0, 1). (3.31)

2. Fit the logistic regression model using the data (xi, y∗i ), resulting in π̂∗
i

and θ̂∗.

3. Calculate the bootstrap residuals, denoted by e∗1 , . . . , e∗n.

4. Calculate the statistic T∗(e∗1 , . . . , e∗n), which is further denoted by t∗b .

The bootstrap p-value is the probability 1 − P∗(|T∗| ≤ t), where P∗ denotes

the probability under the bootstrap distribution.

A disadvantage of the parametric bootstrap algorithm is that, in general, data

sets generated by a poorly fitting regression model do not contain the same

statistical properties as the original data set (Davison and Hinkley, 1997). In

practice, we often prefer nonparametric bootstrap schemes, since there are less

assumptions on the error distribution, say G. All bootstrap schemes discussed

below are nonparametric procedures. For more details, we refer the reader to

Davison and Hinkley (1997).

3.5.2 Residual based bootstrap in linear regression

This first nonparametric bootstrap scheme is only valid when homoscedasticity

holds and when a consistent estimator θ̂n, e.g. the least squares estimator, is

used to estimate the regression parameters θ. Consider the linear regression

model

yi = m(xi)
tθ + ǫi, i = 1, . . . , n, (3.32)
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where m(xi)
t denotes the p−dimensional vector of the functional forms of d

covariates. The ǫi’s are i.i.d. with zero means and equal variances σ2. Let G

denote the common error distribution. The empirical distribution function

Ĝ of the raw residuals, obtained after fitting the hypothesized null model,

provides a consistent estimator of G (Davison and Hinkley, 1997). To obtain

an approximation of the sampling distribution of a certain test statistic T, find

the observed value of the test statistic in the original sample, T(y1, . . . , yn) = t.

Proceed as follows:

For b = 1, . . . B,

1. Obtain the residuals ei = yi − m(xi)
tθ̂n, i = 1, . . . , n.

2. Construct a bootstrap sample (e∗1 , . . . , e∗n) by n times drawing with re-

placement from the set {e1, . . . , en}.

3. Set y∗i = m(xi)
tθ̂n + e∗i , i = 1, . . . , n.

4. Calculate the statistic T∗(y∗1 , . . . , y∗n) = t∗b . Note that if the hat matrix, H,

is used in the statistic T, it remains unchanged since x∗i ≡ xi. Thus, if

the test statistic is based on residuals, rather than on the original values,

the statistic becomes T∗((In − H)y∗1 , . . . , (In − H)y∗n) = t∗b , where In is the

n × n identity matrix.

The bootstrap p-value is the probability 1− P∗(|T∗| ≤ t), where P∗ denotes the

probability under the bootstrap distribution.

By resampling the least squares residuals, the data generating distribution as-

sumes the null model to be true, and obeys the assumptions on the error distri-

bution, since E∗(e∗i ) = 0 and E∗(e∗i )
2 = e2

i .

3.5.3 Wild bootstrap

The second bootstrap procedure is more robust against failure of model as-

sumptions like homoscedasticity. The wild bootstrap procedure was origi-

nally proposed by Wu (1986), but received its name in Härdle and Mammen

(1993), since n different distributions are estimated from n residuals. The pro-

cedure only differs from the residual based bootstrap procedure in the con-

struction of the residual bootstrap sample. Define the bootstrap data y∗1 , . . . , y∗n
by y∗i = m(xi)

tθ̂n + eiν
∗
i , where ν∗i is a random variable with expectation

E(ν∗i ) = 0, variance E(ν∗2
i ) = 1 and third moment E(ν∗3

i ) = 1. Mammen

(1993) suggested the most popular choice for the distribution of ν∗i ,

F1 : ν∗i =

{
−(

√
5 − 1)/2 with probability p = (

√
5 + 1)/(2

√
5)

(
√

5 + 1)/2 with probability 1 − p.
(3.33)
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Recently, Davidson and Flachaire (2001) showed that the Rademacher distribu-

tion

F2 : ν∗i =

{
1 with probability 0.5

−1 with probability 0.5
(3.34)

may lead to better results than the popular version F1. The null distribution

of the test statistic T(y1, . . . , yn) can be found by constructing B wild bootstrap

samples and the corresponding values of the test statistic t∗b = T∗(y∗1 , . . . , y∗n).

Intuitively, one can feel why the wild bootstrap works, since at least in many

cases and for large sample sizes, it ensures that the first three moments of the

bootstrap distribution match the corresponding null distribution.

3.5.4 Double bootstrap

When the parametric null model is a nonlinear model, often the null distribu-

tion of a lack-of-fit statistic depends on θ. As a consequence, approximating

the null distribution of the statistic by one of the above bootstrap procedures,

may lead to a test whose actual level differs from the nominal level. An iter-

ated, or double, bootstrap procedure will often solve this problem. However,

the double bootstrap procedure is a rather heavy computational procedure. If

B1 bootstrap samples are taken from the original set, the procedure requires

taking another B2 samples from each set of the B1 bootstrap samples, leading

to a total of B1B2 bootstrap samples.

For more details on the double bootstrap procedure we refer to Section 8.3 in

Hart (1997), or to Davison and Hinkley (1997).

3.6 Global versus local lack-of-fit

In the previous sections the main focus was on globally assessing the fit of

the parametric model in terms of an inappropriate family of functions for the

true regression relationship, a misspecified link function, an omitted predictor

variable or the presence of the wrong transformation of a predictor variable.

It might also be possible that the specified model only shows local deviations

from the data in a small subset of the predictor space. Global statistical tests

are designed to accept the null hypothesis if the deviation could be reasonably

explained by noise. As it is hard to distinguish between small systematic

deviations and pure error in such small areas of the predictor space, we

expect them to have low power properties in case of local departures from the

null model. As is shown in the simulation study in Chapter 4, most global

tests from previous sections have typically low power in case of local depar-

tures from the null model, and therefore miss an important group of deviations.
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Moreover, most LOF tests have both the advantage as well as the disadvantage

to summarize a considerable amount of observation into one single value.

It might happen that these global tests have missed some important local

deviations, and thus before one concludes that a model fits well, it should be

examined whether or not the fit is supported over the entire range of covariate

patterns. One way to deal with it, is of course the use of individual diagnostics,

but another way is to consider a test that is also able to detect local deviations

from the null model and locates them in the predictor space. Opsomer and

Francisco-Fernández (2006) addresses the same issue. However, their solution

is a local LOF test that applies to a subset of the data that is suspected for

the presence of local deviations. The test statistic is a local version of the

Cramér-von Mises test statistic presented in Alcalá et al. (1999). It is based on

the difference of a global parametric and nonparametric fit, evaluated only

over the suspicious subset in the predictor space. They point out themselves

that their significance levels might not be correct, as one deals with a situation

of so called data snooping, but argue that low p-values at least provide an

indication of a suspicious local pattern in the data. Moreover, the predictor

space could be partitioned into several intervals and their local test could be

applied to each of the intervals and the corresponding p-values corrected by

means of the Bonferroni correction. We believe, however, that this new method

suffers from the same disadvantages as previous LOF tests, as a partition of the

predictor space should be provided and no guidelines to do so are available.

In addition, the power advantage of the local procedure gets lost due to the

conservative Bonferroni correction that has to be applied to the p-values.

Finally, the performance highly depends on the number and the choice of the

partitions, subjectively chosen by the data analyst.

In what follows, we will propose a new type of test statistic that is able to detect

both global and local deviations. In addition, we introduce new types of plots

to visualize where subsets of deviating observations occur in the predictor

space. We start in the next section by introducing these tests and diagnostic

plots in case of simple linear regression.
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CHAPTER 4

Interval based regional residual

plots and tests

The selected review of existing LOF tests (Chapter 3) makes clear that residuals

are highly informative for validating the quality of a parametric model. Model

deviations are often reflected in a systematic pattern of the residuals and many

tests focus on this property. Buckley (1991), Su and Wei (1991), Stute (1997),

Diebolt and Zuber (1999), among others, based their tests on cumulative sums

of residuals, since large patterns of positive or negative residuals indicate evi-

dence of model deviations. However, these sums accumulate all the residuals

associated with covariate values less than x and therefore, the test statistics are

dominated by observations with low covariate values. Lin et al. (2002) solves

this problem by considering moving sums, where the sums of residuals asso-

ciated with covariate values in a certain window are taken. In addition, they

introduced a test based on moving averages, since for unequally spaced de-

signs the number of observations within moving windows of fixed block size

in the predictor space can be quite unstable. However, the major problem with

moving sums and moving averages of fixed block size, is that the performances

of the tests highly depend on the block size, which has to be defined prior to the

analysis. From this point of view, we propose in this chapter LOF tests based

on so called regional residuals, which are averages of residuals over partitions

in the predictor space. These partitions include all possible block sizes. Firstly,

we introduce the building blocks of our test statistics, the regional residuals,

and develop the corresponding tests. Secondly, to answer the need of formal

graphical tools to visualize lack-of-fit in the predictor space, we construct re-

gional residual plots. In a later chapter, we will provide a sketch of the large

sample null distribution of the test statistics, although in practice, we advise

using one of the bootstrap schemes of section 3.5.

This chapter 1 deals with assessing the quality of a parametric model fit in a

1Most of this chapter is published in Deschepper E., Thas O., Ottoy J.P. (2006) Regional Residual

Plots for Assessing the Fit of Linear Regression Models. Computational Statistics and Data Analysis, 50,

1995-2013.
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single predictor variable x. The extension to more predictor variables is the

topic of Chapter 6.

4.1 Construction of a LOF test and a graphical diagnostic tool

4.1.1 Regional residuals

Given the independent observations (xi, yi), i = 1, . . . , n, let m(x) denote the

parametric regression model for the mean of the response variable y in the sin-

gle predictor variable x ∈ R,

yi = m(xi) + ǫi, i = 1, . . . , n,

where the ǫi’s are i.i.d. random variables with E(ǫi) = 0 and Var(ǫi) = σ2.

For simplicity, assume that the observations are ordered with respect to the

predictor variable x. More specifically, assume that xi is the ith order statistic

x[i] of x, and yi = y[i] is the y-value associated with x[i], the concomitant.

Consider testing the central null hypothesis in this dissertation, namely, m be-

longs to a given parametric family of functions,

H0 : m ∈ M = {m(x, θ) : θ ∈ Θ} , (4.1)

where Θ is a p-dimensional proper parameter set in R
p. Note that test-

ing the null hypothesis may include testing for a simple linear regression

model m(x, θ) = θ0 + θ1x, as well as testing for a nonlinear relationship, e.g.

m(x, θ) = θ0 exp(−θ1x), as well as testing for a polynomial regression model in

x, like the family of cubic polynomials m(x, θ) = θ0 + θ1x + θ2x2 + θ3x3, where

θ = (θ0, θ1, θ2, θ3) ∈ Θ ⊂ R
4, or simply testing for the no-effect hypothesis

m(x, θ) = θ0.

Ordinary residuals are defined as ei = yi − m(xi, θ̂n), (i = 1, . . . , n), where θ̂n

is assumed to be a consistent estimator of θ, e.g. the least squares estimator.

A regional residual is defined as the average of ordinary residuals in the subset

Aij = [xi, xj], i, j = 1, . . . , n, i ≤ j, i.e.

R(Aij) =
∑

n
k=1 ek I(xi ≤ xk ≤ xj)

∑
n
k=1 I(xi ≤ xk ≤ xj)

=
1

nij

n

∑
k=1

ek I(xi ≤ xk ≤ xj), (4.2)

where nij = ∑
n
k=1 I(xi ≤ xk ≤ xj) is the number of observations in the

subset Aij. When no replicated design points are present, a regional residual

calculated over an interval Aii is simply the ordinary residual at design point i.

However, for design points with multiple measurements, this regional residual

is equal to the average of all the multiple classical residuals at that design
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point. This means that the availability or the presence of replicated design

points is not an issue for future tests based on regional residuals.

Sometimes we use the matrix notation of (4.2),

R(Aij) = (It
Aij

IAij
)−1It

Aij
(In − H)Y,

where IAij
is the n × 1 column matrix for which the kth element is 1 if xk ∈ Aij

and 0 otherwise. Let In be the n× n identity matrix, Y the n× 1 response matrix,

and H the hat matrix. The form of the hat matrix depends on the model. For a

linear model, let X denote the n × p design matrix, containing the values for all

functional forms of the covariate included in the null model. The hat matrix

H = X(XtX)−1Xt, (4.3)

is the matrix that provides the fitted values as the projection of the outcome

variable onto the covariate space. In case of a nonlinear regression model, the

hat matrix is given by

H = V(VtV)−1Vt, (4.4)

where V denotes the n × p matrix with elements mr
i = ∂mi

∂θr
, i = 1, . . . , n,

r = 1, . . . , p. In practice, all derivatives have to be evaluated at the estimated

parameter θ̂n.

Under the null hypothesis of no lack-of-fit, these regional residuals have zero

mean. The variance of R(Aij) under the null hypothesis is given by n−1
ij σ2h2

ij,

where h2
ij = (It

Aij
IAij

)−1It
Aij

(In − H)IAij
. Sometimes we write h2

ij = h2
ij(X) to

stress the dependence on X.

Standardization of the regional residuals is an important issue in making the re-

gional residuals comparable with each other. However, in practice, the residual

variance σ2 is unknown, but can be replaced by a consistent estimator. The most

natural estimator, S2
n = (n − p)−1 ∑

n
i=1(yi − m(xi, θ̂n))2, is considered first, re-

sulting in the standardized regional residuals

RS2
n
(Aij) =

√
nij

R(Aij)

Snhij
.

Lemma 1 For a linear regression model m and normally distributed error terms, under

the null hypothesis of no lack-of-fit, RS2
n
(Aij)

H0∼ tn−p.

Proof. Under the null hypothesis of no lack-of-fit and in the particular case of

normally distributed errors terms, straightforward calculations give

√
nijR(Aij)

H0∼ N(0, σ2h2
ij(X)).
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Since
(n−p)S2

n

σ2

H0∼ χ2
n−p, we find for the standardized regional residual,

RS2
n
(Aij) =

√
nijR(Aij)

σhij

Sn
σ

H0∼ N(0, 1)√
χ2

n−p

n−p

∼ tn−p.

2

4.1.2 A lack-of-fit test

As argued in Chapter 3, ordinary residuals often play an important role in as-

sessing the fit of regression models. If the model is correct, all residuals have

expectation zero. Thus, averages of residuals over any subset of the predictor

space also have expectation zero. We propose to use such averages, regional

residuals, to detect possible deviations from the null model. Regional resid-

uals are very suitable building blocks for constructing a lack-of-fit test. If de-

viations from the null model occur in a certain region of the predictor space,

patterns of positive or negative residuals will show up in that neighbourhood,

resulting in large absolute values of standardized regional residuals over these

regions. Therefore, we suggest to calculate regional residuals over all possible

intervals of the covariate x, Aij = [xi, xj], i, j = 1, . . . , n; i ≤ j, instead of a priori

specifying a fixed interval length as was done in Lin et al. (2002). Large abso-

lute values of standardized regional residuals suggest a possible lack-of-fit of

the hypothesized model, located in the corresponding interval in the predictor

space. To overcome the problem of multiplicity and to obtain a global measure

of lack-of-fit, taking a norm of all the calculated standardized regional residuals

is proposed as a test statistic,

TRRS = sup
i≤j;i,j=1,...,n

∣∣∣RS2
n
(Aij)

∣∣∣ . (4.5)

This statistic is sensitive to both global and local deviations from the hypoth-

esized model (Section 4.2), where global and local refer to large and small

intervals in the predictor space, respectively.

We use the subscript RRS to indicate that the test statistic is based on Regional

Residuals that are standardized by using the most natural estimator, S2
n. We

refer to this test as the RRS test. In Section 4.1.5 alternative variance estimators

to construct standardized regional residuals are discussed, together with their

corresponding test statistics.
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The following theorem states the asymptotic null distribution of TRRS under the

no-effects null hypothesis, m(x; θ) = θ0 for a fixed, uniform design. The proof

is given in Chapter 8.

Theorem 2 Let Z denote a standard Brownian Bridge on [0,1], and let 0 < c < 1

denote a small nonzero constant, and define S = {(s, t) ∈ [0, 1]2 : c < t −
s < 1 − c}. Then, under the no-effect null hypothesis and for a fixed, uniform

design, the test statistic TRRS converges in distribution to the supremum norm of
1√

(t−s)(1−(t−s))
(Z(t) − Z(s)) over S .

The condition c < t − s < 1 − c is necessary to let TRRS have a proper limiting

distribution. The reason is that the weight function [(t − s)(1 − (t − s))]−1/2

gets too large for small t − s or 1− (t − s). Note that in fact, the definition of the

TRRS needs a slight modification. We additionally assume that nij > cn. How-

ever, in practice this assumption always holds, since the test statistic is defined

over the design points and even when i equals j, there exists such a constant c.

For more details on the derivation of the asymptotic distribution of TRRS for a

more general regression model, the reader is deferred to Chapter 8. A more for-

mal argument is given in the proof of Theorem 17.2.1 of Shorack and Wellner

(1986).

Since it is closely related to the marked empirical process based on residuals

(3.26), the same limitations on using the asymptotic distribution for the test

statistics described in Section 3.2.4, will apply here as well. As pointed out

there, the limit process depends on the null model and can take rather compli-

cated structures. Obtaining critical values by means of the bootstrap (Section

3.5) seems therefore to be recommended. In particular, we advise using an ap-

proximation of the null distribution of test statistic TRRS by means of the resid-

ual based bootstrap scheme of Section 3.5.2, allowing both fixed and random

designs. If the assumption of a constant error variance σ2 is relaxed, the wild

bootstrap scheme should be used to deal with heteroscedastic errors (Section

3.5.3).

4.1.3 Regional residual plots

Exploratory regional residual plot

We believe that important information is lost by summarizing all discrepancy

measures into a single value. We therefore propose to complement the LOF

test with a visualization of the individual regional residuals. We suggest two

types of regional residual plots. In one plot, the standardized regional residu-

als, RS2
n
(Aij), are plotted in the (i, j) plane. This can, e.g., take the form of a heat

map (Figure 4.1, right panel). The x-axis (y-axis) of the heat map shows the
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Chapter 4. Interval based regional residual plots and tests

starting point (end point) of the interval for which the standardized regional

residual is calculated. Although the regional residuals are only defined for

i ≤ j, the regional residual plot is made symmetrical by filling up the half plane

i > j with RS2
n
(Aji). The colors of the heat map range from red for large negative

values of the standardized regional residuals, to orange for values around zero,

to light yellow and white for large positive values. Thus, red or white areas

suggest possible regions of lack-of-fit. Alternatively, under normality assump-

tions, the t-distribution may be used to obtain pointwise p-values which may

be plotted in a similar heat map (Figure not shown). However, the interpre-

tation of these regional residual plots has only a pointwise nature. Therefore,

these plots are referred to as exploratory regional residual plots. It should be clear

that the resulting plots only explore a possible lack-of-fit and do not provide a

formal way to assess lack-of-fit, for multiplicity is not taken into account. Thus

even when there is actually no lack-of-fit, we may expect to see at least one indi-

vidual p-value smaller than the nominal significance level α, with a probability

larger than α. Although these plots are thus too sensitive to include a proper

lack-of-fit test, red and white coloured areas will still indicate regions where the

standardized average deviations between the observed response values and the

mean fitted values are rather large.

The use of these plots is illustrated on an artificial example data set in Figure

4.1. In the left panel of this figure the simulated data are shown, together with

a least squares fit (straight line). A sinusoidal deviation is locally added to the

linear relationship y = 5 − 2x, where xi = i−0.5
n are equally spaced design

points, i = 1, . . . , n = 50, and hence

y =

{
5 − 2x + 0.6 sin(19x) if x ∈ [0.33, 0.65],

5 − 2x otherwise.

Gaussian noise with zero mean and a constant variance σ2 = 0.01 is added

as well. A clear lack-of-fit is thus situated in [0.33,0.65]. The heat map in the

right panel shows red areas for small intervals around the interval [0.49,0.65]

and for larger intervals that include the interval [0.49,0.65], indicating a local

pattern of mainly negative residuals in the area around [0.49,0.65]. On the

other hand, white areas occur for small intervals around the interval [0.33,0.49]

and for larger intervals that include the interval [0.33,0.49], suggesting an

underestimation of the data in this region.

We would like to stress once more that no statistical test is involved by

representing the standardized regional residuals in a heat map and that the

exploratory regional residuals plot does not have a formal interpretation.

Next, we introduce a formal regional residual plot, which protects correctly for a

60



4.1. Construction of a LOF test and a graphical diagnostic tool

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

3.
5

4.
0

4.
5

5.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
x

−4

−2

0

2

4

FIGURE 4.1: (Left panel) True (dashed line) and fitted (solid line) regression model (n = 50);

lack-of-fit situated in [0.33;0.65]; (Right panel) Exploratory regional residual plot. This plot

shows the individual standardized regional residuals to visualize possible areas of LOF.

family-wise error rate of α.

Formal regional residual plot

Apart from the exploratory regional residual plot, the lack-of-fit test in sec-

tion 4.1.2 can be complemented with a two-dimensional formal graphical tool,

which is called a formal regional residual plot. This plot does take the multiplic-

ity into account, and is constructed by only indicating the intervals for which

the absolute value of the standardized regional residual exceeds the bootstrap

critical value of the test statistic TRRS. An example of this diagnostic tool is

shown in Figure 4.2 (right panel). White areas in the formal regional resid-

ual plot refer to large positive standardized regional residuals that exceed the

bootstrap α−level critical value of TRRS. The null hypothesis would already

be rejected based on this value alone. In those particular regions, a statisti-

cal significant underestimation of the data by the null model is detected at the

specified alpha level. Similarly, red areas indicate regions with large negative

standardized regional residuals, for which the absolute value exceeds the boot-

strap critical value. Such areas indicate statistically significant overestimation.

“Non-suspicious” regions are coloured orange. Hence, whenever one white or

red spot appears in this formal regional residual plot, the null hypothesis of no

lack-of-fit is rejected at the α−level of significance, and, in addition, the plot
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Chapter 4. Interval based regional residual plots and tests

locates regions of lack-of-fit. These regions can be very small, a few neighbour-

ing observations or even a single outlying observation, or very large in case of

global deviations from the null model.
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FIGURE 4.2: (Left panel) True (dashed line) and fitted (solid line) regression model (n = 50);

LOF situated in [0.33,0.65]; (Right panel) Formal regional residual plot. This plot locates

the areas where statistically significant LOF occurs (α = 0.05). White areas identify areas

of significant underestimation, red of overestimation.

We now return to our artificial data example for which the formal regional

residual plot is shown in Figure 4.2. The heat map in the right panel shows

red areas for small intervals around the interval [0.49,0.65] and for larger in-

tervals that include the interval [0.49,0.65] and white areas for small intervals

around the interval [0.33,0.49] and for larger intervals that include the inter-

val [0.33,0.49]. This plot shows a statistically significant underestimation of the

data around [0.33,0.49], followed by a statistically significant overestimation

situated around [0.49,0.65]. This conclusion corresponds to a p-value p < 0.001

based on 1000 bootstrap samples. Note that in this particular case, other classi-

cal LOF tests are also able to reject the null hypothesis and thus detect a signif-

icant LOF, e.g. the von Neumann test (p = 0.000), the Buckley test (p = 0.004),

the OS test (p = 0.000), the adaptive Neyman test by Kuchibhatla and Hart

(1996) (p = 0.000), etc. However, they do not possess the ability to formally

locate the deviations in the predictor space.
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Added value of the regional residual plots

In the next few paragraphs we illustrate further the added value of both

types of plots. Later, in Section 4.2 we give results of a particularly designed

empirical study to assess the characteristics of the plots.

To appreciate more the added values of both types of plots, we consider the

same deviation from the null model, but we increase the error variance in the

artificial data example from σ2 = 0.01 to σ2 = 0.1. A sample drawn under

the new conditions is shown in Figure 4.3. The left panel shows the simulated

values of the response variable y and the least squares fit of a simple linear

regression model. By inspecting this scatter plot no real indications of LOF are

available as no obvious systematic trend is seen in this plot.
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FIGURE 4.3: (Left panel) True (dashed line) and fitted (solid line) regression model (n = 50);

lack-of-fit situated in [0.33,0.65]; (Right panel) Exploratory regional residual plot. This plot

shows the individual standardized regional residuals to visualize possible areas of LOF.

