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Introduction

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ’Eureka!’ (I found it!) but ’That’s funny ...’ (Isaac
Asimov (1920 - 1992))

In dynamical systems, the evolution of a system is given by its present state
and by rules defining its evolution in the future. Following these rules or equa-
tions, one can track the system for as long as required. This very general definition
allows scientists from a wide variety of fields to use dynamical systems in their
endeavours. Indeed, dynamical systems can be used to model any process for
which one can define a finite set of rules to describe its evolution. Some of the
many domains of modelling applications using dynamical systems are physics,
finance, geology, biology and chemistry.

Because of the many possible applications, there is much interest in the gen-
eral theory behind dynamical systems. The change of a system under variation of
one parameter can explain many phenomena observed in nature and science. A
radical change in a system’s behaviour at some parameter value is called a bifur-
cation; the study of these bifurcations is a very important field in mathematical
science. In Chapter 1, the reader is introduced to continuous dynamical systems,
and the most important bifurcations are listed here. This chapter should contain
enough information on dynamical systems theory to guide the reader throughthe
rest of this thesis.

A major field of application of dynamical systems is computational neuro-
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viii Introduction

science. Dynamical systems are very regularly used for modelling neuronsor
neural networks, in variable levels of biological detail. The first neuralmodel
based on individual ionic currents in and out of the cell was developed by Hodgkin
and Huxley in 1952. Since then, a large number of models has been constructed,
based on the ideas behind their original model. In Chapter 2, we first givean elab-
orate introduction to the background involving cell membranes, ionic currents,
channels, etc., followed by listing the equations of four well-known neuralmod-
els built-up of dynamical systems, which will be used as primary examples in later
sections in this thesis.

It is a daunting task to keep track of all existing neural models, and therefore
the study of these models is a field of research on its own. One important concept
that can aid in this effort, is the classification of the developed models. When a
means of classification would exist, in which each category has a particular set of
properties, and in which there are clear criteria for models to belong to any of these
categories, then the study of newly developed models would be greatly simplified.
This would then mainly consist of determining which category the new model be-
longs to, after which you would immediately know several of the model’s most
important properties and/or functionalities. Some preliminary categorizations al-
ready exist, but they are clearly insufficient in some respect. In Section 2.3, we
elucidate the problem with some existing classifications, and suggest an improved
version.

In this second chapter we also introduce the Phase Response Curve. This ba-
sically mathematical concept has very important applications in neural modelling.
It is a curve that describes the effect of an input on a periodic orbit. Since a spiking
neuron can be characterized as a periodic orbit, the phase response curve can be
used to indicate the effect of an incoming (e.g. synaptic) input on a spiking neural
model. We derive a new and efficient mathematical method to compute this phase
response curve of a periodic orbit.

Since the study of dynamical systems and bifurcations raises widespread inter-
est among scientific audiences, several software packages have been written over
the past few decades to aid in this study. Important and widely used examplesof
these areAUTO andCONTENT. However, all packages have some important dis-
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advantages. AUTO is fast and efficient, but it has no user interface and is, partly
because of that, not very user-friendly. It takes quite some investment of a scientist
to understand the software enough to do rigorous studies of the desired dynamical
systems. Also, it does not provide more advanced features such as the compu-
tation of codimension 2 bifurcations and normal form coefficients. CONTENT is
much more user-friendly, but it is hard to install, and development and monitoring
was falling behind for a while. An important disadvantage of both packagesis
the platform-dependence. Both were developed for Unix / Linux machines, while
most scientists to the present day prefer to work in the MS Windows environment.
And while CONTENT also exists for Windows, this version is not easy to install.

In 2000, the development was initiated of MATCONT, a new software package
for the study of dynamical systems and their bifurcations, intended to address and
cure the biggest problems with the existing software. It was completely written
in MATLAB , to have full platform-independence, and to have good extendibility
of the package. The user interface was based on that ofCONTENT, to keep its
user-friendly features, and to make it easier for users to switch from one package
to the other.

Some important contributions to this software package are introduced in Chap-
ter 3. The functionalities were extended with the option of computing the phase
response curve of a limit cycle and its derivative. The implementation is basedon
the mathematical algorithm described in Chapter 2, and on top of that, it makes
very efficient use of the continuation aspect of the MATCONT software package.

The user can now also detect and continue homoclinic bifurcations. These
curves of homoclinics can be started from a Bogdanov-Takens bifurcation or from
a periodic solution with high period or from an equilibrium. Many codim 2 bifur-
cations can be detected on these homoclinic curves.

Finally, we have improved the speed of the software significantly by introduc-
ing C-code among theMATLAB -routines. By using this C-code wisely, we have
been able to increase the speed of limit cycle continuation more than half, while
preserving MATCONT’s typical ease of installation and platform-independence.
In a final section in this chapter, we note an important bug that we have discov-
ered inMATLAB ’s most recently added sparse routines.
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MATCONT was developed as a mathematically oriented software package,
primarily intended for the theoretical study of dynamical systems. Currently,it is
often used in teaching and mathematical research. However, the possible applica-
tions are far from restricted to those areas. MATCONT can help in any research
that involves dynamical systems. The theoretical study of the systems involved
can help clarify certain observed phenomena. That MATCONT has very interest-
ing applications in e.g. neuroscience, is illustrated in Chapter 4.

A first logical use of the software is in the bifurcation study of an existing
neural model. The Morris-Lecar model is a widely used model, but so far acom-
plete bifurcation analysis of the system had not been made anywhere. Thistype
of full bifurcation diagram can be important to know which behaviour can occur
at which parameter values in the system. This way, one can explain certain ob-
served network behaviour, or elicit some specific type of behaviour if needed. We
have for the first time made such a complete bifurcation diagram of this renowned
model.

We also introduce several interesting applications of phase response curves,
which are now an integral part of MATCONT. We show how these curves can
be used to determine the synchronizing and/or phase-locking abilities of neural
networks, and how the connection delay plays a crucial role in these abilities. We
also show some interesting phenomena in the interaction of phase response curves
and limit cycle bifurcations.

Dynamical systems are not only useful in theoretical neuroscience. Alsoin
applied neuroscience they have an important role to fulfill. When dynamical sys-
tems are used to model physiological neurons, the resulting models can be used to
study the interaction of these neurons in a network, constructed using the available
biological knowledge.

In collaboration with a group of biologists at the University of Bristol, we have
built detailed models of the neurons in the spinal cord of the hatchlingXenopus
laevis. The biological background of the animal and the equations and parameters
used for the models of individual neurons and connections are given inChapter 5.



i

i

“main” — 2007/1/15 — 13:43 — page xi — #13
i

i

i

i

i

i

xi

In Chapter 6, we focus on the initial aim of this collaboration. The individ-
ual models of neurons and synapses are used to construct biologically realistic
networks of neurons, as they are found in the youngXenopusspinal cord.

The first network we built was intended to simulate the swimming behaviour
of the tadpole. The actual interactions in this network were already well-known,
and this network was primarily used to verify our individual neuron and synapse
models, but also to demonstrate the importance of specificity in neural modelling.
We show that to disregard some important differences that we have created in the
models for different neurons, will result in breakdown of the good network output.

Then we have used these identical individual model settings to study another
hypothesis, regarding synaptogenesis. In the physiological network,most neurons
are more likely to have synaptic connections with some specific types than with
other ones. The hypothesis is that this specificity in connection is purely based on
anatomical organization of the neurons, and not on the ability of growing synapses
to make a distinction between the different types of neurons. The fact thatone
neuron would primarily connect to one or more specific types of neurons,would
be purely caused by the dorso-ventral position of each of these types of neurons,
and the place where the synapses actually grow. We have tested this hypothesis
by building networks using the same swimming neurons as in the previous model,
but now creating synapses on probabilistic grounds. The modelling results, which
strongly support our hypothesis, are given in the second section of Chapter 6.

Finally, a network is currently being constructed to model the second type of
tadpole behaviour, namely struggling. In this process, alternating bursts occur on
both sides of the body (contrarily to swimming, which involves alternating single
spikes). Of this network and behaviour, much less is known than of swimming.
But our modelling has shown, among other things, that the most likely burst-
terminating mechanism would be synaptic plasticity: by sending signals at high
frequency over one synapse to another neuron, a synapse will weaken and in the
long run it will have weakened to such extent that it will temporarily stop trans-
mitting the signal, until it has sufficiently recovered. By incorporating this feature
in our model, we were able to reproduce quite reliable alternating bursts of spikes
in both sides of theXenopus’ body.
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The results in this thesis have been published in or submitted for publication
by specialized scientific journals or proceedings, see [33], [49], [57], [58], [59],
[60], [118], [35].
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Chapter 1

Introduction to dynamical
systems

This chapter introduces the reader to dynamical systems, listing the mathematical
background needed for understanding the rest of this thesis. After the general
basics of dynamical systems study, an elaboration is given on the different types
of bifurcations, primarily equilibrium and limit cycle bifurcations, and finally
homoclinic orbits are introduced.

1.1 Basics on ODEs

A general system of ordinary differential equations (ODEs) can be written as




dx1

dt
= f1(x1, x2, . . . , xn),

dx2

dt
= f2(x1, x2, . . . , xn),

...
dxn
dt

= fn(x1, x2, . . . , xn),

where each componentfi is assumed to have continuous mixed partial derivatives
with respect to allxj up to (and including) a sufficiently high orderk. Introduce a
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2 Introduction to dynamical systems

state (phase) variable vector

x =




x1

x2
...
xn


 ∈ R

n

and define a mapf : R
n → R

n by

x 7→ f(x) =




f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)


 .

We writef ∈ Ck(Rn,Rn). Then the system can be written as one vector ODE

ẋ ≡ dx

dt
= f(x), x ∈ R

n. (1.1)

Denote byϕt(x0) a solution of (1.1) that starts att = 0 in a pointx0 ∈ R
n.

General theory of smooth differential equations guarantees that such solution ex-
ists and is unique for anyx0, at least for small|t|. Moreover, iff ∈ Ck(Rn,Rn),
then eachx0 ∈ R

n has a neighbourhoodU0 ∈ R
n such that for allx ∈ U0 the

solutionsϕt(x) are defined on a common open interval aroundt = 0. Considered
as functions ofx, these solutions specify for each fixedt a map

ϕt : U0 → R
n, x 7→ ϕt(x), (1.2)

that has continuous mixed partial derivatives with respect to all components ofx
up to (and including) orderk.

The family of mapsϕt is called the (local)flow of (1.1). It has the following
obvious properties:

ϕ0(x) = x, ϕt+s(x) = ϕt(ϕs(x)),

where the second equality holds whenever both its sides are defined. Anyfamily
of maps that satisfies these conditions is called a (continuous-time)dynamical
system.
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1.1 Basics on ODEs 3

C0

f(x0)

x0

x0

Figure 1.1: A sketch of a phase portrait with an equilibriumx0 and a limit cycleC0.

Whent varies, the pointϕt(x) traces a curve in the state spaceR
n that is called

anorbit of (1.1). A trivial orbit can consist of one point. The vectorf(x) in the
right-hand side of (1.1) is tangent to the nontrivial orbit at pointx. Nontrivial
orbits are oriented by the time advance and do not intersect. The collection ofall
orbits of an ODE system is called thephase portrait. Of course, while presenting
phase portraits, one draws only (pieces of) few principal orbits (see,for example,
Figure 1.1).

The important aim of the mathematical analysis of (1.1) is, thus, to describe
the structure of the phase portrait. This cannot be achieved in general. However,
a combination of analytical and numerical methods usually allows to establish the
principal qualitative features of phase portraits of (1.1).

To describe a phase portrait, we first focus oninvariant setsof (1.1), which
are composed of orbits. The simplest invariant sets areequilibria, i.e. trivial
orbits consisting of just one point:x0 = ϕt(x0) for all t (see Figure 1.1). More
interesting areperiodic orbitsor cycles, i.e. nontrivial orbits corresponding to
periodic solutions

ϕt+T0(x0) = ϕt(x0), t ∈ R,

with (minimal) periodT0 > 0; these orbits are closed curves inR
n. Isolated peri-

odic orbits are calledlimit cycles(see Figure 1.1). Further classification of invari-
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4 Introduction to dynamical systems

ant sets distinguishes (smooth and non-smooth)invariant manifoldsand fractal
invariant sets.

v

x0

Tx0
M

γ

M

Figure 1.2: A smooth manifold (surface)M ⊂ R
3 and its tangent space (plane)Tx0

M at
pointx0.

In general, amanifoldM ⊂ R
n is a set of points satisfying

F (x) = 0,

whereF : R
n → R

k is smooth andk < n. Consider a smooth curveΓ in M
parameterized asx = x(t) and passing att = 0 throughx(0) = x0 ∈ M . Its
velocity vectorv(t) = ẋ(t) satisfies att = 0 the equation

Fx(x0)v = 0, (1.3)

whereFx denotes theJacobian matrixof F , i.e. the matrix with elements

[Fx]ij =
∂Fi(x)

∂xj
, i = 1, 2, . . . , k; j = 1, 2, . . . , n.

For asmooth manifold, the system (1.3) has(n−k) linearly-independent solutions
for eachx0 ∈ M . The collection of all solutions to (1.3) forms a linear subspace
of R

n and is called thetangent spacetoM atx0. Locally, a smooth manifold can
be approximated by its tangent space and then parameterized byR

n−k; dimM =
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1.1 Basics on ODEs 5

n − k. The correspondence map between two local parameterizations ofM near
two close points is smooth. By definition,k is thecodimensionofM ; codim M =
k. Examples of two-dimensional (codimension-one) smooth manifolds inR

3 are
surfaces: e.g. cylinders, spheres and tori.

Systems (1.1) can have invariant tori, spheres, etc. Another important example
of an invariant manifold is a set composed by all orbits approaching an equilibrium
or a cycle ast → ±∞ (stable and unstable invariant manifolds). A restriction
of the dynamical system defined by (1.1) to its smooth invariant manifolds is a
dynamical system on this manifold that is locally represented by a system ofp
smooth ODEs.

(a) (b)

U1 U0

U2

Figure 1.3: Stable (a) and asymptotically stable (b) equilibrium.

A bounded invariant set can be stable or unstable. A bounded invariantset is
calledstableif for any neighbourhoodU1 of the set there is another neighbourhood
U2 such that all solutions starting inU2 will remain in U1 for all t > 0. If,
moreover, there is a neighbourhoodU0 such that all solutions starting inU0 tend
to the invariant set ast→ +∞, the set is calledasymptotically stableorattracting.
A fractal asymptotically stable invariant set is called astrange attractor.

Therefore, the structure of a phase portrait depends on the number and stability
of equilibria, cycles, and other invariant sets, as well as their relative position.

In most applications, however, the system of differential equations depends on
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6 Introduction to dynamical systems

parametersα1, α2, . . . , αk. If we collect these parameters in a vector

α =




α1

α2
...
αm


 ∈ R

m,

we can write a parameter-dependent version of (1.1):

ẋ = f(x, α), x ∈ R
n, α ∈ R

m, (1.4)

wheref : R
n×R

m → R
n. We assume thatf is smooth in all its arguments. Now

do we not only want to classify solutions of this system but also to understand
how they depend on the parameters. Obviously, in this case the flowϕtα of (1.4)
and its phase portrait are parameter-dependent.

When parameters are allowed to vary, the structure of the phase portrait of
(1.4) can change qualitatively at some parameter valueα0. This phenomenon is
called abifurcation. Appearance and disappearance of equilibria and cycles and
their stability changes are bifurcations. Probably the most well-known of them is
theAndronov-Hopf bifurcation, when an equilibrium loses stability by giving rise
to a small stable limit cycle.

In general, the parameter spaceR
m of (1.4) can be subdivided into subsets

with topologically equivalent phase portraits. The boundaries of such subsets cor-
respond to bifurcations and in the simplest cases are smooth manifolds. For a
generic system (1.4) with a sufficient number of parameters, thecodimensionof
a bifurcation is the difference between the dimension of the bifurcation boundary
and the dimension of the whole parameter space. In other words, the codimension
of a bifurcation is the number of control parameters of a generic system (1.4) that
one has to tune to meet this bifurcation. A collection of the bifurcation boundaries
together with all non-equivalent phase portraits is called thebifurcation diagram.
The bifurcation diagram, when constructed, provides very complete information
about possible solutions of (1.4) and their rearrangements under parameter varia-
tions. We note that even partial knowledge of the bifurcation diagram gives im-
portant insights on system dynamics.
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1.2 Equilibria and their bifurcations 7

1.2 Equilibria and their bifurcations

In this section we give a brief survey on the theory of equilibria and equilibrium
bifurcations in ODE systems with one and two control parameters. For more
details we refer to [86, Chapters 3, 5 and 8].

To fix notation, introduce a system of autonomous ordinary differential equa-
tions

ẋ ≡ dx

dt
= f(x, α), (1.5)

wherex ∈ R
n is a state (phase) variable vector,α ∈ R

m is a parameter vector and
f : R

n × R
m → R

n is sufficiently smooth.

1.2.1 Equilibria and their stability

Givenα0 ∈ R
m, anequilibrium of (1.5) is a solutionx0 ∈ R

n to the equation

f(x, α0) = 0. (1.6)

If the Jacobian matrixA = fx(x0, α0) has no eigenvalueλwith ℜ(λ) = 0 (where
ℜ() means ’the real part of’), then the equilibrium is calledhyperbolic. The phase
portrait of (1.5) near a hyperbolic equilibriumx0 does not differ qualitatively from
the phase portrait oḟy = Ay neary = 0. In particular,x0 is locally asymptotically
stable if all eigenvalues ofA satisfyℜ(λ) < 0 and it is unstable if at least for one
eigenvalue holdsℜ(λ) > 0.

1.2.2 Generic codim 1 bifurcations of equilibria

Any hyperbolic equilibrium depends smoothly on system parameters and canbe
continued with respect to a component ofα. Indeed, assuming that (1.5) depends
only on one control parameterα ∈ R, we see that the equilibria satisfy the equa-
tion

f(x, α) = 0, (1.7)

wheref : R
n+1 → R

n with f(x0, α0) = 0.
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8 Introduction to dynamical systems

Varyingα and tracing the curve defined by (1.7) in the(x, α)-space, we may
encounter a critical parameter value where the equilibrium loses hyperbolicity, so
that either

(i) fx has an eigenvalueλ1 = 0; or
(ii) fx has a pair of purely imaginary eigenvaluesλ1,2 = ±iω0 with ω0 > 0.

Both cases lead toequilibrium bifurcationswhen the parameterα crosses its
critical value: the local phase portrait changes qualitatively. Actually, essential

f (x, α) = 0

αα0

x0

x

Figure 1.4: An equilibrium curve with an LP.

changes occur on a parameter-dependent smooth invariant curve in case (i) and on
a parameter-dependent smooth invariant surface in case (ii), so-calledcenter man-
ifolds. Nearby orbits approach these manifolds exponentially fast as time grows or
decays. The number of stable (unstable), directions is determined by the number
of eigenvalues ofA with ℜ(λ) < 0 (ℜ(λ) > 0).

Limit point (fold) bifurcation

Assume that case (i) occurs atα0 and thatx0 is the corresponding critical equilib-
rium. Generically, the equilibrium curve (1.7) turns quadratically at(x0, α0) (see
Figure 1.4). The system (1.5) exhibits alimit point (LP) (or fold) bifurcation: two
equilibria collide and disappear at the critical parameter value.
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1.2 Equilibria and their bifurcations 9

In generic one-parameter ODEs, the eigenvalueλ1 = 0 is algebraically simple
at the LP-bifurcation and no other eigenvalues withℜ(λ) = 0 are present. Atα0,
there is a smooth one-dimensional invariant manifold (curve)W c

0 in the phase
space of (1.5) called thecritical center manifoldat the LP-bifurcation. This curve
can be locally parameterized byu ∈ R with small |u|. The restriction of (1.5) to
W c

0 has the form
u̇ = au2 +O(|u|3), (1.8)

wherea is thequadratic normal form coefficientfor the LP bifurcation.

Andronov-Hopf bifurcation

When case (ii) occurs atα0, the critical equilibriumx0 has a pair of purely imag-
inary eigenvaluesλ1,2 = ±iω0, ω0 > 0. Generically, anAndronov-Hopf bifur-
cation (H) occurs: a branch of periodic solutions to (1.5) withO(

√
|α− α0|)-

amplitude is born, either forα < α0 or α > α0.
Considering only generic one-parameter systems (1.5), we can assume that

the eigenvaluesλ1,2 are simple and are the only critical eigenvalues ofA =
fx(x0, α0) with ℜ(λ) = 0. Due to the Implicit Function Theorem, a unique
smooth continuationx0(α) of x0 exists. However, generically, its stability type
changes, since a pair of complex-conjugate eigenvalues ofA(α) = fx(x0(α), α),

λ1,2(α) = β(α) ± iω(α)

passes through the imaginary axis:β(α0) = 0, β′(α0) 6= 0, andω(α0) = ω0.
In this case, atα0, there is a smooth two-dimensional invariant manifold (sur-

face)W c
0 in the phase space of (1.5) that can be locally parameterized byz ∈ C

with small |z|. This is thecritical center manifoldat the Hopf bifurcation. The
restriction of (1.5) toW c

0 can be transformed by smooth invertible coordinate
transformations to the form

ż = iω0z + c1z
2z̄ +O(|z|4), (1.9)

wherel1 = ℜ(c1) is called thefirst Lyapunov coefficientat the Hopf bifurcation.
The equilibriumx0 is (nonlinearly) stable within the manifoldW c

0 if l1 < 0 and is
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10 Introduction to dynamical systems

unstable ifl1 > 0. This becomes obvious if we write (1.9) in the polar coordinates
(ρ, ϕ), so thatz = ρeiϕ:

{
ρ̇ = l1ρ

3 +O(ρ4),
ϕ̇ = ω0 +O(ρ2).

(1.10)

x1 x1x1

x2x2x2

α = 0α < 0 α > 0

ℜ(z)ℜ(z)ℜ(z)

ℑ(z)

α > α0α = α0α < α0

ℑ(z) ℑ(z)

Figure 1.5: Subcritical Hopf bifurcation withl1(α0) < 0 andβ′(α0) > 0.

x1

x2 x2

x1

x2

x1

α = 0 α > 0α < 0

ℜ(z)ℜ(z)ℜ(z)

ℑ(z)

α > α0

ℑ(z)ℑ(z)

α < α0 α = α0

Figure 1.6: Supercritical Hopf bifurcation withl1(α0) < 0 andβ′(α0) > 0.

The periodic solution is born unstable forα < α0 if l1(α0) > 0, in which case
the bifurcation is called subcritical. The appearing periodic solution is born stable
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1.2 Equilibria and their bifurcations 11

for α > α0 if l1(α0) < 0; then the bifurcation is called supercritical. (see Figures
1.5 and 1.6, respectively).

1.2.3 Generic codim 2 bifurcations of equilibria

In generic systems (1.5) depending on two control parameters, the bifurcation
boundaries corresponding to fold and Hopf bifurcations are curves inthe parame-
ter plane. These curves can have special points, in a neighbourhood of which the
bifurcation diagram exhibits new features. These points correspond to codim 2
bifurcations of equilibria. At such a pointα0, the system (1.5) has an equilibrium
x0, for which one of the following five cases holds:

CP:λ1 = 0, a = 0 (cusp);
GH: λ1,2 = ±iω0, l1 = 0 (Bautin);
BT: λ1 = λ2 = 0 (Bogdanov-Takens);
ZH: λ1 = 0, λ2,3 = ±iω0, ω0 > 0 (fold-Hopf);
HH: λ1,2 = ±iω1, λ3,4 = ±iω2, ω1,2 > 0 (double Hopf).

Hereλk are the critical eigenvalues ofA = fx(x0, α0) which are assumed to
be simple and the only eigenvalues withℜ(λ) = 0; their number determines
the dimension of the parameter-dependent invariant center manifoldW c

α near the
bifurcation. Finally, the coefficientsa and l1 are those appearing in the critical
normal forms (1.8) and (1.10), respectively.

1.2.4 Branch points

A branch pointis a point where the Jacobian matrixfx,α(x, α) of (1.7) is rank
deficient. This is a non-generic situation in one-parameter problems where the
Implicit Function Theorem cannot be applied to ensure the existence of a unique
smooth branch of solutions. And although it is encountered often in practical
problems that exhibit some form of symmetry (equivariance), we will not go
deeper into this subject in this thesis.
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12 Introduction to dynamical systems

1.3 Limit Cycles and their bifurcations

In this section we give a brief survey on the theory of periodic solutions and their
bifurcations. Consider again a system of ODEs:

ẋ ≡ dx

dt
= f(x, α) (1.11)

wherex ∈ R
n is a phase variable vector,α ∈ R

m is a parameter vector andf is a
sufficiently smooth function.

1.3.1 Cycles and their stability

Givenα0 ∈ R
m, acycle of(1.11) is a closed orbitC0 corresponding to aperiodic

solutionx0(t) = x0(t+ T0), whereT0 > 0 is its (minimal) period. Such solution
satisfies the following boundary value problem (BVP):





ẋ(t) − f(x(t), α0) = 0, t ∈ [0, T0],
x(0) − x(T0) = 0,∫ T0

0 〈x(τ), ẏ(τ)〉 dτ = 0,

(1.12)

wherey is a reference periodic solution. The last equation in (1.12) selects one
periodic solution from infinitely many periodic solutions satisfying the first two
equations but having different initial points onC0. This equation, called theinte-
gral phase condition, selects a solution that has the minimalL2-distance (2-norm
distance) toy among all phase-shifted periodic solutions. Notice that the period
T0 is not given and should be found from (1.12) together with the periodic solution
x0(t).

IntroduceA(t) = fx(x0(t), α) and consider the initial-value problem for the
fundamental matrix solutionY (t), namely

dY

dt
= A(t)Y, Y (0) = In, (1.13)

whereIn is then×n identity matrix. Themonodromy matrixM = Y (T0) always
has a “trivial” eigenvalueµ = 1. The cycleC0 is calledhyperbolicif there are
no other eigenvalues with|µ| = 1, and non-hyperbolic otherwise. Note that a
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1.3 Limit Cycles and their bifurcations 13

hyperbolic cycle is isolated in the phase space, meaning that there is no other
periodic orbit nearC0. Often, the eigenvalues ofM are calledmultipliers ofC0.

The phase portrait of (1.11) near a hyperbolic cycleC0 does not differ qualita-
tively from the phase portrait oḟy = A(t)y neary = 0 in the space(y, tmod T0).
In particular, the cycle is locally asymptotically stable if all nontrivial eigenvalues
of M satisfy|µ| < 1 and it is unstable if at least for one eigenvalue holds|µ| > 1.

1.3.2 Generic codim 1 bifurcations of cycles

Any hyperbolic cycle depends smoothly on system parameters and can be contin-
ued with respect to a component ofα. Assuming that (1.11) depends only on one
parameterα ∈ R, we can consider the BVP





ẋ(t) − f(x(t), α) = 0, t ∈ [0, T ],
x(0) − x(T ) = 0,∫ T

0 〈x(τ), ẏ(τ)〉 dτ = 0,

(1.14)

which has aT0-periodic solutionx0(t) atα0. If µ = 1 is simple, this BVP defines
a branch ofT (α)-periodic solutionsxα(t), and thus a continuation of the cycle
C0 with respect toα. In the continuation context, the reference periodic solution
y(t) is usually a periodic solution found at some previous value of the parameter.

Varyingα and tracing the cycle, we may encounter a critical parameter value,
where the cycle loses hyperbolicity, so that either

(i) M has a multiple eigenvalueµ1 = 1; or
(ii) M has an eigenvalueµ1 = −1; or
(iii) M has a pair of purely imaginary eigenvaluesµ1,2 = e±iθ0 with 0 < θ0 <

π.

All three cases lead tocycle bifurcations, when the parameterα crosses its critical
value: the local phase portrait near the critical cycle changes qualitatively.

Limit point (fold) of cycles

Assume that case (i) occurs atα0 and thatC0 is the corresponding critical cycle
with its T0-periodic solutionx0 = x0(t). Generically, the cycle manifold in the
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14 Introduction to dynamical systems

x1

x2

α0 α αα0

T

LPC

C0

Figure 1.7: Cycle manifold with an LPC-point.

(x, T, α)-space turns quadratically atα0 (see Figure 1.7). The system (1.5) ex-
hibits a limit point cycle(LPC) (orperiodic fold) bifurcation: two cycles collide
and disappear at the critical parameter value.

Period-doubling (flip) bifurcation

Assume that case (ii) occurs atα0 and thatC0 is the corresponding critical cycle
with its T0-periodic solutionx0 = x0(t). Generically, atα = α0, this cycle
changes stability and another cycleC1 with minimal periodT1(α) bifurcates from
it for α > α0 or α < α0 (see Figure 1.8). SinceT1(α) → 2T0 asα → α0, the
bifurcation is called theperiod-doubling bifurcation(PD) or flip bifurcation: a
cycle of the approximately double period appears at the critical parameter value.

Neimark-Sacker (torus) bifurcation

Finally, assume that case (iii) occurs atα0 and thatC0 is the corresponding crit-
ical cycle with itsT0-periodic solutionx0 = x0(t). Generically, atα = α0, the
cycle changes stability and aninvariant two-dimensional torusbifurcates from it
for α > α0 or α < α0 (see Figure 1.9). Its “thickness” is∼

√
|α− α0|. This
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1.3 Limit Cycles and their bifurcations 15

C0

α < α0

W c
0W c

α W c
α

α > α0α = α0

C1

Figure 1.8: PD-bifurcation inR
3.

torus has finite smoothness increasing asα → α0. Orbits on this torus can be pe-
riodic, non-periodic but tending to periodic ones, or quasi-periodic. Generically,
whenα passesα0, an infinite number of LPC-bifurcations of cycles with large pe-
riods occur. These bifurcations delimit open intervals of parameterα, where two
hyperbolic cycles coexist on the torus. Outside these intervals, quasiperiodic or-
bits fill the torus. This bifurcation is called theNeimark-Sacker bifurcation(NS)
or torus bifurcation: an invariant torus around the primary cycle appears at the
critical parameter value, while the cycle itself changes its stability type.

1.3.3 Generic codim 2 bifurcations of cycles

In generic systems (1.5) depending on two control parameters the bifurcation
boundaries corresponding to fold, period-doubling, and Neimark-Sacker bifurca-
tions of limit cycles are curves in the parameter plane. Codimension 2 bifurcation
points can be met along these curves. At such a pointα0, the system (1.5) has a
cycleC0, for which one of the following eleven cases holds:
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16 Introduction to dynamical systems

T
2

α = α0 α > α0

L0

α < α0

Figure 1.9: NS-bifurcation inR
3.

CPC : µ1 = 1, a = 0 (cusp of cycles);
GPD : µ1 = 1, b = 0 (generalized period-doubling);
CH : µ1,2 = e±iθ0 , ℜ(d) = 0 (Chenciner bifurcation);
R1 : µ1 = µ2 = 1 (1:1 resonance);
R2 : µ1 = µ2 = −1 (1:2 resonance);
R3 : µ1,2 = e±iθ0 , θ0 = 2π

3 (1:3 resonance);
R4 : µ1,2 = e±iθ0 , θ0 = π

2 (1:4 resonance);
LPPD : µ1 = 1, µ2 = −1 (fold-flip);
LPNS : µ1 = 1, µ2,3 = e±iθ0 (fold–Neimark-Sacker);
PDNS : µ1 = −1, µ2,3 = e±iθ0 (flip–Neimark-Sacker);
NSNS : µ1,2 = e±iθ1 , µ3,4 = e±iθ2 (double Neimark-Sacker).

Hereµk are the non-trivial critical eigenvalues of the monodromy matrixM of
C0, which are assumed to be simple and the only eigenvalues with|µ| = 1. It is
also assumed that0 < θk < π for k = 0, 1, 2. The coefficientsa, b, andd appear
in the critical periodic normal forms of the LPC, PD and NS bifurcations (which
are not listed here, since they are of less importance for the rest of this thesis).
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1.4 Homoclinic orbits 17

1.3.4 Branching of cycles

A branch of periodic solution(x(·), T, α) defined by (1.14) can intersect another
branch of periodic solutions at some critical parameter valueα0, so that both solu-
tions coincide. This never happens in generic one-parameter ODEs and although
it is often encountered if (1.11) has some symmetry, we do not go deeper intothis
issue in this thesis.

1.4 Homoclinic orbits

In this section we give a brief survey on the theory of bifurcations of orbits ho-
moclinic to equilibria in generic ODEs depending on one parameter. We also list
some codim 2 homoclinic bifurcations appearing in generic ODE systems with
two control parameters. For more details we refer to [86, Chapter 6]. Forrefer-
ences, let us reintroduce

ẋ = f(x, α), (1.15)

wherex ∈ R
n, α ∈ R

k andf is sufficiently smooth.

1.4.1 (Un)stable manifolds and homoclinic orbits

Fix α = α0 and letx0 ∈ R
n be an equilibrium of (1.15). The invariant sets

W s(x0) = {x ∈ R
n : ϕtα0

(x) → x0 if t→ +∞},
W u(x0) = {x ∈ R

n : ϕtα0
(x) → x0 if t→ −∞}

are called thestableandunstable sets ofx0, respectively. The setW s(x0) consists
of all orbits approachingx0 forward in time, whileW u(x0) consists of all orbits
approachingx0 backward in time.

If x0 is hyperbolic then both sets are smooth manifolds (hypersurfaces) inR
n.

If A = fx(x0, α0) hasns eigenvaluesµ with ℜ(µ) < 0 andnu eigenvaluesλ with
ℜ(λ) > 0, thendimW s(x0) = ns anddimW u(x0) = nu with ns + nu = n.
Moreover, these manifolds are tangent atx0 to the (generalized) eigenspacesT s

andT u, corresponding to all eigenvaluesµ with ℜ(µ) < 0 andλ with ℜ(λ) > 0,
respectively.
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18 Introduction to dynamical systems

If x0 is non-hyperbolic, the stable and unstable sets become smooth subman-
ifolds (hypersurfaces with borders) already nearx0. If A hasns eigenvalues
µ with ℜ(µ) < 0, nc eigenvaluesλc with ℜ(λc) = 0, andnu eigenvaluesλ
with ℜ(λ) > 0, so thatns + nc + nu = n, thendimW s(x0) ≤ ns + nc and
dimW u(x0) ≤ nu + nc. The exact dimensions of these submanifolds are de-
termined by the orbit behaviour on thenc-dimensional center manifoldW c(x0).

(i) (ii)

x

x0x0

Γ0 Γ0

x

Figure 1.10: Homoclinic orbits to equilibria in planar systems: (i)x0 is a saddle with
eigenvaluesµ1 < 0 < λ1; (ii) x0 is a saddle-node with eigenvaluesλc = 0, µ1 < 0.

An orbit Γ0 6= x0 is calledhomoclinicto x0 if Γ0 ⊂ W s(x0) ∩W u(x0), i.e.
ϕtα0

(x) → x0 ast → ±∞ for anyx ∈ Γ0. Figure 1.10 illustrates two types of
homoclinic orbits in planar systems (n = 2).

Given an equilibriumx0, a homoclinic solutionx0(t) satisfies the following
homoclinic problem:





ẋ(t) − f(x(t), α0) = 0, t ∈ R,

x(t) → x0, t→ ±∞,∫ +∞

−∞

〈x(τ) − y(τ), ẏ(τ)〉 dτ = 0,

(1.16)

wherey is a reference solution that is assumed to be given and whose derivative
decays sufficiently fast ast → ±∞.The integral equation in (1.16) is a condition
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1.4 Homoclinic orbits 19

for a local minimum of theL2-distance (2-norm distance) betweenx andy over
time shifts.

1.4.2 Homoclinic orbits to hyperbolic equilibria

Let x0 be a hyperbolic equilibrium of (1.15) atα0. Denote byµj , for j =
1, 2, . . . , ns, thestable eigenvaluesof A = fx(x0, α0) satisfyingℜ(µ) < 0 and
byλj , for j = 1, 2, . . . , nu, theunstable eigenvaluesofA = fx(x0, α0) satisfying
ℜ(λ) > 0. Stable eigenvalues with maximalℜ(µ) are calledleading stable eigen-
values, while unstable eigenvalues with minimalℜ(λ) are calledleading unstable
eigenvalues. Among all (stable and unstable) leading eigenvalues, the ones with
minimal |ℜ(λ)| or |ℜ(µ)| are calleddetermining.

W s(x0)

x0

Wu(x0)

W ss(x0)

Figure 1.11: Unstable, stable, and strong stable invariant manifolds ofa saddle equilib-
rium in R

3.

Almost all orbits onW s(x0) tend tox0 as t → +∞ along the generalized
eigenspace ofA corresponding to the stable leading eigenvalues (µ1). Excep-
tional orbits form anonleadingor strong stable manifoldW ss(x0) (see Figure
1.11). Similarly, all orbits onW u(x0), except those belonging to anonleadingor
strong unstable manifoldW uu(x0), tend tox0 ast → −∞ along the generalized
eigenspace ofA corresponding to the unstable leading eigenvalues (λ1).

