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( )xĉ ,τh  : moments-based estimator of the covariance function 

( )xˆ ,γ τh  : moments-based estimator of the variogram 

φ  : space-time anisotropy ratio 

ψ  : space anisotropy ratio 

( )jc h   : spatial covariance function for the time instant j 
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( )jj'ĉ h   : moments-based estimator of the spatial cross covariance function 

)(' hjjγ   : spatial cross variogram between time instants j and j’ 

)(ˆ ' hjjγ   : moments-based estimator of the spatial cross variogram 

( )ii'c τ   : temporal cross covariance function between space location i and i’ 
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1.1. Overview 
 

To satisfy the food needs in the future of an increasing population, two options are possible: 

improving the management of soils already under cultivation or using the potentially arable 

soils which are not yet cultivated. The latter option becomes more and more difficult to 

realize as the potentially arable areas have reduced drastically during the last decades. So 

every effort should be directed towards the first option. Soil salinity is a major factor which 

impedes the increase of crop yields. To circumvent its limiting effects, the United Nations 

Conference on Desertification, held in Nairobi, Kenya, in 1977, adopted the following 

recommendations: “It is recommended that management measures be taken to combat 

desertification in the irrigated lands by preventing and controlling waterlogging, salinization, 

and sodification by modifying techniques to increase productivity in a regular and sustained 

way; by developing new irrigation and drainage schemas where appropriate always using an 

integrated approach; and through improvement of the social and economic conditions of 

people dependent on irrigated agriculture”. 

It is estimated that one million hectares of irrigated land is abandoned yearly as a 

consequence of the adverse effects of irrigation due to secondary salinization and sodification. 

The areas lost due to the natural or primary salinization and sodification need to be added to 

the above amount. 

The effective control of soil salinity and waterlogging requires, among others, the knowledge 

of the magnitude, the extent, and the distribution of root zone salinity (inventory), the 

knowledge of the changes and trends of soil salinity over time (monitoring), and the ability to 

determine the impact of management changes upon saline conditions (Rhoades et al., 1999a). 

The sustainability of agriculture is an important concept of soil quality (Warkentin, 1995), 

which implies that soil quality must be maintained over time (Aon et al., 2001). The initial 

assessment of spatial and future spatio-temporal changes in soil quality is the basis for 

evaluating this sustainability (Corwin and Lesch, 2003). 

Precision agriculture is one of the potential means of attaining sustainable agriculture. 

Assessing the impact of soil salinity at regional and local scales is a key component to 

achieving this sustainable agriculture. This assessment involves the detection of change in soil 

salinity over time, which shows the usefulness of easily measured soil salinity parameter like 

the apparent electrical conductivity. 
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In addition to their use for crop production, most saline and sodic soils have native vegetation 

providing a wide variety of wild plants, which along with their nature animals, contribute 

greatly to the biological diversity (Brady and Weil, 1999). 

The delineation of field salinity and the knowledge of its variability over an area can assist in 

designing experiments such as selecting plot size and layout (Van Es et al., 1989; Gotway and 

Cressie, 1990; Bhatti et al., 1991; Zimmerman and Harville, 1991; Fagroud and Van 

Meirvenne, 2002; Johnson et al., 2003), sampling strategy (Burgess et al., 1981; Faltman et 

al., 1987; Fagroud, 2001), or developing practices to manage and reclaim salt-affected soils 

(Chang et al., 1988). 

The spatial variability and the dynamic nature of soil salinity is the outcome of the effects and 

interactions of different edaphic factors (soil permeability, water table depth, salinity of the 

groundwater, topography, and parent material), management-related factors (irrigation, 

drainage, and tillage), and climatic factors (rainfall, wind, and relative humidity). Due to the 

spatio-temporal variability of soil salinity, numerous samples need to be taken and the 

measurements need to be repeated as conditions change or to determine if they are changing. 

We will see that there are ways to optimize the sampling effort if there is temporal persistence 

or stability. 