For this particular dataset, some of the classical LOF tests show borderline sta-

tistical significance at the 5% level, or are even unable to reject the null hypoth-

esis: e.g. the von Neumann test (p = 0.051), the Buckley test (p = 0.529), the

OS test (p = 0.032), the adaptive Neyman test by Kuchibhatla and Hart (1996)

(p = 0.061), etc. Even if the null hypothesis is rejected, the data-analyst has,

by purely inspecting the scatter plot in Figure 4.3, no idea whether the model

is inappropriate for the entire range of the x-variable or only for one or more

small subsets. By inspecting the exploratory regional residual plot (Figure 4.3,

right panel ) the indication of possible under- and overestimation around the
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Chapter 4. Interval based regional residual plots and tests

intervals [0.33,0.49] and [0.49,0.65] immediately becomes clear and is formally

confirmed in the formal regional residual plot (p = 0.001) in Figure 4.4. The

red spots in the formal regional residual plot (Figure 4.4), correspond to four

regional residuals calculated over four intervals, ranging from 0.47, 0.49, 0.51

and 0.53 up to 0.63. The light yellow spot corresponds to two regional residuals

calculated over two intervals, ranging from 0.39 to 0.43 and 0.45 respectively.

This illustrates that the plot fairly well indicates in which region the lack-of-fit

is located.
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FIGURE 4.4: (Left panel) The least squares fit (solid line) of the simple linear regression model

is added to the scatter plot of y versus x; lack-of-fit situated in [0.33,0.65]; (Right panel)

Formal regional residual plot. White areas identify areas of underestimation, red of overes-

timation.

A popular exploratory method to assess this fit of a regression model, is to ap-

ply a smoother to the data or to the residuals, and add this fit to the scatter plot.

This is shown in Figure 4.5 (left panel) with a loess smoother with span=0.75.

However, the impression the data-analyst gets, depends on the choice of the

smoother and the smoothing parameter. In addition, no formal conclusion can

be drawn from these plots. They merely provide the same information as the

exploratory regional residual plots. There are LOF tests based on smooths, e.g.

the OS test or the adaptive Neyman test of Kuchibhatla and Hart (1996). The

latter provides a graph of the smooth estimate of the residuals. An example is

shown in the right panel of Figure 4.5. When the null hypothesis is rejected,

the graph of the smooth estimate provides an impression of the true nature

of the relationship between the residuals and their index. If the graph is non

constant, the data-analyst is still not able to formally locate the LOF in the
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predictor space.
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FIGURE 4.5: (Left panel) Scatterplot of y versus x with the least squares fit (dotted line) and the

loess fit with span = 0.75 (solid line) for the artificial data example with σ2 = 0.1. (Right

panel) Scatterplot of the residuals versus the fitted values with the constant line y = 0

(dotted line) and the trigonometric series smooth fit (3.23) with k̂ = 9 (solid line) for the

artificial data example with σ2 = 0.1.

We would like to end the discussion on the regional residual plot with a

remark. Regional residual plots are designed to help the data-analyst in identi-

fying areas that deserve special attention. Note that the plots only provide an

idea of over- or underestimation of the observations in that specific area. They

are not a real tool that suggests how to ameliorate the model. However, one

could consider the idea of constructing prototype regional residual plots for

different types of lack-of-fit as was done in Lin et al. (2002) for the cusumplot.

By comparing a plot obtained for a particular data set with the prototype plots,

one could try to recognize a pattern of the prototype plots to get an idea of the

particular type of LOF at hand.

4.1.4 Related test statistics

As already indicated in the introduction of this chapter, the proposed test statis-

tic is closely related to those of Stute (1997), Diebolt and Zuber (1999), Lin et al.

(2002), among others. Recall that Stute (1997) and Diebolt and Zuber (1999)
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studied the process

B̂n(x) = n−1/2
n

∑
i=1

I(Xi ≤ x)ei.

Their test statistic is constructed as the supremum norm of B̂n(x). Since the

process B̂n accumulates all the residuals associated with covariate values less

than x, it tends to be dominated by residuals with small covariate values. This

problem can be overcome by considering moving sums or moving averages of

residuals as proposed by Lin et al. (2002), who also use the supremum norm

to obtain a global measure of lack-of-fit. The moving sums of residuals are

calculated over blocks of fixed size b,

B̂n(x; b) = n−1/2
n

∑
i=1

I(x − b < Xi ≤ x)ei.

Since the moving sums are based on blocks of the same size, the number of

observations in the blocks can be quite different when the covariate values are

not evenly distributed. Therefore, also moving averages were studied,

B̂n(x; b) =
n−1/2 ∑

n
i=1 I(x − b < Xi ≤ x)ei

∑
n
i=1 I(x − b < Xi ≤ x)

.

The powers of these tests depend on the choice of b. Larger values of b will

lead to more powerful tests when a lack-of-fit is situated over the entire range

of the predictor variable x (global LOF), while smaller values of b are needed

to detect local deviations (Section 4.2) with good power. The method proposed

in this thesis solves this problem by considering all possible intervals. Note

that our new test thus considers more regions than the tests of Stute (1997),

Diebolt and Zuber (1999), Lin et al. (2002) do, as our regional residuals include

the cumulative sums of residuals of Stute (1997) and Diebolt and Zuber (1999)

and also the moving sums of Lin et al. (2002) for all block sizes. We allow for

a non-fixed block size, as in most cases no prior knowledge on the size of the

area of LOF is available. We therefore expect our tests to be powerful in case

of both global and local lack-of-fit. However, probably this is at a price. If Lin

et al. (2002) choose the “right” block size b, their tests will be more powerful.

On the other hand, for a “bad” block size, their tests will hardly detect the LOF

present.

4.1.5 Difference based variance estimators

As mentioned before, we standardize the regional residuals to make them com-

parable to each other. Ideally, the variance is known and we obtain immediately

the standardized regional residuals and the test statistic. However, in practice,
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the residual variance is unknown, and needs to be replaced by a variance es-

timator that is consistent under both the null and the alternative hypotheses

to obtain a powerful LOF test. Unfortunately, the estimator S2
n, of the resid-

ual variance often overestimates under a lack-of-fit situation. The estimated

standardized regional residuals appear then to be smaller than they really are,

which might result in low power. The use of variance estimators which are

more robust against deviations from the null model may therefore be more

appropriate. A number of nonparametric variance estimators have been pro-

posed in the literature. We refer to Dette et al. (1998) and Munk et al. (2005)

and the references therein for an overview and discussion on variance estima-

tion in nonparametric regression. In what follows, we focus on two popular

choices of difference based variance estimators. The first one is half the mean

sum of squares of successive differences estimator, σ̂2
D, which was introduced

by von Neumann (1941) (Equation 3.11), but has also been used by Rice (1984),

and is therefore often known as the Rice estimator. The second is the variance

estimator σ̂2
P based on pseudo-residuals of Gasser et al. (1986) (Equation 3.6).

Both variance estimators are attractive from a practical point of view, as they

are computationally simple and often have a small bias for small sample sizes

(Dette et al., 1998). When multiple observations at some of the design points are

present, appropriate modifications to these nonparametric variance estimators

have to be made.

By replacing the residual variance estimator S2
n by these estimators, the stan-

dardized regional residuals are given by

RD(Aij) =
√

nij

R(Aij)

σ̂Dhij
and RP(Aij) =

√
nij

R(Aij)

σ̂Phij
.

The corresponding test statistics TRRD and TRRP become

TRRD = sup
i≤j;i,j=1,...,n

∣∣RD(Aij)
∣∣ and TRRP = sup

i≤j;i,j=1,...,n

∣∣RP(Aij)
∣∣ . (4.6)

These tests are abbreviated as the RRD and the RRP tests.

4.2 Simulation results

To learn about the small sample power characteristics of the proposed tests in

simple linear regression, a simulation study is performed, comparing the em-

pirical powers of the RRS, RRD and RRP tests with those of the closely related

tests of Lin et al. (2002) and three classical lack-of-fit tests. The supremum test

with cumulative sums of residuals (Stute (1997), Lin et al. (2002)) is abbreviated

67



Chapter 4. Interval based regional residual plots and tests

as the S test. Since the powers of the tests based on moving sums depend on

the choice of b, the fixed block size, three different block sizes are included in

the study, corresponding to the range of the lowest 10%, 30% and 50% of the

covariate values, which are referred to as the MB10, MB30 and the MB50 tests.

The three classical lack-of-fit tests are the generalization of the von Neumann

(1941) test, the Buckley’s cusum test, and the smoothing-based lack-of-fit test

proposed by Kuchibhatla and Hart (1996), denoted as the N, B and KH test,

respectively.

In this study, the asymptotic null distributions of the test statistics TN and TB

are used, while the residual based bootstrap procedure discussed in Section

3.5.2 was used for all other tests. Calculations were performed using R and

C++. To reduce the computing time for the estimation of the power of the boot-

strap tests, a Monte Carlo power study was set up based on the simple linear

extrapolation method proposed in Boos and Zhang (2000). For each scenario,

O = 1000 data sets are generated under the alternative, resulting in O estimated

p-values, p̂I,1, . . . , p̂I,O, each of which is obtained from resampling I = 59 times

in the bootstrap loop. A linear extrapolation procedure further results in a bias-

adjusted power estimate. A sufficiently accurate approximation of the nominal

level is observed in all cases (Tables 4.2, 4.3, and 4.5). Typically a larger num-

ber of Monte Carlo and bootstrap samples would estimate the power more ac-

curately, but we believe our results are indicative in their comparison of the

different tests.

In what follows, three main questions are discussed in the next few subsections:

• How good is the small sample performance of the new tests as compared

to other tests, assuming homoscedasticity and Gaussian error terms?

• How do the three new tests perform in case of heteroscedasticity?

• How do they behave for heavy-tailed error distributions?

A fixed, equidistant design with one covariate will be considered.

4.2.1 Homoscedasticity and Gaussian error terms

Two different parametric null models are considered to investigate the first

question: the constant mean model and a simple linear regression model. The

performance in case of global and local deviations from these null models is

studied.

Global LOF

We first reconsider the simulation study of Eubank and Hart (1993), introduced

in Chapter 3, Section 3.2.1. In Figure 4.6, our three tests RRS, RRD and RRP
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seem to have reasonable power properties in case of the global low frequency

alternative m1, and good power properties in case of the global high frequency

alternative m2, especially when a nonparametric variance estimator is used.

Note that only the two tests that had the highest and lowest power for the

specific alternative in Figure 3.7 are plotted in Figure 4.6 so as to keep the plot

as lucid as possible. Note that ZCM in the graphs refers to the Cramér von

Mises type of test statistic (3.30) based on process B̂n(.). We stress once more

the fact that the lack-of-fit occurs over the entire range of the predictor variable,

and thus represents situations of global LOF, in contrast to the next simulation

studies where we focus on local LOF. In the latter, the deviations from the

null only occur in a subset of the predictor variable, while the fit outside that

specific region is well-modeled by the parametric null model under study.
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FIGURE 4.6: (Left panel) Illustration of the low (m1) and high frequency (m2) alternative model

with parameter β = 1.0. (Middle panel) Empirical power curves for the different values

of the parameter β for m1. (Right Panel) Empirical power curves for the high frequency

alternative m2.

Global versus local LOF

As a general setting in the next paragraphs, we consider the null hypothesis

of a linear model, m(xi, θ) = θ0 + θ1xi where the vector x of the indepen-

dent variate is fixed by design and xi ∈ [0, 1]. Continuous data are gener-

ated as Yi ∼ N(m(xi, θ), σ2) with σ2 = 0.1 and with an equidistant design

xi = (i − 0.5)/n, i = 1, . . . , n, for different sample sizes, n = 20, 50 and 100.

High frequency alternatives are studied with both larger and smaller regions

of LOF, representing global and local lack-of-fit. The lack-of-fit is introduced as
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TABLE 4.1: Estimated powers in case of global and local lack-of-fit (γ = 12.5, 19 and 36, λ = 0.5,

n=50) situated in the lower and mid range of the predictor variable.

Test

location γ RRS RRD RRP S MB10 MB30 MB50

lower 12.5 0.959 0.957 0.930 0.975 0.939 0.972 0.852

19 0.753 0.773 0.728 0.723 0.742 0.480 0.469

36 0.252 0.302 0.294 0.135 0.106 0.059 0.070

mid 12.5 0.911 0.936 0.909 0.914 0.923 0.928 0.257

19 0.611 0.692 0.640 0.523 0.812 0.397 0.024

36 0.189 0.261 0.256 0.127 0.242 0.111 0.044

one period of a sine function. In particular,

m(xi) = 5 − 2xi + λ sin(γxi)I{δ1 ≤ i ≤ δ2}, (4.7)

where the amplitude, λ = 0.10, . . . , 0.90, determines the strength of the lack-of-

fit. The period, 2π
γ , with γ = 12.5, 16, 19, 24 or 36, determines the length of the

interval where the lack-of-fit occurs, varying from global departures (γ = 12.5)

to local departures (γ = 36). Finally, δ1 and δ2 are the lower- and upper bounds

of the interval which depend on the period of the sine function and the location

of the interval in the predictor range. This is illustrated in the left panels of

Figures 4.7 and 4.8, which show some examples of the generated LOF (λ = 0.9)

for large intervals, γ = 12.5, for medium-sized intervals, γ = 19 and for small

intervals, γ = 36, in both the low and the mid range of the predictor variable.

Firstly, we discuss a small simulation study that briefly illustrates the disad-

vantages of the related tests of Stute (1997) and Lin et al. (2002). Secondly, we

present the results of a more extended simulation study that illustrates the

performance of the new tests in comparison with some classical LOF tests.

Comparison to related tests

In Table 4.1, the empirical powers of the RRS, RRD and RRP tests are compared

with those of the closely related tests of Stute (1997) and Lin et al. (2002). We

consider both global and local alternatives and as representatives, we selected

a lack-of-fit of size λ = 0.5, which is introduced for three different lengths

of intervals: γ = 12.5 for global departures, γ = 19, and γ = 36 for local

departures, situated in the lower and mid range of the predictor variable. All
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samples had n = 50 observations and all tests were performed at the 5% level

of significance. The results of the MB tests clearly show the dependence of the

power on the choice of the fixed block size b. Larger values of b will lead to more

powerful tests when a lack-of-fit is situated over a larger range of the predictor

variable, while smaller values of b are needed to detect more local deviations.

Also the inferior performance of the S test when the lack-of-fit is situated in the

mid-range instead of the lower range of the predictor space can be observed.

This could be expected as the cumulative sums of residuals put larger weights

on residuals with low covariate values. If the LOF occurs in the mid range of

the predictor variable, it is harder to detect the LOF with this test. On the other

hand, the RRS, RRD and RRP tests perform well in all cases.

Similar results were found in all other simulations presented further in this

section. Therefore, only the results of the RRS, RRD and RRP tests, together

with those of the classical lack-of-fit tests will be shown in the remainder of

this chapter.

Comparison to classical tests

The main results of the more extended power study with n = 50 are visualized

using power curves. Figures 4.7 and 4.8 display the estimated power curves

for several alternatives. A distinction is made between large, intermediate and

small intervals of lack-of-fit and intervals situated at the start of the predictor

range (low-range), in the middle (mid-range) or at the end (high-range). Figure

4.7 shows the plots for the low-range, and Figure 4.8 shows those for the mid-

range, while the plots for the high-range are not shown as they are similar to

those of the low-range.

When comparing the three new and the three classical tests under different con-

ditions of lack-of-fit, the following conclusions can be made. In case of a rather

global lack-of-fit (upper panels of Figure 4.7 and 4.8), all tests have good power

characteristics, with a slight advantage for the smoothing based KH test, and a

rather bad performance of the cusum-based B test in the mid-range. It may be

concluded that for rather global departures from the simple linear regression

model the power of the new tests are comparable to those of the classical tests.

For lack-of-fit intervals of medium length (middle panels of Figure 4.7 and 4.8),

hardly any difference in performance can be seen between the smoothing based

KH test and the regional residual based tests. As the length of the interval de-

creases, it becomes more difficult to discriminate between systematic deviations

and noise. In this case, the regional residual based tests have the best power

whatever the location, in particular the RRD test. Notice the complete power

breakdown of the cusum B test and the poor performance of the KH test. In
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FIGURE 4.7: (Left panels) Scatter plots showing an example of the simulated lack-of-fit (dashed

line, λ = 0.9) and fitted (solid line) constant mean regression model (n = 50); (right

panels) Estimated power curves for the N, B, KH tests and the three residual based tests,

RRS, RRD and RRP (full lines, last letter is added to the curves to differentiate between

them) and for different areas of lack-of-fit; (upper panels) large interval of lack-of-fit situated

in the low range (γ = 12.5, δ1 = 0.01, δ2 = 0.49); (middle panels) intermediate interval of

lack-of-fit situated in the low-range (γ = 19, δ1 = 0.01, δ2 = 0.31); (lower panels) small

interval of lack-of-fit situated in the low-range (γ = 36, δ1 = 0.01, δ2 = 0.17).72
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line, λ = 0.9) and fitted (solid line) constant mean regression model (n = 50); (right

panels) Estimated power curves for the N, B, KH tests and the three residual based tests,
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TABLE 4.2: Estimated powers with m(xi) = 5 − 2xi + λ sin(γxi)I{δ1 ≤ i ≤ δ2} for various

sample sizes (n=20, 50 and 100), various interval lengths (γ = 12.5, 19 and 36) and in case

of no lack-of-fit (λ = 0.0) and of lack-of-fit (λ = 0.5) in the low-range.

Test

λ γ n RRS RRD RRP N B KH

0.0 20 0.038 0.052 0.046 0.051 0.063 0.063

50 0.049 0.052 0.052 0.048 0.056 0.050

100 0.053 0.049 0.051 0.063 0.059 0.066

0.5 12.5 20 0.385 0.539 0.483 0.497 0.371 0.439

50 0.959 0.957 0.930 0.843 0.894 0.968

100 1.000 0.999 1.000 0.981 0.996 1.000

0.5 19 20 0.147 0.220 0.238 0.242 0.142 0.201

50 0.753 0.773 0.728 0.618 0.428 0.759

100 0.995 0.991 0.990 0.888 0.744 1.000

0.5 36 20 0.038 0.043 0.035 0.037 0.039 0.050

50 0.252 0.302 0.294 0.255 0.089 0.212

100 0.726 0.748 0.741 0.546 0.115 0.625

contrast, the power of the three new tests decrease only very slowly with de-

creasing length of the lack-of-fit interval. This means that for local departures

from the simple linear regression model (lower panels of Figure 4.7 and 4.8),

our tests perform much better in comparison with the three classical tests.

The general power decrease for LOF that is situated in the mid-range of the

predictor variable may be explained by the fact that local deviations around the

mean of the covariate x have less influence on the least square fit as compared to

deviations near the boundaries of the covariate range, where the design points

are high leverage points. This may result in somewhat lower or less extreme

residuals, and therefore in somewhat lower power as compared to the same

local deviations added in the low- or the high range of the predictor variable.

To study the effect of the sample size, data were simulated with sample sizes 20,

50 and 100. Some results are presented in Table 4.2. The scenario with lack-of-fit

strength λ = 0.5 is chosen for this illustration. In general, the previous conclu-

sions seem to remain valid. In particular, the empirical levels are sufficiently

close to the nominal significance levels, for all sample sizes. The powers of the

three regional residual tests are quite similar, with a minor power advantage

of the RRD test, especially in small samples. The power advantage of this test

can be explained by the fact that the Rice estimator has the smallest bias in this
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4.2. Simulation results

particular case (Dette et al., 1998).

In conclusion, the new tests have power similar to that of the KH test and per-

form better than the N and B tests when rather global lack-of-fit occurs. The

powers of regional residual based tests even exceed those of the classical tests

in case of local lack-of-fit.

Localization ability of the RR tests

A major advantage of the new procedures, which is the ability of the regional

residual plots to formally locate lack-of-fit, is illustrated in Figure 4.9 (left

panel). In this graph, each point (i, j) corresponds to a particular interval for

which a probability, say Pij, is estimated and plotted. Pij is the probability that

the corresponding standardized regional residual is larger than the 5 % critical

value of the global test TRRD. This rejection probability is estimated as the ratio

of the number of times the standardized regional residual exceeds the simu-

lated critical value of TRRD and the total number of simulation runs (5000). The

study was performed under the condition that the lack-of-fit is introduced in

two small intervals over the x-range, in [0.19, 0.35] and [0.79, 0.95] with λ = 0.7

and σ2 = 0.1. Figure 4.9 (right panel) shows an example of the local lack-of-fit

simulated under these conditions. It is clearly observed in Figure 4.9 (left panel)

that mainly the regional residuals calculated over intervals including the area

of lack-of-fit, are responsible for the rejection of the null hypothesis. The local-

ization ability of the RR tests is studied more extensively in the next chapter.
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4.2.2 Heteroscedasticity and Gaussian error terms

As in the simulation study of Dette and Munk (1998), a simulation study is set

up with three different models for the standard deviation of the normal error

term, to study the loss of efficiency in using the proposed procedures under

heteroscedastic errors,

σ(x) = σ exp (cx) Monotone, model I (4.8)

σ(x) = σ(1 + c sin 10x)2 High frequency, model II (4.9)

σ(x) = σ(1 + cx)2 Unimodal, model III (4.10)

where different values for c = 0, 0.5 and 1.0 are used, σ2 = 0.1.

To deal with heteroscedastic errors, the two wild bootstrap procedures dis-

cussed in Section 3.5.3, can be used. When using the popular distribution F1

as suggested by Mammen (1993) instead of the Rademacher distribution F2, the

size distortion was larger and the power smaller in all cases. We therefore rec-

ommend the Rademacher distribution. Table 4.3 shows the empirical sizes with

the Rademacher distribution. The empirical power results are presented in Ta-

ble 4.4. Sufficiently accurate approximations to the nominal level for the boot-

strap method are observed in nearly all cases. To make the powers of all tests

comparable, all estimated rejection probabilities are based on the wild boot-

strap method with distribution F2. The tests are performed at the 5% level of

significance. All possible scenarios of lack-of-fit discussed in Section 4.2.1 are

reconsidered here. Only some representative results of rather global and lo-

cal lack-of-fit are shown in Table 4.4. For all tests, the power clearly decreases

with increasing heteroscedasticity. The KH and B tests tend to achieve the best

power in case of global lack-of-fit, although the RRD test often performs almost

equally well. In case of local lack-of-fit, the RRD and N tests outperform all

other tests.

4.2.3 Homoscedasticity and non Gaussian error terms

Finally, the performances of the tests are investigated when dealing with heavy

tailed error distributions. To address this issue, the same settings are adopted as

in Section 4.2.1, but, as in Dette and Munk (1998), t-distributed error terms with

4 degrees of freedom instead of normally distributed error terms are considered

as to obtain the heavy tailed error distribution. The error terms are first rescaled

to obtain the same variance as in Section 4.2.1. The estimated powers based on

the wild bootstrap are presented in Table 4.5. We conclude that they are similar

to those in the homoscedastic case with normal errors, except that some power

loss is observed due to the use of the wild bootstrap procedure instead of the
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TABLE 4.3: Empirical sizes for various variance functions I - III for α = 0.05.

Test

Model c RRS RRD RRP N B KH

0.0 0.049 0.052 0.052 0.048 0.056 0.050

I 0.5 0.053 0.055 0.054 0.054 0.053 0.054

1.0 0.055 0.054 0.057 0.053 0.053 0.054

II 0.5 0.059 0.068 0.067 0.054 0.048 0.044

1.0 0.088 0.077 0.072 0.061 0.049 0.043

III 0.5 0.051 0.058 0.059 0.054 0.057 0.058

1.0 0.056 0.059 0.058 0.057 0.051 0.055

TABLE 4.4: Estimated powers for various variance functions I - III, in case of global (γ = 12.5,

λ = 0.5) and local (γ = 36, λ = 0.9) lack-of-fit.

Test

γ λ Model c RRS RRD RRP N B KH

12.5 0.5 0.0 0.970 0.972 0.948 0.853 0.893 0.971

I 0.5 0.782 0.791 0.740 0.585 0.714 0.793

1.0 0.375 0.404 0.370 0.317 0.423 0.459

II 0.5 0.516 0.552 0.492 0.426 0.749 0.665

1.0 0.211 0.227 0.201 0.177 0.436 0.271

III 0.5 0.513 0.534 0.496 0.408 0.514 0.579

1.0 0.155 0.184 0.173 0.179 0.245 0.218

36 0.9 0.0 0.418 0.703 0.661 0.710 0.073 0.600

I 0.5 0.315 0.497 0.472 0.500 0.071 0.370

1.0 0.135 0.237 0.234 0.285 0.061 0.188

II 0.5 0.274 0.344 0.309 0.314 0.058 0.264

1.0 0.164 0.171 0.159 0.147 0.057 0.130

III 0.5 0.185 0.302 0.296 0.338 0.069 0.237

1.0 0.071 0.116 0.126 0.174 0.058 0.114

77
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TABLE 4.5: Estimated powers for heavy tailed data, using wild F2 bootstrap, in case of no lack-

of-fit (λ = 0.0) and lack-of-fit (γ = 12.5, 19, 36, λ = 0.3, 0.6).