If there is a single simple stable/unstable eigenvalue, then we can introduce
four singular vectors,qs,u1 andps,u1 , corresponding to the leading eigenvaluesµ1
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20 Introduction to dynamical systems

andλ1 of the matricesA andAT:

Aqs1 = µ1q
s
1, Aq

u
1 = λ1q

u
1

and
ATps1 = µ1p

s
1, A

Tpu1 = λ1p
u
1 .

Using these vectors, the requirement for the homoclinic orbitΓ0 to depart and
return along the leading directions can be formulated as

lim
t→+∞

e−µ1t〈ps1, x0(t) − x0〉 6= 0 (1.17)

and
lim

t→−∞
e−λ1t〈pu1 , x0(t) − x0〉 6= 0. (1.18)

Another condition for the hyperbolic homoclinic bifurcation is related to the global
twistedness of the manifoldsW s(x0) andW u(x0) around the homoclinic orbit
Γ0.

DefineA(t) = fx(x
0(t), α0) and introduce the following problem





ϕ̇(t) +AT(t)ϕ(t) = 0, t ∈ R,
ϕ(t) → 0, t→ ±∞,∫ +∞

−∞
〈ϕ(τ) − ψ(τ), ψ̇(τ)〉 dτ = 0,

(1.19)

whereψ is a reference function. The third equation in (1.19) selects one solution
out of the familycϕ(t) for c ∈ R. The solutionϕ exists and is unique. The
limit behaviour ofϕ(t) ast → ±∞ determines the twistedness of the spaceZ(t)
around the homoclinic orbitΓ0, whereZ(t) is the sum of the linear spaces tangent
toW s(x0) andW u(x0). Generically, both

lim
t→−∞

eµ1t〈qs1, ϕ(t)〉 6= 0 (1.20)

and
lim

t→+∞
e−λ1t〈qu1 , ϕ(t)〉 6= 0. (1.21)

The non-degeneracy condition (1.20) is illustrated forn = 3 in Figure 1.12,
where the saddlex0 has one unstable and two stable eigenvalues. In this case,
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(b)(a)

Z

x0
x0 qs1

qs2

Γ0qu1

Ws(x0)

Wss(x0)

Ws(x0)

W ss(x0)

Γ0

ϕ

Z

qs1

qs2

qu1

ϕ

Figure 1.12: Simple (a) and twisted (b) stable manifold at a saddle homoclinic bifurcation
in R

3.

W s(x0) is two-dimensional and its continuation backward in time intersects itself
along the non-leading stable manifoldW ss(x0). Therefore, generically, that part
of the stable manifoldW s(x0), to whichΓ0 belongs, is either a simple or a twisted
(Möbius) non-smooth band.

Possible types of homoclinic orbits to hyperbolic equilibria are:

• The saddle homoclinic orbit: the leading stable (µ1) and unstable (λ1)
eigenvalues are real.

• The saddle-focus homoclinic orbit: the leading unstable eigenvalue is real,
while the leading stable eigenvalues are complex-conjugate, or vice versa.

• The focus-focus homoclinic orbit: both stable and unstable leading eigen-
values are complex.

1.4.3 Homoclinic orbits to saddle-node equilibria

Only homoclinic orbits to nonhyperbolic equilibria with one eigenvalueλc = 0
appear in generic one-parameter systems (1.15): to create a homoclinic orbit to a
nonhyperbolic equilibrium with a pair of purely-imaginary eigenvalues, oneneeds
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22 Introduction to dynamical systems

to tune at least two parameters. On the contrary, an appearance of a homoclinic
orbit Γ0 to an equilibriumx0 that has a single critical eigenvalueλc = 0 is not an
extra degeneracy, since the stable setW s(x0) can intersect with the unstable set
W u(x0) transversally. Actually, the appearance of a finite number of homoclinic
orbitsΓ0, Γ1, . . . , ΓN−1 does not increase the degeneracy either. We assume such
transversality further.

Whenλc = 0 is a critical eigenvalue ofx0, generically, a LP (fold) bifurca-
tion happens whenα crosses its critical valueα0 as described in Section 1.2.2.
We can assume, therefore, that the genericity conditions for the LP-bifurcation
hold. They imply that there exists a one-dimensional center manifoldW c

α that is
exponentially attracting and/or repelling in transverse directions. Whenα passes
α0, two equilibria inW c

α collide and disappear.
Finally, in generic systems (1.15), the homoclinic orbitsΓk depart and re-

turn tox0 at the critical parameter value along the null-vectorq ∈ R
n of A =

fx(x0, α0): Aq = 0. Such homoclinic orbits are calledcentral. Introduce the
adjoint null-vectorp ∈ R

n : ATp = 0, 〈p, q〉 = 1. Then the non-degeneracy
conditions that guarantee thatΓ0 is central are

lim
t→+∞

t−1〈p, x0(t) − x0〉 6= 0 (1.22)

and
lim

t→−∞
t−1〈p, x0(t) − x0〉 6= 0. (1.23)

If either of these conditions is violated, the homoclinic orbit is non-smooth.
Generically, there are still two cases:N = 1 andN ≥ 2 (with N the number

of homoclinics), but we will not go into more detail on this subject here.

1.4.4 Codim 2 bifurcations of homoclinic orbits

While following a curve of homoclinic orbits in system (1.15) with two control
parameters, one can encounter several codim 2 bifurcations. In the simplest cases,
such bifurcations are detectable by looking at the eigenvalues of the equilibrium
x0. In more complicated cases, asymptotic properties of the homoclinic solution
or nearby solutions have to be taken into account.
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1.4 Homoclinic orbits 23

Codim 2 homoclinic orbits to hyperbolic equilibria

The following codim 2 cases can be expected in generic two-parameter ODEsys-
tems along curves of homoclinic orbits to hyperbolic equilibria.

(1) Neutral saddle or saddle-focus. The saddle quantity vanishes

σ0 = ℜ(µ1) + ℜ(λ1) = 0.

(2) Double real determining eigenvalue. In this case, eitherµ1 orλ1 is double.
(3) Three determining eigenvalues: there is a simple real determining eigen-

value1 and a simple pair of complex eigenvalues2,3 such that

ℜ(λ1) = ℜ(λ2,3),

or
ℜ(µ1) = ℜ(µ2,3).

(4) Non-hyperbolic equilibrium:

ℜ(µ1) = 0 or ℜ(λ1) = 0 ,

qs2

Wu(x0)

qu1
Γ0

Ws(x0)

qs1

Wss(x0)

x0

Figure 1.13: Orbit flip in R
3.
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Γ0

W sW ss

x0

Wu

qs
1

qs
2

qu
1

Figure 1.14: Inclination flip inR
3.

Γ0

q
x0

Figure 1.15: Non-central homoclinic orbit to a non-hyperbolic equilibrium in R
2.
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1.4 Homoclinic orbits 25

so that the equilibrium undergoes either a fold or a Hopf bifurcation. In thefirst
case, we have anon-central homoclinic-to-saddle-nodebifurcation (see below),
while the second case is usually referred to as aShilnikov-Hopfbifurcation.

(5) Orbit flip: either condition (1.17) or condition (1.18) does not hold for a
saddle homoclinic orbit. If we have equality in (1.17), then the homoclinic orbit
Γ0 returns to the saddlex0 along its non-leading stable manifold. If (1.18) does
not hold, the homoclinic orbitΓ0 departs from the saddlex0 along its non-leading
unstable manifold (see Figure 1.13).

(6) Inclination flip: the condition (1.20) or (1.21) is violated for a saddle ho-
moclinic orbit. In this case, the homoclinic orbitΓ0 has degenerate twistedness
(see Figure 1.14 for an illustration).

(7)Higher non-transversality: it could happen that the intersection of the man-
ifoldsW s(x0) andW u(x0) alongΓ0 is not transversal withcodimZ(t) = 2.

This list is incomplete. Other cases, such as neutral focus-focus or neutrally-
divergent saddle-focus, are possible but involve bifurcations of systems always
having an infinite number of cycles. There are many other possibilities involving
several homoclinic tox0 orbits or orbits connecting two distinct equilibria.

Codim 2 homoclinic orbits to non-hyperbolic equilibria

The following codim 2 cases can be expected in generic two-parameter ODEsys-
tems along curves of homoclinic orbits to non-hyperbolic equilibria.

(1) Non-central homoclinic orbit: the condition (1.22) or (1.23) does not hold.
In such a case, the homoclinic orbit to the equilibrium with zero eigenvalue is
non-smooth (see Figure 1.15).

(2) Non-transversal homoclinic orbit: the stable and unstable setsW s,u(x0) of
the non-hyperbolic equilibriumx0 have a quadratic tangency along the homoclinic
orbit Γ0.
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Chapter 2

Neural models as dynamical
systems

Dynamical systems are in use in numerous fields of science. One field where
dynamical systems play an important role, is neurobiology,more precisely in the
modelling of neurons. In this chapter, first the basics of neural modelling are
explained, followed by a presentation of four of the most important and well-
known neural models. Then a new classification of neural models is suggested,
and finally the phase response curve is introduced.

2.1 Introduction to neural modelling

Most of this section is adapted from [47], Chapter 2.

2.1.1 Molecules, atoms, electrons and ions

It is now accepted as a scientific fact that all substances that we see around us
consist of molecules. The number of different molecules is huge but they are all
formed by combinations of atoms and the number of different atoms is relatively
small - at this time 117. In chemistry these are called the elements and they
are collected in the Periodic Table named after the Russian chemist Mendelejev
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28 Neural models as dynamical systems

(1869).
An atom consists of a nucleus and a number of electrons in shells around

that nucleus. The nucleus contains neutrons, which are electrically neutral, and
protons, which have a basic electrical charge, identical for all protonsand by
convention said to be positive. This is called the elementary charge e, cf. Table
2.1. The electrons have the same amount of electrical charge but of an opposite
nature and therefore called negative.

An atom is electrically neutral if the number of electrons in its shells is equal
to the number of protons in its nucleus. However, many atoms tend either to lose
one or more electrons or to acquire surplus electrons. If this happens theatom is
called an ion. Some ions are very important in electrophysiology, namely:

• Sodium (Na from its Latin nameNatrium) has atomic number 11, atomic
weight 22.99 and valence 1. The latter means that it tends to lose one elec-
tron and so form the ionNa+.

• Potassium (K from its Latin nameKalium) has atomic number 19, atomic
weight 39.102 and valence 1. The latter means that it tends to lose one
electron and so form the ionK+.

• Calcium (Ca) has atomic number 20, atomic weight 40.08 and valence 2.
The latter means that it tends to lose two electrons and so form the ion
Ca2+.

• Chlorine (Cl) has atomic number 17, atomic weight 35.45 and valence -1.
The latter means that it tends to acquire a surplus electron and so form the
ion Cl−.

We note that the atomic number of an element is the number of protons in the
nucleus; therefore it is always a positive integer number. The atomic weight is im-
portant in computations that involve concentrations. In the experimental literature
the word ”concentration” has a precise technical meaning, namely the number of
mol of a substance (the solute) that is solved in a kilogram of solvent. Its unitis
the molar, i.e. one mol per kilogram, cf. Table 2.2. For example, a sodium ion so-
lution with a concentration of one molar in one kilogram of solvent must contain
22.99 grams of sodium since 22.99 is the atomic weight of sodium. The number of
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2.1 Introduction to neural modelling 29

Definition Abbreviation Value
Avogadro’s number N 6.02214 × 1023/mol
Faraday’s constant F 96485C/mol
elementary charge e 1.60218 × 10−19C
gas constant R 8.315J/(mol.K)

Table 2.1: Some important constants. We recall that a mol of a substanceis a quantity
that contains as many elementary units (atoms or molecules)as there are atoms in0.012
kg of carbon-12.

Quantity Symbol Unit Symbol
Current I Ampère A (=C/s)
Charge Q Coulomb C

Capacitance C Farad F (=C/V)
Potential V Volt V (=J/C)
Voltage U Volt V (=J/C)

Resistance R Ohm Ω (=V/A)
Conductance g Siemens S=mho (=1/Ω)
Concentration [] molar M

Energy Joule J (=kg.m2

s2 )

Table 2.2: Important electrical quantities and their units.

ions is then given by Avogadro’s numberN , cf. Table 2.1 and their total electrical
charge is Ne=96485 Coulomb (cf. Faraday’s constant in Table 2.1).

If a molecule consists of several atoms, it has a molecular weight which is ob-
tained by simply adding the atomic weights of the constituting atoms. For exam-
ple, water (H2O) contains two hydrogen atoms (H) with atomic weight1.00797
and one oxygen atom (O) with atomic weight 15.9994. Therefore the molecular
weight of water is2 × 1.00797 + 15.9994 = 18.0153.

2.1.2 The basic gating mechanism

Membranes of excitable cells have so-called channels or gates through which spe-
cific ions, in particularNa+, K+, Ca2+, Cl−can selectively pass. These gates in
fact consist of proteins which can be in an open state (O, ions can pass)or a closed
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30 Neural models as dynamical systems

state (C, ions cannot pass).
The possible actions consist of switching between the two states. This is usu-

ally represented in a simple diagram like (2.1):

C

k+

⇀
↽
k−

O (2.1)

The positive real numbersk+, k− are calledrate constantsor proportionality
constants. The meaning ofk+ is as follows. If the concentration of closed states is
given by [C], and∆t is a brief time interval, then after time∆t, the partk+[C]∆t
will have opened. Similarly, if the concentration of open states is given by [O],
then after time∆t, the partk−[O]∆t will have closed.

This is a special instance of the principle that is (inappropriately) called the
law of mass actionwhich states that the rate of a (chemical) process is proportional
to the product of the concentrations of the components of the process. Atthe
level of individual molecules, this reduces to a probability but usually one isonly
interested in the effect on a large number of molecules.

In the present situation only one component is involved. The quantityJ+ =
k+[C] is called the rate of transition from state C to state O. Similarly,J− =
k−[O] is called the rate of transition from state O to state C.

In the present situation only the interconversion of channel states is involved.
If NC andNO denote the numbers of cells in the closed state, respectively in the
open state, then the quantityN = NC + NO is necessarily fixed. Let us call
fC = NC

N the fraction of closed states andfO = NO

N the fraction of open states.
ThenfO = 1 − fC and we need effectively only an equation for one offC , fO.

The rate of transition from state O to C is now given byj− = k−fO and the
rate of change from state C to O is given byj+ = k+(1 − fO). The difference
between these two rates represents the change infO over time:

dfO
dt

= j+ − j− = k+(1 − fO) − k−fO = −(k− + k+)(fO − k+

k− + k+
) (2.2)

Now let us denoteτ = 1
k−+k+ andf∞ = k+

k−+k+ . Both constants are strictly
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2.1 Introduction to neural modelling 31

positive andf∞ is in ]0, 1[. We then have

dfO
dt

=
−(fO − f∞)

τ
. (2.3)

We note thatfO, f∞ are dimensionless and thatτ has the dimension of time.

2.1.3 The mathematical solution of the gating equation for fixed rate
constants

Equation (2.3) holds at a fixed moment in time, even if the rate constantsk+, k−

(and thereforef∞ andτ ) are time-dependent. In fact, the rate constants can de-
pend on several external influences, for example temperature, voltagegradient
(different electrical potential on the two sides of the membrane), or the presence
of chemical substances that block the gates.

We now look at the relatively simple case where there are no such outside
influences andk+, k− are constant, so thatτ andf∞ are also constant. In this
case, (2.3) is a first order linear differential equation with constant coefficients.
The analytical solution to such equations is well known and has the generalform:

fO(t) = f∞ +Ae−
t
τ , (2.4)

whereA is an integration constant. The solution is not unique but uniqueness is
established as soon as we fix the value offO(t) at any given timet. For example,
if fO(0) is known, then we infer from (2.4) thatfO(0) = f∞ +A, hence

fO(t) = f∞ + (fO(0) − f∞)e−
t
τ . (2.5)

Obviously, every such solution converges tof∞ ast tends to∞ and the decay
is exponential.

We note that from an experimental point of view,f∞ can be measured if the
ion transport through the membrane can be measured. Furthermore,τ can also be
obtained experimentally fromf∞ and the values of any solution of (2.3) at two
different times. The knowledge off∞ andτ then further allows to computek+

andk−. It is generally hard to measure these quantities directly.
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2.1.4 The Nernst potential

Biological fluids such as cytoplasm (intracellular fluid) and extracellular fluid con-
tain many ions. These flow freely in the fluid but cannot always pass through
membranes. Typically, membranes contain channels (gates) which are selectively
permeable. Therefore, the concentration of an ion inside a cell may be different
from the concentration outside the cell. In fact, cells often contain mechanisms
that actively maintain concentration differences. This is, in particular, the task of
the mitochondria which are tiny particles in cells that actively (consuming body
energy) pump ions through the cell membrane.

For simplicity, let us consider a case of two monovalent ionsK+ (potassium)
andCl− (chlorine). Monovalent means that the electrical charge of aK+ ion is
that of a proton, the charge of aCl− ion is that of an electron. Suppose also that
we have two compartments, sayL (left) andR (right) which are separated by a
membrane. (One might think ofL as being the cytoplasm of a cell and ofRas the
extracellular fluid).

First suppose thatL has equal concentrations[K+]L = [Cl−]L andRhas equal
concentrations[K+]R = [Cl−]R but the concentrations inR are higher than the
concentrations inL.

In that case there is no potential difference between the two membranes be-
cause the electrical charges in bothL andR balance.

If we insert a non-selective pore into the cell membrane through which both
K+ andCl− ions can freely pass, then by diffusion the concentrations on both
sides will gradually equilibrate. At the end, the potential difference between L
andR will again be zero.

Suppose, however, that we insert into the membrane an ion-selective pore
that allows only the passage ofK+ ions. Since[K+]R > [K+]L, the K+ ions
diffuse through the pore fromR to L. Since theCl− ions cannot pass through the
pore, eachK+ ion that passes fromR to L carries a positive charge that is not
counterbalanced by aCl− ion. Because the transfer of these charges establishes
an electrical potential gradient,K+ ions continue to move from high concentration
to low concentration until the growing force due to electrical potential difference
is balanced by the opposite force generated by the concentration difference.

The equilibrium potential, where the electrical and osmotic forces are bal-
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2.1 Introduction to neural modelling 33

anced, is given by the Nernst equation. The Nernst equation is derived from the
expression for the change inGibbs free energywhen one mol of an ion of valence
z is moved across a membrane. This Gibbs free energy is given by

∆G = −RT ln
[ion]R
[ion]L

+ (∆V )Fz

In this expressionR is the gas constant andF is Faraday’s constant (see Table 2.1),
T is the temperature in Kelvin (i.e. temperature in degrees Celsius plus273.16),
∆V is the potential difference across the membrane and[ion]L, [ion]R denote the
ion concentrations in the fluids before and after the crossing of the membrane.

It is a physical principle that the Gibbs free energy of a system tends to de-
crease. Therefore the transport of ions through the pore continues as long as∆G
is negative. It stops when∆G = 0, i.e. when

∆V =
RT

zF
ln

[ion]R
[ion]L

=
RT ln 10

zF
log10

[ion]R
[ion]L

.

To get a rough idea of what this means, we consider body temperature (37
degrees Celsius) and a monovalent ion. For a 10:1 concentration ratio we get

RT ln 10

zF
=

8.315(273.16 + 37) ln(10)

96485
= 0.0615 = 61.5 mV.

Hence a ratio 10:1 in ion concentrations on the two sides of the membrane can
compensate for a potential difference of61.5 mV (millivolts). This potential dif-
ference is called theNernst potential. In general, when one starts from any given
concentration difference, the ions will move in such a way that the potential dif-
ference will gradually evolve to the Nernst potential.

In electrophysiology, the Nernst potential is also called the reversal potential
because the departure from that point of zero current flux results in the positive or
negative flow of ions. We note that this reversal potential is ion-specific,i.e. each
ion has its own reversal potential which is dependent on the ion concentrations
on both sides of the membrane (and to a lesser degree on the temperature). In
Table 2.3 the resting ion concentrations for theK+, Na+ andCl− ions are given
in two neurons. We note that the cell soma contains a large concentration of
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Cytoplasmic Extracellular
Ion Concentration (mM) Concentration (mM)

Squid Giant Axon
K+ 400 20
Na+ 50 440
Cl− 40 560

Mammalian Neuron
K+ 135 3
Na+ 18 145
Cl− 7 120

Table 2.3: Resting ion concentrations. From McCormick [100].

potassium ions and a low concentration of sodium and chlorine ions, compared to
the extracellular fluid.

To get a more precise understanding, suppose we have one kilogram ofextra-
cellular fluid of the squid (the solvent). How many grams of potassium ions (the
solute) will be dissolved in this amount of fluid? From Table 2.3 we infer that this
corresponds to 20 millimolarK+ ions. Since the atomic weight of potassium is
39.102 (see§2.1.1) this amounts to39.102×0.02 = 0.78204 grams of potassium.

2.1.5 The membrane model

We know from Ohm’s law that current flows down a voltage gradient (i.e. from a
place with a higher potential to a place with a lower potential) in proportion to the
resistance in the circuit. Current is therefore expressed as

I =
V

R
= gV. (2.6)

whereg is the inverse ofR and called theconductance. The unit of resistance is
the Ohm (Ω) and the unit of conductance is the Siemens (S = 1

Ω ), cf. Table 2.2.
The conceptual idea behind contemporary electrophysiological models was

formulated in the work of K.S. Cole [19], though the fundamental ideas were
around before that time, e.g. in the pioneering work of A. Hodgkin and A. Huxley
[73, 74].
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2.1 Introduction to neural modelling 35

This idea is that a cell membrane can be likened to an electronic circuit in the
following sense.

1. A membrane has a phospholipid bilayer which acts as a capacitor, i.e. it
accumulates ionic (electrical) charge as the electrical potential across the mem-
brane changes. So it has a capacitanceC and if we denote the potential difference
across the membrane (potential on sideL minus potential on sideR) by V then an
electrical charge of amountCV is accumulated on theRside.

2. The ionic permeabilities of the membrane act as resistors in an electric
circuit.

3. The electrochemical driving forces for each type of channel are given by
the difference between the membrane potential difference and the reversal poten-
tial of the corresponding ion; these driving forces act as batteries driving the ionic
circuits.

Now let us work this out in more detail. We take the convention that the po-
tential difference is defined as ”inner potential minus outer potential”, and that
currents are positive if they move from ”outside” to ”inside”. Through thepotas-
siumK+ channel a current passes which by Ohm’s law is given by

IK = −gK(V − VK), (2.7)

wheregK is the conductance of theK+ channel; the leading ”−” sign is needed
because of our conventions about orientation.VK is the potassium reversal poten-
tial that is determined by the Nernst equation, andV − VK is the driving force
across the membrane provided by the ionic battery.

We assume that the reversal potential for a given ion is constant; this is equiv-
alent to assuming that there is some restorative mechanism such as ion pumps
(mitochondria!) that can keep pace with electrical activity on a time scale that
prevents the ionic battery from running down.

In fact, numerous ions are responsible for the electrical behaviour of a cell,
and the total current is given by

I = Σ − gi(V − Vi), (2.8)

where the summation is over all ion currents.
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36 Neural models as dynamical systems

In experimental situations the potential differenceV is measured across the
membrane and in the process an additional (”applied”) currentIapp is introduced
into the cell. Let us callIcap = Iion+ Iapp the total (capacitive) current across the
cell membrane. From the first assumption of the cell membrane model (CV = Q
whereQ is accumulated charge) we find by derivation that

C
dV

dt
= Icap = Iion + Iapp = −Σgi(V − Vi) + Iapp, (2.9)

where the summation is over all ion channels.

2.1.6 The voltage clamp

In (2.9) the conductancesgi are not constant in general. Let us denote byḡi the
maximum conductance of thei-th channel, i.e. its conductance when all channels
are open. Then we can writegi = ḡi.fiO wherefiO is the fraction of open chan-
nels as in§2.1.2. In§2.1.2 we saw thatfiO is time-dependent and its evolution is
governed by the equation

dfiO
dt

=
−(fiO − fi∞)

τi
, (2.10)

in which fi∞ andτi are parameters determined by the rate constants of the ion
channels. Moreover, in excitable cells the rate constants of the ion channels are
not constant but depend on the potential difference across the membrane. This is
easily understandable; if the electrical potential in the soma of the cell (the interior
body of the cell) is, for example, higher than the potential of the surrounding fluid,
then this favours the movement of positive ions out of the cell and of negative ions
into it. So in fact, (2.10) should be replaced by

dfiO
dt

=
−(fiO − fi∞(V ))

τi(V )
, (2.11)

The voltage clamp is an experimental method designed to measurefi∞(V ) and
τi(V ) directly in a given cell (it is not feasible to measure the rate constants them-
selves experimentally). In order to measure the voltage across a cell membrane or
the current flowing through a membrane, microelectrodes are inserted into cells.
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2.1 Introduction to neural modelling 37

These electrodes can be used both to measure current and voltage and toapply
external current. The voltage clamp is an electronic feedback device thatadjusts
the applied currentIapp to match and counter the membrane currents such that
the membrane voltage is held constant. To see what this accomplishes, consider a
membrane with a single gated ionic current. Then (2.9) reduces to

C
dV

dt
= Icap = Iion + Iapp = −ḡfO(t)(V − Vrev) + Iapp, (2.12)

whereVrev is the reversal potential given by the Nernst equation. If we can hold
V constant, i.e.dVdt = 0 by applying a current that is equal and opposite to the
current flowing through the membrane, then we must have

Iapp = ḡfO(t)(V − Vrev)

From this type of experiments it is possible to obtainVrev, ḡ andfO(t) from which
eventuallyf∞(V ) andτ(V ) can be deduced.

To carry out a voltage clamp experiment like this, it is necessary to block all
but a single type of current. While this sounds difficult and in fact is not always
possible, specific toxins and pharmacological agents have been used successfully.

Also, it is not uncommon in nature. For example, tetrodotoxin (TTX) from the
puffer fish selectively blocks voltage gatedNa+ - channels. Similarly, the toxin
of the black mamba (an African snake) selectively blocks theK+ - channels. The
K+- channels can also be blocked by injecting a large amount ofK+ ions into the
body liquid (normallyK+ is present in high concentration in the cells and in low
concentrations outside). Such injections have been used in the USA to execute
criminals convicted of murder [41].

In the future we will drop the overbar in̄g so thatg will actually denote the
maximum conductance which has to be scaled by gating variables of the formfO.

To carry out or to simulate a voltage clamp experiment, a consistent set of
electrical units must be used. Here we discuss the set used in [47]. The standard
unit for membrane potentials is millivolts (mV), and the characteristic times for
voltage-dependent gatesτ are in milliseconds. Currents are typically expressed in
µA/cm2 and capacitances inµF/cm2. For a typical cell of area10−6cm2, this
translates to whole-cell current of picoampères (1 pA=10−12A) and a whole-cell
capacitance of picofarads (1 pF=10−12F). This set is summarized in Table 2.4.
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Name (Symbol) Units Abbreviation
voltage (V) 10−3 volt mV

time (t) 10−3 second ms
conductance (g) 10−9 siemens nS
capacitance (C) 10−12 farad pF

current (I) 10−12 amp̀ere pA

Table 2.4: Consistent Electrical Units.

We note that cellular dimensions are usually reported in micrometers (”mi-
crons”). Most biological channels have a conductanceg on the order of 1 to 150
pS; whole-cell conductances are usually expressed in mS/cm2.

2.2 Main examples

Over the years, many different neural models have been developed. They differ
primarily in ionic currents and parameters, which are very dependent on both
individual neuron and animal species.

What follows in this section, is a description of some of these models that
are well-known and often used as starting point to create new, more type-specific,
models. These are also the models that are used regularly as examples throughout
this thesis.

2.2.1 The Hodgkin-Huxley model

Based on experiments in giant squid axons (Loligo pealei, also called the Atlantic
squid), Hodgkin and Huxley built the first quantitative model of the electrical
excitability of neurons. In a series of papers published in 1952, A.L. Hodgkin
and A.F. Huxley presented the results of a series of experiments in which they
investigated the flow of electric current through the surface membrane of the giant
nerve fibre of a squid. In the summary paper of the Hodgkin and Huxley model
[74], the authors developed a mathematical description of the behaviour ofthe
membrane based upon these experiments, which accounts for the conduction and
excitation of the fibre. The form of this description has been used as the basis for
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almost all other ionic current models of excitable tissues since. For this workon
the basis of ’nerve action potentials’, they received the Nobel Prize in Physiology
or Medicine in 1963.

The model describes three ionic currents: an inward sodium current, anout-
ward potassium current, and a leak current. Hodgkin and Huxley discovered
empirically that the conductances of the currents were not constant, but rather
functions of the membrane potential and this voltage dependence was the keyto
understanding action potentials or spikes.

The Hodgkin-Huxley model is defined by the following equations:

C
dV

dt
= I − gNam

3h(V − VNa) − gKn
4(V − VK) − gL(V − VL)

dm

dt
= φ ((1 −m) αm −m βm); (2.13)

dh

dt
= φ ((1 − h) αh − h βh);

dn

dt
= φ ((1 − n) αn − n βn);

ψαm = 25−V
10 αm = ψαm

exp[ψαm ]−1

βm = 4 exp[−V/18]

φ = 3
T−6.3

10 αh = 0.07 exp[−V/20]
βh = 1

1+exp[(30−V )/10]

ψαn = 10−V
10 αn = 0.1 ψαn

exp[ψαn ]−1

βn = 0.125 exp[−V/80]

In this work the parametersC = 1, gNa = 120, VNa = 115, gK = 36,
VK = −12, gl = 0.3, Vl = 10.559 andT = 6.3 are fixed.I is varied according
to the tests.

The variablesm, h andn represent the change in Na channel activation (open-
ing of channels), in Na channel inactivation (closing of channels) and inK channel
activation, respectively.
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40 Neural models as dynamical systems

2.2.2 The Connor model

In 1977, J.A. Connor et al. published a modification of the Hodgkin-Huxley
model [20]. They modified the equations to approximate voltage clamp data
from crustacean walking leg axons (Callinectes sapidusandCancer magister).
A new potassium current was added, with both an activation and an inactivation
component, referred to as the A-current. There were also significant changes in
the sodium conductance system, compared to the Hodgkin-Huxley equations,al-
though not so pronounced that an extra current was needed.

The Connor model is defined by the following equations:

C
dV

dt
= I − gL(V − VL) − gNam

3h(V − VNa) − gKn
4(V − VK)

−gAA3B(V − VA) (2.14)

dm

dt
=

m∞(V ) −m

τm(V )

dh

dt
=

h∞(V ) − h

τh(V )

dn

dt
=

n∞(V ) − n

τn(V )

dA

dt
=

A∞(V ) −A

τA(V )

dB

dt
=

B∞(V ) −B

τB(V )
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αm = 0.1(V+29.7)
1−exp(−0.1(V+29.7)) αh = 0.07 exp[−0.05(V + 48)]

βm = 4 exp[−(V + 54.7)/18] βh = 1
1+exp[−0.1(V+18)]

m∞ = αm

αm+βm
h∞ = αh

αh+βh

τm = 1
3.8

1
αm+βm

τh = 1
3.8

1
αh+βh

αn = 0.01 V+45.7
1−exp[−0.1(V+45.7)] A∞ =

(
0.0761 exp[(V+94.22)/31.84]

1+exp[(V+1.17)/28.93)]

) 1

3

βn = 1
8 exp(− 1

80(V + 55.7)) τA = 0.3632 + 1.158
1+exp[(V+55.96)/20.12]

n∞ = αn

αn+βn
B∞ = 1

(1+exp[(V+53.3)/14.54])4

τn = 2
3.8

1
αn+βn

τB = 1.24 + 2.678
1+exp[(V+50)/16.027]

In this study the parametersC = 1, gL = 0.3, EL = −17, gNa = 120,
gA = −47.7, VNa = 55, gK = 20, VK = −72 andVA = −75 are fixed. I
is varied according to the tests.

2.2.3 The Morris-Lecar model

In 1981, C. Morris and H. Lecar developed a neural model for muscle fibers of
the barnacle (Balanus nubilus) [101]. The barnacle was dissected, and individual
fibers from its muscles were used in doing voltage clamp measurements. Ex-
perimental work indicated that the giant barnacle muscle fiber contains primarily
voltage gated K+ and Ca2+ currents, along with a Ca2+-dependent K+ current.
The Morris-Lecar model involves only a fast activating Ca2+ current, a delayed
rectifier K+ current and a passive leak current.

The original Morris-Lecar model has three state variables, and is defined by
the following equations:

C
dV

dt
= Iext − gL(V − VL) − gCaM(V − VCa) − gKN(V − VK)

dM

dt
= τM (M∞ −M)

dN

dt
= τN (N∞ −N) (2.15)
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M∞ = 1
2(1 + tanh(V−V1

V2
)) N∞ = 1

2(1 + tanh(V−V3

V4
))

τM = φM cosh(V−V1

2V2
) τN = φN cosh(V−V3

2V4
)

Later, a simplification of this model was constructed, reducing it to a 2-di-
mensional dynamical system:

C
dV

dt
= Iext − gL(V − VL) − gCaM∞(V − VCa) − gKN(V − VK)

dN

dt
= τN (N∞ −N) (2.16)

M∞ = 1
2(1 + tanh(V−V1

V2
)) τN = φ cosh(V−V3

2V4
)

N∞ = 1
2(1 + tanh(V−V3

V4
))

In our experiments, we mostly used this 2-dimensional version, with fixed param-
etersC = 5, gL = 2, VL = −60, gCa = 4, VCa = 120, gK = 8, VK = −80,
φ = 1

15 , V1 = −1.2, V2 = 18 andV4 = 17.4. ParametersI andV3 are usually
variable, depending on the test.

We note the factor2V4 in the denominator of the equation definingN∞ in
the 2-dimensional equations. These equations are the simplified Morris-Lecar
equations as commonly used in scientific literature. But in fact, a derivation from
first principles done by Joel Keizer and reported in [47], Chapter 2, indicates that
a factorV4 would be better justified. However, this change has little influence
on the behaviour of the model, especially in the biologically relevant parameter
range.

2.2.4 The Ermentrout model

As final important example we wish to list the canonical model developed by G.B.
Ermentrout et al. [45], adapted from Traub and Miles [126].

C
dV

dt
= I − gNam

3h(V − VNa) − (gKn
4 + gmw + (2.17)

gahp
ca

ca+ 1
)(V − VK) − gL(V − VL) − ica
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dm

dt
= ((1 −m) αm −m βm);

dh

dt
= ((1 − h) αh − h βh);

dn

dt
= ((1 − n) αn − n βn);

dw

dt
=

w∞ − w

tw
;

dca

dt
= −0.002ica −

ca

80
;

ica = gcaml,∞(V − Vca) ml,∞ = 1
1+exp[−(V+25)/2.5]

αm = 0.32(V+54)
1−exp[−(V+54)/4] αh = 0.128 exp[−V+50

18 ]

βm = 0.28(V+27)
exp[(V+27)/5]−1 βh = 4

1+exp[−(V+27)/5]

αn = 0.032(V+52)
1−exp[−(V+52)/5] tw = 100

3.3 exp[(V+35)/20]+exp[−(V+35)/20]

βn = 0.5 exp[−V+57
40 ] w∞ = 1

1+exp[−(V+35)/10]

In this work the parametersVK = −100, VNa = 50, Vl = −67, Vca = 120,
gl = 0.2, gK = 80, gNa = 100, C = 1, gca = 1 andgahp = 0 are fixed.gm and
I are varied, according to the tests.

2.3 A Classification of neural models

2.3.1 Classification by spiking behaviour

In 1948, even before introducing the famous model, Hodgkin [72] reported on
different kinds of behaviour that were observed in excitable axons, more precisely
in the ways in which spiking was initiated. He classified the axons into two major
distinct classes: Class I and Class II.
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Neurons of Class I were defined by Hodgkin as those neurons for which the fre-
quency of the response varies smoothly with the applied current over a very broad
range and which have the ability to fire at arbitrarily low frequency at the onset of
firing.
In Class II neurons, the period is relatively insensitive to changes in the applied
current. Also, at a constant strength of current there is either a train ofimpulses
of fairly high frequency, or no propagated action potentials at all. Axons(or neu-
rons) of this class are not capable of giving low frequency discharges.
Hodgkin [72] does mention however, that ’the classification is in any case of an
arbitrary nature since there are transitional stages between the various groups’.