 

1.2. Problem definition and research objectives 
 

In the precedent section, we stressed the importance of inventorying and monitoring soil 

salinity. This soil salinity is customarily evaluated in the laboratory from soil samples by 

determining the electrical conductivity of an extract from a saturated soil paste (ECe) or, 

cheaper and less time consuming, by determining the electrical conductivity from a soil:water 

ratio (ECx, where x can be, for example, 1, 2, 2.5, 5, etc., representing the water proportion). 

We chose to use EC2.5 as we were mostly interested in the relative change of soil salinity over 

time instead of the absolute soil salinity values. Alternatively soil salinity can be evaluated by 

measuring, in the field, the apparent electrical conductivity, using either the four-electrode or 

electromagnetic induction devices. The former sensor was selected because at the time of the 

first sampling campaign (November 1994), the electromagnetic induction device was not yet 

available and our study focussed on the surface layers of the soil. 

A first main objective of our research project was to monitor the change of soil salinity over 

time. In this sense we used various statistical approaches to reach this objective. First of all, 
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we used the concept of temporal stability (Vachaud et al., 1985) to check if the spatial pattern 

of soil salinity can persist from one time instant to another. If it is the case, the sampling effort 

could be reduced to a limited number of locations representative of low, average, and high 

saline conditions. The locations representative of these saline conditions were linked to the 

salt accumulation processes (leaching, accumulation, and waterlogging) and to easily 

measured covariables like elevation and vegetation pattern in order to identify these locations. 

The mean temporal change was checked using the Student paired-t test and the first test of 

Lesch et al. (1998) while the dynamic spatial variation, i.e. different change in soil salinity 

between two time instants for the space locations, was checked using the second test of the 

last authors. 

In the precedent approach we were mainly interested in identifying locations representative 

of, for example, the average field soil salinity. This average value is required for predictive 

salinity models (Oosterbaan, 1997). However, land users and managers are also interested in 

mapping soil salinity in space and/or time by predicting it at unobserved space locations 

and/or time instants. In order to satisfy this second main objective, we used classical and 

modern geostatistical methods. In a first tentative, we rescaled the apparent electrical 

conductivity (ECa) into soil salinity (EC2.5) based on regression equations determined for each 

time instant. The estimated EC2.5 values, obtained by converting the intensively sensed ECa 

using the regression equations, were then analyzed for their space time variability and 

interpolated using the space time kriging. As the rescaled EC2.5 values are entailed with 

uncertainty, we assessed other alternative methods to interpolate soil salinity. We compared 

the interpolated values obtained from two prediction methods, each with two different 

algorithms. Space time kriging was used based on only observed EC2.5 and on both observed 

and estimated EC2.5. To take into account the difference in accuracy between observed and 

estimated EC2.5, we used the Bayesian maximum entropy method with either interval or 

probabilistic soft data. 

 

1.3. Outline of the thesis 
 

This thesis is based on a collection of papers that have been published or were submitted for 

publication in international peer-reviewed journals. Some changes were made to standardize 

the layout, using the same notations, renumbering figures sand tables, moving the references 

to the end of the dissertation and to avoid the overlapping between chapters. As the 
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consequence of the latter point, the different methods applied to the data sets were put 

together in a separate chapter. 

This thesis is organized in four main parts. In the first part, after a general introduction 

(chapter 1), the literature on soil salinity is reviewed (chapter 2). The focus of the literature 

review is particularly on how soil salinity is measured and on the selection of appropriate 

parameters to characterize it. In chapter 3, the study site and the data used in the subsequent 

analyses are presented. Also, we reviewed in chapter 4 some of the available 

statistical/geostatistical methods to analyze space time data and focused on the ones that we 

used in the subsequent parts of this dissertation. Applications of the classical statistical 

methods (part two) and classical and modern geostatistical methods (part three) followed the 

literature review. In chapter 5, the temporal stability, based on the concepts of Spearman rank 

correlation and relative differences, is discussed. A refinement of the concept of relative 

differences along with the concept of dynamic spatial variation is presented in chapter 6. The 

third part involves two chapters. The space time kriging of the rescaled soil salinity was 

compared to the space kriging in chapter 7. The difference in accuracy between observed and 

estimated soil salinity was considered in chapter 8 for the case of Bayesian maximum entropy 

(BME) with interval and probabilistic soft data. The two algorithms of BME were compared 

to space time kriging using only observed soil salinity or using both observed and estimated 

soil salinity. 