Tests

γ λ RRS RRD RRP N B KH

0.0 0.049 0.054 0.056 0.051 0.047 0.053

12.5 0.3 0.490 0.556 0.507 0.408 0.527 0.595

0.6 0.938 0.969 0.957 0.937 0.950 0.982

19 0.3 0.282 0.364 0.335 0.274 0.201 0.369

0.6 0.841 0.911 0.869 0.840 0.642 0.907

36 0.3 0.092 0.154 0.147 0.129 0.059 0.111

0.6 0.271 0.429 0.418 0.458 0.101 0.329

residual based bootstrap. These results thus suggest that the performance of

the new tests is quite robust against heavy-tailed error distributions.

4.3 Data examples

The new lack-of-fit tests and corresponding plots are applied to three real data

sets from the literature: the windmill, the ice crystal and the Citibase Monthly

Indicator data. The use of the regional residual plots to detect and locate the

LOF in case of global and local deviations from hypothesized linear and non-

linear models is illustrated.

4.3.1 Windmill data

Reconsider the windmill data of Example 4 in Chapter 3. As before, we fit

a simple linear regression model to the original, untransformed data. Figure

4.10 shows the scatter plot of the DC output (y) versus the wind velocity x, as

well as the formal regional residual plot. The LOF test based on the Rice es-

timator results in a p-value of p < 0.0001, obtained by applying the residual

based bootstrap (B=10000), strongly indicating the presence of a lack-of-fit. The

formal regional residual plot in the right panel of Figure 4.10 shows a signifi-

cant (α = 0.05) overestimation of the data for small intervals in the low-range

of wind velocity. Further, a significant underestimation is found for large in-

tervals, mainly containing design points from the mid-range and even larger

intervals, including almost the entire range. It is clear that the overestimation

in the low- and high-range, and the underestimation of the data points in the

mid-range of the predictor variable are statistically significant. This suggests

the presence of a global lack-of-fit.
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FIGURE 4.10: (Left panel) Windmill Data (Montgomery and Peck, 1992); y = Direct Current

(DC) Output; x = Wind Velocity (miles per hour); (right panel) Formal regional residual

plot for the LOF test based on the Rice variance estimator (p < 0.00001); red areas in-

dicate an overestimation in the low- and high-range of the wind velocity; white areas an

underestimation of the data points in the mid-range.
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FIGURE 4.11: Exploratory regional residual plots for windmill data without (left panel) and

with (right panel) reciprocal transformation on the wind velocity. White (red) areas corre-

spond to regions of under-(over) estimation of the data when fitting a linear least squares

regression model.

When a linear least squares regression model is fit to the DC Output versus a

reciprocal transformation on the wind velocity, the LOF test based on the Rice

variance estimator no longer rejects the null hypothesis (p = 0.85). This can also
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be seen from the exploratory regional residual plot. Figure 4.11 shows these

plots for the fitted model based on the original (left panel) and the transformed

(right panel) data. In case of LOF, a clear systematic pattern of white and red

areas are observed in the regions where the LOF is located, while when no LOF

is present, the colours are just scattered around without any systematic pattern

as is shown in the right panel. Note that the same colour scheme is used in both

plots, but that the scale over which the standardized regional residuals range

in the right panel is considerably smaller than that of the left panel. Although

this might appear to be confusing, we prefer to use the same colour scheme,

as hardly any deviations in colour can be observed when the corresponding

colour scheme of the left panel is used. The random colour pattern when no

deviations from the null model are present is precisely what we wish to stress.

4.3.2 Ice crystal data

For the ice crystal data set introduced in Example 1 in Chapter 3, we apply the

new test to find out whether the local bump that appears in the loess smooth

in the left panel of Figure 4.12 corresponds to a significant area of LOF or not.

The p-value of the LOF tests based on S2
n (p = 0.149) do not allow us to con-

clude a significant local deviation. Although the exploratory regional resid-

ual plot shows clear patterns of red and white and light yellow areas, there is

not enough evidence in this dataset to conclude that a simple linear regression

model for axial length versus times is not appropriate. We would, however,

recommend a closer investigation of the model in the highlighted area by the

experimenter.

4.3.3 Citibase monthly indicators data

To illustrate the new methodology for nonlinear regression, we assess the fit

of two parametric models for the Citibase Monthly Indicators (CITIMON) data

set. The data file is available in the SASHELP library of SAS 9.1 and consists

of 144 LHUR (unemployment rate) observations from January 1980 to January

1992. The x variable represents the monthly industrial production (IP) index.

We could suspect that the unemployment rates are inversely proportional to

the industrial production index. Therefore, we assume the following nonlinear

parametric regression model, as is done in the SASHELP library

m(x, θ) =
1

θ1x + θ2
+ θ3.

Figure 4.13 shows the scatter plot of the data with the fitted parametric nonlin-
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FIGURE 4.12: (Left panel) Ice crystal data (Ryan et al., 1976); A = axial length of the ice crystal

in micrometers; T = times in seconds from the introduction of the crystals. The straight

dotted line represents the least squares fit of a linear model, the smoothed line is the fit of a

loess smoother to the data (span=0.75). (Right panel) Exploratory regional residual plot for

the ice crystal data based on the S2
n variance estimator.
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FIGURE 4.13: (Left panel) CITIMON data (SASHELP library SAS 9.1); y = Monthly Unem-

ployement Figures (LHUR); x = Monthly Industrial Production (IP) index. The solid line

is the parametric model fit (Equation 4.11). (Right panel) Exploratory regional residual plot

for the Citimon data based on the S2
n variance estimator.
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TABLE 4.6: Empirical levels for the RRS, OS and FH tests for the nominal significance levels

(α = 0.01, 0.05 and 0.10), obtained by using the wild F2 bootstrap procedure, for a nonlinear

null model (Equation 4.11). The results were obtained by performing 1000 Monte Carlo

loops and 100 bootstrap loops for each Monte Carlo loop.

Test

α RRS OS FH

0.01 0.015 0.012 0.012

0.05 0.049 0.048 0.057

0.10 0.092 0.096 0.107

ear model (solid line):

m(x, θ̂n) =
1

0.009x − 0.574
+ 3.347 (4.11)

The nonlinear ordinary least squares estimation method in R is used to estimate

the regression parameters. The right panel of this plot shows the values of the

standardized regional residuals, based on the S2
n residual variance estimate. On

this plot we see a systematic pattern in the lower range of the predictor vari-

able suggesting LOF. We obtain a bootstrap p-value of < 0.001 for the RRS test,

by approximating the null distribution with the wild F2 bootstrap procedure

(Section 3.5.3) based on 1000 bootstrap replications. Although we have sug-

gested in Section 3.5.4 to use the double bootstrap procedure, we prefer to use

the wild F2 bootstrap procedure instead. In Table 4.6 we present the empirical

levels using the wild F2 bootstrap procedure for a parametric nonlinear null

model in Equation 4.11 with normally distributed error terms with mean zero

and variance σ2 = 0.545 and sample size n = 144. The results were obtained

by performing 1000 Monte Carlo loops and 100 bootstrap loops for each Monte

Carlo loop. Table 4.6 shows a sufficiently accurate approximation of the level

of the test when the wild bootstrap is used.

The use of the wild bootstrap procedure, compared to applying the double

bootstrap procedure, considerably reduces simulation time for our already

computationally intensive LOF procedure. The OS and FH tests (Section 3.2.3)

were also applied to the citimon data and also rejected the null hypothesis with

both p-values < 0.001, but these tests do not locate the LOF in the x-variable.

For the RRS test, the formal regional residual plot is presented in the right panel

of Figure 4.14. We find a significant overestimation of the data for rather small

intervals that start between an IP value of 79 and 86 and end between 86 and
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89. It is clear that the red areas mainly indicate a significant (α = 0.05) overes-

timation in a small area in the low range of the predictor variable around 86,

as most red areas intersect in this region. A second region of LOF is identified

for larger intervals that start between 86 and 89 and end between 95 and 104

and also end between 108 and 111. The white areas thus indicate a significant

underestimation in the mid range, as most white areas intersect in the region

between 89 and 95. As the null hypothesis is also rejected for larger intervals in

the mid- and upper range of the predictor variable, a small area of LOF occurs

in the very upper range of the predictor variable.
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FIGURE 4.14: (Left panel) CITIMON data; y = Monthly Unemployement Figures (LHUR);

x = Monthly Industrial Production (IP) index. The solid line is the parametric model fit

(Equation 4.11). (Right panel) Formal regional residual plot (p=0.001) based on the test

statistic TRRS and the wild F2 bootstrap procedure (Section 3.5.3). Red areas indicate a

significant (α = 0.05) overestimation in the low range and the white areas a significant

underestimation in the mid range.

We continue the discussion with the assessment of a parametric fit that corrects

the regions of significant over- and underestimation described above. The x

variable, the monthly industrial production (IP) index, is now rescaled such

that all points lie within the interval [0, 1]. Li (2005) considered the following

nonlinear parametric regression model,

m(x, θ) = exp(θ1 + θ2x)+ θ3 sin(πx)+ θ4 sin(2πx)+ θ5 sin(3πx)+ θ6 sin(4πx),

to describe the relationship between the mean LHUR and the IP index.

Figure 4.15 shows the scatter plot of the data with the new fitted model (solid
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FIGURE 4.15: (Left panel) CITIMON data; y = Monthly Unemployement Figures (LHUR); x

= Monthly Industrial Production (IP) index, rescaled so that all points lie between [0, 1].

The solid line is the Li model fit (Equation 4.12), the dotted line the SAS model fit (Equation

4.11). (Right panel) Exploratory regional residual plot for the Citimon data based on the S2
n

variance estimator.

line):

m(x, θ̂n) = exp(2.405 − 0.718x) − 1.068 sin(πx) − 0.477 sin(2πx)

− 0.451 sin(3πx) − 0.448 sin(4πx). (4.12)

The fit of the previous model (dotted line) is also added. We see that the new

model corrects the regions of significant over- and underestimation described

above. The right panel of this plot shows the values of the new standardized re-

gional residuals in an exploratory regional residual plot, based on the S2
n resid-

ual variance estimate. It still shows a rather systematic pattern in the lower

range of the predictor variable. The values suggest first a small area of under-

estimation around [0.15,0.20], then a small area of overestimation [0.21,0.27],

and finally, again a small area of underestimation [0.28,0.43]. However, no sig-

nificant LOF can be detected at the 10 % significance level or smaller, as the

p-value equals 0.136, as approximated by 1000 bootstrap replications. Also, the

OS and FH tests have p-values of 0.454 and 0.31 respectively. Although there

is not enough evidence in the data to detect a statistically significant LOF, we

would recommend the data analyst to investigate more closely the fit in the

small areas, highlighted in the exploratory regional residuals plot (Figure 4.15).
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4.4 Unstandardized test statistics

Before we conclude this chapter, we add an extra section that actually resulted

from findings later in this dissertation. As different variance estimators may in-

fluence the performance of the regional residual based tests, and the choice of

nonparametric variance estimators is not straightforward in the multiple pre-

dictor setting, we may want to consider test statistics based on unstandardized

regional residuals. Although it seems unnatural not to standardize the regional

residual, most authors prefer this version when tests are based on cumulative

sums of residuals, e.g. Stute (1997), Diebolt and Zuber (1999), Lin et al. (2002).

One advantage is that the asymptotic theory has a simpler formulation, but

secondly, a small simulation study also showed a rather good performance for

unstandardized tests. The results of this simulation study are discussed further

on in this section. We investigate in this small power study two unstandardized

versions. The first one is simply the supremum of the increments of the process

B̂n studied by Stute (1997) and Diebolt and Zuber (1999). The test statistic is

defined as

TRRUn = sup
i≤j;i,j=1,...,n

∣∣∣∣∣
1√
n

n

∑
k=1

ek I(xi ≤ xk ≤ xj)

∣∣∣∣∣ = sup
i≤j;i,j=1,...,n

∣∣∣∣
nij√

n
R(Aij)

∣∣∣∣ .

(4.13)

Note that in the test statistic TRRUn the size of the region for which the regional

residual is calculated, is not taken into account. This means that residuals that

are calculated over large intervals are relatively more important than regional

residuals that are calculated over small intervals. As we still want to take the

size of the regional residual into account and focus on local LOF, we also con-

sider the test statistic,

TRRUnij = sup
i≤j;i,j=1,...,n

∣∣∣
√

nijR(Aij)
∣∣∣ . (4.14)

Note that we have to add
√

nij in (4.14) to obtain convergence of this test statis-

tic (Chapter 8). Actually this is also necessary for the tests based on standard-

ized regional residuals. However, whether the test statistic would be based on√
nijR(Aij)

sd(
√

nijR(Aij))
or on

R(Aij)

sd(R(Aij))
, where sd(.) denotes the standard deviation, does

not matter in finite samples as the factor
√

nij is canceled out. For weak conver-

gence of the test statistic however, this factor is crucial.

In the next paragraph, we present the result of a small simulation study com-

paring the small sample performance of the RRS, RRK, RRUn and RRUnij tests

when both global and local deviations from the hypothesized model occur.

Note that the RRK test refers to the regional residual test with known vari-

ance σ2. We only include the RRS test in this simulation study for its ease of
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implementation and its wide applicability.

We consider testing the no-effect hypothesis against an alternative with global,

medium-sized and local LOF. The global LOF is represented by

m1(x) = 2.33 + 0.5λ exp

(−(x − 0.5)2

0.06

)
/
√

2π0.03, (4.15)

where xi = (i − 0.5)/n, i = 1, . . . , 72, and λ is the LOF parameter that ranges

from 0 to 1, for which λ = 0 corresponds to the null hypothesis. To illustrate

the performance for the medium-sized deviations from the model, we take

m2(x) =

{
2.33 if x /∈ [0.57, 0.98];

2.33 + 3
2 λ sin(4 + 15x) if x ∈ [0.57, 0.98].

(4.16)

Finally, a small area of LOF is introduced by adding a period of the sine function

to the constant mean model at 2.33. In particular,

m3(x) =

{
2.33 if x /∈ [0.72, 0.88];

2.33 + 3λ sin(36x) if x ∈ [0.72, 0.88].
(4.17)

For each type of LOF, 10000 random data sets of sample size 72 are generated by

adding a normally distributed error term with mean zero and standard devia-

tion σ = 0.64. Scatter plots showing an example of all types of LOF with λ = 1,

are shown in the left panels of Figure 4.16. In the right panels, the estimated

powers of the RRS, RRK, RRUn and RRUnij tests are presented. It is remark-

able that all four tests perform equally well in case of medium-sized deviations

from the hypothesized model, while a distinction in performance is observed

between the tests for both global and local LOF. For global LOF, the RRUn test

performs better than the RRUnij test. This could be expected, as dividing sums

of residuals by
√

n instead of
√

nij results in relatively larger absolute values

for large intervals compared to those in small intervals. As global LOF im-

plies large patterns of positive or negative residuals in large intervals, the RRUn

test will be more sensitive to global deviations than the RRUnij that puts more

weight on regional residuals calculated over small intervals. As a consequence,

we find in the lower panel of Figure 4.16 a clear power advantage of the RRUnij

test in case of local deviations. The standardized test statistics seem to be a nice

compromise between these two unstandardized tests. Also, for the three al-

ternatives studied here, the performance of the test is only weakly influenced

by estimating the residual variance. Hardly any power is lost for the RRS test,

compared to that of the RRK test. In contrast, we finally show a fourth, global

high frequency alternative,

m4(x) = 2.33 + λ sin(36x).
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FIGURE 4.16: (Left panels) Scatter plots showing an example of the simulated lack-of-fit (dashed

line, λ = 1) and fitted (solid line) constant (n = 72) mean regression model; (upper panels)

global LOF function m1, (middle panels) medium-sized LOF function m2 (lower panels)

local LOF function m3. (Right panels) Empirical power curves for the RRS, RRK, RRUn

and RRUnij test in function of the LOF parameter λ.
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The LOF is illustrated in the left panel of Figure 4.17 for λ = 1. Empirical power

curves for the RRS, RRK, RRUn and RRUnij tests as functions of the LOF pa-

rameter λ are plotted in the right panel. In this case the variance estimator

S2
n is seriously biased, which results in a RRS test that has no power at all to

detect this type of high frequency alternative. As the RRK test performs well,

standardizing regional residual using a biased variance estimator has a baleful

influence on the performance of the regional residual test. Unstandardized test

statistics are most welcome here. As the alternative is periodic in small inter-

vals, a clear power advantage is observed for the RRUnij test in comparison to

the RRUn test. Unfortunately, in practice, most likely we do not have an in-

dication of local or global deviations in advance. This small simulation study

provides at least some insights into the behaviour of these four tests.
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FIGURE 4.17: (Left panel) Scatter plot showing an example of the simulated high frequency

lack-of-fit (dashed line, λ = 1) and fitted (solid line) mean regression model. (Right panels)

Empirical power curves for the RRS, RRK, RRUn and RRUnij test in function of the LOF

parameter λ.

4.5 Conclusions

Lack-of-fit tests and corresponding regional residual plots are proposed to as-

sess the fit of both linear and nonlinear parametric models in a single predictor

variable. Simulations suggest that the powers of the proposed testing proce-

dures are at least comparable to the powers of popular classical methods. With

the Rice variance estimator good empirical powers are obtained for alternatives

with both global and local lack-of-fit. This test seems to behave similarly to the

KH test, except for cases with local lack-of-fit, where the proposed tests outper-

form the classical tests. A major advantage of the new procedures is the ability

to locate lack-of-fit in a formal graphical way. Even in situations of violations
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4.5. Conclusions

of the model assumption of homoscedasticity the new tests still behave well as

compared to other classical tests. The use of the wild bootstrap is recommended

in practice, as it handles adequately heteroscedasticity and non normality of the

error terms.

In the next chapters, extensions to a single circular predictor (Chapter 5), to

more than one predictor variable (Chapter 6), and to generalized linear models

(Chapter 7) are proposed and investigated. The asymptotic behaviour of the

new tests is presented in Chapter 8.
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CHAPTER 5

LOF tests and plots for

circular-linear regression models

Regression diagnostics and lack-of-fit tests mainly focus on linear-linear regres-

sion models, where both the predictor and the response variable have their

support on the real line. When the design points are distributed on the circum-

ference of a circle, difficulties arise as there is no natural starting point or origin.

Most classical lack-of-fit tests require an arbitrarily chosen origin, but different

choices may result in different conclusions. Our methodology in Chapter 4 is

easily extended to circular-linear regression models 1, where the predictor vari-

able is measured on a cyclical scale and the response variable on the real line.

5.1 Introduction

In the food industry, micro-encapsulation is used for the isolation of food in-

gredients, enzymes, cells or other materials, so as to protect them from mois-

ture, heat or other extreme conditions, and thus enhancing their stability and

maintaining viability (see e.g. Gibbs et al. (1999)). Ongoing research aims at im-

proving existing techniques to construct a uniform wall around a small sphere,

like a food particle. A spray nozzle atomising coating liquid can be used to

manufacture microcapsules. The micro-encapsulation data of De Pypere (2005)

contains for such an encapsulated food particle, microscopy measurements of

the thickness of the coating layer at the circumference of a cross-section of the

food particle that were taken at every five degrees. The data are presented in

Figure 5.2 (upper panel). The food scientist wants to obtain a quantification of

the mean coating thickness and the uniformity of the coating layer around the

circumference. He is particularly interested in locating deviations of the mean

coating thickness on the circumference of the cross-section of the food particle.

To address the research question, the fit of a constant mean regression model,

m(x; θ) = θ0, for x ∈ (0, 360] is studied. In the literature, graphical methods and

1Most of this chapter is submitted for publication in Deschepper E., Thas O., Ottoy J.P. (2007)

Tests and Diagnostic Plots for Detecting Lack-of-Fit for Linear-Circular Regression Models. Submitted to

Biometrics. In review.
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statistical tests used to assess the fit of a parametric regression model mainly re-

fer to cases where the sample space of the predictor is a subset of the real line.

However, in the micro-encapsulation data, a random variable is measured on

the circumference of a circle, and circular-linear regression analysis is more ap-

propriate. In our example, the response is linear, but one or more predictor

variables are angular. Many other examples are available in the literature, e.g.

wind direction in relation to the level of a pollutant in an environmental study

(Johnson and Wehrly, 1978). Jammalamadaka and Lund (2005) presented an

example in which the effect of wind direction on ozone levels was studied. de-

Bruyn and Meeuwig (2001) investigated the influence of lunar cycles in marine

ecology. The date of birth as a disease indicator was used in Le et al. (2003). Al-

though many case studies are available, the aptness of the model fit has hardly

received any attention so far. Maybe this is because classical linear regression

analysis can be used to fit these regression models (see e.g. Fisher (1993), and

Jammalamadaka and SenGupta (2001)) and therefore ordinary residual anal-

ysis is available for the user (see e.g. Johnson and Wehrly (1978)). The use

of classical (linear-linear) LOF tests are however often not convenient because

they may produce misleading results. Measures of angles depend on the choice

of the origin (North, South, etc.) and the sense of rotation (clockwise or coun-

terclockwise). Moreover, angles near zero and near 360 degrees are neighbor-

ing directions, so distance measures between angles should be used with care.

Statistics for angular data should not depend on such aspects of the data. As

this is not the case for the majority of the (linear-linear) LOF tests described

in Chapter 3, the p-values of these tests depend on the choice of the origin of

the angular variable. Some of the classical LOF tests are appropriate for testing

lack-of-fit in circular-linear regression, but, at least to our knowledge, have not

been discussed in this context yet. Even more important in the context of this

food-industry example, they are not designed for localizing regions in the pre-

dictor space where LOF occurs and are thus unable to fully answer the research

question.

In this chapter, the methodology developed in Chapter 4 is extended to circular-

linear regression. More specifically, a graphical diagnostic tool and a related

statistical test to assess the fit of a parametric model in circular-linear regres-

sion is proposed, not requiring a natural origin. The method is based on re-

gional residuals which are defined on arcs of a circle instead of on intervals of

the real line. The regional residuals plots formally locate and visualize arcs of

poorly fitted observations in the circular predictor space. Section 5.2 presents

the statistical test. The regional residual plots are constructed and empirically

evaluated in Section 5.4. The plots are illustrated on the micro-encapsulation

data. For this particular example, the typical problems with many conventional
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lack-of-fit tests are demonstrated in Section 5.5. A simulation study shows the

performance of the new tests as compared to some classical LOF tests. Finally,

some concluding remarks are given in Section 5.6.

5.2 A lack-of-fit test based on regional residuals

In circular-linear regression, the purpose is to fit a regression model to predict

the mean of the linear random response variable given a circular predictor vari-

able. Consider n independent pairs (xi, yi), with x on a cyclical scale and y a

response variable with support on the real line, and a regression model

yi = m(xi; θ) + εi, i = 1, . . . , n,

where m(xi; θ) is the conditional mean function, which usually includes the

sine and cosine of the angular predictor, instead of the angular variable itself,

and θ is a p-dimensional parameter vector. The error terms εi are assumed to be

i.i.d. with E(εi) = 0 and Var(εi) = σ2. In fact, this is a typical regression model

that can easily be fitted by any statistical software package. We assume that θ

is estimated by a consistent estimator, say θ̂n, e.g. the least squares estimator.

Classical residuals, say ei = yi − m(xi; θ̂n), are defined as usual.

The methodology developed in Chapter 4 is extended to circular-linear regres-

sion by defining the regional residuals on arcs of the circle instead of on in-

tervals of the real line. In particular, we define regional residuals as weighted

sums of classical residuals,

R(Aij) =
∑

n
k=1 I(xk ∈ Aij)ek

∑
n
k=1 I(xk ∈ Aij)

=
1

nij

n

∑
k=1

ek I(xk ∈ Aij),

calculated over all possible arcs,

Aij =
{

x ∈ (0, 2π] : x ∈ arc [xi, xj]
}

, (i, j = 1, . . . , n),

where Aij includes the design points xi and xj and nij denotes the number of

elements of Aij. Since the sets Aij are defined over all arcs, the collection of

regional residuals R(Aij) is origin independent.

Large absolute values of standardized regional residuals suggest a possible

lack-of-fit of the hypothesized model, located in the corresponding arc on the

circle. The generalization of the test statistic of Equation (4.5) is straightfor-

ward. To obtain an overall measure of deviation from the hypothesized model,

the supremum norm of the standardized regional residuals is again taken as a

test statistic. In particular,

TRRC = sup
i,j

∣∣∣∣∣
R(Aij)

sd(R(Aij))

∣∣∣∣∣ , (5.1)
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where sd(.) denotes the standard deviation, or a consistent estimator, and RRC

is used to refer to the test based on standardized regional residuals with a cir-

cular predictor. This statistic is sensitive to both global and local deviations from

the hypothesized model (Section 5.5.2). Here, global and local refer to large and

small arcs in the predictor space, respectively.