2.3.2 Classification by excitability

Rinzel and Ermentrout [110] introduced a new classification of neural models:
Type I and Type II.
Type I neurons go from steady state to oscillatory behaviour through a fold bifur-
cation. For this type, so they claimed, repetitive firing first appears with zero fre-
quency (homoclinic-to-saddle-node bifurcation), latency may be arbitrarily long
and intermediate-sized responses (in amplitude) are not possible.
In Type II neurons, the spiking is initiated through a (subcritical) Hopf bifurcation.
This leads to the onset of oscillations with a well-defined, non-zero frequency and
with possibly small amplitude, and latency for firing is finite.
On reviewing Hodgkin’s classification (Section 2.3.1) and their own, they con-
cluded that both methods of classification give identical results, and are thus
equivalent. Type I, with saddle-node point onset, would match Class I. Type II,
with a Hopf point bifurcation, would cause an interval of bistability, and provide
all characteristics of Class II. This conclusion has been taken as reference point in
a large number of subsequent papers ([21], [44], [45], [129],...).

2.3.3 Classification by subcritical and supercritical behaviour

The previous classification schemes lead to some confusion if no clear distinction
is made between the subcritical and supercritical behaviour of the periodicorbits.
To obtain a rigorous classification we restrict to cases where there is a stable equi-
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2.3 A Classification of neural models 45

librium before the transition, stability of the equilibrium is lost in a critical tran-
sition point and stable periodic orbits exist after the transition. For the loss of
stability of the equilibrium there are four generic (codimension 1) cases : fold (=
saddle-node), orbit homoclinic to saddle-node, subcritical Hopf and supercritical
Hopf.
A complete classification can be based on three components:

1. The loss of stability of the stable equilibrium.

2. The existence of stable periodic orbits for values of the critical parameter
on the side where the stable equilibrium exists and, in the case of existence,
their extinction in the sense of moving away from the transition point.

3. The extinction of the stable periodic orbits for increasing values of the crit-
ical parameter (i.e. on the side where the equilibrium has lost stability and
in the sense of moving away from that point).

So we propose the following scheme:

• Types by equilibrium bifurcation

– Type I: fold bifurcation (including orbit homoclinic to saddle-node).

– Type II: Hopf bifurcation (subcritical or supercritical).

The transition between the two types is a Bogdanov-Takens point.

• Groups by subcritical behaviour

– Group I: bistability with stable periodic orbits that shrink to a Hopf
point.

– Group II: bistability with stable periodic orbits that end with a finite
nonzero period.

– Group III: bistability with stable periodic orbits whose periods even-
tually grow infinitely.

– Group IV: no bistability
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I II

III IV

LPC

H

H

F

F

F

Hom

Hom

Figure 2.1: Example pictures of the 4 different Groups in subcritical behaviour. H =Hopf point;
F = Fold = saddle-node; LPC = limit point of cycles; Hom = homoclinic orbit.

• Groups by supercritical behaviour

– Group I: stable periodic orbits that shrink to a Hopf point.

– Group II: stable periodic orbits that end with a finite nonzero period.

– Group III: stable periodic orbits whose periods eventually grow in-
finitely.

In Figure 2.1 we sketch examples of the four Groups in subcritical behaviour. To
classify a certain model at certain parameter values, one must state to which class
it belongs in all three criteria.
The supercritical Groups I, II and III can be effectively linked to the 10 possi-
ble cases, as distinguished by Izhikevich [77], Table 4, in his study of slow-fast
bursters. In this view the slow variable is replaced by the parameter as a quasi-
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2.4 The Phase Response Curve 47

static variable. In fact, supercritical Andronov-Hopf (in Table 4) is ourGroup I;
fold of limit cycle, subcritical flip, subcritical Neimark-Sacker, and fold cycle on
homoclinic torus (as in Table 4) are in Group II and the other bifurcations are in
Group III.
It is instructive to compare our classification with the Classes of spiking systems
as introduced by Izhikevich in [77], Section 3. He considers Class 1 Spiking sys-
tems, in which the oscillations terminate having arbitrarily low frequency, and
Class 2 Spiking systems, in which the oscillations terminate with a non-zero fre-
quency. In our classification the Class 1 systems are either in Group III orin
Group IV by subcritical behaviour; Class 2 systems are either in Group I or Group
II by subcritical behaviour.

2.4 The Phase Response Curve

2.4.1 Introduction

In the field of neural modelling, a very important concept is the phase resetting
or response curve (PRC). When a neuron is firing a train of spikes (action poten-
tials), then a short input pulse can modify the ongoing spike train. Even if the
incoming pulse is purely excitatory, depending on the neuron and the exacttiming
of the pulse, it can either speed up or delay the next action potential. This affects
properties of networks such as synchronization and phase-locking ([44], [67], ...).

Applications of the PRC to the stochastic response dynamics of weakly cou-
pled or uncoupled neural populations can be found in [13]. They also derive PRCs
for cycles close to bifurcations such as homoclinic orbits and Hopf points.

The phase response curve quantifies the linearized effect of an input pulse at a
given point of the orbit on the following train of action potentials. If an inputpulse
does not affect the spike train, the period is unchanged and the PRC at that point
of the curve is zero. If the input pulse delays the next spike, the period increases,
and the PRC is negative; if the pulse speeds up the next spike, the PRC is positive.

The PRC can be used to compute the effect of any perturbing influence onthe
curve if the perturbation does not essentially change the dynamic pattern ofthe
neuron; in particular it should not move the state of the neuron into a domain of
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48 Neural models as dynamical systems

attraction different from that of the spiking orbit. In the case of coupling,PRCs
can be used to compute the influence of weak coupling.

In this section we define the PRC and its derivative, and give a mathematical
derivation of its computation which is equivalent to the ’adjoint method’ of Er-
mentrout and Kopell [43]. Our method will be shown to be particularly useful in
the context of the numerical continuation of orbits with a variable parameter of
the system.

We also describe the computation of the response to a function. The input
function f is given over the whole periodic orbit. This is more realistic in the
case of coupled neurons. We further apply this functionality to a simple studyof
phase-locking and synchronization of phase models.

2.4.2 Response or resetting?

The terms ’phase response curve’ and ’phase resetting curve’, bothabbreviated
to PRC, are used interchangeably in the literature. Since there seems to be some
confusion, we start with the precise definitions that will be used in the rest of this
work.

Peak-based phase response curve

This is a rather intuitive and biologically oriented definition, that can easily be
applied to experimental data.

The phase response curve is a curve which is defined over the timespan of
one cycle in the spike train of a firing neuron with no extra input. It starts at the
peak of a spike and extends to the peak of the following spike. At each point of
the cycle, it indicates the effect on the oncoming spikes of an input pulse to the
neuron at that particular time in its cycle.

If we define the period of the unperturbed cycle asTold, andTnew is the time
span between the previous spike and the next spike when the input pulseI is given
at timet, the phase response curve is defined as

G(t, I) =
Told − Tnew

Told
. (2.18)
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Phase resetting curve

This notion can be defined mathematically for any stable periodic orbit of a dy-
namical system. Let the period of the orbit be denoted asTold and suppose that a
point of the orbit is chosen as the base point (in a neural model, this point typically
corresponds to a peak in the spike train).

The phase resetting curve is defined in the interval[0, 1], in which the variable
φ is called the phase and is defined as

φ =
t

Told
(mod 1) , (2.19)

with t ∈ [0, Told].
Now suppose that an input pulseI is given to the oscillator when it is at the

point x(t). Mathematically, the pulseI could be any vector in the state space of
the system. In neurobiological applications it is usually a vector in the direction
of the voltage component of the state space, since that component is affected by
the synaptic input from other neurons.

Since the orbit starting fromx(t) + I will close in on the stable limit cycle,
there is exactly one pointx(t1), t1 ∈ [0, Told] which has the property that

d(y(t), z(t)) → 0 for t→ ∞ (2.20)

if {
y(0) = x(t) + I
z(0) = x(t1)

.

Herex(t1) andx(t) + I are said to be on the same isochron, cf. [64]. We then
define

g(φ, I) =
t1
Told

. (2.21)

Universal definition of the phase response curve PRC

The definition of the peak-based response curve in (2.18) is satisfactory only if
each period contains precisely one easily identifiable spike and transients can be
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ignored. I.e. we assume that the input only affects the first oncoming spike, and
dies away after that. In this case the next spike will occur at time

Tnew = (φ+ (1 − g(φ, I))) Told . (2.22)

So according to (2.18)

PRC(φ, I) = G(Toldφ, I) =
Told − (φ+ (1 − g(φ, I))) Told

Told
= g(φ, I) − φ .

(2.23)
To avoid the difficulties related to transients we redefine the phase response curve
by

PRC(φ, I) = g(φ, I) − φ (2.24)

in general. This definition is mathematically unambiguous and is reduced to the
definition in (2.18) in the case of no transients.

2.4.3 The PRC as an adjoint problem

Let a neural model be defined by a system of differential equations

Ẋ = f(X,α) , (2.25)

whereX ∈ R
n represents the state variables andα is a vector of parameters. We

consider a solution to (2.25) that corresponds to the periodically spiking behaviour
of the neuron with periodT . By rescaling time we find a periodic solutionx(φ)
with period1, solution to the equations

{
ẋ− Tf(x, α) = 0
x(0) − x(1) = 0

. (2.26)

We consider the periodic functionA(φ) = fX(x(φ)) with period1. To (2.26)
we associate the fundamental matrix solutionΦ(φ) of the non-autonomous linear
equation: {

Φ̇(φ) − T A(φ) Φ(φ) = 0
Φ(0) = In

. (2.27)
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It is also useful to consider the equation adjoint to (2.27):
{

Ψ̇(φ) + T A(φ)T Ψ(φ) = 0
Ψ(0) = In

. (2.28)

From (2.27) and (2.28) it follows that

Φ(φ)T Ψ̇(φ) + T Φ(φ)T A(φ)T Ψ(φ) = 0

Φ(φ)T Ψ̇(φ) + (T A(φ) Φ(φ))T Ψ(φ) = 0

Φ(φ)T Ψ̇(φ) + Φ̇(φ)T Ψ(φ) = 0

d

dt
(Φ(φ)T Ψ(φ)) = 0

d

dt
(Ψ(φ)T Φ(φ)) = 0

By the initial conditions this implies

Ψ(φ)T Φ(φ) ≡ 1. (2.29)

By taking derivatives of (2.26), we find that the tangent vectorv(φ) = ẋ(φ)
satisfies {

v̇(φ) − T A(φ) v(φ) = 0
v(0) − v(1) = 0

. (2.30)

From this and (2.27) we infer

v(φ) = Φ(φ)v(0) . (2.31)

The monodromy matrix is the linearized return map of the dynamical system,
and is defined by

M(φ) = Φ(φ+ 1)Φ(φ)−1 . (2.32)

Now if we define
Φ1(φ) = Φ(φ+ 1) M(0)−1, (2.33)

then, becauseΦ is periodic, we can infer from (2.27) that

Φ̇1(φ) − T A(φ) Φ1(φ) = 0 (2.34)
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and
Φ1(0) = Φ(1)M(0)−1 = I. (2.35)

Thus, we conclude that
Φ1(φ) = Φ(φ). (2.36)

So from (2.33) and (2.36),

Φ(φ) = Φ(φ+ 1) M(0)−1

Φ(φ+ 1) = Φ(φ) M(0) . (2.37)

From (2.32) and (2.37), we find

Φ(φ+ 1) = Φ(φ) M(0) = M(φ) Φ(φ). (2.38)

Hence
M(φ) = Φ(φ)M(0)Φ(φ)−1 . (2.39)

The eigenvalues ofM(φ) are called multipliers; the similarity (2.39) implies
that they are independent ofφ. M(φ) always has a multiplier equal to+1. By
(2.30) and (2.31),v(0) = v(1) is a right eigenvector forM(0) = Φ(1) for the
eigenvalue1. By (2.39),v(φ) is a right eigenvector ofM(φ) for the eigenvalue 1
for all φ.

Let us assume that the limit cycle is stable, such that all multipliers different
from 1 have modulus strictly less than1. Then in particularM(0) has a unique
left eigenvectorvl0 for the multiplier1, for whichvT

l0v(0) = 1. For allφwe define

vl(φ) = Ψ(φ)vl0 . (2.40)

It is now easy to see (from (2.28)) that

{
v̇l(φ) + T A(φ)T vl(φ) = 0
vl(0) − vl(1) = 0

. (2.41)

Also, for allφ, vl(φ) is a left eigenvector ofM(φ) for the eigenvalue1 and

vl(φ)Tv(φ) = 1 . (2.42)
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Let R(φ) be the joint right(n − 1)-dimensional eigenspace ofM(φ) that
corresponds to all multipliers different from1, i.e. R(φ) is the space orthogonal
to vl(φ).
Now, letI be a pulse given at timeφ. We can decompose this pulse uniquely as

I = Iv + Ir , (2.43)

with {
Iv = c v(φ)
Ir ∈ R(φ)

, (2.44)

wherec ∈ R.
Linearizing this perturbation ofx(φ), we find that the effect ofIr will die

out, while the effect ofIv will be to move the system vector along the orbit. The
amount of the change in time is equal toc as defined in (2.44). The linearized
PRC, which for simplicity we just call the PRC, atφ for pulseI is therefore (note
that we have rescaled to period1):

PRC(φ, I) = c . (2.45)

Sincevl(φ) is orthogonal toIr we get from (2.43) and (2.42) that

vl(φ)T I = vl(φ)T Iv = c , (2.46)

so
PRC(φ, I) = vl(φ)TI . (2.47)

The solution to the adjoint equation of (2.25), as used by Ermentrout (1996),
is defined by the system

{
Ż(t) = −A(t)T Z(t)
1
T

∫ T
0 Z(t)T Ẋ(t)dt = 1

,

and the periodicity conditionZ(T ) = Z(0). It is related to our solution by the
equation

Z(t) = T vl(
t

T
) , (2.48)
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wheret ∈ [0, T ].

Another mathematically equivalent method, though in a completely different
setting, was introduced by Demir et al. [28]. They used the eigenvectors of the
monodromy matrix, as we did, to compute the Perturbation Projection Vector or
PPV, which is equivalent to the PRC in neural modelling.

In the case of the unscaled system (2.25), if a pulseI is given at timet = Tφ,
then we find that

PRC(φ, I) = vl(φ)TI . (2.49)

If I is the unit vector along the first (voltage) component and we have

PRC(φ, I) = (vl(φ))1 , (2.50)

where(.)1 denotes the first component. This situation is so common in neural
models that(vl(φ))1 is sometimes also referred to as the phase response curve.

2.4.4 Response to a function

Instead of giving an impulseI at a fixed timet = Tφ we can also add a (small)
vector functiong(φ), g continuous over[0, 1], to the right-hand side of (2.25) to
model the ongoing input from other neurons. The phase response (PR) to this
ongoing input is then given by

PR(g) =

∫ 1

0
vl(φ)Tg(φ)dφ . (2.51)

We will now briefly show how the computation of the phase response to a
function is done in a classical and well understood situation, namely the phase
dynamics of two coupled Poincaré oscillators.

The Poincaŕe oscillator has been used many times as a model of biological
oscillations, e.g. [52], [53]. This oscillator is most often described in a radial co-
ordinate system (r,φ), wherer is the distance from the origin andφ is the angular
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coordinate. The equations are

{ dr
dt = k r (1 − r)
dφ
dt = 2 π

(2.52)

wherek is a positive parameter. Starting at any point, except forr = 0, there is
an evolution towards a stable attracting limit cycle atr = 1, which has period 1.
k determines the rate of convergence.

This limit cycle can also be considered in an orthogonal coordinate system
(x,y): {

dx
dt = k x (1 −

√
x2 + y2) − 2 π y

dy
dt = k y (1 −

√
x2 + y2) + 2 π x

(2.53)

In this coordinate system, a stable periodic orbit exists, fort ∈ [0, 1]:
{
x = cos(2 π t)
y = sin(2 π t)

(2.54)

The dynamics of weakly coupled oscillators can be reduced to their phase
dynamics, cf. [66] where further references can be found. We restrict to the simple
setting discussed in [46]. Consider two identical, weakly coupled oscillators, with
autonomous periodT :

{
X ′

1 = F (X1) + ǫG1(X2, X1)
X ′

2 = F (X2) + ǫG2(X1, X2)

with G1 andG2 two possibly different coupling functions, andǫ a small positive
number. LetX0(t) be an asymptotically stable periodic solution ofX ′ = F (X)
with periodT . Then, forǫ sufficiently small,

Xj(t) = X0(θj) +O(ǫ) (j = 1, 2) (2.55)

with

θ′1 = 1 + ǫH1(θ2 − θ1)
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θ′2 = 1 + ǫH2(θ1 − θ2)

whereHj areT -periodic functions given by

Hj(ψ) ≡ 1

T

∫ T

0
Z(t)T Gj [X0(t+ ψ), X0(t)]dt , (2.56)

whereZ is the adjoint solution as defined in (2.48).

Now consider two identical Poincaré oscillators. A natural choice for the
coupling functionsGj is

G1(Xi, Xj) = G2(Xi, Xj) = Xi −Xj .

It follows that, forj = 1, 2

Hj(φ) =

∫ 1

0
vl(t)

T[X0(t+ φ) −X0(t)]dt

=

∫ 1

0
vl(t)

T

[
cos(2π(t+ φ)) − cos(2πt)
sin(2π(t+ φ)) − sin(2πt)

]
dt

=

∫ 1

0
vl(t)

T

[
cos(2πt) cos(2πφ) − sin(2πt) sin(2πφ) − cos(2πt)
sin(2πt) cos(2πφ) + cos(2πt) sin(2πφ) − sin(2πt)

]
dt

= cos(2πφ)

∫ 1

0
vl(t)

T

[
cos(2πt)
sin(2πt)

]
dt+

sin(2πφ)

∫ 1

0
vl(t)

T

[
− sin(2πt)
cos(2πt)

]
dt−

∫ 1

0
vl(t)

T

[
cos(2πt)
sin(2πt)

]
dt .

One now finds that

(θ2 − θ1)
′ = ǫ(H2(θ1 − θ2) −H1(θ2 − θ1))

= ǫ(H2(θ1 − θ2) −H2(−(θ1 − θ2)))

= 2 ǫ sin[2π(θ1 − θ2)]

∫ 1

0
vl(t)

T

[
− sin(2πt)
cos(2πt)

]
dt . (2.57)

We setζ = θ2 − θ1. For the two oscillators to be in a phase-locked state, we
want the right-hand side of (2.57) to be zero. The constant functionζ = 1

2 is a
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solution to that; it corresponds to anti-phase phase-locking. On the other hand, if
at the starting timeζ 6= 1

2 (mod 1), then we can write

dζ

dt
= −2 ǫ sin(2πζ) α (2.58)

where

α =

∫ 1

0
vl(t)

T

[
− sin(2πt)
cos(2πt)

]
dt . (2.59)

So

dζ

sin(2πζ)
= −2 ǫ αdt

ln
(

1−cos(2πζ)
sin(2πζ)

)

2π
= −2 ǫ α t+ C1 , (2.60)

for some constantC1. Note that

1 − cos(2πζ)

sin(2πζ)
=

1 − cos2(πζ) + sin2(πζ)

2 sin(πζ) cos(πζ)

=
sin(πζ)

cos(πζ)

= tan(πζ) . (2.61)

So from (2.60) and (2.61)

ln

(
1 − cos(2πζ)

sin(2πζ)

)
= −4π ǫ α t+ C2

ln(tan(πζ)) = −4π ǫ α t+ C2

tan(πζ) = C exp(−4π ǫ α t) , (2.62)

for some constantC 6= 0.
This leads to the following conclusion about the behaviour ofζ for t→ ∞:

α > 0 ⇒ ζ → 0/1
α < 0 ⇒ ζ → 1

2
α = 0 ⇒ ζ → constant .

(2.63)
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58 Neural models as dynamical systems

In the first case, the two oscillators converge to in-phase phase-lockingor syn-
chronization, in the second case they move towards anti-phase phase-locking, and
in the third case, the oscillators remain in the out-of-phase phase-locked state they
started with.

Now α is nothing but the phase response to a function, and can be computed.
In this particular case, using coupling functionG(X2, X1) = X2 − X1, we find
thatα > 0; so two identical Poincaré oscillators coupled in both directions by
this function always converge to synchronization, except when they start in per-
fect anti-phase phase-locking, in which case they will remain in that state. This is
easily checked by numerical simulation (and can be shown analytically).

Analogously, it is easy to computeα for other coupling functions, and to check
the result by simulations. E.g. ifG1(X2, X1) = G2(X2, X1) = X1 − X2,
thenα < 0, so the two Poincaré oscillators always converge to anti-phase phase-
locking.

A more interesting case is obtained if we set

X1 =

(
x1

x2

)
, X2 =

(
x3

x4

)
,

G1(X2, X1) =

(
x3 − x1

0

)
, G2(X1, X2) =

(
x1 − x3

0

)
. (2.64)

In this case we again findα > 0 and there is always synchronization, except
for when we start in exact anti-phase. If we change the sign of the coupling in
(2.64), to obtain the function

G1(X2, X1) =

(
x1 − x3

0

)
, G2(X1, X2) =

(
x3 − x1

0

)
, (2.65)

thenα also changes sign, and there is always anti-phase locking (except when
starting from perfect synchrony). These two are illustrated by numerical simula-
tions in Figure 2.2.

When we set

G1(X2, X1) =

(
x4 − x2

0

)
, G2(X1, X2) =

(
x2 − x4

0

)
, (2.66)
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2.4 The Phase Response Curve 59

Figure 2.2: Simulation results with coupled Poincaré oscillators. A) Initial condition: 2
oscillators out of phase. B) Using coupling function (2.64), the oscillators synchronize.
C) Using coupling function (2.65), the oscillators go into anti-phase. D) Using coupling
function (2.66), the oscillators remain locked in their original state.

thenα is zero (up to truncation and rounding errors), so the oscillators keep their
initial out-of-phase phase-locking. This is confirmed by numerical simulations, as
shown in Figure 2.2.
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Chapter 3

New features of MatCont

MATCONT and CL MATCONT are MATLAB numerical continuation packages
for the interactive study of dynamical systems and bifurcations. The work started
in 2000 and the first publications appeared in 2003. In this software we improved
some aspects and added several new functionalities. Some ofthe new functional-
ities were previously only available as toolboxes that can be used by experts, e.g.
continuation of homoclinic orbits. Several others were never implemented at all,
such as automatic computation of phase response curves and their derivatives.
After a general introduction on the software packages, one section is devoted
to each of the most important modifications of the program, namely the phase
response curves, homoclinic orbits and the use ofC-code that is compiled at
start-up time.

3.1 MATCONT and CL MATCONT

3.1.1 Existing software

During the last decades, considerable efforts have been made to develop general-
purpose software tools for bifurcation analysis of dynamical systems of the form

dx

dt
= f(x, α), x ∈ R

n, α ∈ R
p (3.1)
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(see Bibliographical Notes to Chapter 10 of [86] for references). One may distin-
guish at least three generations of such software:

1. Non-interactive packages and codeswere developed in the beginning of the
1980s and written inFORTRAN. They allowed one to continue equilibria
and cycles of systems of differential equations, as well as their simplest
bifurcations (limit point, Hopf, period-doubling). The most widely used
packages of this generation wereAUTO86 andLINLBF . There were a few
other programs available, which could perform normal form computations,
namely:STUFF, BIFOR2, CYCLE.

2. Interactive programsfor bifurcation analysis of ODEs appeared in the end
of the 1980s, when workstations and IBM-PC compatible computers be-
came widely available at universities and general research institutes. The
first fully interactive bifurcation software wasLOCBIF, that was based on
LINLBF and worked on PCs under MS-DOS. It had a simple GUI with
buttons, windows, and pull-down menus, characteristic for all programs of
this generation. The programsAUTO94/97/2000 andXPPAUT, which ran
under UNIX and used the efficient numerics ofAUTO86, together with a
simple GUI for X-Windows, also belong to this generation. All programs
supported the on-line input of the right-hand sides of (3.1) and its compila-
tion, either by a special built-in compiler or by calling a standardFORTRAN

compiler. They allowed the user to continue equilibria, cycles, and their
codimension-one bifurcations. Computed curves could be plotted in fixed
graphic windows. All mentioned programs had a closed architecture.

3. The third generation includes DSTOOL and CONTENT, developed in the
1990s. These programs have features of the so-calledsoftware environ-
ments, meaning that the user can define/modify a dynamical model (3.1),
perform its rather complete analysis, and export results of this analysis in
a graphical form, all without leaving the program. The programs have an
elaborate GUI and run on several platforms, including popular worksta-
tions running Motif under UNIX, and PCs running OpenMotif under Linux
or just MS-Windows. They provide off- or on-line help and extensive doc-
umentation for users and developers. It is possible, though hard, to ex-
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tend them. Both programs support simulation of (3.1). DSTOOL computes
equilibria and their codim 1 bifurcations using parts of theLINLBF -code.
CONTENT, that is written in C/C++, supports the continuation of equilibria
of (3.1) and their bifurcations withcodim ≤ 2, as well as the continua-
tion of cycles usingAUTO-like algorithms. Moreover, it computes normal
forms for many equilibrium bifurcations, using internally generated sym-
bolic derivatives of order≤ 3.

Computations for ODEs currently supported by the most widely used software
packagesAUTO97/2000 [38] andCONTENT 1.5 [85] are indicated in Table 3.1.

3.1.2 Bifurcation softwareMATCONT

Despite all efforts, none of the above-mentioned packages covers the whole range
of known bifurcations in ODEs, even with two control parameters (p = 2). The
data exchange between existing programs is practically impossible due to indi-
vidual data formats. Moreover, for some important bifurcation problems, such
as normal form computations for cycle bifurcations, no robust and efficient nu-
merical methods have been developed. None of the existing software represents
the results of the analysis in a form suitable for standard control, identification,
or visualization software. Therefore, none fits well into the standard engineering
software environments. Existing software tools are hardly extendible, since all of
them are written in relatively low-level programming languages, likeFORTRAN

andC.
Recognizing these deficiencies lead to a research project to develop the next

generation bifurcation software inMATLAB , now known as MATCONT, in which
groups from Belgium and The Netherlands, as well as individual scientists from
Canada, US, Switzerland, and Russia were involved. Early versions ofMATCONT

were described in [31], [32]. MATCONT also has a command-line version, called
CL MATCONT.

Relationships between objects of codimension0, 1 and2 computed by MAT-
CONT 2.* are presented in Figure 3.1, while the symbols and their meaning are
summarized in Table 3.2, where the standard terminology is used, see [86].
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Table 3.1: Supported functionalities for ODEs inAUTO (A), CONTENT (C) and MAT-
CONT (M).

A C M

time-integration + +

Poincaŕe maps +

monitoring user functions along curves computed
by continuation + + +

continuation of equilibria + + +

detection of branch points and
codim 1 bifurcations (limit and Hopf points) of equilibria + + +

computation of normal forms
for codim 1 bifurcations of equilibria + +

continuation of codim 1 bifurcations of equilibria + + +

detection of codim 2 equilibrium bifurcations (cusp,
Bogdanov-Takens, fold-Hopf generalized and double Hopf) + +

computation of normal forms
for codim 2 bifurcations of equilibria +

continuation of codim 2 equilibrium bifurcations
in three parameters +

continuation of limit cycles + + +

computation of phase response curves and their derivatives +

detection of branch points and codim 1 bifurcations
(limit points, flip and Neimark-Sacker (torus)) of cycles + + +

continuation of codim 1 bifurcations of cycles + +

branch switching at equilibrium and cycle bifurcations + + +

continuation of branch points
of equilibria and cycles +

computation of normal forms for
codim 1 bifurcations of cycles +

detection of codim 2 bifurcations of cycles +

continuation of orbits homoclinic to equilibria + +



i

i

“main” — 2007/1/15 — 13:43 — page 65 — #79
i

i

i

i

i

i

3.1 MATCONT and CL MATCONT 65

Type of object Label
Point P
Orbit O

Equilibrium EP
Limit cycle LC

Limit Point (fold) bifurcation LP
Hopf bifurcation H

Limit Point bifurcation of cycles LPC
Neimark-Sacker (torus) bifurcation NS
Period Doubling (flip) bifurcation PD

Branch Point BP
Cusp bifurcation CP

Bogdanov-Takens bifurcation BT
Zero-Hopf bifurcation ZH

Double Hopf bifurcation HH
Generalized Hopf (Bautin) bifurcation GH

Branch Point of Cycles BPC
Cusp bifurcation of Cycles CPC

Generalized Period Doubling GPD
Chenciner (generalized Neimark-Sacker) bifurcationCH

1:1 Resonance R1
1:2 Resonance R2
1:3 Resonance R3
1:4 Resonance R4

Fold–Neimark-Sacker bifurcation LPNS
Flip–Neimark-Sacker bifurcation PDNS

Fold-flip LPPD
Double Neimark-Sacker NSNS

Table 3.2: Equilibrium- and cycle-related objects and their labels within the GUI
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LPNSCHR4R1 R3BPCGHBTCPBP HHZH CPC PDNS R2 NSNS GPDLPPD2

codim

0

1 LPCH

LC

NSLP

O

EP

PD

Figure 3.1: The graph of adjacency for equilibrium and limit cycle bifurcations in MAT-
CONT

An arrow in Figure 3.1 from O toEP or LC means that by starting time in-
tegration from a given point we can converge to a stable equilibrium or a stable
limit cycle, respectively. In general, an arrow from an object of typeA to an object
of typeB means that that object of typeB can be detected (either automatically or
by inspecting the output) during the computation of a curve of objects of typeA.
For example, the arrows fromEP to H, LP, andBP mean that we can detectH,
LP andBP during the equilibrium continuation. Moreover, for each arrow traced
in the reversed direction, i.e. fromB to A, there is a possibility to start the com-
putation of the solution of typeA starting from a given objectB. For example,
starting from aBT point, one can initialize the continuation of bothLP andH
curves. Of course, each object of codim 0 and 1 can be continued in oneor two
system parameters, respectively.

Recently, many improvements and new features were incorporated in MAT-
CONT. It is on these additions that this chapter will elaborate.

MATCONT is freely available at http://www.matcont.UGent.be
upon a registration. It requiresMATLAB 6.* or higher.



i

i

“main” — 2007/1/15 — 13:43 — page 67 — #81
i

i

i

i

i

i

3.2 Computation of the PRC 67

3.2 Computation of the PRC

In Section 2.4.3, we have described a new algorithm to compute the PRC of a
limit cycle. The method is equivalent to an existing method, the so-called adjoint
method, but our implementation in MATCONT, as part of the boundary value
problem for the limit cycle of the stable orbit, is faster and more robust than any
existing method; in fact we get the PRC as a by-product of the computation of
the limit cycle. In this section we explain the implementation of the algorithm in
detail.

3.2.1 Survey of methods

Currently, two classes of methods are often used to compute PRCs.
The simplest methods are direct applications of definition (2.18). I.e. using

simulations, one passes through the cycle repeatedly, each time giving an input
pulse at a different time, and measuring the delay of the spike. From this a PRC
curve can be computed. This was done by Guevara et al. [65] and many others.

This method has several advantages. It is simple and does not require any
special software (only a good time integrator is needed). It can be used for arbi-
trarily large perturbations, even if the next spike would be delayed by morethan
the period of one cycle in which case the term ’delay’ might be confusing.

Depending on the required accuracy of the PRC this method typically takes a
few seconds. In applications where the PRC of one given limit cycle is desired, it
is usually quite satisfactory.

The other methods are based on the use of the equation adjoint to the dynam-
ical system that describes the activity of the neuron. The mathematical basisof
this approach goes back to Malkin [98] and [99], see also [10] and [42]. An easily
accessible reference is in [75,§9.2].

The idea to use this method for numerical implementation goes back to Er-
mentrout and Kopell [43]. The implementation described in [44], and available
through Ermentrout’s software package XPPAUT [46], is based on the backward
integration of the adjoint linear equation of the dynamical system.

This method is mathematically better defined and more general than the sim-
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ulation method, because it does not use the notion of a spike. It is also more
restricted because it does not measure the influence of a real finite perturbation
but rather a linearization of this effect which becomes more accurate if the pertur-
bation gets smaller.

As noted in [44], the accuracy of the method based on backward integration
is limited for two reasons. First, the adjoint Jacobian of the dynamical system
is not available analytically. It has to be approximated by finite differences from
a previously numerically computed discretized form of the orbit. Secondly, the
integration of the linear equations also produces the usual numerical errors.

As noted before, the method that we propose is mathematically equivalent to
the adjoint method, but the implementation is new. The main advantage is that it is
much faster. Though the increase in speed is impressive, this is not very relevant if
only one or a few PRCs are needed. The main application of our method therefore
lies in cases where a large number of PRCs is needed, such as cases where the
evolution of PRCs is important when a parameter is changed.

Another advantage is that the sources of error from the existing method donot
apply to the method that we propose. In fact, we can compute PRCs even in cases
where the stable periodic orbits are hard to find by direct time integration.

3.2.2 Orthogonal collocation inMATCONT

In MATCONT, as inAUTO [38] andCONTENT [85], the continuation of limit cy-
cles is based on (2.26) and uses orthogonal collocation. We briefly summarize this
technique before describing its extension to compute phase response curves. For
details on the orthogonal collocation method we refer to [3] and [27]. The idea to
use the discretized equation to solve the adjoint problem was used in a completely
different context in [87].

Since a limit cycle is periodic, we need an additional equation to fix the phase.
For this phase equation an integral condition is used. The resulting full system is
the following: 




ẋ(t) − T f(x(t), α) = 0
x(0) − x(1) = 0∫ 1
0

˙̃xT(t)x(t)dt = 0

, (3.2)
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wherex̃ is some initial guess for the solution, typically obtained from the previ-
ous continuation step. This system is referred to as the boundary value problem
or BVP.

Now to describe a continuous limit cycle numerically, it needs to be stored in
a discretized form. First the interval[0, 1] is subdivided intoN intervals:

0 = τ0 < τ1 < · · · < τN = 1 . (3.3)

The grid pointsτ0, τ1, . . . , τN form the coarse mesh. In each interval [τi, τi+1],
the limit cycle is approximated by a degreem polynomial, whose values are stored
in equidistant mesh points on each interval, namely,

τi,j = τi +
j

m
(τi+1 − τi) (j = 0, 1, ...,m) . (3.4)

These grid points form the fine mesh. In each interval[τi, τi+1] we then re-
quire the polynomials to satisfy the BVP exactly atm collocation points. The best
choice for these collocation points are the Gauss pointsζi,j , i.e. the roots of the
Legendre polynomial of degreem, relative to the interval[τi, τi+1] [27].

For a given vector functionη ∈ C1([0, 1],Rn), we consider two different
discretizations and two weight forms:

• ηM ∈ R
(Nm+1)n the vector of the function values at the mesh points;

• ηC ∈ R
Nmn the vector of the function values at the collocation points;

• ηWL ∈ R
(Nm+1)n the vector of the function values at the mesh points, each

multiplied with its coefficient for piecewise Lagrange quadrature;

• ηWG =

[
ηW1

ηW2

]
∈ R

(Nm+1)n whereηW1
is the vector of the function

values at the collocation points multiplied by the Gauss-Legendre weights
and the lengths of the corresponding mesh intervals, andηW2

= η(0).



i

i

“main” — 2007/1/15 — 13:43 — page 70 — #84
i

i

i

i

i

i

70 New features of MatCont

To explain the use of the weight forms we first consider a scalar function
f ∈ C0([0, 1],R). Then the integral

∫ 1
0 f(t)dt can be numerically approximated

by appropriate linear combinations of function values and this can be done in
several ways.
For background on quadrature methods we refer to [30], Chapter 9. Ifthe fine
mesh points are used, then the best approximation has the form

N−1∑

i=0

m∑

j=0

lm,j(fM )i,j(τi+1 − τi) (3.5)

=
N−1∑

i=0

m−1∑

j=0

(fWL)i,j + (fWL)N−1,m . (3.6)

In (3.5) the coefficientslm,j are the Lagrange quadrature coefficients and
(fM )i,j = f(τi,j); (3.5) is the exact integral iff(t) is a piecewise polynomial
of degreem or less. (3.6) is a reorganization of (3.5) and definesfWL.

The integral
∫ 1
0 f(t)g(t)dt (f, g ∈ C0([0, 1],R)) is then approximated by the

vector inner productfT
WLgM . For vector functionsf, g ∈ C0([0, 1],Rn), the inte-

gral
∫ 1
0 f(t)Tg(t)dt is formally approximated by the same expression:fT

WLgM .
If the collocation points are used, then the best approximation has the form

N−1∑

i=0

m∑

j=1

ωm,j(fC)i,j(τi+1 − τi) =

N−1∑

i=0

m∑

j=1

(fW1
)i,j , (3.7)

where(fC)i,j = f(ζi,j) andωm,j are the Gauss-Legendre quadrature coefficients.
Formula (3.7) delivers the exact integral iff(t) is a piecewise polynomial of de-
gree2m− 1 or less.

The integral
∫ 1
0 f(t)g(t)dt (f, g ∈ C0([0, 1],R)) is approximated with Gauss-

Legendre byfT
W1
gC = fT

W1
LC×MgM . For vector functionsf, g ∈ C0([0, 1],Rn),

the integral
∫ 1
0 f(t)Tg(t)dt is formally approximated by the same expression:

fT
W1
gC = fT

W1
LC×MgM .

