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Lijst van symbolen en afkortingen 

 

A sectie van de rookgasbuis [m²] 

c 4.222 298298 ≅ρT  [K.m³/kg]1/2 

y
xc  gevoeligheidscoëfficiënt van x t.o.v. y 

cp warmtecapaciteit [J/kg.K] 

D diameter [m] 

e fout 

E verbrandingswaarde per eenheidsvolume verbruikte zuurstof (bij 298 K) [MJ/Nm³ O2] 

E’ verbrandingswaarde per eenheidsmassa verbruikte zuurstof [MJ/kg O2] 

fs bemonsteringsfrequentie [Hz] 

F zichtbaarheidfactor [-] 

G(ω) versterking in het frequentiedomein [-] 

h convectiecoëfficiënt [W/m².K] 

∆hc verbrandingswaarde [kJ/kg] 

H enthalpie [kJ/kg] 

Im{x} imaginair deel van x 

j operator imaginaire getallen (j² = -1) 

k dekkingsgraad [-] 

k thermische conductiviteit [W/m.K] 

kt correctiefactor snelheidsprofiel [-] 

kp ijkfactor verschildruksonde [-] 

L lengte [m] 

£ Laplace operator 

m gemiddelde waarde 

m&  massadebiet [kg/s] 

n or N aantal monsternamen 

Nu Nusseltgetal [-] 

O( ) grootteorde van 

p barometrische druk [Pa] 

P(x) probabiliteitsfunctie 

Pr Prandtlgetal [-] 

Q&  warmtevrijstellingsvermogen [kW] 

r herhaalbaarheidslimiet 
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r(xi,xj) Pearson correlatiecoëfficiënt [-] 

Re Reynoldsgetal [-] 

Re{x} reëel deel van x 

s Laplace operator 

s geschatte standaard afwijking 

s² geschatte variantie 

sr geschatte standaardafwijking op de herhaalbaarheid 

sR geschatte standaardafwijking op de reproduceerbaarheid 

t tijd [s] 

ts bemonsteringsinterval [s] 

T temperatuur [K] 

u(x) standaard onzekerheid op x 

U geëxpandeerde onzekerheid 

v snelheid [m/s] 

V volume [m³] 

298DV&  volumedebiet doorheen de rookgasbuizen (298 K) [m³/s] 

wi wegingsfactor 

x  geschat gemiddelde 

XO2 concentratie van, in dit geval, zuurstof [Vol%] 
°D

OX 2  Initiële zuurstofconcentratie in de rookgasbuizen [Vol%] 

°A
OX 2  Initiële zuurstofconcentratie zoals gemeten door de analyser [Vol%] 

A
OX 2  Actuele zuurstofconcentratie zoals gemeten door de analyser [Vol%] 

z operator Z-transformatie  

 

 

Griekse symbolen 

α expansiefactor 

δ systematische fout 

∆ differentieoperator 

ε emissiviteit [-] 

µ gemiddelde 

ν kinematische viscositeit [m²/s] 

ρ dichtheid [kg/m³] 

σ standaardafwijking 

σ² variantie 
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τ tijdsconstante [s] 

ϕ relatieve vochtigheid [%] 

φ depletiefactor 

Φ(ω) faseverschuiving in het frequentiedomein 

ω circulaire frequentie [rad/s] 

 

 

Onderschriften 

A° initiële waarde analyser  

atm atmosfeer 

av gemiddeld 

b systematische fout 

c gecombineerd 

D° initiële waarde gemeten in de rookgasbuizen 

eff effectief 

f vorming 

ms meetsectie 

rect rechthoekig 

st.dev. standaard afwijking 

trap trapezoïdaal 

trian triangulair 

 

 

Bovenschriften 

° initieel 

l lagere 

u hogere 

 

 

Afkortingen 

ABS Absoluut 

ARHE Gemiddelde mate van warmtevrijstelling 

BW bandbreedte 

CEN Europees normalisatie-instituut 

CPD Bouwproductenrichtlijn; 89/106/CE 

DAQ Data-acquisitiesysteem 
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DMM Digitale Multimeter 

EGOLF Europese groep van organisaties voor brandtesten, inspectie en certificatie 

EN Europese norm 

FIGRA Groeisnelheid van een brand 

FS Volledig bereik 

GUM Gids ter bepaling van de onzekerheid in metingen [13] 

HRR Warmtevrijstellingsvermogen 

ISO Internationaal normalisatie-instituut 

MARHE Maximale gemiddelde warmtevrijstelling 

MAX Maximum van 

MR Meetbereik 

PLC Netcyclus 

PLC Industriële processor 

ppm delen per miljoen 

REL Relatief 

RC Room corner test; ISO 9705[6] 

RTD Temperatuursmeting door middel van weerstand 

SBI Single Burning Item test; EN13823[2] 

SBI RR1 Eerste ringonderzoek met betrekking tot de SBI; 1997 

SBI RR2 Tweede ringonderzoek met betrekking tot de SBI; 2003 - 2004 

SPR Rookproductievermogen 

THR600s Totale warmtevrijstelling in de eerste tien minuten vanaf blootstelling aan de vlammen 
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Samenvatting 

In 1989 publiceerde de Europese Commissie de Bouwproductenrichtlijn 89/106/CE met als doel een 

ééngemaakte markt te creëren voor bouwproducten. Deze richtlijn is de rechtstreekse aanleiding tot 

het invoeren van een nieuw Europees classificatiesysteem EN 13501[1] dat zowel reactie bij brand als 

weerstand tegen brand omhelst. Dit nieuwe systeem, dat ook wel EUROCLASSES genoemd wordt, 

werd operationeel in 2002 met het publiceren van de betreffende norm. Datzelfde jaar verschenen de 

eerste bouwproducten met CE-markering op de markt. Dankzij de CE-markering kunnen deze 

producten vrij verhandeld worden binnen de grenzen van de Europese handelsassociatie. 

 

In het domein van reactie bij brand diende een volledig nieuw classificatiesysteem ontworpen te 

worden, gebaseerd op zes verschillende brandtesten. Zoveel als mogelijk en/of politiek aanvaardbaar, 

werden bestaande ISO of nationale test methoden gebruikt. Men beschouwde het echter wel 

noodzakelijk om een nieuwe middelschalige test te ontwikkelen, namelijk de Single Burning Item test 

(SBI) EN13823[2] – vrij vertaald de “Eén Brandend Object” test, zo genoemd omwille van het 

brandscenario dat hij verondersteld wordt te simuleren. De SBI is de hoeksteen van het nieuwe 

Europese classificatiesysteem. 

 

De SBI genereert dynamische gegevens over het brandgedrag van een materiaal zoals 

warmtevrijstellingsvermogen (HRR) en rookproductievermogen (SPR). Deze gegevens worden 

elementair geacht bij het beoordelen van een materiaal op zijn brandgedrag. 

 

Overeenkomstig EN ISO 17025[9], Algemene vereisten omtrent de competenties van test- en 

kalibratielaboratoria, en ISO 10012-1[14], omtrent het verzekeren van de kwaliteit van 

meetapparatuur, dienen onzekerheden op de metingen opgenomen te worden in zowel de test- als 

kalibratierapporten. De algemene principes voor het evalueren en het rapporteren van onzekerheden 

worden beschreven in de Richtlijn tot het bepalen van onzekerheden op metingen, GUM[13], maar 

dienen geïnterpreteerd en toegepast te worden op brandtesten. 

 

Verschillende auteurs hebben getracht de onzekerheden gerelateerd aan de HRR en SPR te 

kwantificeren[67][65][48][66]. Echter, uit een vergelijkende studie van alle belangrijke ringonderzoeken, 

besloot Janssens[53] dat de onzekerheid veel groter is dan de waarden gevonden langs analytische weg. 

Dit was in het bijzonder het geval voor middelschalige en grootschalige tests. 

Deze doctoraalscriptie onderzoekt mogelijke technische verklaringen hiervoor, ze stelt wijzigingen 

aan de analytische modellen voor en ontwikkelt een tijdsafhankelijk analytisch model. 

Bijkomend beschouwt deze doctoraalscriptie enkele in de GUM onbehandelde thema’s. 
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Sinds de ontwikkeling van de SBI werden twee ringonderzoeken georganiseerd in een internationale 

context. Dit resulteerde in een experimenteel bepaalde onzekerheid op de testmethode. Deze resultaten 

worden vergeleken met de langs analytische weg bekomen schatting van de onzekerheid. 

 

Een sleutelelement in het bepalen van het dynamische brandgedrag van een product is de nauwkeurige 

bepaling van de volumestroom rookgassen doorheen de rookgaskanalen. Actueel wordt hiervoor een 

bi-directionele lage-snelheidssonde gebruikt[67]. Deze doctoraalscriptie toont echter aan dat deze sonde 

een belangrijke bijdrage levert in het verbreden van de onzekerheid op de meting. 

Daarom werd een nieuwe verschildruksonde ontwikkeld voor het meten van unidirectionele snelheden 

in rookgaskanalen waarbij naast enkele andere voordelen, de onzekerheid drastisch kon verminderd 

worden. 

 

Het dynamische gedrag van het SBI testtoestel werd grondig onderzocht en verscheidene voorstellen 

om hiermee om te gaan werden geformuleerd. 

 

De aanbevelingen uit deze doctoraalscriptie worden overgemaakt aan CEN TC127 teneinde de norm 

te wijzigen op enkele cruciale punten. Met deze doctoraalscriptie is het inzicht in de SBI en 

gelijkaardige testtoestellen substantieel toegenomen. Verder biedt deze doctoraalscriptie aan EGOLF, 

de European Group of Organisations for Fire testing, Inspection and Certification, de mogelijkheid 

om een antwoord te geven op de problemen die ondervonden worden bij het rapporteren van 

meetonzekerheden bij brandtesten. 
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1 Inleiding 

1.1. De SBI 
De SBI test simuleert een ‘single burning item’ in de hoek van een kamer, of dus één object zoals een 

papiermand of zetel die in brand staat. Het toestel wordt voorgesteld in Figuur 1. Het totale 

blootgestelde proefoppervlak bedraagt 1.5 m bij 1.5 m. Het proefmonster bestaat uit twee delen (met 

hoogte 1.5 m en breedte 0.5 m en 1 m) die een hoek vormen. Eventuele verbindingsstukken dienen 

toegepast te worden zoals in het eindgebruik. 

Een diffuse brander met vermogen van 30 kW wordt in de hoek geplaatst en fungeert als warmte én 

ontstekingsbron. Het gedrag van het proefmonster wordt gedurende 20 minuten geëvalueerd. 

De rookgassen worden verzameld in een afzuigkap en worden geëvacueerd doorheen rookgasbuizen. 

In deze buizen wordt het massadebiet van de rookgassen bepaald evenals de zuurstof- en 

koostofdioxideconcentratie. Tevens wordt de opaciteit van de rookgassen gemeten. 

Uit deze gegevens wordt dan het warmtevrijstellingsvermogen (HRR) en rookproductievermogen 

(SPR) berekend in functie van de tijd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figuur 1. SBI: test toestel en typisch proefmonster 
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1.2. Evaluatie en rapportering van onzekerheid 
De SBI testmethode werd ontwikkeld onder hoge tijdsdruk vermits zij de introductie van de vrije 

markt voor bouwproducten in Europa ophield. Na goedkeuring van het ontwerp en de prototypen werd 

een groot ringonderzoek tussen laboratoria gehouden. De resultaten van dit ringonderzoek toonden aan 

dat de SBI testmethode in staat was de vereiste brandkenmerken op een herhaalbare en 

reproduceerbare manier te bepalen en dit op een aanvaardbaar niveau. Er werd echter wel geëist dat er 

gezocht zou worden naar enkele technische verbeteringen. 

 

Daarnaast maakt EN ISO 17025:1999[9], – die de algemene eisen ten aanzien van de bekwaamheid van 

test- en kalibratielaboratoria voorschrijft – de schatting, de meting en rapportering van onzekerheid op 

testresultaten verplichtend. 

 

Deze twee factoren, de vraag naar technische verbeteringen en de vereiste om onzekerheid te 

rapporteren, vormen de directe aanleiding voor deze doctoraalscriptie. 

 

Totnogtoe hebben slechts enkele auteurs over onzekerheid in relatie tot de SBI gepubliceerd, en dit 

zelfs in een ruimer kader van testtoestellen gebaseerd op de zuurstofdepletie techniek. De zwakke 

punten in het onderzoek tot dusver zijn dat: 

 niet alle relevante fenomenen in rekening genomen werden; 

 de schattingen op de onzekerheden van de componenten soms zeer arbitrair gekozen zijn; 

 het dynamische gedrag van het toestel niet of onvolledig in rekening gebracht werd; 

 covarianties tussen de verschillende meetcomponenten verwaarloosd werden; 

 onzekerheden gerelateerd aan de synchronisatie van data verwaarloosd werden. 

 

Voor zover bekend publiceerden enkel Axelsson et al. een studie ter bepaling van de meetonzekerheid 

op de HRR langs analytische weg voor de middelschalige SBI test. De auteurs onthielden zich om de 

onzekerheden te bepalen op de classificatieparameters FIGRA en THR600s die afgeleid worden uit 

HRR. 

Andere relevante publicaties komen van de hand van Bryant et al. en Enright et al. met de focus op 

grootschalige respectievelijk kleinschalige proefmethoden. 
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1.3. Gevolgde aanpak 
Deze doctoraalscriptie focust op vier onderzoeksdomeinen. 

1. De analyse van de rookgasconcentraties. 

2. Het massadebiet doorheen de rookgasbuizen. 

3. Dynamische aspecten van het SBI toestel. 

4. Onzekerheidsanalyse. 

 

De structuur van het werk wordt kort weergegeven in onderstaande flowchart. 

 

SBI
(Hfdst. 2)

Achtergrond
(Hfdst. 1)

SBI: Gebaseerd op
zuurstofdepletie

Gas analyse (GA)
(Hfdst. 3)

Massadebiet
(Hfdst. 4)

Optimalisatie GA ter
vermindering onzekerh.

Evaluatie bestaande
sonde

Invloed thermische
effecten

Ontwikkeling
nieuwe sonde

Dynamische aspecten
(Hfdst. 5)

Analyse onzekerheid
(Hfdst. 6)

Evaluatie Model +
Gebruik model ter

verbetering SBI (Hfdst. 7)

Conclusies
(Hfdst. 8)

 

Figuur 2. Algemene structuur 

 

Na de algemene schets over het ontstaan en het belang van de SBI in hoofdstuk 1, wordt in  

hoofdstuk 2 het meetprincipe uitgelegd en worden de belangrijkste berekeningsprocedures 

voorgesteld. 
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In hoofdstuk 3 ligt de focus op de gasanalyse. Deze omvat het hele pad van monstername tot analyse. 

Hoewel de algemene technieken hiervoor gekend zijn, heeft de auteur een geoptimaliseerd systeem 

samengesteld, gebaseerd op de zuurstofdepletietechniek, specifiek voor brandproeven. 

 

Hoofdstuk 4 behandelt de meting van het massadebiet en bevat een van de belangrijkste bijdragen van 

dit werk. Na evaluatie van bestaande verschildruksondes (gebruikt ter bepaling van de locale 

stromingssnelheid) werd een nieuwe performante sonde ontwikkeld die de tekortkomingen van de 

bestaande sondes wegwerkt. Bovendien werden voor zowel de nieuwe als de bestaande sondes de 

ijkfactor bepaald tezamen met de onzekerheid hierop. Dit alles resulteerde in twee artikels die eerder 

dit jaar aanvaard werden voor publicatie. 

Twee bijkomende artikels werden geschreven in samenwerking met twee collega’s van hetzelfde 

departement. In deze artikels ligt het hoofdaccent op de bepaling van de onzekerheid – gerelateerd aan 

thermische effecten – op de massadebietsmetingen in de SBI en op het verband tussen het veranderend 

snelheidsprofiel en een nieuw gedefinieerd effectief Reynoldsgetal. 

De artikels werden uitgestuurd voor recensie. 

 

Hoofdstuk 5 behandelt de dynamische aspecten van het test toestel en zijn instrumentarium. Verder 

wordt de vlakke glijdendgemiddelde filter – gebruikt om de HRR data te dempen alvorens FIGRA te 

berekenen – geëvalueerd en wordt een andere (Henderson) filter voorgesteld. 

Voorts wordt de vraag gesteld wat de gewenste bandbreedte is voor brandproeven en worden er drie 

alternatieven voorgesteld voor de huidige meetmethode. 

De behandelde aspecten zijn nieuw in het domein van reactie bij brand. 

 

In hoofdstuk 6 worden onzekerheden en gerelateerde aspecten in detail bekeken. De onzekerheid op 

de HRR en op de hiervan afgeleide classificatieparameters FIGRA en THR600s wordt bepaald. Het 

voorgestelde analytische model maakt gebruik van de onzekerheden op de samenstellende individuele 

componenten. Deze onzekerheden worden in een aansluitende sectie in detail besproken. 

Nieuw t.o.v. eerdere studies in dit domein is dat asymmetrische distributies gebruikt worden waar 

nodig, dat covarianties berekend worden, dat transiënte fenomenen beschouwd worden en dat 

onzekerheden op de synchronisatie van data in rekening gebracht worden. 

 

In hoofdstuk 7 wordt het model geëvalueerd op basis van de resultaten van een recent ringonderzoek 

op de SBI. Daarnaast worden de aanbevelingen uit hoofdstukken 5 en 6 geëvalueerd. 

 

In hoofdstuk 8 tenslotte, worden de bevindingen van deze doctoraalscriptie samengevat. 
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Annex A groepeert de 4 artikels uit hoofdstuk 4. Twee artikels werden aanvaard voor publicatie, de 

twee andere zijn onder recensie. 

 

Annex B groepeert tussenresultaten en andere belangrijke documenten leidend tot de resultaten 

vermeld in deze scriptie. 
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2 Meetprincipe en berekeningsprocedures 
 

Het meetprincipe waarop de SBI gebaseerd is, zuurstofdepletie, is gebaseerd op de vaststelling dat, in 

het algemeen, de verbrandingswaarde per eenheidsmassa verbruikte zuurstof nagenoeg constant is 

voor het gros van de materialen die typisch in een brand kunnen voorkomen (Huggett[52]). 

 

Kent men het massadebiet van de rookgassen evenals de concentratie van zuurstof in deze rookgassen, 

dan kan men hieruit het zuurstofverbruik gaan berekenen in functie van de tijd en dus het 

warmtevrijstellingsvermogen (HRR). Enkele correcties kunnen doorgevoerd worden indien ook nog 

de koolstofdioxide en eventueel de koolstofmonoxide concentraties gemeten worden. Eveneens dient 

de vochtigheid van de inkomende verbrandingslucht gekend te zijn. 

 

Het te testen proefmonster wordt op een trolley gemonteerd en onder een afzuigkap geplaatst. Hierna 

wordt de testsequentie gestart die er kort samengevat als volgt uitziet: 

 -60 s - 0 s: Registratie van pre-test condities; 

 0 s  - 120 s: Registratie van nultoestand-referentie en drift in afwezigheid van 

verbranding; 

 120 s - 300 s:  Registratie van 30kW-referentie en drift met primaire brander ontstoken; 

 300 s - 1560 s: Eigenlijke test met hoofdbrander (30 kW) ontstoken op 300 s; voorbrander 

wordt uitgeschakeld op 300 s; 

 Registratie van eindetest condities voor O2, CO2 en rookmeetsysteem. 

 

De belangrijkste signalen die gemeten worden met een bemonsteringsfrequentie van 1/3 Hz zijn: 

 het massadebiet propaan dat naar de brander stroomt [mg/s]; 

 de zuurstofconcentratie in de verbrandingsgassen [Vol%]; 

 de koolstofdioxideconcentratie in de verbrandingsgassen [Vol%]; 

 de koolstofmonoxideconcentratie in de verbrandingsgassen [Vol%] (optioneel); 

 het drukverschil over de bi-directionele sonde [Pa]; 

 de temperatuur ter hoogte van de bi-directionele sonde [K]; 

 de lichttransmissie doorheen de rookgassen [%]. 

 

De rookgassen worden afgezogen waarna er een massadebietsmeting gebeurt in de rookgasbuizen en 

er een staal genomen wordt van de rookgassen. Dit rookgasstaal wordt ontdaan van alle water en van 

alle componenten oplosbaar in water zoals HCl, HCN, etc. Daarna wordt de zuurstof en 

koolstofdioxide concentratie bepaald (Figuur 3). 
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Figuur 3. Schematische voorstelling van het werkingsprincipe van de zuurstofdepletietechniek 
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Air (N2, O2, CO2, H2O) 

 

Uit deze data wordt dan het HRR berekend in het verloop van de tijd. Eenmaal de test is afgerond, 

wordt de bijdrage van de brander tot de warmteproductie afgetrokken van de totale warmtevrijstelling. 

Dit gebeurt op basis van de referentieperiode van 150 s tot 270 s wanneer enkel de primaire brander 

ontstoken is. 

De warmtevrijstelling door het materiaal wordt enerzijds geïntegreerd tot een totale warmteafgifte in 

de eerste 600 seconden van de test, THR600s, anderzijds gedempt met een vlakke glijdend gemiddelde 

filter alvorens FIGRA te berekenen. FIGRA staat voor Fire Growth Rate en wordt gedefinieerd als het 

maximum van de curve die ontstaat door de HRR-curve op ieder moment te delen door de verstreken 

tijd sinds de start van de thermische aanval. Er gelden enkele drempelwaarden waaronder FIGRA 

gelijk aan nul gesteld wordt. 

 
Figuur 4. Warmtevrijstelling en afgeleiden 
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3 Gasanalyse 
 

Gezien het belang van een correcte meting van het zuurstof en koolstofdioxide gehalte in de 

rookgassen, werd de gasanalyse – van monstername tot analyse – geoptimaliseerd door de auteur in 

nauwe samenwerking met Siemens België en Siemens Karlsruhe. 

 

Dit heeft uiteindelijk geleid tot een gasanalyse-eenheid die inzetbaar is voor alle testmethoden 

gebaseerd op het zuurstofdepletie principe. Enkele van de belangrijke verwezenlijkingen zijn: 

• het beperkt houden van de dode tijd (12 s) en respons tijd (3.5 s); 

• het combineren van een paramagnetische zuurstofanalyser en een koolstofdioxide en 

koolstofmonoxide analyser (IR-principe) in één enkele 19” behuizing; 

• het gebruik van omgevingslucht als referentiegas; 

• de automatisering van de gasanalysekast zodanig dat deze volledig softwarematig bestuurd 

kan worden; 

• het continu beschikbaar zijn van een diagnose van de analysekast; 

• ‘plug & play’ in een compacte behuizing op wielen en met hijsogen voor gemakkelijke 

inzetbaarheid. 

Figuur 5. Vóór en achterzijde (in een cone calorimeter eenheid) van een gasanalysekast 
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4 Massadebiet 

4.1. Introductie 
Hoofdstuk 4 bestaat uit een reeks van vier artikels. De eerste twee artikels werden reeds aanvaard voor 

publicatie. 

 

Alle artikels handelen over het massadebiet (van rookgassen) of een deelaspect hiervan. De eerste 

twee artikels handelen over een verschildruksonde die gebruikt wordt om de snelheid van de 

invallende stroming te meten. De volgende twee artikels gaan over de gevolgen van de thermische 

traagheid van de rookgasbuizen op het snelheidsprofiel en dichtheidsprofiel in de rookgaskanalen. 

 

4.2. Artikel 1 
Sette B.J.G.; Critical considerations on the use of a bi-directional probe in heat release 

measurements; Fire and Materials[59] 

 

Uit voor recensie: 5 October 2004 

Aanvaard voor publicatie: 21 December 2004 

 

Dit artikel evalueert de bi-directionele verschildruksondes die momenteel gebruikt worden in de SBI 

en andere brandtesten. De sonde gebruikt in de SBI verschilt hierin van de andere sondes, dat zij een 

positioneringstaaf aangemeten kreeg (Figuur 6.c). 

 

 

Figuur 6.  bi-directionele verschildruksondes 
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De introductie van deze positioneringstaaf heeft echter enorme gevolgen op het gedrag van de probe. 

De sonde wordt plots Reynoldsafhankelijk (Figuur 7/1.c) wat dus resulteert in een grote toename van 

de onzekerheid op de massadebietsmeting indien men de ijkfactor kp constant veronderstelt zoals in de 

SBI norm wordt voorgeschreven. 

 

 

 

 

 

 

 

 

Figuur 7. kp ijkfactor i.f.v. Re (95% confidentie interval) 
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Verder wordt het originele ontwerp (Figuur 6.a) geëvalueerd. De originele sonde mag dan wel 

Reynoldsonafhankelijk zijn in een zeer ruim gebied, haar hoekafhankelijkheid t.o.v. de stroming is 

niet te verwaarlozen (Figuur 8/1.a).  
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Figuur 8. Hoekafhankelijkheid (Re ≈ 10 000) 

 

Er wordt voorgesteld een nieuwe, verbeterde verschildruksonde te ontwikkelen die 

Reynoldsonafhankelijkheid combineert met een hoekonafhankelijkheid. 
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4.3. Artikel 2 
Sette B.J.G.; Development of a new Robust Velocity Pressure Probe for Heat Release Applications; 

Fire and Materials[60] 

 

Uit voor recensie: 1 Februari 2005 

Aanvaard voor publicatie: 30 Maart 2005 

 

 

Dit artikel bouwt voort op het voorgaande artikel en gaat op zoek naar alternatieven voor de bestaande 

bi-directionele sonde. Na evaluatie van een aantal mogelijke ontwerpen wordt het ontwerp van Figuur 

9.b weerhouden. Het betreft een hemisferische sonde die met haar open zijde stroomopwaarts gericht 

wordt. 

a
β

 (a) (b) 

Figuur 9.  a. bi-directionele sonde; b. Hemisferische sonde 

 

Zoals getoond in Figuur 10 blijft de ijkfactor van de hemisferische sonde met hemisferische inlaat 

(HSphere-Spher) nagenoeg constant in een gebied van Re = 5 000 tot 60 000. 
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Figuur 10. Ijkfactor voor de hemisferische sonde met sferische en met conische inlaat 

 

Bovendien vertoont de sonde een zéér grote ongevoeligheid voor hoekverdraaiingen t.o.v. de stroming 

in een bereik van ± 20°. 
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Figuur 11.  Hoekafhankelijkheid ijkfactor voor sferische en conische inlaat 
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4.4. Artikel 3 
Sette, B., Theuns E., Merci B., Temperature effects on the mass flow rate in the SBI and similar Heat 

Release Rate Test Equipment, Fire and Materials[61] 

 

Uit voor recensie: 7 December 2004 

 

 

Aan de hand van een snelheids- en temperatuursmeting op de as van de rookgasbuizen wordt het 

massadebiet van de rookgassen bepaald op basis van het snelheidsprofiel over de buissectie. Door de 

sterke temperatuursverandering over het verloop van een test en door thermische traagheid van de 

rookgasbuizen zullen zowel het snelheidsprofiel als de densiteit van de rookgassen over de buissectie 

variëren in functie van de tijd en temperatuur (Figuur 13). 

 

 

 

 

 

 

 

 

 

    0 ∆t 2.∆t 

∆Tmax 

∆T 

t

Figuur 12. Variatie van de temperatuur van de inkomende stroming 

 

Langs numerische weg (CFD) wordt een schatting gemaakt van de fout die gemaakt wordt op de 

bepaling van het massadebiet. Dit gebeurt aan de hand van een aantal opgelegde 

temperatuursveranderingen aan de ingang van de buis (Figuur 12). De fout verschilt naargelang men 

werkt bij constant volumedebiet of constant massadebiet. 
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Figuur 13. Verandering van de dichtheid in de meetsectie i.f.v. de tijd. 

 

 

4.5. Artikel 4 
Merci B., Theuns E., Sette B., Vandevelde P.; Numerical Investigation of the Influence of Gas Heating 

and Cooling on the Velocity Profile Correction Factor in the SBI-Configuration; Fire and 

Materials[55] 

 

Uit voor recensie: 7 December 2004 

 

 

Artikel 4 sluit aan bij artikel 3 en merkt op dat er géén éénduidig verband meer is tussen het 

snelheidsprofiel en het Reynoldsgetal en dit door de sterke temperatuur- en densiteitveranderingen. 

 

Er wordt een effectief Reynoldsgetal gedefinieerd waarbij de viscositeitterm µ vervangen wordt door 

een effectieve viscositeit µeff = µ + µt. µt is hierbij de turbulente viscositeit. Door dit te doen wordt het 

éénduidig verband tussen het snelheidsprofiel en het effectieve Reynoldsgetal hersteld. 
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5 Dynamisch gedrag 

5.1. Bandbreedte 

In hoofdstuk 5 wordt het begrip bandbreedte ingevoerd, een begrip dat welbekend is in o.a. de 

elektronica en de procescontrole. De bandbreedte zoals in dit werk gebruikt, is per definitie die 

frequentie waaronder een ingangssignaal zo goed als onvervormd doorgelaten wordt zowel in 

amplitude als in fase. Signalen die door een systeem gestuurd worden waarvan de bandbreedte lager is 

dan deze van de signalen, worden uitgesmeerd over de tijd. 

 

In voorafgaande studies werd het dynamische gedrag van het testtoestel en van de meetinstrumenten 

steeds achterwege gelaten. Ofwel lag de focus van de onderzoekers op het zoveel mogelijk verkleinen 

van de responstijden. Deze doctoraalscriptie toont aan dat deze maatregelen ontoereikend zijn en dat 

dynamische aspecten in rekening dienen gebracht te worden. 

 

Hiertoe wordt eerst de bandbreedte bepaald van de verschillende meetinstrumenten evenals van het 

data-acquisitiesysteem en van de massadebietregelaar voor het sturen van de branders. Bijkomend 

wordt de bandbreedte bepaald van de parameteriseerbare filters die aanwezig zijn op sommige van de 

meetinstrumenten. Vermits weinig informatie beschikbaar wordt gesteld door de producent, is het 

vermoedelijke gedrag van de filters gesimuleerd via convolutie. 
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 τ (s) BW (Hz) dode tijd (s) 

Ingangsignaal    

MFC (mg/s) 4 0.25  

    

Uitgangsignaal    

O2 (Vol%) 3.5 0.29 12 

CO2 (Vol%) 3.5 0.29 12 

∆p (Pa) 0.5 2 3 

Tgas (°C) 1.15 0.87 3 

Twall (°C) 220 

1200 

0.0045 

0.0008 

9 

    

Data acquisitie    

DAQ  22  

    

Elektronische 

demping 

   

t90% = 0,5 0.22 0.7  

t90% = 1 0.43 0.3  

t90% = 3 1.30 0.1  

t90% = 5 2.17 0.07  

t90% = 10 4.34 0.03  

Tabel 1. Overzichtstabel bandbreedtes 

 

 

5.2. Filters 

Een veel voorkomend filtertype is de exponentiële filter. Deze filter wordt onder andere gebruikt in de 

gasanalyseapparatuur en de verschildrukopnemer. Uitzetten van de filterkarakteristieken leert ons 

echter dat deze filter frequenties tot ver beneden de bandbreedte beroert. Exponentiële filters hebben 

dus met andere woorden geen steile filterkarakteristiek. 
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Figuur 14. Versterking bij exponentiële filters 

 

 

Verder wordt onderzocht hoe door het combineren van verschillende filters, de bandbreedte van de 

verschillende meetcomponenten zoveel als mogelijk gelijkgetrokken kan worden. 

 

Ook wordt de glijdend gemiddelde filter geëvalueerd. Deze filter wordt toegepast op de HRR data 

alvorens FIGRA te berekenen en dit om zoveel als mogelijk ruis te onderdrukken. Deze ‘vlakke’ filter 

vertoont echter zwakke filterkarakteristieken en een ander type filter dringt zich op. 

 

Er wordt een beroep gedaan op een in het vakgebied van de economie veel gebruikte glijdende filter 

die werkt op basis van gewogen gemiddelden. De wegingscoëfficiënten worden zo gekozen dat ze 

voldoende variatie overlaten om een derdegraadspolynoom te reconstrueren. De besproken filters zijn 

Henderson filters van verschillende orde. De orde stemt overeen met het aantal termen dat men nodig 

heeft in de berekening. Henderson filters met 9, 11, 13, 23 en 111 termen worden besproken en 

vergeleken met de vlakke filter zoals actueel gebruikt in de SBI. 

 

 S bias variance LMSE 1/fc 

S11 0.020 0.50 0.10 0.35 22.8 ts 

H9 0.068 -0.10 0.28 0.29 7 ts 

H11 0.022 -0.04 0.24 0.24 8.4 ts 

H13 0.008 0.04 0.20 0.20 9.8 ts 

H23 0.001 0.33 0.12 0.23 16.3 ts 

Tabel 2. Vergelijk van verschillende glijdende filters 
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waarbij: 

 S een maat is voor de demping; 

 bias een maat is voor de lokale fout die gemaakt wordt; 

 variance een maat is voor de lokale variantie; 

 LMSE de mate aangeeft waarin de locale wegingscoëfficiënten doorwegen op de berekende 

waarde of niet. 

 

Verder wordt de mogelijkheid besproken om de filter tweemaal toe te passen, dit om 

faseverschuivingen te voorkomen. Ten dien einde dient het tijdsverloop van de data, na de eerste 

filterdoorgang, omgedraaid te worden zodat het laatste punt het eerste wordt enzoverder. Na de tweede 

filterdoorgang krijgt de data weer zijn juiste chronologische volgorde.  

 

H(z)
F(z)

H(z)time
reverse

time
reverse

F(z)H(z) F(1/z)H(1/z) F(1/z)H(1/z)H(z) F(z)H(z)H(1/z)

 

Uiteindelijk wordt er voor de filtering van de SBI data (ts = 3 s) gekozen voor een Henderson filter met 

11 termen die tweemaal toegepast wordt (H11 ZP) om faseverschuivingen te vermijden. 
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Figuur 15. Versterking voor de H13, H13ZP en H11 ZP filters @ ts = 3 s 

 

Bij het verkleinen van de bemonsteringsperiode tot ts = 0.1 s wordt er geopteerd voor een Henderson 

filter met 111 termen (H111 ZP). 

 

De keuze van de filters heeft te maken met de gewenste doorlaatfrequentie. Bij een 

bemonsteringsperiode van ts = 3 s verkiezen we de laagdoorlaatfilter zo te kiezen dat de 
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doorlaatfrequentie rond 1/30 Hz ligt. Hierbij de vuistregel indachtig dat men best minstens tien maal 

sneller bemonstert dan de hoogst beoogde frequentie die men tracht te capteren. 

 

Bij een bemonsteringsperiode van ts = 0.1 s wordt gekozen de doorlaatfrequentie rond 1/10 Hz te 

leggen. De idee hierachter is dat gebeurtenissen met een periodiciteit die lager liggen dan 10 s niet 

relevant zijn voor de beoordeling van materialen op hun brandgedrag in de SBI test. 

 

Filter 1/fc 

H13 9.8 ts 

H11 zero phase 10.2 ts 

H13 zero phase 11.9 ts 

H111 zero phase 90 ts 

Tabel 3. Doorlaatfrequenties 

 

Teneinde frequentiespiegeling (aliasing) te vermijden wordt voorgesteld een analoge Butterworth filter 

met een doorlaatfrequentie van 1 Hz toe te passen op de inkomende signalen. Frequentiespiegeling is 

het fenomeen dat frequenties boven de halve bemonsteringsfrequentie worden weergegeven als lagere 

frequenties. 
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Figuur 16. Voorbeeld van frequentiespiegeling 

 

Er wordt geopteerd voor een Butterworth filter vermits deze een vlakke versterking heeft van 1 ( = 

ongewijzigd) onder de doorlaatfrequentie en een steile val kent voor frequenties boven de 

doorlaatfrequentie. 
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5.3. Voorgestelde wijzigingen 

Vermits verschillende meetinstrumenten verschillende tijdsconstanten hebben en vermits tussen 

laboratoria onderling eveneens grote verschillen van het dynamisch gedrag der meetinstrumenten 

kunnen voorkomen, worden drie mogelijke pistes tot wijziging van de standaard voorgesteld. 

De focus ligt hierbij op het gelijktrekken van de bandbreedtes van de meetinstrumenten en dit over alle 

testlaboratoria heen. 

 

voorgestelde veranderingen benaderde bandbreedte BW filter 

voorstel 1 1 / 30 Hz H11 ZP @ ts = 3 s 

voorstel 2 1 / 10 Hz H111 ZP @ ts = 0.1 s 

voorstel 3 1 Hz inverse filter 

Tabel 4. benaderde bandbreedte BW van drie mogelijk veranderingspistes 

 

Een eerste optie bestaat hierin de bandbreedte te beperken tot 1/30 Hz. 

Kort samengevat wordt hiervoor als volgt tewerk gegaan. 

 Digitale en/of analoge filters trekken de tijdsconstante van de tijdsveranderlijke 

meetcomponenten op tot een zeker niveau τ dat gelijk is voor alle meetcomponenten. τ is 

hierbij groter dan de individuele tijdsconstanten doch zo klein mogelijk. 

 Een H11 ZP filter wordt toegepast op alle data ( de SBI ‘running average filter’ wordt 

achterwege gelaten). 

 Data worden gesynchroniseerd gebruik makende van de maximalisatie van de Pearson 

correlatie coëfficiënt. 

 

Deze maatregelen leiden tot meer dan bevredigende resultaten doch ten koste van het verlies van enige 

bandbreedte. Bij wijze van voorbeeld geven de volgende twee grafieken data voor en na de 

behandeling weer. 
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Figuur 17. identieke data doorheen systemen met verschillende tijdsconstanten τ1 = 0.5 s, τ2 = 3 s, τ3 = 5.5 s 
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Figuur 18. Data na behandeling en beperking van de bandbreedte tot 1/30 Hz 

 

 

Een tweede optie bestaat erin de bandbreedte te beperken tot 1/10 Hz. 

Kort samengevat wordt hiervoor als volgt tewerk gegaan: 

 Alle demping op de meetinstrumenten wordt uitgeschakeld. 

 Er wordt een analoge Butterworth filter toegepast met doorlaatfrequentie van 1 Hz op de 

inkomende data. 

 De bemonsteringsfrequentie wordt opgetrokken tot 10 Hz. 

 Er wordt een H111 ZP filter toegepast op alle data. Hierbij worden alle data met frequentie 

boven 1/10 Hz weggefilterd. 

 

Onderstaand voorbeeld laat zien hoe deze maatregelen de data kunnen verbeteren. Hierbij wordt ook 

een vergelijk gemaakt met een veelgebruikte exponentiële filter. 
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Figuur 19. Originele data, gefilterde data (H111 ZP and EXP6s ZP) en bemonsterde data (ts=3s) 

 

 

Een derde optie bestaat eruit de bandbreedte op te drijven tot 1 Hz. Vermits de bandbreedte van de 

gasanalysatoren lager is, dienen inverse filters toegepast te worden. 

 

De techniek kan kort als volgt geschetst worden. 
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Figuur 20. Principe van een ideale inverse filter 

 

Het grootste probleem echter bij het toepassen van deze techniek is de aanwezigheid van ruis. 

 

 

Uiteindelijk wordt er gekozen voor optie twee vermits: deze ons garandeert dat frequentiespiegeling 

niet optreedt, deze in staat is fenomenen met een periodiciteit van 10 s te capteren, deze een betere 

demping en synchronisatie van de data toelaat met als resultaat een betere herhaalbaarheid en 

reproduceerbaarheid van de testmethode. 
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Tenslotte wordt er nog een alternatieve techniek voorgesteld voor het synchroniseren van data. Deze 

maakt gebruik van de maximalisatie van de Pearson correlatiecoëfficiënt. Onderstaande figuur geeft 

de Pearson coëfficiënt weer in functie van de tijdsverschuiving van de O2-data en de CO2-data. 
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Figuur 21. Synchronisatie van data d.m.v. maximalisatie van de Pearson coëfficiënt 
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6 Onzekerheid 
 

Overeenkomstig EN ISO 17025[9], Algemene vereisten omtrent de competenties van test- en 

kalibratielaboratoria, en ISO 10012-1[14], omtrent het verzekeren van de kwaliteit van 

meetapparatuur, dienen onzekerheden op de metingen opgenomen te worden in zowel de test als 

kalibratierapporten. De algemene principes voor het evalueren en het rapporteren van onzekerheden 

worden beschreven in de Richtlijn tot het bepalen van onzekerheden op metingen, GUM[13], maar 

dienen geïnterpreteerd en toegepast te worden op brandtesten. 

 

Het kwalitatieve concept van echtheid (accuracy) wordt gekwantificeerd door de onzekerheid 

(uncertainty). Beiden zijn invers proportioneel met elkaar. Echtheid omhelst zowel juistheid (trueness) 

als betrouwbaarheid (precision) zoals getoond op onderstaande figuur. De juistheid wordt numeriek 

weergegeven door de systematische fout (bias) terwijl de betrouwbaarheid voorgesteld wordt door de 

standaard afwijking (standard deviation). 

 

Er wordt van de laboratoria verwacht dat men systematische fouten uitschakelt. Echter, indien de 

systematische fout niet gekwantificeerd kan worden, mag ze beschouwd worden als een willekeurige 

(random) fout. Random fouten resulteren in een spreiding van de waarden en kunnen meestal 

verkleind worden door het aantal observaties te verhogen. De verwachte waarde voor random fouten is 

nul. 
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Figuur 22. Concept van echtheid (onzekerheid), juistheid en betrouwbaarheid 

 

 

Volgens de GUM dient ieder rapport omtrent onzekerheid een volledige lijst te bevatten van de 

componenten die gebruikt werden om tot de onzekerheid te komen. De componenten worden veelal in 

twee categorieën onderverdeeld naargelang de wijze waarop ze geëvalueerd worden: 

 

Type A  De componenten in categorie A worden gekarakteriseerd door de geschatte 

varianties si² of door de geschatte standaard afwijking si en dit gebruik 

makende van statistische methoden.     

  Voor dergelijke componenten wordt de standaard onzekerheid ui = si. 

 

Type B  De componenten in categorie B worden geschat op basis van specificaties, 

kalibraties, literatuur, ervaring, etc. en worden voorgesteld door uj. De 

numerieke waarde wordt bekomen door middel van een onderstelde 

probabiliteitsdistributie. 
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Waar nodig dienen ook covarianties in beschouwing genomen te worden. 

 

De distributies beschouwd in deze doctoraalscriptie zijn de normale distributie, de rechthoekige 

distributie en de triangulaire distributie. Verder worden er ook asymmetrische distributies beschouwd, 

waarvan hieronder een voorbeeld is gegeven. 

 

 

ba c µ

bias P(x) 
 

 

 

 

 

Figuur 23. Asymmetrische triangulaire distributie 

 

Voor asymmetrische distributies wordt het verschil tussen de gemiddelde waarde µ en c beschouwd 

als een systematische fout. Overeenkomstig GUM wordt hiervoor dus gecorrigeerd. 

 

 

In deze doctoraalscriptie worden covarianties tussen de signalen van de zuurstofanalyse, 

koolstofdioxide analyse, verschildrukopnemer en thermokoppels in rekening gebracht. De 

wenselijkheid hiervoor kan eenvoudig ingezien worden door het beschouwen van volgend voorbeeld: 

 

 , [ 6.1 ] OHCOOHC 22283 435 +→+

 

Bij verbranding van propaan wordt voor ieder molair volume verbruikte zuurstof, 3/5 mol 

koolstofdioxide geproduceerd. Er bestaat in voorgaand geval dus een perfecte negatieve correlatie 

tussen deze twee. Ook zal door de verbranding de temperatuur stijgen en de volumestroom verhogen 

(bij constant massadebiet) wat resulteert in een negatieve correlatie tussen zuurstof en temperatuur 

enerzijds en tussen zuurstof en verschildruk anderzijds. Onderstaande tabel geeft de 

correlatiecoëfficiënten weer voor een brandtest op een vezelplaat. 

 - 37 -



Correlations

1 -.996** -.985** -.912**
. .000 .000 .000

16676 16676 16676 16676
-.996** 1 .985** .912**
.000 . .000 .000

16676 16676 16676 16676
-.985** .985** 1 .930**
.000 .000 . .000

16676 16676 16676 16676
-.912** .912** .930** 1
.000 .000 .000 .

16676 16676 16676 16676

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

O2-raw

CO2-raw

Tms-raw

dp-raw

O2-raw CO2-raw Tms-raw dp-raw

Correlation is significant at the 0.01 level (2-tailed).**. 

Tabel 5. Correlaties tussen XO2, XCO2, Tms en ∆p voor een test op een vezelplaat 

 

 

Indien niet kan gecorrigeerd worden voor systematische fouten bijvoorbeeld omwille van 

achterwaartse compatibiliteit van testdata, kan men het onzekerheidinterval uitbreiden. Over hoe 

dergelijke gevallen behandeld dienen te worden, blijft de GUM in gebreke. Er wordt voorgesteld de 

techniek voorgesteld door Phillips et al[58] te volgen omwille van zijn conservatieve benadering. Deze 

methode telt de systematische fout op bij de geëxpandeerde onzekerheid U tenzij de systematische 

fout groter is: 
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De gecombineerde standaard onzekerheid wordt dan uitgewerkt voor HRR evenals de hiervan 

afgeleide classificatieparameters. Dit vereist een cascade van onzekerheidsbepalingen die eindigt bij 

de samenstellende componenten. 
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Een uitgebreide studie werd gedaan ter bepaling van de onzekerheid van de samenstellende 

componenten. Dit resulteerde, naast een schatting van de onzekerheid van de verschillende 

componenten, in een reeks van vier artikels zoals weergegeven in hoofdstuk 4. 

 

Nieuw in deze doctoraalscriptie was het in rekening brengen van covarianties, het in rekening brengen 

van transiënte fenomenen en het in rekening brengen van de onzekerheid op de synchronisatie van 

data. 

 

Verder worden de onzekerheden bepaald in functie van de tijd vermits ze vaak afhankelijk zijn van de 

hoeveelheid warmte die wordt vrijgesteld. 

 

Voorts worden er verschillende suggesties gegeven tot verbetering van de onzekerheid op de 

verschillende individuele componenten: 

 Door gebruik te maken van een RTD weerstand ter bepaling van de omgevingstemperatuur 

i.p.v. een thermokoppel, kan de onzekerheid op de temperatuursbepaling teruggedrongen 

worden met een factor 10. 

 Door een parameter (c) werkelijk te gaan berekenen i.p.v. haar constant te onderstellen kan 

een winst geboekt worden op de onzekerheid van een factor 10 of meer. De geboekte winst is 

afhankelijk van omgevingsvoorwaarden zoals druk, temperatuur en vochtigheid. 

 Door roetaanslag en thermische vervormingen kan er een systematische fout optreden bij het 

bepalen van de doorsnede van de rookgasbuizen. Er wordt voorgesteld deze systematische 

fout te elimineren. 

 Een sterke vermindering van de onzekerheid op de verschildruksondefactor kan verkregen 

worden door een wijziging aan het bestaande ontwerp. Twee voorstellen worden hier 

geformuleerd. Ofwel wordt er teruggegrepen naar een oudere versie van de sonde, ofwel – en 

dit geniet de voorkeur – wordt de sonde vervangen door de nieuw ontwikkelde hemi-sferische 

sonde zoals beschreven in hoofdstuk 4. 

 Door gebruik te maken van afgeschermde thermokoppels in de rookgaskanalen kan een 

verbetering van om en bij de 30% gerealiseerd worden op de onzekerheid van deze 

temperatuursmeting. 
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7 Evaluatie en resultaten van het Analytisch Model 

7.1. Inleiding 

In dit hoofdstuk wordt alle informatie van de vorige hoofdstukken samengebracht in één analytisch 

onzekerheidsmodel. Het model omvat de cascade van alle onzekerheden. 

 

Vermits verschillende van de samenstellende onzekerheden direct of indirect afhankelijk zijn van de 

warmtevrijstelling in de test, is de globale onzekerheid functie van de tijd en dus niet te vatten in één 

enkel getal. In dit hoofdstuk wordt het model daarom toegepast op werkelijke test data. 

 

Vooreerst wordt het model geëvalueerd op basis van vergelijkingen met de resultaten van SBI RR2. 

Dit ringonderzoek is een alternatieve, onafhankelijke methode ter bepaling van de onzekerheid. De 

vergelijking gebeurt op basis van de herhaalbaarheidslimiet[15] van de classificatieparameters FIGRA 

en THR600s. 

 

Vervolgens wordt het model aangewend om de suggesties tot wijziging van de norm, zoals 

voorgesteld in hoofdstukken 5 en 6, te evalueren. 

 

7.2. Evaluatie van het Model 

Onderstaande tabel geeft de herhaalbaarheidslimiet r/m weer van drie producten zoals ze getest 

werden in het kader van SBI RR2. Negen laboratoria voerden in totaal 27 tests uit per product ter 

bepaling van de onderstaande waarden. 

 

 P1: Faced glass wool P2: MDF board P3: Plastisol coated steel 

 Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ)

SBI RR2 test resultaten van 9 laboratoria 

m (gemiddelde) 17 1.0 455 25 257 1.8 

r 9 0.2 31 1 41 0.3 

r/m 52 % 22 % 7 % 4 % 16 % 17 % 

Tabel 6. Herhaalbaarheidslimieten voor producten P1-P3 via ringonderzoek 

 

Vergelijken we dit met de herhaalbaarheidslimiet verkregen langs analytische weg zoals uiteengezet in 

deze doctoraalscriptie, dan bekomen we onderstaande tabel. Om de resultaten met elkaar te kunnen 
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vergelijken werden de onzekerheden tengevolge van transiënte fenomenen genegeerd evenals de 

systematische fouten zoals besproken in hoofdstuk 6. 

Dit maakt dat de verwachting is dat de herhaalbaarheidslimiet uit het ringonderzoek hoger zal zijn dan 

deze die volgt uit het analytische model. 

 

 P1: Faced glass wool P2: MDF board P3: Plastisol coated steel 

 Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ)

Analytisch model (onderstelling: glijdend gemiddelde op HRR reduceert onzekerheid) 

r/m (Sample 1) 36.8 % 14.3 % 5.5 % 1.4 % 12.6 % 12.2 % 

r/m (Sample 2) 79.6 % 34.4 % 5.9 % 1.7 % 12 % 10 % 

r/m (Sample 3) 33 % 14.8 % 5.5 % 1.4 % 16.5 % 13.3 % 

Analytisch model (onderstelling: glijdend gemiddelde op HRR reduceert onzekerheid niet) 

r/m (Sample 1) 120.3 % 15.1 % 17.4 % 1.6 % 48.6 % 13 % 

r/m (Sample 2) 259.2 % 35.4 % 18.1 % 1.7 % 39.2 % 10 % 

r/m (Sample 3) 108.9 % 15.8 % 16.3 % 1.4 % 51.6 % 13.3 

Tabel 7. Herhaalbaarheidslimieten voor producten P1-P3 via analytische modellering 

 

De herhaalbaarheidslimiet r/m zoals berekend door het model ligt in de lijn van de resultaten van het 

ringonderzoek. Over het algemeen is de herhaalbaarheidslimiet van het model iets lager dan van het 

ringonderzoek. Dit kan redelijkerwijs verklaard worden doordat enerzijds transiënte fenomenen 

verwaarloosd werden zoals hierboven kort besproken en anderzijds door de kwalitatief goede data van 

het Gentse testlaboratorium. De brandafdeling van de Universiteit Gent heeft steeds een 

voortrekkersrol gespeeld in de ontwikkeling en verbetering van op zuurstofdepletie gebaseerde 

testtoestellen. 

 

Deze resultaten suggereren dat het analytische model gebruikt kan worden ter schatting van het 

onzekerheidsinterval bij routinematige testen. Merk hierbij op dat het model voor iedere individuele 

test een onzekerheidsanalyse kan uitvoeren, dit in tegenstelling tot het grootschalige ringonderzoek dat 

een groot aantal laboratoria en tests vereist. 

Bijkomend dient er opgemerkt te worden dat er een zeer grote spreiding is op de resultaten, bekomen 

uit het ringonderzoek bij het testen van verschillende materialen. Dit wordt weergegeven in 

onderstaande tabel die overgenomen werd uit het SBI RR2 project. 
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 FIGRA0,2MJ FIGRA0,4MJ THR600s 

Aantal producten 9 9 9 

Bereik r /m 

Gemiddelde r /m 

7 - 70 % 

32 % 

7 - 93 % 

38 % 

4 – 35 % 

23 % 

Aantal producten * 5 4 2 

Bereik r /m * 

Gemiddelde r /m * 

7 – 29 % 

16 % 

7 – 35 % 

20 % 

4 – 27 % 

16 % 
*: producten met een zeer lage gemiddelde waarden – die minder relevant zijn voor de classificatie – werden uitgesloten 

Tabel 8. Herhaalbaarheidslimieten uit het ringonderzoek SBI RR2 

 

7.3. Gebruik van het model ter verbetering van de testmethode 

In deze sectie worden zes cases besproken die gaan van zéér conservatieve benaderingen ter bepaling 

van de meetonzekerheid, tot geoptimaliseerde meet- en berekenmethoden ter verbetering van de 

meetonzekerheid. 

 

Alle berekeningen werden uitgevoerd op eenzelfde gegevensset. 

 

Case 1 gaat uit van de meest conservatieve onderstellingen wat betreft de bepaling van de onzekerheid 

op transiënte fenomenen. De onzekerheid op de transiënt wordt vast verondersteld en wordt bepaald 

op basis van een ‘worst case scenario’. De standaard onzekerheid op de warmtevrijstelling bij 30 kW 

wordt geschat op 26%. Onderstaande figuur geeft de warmtevrijstelling in functie van de tijd tezamen 

met een 95% confidentialiteitsinterval. 
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Figuur 24. HRR curve met 95% confidentieinterval (k = 2) (case 1) 
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De grootste bijdrage tot de onzekerheid van om en bij de 22% wordt geleverd door de meting van het 

zuurstofgehalte in de rookgassen. 

 

De tweede grootste bijdrage wordt geleverd door de verschildruksonde. 

 

 

Case 2 bekijkt de onzekerheid indien een aantal vrij eenvoudig te implementeren verbeteringen 

aangebracht zouden worden. 

 Door gebruik te maken van een RTD weerstand ter bepaling van de omgevingstemperatuur 

i.p.v. een thermokoppel kan de onzekerheid op de temperatuursbepaling terug gedrongen 

worden met een factor 10. 

 Door een parameter (c) werkelijk te gaan berekenen i.p.v. van haar constant te houden kan een 

winst geboekt worden op de onzekerheid van een factor 10 of meer. De geboekte winst is 

afhankelijk van omgevingsvoorwaarden zoals druk, temperatuur en vochtigheid. 

 Door roetaanslag en thermische vervormingen kan er een systematische fout optreden bij het 

bepalen van de doorsnede van de rookgasbuizen. Er wordt voorgesteld deze systematische 

fout te elimineren. 

 Een sterke vermindering van de onzekerheid op de verschildruksondefactor kan verkregen 

worden door een wijziging aan het bestaande ontwerp. Twee voorstellen worden hier 

geformuleerd. Ofwel wordt er teruggegrepen naar een oudere versie van de sonde, ofwel – en 

dit geniet de voorkeur – wordt de sonde vervangen door de nieuw ontwikkelde hemi-sferische 

sonde zoals beschreven in hoofdstuk 4. 

 Door gebruik te maken van afgeschermde thermokoppels in de rookgaskanalen kan een 

verbetering van om en bij de 30% gerealiseerd worden op de onzekerheid van deze 

temperatuursmeting. 

 

De bijdrage tot de onzekerheid bij een niveau van 30 kW vermindert van 7.2% tot 3%. De meest 

efficiënte maatregelen hiertoe zijn in volgorde van belangrijkheid: 

 de vervanging van de bi-directionele verschildruksonde; 

 het berekenen van de constant onderstelde parameter ‘c’; 

 het elimineren van de systematische fout op de sectiebepaling van de rookgasleiding; 

 het gebruik van een RTD weerstand ter bepaling van de omgevingstemperatuur; 

 het gebruik van afgeschermde thermokoppels in de rookgaskanalen. 

 

Deze laatste maatregel heeft slechts een verwaarloosbaar effect en kan zodoende achterwege gelaten 

worden. 
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Cases 3 en 4 voeren de voorgestelde veranderingen ter beperking van de bandbreedte door zoals 

besproken in hoofdstuk 5. Case 3 behandelt het geval waarbij de bandbreedte beperkt wordt tot  

1/30 Hz, terwijl Case 4 het geval behandelt waarbij de bandbreedte beperkt wordt tot 1/10 Hz. 

 

In beide gevallen vermindert de bijdrage tot de onzekerheid van de depletiefactor bij een niveau van 

30 kW van 23% tot minder dan 2%. 

 

Het verschil tussen de twee cases zit niet zozeer in de reductie van de onzekerheid, doch in de 

verbetering van de kwaliteit van de meting en dit in: 

 de verhoging van de bandbreedte (de verhoging van de bandbreedte van 1/30 Hz tot 1/10 Hz 

heeft tot gevolg dat er meer detail, meer variatie overblijft in de data zoals zichtbaar bij het 

vergelijken van de twee onderstaande figuren); 

 het volledig verwijderen van mogelijke frequentiespiegeling (frequentiespiegeling 

introduceert schijnbare variaties op de data die in werkelijkheid niet bestaan); 

 de betere mogelijkheden tot correct synchroniseren van de data. 

 

Vanuit het oogpunt van de meting worden met case 4 betere herhaalbaarheden en 

reproduceerbaarheden gehaald. 
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Figuur 25. HRR curve met 95% confidentie interval (k = 2) (case 3) 
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Figuur 26. HRR curve met 95% confidentie interval (k = 2) (case 4) 

 

Cases 5 en 6 combineren cases 3 respectievelijk 4 met de verandering voorgesteld in case 2. Dit 

resulteert voor case 6 tenslotte in een standaard onzekerheid van om en bij de 5% voor het 30 kW 

niveau i.p.v. de 26% voor case 1. 

 

Verder zakt de herhaalbaarheidslimiet r/m op FIGRA van 15 % naar 5.4 % en op THR600s van 4.2 % 

naar 1.4 %. 