Finally chapter 9 summarizes the main results and major conclusions of the thesis, and gives 

some recommendations for further research emphasizing research problems that still need to 

be tackled. 
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2.1. Introduction 
 

This chapter reviews briefly the literature on soil salinity whereby section 2.2 deals with total 

soluble or dissolved salts; soil sodicity is discussed in section 2.3 while soil salinity sensu 

stricto is presented in section 2.4. 

 

2.2. Total soluble or dissolved salts 
 

There are three forms of inorganic salts in the soil: solid or precipitated, solved in soil 

solution, and adsorbed on colloid surfaces. Soil salinity refers to the total amount of soluble or 

dissolved salts in soil. Total soluble (TSS) or dissolved (TDS) salts are measures of soluble 

components in soil solution. The most common soluble salts in the natural soils are 

compounds of the cations Ca2+, Mg2+, K+, and Na+, and the anions Cl-, SO4
2-, CO3

2- and 

HCO3
-. The TSS is obtained by weighing the residue after evaporating a given volume of 

water or soil extract. It is expressed in ppm (mg/kg or µg/g of soil). This procedure requires 

long time, a sensible balance and high temperatures may volatilise some salts. It is for these 

reasons and others that soil salinity is quantified in terms of electrical conductivity. Before 

defining soil electrical conductivity and how it is measured in the laboratory and in the field, 

we make first a distinction between soil sodicity and soil salinity. 

 

2.3. Soil sodicity 
 

2.3.1. Exchangeable sodium percentage 

 

The total amount of exchangeable cations that a soil can retain is termed cation exchange 

capacity (CEC). It is often more convenient to express the relative amount of a given 

exchange cation adsorbed as a percentage of the CEC. Consequently, exchangeable sodium 

percentage (ESP) is calculated as the ratio between exchangeable sodium content and the 

CEC and is expressed as a percentage: 

CEC
NaESP exch100=           (1) 

where exchNa represents the exchangeable sodium. 
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ESP is a measure of soil sodicity and is calculated from direct measurements of each cation 

(Carter, 1993). It identifies the degree to which the exchangeable complex is saturated with 

sodium (Brady and Weil, 1999). Its determination is time consuming and the routine analysis 

has numerous pitfalls. Sodic soils are defined as soils that have an ESP > 15 (Richards, 1954). 

 

2.3.2. Sodium adsorption ratio 

 

The Sodium adsorption ration (SAR) is another, yet easily measured soil property that is 

becoming more widely used than ESP to identify sodic soils. It gives information on the 

comparative concentrations of Ca2+, Mg2+, and Na+ in soil solutions. It is calculated as 

follows: 

[ ]
[ ] [ ]( )++

+

+
=

22

2
1 MgCa

NaSAR           (2) 

with [Na+], [Ca2+], and [Mg2+] representing the concentration of the corresponding cations in 

milliequivalents per liter. 

The SAR takes into consideration that the adverse effects of sodium are moderated by the 

presence of calcium and magnesium (Brady and Weil, 1999). It is considered as a useful 

index of the sodicity or relative sodium status in soil solutions, aqueous extracts, or water in 

equilibrium with soil (Carter, 1993). Soils with a SAR > 13 are considered to be sodic (SSSA, 

1984). 