Here we formally used the structured sparse matrixLC×M that converts a
vectorηM of function values at the mesh points into the vectorηC of its values at
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the collocation points:
ηC = LC×MηM . (3.8)

This matrix is usually not formed explicitly; its entries are fixed and given by
the values of the Lagrange interpolation functions in the collocation points.

In the Newton steps for the computation of the solution to (3.2), we solve
matrix equations with the Jacobian matrix of the discretization of (3.2):




(D − TA(t))C×M (−f(x(t), α))C
(δ0 − δ1)

T
M 0

( ˙̃xT(t))TWL 0


 . (3.9)

In (3.9) the matrix(D − TA(t))C×M is the discretized form of the operatorD −
TA(t) whereD is the differentiation operator. So we have(D−TA(t))C×MηM =
(η̇(t) − TA(t)η(t))C . We note that this is a large, sparse and well structured ma-
trix. In AUTO [38] andCONTENT [85] this structure is fully exploited; in MAT-
CONT only the sparsity is exploited by using theMATLAB sparse solvers.

We note that the evaluation of(D−TA(t))C×M takes most of the computing
time in the numerical continuation of limit cycles.

Furthermore,(δ0 − δ1)
T
M is the discretization in the fine mesh points of the

operatorδ0 − δ1 whereδ0, δ1 are the Dirac evaluation operators in0 and1 re-
spectively. So the (2,1)-block in (3.9) is an(n× (Nm+ 1)n)-matrix whose first
(n × n)-block is the identity matrixIn and whose last(n × n)-block is−In; all
other entries are zero.

We note that in a continuation context, (3.9) is extended by an additional col-
umn, that contains(−Tfα(x(t), α))C whereα is the free parameter, and by an
additional row, that is added by the continuation algorithm.

3.2.3 PRC implementation in MatCont

Now if the limit cycle is computed, and we want to compute the PRC, what we
really need isvl(t), solution to (2.41) and (2.42). Sovl(t) is defined up to scaling
by the condition that it is a null vector of the operator

φ2 : C1([0, 1],Rn) → C0([0, 1],Rn) × R
n,
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where

φ2(ζ) =

[
ζ̇ + TATζ
ζ(0) − ζ(1)

]
.

This means thatvl is in the kernel ofφ2 and thatv̇l(t) + TATvl(t) = 0 and
vl(0) − vl(1) = 0.

Then for allg ∈ C1([0, 1],Rn), we have

∫ 1
0 g(t)

Tv̇l(t)dt+
∫ 1
0 Tg(t)

TA(t)vl(t)dt = 0,

⇒ g(t)Tvl(t)|10 −
∫ 1
0 ġ(t)

Tvl(t)dt+
∫ 1
0 Tg(t)

TA(t)vl(t)dt = 0,

⇒ g(1)Tvl(1) − g(0)Tvl(0) −
∫ 1
0 (ġ(t) − TA(t)Tg(t))Tvl(t)dt = 0,

⇒ −(g(0) − g(1))Tvl(0) −
∫ 1
0 (ġ(t) − TA(t)Tg(t))Tvl(t)dt = 0,

⇒ 〈
[
ġ − TATg
g(0) − g(1)

]
,

[
vl
vl(0)

]
〉 = 0.

Since this holds for anyg, we have shown that

[
vl
vl(0)

]
⊥ φ1(C1([0, 1],Rn))

where
φ1 : C1([0, 1],Rn) → C0([0, 1],Rn) × R

n,

φ1(ζ) =

[
ζ̇ − TAζ
ζ(0) − ζ(1)

]
.

So

[
vl(t)
vl(0)

]
is orthogonal to the range of

[
D − TA(t)
δ0 − δ1

]
. Now, by (2.42)

and the fact thatv(t) = ẋ(t), we can state that

[
((vl)WG)T 0

]



(D − TA(t))C×M (−f(x(t), α))C
(δ0 − δ1)

T
M 0

( ˙̃xT(t))TWL 0


 =

[
0 − 1

T

]
.

(3.10)
The matrix in (3.10) is freely available, since it is the same one as in (3.9). Ob-
taining (vl)WG from (3.10) is equivalent to solving a large sparse system, a task
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which is done efficiently byMATLAB (see also Section 3.5).

The first part(vl)W1
of the obtained vector(vl)WG representsvl(t), as used

in equation (2.47), but it is evaluated in the collocation points, and still weighted
with the interval widths and the Gauss-Legendre weights. The second part (vl)W2

of the obtained vector(vl)WG is equal tovl(0). In many important cases (see
e.g. Section 2.4.4)(vl)W1

is precisely what we need becausevl(t) will be used to
compute integrals of the form

〈vl, g〉 =

∫ 1

0
vT
l g(t)dt ,

whereg(t) is a given vector function that is continuous in[0, 1]. This integral is
then numerically approximated by the vector inner product

(vl)
T
W1
gC = (vl)

T
W1
LC×MgM . (3.11)

Nevertheless, in some cases (see Section 4.2) we want to know(vl)M . Since
we know the Gauss-Legendre weights and the interval widths, we can eliminate
them explicitly from(vl)W1

and obtain(vl)C . Now (3.8) converts values in mesh
points to values in collocation points. In addition, we know thatvl(0) = vl(1) =
(vl)W2

. Combining these results we get

[
(vl)C
vl(0)

]
=

[
LC×M

0.5 0 ... 0 0.5

]
(vl)M , (3.12)

where

[
LC×M

0.5 0 ... 0 0.5

]
is sparse, square and well conditioned and so (3.12) can

be solved easily byMATLAB to get(vl)M . We note that in this case (and only in
this case) it is necessary to formLC×M explicitly.

Now we have access to all elements needed to compute the PRC using (2.49).

The derivative phase response curve or dPRC can now easily be computed by
equation (2.41). The dPRC has some very important applications. For examples
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Figure 3.2: Screenshot of MatCont for computing the PRC and dPRC during LC contin-
uation.

we refer to Section 4.2.

MATCONT and CL MATCONT support the computation of the PRC and dPRC
of limit cycles during continuation, using our new method. The use in MATCONT

is easy: before starting the actual limit cycle continuation, the user can specify
in the starter window whether he wants to compute the PRC, dPRC or both, and
he needs to indicate the input vector used. When a scalar is given as input,then
the vector has this scalar as first entry and all other entries are zero. Then in sep-
arate plotting windows, for each computed step in limit cycle continuation, the
PRC and/or dPRC are computed and plotted. An example screenshot is shown in
Figure 3.2.
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Figure 3.3: PRC of the Hodgkin-Huxley model atI = 12.

3.2.4 Accuracy of our method

Comparison to direct method

Here we compare our method of computing the PRC to the direct method, which
consists of giving input pulses at different points in the cycle, and measuring the
resulting changes in the cycle period, cf.§3.2.1. As a test system, we use the
Hodgkin-Huxley system, as described in Section 2.2.1.
Figure 3.3 shows the PRC for this model forI = 12, as computed using our new
method. The period of the limit cycle is then 13.72 seconds. During a continuation
experiment, this computation takes about0.04 seconds.
Figure 3.4 shows two PRCs for the same model and the same parameter values,
that were computed in the direct way. The PRCs were computed for different pulse
amplitudes and durations: pulse amplitudes are 10 and 20, and pulse durations are
0.05 and 0.15 seconds, for Figures 3.4A and 3.4B respectively.
Visually, it is clear that the shapes of the curves match. A rough computation
shows that the matching is also quantitative. Indeed, the situation of Figure 3.4A
corresponds to a resetting pulse of size10 × 0.05 = 0.5 (millivolts). Dividing
the maximal value of the computed PRC by0.5 we obtain0.014/0.5 = 0.028
(per millivolt). Similarly, for the situation of Figure 3.4B we obtain0.075/(20 ×
0.15) = 0.025 (per millivolt). This closely matches the computed maximal value



i

i

“main” — 2007/1/15 — 13:43 — page 76 — #90
i

i

i

i

i

i

76 New features of MatCont
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Figure 3.4: Experimentally obtained PRCs for the Hodgkin-Huxley model. A) pulse amplitude
= 10, pulse duration = 0.05; B) pulse amplitude = 20, pulse duration = 0.15
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in Figure 3.3.
This shows that our method is accurate and applicable, not only for infinitesi-

mally small input pulses, but also for pulses of finite size and duration.
The direct computation of these experimental PRCs, with the limited precision
they have (as is obvious from the figures), took between 60 and 70 seconds each.
Also, the smaller the inputs for an experimental computation, the higher the preci-
sion has to be, since the PRC amplitudes shrink, and thus noise due to imprecision
increases in relative size. This is already evident from the difference between A
and B in Figure 3.4. And computation time increases with increasing precision.

Three classical situations

In this subsection we check that in some standard situations, our results corre-
spond to those in the literature. In fact, our figures almost perfectly match the
ones computed in [44], except for the scaling factor (which is the cycle period).
This should not come as a surprise since in the absence of computational errors
(rounding, truncation, etcetera) the used methods are equivalent. Herewe present
a couple of the most widely known models. The equations and fixed parameter
values for all models are listed in Section 2.2.

The Hodgkin-Huxley model is known to exhibit a PRC with a positive and a
negative region. So two coupled Hodgkin-Huxley neurons with excitatorycon-
nections can still slow down each others spike rate. Figure 3.3 shows the PRC for
this model forI = 12, where the limit cycle has a period of13.72.

The Morris-Lecar model is known to have different types of behaviourand
phase response curves at different parameter values [58].

Figure 3.5A shows the PRC atV3 = 4 andI = 45, where the cycle period is
62.38. We clearly see a negative and positive regime in the PRC. In Figure 3.5B
the PRC is shown atV3 = 15 andI = 39, where the period is106.38; the PRC is
practically non-negative.

Finally, we show a result for the Connor model, which has a non-negative
PRC. Figure 3.6 depicts this PRC, forI = 8.5 and period98.63.
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Figure 3.5: PRCs of the Morris-Lecar model. A) PRC atV3 = 4 and I = 45. B) PRC at
V3 = 15 andI = 39.
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Figure 3.6: PRC of the Connor model atI = 8.5.

3.2.5 Robustness of our method

Our method is robust in the sense that it can compute PRCs for all limit cycles
that can be found through continuation; there are no further sources of error as in
the traditional implementation of the computation of the PRC, cf. [44]. In fact we
can compute PRCs even for limit cycles that are hard to find by any other means
than numerical continuation, which can happen when their domain of attractionis
not easily found.

In the Hodgkin-Huxley model, there is typically a short interval in which a
stable equilibrium and two stable limit cycles coexist. In our case, for the param-
eter values specified in Section 2.2, this happens between valuesI = 7.8588 and
7.933. These limit cycles are shown in Figure 3.7A.

The smallest of the two stable limit cycles in the picture only exists for a short
I-interval, and has a very small attraction domain. Therefore, it is extremely hard
to find by e.g. time integration. This implies that it is also not trivial to compute
the PRC corresponding to that particular limit cycle. Our method however, has no
problem computing it. In Figure 3.7B, the PRCs are depicted that correspond to
the limit cycles from Figure 3.7A. The shapes of the two PRCs are very different.
Also note that the darker PRC was actually larger in amplitude, but was rescaled
to the same ranges as the gray PRC.
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Figure 3.7: A) two stable limit cycles for the Hodgkin-Huxley model at parameter valueI =
7.919. B) corresponding PRCs. The gray PRC corresponds to the graylimit cycle and the black
PRC to the black limit cycle.
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3.3 Continuation of homoclinic orbits

3.3.1 Homoclinic orbits

The general dynamical systems theory on homoclinic orbits is briefly recalledin
Section 1.4.

There are two types of homoclinic orbits with codimension 1, namely homocli-
nic-to-hyperbolic-saddle (HHS), ifx0 is a saddle, and homoclinic-to-saddle-node
(HSN), if x0 is a saddle-node. Both these types of homoclinic orbits are important
in many applications, e.g. as wave solutions in combustion models [6], to model
‘bursting’ in models of biological cells [110], chemical reactions [61], etc.

We have implemented continuation of both HHS and HSN orbits, starting
from a Bogdanov-Takens (BT) point (no other software allows this) orfrom a
limit cycle with high period, and the detection of a large number of codimension
2 bifurcations during the continuation. To compute the relevant eigenspaces of the
equilibrium in each step, we use a method to continue invariant subspaces based
on [29].

AUTO also has a toolbox for homoclinic continuation, namely HomCont [15].
Important differences with our implementation are that HomCont does not usethe
continuation of invariant subspaces, and cannot start the continuation of homoclin-
ics from a BT-point. Also, we have implemented test functions for inclination-flip
bifurcations in a new and more efficient way. Thus, the algorithm combines vari-
ous ingredients from [29], [14], [15] and [9] but differs from anyexisting imple-
mentation.

3.3.2 Extended Defining System for Continuation

Homoclinic-to-Hyperbolic-Saddle Orbits

Defining system

To continue HHS orbits in two free parameters, we use an extended defining
system that consists of several parts.



i

i

“main” — 2007/1/15 — 13:43 — page 82 — #96
i

i

i

i

i

i

82 New features of MatCont

First, the infinite time interval is truncated, so that instead of[−∞,+∞] we
use[−T,+T ], which is rescaled to[0, 1] and divided into mesh intervals. The
mesh is non-uniform and adaptive. Each mesh interval is further subdivided by
equidistant fine mesh points. Also, each mesh interval contains a number of col-
location points. (This discretization is the same as that for limit cycles in Section
3.2.3.) The equation

ẋ(t) − 2Tf(x(t), α) = 0, (3.13)

must be satisfied in each collocation point.

The second part is the equilibrium condition

f(x0, α) = 0. (3.14)

Third, there is a so-called phase condition for the homoclinic solution, similar
to periodic solutions ∫ 1

0

˙̃x
∗

(t)[x(t) − x̃(t)]dt = 0. (3.15)

Herex̃(t) is some initial guess for the solution, typically obtained from the previ-
ous continuation step. We note that in the literature another phase condition is also
used, see, for example [39]. However, in the present implementation we employ
the condition (3.15).

Fourth, there are the homoclinic-specific constraints to the solution. For these
we need access to the stable and unstable eigenspaces of the system in the equi-
librium point after each step. It is not efficient to recompute these spacesfrom
scratch in each continuation step. Instead, we use the algorithm for continuing
invariant subspaces, as described in [29].

Suppose in ann-dimensional system we have the following block Schur fac-
torization forA(0) = fx(x0, α0), the Jacobian at the equilibrium point of the
known homoclinic orbit:

A(0) = Q(0) R(0) QT (0), Q(0) = [Q1(0) Q2(0)] (3.16)



i

i

“main” — 2007/1/15 — 13:43 — page 83 — #97
i

i

i

i

i

i

3.3 Continuation of homoclinic orbits 83

whereA(0), R(0) andQ(0) aren × n-matrices,Q(0) is orthogonal,Q1(0) has
dimensionsn×m andR(0) is block upper triangular

R(0) =

[
R11 R12

0 R22

]
(3.17)

whereR11 is anm × m-block (R11 andR22 are not required to be triangular).
Then the columns ofQ1(0) span an invariant subspaceP (0) of dimensionm (e.g.
the stable or unstable one) ofA(0), and the columns ofQ2(0) span the orthogonal
complementP (0)⊥.

What we want for our next continuation step, are these subspace-defining
columns for a matrixA(s), close toA(0) (due to the small stepsize in param-
eter space), without having to compute everything explicitly again; we will call
themQ1(s) andQ2(s):

A(s) = Q(s) R(s) QT (s), Q(s) = [Q1(s) Q2(s)] . (3.18)

As described in [36], it is always possible to obtain a smooth path of block
Schur factorizations, and we can accumulate all transformations in such a way
that we are always looking for corrections close to the identity. Thus we can write
(for s sufficiently small)

Q(s) = Q(0) U(s), U(0) = I, (3.19)

so that we now need to compute then× n-matrixU(s). PartitionU(s) in blocks
of the same size as we partitionedR(0):

U(s) = [U1(s) U2(s)] =

[
U11(s) U12(s)
U21(s) U22(s)

]
(3.20)

soU11 has dimensionsm×m, andU22 dimensions(n−m) × (n−m).
We first prove that we can always assume thatU11(s) andU22(s) are symmet-

ric positive-definite (SPD), by redefiningQ(s) andR(s) if necessary. The proof
is as follows:

The polar decomposition of matrices [54] states that any matrixX can be
written in a unique way as the product of a symmetric positive definite matrixP
and an orthogonal matrixZ:

X = P Z .
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Applying this toU11 andU22, we can say

U11 = V11 T1 , (3.21)

U22 = V22 T2 , (3.22)

⇒
[
U11 U12

U21 U22

]
=

[
V11 V12

V21 V22

] [
T1 0
0 T2

]
, (3.23)

if we defineV12 = U12 T
T
2 andV21 = U21 T

T
1 .

⇒ U(s) = V (s) T (s) , (3.24)

whereT (s) is orthogonal, and also block-diagonal. SinceU(0) = I, we can also
claimT (0) = I.

Because of these properties, we can state thatQ′(s) = Q(s)T (s) is orthogo-
nal,R′(s) = T T (s)R(s)T (s) is block upper triangular,

A(s) = Q′(s) R′(s) Q′T (s) , (3.25)

andR′(s) has symmetric positive-definite upper left and lower right blocks.
SinceU(0) = I, there is an intervalI0 around 0 where we can require for all

s ∈ I0 that

U1(s) =

[
I

U21(s)U
−1
11 (s)

]
U11(s) . (3.26)

Now define for alls ∈ I0 the(n−m) ×m-matrixY

Y = U21(s)U
−1
11 (s) . (3.27)

Note thatU1(s) is orthogonal, so:

UT1 (s)U1(s) = UT11(s)U11(s) + UT21(s)U21(s) = I . (3.28)

Using (3.28), we obtain

I + Y TY = I + U−T
11 (s)UT21(s)U21(s)U

−1
11 (s)

= I + U−T
11 (s) [I − UT11(s)U11(s)] U

−1
11 (s)



i

i

“main” — 2007/1/15 — 13:43 — page 85 — #99
i

i

i

i

i

i
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= I + U−T
11 (s)U−1

11 (s) − I

= U−T
11 (s)U−1

11 (s) .

Now because we have shown above thatU11(s) can be chosen so that it is symmet-
ric positive definite,U−1

11 (s) is the unique positive definite square root ofI+Y TY .
This implies that we can rewrite (3.26) in terms ofY

U1(s) =

[
I
Y

]
(I + Y TY )(−1/2) . (3.29)

Now note thatU2(s) is orthogonal, so:

UT2 (s)U2(s) = UT12(s)U12(s) + UT22(s)U22(s) = I (3.30)

and note thatUT1 (s) U2(s) = 0, so:

UT11(s)U12(s) + UT21(s)U22(s) = 0 (3.31)

U12(s)U
−1
22 (s) = −U−T

11 (s)UT21(s) (3.32)

U12(s)U
−1
22 (s) = −(U21(s)U

−1
11 (s))T = −Y T . (3.33)

SinceU(0) = I, there is an intervalI0 around 0 where we can require for all
s ∈ I0 that

U2(s) =

[
U12(s)U

−1
22 (s)

I

]
U22(s) . (3.34)

So from (3.33)

U2(s) =

[
−Y T

I

]
U22(s) . (3.35)

Now, using (3.32) and (3.30), we can derive

I + Y Y T = I + U21(s)U
−1
11 (s)U−T

11 (s)UT21(s)

= I + U−T
22 (s)UT12(s)U12(s)U

−1
22 (s)

= I + U−T
22 (s) [I − UT22(s)U22(s)] U

−1
22 (s)

= I + U−T
22 (s)U−1

22 (s) − I

= U−T
22 (s)U−1

22 (s) .
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So if we chooseU22(s) symmetric positive definite (as we have shown above to
be possible), thenU−1

22 (s) is the unique positive definite square root ofI +Y Y T .
This implies that we can rewrite (3.35) as

U2(s) =

[
−Y T

I

]
(I + Y Y T )(−1/2) . (3.36)

Combining (3.29) and (3.36), we can writeU(s) completely in terms ofY :

U(s) =

[(
I
Y

)
(I + Y TY )(−1/2)

(
−Y T

I

)
(I + Y Y T )(−1/2)

]
. (3.37)

So to do a quick and smooth subspace continuation of both stable and unsta-
ble subspaces, we only need to keep track of two small matricesYS andYU (one
per subspace) of dimension(n − m) × m, which are smaller than the original
subspaces. From these matricesY , we can easily compute the span of stable and
unstable subspaces, and their orthogonal complements.

We defineE(s) andT (s) by

Q(0)T A(s) Q(0) = R(0) + E(s) =

[
T11 T12

T21 T22

]
. (3.38)

Now if we regard the invariant subspace relation

QT2 (s) A(s) Q1(s) = 0, (3.39)

and we do substitutions using (3.19), (3.37) and (3.38), we obtain the following
algebraic Riccati equation forY :

T22(s) Y − Y T11(s) = −T21(s) + Y T12(s) Y . (3.40)

HereT11 is of sizem×m andT22 is an(n−m) × (n−m)-matrix.

(3.40) is the equation added to the defining system to keep track of matricesY
for the stable and unstable eigenspaces:YS andYU are obtained from the separate
Ricatti equations

T22UYU − YUT11U + T21U − YUT12UYU = 0,
T22S YS − YS T11S + T21S − YS T12S YS = 0.

(3.41)
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Now that we have these matricesY , we can formulate constraints on the be-
haviour of the solution close to the equilibriumx0. The initial vector of the orbit,
(x(0) − x0), is placed in the unstable eigenspace of the system in the equilib-
rium. We express that by the requirement that it is orthogonal to the orthogonal
complement of the unstable eigenspace.

From(3.19) and (3.37), ifQU (0) is the orthogonal matrix from the previous
step, related to the unstable invariant subspace, then a basis for the orthogonal
complement of that subspace in the new stepQU⊥(s), usingYU , can be computed
by

QU⊥(s) = QU (0)

[
−Y T

U

I

]
.

Note thatQU⊥(s) is not orthogonal. The full orthogonal matrix needed for the
next step, is computed separately after each step. The matrices for the stable
subspace can be computed similarly. The equations to be added to the system are

QU⊥(s)T (x(0) − x0) = 0,
QS⊥(s)T (x(1) − x0) = 0.

(3.42)

Finally, the distances betweenx(0) (resp.,x(1)) andx0 must be small enough, so
that

‖x(0) − x0‖ − ǫ0 = 0,
‖x(1) − x0‖ − ǫ1 = 0.

(3.43)

Implementation

The variables in this system are stored in one vector. It contains the valuesof
x(t) in the fine mesh points includingx(0) andx(1), the truncation timeT , two
free system parameters, the coordinates of the saddlex0, and the elements of the
matricesYS andYU .

A system consisting of all equations (3.13), (3.14), (3.15), (3.41), (3.42) and
(3.43), is overdetermined. The basic defining system for the continuation ofa
HHS orbit in two free system parameters consists of (3.13), (3.14), (3.41), (3.42),
and (3.43) withǫ0 andǫ1 fixed, so that the phase condition (3.15) is not used.



i

i

“main” — 2007/1/15 — 13:43 — page 88 — #102
i

i

i

i

i

i

88 New features of MatCont

Alternatively, the phase condition (3.15) is added automatically if from the
triple (T , ǫ0, ǫ1) two are chosen to be variable, instead of just one. Any combina-
tion of one or two parameters of that triple is possible.

Homoclinic-to-Saddle-Node Orbits

For a homoclinic orbit to a saddle-node equilibrium, the extended defining system
undergoes some small changes. Now(x(0) − x0) has to be placed in the center-
unstable subspace, instead of the unstable space. Analogously,(x(1)−x0) must be
in the center-stable subspace. Thus, one of these spaces has one extra eigenvector
and one less restriction.

The vector-condition again is implemented by requiring that the vector is or-
thogonal to the orthogonal complement of the corresponding space. So the equa-
tions (3.42) themselves do not really change; the changes happen in the computa-
tion of the matricesQ. One of these matrices now has one less column, so there
is one condition less.

The number of equations is restored however, by adding the constraint that the
equilibrium must be a saddle-node. For this we use the bordering technique, as
described in Section 4.2.1 of [56]. The technique basically requiresg to be zero,
whereg is obtained by solving

(
fx(x, α) wbor
vTbor 0

)(
v
g

)
=

(
0
1

)
. (3.44)

Herewbor andvbor are bordering vectors, chosen in such a way that the matrix in
(3.44) is nonsingular.

3.3.3 Starting Strategies

At present, continuation of homoclinic orbits in MATCONT can be started in two
ways: either from a Bogdanov-Takens (BT) point or from a limit cycle withlarge
period. A third option, namely using the homotopy method, starting from an
unstable equilibrium, is under development (see Chapter 7 of this thesis).
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Limit cycle with large period

When starting from a limit cycle with large period, the user must first declare
the cycle to be a homoclinic-to-saddle orbit. Automatically, initial values for the
homoclinic parameters will be computed. First the program looks for the pointon
the cycle with smallest‖f(x, α)‖. This point is taken as a first approximation for
the equilibriumx0.

The mesh points of the limit cycle are kept as mesh points for the homoclinic
orbit, except for the mesh interval that contains the current equilibrium approxi-
mation. This mesh interval will be omitted, as it will grow to infinity in the homo-
clinic orbit. In memory, the stored cycle then needs to be ’rotated’, so that thefirst
and last point of the homoclinic orbit (x(0) andx(1)) are effectively stored as first
and last point, respectively. Half of the period of the remaining part of thecycle
will be kept as initial value forT . Initial values forǫ0 andǫ1 are also computed;
these can be found by simply computing the distance fromx(0) andx(1) to the
approximated equilibrium.

Then the user has to select 2 free system parameters, and 1 or 2 of the ho-
moclinic parameters (T , ǫ0 andǫ1). The size of the system (i.e. the number of
equations) will automatically be adjusted according to the choice of the user. An
example ’Starter’ window is shown in the left of Figure 3.8.

Bogdanov-Takens point

To start from a Bogdanov-Takens point, we use the method taken from [8]. It
computes a predictor for the homoclinic orbit, using the coefficients of the normal
form at the Bogdanov-Takens point. The predictor is defined as

α = −5

7
ǫ2K1,1 +

ǫ4

49

(
−6K1,0 +

25

2
K2

)
+O(ǫ6) (3.45)

x(t) = ǫ2
[
−5

7
H01,1 +

1

4a

(
ξ0

( ǫ
2
t
)

+
10

7
+O(ǫ)

)
q0

]
(3.46)

+
ǫ3

8a
η0

( ǫ
2
t
)
q1 +O(ǫ4)
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whereα is the deviation of the free parameter, andt is defined over[0, 1].

The parameters in the above equations are obtained as follows:

ǫ determines the initial amplitude of the orbit, and is chosen by the user.
ξ0 andη0 are defined as

(ξ0, η0)(t) = 2

(
1 − 3

cosh2(t)
, 6

tanh(t)

cosh2(t)

)
. (3.47)

q0 andq1 are real, linearly independent eigenvectors of the Jacobian matrix
A = fx(x0, α0) at the Bogdanov-Takens point, such that

A q0 = 0

A q1 = q0

and there are corresponding vectorsp0 andp1 of the transposed matrixA∗

A∗ p1 = 0

A∗ p0 = p1 .

We choose the vectors so that they satisfy

< q0, p0 > = < q1, p1 >= 0

< q1, p0 > = < q0, p1 >= 1 .

a can be computed as

a =
1

2
< p1, B(q0, q0) > (3.48)

whereB(q0, q0) = fxx(x0, α0) q0 q0, with fxx(x0, α0) the Hessian matrix at the
Bogdanov-Takens point.

K1,1 andK1,0 are columns fromK1:

K1 = [K1,0 K1,1] = (γ2
1 + γ2

2)−1

(
γ1 −γ2

γ2 γ1

)
, (3.49)
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where(γ1, γ2) = p∗1 A1, andA1 = fα(x0, α0).
H01,1 comes from the matrixH01:

H01 = [H01,0 H01,1] = A−1([q1 0] −A1K1) . (3.50)

And finallyK2 is defined as

K2 = −(p∗1z)K1,0 (3.51)

where

z = B(H01,1, H01,1) + 2B1(H01,1,K1,1) +B2(K1,1,K1,1) (3.52)

and whereB = fxx(x0, α0),B1 = fxα(x0, α0) andB2 = fαα(x0, α0).

So by using all of these computations to obtain a predictor, the user only needs
to define a value for the initial amplitude. This is the amplitude of the first com-
puted homoclinic orbit, usually this shouldn’t be too small (e.g. 0.1 or 0.01). Of
the homoclinic parameters, by defaultT andǫ1 are the free parameters, but the
user can choose any of the three parameters from the Starter window. Anexample
’Starter’ window is shown in the right of Figure 3.8.

3.3.4 Bifurcations

Relationships between homoclinic objects of codimension1 and2 computed by
MATCONT 2.* are presented in Figure 3.9, while the symbols and their meaning
are summarized in Table 3.3.

The arrows in Figure 3.9 have similar meaning as in Figure 3.1. In general,
an arrow from an object of typeA to an object of typeB means that that object of
typeB can be detected (either automatically or by inspecting the output) during the
computation of a curve of objects of typeA. * stands for eitherS or U, depending
on whether a stable or an unstable invariant manifold is involved.

In principle, the graphs presented in Figures 3.1 and 3.9 are connected.In-
deed, it is known (see for example [2], [12]) that curves of codim 1 homoclinic
bifurcations emanate from theBT, ZH, andHH codim 2 points. The current ver-
sion of MATCONT fully supports, however, only one such connection:BT →
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92 New features of MatCont

Figure 3.8: (Parts of) the starter windows when continuing a curve ofHHS orbits, starting
from a limit cycle or homoclinic orbit (left) or from aBT point (right).

NSFNSS NFF ND* TL* SH OF* IF* NCH

HSN

codim
LC

HHS

DR*2

1

0

Figure 3.9: The graph of adjacency for homoclinic bifurcations in MATCONT; here*
stands forS or U.
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Type of object Label
Limit cycle LC

Homoclinic to Hyperbolic Saddle HHS
Homoclinic to Saddle-Node HSN

Neutral saddle NSS
Neutral saddle-focus NSF

Neutral Bi-Focus NFF
Shilnikov-Hopf SH

Double Real Stable leading eigenvalue DRS
Double Real Unstable leading eigenvalue DRU
Neutrally-Divergent saddle-focus (Stable) NDS

Neutrally-Divergent saddle-focus (Unstable) NDU
Three Leading eigenvalues (Stable) TLS

Three Leading eigenvalues (Unstable) TLU
Orbit-Flip with respect to the Stable manifold OFS

Orbit-Flip with respect to the Unstable manifold OFU
Inclination-Flip with respect to the Stable manifold IFS

Inclination-Flip with respect to the Unstable manifoldIFU
Non-Central Homoclinic to saddle-node NCH

Table 3.3: Objects related to homoclinics to equilibria and their labels within the GUI

HHS.

During HSN continuation, only one bifurcation is tested for, namely the non-
central homoclinic-to-saddle-node orbit or NCH. This orbit forms the transition
between HHS and HSN curves. The strategy used for detection is taken from
HomCont [15].

During HHS continuation, all bifurcations detected in HomCont are also de-
tected in our implementation. For this, mostly test functions from [15] are used.

Suppose that the eigenvalues offx(x0, α0) can be ordered according to

ℜ(µns) ≤ ... ≤ ℜ(µ1) < 0 < ℜ(λ1) ≤ ... ≤ ℜ(λnu), (3.53)
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whereℜ() stands for ’real part of’,ns is the number of stable, andnu the number
of unstable eigenvalues. The test functions for the bifurcations are

• Neutral saddle, saddle-focus or bi-focus

ψ = ℜ(µ1) + ℜ(λ1)

If both µ1 andλ1 are real, then it is a neutral saddle, if one is real and one
consists of a pair of complex conjugates, the bifurcation is a saddle-focus,
and it is a bi-focus when both eigenvalues consist of a pair of complex
conjugates.

• Double real stable leading eigenvalue

ψ =

{
(ℜ(µ1) −ℜ(µ2))

2, ℑ(µ1) = 0
−(ℑ(µ1) −ℑ(µ2))

2, ℑ(µ1) 6= 0

• Double real unstable leading eigenvalue

ψ =

{
(ℜ(λ1) −ℜ(λ2))

2, ℑ(λ1) = 0
−(ℑ(λ1) −ℑ(λ2))

2, ℑ(λ1) 6= 0

• Neutrally-divergent saddle-focus (stable)

ψ = ℜ(µ1) + ℜ(µ2) + ℜ(λ1)

• Neutrally-divergent saddle-focus (unstable)

ψ = ℜ(µ1) + ℜ(λ2) + ℜ(λ1)

• Three leading eigenvalues (stable)

ψ = ℜ(µ1) −ℜ(µ3)

• Three leading eigenvalues (unstable)

ψ = ℜ(λ1) + ℜ(λ3)
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• Non-central homoclinic-to-saddle-node

ψ = ℜ(µ1)

• Shil’nikov-Hopf
ψ = ℜ(λ1)

• Bogdanov-Takens point

ψ =

{
ℜ(µ1)
ℜ(λ1)

For orbit- and inclination-flip bifurcations, we assume the same ordering of
the eigenvalues offx(x0, α0) = A(x0, α0) as shown in (3.53), but also that the
leading eigenvaluesµ1 andλ1 are unique and real:

ℜ(µns) ≤ ... ≤ ℜ(µ2) < µ1 < 0 < λ1 < ℜ(λ2) ≤ ... ≤ ℜ(λnu) .

Then it is possible to choose normalised eigenvectorsps1 andpu1 of AT (x0, α0)
andqs1 andqu1 of A(x0, α0) depending smoothly on(x0, α0), which satisfy

AT (x0, α0) p
s
1 = µ1 p

s
1 AT (x0, α0) p

u
1 = λ1 p

u
1

A(x0, α0) q
s
1 = µ1 q

s
1 A(x0, α0) q

u
1 = λ1 q

u
1 .

The test functions for the orbit-flip bifurcations are then:

• Orbit-flip with respect to the stable manifold

ψ = e−µ1T < ps1, x(1) − x0 >

• Orbit-flip with respect to the unstable manifold

ψ = eλ1T < pu1 , x(0) − x0 >

For the inclination-flip bifurcations, in [15] the following test functions are
introduced:
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• Inclination-flip with respect to the stable manifold

ψ = e−µ1T < qs1, φ(0) >

• Inclination-flip with respect to the unstable manifold

ψ = eλ1T < qu1 , φ(1) >

whereφ (φ ∈ C1([0, 1],Rn)) is the solution to the adjoint system, which can be
written as 




φ̇(t) + 2 T AT (x(t), α0) φ(t) = 0
(Ls)

Tφ(1) = 0
(Lu)

Tφ(0) = 0∫ 1
0 φ̃

T (t)[φ(t) − φ̃(t)]dt = 0

(3.54)

whereLs andLu are matrices whose columns form bases for the stable and unsta-
ble eigenspaces ofA(x0, α0), respectively, and the last condition selects one solu-
tion out of the familycφ(t) for c ∈ R. Lu is equivalent toQU from Section 3.3.2
andLs toQS . In the homoclinic defining system the orthogonal complements of
QS andQU are used; in the adjoint system for the inclination-flip bifurcation, we
use the matrices themselves (or at least, their transposed versions).

However, it is possible to compute the above-mentioned test functions in a
more efficient way, without having to explicitly find the solutionφ to the adjoint
system.

If φ is a solution to (3.54) andζ1 ∈ R
nu, ζ2 ∈ R

ns, then



φ(t)
ζ1
ζ2


 ⊥ Range




D − 2 T A(x(t), α0)
(L⊥

s )T δ1
(L⊥

u )T δ0


 (3.55)

⇐⇒{
L⊥
s ζ1 = −φ(1)

L⊥
u ζ2 = φ(0)

(3.56)

HereD andδ are the differentiation and the evaluation operators, respectively,
andL⊥

s andL⊥
u are the orthogonal complements ofLs andLu, respectively.
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Proof
The necessary and sufficient condition is that for allg ∈ C

1([0, 1],Rn)




φ(t)
ζ1
ζ2


⊥




g′(t) − 2 T A(x(t), α0)g(t)
(L⊥

s )T g(1)
(L⊥

u )T g(0)


 , (3.57)

i.e.
∫ 1

0
φ(t)T (g′(t)−2T A(x(t), α0)g(t))dt+ ζT1 (L⊥

s )T g(1)+ ζT2 (L⊥

u )T g(0) = 0

(3.58)

[
φ(t)T g(t)

]1

0
−

∫ 1

0
(φ′(t)T g(t) + φ(t)T 2 T A(x(t), α0)g(t))dt

+ζT1 (L⊥

s )T g(1) + ζT2 (L⊥

u )T g(0) = 0 (3.59)

where

φ′(t)T g(t) + φ(t)T 2 T A(x(t), α0)g(t)
= g(t)T

(
φ′(t) + 2 T AT (x(t), α0)φ(t)

)

= 0 .
(3.60)

So the condition is

φ(1)T g(1) − φ(0)T g(0) + ζT1 (L⊥

s )T g(1) + ζT2 (L⊥

u )T g(0) = 0 (3.61)

(φ(1)T + ζT1 (L⊥

s )T )g(1) − (φ(0)T + ζT2 (L⊥

u )T )g(0) = 0 . (3.62)

This must hold for allg, hence
{
ζT1 (L⊥

s )T = −φ(1)T

ζT2 (L⊥
u )T = φ(0)T

(3.63)

or {
L⊥
s ζ1 = −φ(1)

L⊥
u ζ2 = φ(0)

(3.64)

�
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We note that by (3.54)φ(1) andφ(0) are vectors, orthogonal to the stable and
unstable eigenspaces, respectively, and so (3.64) is solvable. In fact, the solutions
are unique sinceL⊥

s andL⊥
u are full rank matrices.