 

Een en ander wordt weergegeven in onderstaande grafiek en tabellen. 
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Figuur 27. HRR curve met 95% confidentie interval (k = 2) (case 6) 
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top level 

(relevant voor HRR) 

sub-level 

(relevant voor Xi) 

bijdrage tot 

u(Xi) 

bijdrage tot 

u(HRR30kW) 

Grootheid Xi Grootheid xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%)

VD298 3.47372
c 0.71429
A 0.5646
kt 1.75234
kp 1.94444
∆p 0.76359
Tms 0.5179

φ  1.66269 
X O2 1.45348

X CO2 0.73567
X O2° 0.30545

X CO2° 0.16023
E  2.55814 

XD°
O2  0.10913 

X O2° 0.00348
H 0.03003

p bar 0.00092
T room 0.10486

α  0.08648 
standaard onzekerheid op HRR (exclusief crosscorrelaties) 4.22624
standaard onzekerheid op HRR (inclusief crosscorrelaties) 4.48484 

Tabel 9. Onzekerheidsanalyse bij HRR = 30kW (case 6) 

 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 517.4 19.7 19.7 3.8 % 3.8 % 5.4 %
THR600s (MJ) 27.14 0.26 0.26 1 % 1 % 1.4 % 
MARHE (kW) 49.48 0.6 0.6 1.2 % 1.2 % 1.7 % 

Tabel 10. Onzekerheidsanalyse op de classificatieparameters and MARHE value (k = 2) (case 6) 

 

 

Naast de onzekerheidsbepaling op de classificatieparameters FIGRA en THR600s werd er ook een 

onzekerheidsbepaling gedaan op de parameter MARHE. Hoewel MARHE noch vereist noch 

beschreven staat in de SBI norm werd de onzekerheid op deze parameter toch mee geschat vermits dit 

een wezenlijke bijdrage kan leveren in de gaande discussie of FIGRA al dan niet vervangen dient te 

worden door een andere parameter, eventueel MARHE. 

 

Louter en alleen gebaseerd op de onzekerheidsbepaling genieten de parameters MARHE en THR600s 

de voorkeur op FIGRA. Verder onderzoek in hoeverre MARHE correleert met resultaten uit het 
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grootschalige referentiescenario is echter noodzakelijk en weegt zwaarder door dan de merkelijk 

betere schatting van de onzekerheid. 
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8 Besluiten 
 

De SBI testmethode is ontwikkeld als resultaat van de tenuitvoerlegging van de 

Bouwproductenrichtlijn (CPD) 89/106/CE in Europa en wordt nu gebruikt om de reactie bij brand 

performantie van bouwproducten, exclusief bevloeringen, in de Europese Unie te beoordelen. 

 

De ontwikkeling van de SBI testmethode werd bevolen door de Europese Commissie en werd 

uitgevoerd onder directe begeleiding van de Groep van Regelgevers i.v.m. brandzaken. Een 

consortium van negen test laboratoria werd opgericht. Het doel was een testmethode te ontwikkelen 

waarvan de resultaten representatief zijn voor het gedrag van bouwproducten wanneer deze 

blootgesteld worden aan typisch één enkel brandend voorwerp, b.v. een brandende papiermand in de 

hoek van een kamer. 

 

Een grootschalig ringonderzoek toonde aan dat de SBI testmethode in staat is de vereiste 

brandkenmerken op een herhaalbare en reproduceerbare manier te bepalen en dit op een aanvaardbaar 

niveau. Er werd echter wel geëist dat er gezocht zou worden naar enkele technische verbeteringen. 

Daarnaast maakt de internationale norm EN ISO 17025:1999[9] die algemene eisen stelt ten aanzien 

van de bekwaamheid van test- en kalibratielaboratoria de rapportering van onzekerheid op 

testresultaten verplichtend. 

Deze twee factoren vormen de directe aanleiding voor deze doctoraalscriptie. 

 

Tot dusver werden slechts enkele studies uitgevoerd ter bepaling van de onzekerheid op testtoestellen 

gebaseerd op de zuurstofdepletie techniek. Deze studies vertonen bovendien een aantal zwakke 

punten. 

 

Deze doctoraalscriptie levert een significante bijdrage in de ontwikkeling van een methode ter 

bepaling van de onzekerheid in HRR metingen langs analytische weg. Het brengt de algemene 

aanbevelingen van de ‘ISO Guide to the Expression of Uncertainty in Measurement’ (GUM)[13] in 

uitvoering. 

De doctoraalscriptie schenkt aandacht aan dynamische effecten, covarianties, etc., effecten die 

voorheen verwaarloosd werden. Verder brengt deze studie fenomenen onder de aandacht zoals het 

effect van thermische inertie van de rookgaskanalen op het snelheids- en dichtheidsprofiel, evenals de 

Reynoldsafhankelijkheid van de SBI verschildruksonde en de hoekafhankelijkheid van alle sondes 

momenteel in gebruik in middel- en grootschalige brandtesten. 

 

Aansluitend op de deelname aan de ontwikkeling van de SBI en het daaropvolgende ringonderzoek, 

heeft de auteur het werk aangaande het onderhavige document aangevat. 
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Evaluatie van de SBI verschildruksonde 

Uit een gedetailleerde studie ter bepaling van de onzekerheden op de verschillende meetcomponenten, 

werd duidelijk dat de verschildruksonde ter bepaling van het volumedebiet in de rookgaskanalen 

Reynoldsafhankelijk is en dat de ijkfactor hoger is dan deze vermeld in de norm. De oorzaak hiervoor 

kon toegewezen worden aan de fixeerstaaf toegevoegd aan de originele sonde. 

 

De aanbeveling luidt ofwel de kalibratie in functie van het Reynoldsgetal op te nemen of de fixeerstaaf 

achterwege te laten. 

 

Evaluatie van de McCaffrey & Heskestad sonde 

De originele McCaffrey & Heskestad verschildruksonde heeft een ijkfactor die constant ondersteld 

kan worden voor Reynoldsgetallen boven 2 500. Dit stemt overeen met het maximale bereik dat 

praktisch gesproken verwacht kan worden in de ISO Room Corner test, de SBI test en vergelijkbare 

testen. Wanneer men metingen beoogt in een brandstadium voorbij vlamoverslag, dient men rekening 

te houden met de variabiliteit van de ijkfactor in functie van het Reynoldsgetal. 

 

Het grootste nadeel van de McCaffrey & Heskestad verschildruksonde is haar hoekafhankelijkheid. 

Hoekverdraaiingen ten opzichte van de as van de rookgasbuis leiden tot fouten in de orde van 2 tot 4% 

(2% bij 3°; 4% bij 5°). 

Deze eigenschap kan echter wel gebruikt worden om de sonde uit te lijnen en dit door te zoeken naar 

het locale minimum. 

 

Aan de hand van windtunnelexperimenten werd een ijkfactor van 1.046 gevonden voor een 

lengte/breedte verhouding van de sonde gelijk aan L/B = 2. De standaard onzekerheid hierop werd 

geschat op +0.009 en -0.011. Wijziging van de lengte/breedte verhouding vereist een herkalibratie van 

de sonde. 

 

Ontwikkeling van een hemisferische verschildruksonde 

Metingen in rookgassen zouden gebaat zijn met een geoptimaliseerde verschildruksonde waarbij 

speciaal gelet wordt op de hoekafhankelijkheid, echter zonder te raken aan de voordelen van de 

huidige sonde. 

Deze vaststelling was de aanleiding voor verder onderzoek. Het heeft uiteindelijk geleid tot de 

ontwikkeling van een nieuwe hemisferisch gevormde verschildruksonde die een grote ongevoeligheid 

vertoont voor hoekverdraaiingen en Reynoldsonafhankelijk is in een ruim bereik. 
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De ijkfactor van de sonde wordt geschat op 1.224 ± 0.008 voor Reynoldsgetallen in het bereik 5 000 

tot 60 000. Dit stemt overeen met een drukwinst van om en bij de 50 % ten opzichte van een Pitot-

static sonde. De sonde is ongevoelig voor hoekverdraaiingen in een bereik van minstens ±20°. 

Verder wordt er verwacht dat de sonde zich minstens even goed gedraagt in rookgassen als de huidige 

bi-directionele sonde. De eerste uitgevoerde experimenten zien er veelbelovend uit. 

 

Het gebruik van de hemisferische verschildruksonde is niet beperkt tot metingen in buizen noch tot 

brandproeven. Ze kan toegepast worden in een brede waaier van toepassingen waar relatieve 

snelheden van fluïda t.o.v. objecten dienen gemeten te worden. 

 

Introductie van het begrip ‘bluff-body blockage’ in brandproeven 

Wanneer stompe lichamen in een stroming geplaatst worden, zullen zij de stroomlijnen van de 

onverstoorde stroming wijzigen. In afgesloten kanalen is deze verstoring echter veel belangrijker dan 

men op het eerste gezicht zou vermoeden op basis van de verhouding van de doorsnede van het object 

tot de doorsnede van het kanaal. 

 

De ijkfactor kp dient daarom gecorrigeerd te worden wanneer de sonde gebruikt wordt in buizen met 

beperkte diameter. De toe te passen correctiefactor wordt besproken in secties 4.2 en 4.3 van het 

Engelstalige document. 

 

Effect van thermische inertie van de rookafvoerbuizen op de warmtevrijstelling 

De thermische tijdsconstante van de SBI rookafvoerbuizen is in de orde van 220 s. Dit leidt tot een 

onderschatting van het massadebiet dat voor plotse hoge warmtevloeden geschat wordt op 1.4% bij 

een toestel dat werkt bij constant massadebiet. In de onderstelling dat hier een triangulaire distributie 

van toepassing is, resulteert dit in een standaard onzekerheid van 0.6 %. 

Bij een toestel dat werkt bij constante volumestroom, reduceert de standaard onzekerheid tot 0.3 % in 

het geval van de SBI 

 

Analyse van de onzekerheid met inbegrip van de classificatieparameters 

In hoofdstuk 6 werd er een schatting gemaakt van de onzekerheid op de classificatieparameters 

FIGRA en THR600s, evenals van MARHE. Voor de berekeningen werden de richtlijnen van de ISO 

richtlijn ter bepaling van de onzekerheid bij metingen (GUM) gebruikt. 

 

Voor zover bekend is deze doctoraalscriptie de eerste studie die zichzelf niet beperkt tot het bepalen 

van de onzekerheid op het warmtevrijstellingsvermogen (HRR) doch eveneens aandacht schenkt aan 

de afgeleide parameters FIGRA en THR600s. 
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Behandeling van transiënte fenomenen, eliminatie van systematische fouten, etc. 

In tegenstelling tot eerdere studies worden hier asymmetrische distributies gebruikt waar nodig, 

worden er correlaties tussen de zuurstof, koolstofdioxide, verschildruk en temperatuursmetingen in 

rekening gebracht en wordt er een methode voorgesteld om systematische fouten te elimineren. 

 

Ook behandelt deze doctoraalscriptie voor het eerst de onzekerheid geassocieerd met transiënte 

fenomenen en met de synchronisatie van data. 

 

Gedetailleerde studie van de onzekerheid van de verschillende samenstellende componenten 

Er werd een gedetailleerde studie gemaakt van de onzekerheid van de verschillende samenstellende 

componenten van de globale onzekerheid. Deze studie omvat ondermeer: 

 een schatting van de verbrandingswaarde E voor pure substanties zoals propaan en n-heptaan; 

 een onzekerheidsbepaling op de zuurstof- en koolstofdioxide concentraties in functie van de 

warmteafgifte; 

 een onzekerheidsbepaling op de dwarsdoorsnede van de afvoerbuis voor rookgassen; 

 een onzekerheidsbepaling op de ijkfactor kp van de verschildruksensor; 

 een onzekerheidsbepaling op het snelheidprofiel gekarakteriseerd door de factor kt. 

 

 

Introductie van het concept ‘bandbreedte’ in brandproeven 

In hoofdstuk 5 wordt het concept bandbreedte ingevoerd. Hoewel dit begrip sterk aanwezig is in 

disciplines als elektronica en procescontrole is het nieuw in de context van brandproeven. De 

bandbreedte is per definitie die frequentie waaronder een ingangssignaal zo goed als onvervormd 

doorgelaten wordt zowel in amplitude als in fase. Signalen die door een systeem gestuurd worden 

waarvan de bandbreedte lager is dan de frequentie van de signalen, worden uitgesmeerd over de tijd. 

Het concept blijkt belangrijk. 

 

Piekwarmtevrijstellingen worden vaak gebruikt in regelgevingen betreffende brand. Deze piekwaarden 

zijn echter waardeloos zo zij niet vergezeld zijn van een verklaring i.v.m. de bandbreedte van het 

testtoestel. 

 

Ter illustratie werd de bandbreedte van het instrumentarium van het SBI testtoestel in het 

brandlaboratorium van de UGent bepaald. 

 

Hoe om te gaan met bandbreedte in brandproeven 
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Door verschillen in bandbreedte van instrumentaria in en tussen laboratoria kunnen meetresultaten 

sterk verschillen. Om dit probleem te verhelpen wordt er voorgesteld om de bandbreedte te beperken 

tot ofwel 1/30 Hz, ofwel 1/10 Hz. Een derde mogelijkheid behelst een verruiming van de bandbreedte 

tot 1 Hz doch dit vereist inverse filtertechnieken die zéér gevoelig zijn voor storende invloeden zoals 

ruis. 

Uiteindelijk wordt er gekozen voor de beperking van de bandbreedte tot 1/10 Hz. Dit garandeert dat 

frequentiespiegeling niet optreedt, dat fenomenen met een periodiciteit van 10 s gecapteerd worden en 

dat er een betere demping en synchronisatie van de data mogelijk is, met als resultaat een betere 

herhaalbaarheid en reproduceerbaarheid van de testmethode. 

 

Introductie van een alternatieve synchronisatiemethode 

Een alternatieve techniek voor het synchroniseren van data wordt voorgesteld. Deze techniek maakt 

gebruik van de maximalisatie van de Pearson correlatiecoëfficiënt. 

 

Introductie van een Henderson glijdend gemiddelde filter in brandproeven 

Vlakke glijdend gemiddelde filters zijn populair om data te dempen. Hoewel deze filters gemakkelijk 

in gebruik en eenvoudig te verstaan zijn, dempen zij niet alleen hogere storende frequenties, doch ook 

lagere waardevolle frequenties. Dit resulteert in een hoge lokale systematische fout en een zwakke 

lokale variantie. 

Er wordt een beroep gedaan op een in het vakgebied van de economie veel gebruikte glijdende filter 

die werkt op basis van gewogen gemiddelden. De wegingscoëfficiënten worden zo gekozen dat ze 

voldoende variatie overlaten om een derdegraadspolynoom te reconstrueren. De besproken filters zijn 

Henderson filters van verschillende orde. De orde stemt overeen met het aantal termen dat men nodig 

heeft in de berekening. Er wordt voorgesteld nulfase Henderson filters te gebruiken van orde 11 voor 

bemonsteringsfrequenties van 1/3 Hz en van orde 111 voor bemonsteringsfrequenties van 10 Hz. 

 

Ontwikkeling van een analytisch computermodel ter schatting van onzekerheden 

De theoretische beschouwingen uit hoofdstukken 5 en 6 werden geïmplementeerd in een computer 

model. Een eerste vergelijking van de resultaten van dit model met SBI RR2 data geeft aan dat dit 

model naar alle waarschijnlijkheid onzekerheden op een behoorlijke wijze schat. Schattingen kunnen 

gemaakt worden op de classificatieparameters FIGRA en THR600s en alle tussenliggende resultaten. 

 

Voorgestelde wijzigingen aan het data-acquisitiesysteem 

Er wordt voorgesteld de bemonsteringsfrequentie op te drijven van 1/3 Hz tot 10 Hz. De hoofdredenen 

zijn een verruiming van de bandbreedte en het vermijden van frequentiespiegeling. 

 

Andere voorgestelde veranderingen aan de testmethode 
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Naast een beperking van de bandbreedte tot een gelijk niveau voor alle laboratoria, zijn de meest 

efficiënte maatregelen voor de beperking van de onzekerheid, in volgorde van belangrijkheid: 

 de vervanging van de bi-directionele verschildruksonde; 

 het berekenen van de constant onderstelde parameter ‘c’; 

 het elimineren van de systematische fout op de sectiebepaling van de rookgasleiding; 

 het gebruik van een RTD weerstand ter bepaling van de omgevingstemperatuur; 

 

Voldaan aan de eisen van EN ISO 17025 

Deze doctoraalscriptie resulteerde in een analytisch model ter schatting van de onzekerheid op de 

metingen in het SBI testtoestel en dit op een volledige en betrouwbare manier in lijn met de eisen 

gesteld in EN ISO 17025. 

 

 

Een substantiële bijdrage werd geleverd in de ontwikkeling van een methode voor het berekenen 

van de betrouwbaarheid in testtoestellen gebaseerd op de zuurstofdepletietechniek . 

 

De bijdragen geleverd in dit werk zijn van belang en relevant voor al diegenen die actief zijn in 

het domein van brandproeven, fire engineering, kwaliteitscontrole en accreditatie. 

 

De bijdrage geleverd met het ontwikkelen van een nieuwe verschildruksonde is van belang en 

relevant voor al diegenen die werken met stromingen, snelheid van stromingen en dies meer en 

is niet beperkt tot brandtoepassingen. 
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List of Symbols and Abbreviations 

 

A cross sectional area exhaust duct [m²] 

c 4.222 298298 ≅ρT  [K.m³/kg]1/2 

y
xc  sensitivity coefficient of x with respect to y 

cp heat capacity [J/kg.K] 

D diameter [m] 

e error 

E heat of combustion per unit volume of oxygen (at 298 K) consumed [MJ/Nm³ O2] 

E’ heat of combustion per unit mass of oxygen consumed [MJ/kg O2] 

fs sampling frequency [Hz] 

F view factor [-] 

G(ω) gain function in the frequency domain [-] 

h convective heat transfer coefficient [W/m².K] 

∆hc heat of combustion [kJ/kg] 

H enthalpy [kJ/kg] 

Im{x} imaginary part of x 

j imaginary operator (j² = -1) 

k coverage factor [-] 

k thermal conductivity [W/m.K] 

kt velocity profile correction factor (relation between mean velocity and velocity on axis) [-] 

kp pressure probe factor [-] 

L length [m] 

£ Laplace operator 

m mean value 

m&  mass flow [kg/s] 

n or N number of samples 

Nu Nusselt number [-] 

O( ) order of 

p barometric pressure [Pa] 

P(x) probability function 

Pr Prandtl number [-] 

Q&  heat release rate [kW] 
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r repeatability limit 

r(xi,xj) Pearson correlation coefficient [-] 

Re Reynolds number [-] 

Re{x} real part of x 

s operator of the Laplace transform 

s estimated standard deviation 

s² estimated variance 

sr standard deviation estimates on repeatability 

sR standard deviation estimates on reproducibility 

t time [s] 

ts sampling interval [s] 

T temperature [K] 

u(x) standard uncertainty on x 

U expanded uncertainty 

v velocity [m/s] 

V volume [m³] 

298DV&  volume flow through the duct (298 K) [m³/s] 

wi weighing factor 

x  estimated mean value 

XO2 Concentration of, in this case O2, in the gas considered [Vol%] 
°D

OX 2  Initial oxygen concentration in the exhaust duct [Vol%] 

°A
OX 2  Initial oxygen concentration as measured by the analyser [Vol%] 

A
OX 2  Actual oxygen concentration as measured by the analyser [Vol%] 

z operator of the Z-transform 

 

 

Greek symbols 

α expansion factor 

δ bias 

∆ difference operator 

ε emissivity [-] 

µ mean value 

ν kinematic viscosity [m²/s] 

ρ density [kg/m³] 

σ standard deviation 
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σ² variance 

τ time constant [s] 

ϕ relative humidity [%] 

φ depletion factor 

Φ(ω) phase shift in the frequency domain 

ω circular frequency [rad/s] 

 

 

Subscripts 

A° initial analyser value 

atm atmosphere 

av average 

b bias 

c combined 

D° initial value measured in the duct 

eff effective 

f formation 

ms measuring section 

rect rectangular 

st.dev. standard deviation 

trap trapezoidal 

trian triangular 

 

 

Superscripts 

° initial 

l lower 

u upper 

 

 

List of abbreviations 

ABS Absolute 

ARHE Average Rate of Heat Emission 

BW Bandwidth 

CEN European Committee for Standardisation 

CPD Construction Products Directive; 89/106/CE 
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DAQ Data acquisition system 

DMM Digital Multi Meter 

EGOLF The European Group of Organisations for Fire testing, Inspection and Certification 

EN European Standard 

FIGRA Fire Growth Rate 
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Abstract 

In its aim to establish a ‘common market’ amongst its members for construction products, the 

European Union has established the Construction Products Directive (CPD) 89/106/CE. In this a new 

test and classification system EN 13501[1] for both Reaction to Fire and Resistance to Fire has been 

established. This EUROCLASSES system has become operational and results in the year 2002 in the 

first construction products carrying the CE-mark. With this CE-mark products are free to circulate 

within the European Union. 

 

In the field of reaction to fire an entirely new classification system based on six different test methods 

has been developed. Wherever possible or politically acceptable, existing ISO or national test methods 

have been used, however it was considered necessary to develop a new intermediate scale test method, 

the Single Burning Item (SBI) EN13823[2], named after the fire conditions it is expected to simulate. 

The SBI is the key method in the new classification system. 

 

The SBI generates dynamic fire data like Heat Release Rate and Smoke Production Rate which are 

considered essential for evaluating the reaction to fire performance of products. 

 

According to EN ISO 17025[9], General requirements for the competence of testing and calibration 

laboratories, and ISO 10012-1[14], Quality assurance requirements for measuring equipment, 

uncertainties are to be reported in both testing and calibration reports. The general principles for 

evaluating and reporting uncertainties are given in the Guide to the expression of uncertainty in 

measurement, GUM[13], but need to be interpreted and applied to the specific case of fire testing.  

 

Several authors have tried to quantify uncertainty associated with the calculation of Heat Release Rate 

and Smoke Production Rate[65][62][45][64] for heat release rate based test facilities. However, out of a 

review of all major round robins, Janssens[50] found that the results suggest that the uncertainty is 

much greater than the theoretically deduced values, in particular for intermediate and large-scale tests. 

Technical reasons for this discrepancy are investigated, changes are proposed to the model and SBI 

apparatus, and a time dependant analytical uncertainty model is developed. 

Furthermore, this work fills up the gaps left open by the GUM. 

 

Two round robin exercises, in which the author participated, have been organised in an international 

context and the data have been analysed, resulting in an experimentally determined uncertainty of the 

test method. The before mentioned analytical uncertainty model has been checked against the 

experimental data. 

 

 - 70 - 



 

A key element in the determination of the dynamic fire data is the accurate measurement of the 

volume flow of the combustion gases. To date the SBI uses a bi-directional low-velocity probe[65] for 

this purpose. This dissertation however demonstrates that the probe constitutes an essential component 

in the measurement uncertainty. 

A custom made pressure probe for measuring unidirectional flows in exhaust ducts has been 

developed which leads to better, more accurate, results with a lower uncertainty. 

 

Due to the dynamic nature of the parameters measured, the dynamics of the apparatus have a major 

effect on the end result. They have been investigated in dept and proposals are formulated how to deal 

with them. 

 

As an outcome of this work, recommendations are forwarded to CEN TC127 in order to modify the 

standard. This work has increased the insight in the SBI test method and other fire testing equipment 

using similar measuring techniques. It also provides a tool for EGOLF, the European Group of 

Organisations for Fire testing, Inspection and Certification, to deal with the problem of evaluating 

and reporting uncertainty in fire testing. 

 

 

Key words: reaction to fire, SBI, heat release rate, mass flow rate, flow velocity, pressure probe, 

uncertainty, dynamic behaviour 
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1 Introduction 

1.1. Brief outline of fire testing in Europe 

The SBI test method has been developed as a result of the implementation of the Construction 

Products Directive (CPD) 89/106/CE in Europe and is used now to assess the reaction to fire 

performance of construction products, excluding floorings, in the European Union.  

 

Through the use of harmonized technical specifications, thus removing technical barriers between 

Member States, the CPD  aims to create a single European market. It applies to all construction 

products that are produced for, or incorporated within, building and civil engineering construction 

works. It harmonises all the technical characteristics of construction products subject to regulatory 

controls as a basis for CE marking purposes. 

 

The CPD defines six Essential Requirements, from which one is the Safety in case of fire. While in 

other Directives the essential requirements are directed to the products themselves, the CPD relates to 

the essential requirements of the works. The link between the requirements of the works and the 

technical specifications for building products is established through the Interpretative Documents.  

One of the fire characteristics for construction products to assess is the reaction to fire performance. 

 

The CPD provides for a Standing Committee on Construction (SCC), which assists the European 

Commission in its implementation. The SCC members are representatives of the Member States. In 

general the SCC is a consulting body to the Commission, but for certain items indicated in the CPD it 

is a regulatory body. The SCC has set up a technical working group to assist in the interpretation of the 

Directive in fire safety related matters: the Fire Regulators Group (FRG), recently re-established and 

named Experts Group on Fire issues under the CPD (EGF).  

  

One of the characteristics for construction products to assess is the reaction to fire performance. This 

characteristic is present in the national regulations of all European member states and plays an 

important role in evaluating possible uses of building products. The philosophy for the European 

reaction to fire classification, the EUROCLASSES, was put in place in 1993 by the Fire Regulators 

Group. The classification system was based on the performance of products under different fire 

conditions: the attack of a small flame; exposure to a fully developed fire; and some level in between. 

Due to the nature of fire under the influence of gravity forces (hot gases tend to rise), two basic 

applications of products were distinguished: products applied on a floor and all other products. 
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All but one of the tests needed in this new classification system were known international standard test 

methods (ISO). One test method, including the apparatus, representing the scenario of a Single 

Burning Item - to test building products excluding floor coverings - had to be designed from scratch. 

The apparatus soon got called the SBI. 

 

The SBI test method, a medium scale test, was planned to assess or predict the fire performance of 

building products in a (real scale) room corner scenario. The ISO 9705 Room corner test[6], a full-scale 

test method evaluating the contribution to fire growth by surface products in a room, was put forward 

as the reference test for this scenario. The main development objective therefore was that the product 

ranking in the SBI would have a high correlation with the ranking obtained in the ISO Room corner 

test. The second development objective followed from the requirement that the method had to be 

capable of measuring the required characteristics in a repeatable and reproducible way. 

 

1.2. The reaction to fire classification system 

The basis for the European reaction to fire classification, the EUROCLASSES, was put in place in 

1993 by the Fire Regulators Group. The classification of building products excluding floorings is 

assessed using four test methods. Three classifications apply: a main classification related to heat 

production (classes A1, A2, B, C, D, E or F, where A1 represents the highest level (“no contribution to 

fire”) and F has no requirements or “no performance determined”), and additional classifications for 

smoke production (s1, s2 or s3, where s1 is the best, s3 has no requirements) and for flaming droplets 

and particles (d0, d1, d2, where d0 is the best, d2 has no requirements). The SBI test method is 

relevant for the main classes A2 up till and including D and the additional classes on smoke and 

droplets/particles in these classes. 

 

The fire characteristics evaluated in the SBI are: an index representing the Fire Growth Rate (FIGRA), 

the total heat released over the first 10 minutes (THR600s), a simple lateral flame spread to the end 

of the specimen (LFSedge),  an index representing the Smoke Growth Rate (SMOGRA), the total 

smoke produced over the first 10 minutes (TSP600s), and a parameter defining three levels of flaming 

droplets and particles (FDP). 

 

Due to differences in national regulatory needs the characteristics are combined in the three separate 

classifications mentioned earlier: a main, heat release based, classification, valid for all member states, 

a smoke production classification and a classification of falling flaming droplets and particles for only 

a part of the member states. 

The FIGRA and SMOGRA indices use threshold values for total heat release and smoke production 

below which they are set to zero by definition. This in order to eliminate some ambiguous and 

 - 73 - 



 

irrelevant results obtained with very small release rates in the first tens of seconds in the test. To 

further stabilise the classification system, different levels of thresholds were introduced for FIGRA in 

different classes, leading to FIGRA0,2MJ and FIGRA0,4MJ. 

 

A compilation of the SBI criteria in the various classes is given in Table 1. The sub classifications on 

smoke and droplets/particles are independent from the main classification. Other criteria from other 

tests apply, and this in function of the classification. 

 

Main classification Smoke classification Flaming droplets/particles 

classification 

A1 FIGRA0,2MJ  ≤ 20 W/s 

LFS < specimen edge 

THR600s ≤  4,0 MJ 

s1 & d0 

s1 SMOGRA ≤  30 m2/s2  

TSP600s      ≤  50 m2 

d0 No flaming droplets/part. 

 

A2 

& 

B 

FIGRA0,2MJ  ≤ 120 W/s 

LFS < specimen edge 

THR600s ≤  7,5 MJ 

 

s2 SMOGRA ≤ 180 m2/s2  

TSP600s      ≤  200 m2 

d1 No flaming droplets/part. 

persisting > 10 s 

C FIGRA0,4MJ  ≤ 250 W/s 

LFS < specimen edge 

THR600s ≤  15 MJ 

 

s3 No requirement d2 No requirement 

D FIGRA  ≤ 750 W/s 

 

    

  

Table 1. SBI criteria in the various classes 
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1.3. Development of the initial SBI test 

The SBI test simulates a single burning item in a corner of a room. The test apparatus is presented in 

Figure 1. The total exposed specimen surface area is 1,5 m x 1,5 m. The specimen consists of two 

parts (height 1,5 m, width 0,5 and 1,0 m) which form a right-angled corner. Possible corner joints as 

applied in end-use conditions form part of the product under test. A triangular shaped propane 

diffusion gas burner running at 30kW acts as heat and ignition source.  It is placed at the basis of the 

specimen corner. The performance of the specimen is evaluated during 20 minutes. There is a floor in 

the test configuration but no ceiling. Floor, specimen and burner are installed on a trolley that can be 

removed from the room for easy mounting of the specimens. The combustion gases are collected in a 

hood and transported through a duct. The duct contains a measurement section with a differential 

pressure probe, thermocouples, a gas sampling probe and a smoke measurement system, to measure 

heat and smoke release rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. SBI: test apparatus and typical specimen 
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The development of the SBI test method was ordered by the European Commission and carried out 

under direct guidance of the Fire Regulators Group. A consortium of seven, later nine, fire testing 

laboratories from an equal number of EU member states was formed in 1993 with the task to develop 

the method. The chairmanship was with professor Paul Vandevelde (UGent). The aim was to develop 

a test method that produces results representative for the behaviour of building products when exposed 

to typically one single burning object, e.g. a litter basket on fire, placed in the corner of a room. A 

specific incident irradiance level was specified by the Fire Regulators Group.  

 

Many design aspects were considered in the early stages, the aim of which it was to optimise the 

simulation of the specified scenario. The major ones being: the type of heat source, an open or closed 

test arrangement, the inclusion or not of a ceiling in the specimen arrangement. 

It was decided to use the oxygen depletion principle for the heat release rate measurement. The 

oxygen depletion measurement technique and accompanying instrumentation were based on the ISO 

9705 Room Corner and ISO 5660[4] Cone Calorimeter design. 

 

The successful finalisation of the project was of extraordinary political importance, because 

considered to be the major remaining obstacle for the application of the Construction Products 

Directive itself. The test method under development was therefore continuously thoroughly 

scrutinised, as well by the European Commission, ordering the development of the method, as well as 

by all parties seeing (commercial) advantages in postponing the Common Market for construction 

products. 

 

As a consequence, not only the design of the apparatus received much attention, but also the test, 

calibration and calculation procedures were examined and specified in great detail. Unlike the more 

global description of the calculations in many other fire test standards, the calculations were 

introduced in great detail to facilitate the writing of calculation software without (much) further 

technical understanding of the measurement techniques.  

 

After acceptance of the design and prototypes by the Fire Regulators Group, the Standing Committee 

on Fire and the European Commission, some twenty test apparatuses were build and installed all over 

Europe in just a few months to perform a large interlaboratory round robin project (SBI RR1). The 

round robin started in May 1997 with 20 laboratories, testing 30 building products in threefold. Fifteen 

laboratories managed to perform the tests in the required very tight time schedule. All 30 products 

were also tested in the full scale Room Corner reference scenario in order to find a good correlation 

with full scale fires. The result of the round robin was accepted by the Standing Committee in 

December 1997, as sufficient proof of the ability of the SBI test method to measure the required 
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characteristics in a repeatable and reproducible way, however under the condition of some further 

improvements.  

 

A further one year of development work resulted in improvements of the smoke measurement system, 

the velocity profile in the exhaust duct and the calculation and calibration procedures:  

• Smoke measurement system improvements concern practical aspects such as the prevention of 

soot deposit on the lenses; a reduction of vibration in the optical system; and simplification of 

the positioning of calibration filters. 

• The velocity profile in the exhaust duct at the pressure probe position derived essentially from 

the profile of a fully developed flow. Three changes were introduced to the exhaust duct: a 

shift of the guide vanes further away from the probe position, the introduction of a small 

orifice immediately behind the guide vanes and the introduction of 0,5 meter additional duct 

length. The result was a nearly flat profile approaching much better a fully developed flow. 

• Calculation procedures: two improvements were introduced:  

- Automatic synchronisation of gas analyses data: Since the measurement of the 

exhaust flow rate on the one hand and oxygen and carbon dioxide concentration 

on the other hand, needed to calculate the heat release, have different delay times, 

a synchronization is needed. A fully automated procedure was introduced to 

exclude human interpretation. 

- Introduction of a series of validity checks for all measurements, failure of which 

invalidates the test result. 

• Calibration procedures: all calibration procedures were reconsidered and more extensively 

specified; some new procedures were introduced.  

 

After five and a half years of development under direct guidance of the Fire Regulators Group and the 

European Commission, the draft method was handed over to CEN in spring 1999. There the method 

was transferred into a draft CEN standard without fundamental design changes.  

The SBI method was accepted in CEN as a European test method in the Autumn of 2001 and 

published in 2002 as EN 13823:2002[2], Reaction to fire tests for building products - Building products 

excluding floorings exposed to the thermal attack by a single burning item. 

The related classification standard EN 13501-1:2002[3], Fire classification of construction products 

and building elements – Part 1: Classification using test data from reaction to fire tests, was published 

in that same year. 

 

This test method is now referenced in already over 30 European product standards and implemented in 

the national regulations of nearly all European member states, including the new members. 
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1.4. Recent developments 

Since its introduction the SBI test has been used extensively in a large number of European fire test 

laboratories and considerable experience has been acquired. The European building sector is now 

working with the SBI test method to provide their products with a reaction to fire classification, and 

the particularities of the method have become increasingly apparent ever since.  

 

Several organisations have started to further examine the method. EGOLF, the European Group of 

Organisations for Fire testing, Inspection and Certification, has identified ambiguous and 

insufficiently defined (parts of) procedures and proposed common interpretations for them to 

harmonise the way of working with the method between its members. These proposals, 

“recommendations” in EGOLF, are not changes to, but only further detailed specifications or 

interpretations of the current standard. The Fire Sector Group of Notified Bodies (FSG)  works along 

the same lines to support the work of the notified laboratories. Both EGOLF and the FSG send 

requests for changes in EN 13823 to CEN TC127. This CEN committee has now just started the 

formal review of the method. An extensive list of potential work items has been drafted by TC127. 

Most purely technical issues which will not ‘change’ the test results have already been solved. Some 

remaining items however, might lead to more or less fundamental changes of the method. 

 

As major weakness of the method (e.g. in terms of repeatability and reproducibility) the importance of 

the mounting and fixing of specimens could be mentioned. However, this is a direct consequence of 

the CPD principle to test products in their end use application and to test specimen of considerable 

size where mechanical deformation behaviour plays an important role.  

Real weaknesses are recognized in issues like: 

• Fallen debris blocking the burner and/or closing the gas supply by blocking the visibility of 

the flames by the flame detector. The use of a grid to protect the burner only solves part of the 

problem; it will give no improvement for fluid debris. 

• The oxygen analyser is used at the border of its specifications. Regular calibrations, day-to-

day checks, good pre-measurement filtering and conditioning of the combustion gases and 

good maintenance are essential but do not solve all the problems here. 

• The verification of the thermal attack on the specimen is considered insufficient. Some think 

this could be improved using a heat flux measurement or by specifying a reference test on a 

reference material. But the actual proposals are not reliable enough to replace the actual 

propane gas supply specification.  

 

The remaining questions in relation to the method have lead to a joint initiative of EGOLF and 

CEPMC (Council of European Producers of Materials for Construction) to organise a second round 
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robin (SBI RR2) with financial support by the Commission. The round robin was formally set up “to 

verify the efficiency of the various modifications previously made to the test method and the test 

procedure after the first round robin in 1997 and to investigate any further remaining deficiencies”. 

The results were reported only recently[70] and can be summarized as follows: 

• The repeatability and reproducibility of the values used for classification (FIGRA0,2MJ, 

FIGRA0,4MJ, THR600s, SMOGRA and TSP600s), represented by the ratio of the standard 

deviation estimates (sr and sR) to the mean value of the parameters (m), are between 11% and 

20% for sr/m and between 21% and 34% for sR/m), when very low  mean values are excluded. 

General proof of improvement of the accuracy of the method in comparison to the first round 

robin could not be found. Only the reproducibility of the smoke measurements shows some 

improvement. 

• All laboratories show sufficient proof to measure heat release related data in an acceptable 

way; 90% of them do this acceptably for smoke production related data as well. It takes many 

laboratories however much longer than expected to comply with the calibration requirements. 

This creates concern about the abilities and level of training of the laboratories/operators. 

• Overall the current specified calibration procedure is able to evaluate a laboratory’s capability 

to measure heat release rate and smoke production rate in an accurate way. The procedure also 

helps to highlight problems and to locate them. The round robin shows that there is room for 

improvement of the calibration procedure and it is recommended to revise them. Furthermore 

it is recommended to further develop the calibration of the optical system and to make it 

normative.  

• The results of the visual observations indicate that the set of products used may be a poor 

discriminator to check the ability of the method to assess the visual observation related 

parameters. The results however already indicate that large differences in interpretation of 

visual observations do exist. 

 

The round robin clearly shows the benefit of having good calibration procedures, but only if the 

laboratory personnel knows how to act when criteria are not satisfied, i.e. if the operators fully 

understand the measuring technique. 

 

The eagerness of construction products industry and fire test laboratories to obtain information about 

the reliability of the test results is not the only drive for further research and development. 

Accreditation bodies are increasing the pressure on fire test laboratories to include well founded 

statements of measurement uncertainty in the test report. 

According to EN ISO 17025:1999[16], which sets out the general requirements for the competence of 

testing and calibration laboratories, and ISO 10012-1[14], which specifies the requirements for assuring 

the quality of measuring equipment, uncertainties are to be reported in both testing and calibration 
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reports. Accreditation of fire test laboratories according to EN ISO 17025 is becoming a condition for 

acceptance of test reports across the country borders as well as for EGOLF membership. 

 

In response to these international standards EGOLF has published EGOLF/R4[5] in 2001. This 

document provides guidelines by which EGOLF members should interpret and implement EN ISO 

17025. It includes the criteria by which EGOLF members should be inspected and accredited by 

accreditation authorities. 

Unlike EN 45001:1989[10] which preceded EN ISO 17025, the latter makes the estimation and 

declaration of uncertainty of test results mandatory. Till the release of EN ISO 17025, EGOLF 

considered that reporting uncertainty on fire test results was practically speaking not possible, taking 

into account the nature of fire tests and the complex functional relationship between a series of 

different types of measurements and the ultimate fire test ‘result’. This position is still reflected in the 

actual document EGOLF/R4 but is under revision now. More recent initiatives in EGOLF try to 

develop means to evaluate uncertainty of measurement for each individual method or family of 

methods. Provisionally all uncertainty declarations are based on limited round robin exercises. 

 

The results of the present work should be considered as a contribution to the long and complex process 

of the scientific evaluation of uncertainty of measurements for heat and smoke release rates in fire 

tests. 

 

In the mean time EGOLF uses the results of round robin exercises as a basis for demonstration of 

competence of its member laboratories. This method however has several disadvantages and 

shortcomings: 

• It does not differentiate between the sources of the uncertainty: the apparatus, the operator, the 

product under test, etc.; 

• It is costly and time consuming to organise them; 

• The results are based on some ‘representative’ products; in practice however the spread in 

results may be different. 

A round robin finally results in a repeatability and reproducibility limit. The repeatability limit is 

defined as the value less than or equal to which the absolute difference between two test results 

obtained under repeatability conditions may be expected to be with a probability of 95%.[15] 

 

On the other hand, fairly recently, some individual organisations have tried to quantify uncertainty 

associated with the calculation of heat release rate and smoke production rate[47][62][64][65][66] on a 

theoretical basis. However, out of a review of all major round robins, Janssens[50] found that the results 

suggest that the uncertainty is much greater than the theoretically found values, in particular for 

intermediate and large-scale tests. 
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So one of the biggest challenges for the fire community in the coming years is to elaborate, for the 

different test methods, means to evaluate uncertainty of measurement. Due to the European 

harmonisation of fire testing, and its economical consequences both for fire test laboratories and 

construction products manufacturers, this is becoming even more important. 

 

1.5. Evaluating and reporting uncertainty 

The general principles for evaluating and reporting uncertainties are given in the ISO Guide to the 

Expression of Uncertainty in Measurement (GUM[13]). They need to be adapted to the specific case of 

fire testing. Till today, on the international scene, few studies exist which address the uncertainty of 

heat release rate measurements by oxygen consumption calorimetry. The studies vary in apparatus and 

in detail of analysis. Enright and Fleischmann[47] performed an analytical estimate of the heat release 

rate measurement uncertainty for the Cone Calorimeter. They estimated a relative expanded 

uncertainty ranging from 10 % to 12 %, depending on the heat release rate. The main sources of 

uncertainty identified were, the heat of combustion factor, the combustion expansion factor and the 

oxygen concentration measurement. Axelsson et al.[62] estimated the uncertainties related to heat and 

smoke release rates in both the Room Corner test[6] and the SBI test[2]. The relative expanded 

uncertainty estimates for the Room Corner ranged from 7 % to 11 %, depending on the heat release 

rate. For the SBI test at the 35 kW level, respectively 50 kW level, the relative expanded uncertainty 

was estimated at 13.5 %, respectively 10 %. The main sources of uncertainty identified were, the 

oxygen concentration measurement, followed by the heat of combustion factor and the mass flow rate 

measurement. Bryant et al.[64] performed an analytical estimate of the heat release rate measurement 

uncertainty for their large scale 3 Megawatt test facility. The relative expanded uncertainty was 

estimated at 11 % for fire sizes larger than 400 kW. The major source of uncertainty identified were 

the bi-directional pressure probes used to compute the exhaust duct volume flow rate. 

 

In view of the pressure exercised by accreditation authorities, there is an increasing interest of testing 

laboratories worldwide in the subject. 

 

Despite the initiatives taken, there is still an important way to go before reporting uncertainty along 

the lines of the GUM document. 

The weak points in the work done so far are that: 

• Not all relevant phenomena are taken into account, often because people are not aware of 

them or because they believe they can be neglected. Examples of these are the Reynolds 

dependence of the velocity pressure probe in the SBI, used to obtain the mass flow of the 

exhaust gases, and the angular dependence of that same probe. 
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• The ‘guesses’ made on uncertainties on the different components where the required statistical 

information is not readily available. Example of this is that the uncertainty on a gas 

concentration measurement by one group of researchers is taken as the sum of noise and drift 

of that gas analyser over half an hour period. 

• Dynamic effects of the apparatus have not been taken into account in the analysis of the 

results. Due to non negligible time constants of some measuring devices, a transient error is 

introduced. This error cannot be neglected especially not when considering momentary values 

like peaks and dips. This is the case in the SBI where the main classification criterion, FIGRA, 

is defined as the maximum of the ratio of Heat Release Rate to time elapsed to reach that 

level. To partially eliminate this effect the SBI standard prescribes that the heat release rate 

firstly should be smoothened by means of a running average filter over half a minute period. 

• Covariances between the different measurands have been neglected. This is not justifiable as 

can easily be understood from the following example. Suppose a pure substance like for 

example propane is burnt, 

 

  [ 1.1 ] OHCOOHC 22283 435 +→+

 

we know that for every mole of oxygen consumed, 3/5 moles of carbon dioxide will be 

formed. So there is a perfect negative correlation between the oxygen consumed and the 

carbon dioxide produced (r = -1). 

• Synchronisation errors have been neglected. Due to different lag times of the instrumentation, 

data needs to be synchronised in a post-processing phase. This synchronisation can’t be any 

better than the data scan interval used, which is usually in the order of 3 s (SBI) to 5 s. 
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1.6. Research topics 

Several possibilities for further improvement of the method still remain. The most important 

categories are: representativeness of product performance in practice, good control of the test 

conditions and determination and limitation of measurement uncertainties. Items from all three 

categories have been discussed from the beginning of the development of the method, but with an 

emphasis on the first two. As discussed earlier, research topics in that area have been listed already by 

CEN, FSG and EGOLF.  

Little attention has been paid to the third category on measurement uncertainty and its improvement. 

Due to the recent uncertainty discussions in relation to EN 17025, this however has become more 

important. The major research topics in this area are discussed below and will be dealt with in this 

work. Gaining a better insight in the oxygen depletion measurement technique and identifying its 

pitfalls, greatly improves the accuracy of the method and allows a reliable estimation of the 

uncertainty interval. 

 

In a nutshell, the measurement technique used, the oxygen depletion technique, is based on the 

observation that, in general, the heats of combustion per unit mass of oxygen consumed are 

approximately the same for most fuels commonly encountered in fires (Huggett[49]). The mass flow 

together with the oxygen concentration in the extraction system suffices to continuously calculate the 

amount of heat released. Some corrections can be introduced if additionally CO2 and/or CO are 

measured. The technique is further explained in chapter 2. 

 

The time dependence of the different measurands also requires to consider the dynamic aspects of the 

measuring technique. 

 

1.6.1 Gas analysis 

The oxygen concentration is one of the most important measurands when measuring heat release rate. 

Evenly important as the concentration measurement itself is the gas sampling and preparation. This 

includes the sampling, filtering, transport over several meters distance and dehydration. 

 

The uncertainty related to the oxygen concentration measurement itself includes the calibration 

method, the calibration gas, ambient conditions like barometric pressure and room temperature, 

damping, vibrations, etc. The challenge here is to measure variations in concentration of the order of 

50 ppm in the range from 17 to 21 Vol.%. These variations are in the same order as the allowed noise 

level. Although damping of the signal allows elimination of a great part of the noise, it results in 

higher response times. 
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Determination of the uncertainty on the measurement requires much more than for example taking the 

sum of noise and drift as proposed by Enright[66].  

 

1.6.2 Mass flow rate 

So far only limited effort has been invested in the accurate determination of the mass flow rate and/or 

in the improvement of the extraction system (duct diameter, guide vanes, ...). Only a limited number of 

people within the fire testing community seems to be aware of the impact of the mass flow on the 

accuracy of the overall heat release rate and smoke release rate measurement. Prove of this are the pre-

standards prEN 50399-1[7], for the assessment of the reaction to fire performance of cables, and prEN 

45545-2[8], for the assessment of the reaction to fire performance of materials for railway vehicles. 

Especially in the second standard, where heat release rates as low as 7 kW and variations of heat 

release rate smaller than 1 kW are envisaged using hardware designed to cope with fires releasing up 

to 1 MW (Duct φ = 400 mm; extraction rate 1.5 m³/s at 298 K). The oxygen depletion at the 1 kW 

level under the given circumstances is only 35 ppm, which disappears in the measurement noise. 

 

In general, there is a high degree of ‘copy-pasting’ from other standards, i.e. ISO 9705, into new 

developed standards without re-evaluating the method in these new circumstances. ISO 9705 is a full-

scale test method intended to evaluate the contribution to fire growth provided by a surface product 

applied in a room. It goes for itself that appropriate downscaling and adaptation for small and 

intermediate scale test methods and, in particular for this work, the SBI test is necessary if an 

acceptable uncertainty is envisaged. 

 

 

1.6.2.1 Velocity profile – The effect of heating and cooling 

The technique for measuring mass flow rate  currently used in intermediate to large scale 

calorimeter tests consists of measuring the velocity on the axis of the duct v

m&

axis and to multiply this 

with a correction factor kt to obtain the mean velocity. This mean velocity is then multiplied with the 

mean density ρ  and the surface area A to obtain the mass flow rate. 

 

 Atvktm axist )()( ρ=
⋅

 [ 1.2 ] 

 

kt is the velocity profile correction factor and is defined as 
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Since the distribution of the velocity is not known, kt is approximated and taken as a constant over 

time. If we knew the velocity distribution, the mass flow rate could be approximated by 

 

 ∫=
⋅

A

dAtvtm )()( ρ  [ 1.4 ] 

 

which is only correct when the density is uniform over the measuring section. Ideally we would want 

to measure 

 

  [ 1.5 ] ∫=
⋅

A

dAtvttm )()()( ρ

 

So far, all uncertainty studies have disregarded the error made by assuming the density is constant. 

Bryant et al. however, for their 3 Megawatt test facility use a series of velocity pressure probe – 

thermocouple pairs to more accurately measure the mass flow which is of course a good solution. 

 

1.6.2.2 The velocity measurement 

The velocity measurement is made by means of a so called bi-directional pressure probe which is 

based on the pitot-static tube principle. The bi-directional probe[51] was originally designed for 

measuring the low velocity of (buoyancy-driven) fire induced flows associated with small to medium 

size fires. It has been ‘copy-pasted’ into various international test standards and is considered to be the 

state of the art for measuring mass flows in combustion gases.  

 

Although the probe is suited to work both in sooty environments and at elevated temperatures, this 

dissertation revealed that it overestimates the measured velocity by approximately 1% per degree pitch 

or yaw angle initially[56]. This can be caused by improper alignment of the probe with the flow or by a 

radial velocity component in the exhaust flow. It also reveals that the probe used in the SBI standard, 

which has a slightly modified design, is less angle sensitive but is, in contradiction with the standard 

bi-directional probe, Reynolds dependant. Due to the ever changing temperatures of the combustion 
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gases in time and the varying velocity of those gases, the Reynolds number related to the probe outside 

diameter will, in the SBI, vary in the range from 3.103 to 3.104 approximately. 

 

So far, these effects have been disregarded resulting in an underestimation of the uncertainty interval. 

 

1.6.2.3 Transient error 

An additional source of error is introduced by the response times of the measuring devices. The gas 

analysis system – from sampling to analysis – has a non negligible time constant τ. This introduces a 

transient error which, in the case of oxygen, equals 

 

 
dt

dXOe 2τ=  [ 1.6 ] 

 

Inverse techniques may help to restore the ‘real’ variation of oxygen concentration over time. This 

however needs further investigation and, if used, a general agreed consensus on how to do it.  

 

In a nutshell the procedure is as follows. The gas analysis system is considered to work as a (first 

order) low pass filter with transfer function H(s). Taking the inverse in the Laplace domain H(s)-1 

allows to restore the original signal. However, high frequency disturbances like noise tend to disturb 

the process. Indeed, the inverse system H(s)-1 works as an amplifier for the high frequencies. 

 

So inverse techniques should only be used with great care and require appropriate filters to remove the 

high frequency noise from the measured signal. They also require a complete redesign of the data 

acquisition procedure applied now, i.e. one sample taken every three seconds. 
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1.7. Strategy followed 

As outlined in the previous paragraph, this work highlights three major research topics: the analysis of 

combustion gases, the mass flow through the exhaust duct of those same gases and the dynamic 

aspects of instruments, processes and measuring equipment. 

Contiguous, their influence on the global uncertainty is investigated and means to decrease this 

uncertainty and to remove systematic errors are proposed. 

SBI
(Chapter 2)

Background
(Chapter 1)

SBI: Based on
Oxygen depletion

Gas analysis (GA)
(Chapter 3)

Mass flow
(Chapter 4)

Optimising GA to
reduce uncertainty

Evaluation existing
probe

Influence thermal
effects

Development new
probe

Dynamic aspects
(Chapter 5)

Uncertainty analysis
(Chapter 6)

Evaluation Model +
Use model to improve

SBI (Chapter 7)

Conclusions
(Chapter 8)

 

Figure 2. General overview 

 

In chapter II the measurement principle is explained and the main calculation procedures presented. 
 

Chapter III focuses on the gas sampling which includes the complete train from sampling till analysis. 
 

Chapter IV discusses the mass flow rate measurement and contains one of the major contributions of 

this work: after an evaluation of the existing velocity pressure probes, where some major drawbacks 

are first identified, a high performance pressure probe has been designed that overcomes the 

shortcomings of the existing probes and improves on the other aspects. Furthermore, the probe factor 

of both the existing probes and the new developed probe, together with an estimate on the standard 

deviation, have been obtained. The results have been summarised in papers which have been accepted 

for publication and will be published soon. 
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A further two papers on the influence of thermal effects on the velocity profile of duct flows and, more 

general, on the mass flow are out for review. Those two papers have been prepared in close 

collaboration with two colleagues of the same department. 

The main focus was on the estimation of uncertainty due to thermal effects on the mass flow[58], and 

the relationship between the transient (due to thermal inertia) velocity profile and a newly defined 

effective Reynolds number[52]. 

 

Chapter V deals with the dynamic aspects of the test instruments, the process and the data acquisition. 

It also evaluates the, currently used, ‘flat’ moving average filter and proposes the use of a more 

efficient Henderson filter.  

Furthermore it raises questions like ‘what is the bandwidth (fastest process) we’re interested in’, gives 

guidance on this and proposes three possible levels of alternative measuring methods. It also discusses 

the possibility of using inverse filters to increase the bandwidth.  

Although all of the concepts are known to specialists in the field, they are virgin territory to the fire 

testing community. 

 

Chapter VI discusses uncertainty and any related aspects in great detail. After elaboration of some 

general concepts, the combined standard uncertainty for heat release measurements in the SBI has 

been worked out. This analytical model requires the input of estimates of uncertainty on the different 

components which are discussed in a next section. 

New with respect to previous attempts to estimate the uncertainty is: the use of asymmetric 

distributions, the use of correlated input quantities, the inclusion of transient errors, the inclusion of 

uncertainty related to synchronisation and, last but not least, the detailed study on the estimation of the 

different uncertainty components. 

 

In chapter VII the model is checked using round robin results and some recommendations are given to 

improve the test method. 

 

Chapter VII brings us to the conclusions and recommendations. 

 

Annex A groups four articles that have gone out for review. Two of them have been accepted for 

publication in the mean time, while the other two are in the process of reviewing. 

Annex B groups some intermediate results, some correspondence with manufacturers, etc. 
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2 Measurement principle and calculation procedures 

2.1. General 

The measuring technique of the SBI test instrument is based on the observation that, in general, the 

heats of combustion per unit mass of oxygen consumed are approximately the same for most fuels 

commonly encountered in fires (Huggett[49]). The mass flow together with the oxygen concentration in 

the extraction system suffices to continuously calculate the amount of heat released. Some corrections 

can be introduced if additionally CO2, CO and/or H2O are measured. 

 

The specimen under test consists of two parts mounted in a corner configuration. The dimensions of 

the parts are 1500mm by 1000mm and 1500mm by 500mm, with a maximum thickness of 200mm. 

After mounting on a trolley sample holder, the specimen is placed underneath a hood. 

 

Air (N2, O2, CO2, H2O) 
H2O, HCl, HCN, … 

Gases solvable in water 

298AV&

298CV&

Analyser 

O2, CO2 

N2, O2 

CO2    
QOH kmol 4CO kmol 3

O kmol 5HC  kmol  1

22

283

++→
+

differential pressure probe 

thermocouples 

smoke measurement system 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic of the working principle of the oxygen depletion technique 

 

The thermal attack – that simulates a single burning item like a paper basket on fire – onto the 

specimen is achieved using a triangular shaped diffusion type burner, fired with propane. The main 

burner is placed at a distance of 40mm from both sides of the specimen.  

A ‘primary burner’ – installed at a safe distance from the specimen – that burns for three minutes prior 

to the attack of the specimen, allows to subtract the contribution of the burner afterwards. 

 

The test sequence is: 

• -60s - 0s: Registering of pre-test conditions; 

• 0s - 120s: Registering of zero-reference and drift while burner is kept off; 

• 120s - 300s:  Registering 30kW-reference and drift with primary burner turned on; 

• 300s - 1560s: Actual test with main burner turned on at 300 s; 

 - 89 - 



 

• Registering end of test conditions for O2, CO2 and light obscuration after the sample has been 

removed (check drift). 

 

The main signals that are registered every 3 seconds during the test are (see Table 2): 

• the propane mass flow to the burner system [mg/s]; 

• the oxygen concentration in the exhaust gases [Vol%]; 

• the carbon dioxide concentration in the exhaust gases [Vol%]; 

• the carbon monoxide concentration in the exhaust gases [Vol%] (optional); 

• the pressure difference over a bi-directional probe [Pa]; 

• the temperature at the height of the bi-directional probe [K]; 

• the light transmittance through the exhaust gases [%]. 

 

i/o Signal symbol Units kW 

    0 30* 92.7* 

y1 Paramagnetic oxygen analyser XO2 Vol% 20.95 20.67 20.06 

y2 Non-dispersive IR CO2-analyser XCO2 Vol% 0.04 0.23 0.63 

y3 Temperature measurement MS (K-type) TMS K 290 318 376 

y4 Bi-directional pressure probe ∆p Pa 61 67 79 

y5 Smoke opacity measurement I % 100 97 96 

u1 Propane Mass Flow Controller MFC mg/s 0 647 2000 

 Derived data 

 Volume flow exhaust gases (at 25°C) V298 m³/s 0.65 0.65 0.65 

 Heat Release Rate HRR KW 0 30 92.7 

 Total Heat Release (in first 600 s) THR600s MJ 0 NA NA 

 Fire Growth Rate FIGRA W/s 0 NA NA 

 Smoke Production Rate SPR m²/s 0 0.06 0.08 

 Total Smoke Production (in first 600 s) TSP600s m²/s² 0 NA NA 

 Smoke Growth Rate SMOGRA m²/s² 0 NA NA 

* approximate values for the Ghent premises running at a constant mass flow 

Table 2. Main SBI signals and derivatives 
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Figure 4 shows the ‘raw’ data of a ‘typical’ SBI test. The peak observed around 300 s finds its origin 

in the switching between primary and main burner. This peak is used to synchronise the data 

afterwards. 

 
Figure 4. Example of SBI raw data 

 

The volume flow referenced to 298 K together with the oxygen and carbon dioxide concentration 

results in the global heat release rate (burner + specimen) (Figure 5.a). The heat release in the period 

from 150 s to 270 s (primary burner burning) serves as a basis to subtract the heat release contribution 

of the burner. A ‘flat’ running average filter now smoothens the heat release contribution of the 

specimen (Figure 5.b). 