As before, the standard deviation in (5.1) may be obtained by straight-

forward calculations. Let IAij
denote a n × 1 inclusion matrix, with

IAij ,k = 1 if xk ∈ Aij, else 0, and In is the n × n identity matrix, and let

H = X(XtX)−1Xt denote the hat matrix. Then, sd(R(Aij)) = n−1/2
ij σhij, where

h2
ij = (It

Aij
IAij

)−1It
Aij

(In − H)IAij
. Note that the standard deviation depends

on the complete design through the hat matrix H. In practice, however,

the residual variance σ2 is unknown. In this chapter, we only consider the

estimator S2
n = (n − p)−1 ∑

n
i=1(yi − m(xi; θ̂n))2, for its ease of implementation

and its wide applicability. In the particular case of normally distributed error

terms, under the null hypothesis of no lack-of-fit, the standardized regional

residuals are again t-distributed with n − p degrees of freedom (Lemma 1 in

Chapter 4).

The asymptotic null distribution of TRRC under the no-effects null hypothesis,

m(x; θ) = θ0, follows immediately from Theorem 2 in Chapter 4. The proof

is given in Chapter 8. However, since the convergence is slow, the asymptotic

approximation may not be appropriate for small sample sizes. We therefore rec-

ommend a bootstrap procedure to obtain approximate p-values. As the model

assumptions include homoscedasticity, the ordinary residual based bootstrap

(Section 3.5.2) is performed. If this assumption is relaxed, we suggest applying

the wild bootstrap procedure (Section 3.5.3).

TABLE 5.1: Empirical levels obtained by using the residual based bootstrap procedure for several

sample sizes (n=24, 36, 60 and 72) and nominal significance levels (α =0.01, 0.05 and 0.10)

Sample Size (n)

α 24 36 60 72

0.01 0.004 0.009 0.009 0.010

0.05 0.036 0.039 0.038 0.042

0.10 0.082 0.078 0.087 0.087

This bootstrap procedure is evaluated for circular-linear regression models in a

small simulation study. For sample sizes of n = 24, 36, 60 and 72, and nominal
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significance levels of α=0.01, 0.05 and 0.10, we have estimated the type I error

rate based on 1000 Monte Carlo runs and 1000 bootstrap runs. For the no-effect

hypothesis, the results are presented in Table 5.1. We obtain rather conservative

empirical levels, but sufficiently close to the nominal significance levels.

5.3 Micro-encapsulation data

We illustrate the new LOF test on the micro-encapsulation data presented in

the introduction. Note that for the new methodology to be applicable, inde-

pendent observations have to be assumed. Microscopy-measurements at five

degree intervals were taken to ensure that arcs between subsequent design

points are large enough to obtain independent observations. This assump-

tion is confirmed for the micro-encapsulation data by an autocorrelation plot

which is shown in Figure 5.1. One lag in the x-axis of this figure corresponds

to five degrees on the circle. Although a significant correlation is found be-

tween the observations at lag two, we believe that it is reasonable to consider

the microscopy-measurements as being approximately independent.
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FIGURE 5.1: Autocorrelogram for the micro-encapsulation data.

To address the research question, the constant mean regression model,

m(x; θ) = θ0, for x ∈ (0, 360] is assessed. For all possible arcs, standardized

regional residuals are calculated. We find T = 4.829, corresponding to a boot-

strap p-value of 0.001, which clearly demonstrates that the mean thickness of

the coating layer varies around the sphere. One of the natural questions raised

by the food scientist, is where on the sphere large deviations from the constant

mean model are observed. To assist the food scientist in finding these regions,
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we have developed regional residual plots. These are presented in the next

section.

5.4 Regional residual plots

5.4.1 Construction

The extension of the regional residual plots of Chapter 4 to the circular-linear

regression context is immediate. The standardized regional residuals for the

micro-encapsulation data can be visualized by plotting them in a heat map (Fig-

ure 5.2, left panel). The x-axis (y-axis) of the heat map shows the starting point

(end point) of the arc for which the standardized regional residual is calculated.

The plot shows white areas for regional residuals calculated over rather small

arcs, starting between 200 and 250 and ending between 250 and 300 degrees,

which indicates a possible underestimation in this region of the circular pre-

dictor variable. Red areas are observed for regional residuals calculated over

the complementary arcs, suggesting possible regions of overestimation. As be-

fore, the interpretation of this regional residual plot has only a pointwise nature

and no formal conclusion can be inferred from them. Instead, a formal regional

residual plot, which takes the multiplicity into account, can be constructed by

only colouring the arcs for which the absolute value of the standardized re-

gional residual exceeds the bootstrap α−level critical value of the test statistic

TRRC. This plot is shown in Figure 5.2 (right panel) for the micro-encapsulation

data and α = 5%. It formally confirms the conclusion that the mean thickness of

the coating layer is significantly larger for small arcs, starting between 200 and

250 and ending between 250 and 300 degrees (white areas), and significantly

smaller in the complementary arcs (red areas).

5.4.2 Simulation study

In this section we present the results of an empirical simulation study that aims

at illustrating the localization ability of the formal regional residual plots. In a

Monte Carlo study we have simulated data under a particular model showing

lack-of-fit in a well specified arc, say arc [a, b]. The null hypothesis is the no-

effect hypothesis, m(x, θ) = θ0. For each simulated data set of sample size 72,

our test is applied. At rejection we recorded for which arcs Aij the standard-

ized regional residuals exceeded the α = 0.05 critical value of the test statistic

TRRC. From these simulations, we estimated the rejection probabilities at each

arc Aij based on 10000 Monte Carlo and 10000 bootstrap loops. The results are

presented in graphs where for each point (xi, xj) the estimated rejection proba-

bility Pij is plotted. The study was performed under several situations of LOF.

The upper panels of Figure 5.3 show the rejection probability plot and the scat-
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FIGURE 5.2: (Upper panel) Microscopy measurements of the thickness of the coating layer at

every five degrees on the circumference of a cross-section of the food particle. The solid line

is the fit of the constant mean regression model. (Lower left panel) Exploratory regional

residual plot. (Lower right panel) Formal regional residual plot (p=0.001). White areas

correspond to a significant (α = 0.05) underestimation of the data, red areas to a significant

overestimation. For orange areas no significant deviations are detected.

97



Chapter 5. LOF tests and plots for circular-linear regression models

ter plot of a random simulated data set, where the true model is the constant

mean regression model with mean 0 and σ = 0.6. The estimated power for this

artificial data example with no LOF is 6.1%, close to the nominal α-level. The

upper left rejection probability plot in Figure 5.3 shows that in case of no LOF

all regional residuals could lead to a rare rejection of the null hypothesis. Note

that all rejection probabilities are very small (Pij < 0.0007). Another study is

performed under the condition that the lack-of-fit is introduced in two small

intervals over the x-range: in [40, 95] and [280, 335]. In these intervals, the func-

tion 3 cos(6x) − 3 sin(6x) was added to a constant zero mean model. Figure

5.3 (middle right panel) shows an example of the local lack-of-fit simulated

under these conditions. The power for this extreme artificial data example is

100%. It is clearly observed in Figure 5.3 (middle left panel) that mainly the

regional residuals calculated over intervals including the area of lack-of-fit, are

responsible for the rejection of the null hypothesis. The four regional residuals

that have the largest probability to reject the null hypothesis correspond to arc

[75, 90] (Pij = 0.865), arc [285, 300] (Pij = 0.863), arc [315, 330] (Pij = 0.862), and

arc [45, 60] (Pij = 0.855) and to their four complementary arcs. Note that for

both the regional residuals plots and this rejection probability plot, the graph is

symmetric when the null hypothesis corresponds to the constant mean model,

but this does not hold for more complex null models, as the standardization of

the arcs and their complements may then be different. An example is given in

Figure 6.12 (right panel). The largest probabilities of rejection correspond thus

to the four arcs where the under- or overestimation is situated. Further, the re-

jection probabilities are studied in case of global lack-of-fit in the lower panels

of Figure 5.3. Many more arcs now have standardized regional residuals that

exceed the supremum of the bootstrap critical value. The large dark spot in the

lower right corner of the rejection probability plot corresponds to rather large

intervals that mainly include the region of overestimation in arc [260, 80]. The

left upper dark spot includes the complementary arcs.

In Figure 5.4 the localization ability of the formal regional residual plots is in-

vestigated in three more situations of LOF. The rejection probabilities are shown

in case of local underestimation, and local overestimation, and in case of the

combination of both. Local refers here to a small arc [295, 20] (upper panel) and

[205, 290] (middle panel) where the function (cos(2x)− sin(2x)) is added to the

true constant mean model. Note the shift in location of the rejection probabili-

ties in the upper and middle panel, corresponding to the shift of the LOF in the

predictor range. In the rejection probabilities plots no difference is found be-

tween regions of over- or underestimation. Note that this information is avail-

able in the regional residual plots by means of the colour scheme. Finally, the

lower panel of Figure 5.4 shows the combination of both the local under- and
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FIGURE 5.3: (Left panels) Contour plots showing the estimated probabilities to reject the null

hypothesis of no lack-of-fit in each arc [xi, xj]. (Right panels) Scatter plots showing an exam-

ple of the simulated lack-of-fit (dashed line) and fitted constant mean (solid line) regression

model (n = 72); (upper panels) no LOF, (middle panels) local lack-of-fit situated in [40, 95]

and [280, 335] where (3 cos(6x)− 3 sin(6x)) is added to the true mean model, (lower pan-

els) global lack-of-fit; the function 2.33 + exp(−((x/360 − 0.5)2)/(2 ∗ 0.03))/
√

2π0.03

is added to the constant mean model in the entire x range.
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Chapter 5. LOF tests and plots for circular-linear regression models

overestimation, resulting in a larger region of LOF. Arcs that include the LOF

region lead to a rejection of the null hypothesis, except for arcs containing both

many negative and positive residuals.

This small simulation study convincingly illustrates that the regional residual

plots succeed in localizing a lack-of-fit. To complete the discussion we would

like to note that by comparing all individual regional residuals with the crit-

ical value of the null distribution of the supremum test statistic TRRC, which

is the maximum of all standardized regional residuals, we show slightly too

conservative plots.

5.5 Evaluation of LOF tests in circular-linear regression

Although ordinary least squares regression can be used to fit circular-linear

regression models, classical LOF tests for linear-linear regression models may

fail to detect lack-of-fit properly. To learn about the differences in performance

and applicability between classical LOF tests and the regional residual based

test, we have first applied several tests to the micro-encapsulation data (Section

5.5.1). In Section 5.5.2 empirical powers are compared in a simulation study.

5.5.1 Applicability of LOF tests in circular-linear regression

We first describe some “classical” LOF tests from Chapter 3 in the context

of circular-linear regression. We include the supremum test of Stute (1997)

and Lin et al. (2002), the S test, and Buckley’s (B) test, which are all based on

cumulative sums of residuals. When the predictor is angular, these cumulative

sums of residuals are sums within arcs with starting point equal to the origin.

A third test is the generalization of the von Neumann test, described by Hart

(1997) (the N test). Finally, two smoothing based LOF tests are considered.

The first one is Hart’s order selection test with sine series, rather than a cosine

series as it is presented in e.g. Hart (1997). The sine series should make the

test more origin-independent. This test is referred to as the OS test. Finally, we

mention the data-driven Neyman smooth test of Fan and Huang (2001), which

uses both a sine and cosine series estimator. We refer to this test as the FH

test. The combination of sines and cosines makes their test origin independent,

though this was not recognized by Fan and Huang as they only considered

linear-linear regression in their paper. The sines and cosines combination also

appears in the components of the Watson (1961) goodness-of-fit test for circular

uniformity (Shorack and Wellner, 1986).

For the micro-encapsulation data, Figure 5.5 illustrates the dependence of the p-

values for all tests on the choice of the origin. The asymptotic null distribution
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FIGURE 5.4: (Left panels) Contour plots showing the estimated probabilities to reject the null

hypothesis of no lack-of-fit in each arc [xi, xj]. (Right panels) Scatter plots showing an exam-

ple of the simulated lack-of-fit (dashed line) and fitted (solid line) constant mean regression

model (n = 72); the function (cos(2x) − sin(2x)) is added to the constant mean model in

[295, 20] (upper panels), in [205, 290] (middle panels) and in [205, 20] (lower panels).
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Chapter 5. LOF tests and plots for circular-linear regression models

is used for the N and B tests, while the bootstrap procedure described in Section

3.5.2 is used for all other tests. The horizontal line at p = 0.001 connects the

p-values of the regional residual test, confirming that the RRC test is origin

independent. Tests based on cumulative sums of residuals (the B and S tests),

on the other hand, show a strong dependence on the choice of the origin. The

S test, for example, only considers the supremum of cumulative sums with

respect to the origin. As a consequence, some origins result in a failure to reject

the null hypothesis, whereas others result in very small p-values corresponding

to significance at the 5% level of significance. The N test also shows varying p-

values, because the variance estimators vary with changing starting points. For

this particular data set, the test fails to reject the null hypothesis. The OS test

seems to be more or less origin independent, as only small variations occur in

the p-values of this test. The horizontal line at p = 0.014 connects the p-values

of the origin independent FH test.

In conclusion, this figure clearly illustrates the drawback of using classical LOF

tests in circular-linear regression and the need for specific solutions. Although

not discussed in this context yet, the FH and OS tests are also suitable for testing

LOF on the circle, but they are not designed for localizing LOF.

5.5.2 Power study

To fully appreciate the performance of the RRC, FH and OS tests in case of

both global and local deviations from the null model, a simulation study is set

up. We have chosen a null model under the conditions of the food industry

example so that the reader gets an idea of how much of an effect would be

needed to be reliably detected by the RRC, FH and OS tests. As an example for

global lack-of-fit, we used the regression function

m1(x) = 2.33 + 0.5λ exp

(−(x/360 − 0.5)2

0.06

)
/
√

2π0.03,

where x is in (0, 360] and λ is the LOF parameter that ranges from 0 to 1, for

which λ = 0 corresponds to the null hypothesis. To illustrate the performance

for medium-sized and local deviations from the model, we consider three func-

tions. The first regression function shows a LOF in a medium-sized interval

that ranges over more or less half of the predictor space. One period of a sine

function is added to the constant mean model at 2.33. Observations are gener-

ated with the regression function

m2(x) =

{
2.33 if x /∈ [205, 350];

2.33 + 3
2 λ sin(4 + 15 x

360 ) if x ∈ [205, 350].
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FIGURE 5.5: p-value plot for the micro-encapsulation data. Tests that heavily depend on the

choice of the origin are plotted in thin lines (N = solid line, B = dashed line, S = dotted line).

The more or less origin independent OS test is plotted in thick lines (OS = dotted (O) line).

The horizontal lines refer to α = 0.05 (label A), the p-value of the R = Regional Residual

test (p = 0.001), and the p-value of the FH test, p = 0.014 (dashed-dotted (F) line).

In a next example, a small deviation occurs over an interval that has about half

the width of the one in the previous example. We consider

m3(x) =

{
2.33 if x /∈ [255, 310];

2.33 + 3λ sin(36 x
360 ) if x ∈ [255, 310].

Finally, a small area of LOF is introduced by adding half a period of a sine

function to the constant mean model at 2.33. The local LOF thus only includes

an area of underestimation of the true regression function. In particular,

m4(x) =

{
2.33 if x /∈ [210, 280];

2.33 + 2λ sin(4 + 15 x
360 ) if x ∈ [210, 280].

For each type of LOF, 5000 random data sets of sample size 72 are generated by

adding a normally distributed error term with mean zero and standard devia-
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FIGURE 5.6: (Left panels) Scatter plots showing an example of the simulated lack-of-fit (dashed

line) and fitted (solid line) constant mean regression model; (upper panels) global LOF func-

tion m1, (lower panels) local LOF function m2. (Right panels) Power curves for the RRC,

FH and OS test in function of the LOF parameter λ.

tion σ = 0.64. Scatter plots showing an example of all types of LOF with λ = 1,

are shown in the left panels of Figures 5.6 and 5.7. All tests are performed at

the 5% level of significance. The estimated powers are shown in the right pan-

els. We conclude that the performance of all three tests is good for both global

and local lack-of-fit. None of the tests is uniformly better than the others. For

example, the FH test is more powerful in the global LOF case and the RRC test

in the local LOF case.

5.6 Conclusions

Although ordinary least squares regression can be used to fit circular-linear re-

gression models, classical LOF tests for linear-linear regression models often
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FIGURE 5.7: (Left panels) Scatter plots showing an example of the simulated lack-of-fit (dashed

line) and fitted (solid line) constant mean regression model; (upper panels) local LOF func-

tion m3, (lower panels) local LOF function m4. (Right panels) Power curves for the RRC,

FH and OS test in function of the LOF parameter λ.

fail to detect deviations from the hypothesized model because their p-values

strongly depend on the choice of the origin of the circular variate. We have pro-

posed the regional residual test to properly detect lack-of-fit on the circle. This

test is origin independent. We have also illustrated that regional residuals can

be used to construct a regional residual plot. Combined with the testing proce-

dure, this graphical diagnostic tool allows both global and local deviations to

be detected and localized in the predictor space.

We have also observed good powers for the smooth test of Fan and Huang

(2001), which is also origin independent. This latter feature, however, has not

been recognized before.
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CHAPTER 6

Regional residuals for multiple

regression models

As most lack-of-fit tests, the proposed regional residual tests of Chapter 4 de-

pend on an order relation of the residuals. In the univariate case, such an order

is obvious, but in the case of two or more covariates, it is not straightforward

to order a multivariate vector. The discussions on this problem in the literature

are limited (Barnett (1976), Kuchibhatla and Hart (1996), Fan and Huang (2001),

Lin et al. (2002), among others). For x ∈ R
d, the order relation may be defined

as xi ≤ xj if

• all components of xi are smaller than or equal to those of xj, this means

xik ≤ xjk, for all k = 1, . . . , d,

• the kth component of xi is smaller than or equal to that of xj, thus xik ≤ xjk

for a specified k,

• si ≤ sj, where si is the score of a specified function of xi, e.g. the first

principal component.

• ŷi ≤ ŷj, where ŷ denotes the predicted values of the fitted regression

model.

In what follows, we will discuss two possible extensions of the proposed tests

and plots to multiple regression. Firstly, we construct marginal test statistics in

Section 6.1 1 by applying the previous tests with respect to each of the k pre-

dictor variables separately, taking the second definition of the order relation

into account. We consider a global test statistic based on the supremum of all

marginal test statistics. Marginal regional residual plots for each variable al-

low detection of lack-of-fit and in which variables, and where the lack-of-fit oc-

curs. In a second approach, we adapt the definition of the regional residuals by

1Most of this section is published in Deschepper E., Thas O., Ottoy J.P. (2006) Regional Residual

Plots for Assessing the Fit of Linear Regression Models. Computational Statistics and Data Analysis, 50,

1995-2013.

107



Chapter 6. Regional residuals for multiple regression models

considering a distance measure in the predictor space. This procedure avoids

choosing an order of the residuals in advance, or choosing a smoothing param-

eter (Section 6.2). This test has nice power properties, but is computationally

rather heavy. We construct a new type of regional residual plot based on the

adapted definition of the regional residuals. It keeps its formal interpretation

and its ability to locate lack-of-fit in the predictor space.

Finally, in Section 6.4 the extension of the tests in Chapter 5 is discussed when

one or more variables are angular. We end this chapter by summarizing some

conclusions.

6.1 Marginal lack-of-fit tests and plots

6.1.1 Multiple regression

Consider the multiple predictor variable x ∈ R
d, and let m(x) again denote the

parametric regression model for the mean of the response variable y,

yi = m(xi) + ǫi, i = 1, . . . , n,

where the ǫi’s are i.i.d. random variables with E(ǫi) = 0 and Var(ǫi) = σ2.

Recall the null hypothesis,

H0 : m ∈ M = {m(., θ) : θ ∈ Θ} ,

where Θ is a p-dimensional proper parameter set in R
p. The residuals are de-

fined by ei = yi − m(xi, θ̂n), where θ̂n is assumed to be a consistent estimator of

θ, e.g. the least squares estimator.

6.1.2 Marginal regional residuals

Marginal regional residuals with respect to the kth covariate xk are defined as

the average of residuals in the subset Akij = [xki, xkj], i ≤ j; i, j = 1, . . . , n, (see

for example rectangle in Figure 6.1),

R(Akij) =
∑

n
l=1 el I(xki ≤ xkl ≤ xkj)

∑
n
l=1 I(xki ≤ xkl ≤ xkj)

=
1

nkij

n

∑
l=1

el I(xki ≤ xkl ≤ xkj)

where nkij is the number of observations in the subset Akij, and the design

points are ordered with respect to the kth covariate xk. Of course, other direc-

tions can be investigated in the same way, e.g. principal components or fitted

values.

Under the null hypothesis of no lack-of-fit, these regional residuals have zero

mean. The expression for the variance is similar to that for simple regression
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FIGURE 6.1: Example of the subset Akij when the order is defined according to one covariate at

a time.

analysis. Let H denote the hat matrix, and IAkij
is a n × 1 inclusion matrix,

with IAkij ,l = 1 if xkl ∈ Akij, else 0, and In is the n × n identity matrix. The

variance of R(Akij) under the null hypothesis is then given by n−1
kij σ2h2

kij, where

h2
kij = (It

Akij
IAkij

)−1It
Akij

(In − H)IAkij
. For a linear model, the expression of the

hat matrix is given by Equation 4.3, for a nonlinear model by Equation 4.4.

Standardized marginal regional residuals are obtained by replacing the un-

known residual variance σ2 by the natural estimator S2
n = (n − p)−1 ∑

n
i=1(yi −

m(xi, θ̂n))2, resulting in

RS2
n
(Akij) =

√
nkij

R(Akij)

Shkij
.

Nonparametric variance estimators are available in the literature, but will of-

ten heavily depend on the order relation for the observations or the choice of

subsets in the predictor space. The interested reader is referred to Hall et al.

(1991), Kulasekera and Gallagher (2002), Munk et al. (2005), and Tong and

Wang (2005), among others, for more details. However, in later simulation

studies and in the discussion of data examples, only the natural estimator is

considered for its ease in computation and for a fair comparison among tests.

6.1.3 A lack-of-fit test

For all possible intervals of the kth covariate xk, Akij = [xki, xkj], i ≤ j; i, j =

1, . . . , n, the standardized marginal regional residuals are calculated. Large ab-

solute values of these standardized regional residuals indicate a possible lack-

of-fit. To overcome the problem of multiplicity and to obtain a global measure
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of lack-of-fit, the supremum norm of all the standardized regional residuals is

proposed as a test statistic,

Tk,S2
n

= sup
i≤j

∣∣∣RS2
n
(Akij)

∣∣∣ .

This test statistic only contains marginal information on lack-of-fit with respect

to the kth covariate xk, but they can be further combined into one global test

statistic Tgl , defined as the supremum of the d marginal statistics Tk,S2
n
(k =

1, . . . , d),

Tgl = sup
k=1,...,d

(Tk,S2
n
).

If one is specifically interested in one covariate or if one has prior information

that LOF can be expected in a certain direction, one could base the test statistic

only on that one direction to obtain a more powerful test. However, in practice,

such information is rarely available. In what follows, we always consider the

global test statistic Tgl . The derivation of the asymptotic null distribution is

beyond the scope of this thesis, but hypothesis testing may again be based on

bootstrap p-values. In what follows this test is called the RRGL test.

6.1.4 Marginal regional residual plots

In case of more than one predictor variable, marginal regional residual plots are

considered for each component of the multiple predictor vector x. Standardized

marginal regional residuals are plotted in each point of the (i, j) plane of the se-

lected covariate xk. As before, a light yellow to white colour is assigned to very

large standardized regional residuals, and a red colour to very small values.

Formal marginal regional residual plots are obtained by colouring regions for

which the standardized regional residual exceeds the α-level critical value of

the global test statistic Tgl . So, whenever one white or red spot appears in any

marginal regional residual plot, the global null hypothesis of no lack-of-fit is re-

jected at the α significance level. In addition, the marginal plots show in which

variables a region of lack-of-fit occurs and where this area is located. These

marginal plots include a lack-of-fit test itself and thus allows one to conclude

in a formal way where the multiple linear regression model is appropriate or

not. The usefulness of these marginal plots in localizing lack-of-fit is illustrated

in the next subsection for the US temperatures data example. Especially in case

of more than two predictor variables, where graphical display of the regression

model and the observed data is hardly possible, the marginal regional residual

plots can be very helpful.
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6.1.5 US temperatures data

To illustrate the tests and corresponding marginal regional residual plots, the

US temperatures data, introduced in Chapter 2, is discussed. Recall that the

normal average January minimum temperature, y, in degrees Fahrenheit (1931-

1960) of 56 U.S. cities is studied in relation to longitude (in degrees), x1, and

latitude (in degrees), x2. As in Example 3 in Chapter 3, a linear regression

model in longitude, x1, and latitude, x2,

y = θ0 + θ1x1 + θ2x2 + ǫ, (6.1)

is tested for adequacy. The calculated values of the test statistics T1,S2
n

and

T2,S2
n

from the data sample are 5.82 and 3.60, respectively. Thus, Tgl =

max(T1,S2
n
, T2,S2

n
) = 5.82, which corresponds to a bootstrap p-value < 0.00001.