Thusζ1 andζ2 are determined uniquely, so that the test functions for inclination-
flip can be rewritten as

• Inclination-flip with respect to the stable manifold

ψ = e−µ1T < qs1, φ(0) >= e−µ1T < qs1, L
⊥

u ζ2 >

• Inclination-flip with respect to the unstable manifold

ψ = eλ1T < qu1 , φ(1) >= −eλ1T < qu1 , L
⊥

s ζ1 >

These test functions are very efficiently computable:L⊥
u andL⊥

s are already
computed during homoclinic continuation, for the continuation of the invariant
subspaces (see Section 3.3.2);µ1, λ1, qs1 andqu1 are also already known. The only
quantities that seem harder to compute areζ1 andζ2.

But the advantage of our computation becomes clear when comparing the ma-
trix in (3.55) to the equations (3.13) and (3.42), which are part of the defining
system for homoclinic orbits. Indeed, the big matrix in the discretization of (3.55)
is for a major part identical to the Jacobian matrix used during homoclinic continu-
ation, and therefore almost no extra time is required to compute it. After selecting
the necessary rows and columns from the already computed Jacobian, theresult-
ing matrix is bordered with its left and right singular vectors, which results in a
non-singular matrix (call itB). Then solving

BT \ [ 0 ... 0 1 ]T

results in findingζ1 andζ2 as two- and one-but-last block elements of the resulting
vector. This vector is also the new left singular vector ofB, after eliminating
the last element and normalizing the vector. Similarly, the new right singular
vector can be found by solvingB \ [ 0 ... 0 1 ]T , removing the last element and
renormalizing. Thus our algorithm, while computingζ1 andζ2 relatively cheaply,
also keeps track of the singular vectors which facilitate getting a well-conditioned
matrixB.
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3.3.5 The Koper example

Consider the following system of differential equations:




ǫ1ẋ = (k y − x3 + 3x− λ)
ẏ = x− 2y + z
ż = ǫ2(y − z).

(3.65)

This system, which is a three-dimensional van der Pol-Duffing oscillator, has been
introduced and studied in [83]. It is used as a standard demo in HOMCONT.
Parametersǫ1 and ǫ2 are kept at 0.1 and 1, respectively. We note that system
(3.65) has a certain symmetry: If(x(t), y(t), z(t)) is a solution for a given value
of λ, then(−x(t),−y(t),−z(t)) is a solution for−λ.

Starting from a general point(0,−1, 0.1) and settingk = 0.15 andλ = 0,
we find by time integration a stable equilibrium atx0 = y0 = z0 = −

√
3.15 ≈

−1.77482.
By equilibrium continuation withλ free, we find two limit points (LP), at

(−1.024695, −1.024695, −1.024695) for λ = −2.151860 with normal form
coefficienta = −4.437056e + 000 and at(1.024695, 1.024695, 1.024695) for
λ = 2.151860 with normal form coefficienta = +4.437060e + 000 (note the
reflection). The meaning of these normal form coefficients is explained in Section
1.2.

By continuation of the limit points with(k, λ) free, MATCONT detects a
cusp pointCP at (0, 0, 0) for k = −3 and λ = 0. Also detected are two
Zero-Hopf pointsZH for k = −0.3 at ±(0.948683, 0.948683, 0.948683) and
λ = ±1.707630, but these are in fact Neutral Saddles. Further, two Bogdanov-
Takens pointsBT are found fork = −0.05 at±(0.991632, 0.991632, 0.991632)
andλ = ±1.950209. The normal form coefficients are(a, b) = (6.870226e +
000, 3.572517e+ 001).

A bifurcation diagram of (3.65) is shown in Figure 3.10.

We now compute aHHS curve starting at one of theBT points, and setting
the curve-type to Homoclinic. To further initialize the homoclinic continuation,
some parameters have to be set and/or selected in the ’Starter’ window.

First we select 2 system parameters as free parameters, e.g.k andλ. We must
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Figure 3.10: Top: equilibrium bifurcation diagram of the Koper system. Dashed line
= equilibria, full line = limit points,CP = Cusp Point,BT = Bogdanov-Takens,ZH =
Zero-Hopf,LP = Limit Point. Bottom: zoom on the top part of the diagram.
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3.3 Continuation of homoclinic orbits 101

also set theInitial amplitude, i.e. an approximate size of the first homoclinic orbit.
The default setting of 0.1 is a good value in most cases. In this case, the continu-
ation is easiest to start by choosingǫ0 andǫ1 as free homoclinic parameters. Best
convergence (and longest continuation) are reached when a few adjustments are
made to settings in the continuer window. These recommended changes are to
increase the tolerances (e.g. to 1e-3) and to increase the maximum stepsize (e.g.
to 10).

Another option is to start from a limit cycle with large period. For example,
select theBT point atλ = 1.950209, and then compute a curve of Hopf points
H passing through it, along which one encounters a Generalized Hopf bifurcation
GH. Stop the continuation at (the arbitraty value)λ = 1.7720581, where the Hopf
point is at(0.98526071, 0.98526071, 0.98526071) andk = −0.23069361. We
then can find limit cycles for very slowly decreasing values ofλ, (λ decreases
down to 1.77178), with a rapid increase in the period. At some point, one canstop
the continuation, and switch to the continuation of the homoclinic orbit, e.g. when
the period of the limit cycle is higher than 100.

Important to note that the choice of free homoclinic parameters, especially at
the start-up of a homoclinic continuation, is crucial. In this Koper example, the
continuation of homoclinic orbits from this large periodic orbit will give the best
result (i.e. find the largest set of consecutive points) ifǫ0 andǫ1 are chosen as free
homoclinic parameters. The reason for this is not completely clear yet, but it is
significant that in this case the Jacobian has a condition number of a much lower
order than in all other five possible scenarios (T andǫ0, T andǫ1, T , ǫ0 or ǫ1 as
free parameters).

One can also monitor the eigenvalues of the equilibrium during continuation,
by displaying them in the ’Numerical’ window. This is a very useful feature,
because it gives indications on what further bifurcations might be expected. For
example, a non-central homoclinic-to-saddle-node reveals itself by the fact that
one eigenvalue approaches zero. Once one is close enough to such a point, the
user can switch to the continuation ofHSN orbits from there.
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Figure 3.11: Left: limit cycles, starting from a Hopf pointH and approaching a homo-
clinic orbit. Right: a family ofHHS orbits.

3.3.6 The Morris-Lecar example

There are also several curves of homoclinic orbits present in the Morris-Lecar
model (described in Section 2.2.3).

When starting at parameter valuesI = 0 andV3 = 6, through time integration
you can find a stable equilibrium at coordinates(V,N) ≈ (−59.49, 0.00054).
From this point, freeing parameterI an equilibrium curve can be computed. For
this curve, you will probably want to increase the default maximum stepsize in
the continuer window, e.g. to 10. Along the curve, several equilibrium bifur-
cations are detected for increasingI: two limit points (atI = 43.740592 and
I = 34.546930) and two Hopf points (atI = 43.312018 andI = 197.796288).
A picture of this equilibrium curve is shown in Figure 3.12.

When you select the second Hopf point, a limit cycle curve can be started from
there. Again, the maximum stepsize can be increased to allow a faster computa-
tion of the smooth curve. As free parameters, we keepI, and add the period of the
cycle. The first limit point of cycles that is detected is actually the Hopf point the
curve started from. FirstI increases, but after another LPC, the curve turns and I
starts to decrease. The period of the limit cycles along the curve first decreases,
but then starts to rise. When the default setting was kept, to compute 300 points,
and the maximum stepsize was set at 10, the continuation will end after 300 points
at an LC with period135.19178, at parameter valueI = 42.936367. The resulting
limit cycles are shown in phase space in Figure 3.13.
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3.3 Continuation of homoclinic orbits 103

Figure 3.12: (Partial) equilibrium curve with bifurcations of the Morris-Lecar system in
parameter space.

Figure 3.13: (Partial) limit cycle curve with bifurcations of the Morris-Lecar system in
phase space.
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This high period indicates the possible presence of a homoclinic orbit. So
you can select the last limit cycle of the curve, and define it to be a homoclinic-
to-saddle orbit. Then you have to set several parameters: choose bothI andV3

as free parameters, and chooseǫ0 andǫ1 as free homoclinic parameters. In the
continuer window, you need to increase the tolerances, to e.g. 0.001. Youshould
also make sure the number of mesh intervals is not too small (e.g. 40). But again
the maximum stepsize can be increased from the default value (to e.g. 1). This
way a curve of homoclinic orbits can be computed.

This system seems to be less sensitive than the previous example, the Koper
system. A consequence is that in the initiation of the homoclinic continuation
from the large periodic orbit, the user has several possible choices forfree homo-
clinic parameters, which will all allow a clean run of the continuation. Possible
choices areǫ0 andǫ1, T andǫ0 or ǫ1 alone. In the other three possibilities, the
continuation will be harder to start.

You can also, going back to the equilibrium curve, select the first Hopf point.
From that point you can start the continuation of a curve of Hopf points. Along
that curve 4 different Bogdanov-Takens points can be detected, at the I-values
512.545668, 497.365842, -204.645815 and 40.771934. When you select the last
one, atI = 40.771934, you can choose to compute a curve of homoclinic-to-
saddle orbits. You can chooseT and ǫ1 as free homoclinic parameters, set the
initial amplitude to 0.1 and the tolerances to 0.001. Then the continuation starts
nicely.

If a continuation breaks down with the messagestepsize too small,
you can select the last point on the computed curve, and restart, e.g. with different
free homoclinic parameters or tolerance settings.

3.4 Speed improvement byC-code

3.4.1 Incorporating C-code inMATLAB

One disadvantage of MATCONT is the lack of speed. This is mainly due to the fact
that theMATLAB programming language is an interpreted language. This type of
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language will, in execution time, always be slower than compiled programs.
So to speed up the program, we need to step away from the idea of writing ev-

erything inMATLAB . The basic version ofMATLAB contains its ownC-compiler.
It is possible, through some special intermediate kind ofC-code, to have theC-
code andMATLAB -code communicating with each other. Because the compiler is
present in every version ofMATLAB , we can supply theC-code and let the pro-
gram compile theC-code at start-up. This causes a slight loss in time, negligible
when compared to the time needed to continue limit cycles. The advantage of
this approach is that it keeps the program completely platform-independent.The
compiledC-code, which is platform-dependent, is only generated at runtime, and
is thus adapted to the machine.

The compiled function can be called from theMATLAB -code, as if it were a
MATLAB -function. We note thatC-code written to communicate with aMATLAB -
program, is not pureC-code. A standardC-compiler would object to parts of that
code because of some intermediate classes of variables, and intermediate types of
commands, which are not defined in standardC. There is for example the type
MxArray, which is the standard data type to pass parameter lists between aC-
function andMATLAB . Memory allocation happens through special commands
such asMxCreateDoubleMatrix andMxCreateSparse.

The key lies in the parameter lists. TheC-code receives all parameters from
MATLAB in one big object of the type pointer toMxArray, and also passes all
return variables back to the callingMATLAB -code in such an object. The difficulty
when writing the specialC-code is to analyze that object, to decide what kinds
of parameters are actually passed, and to store them in the correct (typesof) C-
variables before doing any real computations inC. Analogously, before closing
the C-function, all return-variables must be stored in a pointer toMxArray, in
such a way that the callingMATLAB -function will be able to read and recognize
all variables.

In the C-code, it is sometimes necessary or just better to call aMATLAB -
function or operator. For example, to solve a big linear system it can be faster to
use the backslash operator inMATLAB than to use self-writtenC-code. And again,
there is a solution. As it is possible to call compiledC-functions fromMATLAB , it
is also possible to callMATLAB operators or self-writtenMATLAB -functions from
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C, as long as theC-code makes sure that all parameters are stored properly, before
passing them on to theMATLAB -code, and that theC-code processes the return
values correctly.

3.4.2 C-code inMATCONT

In the pureMATLAB version of CL MATCONT, over half the time spent in the
continuation of limit cycles is actually spent in the evaluation of the Jacobian ma-
trix of the discretized boundary-value problem, implemented inBVP LC jac.m.
Thus, this function is a natural choice for re-implementation inC. Other ma-
trix evaluations implemented inC in recent versions ofMAT CONT are similar to
BVP LC jac.m:

• BVP PD jac.m: used in the continuation ofPD cycles,

• BVP BPC jacC.m: used in the location ofBPC cycles,

• BVP BPC jacCC.m: used in the continuation ofBPC cycles,

• BVP LPC jac.m: used in the continuation ofLPC cycles,

• BVP NS jac.m: user in the continuation ofNS cycles.

This results in a significant gain in efficiency. In Tables 3.4 and 3.5, it is shown
that the relative improvement by using theC-code is around25% when turning off
bifurcation detection, and over50% when the test functions are turned on.

In the same table, a timing comparison with theCONTENT-package [85] is
shown under a comparable GUI-load. Theadaptsystem is a very simple model
from adaptive control, considered as a test example in [31]. TheConnorsystem
is a complicated neural model with six state variables, listed in Section 2.2.2. All
computations were done under Windows XP on a Intel(R) Pentium (R)M com-
puter with a 1.73GHz computer with clock speed 795 MHz.

It is clear that on level of timing aMATLAB -program, even when using the
C-code, cannot compete with the fully compiled softwareCONTENT. However,
by usingMATLAB a lot can be gained in ease of installation, user-friendliness,
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Mesh intervals test functions MATCONT 2.2.2 MATCONT 1.1 improve- CONTENT

(C-code) (M-code) ment
50 off 32 s 44 s 27% 6 s
50 on 53 s 121 s 56% 7 s
100 off 86 s 115 s 25% 11 s
100 on 145 s 340 s 57% 13 s
200 off 265 s 339 s 22% 14 s
200 on 464 s 1077 s 57% 20 s

Table 3.4: Timing results for limit cycle-continuation, for 200 limit cycles in the adapt-system.
The first column states the number of mesh intervals. The second columnmentions whether the test
functions for bifurcations and the multipliers were turned on. The third, fourth and fifth column
give timing results for the newest version of MATCONT, for the previous (fullMATLAB ) version of
MATCONT, the relative improvement between versions, and the timing result forCONTENT.

extendibility and functionalities in general. Also conversion of data is an impor-
tant issue, and many scientists already knowMATLAB , which lowers the threshold
to start using MATCONT. Moreover, theC-re-implementation of additional func-
tions of MATCONT can be done independently, function per function, to further
improve the performance of MATCONT without disabling any of its features.

3.5 Sparse matrix solvers inMATLAB

3.5.1 Sparse matrices inMATCONT

Periodic orbits consist of an infinite number of points. In MATCONT, a finite
number of these is stored in memory and used for continuation. These points are
defined by mesh and collocation points (see Section 3.2.3 for details).

Due to the discrete representation of the solution curves, the Jacobian of the
system, used during continuation steps, becomes finite (but large) and sparse. The
columns of this matrix represent the unknowns of the discretized problem (in-
cluding all mesh points), the rows represent the equations of the extendedsystem
(including one row per evaluation in a collocation point). E.g. for 3 mesh intervals
and 2 collocation points in a system with 2 variables, the Jacobian matrix has the
sparsity structure presented in Figure 3.14, where•’s are a priori non-zeros. The
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Mesh intervals test functions MATCONT 2.2.2 MATCONT 1.1 improve- CONTENT

(C-code) (M-code) ment
50 off 45 s 55 s 18% 7 s
50 on 78 s 170 s 54% 11 s
100 off 133 s 169 s 21% 13 s
100 on 250 s 564 s 56% 22 s

Table 3.5: Timing results for limit cycle continuation, for 100 limit cycles in the Connor-system.
The first column states the number of mesh intervals. The second columnmentions whether the test
functions for bifurcations and the multipliers were turned on. The third, fourth and fifth column
give timing results for the newest version of MATCONT, for the previous (fullMATLAB ) version of
MATCONT, the relative improvement between versions, and the timing result forCONTENT.

last row is a full row, added during the continuation steps.

In each continuation step, a system of the formA x = b needs to be solved,
whereA is a large Jacobian matrix with the explained sparsity structure. This
shows that the efficiency in solving such large sparse systems plays a crucial role
in the overall performance of MATCONT for LC continuation experiments.

In Section 5.2.5 in [34], a study is done on different ways to exploit the struc-
ture and/or sparsity of this matrix in the system. Three solution methods were
tested: theMATLAB regular (dense) solver, theMATLAB sparse solver, and a self-
implemented method that makes use of the special structure of the sparse matrix.
The result was that the self-implemented method, that in theory would result in
the best performance, was actually the slowest. This is caused by the factthat the
two other methods are built-inMATLAB functions, fully optimized and internally
compiled. Between those twoMATLAB methods, the sparse solver turned out to
be much faster than the dense solver. Thus, in MATCONT the sparse solvers were
used during continuation experiments.

3.5.2 Problem with sparse solvers

MATLAB has a number of built-in sparse solvers. One of the most recent additions
is UMFPACK. UMFPACK is the sparse package that is used by the sparse LU
factorization and sparse general solveX = A \ B whenA is sparse, square but
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x0 x0,1 x1,0 x1,1 x2,0 x2,1 x3,0 T α
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •




Figure 3.14: Jacobian of the discretized equations
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not diagonal. Though it has become the standard sparse solver inMATLAB , we
have found that this package does not always work properly.

Consider the three-dimensional Roessler system [117]:




ẋ = −y − z
ẏ = x+ αy
ż = β + z(x− γ)

(3.66)

When starting from parameter valuesα = −1, β = 0.25 andγ = 6.2, one
quickly finds a stable equilibrium by doing time integration. This equilibrium
can be continued for increasingα, locating a Hopf bifurcation atα ≈ 0.00635.
From this Hopf point, limit cycle continuation can be started. These limit cycles
are nicely circular in shape, when staying close to the Hopf point, but strangely
enoughMATLAB struggles with this continuation experiment when its settings are
kept standard, and it breaks down after a small number of steps, around α =
0.01287.

When one first disables the standard use of theUMFPACK (by the command
spparms(’umfpack’,0), soMATLAB will use other sparse solvers, the con-
tinuation goes much faster, better and exactly as one would expect. A resulting
diagram is shown in Figure 3.15.

Upon closer inspection, we found thatMATLAB , when trying to solve the large
sparse system during the continuation, detects (falsely) that at some pointdur-
ing the continuation, the matrix becomesclose to singular or badly
scaled. When doing the sparse LU factorization inUMFPACK, MATLAB es-
timates that the condition number of the large sparse matrix would be approxi-
mately the inverse of5.779657e− 017, and thus huge. Therefore,MATLAB stops
the computation of this step, and tries again with a smaller stepsize. Since it al-
ways gets this result, it stops computing when the stepsize gets below the allowed
threshold.

However, by lettingMATLAB compute the condition number of the large sparse
matrix exactly, by regarding it as dense instead of sparse (which is not very ef-
ficient, but accurate), we found that the actual condition number of the matrix
is around the order of2.8354e + 003, which shows that it is not by far as ill-
conditioned asMATLAB seems to estimate, and continuation should work fine.
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Figure 3.15: 3D diagram showing equilibrium curve and limit cycles for the Roessler
system (3.66).

Apparently the general sparse solvers do work fine when you disable theUMF-
PACK, though in some casesUMFPACK does cause a speed-up of computations.
So now at the start-up of MATCONT, theUMFPACK is automatically disabled, to
avoid unnecessary breakdown of the continuation by theMATLAB sparse routines.
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Chapter 4

Applications

A software package like MATCONT has potential applications in many different
fields of science. Systems of ODEs have applications in economics, engineering,
biology, chemistry, and physics. In the rapidly expanding field of mathematical
biology, we can refer to recent research in biochemistry [7], neuroscience [75],
epidemiology [37] and immunology [104], among others. In this chapter, a num-
ber of interesting applications are discussed in detail.

4.1 The Morris-Lecar model in detail

MATCONT was developed for the study of dynamical systems. The reduced
Morris-Lecar model, introduced in Section 2.2.3, has been used extensively in
many studies. However, no complete bifurcation analysis of the system had ever
been published. A limited bifurcation diagram was published in [127], but we
found it incomplete and partly incorrect. In this section, a complete bifurcationdi-
agram in the most relevant two-parameter range is constructed using MATCONT,
which explains all possible behaviour of the model.
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Figure 4.1: Global equilibrium bifurcation diagram of the ML-system. The solid lines arethe LP
curves, which clearly show CP points. The other line is the Hopf curve. The dotted parts are curves
of Hopf points, the dashed parts consist of NS points. The crossed circles indicate the BT points,
where both curves touch. The solid discs are GH points.

4.1.1 Bifurcation diagrams

In Figure 4.1 a general view of the equilibrium bifurcation diagram of the Morris-
Lecar system for the parameter values listed in Section 2.2.3 is depicted. We also
added a qualitative diagram in Figure 4.2. The biologically relevant part is the
upper left part, which is enlarged in Figures 4.3 (exact figure) and 4.4 and 4.5
(qualitative diagrams that also include homoclinics and bifurcations of limit cy-
cles).

In Figures 4.1 and 4.2, we see that the biologically relevant range of the system
has a mirror-image attached to it: in a very different parameter range, a similar
bifurcation diagram shows up again, but ’upside down’. We have noticed that,
by varying certain parameters in the system, like bringing the value forC from
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Figure 4.2: Qualitative view of the bifurcation diagram in Figure 4.1. The thickest lines are the
LP curves. The dashed line consists of NS points. The thin solid lines are theHopf curves.
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Figure 4.3: Bifurcation diagram of the Morris-Lecar system. The thin solid line is the curve of
HHS orbits. The dotted line is the LP curve. The thick dash-dotted line is the curve of Hopf and
NS points. There are 4 points marked. The begin- and endpoint of the HHS curve are NCH points.
These are marked with a circle with a cross, and are the uppermost and lowermost encircled points
in the left picture. The LP curve and Hopf curve touch in the BT point (darkest disc, third circle
from the top). The NS curve crosses the curve of HHS orbits in the HNS point (paler disc, second
encircled point from the top). The bottom picture is a close-up of part of the top picture.
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5 to 20, this ’tail’ or mirror-image in the bottom right part can disappear. The
biologically relevant part of the parameter space, however, always remains and
preserves its configuration.

4.1.2 Behaviour explained

Equilibria

In Figure 4.4, we subdivide the equilibrium bifurcation diagram into different
areas, depending on the number and stability of the equilibria.
In the white areas, there is only 1 equilibrium, and it is stable. In the pale gray
area, the unique equilibrium is unstable.
In the other areas there are 3 equilibria, except on the borders: on the LP curves
(called L and M) there are exactly 2 equilibria, and in the CP there is only 1
equilibrium.
The dark gray area contains 3 equilibria at each point, of which 1 is stable and
2 are unstable. The 3 equilibria in the horizontally hatched area are all unstable.
And finally, the diagonally hatched area has 2 stable and 1 unstable equilibrium.

Limit cycles

Figure 4.5 shows a qualitative diagram of all important bifurcations that occur in
the most relevant parameter range for the Morris-Lecar model. Part of itcorre-
sponds to Figure 4.3, but we added the bifurcations of limit cycles (notably LPCs)
and homoclinics as well as the codimension 2 points related to them.
In Figure 4.6 we present the phase diagrams for the areas as numbered inFigure
4.5. Phase diagrams for the relevant homoclinic bifurcations are shown in Figure
4.7.

We note that both Figures 4.5 and 4.6 are qualitative diagrams. The exact course
of the different curves was at times disregarded in favour of clarity in marking
the areas with different types of behaviour, and to improve overall clarityof the
figures.
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Limit point (saddle-node) curve

Homoclinic-to-saddle-node curve
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Figure 4.4: Qualitative bifurcation diagram in the biologically most relevant parameter range.
Areas are coloured depending on the number and stability of the equilibria:white = 1 stable eq.;
light gray = 1 unstable eq.; horizontal lines = 3 unstable eq.; diagonal lines = 2 stable and 1 unstable
eq.; dark gray = 2 unstable and 1 stable eq.
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1
2
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7
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11

13

G1

G2

H2

H1

12

Figure 4.5: Qualitative bifurcation diagram in the biologically most relevant parameter range.V3-
values for the numbered points:1 = 2.02153, 2 = 3.74191, 3 ≈ 4.47, 4 = 4.48019, 5 = 9.67349,
6 = 10.88588, 7 = 12.42132, 8 ≈ 9 ≈ 17.25, 10 = 57.10678. The encircled numbers refer to
phase diagrams for the different plot areas, shown in Figure 4.6.
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Figure 4.6: Phase diagrams for the areas as numbered in Figure 4.5.
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E

F

3

G1 G2

H1

7

H2

Figure 4.7: Phase diagrams for some homoclinic bifurcations. The letters and numbers in the
lower left corners refer to the indications in Figure 4.5. The top 3 show homoclinic-to-hyperbolic-
saddle bifurcations; the middle 3 show central homoclinic-to-saddle-node bifurcations; the bottom
2 show non-central homoclinic-to-saddle-node bifurcations.
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Classification of types of behaviour

Here we apply the classification, as presented in Section 2.3.3, to the reduced ML
model. This classification is summarized in Table 4.1.

In the supercritical parameter range, only two kinds of behaviour of the sta-
ble limit cycles are found. Below the GH point 1, so for valuesV3 < V3GH =
2.02153, the rightmost Hopf point (curve B) consists of supercritical Hopf points:
we find behaviour of Group I. ForV3 > V3GH , the Hopf points on curve B are
subcritical and the stable limit cycles coming from the left, lose stability in a LPC,
so we get behaviour of Group II.

In the subcritical range of parameterI, there is no change in behaviour of the
stable limit cycles below point 3. In this whole range there is clearly bistability
of equilibria and limit cycles, and the firing frequency has a limited range. So we
clearly get a Type II bifurcation and Group II behaviour.

From point 3 on, the curves of homoclinics come into play, but with limited
effect on the classification. Point 3 forms the transition between HHS and HSN
orbits, and is called a Non-Central Homoclinic-to-Saddle-Node (NCH). The name
distinguishes these points from the Central Homoclinic-to-Saddle-Node (CHSN)
orbits, that are normally found along HSN curves. It is located close to the value
of V3HSN1 = 4.47. Point 4, which is the same type of point, is really close, at
the valueV3HSN2 = 4.48019. Between these two points, the unstable limit cycles
that arise from the Hopf point on curve A never become stable, but instead end up
in a HHS orbit on curve E. The stable limit cycles coming from higherI-values,
lose stability at LPC curve D, and then converge to a CHSN orbit on HSN curve F.
So the stable limit cycles still cause bistability with the stable equilibrium. After
they lose their stability, their period grows to infinity. Since this happens in the
unstable regime of limit cycles, this does not influence the actual spiking of the
neuron. The firing frequency range remains limited, and we still have Group II
behaviour.

Above point 4, the stable limit cycles coming from the right, converge to a
HHS bifurcation on curve G1, after losing stability at LPC curve D. This however
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still does not change the general behaviour.

Point 5 is a BT point, atV3BT = 9.67349, and marks the transition between
bifurcation Types I and II. ForV3 > V3BT , the Hopf points on curve A no longer
exist, and the only remaining limit cycles are the ones arising from the Hopf points
on curve B. These are still born unstable, gaining stability at the LPC curveC and
losing stability at LPC curve D. Thus, when we gradually increase inputI, starting
low, spiking will start at the limit point, and we clearly get a Type I bifurcation,
while there still is bistability, and periods of the stable cycles are still limited in
range, which means Group II behaviour.
We note that the classification by equilibrium bifurcation type at the onset of firing
(Hopf or LP), as introduced in [110], has no parallel classification in behavioural
properties. The bifurcation point, the BT point, does not mark an important tran-
sition in firing ranges or onsets.

Also, the Morris-Lecar model shows here, between points 5 and 6, that itis
possible to have Group II behaviour at a fold equilibrium bifurcation. Thispossi-
bility is mentioned in [77] but we are not aware of examples in the literature that
exhibit the behaviour.

Point 6 is a HNS point, atV3HNS1 = 10.88588 and above that point, the LPC
curve D doesn’t exist anymore. Then the stable limit cycles converge to theHHS
orbits on curve G2. So we still get bistability, but firing frequencies can bearbi-
trarily low, i.e. the periods of the stable cycles can grow to infinity. We have a
Type I bifurcation, and subcritical behaviour which is to be classified as Group III.

The next important change happens at NCH point 7, atV3HSN3 = 12.42132.
Here again a transition is made from HHS to HSN orbits. From this point on, there
is no more bistability: the stable limit cycles converge to the CHSN on curve H1
or H2. Thus, we get a Type I bifurcation, and Group IV behaviour.

Point 8 is another NCH point atV3HSN4, but theV3-value of this point, and
of point 9, a HNS point, are extremely close together. They both lay somewhere
around aV3-value of17.30. In the minuscule interval between points 8 and 9,
there is again bistability: the stable limit cycles converge to the HHS orbit on
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Table 4.1: Summary of classification of the complete biologically relevant parameter
range of the reduced Morris-Lecar model.

point V3-range subcritical equilibrium supercritical
range behaviour bifurcation behaviour
< 1 < 2.02153 Group II Type II Group I

1 − 5 ]2.02153, 9.67349[ Group II Type II Group II
5 − 6 ]9.67349, 10.88588[ Group II Type I Group II
6 − 7 ]10.88588, 12.42132[ Group III Type I Group II
7 − 8 ]12.42132, 17.30[ Group IV Type I Group II
8 − 9 [17.30] Group III Type I Group II
> 9 > 17.30 No spiking behaviour

curve J. Thus, we again have behaviour of Group III.

Point 10 is another BT-point, atV3 = 57.10678. Between points 9 (V3 =
V3HNS2) and 10 there are only unstable limit cycles, and above point 10 there
aren’t any limit cycles left, so for these parameter ranges the neural model doesn’t
show any spiking behaviour.

4.1.3 A broader perspective

The bifurcation diagram discussed here, is not a unique or rare case.An analogous
diagram is discussed in [5] (Figure 3.5.6 in Section 3.5.3). It appears alsoin [76]
(see Figure 8) and in numerous other studies.

In fact our bifurcation diagram in Figure 4.5, as well as the diagrams in [5]
and [76], are rearrangements of the canonical bifurcation diagrams ofDegenerate
BT bifurcations with triple and double equilibria [40], [88].

One codimension-3 DBT point with a triple critical equilibrium is found at the
intersection of a BT curve and a CP curve (the corresponding parametervalues
areV3 = 117.6322, V1 = 83.4878 and I = 228.491). Location and normal
form analysis of codim 3 bifurcations in the present model is an interesting open
problem for future research.
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Figure 4.8: Complete bifurcation diagram by Bazykin from [5]. The two circles shouldbe seen
as (connected) front and back of a sphere. In boldface, the special points are indicated and in thin
lettering, the curves are named.

4.2 Excitatory phase-locking and synchrony

In Section 3.2, we have described how MATCONT supports the computation of
the PRC and its derivative, the dPRC. In this section, we go deeper into some
very interesting applications of these curves, having to do with phase-locking and
synchrony of neurons.

We recall that the phase response curve was originally introduced as:

PRC(t, I) =
Told − Tnew

Told
, (4.1)

whereTold is the period of the unperturbed cycle, andTnew is the time span
between the previous spike and the next spike when the input pulseI is given
at time t. In this section, we will usually write the phase response curve as
φ(t) = PRC(t, I).

We start with the possibility of getting a neuron to phase-lock with a repeated
input, then we study the case of a 2-neuron network with excitatory connections,
and finally extend this theory to an N-neuron network.
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4.2.1 1:1 Phase-locking to repeated inputs

Consider an oscillator with periodT , which gets repeated external inputs with a
fixed period which is close toT , sayT∆. The ability of the oscillator to phase-lock
with this input is an important concept, as discussed in [13] and [78].

Say the oscillator or neural model fires a spike at timet = 0, and gets an input
with strengthα at timet = t1. Then the next spike of the neuron will occur at
time t = T −αT φ(t1). If we call t2 the distance between the following spike and
input, then this can be computed as the difference between the time of the input
and the time of the spike:

t2 = (t1 + T∆) − T (1 − αφ(t1)) . (4.2)

So
t2 = (t1 + T∆) + αT φ(t1) mod T . (4.3)

Thus, we can consider the time difference map between spike and input:

Fdiff : t1 → t1 + T∆ + αTφ(t1) − T . (4.4)

Any fixed point of this map has the property that

T∆ + αT φ(t1) = 0 mod T . (4.5)

In these points, 1:1 phase locking occurs. Since the linearized PRC of a neuron
can only be used reliably forα small enough, the period of the inputs should not
be too different from the oscillator’s original period.

You can interpret (4.5) as follows: when the PRCφ for a certain delay is
positive (negative), then the next spikes will be sped up (delayed), therefore there
can only be synchronization ifT∆ < T (T∆ > T ).

The so obtained fixed point of the map (4.4) is stable if and only if its unique
multiplier 1 + αTφ′(t1) has modulus less than1, i.e.

−2

αT
< φ′(t1) < 0 . (4.6)

So, if an oscillator gets a series of inputs with a period close to its own original
period (T∆ satisfies (4.5)), and the delayt1 meets constraint (4.6), then one can
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Figure 4.9: Left: PRC (φ) for the Hodgkin-Huxley system. Right: dPRC (φ′) for the
same system.

get stable phase-locking of the oscillator to the inputs.

These results were tested on the Hodgkin-Huxley equations, as described in
Section 2.13, at the parameter values listed there, andI = 7.996, with inputs
of strength 1, for which the PRC and dPRC are shown in Figure 4.9. At these
parameter values, the period of the system is around 16.12. For an input with a
period larger thanT , bothφ andφ′ will have to be negative at the input time to
allow phase-locking, so the inputs will have to come earlier than about 8.5 ms after
the last spike. In all cases with negativeφ and negativeφ′, φ′ > −2/T = −0.125,
so constraint (4.6) is always satisfied. And finally, the exact timing of inputand
spike at the phase-locked state will depend on the period of the spike. Since
T∆ > T , we know thatT∆ − T = T φ(t1).

E.g. when we give inputs with periodT∆ = T (1 + 0.01) ≈ 16.28, the neuron
will always phase-lock with these inputs if they reach the neuron at timet1, such
that φ(t1) = −0.01 andφ′(t1) < 0, this is the case fort1 = 6.747 ms. The
results of a numerical simulation are shown in Figure 4.10, with circles indicating
the times of arriving input. An analogous analysis can be done for inputs arriving
with a shorter period than that of the uncoupled model (T∆ < T ).
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Figure 4.10: The spikes show the spiking regime of the Hodgkin-Huxley neuron. The
circles indicate when the repetitive input comes in. It is clear that this is a phase-locked
state, fort1 ≈ 7 ms, with period 16.28 ms.

4.2.2 Two single-spiking neurons

Synchrony

Consider two identical neurons with excitatory connections to each other, and
suppose that the connection has a delay of durationt1 and a connection strength
of sizeα. Suppose the neurons, without input, have periodT , and the linearized
PRC of the neurons is given by the functionφ. Finally assume that neuron 1 fires
at timet = 0, and neuron 2 at timet = ∆, ∆ < t1.

Then neuron 1 gets an input signal at time∆ + t1 and neuron 2 gets a signal
at absolute timet1, which means, relative to its spike, at timet1 − ∆ (due to the
phase difference).

For the next spikes we conclude:
- neuron 1 will fire its next spike att = T − αT φ(t1 + ∆).
- neuron 2 will fire its next spike att = (∆ + T ) − αT φ(t1 − ∆).

The time difference map (for the time difference between spikes of the two
neurons)

∆ → ∆ + αTφ(t1 + ∆) − αTφ(t1 − ∆) (4.7)

has the trivial fixed point∆ = 0, which corresponds to synchrony.
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The right-hand side of (4.7) can be simplified:

= ∆ + αT (φ(t1 + ∆) − φ(t1 − ∆))

≈ ∆ + 2α∆Tφ′(t1) (4.8)

The fixed point∆ = 0 of map (4.7), and thus the synchrony, is stable if and
only if the unique multiplier of the map,1 + 2αφ′(t1), has modulus less than1,
i.e.