 
Figure 5. Heat release rate and derivatives 
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Out of the (undampened) heat release rate (HRR) the total heat release rate in the first 600 s of the test 

(THR600s; 300 – 900 s) is calculated and out of the dampened HRR the FIre Growth RAte (FIGRA) 

is calculated. FIGRA is proportional to the maximum of the ratio of the HRR (running average HRR) 

contribution of the specimen to the time required to reach this HRR level. 

 

The FIGRA index in the context of the SBI test method was first introduced in 1997[69] as a result of 

the analysis of the first round robin exercise[68] held by fifteen leading European Fire test laboratories 

including the Fire department of the Ghent University. 

 

The idea behind the FIGRA (SMOGRA) index is to penalise heat release rate (smoke production rate) 

– i.e. contribution to the development of the fire – in the initial stage of a fire for this is the time when 

people try to make their ways out of the building. 

 

(*) Some threshold values apply: 

0FIGRA    0,4MJor  0,2THR
0FIGRA  3kW  HRR

=⇒<
=⇒<

 

 

2.2. Calculation procedure 

2.2.1 Introduction 

The main calculation procedures for obtaining the HRR and its derived parameters are summarised 

here for convenience. The formulas will be used in the next chapters and especially in the chapter on 

uncertainty. 

The calculations and procedures can be found in full detail in the SBI standard[2]. 

 

2.2.2 Synchronization of data  

The measured data are synchronised making use of the dips and peaks that occur in the data due to the 

switch from ‘primary’ to ‘main’ burner around t = 300 s, i.e. at the start of the thermal attack to the test 

specimen. Synchronisation is necessary due to the delayed response of the oxygen and carbon dioxide 

analysers. The filters, long transport lines, the cooler, etc. in between the gas sample probe and the 

analyser unit, cause this shift in time. 

After synchronisation, all data are shifted such that the ‘main’ burner ignites – by definition – at time   

t = 300 s. 

 

 - 92 - 



 

2.2.3 Heat output 

2.2.3.1 Average heat release rate of the specimen (HRR30s) 

A first step in the calculation of the heat release rate contribution of the specimen is the calculation of 

the global heat release rate. The global HRR is constituted of the HRR contribution of both the 

specimen and the burner and is defined as 
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where: 

 

HRRtotal(t) is the total heat release rate of the specimen and burner [kW]; 

E’  is the heat release per unit volume of oxygen consumed at 298 K, = 17 200 

[kJ/m3]; 

)(298 tVD
&  is the volume flow rate of the exhaust system, normalized at 298 K [m3/s]; 

xa_O2  is the mole fraction of oxygen in the ambient air including water vapour; 

φ(t)  is the oxygen depletion factor. 

 

The last two terms xa_O2 and 
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φ
 express the amount of moles of oxygen, per unit 

volume, that have chemically reacted into some combustion gases. Multiplication with the volume 

flow gives the amount of moles of oxygen that have reacted away. Finally this value is multiplied with 

the ‘Huggett’ factor. Huggett stated that regardless of the fuel burnt roughly a same amount of heat is 

released. 

 

The volume flow of the exhaust system, normalized at 298 K, VD298(t) is given by 
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 [ 2.2 ] 

where: 

c = √(2T0/ρ0) = 22,4 [K0,5⋅m 1,5⋅kg-0,5] 

A  is the area of the exhaust duct at the general measurement section [m2]; 
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kt is the flow profile correction factor; converts the velocity at the height of the bi-

directional probe in the axis of the duct to the mean velocity over the cross section of 

the duct 

kρ is the Reynolds number correction for the bidirectional probe, taken as 1,08; 

∆p(t) is the pressure difference over the bi-directional probe [Pa]; 

Tms(t) is the temperature in the measurement section [K]. 

 

The oxygen depletion factor φ(t) is defined as 
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where: 

xO2(t)  is the oxygen concentration in mole fraction; 

xCO2(t)  is the carbon dioxide concentration in mole fraction; 

Ys...Zs  mean taken over interval Y s to Z s. 

 

The mole fraction of oxygen in ambient air, taking into account the moisture content, is given by  
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where: 

xO2(t)  is the oxygen concentration in mole fraction; 

H  is the relative humidity [%]; 

p  is the ambient pressure [Pa]; 

Tms(t) is the temperature in the general measurement section [K]. 

 

Since we are interested in the HRR contribution of the specimen only, the HRR contribution of the 

burner needs to be subtracted. An estimate of the burner contribution HRRburner(t) is taken as the 

HRRtotal(t) during the base line period preceding the thermal attack to the specimen. A mass flow 

controller assures an identical heat release rate through the burners before and after switching from 

primary to the main burner. The average HRR of the burner is calculated as the average HRRtotal(t) 

during the base line period with the primary burner on (210 s ≤ t ≤ 270 s): 
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 )s270...s210(HRRHRR totalav_burner =  [ 2.5 ] 

 

where: 

HRRav_burner  is the average heat release rate of the burner [kW]; 

HRRtotal(t)  is the total heat release rate of specimen and burner [kW]. 

 

HRR of the specimen  

In general, the heat release rate of the specimen is taken as the global heat release rate HRRtotal(t) 

minus the average heat release rate of the burner HRRav_burner: 

 

For t > 312 s: 

 

  [ 2.6 ] av_burnertotal HRR)(HRR)(HRR −= tt

 

where: 

HRR(t)  is the heat release rate of the specimen [kW]; 

HRRtotal(t) is the global heat release rate of specimen and burner [kW]; 

HRRav_burner is the average heat release rate of the burner [kW]. 

 

During the switch from the primary to the main burner at the start of the exposure period, the total heat 

output of the two burners is less than HRRav_burner (it takes some time  for the gas to be directed from 

one burner to the other). Equation [2.6] then gives negative values for HRR(t) for at most 12 s (burner 

switch response time). Such negative values and the value for t = 300 s are set to zero, as follows: 

 

For t = 300 s: 

 

 HRR(300) = 0 kW [ 2.7 ] 

 

For 300 s < t ≤ 312 s: 

 

 }HRR)(HRR,kW0.{max)(HRR av_burnertotal −= tt  [ 2.8 ] 

 

where: 

max.[a, b] is the maximum of two values a and b. 
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Calculation of HRR30s 

In view of the calculation of the FIGRA index, the HRR data are smoothened with a ‘flat’ 30 s running 

average filter using 11 consecutive measurements: 

 

 
10

)15(HRR5,0)12(HRR...)12(HRR)15(HRR5,0)(HRR s30
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=
ttttt [ 2.9 ] 

 

where: 

HRR30s(t) is the average of HRR(t) over 30 s [kW]; 

HRR(t) is the heat release rate at time t [kW]. 

 

More information on the behaviour of this filter is given in section 5.3.1. 

 

2.2.3.2 Calculation of THR(t) and THR600s 

The total heat release of the specimen THR(t) and the total heat release of the specimen in the first   

600 s of the exposure period (300 s ≤ t ≤ 900 s), THR600s, are calculated as follows: 
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whereby the factor 1000 is introduced to convert the result from kJ into MJ and the factor 3 stands for 

the time interval in-between two consecutive measurements, 

and where: 

THR(ta)  is the total heat release of the specimen during the period  

300 s ≤ t ≤ ta  [MJ]; 

HRR(t)  is the heat release rate of the specimen [kW]; 

THR600s is the total heat release of the specimen during the period 300 s ≤ t ≤ 900 s 

[MJ]; [equal to THR(900)]. 
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2.2.3.3 Calculation of FIGRA0.2MJ and FIGRA0.4MJ (Fire growth rate indices) 

The FIGRA is defined as the maximum of the ratio HRRav(t)/(t − 300), multiplied by 1 000. The ratio 

is calculated only for that part of the exposure period in which the threshold levels for HRRav and THR 

have been exceeded. If one or both threshold values are not exceeded during the exposure period, 

FIGRA is equal to zero. Two combinations of threshold values are used, resulting in FIGRA0,2MJ and 

FIGRA0,4MJ. 

 

a) The average of HRR, HRRav, used to calculate the FIGRA is equal to HRR30s, with the 

exception of the first 12 s of the exposure period. For data points in the first 12 s, the average is taken 

only over the widest possible symmetrical range of data points within the exposure period:   

 

For t = 300 s: HRR  [ 2.12 ] 0 = s)(300av

For t = 303 s: )s306...s300(HRR)s303(av =HRR  [ 2.13 ] 

For t = 306 s: )s312...s300(HRR)s306(av =HRR  [ 2.14 ] 

For t = 309 s: )s318...s300(HRR)s309(av =HRR  [ 2.15 ] 

For t = 312 s: )s324...s300(HRR)s312(HRRav =  [ 2.16 ] 

For t ≥ 315 s: HRRav(t) = HRR30 s(t) [ 2.17 ] 

 

b) Calculate FIGRA0,2MJ for all t where: 

(HRRav(t) > 3 kW) and (THR(t) > 0,2 MJ) and (300 s < t ≤ 1 500 s); 

 

 and calculate FIGRA0,4MJ for all t where: 

(HRRav(t) > 3 kW) and (THR(t) > 0,4 MJ) and (300 s < t ≤ 1 500 s); 

 

both using: 
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where: 

FIGRA  is the fire growth rate index 
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HRRav(t)  is the average of HRR(t) as specified in a) [kW]; 

 

As a consequence, specimens with a HRRav not exceeding 3 kW during the total test have FIGRA 

values FIGRA0,2MJ and FIGRA0,4MJ equal to zero. Specimens with a THR not exceeding 0,2 MJ over 

the total test period have a FIGRA0,2MJ equal to zero and specimen with a THR not exceeding 0,4 MJ 

over the total test period have a FIGRA0,4MJ equal to zero. 

 

2.2.3.4 Calculation of (M)ARHE 

The MARHE parameter, which stands for Maximum Average Rate of Heat Emission, is a value that is 

not used for classification purposes nor is it required by the SBI standard. It has however been 

included in this document since it is discussed internationally. The present work limits itself to the 

evaluation of the uncertainty related to this parameter. 

 

The MARHE value is defined as the maximum of the ARHE curve which is given by (n = 1, 2, ...): 
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This formula assumes that the initial heat release contribution of the specimen (at the start of the test) 

is zero (HRR(t0) = 0 kW) and further uses the trapezoidal integration scheme. 
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3 Gas Analysis 

3.1. Introduction 

In view of the importance of a correct oxygen depletion measurement and the automation of the 

measuring process, an optimised gas analysis rack – from sampling till analysis – has been developed 

in collaboration with Siemens Belgium and Siemens Karlsruhe. 

 

In heat release rate (HRR) related measurements, the oxygen concentration is one of the most 

important properties. Although the technique for measuring gas concentrations is known, the system 

has been optimised for heat release rate measurement applications in terms of sample preparation, 

precision and robustness of the gas analysis rack. 

 

The design of the analysis rack is such that it cannot only be used for the SBI, but also for the room 

corner test, the cone calorimeter test and similar test methods based on the oxygen depletion 

technique. In the mean time well over twenty laboratories are using this analysis rack in a wide variety 

of heat release test instruments. 

 

3.2. Optimising 

In the previous chapter and in the SBI standard the oxygen depletion technique is described for the 

specific case of the SBI. For a more general discussion, a good description is given by Parker[54]. In 

this paper distinction is made between four different cases: 

1. The gas concentrations of O2, CO2, CO and H2O are measured. 

2. The gas concentrations of O2, CO2 and CO are measured. H2O is removed from the sample gas 

prior to analysing the gas concentrations. 

3. The gas concentrations of O2 and CO2 are measured. H2O is removed from the sample gas 

prior to analysing the gas concentrations and the CO concentration is neglected. 

4. Only the O2 concentration is measured. Both H2O and CO2 are removed from the sample gas 

because they push aside the O2 molecules thus reducing the O2 concentration. The 

concentration of CO is neglected. 

 

The presence of a water vapour analyser further improves the accuracy of the measurement but has 

proven to be somewhat cumbersome and difficult to implement successfully. The entire gas sampling 

train must be heated in order to avoid condensation. Since the inclusion of water vapour measurements 
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requires a completely different approach from the other three cases, all efforts are concentrated on 

cases 2 till 4. 

 

The use of a carbon dioxide analyser eliminates the need for removal of CO2 out of the gas sample. 

This is mainly of practical importance as the scrubbing agent – which is a chemical absorbent – used 

to remove CO2 usually requires careful handling and is rather expensive. 

Measuring heat release by oxygen concentration only thus requires an additional chemical recipient 

over cases 2 and 3. 

 

Because the oxygen depletion technique is applied in a wide variety of standards ranging from small 
[4], over intermediate [2][7][8] to large scale tests[6], the challenge was to design one gas analysis unit that 

can be interchanged easily between different applications. 

Other requirements imposed on the design are: 

• filtering the gas for particles directly after the gas sampling; 

• avoid condensation of water vapour and/or corrosive gases like HCl etc. in the transport lines; 

• provide dry gas, free of particles to the gas analysers; 

• pressure compensation on the oxygen analyser; 

• keep temperature variations to within a minimum; 

• reduce the amount of consumables to a minimum; 

• robustness; 

• limited size; 

• minimum maintenance; 

• plug and play; 

• limit the cost. 

 

In a first stage the focus is on the gas analysers and especially on the oxygen analyser where the 

following improvements are obtained: 

• The use of selected measuring cells increases the stability of the analyser. All analyser cells 

are checked by Siemens for some minimum requirements on performance and stability. Based 

on the outcome of this check, they are subdivided into three categories ranging from highly 

stable to acceptable performance. Since stability of the analyser is of outmost importance, the 

requirement is to only use those measuring cells with best stability performance. 

• The oxygen analyser makes use of the fact that when two gases with different oxygen 

concentration meet in a magnetic field, a pressure difference is produced between them. So 

besides the measured gas, a reference gas is needed. Most Siemens systems use Nitrogen as 
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reference gas. By introducing ambient air as a reference gas, several advantages could be 

introduced: 

o The measuring range can be narrowed from 0-21Vol% to 17-21Vol% increasing the 

resolution of the output signal and lowering the uncertainty on the output. 

o The analyser works close to its point of equilibrium. Indeed, initially the analysed gas 

has the same concentration as the reference gas, i.e. 20.95Vol%, and, as heat release 

increases, remains close to equilibrium (>17 Vol%). 

o Note that the room corner test (ISO 9705) requires the full range 0-21Vol%. For those 

cases, Nitrogen will be used as a calibration gas instead of 17Vol% of oxygen. The 

reference gas and the rest of the analysis system however remains unchanged. 

o The cost of nitrogen consumption as a reference gas and the renting of two nitrogen 

bottles (one spare) is saved.  

Alternatively to using ambient air as a reference gas, synthetic air containing for example 21 

Vol% of oxygen could be used. In the first case, a chemical desiccant is needed to remove any 

water vapour, while in the second case, the consumption of gas and the renting of bottles 

should be taken into account. 

• The oxygen measuring cell together with the carbon dioxide and carbon monoxide cells are 

combined in one 19” housing. Since the oxygen analyser works on the paramagnetic principle 

and the other two analysers on the infrared principle, they have never been combined into one 

unit. By doing so the following advantages are obtained: 

o Cost and space savings. 

o One user interface for all three gas analysers. 

o Less pipe work resulting in faster response times. 

o Possibility to correct for the interference of the CO2 gas on the O2 measurement. Due 

to diamagnetism and paramagnetism of residual gases there is a deviation on the 

measured oxygen concentration. If pure carbon dioxide were to be introduced into the 

oxygen analyser, the analyser would have a reading of –0.30Vol% of oxygen. This 

deviation only becomes significant for high heat release rates when high 

concentrations of carbon dioxide are reached. 

 

In a second stage the focus is on the reduction of the delay and response time of the gas analysis 

system. Commercial gas analysers are mostly designed to operate in steady state or to measure 

‘slowly’ changing signals. The following measures were taken: 

• Limiting the inside diameter pipe work to 4 mm. This choice introduces as a consequence: 

o Filtering of the hot sample gas. Just after the gas sample probe, a temperature 

controlled filter is installed. The re-useable heated ceramic filter is kept at a 
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temperature of 200°C in order to prevent the pores to get saturated too quickly by 

condensing gases. The filter eliminates particles down to a size of 3µm. 

o Heating of the gas sampling line connecting the measurement point to the gas 

analysis rack. The heated sampling line (9m) has a replaceable PVDF core heated to 

120°C to prevent condensation of combustion gases which would result in blockage 

of the pipework. 

• The use of a high capacity membrane pump that extracts the gas at a rate of 16 litres/minute. 

This high extraction rate reduces the transport time of the gas through the heated filter, the 

heated sampling line and through the cooler to a minimum. The analysers only need 2 

litres/minute which makes that the excess gas is blown off just after the pump. This however 

implies that: 

o The heated filter must be sized correspondingly; 

o The capacity of the cooler needs to be upscaled by a factor 8. 

• All pipe work after the membrane pump is kept to a strict minimum. This is achieved by: 

o Reducing the size of the gas analysis rack. This was only possible after combining the 

three gas analysers into one unit. 

o Adequate positioning of the remaining components (water absorbent, filter, valves) 

• Reduction of the electronic damping on the analyser signal to a strict number. This is only 

acceptable when highly stable gas analysers are used, and confirms once more the need for 

the ‘selected’ oxygen measuring cells. 

 

In a third stage the focus was on the gas conditioning, and more in particular the removal of H2O. 

Since one of the assumptions in the calculations is that the gas coming into the analyser consists of O2, 

CO2, (CO) and N2 only, all water vapour (and water soluble components such as HCl, HCN, etc.) 

needs to be removed from the sample gas. This is achieved in two steps: 

1. A gas sample cooler brings down the temperature of the sample gas to approximately 3°C. 

The saturation pressure at this temperature is approximately 770 Pa.  

Leaving this water vapour in the gas sample introduces an error at two levels: 

a. the measured oxygen depletion will be smaller and the error amounts approximately 

1% of the depletion. 

b. variations on the dew point of the gas cooler as a consequence of cooler temperature 

variations lead to a different saturation pressure with corresponding error. Due to 

temporary higher water vapour concentrations in the exhaust gases, the dew point may 

vary. For a dew point increase of 2°C to 5°C the saturation pressure increases with 

110 Pa approximately with a resulting difference in oxygen concentration of 230ppm.  
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2. This is why a desiccant is used to remove the remaining water vapour. Nowadays laboratories 

use Anhydrous Calcium Sulfate (Drierite) for this purpose. A more ample discussion on 

desiccants can be found in annex B.1. 

A consequence is that also the reference gas for the oxygen analyser, which is ambient air, needs to 

pass through a desiccant. As mentioned before, synthetic air could be used as an alternative which 

eliminates the use to ‘dry’ the reference gas. 

 

In the final stage some additional features are introduced to: 

• increase the user friendliness: 

o all user interfaces are located at the front and at an ergonomic height; 

o pumps, valves, heating of filters and sampling lines are controlled by illuminated 

pushbuttons 

o status of cooler, analyser, reference gas pump, heated filter, heated sampling line, 

breaker tripping are checked and available to the user 

o the rack can be controlled remotely to run for example calibrations or tests without 

intervention of the operator. This allows a complete control of the test instrument 

through the software with status reporting, auto calibration, etc. 

• increase the interchangeability between different fire test instruments (cone calorimeter, SBI, 

room corner, etc.): 

o mounted on wheels 

o eyebolts on the top 

o all signals (both digital and analogue) and power supply brought to four connectors 

mounted on the top of the rack 

o Plug and Play 

• Robustness and other features: 

o 19” Rittal housing 

o Front door protects the instrumentation and helps to keep dust out 

o Temperature controlled 

o Filtered cooling air 
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Figure 6. Front and backside (in a cone calorimeter unit) of the gas analysis rack 
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4 Mass flow rate 

4.1. Introduction 

So far only limited effort has been invested in the accurate determination of the mass flow rate and/or 

in the improvement of the extraction system. This is surprising since the heat release rate (HRR) is 

proportional to it. 

 

The mass flow rate in the circular exhaust duct is obtained by a one point velocity measurement in a 

cross section. This requires an accurate measurement of velocity on the duct axis and a knowledge of 

both the velocity profile and density profile over the cross-section of the duct. So far in fire test 

applications, the probe factor is almost always taken constant over time and the effect of non-uniform 

density over the duct is disregarded. 

 

The velocity measurement is made by means of a Pitot like differential pressure probe adapted for 

measuring bi-directional flows in fires[51]. Bi-directional probes are designed to measure flow speed in 

fire conditions where the direction of the flow is not necessary known nor constant. For example 

mounted in a doorway, in function of the height there may first be entrainment of air to the fire while 

later on in the test, hot combustion gases may leave that same doorway as the hot smoke layer 

increases and lowers. 

The design has been copied for use in HRR test applications for its robustness and assumed angle and 

Reynolds independence without thoroughly investigating the drawbacks of the probe. Nevertheless, 

these are for the SBI application a non negligible sensitivity to pitch and yaw angle variations and a 

Reynolds dependence. 

 

This chapter focuses, by means of papers, on the above aspects and estimates the corresponding 

uncertainty. A high performance pressure probe design that overcomes the shortcomings of the 

existing probes and improves on other aspects is introduced and the probe factor of both the existing 

probes and the new developed probe are estimated. 

 

The papers can be found in Annex A and form an essential part of this dissertation. 
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4.2. Article 1 

Sette B.J.G.; Critical considerations on the use of a bi-directional probe in heat release 

measurements; Fire and Materials[56] 

 

Out for review: 5 October 2004 

Accepted for publication: 21 December 2004 

 

This article evaluates the bi-directional pressure probe that is used in the SBI and other fire tests. The 

probe that is used in the SBI differs from the probes used in other fire tests in so far that it has a 

positioning rod welded to it (Figure 7.c). 

 

Figure 7.  bi-directional pressure probes 

 

The introduction of the positioning rod has a big impact on the probe’s behaviour. The probe no longer 

is Reynolds independent (Figure 8/1.c). This results in a spectacular increase of the uncertainty related 

to the mass flow measurement if one keeps the probe factor kp constant as indicated by the SBI 

standard. 
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Figure 8. probe factor kp as function of Re (95% confidence interval) 
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Furthermore, the original design (Figure 7.a) is evaluated. Although the original probe is Reynolds 

independent over a large range, its probe factor changes with pitch and/or yaw angle variations  

(Figure 9/1.a).  
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Figure 9. Pitch/yaw angle dependance (Re ≈ 10 000) 

 

It is proposed to develop an improved differential pressure probe design that combines Reynolds 

independence with a low sensitivity to angular variations. 
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4.3. Article 2 

Sette B.J.G.; Development of a new Robust Velocity Pressure Probe for Heat Release Applications; 

Fire and Materials[57] 

 

Out for review: 1 February 2005 

Accepted for publication: 30 March 2005 

 

This article builds on the previous article and looks for alternatives for the existing bi-directional 

probes. After evaluation of a few possible designs, the design of Figure 10.b is retained. It concerns a 

hemispherical probe with its open side facing the incoming flow. 

a
β

 (a) (b) 

Figure 10.  a. bi-directional probe; b. Hemispherical probe 

 

The probe factor for the hemispherical probe with hemispherical inlet (HSphere-Spher) is almost 

constant in a range from Re = 5 000 till 60 000 as shown in Figure 11. 
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Figure 11. Probe factor for the hemispherical probe with spherical and with conical inlet 

 

In addition the probe shows a low sensitivity to pitch and/or yaw angle variations in a range of ± 20°. 
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Figure 12.  Sensitivity to angular variations for a spherical and a conical inlet 
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4.4. Article 3 

Sette, B., Theuns E., Merci B., Temperature effects on the mass flow rate in the SBI and similar Heat 

Release Rate Test Equipment, Fire and Materials[58] 

 

Out for review: 7 December 2004 

 

The mass flow of combustion gases extracted is measured by means of a temperature and velocity 

measurement on the axis of the exhaust duct in combination with the velocity profile over the duct 

section. Due to fast temperature changes over a test run and due to thermal inertia of the exhaust duct, 

both the velocity and density profile over the cross section vary as a function of time and temperature 

(Figure 14). 
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Figure 13. Variation of the fluid temperature at the inlet 

 

An estimation of the error on the mass flow is made through numerical simulation (CFD). This is 

made by means of some imposed temperature variations at the inlet of the exhaust duct (Figure 13). 

The error seems to depend on whether working at constant volume flow or constant mass flow. 
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Figure 14. Evolution in time of density in the measurement section for test cycle II. 

 

 

4.5. Article 4 

Merci B., Theuns E., Sette B., Vandevelde P.; Numerical Investigation of the Influence of Gas Heating 

and Cooling on the Velocity Profile Correction Factor in the SBI-Configuration; Fire and 

Materials[52] 

 

Out for review: 7 December 2004 

 

Article 4 builds on article 3. In this paper it is noticed that there is no longer a one-to-one 

correspondence between the velocity profile shape and the instantaneous Reynolds number, due to the 

time-dependent temperature and density profile evolution in the exhaust duct. 

By defining an ‘effective’ Reynolds number, based on the effective viscosity, i.e. the sum of the 

molecular and the turbulent viscosity, a one-to-one relation is recovered. 
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5 Dynamic behaviour 

5.1. Introduction 

Chapter V deals with the dynamic aspects of the process, the test instruments and the data acquisition. 

It also evaluates the, currently used, ‘flat’ moving average filter used to smooth the HRR data prior to 

calculating FIGRA and proposes the use of a more efficient Henderson filter. 

 

Furthermore it considers questions like ‘what is the bandwidth (fastest process) we’re interested in’, 

gives guidance on this and proposes three alternative measuring methods with an increasing level of 

bandwidth (BW) but also complexity. One of them is the use of inverse filters. 

 

Finally it also proposes an alternative data synchronisation method. 

 

 

5.2. Identification of the measurement components 

In order to better understand the SBI test equipment we need information on: 

• the bandwidth of the different measuring devices; 

• the identification of the built in filter on some of the devices; 

• the bandwidth of the data acquisition system; 

• the bandwidth of the mass flow controller (input signal). 

 

The bandwidth (BW) is the frequency below which an input signal is transferred without substantial 

distortion in amplitude and/or phase-shift. 

5.2.1 Bandwidth of the data acquisition system 

Voltage measurement during data acquisition relies on a process known as analog-to-digital (A/D) 

conversion. The mainstream A/D conversion methods for data acquisition and measurement 

instruments include successive approximation, integrating, flash converters and sigma-delta 

converters. Each conversion method offers a different combination of performance and price that 

makes it suitable for a specific set of data acquisition applications[34]. 

 

Both data acquisition systems (Siemens Simatic PLC and Keithley 2000 series) that are currently used 

at the Ghent premises make use of the Integrating A/D principle. The general operating principle of 

the integrating A/D converter is based on the charging and discharging of a capacitor by an unknown 
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signal and a reference voltage. The capacitor is charged first by the unknown signal for a set time 

interval. Next, the capacitor is discharged back to zero at a fixed rate and the time needed to discharge 

the capacitor is measured. This time is a measure of the integrated input voltage and can be used to 

deduce the unknown voltage. 

The benefit of the integrating A/D conversion process is that it can average out noise over time, which 

results in good noise rejection. Also the integration time can be selected to match the frequency of a 

known noise source. 

In our case the integration time is set to 20ms which corresponds to one so called Power Line Cycle at 

50Hz. This will eliminate any periodic noise caused by the electric net. 

The integration process works as a low pass filter with – in case of an integration time of 20ms – a 

cutoff frequency (-3dB) of 22Hz.  

 
Figure 15. Gain and Phase lag of an Integrating A/D principle DAQ system @ 1PLC / 50Hz 

 

5.2.2 Bandwidth of the measuring devices 

The response times and delay times mentioned in the next section always refer to the whole measuring 

chain. For example with the response time of the O2-analyser is not only mentioned the response time 

of the device itself, but also the influence of filters, transport lines etc. are taken into account. 

This makes that the times found are different from the ones found in the specifications from the 

manufacturer. 

 

Background 

The purpose of the measurement is to find the Heat Release Rate (kW) of a burning sample in function 

of time. Therefore, four signals need to be monitored: 
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1. A differential pressure measurement is a measure for the velocity of the combustion gases in 

the exhaust duct, and thus for the volume flow. 

2. The volume flow is referenced to a temperature of 25°C (mass flow) and therefore the 

recording of the temperature of the exhaust gases is needed. 

3. Besides temperature, the reaction chemistry makes that the CO2-concentration and the volume 

of the incoming air increases after combustion and therefore a correction on the measured O2-

concentration, by means of CO2-concentration, is needed. 

4. Finally, the O2-concentration together with the volume flow trough the system gives the 

required heat release rate. The assumption is that for every cubic metre of oxygen consumed 

17,2MJ of heat will be released. This assumption holds within an uncertainty from 5 to 

10%[26][49][30][39] for most materials that are commonly used in the building and construction 

industry. 

 

A first point of interest is to find out the error made not taking into account the dynamic aspects of the 

different devices. This transient error eX on measurand X can be quantified for a first order system by 

 

 
dt
dXeX τ=  [ 5.1 ] 

 

whereby τ is the time constant of the system. 

 

The thermocouples and pressure transducer have fairly different response times from the gas analysers 

but today their signals are used in the formulas without any data pre-treatment, thus neglecting any 

dynamic effect. 

 

Furthermore, there is an interest to know what the cutoff frequency is of the overall system for burning 

processes. 

 

In a second stage there is a need to define specifications on data pre-treatment and on the scan rate of 

the data acquisition system. 

 

The main target however is to identify the process such that the input (burning process) can be 

regenerated out of the four above mentioned measurements in a more accurate way. 

 

A further step down the road would be to investigate the possibility to replace the gas analysis 

measurement (measurements 3 and 4) by a temperature + heat flux measurement. 
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Estimation of the bandwidth 

5.2.2.1 Differential pressure-signal 

The differential pressure device is model P92 from HALSTRUP, with a measuring range from 0 to 

250 Pa. 

 

The data acquisition is done by means of a Keithley2000 multimeter at a sampling rate of 50Hz. The 

integration time was set to 0,1 PLC (Power Line Cycle). 

All electronic damping on the pressure difference device was turned off. 

 

A stepwise change is introduced by suddenly taking away the pressure on one of the input ports. This 

makes that the sensor sees a sudden pressure change from about 75Pa to 0Pa. All tubing and probes 

were connected while measuring.  

 

A response time of 0,5s (exponential curve in Figure 16) is obtained for the pressure difference device. 

 

According to the manufacturer the electronics contain a first order analogue filter on the output, which 

explains the ‘slow’ response time. Usually we would expect response times in the order of tens of 

milliseconds. If so desired, the capacitor responsible for this damping could be replaced to modify the 

response time. 

 

Besides the analogue low pass filter, the unit has a built in digital filter with selectable time constants 

between 1 s and 40 s. More information on this digital filter is given in section 5.2.3. 
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Figure 16. Step response pressure transducer Halstrup P92 

 

5.2.2.2 Thermocouple-signal (Tgas) 

The volume flow is referenced to a temperature of 25°C (mass flow) and therefore the recording of the 

temperature of the exhaust gases is needed. The sensing element is a K-type insulated thermocouple (φ 

= 0,5mm) that is placed perpendicular to the gas flow with an approximate velocity of 8m/s. 

The convective heat transfer between the free stream gas and the solid thermocouple tip governs the 

temperature evolution of the thermocouple. A correction for radiative losses may be introduced 

afterwards. 

The estimated time constant for the thermocouple is (1.15 ± 0.15) s at temperatures of around 300 K 

and velocities of 8 m/s, decreasing to 0.8 s in the limit case of 600 K and 16 m/s. (Annex B.2). 

 

The time constant of the thermocouple will be taken as 1.15 s with a standard uncertainty of 0.15 s. 

For higher temperatures, this results in a slight overestimation of the transient error on the temperature 

measurement as will be discussed further. 
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5.2.2.3 CO2-signal 

The data acquisition is done by means of a Keithley2000 multimeter at a sampling rate of 10Hz. The 

integration time was set to 1 PLC (Power Line Cycle; 20ms when AC=50Hz) thus eliminating any 

50Hz interference. 

All electronic damping on the CO2-analyser that can be set by the user was turned off. 

 

In a first test a stepwise change is realised by turning on a propane burner (30kW) after 10s. 
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Figure 17. Step response carbon dioxide analyser + sampling 

 

A second test looks at the step response when turning the burner off after 10s. 

 
Stepresponse CO2-signal (downwards) t63 = 3.5 s
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Figure 18. Step response carbon dioxide analyser + sampling 

 

Observations: 

• some disturbances are observed on the signal (see below) 

• there is a death time of approximately 12 s before the analyser starts to react 
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• the response time of the CO2-gas analysis system (includes transport lines/ filters/cooler/…) is 

approximately 3.5 s 

 

Note that the system delay and response time is the result of an extraction duct flow time (from flame 

to sample probe), a gas sample flow time (from sample probe to the gas analyser) and the instrument 

response time. So both delay and response times may change when one of these changes. 

 

In the assumption that the time constant lies within the interval (3.5 ± 0.2) s ( = rectangular 

distribution with width 0.2 s; see 6.2), the standard uncertainty on the time constant is estimated at   

0.12 s. 

 

In a third test, data is logged without any forced external disturbance. 
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Figure 19. Noise signal carbon dioxide analyser 

 

A FFT-analysis reveals some low order disturbances with frequencies mainly below 1Hz which can be 

categorised as ‘noise’. No specific disturbance at one frequency is observed. 

 

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 1 2 3 4 5

frequency (Hz)

m
ag

ni
tu

de

6

 

 

 

 

 

 

 

 

 

Figure 20. Frequency response noise signal CO2 analyser
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5.2.2.4 O2-signal 

As for the CO2 signal, the data acquisition is run at a sampling rate of 10 Hz with an integration time 

of 1 PLC. All electronic damping on the O2-analyser that can be set by the user was turned off. 

 

In a first test a stepwise change is realised by turning on a propane burner (30kW) after 10s. 
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Figure 21. Step response oxygen analyser + sampling 

 

A second test looks at the step response when turning the burner off after 10s. 
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Figure 22. Step response oxygen analyser + sampling 

 

Observations: 

• an important periodic disturbance can be seen on the signal (see below) 

• a death time of approximately 12s exists before the analyser starts to react 

• the response time of the O2-gas analysis system (includes transport lines/ filters/cooler/…) is 

approximately 3.5 s 
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In the assumption that the time constant lies within the interval (3.5 ± 0.2) s ( = rectangular 

distribution with width 0.2 s; see 6.2), the standard uncertainty on the time constant is estimated at   

0.12 s. 

 

In a third test, data is logged without any forced external disturbance. 
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Figure 23. Noise signal oxygen analyser 

 

A FFT-analysis reveals a periodic disturbance with a frequency of around 0.37 Hz. 
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Figure 24. Step response oxygen analyser + sampling 

 

Apart from this periodic 0.37 Hz disturbance with a peak-to-peak value of approximately 1.5 mV or 

1000 ppm, the signal looks very stable. A value of 1000 ppm is unacceptably high. Remember that the 

standard prescribes noise & drift values of maximum 100 ppm. 

This disturbance has been identified as being caused by pressure fluctuations and mechanical 

vibrations induced by the membrane pump in the gas analysis rack. Apparently the oxygen analyser, 

which is in the same housing as the carbon dioxide analyser, is more sensitive to vibrations and 

pressure fluctuations. This most probably can be attributed to the different measurement principles 

used, i.e. paramagnetism for the oxygen analyser while infrared absorption for the carbon dioxide 

analyser. 
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Eliminating the mechanical vibrations and damping the pressure fluctuations using an air damper, the 

signal improves considerably as shown in Figure 25. 
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Figure 25. Effect of eliminating disturbances (pressure fluctuations & vibrations) 

 

Alternatively to eliminating the disturbance, filtering techniques can be used. Different filter types will 

be discussed further in this chapter. 

 

Using the built in electronic damping of the analyser, with a time constant τ90% of for example 5 s, the 

disturbance will be damped by approximately -14 dB (20% of original signal). Setting τ90% to 6 s 

reduces the amplitude of the disturbance to 16%. 

A preferred solution however is to apply a 111 term Henderson anti-causal filter, H111, on the data 

sampled at 10 Hz which completely removes the 0.37 Hz disturbance. An anti-causal filter is looking 

both forward and backward in time, as opposed to a causal filter which only depends on the past. 

Both the exponential smoothing filters and the Henderson filters will be discussed in section (5.3). 

 

Filter type specification amplitude of distortion 

Exponential smoothing (Exp5) τ90% = 5 s 20 % 

Exponential smoothing (Exp 6) τ90% = 6 s 16 % 

Henderson (H111 ZP) 111 term zero phase 0 % 

Table 3. Efficiency of different filters to remove a 0.37 Hz disturbance 

 

 

Applying the Exp6 filter and the H111 filter on the original O2-data and the improved O2-data results 

in the time series shown in the next two figures. 
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Figure 26. Effect of Exp6 en H111 ZP filters on the raw O2-signal 

 

Figure 26 shows that the Exp6s filter only partly removes the periodic disturbance while it introduces a 

phase shift. The H111 ZP filter eliminates completely the periodic disturbance and follows the longer 

term variations. 

 

Note that for the H111 ZP filter there is no filtered data available for the first 110 samples (11s) of the 

two tails. Asymmetric filters could be used, if desired, in the tails. 

 

When starting from the improved data – which required some extra measures to the gas analysis 

system – both filters have a good noise rejection, but only the H111 ZP filter is in phase with the 

original data. 

Also note that the filtered (H111 ZP) data does not improve when the O2-data improves. This means 

that this filter also eliminates the disturbances introduced by the pressure fluctuations and vibrations of 

the membrane pump. 
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Figure 27. Effect of Exp6 en H111 ZP filters on the improved O2-signal
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5.2.2.5 Thermocouple-signal (Twall) 

The time constant related to the ‘slow heating’ of the exhaust duct is estimated to be in the order of 

220 s (Annex B.3). 

 

A third ‘temperature’ time constant can be associated with the slow heating of the exhaust gas 

collection hood. The time constant related to the heating of the hood is estimated to be in the order of 

1200s (Annex B.4).  
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5.2.3 Identification of built in filter 

Some of the available measuring devices have a built in damping with a parameterisable electric time 

constant. In order to better understand the behaviour of this equipment, the characteristics and 

behaviour of the filter will be investigated. 

 

In total three measuring devices make use of this same type of filter being: 

• Siemens Oxymat 6E oxygen analyser; 

• Siemens Ultramat 6E carbon dioxide analyser; 

• Halstrup Walcher Delta_P P92 differential pressure transducer. 

 

In both the Siemens and Halstrup manuals, the damping is characterised by an electric time constant. 

Additional information has been requested from both manufacturers (Annex B.14) 

Out of the vague description, it is assumed that the filters behave as follows: 

• The signal is sampled at an interval ts (Siemens: ts = 240ms) and consecutive values are stored 

in a temporary memory; 

• The outgoing signal is the mean value of the n last data points weighted with an exponential 

decaying function with time constant τ (t90% can be specified by the user). 

 

The sampling frequency fs = 4 1/6 Hz (ts = 240ms ) apparently is half the frequency of the 

electromagnetic field of the measuring head of the oxygen analyser (fef = 8 1/3 Hz). By doing so, one 

eliminates any aliasing effect (spurious data introduced by scanning at a too low frequency; see 

section 6.4.3) that would be introduced by the electromagnetic field. 
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Figure 28. Example of aliasing effect 
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Since none of the manufacturers is clear about the exact functioning of the filter an experiment is run 

whereby: 

• no external excitation is introduced; 

• data is logged at a scanrate of 10Hz during 100s 

• In a first period of 50s all damping (electric time constant is zero) is turned off 

• In a second period of 50s damping is introduced with an electric time constant t90% of 3s 

(τ=1.3s). 

 

The obtained experimental data X(t) (Graph 1; Figure 29) is now smoothened by calculating the 

convolution integral with an exponentially decaying function Y(t) (Graph 2)  with time constant 

τ=1.3s. 

Comparing (Graph 4) the calculated smoothened experimental data in the period 0-50s (Graph 3) with 

the data smoothened by the analyser in period 50-100s (Graph 1) it is reasonable to assume that the 

filter has the above described behaviour. 

 

 The experiment and the conclusions have been double checked making use of different time constants 

(t90% = 5s and 1s) 

 

 
Figure 29. Comparison of simulation and real behaviour of the built in digital filter 
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This behaviour corresponds to that of an exponential smoothing filter as will be discussed in the next 

section. The exponential filter can easily be implemented on a real time process and only requires the 

temporary storage of one value. 
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5.2.4 Bandwidth of the Mass Flow Controller 

The mass flow controller (Bronkhorst F112AC-FA-55-V / F-004AC) is used throughout this research 

as a known and variable input source. It controls the amount of propane (mg/s) that flows to the 

burner, which is directly related to the amount of heat released (H0 propane = 46.360kJ/kg). 

 

The frequency response of the mass flow controller, obtained by applying sine variations on the input, 

reveals a cutoff frequency of 0.25Hz approximately. 
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Figure 30. Gain of the Mass Flow Controller 

 

Note that the response of the switching on of the burner is almost immediately (τ90 < 1 s). The turning 

on of the burner is controlled by means of an electromagnetic valve. Since prior to the opening of the 

valve the flow is zero, the mass flow controller opens its valve completely resulting in a very fast 

initial reaction. 
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5.2.5 Summary table 

This table gives an overview of the response and delay times for the instrumentation used. The delay 

times are taken from the time of igniting the burner (opening the gas supply by means of an 

electromagnetic valve). This explains the high delay times of both the pressure transducer (bi-

directional probe) and the thermocouples (duct measuring section). Delay times are rounded off to the 

nearest second. 

 

 

 τ (s) BW (Hz) delay time (s) 

input signal    

MFC (mg/s) 4 0.25  

    

output signals    

O2 (Vol%) 3.5 0.29 12 

CO2 (Vol%) 3.5 0.29 12 

∆p (Pa) 0.5 2 3 

Tgas (°C) 1.15 0.87 3 

Twall (°C) 220 

1200 

0.0045 

0.0008 

9 

    

Data acquisition    

DAQ  22  

    

Electronic 

damping 

   

t90% = 0,5 0.22 0.7  

t90% = 1 0.43 0.3  

t90% = 3 1.30 0.1  

t90% = 5 2.17 0.07  

t90% = 10 4.34 0.03  

Table 4. Bandwidth of different components 
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5.3. Filters 

5.3.1 Introduction 

In this section first some digital filters are discussed like: the exponential smoothing filter, as used in 

the gas analysis equipment and in the pressure transducer, the SBI running average filter, as applied on 

the HRR data prior to calculating FIGRA, and the Henderson filter as an alternative to the previous 

two. 

Since the data can be processed offline, the anti-causal versions of the above filters are preferred since 

they do not introduce any phase lag. This technique requires to time reverse the data which explains 

why it can’t be used in a real time process. 

 

Next, an analogue Butterworth filter is described that could be used to remove any aliasing effect 

(spurious data introduced by scanning at a too low frequency; see section 6.4.3). 

 

Inverse filtering techniques allow to (partially) restore any damping introduced by the measuring 

devices thus increasing the bandwidth of the system. Some guidance is given on how to implement 

them. 

 

Finally an alternative data synchronisation method is proposed. 

 

5.3.2 Exponential smoothing filter 

The behaviour of an exponential smoothing filter corresponds with an analogue first order filter with 

time constant 

 

 









−

=

a

ts

1
1ln

τ  [ 5.2 ] 

 

whereby ts represents the sampling period and ‘a’ is a filter parameter (0 ≤ a ≤ 1). ‘a’ follows out of τ 

when the sampling interval ts is known. 
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This filter only requires to memorise one value and can easily be implemented using the formula 

 

 ( ) nnn axyay +−= −11  [ 5.3 ] 

 

The electronic damping works like a low pass filter with the following cutoff frequencies (-3dB) 

 

damping (t90%) (s) time constant τ (s) cutoff freq (Hz) 

0,5 0,22 0,7 

1 0,43 0,3 

3 1,30 0,1 

5 2,17 0,07 

10 4,34 0,03 

Table 5. Cutoff frequencies for different settings of the digital filter 

 

The gain and phase shift of the filters in Table 5 are shown in Figure 31 and in Figure 32. 
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Figure 31. Gain of the exponential smoothing filter 
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Figure 32. Phase shift of the exponential smoothing filter 

 

Passing for example a sine wave with periodicity of 10 s through a t90 = 5s filter, the damping will be 

some 41% while the phase lag is 54°. 

 

How to deal with differences in time constants? 

Different measurands have different response times and even a single measurand may have different 

response times from laboratory to laboratory. In view of better controlling the dynamic behaviour of 

different measurements in different laboratories, we want to obtain similar time constants irrespective 

of what and where we are measuring. 

 

Applying an exponential filter with time constant τ2 to a first order system having a time constant τ1 

corresponds approximately (in the pass band) with the behaviour of a first order system with an 

apparent time constant of 2
2

2
1 τττ += : 

     1    .
1+sτ1

     1    .
1+sτ2

 

 

with gain 
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Combining, by way of example, an oxygen analyser (τ1 = 3.5 s) with an exponential filter t90% = 5 s 

(τ1 = 2.17s), the resulting apparent time constant is τ = 4.12 s (see Figure 33). 
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Figure 33. Gain of combined first order systems & gain of apparent combined system 

 

Combining this further with a Henderson 11 term zero phase filter (@ a sampling frequency of 1/3 

Hz), as will be discussed in the next section, the frequency response curve becomes: 
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Figure 34. Above figure combined with a Henderson 11 term zero phase filter 

 

By using this technique, it is now possible to give all measurement components an almost equal 

dynamic behaviour. 
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5.3.3 Moving average filters 

Moving averages (or linear filters) successively average a shifting time span of data and are often used 

to explore time series with seasonal characteristics like economics. Depending on their weighting 

structure, they can either be used to eliminate cycles or to smooth data. They work on the assumption 

that the trend and cyclic components are stochastic (the future is only partly determined by past 

values) and not deterministic. 

 

Moving averages are often applied to smooth out irregularities in a series to obtain an estimate of the 

trend. 

 

Often distinction is made between symmetric and asymmetric filters. Asymmetric filters are used to 

provide trend estimates of the most recent data points in real time analysis and of the endpoints of a 

time series. 

Since in the SBI no real time trend analysis is needed nor a trend analysis of the two tails is essential, 

only symmetric moving average filters will be discussed further. 

 

Definitions 

Define a set of filter weights of length m1 + m2 + 1 as 

 

  [ 5.4 ] 
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A symmetric filter satisfies the conditions m = m1 = m2 and wi = w-i. Only symmetric filters will be 

considered further. 

 

For an observed time series yt, a filtered series zt can be calculated using 
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Theoretically, the properties of these filters can be identified by studying the Fourier transform[62] 
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The gain function of this symmetric filter is given by 
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while the phase shift is given by 
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whereby Re{f(ω)} and Im{f(ω)} represent respectively the real and imaginary part of the function 

f(ω). 

 

SBI filter 

The moving average filter used in the SBI (see formula 2.9) is a symmetric filter with m = 5 and a 

weighing pattern as given in Table 6. 

The filter is applied on the HRR time series prior to calculating the FIGRA time series. 

 

Henderson filter 

Henderson moving averages[48] are a commonly used filter to smooth data. They have the property that 

they are able to track a cubic polynomial without distortion. To obtain the weights, a compromise was 

struck between two of the characteristics that are generally expected of a trend series; i.e. that the trend 

should be able to reproduce or represent a wide range of curvatures, and that it should be as smooth as 

possible. They can be used, for example, to obtain estimates of trend by smoothing a series containing 

trend and irregular components. Henderson moving averages are used in preference to simpler moving 

averages as they can reproduce polynomials up to degree three. This means that they are able to 

adequately capture trend turning points and points of inflection.[62] 

 

The weighing pattern for often used Henderson filters is given in Table 6. 
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Weighing pattern for some symmetric filters 

11 Term SBI (S11) (0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05) 

9 Term Henderson (H9) (-0.041, -0.010, 0.119, 0.267, 0.330, 0.267, 0.119, -0.010, 

-0.041) 

13 Term Henderson (H13) (-0.019, -0.028, 0.0, 0.066, 0.147, 0.214, 0.240, 0.214, 0.147, 

0.066, 0.0, -0.028, -0.019) 

23 Term Henderson (H23) (-0.004, -0.011, -0.016, -0.015, -0.005, 0.013, 0.039, 0.068, 

0.097, 0.122, 0.138, 0.148, 0.138, 0.122, 0.097, 0.068, 0.039, 

0.013, -0.005, -0.015, -0.016, -0.011, -0.004) 

Table 6. Weighing pattern for some symmetric filters 

 

Choice of filter 

A first way to compare the different filters is by comparing their gain function. Figure 35 sets out the 

gain for a sample interval (scan rate) of ts = 3 s. 
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Figure 35. Gain functions of four moving average filters @ ts = 3 s 
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The corresponding phase shift for the SBI filter S11 is shown below. 
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Figure 36. Phase shift for filter S11 @ ts = 3 s 

 

All three Henderson filters are efficient low pass filters with a good noise rejection (higher 

frequencies). The SBI filter (S11) is less favourable since it also partially dampens out the lower 

frequencies with a resulting bias on the result. 

 

To further evaluate the different filters, a measure for smoothing developed by Henderson[48] and a 

local mean square error (LMSE), variance and bias developed by Dagum and Luati[45][46] will be used. 

 

The Henderson measure of smoothing(S) is defined by the sum of squares of the third differences of 

the weights 
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Higher S values mean that more noise will be present in the filtered data point. 

 

The local bias is defined as 
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while the local variance is, according to Dagum and Luati, expected to be well approximated by 
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The theoretical weight-based local mean square error (LMSE) is defined as 
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And finally the cutoff frequency, fc, is defined as the frequency above which the gain drops below 

2/1  (approx. 71%). This corresponds with an attenuation of –3 dB. 

 

 S bias variance LMSE 1/fc 

S11 0.020 0.50 0.10 0.35 22.8 ts 

H9 0.068 -0.10 0.28 0.29 7 ts 

H11 0.022 -0.04 0.24 0.24 8.4 ts 

H13 0.008 0.04 0.20 0.20 9.8 ts 

H23 0.001 0.33 0.12 0.23 16.3 ts 

Table 7. Comparison of moving average filters 

 

Table 7 shows that H13 is an excellent smoother with a low bias and acceptable variance. Its local 

mean square error is low with a good distribution between bias and variance. Its cutoff frequency for a 

sampling rate of 3 s is approximately 1/30 Hz (1 / 9.8 ts). This is inline with the rule of thumb to 

measure 10 times faster than the highest frequency of interest and to filter out all higher frequencies. 

 

Note that, with this respect, H13 will always be the preferred filter independent from the scanrate since 

the wavelength of the cutoff frequency is approximately 10 times (9.8) the sampling period. 

 

 

Local variance 

In analogy with the local bias and local variance associated with the filter, a local variance on the 

measurement signal is defined for use in the next chapter: 
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5.3.4 Anti-Causal, Zero-Phase Filter Implementation 

All filters described above have a phase lag of π in some periods where Re{f(ω)} becomes negative. 

In order to remove this phase lag, an anti-causal filter can be used instead. An anti-causal filter uses 

the information in the signal at points in time before and after the current point, in essence “looking 

into the future”, to eliminate phase distortion. This type of processing cannot be done in real-time, but 

must be done after a signal is captured by post-processing methods for it requires to time reverse the 

data (y1, y2, ..., yn → yn, yn-1, ..., y1) 

 

The technique consists of: 

1. filtering once the data; 

2. the output is then time reversed; 

3. filter the time reversed data; 

4. time reverse the data filtered twice. 

H(z)
F(z)

H(z)time
reverse

time
reverse

F(z)H(z) F(1/z)H(1/z) F(1/z)H(1/z)H(z) F(z)H(z)H(1/z)

 

The technique implies the complete removal of any phase shift Φ(ω) and results in a squared gain 

G(ω). 
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Figure 37. Gain functions of the H13 and H13 zero phase filters @ ts = 3 s 

 

Note that the H11 zero phase filter best approaches a cutoff frequency of 10 times the sampling period 

for the zero phase filters. 
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Filter 1/fc 

H13 9.8 ts 

H11 zero phase 10.2 ts 

H13 zero phase 11.9 ts 

H111 zero phase 90 ts 

Table 8. cutoff frequencies 

 

It is therefore recommended to use a H11 zero phase (H11 ZP) filter in this work since it removes any 

phase shift and has a cutoff frequency of 10 times the sampling period. 

 

In some cases, as will be discussed later in this chapter, higher order filters like the H111 ZP filter are 

useful. The gain function of this filter on data sampled at 10 Hz is given in Figure 38 and its cutoff 

frequency in Table 8. 
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Figure 38. Gain function of the H111 zero phase filter @ ts = 0.1 s 

 

5.3.5 Chebychev and Butterworth filters 

In order to prevent aliasing effects, an analogue filter should be used prior to the D/A converter of the 

data acquisition system. Most commercial low pass filters have cutoff frequencies down to 1 Hz. 

Below this frequency, the signal is often considered to be a DC signal. 

 

In general, filters can be described as function of their transfer-function: 
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H(s) is the Laplace transform of the impulse response h(t): 

 

  { })(£)( thsH =

 

Nodes are values of s whereby the nominator becomes zero, while poles are values whereby the 

denominator becomes zero. 

 

The Butterworth filter is a low-pass filter common to many applications that require a response that is 

flat in the passband, but cuts-off as sharply as possible afterwards. It requires arranging poles of a low 

pass filter with equal spacing around a semi-circular locus.  

 

By bringing poles closer to the axis, the Chebychev filter’s frequency cutoff is steeper than the 

Butterworth filter. Chebychev filter derives from a Butterworth filter by moving each pole closer to 

the axis in the same proportion so that the poles lie on an ellipse. The Chebychev filter offers a trade-

off between ripple and cutoff. In this respect, the Butterworth filter, in which passband ripple has been 

set to zero, is a special case of the Chebychev filter. 

 

Figure 39 sketches a low pass Butterworth filter of the third order with a cutoff frequency of 1 Hz[40] 

(damping of –60 dB/decade) 
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Figure 39. Low pass Butterworth filter of the third order 
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whereby X is a scaling factor that can be used to end up with some practical values for the 

capacitances and resistances. 

 

5.4. Recommended filters 

As may have become clear from the previous sections the use and/or lack of analogue and digital 

filters substantially influences the measured signal in so far that it may have repercussion on the values 

used for classification and thus classification result. 

 

This section proposes changes to the data handling in the SBI standard at three possible levels. A first 

level only requires minor changes to the calculation procedures (software) while a second level 

requires substantial changes to both the calculation procedures and the data acquisition system 

(software and hardware). A third level requires the introduction of inverse filters to recover some BW 

and requires the careful optimisation of the gas analysis rack. 

 

The three different levels result in three different bandwidths (BW). 

 

changes approximate BW filtering 

level 1 1 / 30 Hz H11 ZP @ ts = 3 s 

level 2 1 / 10 Hz H111 ZP @ ts = 0.1 s 

level 3 1 Hz inverse filtering 

Table 9. Approximate BW of different alternative measurement methods 

 

Note that if a signal is passed through a filter whose BW is less than that of the signal, the result is a 

smearing or broadening of the input waveform. 

 

5.4.1 First level changes 

The first level changes aim at getting qualitative measurements under the limitations of the SBI 

standard. 

 

Actual specifications on the gas analysers 

The standard prescribes to measure with a 3 s sampling interval which immediately limits the BW 

according to the Nyquist criterion to 0.16667 Hz (1/[2*3s]). This criterion says that the fastest event 

that can be restored out of a measurement at a sampling rate of fs = 1/ts has a periodicity of 2*ts. 
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Furthermore, there are no stringent limitations on the damping of the gas analysers. The only 

requirement is that the response time τSBI of the overall system is limited to 12 s as described in section 

C.2.1 of the standard. In the field, values between 7 s and 12 s are reported. The relationship between 

the time constant τ and τSBI (time between a 10% and 90% change) for a first order system is given by 

 ( ) ( ) ττττ 2.2)1.0ln()9.0ln(12 ≅−−−=−= ttSBI  [ 5.9 ] 

 

Combining this with the time constants found in section 5.2.2, the τSBI value for both gas analysers at 

the Ghent premises is τSBI = 7.7 s. 

 

Actual specifications on the pressure transducer 

The limitation on the response time of the pressure transducer is that it shall have a 90% response time 

of 1 s or better. This corresponds to a time constant (first order system) of τ = 0.43 s (1/2.303) or 

better. 

This requirement, because not accompanied with other measures, has a negative influence on the 

quality of the measurement result. Indeed, pressure fluctuations induced by chimney pressure 

fluctuations would typically have frequencies in the order of 1 Hz or lower. Since they are not 

dampened out by the pressure transducer and since the scan rate is limited to 3 s only, spurious data 

will occur on the measurement result due to the aliasing effect (see 6.4.3) for almost any disturbing 

frequency between 0.1667 Hz and 1 Hz. 

 

A better choice, in the given circumstances, would be to dampen the pressure signal (most often 

pressure transducers have a parameterisable damping system) with a same time constant as for the gas 

analysers. 

 

First level changes 

In view of: 

• different time constants for the different measuring devices, 

• different time constants of equipment of different laboratories, 

• the limited scanrate, 

• the rule of thumb to measure 10 times faster than the highest frequency of interest and to filter 

out all frequencies above this frequency, 

the proposal is to apply: 
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1. an exponential digital or analogue filter on the pressure transducer, O2 and CO2 signal such 

that the output has a time constant τ = β s (this signal is then fed into the data acquisition 

system), 

2. an exponential digital filter in the software with time constant τ2 on the temperature signal 

such that the combined time constant τ = β s ( 2
1

2
2 τττ −= ) (τ1 is the time constant of the 

undampened signal), 

3. a H11 zero phase (11 term Henderson) on all sampled data and to no longer use the SBI 

running average filter on the heat release data (HRR), 

4. eliminate delay time by synchronising data using maximisation of Pearson’s correlation 

coefficient as discussed further in section 5.6. 

 

Effect of first level changes 

As discussed in section 5.3.4 this will dampen all frequencies above 1/30 Hz equally for all channels 

without additional phase distortion. This allows to accurately synchronise the data and removes 

differences between laboratories caused by different time constants at the cost of some loss of BW. 

The value of β should be taken as low as practically possible and would typically have a value of 3.5 

to 4 s, certainly not more than 5 s (refer to 5.3.2 for the effects of exponential filters). 