The percentiles of the test statistic Tgl were approximated using 100000 boot-

strap samples drawn from the classical residuals, resulting in a critical value of

3.94 at the α = 0.05 significance level.
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FIGURE 6.2: Exploratory marginal regional residuals plots for longitude (left panel) and for

latitude (right panel).

A clear lack-of-fit is suggested in the exploratory marginal regional residual

plot for longitude (Figure 6.2) and formally detected in the formal marginal

regional residual plots (Figure 6.3). These plots can be used to localize the lack-

of-fit. No significant lack-of-fit is found in the marginal regional residual plot of

latitude, which confirms the earlier stated linear relationship between the mean

January minimum temperature and latitude (Chapter 2). However, there is a

clear lack-of-fit detected for the variable longitude. Figure 6.3 (left panel) shows

that the underestimation of the data in the low and high-range of longitude is
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FIGURE 6.3: Formal marginal regional residual plots for the US Temperature data (p <

0.00001) for longitude (left panel) and latitude (right panel). The red areas in the left panel

show that the overestimation of the data in the high-range of longitude is statistically sig-

nificant at the 5% level, while for latitude no regions of lack-of-fit are found.

statistically significant, as well as a statistically significant overestimation for

larger areas. The large amount of large areas indicates the presence of a global

LOF. We formally conclude that the relationship between the mean January

minimum temperature and longitude is not linear.

The solution proposed by Peixoto (1990), a cubic polynomial in longitude,

y = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x2
1 + θ5x2

1x2 + θ6x3
1 + θ7x3

1x2 + ǫ, (6.2)

results in marginal regional residuals plots that display no lack-of-fit. Both val-

ues of the fitted marginal statistics, T1,S2
n

= 3.23 and T2,S2
n

= 3.07, are smaller than

the critical value 3.75 (p=0.332). This confirms that the second model is a major

improvement as compared to the first model. No evidence is found that this

model does not accurately predict the average January minimum temperature.

6.2 Spherical regional residuals

le Cessie and van Houwelingen (1995) pointed out that if the model does not

fit, in some areas predictions will be too small as compared with the observed

values, while in other regions, they will be too large. In any event, observa-

tions that are close to one another with respect to some distance measure in

the predictor space will deviate from the model in the same directions and will

be positively correlated. This thought is the underlying motivation for us to

construct a test statistic based on regional residuals calculated over spherical
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FIGURE 6.4: Exploratory marginal regional residuals plots for the US Temperature data with

the parametric model fit (Equation 6.2) suggested by Peixoto (1990) for longitude (left panel)

and for latitude (right panel).

subsets based on Euclidean distance measures on the standardized covariates.

In what follows, we thus explicitly account for the multivariate nature of the

predictor space by considering d-dimensional spheres instead of intervals for

each predictor variable separately. We believe more powerful test statistics for

LOF are constructed based on averages of residuals in a certain higher dimen-

sional neighbourhood, rather than choosing a univariate direction. One could

consider using a multivariate kernel and end up with smoothing based test

statistics, but we prefer to be independent of any choice of type of smoother

and smoothing parameter. The computational cost of considering all spherical

neighbourhoods is the price that we are willing to pay. The definition of the re-

gional residuals has to be adapted, so that it is based on a distance measure in

the predictor space which avoids choosing an order of the residuals in advance,

or choosing a smoothing parameter. Proper standardization of all covariates is

crucial for the test to have power in all directions of the predictor space. If we

would not standardize the covariates before applying the distance measure to

the covariates, those variables with large variances would dominate the choice

of the spherical subsets and the resulting test would only be powerful in those

directions. Finally, a corresponding new type of regional residual plot is intro-

duced as well.

6.2.1 Construction of spherical regional residuals

From now on we suppose that all predictor variables are standardized, so as

they all have standard deviation one. Let Bi,r denote the d−dimensional sphere
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FIGURE 6.5: Example of a 2 dimensional sphere Bi,r in the case of two predictor variables x1

and x2.

Bi,r = {xk | d(xi, xk) ≤ r, k = 1, . . . , n} with the ith design point as its center and

radius r, and d(xi, xk) is the Euclidean distance between design points xi and

xk. Spherical regional residuals R(Bi,r) are defined as the average of classical

residuals, ek = (yk − m(xk, θ̂n)), inside the d−dimensional sphere Bi,r, (i =

1, . . . , n), i.e.

R(Bi,r) =
∑

n
k=1 ek I(xk ∈ Bi,r)

∑
n
l=1 I(xk ∈ Bi,r)

=
1

nBi,r

n

∑
k=1

ek I(xk ∈ Bi,r)

where nBi,r
is equal to the number of design points in Bi,r. Figure 6.5 shows an

example of a 2 dimensional sphere Bi,r in the case of two predictor variables x1

and x2.

When the radius r = 0, the regional residuals are equal to the classical residuals

at each design point. In case of multiple measurements, a regional residual is

defined as the average of the classical residuals at each design point. When the

radius r = maxj d(xi, xj), (j = 1, . . . , n), the sphere Bi,r contains all the design

points and the corresponding regional residual is exactly 0. In what follows we

calculate the regional residuals R(Bi,r) for all design points xi and for all radii

r = d(xi, xj), (i, j = 1, . . . , n).

When no lack-of-fit is present, spherical regional residuals have mean zero and

variance n−1
i,r σ2h2

i,r, where h2
i,r = (It

i,rIi,r)
−1It

i,r(In − H)Ii,r. The expression is
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6.2. Spherical regional residuals

similar to the one for ordinary or marginal regional residuals, only Ii,r denotes

now the n × 1 inclusion matrix, where the kth element of Ii,r equals 1 if xk ∈ Bi,r,

otherwise it equals 0. If the residual variance σ2 is unknown, we replace it

by the natural estimator S2
n = (n − p)−1 ∑

n
i=1(yi − m(xi, θ̂n))2 and we obtain

standardized spherical regional (SSR) residuals

RS2
n
(Bi,r) =

√
ni,r

Snhi,r
R(Bi,r).

6.2.2 A lack-of-fit test

As before, we consider the supremum norm, but now of the standardized

spherical regional residuals, so as to obtain a global measure of LOF

TSRRS = sup
i,r

| RS2
n
(Bi,r) | . (6.3)

The derivation of the asymptotic null distribution is out of the scope of this

thesis. We refer to Chapter 9 for a brief discussion and suggest bootstrapping

the null distribution for hypothesis testing.

6.2.3 Exploratory spherical regional residual plots

For ordinary regional residuals, the starting- and end points of the interval com-

pletely specify the region in the predictor space over which the regional resid-

ual is calculated. For spherical regional residuals, this role is taken over by the

center xi and radius d. We therefore generalize the formal regional residual

plots as plots that are constructed by plotting the SSR residuals for each design

point or center xi and all radii r = d(xi, xj), (j = 1, . . . , n) in a bubble color

plot. An example of this plot is shown in Figure 6.6 for the US temperature

data set, for the assessment of the first order polynomial model fit (Equation

6.1). The x-axis represents the center of the SSR residuals, the y-axis represents

the radius. The size of a bubble corresponds to the absolute value of the SSR

residual. Large absolute values of these SSR residuals, and thus large bubbles,

may indicate a possible lack-of-fit.

Note that by considering all design points as a center and all Euclidean dis-

tances between design points as radii, some SSR residuals will be duplicated.

Therefore, to reduce calculation time, only unique SSR residuals are plotted,

only for the center with the smallest index in the data set. SSR residuals with

small radii correspond to small areas in the predictor space, close to the specific

center. SSR residuals with large radii correspond to large areas in the predic-

tor space. Both plots in Figure 6.6 represent actually the same SSR residuals,

only the centers on the x-axis are ordered differently. By choosing different di-

rections to order the centers, one might get an indication of which predictor
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FIGURE 6.6: Exploratory spherical regional residual plots for US temperature data. The size of

a bubble corresponds to the absolute value of the SSR residual, the centers of the spherical

regional residuals are ordered with respect to longitude (left panel) and latitude (right panel).

causes the LOF. In this example, we find large absolute values of SSR residuals

for large spherical subsets of the predictor space. In the exploratory SSR resid-

ual plot where the centers are ordered with respect to longitude, we also find a

cluster of large absolute values of SSR residuals, corresponding to small regions

in the very upper range of the longitude variable. To find out whether the ob-

served deviations from the null model are statistically significant, we construct

formal SSR residual plots in the next section.

6.2.4 Formal spherical regional residual plots

A colour scheme can be added to the exploratory SSR residual plots to formally

locate in which regions the absolute value of the SSR residuals results in the

rejection of the null hypothesis. In analogy to previous formal regional resid-

ual plots, we give a red colour to all negative SSR residuals for which their

absolute values exceed the bootstrap 5%-level critical value. This percentile is

approximated using 100 000 bootstrap samples drawn from the classical resid-

uals (Section 3.5.2). Light yellow areas indicate all positive SSR residuals that

exceed the bootstrap critical value, detecting a significant underestimation in

the corresponding regions. For the US temperature data when the first order

polynomial regression model is fit, the value of the test statistic TSRRS is 5.82,

which corresponds to a bootstrap p-value < 0.00001. A clear lack-of-fit is de-

tected and the formal regional residual plot (Figure 6.7) can be used to localize

this lack-of-fit. There is a significant underestimation of the data in small areas
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in the high range of longitude and a clear overestimation for large areas, not

having these design points as a center. To have a better idea of the location

of the detected LOF, we plot the geographical map of the US and show which

areas correspond to the largest negative and positive SSR residual (Figure 6.8).
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FIGURE 6.7: Formal SSR residual plot (p < 0.00001) for US temperature data, locating the

lack-of-fit (α = 0.05). Yellow (resp. red) areas identify areas of under- (resp. over-) esti-

mation of the data when fitting the first order polynomial regression model (Equation 6.1).
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FIGURE 6.8: Coloured dots in the geographical map of the US show the areas that correspond to

the largest negative (red dots in the left panel) and positive (yellow dots in the right panel)

SSR residuals for the US temperature data when fitting the first order polynomial regression

model (Equation 6.1) .

The largest negative SSR residual corresponds to a significant overestimation
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of the data in a large area that almost covers the entire US, except for the west

coast (left panel). The largest positive SSR residual corresponds to a significant

underestimation of the data in a very small area around Seattle WA, Spokane

WA and Portland OR (right panel). The large amount of negative SSR residuals

in large areas suggests a global LOF. We can conclude that Model (6.1) is not

appropriate for these data.

We further investigate the solution proposed by Peixoto (1990), a cubic poly-

nomial in longitude (Equation 6.2). Although in Sections 3.1 and 6.1, we have

concluded that this model is a considerable improvement over the first order

polynomial model (Equation 6.1), we still detect a significant LOF when using

the spherical regional residuals (p = 0.006). Figure 6.9 displays the formal SSR

residual plots that display a significant local LOF in a small area in the low

range of longitude (left panel) or in the high range of latitude (right panel). It

corresponds to significant overestimation of the data in a small region around

Burlington VM, Portland ME, Concord NH and Albany NY (Figure 6.10). We

would advise the data analyst to further investigate the model in this neigh-

bourhood and to be very careful if this model is used for predictions in this

specified area.

6.3 Comparison to classical lack-of-fit tests

For the multiple regression setting, only a limited number of tests is available.

In addition, all tests discussed in Chapter 3 that can be extended to multiple

regression, suffer some disadvantages in this setting. For example, the classical

F-test is easily extended to multiple predictor variables, but requires exact repli-

cates. The reduction method requires a specific alternative model in advance.

The nonparametric tests based on smoothers and applied to residuals like in

Section 3.2 depend highly on the order relation chosen for the residuals when a

univariate smoother is used. When a multivariate smoother is chosen to solve

this problem, its dependence on the type of smoother and the smoothing pa-

rameter remains. The tests based on cumulative sums or averages of residuals

are also in the multiple setting dominated by the residuals for which the pre-

dictor variables have low covariate values. Our tests do not suffer any of the

above shortcomings as they can handle both exact replicates and no-replicates.

They are omnibus in the sense that they are able to detect a wide range of alter-

natives without specifying an alternative in advance. They do not depend on

the choice of a univariate direction, since the multivariate structure is taken into

account by considering d dimensional spheres in the predictor space. However,

the computational cost is heavy as we consider all possible spheres around each

of the design points.
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FIGURE 6.9: Formal SSR residual plot (p = 0.006) for US temperature data, locating the lack-

of-fit (α = 0.05). The red area identifies a local area of overestimation of the data when

fitting the third order polynomial regression model (Equation 6.2).
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FIGURE 6.10: Coloured dots in the geographical map of the US show the area that correspond

to the only SSR residual that exceeds the 5% level critical bootstrap value when fitting the

regression model proposed by Peixoto (1990) (Equation 6.2).

6.3.1 Simulation study

To study the small sample power properties of our test based on spherical re-

gional residuals, we compare our SRRS test to two smoothing based tests in

case of both global and local LOF. The first test is the adaptive Neyman Test

introduced by Kuchibhatla and Hart (1996), abbreviated as the KH test, and the

second is the adaptive Neyman test proposed by Fan and Huang (2001), say

the FH test. The third test in the study is our SRRS test. For all tests, bootstrap
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p-values were generated using the residual based bootstrap procedure (Section

3.5.2).

We generate a design by considering three normally distributed covariates

x1, x2 and x3, with mean 0, variance 1 and bivariate correlations 0.5 and one bi-

nary covariate, x4, which is independent of x1, x2 and x3 with P(x4 = 1) = 0.4

and P(x4 = 0) = 0.6. The null model under study is the multiple linear regres-

sion model m(x, θ) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4, and the sample size is 128.

All tests are performed at the 5% level of significance.

Two alternatives, a global and local LOF are included in this study. The first

alternative represents a global LOF by generating 5000 random data sets from

the quadratic regression model,

m1 = x1 + λx2
2 + 2x4,

where λ is the LOF parameter that ranges from 0 to 1. The local LOF is intro-

duced by generating 5000 random data sets from model m2,

m2 =

{
x1 + 2x4 if x /∈ B84,d(84,86)

x1 + λx2
2 + 2x4 if x ∈ B84,d(84,86),

where B84,d(84,86) denotes the sphere that has the 84th design point as its center,

and the Euclidean distance between the 84th and 86th design point as its radius.

In both cases, standard normally distributed error terms were added to the

model.

As already discussed in the introduction of this section, the order of the residu-

als determines the performance of the smoothing based tests. Therefore, Figure

6.11 shows the estimated power curves in case of the global LOF, m1, when

the residuals are ordered according to the direction where the LOF occurs, x2

(upper left panel), according to the first principal direction (upper right panel)

and when they are not ordered in a specific direction (lower left panel). As

could be expected, the smoothing based tests perform better when the direc-

tion of LOF is known and the residuals are ordered according to this direction.

However, when the direction is unknown, as is usually the case in practice,

the best choice is to consider the first principal direction, though this seriously

reduces the power of the smoothing based tests. When the residuals are un-

sorted, they have virtually no power left. On the other hand, our SRRS test

does not suffer from this disadvantage, and performs equally well in all three

situations and has even good power properties as compared to the smoothing

based tests when the direction is known. Finally, in the lower right panel of

Figure 6.11 the power curves of the three tests are shown in case of local LOF,

m2, when the residuals are ordered according to the first principal direction, as
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would be done for the smoothing based tests in practice. A clear advantage in

performance is found for the SRRS test.
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FIGURE 6.11: Empirical powers of the FH, KH and SRRS test in case of global LOF when

the residuals are ordered according to x2, the LOF direction (upper left panel), according

to the first principal direction (upper right panel), when the residuals are unsorted (lower

left panel) and in case of local LOF when the residuals are ordered according to the first

principal direction (lower right panel).

6.4 One or more angular predictor variables

So far in this chapter, we studied possible extensions to multiple regression

in case of predictor variables defined on the real line. Also in circular-linear re-

gression, more than one predictor variable can be important in the prediction of

the response variable, and these predictors can be both linear or circular. In this
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section, we first describe the extensions to multiple circular-linear regression

and we end this chapter with an illustration of the methodology on an environ-

mental study where an air quality index is predicted by both temperature and

wind direction.

6.5 Construction of marginal regional residual tests

The extension of the methodology in Section 6.1 is immediate if we combine

the results of Chapter 5 and Section 6.1. Let d denote the number of predictor

variables in the model, and let xki denote the kth predictor variable for the ith

observation. For each predictor variable xk we calculate the test statistic

Tk = sup
ij

∣∣∣∣∣
R(Akij)

sd(R(Akij))

∣∣∣∣∣ , k = 1, . . . d

where for a circular predictor variable xk, the Akij refers to the arcs, and for a

linear predictor variable to intervals.

These k test statistics only contain marginal information on lack-of-fit with re-

spect to the kth covariate, but they can be further combined into one global

test statistic T, defined as the supremum of the p marginal statistics Tk (k =

1, . . . , d), i.e.

Tgl = sup
1≤k≤d

(Tk).

The derivation of the asymptotic null distribution is beyond the scope of this

thesis, but hypothesis testing may again be based on bootstrap p-values.

To localize the lack-of-fit in the predictor space, d formal regional residuals plots

are constructed. Only areas for which the absolute value of the standardized

regional residual exceeds the bootstrap α−level critical value of the overall test

statistic Tgl are now coloured white or red to indicate under- or overestimation,

respectively. Our procedure is illustrated in the next section.

6.6 Air quality data

Johnson and Wehrly (1978) discussed the use of a conditional distribution for

circular-linear regression with linear and circular predictor variables. To illus-

trate our LOF test, we reanalysed the regression model they obtained for the

air quality index data (De Wiest and Della Fiorentina, 1975). The air quality in-

dex, y, is predicted as a function of the temperature in ◦C, x1, and the sine and

cosine of wind direction in degrees, x2. The resulting least squares regression

equation is

ŷ = 0.306 + 0.028x1 − 0.179 cos(x2) + 0.216 sin(x2). (6.4)
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FIGURE 6.12: Exploratory regional residual plots for the air quality data set with respect to tem-

perature (left panel) and wind direction (right panel). The colour scheme of the standardized

regional residuals ranges from red (large negative) to white (large positive values).

We find Tgl = max(T1, T2) = max(2.299, 2.565) = 2.565 with p-value p =

0.3185. The exploratory regional residual plots, one for temperature (Figure

6.12, left panel), and one for wind direction (Figure 6.12, right panel) do not

show any suspicious regions. Since no significant lack-of-fit was found, no for-

mal regional residuals plots are shown.

To conclude this subsection, we would like to remark that the exploratory re-

gional residuals plot for a circular predictor variable is not necessarily sym-

metric. This is illustrated in Figure 6.12 as for more complex null models, the

standardization of the arcs and their complements may be different (Section

5.4).

6.7 Conclusions

Two possible extensions to the multiple linear regression setting for both

linear and circular predictor variables are discussed in this chapter. The first

one, based on marginal information for each predictor variable, is mainly

useful to detect deviations from the null model in univariate directions. The

second approach, however, takes the multivariate structure of the design space

into account. In this way, a more powerful test for local deviations in the

higher dimensional predictor space is constructed and allows the detection

of a broader class of alternatives. The advantage of this approach is that no

order relation of the residuals has to be specified in advance, neither the choice

of a smoothing parameter. In addition, corresponding spherical regional
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residual plots include a formal LOF test and locate the area of LOF in the

predictor space. The test statistic is simple and intuitively appealing, though

computationally demanding.
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CHAPTER 7

Lack-of-fit in generalized linear

regression models

In this chapter, possible extensions of the methodology to the complete class

of Generalized Linear Models (GLM) are investigated. The GLM extends the

linear model of Chapters 4 and 6 in several ways. We start with the special

case of logistic regression models in Sections 7.1 and 7.2, and discuss the more

general class of generalized linear models in Section 7.3.

7.1 Regional residuals in logistic regression analysis

When the outcome variable is binary, like the presence or absence of a certain

disease, survival or death of patients, the occurrence of low birth weight of

a newborn or not, ..., linear regression analysis is no longer appropriate. To

illustrate this, assume n independent pairs (xi, yi), i = 1, . . . , n, where m(xi)
t

is the p−dimensional vector of the functional forms of d fixed covariates, and

the response is binomial distributed, yi ∼ Bin(ni, π(xi)). This means that yi

is not coded as 0 or 1, but represents the number of successes or 1’s for the

ith covariate pattern xi with ni replications. In linear regression analysis, the

conditional mean E(y |xi ) = ∑
p−1
j=0 mj(xi)θj of the linear regression model could

take any value between −∞ and +∞. As the response is binomial, it should be

formulated so as to be bounded between 0 and ni. Therefore, a link function

between the conditional mean and the linear regression model is introduced.

Let µi denote the conditional mean of y given xi, i.e. µi = E(y |xi ) = niπ(xi).

The logit transformation links this conditional mean to a linear predictor which

is given by

g(π(xi)) = log

(
π(xi)

1 − π(xi)

)
=

p−1

∑
j=0

mj(xi)θj.

The latter expression is linear in the parameters, and ranges from −∞ to +∞.

Further, the error term ǫ which expresses the deviation between an observation

and its conditional mean, ǫi = yi − niπ(xi), is no longer normally distributed.
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It has conditional mean, E(ǫ |xi) = 0, and conditional variance var(ǫ |xi )) =

var(y |xi )) = niπ(xi)(1 − π(xi)).

One important issue about logistic regression, and about GLM in general, is the

existence of many different definitions of the residuals. Possible definitions are

er,i = yi − niπ̂(xi)

eP,i = yi−niπ̂(xi)√
niπ̂(xi)(1−π̂(xi))

ed,i = sign(yi − niπ̂(xi))

√
2
[
yi log

(
yi

niπ̂(xi)

)
+ (ni − yi) log

(
ni−yi

ni−niπ̂(xi)

)]

where π̂ denotes the weighted least squares estimate of π, er,i denotes the raw

residuals, eP,i the Pearson residuals and, finally, ed,i, the deviance residual. As

described in Section 3.3, the squared Pearson and squared deviance residuals

are the individual contributions to the Pearson χ2 statistic and to the deviance,

respectively.

As we only have the intension to briefly introduce logistic regression analysis

here, we refer the reader to, e.g., Hosmer and Lemeshow (2000) for more de-

tails. In what follows, we discuss possible extensions of regional residuals for

logistic regression models. We illustrate the methodology with some real data

examples and investigate the performance of the tests in a small power study.

7.1.1 Regional residuals in logistic regression analysis

To generalize the notation for the regional residuals, let Cα,β denote the specific

region over which the regional residual is calculated. For intervals, α and β

denote the begin- and endpoint of the interval, respectively, while for spherical

regions α and β denote the center and the radius. For simplicity, we define the

regional residuals as the average of the raw residuals in the region Cα,β,

R(Cα,β) =
∑

n
k=1 er,k I(xk ∈ Cα,β)

∑
n
k=1 I(xk ∈ Cα,β)

=
1

nCα,β

n

∑
k=1

er,k I(xk ∈ Cα,β),

where nCα,β
represents the number of observations in this specific region. Un-

der the null hypothesis of no lack-of-fit, we expect the regional residuals to

have zero mean. The expression for the variance is approximated by applying

Pregibon’s (1981) linear regression-like approximation for the residual at the

ith covariate pattern. In particular, let X denote the design matrix with ith row

m(xi)
t, Y is the n × 1 response matrix, and V̂ is the n × n diagonal variance

covariance matrix of y with ith-element niπ̂i(1 − π̂i). Then,

yi − niπ̂(xi) ≈ ((In − H)Y)i,
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7.1. Regional residuals in logistic regression analysis

where H represents the logistic regression version of the hat matrix, H =

V̂1/2X(XtV̂X)−1XtV̂1/2. The regional residuals can then be written as

R(Cα,β) = (It
Cα,β

ICα,β
)−1It

Cα,β
(In − H)Y,

where ICα,β
is the n × 1 column matrix for which the ith element is 1 if xi ∈ Cα,β

and 0 otherwise. Their variance is approximated by

Var(R(Cα,β)) ≈ (It
Cα,β

ICα,β
)−2It

Cα,β
(In − H)V̂(In − H)tICα,β

.

7.1.2 Tests and plots

As before, large values of regional residuals may indicate a possible lack-of-fit

of the logistic regression model. To obtain a global measure of lack-of-fit, we

take again the supremum norm of the regional residuals as a test statistic,

TRRLR = sup
Cα,β

∣∣∣∣∣
R(Cα,β)

sd(R(Cα,β))

∣∣∣∣∣ ,

where sd(.) denotes the standard deviation. Large sample properties of the

test statistic are discussed in Chapter 8, but we recommend the parametric

bootstrap scheme of Section 3.5.1 to obtain approximate p-values. Regional

residual plots can be constructed as explained in Chapter 4 and Chapter 6.

These are illustrated in the next subsection.

7.1.3 Illustration

To illustrate the use of the statistical test, together with the corresponding plots,

we discuss the use of the extended methodology in an artificial data example.