−1

αT
< φ′(t1) < 0 . (4.9)

Once the neurons are synchronized, the new period isT − αT φ(t1).
This shows that for two identical neurons with excitatory connections to syn-

chronize, the connection delay plays a crucial role. Moreover, the delays that
allow synchronization, can be determined solely from the period of the uncoupled
neuron, its PRC and its dPRC.

Consider for example two identical Hodgkin-Huxley neurons, connectedby
excitatory connections with strength 1. From the plot ofφ′ in Figure 4.9, we notice
thatφ′(t1) is always greater than−1/T ≈ −0.0624. So constraint (4.9) is always
met whenφ′(t1) < 0. So whenever we initiate the neurons with a connection
delayt1 such thatα ≤ 1, φ′(t1) < 0, the neurons will move to synchronization
with new periodT − αT φ(t1).

Results from an example simulation are shown in Figure 4.11. The first plot
shows the start, and the second one the result, when starting with 2 HH-neurons,
firing 1 ms apart, and with a connection delay of 6 ms. They clearly converge,
with a new period of16.1 ms, which matches our formula.

Analogously, experiments support the theory that there is synchronization of
the two neurons with a shorter emerging period whenφ′(t1) < 0 andφ(t1) > 0,
and there is no synchronization ifφ′(t1) > 0.

1:1 phase-locking

If a neuron has a phase response curveφ such thatφ(t1 + ∆) = φ(t1 − ∆), for
a certain connection delayt1 and a phase difference∆, then this point is also a
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Figure 4.11: Left: 2 HH-neurons spiking with 1 ms difference in timing. Right: The 2
neurons have converged.

Figure 4.12: Left: PRC for the Connor model. Middle: dPRC for the same model. Right:
phase difference between two spiking neurons with excitatory connection, evolving to a
stable state.

fixed point of the map (4.7).
This fixed point is stable when

|1 + αTφ′(t1 + ∆) + αTφ′(t1 − ∆)| < 1

−2

αT
< φ′(t1 + ∆) + φ′(t1 − ∆) < 0 . (4.10)

So the fall ofφ must be steeper than its rise.

As an example, this is the case in the Connor model. The equations for this
model are given in Section 2.2.2. Figure 4.12 shows the PRC (left) and dPRC
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(middle) of the Connor model at parameter valueI = 8.49. When the connection
delayt1 = 64, then∆ ≈ 22 is a fixed point, such thatφ(t1 + ∆) = φ(t1 − ∆) =
0.019. Alsoφ′(t1 + ∆) = −8e− 4 andφ′(t1 −∆) = 6e− 4, so constraint (4.10)
is met.

A simulation result is shown in the rightmost picture in Figure 4.12; it shows
how the phase difference between two spiking neurons moves from its initial
value, chosen at 35 ms, to 22 ms, the stable fixed point.

4.2.3 Synchronization of an N-neuron single-spiking network

It is possible to generalize the theory for a 2-neuron network to an N-neuron net-
work. Consider a network of N identical oscillators with periodT and PRCφ.
Suppose this is an all-to-all connected excitatory network, with all connections
having a delayt1 and strengthα.

Let X = (x1 x2 ... xN )T be a vector of time variables close to each other
such that oscillator 1 spikes at timex1, oscillator 2 at timex2, etc. Then the next
spikes will be fired at times

A(X) =




x1 + T − αTφ(t1 + x2 − x1) − ...− αTφ(t1 + xN − x1)
x2 + T − αTφ(t1 + x1 − x2) − ...− αTφ(t1 + xN − x2)
...
xN + T − αTφ(t1 + x1 − xN ) − ...− αTφ(t1 + xN−1 − xN )


 .

(4.11)
If there is synchronization, i.e.x1 = x2 = ... = xN , then all components of
A(X) are equal tox1 + T − α(N − 1)Tφ(t1). So the period of the synchronized
state must beT − α(N − 1)Tφ(t1).

We want to know whether this synchronized state is stable and attracting. Con-
sider the map

F : X 7→ A(X) −




T (1 − α(N − 1)φ(t1))
T (1 − α(N − 1)φ(t1))

...
T (1 − α(N − 1)φ(t1))


 . (4.12)
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F has a fixed point(0 ... 0)T and its JacobianFX evaluated there is




1 + αTφ′(t1)(N − 1) −αTφ′(t1) ... −αTφ′(t1)
−αTφ′(t1) 1 + αTφ′(t1)(N − 1) ... −αTφ′(t1)

... ... ... ...
−αTφ′(t1) ... ... 1 + αTφ′(t1)(N − 1)


 .

(4.13)
To determine the asymptotic stability of the synchronized state, we consider

the difference vectorY = (y2 ... yN )T = (x2 − x1 ... xN − x1)
T . The difference

vector ofF (X) isG(Y ) = (F2(X) − F1(X) ... FN (X) − F1(X))T whereFi
is thei - th component ofF .

Now the stability of the synchronized state is determined by the (multipliers
of the Jacobian of the) mapG. Its JacobianGY can easily be obtained fromFX
and is given by




1 + αTφ′(t1)(N − 1) ... −αTφ′(t1)
... ... ...

−αTφ′(t1) ... 1 + αTφ′(t1)(N − 1)


 + (4.14)




αTφ′(t1) ... αTφ′(t1)
... ... ...

αTφ′(t1) ... αTφ′(t1)


 .

This is a diagonal matrix with(N−1) equal diagonal elements and thus all eigen-
values equal to1+αN Tφ′(t1). The fixed point(0 ... 0)T of the mapF is asymp-
totically stable if all multipliers are strictly inside the (complex) unit circle. Thus
the synchronization is asymptotically stable if

−1 < 1 + αN Tφ′(δ) < 1

−2 < αN Tφ′(δ) < 0

−2

αN T
< φ′(δ) < 0 . (4.15)

This is the generalization of constraint (4.9) to the synchronization of an N-
neuron network with all-to-all excitatory connections.
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Figure 4.13: Left: 8 HH-neurons spiking with 1 ms difference in timing. Right: The 8
neurons have converged.

This is again confirmed by tests on a network of Hodgkin-Huxley neurons.
Figure 4.13 shows on the left the initial state: 8 HH neurons, firing spikes 1
ms apart. They are connected through excitatory connections, giving each other
pulses of size 1 (mV). The connections have a delay of 6 ms. After 20000 ms, the
result is shown on the right of the figure: all 8 neurons are strongly synchronized.

4.3 Further applications of PRCs inMATCONT

In this section we combine MATCONT’s functionalities of continuation and com-
puting the PRC, to obtain families of PRCs in cases where the shape of the PRC is
known to have important consequences on networking behaviour. The change of
the shapes of the PRCs under parameter variation therefore is an interesting object
of study.

4.3.1 Morris-Lecar: limit cycles close to homoclinics

Brown et al. [13] have studied the response dynamics of weakly coupledor uncou-
pled neural populations using the PRCs of periodic orbits near certain bifurcation
points. In particular they obtain the PRCs of the periodic orbits near homoclinic-
to-saddle-node orbits (HSN; Brown et al. call this the SNIPER bifurcation) and
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homoclinic-to-hyperbolic-saddle orbits (HHS; Brown et al. call this the homo-
clinic bifurcation). They obtain standard forms for these PRCs, based ona normal
form analysis of the homoclinic orbits.

In our numerical calculations that involve the Hindmarsh-Rose model in the
first (HSN) case and the Morris-Lecar model in the second (HHS) case, their
normal-form-based predictions are largely confirmed.

It turns out that the PRCs in the two cases look very different. On the other
hand, it is well known that the transition from HSN to HHS orbits is generic when
a curve of HSN or HHS orbits is computed. The generic transition point is a
non-central homoclinic-to-saddle-node orbit (NCH). Moreover, this transition is
not uncommon in neural models and indeed we found it in the ubiquitous Morris-
Lecar model, cf. Section 4.1.

So one can conclude that the PRCs near HSN orbits can smoothly be trans-
formed into the PRCs near HHS orbits. Analytically this calls for a normal form
analysis of the NCH orbits. We have not done this, but used the situation as a
testing ground for our computation of PRCs.

We computed a branch of spiking orbits with fixed high period (this forces
the branch to follow the homoclinic orbits closely) from the HHS regime into
the HSN regime, computed the PRCs in a large number of points and plotted the
resulting PRCs in a single picture to get a geometric insight in the way the PRCs
are transformed from one into the other.

In Figure 4.14A, part of the phase plane is shown for the Morris-Lecarmodel.
Since the curves are very close together, we added a qualitative diagram(Figure
4.14B). The pictures show the saddle-node curve (thin), and the curveof HHS
orbits (dashed), that intersect and collapse to form a curve of HSN orbits (thick).
The point of intersection is encircled; this is a NCH point. Close to the curves
of HHS and HSN orbits, is the curve (dotted) of limit cycles with fixed period
(237.665) along which we have computed PRCs. The continuation was done
using 80 mesh intervals and 4 collocation points per interval, which results in
high precision computations.

Figure 4.14C shows the resulting 100 computed PRCs. We started the limit
cycle continuation from a cycle withV3 = 10 andI = 40.536. The corresponding
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PRC is the one that, in Figure 4.14C, has the leftmost peak; it is also slightly darker
in the picture than the following PRCs. The picture shows the smooth transition
of consecutive PRCs. The gray PRCs are the ones for limit cycles at values ofV3

lower than the value at the NCH point (V3 = 12.4213). The dark PRCs correspond
to limit cycles at higherV3-values.

The shapes obtained for PRCs near HSN orbits and those near HHS orbits
both confirm the results from [13].

Two significant facts come out from the picture. First, the dark PRCs are (at
least close to) strictly positive, while the gray PRCs have a more distinct negative
region. Secondly, the PRCs closest to theV3-value of the NCH point are also the
PRCs with the lowest peak, i.e. the PRCs in the bottom of the ’valley’ that is
formed by the consecutive PRCs for limit cycles further away from that particular
value, in either direction. This suggests that the NCH orbit has a distinct influence
on the shape of the PRCs of nearby limit cycles. This is not surprising, butto our
knowledge has never been investigated.

The computation of the100 PRCs along the limit cycle curve took a total time
of 2.34 s, i.e. 0.0234 seconds per PRC. To compare this with standard methods,
we note that in [46]§9.5.3, Ermentrout states that to compute one PRC takes a
second or two. This is certainly acceptable if one is interested in a single PRC but
hardly acceptable if one is interested in the evolution of the PRC under a change
of parameters.

The full continuation run for these100 limit cycles took62.41 seconds. So
our PRC-computations took only about3.75% of the total time needed for the
experiment. If one would use a PRC-computing method that takes for example 2
seconds per PRC, this would cause the total runtime of the program to increase up
to 260 seconds, an increase of more than300%.

4.3.2 Hodgkin-Huxley: limit cycles close to saddle-node ofcycles

As a third test, we have done a continuation of both coexisting stable limit cycles
in the Hodgkin-Huxley system, mentioned in Section 3.2.5. In both cases we did
the continuation for decreasing values ofI, approaching a saddle-node of limit
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Figure 4.14: A) Phase plot for the Morris-Lecar model. B) Qualitative picture to clarify relative
positions of the curves. Thin = limit point curve; thick = HSN-curve; dashed = HHS curve;
circle = NCH point; dotted = curve of limit cycles with period237, 6646. C) PRCs for limit
cycles along limit cycle curve. Gray = PRCs for limit cycles close to HHS curves; black = PRCs
for limit cycles close to HSN curves.
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cycles (LPC).

The big stable limit cycle loses its stability at an LPC that occurs atI =
6.276. Starting fromI = 7.919, we computed 150 continuation steps, with 80
mesh intervals and 4 collocation points. The final computed limit cycle was at
I = 6.377. The last 100 PRCs are shown in Figure 4.15A, where the palest one,
with biggest amplitude, is the PRC corresponding to the limit cycle closest to the
LPC.

The small stable limit cycle loses its stability at an LPC that occurs atI =
7.8588. Starting fromI = 7.919, we computed 100 continuation steps, with
smaller stepsizes than for the big limit cycle. The final computed limit cycle was
at I = 7.8592. The corresponding 100 PRCs are shown in Figure 4.15B; again
the palest one is closest to the LPC.

During the continuations, the actual PRC-computations took around 4 seconds
total for 100 PRCs, i.e.0.04 s per PRC. The full continuation run took around 100
seconds, so the PRC-computations took about4% of the total runtime. Again, the
use of another method to compute the PRC, that takes 2 seconds per limit cycle,
would increase the time needed to about300 seconds, an increase by200%.

Both PRCs have both positive and negative regions but otherwise their shapes
are very different. It is noteworthy that the shapes of the PRCs near thebig LPC
look similar to the PRCs predicted near the Bautin bifurcation in [13]. It is well
known that branches of LPCs generically are born at Bautin bifurcationpoints.
However, the shapes of the PRCs near the small LPC are very different.We note
that both LPCs are far away from Bautin bifurcation points. This is again a subject
for further investigation.
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Figure 4.15: A) PRCs of big Hodgkin-Huxley limit cycles approaching a LPCat I = 6.276. B)
PRCs of small Hodgkin-Huxley limit cycles approaching a LPCat I = 7.919.
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Chapter 5

Neuron and synapse
modelling in the young

XenopusTadpole

Humor can be dissected as a frog can, but the thing dies in the process
and the innards are discouraging to any but the pure scientific mind.
(E. B. White (1899 - 1985), Some Remarks on Humor, introduction)

In many neuronal circuits, in both invertebrates and vertebrates, different neu-
rons have rather different properties. However, particularly in complex vertebrate
central nervous systems, the normal activity of neurons during behaviour is dif-
ficult to study. Using a new whole-cell patch recording method [94] in the spinal
cord of immobilized, newly hatched Xenopus tadpole, peoplefrom theXenopus
tadpole research group of the University of Bristol have been able to make mea-
surements of the type-specific properties of individual neurons, the synapses they
make, and their activity during defined motor responses. Whenwe started mod-
elling work on this youngXenopustadpole, this data put us in a nearly unique
position for a vertebrate, where we can make models of each individual type of
neuron and synapse on the basis of available physiological data. In this chapter
detailed information is given on all our individual neuron and synapse models,
which will subsequently, in the next chapter, be used in several network models.



i

i

“main” — 2007/1/15 — 13:43 — page 140 — #154
i

i

i

i

i

i

140 Neuron and synapse modelling in the young XenopusTadpole

Figure 5.1: Chain of full-grownXenopus laevis. (Picture from the Cohen-Cory lab web-
site, http://cohen-corylab.bio.uci.edu/)

5.1 Introduction to the Xenopustadpole

5.1.1 TheXenopustadpole

The Xenopus laevisor African Clawed Frog is an animal that exemplifies how
nature can be hesitant to modify successful adaptation. Fossils of theXenopus
have been found, dating from the Cretaceous (144 to 65 million years ago)[116],
and the animal is nowhere endangered, even today [125]. TheXenopus laeviswas
the first vertebrate to be successfully cloned [48], and is a very popular animal to
study early vertebrate properties.

The hatchlingXenopustadpole provides a very simple model animal with lim-
ited behaviour. It can swim either spontaneously or when touched anywhere on
the body [11]. A pineal eye detects dimming light, which speeds up swimming
[79]. The tadpole stops swimming when the head bumps into solid objects and
it sticks to things with mucus secreted by a cement gland on the head [11]. If
the tadpole is held, it can make stronger struggling movements [123]. Swimming
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5.1 Introduction to the Xenopustadpole 141

Figure 5.2: Initial developmental stages of theXenopus laevis. (Picture from theXenopus
tadpole research group at the University of Bristol)

behaviour in particular has been studied in detail at the neuronal level in physi-
ological experiments ([121],[111],[25],etc.). Of the struggling behaviour, much
less is known.

The behaviour of the hatchlingXenopusis being studied in the hope of getting
a better grasp on how nervous systems, even simple ones, are organizedon the
cellular level. The studies comprise a combination of techniques: behavioural ob-
servation, whole cell recording and network modelling. The present chapter and
the next one deal precisely with the modelling aspect of this research.

At the University of Bristol, theXenopustadpole research group has been
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142 Neuron and synapse modelling in the young XenopusTadpole

Figure 5.3: HatchlingXenopus laevisat stage 37/38. (Picture from theXenopustadpole
research group at the University of Bristol)

studying this little creature for many years. Professor Alan Roberts leads this
group, and for two years, I have been involved in the effort of modellingthe ner-
vous system of the animal, based on the measurements and data from the group.
The research group has been focussing on one specific stage in the development
of the hatchlingXenopustadpole, namely stage 37/38 [102]. A series of these
developmental stages are shown in Figure 5.2, and a close-up of a tadpoleat stage
37/38 is given in Figure 5.3.

5.1.2 Neuron types in the youngXenopustadpole

The spinal cord of vertebrates has a range of different neuron types with differ-
ent properties. In some simpler cases like the lamprey [105], [63], and theearly
developmental stages of the zebrafish [70], [71] and frogXenopus[115] there is
actual detailed information on the neuron types and their activity during swim-
ming. In lamprey andXenopusthis has allowed modelling of the spinal networks
underlying the generation of swimming activity and the testing of hypotheses on
the neurons and cellular mechanisms responsible [84], [128]. So far, while some
modelling has introduced stochasticity [69], it has not addressed the significance
of the different properties of the component neuron types, in part because detailed
data were not available.

From detailed measurements, done in theXenopustadpole research group in
the University of Bristol, using a new whole-cell patch recording method [94]
in the spinal cord of immobilized, newly hatched Xenopus tadpole, data on the
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type-specific properties of individual neurons, the synapses they make, and their
activity during defined motor responses was gathered.

Previous models of the hatchlingXenopustadpole spinal swimming circuits
have assumed that all CPG neurons have the same properties [114], [24], [128],
[26]. The data from the recent recordings show that this assumption is wrong:
different neuron types show clearly distinct properties.

The newly hatchedXenopustadpole, with only a couple of thousand neurons
in the spinal cord, provides a suitable system to study the type-specific differ-
ences between neurons. These neurons can be divided into 8 distinct classes on
the basis of clear anatomical differences: dorsoventral soma position (i.e. rela-
tive position from back to belly of the animal), dendrite distribution and axonal
projections; [115], [89]. Nothing is known about the function of one class of
possible neural canal receptor neuron [23]. For the remaining neuron classes,
using single-cell recordings in the spinal cord of immobilized tadpoles, we have
defined the type-specific properties of individual neurons whose anatomical fea-
tures were revealed by neurobiotin injection. These include: their passive and
active responses to current injection, the transmitter pharmacology of synapses
they make and receive (where some synaptic conductances have been studied in
voltage-clamp recordings), and their activity during responses to sensory stimuli.
Such detailed information has shown that 7 of the anatomical classes correspond
to distinct functional classes: 1 type of sensory neuron innervating the skin [18],
[91]; 2 types of sensory pathway neuron that have a role in the initiation ofswim-
ming [91], [93]; 3 types of premotor neuron that are active during swimmingand
may be components of the swimming central pattern generator [22], [90], [95],
[96]; and motoneurons [121], [113]. These detailed studies have recently pro-
vided evidence of functional sub-types within two anatomical classes (Li et al.,
unpublished). We should emphasize that, apart from the primary sensoryneurons
[109], there is presently no evidence on the ionic channels that different specific
types ofXenopusspinal neurons possess.
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Table 5.1: Different types of neuron in the hatchlingXenopusspinal cord and their functions: sensory neurons and
sensory pathway neurons.

Neuron type Abbrev. Function and position

Rohon-Beard cell RB Sensory neuron that innervates the skin, and excites dlc and dla.
Located dorsally.

Dorsolateral ascending
interneuron

dla Sensory pathway interneuron, that excites ipsilateral CPG neu-
rons (= central pattern generator neurons on the same side). Lo-
cated dorsally. They can get inhibited (blocked) by the ipsilateral
aINs (= aINs on the same side). It is inhibited during swimming
and struggling.

Dorsolateral commissural
interneuron

dlc Sensory pathway interneuron, that excites contralateral CPG neu-
rons (= CPG neurons on the opposite side). Located dorsally, with
axons that cross the spinal cord ventrally. They can get inhibited
(blocked) by the ipsilateral aINs. It is inhibited during swimming
and struggling.
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Table 5.2: Different types of neuron in the hatchlingXenopusspinal cord and their functions: CPG (= central
pattern generator) neurons.

Neuron type Abbrev. Function and position

Descending interneuron dIN CPG neuron that excites all ipsilateral CPG neurons. Located
rather dorsally. Active during swimming, inactive during strug-
gling. Fires only single spikes.

Ascending interneuron aIN CPG neuron that inhibits all ipsilateral CPG neurons, dla and dlc.
Located in the dorsoventral middle of the tadpole. Fires single
spikes during swimming, and bursts of spikes during struggling.

Commissural interneuron cIN CPG neuron that inhibits all contralateral CPG neurons. Located
in the dorsoventral middle of the tadpole, with axons that cross
the spinal cord ventrally. Fires single spikes during swimming,
and bursts of spikes during struggling.

Motoneuron MN CPG neuron that connects to ipsilateral muscles and causes their
activity. Located ventrally. Fires single spikes during swimming,
and bursts of spikes during struggling.
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5.2 Individual neuron models

5.2.1 General equations

To begin the modelling of individual neurons, we started from previous models
built specifically forXenopusspinal neurons [114], [24], [25]. We used a single
compartment model since these small neurons have very short dendrites and, if the
axon is ignored, are electrically compact [25], [130]. Some parameters were taken
directly from experimental data on individual neuron types (e.g. leak conductance
and reversal potential). However, since membrane currents have not yet been
characterized for the different neurons types, in most cases we used’emerging’
parameters obtained by matching outputs of the model to physiological properties
measured for each neuron type. Information was available from experiments on
a wide range of these properties: neuronal input resistance, resting potential, fir-
ing threshold, current threshold for firing, action potential (AP) heightand width,
maximum rise and fall rates of the action potential, after-hyperpolarisation am-
plitude and delay, initial firing frequency to long, constant current input,and the
effect of increasing current on this frequency (see Table 5.3; [90], [92], [93], [96]).

The general equations are based on the Hodgkin-Huxley model, as described
in Section 2.2.1. This was mainly because these equations allow monitoring of
individual ionic currents, and because the model by Dale [24], used asstarting
point, was of that type. The differential equation for the voltage is:

C
dV

dt
= Iinj + Isyn − Currents , (5.1)

whereC represents the cell’s membrane capacitance (based on measurements),
and is set to 4 pF for all neurons.Iinj represents experimentally injected current
andIsyn the ensemble of synaptic currents.Currents is the combination of all
modelled ion channel currents. The number of these depends on the cell type, but
all neurons have at least the following currents:

Currents = gleak(V − Vleak) + gNam
3
NahNa(V − VNa) (5.2)

+gKfastnKfast(V − VKfast) + gKslownKslow(V − VKslow).
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Figure 5.4: Schematic picture of the neurons and synapses in theXenopusspinal cord.
The diagram shows the different neuron types that are activeduring swimming, and their
dorsoventral position. (Picture from [95].)

The currents include one leak current, one Na-current and two K-currents, one
fast and one slow.

The leak conductance (gleak) is the inverse of the measured input resistance
(rescaled to nS), and the leak reversal potential (Vleak) is given by the resting
potential of the cell. This is clearly a mixed current, since in all neurons it wasless
negative than the reversal potential for Potassium. The maximum conductances
for Sodium and Potassium (gNa, gKfast and gKslow) are based on Dale ([24],
[25]) and matched to experimental results. The reversal potentials for Sodium and
Potassium (VNa, VKfast andVKslow) are based on physiological measurements.
In the absence of detailed measures, the neuronal input capacitance was assumed
to be the same for all neurons and was set to 4 pF.

The Na-current has both an activation (channel opening) and an inactivation
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(channel closing) component, these are represented bym andh. The K-currents
only have the activating part (nKfast andnKslow), so are for present purposes
assumed to be non-inactivating; cf [24]. The behaviour of these activations and
inactivation components is defined by the equation:

dgate

dt
=

1

τ
(max − gate) , (5.3)

wheregate is any of the above four variables,t is time, τ is the time constant
of the particular type of channel, andmax is the maximum opening rate of this
type of channel.τ andmax are voltage dependent, and thus are also defined by
equations:

τ =
1

α + β
(5.4)

max =
α

α + β

where

α =
A1 +B1V

C1 + exp(D1+V
E1

)
(5.5)

β =
A2 +B2V

C2 + exp(D2+V
E2

)
.

HereV is again the membrane potential,Ai, Bi, Ci,Di andEi are parameters to
be set for each type of neuron and channel.

5.2.2 Type-specific models

Our objective was to build models of each of the known spinal neuron types, as
listed in Tables 5.1 and 5.2 [115].

We have divided these neurons into four groups based on their very clearly
different and characteristic firing responses to injected current. We then set pa-
rameter values in order to match each model to the physiological properties of
each individual neuron type. In life, the properties of individual neurons within
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each type vary and without using population models we cannot model this vari-
ability. Our aim was to produce model neurons whose properties encapsulated the
main physiological features of each neuron type. This would allow us to explore
the significance of the different properties in the behaviour of the swimming cir-
cuit.

Unless stated otherwise, we used the generic equations described in Section
5.2.1. We decided that all neurons should have fast and slow K-channels as this
seems more biologically realistic. Where Dale used discontinuous functions to
represent the potassium currents, we used continuous functions instead. For sim-
plicity we have not used any calcium currents.

The parameters were based on [25], but to get better spiking behaviourin
the model neurons, and match other physiological data, we have made parameter
changes to the data from [25].

For all types of neurons, the measured physiological parameters are listed in
Table 5.3 and the model neuron parameters are listed in Tables 5.4, 5.5 and 5.6.

Input resistance and resting potential were matched by setting the leak con-
ductance and leak reversal potential. To set the firing threshold, theD-parameters
of all currents, and some of theA-parameters, needed to be changed from model
to model. One method to do this [114] involves decreasing the spiking threshold
by an amountX for all currents, as follows:

A′ = A+X B (5.6)

D′ = D +X .

ThenA′ andD′ are the new values. In several model neurons, we had to modify
the maximum conductances of the ion-channels to match recorded responses.
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aIN MN dIN RB dlc dla cIN

Input Resistance (MΩ) 740 405 272 230 428 1436 206
Resting potential (mV) -54 -61 -51 -70 -66 -63 -60

Current threshold for firing (pA) 28 109 85 95 53 198
Action potential (AP) threshold (mV) -29 -26 -28 -25 -35 -32 -25

AP peak (mV) 27 26 29 40 28 37 32
AP width (ms) 1.8 0.9 1.9 1.5 0.5 0.75 0.8

Max. AP rise rate (mV/ms) 121 105 85 127 130 124
Max. AP fall rate (mV/ms) 97 77 76 137 100 101

Initial firing frequency (Hz) 24 41 97 29 71
Slope of frequency-current relationship (Hz/pA) 53 67 84

Afterhyperpolari-zation (AHP) trough (mV) -47 -42 -43 -44 -57 -43
AHP delay (ms) 1.8 2.3 6.9 1.3 2.1 1.5

Response to injected current RF* RF* S* S* AF* AF* DF*
Initial gap before delayed burst (ms) 167

Slope of gap-current relationship (ms/pA) -200

*RF = Repetitive Firing, S = Single spike
AF = Adapting Firing, DF = Delayed Firing

Table 5.3: Measured properties for the different neuron types based onwhole-cell recordings (medians, based on 5
- 20 neurons of each type).
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aIN MN dIN RB dlc dla cIN
C 4.00 4.00 4.00 4.00 4.00 4.00 4.00
gLeak 1.3514 2.4691 3.6765 4.3573 2.3364 0.6964 3.8544
VLeak -54.00 -61.00 -51.00 -70.00 -66.00 -63.00 -60
gNa 150.00 110.00 210.00 120.00 420.00 150.00 500
VNa 50.00 50.00 50.00 50.00 50.00 50.00 50
gKfast 15.00 8.00 0.50 1.50 70.00 70.00 30
VKfast -80.00 -80.00 -80.00 -80.00 -80.00 -80.00 -80.00
gKslow 2.50 1.00 3.00 8.00 10.00 5.00 20
VKslow -80.00 -80.00 -80.00 -80.00 -80.00 -80.00 -80.00
gA 30
VA -80.00

Table 5.4: Parameters for all modelled neurons: capacitance (in pF), the conductances
(in nS) and reversal potentials (mV) of their currents.

Repetitively firing neurons

aINs, dlxs, MNs and dINrs all fire repetitive action potentials to depolarising cur-
rent injection but there are big differences in input resistance.
aINs and MNs are most like Dale’s original neurons [25]. They fire repetitively
to sustained injected current (Figure 5.5), but there are differences,for example in
input resistance and firing frequency during current injection [90].

aIN
Starting from Dale’s parameters [25], several changes were neededto fit our mea-
surements. TheD-parameters to all currents were decreased, to increase the action
potential voltage threshold. To increase the spike frequency to depolarizing cur-
rent, the time constantsτ for the Na-activation and -inactivation were changed:
τ for the activation (mNa) was decreased by increasing theA-parameter of itsβ
rate constant, and even more at high voltages by decreasing theC-parameter of
theα rate constant;τ for the inactivation (hNa) was increased by decreasing the
A-parameter of itsα rate constant, but restored at high voltages by decreasing the
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Dale’s
model A B C D E

αmNa 8.67 0 1 -1.01 -12.56
βmNa 3.82 0 1 9.01 9.69
αhNa 0.08 0 0 38.88 26
βhNa 4.08 0 01 -5.09 -10.21
αNKfast 3.1 0 1 -29.5 -23.3
βNKfast 0.44 0 1 6.98 16.19
αNKslow 0.16 0 1 -4.96 -7.74
βNKslow 0.04 0 1 -16.07 6.1

aIN / MN A B C D E

αmNa 8.67 / 13.26 0 0.5 -13.01 / -5.01 -18.56 / -12.56
βmNa 5.73 0 1 -2.99 / 5.01 9.69
αhNa 0.04 0 0 15.8 / 28.8 26
βhNa 4.08 / 2.04 0 0.001 -19.09 / -9.09 -10.21
αNKfast 3.1 0 1 -35.5 / -27.5 -9.3
βNKfast 1.1 / 0.44 0 1 0.98 / 8.98 16.19
αNKslow 0.2 0 1 -10.96 / -2.96 -7.74
βNKslow 0.05 0 1 -22.07 / -14.07 6.1

dIN / RB A B C D E

αmNa 13.01 0 4 / 1 -1.01 / -4.01 -12.56
βmNa 5.73 0 1 9.01 / 6.01 9.69
αhNa 0.06 / 0.04 0 0 30.88 / 29.88 26
βhNa 3.06 / 2.04 0 1 -7.09 / -8.09 -10.21
αNKfast 3.1 0 1 -31.5 / -32.5 -9.3
βNKfast 0.44 0 1 4.98 / 3.98 16.19
αNKslow 0.2 0 1 -6.96 / -7.96 -7.74
βNKslow 0.05 0 2 -18.07/ -19.07 6.1

Table 5.5: (Part 1) Detailed parameters for the currents in the modelled neurons. The
top table lists the original parameters from [25].



i

i

“main” — 2007/1/15 — 13:43 — page 153 — #167
i

i

i

i

i

i

5.2 Individual neuron models 153

dlc / dla A B C D E

αmNa 13.26 0 3 / 1.2 -3.01 / -9.01 -12.56
βmNa 5.73 0 1 6.01 / 1.01 9.69
αhNa 0.06 / 0.04 0 0 19.88 / 14.88 26
βhNa 4.08 / 2.04 0 0.001 -8.09 / -13.09 -10.21
αNKfast 3.1 0 1 -32.5 / -37.5 -9.3
βNKfast 1.1 0 2 / 0.6 3.98 / -1.02 16.19
αNKslow 4 0 1 -53 / -58 -7.74
βNKslow 0.01 0 1 47 / 42 6.1

cIN A B C D E

αmNa 13.26 0 0.1 -10.01 -12.56
βmNa 5.73 0 1 0.01 9.69
αhNa 0.06 0 0 23.8 26
βhNa 3.06 0 0.001 -14.09 -10.21
αNKfast 3.1 0 1 -32.5 -9.3
βNKfast 1.1 0 1 3.98 16.19
αNKslow 0.2 0 1 -7.96 -7.74
βNKslow 0.05 0 0.5 19.07 6.1
αmA 12.025 0 0.5 -10.01 -12.56
βmA 14.325 0 1 -8.01 9.69
αhA 0.0001 0 1 15.88 26
βhA 10 0 500 -22.09 -10.21

Table 5.6: (Part 2)Detailed parameters for the currents in the modelled neurons.
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C-parameter of itsβ rate constant. TheD-parameters of the Na-current were de-
creased more than those of the K-currents, to lower the threshold current and time
constant further. To lower the time constant of Na-activation around threshold and
zero voltage (i.e. to get shorter spikes), itsE-parameter was decreased, and to in-
crease the time constant of the fast K-activation in that range, itsE-parameter was
increased. The maximum activation of the fast K-channels was increased, and its
time constant decreased, by increasing theA-parameter of itsβ rate constant. The
time constant of the slow K-current was decreased, but it plays a less important
role, as its maximum conductance is relatively low.

MN
These neurons are very similar to aINs. To match the threshold behaviour (with
the changed resting potential), theD-parameters of all currents were changed, and
the activation was sped up by increasing theA-parameter of theα rate constant of
the Na-activation. All maximum conductances were decreased, to match threshold
current and voltage. TheE-parameter of theα rate constant was increased again
to the value used by Dale [25]. TheA-parameter of theβ rate constant of Kfast
was decreased to get a deeper AHP and theA-parameter of theβ rate constant
of the Na-inactivation was increased. To reduce spike width, theD-parameters of
the Na-inactivation were increased more than others, which results in a lower time
constant.

Single-spiking neurons

dINs and RBs fire a single, long-duration action potential at the start of current
injections and only rarely give any further response (Figure 5.6; [91], [96]).

dIN
A unique property of dINs is that they never fire repetitively to sustained current,
no matter how strong it is. To match this, starting from the aIN parameters, we
increased theC-parameters of theα rate constant of Na-activation (mNa; from 1
to 4), of theβ rate constants of Na-inactivation (hNa), and of the slow K-current.
In addition, the maximum conductance of slow K was increased, and that of fast
K was decreased. To match the change in firing threshold, and to compensate



i

i

“main” — 2007/1/15 — 13:43 — page 155 — #169
i

i

i

i

i

i

5.2 Individual neuron models 155

Figure 5.5: Responses of repetitively firing neuron model.A: Output of model MN firing
in response to injected current.B: Physiological measurement of repetitively firing neuron
(MN).

for the big difference in input resistance (compared to aINs), allD-parameters
were increased. To match the threshold, theD-parameters of the Na-currents were
changed more than the otherD-parameters. The parameters for theβ rate constant
of the (less important) fast K-current were set to Dale’s values. To matchspike
width and AHP, theA-parameters of the Na-inactivation were changed, which
causes a larger time constant and a higher maximum value (i.e. wider spikes and
larger impact).

A property of dINs, which turns out to be crucial in network behaviour isthat
they do not fire on rebound when negative current pulses are givenat rest but have
the ability to fire on rebound if a negative current pulse of sufficient amplitude
is given during depolarisation (see Fig 4E in [96]). This property is also present
in our dIN model (Figure 5.7). It is not known if this property is exclusiveto dINs.

RB
RB neurons have a rather negative resting potential. Starting from the dINcur-
rent parameters, most of theD-parameters were changed (except for the Na-
activation) to get the right threshold voltage and current. The time constantof
the sodium inactivation (hNa) was reduced, to reduce spike width, by decreasing
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156 Neuron and synapse modelling in the young XenopusTadpole

Figure 5.6: Responses of single-spiking neuron models to injected current. A: RB. B:
dIN. C: Wide dIN spike (thick dashed line) superimposed on then dlcspike (thin solid
line). D: Physiological measurement from single-spiking neuron (dIN).
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5.2 Individual neuron models 157

Figure 5.7: Rebound firing in dINs.A: dINs do not fire rebound spikes when negative
current is given at resting potential.B, C: They do fire on rebound after a negative current
pulse during depolarisation, if the pulse is of sufficient amplitude.

itsA-parameters. The maximum conductance of the slow K-current could be in-
creased to suppress repetitive firing, and that of the Na-current decreased, which
allowed theC-parameters of theα rate constant of Na-activation (mNa) to be
reduced to 1, as in Dale’s model.