By way of example a same data source is passed through three systems with different time constants, 

being τ1 = 0.5 s, τ2 = 3 s, τ3 = 4 s. The system with time constant τ1 can typically be a pressure 

transducer while a system with time constant τ3 can be that same system in combination with a digital 

exponential filter. Another example is an oxygen analyser with a fast response time τ2 (fastest 

response time reported in the second SBI round robin) or with a more moderate response time τ3. 
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Figure 40. same data passed through systems with time constants τ1 = 0.5 s ( ), τ2 = 3 s (∇), τ3 = 5.5 s (x) 

 

Two things that catch the eye are that local differences can be important especially for equipment with 

big differences in response time and that phase shifting occurs. 
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In order to better match the data with each other, the signals of the ‘fast’ systems 1 and 2 can be 

passed through a digital exponential smoothing filter with a time constant τES. The resulting apparent 

time constant τ equals the time constant of for example the slowest system τ3 ( 22
, iiES τττ −=  

i=1,2). 
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Figure 41. application of an exponential smoothing filter 

 

The frequency response of the combined system (system + smoothing filter) would typically have a 

shape as displayed in Figure 33, and can further be improved by combining this with a Henderson 11 

term zero phase filter (ts = 1/3 Hz) as shown in Figure 34 and Figure 42. 
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Figure 42. applying a Henderson 11 term zero phase filter in addition 

 

Due to different phase shifts of the different exponential filters used, there still remains a time shift 

between the different data sets. In this specific case, the time shift is approximately 0.35 s as found by 

re-sampling the data at 20 Hz (linear interpolation between data points sampled at  1/3 Hz) and by 

maximising Pearson’s correlation coefficient as explained further in section 5.6. 
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The results, after correction for this time shift, are displayed in Figure 43. 

 

 

 

 

 

 

 

 

 

 

The measures presented will improve the reproducibility of test results between test laboratories. 

Effect of differences in time constants (actual situation) 

Indeed, Figure 44 shows the results for the Figra value (used for classification) for two virtual 

laboratories, one with an assumed response time on the oxygen analyser (according to the definition of 

the SBI standard) of 7.7 s and the second with a response time of 13.2 s. As a side remark the above 

numbers are, according to the standard, rounded to the nearest integer of the series (0, 3, 6, 9, 12, ...) to 

the numbers 9 s and 12 s respectively, so they are within tolerance and still match the 

recommendations of Messerschmidt and Van Hees  to fall within a window of 9s to 12s. This in 

order to minimise the tendency of differing labs to rate a product differently. 
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Figure 43. further synchronisation (re-sampling & maximising ‘r’ coefficient) 

 

[53]

 

The results are based on 30 different data sets, each representing a test on a same MDF board as 

further explained. A test was run on a MDF board (product P2, fourth sample, SBI RR2) with the data 

acquisition running at 10 samples a second (10 Hz). Then the data set was reduced to 30 different data 

sets by taking every 30th data point starting with element i (i = 1 .. 30). In this way, it is as if we have 

thirty different data sets at a scanrate of 1/3 Hz (as required by the standard) from a same test. Ideally 

all thirty data sets should produce the same result, which clearly they don’t. 

The test results should be compared in pairs (each case separately). The graph shows that, for this 

specific case and test, the differences in the classification parameter FIGRA vary from 0 to 3%. 
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Figure 44. Example of different classification result due to different response times 

 

This example highlights the need for managing the dynamic behaviour of all time variable data. 

 

 

5.4.2 Second level changes 

One may argue that the SBI should be able to capture faster events without smearing out events over 

time. The limit of the fastest event we want to capture could be taken arbitrarily as sustained flaming 

as defined in the Cone Calorimeter test[4]. In the Cone Calorimeter standard, distinction in made 

between: 

• flashes, where a flame on or over the surface of the specimen exists for periods of less than 1s, 

• transitory flaming, where a flame on or over the surface of the specimen exists for periods of 

between 1 s and 10 s, 

• sustained flaming, where a flame on or over the surface of the specimen exists for periods of 

over 10 s. 

 

Bryant et al[64] also raise the question as to how rapid a HRR fluctuation matters in the context of a  

3 Megawatt heat release rate test facility. They say that there may not be a unique answer to that and 

they plan research on the subject at NIST. They further suggest that it may be in the order of 5 s to  

15 s. 

 

Second level changes 

Assuming the fastest event we want to capture is in the order of 10 s, this requires: 

• the turning off of any damping on the measuring equipment, 

• the use of an analogue filter with a cutoff frequency at 1 Hz (to avoid aliasing), 

• a scan rate of 10 Hz (to avoid aliasing), 
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• the application of a H111 zero phase (111 term Henderson) filter on the sampled data (to 

remove any disturbance with frequency above 1/10 Hz). 

 

Effect of second level changes 

An example of how level two changes can improve the DAQ is shown in Figure 45. Besides the 

original sampled differential pressure data (10 Hz), the graph shows the filtered data making use of 

either a zero phase Henderson filter or a zero phase exponential filter (please disregard the tails where 

no filtering is applied). By way of example, one of thirty possible data sets at a sampling rate of  

ts = 3 s is shown in the same graph. 

 

50

52

54

56

58

60

62

0 20 40 60 80 100 120

time (s)

dp
 (P

a)

dp-signal
Exp filter t90=6s
H111
dp (Ts = 3 s)

Exp

H111

Exp

H111

 

 

 

 

 

 

 

 

 

Figure 45. Original data, filtered data (H111 ZP and EXP6s ZP) and sampled data (ts=3s) 

 

In order to better understand the behaviour of, and the differences between the filters, the next three 

figures show a Fast Fourier Transform (FFT) on the three data sets (original, Exp filtered, H111 

filtered).  

 

Figure 46. FFT on the original data 
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Comparing the magnitude of the frequency spectra, it is clear that the exponential filter not only 

dampens out frequencies above 0.1 Hz, but also changes the spectrum below 0.1 Hz. 

 

Figure 47. FFT on the filtered data (H111 ZP) 

 

 

Figure 48. FFT on the filtered data (Exp6s ZP) 

 

The second level technique could be used to capture events up to 1/5 Hz (with an adapted Henderson 

filter). Above this frequency, not only the data acquisition system needs to be replaced but also the gas 

analysis system and pressure transducer need careful design to allow for inverse filtering. 
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5.4.3 Third level changes 

If one wants to capture faster events like transitory flaming or even flashes, inverse filters need to be 

applied. This is not recommended for the SBI test but could be useful for small scale research 

equipment like the Cone Calorimeter. 

 

Inverse filtering is discussed briefly in the next section. 

 

5.5. Inverse filters 

All four major measurement components (O2, CO2, temperature and differential pressure) have time 

constants ranging from 0.5 s to 3.5 s. This means that we are only able to capture events with a time 

constant exceeding 3.5 s. 

 

For most intermediate and large scale fire applications like the room corner test and the SBI, this does 

not pose any problem since the fastest events of interest would have a periodicity of at least 5 to 15 

seconds as discussed earlier. 

 

However, if we would want to measure events like surface flashes (T < 1 s) or transitory flaming (T < 

10 s), we hit the limits of the actual measurement devices. 

 

By applying inverse filters H-1(s) on the individual measurement signals, we can remove the damping 

effect H(s) of the internal system thus restoring the ‘real’ signal. 

 

Equipment
H(s)

+
F(s)

noise

noise filter Inverse filter
H-1(s)

F(s)G(s) G(s)Y(s)

actually sampled data
 

Figure 49. Principle of an ideal inverse filter set-up 

 

One major drawback of this technique is however that the inverse filter acts as an amplifier for the 

higher frequencies including noise on the measurement signal. The inverse filter therefore needs to be 

designed such that it only amplifies frequencies in the narrow BW we want to restore. 
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Suppose we want to increase the BW to 1Hz, instead of the actual 0.29 Hz, this would require the 

following steps: 

1. Improve the gas analysis equipment to eliminate (or suppress sufficiently) any disturbance 

with frequency below 1 Hz 

2. Introduce an analogue filter with cutoff frequency of 1 Hz in order to avoid any aliasing effect 

end to remove higher frequencies that are of no interest 

3. Increase the sampling rate to 10Hz (10 times higher than the highest frequency of interest) 

4. Apply the inverse filter 

 

A Butterworth type filter is recommended as analogue filter since it shows no ripple in the pass band. 

 

The maximum achievable BW is 2 Hz since the internal sampling rate of the electronics in the gas 

analysers is working at ts = 240 ms (fs ≅ 4Hz). Indeed, according to the Nyquist criteria the maximum 

perceptible frequency is half the sampling frequency. 

 

However, when applying this technique, one may encounter other limiting effects like pressure 

fluctuations, vibrations, etc. 

 

5.6. Elimination of delay time 

Since the differential pressure measurement, the temperature measurement, the oxygen and carbon 

dioxide concentration measurements, needed to calculate the heat release, have different delay times, a 

synchronization of data is needed. In general, there is a delay time of several seconds (9 s to 15 s in 

most labs) in-between the sampling of the combustion gases and the actual gas concentration 

measurement. A fully automated procedure is given in the SBI standard to exclude human 

interpretation 

 

The measured data are synchronised in time making use of the dips and peaks that occur in the data 

due to the switch from ‘primary’ to ‘main’ burner around t = 300 s. Synchronisation is necessary due 

to the delayed response of the oxygen and carbon dioxide analysers that can easily reach values from  

6 s to 15 s and even higher (the standard allows 30 s delay). The filters, long transport lines, the cooler, 

etc. in between the gas sample probe and the analyser unit, cause this delay time. 

After synchronisation, all data are shifted such that the ‘main’ burner ignites – by definition - at time 

t=300s 

 

Since synchronisation can have such a big impact on the classification results, a scientifically more 

sound method is proposed based on correlations. 
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Correlation can be used to compare the similarity of two sets of data. Correlation computes a measure 

of similarity of two input signals as they are shifted by one another. The correlation result reaches a 

maximum at the time when the two signals match best. If the two signals are identical, this maximum 

is reached at t = 0 (no delay). If the two signals have similar shapes but one is delayed in time and 

possibly has noise added to it then correlation is a good method to measure that delay.  

 

The Pearson coefficient ‘r’ is a single correlation value that reflects the degree of linear relationship 

between two data sets. Its value is between -1 and +1. A value of +1 means that there is a perfect 

positive linear relationship between the two data sets. A value of -1 means that there is a perfect 

negative linear relationship, and a value of 0 means there is no linear relationship at all between the 

data sets. 

Pearson´s coefficient is calculated as 
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Synchronising the data would then mean to maximise the absolute value of Pearson’s coefficient. 

Applying this by way of example on a particle board data set sampled at 10 Hz a delay time of 7.4 s 

for the oxygen concentration data set is found while 9.6 s is found for the carbon dioxide data set. In 

analogy with the standard, the data sets have been synchronised with respect to the temperature data 

set. 
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Figure 50. Data synchronisation by means of maximising correlation (Pearson) 
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5.7. Conclusions 

In this chapter, the concept of bandwidth (BW) – well known in electronic engineering and process 

control – has been introduced. The BW is the frequency below which an input signal is transferred 

without substantial distortion in amplitude and/or phase-shift. If a signal is passed through a filter 

whose BW is less than that of the signal, the result is a smearing or broadening of the input waveform. 

 

Peak heat release rate values, which are often used in fire regulations, are meaningless if not 

accompanied with the BW of the test instrumentation. The consequence for the European 

classification system is that test results for products that did not go to flashover in the Room Corner 

test end up with a high uncertainty interval because based on peak heat release rate divided by the time 

to reach this peak. 

 

The BW of the different measuring devices, mass flow controller and data acquisition system of the 

Ghent premises have been identified together with the behaviour of the built in adjustable filters in 

some of the measuring devices.  

 

Due to differences in BW between instrumentation and in-between laboratories, measurement results 

can vary substantially. In order to overcome the tendency of differing labs to rate products differently 

three possible levels of changes to the standard have been proposed. A first level only requires some 

minor changes to the software calculation procedures and results in an approximate BW of 1/30 Hz. A 

second level involves substantial changes to both the calculation procedures and the data acquisition 

system and results in an approximate BW of 1/10 Hz. This is our preferred option because: it 

guarantees the complete elimination of any possible aliasing effect, it is able to capture events with a 

periodicity down to 10 s, it allows for a better smoothing and synchronisation of the data with a 

resulting better repeatability and reproducibility. 

A third level requires the introduction of inverse filters and potentially allows to recover some BW up 

to 1 Hz. Since the periodicity of events of interest in the SBI test method is in the order of 10 s or 

higher the proposal is to not follow this route for intermediate and large scale heat release rate test 

equipment. The technique may be of interest in small scale tests like the Cone Calorimeter. It needs to 

be stressed however that this method is very sensitive to noise and that it requires a complete redesign 

and optimisation of the gas analysis train to eliminate any disturbing noise. 

 

Also an alternative automatic synchronisation method based on the maximisation of a correlation 

coefficient has been proposed. Contrary to the actual method, which is based on the synchronisation of 

times when signals surpass a certain limit value after a stepwise burner change, the method does take 

differences in dynamic behaviour of the different components into account. 
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Flat running average filters are popular for smoothing data over time. Although they are easy to 

understand and implement, they not only dampen out the higher frequencies but they also disturb the 

lower frequencies which are of interest to us. This results in a high local bias and a poor local 

variance. The concept of weighted, Henderson moving average filters is introduced. Henderson filters 

are often used as trend filters in economics. The Henderson filters can reproduce polynomials up to 

degree three which enables them to adequately capture trend turning points and points of inflection. 

 

The same or similar filter techniques can be applied for the smoke measurement. 
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6 Uncertainty 

6.1. Introduction 

According to EN ISO 17025[9], which sets out the general requirements for the competence of testing 

and calibration laboratories, and ISO 10012-1[14], which sets out the requirements for assuring the 

quality of measuring equipment, uncertainties are to be reported in both testing and calibration reports. 

 

The general principles for evaluating and reporting uncertainties are given in the ISO Guide to the 

Expression of Uncertainty in Measurement (GUM)[13], but need to be applied to the specific case of 

fire testing. Due to the harmonisation of fire testing in the European Community (EUROCLASSES; 

EN 13501-1[1]) and the pressure on testing laboratories to operate under accreditation, this is becoming 

even more important. 

 

It is of common knowledge that measurement results are never perfectly accurate. In practice the 

sources of systematic and random errors which can affect the results of measurement are numerous, 

even for the most careful operators. To describe this lack of perfection, the term "uncertainty" is used. 

Although the concept of uncertainty may be related to a "doubt", in the real sense the knowledge of 

uncertainty implies increased confidence in the validity of results. 

 

The qualitative concept of accuracy is quantified by the uncertainty which varies inversely 

‘proportioned’ to it. Accuracy consists of both trueness and precision as shown in Figure 51. A 

numerical measure for precision is the standard deviation, while trueness is expressed numerically by 

the systematic error or the bias. 

 

It is considered good practice to eliminate any systematic errors. However, if the value of a systematic 

error is unknown it may be regarded as a random error. Random errors result in a spread of the values 

and can usually be reduced by increasing the number of observations. Its expectation or expected 

value is zero. 
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Figure 51. Concepts of accuracy (uncertainty), precision (standard deviation) and trueness (bias) 

 

In general, the result of a measurement is only an approximation or estimate of the value of the 

specific quantity subject to measurement, that is, the measurand, and thus the result is complete only 

when accompanied by a quantitative statement of its uncertainty. 

 

Without knowledge of the accuracy (trueness and precision) of measurement methods and/or the 

uncertainty of measurement results, it may appear very easy to make decisions. But, in practice, these 

decisions may be incorrect and sometimes lead to serious consequences, if the measurement 

uncertainty is not taken into account. 

 

For example, in fire testing, when rejecting instead of accepting a good product during a certification 

process or, conversely, when accepting a bad product by error. So, it is vital to quantify the reliability 

of the measurement results to greatly reduce any disputes and adverse consequences of legal 

proceedings. This is of particular importance if we consider the growing number of cases of litigation 

in Europe and the liability problems of manufacturers in case of accidents. 
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NOTE – The difference between error and uncertainty should always be borne in mind. For example, 

the result of a measurement after correction can unknowably be very close to the unknown value of 

the measurand, and thus have negligible error, even though it may have a large uncertainty. 

 

6.2. Elaboration of terms and concepts 

6.2.1 Mean and variance 

A population with a ‘normal’ probability density function is characterised by its mean value µ and its 

variance σ²: N(µ,σ²). When both µ and σ² are unknown, they can be estimated by taking a number n of 

samples and by calculating the estimated mean x , the estimated variance s² and the estimated 

standard deviation s. 
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If a covariance exists between two variables x and y, it is given by 
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6.2.2 Estimation of the confidence interval for the population mean[40] 

Often the standard deviation σ is unknown. To evaluate the confidence interval, some estimate of σ 

must be made. The most obvious candidate is the sample standard deviation s. But the use of s 

introduces an additional source of unreliability, especially if the sample is small. To retain the 

confidence interval, we must therefore widen the interval. We do so by using the t distribution instead 

of the standard normal distribution. For a sample size larger than 100, the t-distribution approaches the 
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normal distribution. For a 95% (two tails of 2.5%) confidence interval – which we strive for – the 

uncertainty is estimated by 

 

 
n
st 025.0  [ 6.4 ] 

 

The value t0.025 depends on the amount of information used in calculating s², i.e. on the degrees of 

freedom. For large sample sizes, t0.025 approaches 1.96 which is the value for a normal distribution. For 

a normal distribution, a coverage factor 2 (1.96) corresponds to a 95% confidence interval (see 6.2.6). 

 

6.2.3 Sources of uncertainty 

According to GUM any detailed report of the uncertainty should consist of a complete list of the 

components, specifying for each the method used to obtain its numerical value. The components may 

be grouped into two categories based on their method of evaluation: 

 

Type A  The components in category A are characterized by the estimated variances si² 

or by the estimated standard deviation si derived from data by statistical 

methods. Where appropriate the covariance sij² should be given. 

For such a component, the standard uncertainty is ui = si. 

 

Type B  The standard uncertainty of a Type B evaluation is approximated based on 

specifications, calibrations, handbooks, experience, judgements etc. and is 

represented by a quantity uj. It is obtained from an assumed probability 

distribution based on all the available information. 

Where appropriate the covariance should be given and should be treated in a 

similar way. 

 

The ‘type’ classification does not indicate any difference in the nature of the components resulting 

from the two types of evaluation. Both are based on probability distributions, and the uncertainty 

components resulting from either type are quantified by standard deviations. It should be recognized 

that a Type B evaluation of standard uncertainty can be as reliable as a Type A evaluation. 

 

The standard deviation of a Type B evaluation is based on the shape of the distribution. Distributions 

used in this dissertation are the rectangular, the triangular, the trapezoidal and the normal distribution. 

For the rectangular and triangular also asymmetric distributions are discussed. 
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6.2.4 Standard uncertainties for different distributions 

Normal distribution 

Often calibration certificates, handbooks, manufacturer’s specifications, etc. state a particular multiple 

of a standard deviation. In this case, a normal distribution is assumed to obtain the standard 

uncertainty. 

 

Rectangular distribution 

In other cases the probability that the value of Xi lies within the interval a- to a+ for all practical 

purposes is equal to one and the probability that Xi lies outside this interval is essentially zero. If there  

is no specific knowledge about the possible values of Xi within the interval, a uniform or rectangular 

distribution of values is assumed. The associated standard deviation is function of the width of the 

distribution as: 
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Indeed, for a rectangular distribution, the variance is obtained as follows. Given the probability 

function of the rectangular distribution 
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This can be written in terms of the Heaviside step function H(x) as 
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This makes that the variance σ² with population mean µ for an asymmetric distribution becomes 
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So for a symmetric rectangular interval a- to a+, the variance reduces to 
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The sample estimate of the standard deviation thus is: 
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The rectangular distribution is a reasonable default model in the absence of any other information. But 

if it is known that values of the quantity in question near the centre of the limits are more likely than 

values close to the limits, a triangular or a normal distribution may be a better model. 

 

Triangular and trapezoidal distribution 

In many cases it is more realistic to expect that values near the bounds are less likely than those near 

the midpoint. It is then reasonable to replace the symmetric rectangular distribution by a symmetric 
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trapezoidal distribution having equal sloping sides, a base of width 2a and a top of width 2aβ where 

0≤β≤1. Similar as for a rectangular distribution, for a trapezoidal distribution the standard deviation 

becomes: 
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As β goes to 1 this trapezoidal distribution approaches the rectangular distribution while for β=0 it is a 

triangular distribution. 
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Asymmetric  distributions 

For an asymmetric triangular distribution the mean value and standard deviation become[84] 
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For the limit case of a ‘one sided triangular distribution (a=c=0; b=b) this reduces to 
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The limit case of a ‘one sided rectangular distribution (a=0; b=b) reduces to (formulas 6.8 & 6.11) 
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For asymmetric distributions the difference between the mean value µ and c will be considered as a 

bias and, as recommended by the GUM, we will correct for it. 

 

6.2.5 Combined uncertainty 

6.2.5.1 Uncorrelated input quantities 

The standard uncertainty of y, where y is the estimate of the measurand Y and thus the measurement, 

is obtained by appropriately combining the standard uncertainties of the input estimates xi. In case all 

input quantities are independent, this combined standard uncertainty uc(y) is the positive square root of 

the combined variance u²c(y) and is given by  
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where the sensitivity coefficient is given by 
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6.2.5.2 Correlated input quantities 

The above equation is only valid when the input quantities Xi are independent or uncorrelated. When 

the input quantities are correlated, the appropriate expression for the combined variance u²c(y) 

associated with the result of the measurement is 
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whereby the degree of correlation between xi and xj is characterised by the estimated correlation 

coefficient (Pearson) 
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If the estimates xi and xj are independent, r(xi,xj) = 0, and a change in one does not imply an expected 

change in the other. Pearson´s coefficient reflects the degree of linear relationship between two data 

sets. Its value is between -1 and +1. A value of +1 means that there is a perfect positive linear 

relationship between the two data sets. A value of -1 means that there is a perfect negative linear 

relationship, and a value of 0 means there is no linear relationship at all between the data sets. Please 

refer to section 5.6 for additional information. 

 

The measurands E’, patm, Troom, ϕ, α, c, A, kt and kp, as defined in sections 2.2.3.1 and 6.4, are constant 

or can be considered constant throughout the test. They are treated as independent input quantities 

However, the oxygen concentration (XO2), the carbon dioxide concentration (XCO2), the exhaust gas 

temperature in the measurement section (Tms) and the differential pressure over the velocity probe (∆p) 

are significantly correlated the one to the others as can be seen, by way of example, in Table 10. 

Correlations

1 -.996** -.985** -.912**
. .000 .000 .000

16676 16676 16676 16676
-.996** 1 .985** .912**
.000 . .000 .000

16676 16676 16676 16676
-.985** .985** 1 .930**
.000 .000 . .000

16676 16676 16676 16676
-.912** .912** .930** 1
.000 .000 .000 .

16676 16676 16676 16676

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

O2-raw

CO2-raw

Tms-raw

dp-raw

O2-raw CO2-raw Tms-raw dp-raw

Correlation is significant at the 0.01 level (2-tailed).**. 

Table 10. Correlation between XO2, XCO2, Tms and ∆p for a particle board test. 

 

 

Besides the correlation coefficients, Table 10 shows the 2 tailed significance level of the hypotheses   
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H0 = “variable x and variable y are uncorrelated”. A significance level of 0.05 or lower indicates that 

there is a 95% chance or higher that the variables are correlated. 

 

This can also be explained intuitively. Suppose a pure substance like for example propane is burnt, 

 

 , [ 6.26 ] OHCOOHC 22283 435 +→+

 

we know that for every mole of oxygen consumed, 3/5 moles of carbon dioxide will be formed. So 

there is a perfect negative correlation between the two (r = -1). 

 

Furthermore, when there is oxygen consumption, there is heat release and temperature of the exhaust 

gases will rise with a resulting negative correlation. This negative correlation is also true for the 

differential pressure, which will increase due to an increased velocity in the exhaust duct when 

running the equipment at constant mass flow rate (see by way of example Table 2, p. 90). 

 

The correlation coefficients r(xi,xj) used throughout this dissertation will be calculated based on the 

data of the test under consideration. 

 

6.2.6 Expanded uncertainty 

Although the combined standard uncertainty uc is used to express the uncertainty of a wide variety of 

applications, what is often required is a measure of uncertainty that defines an interval about the 

measurement result y within which the value of the measurand Y can be confidently asserted to lie. 

The measure of uncertainty intended to meet this requirement is termed expanded uncertainty, U, and 

is obtained by multiplying uc(y) by a coverage factor k. Thus U = kuc(y) and it is confidently believed 

that Y is greater than or equal to y - U, and is less than or equal to y + U, which is commonly written 

as Y = y ± U. 

 

In general, the value of the coverage factor k is chosen on the basis of the desired level of confidence 

to be associated with the interval defined by U = kuc. Typically, k is in the range 2 to 3. When the 

normal distribution applies and uc is a reliable estimate of the standard deviation of y, U = 2 uc (i.e., k 

= 2) defines an interval having a level of confidence of approximately 95 % (95.44%), and U = 3 uc 

(i.e., k = 3) defines an interval having a level of confidence greater than 99 % (99.73%).  
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Throughout this dissertation, we will work with standard deviations to express the uncertainty of 

individual measurands and combined standard uncertainties, and with a coverage factor of 2 to express 

the confidence interval on the estimate of the overall uncertainty. 

 

On occasion, a self defined apparent standard deviation defined as the uncertainty for a 95% interval 

divided by 1.96 will be used. This is useful when for example using t-distributions since for this 

distribution the expanded uncertainty U(k=1.96) ≠ 1.96*U(k=1). Since we know that we finally want 

to end up with a 95% confidence interval but we are working with standard deviations, t-distributions 

will be calculated based on a 95% confidence interval divided by 1.96. 

This allows us to work with standard deviations all the time and to, at the end, multiply with the 

coverage factor of k = 1.96. 
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6.2.7 Uncorrected bias 

Although it is recommended (and strongly preferred) practice of correcting for all known bias effects, 

in view of backwards compatibility of test results for example, an increased uncertainty interval may 

be the preferred option. 

 

Unfortunately, the GUM does not deal directly with the situation where a known measurement bias is 

present but is uncorrected. 

Several proposed methods of treating uncorrected bias are available. We propose to follow the 

guidelines of Phillips et al[55] because of its conservative approach. This method algebraically sums the 

signed bias δ with the expanded uncertainty, unless the bias is larger: 

  [ 6.28 ] 
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Note that the expanded uncertainty must be re-computed if the coverage factor is changed, and in 

particular, that U±(k=2) ≠ 2*U±(k=1). 

 

The combined standard uncertainty uc is calculated out of the standard uncertainty associated with the 

bias ub and the standard uncertainty u that accounts for the combination of all other uncertainty 

sources not directly associated with the bias. 

 

 ( ) 2
122

bc uuu +=  [ 6.31 ] 

 

The proposed approach can somewhat overestimate the uncertainty. In the case of a coverage factor 

k=2, the method maintains the 95% confidence interval until the ratio of the bias to the combined 

standard uncertainty becomes larger than the coverage factor. For such large bias values, the method 

produces uncertainty intervals that are slightly conservative. 
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Note that the sign of the sensitivity coefficient is important to know the effect on the global 

uncertainty. As an example, suppose x1 and x2 both have uncorrected bias and the expanded 

uncertainty is given by 
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The uncertainty interval on x defined as 
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then becomes 
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assuming x1 ≠ 0 and x2 ≠ 0. 

 

An underestimation of x1 leads to an underestimation of x, while an underestimation of x2 leads to an 

overestimation of x. 
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6.3. Combined standard uncertainties 

6.3.1 Combined standard uncertainty on sums 

Since the discussion on the uncertainty of a data acquisition system often requires the standard 

uncertainty on the sum of N independent variables/measurements, a short review is given below. 

 

Assume the sum 

 

  [ 6.36 ] ∑=
N

i
ixay

 

Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci = a.  

 

The standard uncertainty of y is obtained by appropriately combining the standard uncertainties of the 

input estimates xi. This combined standard uncertainty uc(y) is the positive square root of the 

combined variance u²c(y) and is given by 
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Note that for correlated measurements this is no longer true as will be discussed in the next section. 

 

6.3.2 Combined standard uncertainty on averages 

If xi is a repetitive independent measurement of a measurand X, the uncertainty on the average is given 

by 
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If however the uncertainty of a component is related to an effect with periodicity exceeding the 

weighing interval (tN – t1 << Teffect), the uncertainty on the average is more likely to be  

 

 )()( ic xuxu =  [ 6.39] 

 

One could say that the measurement results are highly correlated (r = 1) such that formula 6.24 

becomes (ci = 1/N) 
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When for example calculating the 30 second running average of the heat release rate (formula 2.9) this 

should be kept in mind. The running average will reduce the uncertainty associated with noise, but will 

not for example eliminate the uncertainty related to daily cycle temperature variations. 

 

The following graph may illustrate this by way of example. Suppose a cyclic phenomenon with 

periodicity ts = 360 s introduces an uncertainty of 500 ppm. Noise on the signal introduces an 

uncertainty estimated at 100 ppm.  

 

0 30 60 90 120 150 180 210 240 270 300 330 360

time (s)

Running average over 30 s Signal with noise

 

 

 

 

 

 

 

 

 

Table 11. Effect of averaging on uncertainty (function of periodicity) 

 

From this example it is clear that the running average over 10 samples (30 s) may reduce the 

uncertainty associated with noise with a factor 10 , but does not affect the uncertainty related to 

longer term variations (ts >> 30 s). 
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A similar statement is true for the calculation of the total heat release in the first ten minutes of a test 

(600 s). Suppose the measurements are perfectly correlated (r = 1) the uncertainty on the sum becomes 

(ci = 1): 
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which is higher than formula 6.33. In this case, events with a periodicity of approximately ten minutes 

or less will be dampened out while events with a longer periodicity will not be dampened out (r goes 

to 1). 

 

For parameters like MARHE, which is also based on total heat release, the behaviour with respect to 

uncertainty will depend upon the integration time which is variable. 

 

On the other hand however, uncertainties related to very slow processes (τ > 10 times test run) hardly 

contribute to the uncertainty on the oxygen depletion since it is a relative measurement, i.e. the actual 

status is compared with the initial status at the start of the test. 

 

The proposal therefore is to consider measurements as being independent, include the uncertainty 

related to slow processes (τ > 10 times test run) in the zero calibration (= daily calibration of zero 

points), include the uncertainty related to drift over one test run in the uncertainty related to the actual 

measurement point. 

 

6.3.3 Combined standard uncertainty of a product and a division 

Throughout the work, often the uncertainty has to be calculated for a product and for a division. 

Starting from the general form 

 

  [ 6.42 ] 21xaxy =

 

The partial derivative to the variables x1 and x2 is given by 
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Thus the combined standard uncertainty on y is estimated out of 
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 (if x1 ≠ 0 and x2 ≠ 0) [ 6.45 ] 

 

This formula holds for a division. Indeed, taking the partial derivatives of the general form 
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Note: The statement (if xi ≠ 0) will be omitted from now on if it can reasonably be assumed that xi will 

always fulfil this requirement in a practical sense. 
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6.3.4 Combined standard uncertainty on the heat release rate (Q) 

The heat release rate (Q = HRRtotal) is given by (Formula 2.1) 
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Substituting the volume flow VD298 (§6.3.7) this becomes 
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Taking the partial derivative of  to the different components xQ& i results in the corresponding 

sensitivity coefficients ci: 
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and to the combined standard uncertainty 
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6.3.5 Combined standard uncertainty on the depletion factor (φ) 

The depletion factor in the exhaust duct is given by 
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Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci: 

 

 ( ) 






 −
+

−−
=

∂
∂

≡ °

°

A
O

A
CO

A
O

A
CO

A
O

XO X
X

XXX
c A

2

2

222

)1(
1

1
2

φφφ  [ 6.68 ] 

 

 

 ( )A
O

A
CO

A
CO

XCO XXX
c A

222 1
1

2 −−
−

=
∂

∂
≡

φφφ  [ 6.69 ] 

 

 
( )

( ) °° −−
−−−−

=
∂
∂

≡° A
O

A
O

A
CO

A
O

A
CO

A
CO

A
O

XO XXX
XXX

X
c A

222

222

2 1
1)1(

2

φφφ  [ 6.70 ] 

 

 ( ) °° −−
=

∂
∂

≡° A
O

A
O

A
CO

A
O

A
CO

XCO XXX
X

X
c A

222

2

2 12

φφ  [ 6.71 ] 

 

 

 - 173 - 



 

6.3.6 Combined standard uncertainty on the initial O2-concentration (XD°
O2) 

The initial concentration of oxygen in the exhaust duct is function of the relative humidity, 

temperature and absolute pressure and is given by 
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Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci: 
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and to the combined standard uncertainty 
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6.3.7 Combined standard uncertainty on the volume flow rate (VD298) 

The volume flow rate – referenced to 298K – in the exhaust duct is given by 
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Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci: 
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6.3.8 Combined standard uncertainty on the air density (ρair) 

The molecular weight of air is significantly affected by the presence of water vapour. Jones[34] gives an 

extensive development and comes to the equation below for density of air as a function of temperature 

(K), pressure (Pa) and relative humidity (ϕ): 
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Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci: 
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and to the combined standard uncertainty 
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6.3.9 Combined standard uncertainty on specimen heat release rate (Qspecimen) 

The specimen heat release rate is defined as the global heat release rate minus the heat release rate 

contribution of the burner (see 2.2.3.1). The contribution of the burner is calculated as the mean heat 

release rate measured in the time interval 210 – 270 s. 

 

The uncertainty contribution of the burner is given by 
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and of the specimen heat release rate by 
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Despite the relatively short time interval (60 s; 21 measurements @ fs = 1/3 s) to calculate the burner 

contribution, all 21 measurements will be considered independent from each other (r = 0) as discussed 

in 6.3.2. 

 

6.3.10 Combined standard uncertainty on the average heat release rate (Qav) 

The average heat release rate is based on a running average over 30 s of the specimen heat release rate 

contribution. 

 

Although this filtering dampens out higher frequency events such as noise, thus removing the 

uncertainty contribution of noise, one could argue that it hardly changes anything to the global 

uncertainty so that u(Qav) ≅ u(Qspecimen). 

 

As discussed in paragraph 6.3.2 however we will further assume the measurements to calculate this 

running average as independent. This is confirmed by the SBI RR2 results as will be discussed in 

chapter 6. 
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6.3.11 Combined standard uncertainty on FIGRA 

The combined standard uncertainty on FIGRA is composed of the uncertainty related to the average 

heat release rate u(Qav) and the uncertainty related to the time elapsed for reaching this heat release 

rate level u(t). Since the value Qav(t) could be reached anywhere in the interval [t - ts/2 ; t + ts/2], the 

uncertainty distribution on ‘t’ will be assumed rectangular with a resulting standard uncertainty 
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The uncertainty on FIGRA now becomes 
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6.3.12 Combined standard uncertainty on THR600s 

The combined standard uncertainty on the total heat release in the first 600 s of the test will be 

estimated out of: 
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The assumption is that this time interval includes enough variation to justify the assumption of 

independent measurements. 

 

6.3.13 Combined standard uncertainty on MARHE 

The combined standard uncertainty on the Maximum Average Rate of Heat Emission (MARHE) of 

the test will be estimated out of: 
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The assumption is that this time interval includes enough variation to justify the assumption of 

independent measurements. 
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6.4. Standard uncertainty on the different components 

6.4.1 Uncertainty on the Data Acquisition (DAQ) 

Not only the measuring sensors contribute to the overall uncertainty, also the DAQ system introduces 

an uncertainty. 

Two different types of data acquisition systems are currently used in reaction to fire applications at the 

Ghent University, Siemens Simatic S7 PLC and Keithley 2000 DMM. The Keithley digital multimeter 

has been used on the SBI device from its introduction in 1997 till 2001, while the PLC has been used 

from 2001 on since it allowed automation of the test method. The calculations in chapter 6 are based 

on the PLC data acquisition system which, in terms of uncertainty contribution, is less favourable. 

 

a) Siemens Simatic S7 PLC 

The system SIMATIC S7-300 is a modular automation system that builds around a central processing 

unit. The modules include, but are not limited to, digital input and output modules and analogue input 

and output modules. Depending on the module, the analogue signals can handle different types of 

signals (volt, mAmps, ...) in different resolutions. 

 

The processor units used in our department are either model ‘CPU 314 IFM’ or model ‘CPU 313c’. 

The analogue I/O-cards used have the following specifications[75]: 

 

I/O card Specification manufacturer ‘error’ (%) 

Resolution 15-bit 0.003 1 

‘error’ at 25°C ±0.1% of MR 0.1 

6ES7 331-7SF00-0AB0 

for temperature and 

resistance measurements additional ‘error’  

in range 0-60°C 

±0.09% of MR 0.09 

Resolution 15-bit 0.003 1 

‘error’ at 25°C ±0.05% of MR 0.05 

6ES7 331-7NF00-0AB0 

for volt measurements 

‘error’ in range 0-60°C ±0.1% of MR 0.1 

Resolution 15-bit 0.003 1 

‘error’ at 25°C ±0.05% of MR 0.05 

6ES7 331-7NF00-0AB0 

for current measurements 

‘error’ in range 0-60°C ±0.3% of MR 0.3 

Table 12. PLC analogue I/O card specifications 
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Assuming that: 

• the Measuring Range (MR) for a K-type thermocouple is approximately 1300K 

(-50°C/+1250°C) 

• ‘error’ stands for an interval within which the result may be confidently supposed to lie at 

any time 

• the distribution is Rectangular 

• ‘errors’ are independent from each other 

• the PLC works in the range 0-60°C, 

and knowing that: 

• the MR for a RTD (Pt-100) measurement is 150Ω 

• the MR for a Volt measurement is 10V 

• the MR for a Current measurement is 16mA (4 to 20mA), 

 

the estimated standard uncertainties associated with the PLC system are (Table 13) 

 

Measurand ‘error’ (%) probability 

distribution 

standard 

uncertainty (%) 

standard 

uncertainty 

Temperature by 

means of T/C 

0.135 rectangular 0.078 1.0 K 

Temperature by 

means of RTD (Pt-

100) 

0.135 rectangular 0.078 0.117 Ω 

0.3 K 

Volt 0.10 rectangular 0.058 5.8 mV 

Current 0.30 rectangular 0.173 0.028mA 

Table 13. Estimated standard uncertainties associated with the PLC system 

 

Remark: According to the specifications the maximum length allowed of the thermocouple cable is 

200m of shielded cable and 50m for RTD. It is therefore further assumed that any voltage differences 

between the compensation leads (9 m) and the thermocouples has been included in the specifications. 

 

b) Keithley 2000 DMM 

 

The Keithley Model 2000 is a 61/2-digits high performance digital multimeter that can cope with a 

large variety of input signals in broad measurement ranges (MR). 
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According to the manufacturer’s specifications[73] the following applies, where FS stands for Full 

Scale: 

 

Measurement 

Range 

conditions reading + FS 

(ppm ≡ 0.000 1%) 

Resolution 

0 – 100 mV 1 year; 23°C±5 ±(50 + 35) 0.1 µV 

 1 year; 0-50°C ±(52 + 41) 0.1 µV 

0 – 10 V 1 year; 23°C±5 ±(30 + 5) 1.0 µV 

 1 year; 0-50°C ±(32 + 6) 1.0 µV 

0 – 1 000  Ω 1 year; 23°C±5 ±(100 + 10) 1 m Ω 

 1 year; 0-50°C ±(108 + 11) 1 m Ω 

Table 14. Keithley DMM specifications 

Assuming that: 

• the distribution is Rectangular 

• errors are independent from each other 

• the instrument works in the range 0-50°C 

• the voltage differences between the compensation lead & connectors and the thermocouple 

wires are less than 5µV 

• the temperature differences between the RTD and the contacts in the isothermal box remain 

limited to ±0.2K, 

and knowing that: 

• the MR for a RTD (Pt-100) measurement is 150Ω 

• the MR for a Volt measurement is 10V 

• the MR for a Temperature measurement is 100 mV 

• the voltage measured over a K-type thermocouple  with its hot juction at 300°C and with a 

reference temperature of 0°C is 12.207 mV[17], 

 

the estimated standard uncertainties associated with the Keithley system are given by Table 15. The 

standard uncertainty related to a temperature measurement by means of a thermocouple (T/C) reduces 

to less than 0.2K. 
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Measurand ‘error’ probability 

distribution 

standard 

uncertainty 

standard 

uncertainty 

Temp. by means of T/C 

(∆T ≅ 0 K) 

41 ppm 

0.004 1 mV 

rectangular 24 ppm 

0.002 4 mV 

0.062 K 

Temp. by means of T/C 

(∆T ≅ 300 K) 

0.004 735 

mV 

rectangular 0.002 73 mV 0.070 K 

Temperature by 

means of RTD (Pt-100) 

(R ≅ 110 Ω) 

0.022 9 Ω rectangular 0.013 2 Ω 0.034 K 

Compensation leads 

+connectors (0-40°C) 

0.005 mV rectangular 0.0029 mV 0.074 K 

Isothermal box 0.2 K rectangular 0.12 K 0.12 K 

Absolute temperature by 

means of T/C + RTD + 

cables + box (∆T≅300K) 

   0.16 K 

Volt (0 – 10 V) 

(V = 10V) 

0.000 38 V rectangular 0.000 22 V 0.22 mV 

Table 15. Estimated standard uncertainties associated with the Keithley system 

 

 

6.4.2 Transient error 

Due to the response times of the gas analysis system, the thermocouples and the differential pressure 

system, which are – or at least can be approximated by – first order systems (see 5.2.2) with time 

constant τ, an error e(t) for each component is introduced equal to (see B.11) 

 

 
dt

tdyte )()( τ= .  [ 6.95 ] 

 

whereby y(t) is the measured output. 

 

There are three different ways to deal with this error. One is to estimate the error and to correct for it. 

A second option is not to correct for the transient error, but instead increase the uncertainty interval. A 
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third option is to reduce the bandwidth (reduce highest frequency of interest) considering not relevant 

fast events. 

 

6.4.2.1 Estimate error and correct for it 

a) Use data as is 

An estimate of this bias can be obtained by means of for example a central difference discretisation 

scheme 
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This finite difference representation of the first order derivative, which is based on Taylor’s series 

expansion, has an associated truncation error because higher order terms are neglected. The truncation 

error of the lowest order term for this central difference scheme is ( ) ytx ′′′∆=∆ 2

6
1)(O [37]. This error 

is proportional to the squared scan interval and gives a first indication of the necessity to increase the 

scan rate. 

 

Intuitively it can easily be understood that the estimated error is very sensitive to noise on the 

measurement y(t). Due to noise, the forward, backward, central or higher order discretisation formulas 

will lead to substantially different results. This problem, which is inherent to inverse filters as 

discussed in 5.5, can be made less relevant by removing higher frequencies from the measured data. 

 

This brings us back to the large scan interval of ∆t = 3 s which will only allow us to reconstruct, and 

eliminate if desired, signals with a periodicity of 6 s and higher (f = 0.1667 Hz). Any signal with a 

frequency between f = 0.1667 Hz (1/6 s) and the cutoff frequency of the DAQ (f = 22 Hz) or the 

measuring device (see 5.2), whichever is the lowest, will give rise to aliasing. Aliasing introduces, as 

explained in §6.4.3, phantom data; things are seen that are not there! 

 

A good remedy to this problem are the so called level two changes as discussed in 5.4.2. 
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The standard uncertainty related to formula 6.24 is given by 
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As an estimate for the uncertainty u(y) the noise level on the output signal y(t) in the period 120 s – 

300 s will be taken. 

From Figure 52 – that represents the transient error estimate of the oxygen signal for a test on a MDF 

board (Medium Density Fibre board; Product 2 in the SBI RR2) – we see that the noise level in the 

first 120 s of the test, this is when no heat is released, is much lower than when the auxiliary burner is 

ignited (120 s – 300 s). The standard uncertainty on the oxygen concentration from 0 – 120 s is  

33 ppm for this specific test, while for the period 120 – 300 s it is 69 ppm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Transient error and standard uncertainty estimate on raw data 

third order central difference scheme

-500
-400
-300
-200
-100

0
100
200
300
400
500

0 200 400 600 800 1000 1200 1400 1600

time (s)

de
lta

 (p
pm

)

e(t)
u(e)

 

The fluctuations in e(t) are too high to confidently apply the correction in bias to the result. In the next 

section it is shown how this ‘noise’ can be reduced while still capturing the global trend. 
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b) Filter out high frequency events 

By first applying a 11-point Henderson zero phase filter (see 5.3.1) to the measured data (sampled at f 

= 1/3 Hz), the cutoff frequency lowers to approximately f = 1/30 Hz. 

 

Figure 53 represents the estimated transient error and corresponding standard uncertainty calculated 

with a central differencing scheme on the filtered data (same data as above). The standard uncertainty 

u(y) will be estimated in a different way as above. 

 

For estimation of the standard uncertainty u(y) a local variance on the measurement signal is defined 

(see 5.3.1) whereby z(t) represents the filtered data. 
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Figure 53. Transient error and standard uncertainty estimate on filtered data 

 

c) Use fixed values 

The bias may either be estimated as discussed in a) or b), or may be estimated based on a worst case 

scenario. In this last case, the bias estimate cannot be used to ‘correct’ the data. 

 

The worst case scenario is taken as the steep rise in heat release for a heptane pool fire (SBI heptane 

calibration; Ghent University; SBI RR2). The thus obtained maximum transient error estimates, and 

the corresponding ‘standard error’ estimates – assuming a triangular distribution with width equal to 

the maximum error – are summarised in Table 16. 
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component maximum transient error standard uncertainty estimate 

X_O2 1260 ppm 514 ppm 

X_CO2 642 ppm 262 ppm 

Tms 2.8 K 1.2 K 

Table 16. transient error estimate based on heptane pool fire calibration 

 

6.4.2.2 Estimate error and increase uncertainty interval (uncorrected bias) 

Instead of correcting the data for the estimated bias, one may prefer to leave the measured data 

uncorrected and to increase the uncertainty interval. 

 

The bias may be estimated by any of the three methods as discussed in 6.4.2.1. 

 

The uncertainty interval will be widened according to the method as described in section 6.2.7. 

 

 

6.4.2.3 Reduce bandwidth and neglect any remaining bias 

A third option is to consider inherent to a test instrument a bias related to transient phenomena and to 

further ignore the uncertainty related to it. In order to do so, it is of primary importance that all 

laboratories have the same BW for their test facility. Section 5.4 gives guidance on how to reach this.  

 

 

 

In this dissertation either the uncertainty interval is increased (6.4.2.2) based on a fixed uncertainty 

estimate (6.4.2.1.c; worst case) or the BW will be reduced neglecting any further remaining bias 

(6.4.2.3). The latter is the preferred option since it minimises the uncertainty estimate. 
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6.4.3 Aliasing error 

One of the fundamental rules of discretisation of signals is that the sampling frequency is at least twice 

the maximum frequency existing in the signal. If this rule is not respected, the reconstruction of the 

original analogue signal becomes impossible and spurious information is added to the digitised signal. 

This spurious information does not exist in the analogue part and is created by the sampling procedure. 

This effect is called aliasing. 

 

Reconsidering the oscillation of fk = 0.371 Hz on the signal of the oxygen analyser (see Figure 20), 

and sampling with a frequency of fs = 1/3 Hz, an apparent frequency f0 will be measured whereby 

 

 f0 = fk – fs [ 6.99 ] 

 

In this specific case f0 = 0.0377 Hz (T0 = 26.5 s). 
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Figure 54. Example of aliasing effect 

 

In general, all sines with frequency fk = f0 + kfs (k = 0, 1, 2, ...) have the same value at the sampling 

intervals t = nTs. 

 

As a general rule, it is therefore recommended to use an analogue low pass filter to remove all higher 

frequencies that are of no interest and to set the sampling rate equal to 10 times the bandwidth of the 

signal to be sampled. 

 

It will further be assumed that all measurement data are free from aliasing. 
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6.4.4 Uncertainty on data synchronicity 

There is also an uncertainty associated with the scan rate and time shifting of the data. In practice, the 

data acquisition system often incorporates a multiplexing switching module that senses one data 

channel after the other. For high accuracy measurements, typical integration times, i.e. time required 

to do the actual measurement, is 1 PLC (Power Line Cycle = 20 ms @ 50 Hz). Adding to this the 

switching and stabilisation time, the time elapsed between two consecutive measurement channels can 

easily reach 50 to 100 ms. This is dependent on other factors like the measurement range, whether the 

display is turned on or off, etc. In the SBI, the strict minimum of channels to be measured is nine, 

which makes that the time between the sensing of the first and the last channel can easily reach half a 

second. 

 

Another reason why data may not be synchronised is because of delay times. In general, there is a 

delay time of several seconds (approximately nine seconds in the lab) in-between a change in heat 

release rate and the actual change in the measured gas concentration. Shifting of the data with n-times 

(n = 0, 1, 2, ...) the sampling interval n.∆t only allows to partially eliminate the delay time. 

 
x+∆x2 

x
x-∆x1 

t t-ts t t+ts 

 

 

 

 

Figure 55. sampled signal at regular intervals 

 

Assuming that the data signal in-between consecutive measurements of a same channel varies linearly 

and assuming that the non-synchronicity is somewhere in the interval ±ts/2, a rectangular distribution 

applies with a width ∆x/2. The associated standard uncertainty becomes 

 

 ( )
32
xtu ∆

=∆  [ 6.100 ] 

 

In order to keep symmetry in the uncertainty interval, the variation ∆x is set equal to the maximum 

variation forward (∆x2) or backwards (∆x1) in time ∆x = MAX[∆x1,∆x2]. 
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Asynchrony introduces a phase shift which is more important for the higher frequencies. In case of 

sampling 10 times faster than the highest frequency of interest, the maximum phase shift reduces to 

(2*PI/10)/2 = 18 degrees for the highest frequency and drops fast for slower processes. 

This, once again, demonstrates clearly the necessity to cutoff all frequencies above the highest 

frequency of interest fc and to sample 10 times faster. 

 

Reducing the sampling interval ts reduces the variation ∆x and thus the uncertainty. 

 

By way of example, the values used for classification Figra and THR600s are calculated from 30 

different data sets, each representing a test on a same sample. For this occasion, a test was run on a 

MDF board (product P2, fourth sample, SBI RR2) with the data acquisition running at 10 samples a 

second (10 Hz). Then the data set was reduced to 30 different data sets by taking every 30th data point 

starting with element i (i = 1 .. 30). In this way, it is as if we have thirty different data sets at a scanrate 

of 1/3 Hz (as required by the standard) from a same test. Ideally all thirty data sets should produce the 

same result, which clearly they don’t. 
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Figure 56. Slow scan rate (1/3 Hz) results in a spread of possible classification results (FIGRA) 
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Figure 57. Slow scan rate (1/3 Hz) results in a spread of possible classification results (THR600s) 
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Figure 58. Slow scan rate (1/3 Hz) results in important discontinuities in time shifting 
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6.4.5 Uncertainty on the component E and E’ 

It has been established by Thornton[59] that most organic liquids and gases release a more or less 

constant net amount of heat per unit mass of oxygen consumed for complete combustion. In 1980 

Hugget[49] rediscovered this study and showed that this is also true for most plastics and solid materials 

used in buildings. He concluded that the heat release from fires involving conventional organic fuels is 

E=13.1 kJ per gram of oxygen consumed, and this with an accuracy of ±5% or better. He also 

concluded that incomplete combustion and variation in fuel have only a minor effect on this result. 

 

For the uncertainty analysis distinction is made between the case where the chemical composition of 

the fuel is known, and the case where it is not known on beforehand what is being burnt. 

 

a. Fuel composition is known 

For calibration purposes of the test instrument often pure substances are used such as methane, 

propane, heptane and pmma. The E-factors of those substances can be found in the literature[26][49][30][39] 

to four significant digits. 

 

MJ/kg O2 Reference Annex B.7 

Substance [26] [49] [30] [39]  u(x) 

Propane 12.78 . 12.80 12.9 12.774 0.004* 

n-heptane 12.68 . . 12.7 12.684 0.013* 

methane 12.51 12.54 12.54 12.5 12.536** 0.005** 

PMMA 12.97  12.98 13.1   

Propene 13.38 . . .   

n-butane 12.77 12.78 12.80 12.7   

iso-butane 12.62 . . .   

ethane 12.75 12.75 11.21 12.7   

CO 17.69 . 17.69 .   

PE 12.63 12.65 12.65 12.8   

PP 12.62 12.66 12.66 12.7   

PS 12.93 12.97 12.97 12.7   

PVC 12.00 12.84 12.84 11.7   

PC 13.14 13.12 13.12 13.1   
  * apparent standard uncertainty based on a 95% confidence interval by means of a small sample t-test (value divided by 2) 

  ** derived from NIST-JANAF[20] values 

Table 17. Heats of combustion per unit mass of oxygen found in the literature. 
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Although the values are given to four significant digits, except for reference [39], there is some spread 

on the reported values. Furthermore, no tolerance is given on the reported values. 

Since the number of references is so low and since some of the data may come out of a same primary 

source, no reliable ‘standard error of mean’ can be calculated. Therefore a different approach has been 

followed and heats of combustion are calculated out of heats of formation. 

 

The heat of combustion, whether expressed in heat release per unit mass of fuel or in unit mass of 

oxygen consumption, is more precisely defined as the enthalpy of combustion. In a constant-pressure 

process, the heat added to – or eliminated from – a system is equal to the change in its enthalpy 

 

 HHHQ ∆=−= 12  [ 6.101 ] 

 

whereby Q is the heat added to the system and ∆H is the change in enthalpy. 

The heat of combustion ∆Hc can be computed out of the heats of formation ∆H°f of both the initial 

products and the reactants. 
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n is the number of moles of a particular product or reactant species. 

The heat of formation of any chemical species is defined as the heat which is required to be added in 

order to form that species out of its constituent elements, with the elements being in their standard 

state. By convention, the standard state is defined to be at a temperature of 298.15K and a pressure of 

1 atm. 

Now for a fairly general expression for combustion of a fuel in oxygen  
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The above expression remains unchanged for combustion in air, except that an identical number of 

nitrogen molecules should be added to both sides. The letter X stands for any of the halogen atoms 

like F, Cl, Br, etc. 

Since both oxygen and nitrogen are ‘constituent’ elements in their ground state (gas at 298K) their 

heat of formation is zero by definition and the heat of combustion can be written as 
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[ 6.104 ] 

 

Division by the amount of moles of oxygen consumed, results in the heat of combustion per unit mass 

of oxygen as given in Table 17. The table shows, besides some literature values, the computed values 

for methane, propane and n-heptane together with an estimate on the standard uncertainty. Calculation 

details can be found in annex B.7. 

 

If the lower, or net, heat of combustion is computed, the heat of formation of H2O in the gas phase 

should be taken. For the computation of the upper, or gross, heat of combustion, the formula requires 

the use of the heat of formation of H2O in the liquid phase. 

 

According to Babrauskas[27], who gives a good overview of the fundamentals of combustion theory, 

the relationship between upper and lower heat of combustion can be written as 

 

  MJ/kg [ 6.105 ] [ HHH u
c

l
c %2183.0−∆=∆ ]

 

where [%H] is the percent of hydrogen, by mass, in the fuel. 

 

Indeed, knowing the heat of formation of H2O in the gas phase ∆H°f(g) = -241.826 ± 0.042 kJ/mol and 

in the liquid phase ∆H°f(l) = -285.830 ± 0.042 kJ/mol[20] and knowing the molecular weight of the 

Hydrogen atom = 1.00794 ± 0.00007 kg/kmol[24][85] the above correction coefficient is found. Out of 

an uncertainty analysis (annex B.12) we find a corresponding standard uncertainty in the order of 

0.1%. 

 

   [ 6.106 ] ( )[ ]H%0003.02183.0 ±

 

In practice, it proves to be very difficult and expensive to obtain pure substances. Therefore the SBI 

standard prescribes the use of commercial grade propane having a purity of 95% and a high quality 

heptane with a purity better than 99%. This however introduces an additional uncertainty on the heat 

release. 
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For propane an estimate of the standard uncertainty has been made in Annex B.6 based on a ‘typical’ 

composition of commercial grade propane (on the Belgian market), which also may contain propene, 

n- and iso- butane, ethane and ethene. The result is summarised in Table 18. 

 

Although a purity of better than 99% is prescribed for the n-heptane, different sub qualities are 

available on the market. In a product catalogue of a typical chemical components supplier[74][81] 6 

different commercially available qualities were found. That the chemical nature of the remaining 

fraction may differ a lot from quality to quality was demonstrated in the second SBI round robin. Two 

laboratories, including Ghent University, demonstrated that changing suppliers could potentially 

double the amount of smoke measured when burning the heptane in a pool fire. This indicates that the 

variation in composition of this 1% may be substantial. 

Assuming that the unknown fraction has an E-factor which is identical to the pure substance with an 

uncertainty of 10% (which is conservative), an overall uncertainty of 0.1% is obtained due to this 

unknown fraction. The apparent standard uncertainty on the E-value (annex B.7) is 0.04% which 

brings the global standard uncertainty to ( ) ( ) %11.004.01.0 22 =+ . 

 

Making the same assumption on the unknown fraction for methane with a purity of 99.5% (uncertainty 

0.05%), and combining this with the standard uncertainty on the heat of combustion per unit mass of 

oxygen consumption, E, the global standard uncertainty is estimated at 

( ) ( ) %054.002.005.0 22 =+ . 

 

In the SBI standard[2] E’, defined as ‘the net heat of combustion per unit volume of oxygen consumed 

at 298K’, is used instead of E (per unit mass). The oxygen density at standard conditions (273,15K; 

101325Pa) is taken to be (1.429 ± 0.0005)kg/m³ which results in a standard uncertainty of 0.2% 

assuming a rectangular distribution. E’ now becomes 

 

 ( )EEE O 0026.03092.1
15.298
15.273

2 ±≅=′ ρ  [MJ/kg] [ 6.107 ] 

 
Substance Purity (%) 

SBI standard 

E 

(MJ/kg O2) 

Estimated 

st. unc. E (%) 

E’ (MJ/m³ O2) 

(at 298K) 

Est. st. unc. E’ 

(MJ/m³ O2) 

Estimated 

st. unc. E’ (%) 

E’ (MJ/m³ O2)

SBI standard 

Propane[2] ≥ 95 12.774 0.2 16.72 0.047 0.28 16.8 

n-Heptane[2] ≥ 99 12.684 0.11 16.61 0.038 0.23 16.5 

Methane[4] ≥ 99.5 12.536 0.054 16.41 0.034 0.21 - 

Table 18.  Estimated uncertainties for fuels 
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b. Fuel is unknown 

In most practical cases the E-factor will be unknown since the chemical nature of the product under 

test is (partially) unknown. In the heating and power industries the theoretical air requirement is 

determined from an empirical guide. The heat of combustion per unit mass of oxygen consumed is 

estimated at 13.4 MJ/kg[39][36]. Tewarson[39] finds a value of 12.8 MJ/kg ± 7% as an average of the 

mean value of different generic groups of fuels. 