We consider an equally spaced design, xj = j−0.5
n − 0.5, j = 1, . . . , n with n = 50

design points and one replicate on each design point. Figure 7.1 (upper panel)

shows the generated data, together with the logit of the true conditional mean

(dotted line),

g(π(x)) =

{
3x if x /∈ [−0.49,−0.19]

3x + 3.5 sin(19x) if x ∈ [−0.49,−0.19]

and the weighted least squares fit of the simple linear logistic regression model

(full line), g(π̂(x)) = 0.282 + 2.923x.

The value of the test statistic TRRLR is 4.021 (p=0.0465) and thus detects the

local LOF at the 5% significance level. Also the Hosmer - Lemeshow deciles

of risk test (Section 3.3.1) rejects the null hypothesis of no lack-of-fit at the
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FIGURE 7.1: (Upper panel) Artificial data example with a clear local LOF in the lower range

of the predictor variable x. The full line represents the least squares fit of a simple linear

logistic regression model, the dashed line the logit of the true underlying linear predictor.

(Left panel) Exploratory regional residual plot based on raw residuals. (Right panel) Formal

regional residual plot based on raw residuals (p = 0.0465).
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7.1. Regional residuals in logistic regression analysis

5% significance level (p=0.0343), but the Pearson χ2 test (p=0.7336) and the

unweighted residual sum of squares test (p=0.2876) do not. If we want to

know whether there is a global or local LOF present, and where it is located

in the predictor space in case of local deviations, we construct the regional

residual plots. Figure 7.1 shows the exploratory regional residual plot in the

left panel, which already suggests a local LOF in a small area in the lower

range of the predictor variable. White and light yellow areas suggest areas of

underestimation, red areas of overestimation. The formal regional residual

plot in the right panel confirms that there is a significant underestimation

in the area [-0.33;-0.21], which exactly corresponds to the local area where

the positive part of the sine function was added to the simple linear logistic

regression model.

For an illustration of the extension of spherical regional residual tests and plots

we refer to Section 7.2.2 where the methodology is illustrated on a real data

example.

7.1.4 Alternative test statistics

Instead of using raw residuals, we could use Pearson or deviance residuals as

well. Although the Pearson residuals appear to be standardized, leverage ad-

justments should be taken into account to compensate for estimation of the

parameters in the linear predictor (e.g. Hosmer and Lemeshow, 2000, and

Williams, 1987). The standardized Pearson residuals are defined as

eP,i =
yi − niπ̂(xi)√

niπ̂(xi)(1 − π̂(xi))(1 − hi)
, (7.1)

where hi is the ith diagonal element of the hat matrix H. In large samples,

we expect eP,i to have mean zero and variance approximately 1. Similarly, the

leverage adjustment is also applied to deviance residuals,

ed,i =
sign(yi − niπ̂(xi))

√
2
[
yi log

(
yi

niπ̂(xi)

)
+ (ni − yi) log

(
ni−yi

ni−niπ̂(xi)

)]

√
1 − hi

.

(7.2)

We could define regional residuals now as the average of the standardized Pear-

son or the standardized deviance residuals in a specific area Cα,β in the predic-

tor space. As standardizing regional residuals based on deviance residuals is

not straightforward and as we obtained nice results for the performance of the

RRUnij test in Chapter 4, we now prefer to use the unstandardized version of

our test statistic (Chapter 4) to create a corresponding test statistic here.
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As alternative global measures of model deviations we consider the test statis-

tics

TRRLP = sup
Cα,β

∣∣∣∣∣
1

√
nCα,β

n

∑
k=1

eP,k I(xk ∈ Cα,β)

∣∣∣∣∣ , (7.3)

TRRLD = sup
Cα,β

∣∣∣∣∣
1

√
nCα,β

n

∑
k=1

ed,k I(xk ∈ Cα,β)

∣∣∣∣∣ , (7.4)

The derivations of the asymptotic distributions of test statistics TRRLP and

TRRLD are out of the scope of this dissertation. We suggest to bootstrap the

null distribution for hypothesis testing.

7.1.5 Small sample behaviour

We perform a small simulation study to investigate the performance of the three

new tests in logistic regression in comparison with classical tests discussed in

Chapter 3. We included the Pearson χ2 goodness-of-fit test, denoted as X, the

Hosmer-Lemeshow decile of risk test, C (Hosmer and Lemeshow, 1980), and

the unweighted residual sum-of-squares test, S (Copas, 1989). We also included

two smooth tests of le Cessie and van Houwelingen (1991): the uniform kernel

smooth, SRU, and the cubic weight smooth, SRC, as described in Hosmer et al.

(1997). Finally, the three new tests, the RRLR test based on raw residuals, the

RRLP based on standardized Pearson residuals, and the RRLD test based on

standardized deviance residuals, were included as well. In what follows, RRL.

refers to all regional residual tests for logistic regression.

For the classical tests, the asymptotic null distribution is used, except for the

Pearson χ2 goodness-of-fit test. For this test, using the χ2
n−p distribution as null

distribution is inappropriate, because it is based on a contingency table whose

expected cell frequencies are too small. Also, for the S test the asymptotic null

distribution is not appropriate when replicates are available. For these two

classical tests, and for the three regional residual tests the parametric bootstrap

(Section 3.5.1) was used for approximating the empirical powers.

In the next simulation study, we focus on LOF that occurs due to a misspeci-

fied linear predictor, and again we consider both global and local LOF. For the

global LOF, we reconsider a simulation study in Hosmer et al. (1997). The dis-

tribution of the continuous predictor variable is x ∼ U(−3, 3). The outcome

variable y is generated using the logistic regression model with g1(π(x)) =

θ0 + θ1x + θ2x2 where we chose the values of the three parameters such that

π(−1.5) = 0.05, π(3) = 0.95 and π(−3) = γ, where γ ranges between 0.01

and 0.5. The parameter γ is thus a LOF parameter and indicates the strength
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7.1. Regional residuals in logistic regression analysis

of LOF. For larger values of γ the lack of linearity in the logit function becomes

progressively more pronounced. We have generated 1000 data sets of 50 design

points with only one replicate for each design point, ni = 1, and 1000 data sets

of 50 design points with 5 replicates, ni = 5.

For the local LOF, we take an equally spaced fixed design, xj = j−0.5
n − 0.5,

j = 1, . . . , n = 50 and consider a local misspecification of the linear predictor in

the lower, mid and upper range of x by adding one period of a sine function.

More specifically, the three linear predictors are

g2(π(x)) =

{ −4x if x /∈ [−0.49,−0.19]

−4x + λ sin(19x) if x ∈ [−0.49,−0.19],

g3(π(x)) =

{ −4x if x /∈ [−0.17, 0.15]

−4x + λ sin(19x) if x ∈ [−0.17, 0.15],

g4(π(x)) =

{ −4x if x /∈ [0.19, 0.49]

−4x + λ sin(19x) if x ∈ [0.19, 0.49],

where λ represents the LOF parameter and ranges from 0 to 6, for the 1000

data sets of 50 design points with only one replicate for each design point, i.e.

ni = 1. For the 1000 data sets with 5 replicates, ni = 5, λ ranges from 0 to 3.

The upper panels in Figure 7.2 show an example of the global LOF generated

by g1(π(x)) for one replicate at each design point (left panel) and for five repli-

cates (right panel). The empirical power curves of X, C, S, SRU, SRC, RRLR,

RRLP and RRLD tests are shown in the middle panels. The same line type is

used for the two smooth tests and for the three regional residual tests. To distin-

guish between these curves in the plots, the last letter of the abbreviation of the

test is added to the curve. The classical tests perform better than the regional

residual tests for both designs, with and without replicates. The performance

of the regional residual test based on raw residuals comes very close to those of

the classical tests, particularly when replicates are available. When the LOF is

detected by the RRL. tests, we find in the regional residual plot that it concerns

a global lack-of-fit. The classical tests do not provide this information. A scat-

ter plot of the smooth residuals that correspond to the two smooth tests, SRU

and SRC, may provide this information as well, though not in a formal way.

Comparing the three regional residual tests for this type of global LOF, we find

a power advantage for the test based on raw residuals. For data sets without

replicates, no clear distinction can be made between the RRLD and the RRLP

tests, while for data sets with replicates the RRLP test clearly performs better.

As was shown in Section 4.4, tests based on unstandardized regional residu-

als are powerful to detect global deviations when the factor
√

nij is replaced
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FIGURE 7.2: (Upper panels) Illustration of global LOF with γ = 0.05. (Middle panels) Em-

pirical powers of X, C, S, SRU, SRC, RRLR, RRLP and RRLD tests based on 1000 data

sets of 50 design points. The same line type is used for the two smooth tests and for the three

regional residual tests. To distinguish between these curves in the plots, the last letter of the

abbreviation of the test is added to the curve. (Lower panels) Identical to the middle panels,

except that for the RRLP and RRLD tests
√

nij is replaced by
√

n. (Left panels) Data are

generated using the linear predictor function g1, with only one replicate available for each

design point, ni = 1. (Right panels) Data are generated using g1 with 5 replicates for each

design point, ni = 5.
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FIGURE 7.3: (Left panels) Illustration of type of local LOF with λ = 2. (Right panels) Empirical

powers of X, C, S, SRU, SRC, RRLR, RRLP and RRLD tests based on 1000 data sets

of 50 design points. The same line type is used for the two smooth tests and for the three

regional residual tests. To distinguish between these curves in the plots, the last letter of the

abbreviation of the test is added to the curve. Data are generated using the linear predictor

function g2 (upper panels), g3 (middle panels), and g4 (lower panels) with only one replicate

for each design point, ni = 1.
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FIGURE 7.4: (Left panels) Illustration of type of local LOF with λ = 1. (Right panels) Empirical

powers of X, C, S, SRU, SRC, RRLR, RRLP and RRLD tests based on 1000 data sets

of 50 design points. The same line type is used for the two smooth tests and for the three

regional residual tests. To distinguish between these curves in the plots, the last letter of the

abbreviation of the test is added to the curve. Data are generated using the linear predictor

function g2 (upper panels), g3 (middle panels), and g4 (lower panels) with five replicates for

each design point, ni = 5.
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with
√

n, so that regional residuals that are calculated over large intervals be-

come relatively more important. This is illustrated in the lower panels of Figure

7.2. Both the RRLD and RRLP tests gain in power and become very competi-

tive with the classical LOF tests. Only when replicates are available, no power

improvement is found for the RRLD test, which already has an inferior perfor-

mance. However, as we focus on detecting and localizing local LOF in particu-

lar, we only consider the RRLP and RRLD tests as defined in Equation 7.3 and

Equation 7.4 in what follows.

Figure 7.3 shows the empirical power curves in case of local LOF and for data

sets when only one replicate is available for each design point. In this case the

cubic weight smooth test, SRC, and the regional residual test based on stan-

dardized deviance residuals perform best. When the local LOF is situated in

the lower or the higher range of the predictor variable, the regional residual

tests based on the raw regional residuals also perform very well, but they loose

considerable power when the local LOF is situated in the mid range (as does

the uniform kernel smooth test). The Pearson χ2 test cannot detect any local de-

viations at all, and the S and RRLP tests perform insufficiently in case of local

LOF without replicates.

When replicates are available, all tests gain power and all tests have rather good

performance. The regional residual tests based on the raw and standardized

Pearson residuals, and the Hosmer-Lemeshow decile of risk test, C, perform

best, even slightly surpassed by the cubic weight smooth test, though this one

seems to reject too often in case of no lack-of-fit. The regional residual test based

on standardized deviance residuals clearly has an inferior performance in this

case.

In summary, we recognize the strong performance of the smooth tests, espe-

cially the SRC test, in nearly all cases. The performance of the regional residual

based tests is equally good in case of local lack-of-fit. To obtain the same perfor-

mance in global lack-of-fit, we should adapt the RRLP and RRLD tests. Both

procedures come with a graphical tool to locate LOF in the predictor space, but

the regional residuals plots do this in a formal way. Both procedures also have

their drawbacks. The performance of the smooth tests depends on the choice

of the smoother and, even more important, the bandwidth (le Cessie and van

Houwelingen (1991), Hosmer et al. (1997)), while the regional residual tests

are computationally intensive. The simulation study indicates that the perfor-

mance depends on the type of residuals used to calculate the lack-of-fit test, but

to the best of our knowledge no discussion in this context is available. In prac-

tice, when applying the regional residual tests for a single predictor variable,

we recommend the test based on standardized deviance residuals when repli-

cates are not available, and the regional residual test based on raw residuals
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Chapter 7. Lack-of-fit in generalized linear regression models

when they are available.

7.2 Data examples

To illustrate the methodology in the context of logistic regression models, we

discuss three data examples from the literature. Firstly, we consider the dose-

response data with a single covariate, discussed by Bedrick and Hill (1990). For

the multiple setting we apply our methodology to the well known vasoconstric-

tion data of Finney (1947). Finally, we include the POPS data of Verloove and

Verwey (1988) to illustrate that our tests are also applicable in large datasets.

7.2.1 Dose - response data

In this dose response experiment the predictor variable logDose gives the log

dose of benzepyrene administered to mice. The response variable y is the num-

ber of mice that are affected with a tumour. Note that replicates are available,

as the same log dose is administered to several mice. As recommended in the

previous section, we perform a regional residual test based on raw residuals to

determine whether the simple linear logistic regression model with logit link

is appropriate for these data. Regional residuals are calculated over all pos-

sible intervals in the design space, as only one predictor variable is present.

Figure 7.5 shows the data together with the weighted least squares fit of a sim-

ple linear logistic regression model, and the exploratory and formal regional

residual plots based on raw residuals. The bootstrap p-value equals p=0.0069

and is based on 10000 bootstrap samples. We conclude at the 5% level of sig-

nificance that the simple linear logistic regression model is not appropriate for

these data. The formal regional residual plot (right panel) shows a significant

underestimation of the data in the first design point and a significant overes-

timation of the data in some larger intervals. Further model building will be

necessary to obtain a more appropriate model for the data at hand.

7.2.2 Vasoconstriction data

The vasoconstriction data (Finney, 1947) comes from a carefully controlled

study of the effect of the rate (liters per second) and the volume (litres) of air

inspired on a transient vasoconstriction in the skin of digits. The response vari-

able y is the occurrence or nonoccurence of vasoconstriction in the skin of digits.

The linear logistic regression model in log rate and log volume with logit link

is suggested as an appropriate model for these data. As we have two predictor

variables and no replicates, spherical regional residuals based on the standard-

ized deviance residuals are used to assess the fit of the model. 10000 bootstrap

samples are used to obtain the bootstrap p-value of 0.0071. Thus, at the 5%
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FIGURE 7.5: (Upper panel) Dose-response data; y = observed number of affected mice, x =

log dose of injected benzepyrene. The full line represents the weighted least squares fit of a

simple linear logistic regression model. (Left panel) Exploratory regional residual plot for

the dose-response data based on raw residuals. (Right panel) Formal regional residual plot

for the dose-response data based on raw residuals (p = 0.0069).
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level of significance a local LOF is found in the formal regional residual plots

in Figure 7.6 for a very small area in the mid range of the predictor variable

rate and the low range of predictor variable volume. We locate the area in the

predictor space by colouring the design points over which the regional residual

that exceeds the bootstrap α-level critical value, is calculated (Figure 7.6, lower

panel). In this plot, full dots represent subjects with occurrence of vasoconstric-

tion. When both volume and rate are small, no response occurred, but when

either was large (unless the other was very small) the response occurred. For

the two subjects that are included in the regional residual that exceeds the crit-

ical bootstrap value, the occurrence seems to be unexpected according to the

model. These two design points are also recognized in the literature on diag-

nostics and outlier detection (e.g. Finney (1947) and Pregibon (1981)). Unlike

lack-of-fit tests such as those of Su and Wei (1991) and Cheng and Wu (1994)

who do not find any evidence against the null hypothesis, our methodology

detects one or a small group of outlying observations.

7.2.3 POPS data

The POPS data set originates from the project on preterm and small for ges-

tational age infants in the Netherlands, a Dutch follow-up study on preterm

infants by Verloove and Verwey (1988). The study collected information on

1338 infants born in the Netherlands in 1983, having gestational age less than

32 weeks and/or birthweight less than 1500 g. The outcome of interest is a bi-

nary variable that indicates whether or not the infant has died within 2 years or

survived with a major handicap. After deletion of observations with missing

data, a data set of 1310 infants remains. In particular, we include this data set

to illustrate our methodology for large data sets.

We first examine whether a logistic regression model, linear in gestational age

(in weeks), x1, and birthweight (in 100g), x2, fits the data well,

g(π(x1, x2)) = θ0 + θ1x1 + θ2x2. (7.5)

A spherical regional residual based test is used to assess the model fit. Cal-

culating all regional residuals over all possible spheres would require a huge

simulation time. As lots of regions contain the same information, we perform

the regional residual tests here on a random selection out of all possible

regional residuals. To empirically validate this procedure, we selected several

samples of 15000 regional residuals, and obtained very similar p-values and

regional residual plots in all cases.
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FIGURE 7.6: Formal regional residual plots for the vasoconstriction data where the centers of the

regional residuals are ordered with respect to volume (upper panel) and rate (middle panel)

for standardized deviance residuals (p = 0.0071). (Lower panel) Location of the regional

residual that exceeds the bootstrap α-level critical value in the predictor space for standard-

ized deviance residuals. Full dots represent subjects with occurrence of vasoconstriction. A

yellow circle around the subject marks the subjects that were used to compute the regional

residual that exceeds the critical bootstrap value at the 5% significance level.
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Note that the simulation study performed in Section 7.1.5 does not involve mul-

tiple predictor variables. Therefore, we present in what follows, the results of

the spherical regional residual test, based on raw residuals, as was done for the

supremum tests based on cumulative sums of residuals in Lin et al. (2002). The

RRLR test is performed on a randomly selected group of 15000 regional resid-

uals. 5000 bootstrap samples are used to obtain the approximate bootstrap p-

value of < 0.001. Thus, at the 5% level of significance a clear LOF is found in

the formal regional residual plots in the upper panels of Figure 7.7. We observe

large areas in the mid range of both predictor variables, representing an area of

overestimation. Further, we observe two groups of smaller regions of under-

estimation. Some representative areas in the predictor space that correspond

to regional residuals with the smallest negative and with two positive values,

that exceed the bootstrap 5%-level critical value, are shown in the middle and

lowers panels of Figure 7.7. From all these plots, we conclude that too high

risks are predicted for observations in the center, as areas of significant overes-

timation are found in larger areas in the mid range of both predictor variables.

The model predicts too low a risk for the infants with both the smallest gesta-

tional ages and smallest birthweights, and for the infants with a larger gesta-

tional age, as areas of significant underestimation are found in the low range

of both predictor variables and, in addition, in a second area of significant un-

derestimation, located in the high range of gestational age and the mid range

of birthweight.

le Cessie and van Houwelingen (1991) reported similar results and suggested

to ameliorate the model by including quadratic terms,

g(π(x1, x2)) = θ0 + θ1x1 + θ2x2 + θ3(x1 − 30)2 + θ4(x2 − 12)2. (7.6)

We perform again the spherical regional residual test on raw residuals and ob-

tain an approximate p-value of 0.045 based on 5000 bootstrap samples, indi-

cating borderline significance at the 5% level. Figure 7.8 shows the formal re-

gional residual plots, when the centers are ordered according to gestational age

and birthweight. The lower panel in Figure 7.8 shows the corresponding area

in the predictor space of the smallest negative regional residual. We find some

evidence against model (7.6) in a small area of overestimation in the low to

mid range for both predictor variables. Note that Aerts et al. (2000) also found

some evidence against this model. They suggested a model based on Legendre

polynomials instead.
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FIGURE 7.7: Formal regional residual plots for the POPS data for model (7.5), where the centers

of the regional residuals are ordered with respect to gestational age (left upper panel) and

birthweight (right upper panel) for raw residuals (p < 0.001). Location of the smallest

negative (middle panel) and two positive regional residuals (lower panels) whose absolute

values exceed the bootstrap 5%-level critical value in the predictor space for raw residuals.

Yellow dots correspond to an area of underestimation, red dots to an area of overestimation

at the 5% significance level.
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FIGURE 7.8: Formal regional residual plots for the POPS data for model (7.6), where the centers

of the regional residuals are ordered with respect to gestational age (upper panel) and birth-

weight (middle panel) for raw residuals (p < 0.001). (Lower panel) Location of the smallest

negative regional residual whose absolute value exceeds the bootstrap 5%-level critical value

in the predictor space for raw residuals. Red dots correspond with an area of overestimation

at the 5% significance level.
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7.3 Extensions to the more general class of generalized linear

models

The methodology of the previous sections can be extended to the complete class

of Generalized Linear Models (GLM) (see e.g. McCullagh and Nelder (1989),

and Fahrmeir and Tutz (1994) for an overview), which allows distributions in

the exponential family, like the normal and the binomial distribution, but also

the Poisson, gamma and Inverse Gaussian distribution, among others. The

variance function is expressed as an explicit function of the mean µ = E(y |x ),

var(y |x ) =
φv(µ)

ω
,

where v is the variance function, which depends on the type of exponential dis-

tribution of the response y, and φ denotes the dispersion parameter, possibly

unknown. The parameter ω is a prior known weight, that may vary from ob-

servation to observation. For binomial data the weights are ωi = ni and the

constant φ = 1. Other link functions that relate the mean to the linear predictor

are g(µ) = m(x)tθ, the log for a Poisson distributed response, or the reciprocal

for a gamma distributed response, etc. Note that for the special case of nor-

mally distributed responses, with the identity link function, the weights equal

1, and the constant φ = σ2. The GLM reduces to the linear regression models

considered in Chapters 4 and 6.

When ni > 1, the actual variance of binary or count data is often larger than

that associated with the binomial or Poisson model. This extra binomial

variation is also called overdispersion and might be due to, for example,

unobserved heterogeneity not taken into account by the covariates in the

linear predictor, or due to a positive correlation between individual binary

responses, e.g. experimental units that belong to the same cluster (e.g. like

litter, family, etc). Overdispersion can be taken into account by allowing φ to

be a free overdispersion parameter that has to be estimated. For more details

on overdispersion, the reader is referred to the references in McCullagh and

Nelder (1989) and Fahrmeir and Tutz (1994). In our context, however, we will

assume that no overdispersion is present so that the ϕ−parameter always

equals 1.

In the more general context, possible definitions of the residuals are

yi − µ̂i (raw residuals)

yi − µ̂i√
v(µ̂i)

(Pearson residuals)

sign(yi − µ̂i)
√

2φ̂(li(yi) − li(µ̂i)) (Deviance residuals)
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Chapter 7. Lack-of-fit in generalized linear regression models

where li(µ̂i) is the contribution of the ith covariate pattern to the overall log

likelihood l(µ), in terms of the estimated mean µ̂i. For example, for gamma

distributed responses, the deviance residuals are given by

ed,i = sign(yi − µ̂i)
√
−2(log(yi/µ̂i) − (yi − µ̂i)/µ̂i).

All previous definitions of regional residuals and corresponding tests and plots

can now immediately be reformulated for the raw, the Pearson and the de-

viance residuals in the more general context of GLM. We illustrate this with a

gamma distribution example from McCullagh and Nelder (1989) pp. 300-302.

7.3.1 Clotting times of blood

Hurn et al. (1945) published data on clotting time of blood, giving clotting time

in seconds, y, for normal plasma diluted to nine different percentage concen-

trations with prothrombin-free plasma, u. Clotting was induced by two lots of

thromboplastin, L. Both lots are analysed using a GLM with inverse link func-

tion and the gamma distribution. The linear predictor includes the main effects

and interaction term of log(u) and the factor lots L, allowing for different inter-

cepts and slopes for the two lots,

µ−1
i = θ0 + θ1 log(ui) + θ2Li + θ3 log(ui)Li.

Figure 7.9 (upper panel) shows the data and the weighted linear least squares

fit. In the middle panel, a raw residual plot is shown and an unsatisfactory fit is

observed for residuals with low percentage concentrations with prothrombin-

free plasma. The regional residual test based on raw residuals is applied and a

bootstrap p-value of p = 0.0004 is found. The p-value is approximated based

on 10000 parametric bootstrap samples from a gamma distribution with param-

eters equal to those estimated by the GLM model. The lower panel shows the

formal regional residual plot, where centers are ordered with respect to log(u).

The regional residual with the largest absolute value corresponds to the exper-

imental unit with u = 5 in lot 1 (red dot). At the 5% level of significance, a

significant overestimation of the data is thus found for this design point. The

yellow dots in the formal regional residual plot correspond to large subsets in-

cluding almost all design points, except for u = 5, for both lots or for lot 1 only.

It turns out that the observed values are not consistent with the recorded con-

centration u = 5, but they are entirely consistent with u = 6 (McCullagh and

Nelder, 1989). When the regional residual test is applied after correcting the

design, the bootstrap p-value is p=0.3766, and no evidence is found against the

postulated hypothesis.
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FIGURE 7.9: (Upper panel) Clotting data and GLM fit with inverse link function and gamma

distribution. (Middle panel) Raw residuals; full dots for lot 1, circles for lot 2. (Lower panel)

Formal regional residual plot for the clotting data based on raw residuals (p = 0.0004).
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7.4 Conclusions

The lack-of-fit tests based on regional residuals and corresponding regional

residual plots are extended to the complete class of generalized linear models.