Repetitively firing neurons with adaptation

When current is injected into sensory pathway interneurons (dlc and dla), they fire
repetitively, but the frequency drops and firing stops quickly (Figure 5.8; [120],
[92]). To model this, the slow K-current was modified.

dlc
To get the adapting behaviour, we wanted the slow K-current to increaseat each
spike fired, and remain sufficiently activated so that the neuron would notstart to
fire again after a while. To obtain this, theD-parameters of the slow K-current
were decreased for theα rate constant and increased for theβ rate constant. The
A-parameters of these rate constants were increased and decreased respectively.
The otherD-parameters were decreased (compared to aIN) to match the thresh-
old voltage and current. By increasing theC-parameter of theα rate constant of
mNa, the threshold for repetitive firing was raised. In this way, once repetitive fir-



i

i

“main” — 2007/1/15 — 13:43 — page 158 — #172
i

i

i

i

i

i

158 Neuron and synapse modelling in the young XenopusTadpole

Figure 5.8: Responses of repetitively firing neuron model with adaptation. A: Output
of model dlc firing in response to injected current.B: Physiological measurement of
repetitively firing neuron with adaptation (dlc).

ing starts, the frequency is higher. And it is specifically this high initial frequency
that was needed. To the same effect, theD-parameters of the fast K-current were
decreased (more than the other current’sD-parameters), and the maximum con-
ductances of Na- and fast K-currents were increased.

dla
To compensate for the much higher input resistance and lower threshold current,
the conductances of all currents were decreased (starting from dlc parameter val-
ues). To then match the threshold voltage and current, allD-parameters were
decreased slightly, and the one for theα rate constant of the Na-activation more
than the others. To increase spike width, theA-parameters for Na-activation were
decreased, and to get a low initial firing frequency, theC-parameters of theα rate
constant of the Na-activation and of theβ rate constant of the fast K-current were
decreased.

Delayed bursting neurons

Neurons of one specific type (cINs) exhibit a delayed burst in response to con-
stant input current ([1]; see Figure 4B in [94]). Typically, this burstfollows a
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5.2 Individual neuron models 159

delay which is preceded by a single, initial spike (Figure 5.9). To model this prop-
erty, a further K-current was used, that has both an activation and aninactivation
component [51]. A current of this type has previously been describedfor Xenopus
neurons developing in culture [108]. This current results in an extra term added to
equation (5.2).

Currents = gleak(V − Vleak) + gNam
3
NahNa(V − VNa) (5.7)

+gKfastnKfast(V − VKfast) + gKslownKslow(V − VKslow)

+gAm
3
AhA(V − VA)

cIN:
The characteristic firing property of cINs is repetitive firing following with adelay
after an initial single spike. The maximum conductance for the Na-current was
increased significantly (relative to the other currents) to overcome the higher leak
conductance and get a high firing frequency. All current parameters(A, B, C, D
andE) were kept similar to those for aINs. The maximum conductances of all
currents were altered, to obtain the right firing threshold. TheC-parameter for the
α rate constant of the Na-activation was decreased, which lowers the time constant
for high voltage, resulting in narrow spikes and fast repetitive firing. To match
spike width further, small changes were made to theA-parameters of the Na-
inactivation. To increase the time constant of the fast K-current, theC-parameter
of its β rate constant was decreased.

The new K-current, added to produce the delay in repetitive firing, was ini-
tially given the same parameters as the Na-current, which also shows both activa-
tion and inactivation. TheD-parameters were then decreased to match threshold
and spiking behaviour, but theα rate constant for activation of the current (mA)
was unaltered to maintain the pre-burst delay. TheC-parameter for the inactiva-
tion rate constantβ was increased to 500: the higher this value, the longer the
delay. The inactivation of the new current should hardly change when there is no
injected current. To obtain this, theC-parameter of itsα rate constant is set to
1, and theA-parameter very low. TheA-parameter of itsβ rate constant is set to
10, to decrease the maximum opening rate. TheA-parameters of the activation of
the new current are high, so that it is fast enough to suppress immediate repetitive
firing after the initial spike in response to sustained current. The slow inactivation
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160 Neuron and synapse modelling in the young XenopusTadpole

Figure 5.9: Responses of delayed firing neuron model.A: Output of model cIN firing
in response to injected current.B: Physiological measurement of delayed firing neuron
(cIN).

of the new current will allow repetitive firing after a delay.

5.3 Synapse models

In a biologically realistic neural network, you not only need realistic models for
the individual neurons, but also realistic connections between these neurons. That
way the communication over the network can be regulated in a physiologically
relevant way. Therefore, we have developed relatively accurate models for the
synapses in theXenopustadpole.

In our network, we use 3 different types of chemical synapses: glutamatergic
AMPAR, and NMDAR mediated excitatory synapses, and glycinergic inhibitory
synapses. The NMDAR mediated excitation is voltage dependent ([122], [114],
[25]). Although dINs are known to co-release acetylcholine and glutamatewe
have not included a separate acetylcholine component. The time course of the
acetylcholine current is similar to the AMPA component so we have combined
the two as one single ’fast’ component [93].
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5.3.1 Equations

The time evolution of each type of synapse is implemented as the subtraction
of 2 exponential functions, the opening functiono and the closing functionc.
These functions are increased stepwise: every time a presynaptic spike isfired (a
maximum voltage is reached above zero mV), the synaptic functions are increased
with the fixed value of 10. Then the functions decay exponentially. In equation
(5.1),Isyn stands for the sum of all synaptic inputs. This synaptic signal is, for a
signal from neuroni to neuronj, defined as:

Isyn(i, j) = Gmx (c− o) (Er − Vj) CS(i, j) . (5.8)

HereGmx andEr are the maximum conductance (in nS) and the reversal poten-
tial (in mV) of that type of synapse, respectively.Vj is the membrane potential (in
mV) of postsynaptic neuron,o andc are the dimensionless opening and closing
functions of the synapse, andCS(i, j) is the dimensionless connection strength of
this particular synapse. The decay of the opening and closing function is described
by the following exponential functions:

dc

dt
= − 1

τc
c (5.9)

do

dt
= − 1

τo
o

where theτo andτc, the opening and closing time constants, are parameters for
each type of synapse.

5.3.2 Synapse parameters

Table 5.7 lists the parameters used in the synaptic equations described above,
together with the references we got the values from. Modifications (not in italics)
in the values forτo andτc of the inhibitory and AMPA synapses were made to fit
the experimental data, with the results of this fitting shown in Figures 5.10 and
5.11. All inhibitory synapses are the same but in excitatory synapses the ratios of
AMPA to NMDA conductances varied (Figure 5.10B, C).
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162 Neuron and synapse modelling in the young XenopusTadpole

Inhibitory AMPA NMDA References
Gmx (nS) 0.435 0.593 0.29 [50],[55],[16]
τo (ms) 1.5 0.2 5 [24]
τc (ms) 4 3 80 [24]
Er (mV) -52 (dIN -64) 0 0 [114], unpub. measurements

Table 5.7: Parameters used for chemical synapses. The parameters werebased on the
references listed, but the time constants of inhibitory andAMPA synapses were modified
slightly to fit the experimental data. The unchanged parameters are in italics.

Figure 5.10: Post-synaptic potentials at synapses. Lighter straight line = response of a
leak-only neuron model (no ionic currents involved), Darker jittery line = physiological
measurements.A: Inhibitory postsynaptic potential.B: Fast excitatory postsynaptic po-
tential with 50% AMPA and 50% NMDA. This ratio is comparable to e.g. the RB to dlc
synapse.C: Slow excitatory postsynaptic potential with 35% AMPA and 65% NMDA.
This ratio is comparable to the dIN feedback synapse.

5.3.3 NMDA voltage dependence

Voltage dependence of the NMDA synapses is mediated by Mg2+ ions outside
the neuron which at resting membrane potential block the NMDA receptor con-
trolled channels, until the postsynaptic neuron is sufficiently depolarized toeject
the Mg2+ ions [103]. The voltage dependence of the NMDA synaptic current is
added by slightly modifying (5.8) for the NMDA synapses:

Isyn(i, j) = Gmx (c− o) (Er − Vj) CS(i, j)X , (5.10)
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Figure 5.11: NMDA voltage dependence. The size of the peak NMDA synaptic current
plotted against the membrane potential of a postsynaptic cell modelled with only leak
conductances. This plot shows the progressive reduction insynaptic current below -35
mV reflecting the ’negative slope conductance’ produced by widely reported Mg2+ block
of the NMDA channel.

whereX is the voltage dependence factor, defined as:

X = (1 + 0.1 Mg exp(−0.08 Vj))
−1 . (5.11)

This implementation is based on Lisman et al. [97]. HereMg is the extracellular
Mg2+ concentration in the neuron, which is approximated by the constant 0.5
mM. The voltage dependence of the NMDA current is shown in Figure 5.11 [122].
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Chapter 6

Network models for the young
Xenopustadpole

A complex system that works is invariably found to have evolved from
a simple system that works. (John Gaule)

In this chapter, we will use the individual neuron and synapse models from the
previous chapter in biologically realistic networks. We have developed two dif-
ferent networks so far. The first network is a network to simulate the swimming
behaviour of theXenopustadpole. Besides generating reliable swimming, an
important aim for this model is to investigate the significance of type-specific
properties of neurons in the operation of neuronal networks, using the spinal
neurons and networks responsible for generating swimming activity in young
tadpoles. Then we build a network model to test a hypothesis on synapse gen-
eration. For this, we build a network where whether different neurons connect
through synapses depends purely on statistics and probabilities. The idea is that
this is what happens during synaptogenesis (= generation ofsynapses), and that
synapses have no special neuron recognition mechanism.
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166 Network models for the young Xenopustadpole

6.1 Types of behaviour

Like the different locomotor gaits shown by mammals, the neuronal network in the
young tadpole spinal cord is able to generate two rather different patterns of motor
output. In response to a brief touch to the skin, the tadpole swims using alternating
lateral bends in the trunk that move in a wave from head to tail at frequencies from
10 to 25 Hz [81]. When tadpoles are held and the skin stimulated continuously
they struggle making stronger, slower bends at 2 to 5 Hz that move from the tail
to the head [80].

In immobilized tadpoles, very different patterns of activity in spinal interneu-
rons and motoneurons can be recorded during these two responses. During swim-
ming spinal neurons fire a single action potential on each cycle, but duringstrug-
gling they fire high frequency bursts lasting nearly half a cycle [123]. Recordings
have shown that motoneurons and some inhibitory interneurons are activeduring
both activities [123]. During swimming, if driven by brief excitation from dINs,
these neurons will only fire single spikes, but during struggling, with slower, more
sustained excitation, they have the capacity to fire fast and repetitively in bursts.
Other repetitively firing interneurons, the inhibitory aINs, usually fire a single
spike on each swimming cycle but can sometimes fire twice and are vigorously
active during struggling [90]. Finally, some repetitively firing interneurons that
are not active during swimming become active and fire bursts during repetitive
skin stimulation that leads to struggling. The role of repetitively firing neurons
in the struggling network is the subject of current physiological and modelling
studies (Li et al., in preparation).

So far, we have primarily focussed on the swimming behaviour. To model the
tadpole’s struggling is one of our future goals.

6.2 TheXenopusswimming network

6.2.1 dIN rebound properties in small networks

Experimental work has given direct evidence that the excitatory dINs play a key
role in driving the other neurons that are active during the swimming rhythm [96].
However, since these neurons fire only a single spike when depolarised, it is im-
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6.2 The Xenopusswimming network 167

portant to consider how they can be made to fire further spikes before exploring
the operation of the whole swimming circuit.

As mentioned in Section 5.2.2, dINs can fire spikes on rebound following
negative current injection, provided they are depolarised [96], and ithas been
proposed that this property may have a key role in rhythm generation. Neurons
depolarized by synaptic excitation could fire on rebound after reciprocal inhibition
from neurons on the opposite side of the spinal cord [114].

We therefore tested if the model dIN would fire on rebound following synap-
tic inhibition. Consider a dIN receiving a fast excitatory synaptic input, followed
by an inhibitory one. If the IPSP occurs near resting potential, it will not cause
any rebound spike (Figure 6.1A). However, when slow feedback excitation depo-
larizes the dIN after external stimulation, it will still only fire a single spike after
the fast excitatory synaptic input (Figure 6.1B), but it will fire a rebound spike
after the IPSP (Figure 6.1C). This is precisely the mechanism that supports the
continuation of activity during swimming.

6.2.2 Swimming network

Activity of spinal neurons - network diagram

In our model of the circuitry for swimming and its sensory initiation, single neu-
rons of each type are used to represent what in the real animal are populations
of similar neurons. These populations typically consist of several hundreds of
neurons throughout the spinal cord. The network architecture is based on the
anatomical evidence on axonal projections and the synaptic connections are based
on results from paired recordings. The RB neurons are touch sensory neurons in-
nervating the skin. Thus, when theXenopusskin is touched, the RB neurons fire
[18]. The RB neurons excite sensory interneurons (dlc and dla), which relay the
signals through excitatory synapses to the contralateral (opposite) and ipsilateral
(same) side, respectively [91], [92]. Here they synapse onto all ’central pattern
generator’ (CPG) neurons, including dINs [91], which in turn excite allCPG neu-
rons on their own side [96]. These other CPG neurons are aINs, whichprovide
ipsilateral, recurrent inhibition (i.e. returning inhibition on the same side) [95],
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168 Network models for the young Xenopustadpole

Figure 6.1: Post-inhibitory rebound in dINs. Top left: Diagrams showing small networks
used to create plotsA,B andC. A: dIN response to fast excitatory input (main component
is AMPA from neuron e), followed by inhibitory input.B: dIN response to fast excitatory
input, followed by slow feedback excitation (main component is NMDA). C: dIN re-
sponse to fast excitatory input, followed by slow feedback excitation and then inhibition,
causing a rebound spike.
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6.2 The Xenopusswimming network 169

Figure 6.2: Diagram of the neuronal network which generates swimming. Triangles
stand for excitatory synapses, circles for inhibitory synapses. A synapse to a ’box’ means
the connection is made to all neurons inside the box.

cINs, which provide contralateral, reciprocal inhibition (i.e. inhibition to other
neurons on the other side of the body) [22], [124] and MNs, which connect to the
muscles and cause the swimming movements [121].

The model network (Figure 6.2) has a left and right side but no length and
represents the neurons and connections found in the caudal hindbrainand rostral
spinal cord. All ipsilateral synapses were assumed to have a combined axonal-
synaptic delay of 1 ms, all commissural synapses (i.e. passing from one side of
the spinal cord to the other) were given a delay of 2 ms as they are made from
axons which have crossed from the other side of the spinal cord.

The modelling work itself is done inMATLAB , with models written in that
language and simulations run usingMATLAB ’s built-in ODE suite. The individual
models for neurons and synapses are written as ordinary differential equations,
but with discontinuities incorporated in the network behaviour: there are discrete
increments in synapse parameters at times of a presynaptic spike, and the delays
are also part of the network behaviour, rather than being included in the differ-
ential equations. The total number of equations comes to 52 for the neurons(6
equations for each cIN and 5 equations for all other types), and 68 forthe synapses
(2 equations per synapse).



i

i

“main” — 2007/1/15 — 13:43 — page 170 — #184
i

i

i

i

i

i
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Synaptic conductances

During swimming, some of the maximum conductances were measured directly
in physiological experiments (Table 6.1, on the left). Of those that were not
(or could not be) directly measured, estimates were made (for example, using
AMPA:NMDA ratios measured from unitary synaptic potentials). The (dimen-
sionless) synaptic strengths in the model swimming network were set to specific
values, as to produce conductances whose peak values during swimming (Table
6.1, on the right) approximate the measured (or estimated) values. These values,
measured (or estimated) for a particular type of synaptic connection, wereactu-
ally the sum of synchronous inputs from a population of neurons of the same type.
Since populations of neurons are represented as individual neuronsin the model,
each connection type was represented as a single synapse whose conductance, as
in a real neuron, was equivalent to that produced by input from a population of
neurons.

Swimming result

Unlike previous models of the spinal cord, which lacked sensory pathwayneurons
(e.g. [111], [25]), a single ’stimulus’ to one RB neuron (on the right side), lead-
ing to a single RB action potential, makes the network enter a swimming mode,
where left and right sides fire alternating spikes. Exactly as in physiological ex-
periments, the side opposite the stimulus (left) is active first and the firing rate is
about 20 Hz (Figure 6.3A). As well as producing a clear swimming rhythm, the
activity patterns of different neuron types resemble those seen physiologically, in
a number of important respects (as shown in Figure 6.3B). Activity in the dINs
is clearly different to that in the other CPG neurons, with a stronger background
(tonic) depolarisation and more prominent reciprocal, mid-cycle IPSPs, followed
on each cycle by rebound firing [96]. In contrast: the background depolarisation
in the cINs, aINs and MNs is much smaller, and the mid cycle inhibition is hardly
visible as the membrane potential is close to the inhibitory reversal potential [90],
[96]. In these neurons the depolarisation is not sufficient for any to fire repetitively
(as they are capable of doing to sustained current), or to fire on rebound. Instead,
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measured model
source target AMPA NMDA A:N ratio AMPA NMDA
RB dlc 5.21 0.172 30.03 6.77 0.16

dla 5.21 0.174 30.04 3.38 0.16
dlc dIN 1.35 0.96 1.53 2.92 0.96
dla dIN 1.37 0.97 1.57 2.55 1.08
dIN aIN 1.68 0.59 3.3A 1.46 0.54

cIN 3.68 1.19 3.3A 8.51 1.05
dIN 4.28 4.29 1.0A 4.38 6.86
MN 5.18 1.59 3.3A 3.89 1.47

inhibition model
cIN aIN 2.9B 2.86

cIN 2.9B 2.86
dIN 8.1B 9.53
MN 3.9B 3.81

aIN cIN 1.0C 1.11
dIN 2.7C 2.70
MN 1.3C 1.27
dlc 5.0B 6.36
dla 5.0B 6.36

Table 6.1: Physiological maximum conductances (in nS) for synaptic connections
based on direct voltage clamp measurements and estimates, and maximum conductances
reached in the model during swimming simulation. 1. Calculated from peak current in
response to skin stimulation and assuming a reversal potential of 0 mV. - 2. Calculated
using AMPA conductance and published AMPA/NMDA ratio [91].- 3. From [91]. - 4.
Calculated from measured AMPA conductance, assuming the same AMPA/NMDA ratio
as for RB-dlc. - 5. Calculated from published peak current [91] in response to contralat-
eral skin stimulation. - 6. Calculated from measured AMPA conductance and published
AMPA/NMDA ratio [91]. - 7. Assumed to be the same as dlc-dIN but unconfirmed. -
8. Peak AMPA currents measured during swimming; conductance calculated assuming a
reversal potential of 0mV. For these connections, AMPA is actually total ”fast” excitation
(AMPA + nACh co-release; [93]). - 9. Calculated from measured AMPA conductance
and published AMPA/NMDA ratio [93]. - A. Recalculated from data used in [93]. - B.
Calculated from maximum peak currents and reversal potentials measured at mid-cycle
during swimming. - C. Estimated using cIN values and assuming a cIN/aIN ratio of 3.
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it is the relatively prominent fast excitation from the dINs that drives their single
spike on each cycle. As a result, firing in the dINs leads firing in the other neurons
on the same side (Figure 6.3C). The relatively weak excitation of aINs means that
they fire relatively late on each cycle, as described experimentally [90].

If the level of excitation from dINs was reduced, similar swimming activity
was seen but, as in ’spinalised’ animals where excitation is similarly thought to be
reduced [111], activity fails after a few cycles (Figure 6.3D).

To test the stability of the network, we varied the amplitude of the NMDA-
component of the dIN feedback connection and of the cIN-dIN inhibition inde-
pendently to establish the range over which swimming occurs (Figure 6.4). These
synapses were chosen because they together control the rebound firing which
drives the swimming network. In the gray area (both lighter and darker), there is
stable swimming: the MNs give alternating output in the normal frequency range
for swimming (15 to 25 Hz). Broadly: as the strength of dIN feedback excitation
is increased from its lowest value, the frequency and number of swimming cycles
increases until it becomes self sustaining; increasing the cIN-dIN inhibition de-
creases the frequency.

The strengths of other synapses can also play important roles in the network,
but these are not as crucial to the production of alternating firing as the rebound
firing mechanism. For example in Figure 6.5A, a frequency plot is shown for
the swimming network when varying the AMPA and NMDA components of dIN
feedback excitation. While variation in the NMDA strength clearly influences
swimming frequency, variation of the AMPA strength has much less effect. Figure
6.5B similarly shows that varying cIN-dIN inhibitory conductance results in sig-
nificant changes in swimming output, whereas varying cIN-cIN inhibition doesn’t
have any effect on swimming frequency.
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6.2 The Xenopusswimming network 173

Figure 6.3: Swimming activityA: Voltage traces of all neurons in the network during
sustained swimming, produced using the parameter values inTables 2-5.B: Comparison
of model output (sequences expanded fromA) to physiologically recorded swimming
activity of different CPG neuron types.C: dIN firing leads cIN and MN firing on each
swimming cycle and aIN firing is relatively late. Data expanded fromB (grey bars).D:
With the strength of dIN feedback excitation reduced, swimming is sustained for only 4-5
cycles.
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174 Network models for the young Xenopustadpole

Figure 6.4: Surface plot of network swimming frequency, for different maximum con-
ductance values of dIN feedback NMDA excitation and cIN-dINinhibition. The gray area
(both lighter and darker) has reliable swimming at a realistic frequency (15 to 25 Hz) and
the black area has high frequency output, with synchrony between the two sides.
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Figure 6.5: Influence of dIN feedback NMDA excitation and cIN-dIN inhibition on
swimming.A: Surface plot of swimming frequency, for different maximumconductance
values of dIN feedback NMDA and AMPA excitation.B: Surface plot of swimming fre-
quency, for different maximum conductance values of cIN-cIN and cIN-dIN inhibition.
Note: cIN-cIN inhibition has a smaller range, since its physiological conductance strength
is much lower than the cIN-dIN inhibition.

6.2.3 Testing the importance of type-specific neuron models

Importance of single-spiking property of dINs

To investigate the importance of type-specific individual neuron models, wehave
focussed on the dINs. They provide excitation to drive the firing of the other
active neurons on the same side, provide feedback excitation within each side,
and receive reciprocal inhibition from contralateral cINs. These connections are
crucial to allow the dINs to fire on rebound and therefore to drive swimming.
Having established the stable area of swimming with dINs in the network (Figure
6.4), we changed the firing properties of the dINs.

We first gave them the repetitive firing properties of aINs. This led to unstable
activity. The frequency plot (Figure 6.6) shows that the area of stable swimming
(2 levels of gray) is partly enclosed by an area of high frequency with synchrony
between the two sides (black). Comparing this to Figure 6.4, shows that replacing
the dINs by aINs reduces the area of stable swimming, and causes a large area of
synchronous firing on both sides of the body which would not lead to meaningful
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Figure 6.6: Frequency plot where dINs have the repetitive firing properties of aINs. The
gray area (both lighter and darker) has realistic swimming output (15 to 25 Hz) and the
black area has high frequency output, with synchrony between the two sides.

behaviour (see Figure 6.8).

When dINs were given the properties of cINs, they were unable to fire on re-
bound unless unrealistically high conductances were used, and in those cases, only
synchrony or unstable firing patterns were produced. Substituting the properties
of dINs suggests that their type-specific ”single-spiking” properties are important
for the generation of stable swimming in this network model.

Importance of different neuron types

Since previous model networks have used a single generic neuron model[114],
[26], [96], we made a network where all neurons had the same properties. In this
case, our generic neuron model had the single-spiking property of dINs, rather
than showing repetitive firing (as in [24]), since our modelling already suggested
this was a key feature. Figure 6.7 shows a reliability surface for this network.
There is swimming activity in about the same parameter region as in the regular
swimming network (Figure 6.4).

This is perhaps not surprising, given that all CPG neurons typically fireonly
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Figure 6.7: Surface plot of swimming frequency with all neurons having dIN properties.
The gray area (both lighter and darker) has stable swimming at a realistic frequency (15
to 25 Hz).

once per cycle during swimming. However, it does raise the question of whymost
of the CPG neurons can fire repetitively. A possible explanation is that the spinal
network must also generate the struggling pattern of motor output where neurons
fire a high frequency burst on each cycle of a slower rhythm. Recordings have
shown that motoneurons and some inhibitory interneurons are active during both
activities [123]. During swimming, if driven by brief excitation from dINs, these
neurons will only fire single spikes, but during struggling, with slower, more sus-
tained excitation, they have the capacity to fire fast and repetitively in bursts. And
some repetitively firing interneurons that are not active during swimming become
active and fire bursts during repetitive skin stimulation that leads to struggling
(dINrs and dlxs). The differences in firing properties may partly be a consequence
of the need to switch rapidly between struggling and swimming, which may not
make modulation of firing properties a practical alternative [62].

Importance of aINs in the swimming network

The key neurons in the swimming network appear to be the dINs providing ex-
citation and the cINs providing reciprocal inhibition. We know that, in addition,
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Figure 6.8: Example network output when aINs are removed. The network exhibits
synchronous firing on both sides of the body, instead of alternating spikes.

aINs provide recurrent inhibition to CPG neurons [95], and this inhibition ispar-
ticularly prominent as swimming is initiated.

When aINs are removed from the model network by setting their synaptic
conductances to zero, the initiation of swimming always fails, leading only to
high-frequency synchronous firing of MNs on both sides of the body.An ex-
ample output is shown in Figure 6.8. This is the case even after varying several
other synaptic conductances: the dlc/dla-dIN AMPA connection, dIN-dIN NMDA
connection and cIN-dIN inhibitory connection were all varied over wide ranges,
without producing good swimming behaviour. We can explain this role of aINsas
follows: after stimulation of the right sensory RB neuron in our model, the right
dla and dIN both excite the right aIN which fires quite quickly, and preventsthe
right cIN and MN from firing. Thus only the left cIN and MN fire, leading to
rebound spiking in the right dIN, and swimming is started. When the aINs are
removed, this process, that ensures swimming starts on only one side, is lost.

By increasing the dIN-aIN synaptic connection strength significantly (by a
factor of 4), one can stop the network swimming: both aINs fire much sooner
in the cycle, before the cINs do, and suppress the cIN spike. Thus anyreciprocal
inhibition is stopped, and the opposite dIN will receive no inhibition from whichto
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fire on rebound. A similar effect is seen when the strength of aIN-CPG inhibition
is increased sufficiently.

6.2.4 Role of aINs in the sensory pathway

In addition to their connections to other pattern generator neurons, aINs play a
role in controlling sensory pathways. During swimming, sensory input fromthe
skin via RB neurons is inhibited at certain phases of the swim cycle so that it does
not lead to responses that are in conflict with swimming [119]. We now know that
this gating inhibition of dlc and dla interneurons comes from aINs [90]. Since
these connections are a part of our model network, sensory gating canoperate. If
the RB neuron gets an extra stimulus during swimming, the timing of the stimulus
in the swimming cycle determines whether the dlas and dlcs will fire (Figure 6.9).
Only if they fire will their excitation reach the CPG and lead to an increase in
swimming frequency (Figure 6.10).

6.3 Probabilistic network

6.3.1 Aim of this network

In the previous section, we stated that each type of neuron connects to specific
types, and does not connect to other types. Although in reality this is not a strict
rule (connections can be found between any two types of neuron), it is clear that
certain neurons appear to prefer some postsynaptic targets more than others. In
this section, we want to study why this is the case.

When a neuron develops, the axon grows, and makes connections to other
neurons. One possible cause for the type-specificity of the connectionsis that the
growing axons would have a means to make a distinction between different types
of neuron, and have the ability to decide whether the neuron reached is ofan ap-
propriate type to connect to [17].

However, another option is that whether an axon connects to some specific
neuron is a matter of chance. If there were not any specific connectivityrules re-
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Figure 6.9: Gating of sensory transmission from RB to dlc. Experiments are done in
the complete network model, but only the output of the three most important neurons
is shown. A: aIN spike near the start of a cycle of swimming (phase 0).B: Series of
spikes in RB from separate stimuli given at different times relative to the aIN spike.C:
Depending on the relative timing of aIN and RB spikes, dlc firing can be suppressed by
the aIN inhibition.
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Figure 6.10: Effects of sensory gating during swimming. Two examples of swimming
runs, in which the RB gets a second stimulus during swimming (*). A: The second RB
spike causes the dlc and dla to fire, influencing the behaviourof the whole network (cINs
and MNs omitted for clarity): the frequency of the followingtwo cycles is increased.B:
The RB spike now coincides with inhibition of the dlc and dla by the ipsilateral aIN. As a
result, their firing is suppressed, sensory transmission isgated out and network behaviour
is unaffected.

sulting from cell-cell recognition mechanisms, then the synapses that axonsmake,
may be determined by the dendrites that they contact. This would mean that an
axon grows, and simply connects to any neuron it encounters. The main reason
for the differences in contact probability would then be caused by the dorsoventral
position of cell bodies, dendrites and axons.

As will be shown in this section, the dendrites and axons of each neuron type
have specific dorsoventral positions all along the tadpole spinal cord. Thus, devel-
oping axons will have a higher probability of connecting to those neurons,whose
dendrites are in the same dorsoventral regions as the axons are growing. This
could explain the differences in contact probability between neuron types.

For simplicity, in this section we will only consider neurons that are active
during swimming activity.

First, by presenting results from paired recordings, we will show that there
are indeed big differences in contact probability between different types of neu-
ron. Secondly, anatomical evidence will be given on the distribution of axons and
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dendrites. These two experimental sections already strongly support thehypoth-
esis of connections based on chance. Finally, in the modelling part, we explain
how we construct probabilistic networks, based on the measurements frompaired
recordings and the resulting probabilities. Simulations will show that a network,
constructed by creating connections purely relying on contact probabilities based
on dorsoventral distributions, can produce good swimming output.

6.3.2 Anatomy of cells, axons and dendrites

As we have indicated before, the different types of neurons in theXenopusspinal
cord form loosely organized longitudinal columns. As in all vertebrates, the neu-
rons form a dorsal to ventral sequence: sensory neurons; sensory interneurons;
other interneurons; motoneurons. The neurons project axons into a marginal zone
of longitudinal axons either directly or by first growing ventrally to the otherside
of the body and then turning or branching longitudinally.

RB neurons have a dorsal superficial soma and their central axons ascend
and descend directly from the soma mainly in the dorsal area [68] to excite other
neurons [91]. Dlcs have a multipolar soma (i.e. they have more than two processes
emerging from the soma), in a dorsolateral superficial position. Their axon crosses
the spinal cord ventrally to ascend in contralateral marginal zone (it may have a
descending branch) to excite mainly motor circuit neurons [91]. Dlas, like dlcs,
have a multipolar soma, in a dorsolateral superficial position. Their axons ascend
directly from the soma to excite other mainly motor circuit neurons on the same
side [92].

The other neurons (aIN, cIN, dIN and MN) all lie inside the marginal zoneand
are part of the motor circuit. AINs have a unipolar soma (i.e. they only have one
process), with the dendrite emerging from the ventrally projecting initial segment
of the axon, an axon that turns to ascend and then branches to give a descending
axon. CINs have a unipolar soma, short radial dendrites from the thick initial
segment of the axon, and a ventral commissural axon that ascends contralaterally
or branches there to descend. DINs have a bipolar or multipolar soma, with dorsal
and ventral dendrites, and an axon that descends [112] to excite otherneurons
[93]. MNs have a multipolar soma, with dendrites mainly ventral in the spinal
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Figure 6.11: Schematic picture of the neurons and synapses in theXenopusspinal cord.
The diagram shows the different neuron types that are activeduring swimming, their
position and the location of axons and dendrites.

cord, and an axon that projects caudally before exiting to innervate muscles[113].
Central axon synapses release acetylcholine to excite other motoneurons [106].

Figure 6.11, which was already included in Chapter 5 as Figure 5.4, showsin
a schematic drawing the location of neurons, axons and dendrites in theXenopus
spinal cord.

6.3.3 Evidence from recordings on synaptic connections

At the Xenopustadpole research group at the University of Bristol, current clamp
recordings from over 500 pairs of neurons were made to investigate the synaptic
connections between the seven different classes of spinal neuron in the swimming
network [Li et al., unpublished]. By injecting current into each neuron toevoke
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an action potential it was possible to see if the neuron produced postsynaptic ex-
citation or inhibition of the other. After recording, the animals were fixed and the
neurons finally identified. Only those pairs with clear anatomical identification
and where the axon of at least one neuron was seen to have a possible contact
point onto the soma or dendrites of the other neuron were included in the analysis.

For some specific synaptic connections, paired recordings were very difficult
to make either due to access difficulties (e.g. more ventral neurons like motoneu-
rons are more difficult to expose), or because the presynaptic neurons are scarce
(e.g. dla connections to motor circuit neurons), or because the probabilityof
synaptic connection is low (e.g. dIN connections to dlc). In these cases, indi-
rect methods were also used to assess connections in conjunction with any paired
recordings available, e.g. use skin stimulation instead of current injection, block
certain synaptic components to see if others are active, etc.

In this thesis, we will not go into detail on the different methods used, but
Table 6.2 gives an overview of the results from the paired recordings. Overall,
the results from paired recordings and other physiological recordingssummarized
in Table 6.2 show very widespread connectivity. Where evidence is available,
neurons with dendrites receive synapses from all other neuron classes, although
some connections are clearly more preferred than others. This was unexpected and
raised the possibility that the formation of synaptic connections in the developing
spinal cord may be more stochastic and not precisely determined by processes of
cell to cell recognition.

6.3.4 Anatomical evidence on axonal and dendritic distribution

As we have explained, the probability of contact could depend mainly on the
dorsoventral distribution of axons and dendrites. Therefore these distributions for
the main spinal neuron classes in the rostral spinal cord were examined bythe
biologists in theXenopustadpole research group. By injecting marker dye in the
neurons, the soma, dendrites and complete axonal projections could be seen and
traced in whole mounts of the spinal cord viewed laterally (e.g. [89],[Li et al.,
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Table 6.2: Synaptic connections found by paired recording. ’*’ indicates the cases where
preliminary recording was used to select pairs of neurons that were connected, so prob-
abilities of connection are not meaningful. For each neuronclass,ipsi = synapses made
ipsilaterally, andcontra= synapses made contralaterally.

pre
neuron

post
neuron

RB dlc dla aIN cIN dIN MN Total

RB pairs 2 54 17 15 44 0 0 132
ipsi synapses 0 34 6 2 4 0 0 46

prob. 0 0.63 0.35 0.13 0.09
dlc pairs 0 1 0 6 42 3 13 65
contra synapses 0 0 0 2 18 1 6 27

prob. 0 0.33 0.43 0.33 0.46
dla pairs 17 10 0 8 12 2 0 49
ipsi synapses 0 4? 0 2 1 0 0 7

prob. 0 0.4 0.25 0.08 0
aIN pairs 15 21 8 16 39 10 3 112
ipsi synapses 1 17 3 4 6 2 1 34

prob. 0.07 0.81 0.38 0.25 0.15 0.2 0.33
cIN pairs 0 42 0 13 35 1 3 94
contra synapses 0 0 0 0 9 1 0 10

prob. 0 0 0 0.26 1 0
dIN pairs 0 0 2 7 7 62 32 110
ipsi synapses 0 0 0 6 6 45 27 84

prob. 0 * * * *
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unpublished]).
The dorsoventral range of dendrites was determined from the positions of the

most ventral and most dorsal dendrite for each neuron. The dendrite dorsoventral
ranges were then summed for each neuron class (except for RB, whichhave no
dendrites). For each 10% dorsoventral position bin, the probability was found that
an individual neuron of each class would have dendrites in that bin (Table 6.3).
The dendrite distributions for neurons active during swimming (MNs, aINs,cINs
and dINs) were broad but all had a maximum just below the dorsoventral midline
(in the 30% or 40% bin) and fell away dorsally. In contrast the dendrites of dlc
sensory pathway interneurons had a maximum dorsally (in the 80% bin) and fell
away ventrally.

The dorsoventral positions of axons were measured every 0.05 mm fromthe
neuron soma and information was discarded about the distance of the axonfrom
the soma and whether it was ascending or descending. For each neuronclass we
then summed these measures and calculated the probability of axons occupying
different dorsoventral positions (Table 6.3). The dorsoventral axon distributions
of some neurons are rather narrow. RB sensory neuron axons are dorsal (from
60% to 100%; maximum at 80%) while motoneurons are ventral (from 10% to
50%; maximum at 30%). dINs and dlcs are both slightly biased towards ventral
positions (from 10% to 60% and 70% respectively; max at 30%-40%). Thetwo
inhibitory classes (aINs and cINs) have broader dorsoventral axondistributions
(10% to 100%; max 30% and 40%-50% respectively).