In this dissertation, the uncertainty will be estimated based on Hugget’s conclusions, i.e. 13.1 MJ/kg 

with an accuracy of ±5% or better. Assuming a normal distribution and a 95% confidence interval, the 

uncertainty on E becomes 2.55% and the standard uncertainty on E’ becomes 2.56%. 

 

E’ becomes 

 

 44.015.17
15.298
15.273

2 ±==′ OEE ρ  [MJ/kg] [ 6.108 ] 

 

 

In the SBI standard[2] E’ is set by definition to 17.2 MJ/m³ which is within the standard uncertainty 

found above. 
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6.4.6 Uncertainty on the component  A
OX 2

The oxygen concentration is by far the most critical measurand when calculating the Heat Release 

Rate using the oxygen depletion technique. Unfortunately, manufacturers of paramagnetic oxygen 

analysers typically report accuracies in the range 0.5-1.0%[66] of its full scale deflection which is an 

order of magnitude higher than what is required by the standards[2][4][6]. Enright[66] proposes to use the 

noise and drift over a 30 minute period instead but this only gives an estimate of the standard 

uncertainty for an analyser working around its calibration point. 

In ‘reaction to fire’ tests like the SBI[2] and the cone calorimeter[4] however the working range is 

between 17Vol% and 21Vol%. In the Room Corner[6] test this range is even expanded to 0 - 21 Vol%. 

 

The overall uncertainty associated with the oxygen concentration is very much related to the gas 

analyser used, the gas preparation and the test and calibration procedure. 

A gas analysis rack has been custom designed around fire applications by the author in collaboration 

with the companies Siemens Belgium and Siemens Germany. Details on the gas analysis rack can be 

found in 3.2. 

 

The calibration procedure associated with this specific gas analysis rack consists of two steps and is as 

follows: 

1. Every morning, calibration gas is fed into the instrument. 

The calibration gas is typically composed of O2 (17Vol%), CO2 (3.5Vol%), CO (0.4Vol%) 

and the balance by Nitrogen. The given concentrations represent limit values that under 

normal burning conditions will not be surpassed. Oxygen in the downward sense, carbon 

dioxide and carbon monoxide in the upward sense. Note that for Room Corner Testing, where 

the fire is often ventilation controlled, other values apply. 

When the analyser reaches steady state, the output signal (C1) is recorded. This is done for all 

analysers present (O2 , CO2 , CO, ...). In the SBI only O2 and CO2 concentrations are 

measured. 

2. Prior to every test, when the sample gas is still composed of ambient air, the output signals 

(C2) of the analysers are recorded. Those values correspond to the following gas 

concentrations O2 (20.95Vol%), CO2 (0.04Vol%), CO (0.00Vol%). This is true because 

practically all water is removed from the gas sample prior to the analysis and these 

concentrations apply for dry air. Details can be found in Annex B.1.  

By calibrating for C2 prior to every single test, the uncertainty related to C2 can be 

minimised to a strict minimum. 
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Siemens claim that, because of the measurement principle, the uncertainty on the linearity of the 

oxygen analyser is negligible. The output of the carbon dioxide/monoxide analysers is linearised by 

the manufacturer. This makes that any measured new output signal relates to a certain gas 

concentration which can be found by means of linear interpolation between points C1 and C2. Details 

on the combined standard uncertainty calculation are given in B.8. 
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Figure 59. Calibration principle gas analyser 

 

The uncertainty on any measured signal is composed of[76] the uncertainty related to: 

i Ambient air temperature: < 0.5% on Measuring Range per 10K; Since the analyser is 

built-in in a temperature controlled 19” housing the temperature variation over: 

- half an hour is estimated to lie within ±2K; 

- one working day is estimated to lie within ±5K. 

ii Pressure measuring gas: < 0.2% on Measuring Range per 1% pressure variation; This 

sensitivity is mainly related to the counter pressure experienced by the analyser at the 

outlet. Since outlet pressure is barometric pressure the variance of pressure over 

- half an hour is estimated at 100 Pa; 

- one working day is estimated to lie within 1 000 Pa. 

iii Power supply: < 0.1% on Measuring Range with rated voltage ±10% 

iv Non-linearity: Linear by measurement principle 

v Measurement noise: obtained out of a root-mean-square deviation around the linear 

trend line over a period of 30 minutes; the maximum value allowed by the SBI standard 

for the sum of noise and drift is 100 ppm (parts per million). The value obtained out of 

SBI RR2[70] is 27 ppm. This value will be used for calibration point C1 and C2. For the 

measurement point M, an estimate based on the local variance (see 5.3.1) will be used. 

vi Signal drift: defined as the absolute difference between the readings at 0 min and at 30 

min of this linear trend line; although the drift is partly due to the above influences, it will 

be considered as independent for the purpose of this dissertation. In this way we want to 
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include all other effects not covered by the here listed items (minor changes in desiccant, 

...). The distribution is assumed to be rectangular and the width for: 

- one test period will be taken as the measured drift over that same period; 

- one working day will be taken as the value found out of a ‘Noise & Drift’-calibration. 

The value obtained out of SBI RR2[70] is 37 ppm. 

vii Data Acquisition system: the standard uncertainty is estimated to be 0.028mA (PLC; 

§6.4.1); this corresponds to a standard uncertainty of 70 ppm when working in a 17-

21Vol% and a 4-20mA range. Since the theory requires relative oxygen concentration 

rather than absolute values and since the uncertainty is mainly due to ambient 

temperature variations of the DAQ system (at 25°C the standard uncertainty reduces to 12 

ppm), it is assumed that the uncertainty related to the DAQ system is included in the 

uncertainty related to the signal drift. 

 

The specifications given in the manual are conservative statements. Out of contacts with the technical 

department of Siemens Karlsruhe who developed the analysers we learned that “100% of the analysers 

have to fulfil the specifications. If verifications, in-house or by the client, would result in a violation of 

the limits then the instrument goes to maintenance and is replaced if necessary”. Although Siemens 

says the batch of instruments is too small to report any coverage factor officially, a Gaussian 

distribution with a coverage factor of 3 is suggested. 

 

An additional source of uncertainty for calibration point C1 is related to: 

viii Calibration gas: ±0.02 Vol% ABS 

 

Any deviation in zero point corresponding to paramagnetic/diamagnetic deviation of residual gas 

(Annex B.15) is neglected and the corresponding uncertainty introduced is attributed to the E factor, 

i.e. the heat release per unit mass of oxygen consumed as discussed in 6.4.5. 

 

Since the oxygen depletion technique requires changes in oxygen concentration rather than absolute 

oxygen concentrations, calibration point C2 – which is determined prior to every test – can be used as 

a reference point. This makes that the uncertainties related to items i) to iv) and vi) disappear. 

 

The global uncertainty on the oxygen concentration is composed of two parts. On the one hand there is 

the uncertainty related to the calibration (dashed line is used instead of the true solid line in Figure 59). 

On the other hand there is the uncertainty related to the measurement itself. Table 19 summarises the 

estimated uncertainties on both calibration points and on the measurement. Details can be found in 

Annex B.9. It can be seen that the uncertainty increases with oxygen depletion. 
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Uncertainty 

related to 

u(X) see 

Signal C1 (cal. gas 1) u(x1) §B.9 and x1 in §B.7 

Signal C2 (cal. gas 2 ≡ air) u(x2) §B.9 and x2 in §B.7 

Calibration gas 1 

(O2, CO2, N2 mixture) 

u(y1) §B.9 and y1 in §B.7 

Calibration gas 2 

(dried ambient air) 

u(y2) §B.9 and y2 in §B.7 

measurement u(x) §B.9 and x in §B.7 

Global uncertainty u(y) formula 10.1 in §B.7 

Table 19. Estimated uncertainty on oxygen concentration 

 

Please note that in most modern oxygen analysers a barometric pressure compensation is integrated in 

the instrument to correct for pressure fluctuations. Throughout this dissertation it will be assumed that 

oxygen analysers have barometric pressure compensation as in the Ghent equipment. 

 

 

6.4.7 Uncertainty on the component  A
COX 2

The carbon dioxide concentration in the combustion gases is measured by means of an infrared 

analyser. Compared to the oxygen concentration measurement, the sensitivity coefficient for carbon 

dioxide is much lower. Uncertainty on CO2 will therefore influence the Heat Release Rate less than 

uncertainty on O2. 

 

The uncertainty on any measured signal is composed of[76] the uncertainty related to: 

i Ambient air temperature: < 1% on Measuring Range per 10K; Since the analyser is 

built-in in a temperature controlled 19” housing the temperature variation over: 

- half an hour is estimated to lie within ±2K; 

- one working day is estimated to lie within ±5K. 

ii Pressure measuring gas: < 0.15% on Measuring Range per 1% pressure variation; This 

sensitivity is mainly related to the counter pressure experienced by the analyser at the 

outlet. Since outlet pressure is barometric pressure the variance of pressure over: 

- half an hour is estimated to 100 Pa; 

- one working day is estimated to lie within 1 000 Pa. 

iii Power supply: < 0.1% on Measuring Range with rated voltage ±10% 
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iv Non-linearity: < 0.5% of full-scale value 

v Measurement noise: obtained out of a root-mean-square deviation around the linear 

trend line over a period of 30 minutes; the maximum value allowed by the SBI standard 

for the sum of noise and drift is 100 ppm (parts per million). The value obtained out of 

SBI RR2[70] is 39 ppm. This value will be used for calibration point C1 and C2. For the 

measurement point M, an estimate based on the local variance (see 5.3.1) will be used. 

vi Signal drift: defined as the absolute difference between the readings at 0 min and at 30 

min of this linear trend line; although the drift is partly due to the above influences, it will 

be considered as independent for the purpose of this dissertation. In this way we want to 

include all other effects not covered by the here listed items (minor changes in desiccant, 

...). The distribution is assumed to be rectangular and the width for: 

- one test period will be taken as the measured drift over that same period; 

- one working day will be taken as the value found out of a ‘Noise & Drift’-calibration. 

The value obtained out of SBI RR2[70] is 36 ppm. 

vii Data Acquisition system: the standard uncertainty is estimated to be 0.028mA (PLC; 

§6.4.1); this corresponds to a standard uncertainty of 70 ppm when working in a 0-4Vol% 

and a 4-20mA range. Since the uncertainty is mainly due to ambient temperature 

variations of the DAQ system (at 25°C the standard uncertainty reduces to 12 ppm), it is 

assumed that the uncertainty related to the DAQ system is included in the uncertainty 

related to the signal drift. 

 

An additional source of uncertainty for calibration point C1 (Figure 59) is related to: 

viii Calibration gas: ±0.5 Vol% REL 

 

The global uncertainty on the carbon dioxide concentration is – as for the oxygen concentration – 

composed of two parts. On the one hand there is the uncertainty related to the calibration (dashed line 

is used instead of the true solid line in Figure 59). On the other hand there is the uncertainty related to 

the measurement itself. Table 20 summarises the estimated uncertainties on both calibration points and 

on the measurement. Details can be found in Annex B.10. It can be seen that the uncertainty increases 

with CO2 production. 
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Uncertainty 

related to 

u(X) see 

Signal C1 (cal. gas 1) u(x1) §B.10 and x1 in §B.7 

Signal C2 (cal. gas 2 ≡ air) u(x2) §B.10 and x2 in §B.7 

Calibration gas 1 

(O2, CO2, N2 mixture) 

u(y1) §B.10 and y1 in §B.7 

Calibration gas 2 

(dried ambient air) 

u(y2) §B.10 and y2 in §B.7 

measurement u(x) §B.10 and x in §B.7 

Global uncertainty u(y) formula 10.1 in §B.7 

Table 20. Estimated uncertainty on carbon dioxide concentration 

6.4.8 Uncertainty on the component ϕ 

The relative humidity ϕ together with the barometric pressure and the room temperature are used to 

calculate the humidity in ambient air . The SBI0
20HX [2] standard prescribes the use of a relative 

humidity sensor ‘having an accuracy of ±5% within the range 20% to 80%’. 

 

The Hygrometer used in the Ghent laboratory (Annex B.11) has a bias not more than 2.1% in the 

range 20% to 80% with a standard deviation not more than 0.25%. In other words, the ‘trueness’ of the 

instrument is to within 2.1% and the standard deviation on the precision is not more than 0.25%.  

 

Assuming a rectangular distribution with width 2.1%, the standard uncertainty related to trueness 

becomes 1.21%. Combining this with the uncertainty on the measurement and the uncertainty of the 

data acquisition system (DAQ), the overall standard uncertainty is estimated to be 1.25% as shown in 

the table. 

 

Quantity 

Xi 

estimate 

xi 

(range) 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

ϕbias 20-80% 2.1 % rectangular 1.21 % 1.0 1.21 % 

ϕst.dev.  20-80% 0.25 % normal 0.25 % 1.0 0.25 % 

ϕDAQ 20-80% 0.028 mA normal 0.18 % 1.0 0.18 % 

ϕ 20-80%     1.25 % 

Table 21. Estimated uncertainty contribution of the hygrometer 
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In this dissertation, relative humidity ϕ is only used for determining the water vapour concentration in 

ambient air. The sensitivity coefficient at a relative humidity concentration of 50% is three times lower 

than the sensitivity coefficient of the room temperature. The standard uncertainty is estimated to be 

1.25%. 
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6.4.9 Uncertainty on the component patm 

The barometric pressure together with the relative humidity ϕ and the room temperature are used to 

calculate the humidity in ambient air . The SBI[2] standard prescribes the use of a barometric 

pressure sensor ‘having an accuracy of ±200 Pa’. 

 

Comparing the sensitivity coefficients of the barometric pressure measurement with the humidity 

measurement (6.3.6; ϕ=50%, p=101 325Pa) a variation of 1% on ϕ causes an equal variation on the 

heat release as a variation of 2 000 Pa (20 mbar) on patm. 

The uncertainty on patm is therefore considered to be negligible. 

 

For completeness the standard deviation is estimated to be 0.01% ABS. 

 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

0
20HX

pa 101 325 Pa 100 Pa normal 100 Pa 1.0 100 Pa 

       

pa 101 325 Pa     100 Pa 

Table 22. Estimated uncertainty on barometric pressure 

 

Please note that in most modern oxygen analysers a barometric pressure compensation is integrated in 

the instrument to correct for pressure fluctuations. Throughout this dissertation it will be assumed that 

oxygen analysers have barometric pressure compensation. 

 

If no barometric pressure  compensation were installed, the error made is in the order of 200 ppm for 

every 100 Pa ( ≅ 1 mbar) pressure variation for the oxygen analyser. 

 

In this dissertation, the barometric pressure is only used for determining the water vapour 

concentration in ambient air. The sensitivity coefficient is low compared to the sensitivity coefficients 

of the relative humidity ϕ and room temperature. The uncertainty on patm is therefore considered to be 

negligible. 
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6.4.10 Uncertainty on the component Troom 

The room temperature together with the relative humidity ϕ and the barometric pressure are used to 

calculate the humidity in ambient air . The SBI use of a K-type 

thermocouple in accordance with EN 60584-1 with a diameter of (2 ± 1) mm. 

 

The sensitivity coefficients of the temperature measurement is a factor 3 higher than the sensitivity 

coefficient for  the humidity measurement (6.3.6; ϕ=50%, T=298K). This means that to reduce the 

uncertainty on the heat release associated with Troom to the same level as ϕ, temperature should be 

measured with a standard uncertainty of 1.24 K, i.e. 1.25% from 298K divided by 3. 

 

 Tolerance on a new thermocouple tt: 

The quality system maintained in the Ghent University fire laboratory prescribes the use of Class 2 

thermocouples according to IEC 60584-2[11]. The tolerance allowed on new

0
20HX [2] standard prescribes the 

 Class 2 thermocouples 

according to this standard is: 

• ±2.5°C in the range –40°C to 333°C 

• ±0.0075 t (t in °C) in the range 333°C to 1200° 

 

 Effect of ageing ta: 

Since K-type thermocouples are subject to calibration changes on temperature cycling to 500°C or 

above (like in fire resistance tests), and since no temperatures above 400°C are to be expected in the 

SBI, ageing effects will considered to be negligible. 

  

 Effect of data acquisition and extension wires tDAQ: 

The uncertainty related to the data acquisition, extension wires and connectors is estimated (6.4.1) to 

be 1.0 K. 

 

 Radiation error tr: 

Since the thermocouple is supposed to measure the ambient room temperature the radiation error is 

considered to be negligible. 

However, care should be taken that the thermocouple does not see hot surfaces like furnaces, heaters, 

etc. nor that it is exposed to direct sunlight. (add remark in SBI standard) 

 

 Velocity error tv: 

The air velocities at the height of the probe are estimated to be smaller than 1 m/s. No velocity error 

needs therefore to be introduced. 
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Table 24. Room temperature measurement by means of a 4-wire RTD 

 

 Conduction error tc: 

Negligible. 

 

 Transient error tτ: 

Negligible. 

 

 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

tt 0 °C 2.5 °C rectangular 1.44 °C 1.0 1.44 °C 

ta 0 °C 0 °C - 0 °C 1.0 0 °C 

tDAQ 0 °C 1.0 °C normal 1.0 °C 1.0 1.0 °C 

tr 0 °C 0 °C - 0 °C 1.0 0 °C 

tv 0 °C 0 °C - 0 °C 1.0 0 °C 

tc 0 °C 0 °C - 0 °C 1.0 0 °C 

tτ 0 °C 0 °C - 0 °C 1.0 0 °C 

T 0 °C     1.8 °C 

Table 23. Room temperature measurement by means of thermocouple 

 

The use of class 1 thermocouples: 

• ±1.5°C in the range –40°C to 375°C 

• ±0.004 t (t in °C) in the range 375°C to 1000°C 

would reduce the uncertainty contribution to 1.3°C. 

 

A probably better alternative is to measure the room temperature by means of a 4-wire RTD (Resistive 

Temperature Detector; Pt-100). 

 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

tt 0 °C < 0.1°C rectangular < 0.06 °C 1.0 < 0.06 °C 

tDAQ 0 °C 0.3 °C rectangular 0.17 °C 1.0 0.17 °C 

T 0 °C     < 0.18 °C 



 

 

In this dissertation, the room temperature is only used for determining the water vapour concentration 

in ambient air. The sensitivity coefficient is three times higher than the sensitivity coefficient on the 

relative humidity (concentration of 50%). The standard uncertainty is estimated to be 1.8°C. The 

standard uncertainty on the room temperature could be reduced with a factor 10 by using a 4-wire 

RTD (Pt-100) instead of a thermocouple. 
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6.4.11 Uncertainty on the component α 

The expansion factor α is defined as the ratio of the number of moles of combustion products to the 

number of moles of dry air fully depleted of its oxygen. It is related to β by 

 

 )1(2095.01 −+= βα  [ 6.109 ] 

 

where β is defined as the ratio of the moles of combustion products formed to the moles of oxygen 

consumed. As an example the expansion factor α of propane is calculated as 

 

 [ 6.110 ] 

 

OHCOOHC 22283 435 +→+  

0838.1)1
5

43(2095.01 =−
+

+=α  [ 6.111 ] 

 

If the fuel composition and the reaction chemistry is known, β and α are known. 

 

It is assumed that the nitrogen contained in the fuel is released as molecular nitrogen. (Temperatures in 

building fires are usually not high enough to produce noticeable amounts of nitrogen oxides) 

 

As the composition of the fuel is usually not known, some average value has to be used for α. 

Complete combustion of pure carbon (no H2O formation) results in α = 1, while complete combustion 

of hydrogen (no CO2 formation) results in α = 1.21. A recommended value in the literature[33] is α = 

1.105, which is correct for methane. This is also the value that has been adopted in most fire test 

standards. 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

α 1.105 0.105 rectangular 0.061 1.0 0.061 

       

α 1.105     0.061 

Table 25. Uncertainty on the expansion factor 

 

Assuming a rectangular distribution from α = 1 to 1.21, the standard deviation on α is equal to 5.5%. 
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6.4.12 Uncertainty on the component c 

The component c is given by the following equation and is – by the standard – defined to be 22.4 

 

 4.222

298

298 ==
ρ
Tc  [ 6.112] 

with corresponding uncertainty estimate (T298 = 298.15K): 
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=  [ 6.113 ] 

 

This introduces an error due to the fact that it is assumed that the gas flowing in the exhaust duct has a 

density equal to dry air. The molecular weight of air is however significantly affected by the presence 

of water vapour. Jones[34] gives an extensive development and comes to the following equation for 

density of air as a function of temperature (K), pressure (Pa) and relative humidity (ϕ) 

 

 ( )ϕρ sair pp
T

003796.00034847.0
−






=  [ 6.114] 

where the saturation pressure is related to temperature by 

 

 ( )






 −

+= T
s eEp

56.5315

117526.1  [ 6.115] 

 

Since the ambient temperature, the barometric pressure and the relative humidity are used in the 

calculation of the depletion factor φ they are readily available to correct for the effect of moisture 

content on the c-factor through the air density. 

 

Table 26 shows the effect of barometric pressure and relative humidity on the ‘constant’ c. The 

variation in barometric pressure at sea level is taken as ±3 000Pa, while the range in relative humidity 

is chosen to lie between 20 and 80%. For those laboratories that lie substantially above sea-level, the 

mean barometric pressure, in general, will lie below the standard value of 101 325Pa at sea-level. 
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T 

(K) 

ϕ 

(%) 

patm 

(Pa) 

ps 

(Pa) 

ρair 

(kg/m³) 

c 
(m²s-1N-1/2K1/2) 

error 

(%) 

at sea level 

298.15 20 98'325 3'169 1.146 22.807 1.82% 

298.15 20 104'325 3'169 1.217 22.140 -1.16% 

298.15 80 98'325 3'169 1.138 22.891 2.19% 

298.15 80 104'325 3'169 1.208 22.217 -0.82% 

at 100m above sea level 

298.15 20 97'200 3'169 1.133 22.939 2.41% 

298.15 20 103'132 3'169 1.203 22.268 -0.59% 

298.15 80 97'209 3'169 1.125 23.024 2.78% 

298.15 80 103'140 3'169 1.194 22.345 -0.24% 

Table 26. variation of c-factor with barometric pressure and relative humidity 

 

Note that: 

• The mean level of Ghent is 8m above sea-level. 

• The minimum/maximum barometric pressure in Gruitrode (Belgium) for the year 2004 is 

984hPa/1036hPa. 

• Outside air is often saturated (ϕ=100%) but is often heated (ϕ drops) before it enters the test 

instrument. 

So the tabulated values are believed to represent limit cases in the determination of the variation on the 

c-factor. The distribution of the c-factor will assumed to be triangular with limit values -1.2%/2.2% 

around the actual used value of 22.4. 

The thus obtained standard deviation is -0.5%/+0.9%. 

 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’ 

 

probability 

distribution

standard 

uncertainty 

u(xi)* 

bias sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y)* 

c 22.4 -1.2%/2.2% triangular ±0.7% 0.5% 1.0 ±0.16 

        

c 22.4    0.5%  ±0.16 
* see for calculation of bias and standard uncertainty  6.2.4 

Table 27. Uncertainty contribution if c is taken constant 

 

Correcting for the bias this becomes: 
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Table 30. Uncertainty contribution if c is calculated (Troom via RTD) 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi)* 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y)* 

c 22.51 ±1.7% triangular ±0.7% 1.0 ±0.16 

       

c 22.51     ±0.16 
* see 6.2.4 for calculation of bias and standard uncertainty 

Table 28. Uncertainty contribution if c is taken constant (corrected for bias) 
 

If the c-factor is calculated out of the above formulas, the uncertainty contribution reduces, but still 

can not be neglected, as can be seen from Table 29.  
 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

T 293 K ± 1.8 K normal ± 1.8 K -4.41E-03 ± 0.007 9 

ϕ 50 % ± 1.23% normal ± 1.23% -1.046E-04 ± 0.000 129 

p 101 325 Pa ± 100 Pa normal ± 100 Pa 1.19E-05 ± 0.001 19 

ρair 1.200 kg/m³   ± 0.008 kg/m³ -9.284 ± 0.074 

c 22.282     ± 0.074 
Sensitivity coefficients calculated around the estimate values 

Table 29. Uncertainty contribution if c is calculated (Troom via thermocouple) 
 

Note from Table 30 that the uncertainty would even reduce further if a 4-wire RTD (Resistive 

Temperature Detector; Pt-100) would be used to measure the room temperature as explained in 6.4.10. 
 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

T 293 K ± 0.18 K normal ± 0.18 K -4.41E-03 ± 0.000 794 

ϕ 50 % ± 1.23% normal ± 1.23% -1.046E-04 ± 0.000 129 

p 101 325 Pa ± 100 Pa normal ± 100 Pa 1.19E-05 ± 0.001 19 

ρair 1.200 kg/m³   ± 0.001 44 -9.284 ± 0.013 

c 22.282     ± 0.013 
Sensitivity coefficients calculated around the estimate values 



 

 

In summary: 

The ‘constant’ c does vary with barometric pressure and relative humidity and introduces a standard 

uncertainty of ±0.7 % at the Ghent premises. This uncertainty can be reduced by a factor 10 by 

actually calculating the c-factor and by measuring the room temperature with a four-wire RTD instead 

of with a thermocouple. This operation requires no additional measurements. 
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6.4.13 Uncertainty on the component A 

The cross sectional area of the exhaust duct is governed by the roundness and the diameter. Out of a 

discussion with the supplier we learned that the roundness is within  ±1 mm around the nominal 

diameter of 315 mm as confirmed by measurements. 

 

Also soot deposit may change the cross sectional area of the duct. The assumption made is that a soot 

layer of between 0 and 1mm is formed on the duct wall. For ease of calculation we will widen this 

range to 0 – 1.15 mm as will become clear later. 

 

In addition, due to the nature of the testing, the duct wall temperature will increase over the test, 

resulting in a higher cross sectional area. The steel used for the inner duct is Stainless Steel 304 (18/8 

steel) which has a linear expansion coefficient of 1.7mm per meter and per 100°C temperature rise. 

Figure 60 shows the measured wall temperature in three test cases: 

• when burning a particle board (continued heat release); 

• when running a heptane calibration; 

• when running a step calibration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 60. Measured duct wall temperatures in three particular tests 

 

Assuming: 

• the maximum temperature rise to be of the order of 85°C over a test (case heptane calibration); 

• a triangular distribution, 

the standard uncertainty related to the cross sectional area A is estimated in Table 32. 
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Quantity 

Xi 

estimate 

xi 

‘uncertainty’ 

 

probability 

distribution

standard 

uncertainty 

u(xi)* (m) 

bias 
(mm)

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y)* 

Dradius 0.315 m ±1.0E-03 m rectangular ±0.577E-03 0 0.495 ±0.286E-03 

Dsoot 0.315 m -2.3E-03 m rectangular 

(one sided)

±0.664E-03 -1.15 0.495 ±0.329E-03 

Dtemperature 0.315 m +0.455E-03 m triangular 

(one sided)

+0.107E-03 0.15 0.495 +0.053E-03 

A (m²) 77.93E-03      ±0.44E-03 
* see 6.2.4 for calculation of bias and standard uncertainty 

Table 31. Standard uncertainty and bias related to the cross section area 

 

Although the temperature effect has only a minor effect, the effect may become important in full scale 

tests like the room corner test where the temperature rise may attain several hundred degrees Celcius. 

 

In order to remove the bias, the diameter estimate will be reduced with 1 mm (-1.15 + 0.15). 

 

Quantity 

Xi 

estimate 

xi 

‘uncertainty’

 

probability 

distribution 

standard 

uncertainty 

u(xi)* 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y)* 

Dradius 0.314 m ±1.0E-03 m rectangular ±0.577E-03 m 0.495 ±0.286E-03 

Dsoot 0.314 m ±1.15E-03 m rectangular ±0.664E-03 m 0.495 ±0.329E-03 

Dtemperature 0.314 m ±0.228E-03 m triangular 

(asymm.) 

±0.107E-03 m 0.495 ±0.053E-03 

A (m²) 77.44E-03     ±0.44E-03 

Table 32. Standard uncertainty related to the cross section area 
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6.4.14 Uncertainty on the component qgas 

qgas represents the ‘theoretical’ heat release rate as obtained out of: 1) a mass flow measurement of 

propane gas that feeds the burner and 2) the lower heat of combustion of propane gas. 

 

 [ 6.116 ] 

 

The value of qgas when the burner is running at a 30 kW level is used to calibrate the test instrument 

(kt-factor, see . 

 

The lower heat of combustion of commercial grade propane and its standard uncertainty are estimated 

at (46 340 ± 50) kJ/kg (see B.6). 

 

The global uncertainty related to the mass flow measurement originally was thought to be ±0.5% of 

the measurement value plus ±0.1% of the full scale, which corresponds to a standard uncertainty of 

0.26 kW for the burner running at 30 kW (full scale corresponds to approximately 105 kW). Those 

values apply for a special polynomial calibration of the test instrument. 

However, out of contacts with the mass flow controller supplier, we learned that these values only 

apply when calibrating under actual conditions. This means with the same gas, at same temperature 

and pressure conditions. 

Due to the explosive character of propane gas, a reference gas (nitrogen) is used instead for calibration 

and the tight uncertainty limits no longer hold. 

The manufacturer stated that this is common practice for all mass flow controllers commercially 

available on the market. 

They further suggested to use the somewhat conservative estimate of: ±1% of the measurement value 

plus ±0.2% of the full scale (or ±1% of the full scale, whichever is the lowest). The resulting estimated 

standard uncertainty is 0.51 kW for the burner running at 30 kW (1.7%). This is higher than what the 

standard requires (1%). 

 

For the standard mass flow controllers (without polynomial calibration) they recommend to use the 

estimate of ±1% of the full scale (estimated standard uncertainty of 1.05 kW or 3.5%). 

 

A better solution would be to introduce an extra mass flow controller with a range of 0 to 30 or 31 kW 

(say 0 to 20 nl/min). The standard uncertainty would then reduce to approximately 1%. This would 

( ) ( )tmhtq gaseffcgas && ,∆=  

 6.4.15)
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however only slightly improve the uncertainty on the kt,qgas factor (2.9% instead of 3.2%; see next 

section). 

 

6.4.15 Uncertainty on the component kt 

6.4.15.1 Introduction 

The velocity profile correction factor kt accounts for the fact that the velocity measured by means of a 

bi-directional probe on the axis of the exhaust duct is a factor kt higher than the mean velocity in the 

duct. The kt factor used in the standard is defined as the average of three independent calibrations 

being the ‘step calibration’ (kt,qgas), the ‘heptane calibration’ (kt,qheptane) and the ‘velocity profile 

measurement’ (kt,v).  

kt is directly proportional to the volume flow and therefore to the heat release rate and its derived 

parameters FIGRA and THR600, and to the smoke production rate and its derived parameters 

SMOGRA and TSP600. 

 

In medium to large scale heat release testing equipment, the kt factor is used to correct for all 

measurement errors, and this at the moment of calibration. One way to ‘calibrate’ the test equipment is 

to burn a combustible with a well known heat of combustion and to fit the kt factor until the measured 

heat release corresponds to the theoretic value. In the SBI the kt factor is the mean value of three 

calibrations, two of which are based on the burning of a known combustible (kt,qgas & kt,qheptane). 

 

In those heat release tests, the kt factor is considered to be constant which it clearly isn’t as discussed 

in [58], which forms an integral part of this work (see 4.4), and [52]. 

 

First the uncertainty related to kt and its measurement and calculation procedure is estimated by 

determining the uncertainty on the three composing kt factors. 

 

Next, the intrinsic variation on kt is estimated as described in [58]. 

 

6.4.15.2 Uncertainty on the component kt,v  

The velocity profile correction factor obtained out of a direct measurement of the velocities in some 

discrete points results in kt,v. The measurements are taken at 90° intervals on 5 different radii (vn; 

n=1...5) and at the centre position making use of a pitot tube or a hot wire anemometer. The profile 

factor kt,v is then: 
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Taking the partial derivative to the different components xi results in the corresponding sensitivity 

coefficients ci: 
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and to the combined standard uncertainty 
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The estimated uncertainty (see §6.2.2) on the velocity components for a 95% confidence interval and 3 

degrees of freedom (4 measurement positions; t0.025 = 3.18) is: 

 

Quantity 

Xi 

estimate 

xi 

standard 

deviation 

s 

probability 

distribution 

95% 

confidence 

interval 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) [95%] 

120 

v1 7.00 1.132 t (d.f.=3) 1.799 0.0198 kt,v 0.0355 kt,v 

v2 0.412 t (d.f.=3) 0.655 29 kt,v 9.39 0.0198 kt,v 0.01

3 10.62 0.531 t (d.f.=3) 0.845 0.0198 kt,v 0.01 t,v 

v4 11.25 0.180 0.287 t (d.f.=3) 0.0198 kt,v 0.0057 kt,v 

5 0.223 0.355 t,v 0.00 t,v 

0.636 1.011 t,v -0.0816 kt,v 

t,v kt,v = 0.8    0.092 kt,v 

v 67 k

v 12.37 t (d.f.=3) 0.0198 k 70 k

vc 12.39 t (d.f.=3) -0.0807 k

k 17  

Table 33. Standard uncertainty related to kt,v 
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which finally results in an uncertainty of 9.2% for a 95% confidence interval. 

 

able 33

 

 

The uncertainty related to the position of the measurement head (estimated accurate to within 0.5 mm) 

for the outer radius where the velocity gradient is highest, is estimated at 1.2 % based on the 

theoretical velocity profile as proposed by Schlichting[32] at a Reynolds number of around 160 000. 

This makes that this uncertainty, in comparison with the values in T , may be neglected. 

The apparent standard deviation, defined as the uncertainty for a 95% interval divided by 1.96, will 

thus be set to 4.7 %. (This is much larger than the value of 1.044% reported by SP[69] for their Room 

Corner[6] duct.) 

Note that the largest variations occur close to the wall where the velocity gradient is highest. More 

important however, in view of a lower standard uncertainty, is the careful measurement of the velocity 

component on the central axis of the duct since its sensitivity coefficient is a factor 4 higher. 

The standard uncertainty could further be reduced by measuring for example on 2 or 4 additional lines 

from wall to centre thus increasing – besides the number of samples – the degrees of freedom in the t-

distribution to 5 respectively 7 and so reducing the value of the critical point t0.025 {t0.025 (d.f. = 5) = 

2.57; t0.025 (d.f. = 7) = 2.36). 

Using the last N calibrations instead of just the recent one – in fact taking the mean of N 

measurements considered to be independent – could further reduce the standard uncertainty for the 

population mean by a factor N . 

 

6.4.15.3 Uncertainty on the component kt,qgas  

The component kt,qgas follows out of a so called ‘Step Calibration’ which consists of burning a known 

combustible, in this case propane, with a well known heat of combustion and to fit the kt factor until 

the measured heat release rate, Qstep, corresponds to the theoretic value, qgas. 

 
step

gas
tqgast Q

q
kk

&
&

=,  [ 6.121 ] 

 

The uncertainty on Q (6.3.4) then reduces to 0.82 kW (for the 30 kW level). This is also because the 

fuel is known namely ‘commercial grade propane’. 

whereby kt is the flow profile factor used for the calculation of Qstep. Both the nominator and 

denominator on the right hand side of the equation contain kt, so kt drops out and thus the uncertainty 

on kt can be set to zero. 
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The combined standard uncertainty on k

 
t,qgas  is estimated at 3.2%: 
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Using the last N calibrations instead of just the recent one – in fact taking the mean of N 

measurements considered to be independent – could further reduce the standard uncertainty for the 

population mean by a factor 

This value is obtained neglecting the bias associated with: the ‘c’-component, the cross section of the 

duct ‘A’ and the differential pressure probe ‘kp’. Increasing the uncertainty for this uncorrected bias 

results in  

  [ 6.123 ] 
%6.6
%4.2

791.0, −
+

=qgastk

The above values are based on the second SBI round robin step calibration of the Ghent University 

laboratory (kt,qgas = 0.791). Complete combustion is assumed. 

 

N . 

 

6.4.15.4 Uncertainty on the component kt,qheptane  

 

The component kt,heptane follows out of a so called ‘Heptane Calibration’ which consists of burning a 

given quantity of a known combustible, in this case heptane, with a well known heat of combustion 

and to fit the kt factor until the measured total heat release, Qheptane, corresponds to the theoretic value, 

qheptane. 
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whereby k s the flow profile factor used for the calculation of Qheptane. Both the nominator and 

denominator on the right hand side of the equation contain kt, so kt drops out and thus the uncertainty 

on kt can be set to zero. 
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The uncertainty on Qheptane (6 ) then reduces to 643 kJ. This is also because the fuel is known 

namely ‘99% pure heptane’. 

.3.4
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The combined standard uncertainty on k

 
t,heptane is estimated out of 
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  [ 6.128 ] 

 

56

whereby ∆hc,heptane = (44 550 ± 50) kJ/kg and mheptane = (2.840 ± 0.001)kg. 

The above uncertainty estimate is obtained by neglecting the bias associated with: the ‘c’-component, 

the cross section of the duct ‘A’ and the differential pressure probe ‘kp’. Increasing the uncertainty for 

this uncorrected bias results in  

%61.0
%55.0

839.0tan, −
+

=eheptk

The above values are based on the second SBI round robin heptane calibration of the Ghent University 

laboratory (kt,heptane = 0.839). Complete combustion is assumed. Out of the statistical analysis of the 

second SBI round robin data there are some indications that this may not be true (Table 5 in [ ]). 

This needs further analysis. 

 

Using the last N calibrations instead of just the recent one – in fact taking the mean of N 

measurements considered to be independent – could further reduce the standard uncertainty for the 

population mean by a factor N . 
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Since kt is calculated as the average of three values kt,v , kt,qgas and kt,qheptane.which are independent 

measurements, the standard uncertainty on kt reduces to 

 

 015.0)()()(
3
1)( tan,

2
,

2
,

2 ≅++= eqheptqgastvtt kukukuku  [ 6.12  ] 9

 

This finally results in k (0.815 ± 0.015) or thus a standard uncertainty of 1.8%. 

 

0

 

t = 

Increasing the uncertainty for the uncorrected bias results in: 

 

  [ 6.13  ] 
%7.2
%8.1

815.0
−
+

=tk

This is the uncertainty on kt related to both the natural variation and to the method by which it is 

obtained. This value should be used in the calculations. By using the last N calibrations of the 

individual kt,x calibrations instead of only the recent one, the standard uncertainty for mean value (out 

of N calibrations) could further reduce by a factor N . 

The evolution in time of the different k also be used as a warning signal for a 

major revision of the test instrument. 

 

6.4.15.5 Uncertainty on kt; alternative method 

t,x calibration values can 

In the paper of section 4.4, the intrinsic variation of kt is estimated. The conclusion there is that for the 

SBI test equipment running at constant mass flow rate (extraction), the standard uncertainty on the 

mass flow rate related to temperature effects is estimated to 0.6%. This method not only includes the 

variation of kt with Reynolds number, but also the opposite effect of variation in density profile which 

otherwise would not be included in the uncertainty analysis. 

 

This means that there is still some room left for improvement of the measurement procedure & 

equipment (1.8%/-2.7% versus 0.6%). 
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6.4.16 Uncertainty on the component kp 

[56]

In order to estimate the uncertainty related to the Reynolds dependence of the pressure probe, we 

assume: 

• a constant mass flow. Table 4 of that same paper reveals that the maximum error is –0%/+7% 

(combustion gases at 600K); 

• a triangular distribution. 

 

X

estimate 

 

bias 

In the paper ‘Critical considerations on the use of a bi-directional probe in heat release measurements’ 

, which forms an integral part of this work (see chapter 4), it is shown that the pressure probe 

currently used in the SBI is Reynolds dependant. Since the pressure probe factor kp is considered to be 

constant, this introduces an additional uncertainty on kp. 

 

 

The standard uncertainty now becomes  

Quantity 

i xi 

‘uncertainty’ probability 

distribution

standard 

uncertainty 

u(xi)* (m) 

 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y)* 

kp,Reynolds 1.080 triangular 2.33 1 -0%/+7% 

(one sided)

±1.65 

(%) 

±0.018 

kp,calibration 1.080 -0.011/0.009 normal ±0.01 - 1 ±0.01 

p 1.080     k  ±0.021 
* see 6.2.4 for calculation of bias and standard uncertainty 

Table 34. Uncertainty contribution if c is taken constant 

Quantity 

x

‘uncertainty’ probability 

distribution 

u(x

 

or, removing the bias, 

 

Xi 

estimate 

i  

standard 

uncertainty 

i) 

sensitivity 

coefficient 

ci 

uncertainty 

contribution 

ui(y) 

1.105 triangular ±1.65 ±0.018 

kp,calibration 1.105 -0.011/0.009 normal ±0.01 1 ±0.01 

p 1.10    ±0.021 

kp,Reynolds -0%/+7% 

(asymm.) 

1 

k 5  

Table 35. Uncertainty contribution if c is taken constant (corrected for bias) 
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An alternative and probably better solution would be to move away from the actual probe design, 

which includes a steel supporting rod that heavily disturbs the flow around the pressure chambers, and 

to introduce either the design of McCaffrey & Heskestad[ ] or the design of Sette . 51 [57]

X

estimate ‘uncertainty’ probability 

distribution 

u(x ci 

uncertainty 

contribution 

ui(y) 

 

Quantity 

i xi  

standard 

uncertainty 

i) 

sensitivity 

coefficient 

  -0.011/+0.009

kp,Sette 1.224   ±0.008 

kp,McCaffrey & H. 1.046   

  

Table 36. Uncertainty contribution of alternative probes 

 

 

 

6.4.17 Uncertainty on the component ∆p 

The expected velocity range at the height of the probe in the SBI lies between 5 and 16 m/s 

(T=288...600 K; V ..0.7 m³/s; kt=0.8...0.9). This corresponds to differential pressures roughly 

between 20 and 150 Pa. 

• a linearity of ±0.5% FS (Full Span) 

• an hysteresis of 0.1% FS 

• no zero drift because of automatic zero set function 

• a temperature effect on the span value of 0.03%/K in the range +10°C-50°C 

• the transducer was calibrated at 20°C 

• a rectangular distribution 

• the instrument is operating between +10°C and +30°C 

After correcting for the bias (2.33%), the uncertainty contribution of the SBI pressure probe actually 

lies around 2% but can easily be reduced to less than 1% by introducing any of two existing design 

alternatives. 

The volume flow through the exhaust duct is measured by means of a bi-directional velocity pressure 

probe. The probe is basically a device that relates the velocity of the exhaust gases to a differential 

pressure. 

298=0.4.

 

The pressure transducer used to measure the differential pressure over the probe has a range from 0 to 

250 Pa with the following specifications: 

 

Assuming: 
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• the effect causing non-linearity, hysteresis and the temperature effect are independent the one 

from the other 

 

X

estimate ‘uncertainty’ standard 

uncertainty coefficient 

c

 

the standard deviation is estimated to be 0.38% (0.95 Pa). 

Quantity 

i xi  

probability 

distribution 

u(xi) 

sensitivity 

i 

uncertainty 

contribution 

ui(y) 

linearity ∆p 0.5% FS 0.29% FS 1.0 0.29% FS 

∆physteresis ∆p 0.1% FS rectangular 0.058% FS 1.0 0.058% FS 

∆ptemperature ∆p 0.3% FS rectangular 0.17% FS 1.0 0.17% FS 

∆pDAQ ∆p rectangular 1.0 0.3% FS 0.17% FS 0.17% FS 

∆p ∆p   

∆p rectangular 

  0.95 Pa 

*FS: Full Span (250 Pa) 

Table 37. Uncertainty contribution of the differential pressure meter 
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6.4.18 Uncertainty on the component T

The combustion gas temperature at the height of the measuring section (ms) is measured by means of 

three K-type, sheathed and insulated, thermocouples having an outside diameter of 0.5mm. The 

position of the tips is at a radius of (87 ± 5)mm from the axis and with 120° mutual angular distance. 

 

 Tolerance on a new thermocouple tt: 

The quality system maintained in the Ghent University fire laboratory prescribes the use of Class 2 

thermocouples according to IEC 60584-2[11]. The tolerance allowed on 

ms 

new Class 2 thermocouples 

according to this standard is: 

• ±2.5°C in the range –40°C to 333°C 

• ±0.0075 t (t in °C) in the range 333°C to 1200°C 

 

 Effect of ageing ta: 

Due to ageing effects an additional uncertainty should be taken into account. Based on ageing effects 

of K-type sheeted thermocouples after 50 hours of use inside a furnace for fire resistance tests[12] a 

variance of ±2°C can be expected for temperature measurements around 120°C. Since K-type 

thermocouples are subject to calibration changes on temperature cycling to 500°C or above (like in 

fire resistance tests), and since no temperatures above 400°C are to be expected in the SBI, it is 

reasonable to say that ageing effects will be limited to ±2°C around the nominal value. 

 

 Effect of data acquisition and extension wires tDAQ: 

 

 Radiation error tr: 

Another important effect is the radiation error. Due to the thermal inertia of the duct system, the 

thermocouple will initially see a ‘cold’ surface when gas temperatures start to rise. This results in an 

underestimation of the real gas temperature. Further on in the test when temperatures decay, the 

thermocouple sees a ‘hot’ duct surface and will overestimate the gas temperature. This effect is non-

linear and is judged to have a standard uncertainty of ± 2.2 °C (annex B.5). 

 

 Velocity error tv: 

The uncertainty related to the data acquisition, extension wires and connectors is estimated (6.4.1) to 

be 1.0 K. 

The error related to the velocity has its origin in the fact that not all of the kinetic energy of the fluid is 

recovered when a gas is brought to rest near a thermocouple. Ideally the gas should be brought to rest 
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adiabatically. The recovery factor is α = 0.68 ± 0.07[25] for wires normal to the flow. The error 

associated with the velocity is given by 

 

 ( )
pc

v
2

1
2

α−  [ 6.13  ] 1

 

Assuming that: 

• α = 0.68 

• v = 16 m/s 

• cp = 500 J/kg.K 

 

 Conduction error tc: 

The thermocouples are inserted into the exhaust duct perpendicular to the flow over a length of about 

7 cm. Conduction errors can therefore be neglected. 

 

 Transient error tτ: 

The transient error associated with the response time τ of the thermocouple is given by 

 

whereby v is the mean velocity, cp is the specific heat of the thermocouple material and α is the 

recovery factor.  

 

Initially the velocity at the height of the thermocouples in the SBI is around 8 m/s. This value can 

increase to approximately 16 m/s when the gas temperature rises to 300°C and keeping the mass flow 

constant. 

 

 

the overestimation of the temperature is 0.08 K 

 

dt
dTτ  [ 6.132 ] 

 

τ is estimated theoretically to be approximately τ = 1.15 s (annex B.2) for flow gases around room 

temperature. For higher temperatures the time constant decreases slightly resulting in a reduced error. 

For a heptane calibration according to the SBI standard the maximum initial temperature rise is of the 

order of 2.5 °C/s which results in a maximum underestimation of about 2.84 °C. This calibration can 

be seen as the maximum temperature rise of the smoke gases at the height of the measuring section. 
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estimate 

 

probability 

distribution 

standard 

uncertainty coefficient 

Quantity 

Xi xi 

‘uncertainty’

u(xi) 

sensitivity 

ci 

uncertainty 

contribution 

ui(y) 

tt 0 °C 2.5 °C rectangular 1.44 °C 1.44 °C 1.0 

ta 0 °C rectangular 1.15 °C 2.0 °C 1.0 1.15 °C 

tDAQ 0 °C normal 1.0 1.0 °C 1.0 °C 1.0 °C 

tr 0 °C 2.2 °C 2.2 °C 1.0 normal 2.2 °C 

tv 0.04 °C 0.04 °C rectangular 0.023 °C 0.023 °C 1.0 

tc 0.0 °C 0.0 °C - 0.0 °C 1.0 0.0 °C 

tτ 0 °C 2.84 °C triangular 1.16 °C 1.0 1.16 °C 

T    3.2 °C 0 °C  

Table 38. Uncertainty contribution of the temperature measurement 

 

If type 1 thermocouples would be used, the uncertainty contribution would slightly reduce to 3.0 °C. If 

however, in addition, the thermocouple would be shielded, the uncertainty contribution drops to 2.1°C. 

 

.4.2.3

 

If transient errors are neglected, as discussed in paragraph 6 , the component tτ drops out. 
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6.5. Conclusions 

 

Different from previous attempts to estimate uncertainty in fire testing, asymmetric distributions are 

used where necessary, correlations between the oxygen, carbon dioxide, differential pressure and 

exhaust gas temperature are taken into account and a method to deal with uncorrected bias has been 

introduced. 

It should be noted that the determination of the uncertainty has been worked out for the Ghent 

University test rig wherever a general approach for all laboratories was not possible. 

 

In this chapter a theoretic uncertainty estimate of the values used in the SBI for classification – FIGRA 

and THR600s – and of the MARHE value have been derived along the lines of the ISO Guide to the 

Expression of Uncertainty in Measurements (GUM). 

It is the first study that does not limit itself to the estimation of the uncertainty of the heat release rate, 

but also treats the derived parameters FIGRA and THR600s. 

 

Furthermore this dissertation estimates for the first time the uncertainty related to transient phenomena 

and to asynchronous data. 

 

Next the uncertainty is estimated on all measurands and for all calculation steps whereby some of the 

uncertainties are for example heat release rate dependent. This makes that it is often not possible to 

assign a fixed uncertainty to a specific measurand. Assigning a fixed number would often require 

overestimation of the uncertainty. 

The uncertainty will therefore be calculated in function of time for some real test data in the next 

chapter. 
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7 Evaluation and results of the Analytical Model 

7.1. Introduction 

Chapter 7 brings together all the information of the previous chapters into one analytical uncertainty 

estimation model and includes the cascade of all uncertainties. Since several uncertainties are function 

of for example the heat release rate, the uncertainty estimate is function of time. In this chapter the 

analytical model is applied to some real test data. 

 

After checking the model that it corresponds with the formulas presented in chapter 6, the results of 

the model are first compared with the results of SBI RR2. A round robin is another, independent way 

to come to an uncertainty estimate on the values used for classification. 

 

Next the model is used to evaluate the changes suggested in chapters 5 and 6 in relation to uncertainty 

reduction. 

 

7.2. Comparing the model with the SBI RR2 results 

One way to check the ability of the model to estimate the uncertainty interval is to compare its results 

with the results that followed out of SBI RR2[70]. In this round robin, the Ghent laboratory formed part 

of a first group of ten labs – nine of which reported in due time – who had to test three samples three 

times. 

 

The results of the estimated repeatability limits r on the values used for classification i.e. FIGRA and 

THR600s – obtained by means of a round robin exercise and by means of the analytical model – are 

compared. The repeatability limit is defined as the value less than or equal to which the absolute 

difference between two test results obtained under repeatability conditions may be expected to be with 

a probability of 95%.[15] 

 

 Ur 2=  [ 7.1 ] 

 

The relative repeatability limit, r/m, is further defined as 

 

 
m
U

m
r 2

=  [ 7.2 ] 
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whereby m represents the measured value, U represents the expanded uncertainty for a 95% 

confidence interval (1.96*u for a normal distribution) and whereby the factor 2  arises from the fact 

that r refers to the difference between two single test results. 

 

7.2.1 Repeatability limit estimated by means of round robin 

A first way to estimate the repeatability limit of a given test instrument is to perform a statistical 

analysis in accordance with ISO 5725. In SBI RR2 a first group of nine laboratories tested three 

products (P1 – P3) three times which resulted in the repeatability limits on the values FIGRA and 

THR600s as shown in Table 39. 

 

 P1: Faced glass wool P2: MDF board P3: Plastisol coated steel 

 Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ)

SBI RR2 test results of 9 laboratories 

m (mean value) 17 1.0 455 25 257 1.8 

r 9 0.2 31 1 41 0.3 

r/m 52 % 22 % 7 % 4 % 16 % 17 % 

Table 39. Repeatability limits for products P1-P3 by means of round robin 

 

Note that, for every product, 27 (9 x 3) tests have been done to obtain the estimate on the relative 

repeatability limit. 

 

In addition, it must be stressed that the so found repeatability limits are a sort of mean value for this 

group of nine laboratories and also includes variance related to non-technical issues like e.g. operator, 

etc. Individual laboratories may have higher or lower repeatability limits than the group mean which 

makes that the comparison of the results with the ones found by the analytical model requires the 

necessary prudence. 

 

7.2.2 Repeatability limit estimated by means of small sample t-test 

A second approach consists of using the SBI RR2 test results of the Ghent laboratory only, and to 

estimate the repeatability limits out of a small sample t-test as follows. The sample standard deviation 

‘s’ is multiplied with a t-distribution coefficient t0.025 with two degrees of freedom (n = 3 samples; t0.025 

= 4.3), instead of with the normal distribution coefficient z0.025 = 1.96, to obtain an expanded 
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uncertainty U with a 95% confidence interval. By widening the uncertainty interval, a 95% confidence 

interval can still be maintained although it is based on a limited number of observations. 

 

 
n
stU 025.0=  

 

The expanded uncertainty then combines with formula 7.2 to obtain the relative repeatability limit r/m. 

The results are summarised in Table 40. 

 

 P1: Faced glass wool P2: MDF board P3: Plastisol coated steel 

 Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ)

SBI RR2 test results of the Ghent laboratory (t-test) 

Sample 1 27.38 1.347 490.28 25.166 276.76 1.923 

Sample 2 19.73 1.064 490.13 24.937 240.33 1.782 

Sample 3 18.33 1.216 502.27 24.811 204.84 1.8 

mean m 21.81 1.209 494.23 24.971 240.64 1.835 

s 4.87 0.142 6.97 0.180 35.96 0.0767 

r 12.09 0.352 17.29 0.4468 89.28 0.1905 

r/m 55.44% 29.08% 3.50% 1.79% 37.10% 10.38% 

Table 40. Repeatability limits for products P1-P3 by means of small sample t-test 

 

7.2.3 Repeatability limit estimated by means of the analytical model 

Finally, the third approach makes use of the analytical model. The model allows to calculate the 

repeatability limit on all three individual samples of the SBI RR2 test results of the Ghent laboratory. 

 

In order to be able to compare the results with the previous two cases, the uncertainty related to 

transient phenomena is neglected and no bias corrections are done. This because all laboratories have 

similar instrumentation and no correction for bias and/or transient phenomena is done. 

Though the instrumentation is similar, it is not identical and the response times of measuring devices 

may still differ a lot from laboratory to laboratory. This makes that we expect that the repeatability 

limit resulting from the round robin will be higher than the one calculated by means of the analytical 

model. 

 

Table 41 shows the estimated relative repeatability limits r/m for all three individual samples on the 

three products tested. Two cases are given. One where the running average on the Heat Release Rate 
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reduces the uncertainty on the same, and one where we assume that the running average leaves the 

uncertainty on HRR unchanged as explained in section 6.3.2. 

 

 P1: Faced glass wool P2: MDF board P3: Plastisol coated steel 

 Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ) Figra (W/s) THR600s(MJ)

Analytical model (assumption: running average on HRR reduces uncertainty) 

r/m (Sample 1) 36.8 % 14.3 % 5.5 % 1.4 % 12.6 % 12.2 % 

r/m (Sample 2) 79.6 % 34.4 % 5.9 % 1.7 % 12 % 10 % 

r/m (Sample 3) 33 % 14.8 % 5.5 % 1.4 % 16.5 % 13.3 % 

Analytical model (assumption: running average on HRR does not reduce uncertainty) 

r/m (Sample 1) 120.3 % 15.1 % 17.4 % 1.6 % 48.6 % 13 % 

r/m (Sample 2) 259.2 % 35.4 % 18.1 % 1.7 % 39.2 % 10 % 

r/m (Sample 3) 108.9 % 15.8 % 16.3 % 1.4 % 51.6 % 13.3 

Table 41. Repeatability limits for products P1-P3 by means of analytical model 

 

The relative repeatability limits r/m of the model are in line with the values that follow out of the 

statistical analysis of the results of the nine labs. And this for materials that produce both low heat 

release rates – like product 1 – and materials with higher heat release rates – like product 2. 

 

In general, the repeatability limits estimated out of the analytical model are somewhat lower than the 

ones found out of the round robin. This can reasonably be attributed to neglecting – for reasons of 

comparison of the different methods as explained above – all transient phenomena and to the 

qualitative test data of the Ghent fire laboratory. The Ghent fire laboratory has always played a leading 

role on the international fire scene especially in heat release rate related test equipment. 

 

The assumption that the measurements to obtain the heat release rate results are uncorrelated, as 

discussed in section 6.3.2 (30 s averaging results in a reduction of the uncertainty by a factor N  

whereby N is the number of samples used for averaging; r = 0), produces far more realistic results than 

the assumption that the measurements are highly correlated (uncertainty does not reduce; r = 1). The 

hypotheses that all measurements can be treated as independent therefore seems to hold. 

 

All measurements will further be treated as being independent the one from the others. 

 

 

These first results suggest that the analytical model can be used to estimate the uncertainty interval for 

routine testing. This offers huge advantages over the actual approach where uncertainty estimates are 
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based on round robin results. Since the latter have a very large range, the results can only be applied to 

similar products and even then, one may argue what the real confidence interval is. As an example 

both the range and the average repeatability limits of SBI RR2 are given below[70]. 

 

 FIGRA0,2MJ FIGRA0,4MJ THR600s 

Number of products 9 9 9 

Range r /m 

Average r /m 

7 - 70 % 

32 % 

7 - 93 % 

38 % 

4 – 35 % 

23 % 

Number of products * 5 4 2 

Range r /m * 

Average r /m * 

7 – 29 % 

16 % 

7 – 35 % 

20 % 

4 – 27 % 

16 % 
*: products with very low mean values –which are less relevant for classification – excluded 

Table 42. repeatability limits as of SBI RR2 
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7.3. Using the model to improve the test method 

Besides the estimation of the uncertainty interval, the model presented provides an understanding of 

the contributors, that cause the uncertainty of the measurement process and their relative magnitude. 

This is a major strength of the GUM method which allows us to efficiently improve the test method. 

A round robin exercise is not able to do that. 