Simulations in the logistic regression context strongly suggest that the power

of the proposed testing procedures are at least comparable to the power of pop-

ular classical methods. As before, our methods are particularly sensitive to lo-

cal LOF. Regional residual plots again formally locate the LOF in the predictor

space.

146



CHAPTER 8

Large sample properties

The asymptotic behaviour of several test statistics from previous chapters is in-

vestigated based on results of the marked empirical process of residuals, which

is studied by, e.g., Su and Wei (1991), Diebolt (1995), Stute (1997) and Diebolt

and Zuber (1999). To keep the asymptotics as lucid as possible, we start in

Section 8.1 with the deduction of the limiting distribution in case of the no-

effects hypothesis of the regional residual tests, the RRUnij (Equation 4.14), RRS

(Equation 4.5), RRD and RRP (Equation 4.6) tests and the RRC (Equation 5.1)

test, where regional residuals are calculated over intervals on the real line, or

over arcs on the circle. A numerical example illustrates the rate of convergence

of the empirical to the asymptotic null distribution in small sample sizes. The

rather slow convergence suggests the use of the bootstrap throughout this dis-

sertation. For more complex models, the standardization can take very com-

plicated expressions. Therefore, we start in Section 8.2 with the deduction of

the limiting distribution of the unstandardized test, the RRU test, for more gen-

eral regression models. We only provide some thoughts on how to obtain the

asymptotic null distribution of the standardized tests. Finally, the consistency

of the supremum based test is shown in Section 8.3.

8.1 Limiting distribution of RR test statistics under the no-

effect hypothesis

The asymptotic behaviour of the RRUnij, RRS, RRR, RRG and the RRC tests,

where regional residuals are calculated over intervals on the real line, or over

arcs on the circle, are investigated by considering the regional residuals as a

function of increments of the marked empirical process of residuals described

by Stute (1997) and Diebolt and Zuber (1999). In particular, the marked empir-

ical process is defined as

B̂n(x) = n−1/2
n

∑
i=1

(yi − m(xi; θ̂n))I(xi ≤ x), x ∈ R, (8.1)

where I is the indicator function, and {θ̂n} denotes a sequence of n1/2-

consistent estimators of θ, e.g. θ̂n is the least-squares estimator (LSE).
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To keep the asymptotics as lucid as possible, we will follow in this section

the outline of Zuber (1996) and only consider the no-effect null hypothesis,

H0 : m(x; θ) ≡ θ0 for x ∈ R, with a fixed, uniform design, and homoscedas-

tic error terms. The mean θ0 is consistently estimated by the sample mean, i.e.

θ̂n = 1
n ∑

n
i=1 Yi. However, the asymptotic behaviour under the more general

regression model yi = m(xi) + ǫi, i = 1, . . . , n, where m belongs to a given

parametric family of functions, H0 : m ∈ M = {m(., θ) : θ ∈ Θ ⊂ R
p}, can be

established along the same lines as in Stute (1997) or Diebolt and Zuber (1999),

and is deferred to Section 8.2.

8.1.1 Linear-linear regression

The regional residual in any interval Ast, s < t so that at least one xi ∈ (s, t],

can be written as a function of increments of the process B̂n,

√
nR(Ast) =

√
n ∑

n
i=1 I(xi ∈ Ast)(yi − θ̂n)

∑
n
i=1 I(xi ∈ Ast)

≡ Ĥn(s, t) =
n

∑
n
i=1 I(xi ∈ Ast)

(
B̂n(t) − B̂n(s)

)
.

Without loss of generality, we assume further that the variable x is re-

stricted to the unit interval [0, 1]. By considering a fixed, uniform design,

limn→∞
1
n ∑

n
i=1 I(xi ∈ Ast) = t − s. For notational convenience, we rewrite

the process Ĥn(s, t) as Ĥn(s, t) = 1
t−s

(
B̂n(s, t)

)
= 1

t−s

(
B̂n(t) − B̂n(s)

)
. Both

representations result in the same asymptotic properties.

Theorem 3 Let 0 < c < 1 denote a small nonzero constant, and define S = {(s, t) ∈
[0, 1]2 : c < t − s}. Then, under the no-effect null hypothesis, the stochastic process

Ĥn(s, t) converges weakly to 1
t−s σ (Z(t) − Z(s)) over S , with Z a standard Brown-

ian Bridge on [0, 1].

Proof. Let Z(s, t) = Z(t) − Z(s), for s, t ∈ [0, 1]. Theorem 2 in Zuber (1996)

establishes the weak convergence of B̂n(t) = Bn(t) − Bn(1)t, to σZ, with Z a

standard Brownian Bridge on [0,1]. Therefore,

sup
s<t

∣∣B̂n(s, t) − σZ(s, t)
∣∣ = sup

s<t

∣∣B̂n(t) − σZ(t)− (B̂n(s) − σZ(s))
∣∣

≤ sup
t

∣∣B̂n(t) − σZ(t)
∣∣+ sup

s

∣∣B̂n(s) − σZ(s)
∣∣

p→ 0 as n → ∞,

by the Skorokhod construction. Since Ĥn(s, t) = 1
t−s

(
B̂n(s, t)

)
, Theorem 3

follows when s is bounded away from t. 2
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The following theorem states the asymptotic null distribution of the RRUnij test

statistic in case of the no-effect null hypothesis.

Theorem 4 Let Z denote a standard Brownian Bridge on [0,1], let 0 < c < 1 denote

a small nonzero constant, and define S = {(s, t) ∈ [0, 1]2 : c < t − s}. Then, under

the no-effect null hypothesis, the test statistic TRRUnij converges in distribution to the

supremum norm of 1
(t−s) (Z(t) − Z(s)) over S .

The proof of Theorem 4 follows by Theorem 3 and the continuous mapping

theorem. The condition c < t − s is necessary to let TRRUnij have a proper

limiting distribution. The reason is that the weight function 1/(t − s) gets too

large for small t − s. A more formal argument is given in the proof of Theorem

17.2.1 of Shorack and Wellner (1986). Note that in fact, the definition of the

TRRUnij needs a slight modification. We additionally assume that nij > cn.

However, in practice this assumption always holds, since the test statistic is

defined over the design points and even when i equals j, there exists such a

constant c.

For the regional residual tests based on standardized regional residuals, we

proceed as follows. Since θ̂n is a consistent estimator, and by Theorem 3, it

follows that Ĥn(s, t) has asymptotically mean zero and variance
σ2(1−(t−s))

t−s .

Straightforward algebraic calculations show that the standard deviation of the

regional residual in any interval Ast equals
σ
√

1−(t−s)√
t−s

when the no-effect hy-

pothesis holds. Therefore, the standardized regional residual corresponds to

the standardized process
√

t−s Ĥn(s,t)

σ
√

1−(t−s)
. The next theorem provides its limiting

process.

Theorem 5 Let 0 < c < 1 denote a small nonzero constant, and define S = {(s, t) ∈
[0, 1]2 : c < t − s < 1 − c}. Then, under the no-effect null hypothesis, the stochastic

process
√

t−s Ĥn(s,t)

σ
√

1−(t−s)
, converges weakly to 1√

(t−s)(1−(t−s))
(Z(t) − Z(s)) over S , with

Z a standard Brownian Bridge on [0, 1].

Proof. Theorem 5 immediately follows by applying Theorem 2 in Zuber (1996).

2

In practice, σ2 is usually not known, and has to be replaced by a consistent

estimator. This does not affect the convergence of the process, as is shown in

the next theorem.

Theorem 6 Let σ̂2 denote a consistent estimator of σ2 under the null hypothesis. Let

0 < c < 1 denote a small nonzero constant, and define S = {(s, t) ∈ [0, 1]2 :
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c < t − s < 1 − c}. Then, under the no-effect null hypothesis, the stochastic process√
t−s Ĥn(s,t)

σ̂
√

1−(t−s)
, converges weakly to 1√

(t−s)(1−(t−s))
(Z(t) − Z(s)) over S , with Z a

standard Brownian Bridge on [0, 1].

Proof. Theorem 6 immediately follows by Theorem 5 and Slutsky’s Lemma. 2

In Theorem 7, we establish the convergence of the test statistics TRRS, TRRD and

TRRP under the no-effect null hypothesis.

Theorem 7 Let Z denote a standard Brownian Bridge on [0,1], and let 0 < c < 1

denote a small nonzero constant, and define S = {(s, t) ∈ [0, 1]2 : c < t − s <

1 − c}. Then, under the no-effect null hypothesis, the test statistic TRRS converges in

distribution to the supremum norm of 1√
(t−s)(1−(t−s))

(Z(t) − Z(s)) over S .

Theorem 6 holds for the consistent estimators S2
n, σ̂2

D, and σ̂2
P of σ2 (e.g. Van

Der Vaart (1998), Eubank and Hart (1992), Gasser et al. (1986)). The proof of

Theorem 7 follows by Theorem 6 and the continuous mapping theorem. The

condition c < t − s < 1 − c is necessary to let TRRS, TRRD and TRRP have a

proper limiting distribution. Note that in fact, the definition of the TRRS, TRRD

and TRRP need a slight modification. We additionally assume that nij > cn.

8.1.2 Circular-linear regression

The proof of Theorem 7 in case of linear-circular regression analysis follows

immediately. The regional residual in any arc Ast, s, t so that at least one xi ∈
(s, t], can be written as a function of increments of the process B̂n,

√
nR(Ast) =

√
n ∑

n
i=1 I(xi ∈ Ast)(yi − θ̂n)

∑
n
i=1 I(xi ∈ Ast)

≡ Ĥn(s, t) =

{
n

∑
n
i=1 I(xi∈Ast)

(
B̂n(t) − B̂n(s)

)
if s < t;

− n
∑

n
i=1 I(xi∈Ast)

(
B̂n(s) − B̂n(t)

)
if s > t.

The last equality is obtained since all residuals sum to zero. Therefore, it suffices

to consider only the case s < t to investigate the asymptotic behaviour, and

everything reduces to the linear-linear regression case.

8.1.3 Speed of convergence

In this section the speed of convergence is investigated empirically in a simula-

tion study for small sample sizes. Consider the no-effect regression model with

m(xi; θ) = 1 and an equidistant design xi = (i − 0.5)/n, i = 1, . . . , n. The errors

are independent, random normal variables with mean 0 and common variance
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σ2 = 0.2. The variance σ2 is treated both as a known and unknown parameter

and is estimated by the natural estimator, S2
n = (n − 1)−1 ∑

n
i=1(yi − y)2. The

Brownian Bridge in Theorem 2 is approximated based on 1000 time steps.

1000 samples of sizes 20, 50 and 100 were generated from the null model

m(xi; θ) = 1 and σ2 = 0.2. If the variance is known, the QQ-plots in the left

panels in Figure 8.1 show a rather slow convergence of the test statistic to its

asymptotic distribution. When using a consistent estimator of the residual vari-

ance, an even slower convergence is noticed (Figure 8.1, right panels). We con-

clude that for normally distributed error terms, the convergence is slow. This

conclusion suggests the use of the bootstrap throughout this dissertation.

8.2 More general regression models

In this section, we consider the more general regression model yi = m(xi) +

ǫi, i = 1, . . . , n, where m belongs to a given parametric family of functions,

H0 : m ∈ M = {m(., θ) : θ ∈ Θ ⊂ R
p}. In what follows, we will refer to this

null hypothesis as the parametric null hypothesis, to have a clear distinction

between this and the no-effect null hypothesis in the previous section.

The asymptotic properties are established along the same lines as in Stute (1997)

or Diebolt and Zuber (1999). The form of the limiting centered Gaussian process

Ĥ of Ĥn under H0 is established. In what follows, the error distribution is even

allowed to be heteroscedastic, although it was not considered as such in this

dissertation. As this section is mainly an extension of the work of Diebolt and

Zuber (1999), we report the results as generally as possible.

We start again with the limiting distribution of the RRUnij statistic and end this

section with some thoughts concerning the asymptotic null distributions of the

regional residual tests based on standardized regional residuals calculated over

intervals. Under H0, and the assumptions 1 - 5 listed in Chapter 3, Theorem 1

establishes the limiting centered Gaussian process B̂ of B̂n. The remainder of

this section is based on this theorem.

8.2.1 RR test statistics based on unstandardized regional residuals

For convenience, we denote any interval on [0, 1] as a subset C = (s, t] ⊆ [0, 1]

with length |C| = t − s, and ζ denotes the collection of all these subsets.

Theorem 8 gives the limiting process of Ĥn under the parametric null hypoth-

esis. Note that Γ0 and ϕ0 are not explicitly defined in this theorem. Under

Assumption 5, n1/2(θ̂n − θ0) converges, as n → ∞, to a p-dimensional normal

random variable with zero mean and variance matrix Γ0 =
∫ ∞

−∞
ϕ0ϕT

0 dF.

Corollary 1 in Diebolt and Zuber (1999) shows under some additional technical

assumptions, that the LSE sequence θ̂n is a sequence of n1/2-consistent esti-
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FIGURE 8.1: QQ-plots of the empirical and the asymptotic null distribution of the TRRS re-

gional residual test for the no-effect null hypothesis with constant variance. This is done

for three different small sample sizes n = 20 (upper panels), n = 50 (middle panels), and

n = 100 (lower panels), and for known (left panels) and estimated (right panels) variances.
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8.2. More general regression models

mators of θ and satisfies the asymptotic linearity type property (Assumption

5) with ϕ0 = σV−1
0 ∇m0, where V0 =

∫ ∞

−∞
∇m0∇mT

0 dF is a symmetric

positive-definite matrix.

Theorem 8 Let 0 < c < 1 denote a small nonzero constant, and C1, C2 ∈ ζ so

that c < |C1| |C2|. Under the parametric null hypothesis and the Assumptions 1 - 5,

Ĥn
w→ Ĥ, as n → ∞, in the space D[0, 1], where Ĥ is a centered zero mean gaussian

process with covariance function

r(C1, C2) =
1

|C1| |C2|
(

G(C1 ∩ C2) − gT
0 (C1)h0(C2)

−gT
0 (C2)h0(C1) + gT

0 (C1)Γ0g0(C2)
)

, (8.2)

where

G(C) =
∫

C
σ2(u)dF(u),

g0(C) =
∫

C
∇m0(u)dF(u),

h0(C) =
∫

C
σ(u)ϕ0(u)dF(u),

with ∇m0 = ∇mθ|θ=θ0
the gradient with respect to θ of m(x, θ) evaluated at θ0.

Proof. The proof is immediate by applying the continuous mapping theorem

and Theorem 1. 2

In Theorem 9 we establish the limiting distribution of TRRUnij under the para-

metric null hypothesis.

Theorem 9 Let Z denote a standard Brownian Bridge on [0,1], and let 0 < c < 1

denote a small nonzero constant, and C1, C2 ∈ ζ so that c < |C1| |C2|. Then, under

the parametric null hypothesis and the Assumptions 1 - 5, the test statistic TRRUnij

converges in distribution to the supremum norm of the centered zero mean gaussian

process Ĥ, with covariance structure defined in Theorem 8.

Proof. The proof is immediate by applying Theorem 8. 2

To perform the regional residual tests, we need to estimate V0, g0, h0 and G.

The strong consistency under H0 of estimators of V0, g0, h0 and G is proved in

Theorem 10.
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Theorem 10 Under the assumptions of Theorem 2 of Diebolt and Zuber (1999),

V̂n =
∫ 1

0
∇mθ̂n

(u)∇mT
θ̂n

(u)dF(u)
a.s.→

∫ 1

0
∇m0(u)∇mT

0 (u)dF(u) = V0,

n → ∞,

ĝn(C) =
∫

C
∇mθ̂n

(u)dF(u)
a.s.→

∫

C
∇m0(u)dF(u) = g0(C),

n → ∞, uniformly in s,t,

Ĝn(C) = n−1
n

∑
i=1

(Yi − m(xi, θ̂n))2 I(s < xi ≤ t)
a.s.→

∫

C
σ2(u)dF(u) = G(C),

n → ∞, uniformly in s,t,

ĥn(C) = V̂−1
n n−1

n

∑
i=1

(Yi − m(xi, θ̂n))2
∇mθ̂n

(xi)I(s < xi ≤ t)

a.s.→ V−1
0

∫

C
σ2

∇m0(u)dF(u) = h0(C), n → ∞, uniformly in s,t.

Proof. The proof is immediate by applying Theorem 2 of Diebolt and Zuber

(1999) and the triangle inequality. 2

8.2.2 RR test statistics based on standardized regional residuals

For the regional residual tests based on standardized regional residuals, we

only provide some guidelines to obtain the asymptotic null distribution. As for

all possible intervals C ∈ ζ, standardized regional residuals correspond to the

process

Ĥn(C)√
r̂n(C)

, (8.3)

where r̂n(C) is the sample estimator of the variance function r(C) in Theorem

8 and which depends on the design and on the parametric family of regression

models under the null hypothesis. We believe that the limiting distribution of

this standardized process can be written as
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8.2. More general regression models

Ĥn(C)√
r̂n(C)

w→ Ĥ(C)√
r̂(C)

where
√

r̂n(C) is a bounded nonzero function. We do not provide a formal

proof.

To illustrate the correspondence of the standardized process and the standard-

ized regional residuals, we show in what follows the asymptotic equivalence

of the variance structure of the process Ĥ and the regional residuals calculated

over intervals for both the no-effect and linear hypothesis. This is done by

first simplifying the expression for the variance function of the process H for

both the no-effect and the linear hypothesis. Secondly, the limit of the variance

function for
√

nR(Aij) is determined for n → ∞.

No-effect hypothesis

The no-effect null hypothesis states

H0 : m(x; θ) = θ0, x ∈ [0, 1].

As ∇m0(x) = 1, the functions g0(x), V0, ϕ(x) and h0(x) become respectively

F(x), 1, σ(x) and
∫ x

0 σ2(u)dF(u). In case of homoscedasticity, C1 = (s, t] and

C2 = (v, w] both in ζ, and for F the cumulative distribution of a uniform ran-

dom variable over the interval [0, 1], the covariance function of Ĥ simplifies

to

r((s, t], (v, w]) =
σ2

|t − s| |w − v| ([|(s, t] ∩ (v, w]| − |t − s| |w − v|) .

Therefore, the variance of the process Ĥ in interval C becomes

var(Ĥ(C)) =
σ2

| C | (1− | C |),

as was found in Section 8.1. For the regional residuals, we find

var(
√

nR(Aij)) = σ2 n

nij
+

1

nij
− 1 − 1

n2
ij

n→∞→ σ2 1

j − i
(1 − (j − i))

Linear effect hypothesis

Consider the linear effect hypothesis

H0 : m(x; θ) = θ0 + θ1x, x ∈ [0, 1].
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If the variance function σ2(x) = σ2 for each x ∈ [0, 1], and F is the cumulative

distribution function of a uniformly distributed random variable over [0,1], the

vector functions ∇m0, g0 and h0, and the matrices V0 and Γ0, become

∇mT
0 (xi) =

(
∂m

∂θ1
(xi; θ),

∂m

∂θ0
(xi; θ)

)
= (x 1 )

g0(x) =
∫ x

0
∇mT

0 (y)dF(y) =

( ∫ x
0 ydF(y)∫ x
0 1dF(y)

)
=

(
x2

2

x

)

∇m0(x)∇mT
0 (x) =

(
x

1

)
(x 1) =

(
x2 x

x 1

)

V0 =
∫ 1

0
∇m0(y)∇mT

0 (y)dF(y)

=

(
x3

3
x2

2
x2

2 x

)∣∣∣∣∣

1

0

=

( 1
3

1
2

1
2 1

)

V−1
0 =

adj(V0)

det(V0)
= 12

(
1 − 1

2

− 1
2

1
3

)
=

(
12 −6

−6 4

)

h0(x) = V−1
0

∫ x

0
σ2

∇mT
0 (y)dF(y) = V−1

0 σ2g0(x)

=

(
12 −6

−6 4

)
σ2

(
x2

2

x

)
= σ2

(
6x2 − 6x

−3x2 + 4x

)

G(x) =
∫ x

0
σ2dF(y) = σ2F(x) = σ2x

ϕ0(xi) = σV−1
0 ∇m0(x)

Γ0 =
∫ 1

0
ϕ0(xi)ϕ

T
0 (xi)dF(x)

= V−1
0 σ2




∫ 1

0
∇m0(y)∇mT

0 (y)dF(y)
︸ ︷︷ ︸

V0


V−1

0 = σ2V−1
0

The variance of the process Ĥ in an interval C = (s, t] is

r((s, t], (s, t]) =
1

(t − s)2

(
G((s, t])− gT

0 (s, t)h0(s, t)

−gT
0 (s, t)h0(s, t) + gT

0 (s, t)Γ0g0(s, t)
)
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=
1

(t − s)2

(
σ2(F(t) − F(s))− gT

0 (s, t)h0(s, t)
)

=
σ2

(t − s)2

(
(t − s) − (3(t2 − s2)2 − 6(t − s)(t2 − s2)

+4(t − s)2)
)

=
σ2

(t − s)

(
1 − (t − s)(3(t + s)2 − 6(t + s) + 4)

)
.

For the variance of the standardized regional residuals in an interval Aij, we

find after some straightforward, but lengthy calculations, a rather complex ex-

pression. Only the terms of asymptotic importance are shown in the expression

below,

var(
√

nR(Aij)) ≈ σ2

(
1

nij
−

4n2n2
ij − 6nnij(j2 − i2) + 3(j2 − i2)2

n3n2
ij

)
.

For n → ∞, we obtain

var(
√

nR(Aij))
n→∞→ σ2

j − i

(
1 − (j − i)(3(j + i)2 − 6(j + i) + 4)

)
.

In the above calculations, we thus find that the asymptotic equivalence of the

variance structure of the process Ĥ and the regional residuals calculated over

intervals, for both the no-effect and linear hypothesis. It also illustrates that the

covariance structure can become very complicated for more complex regression

models.

8.3 Consistency of the regional residual tests

The proof of the consistency of the regional residual tests presented here, is

established along the same lines as the one presented in Su and Wei (1991) for

tests based on the supremum of cumulative sums of residuals. For clarity of

notation, recall that m(x) denotes the true conditional mean of y given x. The

central null hypothesis states that m belongs to a given parametric family of

functions,

H0 : m ∈ M = {m(x, θ) : θ ∈ Θ} ,

where Θ is a p-dimensional proper parameter set in R
p. The alternative hy-

pothesis H1 which we are interested in testing against, is that there does not

exist a p × 1 constant vector θ such that m(x) = m(x, θ), for all the x in the

sample space.
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Theorem 11 Suppose that the null hypothesis is false in the sense that there does not

exist a p × 1 constant vector θ such that m(x) = m(x, θ), for all the x in the sample

space, and suppose the assumptions 1 - 5 hold, then the regional residual tests have

power tending to 1 as n → ∞.

Proof. Under H1, as n → ∞, θ̂n converges in probability to a constant vector θ∗.

For each subset Cα,β ∈ R
p, such that at least one xi ∈ Cα,β,

1

n

n

∑
i=1

[yi − m(xi, θ̂n)]I(xi ∈ Cα,β)

=
1

n

n

∑
i=1

{[yi −m(xi)]+ [m(xi)−m(xi, θ∗)]+ [m(xi, θ∗)−m(xi, θ̂n)]}I(xi ∈ Cα,β).

(8.4)

Under H1, there exists at least one subset Cα0,β0
∈ R

p such that

n−1
n

∑
i=1

[m(xi) − m(xi, θ∗)]I(xi ∈ Cα0,β0
)

p→ c, (8.5)

where c is a nonzero constant. As a proof of this statement, it is sufficient to

note that c = 0 for all subsets Cα,β ∈ R
p implies that H0 is true, whereas it is

assumed here that H0 is not true. For this particular subset Cα0,β0
, as n → ∞,

1

n

n

∑
i=1

[yi − m(xi)]I(xi ∈ Cα0,β0
)

p→ 0. (8.6)

Furthermore, since m has a bounded derivative, as n → ∞,

1

n

n

∑
i=1

[m(xi, θ∗) − m(xi, θ̂n)]I(xi ∈ Cα0,β0
)

p→ 0. (8.7)

The statements (8.4), (8.5), (8.6) and (8.7) imply that, as n → ∞,

1

n

n

∑
i=1

[yi − m(xi, θ̂n)]I(xi ∈ Cα0,β0
)

p→ c.