Once the dorsoventral distributions of axons and dendrites were established,
’contact’ probabilities between axons and dendrites were calculated as follows for
each pair of neuron classes. The probabilities of individual axons or dendrites oc-
cupying a particular dorsoventral region (10% dorsoventral position)were taken
from their measured distributions, as the proportion found in each region.The
probability that a particular presynaptic axon and postsynaptic dendrite would
both occupy the same dorsoventral region was given by the product oftheir prob-
abilities. Overall contact probabilities between each class of neuron werethen
found by adding up the separate probabilities for the 10 dorsoventral regions (Ta-
ble 6.4). The contact probabilities range from 0.04 to 0.91 and relate intuitively
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Table 6.3: Dorsoventral distribution of axons and dendrites of different neuron types.
The dorsoventral range was subdivided in 10 bins, indicatedby the percentages, where
0% is most ventral and100% most dorsal. RBs have no dendrites, therefore that column
is empty.

Axons RB dlc aIN cIN dIN MN
position % % % % % %

100 15 0 4 0 0 0
90 22 0 4 3 0 0
80 30 0 8 3 0 0
70 27 3 16 3 0 0
60 6 13 18 9 8 0
50 0 12 19 13 17 10
40 0 25 19 17 43 23
30 0 27 10 20 20 51
20 0 17 3 23 11 10
10 0 3 1 9 1 5

Dendrites dlc aIN cIN dIN MN
position % % % % %

100 3 0 0 0 0
90 28 5 1 3 0
80 31 7 6 5 0
70 21 9 11 16 2
60 14 11 17 18 6
50 3 14 18 18 13
40 0 16 23 21 19
30 0 14 17 11 21
20 0 14 6 5 21
10 0 11 0 3 17

n = 14 n = 10 n = 9 n = 23 n = 10 n = 8
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Table 6.4: Probability of axon of one neuron type ’contacting’ a dendrite of another
neuron type.

dendrites
axons dlc aIN cIN dIN MN

RB 0.65 0.39 0.23 0.32 0.04
dlc 0.082 0.86 0.61 0.60 0.81
aIN 0.30 0.73 0.57 0.63 0.50
cIN 0.12 0.82 0.50 0.50 0.77
dIN 0.12 0.91 0.70 0.69 0.84

to functions. They are higher for contacts from RB sensory neurons onto sensory
pathway dlcs (0.65) than onto other neurons like dINs (0.32); they are lowfor dlc
contacts with each other (0.08) but higher onto the neurons activated after skin
stimulation (0.6 - 0.86 for aINs, cINs, dINs and MNs); they are quite high for
contacts between neurons active during swimming (0.5 - 0.91 for aIN, cIN and
dIN contacts to each other and to MNs).

6.3.5 Probabilistic network model

The results from recordings and anatomy together suggest that early spinal net-
works are able to develop using very simple rules. We therefore wanted to test
if simple stochastic rules of connectivity could lead to functioning networks that
can generate patterns of motor output suitable to produce swimming. Recent ex-
periments have shown that a very small part of the spinal cord and hindbrain of
the young tadpole, only 0.3 mm long, can generate long-lasting swimming after
a brief stimulus [96]. Our aim was to model this minimal region of the nervous
system.

We used the same individual neuron and synapse models as before, the ones
described in Chapter 5. For synapses, we used similar conductances asin the
swimming model that was explained in detail in Section 5.2. Now we used actual
(though small) populations of neurons, instead of only single cells, and we wanted
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the contacts to be based on the data gathered in Table 6.4.

For simplicity we used a single sensory RB neuron which excited all sensory
pathway dlc and dla INs on one side. Apart from one RB neuron, there were 10 in-
stances of each of the six other types of neuron on both sides of the body, resulting
in a network of 121 neurons. The network has left and right sides whichinhibit
each other to produce alternating swimming activity as described previously [114]
(Figure 6.12).

The synaptic connections were probabilistic, in the sense that during construc-
tion, a random number (between 0 and 1) was generated, and a connection was
actually made if this number was smaller than the probability from Table 6.4 for
the types of neurons involved. To imitate more realistic numbers of neurons (30
of each type instead of 10), each model neuron had 3 chances to make a contact to
another neuron, so synaptic strengths could be 0 or 1 to 3 times the single synapse
strength. That way, each single neuron model actually represents 3 real neurons,
which fire synchronously. When making these connections, the side of thebody,
and whether or not the axons of one type would cross the spinal cord, were taken
into account (e.g. cINs were only allowed to connect to contralateral neurons,
dINs only to ipsilateral, etc.). Another feature is that we made sure that whenthe
probability of connection between two types is above 0, that there would always
be at least 1 connection between two such neurons.

Because we were now using multiple instances of each neuron type, an ex-
tra type of connection had to be modelled, namely the electrical synapse. This
is because ipsilateral MNs and dINs have electrical connections with eachother
with probability about 0.3 [106]. These electrical synapses are instantaneous, and
modelled by adding the following term to the synapse model equations (5.8):

CSelec(i, j) : (Vi − Vj) (6.1)

whereVi is the voltage of the presynaptic, andVj of the postsynaptic neuron. The
(dimensionless) connection strengthCSelec for these electrical synapses was set
to 0.2. Since the capacitance was set to 4 for all neurons in the current network,
this means that an increase in voltage in the presynaptic neuron of 10 mV, causes
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RB

MNMN
cINcIN

dlc dla

skin

aIN
aIN dINdIN

Figure 6.12: Schematic picture of the neurons and synapses in the model probability
network. The diagram shows the different neuron types that are active during swimming,
their chemical and electrical synapses. Triangles stand for excitatory synapses, circles for
inhibitory synapses. A synapse to a ’box’ means the connection is made to all neurons
inside the box.

the same increase of 0.5 mV in the postsynaptic neuron. Note that these electri-
cal synapses work in both directions, and can thus both increase and decrease the
membrane potential in both neurons, depending on their relative charges.

A diagram of the resulting network is shown in Figure 6.12. After the con-
struction of this network, simulations are run by giving an input pulse to the RBof
the network. This resulted in reliable swimming behaviour in most cases, namely
about60% of the trials (n = 25). An example output of this swimming behaviour
is shown in Figure 6.13. In most cases, when no swimming output was shown,
this was due to a breakdown of spiking during the initiation process. In a single
case, synchronous firing was seen on both sides of the body.
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Figure 6.13: Example of reliable swimming output from the probabilisticnetwork.

The synaptic strengths were reduced compared to the simple swimming net-
work, to match the experimental maximum synaptic conductances. This was nec-
essary, because each single synapse from the simple swimming network is re-
placed by several synapses in the probabilistic network. In this probabilistic net-
work, the maximum synaptic conductances were computed by (at each timestep)
adding up all incoming signals from one type of neurons to one specific neuron.
This way, the resulting maximum value is comparable to the experimentally mea-
sured maximum conductances and to the conductances used in the simple swim-
ming network. We optimized the synaptic strengths to match these conductances
closely. Table 6.5 gives a comparison of the maximum conductances from thetwo
networks, for the connections that are present in both. The biggest differences are
in the dlc/dla-dIN excitation and the dIN-cIN excitation, which have higher max-
imum conductances in the probabilistic network. Early attempts to remove these
differences by reducing synaptic strengths resulted in the failure to produce sus-
tained swimming. In the case of the dlc/dla-dIN excitation, this may be due to the
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use of a single RB neuron, thus restricting the realism of the sensory pathway as
a whole. In the case of dIN-cIN excitation, it is probably due to the cIN-model
used, since in the simple swimming network, a stronger dIN-cIN excitation was
also needed to get reliable swimming output.

The average of the contact probabilities in Table 6.4 is 0.6646. So this is the
probability of any neuron contacting any other neuron in the network. If during
network construction, we assign this probability to all connections and keepthe
overall degree of connectivity in the network constant, this would correspond to
a purely random connection pattern of the neurons. We found that the resulting
networks mostly failed in producing realistic swimmming behaviour. During a
number of tests (n = 20), each time generating a new network, swimming was
produced in only20% of the trials.

Our simulations indicate that the network construction should not be consid-
ered as completely random, but that the constraints on construction could bebased
purely on location and distribution of neurons, axons and dendrites. Thisappears
to be sufficient to create a network that produces swimming behaviour fairlyreli-
ably.
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Table 6.5: Maximum synaptic conductances during swimming for the simple swimming
model and the probability model.

simple model probability model
source target AMPA NMDA AMPA NMDA
RB dlc 6.77 0.16 7.288 0.159

dla 3.38 0.16 3.887 0.159
dlc dIN 2.92 0.96 8.885 2.261
dla dIN 2.55 1.08 4.198 1.777
dIN aIN 1.46 0.54 1.915 0.609

cIN 8.51 1.05 12.567 1.294
dIN 4.38 6.86 4.261 6.389
MN 3.89 1.47 4.356 1.570

simple model probability model
Inhibition Inhibition

cIN aIN 2.86 2.92
cIN 2.86 2.92
dIN 9.53 9.466
MN 3.81 3.94

aIN cIN 1.11 3.092
dIN 2.70 1.93
MN 1.27 4.229
dlc 6.36 5.427
dla 6.36 4.229
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Chapter 7

Future work

This chapter elaborates on plans for MATCONT, for the use of MATCONT for
cell-cycle modelling, and for creating a MATCONT tutorial. On the level of
tadpole modelling, there are already plans for a network to model the struggling
behaviour, and then combine the networks into one. We also hope to use NEST,
in C++-code, for simulations, to be able to increase the number of neurons and
add length dimension to the model. Another idea is to look at reduced models to
simulate cells.

7.1 Plans onMATCONT

7.1.1 The homotopy method

For the initiation of homoclinic orbits, there is one method that has not yet been
implemented in MATCONT, but is currently under development. This so-called
homotopy method constructs a homoclinic-to-saddle orbit starting from only the
unstable equilibrium.

As described in Section 3.3.2, the defining equations for a homoclinic orbit
can be written as

ẋ(t) − 2Tf(x(t), α) = 0 (7.1)

f(x0, α) = 0 (7.2)
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∫ 1

0

˙̃x
∗

(t)[x(t) − x̃(t)]dt = 0 (7.3)

QU⊥(s)T (x(0) − x0) = 0 (7.4)

QS⊥(s)T (x(1) − x0) = 0 (7.5)

‖x(0) − x0‖ − ǫ0 = 0 (7.6)

‖x(1) − x0‖ − ǫ1 = 0 . (7.7)

We replace equations (7.6) and (7.7) by equivalent ones:

x(0) = x0 + ǫ0d0 (7.8)

x(1) = x0 + ǫ1d1 , (7.9)

where‖d0‖ = ‖d1‖ = 1.
And we remove the constraint that the last vector is in the stable eigenspace

of the equilibrium, by replacing (7.5) by:

τj = 〈d1, q1,j〉 , j = 1, ..., n1 , (7.10)

where theq1,j are the vectors ofQS⊥(s)T , and we are keeping theτj variable,
instead of demanding them to be zero.

The construction process of a homoclinic orbit fitting the above equations,
from an unstable equilibrium, can be split up into several confined steps.

Initially, we replace (7.8) by

x(0) = x0 + ǫ0

n0∑

j=1

cjq0j (7.11)

n0∑

j=1

c2j = 1 . (7.12)

As initialization of the problem we setT and ǫ0 small, andd0 the leading
unstable eigenvector of the equilibrium,

x(t) = x0 + ǫ0d0, 0 ≤ t ≤ 1 , (7.13)
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ǫ1 = |x(1) − x0|, d1 = (x(1) − x0)/ǫ1, c1 = 1 andc2 = ... = cn0
= 0.

This initial curve is then extended by doing a continuation experiment with
respect to the periodT andǫ1, while keeping allcj fixed. During this first con-
tinuation,ǫ0 andd0 are kept fixed.ǫ1 should first be increasing, but then start to
decrease again. Once this decrease stops, the whole continuation is stopped, and
the orbit segment corresponding to the found solution at that point is keptas initial
approximation of the homoclinic orbit.

After this initialization, the orbit will be found by locating zero intercepts of
the τj in (7.10), one at a time. E.g. first keepT fixed and freec1 andc2. Thus,
we let the initial vector betweenx0 andx(0) vary within a wider subspace of the
unstable eigenspace. This way we try to find a zero ofτ1. In following steps, we
always fixT and allτj that are zero already, and try to locate a zero of the nextτi,
while each time freeing morecj to replace the fixedτj .

Finally, the orbit segment obtained is considered a good approximation of the
homoclinic orbit. So then system parameterλ is set free, and by the Newton cor-
rection method used at the start-up of any continuation, the approximated orbit
segment should converge to the exact homoclinic orbit.

We plan to include this whole process in MATCONT (we are currently working
on it), which will involve all consecutive steps, changing Graphical UserInterface
(GUI) windows, introducing different variables and test functions, etc.

7.1.2 User-related issues

To accommodate to user remarks, we plan to rewrite the MATCONT tutorial and
help file, and include all updates, new features, etc. Now many users have to be
helped by e-mail, one by one, which is a time-consuming occupation.

There are also several other features that could be added, as suggested by
users:

• Support for generalMATLAB ODE m-files as right-hand sides.

• Support for Simulink and SimTech models, which are twoMATLAB tool-
boxes which are often used in engineering.
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• Allow more of the standardMATLAB graphics handling in MATCONT’s
plotting windows.

• Improve the organisation of the GUI in general, to allow further extensions
more easily.

7.1.3 Modelling of the cell cycle

In January a new project will start in our department, in collaboration with people
of the VIB, a biotechnological research group at Ghent University. The aim of
the project is to carry out detailed studies of the cell cycle regulatory processes,
more precisely the cell cycle of the model plantArabidopsis. The cell cycle, dur-
ing which the cell divides into several identical cells, is an important biological
process that is governed by the dynamic regulating influence of many genes.

This project will involve a combination of different simulation approaches,
that include the use of ordinary differential equations (ODEs). For this MAT-
CONT and CL MATCONT will be used. Using these packages, detailed analyses
of key switching mechanisms of the cell cycle will be performed, with a focus on
events associated with state transitions (e.g. from resting to actively dividing), i.e.
bifurcations.

For some processes of which less is known, piecewise linear differentialequa-
tions (PLDEs) may be used for simulation. And a possible hybrid system, com-
bining both simulation methods, would allow to fully use the available data.

But the core of the project will be the use of ODEs. New algorithms will have
to be developed to model key cell cycle checkpoints, which will help to study cer-
tain non-linear phenomena in the process. These algorithms will be implemented
in MATCONT. Later, these models will be generalized, to be efficient for multiple
system predictions and simulations, and refined for a clear parameter structure for
specific applications. The resulting ODE modelling platform should then be inte-
grated in a framework to be used by computational biologists, for future modelling
in their field of research.

The ultimate aim is the integration of various modelling strategies that can be
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used for the simulation of biological networks. The project will hopefully result
in a powerful modelling platform to gain understanding of the mechanisms and
processes that govern the (plant) cell cycle.

7.2 Plans onXenopustadpole research

7.2.1 Struggling network

Most animals have a range of different motor patterns, like walking, trotting,run-
ning and scratching. In mammals the spinal neuronal circuits used to select and
produce different locomotor gaits and to switch from one to the other are unclear.
It has often been suggested that neuromodulation is involved in motor patternse-
lection.

Since all vertebrates have a common ancestry, the basic mechanisms of motor
pattern selection have been studied in lower vertebrates like youngXenopustad-
poles. Hatchling tadpoles respond in two main ways. When touched, they swim
off using low amplitude, alternating waves of bending at 15 to 25 Hz that travel
from the head towards the tail [11]. When held, they struggle producing large am-
plitude, alternating bends at 5 to 10 Hz that travel from the tail towards the head
[123]. Our aim is to uncover the cellular neuronal mechanisms that allow different
patterns of sensory activation to select the different motor patterns of swimming
and struggling.

To find out how struggling is generated, the whole-cell patch method [94] was
used to record from hindbrain and spinal neurons during 40 Hz stimulationof the
skin. Electrical stimulation to the trunk skin on one side of the body at 40Hz im-
itates applied pressure and can lead to struggling activity in the motoneurons on
both sides [123]. The recordings suggested that there are some types of neuron
that become active during 40 Hz stimulation and that are not active during swim-
ming, both in the sensory pathway and in the CPG [Li et al., unpublished]. We
now need to ask whether these new neurons can connect in such a way with the
other neurons, which we have already modelled in detail, to form a network ca-
pable of generating struggling activity during repeated sensory stimulation tothe
skin on one side.
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Early versions of models for these neurons have already been developed and
tested in a small struggling network. At first, tests were done to see if aINs could
be responsible for the burst termination during struggling, but it appeared not to
be reliable enough for robust alternation of the bursts. Further tests have indicated
that a new mechanism, i.e. synaptic depression, is needed for the alternationof
bursts to happen reliably. This synaptic depression means that when spikes are
fired at high frequency in the presynaptic neuron, the synapse will gradually lose
conductance, and the postsynaptic effect will weaken. Experiments have sup-
ported this idea of synaptic depression, by showing that reciprocal connections
between cINs and contralateral CPGs show no significant depression at 20 Hz, a
typical swimming frequency, but they became significantly depressed at 100 Hz,
a typical frequency at which cINs fire during struggling bursts. The cINs, which
prevent the contralateral neurons to fire during a burst, will thus becomeless ef-
fective in suppressing as the burst goes on, and eventually be unable toprevent the
opposite side to become active, which will in his turn suppress spiking in the first
side, etc.

We want to improve the individual neuron models of these two types of strug-
gling-specific neurons, incorporate them in the struggling network, to getan over-
all good struggling network, including the sensory pathway, as we did forswim-
ming.

A further goal is then to combine the swimming and struggling networks into
one whole network, which will respond with swimming output to a single stimu-
lus, and with bursting output to high-frequency stimulation.

7.2.2 Population models using NEST

The network models that we have developed, even the probabilistic model, have
a relatively small number of neurons. The basic swimming model has only 11
neurons, the probabilistic model has 121. To build a neural network with a real-
istic number of neurons (1000-2000) we will need to step away from the present
framework. MATLAB is too slow as programming language, and the framework
is too restricted to handle large numbers of neurons.
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A solution may lie in the NEST initiative, NEural Simulation Technology
(http://www.nest-initiative.org/). NEST is a simulation system
for large networks of biologically realistic neurons. The NEST initiative is a
collaboration, founded in 2001, between researchers at the Honda Research In-
stitute Europe in Freiburg (Germany), the Albert-Ludwigs Universität Freiburg
(Germany), the Norwegian University of Life Sciences in As (Norway) and the
Max-Planck Institut f̈ur Str̈omungsforschung in G̈ottingen (Germany).

NEST is, according to the developers, ’best suited for the simulation of large
networks of spiking point-neuron models, of which the internal dynamics maybe
arbitrarily complex’. This is indeed what we have been working with: single-
compartment models which we want to combine in large networks. And the main
focus of NEST simulations is ’the dynamics and behaviour of large networksof
neurons’, which is exactly what we want to investigate. NEST is written in C++

and supposedly completely platform-independent.
A new version of NEST, which would become available early 2007, includes

all functionalities that we have needed so far: different types of synapses with
many features, including delays and synaptic depression. Output is stored in a
very general format, which can be processed at will by the user.

Thus, it seems like an ideal tool to use in the future steps of our network
modelling research.

7.2.3 Addition of length dimension

Once we are able to model neural networks with realistic numbers of neurons, we
can step away from the modelling of a single segment of the spinal cord. Using
software like NEST, we hope to be able to add a length dimension to our network
model, with the necessary delays in the synaptic connections, depending onthe
axon lengths. When this can be incorporated into the model, it becomes possible
to see the swim cycle move down, and the struggle cycle move up the body, and
see the flexing of theXenopustadpole body.

But to do that, we will also need to have a better grasp on the effect of axon
length on the synaptic signal. So far, we have always used standard synapses,
with fixed delays, without adding a relation to axon length and signal strength
or behaviour. This will require some further research and modelling of axonal
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effects.

7.2.4 Theoretical study using reduced models

A very different idea is to step back down from the biologically realistic neuron
models, with ionic currents and conductances, to reduced models. These are neu-
ron models, defined by dynamical systems, but for which the parameters have no
direct biological meaning. The advantage of these models is that they are much
more concise and easier to integrate numerically. It would be interesting to inves-
tigate whether the network behaviour (both in simple networks, swimming and
struggling, as in a possible large network with thousands of neurons) canbe mod-
elled to a comparable accuracy when using such reduced neuron models instead
of the biologically realistic ones.
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Branch point, 11
Branch point of cycles, 17

Calcium, 28
Capacitance, 35
Cell cycle, 198
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CL MatCont, 63
Class I and II, 43
Codimension, 6
Collocation points, 69
Conductance, 34
Connor model, 40, 77
Constant rate equation, 31
Content, 62
Contralateral, 144

CPG, 144
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Degenerate Bogdanov-Takens, 124
Delayed firing, 159
Double Hopf, 11
DsTool, 62

Eigenvalues
Determining, 19
Leading, 19

Electron, 28
Equilibrium, 7

Bifurcations, 7
Equilibrium potential, 33
Ermentrout model, 42
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Hodgkin-Huxley model, 38, 77
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HomCont, 81
Homoclinic

Bifurcations, 94
Homoclinic orbit, 18

Bifurcations, 23
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Hyperbolic equilibria, 21

Homoclinic-to-hyperbolic-saddle, 19
Homoclinic-to-saddle-node, 21
Homotopy, 195
Hopf, 9
Hyperbolic cycle, 12

Injected current, 36
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Ionic current, 32, 35
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Koper model, 99
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Codimension 2 bifurcation, 15
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Limit point of cycles, 13
Linlbf, 62

Manifold, 4, 6, 17
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Strong, 19

MatCont, 63
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Membrane conductance, 34
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Morris-Lecar model, 41, 77, 113
Multipliers, 13
Multipolar, 182

Neimark-Sacker, 14
Nernst equation, 33
Nernst potential, 32
NEST, 201
Non-central homoclinic-to-saddle-node,

25, 93

ODE, 1
Orbit, 3
Orthogonal collocation, 68

Period-doubling, 14
Periodic orbit, 12
Perturbation projection vector, 54
Phase condition, 12
Phase portrait, 3
Phase Resetting Curve, 49
Phase Response Curve, 48
Phase-locking, 58
PLDE, 198
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Polar decomposition, 83
Potassium, 28
PRC, 47
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Rebound spiking, 167
Reduced models, 202
Reversal potential, 33
Riccati equation, 86

Sensory gating, 179
Sodium, 28
Struggling, 166, 199
Subspace continuation, 82
Swimming, 166
Synapse, 160
Synaptic depression, 200
Synchronization, 58

Tadpole, 140
Tangent space, 4
Torus, 14
Type I and II, 44
Type-specificity, 175

Umfpack, 108

Voltage clamp, 36
Voltage dependence, 162

Xenopus, 140
Neuron types, 144

Xppaut, 62

Zero Hopf, 11
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Dynamische Systemen
en hun Toepassingen

in de Neurowetenschap

Nederlandse samenvatting

In dynamische systemen wordt de evolutie van een systeem voorgeschreven door
de huidige toestand en door een set regels die voorschrijven hoe het in de toekomst
zal evolueren. Door deze regels of vergelijkingen te volgen, kan men het gedrag
van het systeem, in principe zo lang men wil, voorspellen. Deze heel algemene
definitie laat toe dat wetenschappers uit een groot aantal wetenschapsgebieden
dynamische systemen gebruiken bij hun onderzoek. Dynamische systemenkun-
nen inderdaad gebruikt worden voor het modelleren van elk proces, zolang de
evolutie ervan maar volledig kan omschreven worden in een eindig aantal regels
of vergelijkingen. Enkele van de wetenschappelijke domeinen waarin dynami-
sche systemen gebruikt worden voor het modelleren van toepassingen zijn fysica,
economie, geologie, biologie en chemie.

Door het grote aantal mogelijke toepassingen is er ook veel interesse in de
algemene theorie achter dynamische systemen. De wijziging van (de toestand
van) een systeem door verandering van een parameter kan vaak fenomenen ver-
klaren die worden waargenomen in natuur en wetenschap. Een radicale wijziging
in het gedrag van een systeem bij een bepaalde parameterwaarde wordt een bi-
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furcatie genoemd; de studie van deze bifurcaties (zgn. bifurcatietheorie) is een
heel belangrijk onderzoeksdomein in de wiskunde. In Hoofdstuk 1 van deze
doctoraatsthesis wordt een inleiding gegeven tot continue (in tegenstelling tot dis-
crete) dynamische systemen, en de belangrijkste bifurcaties worden hierbij be-
sproken. Dit hoofdstuk zou alle achtergrondinformatie moeten bevatten over dy-
namische systemen die de lezer moet hebben om de rest van deze thesis te kunnen
begrijpen.

Een belangrijk domein van toepassing van dynamische systemen is computa-
tionele neurobiologie. Hier worden dynamische systemen geregeld gebruikt voor
het modelleren van zenuwcellen en/of zenuwnetwerken, waarbij de mate van de-
tail van de modellen kan variëren. Het eerste neurale model dat gebaseerd was op
individuele ionenstromen in en uit een zenuwcel werd ontwikkeld door Hodgkin
en Huxley in 1952. Sindsdien zijn een groot aantal modellen geconstrueerd,
in meerdere of mindere mate gebaseerd op de ideeën achter dit oorspronkelijke
model. In Hoofdstuk 2 wordt een uitgebreide introductie gegeven tot de neu-
robiologische achtergrond, met o.a. uitleg over celmembraan, ionenstromenen
ionenkanalen, gevolgd door een opsomming van vier bekende neurale modellen,
die opgebouwd zijn aan de hand van dynamische systemen. Deze zelfde model-
len zullen in verdere delen van deze thesis nog terugkeren als typevoorbeelden bij
verschillende toepassingen.

Het is een haast onmogelijke taak om alle bestaande neurale modellen bij
te houden en daardoor is de studie van deze modellen een onderzoeksgebied op
zichzelf. Een belangrijk concept dat hierbij kan helpen is de classificatievan de
ontwikkelde modellen. Als er een rigoureuze classificatie zou bestaan, waarin elke
categorie een specifieke set eigenschappen heeft, en waarbij er duidelijke criteria
zouden bestaan om modellen inéén van deze categorieën onder te brengen, dan
zou de studie van nieuw ontwikkelde modellen sterk vereenvoudigd worden. Dit
zou dan nog vooral bestaan uit het bepalen tot welke categorie het nieuwe model
behoort, waarna je onmiddellijk een waslijst van belangrijke eigenschappenen/of
functionaliteiten van het model zou kennen. Er bestaan al een aantal aanzetten
tot dergelijke classificaties, maar ze vertonen elk nog duidelijke gebreken op een
aantal vlakken. In Sectie 2.3 verduidelijken we een aantal van deze gebreken en
suggereren we een verbeterde versie.
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Verder introduceren we in Hoofdstuk 2 de zogenaamde ’Phase Response Cur-
ve’ of PRC. Deze curve is een van oorsprong experimenteel gedefinieerd concept,
dat ook wiskundig kan beschouwd worden en dat heel belangrijke toepassingen
heeft in het gebied van de neurobiologie. Het is een curve die het effect beschrijft
dat een inkomend signaal heeft op het gedrag van een periodieke baan. Aangezien
een actief piekend neuron kan voorgesteld worden als zo’n periodiekebaan, kan
de PRC gebruikt worden om de impact aan te duiden van een inkomende impuls
op een zenuwcel (bijvoorbeeld van een naburige cel). In dit hoofdstuk leiden we
een nieuwe en efficiënte methode af om deze PRC van een periodieke baan te
berekenen.

Doordat de studie van dynamische systemen en bifurcaties wijd verspreide
interesse opwekt bij een wetenschappelijk publiek, zijn in de loop der decennia
verscheidene softwarepakketten ontwikkeld om the helpen bij die studie. Belang-
rijke en veelgebruikte voorbeelden daarvan zijnAUTO enCONTENT. Alle ontwik-
kelde pakketten vertonen echter een aantal niet onbelangrijke nadelen.AUTO

is snel en efficïent, maar het heeft geen gebruikersinterface en is, deels daar-
door, niet gebruiksvriendelijk. Het vraagt redelijk wat tijd en moeite van de
doorsnee wetenschapper om de software voldoende te begrijpen om grondige
studies te kunnen uitvoeren op gewenste dynamische systemen. CONTENT is
veel gebruiksvriendelijker, maar moeilijk te installeren, en recent is de verdere
ontwikkeling en opvolging van het pakket verwaterd. Een ander belangrijk nadeel
van beide pakketten is de platformafhankelijkheid. Beide zijn oorspronkelijkont-
wikkeld voor Unix / Linux computers, terwijl de meeste wetenschappers tegen-
woordig veel beter vertrouwd zijn met het MS Windows besturingssysteem(tot
spijt van wie het benijdt). En hoewel er een versie van CONTENT ontwikkeld
werd voor Windows, vormt de moeilijkheid van installatie een belangrijke drem-
pel.

In het jaar 2000 werd begonnen met de ontwikkeling van MATCONT, een
nieuw softwarepakket voor de studie van dynamische systemen en hun bifur-
caties, met de bedoeling om de belangrijkste problemen van bestaande software
op te lossen. Het was volledig geschreven inMATLAB , omdat dit wiskundig
softwarepakket door veel wetenschappers gebruikt wordt, omdat het platformon-
afhankelijkheid ondersteunt en om de uitbreidbaarheid van het pakkette ver-
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groten. De gebruikersinterface was gebaseerd op die vanCONTENT, om de ge-
bruiksvriendelijkheid van dat pakket over te nemen en om het gemakkelijker te
maken voor gebruikers om over te stappen van het ene pakket naar het andere.

In Hoofdstuk 3 worden een aantal belangrijke bijdragen tot dit softwarepakket
uit de doeken gedaan. Zo werden de functionaliteiten van het programma uitge-
breid met de mogelijkheid om de PRC van een periodieke baan te laten berekenen.
Ook de afgeleide van de PRC kan op deze manier bekomen worden. De imple-
mentatie hiervan is gebaseerd op het wiskundig algoritme uit Hoofdstuk 2, maar
bovendien maakt ze zeer efficiënt gebruik van het specifieke continuatiegedeelte
van het softwarepakket MATCONT.

De gebruiker kan nu ook homoclinische bifurcaties detecteren en continueren.
Deze curven van homoclinische banen kunnen starten van een Bogdanov-Takens
bifurcatie of van een periodieke baan met grote periode. Alle bekende bifurcaties
langs deze curven kunnen gedetecteerd worden.

Tenslotte hebben we de snelheid van het softwarepakket aanzienlijk verhoogd
door C-code te introduceren tussen deMATLAB -routines. Door nuttig gebruik te
maken van deze C-code zijn we erin geslaagd om de snelheid van continuaties
van periodieke banen te verhogen met meer dan de helft en dit alles zonder het
gemak van installatie en de platformonafhankelijkheid te verliezen die zo typisch
waren voor MATCONT. In een laatste deel van dit hoofdstuk rapporteren we een
belangrijke programmeerfout die we hebben ontdekt in de ingebouwde functiona-
liteiten vanMATLAB voor ijle matrices.

MATCONT werd ontwikkeld als een wiskundig geöriënteerd softwarepakket,
vooral gericht op de theoretische studie van dynamische systemen. Tegenwoor-
dig wordt het veel gebruikt in onderwijs en wiskundig onderzoek. De mogelijke
toepassingen zijn echter allesbehalve beperkt tot die specifieke domeinen. MAT-
CONT kan gebruikt worden in elk wetenschappelijk gebied waarbij dynamische
systemen gebruikt worden. De theoretische studie van deze systemen kanbij-
dragen tot het verklaren van bepaalde fenomenen. Dat MATCONT interessante
toepassingen heeft in bijvoorbeeld neurobiologie, wordt geı̈llustreerd in Hoofd-
stuk 4.

Een eerste logisch gebruik van de software is het bestuderen van het bifur-
catiediagram van een bestaand neuraal model. Het Morris-Lecar modelis zo’n
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wijd verspreid en veel gebruikt model, maar tot nog toe was er nog door niemand
een complete bifurcatieanalyse gemaakt van dit systeem. Dit type van uitgebreid
bifurcatiediagram kan belangrijk zijn om te weten welk gedrag kan voorkomen
bij bepaalde parameterwaarden in het systeem. Op deze manier kan men bepaald
waargenomen gedrag in een netwerk gaan verklaren, of een specifiekgewenst
gedrag veroorzaken. We hebben als eerste zo’n compleet bifurcatiediagram van
die bekende model opgebouwd.

We introduceren ook verscheidene interessante toepassingen van PRCs, die
nu een integraal deel van MATCONT uitmaken. We tonen hoe deze curven kun-
nen gebruikt worden om de mogelijkheden te onderzoeken van neurale netwerken
om te synchroniseren of in fase te vuren en hoe de vertraging van de verbinding
tussen zenuwcellen hierin een cruciale rol speelt. We illustreren ook een aantal
interessante fenomenen in de interactie van PRCs en bifurcaties van periodieke
banen.

Dynamische systemen zijn niet alleen nuttig in theoretische neurobiologie.
Ook in toegepaste neurobiologie hebben ze een belangrijke rol te vervullen. Wan-
neer dynamische systemen gebruikt worden om fysiologische neuronente model-
leren, kunnen de resulterende modellen gebruikt worden om de interactievan deze
neuronen te bestuderen in een biologisch relevant opgebouwd netwerkmodel.

In samenwerking met een groep biologen aan de University of Bristol (in
het Verenigd Koninkrijk) hebben we gedetailleerde modellen opgebouwd van de
zenuwcellen in de ruggengraat van het pasgeboren kikkervisje van de Xenopus
laevis. De biologische achtergrond over dit diertje en de vergelijkingen en pa-
rameters die worden gebruikt voor de modellen van de individuele neuronen en
verbindingen worden gegeven in Hoofdstuk 5.

In Hoofdstuk 6 richten we ons op het oorspronkelijke doel van deze samen-
werking. De individuele modellen van zenuwcellen en synapsen worden gebruikt
om biologisch realistische netwerken van neuronen op te bouwen, zoals ze kunnen
gevonden worden in de ruggengraat van de jongeXenopus.

Het eerste netwerk dat we bouwden was bedoeld om het zwemgedrag van het
kikkervisje te simuleren. De effectieve interacties binnen dit netwerk warenreeds
voor het merendeel bekend en dit netwerk werd in de eerste plaats gebruikt om
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onze modellen voor de individuele neuronen en synapsen te verifiëren, maar ook
om het belang aan te tonen van specificiteit in neurale modellering. We tonen aan
dat het negeren van een aantal belangrijke verschillen die we hebben ingebouwd
in de modellen voor de verschillende neuronen, resulteert in het verlies van de
goede werking van het netwerk.

Hierna hebben we deze zelfde individuele modellen gebruikt om een andere
hypothese te bestuderen, een hypothese op het vlak van synaptogenese. In het
fysiologisch netwerk is het voor de meeste types neuronen waarschijnlijker om
synaptische verbindingen te maken met specifieke types neuronen dan metan-
dere types. De hypothese is dat deze specificiteit in verbinding puur gebaseerd
is op de anatomische organisatie van de neuronen en niet op de mogelijkheid
van groeiende synapsen om een onderscheid te maken tussen verschillende types
zenuwcellen. Het feit dat een neuron voornamelijk contact zou leggen met één
of meer specifieke types zenuwcellen, zou enkel veroorzaakt worden door de
dorsoventrale positie van elk van die types zenuwcellen en de plaats waar die
synapsen precies groeien. We hebben deze hypothese getest door netwerken op te
bouwen bestaande uit de zwemneuronen, waarbij synapsen werden gecrëeerd op
puur probabilistische basis. De modelleringresultaten, die onze hypothesesterk
ondersteunen, worden besproken in het tweede deel van Hoofdstuk6.

Tenslotte hebben we een eerste versie ontwikkeld van een netwerk om het
tweede soort beweging van het kikkervisje te modelleren, namelijk worstelen.
Tijdens dit proces worden korte reeksen van pieken afgevuurd afwisselend aan
beide zijden van het lichaam van het kikkervisje (in tegenstelling tot bij zwem-
men, waarbij het gaat om afwisselende individuele pieken aan weerszijden). Van
het neuraal netwerk dat actief is bij het worstelen, en van het gedragop zich, is
veel minder geweten dan van het zwemmen. Maar ons modelleren heeft onder
andere aangetoond dat het meest waarschijnlijke mechanisme dat een reeks van
pieken doet ophouden, synaptische plasticiteit zou zijn: door aan hoge frequentie
signalen oveŕeén enkele synaps te sturen naar een ander neuron, zal een synaps
verzwakken en uiteindelijk zo verzwakt raken dat het tijdelijk zal stoppenhet sig-
naal door te geven, tot het hersteld is. Door dit verschijnsel in te bouwen in ons
model, waren wij in staat relatief betrouwbaar alternerende reeksen van pieken uit
te lokken aan beide zijden van het lichaam van deXenopus.
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De resultaten in deze doctoraatsthesis werden gepubliceerd in, of ingezonden
voor publicatie naar, gespecialiseerde wetenschappelijke tijdschriften, zie [33],
[49], [57], [58], [59], [60], [118], [35].