 

A limitation of the method is that it is based on assumed distributions. The estimate of the measuring 

uncertainty cannot be any better than these assumptions. Fortunately, the error committed when 

assuming the wrong distribution, generally changes the effect of the contributor no more than 15 - 20 

% and it is possible to always err on the safe side, by always choosing the most conservative of the 

two considered distributions, when in doubt. As we see, it is only the largest contributor for which it is 

critical to assume the correct distribution, since a 15 - 20 % change in the influence of any other 

contributor would be negligible. 

 

This section discusses a detailed uncertainty analysis under different assumptions. To help the 

discussion, all calculations will be based on the test results of a fourth sample of product P2 (MDF). 

The sample was supplied as a spare in the round robin exercise and was tested – for the occasion of the 

present study – with the data acquisition running at 10 samples a second (10 Hz) and an integration 

time of 1 PLC (20 ms). Several Keithley multimeters have been used in parallel for this test. 

 

For the first three cases discussed below, the data set was reduced afterwards to have sampled data 

every three seconds. This was done by simply taking every n-th point (n = 30). 

 

7.3.1 Case 1: SBI according to EN 13823 

In a first case 1, the values used for classification together with the associated combined global 

uncertainty are calculated when running the equipment in accordance with the SBI standard. Different 

from section 7.2, the uncertainty related to transient phenomena and related to uncorrected bias are 

included. A – worst case – fixed uncertainty interval is used for transient phenomena as discussed in 

6.4.2.1.c. 
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top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  7.20479 
 c 1.97998  
 A 1.73538  
 kt 2.57009  
 kp 6.12593  
 ∆p 0.75892  
 Tms 0.518  

φ   22.5903 
 X_O2 21.98039  
 X_CO2 2.43105  
 X_O2° 4.7441  
 X_CO2° 0.53061  

E   2.55814 
XD°

O2   0.12155 
 X_O2° 0.0537  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.10483  

α   0.08607 

standard uncertainty on HRR (excluding cross correlations) 23.86279 
standard uncertainty on HRR (including cross correlations) 26.32742 

Table 43. Uncertainty analysis at HRR = 30kW (case 1) 

 

Table 43 represents an uncertainty analysis on the Heat Release Rate at the 30 kW level. The 30 kW 

level corresponds to the contribution of the burner and is, especially for materials that end up in class 

A2 or B, the most important level. 

 

Column 1 represent those quantities Xi that compose the heat release rate Formula 2.1. The second 

column represents those quantities xi that compose the quantities Xi. Columns 3 and 4 represent the 

contribution of the different components to the combined standard uncertainty on the heat release rate. 

 

The last two rows of the table summarise the standard uncertainty on the heat release rate: 1) without 
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taking into account cross correlations or 2) taking cross correlations into account as discussed in 

6.2.5.2.
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k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 520.6 43.7 54.8 8.4 % 10.5 % 14.8 %
THR600s (MJ) 27.19 0.69 0.82 2.5 % 3 % 4.2 % 
MARHE (kW) 49.72 1.54 1.85 3.1 % 3.7 % 5.2 % 

Table 44. Uncertainty analysis on values used for classification and the MARHE value  

(k = 2) (case 1) 

 

Table 44 summarises the mean value m of the values used for classification and the MARHE value, 

together with the expanded (upper U+ and lower limit U-) uncertainty for a 95% confidence interval 

and the relative expanded uncertainty U/m. The last column gives the estimated repeatability limit r/m. 

 

Figure 61. HRR curve with 95% confidence interval (k = 2) (case 1) 

 

Figure 61 shows the heat release rate curve together with its 95% confidence interval. 

 

As expected, the standard uncertainty on the depletion factor and more specific the oxygen 

concentration, is huge because the uncertainty related to the transient error is based on the steep heat 

release rate rise of a heptane pool fire. For the majority of products tested in the SBI, the resulting 

uncertainty interval is far too conservative. Taking appropriate measures, as discussed in case 3, 

reduces this uncertainty to substantially lower levels. 

 

Besides the depletion factor φ, the uncertainty contribution of the flow rate VD298 is also substantial. 

Case 2 focuses on how to reduce this contribution. 
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7.3.2 Case 2: Eliminating systematic errors and introducing obvious 

improvements 

In chapter 6, some measures have been proposed to eliminate some known bias and to reduce the 

standard uncertainty on some components. Case 2 quantifies, for this particular MDF-test, the effect 

when introducing the proposed changes (Table 45). 

 

Action see 

section

bias 

correction 

u(x) 

old 

u(x) 

new 

The use of a ‘four wire RTD’(*) instead of a thermocouple 

to measure ambient temperature 

6.4.10 - 1.8 (°C) 0.18 (°C)

Calculate ‘c’ instead of assuming it constant 6.4.12 variable 0.16 (..) 0.013 (..)

Remove bias from the cross sectional area ‘A’ 6.4.13 -0.49E-3m²   

Use of alternative pressure probe 0.025 (-) 0.021 (-) 0.008 (-)6.4.16 

Use of shielded type 1 thermocouples - 3.3 (°C) 2.1 (°C) 6.4.18 
*Note that the four wire RTD also helps to reduce the uncertainty on the ‘c’ factor as explained in

*RTD: Resistive Temperature Detector 

 6.4.12 

Table 45. Procedure and apparatus measures taken to improve accuracy 

 

Besides the actual heat release rate test, these measures will also improve the kt,qgas and kt,qheptane and 

resulting kt value since these components are based on heat release rate test data. The effect on kt has 

been simulated for this case. 
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top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

V  D298

 

  2.94487 

 c 0.71429  
 A 0.5682  
 kt 1.75234  
 kp 0.74074  

∆p 0.75892  
 Tms 0.32964  

φ   22.5903 
 X_O2 21.98039  
 X_CO2 2.43105  
 X_O2° 4.7441  
 X_CO2° 0.53061  

E   2.55814 
XD°

O2   0.06241 
 X_O2° 0.0537  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.01048  

α   0.08607 

standard uncertainty on HRR (excluding cross correlations) 22.86066 
standard uncertainty on HRR (including cross correlations) 25.58986 

Table 46. Uncertainty analysis at HRR = 30kW (case 2) 

 

The uncertainty contribution at the 30 kW level for the volume flow rate drops from 7.2% down to 

3%. The most spectacular result is obtained by replacing the actual bi-directional probe (with the steel 

supporting rod) by the hemi-spherical probe (see 4.3). The uncertainty contribution drops from about 

6% to below 1%. 

As a result, the second highest contributor to the uncertainty, the kt factor, also drops substantially 

(from 2.6% to 1.75%). u(kt) would further improve by: 1) increasing the number of measurement 

positions in obtaining the velocity profile correction factor kt,v (§6.4.15.2) and 2) by using the last N 

calibrations instead of just the most recent one in calculating kt,v, kt,qgas and kt,qheptane (see 6.4.15). 

 



 

Next the uncertainties on the factor c and cross sectional area A drop from around 2% to values well 

below 1%. The original uncertainty – that basically can be attributed to uncorrected bias – related to 

the factor c strongly depends on ambient condition and is therefore variable. It can exceed the 2%. 

The uncertainty on the cross sectional area A is, different from what was found by Axelsson et al

not negligible and this because of a bias error. After correcting for this bias, the uncertainty reduces to 

an almost negligible level. 

 

The use of shielded thermocouples to measure the exhaust gas temperatures is of no real use to reduce 

the uncertainty. 

 

The use of a four wire RTD to measure the incoming air temperature is of no real use to reduce the 

uncertainty on XD°
O2 but it is also used to substantially reduce the uncertainty on the factor ‘c’ as 

explained in 6.4.12. It is therefore recommended to replace the K-type thermocouple by a four wire 

RTD to measure the ambient air temperature. 

 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

[62], 

FIGRA (W/s) 520.6 44 44 8.5 % 8.5 % 12 %
THR600s (MJ) 27.19 0.69 0.69 2.5 % 2.5 % 3.5 % 
MARHE (kW) 49.72 1.55 1.55 3.1 % 3.1 % 4.4 % 

Table 47. Uncertainty analysis on values used for classification and the MARHE value  

(k = 2) (case 2) 

 

The repeatability limit r/m on the values used for classification and MARHE reduces to between 15 % 

and 20 %. 

 

Figure 62. HRR curve with 95% confidence interval (k = 2) (case 2) 
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7.3.3 Case 3: Introduction of first level changes in the data acquisition 

The assumption of a fixed uncertainty interval related to transient phenomena proves to be too 

conservative as demonstrated in case 1. Although these results would improve by more accurately 

estimating the transient error based on inverse techniques (see 6.4.2.1.b), a better solution is to modify 

the way measurement data are gathered and handled. In chapter 5 two alternative methods, called first 

level and second level changes, are proposed and are discussed in cases 3 and 4 respectively. 

 

By introducing first level changes in the data acquisition the bandwidth reduces to 1/30 Hz and, as 

discussed in §5.4.1, we can further neglect any transient error. This results in a spectacular 

improvement of the uncertainty on the depletion factor φ. 

top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  7.20495 
 c 1.97994  
 A 1.73538  
 kt 2.57009  
 kp 6.12593  
 ∆p 0.76068  
 Tms 0.51818  

φ   1.67323 

 X_O2 1.46261  
 X_CO2 0.7404  
 X_O2° 0.30752  
 X_CO2° 0.16127  

E   2.55814 
XD°

O2   0.10914 
 X_O2° 0.00348  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.10486  

α   0.08595 

standard uncertainty on HRR (excluding cross correlations) 7.82789 
standard uncertainty on HRR (including cross correlations) 7.97193 

Table 48. Uncertainty analysis at HRR = 30kW (case 3) 
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The uncertainty contribution at the 30 kW level for the depletion factor φ drops below 2% and the 

uncertainty estimate is governed by the flow rate and more specific the bi-directional probe as 

discussed in the previous case. 

 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 521.9 19.5 38.3 3.7 % 7.3 % 10.3 %
THR600s (MJ) 27.2 0.24 0.5 0.9 % 1.8 % 2.5 % 
MARHE (kW) 49.77 0.56 1.17 1.1 % 2.4 % 3.4 % 

Table 49. Uncertainty analysis on values used for classification and the MARHE value  

(k = 2) (case 3) 

 

The repeatability limit r/m on the values used for classification and MARHE drops by approximately 

30% 

 

Figure 63. HRR curve with 95% confidence interval (k = 2) (case 3) 

 

The asymmetry in the 95% confidence interval is mainly due to the bias on the bi-directional probe 

(due to the steel supporting rod). 
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7.3.4 Case 4: Introduction of second level changes in the data acquisition 

By introducing second level changes in the data acquisition the bandwidth reduces to 1/10 Hz and, as 

discussed in §5.4.2, we can further neglect any transient error. 

For convenience, the data has been sampled at a scan rate of ts = 3 s after treating the data as set out in 

§5.4.2. For future use, we however recommend to re-sample the data at a scan rate of ts = 1 s in order 

not too loose relevant information though still keeping the data file within acceptable limits. 

 

top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  7.20525 
 c 1.97998  
 A 1.73538  
 kt 2.57009  
 kp 6.12593  
 ∆p 0.76359  
 Tms 0.5179  

φ   1.66269 
 X_O2 1.45348  
 X_CO2 0.73567  
 X_O2° 0.30545  
 X_CO2° 0.16023  

E   2.55814 
XD°

O2   0.10913 
 X_O2° 0.00348  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.10486  

α   0.08648 

standard uncertainty on HRR (excluding cross correlations) 7.82591 
standard uncertainty on HRR (including cross correlations) 7.96855 

Table 50. Uncertainty analysis at HRR = 30kW (case 4) 

 

 

 

 - 241 - 

 



 

 - 242 - 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 517.4 18.4 36.4 3.6 % 7 % 9.9 %
THR600s (MJ) 27.14 0.24 0.5 0.9 % 1.8 % 2.5 % 
MARHE (kW) 49.48 0.56 1.17 1.1 % 2.4 % 3.4 % 

Table 51. Uncertainty analysis on values used for classification and the MARHE value 

(k = 2) (case 4) 

 

Figure 64. HRR curve with 95% confidence interval (k = 2) (case 4) 

 

The uncertainty estimate on the values used for classification when introducing second level changes 

to the data acquisition system is similar to when introducing first level changes (case 3). 

The improvement does not lie in an improved confidence interval but rather in more qualitative 

measurement: 

1. Due to the increased BW more detail is left in the data as can be seen by way of example on 

the heat release rate curve. In case 3 (BW = 1/30 Hz) there is a monotonous increase in heat 

release to the peak value while in case 4 (BW = 1/10 Hz) some fluctuations are observed 

around the peak. Also the switching between the burners around 300 s is more accurately 

represented by case 4. 

2. Second level changes guarantee data free of aliasing while for first level changes this can not 

be guaranteed. Aliasing introduces, as explained in §6.4.3, phantom data; things are seen that 

are not there! 

3. Second level changes allow for more accurate synchronisation of data. There is no need – as 

for first level changes – to resample the data from fs = 1/3 Hz up to fs = 10 Hz. Resampling 

also requires an assumption on the data behaviour in-between consecutive measurement points 

(linear, quadratic, ...) 

Level two changes result, pure from a measurement point of view, in both a better repeatability and 

reproducibility. Since the data contains more information (larger BW), it includes more variation and 
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small differences in burning behaviour between different samples may (or may not) result in slightly 

higher repeatability and reproducibility limits in a round robin exercise. 
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standard uncertainty on HRR (including cross correlations) 4.22578 
Table 52. Uncertainty analysis at HRR = 30kW (case 5) 

7.3.5 Case 5: Combining case 2 and 3 

As a result of the present work, the proposal is to introduce so called first level or second level changes 

to the SBI test method. First level changes require minor modification to only the calculation 

procedures while second level changes require substantial changes to both the calculation procedures 

and the data acquisition. Second level changes are the preferred option but require the political 

willingness to introduce them. 

 

Case 5 represents the results for the MDF sample when introducing obvious changes as discussed 

under case 2 and, in addition, first level changes. 

 

Case 6 is identical but introducing second level changes instead of first level changes. 

 

top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  2.94527 
 c 0.71429  
 A 0.5682  
 kt 1.75234  
 kp 0.74074  
 ∆p 0.76068  
 Tms 0.32975  

φ   1.67323 
 X_O2 1.46261  
 X_CO2 0.7404  
 X_O2° 0.30752  
 X_CO2° 0.16127  

E   2.55814 
XD°

O2   0.03202 
 X_O2° 0.00348  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.01049  

α   0.08595 

standard uncertainty on HRR (excluding cross correlations) 3.80702 
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k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 521.9 19 19 3.6 % 3.6 % 5.1 %
THR600s (MJ) 27.2 0.23 0.23 0.9 % 0.9 % 1.3 % 
MARHE (kW) 49.77 0.54 0.54 1.1 % 1.1 % 1.6 % 

Table 53. Uncertainty analysis on values used for classification and the MARHE value  

(k = 2) (case 5) 

 

The repeatability limit r/m for Figra is estimated around 5% while for THR600s and MARHE it is 

estimated smaller than 2%. 

 

Figure 65. HRR curve with 95% confidence interval (k = 2) (case 5) 

 

Comparing these results with the case where transient phenomena are neglected just like that and 

where uncertainties related to known biases are disregarded (Table 54, Table 55 & Figure 66), there 

apparently is no major improvement of the repeatability limit. 

It must be said however that for case 5 the bias has been removed from the results, the synchronisation 

procedure has been improved and that dynamic aspects have been taken into account. 

This makes that case 5 will have more reproducible results than is now the case. 
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top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  3.47275 
 c 0.71429  
 A 0.5646  
 kt 1.75234  
 kp 1.94444  
 ∆p 0.75892  
 Tms 0.518  

φ   1.84217 
 X_O2 1.64274  
 X_CO2 0.75344  
 X_O2° 0.32433  
 X_CO2° 0.16363  

E   2.55814 
XD°

O2   0.10911 
 X_O2° 0.00367  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.10483  

α   0.08607 

standard uncertainty on HRR (excluding cross correlations) 4.36429 
standard uncertainty on HRR (including cross correlations) 4.74209 

Table 54. Uncertainty analysis at HRR = 30kW  

(neglecting transient phenomena without first taking appropriate measures) 

 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 520.6 21.8 21.8 4.2 % 4.2 % 5.9 %
THR600s (MJ) 27.19 0.27 0.27 1 % 1 % 1.4 % 
MARHE (kW) 49.72 0.63 0.63 1.3 % 1.3 % 1.8 % 

Table 55. Uncertainty analysis on values used for classification and the MARHE value  

(k = 2) (neglecting transient phenomena without first taking appropriate measures) 
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Figure 66. HRR curve with 95% confidence interval (k = 2) 

(neglecting transient phenomena without first taking appropriate measures) 
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7.3.6 Case 6: Combining case 2 and 4 

Finally case 6 represents the optimised SBI test method including both the obvious changes as 

discussed in chapter 6 and the second level changes as discussed in chapter 5. 

 

top level 

(relevant for HRR) 

sub-level 

(relevant for Xi) 

contribution to 

u(Xi) 

contribution to 

u(HRR30kW) 

Quantity Xi Quantity xj c(xj).u(xj)/Xi
 (%) c(Xi).u(Xi)/HRR (%) 

VD298  3.47372 
 c 0.71429  
 A 0.5646  
 kt 1.75234  
 kp 1.94444  
 ∆p 0.76359  
 Tms 0.5179  

φ   1.66269 
 X_O2 1.45348  
 X_CO2 0.73567  
 X_O2° 0.30545  
 X_CO2° 0.16023  

E   2.55814 
XD°

O2   0.10913 
 X_O2° 0.00348  
 H 0.03003  
 p_bar 0.00092  
 T_room 0.10486  

α   0.08648 

standard uncertainty on HRR (excluding cross correlations) 4.22624 
standard uncertainty on HRR (including cross correlations) 4.48484 

Table 56. Uncertainty analysis at HRR = 30kW (case 6) 

 

k = 2 (95%) m U+(m) U-(m) U+/m U-/m r/m 

FIGRA (W/s) 517.4 19.7 19.7 3.8 % 3.8 % 5.4 %
THR600s (MJ) 27.14 0.26 0.26 1 % 1 % 1.4 % 
MARHE (kW) 49.48 0.6 0.6 1.2 % 1.2 % 1.7 % 

Table 57. Uncertainty analysis on values used for classification and the MARHE value  
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(k = 2) (case 6) 
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Figure 67. HRR curve with 95% confidence interval (k = 2) (case 6) 

 

Comparing cases 6 and 1, the standard uncertainty on the heat release rate at the 30 kW level drops 

from 26 % down to 4.5 %. The repeatability limit on the values used for classification reduces roughly 

with a factor 3. 

 

It is also interesting to compare Figure 67 with Figure 61. Figure 67 contains more variation though 

less noise as can be seen well for the heat release values above 100 kW. There is also a spectacular 

improvement in the estimated 95 % confidence interval. 
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7.4. Conclusions 

Chapter 7 discusses the results of a computer model based on the formulas presented in chapter 6. 

Comparison of the model with SBI RR2 results makes it likely that the model can be used confidently 

to estimate the repeatability limits on the values used for classification i.e. FIGRA and THR600s. 

 

Next it is shown that transient errors can drown out the uncertainty analysis and that they should at 

least be considered in the analysis. Reducing the bandwidth of the system to either 1/30 Hz or 1/10 Hz 

are two valid options to control transient phenomena. The first option is the cheapest and easiest one 

but dampens out variations with a periodicity below 30 s. The second option requires some new 

investments in data acquisition equipment and in software modifications but gives an unseen variance 

for events with a periodicity as low as 10 s, still eliminating disturbing noise. In addition it guarantees 

the complete elimination of spurious data on the results known as aliasing. 

 

The changes as proposed in chapter 6 to remove bias and to improve the standard uncertainty on some 

individual components have a big impact on the global uncertainty estimate. The bi-directional probe 

(kp) as used in the SBI is the most critical factor for uncertainty but can easily be reduced to almost 

negligible levels. The proposals for change to the factor c and the cross sectional area A have both a 

positive effect on the uncertainty and are therefore recommended for inclusion in the reviewed SBI 

standard. The use of four wire RTD (Resistive Temperature Detector) to measure ambient temperature 

substantially reduces the uncertainty on the factor c and is therefore recommended. 

The use of shielded thermocouples in the exhaust duct has a marginal effect on the overall uncertainty 

and can therefore be omitted. 
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8 Conclusions 

8.1. Introduction 

The SBI test method has been developed as a result of the implementation of the Construction 

Products Directive (CPD) 89/106/CE in Europe and is used now to assess the reaction to fire 

performance of construction products, excluding floorings, in the European Union.  

 

The development of the SBI test method was ordered by the European Commission and carried out 

under direct guidance of the Fire Regulators Group. A consortium of nine fire testing laboratories was 

formed with the task to develop the method. The aim was to develop a test method that produces 

results representative for the behaviour of building products when exposed to typically one single 

burning object, e.g. a litter basket on fire, placed in the corner of a room. 

 

The SBI test method was developed under high pressure of time because holding up the introduction 

of the free market for construction products in Europe. After acceptance of the design and prototypes a 

large interlaboratory round robin project was held. The results of the round robin demonstrated that the 

SBI test method is able to measure the required characteristics in a repeatable and reproducible way to 

an acceptable level, however under the condition of some further improvements. 

 

In addition EN ISO 17025:1999[9], - which sets out the general requirements for the competence of 

testing and calibration laboratories - makes the estimation, measurement and reporting of uncertainty 

of test results mandatory. 

 

These two factors, the demand for technical improvements and the requirement for reporting 

uncertainty, are the immediate cause for this dissertation. 

 

Few authors have published on the subject even in the larger framework of fire tests based on the 

oxygen depletion technique. The weak points in the work done so far are that: 

• not all relevant phenomena are taken into account, 

• the rough estimates made on uncertainties on the different components are sometimes very 

arbitrary, 

• dynamic effects of the apparatus have not or insufficiently been taking into account, 

• covariances between the different measurands have been neglected, 
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• uncertainties related to synchronisation are neglected. 



 

 

So far, to the authors knowledge, only Axelsson et al. published an uncertainty analysis on the 

individual measurands of the intermediate scale SBI test. They however did not estimate the 

uncertainty on the values used for classification i.e. FIGRA and THR600s. Other relevant publications 

are from the hand of Bryant et al. and Enright et al. who focus on the large scale respectively small 

scale test facilities. 

 

This dissertation makes a significant contribution in developing a method of calculating experimental 

uncertainty in HRR measurements in general and to the SBI in particular. It brings into practice the 

general outlines of the ISO Guide to the Expression of Uncertainty in Measurement (GUM)[13]. The 

work faces items like dynamic effects, covariances, etc. avoided in previous approaches. It also brings 

to the attention phenomena like variation of the velocity and density profile due to thermal inertia of 

the duct system, the Reynolds dependence of the SBI pressure probe and the angular dependence of all 

probes currently used in intermediate to large scale fire tests. 

 

After participating in the development of the SBI and in the first round robin exercise on the same test, 

the author has started the work on the present document. 

 

 

Evaluation of SBI pressure probe 

First a detailed study on the estimation of the different uncertainty components is made that goes far 

beyond any existing study in the field. From this dissertation it became clear that the pressure probe 

currently used in the SBI test is Reynolds dependent and the ‘probe constant’ is higher than stated in 

the standard. As a consequence, calibration of the equipment leads to underestimation of heat release 

and smoke production for products with reduced heat release rate and overestimation for products with 

a higher heat release rate. This is due to the modification of the pressure probe, introducing a 

supporting rod. 

 

It is therefore strongly recommended to either include the Reynolds number in the heat release 

formulas or to omit the steel supporting rod and to stick to the original design of McCaffrey & 

Heskestad. 

 

Evaluation of the McCaffrey & Heskestad probe 

The original McCaffrey & Heskestad probe has a probe factor which is constant for Reynolds numbers 

above 2 500. This corresponds to the range that can practically be expected in the ISO Room Corner 

test, the SBI test and similar devices. If one wants to measure heat release in post flashover scenarios, 
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the probe factor should be calculated as a function of Reynolds number. 



 

 

The main disadvantage of the McCaffrey & Heskestad probe however is that angular distortions of the 

probe axis with respect to the exhaust duct axis introduce an error in the order of 2 to 4% (2% by 3°; 

4% by 5°). Guide vanes upstream the pressure probe should help to reduce any angular distortion of 

the flow. Angular distortions result in an overestimation of the Heat Release Rate. 

When installing a pressure probe in the exhaust duct, the operator should take readings of the pressure 

difference at different angles of attack (θ) in a range of 10° centred around the estimated zero angle (θ 

= 0). The minimum pressure difference will then indicate the exact zero (θ = 0) position. 

 

Wind tunnel measurements indicated a lower probe constant – than the 1.08 currently used –for the 

McCaffrey & Heskestad probe. The kp-factor is estimated to be 1.046 for an aspect ratio L/D = 2, with 

a standard uncertainty of +0.009 and -0.011. Modifying the aspect ratio L/D requires a new 

calibration. 

 

Development of a hemispherical  pressure probe 

Heat release measurements would benefit from an optimised pressure probe design limiting the 

sensitivity to angular variations but without compromising on the benefits of the actual probes. As a 

result of these findings, further research has been undertaken which has resulted in a newly developed, 

hemispherical pressure probe design that combines a low angular sensitivity with Reynolds 

independency over a wide range. 

 

The probe factor is estimated at 1.224 ± 0.008 for Reynolds numbers in the range 5 000 to 60 000. 

This corresponds to a pressure gain with respect to a Pitot-static tube of approximately 50%. The 

probe is insensitive to angular variations over a range that exceeds ±20°. Furthermore it is expected 

that it will behave at least equally as good in smoky environments as the bi-directional probe. First 

experiments seem promising. 

The design is straightforward, its limited size make that only a small hole needs to be drilled to install 

it and the head losses related to drag of the probe are negligible. Furthermore, no accurate alignment is 

needed when installing or servicing the probe. 

 

The use of the hemispherical probe is not limited to closed conduits nor to fire applications. 

 

Introduction of ‘bluff-body blockage’ in fire testing 

When bluff bodies are placed in a flow, they modify the streamlines of the undisturbed flow. In closed 

conduits, the disturbance is however much higher than one would – at first view – expect comparing 
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the cross sectional areas of both the object and the conduit. 



 

 

The probe factor kp should therefore be corrected for ‘bluff-body blockage’ when used in ducts with 

reduced diameter. The correction factor to be applied is given in sections 4.2 and 4.3. 

 

Effect of thermal inertia of the duct on the heat release rate 

The thermal time constant of the SBI duct system lies in the order of 220 s. So for all burning 

phenomena with a time constant in the same order of magnitude or smaller, transient thermal effects 

add to the overall uncertainty. The sharper the temperature rise or fall and the higher the magnitude, 

the larger the error. The maximum underestimation of the calculated mass flow rate for sudden, high 

heat releases is estimated to 1.4% for the SBI test equipment running at constant mass flow rate. Based 

on this value, the standard uncertainty related to temperature effects in the SBI is estimated to 0.6%. 

When running at constant volume flow rate, the standard uncertainty reduces to 0.3% for the specific 

case of the SBI. 

Since all values used for classification in the SBI are based on the first part of the test, i.e. the heating 

phase, the uncertainty may be considered as a one sided distribution when calculating the global 

uncertainty on these values. 

So, in summary, transient thermal effects tend to underestimate the mass flow rate through the duct 

system. 

 

Knowing the velocity profile in the duct at anyone time, is of no use to correctly measure the mass 

flow rate if one does not know the density distribution in the measuring section over time. The derived 

velocity profile correction factor may as well be taken as a constant based on calibrations. 

It is better to measure the velocity in multiple points by installing several thermocouple – pressure 

probe pairs as for example applied in the NIST 3 Megawatt Facility y blockage will 

however become more important and should certainly be corrected for. 

 

Uncertainty analysis including on the values used for classification 

In chapter 6 an uncertainty estimate of the values used in the SBI for classification – FIGRA and 

THR600s, – and of the MARHE value have been derived along the lines of the ISO Guide to the 

Expression of Uncertainty in Measurements (GUM). 

 

It is the first dissertation that does not limit itself to the estimation of the uncertainty of the heat release 

rate, but also treats the derived parameters FIGRA and THR600s. 

 

Inclusion of transient phenomena, bias correction, correlations etc. 

Different to previous attempts to estimate uncertainty in fire testing, asymmetric distributions are used 

where necessary, correlations between the oxygen and carbon dioxide concentration, differential 

[64]. Bluff-bod
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pressure and exhaust gas temperature are taken into account and a method to deal with uncorrected 

bias has been introduced. 

Furthermore this dissertation estimates for the first time the uncertainty related to the transient 

character of the measurement and to asynchronous data. 

 

Detailed study on the estimation of the different uncertainty components 

A detailed study on the estimation of the different uncertainty components is made that goes far 

beyond any existing study in the field. This includes amongst others an estimation on the heat of 

combustion E for pure substances like propane and heptane, a heat release dependent uncertainty on 

both the oxygen and carbon dioxide concentration, an uncertainty estimate on the cross section of the 

exhaust duct and an estimate for the velocity pressure probe kp and the velocity profile correction 

factor kt. 

 

Introduction of the ‘bandwidth’ concept in fire testing 

In chapter 5, the concept of bandwidth (BW) – well known in electronics engineering and process 

control – has been introduced. The BW is the frequency below which an input signal is transferred 

without substantial distortion in amplitude and/or phase-shift. If a signal is passed through a filter 

whose BW is less than that of the signal, the result is a smearing or broadening of the input waveform. 

 

Peak heat release rate values, which are often used in fire regulations, are meaningless if not 

accompanied with the BW of the test instrumentation. The consequence for the European 

classification system is that test results for products that did not go to flashover in the Room Corner 

test end up with a high uncertainty interval because based on peak heat release rate divided by the time 

to reach this peak. The large scale Room Corner test is considered, within the European classification 

system, the reference scenario for behaviour of products in ‘real’ fires. The criteria for the 

classification system in the SBI and other intermediate scale tests have been based on how well they 

correlate with the results of the Room Corner test. 

 

The BW of the different measuring devices, mass flow controller and data acquisition system of the 

Ghent premises have been identified together with the behaviour of the built in adjustable filters in 

some of the measuring devices.  

 

How to deal with bandwidth in fire testing 

Due to differences in BW between instrumentation and in-between laboratories, measurement results 

can vary substantially. In order to overcome a lack of reproducibility between labs three possible 

levels of changes to the standard have been proposed. A first level only requires some minor changes 
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to the software calculation procedures and results in an approximate BW of 1/30 Hz. A second level 



 

involves substantial changes to both the calculation procedures and the data acquisition system and 

results in an approximate BW of 1/10 Hz. This is our preferred option because it: guarantees the 

complete elimination of any possible aliasing effect, is able to capture events with a periodicity down 

to 10 s, allows for a better smoothing and synchronisation of the data with a resulting better 

repeatability and reproducibility. 

A third level requires the introduction of inverse filters and potentially allows to recover some BW up 

to 1 Hz. Since the periodicity of events of interest in the SBI test method is in the order of 10 s or 

higher the proposal is not to follow this route for intermediate and large scale heat release rate test 

equipment. The technique may be of interest in small scale tests like the Cone Calorimeter. It needs to 

be stressed however that this method is very sensitive to noise and that it requires a complete redesign 

and optimisation of the gas analysis train. 

 

Introduction of an alternative synchronisation method 

Also an alternative automatic synchronisation method based on the maximisation of a correlation 

coefficient has been proposed. Contrary to the actual method, which is based on the synchronisation of 

times when signals surpass a certain limit value after a stepwise burner change, the method does take 

differences in dynamic behaviour of the different components into account. 

 

Introduction of Henderson moving average filters in fire testing 

Flat running average filters are popular for smoothing data over time. Although they are easy to 

understand and implement, they not only dampen out the higher frequencies but they also disturb the 

lower frequencies which are of interest in these tests. This results in a high local bias and a poor local 

variance. The concept of weighted, Henderson, moving average filters is introduced. Henderson filters 

are often used as trend filters in economics. The Henderson filters can reproduce polynomials up to 

degree three which enables them to adequately capture trend turning points and points of inflection. 

 

Development of a computer model for uncertainty estimation 

A computer model based on the formulas presented in chapter 6 has been developed. Comparison of 

the model with SBI RR2 results show that it is likely that the model can be used confidently to 

estimate the repeatability limits on the values used for classification FIGRA and THR600s. 

 

Proposed changes to the data acquisition system 

Next it is shown that transient errors can drown out the uncertainty analysis and that they should at 

least be considered in the analysis. Reducing the bandwidth of the system to either 1/30 Hz or 1/10 Hz 

are two valid options to control transient phenomena. The first option is the cheapest and easiest one 

but dampens out variations with a periodicity below 30 s. The second option requires some new 

 - 256 - 

investments in data acquisition equipment and in software modifications but captures events with a 



 

periodicity as low as 10 s, still eliminating disturbing noise. In addition it guarantees the complete 

elimination of spurious data on the results known as aliasing. 

 

Other changes proposed to the test 

The changes as proposed in chapter 6 to remove bias and to improve the standard uncertainty on some 

individual components has a big impact on the global uncertainty estimate. The bi-directional probe 

(kp) as used in the SBI is the most critical factor but can easily be reduced to almost negligible levels. 

The proposals for change to the factor c and the cross sectional area A have both a positive effect on 

the uncertainty and are therefore recommended for inclusion when reviewing the SBI standard. The 

uncertainty on the factor c can be kept low if a four wire RTD (Resistive Temperature Detector) is 

used to measure ambient air temperature instead of a K-type thermocouple. It is therefore 

recommended to use this four wire RTD. The use of shielded thermocouples in the exhaust duct has a 

marginal effect on the overall uncertainty and can therefore be omitted. 

 

 

Fulfilling all requirements of EN ISO 17025 

The work has resulted in a full and reliable experimental uncertainty analysis of HRR and its 

derivatives of the Ghent SBI fire test equipment in line with EN ISO 17025. Smoke production rate 

has not been considered. 

 

Other contributions 

The present dissertation is a continuation of the work done in developing the SBI test and improving 

other heat release rate based test instrumentation. On the way to achieving the goal of examining the 

uncertainty related to SBI fire tests, other contributions are made. The most tangible of these 

contributions – while not always a unique contribution to the body of knowledge – are: 

• the final design and production of workshop drawings of the SBI-test which have been 

overtaken in the SBI standard; 

• design and production of the burner control system of the SBI; 

• the production of the first twelve SBI’s for distribution all over Europe; 

• automation of the calibration procedures and test sequences in the SBI test equipment; 

• design of a universal gas analysis system optimised for use with the SBI, the Room Corner 

test, the Cone Calorimeter test, and similar. In other words, for all small-, intermediate- or 

large-scale fire test equipment that make use of the oxygen depletion technique; 

• design and production of the third generation Cone Calorimeter test equipment; 

• design and production of the heat release rate and smoke release rate add on for the electric 
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cables fire test 



 

 

In terms of contributions to the body of knowledge, a significant contribution is made in 

developing methods of calculating experimental uncertainty in Heat Release Rate measurement. 

 

The contributions made in this work are of interest and direct relevance to those working in the 

field of fire testing, fire engineering, quality control and accreditation. 

 

The contribution in developing a new velocity pressure probe is of interest and direct relevance 

to those working with flows or measuring velocities, and is not at all limited to fire applications. 
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8.2. Recommended changes specific to the SBI standard 

Modify data acquisition and/or treatment of data 

In this work some advise is given on how to reduce the uncertainty interval for the SBI test method. 

The main challenge is to account for transient phenomena which, so far, have not been included in 

previous studies. If fully taken into account by increasing the uncertainty interval, transient 

phenomena completely overshadow the uncertainty analysis. 

Therefore a method has been worked out that basically consists of equally reducing the bandwidth of 

all instrumentation in all laboratories and to neglect (consider inherent to the test method) any 

remaining transient error. 

 

Three options have been elaborated that respectively reduce the bandwidth to 1/30 Hz, 1/10 Hz or 1 

Hz or, in other words, that dampen out events with a periodicity below respectively ts = 30 s, 10 s or 1 

s. Only the first two are of practical use in the SBI and the second is the preferred option. 

 

In a nutshell the method consists of increasing the data acquisition scan rate to 10 Hz, to introduce an 

analogue anti-aliasing filter with a cutoff frequency of 1 Hz, to equate the response times of the 

dynamic measurands and to apply a Henderson 111-term moving average filter on the raw data. 

The currently used flat moving average filter on the heat release data prior to calculation Figra is no 

longer used. 

 

The effect of this measure is difficult to quantify since dependent on the heat release rate, but reduces 

the uncertainty contribution of the depletion factor on the heat release rate at the 30 kW level from 

over 22 % (conservative estimate) to well below 2 %. 

 

Remove systematic errors and introduce some obvious changes 

Eliminating the above discussed dominating transient factor, the flow measurement becomes 

predominant. In order of appearance, the following measures are proposed to reduce the uncertainty 

interval. 

 

1. Replace the SBI pressure probe by the hemispherical pressure probe: 

a. Eliminates bias due to Reynolds dependence of existing probe. 

b. Eliminates bias due to potential misalignment of the probe. 

c. Increases the signal to noise ratio. 

Uncertainty contribution reduces from 6 % to less than 1 % at the 30 kW level. 

2. Calculate the c factor instead of assuming it constant at 22.4: 
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a. Eliminates a variable bias which is function on relative humidity, ambient temperature 

and barometric pressure. 

b. Reduces the standard uncertainty on the c factor by more than a factor 10. 

Uncertainty contribution reduces from typically 2 % (variable) to 0.7 % at the 30 kW level. 

3. Remove the bias from the cross sectional area A: 

a. Takes into account the effect of soot and corrosion on the exhaust duct wall. 

Uncertainty contribution reduces from 1.7 % (variable) to 0.6 % at the 30 kW level. 

 

Combining all the above changes will result in slightly different results of the values used for 

classification – FIGRA and THR600s – that however better approach the true values. In addition the 

standard uncertainty on the heat release rate at the 30 kW level reduces from 26 % to 4.5 %. 

 

Reduce standard uncertainty on kt,v 

By measuring on 2 or 4 additional lines from wall to centre on the occasion of a velocity profile 

calibration, the standard uncertainty can further be reduced. Besides the increased number of samples, 

the degrees of freedom in the t-distribution used to calculate the uncertainty increases from 3 to 5 

respectively 7 which reduces the multiplication factor t0.025 from 3.18 to 2.57 or 2.36 respectively. 

 

Reduce standard uncertainty on kt,v, ktqgas and kt,qheptane 

Using the last N calibrations instead of just the most recent one, could further reduce the standard 

uncertainty on the mean value of these components by a factor N . 

 

Keep track of kt,v, ktqgas and kt,qheptane 

The evolution in time of the different kt,x calibration values can be used as a warning signal for when 

to do a major revision of the test instrument. 
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8.3. General recommendations to all Heat Release Rate based test facilities 

Enforce a fixed bandwidth in every test standard 

In order to obtain reproducible dynamic fire data like heat release rate and smoke production rate 

worldwide, the bandwidth of the instrumentation used should be harmonised. This can be achieved 

easily by specifying a fixed bandwidth for every test standard. 

 

The proposal is to set the bandwidth for all heat release rate based test methods to 1/10 Hz making use 

of the aforementioned second level changes. In those applications where a larger bandwidth is 

required, both the bandwidth and the method used to attain it should be specified. 

 

Replace the McCaffrey & Heskestad probe 

The original McCaffrey & Heskestad probe is sensitive to angular variations and realises only a 

limited differential pressure gain of about 10 % over a classic pitot-static tube. 

 

The hemispherical probe is like the McCaffrey & Heskestad probe Reynolds independent over a wide 

range, but combines this with an insensitivity to angular distortions in a range of ±20°. In addition, the 

probe realises a differential pressure gain of about 50 % over a classic pitot-static tube thus increasing 

the signal to noise ratio of this measurement. 

 

Account for bluff-body blockage 

When using pressure probes in closed conduits, the probe factors shall be corrected for bluff-body 

blockage. 
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8.4. Main contribution of this work to the measuring technique 

8.4.1 Added value to fire science 

Uncertainty model 

An uncertainty model has been developed and validated for the SBI test method. The model can easily 

be applied for other heat release rate test equipment based on oxygen depletion technique. Several 

assumed uncertainties have been investigated in more depth and hush up items like transient errors, 

synchronisation errors, asymmetric distributions etc. have been discussed. 

 

Introduction of the bandwidth concept in fire testing 

The effect of instrumentation dynamics, whose existence is identified by several authors, has for the 

first time been demonstrated, in a more fundamental way. The tools presented allow fire laboratories 

to harmonise their instrumentation, resulting in better reproducibility. A multiplier effect of this will 

be that this allows modellers to improve their models since the uncertainty on their input data reduces.  

 

Introduction of a new velocity pressure probe 

A new tool to measure flow in the harsh conditions of a fire is available. It eliminates some drawbacks 

of existing pressure probe designs. 

 

8.4.2 Added value to industry 

Increased confidence in test results 

Although the concept of uncertainty may be related to a "doubt", in the real sense the knowledge of 

uncertainty implies increased confidence in the validity of results. The present work offers a tool for 

test institutes to include an uncertainty analysis for every individual test conducted. 

 

In addition, the proposed changes to the standard will help to reduce both the repeatability and 

reproducibility limits on test results.  

 

This gives the manufacturer increased confidence in the classification result obtained wherever the 

product has been tested. This is extremely important in relation to the manufacturer’s responsibility 

when CE marking his product. 

 

The risk that a product is classified in a too low class or in a too high class is reduced by narrowing the 

uncertainty interval. This is of benefit to both the manufacturer and the end user. 
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New tool to measure flow velocities 

A new tool has been developed that can be used to measure flow velocities in all applications where 

fluids are transported through pipes, chimneys, tunnels, etc. and in applications where motion of 

objects relative to fluids need to be measured. 

 

The probe has a high degree of simplicity such that it is easy to produce, install and maintain. It can 

also be made in a wide variety of materials such that it can also be used in extreme physical and 

chemical conditions. 

Furthermore its size can be kept small such that the probe produces low head losses. 

 

 

8.4.3 Added value to legislative and regulative bodies 

Narrowing the uncertainty interval increases the reliability of test and classification results. This 

indirectly contributes to a better fire safety. 
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8.5. Further research 

The influence of chemical desiccants on HRR measurements 

Chemical desiccants are used as a second step to remove practically all water vapour from the sampled 

gas prior to presenting the gas to the analysers. Absorption of carbon dioxide, saturation, regeneration 

etc. all need to be investigated in dept and recommendations should be given on what product to use, 

how to use it and when to replace it. 

A good understanding of the product and guidelines on how to use it will contribute to the stability of 

the measurement and to the reduction of the uncertainty interval. 

 

Uncertainty analysis on the SPR and the light transmission in specific 

If the uncertainty on the light transmission is known, the findings of the present work can be used to 

calculate the uncertainty interval on the Smoke Production Rate and its derived parameters like 

SMOGRA and TSP600s. The derived parameters form the basis for the sub-classification on smoke i.e. 

s1, s2 or s3. 
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Abstract  

In various medium to large scale fire test equipment, like the ISO Room Corner (RC) test and more 

recently the Single Burning Item (SBI) test, the mass flow measurement of the combustion gases plays 

a key role in the determination of the heat release rate and smoke production rate. 

To date a bi-directional low-velocity pressure probe is used to calculate this flow based on a 

differential pressure measurement on the axis of the exhaust duct. The objectives of this paper are to 

evaluate this bi-directional probe - and the modified SBI version - when used for measuring flows in 

exhaust ducts. 

Recommendations are given on the future use of pressure probes measuring exhaust gas mass flows. 

 

 

Key words: flow velocity, volume flow, pressure probe, heat release rate, smoke production rate 
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Nomenclature  
µ dynamic viscosity [Pa.s] 

ν kinematic viscosity [m²/s] 

θ angle of attack [°] 

ρ density of air [kg/m³] 

kp probe constant [-] 

kt velocity profile correction factor [-] 

A surface area [m²] 

Ct closed test section area [m²] 

CD drag coefficient [-] 

CDC corrected drag coefficient [-] 

CDU uncorrected drag coefficient [-] 

D characteristic diameter probe [m] 

HRR Heat Release Rate [kW] 

L length of the probe [m] 

p pressure [Pa] 

∆p differential pressure [Pa] 

Re reynolds number [-] 

S frontal area of the probe [m²] 

T temperature [K] 

u(x) standard uncertainty on x 

v velocity [m/s] 

X O2 concentration of oxygen [%mol] 

 

RC Room Corner test 

SBI Single Burning Item test 

SBI RR2 Second SBI round robin[12] 

 

 
Introduction  

Since there is a clear tendency to classify products according to their fire behaviour based on dynamic 

fire data like Heat Release Rate (HRR) and Smoke Production Rate (SPR), accuracy and uncertainty 

on the used test methods become even more important. 

 

Several authors have tried to quantify uncertainty associated with the calculation of HRR and SPR 

[1][2][3]. However, out of a review of all major round robins, Janssens[4] found that the results 

suggest that the uncertainty is much greater than the theoretically found values, in particular for 

intermediate and large-scale tests. 
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A key element in the determination of dynamic fire data is the accurate measurement of the mass flow 

of the combustion gases. Except for the small scale tests like the Cone Calorimeter, to date nearly all 

intermediate to large scale test equipment use a bi-directional low-velocity probe[5] for this purpose. 

The bi-directional probe was originally designed for measuring the low velocity of (buoyancy-driven) 

fire induced flows associated with small to medium size fires. It has been ‘copy-pasted’ into various 

international standards and is considered to be the state of the art for measuring mass flows in 

combustion gases. Recently the SBI standard[8], which is used to assess the fire behaviour of building 

materials for the European market, prescribes a slightly modified design. 

 

The present paper quantifies the impact of modifying the original design on the probe constant kp and 

estimates the standard uncertainty associated with the use of the original probe. Recommendations are 

given on the calibration and future use of pressure probes measuring exhaust gas mass flows. 

 

Design 

The original design, Fig.1.a., has been adopted in most standards that make reference to this bi-

directional probe. An exception to this is the SBI standard[8], where the dimensions have been 

modified for practical reasons, Fig. 1.b/1.c. 

In addition to this, a steel rod has been welded on the opposite side of the ‘support tubes’ where the 

pressure measurement is taken, Fig. 1.c. The argument for introducing this rod was that it allowed to 

accurately position the axis of the tube in line with the axis of the duct while it was felt that the 

support tubes could easily twist resulting in an angular distortion of the probe axis. 

For the purpose of this study the characteristic diameter of design 1.a was chosen 16mm. 
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Fig. 1: Different pressure probe designs 

 
Measurements 

The research focuses on two items. First of all, the probe constant is determined experimentally as a 

function of Reynolds number. The influence of the steel supporting rod in the design of Fig. 1.c is 

demonstrated and the effect of decreasing the aspect ratio L/D with respect to the original design is 

investigated. 

Secondly, the effect of angular distortion of the probe axis with respect to the incoming flow is 

quantified. 

 
Instrumentation 
Wind tunnel 
All measurements have been done in two wind tunnels at the Engineering Faculty of Ghent University. 

Wind tunnel 1 is a low speed, open circuit wind tunnel of the suction type. It incorporates an air inlet, 

fitted with honeycomb and meshes, a contraction and a test section of 500 mm height by 600 mm 

width. Velocity can range from 0.3 m/s to 4.3 m/s. The turbulence level varies from 1.3% for the 

highest velocities to 2% for velocities around 1 m/s and increases significantly for velocities below 0.9 

m/s. Wind tunnel 1 is calibrated by means of Laser Doppler Anemometry. 

Wind tunnel 2 is a low speed, closed circuit wind tunnel. Looking downstream the test section, it 

incorporates a diffuser, two contra rotating axial fan blades, a diffuser, a honeycomb followed by a 
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settling chamber, a contraction and a test section of 446 mm height by 180 mm width. Maximum flow 

speed is 40 m/s. Wind tunnel 2 is calibrated by means of a pitot-static tube with an outside diameter of 

4mm. Because of viscosity effects on the Probe, measurements start to be ‘incorrect’ for Reynolds 

numbers below 200 (’Barker Effect’) which corresponds to velocities below 0.8 m/s (T=298K; 

ν=1.56E-05). This effect, together with the expected high turbulence intensity for smaller velocities 

and the availability of wind tunnel 1, make that the minimum flow speed for the experiment is set at 

3m/s. 

 

Pressure transducers 
All differential pressure measurements made in wind tunnel 1 use a highly sensitive transducer with a 

range from 0 to 20 Pa (Table 1). The measurements in wind tunnel 2 are done with two pressure 

transducers ranging from 0 to 250Pa and to 1250Pa. The pressure transducers are zeroed prior to the 

first measurement of the day. 

Type Range (Pa) u(∆p) (Pa) Used in 

Druck LPX9481 0 – 20 0.0116 Windtunnel 1 

Halstrup P92 0 – 250 0.85 Windtunnel 2 

MKS Baratron 0 – 1250 7.2 Windtunnel 2 

Table 1: Pressure transducers used 

 
Data acquisition 
All data taken are based on the mean value of  300 consecutive measurement samples taken at a 

scanrate of 10Hz. The data acquisition system used is a Keithley 2700/7702 Multimeter based on the 

Integrating A/D principle. The integration process works as a low pass filter with, for the integration 

time set to 20ms (one power line cycle), a cut-off frequency (-3dB) of 22Hz. 

 

Test conditions 
All measurements are taken with air at room temperature. Air densities are calculated as a function of  

temperature, pressure and relative humidity. 

All instrumentation is switched on at least one hour prior to taking the first measurements. 

 - 279 -



Uncertainty Analysis 

Definitions 
Probe constant kp 
A pressure probe is basically a device that relates the velocity of a fluidum - in which it is positioned - 

with a differential pressure. As an example, the pitot-static pressure probe captures the difference 

between the incoming total pressure and the static pressure i.e. the dynamic pressure which is equal to 

2
2
1 vp ρ=∆ . If a pressure probe measures a differential pressure different from the dynamic pressure, 

a probe constant kp needs to be introduced. The probe constant kp is defined as 

 
v

p2

k p

ρ
∆

=  [-] (1) 

 

Reynolds number 
The Reynolds number is a dimensionless number which is a measure of the ratio of inertia forces to 

viscous forces and is defined as 

 
νµ

ρ D.vD.v.Re ==  [-] (2) 

 

The factor D is a ‘characteristic length’ of the probe which is – for the present study – defined as the 

probes outside diameter. 

In table 2, Reynolds numbers are given that realistically can be expected in the SBI- and RC-test on 

the axis of the exhaust tube and related to the probes diameter. In the SBI, a gas temperature at the 

height of the measuring section of approximately 600K is considered to be the maximum allowed 

temperature above which the test is interrupted. For the Room Corner test, the limit is set arbitrarily – 

for the purpose of this study – to 900K. The assumption is that the room has gone to flashover for 

values above this number. 
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 RC SBI 
  constant 

volume 
constant 
mass 

 constant volume constant 
mass 

T (K) 290 900 900 290 400* 600* 600 

ν (m²/s) 14.8.10-6 103.10-6 103.10-6 14.8.10-6 26.4.10-6 52.7.10-6 52.7.10-6

D (m) 16.10-3 16.10-3 16.10-3 18.10-3 18.10-3 18.10-3 18.10-3 

v (m/s) 20 20 60 9 9 9 18 

Re (-) 21 600 3 100 9 300 11 000 6 100* 3 100* 6 200 

Table 2: Expected Reynolds numbers related to the probe outside diameter 
*: In the SBI the volume flow normalised to 298K (V298) is imposed to lie between 0.5 m³/s and 0.65 m³/s which makes that 

‘constant volume’ can only be maintained to temperatures of approximately 400K 

This implies that the Reynolds number varies between 3 000 and 22 000 for the Room Corner test and 

between 6 000 and 11 000 for the SBI test. 

 

Combined uncertainty for Windtunnel 1 
Windtunnel 1 is calibrated by means of Laser Doppler Anemometry to find a relationship between the 

frequency of the frequency controller and the velocity v in the wind tunnel test section. In this case, 

the probe constant kp is calculated from equation (1). 

The partial derivative to the different components results in the corresponding sensitivity coefficients: 

 

 
v

k
v

k pp −=
∂

∂
 

 
p

k
p

k pp

∆
=

∆∂

∂

2
 

 
ρρ 2
pp kk

−=
∂

∂
 

 
and the combined standard uncertainty 
 

 
2

4
1

2

4
1

22
)()()()()( 







+








∆
∆

+





=








∂

∂
= ∑ ρ

ρu
p
pu

v
vukxu

x
k

ku p
i

i
i

p
p  

 
 

 - 281 -



Combined uncertainty for Windtunnel 2 
Windtunnel 2 is calibrated by means of a pitot-static tube to find a relationship between the frequency 

of the frequency controller and the velocity v in the wind tunnel test section. In this case the probe 

constant kp is derived from 
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where v~ and ρ~  represent the velocity and density change with respect to the reference values v2 and 

ρ2 respectively. Both values are close to one. Index 2 refers to the reference measurement with the 

pitot-static tube, while index 1 stands for the measurement of the probe that needs to be calibrated. 

The partial derivative to the different components results in the corresponding sensitivity coefficients: 
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Uncertainty on the different components 
Uncertainty on the velocity v 
In the range from 0.3 m/s to 4.5 m/s the velocity distribution is assumed to be Gaussian. The measured 

standard uncertainty (N=300) is limited to 0.05 m/s. Since 300 consecutive measurements are taken at 

10Hz, the standard uncertainty on the mean velocity reduces with a factor 300  to 0.0029 m/s. 
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The reproducibility on the mean velocity for a given set frequency is estimated (N=4) to be 0.4%. The 

uncertainty on the velocity in the range from 0.3 m/s to 4.5 m/s is therefore estimated to be 

u(v)=SQRT[(0.004*v)² + (0.0029)²] (m/s). 

 

In the range from 4.5 m/s to 40 m/s the measured standard uncertainty is limited to 0.5 % on the 

measured value. Since 300 consecutive measurements are taken at 10Hz, the standard uncertainty on 

the mean velocity reduces to 0.029 %. 

The reproducibility on the mean velocity for a given set frequency is estimated (N=10) to be 1.14% 

(k=1) at a velocity of 5 m/s (resonance interval) and 0.34% at a velocity of 13 m/s (outside resonance 

interval). It is assumed that the uncertainty for velocities below 6 m/s is 1.14% [u(v)=0.0114v] and for 

velocities above 6 m/s is 0.4% [u(v)=0.004v]. The uncertainty on the velocity change is 

)(2)~( vuvu = . 

 

Uncertainty on the density ρ 
All measurements have been taken with a room temperature variation within 0.5°C, a relative 

humidity variation within 3% and a barometric pressure variation within 200Pa with respect to the 

calibration conditions. This variation includes the uncertainty related to the different measurands. Out 

of a parameter variation and assuming a rectangular distribution within those limits, the standard 

uncertainty on the density equals u(ρ)=5.7E-03 kg/m³. 

 

Uncertainty on the differential pressure ∆p 
In wind tunnel 1, all measurements have been taken with a highly sensitive differential pressure 

transducer ranging from 0 to 20Pa. In wind tunnel 2, the measurements have been split up over two 

different pressure transducers at a value of around 250Pa. Table 1 shows the standard uncertainty 

associated with the different models. 

 

Uncertainty on the probe constant of the pitot-static tube kp0  
The probe constant of the pitot-static tube used is 1 ± 0.5%. Assuming a rectangular distribution the 

standard uncertainty on the constant is estimated at u(kp0)=0.0029. 
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Results and Discussion 
Corrections 
Air densities used in the calculations do take into account the ambient temperature, ambient pressure 

and relative humidity. 

Since both wind tunnels have a closed test section, all measurements are corrected for blockage effects 

due to the probe and its supporting tubes. This bluff-body blockage correction takes into account that 

any bluff body placed in a stream modifies this stream. In closed test sections this results in a drag 

increase with test model area. The normalised incremental drag change due to blockage, (CDU-

CDC)/CDC, as a function of the drag in the test/measuring section, given by the blockage parameter 

CDU(S/2Ct), is given by[11] 









=

−

t
DU
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2
53.2  [3] 

If friction forces are neglected, the drag coefficient is defined as 

Av

pdA
C A

D 2
2
1 ρ

∫∆
=  [4] 

Maskell[7], who first explored the physics of the interaction of boundaries, assumed that the pressure 

distribution is invariant in the presence of the constraining test section wall. This would mean that the 

differential pressure over the probe changes proportionally with the variance in CD and that formula 

(3) can be used to calculate the correction on ∆p. 

It needs to be pointed out that when using pressure probes in enclosed spaces like ducting, a same 

correction factor needs to be applied, especially in the SBI where the cross section of the probe facing 

the flow is important. Table 3 displays the increase in drag, and thus ∆p, for frequently used duct 

diameters (formula 3). Thus the probe factor kp should be adjusted with the square root of one plus the 

corresponding value in table 3: D
probe
p

corrected
p Ckk ∆+= 1  
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 Probe 1.a Probe 1.b Probe 1.c 

Estimated CDU 1.12 1.12 1.12 

∆CD (%) (φ=0.315m) 1.64 1.54 4.24 

∆CD (%) (φ=0.4m) 1.24 1.15 3.30 

Table 3: Drag increase in closed test/measurement sections 

 

Probe factor kp as a function of Re 
Figure 2 displays the kp probe factor as function of the Reynolds number with a 95% confidence 

interval. For high Reynolds numbers (Re > 2 500) the probe factor for the original McCaffrey and 

Heskestad[5] probe (Fig. 1.a) is calculated to be kp = 1.046 (N=64; Re = 2 500 .. 18 500). The standard 

error on this mean value (t-test) is 0.001 while the standard deviation is 0.007. Assuming an 

uncertainty of 0.011 (95% confidence) on the measurements and a maximum error of 1% due to 

misalignment of the probe, the standard uncertainty is found to be 

  009.0
011.0046.1 +

−=pk

From[5][6] it is not quite clear whether McCaffrey & Heskestad corrected for bluff-body blockage. If 

not, they overestimated kp with 1.25% ([6]: test section φ=12”; probe D=7/8”; support tubes 

φ=0.286D). 

Changing the aspect ratio L/D slightly (Fig. 1.b), kp tends to lower a bit to a value of kp = 1.044. 

These differences are so small that no real conclusions can be drawn from these numbers. However, 

the drag coefficient for cylinders initially drops and later increases when L/D increases. So modifying 

the aspect ratio requires a new calibration. 