Since,

sup
Cα,β∈Rp

∣∣∣∣
nCα,β

n−3/2
Ĥn(Cα,β)

∣∣∣∣ ≥ n−1

∣∣∣∣∣
n

∑
i=1

[yi − m(xi, θ̂n)]I(xi ∈ Cα0,β0
)

∣∣∣∣∣ ,

it follows that n−1/2TRRUnij converges in probability to a nonzero positive con-

stant as n → ∞, and thus that TRRUnij → ∞ as n → ∞. This establishes the
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consistency of all unstandardized tests against H1. Note that this is not limited

to the RRUnij test, as multiple predictor variables are allowed.

For regional residual tests based on standardized regional residuals, the same

idea could be used if we add the factor 1√
r̂n(Cα,β)

to all statements, where
√

r̂n(Cα,β) is a bounded, non zero function. In particular, the new statements

imply that, as n → ∞,

1

n

n

∑
i=1

yi − m(xi, θ̂n)√
r̂n(Cα0,β0

)
I(xi ∈ Cα0,β0

)
p→ c√

r̂n(Cα0,β0
)

.

Since,

sup
Cα,β∈Rp

∣∣∣∣∣∣

nCα,β

n−3/2

Ĥn(Cα,β)
√

r̂n(Cα,β)

∣∣∣∣∣∣
≥ n−1

∣∣∣∣∣∣

n

∑
i=1

yi − m(xi, θ̂n)√
r̂n(Cα0,β0

)
I(xi ∈ Cα0,β0

)

∣∣∣∣∣∣
,

it follows that n−1/2TRR. converges in probability to a nonzero positive constant

as n → ∞, and thus that TRR. → ∞ as n → ∞. This establishes the consistency

of all regional residual tests against H1. 2

8.4 Conclusions

The asymptotic behaviour of interval based regional residuals is established in

this chapter. The limiting distribution is a centered zero mean gaussian process

with a complicated covariance structure for more complex models. The speed

of convergence is rather slow. Therefore, we recommend the use of bootstrap

null distributions in practice. Further, the consistency against the alternative

H1 of all supremum based tests in this dissertation was shown.
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CHAPTER 9

Conclusions and further research

9.1 Conclusions

An important component of any modeling procedure is an assessment of the

model fit, more specifically, an evaluation of how well model-based predicted

outcomes coincide with the observed data. In this work a new type of Lack-

of-Fit test and corresponding diagnostic plots are proposed and discussed

for parametric regression models. The tests are based on so-called regional

residuals, which are averages of classical residuals in subsets of the predictor

space. Regional residuals are very suitable building blocks for constructing a

lack-of-fit test. If deviations from the null model occur in a certain region of the

predictor space, patterns of positive or negative residuals will show up in that

neighbourhood, resulting in large absolute values of standardized regional

residuals over these regions. Large absolute values thus suggest a possible

lack-of-fit of the hypothesized model, located in the corresponding subset in

the predictor space. To overcome the problem of multiplicity and to obtain a

global measure of lack-of-fit, test statistics are defined as the supremum norm

of standardized or unstandardized regional residuals over all subsets. The

regional residual tests are omnibus in the sense that they are consistent against

all fixed alternatives. In particular, simulation studies show that the tests are

sensitive to local deviations from the hypothesized regression model, where

local refers to a small subset of the predictor space over which the true and the

hypothesized models do not agree.

We believe that important information is lost by summarizing all discrepancy

measures into a single value. We therefore propose to complement the LOF

test with a visualization of the individual regional residuals. The new plots

formally identify regions in the predictor space where the model does not fit

well and suggest in which area remedial measures may be necessary.

Smoothing based LOF tests are in general very powerful in detecting devi-

ations from the null model, but their performance depends on the choice of

the smoothing parameter. Regional residuals are calculated over all possible

intervals, so as to avoid the choice of this smoothing parameter. In this way,
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statistical tests based on regional residuals have power to detect both global

and local deviations from the null model. As a consequence, our methodology

is computationally intensive, but suggestions are made in subsection 9.2.1 to

reduce the computational cost.

Finally, in contrast to some classical LOF tests, regional residual tests are

applicable whether replicated design points are available or not. When no

replicated design points are present, a regional residual calculated over a

subset at one design point is simply the ordinary residual at each design point.

However, for design points with multiple measurements, this regional residual

is equal to the average of all the multiple classical residuals at that design

point. This means that the availability or the presence of replicated design

points is not an issue for regional residual based tests.

Single linear predictor

For a single linear predictor variable, the subsets are chosen to be intervals

on the real line. The corresponding standardized regional residuals can be

visualized in a heat map in the (i, j) plane, where the x-axis (y-axis) shows the

starting point (end point) of the interval for which the standardized regional

residual is calculated. The formal regional residual plot protects correctly for

a family-wise error rate of α by only colouring the intervals for which the

absolute value of the standardized regional residual exceeds the bootstrap

α-level critical value of the test statistic. Coloured areas in this plot refer to

particular regions where a statistically significant under- or overestimation

of the data by the null model is detected at the α-level of significance. These

regions can be very small, a few neighbouring observations or even a single

outlying observation, or very large in case of global deviations from the null

model.

The asymptotic null distribution of the test statistic is the supremum norm of a

centered, zero mean Gaussian process with a complicated covariance function.

However, since the convergence is slow, the asymptotic approximation may

not be appropriate for small sample sizes. Therefore, we recommend a boot-

strap procedure to obtain bootstrap p-values. The use of the wild bootstrap is

recommended in practice, as it handles adequately heteroscedasticity of the

error terms.

We standardize the regional residuals to make them comparable among one

another. In practice, the residual variance is unknown, and, therefore, needs

to be replaced by a variance estimator that is consistent under both the null
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and the alternative hypotheses so as to obtain a powerful LOF test. The

estimator based on the residual sum of squares (S2
n), often overestimates under

a lack-of-fit situation. The estimated standardized regional residuals appear

then to be smaller than they really are, which might result some power loss.

The use of variance estimators which are more robust against deviations from

the null model may therefore be more appropriate.

As different variance estimators may influence the performance of the regional

residual based tests, we may consider test statistics based on unstandardized

regional residuals. Typically, the test statistic is then the supremum norm of

weighted sums of classical residuals in all possible intervals. In case of global

LOF, the weight factor 1/
√

n, where n is the sample size, results in the best

performance. The factor 1/
√

nij, where nij denotes the number of observations

in the interval, makes the test statistic more sensitive to local LOF, as the

weighted sums over small intervals then become relatively more important.

Regional residual tests based on standardized regional residuals seem to be a

nice trade-off between the latter two statistics in case of both global and local

LOF. For their ease of implementation in all parametric regression models,

we further only consider standardized regional residual tests based on the

estimator S2
n of the residual variance.

Single angular predictor

Our new methodology is extremely useful when the predictor variable is

angular. Although ordinary least squares regression can be used to fit circular-

linear regression models, classical LOF tests for linear-linear regression models

often fail to detect deviations from the hypothesized model because their

p-values strongly depend on the choice of the origin of the circular variate.

Our regional residual test properly detects lack-of-fit on the circle, as it is

origin independent. We have also illustrated that regional residuals, which are

now calculated over all possible arcs on the circle, can be used to construct a

regional residual plot. Combined with the testing procedure, this graphical

diagnostic tool allows both global and local deviations to be detected and

localized in the angular predictor space. We have also observed good powers

for the smooth test of Fan and Huang (2001), which is also origin independent.

This latter feature, however, has not been recognized before.

Multiple predictor variables

Our methodology is easily extended to multiple predictor variables. We dis-
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cussed two possible extensions. The first one, based on marginal information

for each predictor variable, is mainly useful to detect deviations from the null

model in univariate directions. The second approach, on the other hand, takes

the multivariate structure of the design space into account. For a d-dimensional

covariate vector, d-dimensional spheres are constructed based on a distance

measure in the predictor space. In this way, a more powerful test for local

deviations in the higher dimensional predictor space is constructed and allows

the detection of a broader class of alternatives. The advantage of this approach

is that no order relation of the residuals has to be specified in advance, neither

the choice of a smoothing parameter.

Generalized linear models

The lack-of-fit tests based on regional residuals and corresponding regional

residual plots are further extended to the complete class of generalized linear

models. Simulations in the logistic regression context suggest that the power of

the proposed testing procedures is at least comparable to the power of popular

classical methods. As before, our procedure is particularly sensitive to local

LOF. Regional residual plots again formally locate the LOF in the predictor

space.

9.2 Further research

9.2.1 Reduction of the computational cost

It would be most welcome to reduce the computational cost of our tests. In case

of very large datasets that nowadays often occur, the proposed methodology

would be too time consuming. Instead of calculating the regional residuals

over all possible intervals with respect to a certain predictor variable, or over all

possible spheres in the d-dimensional predictor space, only a selection of these

regions could be studied. One could, for example, randomly select a number

of these regions, as is illustrated in the POPS data example in Section 7.2.3. A

lot of regional residuals contain the same information, so we believe that only

including a randomly selected subset of all regions, provides reliable results.

Of course, further investigation is necessary to obtain practical guidelines.

Another possible idea would be to follow the ideas of e.g. Landwehr et al.

(1984) and Moons et al. (2004). They expect that if local deviations occur, it

might be detected by considering close observations in the predictor space.

Landwehr et al. (1984) construct clusters of similar observations in the predic-
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tor space, while Moons et al. (2004) construct groups based on the recursive

partitioning algorithm underlying classification trees. For both suggestions,

however, many choices have to be made for the practical implementation. For

example, the number of clusters, the choice of partitioning scheme and pruning

process, including the number of final nodes and the number of observations

in final nodes.

9.2.2 Categorical predictor variables

In this thesis we did not explicitly discuss categorical predictor variables. When

the group levels are coded by real numbers, one could simply include them in

the Euclidean distance measure and probably this procedure works fine. How-

ever, the choice of the subsets then depends on the codes assigned to the group

levels. Therefore, properly handling categorical covariates would be an im-

provement. le Cessie and van Houwelingen (1995) provide some useful sug-

gestions on handling categorical covariates. One could, for example, use a

distance measure based on the number of categorical variables on which the

observations differ. In particular, suppose the ith covariate vector of observa-

tions consists of k categorical covariates, say xi = (xi1, . . . , xik). Let cj be the

number of different categories of the jth categorical variable. le Cessie and van

Houwelingen (1995) define the distance d(xi, xj) between observation i and j by

d(xi, xj) =

√
c1

c1 − 1
I(xi1 6= xj1) + . . . +

ck

ck − 1
I(xik 6= xjk),

where

I(. . .) =

{
1 if the proposition inside the brackets is true;

0 if it is false.

The factors ck
ck−1 are to adjust for the number of different categories of a variable.

If one is faced with both categorical and continuous predictor variables,

le Cessie and van Houwelingen (1995) use a modified distance measure, which

is a combination of the Euclidean distance between the continuous and the dis-

tance measure for categorical variables as described above. The contributions

for the continuous covariates in the distance measure are divided by two times

the variance of the covariate. In this way the average of each term equals 1. We

refer the reader to le Cessie and van Houwelingen (1995) for more details.

9.2.3 Spherical regional residuals in circular-linear regression

The spherical regional residuals of Section 6.2 may be extended to circular-

linear regression in several ways. In Section 6.2 we have chosen to use the
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FIGURE 9.1: Possible extensions of spherical regional residuals in case of a linear and a circular

predictor variable (left panel) or two circular predictor variables (right panel).

Euclidean distance measure, but of course other measures could be useful as

well. The idea is to construct subsets of neighbouring points. Figure 9.1 shows

a possible extension in case of a linear and a circular predictor variable (left

panel) and in case of two circular predictor variables (right panel). Instead of

rectangular areas, again spherical areas could be used as well. A frequently

used circular distance measure for a single angular variate is to take the smaller

of the two arcs between two angles φ1 and φ2, which can be expressed as

|φ1, φ2| = min(|φ1 − φ2| , 2π − |φ1 − φ2|) = arc cos[cos(φ1 − φ2)].

An alternative, closely related definition of a circular distance is given by

|φ1, φ2| = 1 − cos(φ1 − φ2).

For more details on circular distance measures, we refer the reader to the

specific literature in this area, e.g. Jammalamadaka and SenGupta (2001), or

Batschelet (1981).

These distance measures could then be combined with the Euclidean distance

measure for predictor variables on the real line.

9.2.4 Smoothing based tests in circular-linear regression

Another solution to the LOF problem in circular-linear regression would be to

adapt classical smoothing-based LOF tests by using a circular smoother (Gian-

nitrapani, Bowman, and Scott (2005)). As smoothing based LOF tests have good

power properties in linear-linear regression (Chapter 4 and Chapter 7), a good

performance can also be expected here. Nevertheless, the major disadvantage

remains the dependence on the choice of the smoother and the smoothing pa-

rameter.
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9.2.5 Regional residual tests in generalized linear models

The simulation study in Section 7.1.5 indicates that the performance of the RR

tests in generalized linear models depends on the type of residuals used to cal-

culate the lack-of-fit test, but to the best of our knowledge no discussion in this

context is available. A more extensive investigation is necessary to get better

insight into the behaviour of these tests and to provide practical guidelines.

9.2.6 Limiting distributions for RR tests in multiple regression

The deduction of the asymptotic null distributions for RR tests in multiple

regression is out of the scope of this thesis. Nevertheless, we believe that

for spherical regional residuals, the asymptotic null distribution of the test

statistic is again the supremum norm of a centered zero mean Gaussian

process. The formal arguments are probably based on the higher-order

results for empirical processes indexed by sets, as discussed e.g. in Chapter

26 in Shorack and Wellner (1986). Further investigations are certainly necessary.
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Härdle, W. and E. Mammen (1993). Comparing nonparametric versus parametric re-

gression fits. The Annals of Statistics 21(4), 1926–1947.

Harper, W. (1967). The distribution of the mean half-square successive difference.

Biometrika 3/4(54), 419–433.

Hart, J. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. New York: Springer-Verlag.

Hosmer, D., T. Hosmer, S. le Cessie, and S. Lemeshow (1997). A comparison of goodness-

of-fit tests for the logistic regression model. Statistics in Medicine 16, 965–980.

Hosmer, D. and S. Lemeshow (1980). A goodness-of-fit test for the multiple logistic

regression model. Communications in Statistics A10, 1043–1069.

Hosmer, D. and S. Lemeshow (2000). Applied Logistic Regression (2nd Edition ed.). Wiley

Series in Probability and Statistics. John Wiley & Sons, Inc.

Hosmer, D., S. Lemeshow, and J. Klar (1988). Goodness-of-fit testing for multiple lo-

gistic regression analysis when the estimated probabilities are small. Biometrical Jour-

nal 30(7), 1–14.

Hosmer, D. W. and N. L. Hjort (2002). Goodness-of-fit processes for logistic regression:

simulation results. Statistics in Medicine 21, 2723–2738.

171



Bibliography

Hosmer, D. W., S. Taber, and S. Lemeshow (1991). The importance of assessing the fit of

logistic regression models. American Journal of Public Health 81(12), 1630–1635.

Hurn, M., N. Barker, and T. Magath (1945). The determination of prothrombin time

following the administration of dicumarol with specific reference to thromboplastin.

The Journal of laboratory and clinical medicine 30, 432–447.

Jammalamadaka, S. R. and U. J. Lund (2005). The effect of wind direction on ozone

levels - a case study. to appear in Jour. Environmental and Ecological Statistics.

Jammalamadaka, S. R. and A. SenGupta (2001). Topics in Circular Statistics. Singapore:

World Scientific Press.

Joglekar, G., J. H. Schuenemeyer, and V. LaRiccia (1989). Lack of fit tests when replicates

are not available. The American Statistician 43(3), 135–143.

Johnson, R. A. and T. E. Wehrly (1978). Some angular-linear distributions and related

regression models. Journal of the American Statistical Association 73(363), 602–606.

Kuchibhatla, M. and J. Hart (1996). Smoothing-based lack-of-fit tests: Variations on a

theme. Nonparametric Statistics 7, 1–22.

Kulasekera, K. and C. Gallagher (2002). Variance estimation in nonparametric multiple

regression. Communications in Statistics - Theory and Methods 31(8), 1373–1383.

Landwehr, J. M., D. Pregibon, and A. C. Shoemaker (1984). Graphical methods for as-

sessing logistic regression models. Journal of the American Statistical Association 79(385),

61–71.

Le, C. T., P. Liu, B. R. Lindgren, K. A. Daly, and G. S. Giebink (2003). Some statis-

tical methods for investigating the date of birth as a disease indicator. Statistics in

medicine 22, 2127–2135.

le Cessie, S. and H. C. van Houwelingen (1995). Testing the fit of a regression model via

score tests in random effects models. Biometrics 51, 600–614.

le Cessie, S. and J. van Houwelingen (1991). A goodness-of-fit test for binary regression

models, based on smoothing methods. Biometrics 47, 1267–1282.

Ledwina, T. (1994, Sep.). Data-driven version of neyman’s smooth test of fit. Journal of

the American Statistical Association 89(427), 1000–1005.

Lee, G. and J. D. Hart (1998). An l2 error test with order selection and thresholding.

Statistics & Probability Letters 39, 61–72.

Lehmann, E. (1959). Testing Statistical Hypotheses. New York: John Wiley & Sons.

Lemeshow, S. and D. Hosmer (1982). A review of goodness-of-fit statistics for use in

the development of logistic regression models. American Journal of Epidemiology 115,

92–106.

Li, C.-S. (2005). Using local linear kernel smoothers to test the lack of fit of nonlinear

regression models. Statistical Methodology 2, 267–284.

Lin, D., L. Wei, and Z. Ying (2002). Model-checking techniques based on cumulative

172



Bibliography

residuals. Biometrics 58, 1–12.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models.

Annals of Statistics 21, 255–285.

McCullagh, P. and J. Nelder (1989). Generalized Linear Models (Second ed.). London:

Chapman & Hall.

Montgomery, D. and E. Peck (1982). Introduction to Linear Regression Analysis. New York:

John Wiley.

Moons, E., M. Aerts, and G. Wets (2004). A tree based lack-of-fit test for multiple logistic

regression. Statistics in Medicine 23, 1425–1438.

Munk, A., N. Bissantz, T. Wagner, and G. Freitag (2005). On difference-based variance

estimation in nonparametric regression when the covariate is high dimensional. Jour-

nal of the Royal Statistical Society, Series B, Statistical Methodoloy 67, 19–41.

Neill, J. W. and D. E. Johnson (1984). Testing for lack-of-fit in regression - a review.

Communications in Statistics - Theory & Methods 13(4), 485–511.

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman (1996). Applied Linear

Statistical Models (Fourth Edition ed.). Mc Graw Hill.

Opsomer, J. and M. Francisco-Fernández (2006). Finding local departures from a para-

metric model using nonparametric regression. submitted to Statistical Papers.

Pan, Z. and D. Y. Lin (2005). Goodness-of-fit methods for generalized linear mixed mod-

els. Biometrics 61, 1000–1009.

Pardoe, I. (2001). A bayesian sampling approach to regression model checking. Journal

of Computational and Graphical Statistics 10(4), 617–627.

Peixoto, J. (1990). A property of well-formulated polynomial regression models. Ameri-

can Statistician 44, 26–30.

Pregibon, D. (1981). Logisitic regression diagnostics. The Annals of Statistics 9(4), 705–724.

Pulkstenis, E. and T. J. Robinson (2002). Two goodness-of-fit tests for logistic regression

models with continuous covariates. Statistics in Medicine 21, 79–93.

Rayner, J. and D. Best (1989). Smooth Tests of Goodness-of-Fit. New York, USA: Oxford

University Press.

Rice, J. (1984). Bandwidth choice for nonparametric regression. The Annals of Statis-

tics 12(4), 1215–1230.

Ryan, B., E. Wishart, and D. Shaw (1976). The growth rates and densities of ice crystals

between −3◦c and −21◦c. Journal of the Atmospheric Sciences 33, 842–850.

Shorack, G. R. and J. A. Wellner (1986). Empirical Processes with Applications to Statistics.

John Wiley & Sons, Inc.

Stute, W. (1997). Nonparametric model checks for regression. The Annals of Statis-

tics 25(2), 613–643.

173



Bibliography
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Samenvatting

Een belangrijk onderdeel in elke regressie analyse is het controleren van de

modelkwaliteit, onder meer door het vergelijken van de model gebaseerde

voorspellingen met de observaties. In dit werk wordt een nieuw type van

lack-of-fit (LOF) toetsen voorgesteld, in combinatie met bijhorende diagnos-

tische grafieken. De toetsen zijn gebaseerd op zogenaamde regionale residuen,

gedefineerd als het gemiddelde van klassieke residuen in deelgebieden van

de ruimte van de onafhankelijke variabelen, de predictorruimte. Regionale

residuen zijn zeer geschikte bouwstenen voor het construeren van een LOF

toets. Indien er afwijkingen ten opzichte van het beschouwde model aanwezig

zijn in een bepaald gebied in de predictorruimte, dan verwachten we in deze

regio groepen van positieve of negatieve residuen. Deze zullen resulteren

in grote absolute waarden van gestandardizeerde regionale residuen. Grote

absolute waarden suggeren dus een mogelijke afwijking van het model,

gesitueerd in het overeenkomstige deelgebied van de predictorruimte. De

voorgestelde teststatistiek, de supremum norm van alle gestandardiseerde

of ongestandardiseerde residuen, is een globale maat voor afwijkingen van

het beschouwde model, en controleert voor een globaal significantie niveau

α. Toetsen gebaseerd op regionale residuen, verder afgekort als RR toesten,

zijn omnibus, in die zin dat ze consistent zijn tegen alle vaste alternatieve

modellen. De RR toetsen zijn in het bijzonder gevoelig voor lokale afwijkingen

van het model onder de nulhypothese, en zijn bovendien in staat om de

afwijkingen te lokaliseren binnen de predictorruimte. Met “lokaal” wordt

verwezen naar kleine gebieden in de predictorruimte waarvoor het werkelijke

en het beschouwde nul model niet overeenkomen.

Belangrijke informatie gaat echter verloren door de afwijkingen in één globale

maat samen te vatten. Daarom stellen we voor om de toets te gebruiken

in combinatie van een grafische visualisatie van de individuele regionale

residuen. Deze nieuwe grafieken identificeren op formele wijze gebieden waar

het model geen goede voorspellingen oplevert.

Gladde toetsen uit de literatuur zijn over het algemeen krachtig in het de-

tecteren van modelafwijkingen, maar hangen af van de al dan niet subjectieve

keuze van een gladheidsparameter. Regionale residuen daarentegen worden

over alle mogelijke deelgebieden berekend, zodat het onnodig is om een

gladheidsparameter te kiezen. Op die manier is de RR toets in staat om
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zowel globale als lokale afwijkingen van het model onder de nul hypothese te

detecteren. Dit leidt wel tot een computationeel intensieve methode, hoewel

enkele suggesties voor het reduceren van de computationele kost werden

voorgesteld.

In tegenstelling tot verschillende klassieke LOF toetsen, zijn RR toetsen zowel

toepasbaar in experimenten met al dan niet herhaalde waarnemingen. Indien

er geen herhalingen voorhanden zijn is het regionaal residu, berekend over een

deelgebied met één enkel punt uit de predictorruimte, gelijk aan het klassieke

residu in dit punt. Wanneer echter herhaalde waarnemingen voorhanden zijn,

dan is het regionale residu gelijk aan het gemiddelde van de klassieke residuen

van de herhaalde waarnemingen op het ene punt.

De asymptotische nuldistributie van de RR toetsingsgrootheid is in het meest

eenvoudige geval een gecentreerd Gaussiaans proces met gemiddelde nul en

een ingewikkelde covariantiestructuur. Aangezien de convergentie traag is,

is de asymptotische benadering niet geschikt voor kleine steekproefgroottes.

We raden dan ook aan om de nuldistributie te schatten met behulp van een

gepaste bootstrap methode.

De methode is in het bijzonder ook toepasbaar voor circulaire predictoren.

Ondanks het feit dat de kleinste kwadraten methode kan gebruikt worden

voor het schatten van een regressiemodel met een circulaire predictor, zijn

de meeste klassieke LOF testen niet geschikt om systematische afwijkingen

van dit model te detecteren. De p-waarden van de klassieke toetsen hangen

immers vaak af van de keuze van de oorsprong van de circulaire variabele.

Testen die gebaseerd zijn op regionale residuen, berekend over alle mogelijke

bogen in de predictor, zijn echter oorsprong-invariant, en dus erg geschikt

om LOF op de cirkel te detecteren. Wanneer er afwijkingen van het model met

de RR toets gedetecteerd worden, worden de regio’s met systematische afwi-

jkingen van het model opnieuw op een formele manier in de predictorruimte

gevisualiseerd.

De methode is eenvoudig uitbreidbaar naar situaties met meerdere voor-

spellingsvariabelen. De voorgestelde methode is gebaseerd op een afstands-

maat in de predictorruimte, waardoor er, in tegenstelling tot verschillende

klassieke toetsen, geen specifieke ordening van de residuen hoeft gekozen te

worden. Tenslotte worden in dit werk ook uitbreidingen naar de volledige

klasse van veralgemeende lineaire modellen geı̈llustreerd en bediscussieerd.
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