It must be said however that although the probes were aligned experimentally (looking for minimum 

∆p) for yaw and pitch angle, small misalignments may have resulted in a higher kp value. This implies 

that the reported values should be seen as maximum values since kp increases initially with angular 

distortions as will be discussed later. The corresponding error made is estimated to be maximum 1%. 
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Figure 2: kp probe factor as function of Re (95% confidence interval) 
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The probe constant of  probe 1.b drops for values below Re = 5 000 to a minimum of kp = 1.015 for Re 

= 3 000, as can be seen on figures 2 and 3. This makes this modified version less suited for mass flow 

measurements in fire testing, unless the mass flow through the ductwork is kept constant thus keeping 

Re > 5 000 (see Table 2). 

 

The effect of the probe factors being independent to Reynolds number variations in such a wide 

interval, is obtained due to the sharp edges of the probes. The sharp edges make that the flow 

separation point is fixed on this edge irrespective of the Reynolds number (Re >> 1 000)[9]. This in 

contrast with streamlined bodies like cylinders. 

 

On the SBI-probe body, a cylindrical positioning rod has been welded. This makes that – at the height 

of this rod – the flow no longer detaches at a fixed point and thus becomes Reynolds dependent. This 

means that, when the density and viscosity change because of a change in temperature of the 

combustion gases, or because air is partially replaced by combustion gases having other physical 

properties, the Reynolds number will change and correspondingly the probe constant. The example in 

Table 4 quantifies this effect: 
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T (K) 290 400* 600* 325** 380*** 400 600 

v (m/s) 9 9 9 10.1 11.8 12.4 18.6 

ν (m²/s) 14,8.10-6 26,4.10-6 52,7.10-6 18.4.10-6 24.2.10-6 26,4.10-6 52,7.10-6 

D (m) 18.10-3 18.10-3 18.10-3 18.10-3 18.10-3 18.10-3 18.10-3 

Re (-) 11 000 6 100 3 100 9 900 8 800 8 500 6 400 

kp (-) 1.081 1.158 1.207 1.108 1.132 1.136 1.155 

error (%) 

kp_ref = 1.08 

+0.1 +7.2* +11.8* +2.6 +4.8 +5.2 +7.0 

Table 4: Effect of temperature (through ν) on the SBI-probe constant 
*: In the SBI the volume flow normalised to 298K (V298) is imposed to lie between 0.5 m³/s and 0.65 m³/s which makes that 

‘constant volume’ can only be maintained to temperatures of approximately 400K 

**: typical values for SBI step calibration 

***: typical values for SBI heptane calibration 

 

The pressure probe used in the SBI (Fig. 1.c) test equipment has a probe constant which is clearly 

different from the value of 1.08 put forward by the standard. At typical initial working conditions 

(T=290K; V298=0.6m³/s; kt=0,87), the Reynolds number lies around 11 000 and the corresponding 

probe constant is 1.081. So the theoretical and the experimental values match to within the 

measurement uncertainty. As soon as temperature starts to rise however, the Reynolds number lowers 

and the probe factor rises. For the SBI, the lower limit for Re is estimated at 6 000 with a 

corresponding kp = 1.159. This corresponds with an error of 7.3% compared to the value of 1.08 put 

forward by the standard. 

 

In reality the error on the HRR will be less or will even be compensated by the ‘velocity profile’ 

correction factor kt which will overcompensate when doing calibrations based on burning a known 

combustible. 
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One way to ‘calibrate’ the test equipment is to burn a combustible with a well known heat of 

combustion and to fit the kt factor until the measured heat release corresponds to the theoretic value. In 

the SBI the kt factor is the mean value of three calibrations, two of which are based on the burning of a 

known combustible.  

The first is a step calibration where propane is burned at different heat release levels. The mean 

temperature during a typical calibration (steps 2,3 and 5) is 325 K (constant mass; SBI RR2 data). At 

this temperature, the kp factor is underestimated with approximately 2.6% (Table 4). To compensate 

(formula 5), the kt,step factor is underestimated with the same 2.6%. 

The second calibration consists of a heptane pool fire. A typical mean temperature there (while 

burning) was found to be 380 K (constant mass; SBI RR2 data) resulting in an underestimation of kp – 

and thus kt,hept – with approximately 4.8% (Table 4). These temperatures are only rough estimates that 

may vary from laboratory to laboratory, but they clearly demonstrate that the kp value put forward by 

the standard is a too low number when combustion is taking place. 

The kt factor that follows out of the calibrations will thus be underestimated by 2.5% [(2.6+4.8+0)/3]. 

This also seems to be confirmed by the results of SBI RR2[12]. Table 5 shows the mean values of the 

kt-factors found by means of a step calibration, a heptane calibration and a hot wire anemometer 

calibration. The results are based on measurements in 28 different laboratories. No uncertainty data on 

those measurements is available. Both the kt,step and kt,hept are lower than kt,v found out of the direct 

measurement of the velocity profile. 

The observation that kt,hept is higher than kt,step can reasonably be attributed to other effects like 

incomplete combustion (pool fire). Incomplete combustion results in an overestimation of the kt value. 
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N=28 kt,step 
step 

calibration 

kt,hept 
heptane 

calibration 

kt,v 
hot wire 

anemometer 

kt mean 
(step; 

hept.;anem.) 
Mean 0.858 0.865 0.875 0.866 
Deviation from kt,v (%) -2.03 -1.15 0.00 -1.07 
Std. Error of Mean 0.0081 0.0083 0.0064 0.0064 
Std. Deviation 0.0428 0.0442 0.0341 0.0340 

Table 5: velocity profile correction factors reported in the SBI round robin II project 
 

The use of probe 1.c in the SBI can also partially explain why the heat release in step 5 of the step 

calibration is found to be systematically higher than in steps 2 and 3, although the same 30kW are 

burnt. In step 4 of this calibration the burner heat output is increased to 93kW which makes that, due 

to the heating of the system, kp in step 5 is higher than in steps 2 and 3. As kp is underestimated, the 

HRR will appear high. Although the HRR curve of a step calibration with probe 1.b seems to better 

follow the expected values, a large number of tests would be required to statistically prove any 

improvement. 

For pressure probe 1.a and 1.b, the measurements have been extended to the range Re = 340 – 

19000/66000 respectively. The results are displayed in figure 3 together with the kp factor proposed by 

McCaffrey & Heskestad[5] for design 1.a. 

The results for probe 1.a (1.b) suggest that: 

 kp is fairly constant for Re > 3 000 (5 000) 

 kp starts to rise for Re < 2 500 (2 000) 

 kp drops slightly for in-between values 
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Figure 3: kp probe factor as function of Re (95% conf. interval) 

 

The flow gases introduce a drag force onto the pressure probe which is mainly caused by the pressure 

distribution over the probe. The drag caused by friction reduces considerably for Reynolds numbers 

above 1 000 (±5% at Re=1 000)[9] and can be neglected for even higher Reynolds numbers. When 

friction forces can be neglected, the drag coefficient reduces to formula 4. 

For all objects with sharp edges, the drag coefficient is essentially independent of Reynolds number 

for Reynolds numbers well above 1 000. This is true because the sharp edges make that the flow 

separation points are fixed by the geometry of the object irrespective of the flow velocity. The flow 

profile over the object is invariable. 

 

Compressibility of air 
One of the assumptions made to calculate the velocity out of the differential pressure is that the 

combustion gases are incompressible. This relation holds for Mach numbers below 0.3 (error < 1%)[9] 

which corresponds to velocities around 100 m/s in air at ambient temperature and to Reynolds 

numbers for the probes under discussion of approximately 100 000. 

 

Thermal expansion of the probe 
Thermal expansion of the probe has no direct effect on the probe constant. Through the Re-number 

however, it could have a limited contribution if kp were function of temperature - and thus Reynolds. 

 - 290 -



For every 100K temperature rise, the probe diameter - and so will the Re-number - increases with 0,1 

to 0,2% depending on the type of steel used. These variations can be disregarded since their influence 

on kp - if any - is negligible. 

 

Influence of combustion gas chemistry on kp 
The effect of air partially being replaced by combustion gases has a negligible effect on the Re-

number under ‘normal’ heat release test fire conditions (X O2 > 17Vol%). 

 

In the assumption of having complete combustion of propane gas, O2 will partially be replaced by the 

combustion products CO2 and H2O. The kinematic viscosity - which is used in the Re-equation - for 

CO2 and H2O is different from the one for O2. Assuming the hypothetical case of stoichiometric 

combustion (all O2 consumed; 3 to 4MW of heat release for every m³/s - referenced to 298K - of 

combustion gases extracted) the kinematic viscosity of the combustion gases is approximately 5% 

higher than the kinematic viscosity of clean air at the same temperature (Calculated making use of 

[10]). 

This variation is temperature dependent but remains in the order of 5% in the expected temperature 

range of the exhaust gases (part of the heat is ‘lost’ to the environment before arriving in the 

measuring section). 

 

The above results in a reduction of the Re-number which - even in the hypothetical case of 

stoichiometric combustion - leads to a reduction in the order of 5%. In the SBI test equipment such 

conditions are never reached, so that the minor variation on Re-number has no influence on kp. In the 

Room Corner test and similar test equipment, it is important to stick to the original probe design 1.a - 

without the positioning rod - and to keep the working point above Re=2 500. In this case, kp remains 

constant and combustion gases have no influence on kp. 
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Angular sensitivity 
Under optimal circumstances, the axis of the bi-directional probe should be inline with the incoming 

flow (θ = 0; pitch and yaw angle equal to zero). Due to improper alignment and/or a radial velocity 

component on the incoming flow, the angle of attack (θ) can be different from zero. 

 

Figure 4 displays the amplification factor as a function of the angle of attack (θ) in the range from –

15° to +15°. The mean velocity is set to approximately 8.5 m/s (Re = 10 000). Values of the 

amplification factor above one mean that the pressure difference over the probe increases with respect 

to the situation where the axis of the probe is in line with the incoming flow. 
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Slight variations of the angle of attack (θ) lead to an increase of the probe constant (2% by 3°; 4% by 

5°) for probes 1.a and 1.b. The working point (θ = 0) represents a sharp minimum and can be used to 

align the probes. 
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Figure 4: Angular sensitivity (Re ≈ 10 000) 

 

The SBI-probe on the other hand is less sensitive to the attack angle (1% by 3°; <1.5% in the range 

from -10° to 10°). 

Figure 5 shows that only for Reynolds numbers well below values that can be expected in the SBI and 

RC test the angular sensitivity seems to lower. 
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Figure 5: Angular sensitivity as a function of Re (probe 1.b; coverage factor k=1) 

 

 

Conclusions 

The pressure probe currently used in the SBI test is Reynolds dependent and the ‘probe constant’ is 

higher than stated in the standard. As a consequence, calibration of the equipment leads to 

underestimation of heat release and smoke production – which are both proportional to the measured 

mass flow – for products with reduced heat release rate and overestimation for products with a higher 

heat release rate. Based on theoretical considerations and the information reported in this contribution, 

taking into account the influence of exhaust gas temperatures measured in the SBI, an underestimation 

of roughly 1% is predicted for the burner with dummy specimen, and an overestimation of about 6% at 

the maximum HRR capacity allowed by the standard in the SBI test. These numbers are for test 

instruments running at constant mass flow rate and will be higher when running the equipment at 

constant volume flow rate. They also explain part of the ‘average relative standard deviation’ for the 

classification parameters in the SBI. The reported values[8] for the total heat release in the first ten 

minutes of the test, THR600s, are 11% and 21% for repeatability and reproducibility respectively. 

It is therefore strongly recommended to calibrate the SBI probe and introduce the probe value in the 

heat release formulas as a function of the Reynolds number. The Reynolds number can be calculated 

based on the properties of air at the same temperature as the exhaust gases. 
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An alternative and probably better solution would be to remove the steel rod and to stick to the design 

of fig.1a or 1b. 

 

The SBI pressure probe has a lower sensitivity to angular variations with respect to the flow. In the 

range from -3° to 3° the influence to the probe constant is limited to 1%. In the range from 

-10° to 10° to 1.5%. 

 

The original McCaffrey & Heskestad probe has a probe factor which is constant for Reynolds numbers 

above 2 500. This corresponds to the range that can practically be expected in the ISO Room Corner 

test, the SBI test and similar devices. If one wants to measure heat release in post flashover scenarios, 

the probe factor should be calculated as a function of Reynolds number. 

Angular distortions introduce an error in the order of 2 to 4% (2% by 3°; 4% by 5°). 

Guide vanes upstream the pressure probe should help to reduce any angular distortion of the flow. 

Angular distortions result in an overestimation of the Heat Release Rate. 

 

When installing a pressure probe in the exhaust duct, the operator should take readings of the pressure 

difference at different angles of attack (θ) in a range of 10° centred around the estimated zero angle (θ 

= 0). The minimum pressure difference will then indicate the exact zero (θ = 0) position. 

 

Any flow conditioner upstream should be designed such to eliminate any radial or rotary velocity 

component. Especially when applying probe design 1.a or 1.b which are more sensitive for angular 

misalignments than design 1.c. 

 

A lower probe constant was found for the McCaffrey & Heskestad probe. The kp-factor is estimated to 

be 1.046 with a standard uncertainty of +0.009 and -0.011. Modifying the aspect ratio L/D requires a 

new calibration. 
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The kp-factor should be corrected for ‘bluff-body blockage’ if used in ducts with reduced diameter. 

The corrected kp-factors for probe designs 1.a and 1.b are tabulated below for two frequently used duct 

diameters. 

 Probe 1.a Probe 1.b 

kp (open air) 1.046 1.044 

kp (φduct=0.315m) 1.055 1.052 

kp (φduct=0.4m) 1.052 1.050 

Table 6: Probe factor kp corrected for bluff-body blockage 

 

Heat release measurements would benefit from an optimised pressure probe design limiting the 

sensitivity to angular variations but without compromising on the benefits of the actual probes. As a 

result of these findings, further research has been undertaken which has resulted in a new pressure 

probe design that combines the best of both worlds: a low angular sensitivity and Reynolds 

independency over a wide range. The results will soon become available. 
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Abstract 

In intermediate and large scale fire test applications, a bi-directional low-velocity pressure probe is 

used to obtain the volume flow. The probe was presented by McCaffrey and Heskestad in 1976 and 

has found its way to several international standards including the Room Corner test and the Single 

Burning Item test (SBI). The probe is considered ‘state of the art’ for measuring flow rate in fire test 

applications. 

The main disadvantage however is that the probe factor changes with pitch and/or yaw angle 

variations. The modified SBI pressure probe is less sensitive to angular variations but then again is 

Reynolds dependent. 

A new pressure probe design has been developed that combines a low angular sensitivity with a 

Reynolds independency over a wide range. Although the probe has been developed for intermediate 

and large scale fire test applications, its use is not limited thereto. 

 

Key words: velocity,  flow velocity, pressure probe, volume flow rate, mass flow rate 
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Nomenclature 
µ dynamic viscosity [Pa.s] 

ν kinematic viscosity [m²/s] 

θ angle of attack [°] 

ρ density [kg/m³] 

A probe surface area [m²] 

CD drag coefficient [-] 

D characteristic diameter probe [m] 

kp probe constant [-] 

M Mach number [-] 

∆p differential pressure [Pa] 

p  pressure [Pa] 

ptot total pressure [Pa] 

pstat static pressure [Pa] 

Re Reynolds number [-] 

S frontal area of the probe [m²] 

T temperature [K] 

v velocity [m/s] 

 

 

Introduction 

In various medium to large scale fire test equipment, like the ISO Room Corner (RC) test[6] and more 

recently the Single Burning Item (SBI) test[3], the mass flow rate measurement of the combustion 

gases plays a key role in the determination of the heat release rate and smoke production rate. 

To date a bi-directional low-velocity pressure probe is used to calculate this flow rate based on a 

differential pressure measurement on the axis of the exhaust duct. The bi-directional probe, first 

introduced by McCaffrey & Heskestad[7] in 1976, was originally designed for measuring the low 

velocity of (buoyancy-driven) fire induced flows associated with small to medium size fires. It has 

been ‘copy-pasted’ into various international standards and is considered to be the state of the art for 

measuring flow in combustion gases in fire tests. Recently the SBI standard, which is used to assess 

the fire behaviour of building materials for the European market, prescribes a slightly modified design. 

 

One major drawback of the bi-directional probe however is that its probe factor changes with pitch 

and/or yaw angle variations. Previous research[9] revealed that such angular deviations introduce an 
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error in the order of 2 to 4% (2% by 3°; 4% by 5°). Due to improper alignment of the probe angular 

deviations can never be excluded. 

 

The modified SBI pressure probe is less sensitive to angular variations (1% by 3°; <1.5% in the range 

from -10° to 10°) but is Reynolds dependent on the contrary. This means that when velocity, density 

or viscosity change because of a change in extraction rate, a change in temperature of the combustion 

gases, or because air is partially replaced by combustion gases having other physical properties, the 

Reynolds number will change and correspondingly the probe constant. The expected maximum 

variation in the SBI of the probe constant when running the equipment at constant mass flow is 

approximately 7%. 

 

A conclusion[9] out of the above observations is that intermediate and large scale fire tests would 

benefit from an optimised pressure probe design, limiting the angular sensitivity without 

compromising on the benefits of the actual probes. Further research, as summarised in this 

contribution, has resulted in a new pressure probe design that combines a low angular sensitivity with 

Reynolds independency over a wide range.  

 

The assumption of incompressible flow will be maintained throughout this study. 

 

 

Requirements 

When first developing the present probe the goal was to develop a probe suited for measuring the flow 

rate of combustion gases in closed conduits of circular cross-section. A review of the most common 

intermediate and large scale fire tests learned that velocities between 5 m/s and 10 to 20 m/s are to be 

expected. This means that differential pressures between 15 Pa and 59 to 236 Pa (T=298K, 

p=101325Pa,  ρ=1,18kg/m³) would be obtained using a pitot-static tube. When combustion gas 
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temperatures rise to say 600K those values further reduce with a factor 2 if constant volume flow rate 

is maintained. 600K is considered to be the maximum allowed temperature in the SBI. 

Those pressure differences are so low that any positive gain would be beneficial in reducing the 

measurement uncertainty. 

 

A second, even more important design parameter is the insensitivity to angular distortions in a range 

of at least ±5° and preferably more. Angular distortions lead to a bias on the measurement results and 

should be avoided at any time. This however is not always possible certainly not for small deviations 

from the probes zero position. 

 

A third point of attention is the ability to work in ‘contaminated’ environments (smoke, dust, soot, …). 

One of the reasons why a pitot-static tube is not used in fire applications is because its pressure ports 

can easily get obstructed by particles transported by the medium. Especially the positive total pressure 

port which points upstream is sensitive to blockage. 

 

Furthermore the design of the probe should preferably be straightforward and it should be easy to 

maintain and manufacture. 

 

 

Short review of single point velocity pressure probes 

This section gives a brief overview of velocity pressure probes that sense for the velocity in a single 

discrete point except for one probe, discussed at the end of this section, that senses in multiple discrete 

points. The list is non exhaustive and only highlights the main characteristics. Specific designs that 

sometimes involve only minor changes, can result in different characteristics. It is therefore difficult to 

compare, e.g. in a table, the characteristics of the different groups of probes. 
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An alternative method to single point velocity measurements for determination of the volume flow in 

closed conduits are orifice plates, nozzles and Venturi meters. Those instruments fall out of scope of 

the present paper. 

 

Pitot-static tubes and shielded (Kiel) probes 

The most commonly used Pitot-static tubes are the National Physical Laboratory (NPL) standard 

hemispherical-nose and elipsoidal nose tubes. For engineering purposes, the probe factor of those 

instruments can be set to 1 with an error tolerance of less than 0.5% on velocity in the range from 6 

m/s up to 60 m/s[8]. For the ellipsoidal-nose instrument, this range can be enlarged down to 1 m/s. 

These speed ranges relate to air at ordinary temperatures and pressures. 

The effect of yaw angle variations on the differential pressure reading is about 0.5% at 5° and about 

1% at 10° for the ellipsoidal nose, and about 1% at 5° and 3% at 10° for the hemispherical nose[8]  

 

 

 

 

 

 (a) (b) 

Figure 1: Example of a Pitot-static tube (a) and a Kiel-probe (b) 

 

However, Pitot-static tubes can be designed such that they are not very sensitive to angles of attack. 

Gracey[5] investigated a large number of pressure probes. He found that for simple, non shielded tubes, 

the usable angular range (differential pressure variations of less than 1%) was found to depend on the 

external shape of the nose section, the size of the impact opening (relative to the tube diameter), and 

the shape of the internal chamber behind the impact opening. He concluded that the best combination 

of these design features is a tube having a cylindrical nose shape, an impact opening equal to the tube 

diameter, and a 30° conical chamber. The usable range in this case is about ±28° at a Mach number of 
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0.26. He further concluded that for most of the unshielded tubes the usable range increases with Mach 

number, whereas for shielded tubes it decreases with Mach number.  

Extreme values of angular insensitivity are obtained with shielded probes. The insensitivity range of a 

shielded tube having a conical entry is about ±41° (M = 0.26). Changing the shape of the entry of the 

shield to a highly curved section increases this range to about ±63° (M = 0.26). This design requires 

venting of the throat through the wall of the shield. 

 

The main disadvantage of Pitot-static tubes is however that the pressure ports can easily get obstructed 

by particles transported by the medium, resulting in erroneous readings. Especially the positive total 

pressure port, which points upstream, is sensitive to blockage. The Pitot tubes therefore are not suited 

for measurements in contaminated environments, such as smoke, dust, soot, etc. Their main 

application is in laboratories and aeronautics. 

 

Type “S” or Reverse Pitot-Static probe 

The type “S” (Stauscheibe) or Reverse Pitot-Static probe consists (Fig. 2) of two stainless steel tubes 

with impact holes oriented at 180° angles to one another. One hole faces upstream for the 

measurement of total pressure; the other is aligned in a downstream direction for static pressure 

measurement. The difference between these two pressures approximately equals 150% of the velocity 

pressure of the fluid. “S” probes are designed for easy entry into small holes in stack or flow passage 

walls, and due to their relatively large impact (sensing) holes, are especially effective in the presence 

of high concentrations of clogging particulate matter. The “S” probe however is sensitive to angular 

variations, which are even different for pitch and yaw angle variations, and is Reynolds dependent[8]. 
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Figure 2: Schematic of a type ”S” probe 

 

Venturi probes 

Venturi Probes are used to amplify the measured velocity pressure in a flowing fluid. The flow is 

accelerated in the venturi passages, as in a flow nozzle, so that the dynamic pressure increases and the 

static pressure reading is lower than that obtained with a Pitot-static probe (Fig. 3). According to the 

particular design, values of up to 8 times the velocity head are obtained. Even higher factors, up to 14, 

have been obtained with double-venturi probes. Disadvantages here are the relatively high probe 

diameter compared to a Pitot, the dependence on Reynolds number and the sensitivity to angular 

variations. 

 

Figure 3: Schematic of a Venturi probe 

 

Incidence insensitive static pressure probes 

For low speed flows (M<<1) incidence insensitive probes have been developed that are based on 

measuring the static pressure in the cavity downstream a blunt body with sharp edges (Figure 4[10]). 

Two examples thereof are illustrated by the probes shown in Figure 4. The sharp edges make that the 
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separation point is fixed independent of Reynolds number. The reading of the probe may be different 

from the real static pressure and a calibration is needed. The angular insensitivity is in the order of 

±20°. 

Figure 4: Incidence insensitive static pressure probes 

 

Averaging pitots for measuring flow rate in pipes 

Besides flanges, nozzles and to a lesser extent venturis, averaging Pitots are often used in industry to 

measure flow rates in conduits. It is in effect a multi-port averaging Pitot. A front view of a multi-port 

averaging Pitot system is shown in Figure 5. The flow element operates by sensing an impact pressure 

and a reference pressure through multiple sensing ports, at specific locations across a pipe, connected 

to dual averaging plenums. The resultant difference is a differential pressure signal. Sensing ports are 

located on both the up and downstream sides of the flow element. The number of ports is proportional 

to the pipe diameter. Several designs are available (Annubar , Torbar, etc.), each claiming superior 

hydrodynamic flow characteristics. In the specific design shown in Figure 5, the square shape 

establishes a fixed separation point of the fluid from the sensor. The fixed separation point reduces 

changes in the low pressure and makes the probe Reynolds independent in a wide practical range. A 

disadvantage of this design may be that the probe traverses the duct causing an important obstruction 

for the flow with a corresponding pressure loss. Furthermore it may be necessary to introduce 

corrections to account for the bluff-body blockage effect[1]. The axial alignment usually is also critical. 
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Figure 5: a. Flow around an averaging pitot; b. averaging pitot traversing a pipe[2] 

 

 

 

Design alternatives 

In the search for an optimised velocity pressure probe, two alternative roads are followed. 

 

Venturi type 

A first idea to increase the pressure gain of the probe is to introduce a venturi like design to boost up 

the differential pressure. This design – which already exists – would be adapted to cope with problems 

like soot deposit etc. 

 

Major concerns here are the pressure losses over the venturi which, if they become too high, will result 

in a small velocity gain. Other concerns are that soot and other deposits might disturb the good 

functioning of the probe. 

It is expected that the angular insensitivity will be better than for the bi-directional probe since the 

velocity in the throat – where the static pressure is taken – will remain constant for small angular 

variations. This is not true for the bi-directional probe where small angular variations lead to important 

changes in the turbulent wake behind the probe where the lower pressure is measured. 

 

Drag type 
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A second idea to obtain a pressure gain over the probe is to play with the shape of the probe and to 

find an appropriate location for the pressure ports. 

The main idea here is that the drag coefficient – and thus the pressure difference – of objects can be 

increased by selecting an appropriate shape as can be seen from table 1.  

The drag coefficient can be made independent of Reynolds number (Re > 1 000) by introducing sharp 

edges. The sharp edges make that the flow separation points are fixed by the geometry of the object 

irrespective of the flow velocity. The flow profile over the object is invariable. This in contrast with 

streamlined bodies like cylinders who are strongly Reynolds dependent. 

For Reynolds numbers below 1 000 friction forces become important relative to forces associated with 

the pressure distribution over the object. For Reynolds numbers well above 1 000 friction forces can 

be neglected and the drag coefficient relates to the pressure distribution by the equation 
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Major concerns here are the angular insensitivity and the location of the pressure ports. The angular 

insensitivity requires rotational symmetry so that the study can be limited to those objects having 

cylindrical, conical or sphere like shapes. Since the purpose of this study is to increase the differential 

pressure over the object, only those shapes with a drag coefficient above one have been considered. 

Some examples of drag coefficients (CD) are given in table 1. 

 

Object Diagram CD (Re > 1000) 
Disk  

 
1.17 

Hollow semi-cylinder opposite stream 
 

 1.20 

Hollow Hemisphere opposite stream 
 

 1.42 

Solid Hemisphere flow normal to flat side 
 

 1.17 

Table 1: Drag coefficient data for selected objects (Re > 1000)[4] 
 

Note that increasing the drag may also be realised by introducing vents in the side wall of the probe. 

 - 310 -



Experiments 

Probes tested 

A venturi based pressure probe is made composed of an upper cylindrical recess to measure the total 

head, this in analogy with the bi-directional probe, and a venturi. The constraints to the outer 

dimensions are governed by the limitation that it should be possible to introduce the probe into the 

conduit through a cylinder with inner diameter 50mm.  

The convergent part has an angle of around 21° in order to efficiently speed up the flow over a short 

distance. In a first prototype A15_D8, the convergence angle is only about 15° in order to have the 

throat section centrally in the probe. This has later been optimised in prototypes D10, D8 and D6 

where the convergence is 21.2° and the diameter of the throat section is 10mm, 8mm or 6mm 

respectively. Downstream the throat, a diffuser with a reduced angle of 4.4° is installed[4]. This angle 

needs to be small in order for the flow not to detach and to recover in this way a maximum amount of 

kinetic energy. Indeed the flow has to oppose a rising pressure gradient. 

 

 

Figure 6: Venturi probes; Prototypes A15_D8 (top), D10 (left) and D8 (right) 
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Besides the venturi based probes, several probes based on the pressure drag have been fabricated that 

have 1) a rotational symmetry; 2) a drag coefficient above one; 3) sharp edges for the flow to detach at 

a fixed point and 4) a simple and robust design. 

A selection of 4 of those probes, together with the bi-directional probe[7], are presented below. 

 

Probe Section view Frontal view 
Bi-dir 
(Bi-directional probe) 

 
 

 

HSphere_Sphere 
(Hemispherical probe; shell) 

  

Hsphere_Con 
(conical shape inside) 

 
 

 

Disc 
(sharp edge) 

 
 

 

Cone 
(α = 18°) 

  

Table 2: Overview of probes tested 

 

The hemispherical probe (shell) tested has an outer diameter of 22.6 mm and a shell thickness of 1 mm 

which is reduced down to 0.5 mm at the circular border facing the flow. 

All positive pressure measurements are taken centrally through the back part (right hand side) of the 

instrument except for the bi-directional probe. All lower pressure measurements are taken at the back 

of the probes just underneath or above the higher pressure conduit. 

 

 
θ + - 

 

 

Figure 7: Location of pressure ports on the prototypes tested; sectional and frontal view 

 

In a first experiment the angle of incidence θ of the probe is varied from –90° to +90° at an air speed 

of about 4.1 m/s (Figure 8; only part of the data is shown). The experiment is done in windtunnel 1 as 

described in [9]. 
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The experiment has been repeated in a range from -20° to +20° for the Bi-directional probe, the 

hemisphere probe and the Venturi probe at a velocity of 8.2 m/s with similar, even more stable results. 

 

In a second experiment the probes are calibrated as function of the Reynolds number in a velocity 

range from 1 to 40 m/s. The uncertainty on the velocities below 0.9 m/s (down to 0.3 m/s) are so high 

that they have been excluded from the report. 

 

Instrumentation and uncertainty analysis 

A detailed description of the instrumentation used and the uncertainty analysis conducted is given in 

[9]. 

 

Results and discussion 

All probes have been evaluated against five major criteria being 1) angular sensitivity; 2) pressure 

gain; 3) Reynolds independence; 4) expected behaviour in ‘dirty’ media and 5) design complexity. 

 

The results are summarised in table 3. 

 

Angular sensitivity 

Figures 8 till 11 show the test results for flow angle dependency for several probes tested, as described 

in the previous section. The figures display the ratio of the probe factor at an incidence angle θ to the 

probe factor at neutral position θ = 0, i.e. kp(θ)/kp(θ=0) (M<<1). 

 

Figure 8 shows the results for the Venturi type probes at an air velocity of 8.2 m/s. Comparing the 

results of the probes A15_D8 and D8, which are basically the same except for the convergent part 

which is 15.1° respectively 21.2°, the results suggest that less convergence results in better angular 

insensitivity. For probe A15_D8 the angular insensitivity, defined as the maximum angular deviation 

(±) within which the error remains limited to 1%, is 4° to 5°. 
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The results for probes D8 and D6 are not really better than the results obtained with the Bi-directional 

probe. 

The somewhat strange results of probe D10 can partly be attributed to the fast changing probe factor 

for Reynolds numbers around 10 000 (Fig. 12). 
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Figure 8: Angular sensitivity of the Venturi based probes 

 

For the drag based probes two measurement series at velocities of about 4.1 m/s and 8.2 m/s are taken 

(Fig. 9, 10 & 11). The measured standard deviation at 4.1 m/s is 0.05 m/s and the turbulence intensity 

is 1.3%. The selection of the air speed is based on the lowest expected Reynolds numbers when 

running fire tests according to the SBI standard. The results at a velocity of 8.2 m/s show more stable 

results as shown in Figure 9 for a hemispherical probe. 
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Figure 9: Influence of air speed on stability of results 
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Figure 10 shows that the probe factor as measured for the Bi-directional probe, increases with roughly 

1% per degree initially. This is a high number so much the more because small angular variations due 

to misalignment or due to flow effects can often not be excluded. 

 

For the hemisphere shell (Fig. 9) the error is limited to approximately 1% in the range -20° to +20°. 

Furthermore, in the range from –45° to 45° the error remains limited to 5%. Outside that range, the 

differential pressure drops fast and the exact location of the low-pressure port becomes predominant. 

 

The disc and the conical probe show errors in the order of 2% and 4% respectively in the ±20° range. 

This indicates that the drag force over a disc object changes little for limited angular variations. 
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Figure 10: Angular sensitivity of drag based probes (v = 4.1 m/s) 

 

The effect of modifying the inlet geometry is demonstrated by comparing two hemispherical probes 

with either a spherical inlet thus defining a hemispherical shell probe or a hemisphere with a conical 

inlet. Figure 11 shows that although the error remains limited to 5% in a range between +25° and –

25°, there is a clear negative influence modifying the inlet from hemispherical to conical. It is 

expected, for a hemispherical probe, that any deviation from the hemispherical shape for the inlet port 

has a negative effect on the angular insensitivity. However, different inlet port shapes may still give 

considerable better results than obtained with a bi-directional probe. 
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Figure 11: Angular sensitivities for conical and spherical inlets 

 

Differential pressure gain and Reynolds dependence 

The probe factor is a number that needs to be introduced if the differential pressure measured over the 

probe is different from the dynamic pressure (pdyn=ρv²/2). It is defined as 
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Practically speaking the probe factor for a NPL Pitot-static tube is equal to 1. Figures 12 and 13 

display the probe constant as a function of the Reynolds number related to the outside diameter of the 

probes. The Reynolds number is defined as 

 

 
νµ

ρ D.vD.v.Re ==  [-] 

 

and is a measure of the ratio of inertia forces to viscous forces. 
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Figure 12: Uncorrected (for bluff body blockage) probe factor for the Venturi type probes 

 

Figure 12 reveals that the venturi probes only start to boost up the pressure for higher Reynolds 

numbers. Below a critical Reynolds number, which is probe dependent, the probe factors are fairly 

constant. With respect to pressure gain and Reynolds independence, probe A15_D8 and especially 

probe D6 could be used in the SBI. When running the SBI test equipment within the specifications of 

the standard, the expected Reynolds numbers with respect to the probe outside diameter (17mm) 

roughly remain between Re = 5 000 and 11 000. 

Probe D6 is to be preferred since it has a slightly higher pressure gain and, based on these first results, 

is more stable in the envisaged range. However, probe D6 is very sensitive to small angular variations 

(Figure 8). 

The probe factors as displayed in Figure 12 have not been corrected for bluff body blockage. The 

results presented are therefore overestimated by a factor in the order of 1%. 

 

The results for the drag based probes show that the hemisphere shell has a constant probe factor as 

high as 1.22 to 1.23 for Reynolds numbers above 5 000. This corresponds to a differential pressure 

gain of around 50% with respect to a Pitot-static tube. The probe can be used at lower Reynolds 

numbers but then requires calibration. The results obtained so far suggest that the probe factor first 

decreases to 1.20 for Re = 2 000 after which it begins to rise to high numbers (1.43 at Re = 420; the 
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95% confidence interval is however in the order of 20% in this point). This is when friction forces 

become more important and when their effect on the drag can no longer be neglected. 

 

Based on the statistical analysis of the measurements in the interval Re = 4 900 to 60 000 the probe 

factor is calculated to be kp = 1.224 (N = 29). The standard error of the mean value (t-test) is 0.008 

while the standard deviation is 0.0043. For the test instrumentation used, the uncertainty (95% 

confidence) on the individual measurements remains below 0.013 for Reynolds values between 4 900 

and 7 000 and between 20 000 and 60 000. Assuming that this uncertainty is also valid in the 

remaining points (in reality it is higher), the standard uncertainty is estimated to be kp = 1.224 ± 0.008. 

This assumption is not so unrealistic since the measurements consist out of three data sets, each with 

different instrumentation. When the uncertainty of one data set reaches its highest level, it matches 

closely the next data set which has, at that point, its lowest uncertainty. 
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Figure 13: Probe factor for Hemispherical probes with conical and hemispherical recess 

 

Changing the inner shape of the probe from hemispherical to conical (HSphere Con) reduces the probe 

factor with approximately 3% to 1.195 which makes that the differential pressure over the probe 

reduces with some 6%. A similar slight reduction in the probe factor is observed for Reynolds 

numbers below 2 000 to 3 000. 
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A Reynolds dependence is not favourable for a pressure probe since it requires corrections to be 

introduced. 

 

Expected behaviour in ‘dirty’ media 

The behaviour of the probes in “dirty media” plays an important role as e.g. small particles, 

transported by the combustion gases, can block the pressure ports, which results in erroneous 

measurements. In aviation for example, planes have crashed because the pilot had a wrong picture of 

the plane’s speed due to blockage of one of the pressure ports. 

 

The position of the pressure ports plays an important role in this respect. If the high pressure port is 

placed perpendicular to the main stream flow, particles do not tend to block the pressure port. 

Therefore the total pressure port is positioned such that it is not in the main stream flow, but preferably 

as much as possible, makes an angle with the main stream flow.  

a
β

 (a) (b) 

Figure 14: a. bi-directional probe; b. Hemisphere shell 

 

The pressure port thus is, with respect to blockage, positioned preferably substantially perpendicular to 

the main stream flow (Figure 14.b: angle ‘β’ approaching zero). In this way, and when the probe axis 

is placed horizontally, deposits drop out even more easily from the hemispherical cup – without ever 

blocking the pressure port – than in the case of the bi-directional probe. 
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It is expected that the pressure inside the hemisphere cup equals the total head and is almost constant 

within the cup so that the high pressure sensing port can have any desired location on the hemisphere 

shell. Ower and Pankhurst[8] write in relation to Pitot-static tubes that “there is abundant experimental 

evidence to confirm that the pressure indicated by a properly aligned open-ended tube facing the 

current is accurately equal to the local total head – except for viscosity effects at very low Reynolds 

numbers – and that the shape of the tube may be varied within wide limits without sensibly affecting 

the observed pressure.” 

 

The low pressure sensing port typically is positioned at the back or the side portion of the hemisphere 

shell such that it has a sensing port in the wake of the body. The actual position of the lower pressure 

port in the wake of the body is less important. Turning the probe with respect to the incoming flow 

will however influence this wake. Because of symmetry reasons, the lower pressure port preferably 

lies on the axis of symmetry of the probe. 

 

Eventually the lower pressure could, in analogy with the bi-directional probe, be taken from a small 

cylinder welded on the back side of the hemisphere (Fig. 15). This may change the probe factor 

slightly. 

 

 

 

 

Figure 15: Possible pressure port position on the hemisphere 

 

In the form shown in figure 14.b the body is mounted with a hollow tube that connects the inner 

hollow hemisphere with a (positive) pressure port. This tube supports and positions the device in the 

flow. The second hollow tube shown measures the pressure in the downstream wake of the device. In 

the form shown, it is connected loose from the device 
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The total head pressure opening of the Venturi type probes has an inner diameter of 8mm which is 

approximately a factor 2 smaller than for the bi-directional probe and a factor 4 when expressed in 

surface area. This makes that, with respect to the bi-directional probe, the Venturi probe is less 

favourable. Experience will have to demonstrate whether this is really a drawback or not. As for the 

bi-directional probe the higher pressure port is placed perpendicular to the flow. When the probes are 

placed horizontally, gravity will help to keep the pressure ports free. 

The expectation is that the lower pressure port in the throat section will remain free due to the local 

acceleration of the flow. For probe D6 where the throat section reduces down to 6mm, this may no 

longer be true when the throat itself gets obstructed. 

 

It is our believe that, with respect to ‘dirty’ media, the hemispherical probe will behave at least equally 

as good as the bi-directional probe. Both the hemispherical probe and the Venturi probe A15_D8 have 

been tested successfully in the SBI. They both passed without any problem a propane burner (step) 

calibration and a heptane pool fire calibration. 

 

Design complexity and practical use 

In relation to the bi-directional probe, the hemispherical probe is straightforward to manufacture while 

the Venturi probe requires specialty tools. 

 

The angular insensitivity of the Hemispherical probe makes it easy to install since accurate positioning 

is no longer crucial. The Venturi probe A15_D8 requires accurate positioning. The local minimum in 

differential pressure for a well aligned probe can be used to do a proper alignment. 

 

 

 - 321 -



Conclusions 

In view of the sensitivity of the bi-directional probe to angular variations, two new velocity pressure 

probes have been developed. The bi-directional probe is used in most intermediate and large scale heat 

release rate tests and is considered state of the art. 

 

A first design accelerates the flow in a Venturi throat section to obtain a reduced static pressure 

measurement thus increasing the differential pressure. The differential pressure gain of the preferred 

Venturi design, A15_D8, is in the order of 37% with respect to a Pitot-static probe. With this probe, an 

angular insensitivity of about ±5% has been achieved. The probe factor remains almost constant in the 

range Re = 4 000 to at least 19 000. Furthermore, the probe is suited to be used in smoky environments 

and the first tests, that include a heptane pool fire, look promising. 

 

A second design consists of a bluff body with sharp edges. The bluff body generates a high pressure 

drag while the sharp edges make the flow separate from the body at a fixed zone, thus making the flow 

profile over the object invariable of the flow velocity. This results, for the proposed hemispherical 

shell, in a steady probe factor that is estimated at 1.224 ± 0.008 for Reynolds numbers in the range 

5 000 to 60 000. This corresponds to a pressure gain with respect to a Pitot-static tube of 

approximately 50%. The Reynolds numbers are related to the outside probe diameter. The probe is 

insensitive to angular variations over a range that exceeds ±20°. Furthermore it is expected that it will 

behave at least equally as good in smoky environments as the bi-directional probe. 

The design is straightforward, its limited size make that only a small hole needs to be drilled to install 

it and the head losses related to drag of the probe are negligible. Furthermore, no accurate alignment is 

needed when installing or servicing the probe. 

 

Table 3 summarises the findings of the experiments. The differential pressure gain given is with 

respect to a pitot-static tube. The angular insensitivity is expressed as the limiting angle in which 

interval the error on the square root of the differential pressure remains limited to 1% respectively 2%. 
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Bi-dir 1 / 2 ++ 11 ++ + 0 ++ 

HSphere_Sphere 23 / 30 ++ 50 ++ ++ ++ ++ 

Hsphere_Con 4 / 6 ++ 43 ++ ++ 0 ++ 

Venturi D6 1 / 3 + 44 ++ + - 0 

Venturi A15_D8 5 / 6 ++ 37 ++ + - + 

Table 3: Summary table of experiments 

 

Based on the findings as presented in this paper and which have been summarised in Table 3, it is 

recommended to replace the bi-directional probe in all heat release rate test equipment by the 

hemispherical probe. This would lead to higher differential pressure signals, thus reducing the 

uncertainty. The main improvement however would be that small misalignments of the probe would 

have no noticeable effect on the results. 

 

As a general remark for all probes discussed in this paper, the measurements should be corrected for 

bluff body blockage[1][9] if used in closed conduits. Table 4 displays the increase in drag, and thus ∆p, 

for frequently used duct diameters. Thus the probe factor kp should be adjusted with the square root of 

one plus the corresponding value in Table 4: D
probe
p

corrected
p Ckk ∆+= 1 . For a hemispherical probe 

with outside diameter of φ=22.6 mm introduced in a duct with inner diameter φ=315 mm and with a 

4mm diameter support tube lying in the same cross section as the probe, the corrected probe factor 

becomes 238.10227.01224.1 =+=corrected
pk . 
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 Without support tube 
in same plane 

With support tube φ=4mm  
in same plane 

φ probe (mm) 
 

22.6 20 15 22.6 20 15 

Estimated CDU 
 

1.42 1.42 1.42 1.42 1.42 1.42 

∆CD (%) 
(φ=0.250m) 

1.47 1.15 0.65 3.13 2.83 2.37 

∆CD (%) 
(φ=0.315m) 

0.92 0.72 0.41 2.27 2.08 1.79 

∆CD (%) 
(φ=0.4m) 

0.57 0.45 0.25 1.65 1.54 1.35 

∆CD (%) 
(φ=0.5m) 

0.37 0.29 0.16 1.24 1.17 1.05 

∆CD (%) 
(φ=1.0m) 

0.09 0.07 0.04 0.54 0.52 0.49 

Table 4: Drag increase of the hemisphere probe in closed test/measurement sections 

 

The use of the hemispherical probe is not limited to closed conduits nor to fire applications. 
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Abstract  

In various medium to large scale fire test equipment like the ISO Room Corner test (RC) and more 

recently the Single Burning Item test (SBI) the mass flow rate measurement of the combustion gases 

plays a key role in the determination of the heat release rate and smoke production rate. 

With the knowledge of the velocity profile and the temperature of the flow, the mass flow rate is 

obtained by measuring the velocity on the axis of the duct. This is done by means of a bi-directional 

probe based on the pitot principle. 

However, due to the variation of the mean temperature and the temperature gradient in any cross 

section of the duct, introduced by ever changing combustion gas temperatures, the velocity nor the 

density profile are constant in time. This paper examines the resulting uncertainty on the mass flow 

rate. 

 

Key words: fire tests, mass flow rate, heat release rate, velocity profile, uncertainty 
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Nomenclature  
δ deviation [%] 

µ dynamic viscosity [Pa.s] 

ν kinematic viscosity [m²/s] 

ρ density [kg/m³] 

ρ  mean ρ over a cross section [kg/m³] 

τ time constant [s] 

τduct time constant of the duct [s] 

kp probe constant [-] 

kt velocity profile correction factor [-] 

A surface area [m²] 

c heat capacity [J/kg.K] 

D characteristic probe diameter [m] 

h convectivity [W/m².K] 

HRR Heat Release Rate [kW] 

m&  mass flow rate [kg/s] 

Nu Nusselt number [-] 

p pressure [Pa] 

∆p differential pressure [Pa] 

Pr Prandtl number [-] 

r radius (cylindrical coordinates) 

R radius of the duct [m] 

Re Reynolds number [-] 

T temperature [K] 

u(x) standard uncertainty on x 

v velocity [m/s] 

v  mean v over a cross section [m/s] 

 

RC Room Corner test 

SBI Single Burning Item test 

SBI RR2 Second SBI round robin[4] 

 

Introduction  

The research for the present paper started as a result of the observation of an apparent hysteresis effect 

in the Single Burning Item test (SBI)[1] between the heating mode, when the fire is still growing, and 

the cooling mode, when the Heat Release Rate (HRR) diminishes. 

In a ‘step calibration’ according to the SBI standard, a first burner is ignited after two minutes and 

remains burning for three minutes at a level of 30kW. After this five minutes period, the propane 

supply is switched from the first burner to the main burner, which after another period of three minutes 

is switched temporarily to approximately 93kW (see Table 1).  
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Step number Time [min] Burner HRR [kW] 

I 0 to 2 - 0 

II 2 to 5 auxiliary 30 

III 5 to 8 main 30 

IV 8 to 11 main 92.7 

V 11 to 14 main 30 

VI 14 to 17 - 0 

Table 1: Sequence SBI step calibration 

 

One can clearly observe that the measured HRR in step V, when the burner comes back to 30kW, is 

systematically higher than the HRR measured in steps II and III. (Figure 1; Table 2). 
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Figure 1: Step calibration SBI; example 

 

Table 2 shows the mean HRR values for steps II till VI of this ‘step calibration’, based on the data of 

30 laboratories who participated in the second SBI round robin program (SBI RR2) [4].  

Besides the mean value, the ‘standard error of mean’ and the ‘standard deviation’ are given. The 

standard error of mean is a measure for the variability of the population mean. As an example, there is 

a 95% probability that the mean value for step II lies in the interval (29.84 ± σ * 0.09) whereby the 
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factor σ is the coverage factor which is approximately 2 for a 95% confidence interval. The standard 

deviation on the other hand expresses the probability that any new sample taken lies within the given 

interval. In the case for step II, the chance that any new value lies within (29.84 ± 2 * 0.52) is 95%. 

N=30 Step II Step III Step IV Step V Step VI 
Mean (kW) 29.85 29.89 92.29 30.55 0.54 
Deviation from Step II (%) 0.00 0.13 - 2.35 - 
Std. Error of Mean (kW) 0.10 0.10 0.52 0.10 0.14 
Std. Deviation (kW) 0.54 0.54 2.81 0.54 0.77 

Table 2: Mean HRR values found in the ‘step calibration’ of the SBI RR2 

Note that for the statistical analysis of tables 2 and 3: 

• two outliers have been excluded from the calculations for step III and one for step IV. 

• all distributions can be considered to be normal (Kolmogorov-Smirnov test). 

 

Factors possibly causing the deviation 

Table 2 confirms in a statistical way the observation of a systematic deviation in step V. The HRR 

measured in step V is, on average, 2.35% higher than in step II.  

 

A first possible explanation is shown in table 2 by means of step VI. Apparently there is a net drift on 

the equipment. This drift amounts 1.8% of the burner heat output at 30kW and finds its cause in a drift 

on the oxygen analyser (see table 3). 

N=30 Drift O2 Drift CO2 
Mean (ppm) -36 10 
Std. Error of Mean (ppm) 13 7 
Std. Deviation (ppm) 69 39 

Table 3: Drift on gas analysers in the ‘step calibration’ of the SBI RR2 

Although the standard allows for a drift of 200ppm on both the oxygen and carbon dioxide analyser, 

the above shows that even a small drift has a substantial effect on the HRR. 

 

Table 2 further suggests that besides the drift on the gas analysers, other effect(s) may play. 
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The propane mass flow rate to the burners is controlled by means of a mass flow rate controller. The 

repeatability of the instruments, used in at least 2/3 of the labs participating in SBI RR2, is better than 

0.2% of the reading. No information was available on the remaining instruments but the repeatability 

is expected to be of the same order. 

 

Another element that can explain this deviation in the HRR in step V is the way the mass flow rate is 

obtained. 

 

Mass flow rate 

The technique for measuring mass flow rate currently used in intermediate to large scale calorimeter 

tests consists of measuring the velocity on the axis of the duct and to multiply this with a correction 

factor kt to obtain the mean velocity. This mean velocity is then multiplied with the mean density and 

the surface area to obtain the mass flow rate. 

Atvktm axist )()( ρ=&  [1] 

kt is the velocity profile correction factor and is defined as 

 
Atv

dAtv
tk

axis

A
t )(

)(
)(

∫
=  [2] 

Since the distribution of the velocity is not known, kt is approximated and taken as a constant over 

time. If we knew the velocity distribution, the mass flow rate could be approximated by 

∫=
A

dAtvtm )()( ρ&  [3] 

which is only correct when the density is uniform over the measuring section. Ideally we would want 

to measure 

∫=
A

dAtvttm )()()( ρ&  [4] 

Assuming a good mixing of the combustion gases prior to reaching the measurement section, the only 

possible cause for having a non uniform density distribution is a temperature effect. The initially cool, 

horizontally placed duct wall absorbs energy and cools down the combustion gases nearby while later 
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on in the test, it may partially give back the energy to the fluid resulting in higher gas temperatures 

close to the wall. This cooling and heating process of the flow also introduces two contra rotating 

swirls that are symmetrical to a vertical plane through the duct axis. These swirls introduce a velocity 

component perpendicular to the axis of the duct. The process is governed by natural convection 

perpendicular to the flow direction. 

 

The velocity on the axis is measured by means of a bi-directional probe. In [5] it is demonstrated that 

the bi-directional pressure probe used in the SBI introduces an error on the HRR. The probe factor 

(kp), which is assumed to be constant over the working range, increases with decreasing Reynolds 

number. In other words, when combustion gases get hotter, the probe ‘constant’ increases resulting in 

an overestimation of HRR and SPR. Based on the expected temperature differences of combustion 

gases between step V and steps II and III (figure 4), the related error is estimated to lie between 0.5 

and 1%. 

 

Additional errors may be introduced by approximating formula 4 by formula 1. This is done since the 

velocity and density distribution over the measuring section are not known at anyone time in the test. 

Actually the following approximations are made: 

 The density over the test section is constant; The density is obtained from a temperature 

measurement at one (or more) positions; 

 The velocity profile correction factor kt is constant over time; It is thus independent of 

temperature and, more general, Reynolds number; It follows out of one (or more) calibrations. 

 The combustion gases have the same properties as air. 

 

The last assumption cannot cause the deviation in step V since the burner heat output is the same for 

steps II,III and V. 

 

In order to quantify the error made assuming a uniform density distribution and a constant velocity 

profile over time, a simplified CFD model of a straight piece of duct is made where the incoming air 
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follows a heating-cooling cycle. The same model also allows to quantify the error in the hypothetical 

case that the exact velocity profile (kt) is known at any time. Details of the model used can be found in 

[6]. Before discussing the model, the time constant of the duct system is estimated. 

 

Time constant duct system 
The order of magnitude of the time constant of the duct system is estimated out of the empirical 

relationship for turbulent flow in the entrance region of smooth tubes as recommended by Nusselt[8] 

 
055.0

8.0 3
1PrRe036.0 






=

L
DNu  for 10 < L/D < 400 

where D represents the inner duct diameter and L is the distance from the entrance. 

It must be said that errors in the order of ±25% are not uncommon so that the derived time constant 

should be read as an order of magnitude rather than as an absolute number. 

The duct inner diameter is 0.315m, the distance from the entrance is 6m and the physical properties of 

the stainless steel, which is 2mm thick, are ρ = 7800 kg/m³ and c=440 J/kg.K. 

Furthermore it is assumed that the fluid has the same properties as air and that the velocity in the duct 

changes with temperature to obtain constant mass flow rate at the height of the measurement section. 

The initial mean velocity at room temperature is 7.7m/s which, in the set-up of the SBI, corresponds 

with a volume flow rate of 0.6 m³/s as required by the standard[1]. 

 

T(K) v(m/s) Re(-) Pr(-) Nu(-) h(W/m².K) τduct(s) 

300 7.7 152 500 0.707 382 31.9 225 

350 9.0 135 500 0.700 347 33.0 217 

400 10.3 123 000 0.690 319 34.3 209 

Table 4: Estimate of the time constant of the SBI duct system 

 

The time constant τduct is derived out of the convection coefficient assuming that the heat transfer 

between the fluid and the duct wall is governed by convective heat transfer only. 
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A
V

h
c

duct
ρτ =  

V/A is the ‘volume to surface area’ ratio of the inner duct. So roughly speaking, the time constant of 

the duct lies around 220s. It is now legitimate to state that ‘if transient thermal effects play a role on kt 

and , they can only be eliminated by maintaining the same burning conditions for at least two times 

τ

m&

duct’. 

If the transient effects are confirmed, they introduce an additional uncertainty on kt and . 

Furthermore, calibration procedures like the step calibration should then be revised to increase the 

settling time – which is now set to one minute – to something like ten minutes. 

m&

Note that the hood and collector, which are located just in front of the ductwork, have an even greater 

time constant. 

 

Effect of transient heating phenomena on the mass flow rate 
To investigate the influence of the thermal inertia of the duct wall on the mass flow rate, a straight 

piece of insulated duct with a diameter of 0.315 m and a length of 7 m is modelled whereby the 

measurement section is defined to lie at a distance of 6 m from the inlet. This corresponds to the actual 

situation in the SBI if one omits the bends and guide vanes. 

The boundary conditions for the flow are either constant volume flow rate or constant mass flow rate 

at the inlet. The temperature of the gas at the inlet rises linearly from 300 K to either 400 K or 600 K 

in either 30 s or 300 s, and then falls back linearly to 300K in the same time period. 

 

Test cycle I II III IV 

∆Tmax 100K 300K 100K 300K 

∆t 300s 300s 30s 30s 

Initial temperature T°=300K 

Table 5. Overview of the different numerical test cases. 
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Figure 2: Variation of the fluid temperature at the inlet. 

 

Expected behaviour 
Density effects 

A first expectation is that in the heating phase, i.e. the first part of the simulation, the temperature 

close to the duct wall will be lower than on the axis. In other words, the measured temperature – which 

is taken at a distance from the wall – is higher than the mean temperature. This implies that the air 

density is underestimated as will be the mass flow rate. Figure 3 clearly shows this for test cycle II 

(table 5). 
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Figure 3. Evolution in time of density in the measurement section for test cycle II. 

 

 - 337 -



 

Effects on the velocity profile 

It is known that the velocity profile is function of the Reynolds number and thus of temperature and 

velocity. For low Reynolds numbers the flow becomes laminar (Re<2300 in piping) and the velocity 

profile has a parabolic shape (low kt). For higher Reynolds numbers the boundary layer thickness 

becomes smaller and the velocity profile flattens (high kt). 

So even in ‘steady state’, the gas temperature and the flow velocity will have an influence on kt 

through the Reynolds number. kt will decrease when temperature rises. Since kt is assumed to be 

constant, this implies that kt is overestimated as will be the mass flow rate. 

If mass flow rate is kept constant the effect will be less pronounced since the velocity ( ) increase 

will partially cancel out the effect of temperature, through the kinematic viscosity 

v

ν  increase, on 

Reynolds number. 

 
ν
vD

=Re  

 

In a transition period from a cool duct system at the start of the test to a certain heat release level, the 

flow close to the duct axis will follow the temperature changes quite fast while the flow close to the 

duct wall will lag behind. This makes that the kt factor will lag behind the value we would expect in 

steady state. 

 

In order to have a first feeling of the impact of temperature on the kt factor an empirical formula, 

which gives the velocity profile as a function of Reynolds number, will be used. From a large number 

of experimental results for flow in pipes, various authors have proposed universal velocity profiles. A 

classic result is that of Schlichting[8]: 

 
n

axis R
rR

v
rv 1)(







 −

=  with  08.0Re3=n

This profile is in excellent agreement with experimental results for values of Re ranging from 103 to 

about 106 and thus covers the range of 5. 104 to 5. 105 which is to be expected in the SBI and RC. This 

exponential law however is not correct close to the wall nor on the axis of the pipe but gives an 
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acceptable global profile. Furthermore, it is only valid in steady state since for transient phenomena 

there is no one-to-one correspondence between the velocity profile shape and the instantaneous 

Reynolds number as shown in [6]. 

Integrating this formula over the circular section results in an estimate of the kt factor as a function of 

Reynolds. 
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For typical working conditions in the SBI and the RC test table 6 gives an estimate – under the 

limitations described above – of the kt factor at different temperatures. 

 

 SBI   RC    

T (K) 290 400 600 290 600 900 900 

v (m/s) 7.7 10.6 15.9 20 41.4 62.1 20 

ν (m²/s) 14.8.10-6 26.4.10-6 52.7.10-6 14.8.10-6 52.7.10-6 102.9.10-6 102.9.10-6 

D (m) 315.10-3 315.10-3 315.10-3 400.10-3 400.10-3 400.10-3 400.10-3 

Re (-) 164 000 126 500 95 000 540 500 314 000 241 500 78 000 

kt (-) 0.834 0.831 0.827 0.847 0.841 0.838 0.825 

δ (%) 

ref. T=290K 

0.0 -0.36 -0.84 0.0 -0.7 -1.1 -2.6 

Table 6: Estimate of the kt-factor at different gas temperatures 

 

Table 6 suggests that the approximation that kt is constant can lead to an error in the order of 1% if 

mass flow rate is kept constant over the test and to about 3% in the RC (at T = 900 K) if volume flow 

rate is constant. 
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So in order to keep the error on the kt factor low, it is recommended to run the equipment with 

constant mass flow rate rather than with constant volume flow rate. However, the kt factor is not the 

only factor influenced by temperature. In view of a correct mass flow rate measurement, it will be 

demonstrated later that the changing kt factor helps to reduce the error on the mass flow rate, because 

the error has opposite sign to the error introduced by the density measurement by means of a 

thermocouple. 

 

The table further reveals another cause – be it small – of the deviation in HRR in step V. As can be 

seen in figure 4, the measured gas temperature for step V is higher than for steps II and III. This results 

in an overestimation of kt and thus the HRR. The thermal inertia of the duct system will add to this. 

Indeed, the previously discussed lagging behind of the kt factor upon thermal changes makes that the 

kt factor in step II will be somewhere in between the kt factors of steps I and II if we would have a 

uniform temperature, equal to the gas temperature, over the cross section. 

In step V, there is hardly any temperature gradient over the test section so that the time lagging does 

not play. 
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Figure 4: Gas and wall temperature in the measurement section (SBI; step calibration) 

 

The above described effects result in an overestimation of HRR. A rough estimate, based on results of 

figure 8 which will be discussed later, suggests that the deviation would be in the order of 0.2% for 

step V compared to step II. The assumption is that the deviation is based on a temperature difference 
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of between 12°C (∆ step V – II) and 40°C (∆ step V – I). From figure 8 we learn that the 

corresponding errors roughly lie between 0.1% and 0.2%. 

So the thermal inertia of the duct system has only a negligible effect on the deviation in HRR in step V 

of the SBI ‘Step Calibration’. 

 

Error on calculated mass flow rate 
In the numerical simulation, several options and approximations made in calculating the mass flow 

rate can be evaluated. The reported error is always referred to the real mass flow rate as calculated by 

means of formula 4. The different cases considered are: 

1. ‘SBI’, where the mass flow rate is approximated by formula 1 with kt taken constant, and 

whereby the density is calculated based on the mean temperature of three thermocouples 

positioned at 120° intervals on a radius of 87mm (as in SBI [1]). 

2. ‘T on axis’, where the mass flow rate is approximated by formula 1 with kt taken constant, and 

whereby the density is calculated based on the temperature measured on the axis of the duct 

(as in RC [2]). 

3. ‘Real kt’, where the mass flow rate is approximated by formula 3 with the velocity profile 

known, and whereby the density is calculated based on the mean temperature of three 

thermocouples positioned at 120° intervals on a radius of 87mm. 

4. ‘Real kt + T on axis’, where the mass flow rate is approximated by formula 3 with the velocity 

profile known, and whereby the density is calculated based on the temperature measured on 

the axis of the duct. 

 

Figure 5 shows the error for the four different cases for test cycle I. This figure clearly shows that it is 

useless knowing the ‘true’ kt value over time when no information is available on the temperature and 

density gradient over the measurement section. 

Furthermore it shows that it is better to measure the temperature of the flow gases away from the 

centre since the so found value better represents the mean temperature. 

 - 341 -



 

It is also interesting to see that for a temperature variation that can be considered as a limit case for the 

majority of samples tested in the SBI, the error on the mass flow rate – as a result of an ever changing 

temperature gradient over the measurement section – remains limited to 0.5%. 

Figure 6 further shows that two major errors with opposite sign help to cancel out the error in case of 

the SBI. On the one hand the velocity profile correction factor (kt) is overestimated in the first part of 

the test, but on the other the temperature of the flow gases (Tms) is also overestimated. 
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Figure 5: Error on mass flow rate; constant mass; test cycle I 

 

Running the equipment with constant volume flow rate, increases the error on the kt factor but further 

reduces the error on the mass flow rate in the first part of the test as can be seen from comparison of 

figures 6 and 8. 

In order to better compare the different results, the x-axis represents the time either in seconds or in 

tens of seconds. 
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Figure 6: Error on mass flow rate; constant volume; SBI 

 

Figure 7 shows the error made when calculating the mass flow rate in the hypothetical case that the 

flow profile correction factor kt is known at any instance. In this case, the error can entirely be 

attributed to the way the gas density is approximated. All four cycles I till IV are considered (table 4). 

 

This graph clearly demonstrates the inertia of the duct system. For fast events (τ << τduct), there is a 

high temperature gradient over the measurement cross section with a resulting large error on the 

estimate of the mean density. For slower events however (τ ≈ τduct), the duct better follows the flow 

temperatures and the error reduces. In the limit case of very slow heating (τ >> τduct), the duct wall 

follows even better the flow temperature and will depend on the outer boundary conditions. The error 

further reduces. 
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Figure 7: Error on mass flow rate; constant mass; kt known 

 

Uncertainty related to temperature effects 
In order to estimate the uncertainty related to these temperature effects, figures 6 and 8 consider the 

same four cases as figure 7, but with the mass flow rate calculated as in the SBI test i.e. the density is 

calculated based on the mean temperature of three thermocouples positioned at 120° intervals on a 

radius of 87mm, and the kt factor is taken constant. 

Test cycle IV can be considered as a limit case in the SBI. In the SBI, a gas temperature at the height 

of the measuring section of approximately 600K is considered to be the maximum allowed 

temperature above which the test is interrupted. Note that this does not have to happen necessarily at 

the start of the test when the equipment is at room temperature. It may happen later in the test when, 

for example, the flames reach the core of a sandwich panel with a highly flammable product. 

The corresponding maximum error is 1.4% for constant mass flow rate and 0.7% for constant volume 

flow rate. Assuming a triangular distribution, with 1.4% respectively 0.7% being the limit case, the 

standard uncertainty related to temperature effects in the SBI is estimated to be 0.6% (1.4/SQRT(6)) 

for constant mass flow rate and 0.3% for constant volume flow rate [3]. This is only true for the actual 

thermocouple position. For temperature measurements on the axis of the duct like in the RC, the 

standard uncertainty increases to 2.0% and 1.8% respectively. 

Another observation is that the mass flow rate, and thus the HRR, is underestimated in the first part of 

the test, while only in the last stage of the test, there is a possible overestimation. 
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This together with the knowledge that the classification parameters like FIGRA, SMOGRA, THR600s 

and TSP600s in the SBI are based on the first part of the test (heating phase), makes that the 

uncertainty may be considered as a one sided distribution when calculating the global uncertainty on 

these classification parameters. 
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Figure 8: Error on mass flow rate; constant mass; SBI 

 

Figure 8 also shows that when the combustion gas temperature drops below the duct wall temperature, 

the error on the mass flow rate reverses and becomes positive. In other words, the HRR and SPR are 

overestimated when this happens. 

 

 

Conclusions 

The observation of a deviation in the heat release rate of a ‘step calibration’ according to the SBI 

standard, has statistically been proved. The main cause is a drift on the gas analysers and, more 

specific, the oxygen analyser. The effect of thermal inertia of the duct on the heat release rate, through 

the mass flow rate, is negligible for this specific calibration. 

 

The thermal time constant of the SBI duct system lies in the order of 220s. So for all burning 

phenomena with a time constant in the same order of magnitude or smaller, transient thermal effects 
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add to the overall uncertainty. The sharper the temperature rise or fall and the higher the magnitude, 

the larger the error. The maximum underestimation of the calculated mass flow rate for sudden, high 

heat releases is estimated to 1.4% for the SBI test equipment running at constant mass flow rate. Based 

on this value, the standard uncertainty related to temperature effects in the SBI is estimated to 0.6%. 

When running at constant volume flow rate, the standard uncertainty reduces to 0.3% for the specific 

case of the SBI. 

Since all classification parameters in the SBI are based on the first part of the test, i.e. the heating 

phase, the uncertainty may be considered as a one sided distribution when calculating the global 

uncertainty on these classification parameters. 

So, in summary, transient thermal effects tend to underestimate the mass flow rate through the duct 

system. 

 

The numerical model suggests that the position of the thermocouples is of primary importance. The 

position of the thermocouples for measuring the combustion gas temperature lies preferably closer to 

the duct wall than to the axis. This in order to better follow the mean gas temperature. The optimal 

position for a qualitative mass flow rate measurement, which will still overestimate the temperature in 

the heating phase of the test, is this that helps to compensate the error made assuming the velocity 

profile correction factor is a constant. 

 

Knowing the velocity profile in the duct at anyone time, is of no use to correctly measure the mass 

flow rate if one does not know the density distribution in the measuring section over time. The derived 

velocity profile correction factor may as well be taken as a constant based on calibrations. 
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Abstract 
 
The possible flow measurement error due to heating or cooling of exhaust gases in the Single-

Burning-Item (SBI) test is estimated from numerical experiments. It is illustrated that there is 

no one-to-one correspondence between the velocity profile shape and the instantaneous 

Reynolds number, due to the time-dependent temperature and density profile evolution in the 

exhaust gas pipe. A non-ambiguous relation is found between the velocity profile shape and 

an ‘effective’ Reynolds number, based on the turbulent viscosity. The maximum variation of 

the velocity profile correction factor, relating the mean velocity to the velocity on the pipe 

axis, is found to be in the order of 2% for limiting circumstances for the SBI test. The primary 

effect is caused by instantaneous Reynolds number variations. The effect of heating or 

cooling of the flow by the hot or cold pipe is noticeable, too. The statements are proved to be 

valid independent of the computational grid, the turbulence model and the time steps taken to 

obtain the numerical solutions.       
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1. Introduction 
 
The ‘Single-Burning-Item’-test (SBI) is a well-defined standardized 20-minute test procedure 

for the classification of building products with respect to their behavior in fire conditions [1]. 

The two basic quantities on which this classification is based, are the FIGRA (fire growth 

rate) and the SMOGRA (smoke growth rate). These indices rely on the determination of the 

heat-release and smoke-production-rate. The knowledge of the flow rate is important for the 

accurate determination of these quantities. 

During the SBI-test, the exhaust gases are removed from the test room at a constant extraction 

rate (between 0.5 and 0.65m3/s at atmospheric pressure and 298K). Here, a constant 

normalized flow rate of 0.6Nm3/s is imposed. This corresponds to a constant exhaust gas mass 

flow rate equal to m 0.71kg / s=& . In the SBI-test, this extraction rate is determined from 

velocity measurements on the axis of the pipe that collects the exhaust gases on the one hand 

and from temperature measurements on three off-axis positions in the same pipe section. An 

assumption must be made then with respect to the shape of the velocity profile in order to 

relate the flow rate to the velocity on the pipe axis. This relation is expressed through the 

factor kt, defined as: 
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with Ucl the velocity on the centerline and Ub the bulk (or average) velocity: 
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with R the inner pipe radius. The flow rate is then computed from the mean density (obtained 

from the three measurement points), the cross-sectional pipe area, the bulk velocity and the 

factor kt. [Note that in the SBI procedure, kt is determined from three independent kt 

measurements [1]; in this paper, we only focus on what is called kt,v in this reference].  

In the SBI-test the factor kt,v is determined by velocity measurements with a pitot tube or hot 

wire anemometer. The velocity in the exhaust duct is measured at 5 radial distances (r/R = 

0.278; 0.566; 0.695; 0.847 and 0.962), with four measurement points for each radial distance. 

The mean of these velocities is divided by the centerline velocity to give the factor kt,v,SBI. 

This determination of the factor kt,v is an approximation for the factor given in eq. (1). 

Clearly, it is very important to obtain accurate values for kt,v for the determination of the flow 

rate. In the SBI test procedure, it is determined once and then kept constant during the 

complete test. 
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It is typical in the SBI-test for the exhaust gases to heat up during the test due to the fire. In a 

later stage, particularly for fastly burning products, the exhaust gases may cool down again. 

During the test, the exhaust gas collection pipe heats up and cools down, too. In this paper, we 

perform a numerical study on the effect of this heating and cooling on the kt,v-factor in order 

to estimate the possible variation of kt,v during the SBI-test, with constant exhaust gas mass 

flow rate. We point out that, under the considered circumstances, there is no longer a one-to-

one relationship between kt,v and the instantaneous Reynolds number value of the flow in the 

pipe. When an ‘effective’ Reynolds number is defined, based on the turbulent viscosity, an 

unambiguous relation is recovered. All numerical results are checked with respect to their 

accuracy, in order to eliminate numerical error sources. In [2], the authors estimate the 

standard uncertainty in relation to mass flow rate measurements in the SBI test procedure. 

 

 

2. Description of Numerical Simulations 
 

a. Description of the numerical experiments 
 

The turbulent flow in a horizontal pipe is considered. The constant mass flow rate matches the 

exhaust gas extraction rate of the SBI-test. Air is chosen as fluid. The ideal gas law is applied. 

The molecular kinematic viscosity varies with temperature. For the basic simulations, the 

standard k-ε turbulence model [2] is applied, with modifications to account for buoyancy: 
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The source term Pk is the production rate of turbulent kinetic energy of the turbulent stresses: 
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turbulent viscosity. The buoyancy source terms Gk and Gε are defined as: 
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with v the velocity component parallel to the gravity vector and u the velocity magnitude. As 

such, Gε equals zero for horizontal flows. 

Standard wall functions are used to deal with the near-wall treatment. The values of the model 

constants are given in table 1. 

Model constant cµ cε1 cε2 σk σε 

Value 0.09 1.44 1.92 1.0 1.3 

 

Table 1. Model constants of the standard k-ε model. 

 

In order to illustrate that the statements made in this paper do not depend on the turbulence 

model, one set of calculations is made with the ‘realizable’ k-ε model of [3]. In this model, 

the transport equation for the turbulent kinetic energy k is the same as in (2), but the equation 

for the turbulent dissipation rate now becomes: 

( ) ( ) t
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 .  (5) 

The strain rate S is defined as S 2  (with the summation convention and S( )1/ 2
ij ijS S= ij as 

above). The model parameters are: 1C max 0.43 Sk /;
5 Sk /

ε



=

+ ε 
, C2 = 1.9 and σε = 1.2. 

The energy equation is solved, too, in order to account for the turbulent convective heat 

transfer in the pipe. Again, standard wall functions are applied and the turbulent Prandtl 

number is set to σh = 0.9, with application of the linear gradient diffusion hypothesis for the 

turbulent heat transfer. 

Four different cases have been studied. A temperature variation in time is imposed at the inlet 

of the pipe, schematically represented in figure 1. The initial temperature is 300K. The four 

cases differ in the maximum temperature difference and in the time interval length. An 

overview is summarized in table 2. The four cases represent different possible reactions of 

products in the SBI: some products burn very fast, while others burn more slowly, some 

materials have a high HRR and thus high gas temperatures in the exhaust system and vice 

versa. 
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Case I II III IV 

∆Tmax 100K 300K 100K 300K 

∆t 300s 300s 30s 30s 

Table 2. Overview of the different numerical test cases (initial temperature: 300K). 
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Figure 1. Variation of the fluid temperature at the pipe inlet. 

 

Spatial accuracy is of second order: second-order upwinding for the convective terms and 

standard central discretization for the pressure term. Coupling between pressure and velocity 

is through the SIMPLE method. The implicit first order backward Euler scheme is applied to 

perform the time-accurate simulation, with a constant time step δt = 1s or 0.1s.  

b. Simulation domain and boundary conditions 

The flow in the pipe is in principle symmetric. Therefore, the solution domain contains only 

half the cross-section surface. The length of the pipe is 7m. The inner diameter is 0.315m. The 

‘measurement’ section, where kt,v is determined from the velocity profiles and where the 

density measurement points are positioned, is at a distance of 6m from the inlet section. The 

flow simulation domain contains 14000 cells: 20 cells in the radial direction (with smaller 

cells at the wall and stretching toward the axis), 20 cells in the tangential direction and 35 

cells in the axial direction. The solid pipe material is modeled as stainless steel (2mm) and 

insulation material (40mm) and contains 10 cells in the radial section. The conduction 

coefficients vary linearly with temperature between ksteel = 14W/(m.K) for T = 0oC and ksteel = 

20W/(m.K) for T = 350oC; and between kinsulation = 0.0375W/(m.K) for T = 0oC and kinsulation = 

0.097W/(m.K) for T = 350oC. 

At the inlet of the domain, a uniform velocity is imposed. Turbulent kinetic energy and 

dissipation rate are estimated from a separately computed fully developed turbulent flow. The 
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temperature is varied as described above (fig. 1 and table 2) but remains uniform over the 

inlet cross-section. The density varies accordingly. Obviously, the inlet velocity is adjusted so 

that the inlet mass flow rate is constant. Pressure at the inlet is extrapolated from the flow 

field. At the outlet of the pipe, constant (atmospheric) pressure is imposed while all other 

quantities are determined from the flow field by setting the axial derivatives equal to zero. 

In the pipe, heat is conducted towards the outer diameter (0.4m). There, adiabatic boundary 

conditions are imposed. This is justified because temperature variations are very small 

anyway, so that there is hardly any effect when natural convection is accounted for. 

c. Numerical accuracy 
 
It is of utmost importance to eliminate numerical errors when numerical experiments are 

performed. Therefore, test case I has been performed on a refined grid (but keeping the size of 

the cells at the pipe wall constant in order not to disturb the performance of the wall 

functions) and with smaller time steps (δt = 0.1s). In section 3.c the accuracy of the results is 

further discussed. 

 

 

3. Discussion of the Results 
 

a. Slow heating and cooling 
 

In this section, results are presented for cases I and II of table 2. Figure 2 shows density 

curves over the measurement section at different times. From this figure, the physical 

processes can be understood. 
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Figure 2. Evolution in time of density in the measurement section for case II. 
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Figure 3. Evolution of the instantaneous Reynolds number (6), the ‘effective’ Reynolds 

number (7) and kt,v (2) in the measurement section.  

 

The primary effect of the fluid heating up and cooling down is a variation of the Reynolds 

number: 

b bU D U DRe ρ
= =

ν µ
 ,  (6) 

with ν the kinematic viscosity and Ub from (2). All (averaged) values, including the material 

properties, are obtained from an integration as in equation (2). The effect on the Reynolds 

number is seen in figure 3. An increase in temperature causes an increase of the molecular 

dynamic viscosity µ and thus, for constant mass flow rate (ρUb is constant) a decreasing 

Reynolds number value. In other words, the increase of Ub is less pronounced than the 

increase of the kinematic viscosity ν when the temperature increases. Obviously, the 

Reynolds number influences the value of kt,v. It is well known that only for sufficiently large 

Reynolds number the shape of the velocity profile becomes independent of the exact 

Reynolds number value. However, the typical Reynolds number here is in the order of Re = 

150000, which is not sufficiently large for Reynolds number independence of kt,v. The lower 

the Reynolds number, the more the velocity profile tends towards the parabolic laminar 

profile, which has a lower kt,v-factor than the flatter high-Reynolds number turbulent velocity 

profiles. Consequently, the value of kt,v becomes smaller as the Reynolds number decreases. 

This is indeed confirmed in fig. 3. Similarly, the Reynolds number increases again during the 

cooling down period, with opposite effects on kt,v. This clearly illustrates that the primary 
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effect of temperature variations on the kt,v-factor is through the variation of the instantaneous 

Reynolds number. 

However, if this were the only significant effect, the kt,v-factor at the end of the numerical 

experiment, where the inlet temperature equals the initial temperature, should be practically 

the same. Figure 3 shows that this is not the case. One obvious reason at first sight is the fact 

that the temperature in the measurement section is not yet the same as the initial temperature 

(see figure 2). Indeed, it is higher due to the heat exchange from the pipe to the fluid. 

However, this cannot be the reason, since the higher temperature results in a lower Reynolds 

number (fig. 3), so that the kt,v-factor should be lower at the end of the numerical experiment, 

while the observation is the opposite. This is explained now. 

First of all, we define an ‘effective’ Reynolds number: 

b
eff

eff

U DRe ρ
=

µ
  ,  (7) 

with µeff = µ + µt the sum of the molecular and the turbulent viscosity. The correlation 

between the evolution of Reeff and the kt,v-factor in figure 3 is striking. This is not surprising, 

since the turbulent viscosity is two orders of magnitude larger than the molecular viscosity, so 

that it is the turbulent viscosity that determines the velocity profile shape. Of course, this is 

always true, but normally there is a one-to-one relationship between the ‘effective’ Reynolds 

number (7) and the classical Reynolds number (6). Here, this is no longer true, due to the 

heating up and cooling down. 

 

-20

-10

0

10

0 150 300 450 600
t (s)

he
at

 tr
an

sf
er

 r
at

e 
(k

W
)

Case II 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Evolution in time of heat transfer rate from the pipe to the fluid for case II. 
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In figure 4, we see that during the heating period (t < 300s), heat is transferred from the fluid 

to the pipe (negative values denote transfer to the pipe wall). Only during the last part of the 

cooling down period (t > 460s), heat is transferred back from the pipe to the fluid. In general, 

less heat per time unit is interchanged between the fluid and the pipe during the cooling down 

period (t > 300s) than during the heating period. As a consequence, the average fluid 

temperature is lower during the heating period than at the ‘symmetrical’ time during the 

cooling down period. By ‘symmetrical’ time we mean symmetrical with respect to the time, 

corresponding to the peak temperature in fig. 1 (e.g. here t = 150s and t = 450s are 

‘symmetrical’ times). Since the turbulence is hardly influenced by the buoyancy for the flows 

under study (see later), the kinematic turbulent viscosity νt is hardly affected by the heating 

and cooling of the fluid at symmetrical times (not shown). Due to the differences in density, 

however, the turbulent viscosity µt is affected: it is lower during the cooling down period, due 

to the higher average temperature (and thus lower average density). As a result, the effective 

Reynolds number (7) is higher and there is no unambiguous relation between the 

instantaneous Reynolds number (6) and the effective Reynolds number (7). This secondary, 

but most certainly non-negligible, effect also explains why the kt,v-value at the end of the 

numerical experiment is not equal to the value at the beginning. 

For obvious reasons, the above findings remain true for smaller temperature variations (case 

I), but the effects are less pronounced. Interesting to note is that the evolution of the 

instantaneous molecular Reynolds number is such that the end values for cases I and II are 

almost equal, the end value of case II being slightly lower due to the higher average fluid 

temperature. The curves of the ‘effective’ Reynolds number cross each other, as do the curves 

for the kt,v-factor. The reason is the same: a higher average temperature and thus a lower 

density and turbulent viscosity µt (the kinematic turbulent viscosities νt are practically the 

same for both cases). This is again a clear illustration of the direct unambiguous relation 

between kt,v and Reeff, while the one-to-one relation with the molecular Reynolds number is 

lost. 

 

b. Rapid heating and cooling 
 

The time period of heating and cooling is relatively short now. As a consequence, the pipe 

wall temperature does not rise as strongly as in the previous cases. As a result, it is seen in fig. 

5 that, due to convective heat exchange with a solid at a lower temperature, the fluid density 

near the pipe wall is higher than for cases I and II (fig. 3). Consequently, for case IV the 
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‘effective’ Reynolds number becomes smaller than for case II (fig. 3). The instantaneous 

molecular Reynolds number on the other hand does not vary as strongly as in case IV, 

because mean fluid temperature variations are smaller now than for case II. The reason for 

this is again that the fluid exchanges heat with a solid on lower temperature than for case II, 

so that the average fluid temperature is lower (and thus the variation in temperature or density 

is smaller). Since the variation in kt,v is somewhat larger than for case II, as is the case for the 

effective Reynolds number, this once again illustrates the direct link between kt,v and Reeff. 

Furthermore, heat is transferred from the pipe to the fluid during a relatively shorter time 

period than in case II. As a result, the pipe temperature remains lower for case IV and the 

density profiles at ‘symmetrical’ times are closer to each other than for case II (fig. 2). As a 

consequence, the evolution of Reeff is more ‘symmetrical’ than for case II. This is again 

reflected in a more ‘symmetrical’ evolution of kt,v: the end values for cases III and IV are 

practically equal to the initial values. 

The differences between cases III and IV are completely in line with the observations made 

for cases I and II, for exactly the same reasons. The intersection of the curves for Reeff and kt,v 

is hardly visible, because there is almost perfectly symmetrical behavior, as has just been 

explained.    
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Figure 5. Evolution in time of density in the measurement section for case IV. 

 
To conclude this discussion, table 3 provides an overview of the variations in kt,v for the 

different cases. As explained above and observed in fig. 3, the largest variation (compared to 
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the initial value) occurs for case IV (rapid heating and cooling with the larger ∆T). It is in the 

order of 2%. 

 
Case kt,v,init kt,v,min kt,v,max (kt,v,init-kt,v,min)/kt,v,init (kt,v,max-kt,v,init)/kt,v,init 

I 0.877 0.869 0.879 0.009 0.002 
II 0.877 0.860 0.886 0.019 0.010 
III 0.877 0.868 0.877 0.009 0.000 
IV 0.877 0.857 0.877 0.023 0.000 

 
Table 3. Maximum variation of kt,v for the different cases. 
  
 
c. Buoyancy 

 
The effect of buoyancy is expected to be small. This is easily seen when the Froude number is 

determined: 

2
bUFr

gD
= .  (8) 

For a typical bulk velocity in the order of 8m/s or more, this number is much larger than 1, so 

that buoyancy effects must be negligible. This has been confirmed numerically, as is 

illustrated in figure 6. Two curves for the evolution of kt,v are given for case I: one curve with 

the real gravitational field and one where gravity has artificially been turned off. Clearly, the 

differences between the curves are negligible, so that it is confirmed that buoyancy does not 

affect the evolution of kt,v. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Influence of buoyancy on kt;v for case I. 
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d. Inner pipe wall at constant temperature 
 
Some observations in sections 3.a and 3.b have been explained through differences in heat transfer to 

and from the pipe. In order to confirm these statements, a numerical experiment has been performed in 

which the pipe inner wall temperature is kept constant at its initial value (∆T = 0) for case II. 

Two statements must be verified. Firstly, the evolution of kt,v must be perfectly symmetrical, because 

the rate and direction of heat transfer from fluid to pipe is perfectly symmetrical. Secondly, the 

minimum kt,v (at 300s) value must be lower than for the original case II, due to a globally higher 

density (and thus higher turbulent viscosity µt and lower Reeff). 

Both statements are confirmed in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.85

0.86

0.87

0.88

0.89

0 150 300 450 600

t (s)

k_
t,v

Case II
Case Twall=300K

 

Figure 7. Evolution of kt,v for case II with constant pipe inner wall temperature. 

 

e. Approximate determination of kt,v as described in the SBI standard [1] 
 
In the above results, kt,v has been determined as the ratio of the bulk velocity (2) to the centerline 

velocity. As mentioned in the introduction, in [1] the bulk velocity is not determined from a rigorous 

integration as in (2), but from an averaged velocity, obtained from measurements at five different 

radial positions (with four measurement points for each radial position). Consequently, some deviation 

may occur from (2), especially when the velocity profile is not perfectly symmetrical. This is the case, 

due to buoyancy, but the amount of asymmetry is small (not shown). In order to give an impression on 

the deviations between kt,v as determined from (1) and (2) and kt,v,SBI as determined from [1], figure 8 

shows the evolution of both quantities for cases I and II. Clearly, the differences are very small and, 

more importantly, the trends observed in the evolutions of kt,v and kt,v,SBI are the same. 
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In order to avoid misunderstandings, it is stressed once more that in the SBI standard, the kt-value is 

kept constant throughout the test. What is labeled as the ‘SBI-method’ here, only refers to the 

approximation of expression (2) as described in [1]. This approximation is then used in the numerical 

experiments, rather than the exact integration (2). 
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Figure 8. Evolution of kt,v determined as in [1] for cases I and II. 

  

f. Numerical accuracy 
 
In order to draw reliable conclusions from numerical experiments, it must be made sure that the results 

are independent of the computational mesh, the time step size used and the turbulence model applied. 

These three influence factors are discussed now. It is important to recognize here that we do not claim 

to provide an accurate value for kt,v. Rather, we want to reveal the variation of kt,v, compared to its 

initial value, due to heating and cooling of the exhaust gases (and the pipe). 

Figure 9 shows the evolution of kt,v for case I when the time step is made 10 times smaller (δt = 0.1s 

instead of δt = 1s). The results are identical, which illustrates that the results are indeed time accurate. 

Figure 10 shows the impact of the choice of the computational mesh. The mesh cell sizes are twice as 

small for the fine grid (i.e. 8 times more cells), but the distance of the first grid point from the inner 

pipe wall is kept constant, in order not to disturb the effect of the wall functions, applied in the 

turbulence model. A shift of the kt,v value is observed, but the variations of kt,v are identical on both 

grids. Therefore, it is concluded that the computational grid was sufficiently fine to make reliable 

observations on the evolution of kt,v.  
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Figure 11, finally, shows the impact of the choice of the turbulence model. Again, a shift in the values 

of kt,v is observed, but the variations from the initial value are practically identical, independent of the 

turbulence model choice. This illustrates that the observed behavior is not restricted to a specific 

turbulence model choice. 

In general terms, the numerical experiments have been proven to be reliable. 
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Figure 9. Influence of the time step size on the kt,v evolution in time for case I. 
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Figure 10. Influence of the computational grid on the kt,v evolution in time for case I. 
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Figure 11. Influence of the turbulence model on the kt,v evolution in time for case I. 

 
 

4. Discussion 
 

Obviously, there are many other factors than the one discussed in the present paper that may 

influence the accuracy of the measurements (and thus classification) in the SBI-testing 

procedure. Even restricting the discussion to the flow field in the pipe, several important 

influential features can be identified. Firstly, the unsteadiness in the fire in the SBI test room 

makes it impossible to keep the exhaust gas extraction rate rigorously constant throughout the 

test, so that transient phenomena may affect the value of the kt,v-factor. Secondly, there are 

bends in the exhaust system ahead of the pipe in which the measurements are performed. 

Despite the fact that caution is taken to allow the flow to develop, history effects from those 

curves may affect the turbulence and the mean flow field in a non-negligible manner. Another 

possible source of influence is the internal roughness of the pipe. Neither of these effects are 

discussed here. 

 

 

5. Conclusions 

In this paper, numerical experiments have been presented in order to estimate the possible 

measurement error for the flow rate of the exhaust gases due to heating or cooling, typical for 

the SBI test. In that test procedure, the flow rate is determined from centerline velocity 
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measurements, under the assumption of an invariant velocity profile shape, expressed through 

a factor, kt. In order to test the validity of this assumption, the influence of heating and 

cooling on the velocity profile shape has been investigated numerically. 

It has been illustrated that the primary effect of heating or cooling on the velocity profile 

shape is due to a variation in the Reynolds number. This Reynolds number decreases when 

the gases are heated, while it increases again when the gases are cooled. The kt,v value shows 

a similar behavior: the Reynolds number is not sufficiently high to make kt,v independent of 

the Reynolds number. 

However, some phenomena cannot be explained from the Reynolds number evolution. A non-

negligible secondary effect has been identified: due to heating and cooling of the pipe and the 

corresponding heat exchange between the pipe solid material and the exhaust gases, there is 

no longer an unambiguous relationship between the velocity profile shape and the 

instantaneous molecular Reynolds number. If, on the other hand, an ‘effective’ Reynolds 

number is defined, based on the effective viscosity, i.e. the sum of the molecular and the 

turbulent viscosity, a one-to-one relation is recovered between kt,v and Reeff. 

All observed phenomena have been explained through variations in fluid density. The 

turbulence, and consequently the turbulent kinematic viscosity, is hardly affected by the 

heating and cooling processes, typical for SBI-test situations. It has indeed been illustrated 

that buoyancy forces do not play a significant role, as could be expected based on the typical 

Froude number values. 

The numerical experiments have been proven to be reliable: neither the time step size, nor the 

computational cell size or the turbulence model choice, lead to differences in the observations 

made on the evolution of kt,v. 
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B Annex 

B.1. Desiccant 

One of the assumptions in the heat release rate calculations is that the gas coming into the analyser 

consists of O2, CO2, (CO) and N2 only. All water vapour (and water soluble components such as HCl, 

HCN, etc.) needs to be removed from the sample gas. This is achieved in two steps by means of a 

cooler unit, which brings down the temperature of the sample gas to approximately 3°C, and a 

chemical desiccant. 

In practice, operators do not always realise the importance of the correct use of the desiccant. If used 

correctly, it adds to the accuracy of the test method and reduces considerably the uncertainty on the 

measurement. Throughout the document we will assume a correct use of the desiccant. 

This paragraph however, tries to highlight some of the pitfalls that one may encounter. 

 

A first point of attention is that the user must beware of any side effects induced by the desiccant. A 

good example in this respect is the use of ‘Silica Gel’. Silicagel tends to absorb CO2 and to release it 

further on in the test when the CO2 concentration diminishes. As a consequence, response times tend 

to be sloppy and peaks and dips are flattened. 

 

Therefore laboratories are recommended to use Anhydrous Calcium Sulphate (Drierite) which, 

apparently, does not have this side effect. Recently however, a few cases have been reported of 

increased response times using the product without indicator. The indicator is added by the 

manufacturer and gives a colour indication of the saturation level of the desiccant. Because the 

indicator is Brome based, several national authorities have prohibited the use of it. 

 

Another point of attention is that the indicator should not be used as a trigger to change the product at 

the risk of making erroneous measurements. This is demonstrated in the graph below where the 

oxygen concentration is measured under invariable conditions.  

In test 1, the Anhydrous Calcium Sulphate in both the gas sample line and the reference gas line are 

renewed prior to the test. In test 2, only the reference gas line contains Anhydrous Calcium Sulphate 

and the product is removed from the gas sampling line. After approximately two hours in test number 

2, the product starts to get saturated and some vapour is left in the sample gas. As a result the vapour 

pressure increases and the oxygen concentration drops. After approximately four hours from the start 

of the experiment, the desiccant of the reference gas gets saturated with a resulting increase of 

measured oxygen concentration as can be seen from both tests. 
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Figure 68. Influence on concentration measurement of desiccant getting saturated 
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B.2. Time constant thermocouples 

Determination of the response time for an insulated thermocouple of diameter 0,5mm, positioned 

perpendicular to an air flow of 8m/s. 

 

Physical properties of air (300 K): 

 density ρ 1.16 [kg/m³] 

 kinematic viscosity ν 15.89*10-6  [m²/s] 

 thermal conductivity k 26.3*10-3 [W/m.K] 

 

Assumed physical properties thermocouple 

 density ρ 8000 [kg/m³] 

 heat capacity c 500 [J/kg.K] 

 diameter D 0.5*10-3 [m] 

 

Assumptions on exhaust gases 

 same physical properties as ambient air 

 mean velocity v 8 [m/s] 

 

Other symbols: 

 τ time constant [s] 

 A contact surface of the thermocouple [m²] 

 V volume of the thermocouple [m³] 

 h convective heat transfer coefficient [W/m².K] 

 

 

A further assumptions is that the temperature rise of the actual thermocouple is governed by the 

equation: 

 

 
t
TVcTTAh f ∂

∂
=− ...).(. ρ  [ B.1 ] 

 

This is not entirely true since there will also be heat transfer between the thermocouple and the inner 

duct surface. 

 

Which leads to the equation 
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with the time constant τ defined as 

 

B.2 

Ah
VC

.
..ρτ =  [ B.3 ] 

 

Apart from the physical properties of the thermocouple and its dimensions, the time constant is 

determined by the convective heat transfer coefficient h. 

 

The heat transfer coefficient may be determined using a correlation for the Nusselt number 

 

 
k
DhNu .

=  [ B.4 ] 

 

An empirical relationship rmal to the flow is given by: 

 

 Nu = (0.44 ± 0.06).(Re)0.50  ≈ 7 ± 1 [ B.5 ] 

 

So the Nusselt number is function of the Reynolds number which is based on the wire diameter D, the 

free stream velocity v and the dynamic viscosity ν. 
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 [ B.6 ] 

 

The estimated convective coefficient then becomes h ≈ 370 ± 50 W/m².K 

 

What remains to be determined is an estimate for the ratio ‘volume’ to ‘exposed area’ of the 

thermocouple tip. 
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The time constant τ then becomes τ ≈ 1.15s ±.0.15s at temperatures around 300K. In the limit case of 

T=600K and a velocity of 16m/s the time constant decreases to approximately 0.8 s. 

 

7 
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B.3. Time constant duct system 

The order of magnitude of the time constant of the duct system is estimated out of the empirical 

relationship for turbulent flow in the entrance region of smooth tubes as recommended by Nusselt[32]  

 
055.0

8.0 3
1PrRe036.0 






=

L
DNu  for 10 < L/D < 400 [ ] 

where D represents the inner duct diameter and L is the distance from the entrance. 

It must be said that errors in the order of ±25% are not uncommon so that the derived time constant 

should be read as an order of magnitude rather than as an absolute number. 

The duct inner diameter is 0.315m, the distance from the entrance is 6m and the physical properties of 

the stainless steel, which is 2mm thick, are ρ = 7800 kg/m³ and c=440 J/kg.K. 

Furthermore it is assumed that the fluid has the same properties as air and that the velocity in the duct 

changes with temperature to obtain constant mass flow rate at the height of the measurement section. 

The initial mean velocity at room temperature is 7.7m/s which, in the set-up of the SBI, corresponds 

with a volume flow rate of 0.6 m³/s as required by the standard[2]. 

 

T(K) v(m/s) Re(-) Pr(-) Nu(-) h(W/m².K) τduct(s) 

 B.8 

300 7.7 152 500 0.707 382 31.9 225 

350 9.0 135 500 0.700 347 33.0 217 

400 10.3 123 000 0.690 319 34.3 209 

Table 4: Estimate of the time constant of the SBI duct system 

 

The time constant τduct is derived out of the convection coefficient assuming that the heat transfer 

between the fluid and the duct wall is governed by convective heat transfer only. 

 
A
V

h
c

duct
ρτ =  [ B.9 ] 
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V/A is the ‘volume to surface area’ ratio of the inner duct. So roughly speaking, the time constant of 

the duct lies around 220s. It is now legitimate to state that ‘if transient thermal effects play a role on kt 

and , they can only be eliminated by maintaining the same burning conditions for at least two times 

τduct’. 

If the transient effects are confirmed, they introduce an additional uncertainty on kt and . 

Furthermore, calibration procedures like the step calibration should then be revised to increase the 

settling time – which is now set to one minute – to something like ten minutes. 

Note that the hood and collector, which are located just in front of the ductwork, have an even greater 

time constant. 

 

 

m&

m&
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B.4. Time constant hood 

A second time constant for the heating of the vermiculite insulation boards of the exhaust hood is also 

derived. 

 

Assumed physical properties vermiculite (Thermax SNO 450) 

 density ρ 475 [kg/m³] 

 heat capacity c 1000 (840 to 1080) [J/kg.K] 

 

Assumed mean convective coefficient h=20W/m².K (very rough estimate; difficult to estimate since 

the Reynolds number changes substantially through the hood; also the mixing of the combustion gases 

with ambient air is still not finalised) 

 

The volume to surface ratio for the exposed stainless steel up to the thermocouple is 

 

 3
3

10.5010.50. −
−

≅=
A

A
A
V

 [m] [ B.10 ] 

 

The second time constant – which is difficult to determine – related to the thermal inertia of the hood 

is in the order of τ=1200s. 
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B.5. Radiation effect thermocouples 

The energy equation for steady state reduces to: 

 ( ) 0).(.44 =−+− TTAhTTAF fcductrεσ  [ B.11 ] 

 

Which leads to the equation 

 

 
( )

c

ductr
f hA

TTAFTT
44 −

=−
εσ

 [ B.12 ] 

 

Assuming that: 

• the view factor F=1; 

• the emissivity ε = 0.9; 

• the radiation heat transfer area Ar is equal to the area for heat transfer by convection Ac; 

• Tduct = 310 K (approximate temperature when changing from auxiliary to main burner); 

• case 1: T1 = 370 K (heptane calibration: max temperature difference of 60°C between wall 

and temperature any time in the test); 

• case 2: T2 = 490 K (material M03 in SBI-RR 1: max temperature difference of 180°C 

between wall and temperature any time in the test; see Figure 69) 

• h = 370 W/m².K (annex B.2) 

 

and knowing that: 

• σ = 56,7 * 10-9; 
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Figure 69. Wall and gas temperature evolution for material M03 in SBI RR1 

 

 

The choice for material M03 (SBI RR1) is based on the knowledge that this material – in the given 

set-up – results in a SBI class E, which is considered the worst class to be tested in the SBI. 

 

The error in the first case is estimated at -1.3°C while for the second case the error is estimated at  

-6.7°C. As can be seen the resulting error is non-linear due to the fourth power effect of radiation. 

So instead of a triangular deviation with width –6.7°C, a normal distribution with coverage factor 3 

(99.7%) will be assumed. This brings down the standard uncertainty to –2.2°C. 

 

In most tests, the wall temperature remains below the gas temperature in the first 900s (= 600s sample 

exposure) of the test. This is the time interval used for calculating the values used for classification 

FIGRA, THR600s, SMOGRA and TSP600s. Therefore the standard uncertainty will be taken as a one 

sided distribution. For completeness it must be said that both FIGRA and especially SMOGRA are 

sometimes calculated based on data from the second part of the test (>900s). This will however be 

disregarded since most often in those cases the wall temperature remains below the gas temperature. 
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B.6. Chemical composition of commercial grade propane 

Chemical composition of commercial grade propane[79][83] (example of analysis): 

• ethane + ethene: 2 % 

• propane: 94,9 % 

• propene: 0,8 % 

• n-butane + iso-butane: 2,3 % 

 

Relevant standard: NBN.T 52-706 

 

 composition E[26]* 

MJ/kg O2 

H°[26]* 

MJ/kg 

(E) (H°) 

Propane 94.9% 12.774 46.35 12.123 43.986 

Propene 0.8% 13.38 45.79 0.107 0.366 

Ethane/ethene 2.0% 12.75/13.78 47.49/47.17 0.255/0.276 0.950/0.943 

n-butane/iso-

butane 

2.3% 12.77/12.62 45.72/45.17 0.294/0.290 1.052/1.039 

Σ 100.0%  Σ 12.775/12.799 46.335/46.354 

Deviation from 100% pure propane (%) 0.006/0.195 -0.033/0.008 

Standard error on reported values (%) 0.032 0.032 

Combined standard uncertainty (%) 0.033/0.20 0.046/0.033 
* the values for propane are taken from annex B.7 

 

The standard uncertainty on the chemical composition is assumed to be equal to the deviation between 

the theoretical and calculated values. 

 

The standard uncertainties on the reported values[26][49] for E are estimated to be 0.004MJ/kg for 

propane (annex B.7) and are chosen somewhat arbitrary – in view of the relatively small influence – to 

0.01 MJ/kg O2 for all other components. 

 

The standard uncertainty related to H° values is set to 0.015MJ/kg for propane. 

 estimated out of Table 17 which summarises a series of values that can be found in the 

literature[26][49][30][39]. 
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Based on Table 17 and the above considerations, the standard error of mean on the heat of combustion 

for all substances used in this document will be taken, fairly arbitrarily, as 0.02 MJ/kg 
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B.7. Estimation of uncertainty on Heats of combustion 

 

 

 

 

Carbon dioxide
Hf (kJ/mol) tolerance Reference Hf Heat of formation kJ/mol

-393.522 0.05 Chase 1998 u(x) Standard uncertainty on component x
-393.522 0.4 Cox, Wagman, et al 1984 Hc Heat of combustion kJ/mol

H Gross calorific value MJ/kg
Water (liquid) Hnett Nett calorific value MJ/kg

-285.83 0.042 Chase 1998 r0 Oxygen - Fuel mass ratio -
-285.83 0.04 Cox, Wagman, et al 1984

Water (gas)
-241.826 0.042 Chase 1998
-241.826 0.04 Cox, Wagman, et al 1984

Methane
16.04246 0.00085 (molecular weight)

C 1 12.0107 0.0008 O2 2 CO2 1
H 4 1.00794 0.00007 H2O 2
O 0 15.9994 0.0003 HCl
N 0 14.0067 0.0002 N2
Cl 0 35.453 0.002
Hf (kJ/mol) u(x) Hc (water cu(x) Reference year H (MJ/kg) u(x) %H by mas Hnett u(x) r0 u(x) Hnett/r0 u(x)

-74.873 0.34 -890.309 0.35 Chase 1998 55.497 0.022 25.13% 50.011 0.022 3.989263 0.00022 12.536 0.00556
-74.5 0.4 -890.7 0.4 Pittam and Pilcher 1972 55.521 0.025 25.13% 50.035 0.025 3.989263 0.00022 12.542 0.0063

-74.85 0.31 -890.35 0.3 Prosen and Rossini 1945 55.5 0.019 25.13% 50.013 0.019 3.989263 0.00022 12.537 0.00481
73.4 1.1 -891.8 1.1 Roth and Banse 1932 55.59 0.069 25.13% 50.104 0.069 3.989263 0.00022 12.56 0.01731

-890.16 0.3 Rossini 1931 55.488 0.019 25.13% 50.001 0.019 3.989263 0.00022 12.534 0.00481
Hf (kJ/mol) u(x) Hc (water gu(x) Reference

-74.873 0.34 -802.301 0.35 Chase 1998 50.011 0.02 3.989263 0.00022 12.536 0.00481
50.033 0.045 0.025 12.542 0.011

95% conf. 80% conf 95% conf.
0.0400% 0.0384%
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Propane
44.09562 0.00246 (molecular weight)

C 3 12.0107 0.0008 O2 5 CO2 3
H 8 1.00794 0.00007 H2O 4
O 0 15.9994 0.0003 HCl
N 0 14.0067 0.0002 N2
Cl 0 35.453 0.002
Hf (kJ/mol) u(x) Hc (water cu(x) Reference year H (MJ/kg) u(x) %H by mas Hnett u(x) r0 u(x) Hnett/r0 u(x)

-104.7 0.5 -2219.186 0.51 Pittam and Pilcher 1972 50.327 0.012 18.29% 46.335 0.012 3.628342 0.00021 12.77 0.00339
-103.8 0.59 -2220.086 0.6 Prosen and Rossini 1945 50.347 0.014 18.29% 46.355 0.014 3.628342 0.00021 12.776 0.00393

-2219.9 0.5 Rossini 1934 50.343 0.012 18.29% 46.351 0.012 3.628342 0.00021 12.775 0.00339
-2207 - Guinchant 1918 50.05 18.29% 46.058 3.628342 0.00021 12.694 0.00073

Hf (kJ/mol) u(x) Hc (water gu(x) Reference
-104.7 0.5 -2043.17 0.51 Pittam and Pilcher 1972 46.335 0.011 3.628342 0.00021 12.77 0.00312
-103.8 0.59 -2044.07 0.6 Prosen and Rossini 1945 46.355 0.013 3.628342 0.00021 12.776 0.00366

46.347 0.0299 0.013 12.774 0.008
95% conf. 80% conf 95% conf.

Heptane 0.0645% 0.0626%
100.2019 0.00571 (molecular weight)

C 7 12.0107 0.0008 O2 11 CO2 7
H 16 1.00794 0.00007 H2O 8
O 0 15.9994 0.0003 HCl
N 0 14.0067 0.0002 N2
Cl 0 35.453 0.002
Hf (kJ/mol) u(x) Hc (water cu(x) Reference year H (MJ/kg) u(x) %H by mas Hnett u(x) r0 u(x) Hnett/r0 u(x)

-224.4 0.79 -4816.894 0.81 Prosen and Rossini 1945 48.072 0.009 16.09% 44.558 0.009 3.512774 0.00021 12.685 0.00267
-225.9 1.3 -4815.394 1.31 Davies and Gilbert 1941 48.057 0.013 16.09% 44.543 0.013 3.512774 0.00021 12.68 0.00378

-4817 8 N/A N/A 48.073 0.08 16.09% 44.559 0.08 3.512774 0.00021 12.685 0.02279

Hf (kJ/mol) u(x) Hc (water gu(x) Reference
-224.4 0.79 -4464.862 0.81 Prosen and Rossini 1945 44.559 0.008 3.512774 0.00021 12.685 0.0024
-225.9 1.3 -4463.362 1.31 Davies and Gilbert 1941 44.544 0.012 3.512774 0.00021 12.681 0.0035

44.554 0.034 0.022 12.684 0.005
95% conf. 80% conf 95% conf.
0.0763% 0.0394%
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B.8. Uncertainty analysis on the gas analyser 

The gas concentration y is derived out of calibrations C1(x1,y1) and C2(x2,y2), and a measurement 

signal x. y1 and y2 are gas concentrations. In case of the oxygen analyser y1 ≅ 17 Vol% and y2 ≅ 20.95 

Vol%. The values x1 and x2 are the corresponding signal outputs. 
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The partial derivatives to the different variables are given by 
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and the combined standard uncertainty by 
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Since the signal x is already converted to Vol% concentrations prior to the calculations, x and y values 

are almost equal. For oxygen for example, y2 = 20.95 Vol% (concentration of oxygen in dry air, by 

definition; implies that u(y2 = 0)) and x2 is the mean concentration of oxygen between t = 30 s and 90 

s. A value for x2 could be for example x2 = 20.95094 

.
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B.9. Uncertainty analysis on the oxygen analyser 

 

Oxygen analyser; Measuring range 4 Vol% 4 Vol%
Measuring range (MR) Specification Expected Units Uncertainty Coverage Probability Standard

17-21 Vol% variations (ppm) factor distribution uncertainty (ppm)
Uncertainty contribution measurement

Ambient air temperature < 0.5% on MR/10K 2 K 40 3 normal 13
Pressure measuring gas < 0.2% on MR/1% pressure variance 100 Pa 8 3 normal 3
Power supply < 0.1% on MR for +-10% 40 3 normal 13
Linearity Linear
Noise SBI Noise & Drift calibration 27 1 normal 27
Drift (half an hour) SBI RR2 - P2 MDF - UGENT Test 1 58 1 rectangular 33
u(M) 47

Uncertainty contribution calibration point 2 (calibration prior to every test)
Noise SBI Noise & Drift calibration ( 20 samples) 27 1 normal 6
u(C2) 6

Uncertainty contribution calibration point 1 (daily calibration)
Drift (als max-min over periode van 10 uren; 95% confidence interval)
Ambient air temperature < 0.5% on MR/10K 5 K 100 3 normal 33
Pressure measuring gas < 0.2% on MR/1% pressure variance 1000 Pa 80 3 normal 27
Power supply 40 3 normal 13
Linearity Linear
Noise SBI Noise & Drift calibration 27 1 normal 27
Drift (one working day) SBI Noise & Drift calibration 37 1 rectangular 21
u(C1) 56

Uncertainty contribution calibration gas
Calibration gas 0.02Vol% ABS (17Vol%) 200 2 normal 100
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B.10. Uncertainty analysis on the carbon dioxide analyser 

 

Carbon dioxide analyser; Measuring range 4 Vol% 4 Vol%
Measuring range (MR) Specification Expected Units Uncertainty Coverage Probability Standard

O-4 Vol% variations (ppm) factor distribution uncertainty (ppm)
Uncertainty contribution measurement

Ambient air temperature <1% on MR/10K 2 K 80 3 normal 27
Pressure measuring gas < 0.15% on MR/1% pressure variance 100 Pa 6 3 normal 2
Power supply < 0.1% on MR for +-10% 40 3 normal 13
Linearity < 0.5% on MR 200 3 normal 67
Noise SBI Noise & Drift calibration 39 1 normal 39
Drift (half an hour) SBI RR2 - P2 MDF - UGENT Test 1 25 1 rectangular 14
u(M) 84

Uncertainty contribution calibration point 2 (calibration prior to every test)
Noise SBI Noise & Drift calibration ( 20 samples) 39 1 normal 9
u(C2) 9

Uncertainty contribution calibration point 1 (daily calibration)
Drift (als max-min over periode van 10 uren; 95% confidence interval)
Ambient air temperature <1% on MR/10K 5 K 100 3 normal 33
Pressure measuring gas < 0.15% on MR/1% pressure variance 1000 Pa 60 3 normal 20
Power supply 40 3 normal 13
Linearity non applicable (calibration point)
Noise SBI Noise & Drift calibration 39 1 normal 39
Drift (one working day) SBI Noise & Drift calibration 36 1 rectangular 21
u(C1) 60

Uncertainty contribution calibration gas
Calibration gas 0.5% REL (3.5Vol%) 175 2 normal 88
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B.11. Transient error first order system 

In the Laplace domain, a first order system is written as 
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The relation between an input f(t) and the output y(t) in the Laplace domain is given by 

 

 [ B.21 ] 

 

or, combining the two above equations,  

 

 

)()()( sYsHsF =  

)()()( ssYsYsF τ+=  [ B.22 ] 

 

 

Figure 70. Relationship between input and output in a first order system 

 

or rewriting it in a different notation this becomes 
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whereby £ represents the Laplace transform symbol. Note that in this step, we have taken the inverse 

H-1(s) of the systems transfer function. Since H(s) acts like a low pass filter with cutoff frequency 1/τ, 

the inverse will behave as an amplifier for frequencies above 1/τ. This means that when restoring the 

‘true’ input signal out of the output, high frequency noise on the output signal will be amplified. This 



 

can easily be seen by taking the sine response of the inverse system (replacing s by jω whereby ω is 

the sine frequency and j represents imaginary numbers). 

 

 [ B.24 ] 

 

The gain and phase change are then given by 
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If y is continuous and y’ is piecewise continuous on any interval 0 ≤ t ≤ A, and if further there exists 

constants K, a and M such that atKety ≤)( for t ≥ M, this can be rewritten as[28] 

 

 { } { } { } )0()('£)(£)(£ ytytytf ττ ++=  [ B.27 ] 

 

Taking the inverse Laplace transform and assuming that y(0)=0, the transient error can be calculated 

as 

 

 )(')()()( tytytfte τ=−=  [ B.28 ] 

 

The inverse transform of the constant τy(0), if different from zero, results in a Dirac impulse. 
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B.12. Conversion factor upper to lower heat of combustion 

In fires, most often, water will not be present in the combustion products in the liquid phase though in 

the gas phase. This requires an amount of energy which explains the difference in heat of formation of 

liquid H2O and H2O in the gas phase (∆H°f(l) = -285.830 ± 0.042 kJ/mol and ∆H°f(g) = -241.826 ± 

0.042 kJ/mol[20]). This enhalpy difference together with the atomic mass of the Hydrogen atom MH = 

1.00794 ± 0.00007 kg/kmol results in the conversion factor 
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B.13. Composition Heptane 

 

Dear Madam/Sir, 

 

from our responsible product manager I´ve got the following statement: 

 

For n-heptane extra pure 1.04365 we specify a purity of >99 %. The 

effective batch values are between 99.3 % and 99.8 %. The water content, 

which isn´t part of our product specification, is below 0,01 % (effective 

mostly below 0,001 %). So water isn´t relevant in this context. We assume 

that the rest which is not specified consists of divers hydrocarbons, so 

called related substances. But they are not determined more precisely. 

 

With kind regards 

 

Hans-Ulrich Röhr 

Group VWR / CMGs, Life Science & Analytics - Business Services 

Location: C11/614 

Phone: +49(0)6151 72 6210 

Fax:     +49(0)6151 72 916210 

Email:   Hans-Ulrich.Roehr@merck.de 

 

Merck KGaA 

Frankfurter Str. 250 

D 64293 Darmstadt 

Home:   www.merck.de 

 

----- Weitergeleitet von Petra Werner/EMD/Merck am 13.08.2004 14:11 ----- 

                      "Bart Sette"                                                                                                      

                      <Bart.Sette@UGent        An:       <chemdat@merck.de>                                                             

                                               Thema:    n-Heptane extra pure 104365                                                    

                      13.08.2004 13:36                                                                                                  

 

Dear Madame/Sir, 
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In relation to a PhD research project I need to estimate the uncertainty on 

the heat of combustion of your product 104365. 

 

According to the specifications the product has a purity better than 99%. 

 

Can it be so that the remaining 1% consists entirely of water (or other 

species not releasing any energy) or is this very unlikely? 

If not, what is this rest fraction most likely composed of? 

 

Thank you very much for your kind cooperation. 

Bart 

 

Bart Sette 

University Gent 

Department of Flow, Heat and Combustion Mechanics 

Ottergemsesteenweg 711 

B-9000 GENT (BELGIUM) 

tel.: +32-9-243.77.50 

fax: +32-9-243.77.51 

bart.sette@ugent.be 
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B.14. Electronic damping O2 and CO2 analysers 

Comments on the time constants for the electronic damping of the O2 and CO2-signals (Siemens) 

 

From:            Galonska Gerd <gerd.galonska@siemens.com> 

To:              "'bart.sette@rug.ac.be'" <bart.sette@rug.ac.be> 

Subject:         Zeitkonstanten OXYMAT 6 

Date sent:       Wed, 16 Oct 2002 13:44:06 +0200 

 

Sehr geehrter Herr Sette, 

zu Ihrer Frage zu den Zeitkonstanten im Oxymat 6 folgende Erklärung: 

 

Bei den angegebenen Zeitkonstanten handelt es sich um 90%- Zeiten, die 

einstellbar sind und mit dem in der Regelungstechnik bekannten Begriff 

"Tau" wie folgt zusammenhängen: t90 = 2,3026 x Tau. Was es mit ti und ta 

auf sich hat ist in der Betriebsanleitung erklärt. Jetzt noch zu den 

speziellen Fragen: Die Signalverarbeitung erfolgt mit Hilfe einer 

gleitenden Mittelwertsbildung, wobei die Abtastrate des Messwertes ca. 240 

ms beträgt. Je nach eingestellter Zeitkonstante wird ein gewichteter 

gleitender Mittelwert gebildet, wobei mit steigender Zeitkonstante die 

Gewichtung eingelesener neuer Messwerte abnimmt. Dies entspricht im 

Endeffekt einem Tiefpassfilter erster Ordnung. Über Grenzfrequenz und 

Dämpfung können bei dieser realisierten Rauschunterdrückung keine genauen 

Angaben gemacht werden. Im Endeffekt entsprechen die eingegebenen Werte 

den 90%- Zeiten, wobei allerdings die pneumatischen Verhältnisse des 

Messsystems (Totzeit) nicht berücksichtigt wurden.   

 

Gerd Galonska 

Siemens AG 

Abt.: A&D PI2 

Östliche Rheinbrückenstrasse 50 

76181 Karlsruhe 

Tel.: 0721-595-4292 

Fax: 0721-595-6375 

Mail: gerd.galonska@siemens.com 
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B.15. Cross sensitivity of the Oxymat 6E analyser[76] 
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