The ESP can be estimated from the SAR, determined from saturated paste extracts, using the 

following equation (Kamphorst and Bolt, 1978): 

ESP
ESPSAR
−

=
100

*015.0           (3) 

or SAR
SARESP *015.01

*5.1
+=          (4) 

For more diluted extracts like 1:5 soil: water ratio, the relation is as follows (Rengasamy et 

al., 1984): 

8.1*95.1 += SARESP          (5) 

Sodic soils have a pH > 8.5, the stability of the soil aggregates is deteriorated, the soil colloids 

disperse and plug the soil’s drainage pores implying that the downward percolation of water is 

prevented. When soil dries out, sodic soils form hard massive structures, which prevent roots 

to penetrate and the plants are allowed only a small percentage of the total possible soil water 
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(physiological drought). Also in sodic soils, due to the swelling pressure and dispersion of 

organic matter at high pH, the sodium-clay complex becomes unstable and deflocculates. It is 

illuviated into the lower profile when it is flocculated by the higher salt concentration. The B 

horizon that develops is very poorly drained and has a massive columnar structure. This 

process of clay defloculation and illuviation is called solonization (sodification) and the soil 

formed is a solonetz (sodic soil). 

 

2.4. Soil salinity 
 

Traditionally soil salinity is expressed as the electrical conductivity (EC) of a solution 

extracted from soil at water saturation. Its value is given in unit of dS/m. The usual method to 

quantify the soluble salts concentration in soils is to measure the EC of a soil-water extract or 

in the soil solution. The EC refers to the ability of a material or solution to conduct an electric 

current. Liquids, which carry an electric current, are referred to as electrolytic conductors. 

Water is a poor conductor. However, when salts are dissolved in it, its aptitude to conduct 

current increases dramatically. 

The electrical conductivity of a given solution will change with a change in temperature. The 

temperature used as reference is 25°C, and to convert EC measured at a temperature θ to EC 

at the reference temperature, the following formula is used: 

[ ])25(*021.01*25 −+= θθ ECEC         (6) 

with θ in degree Celsius, 

ECθ, EC at the temperatureθ, and 

EC25, EC at 25°C. 

The EC can be measured in the laboratory as well as in the field. 

 

2.4.1. Laboratory measurement of the electrical conductivity 

 

Laboratory methods used to quantify soluble salts in soils include:  

- measuring EC in a saturated paste of soil and water (Richards, 1954), 

- measuring EC in a soil-water extract based on a fixed soil:water ratio, e.g. 1:1, 1:2, 

1:5, etc. The corresponding EC will be noted ECx, x is the second part of the ratio. 

Ideally, the salt present in the soil should be determined by analysis of the soil water under 

field moisture conditions. This cannot be done conveniently and the salinity status of the soil 
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is evaluated from a sample under laboratory conditions. A soil sample is saturated with 

distilled water, then vacuum filtration is used to obtain the extract, the latter is used for the 

determination of the electrical conductivity, whereas ordinary filtration or centrifugation can 

be used when higher moisture levels are used. 

The saturated paste provides a more representative measurement of TSS in the soil solution 

because it approximates the water content of the soil under field conditions, thus it is more 

related to plant response. However, this approach, although more precise, is more time 

consuming, expensive, and more susceptible to errors due to variability between analysts in 

the preparation of the saturated paste. 

In cases where large numbers of soil samples must be processed, EC can be measured at a 

fixed and more dilute soil: water ratio because it is rapid, low cost, easily done, and 

reproducible across a wide range of soils. Extracts obtained from higher soil: water ratios 

need to be calibrated with extracts of saturated soil paste. For example, Richards (1954) gave 

a relationship between ECe and EC1. In the early sixties, Agarwal et al. (1961) established a 

relationship between ECe and EC5. Other ratios and media were used. For example, a good 

relationship was found between, from one side, ECe and, from the other sides, EC1 and EC2.5 

extracts and suspensions (Winsor and Davis, 1956), EC1 soil extracts and suspensions 

(Kamaliddin et al., 1961), EC1 soil extracts (Wagenet and Jurinak, 1978), EC1 soil 

suspensions (Fowler and Hamm, 1980), EC2 soil extracts (McKenzie et al., 1983), EC1 and 

EC2 from soil extracts and suspensions (Hogg and Henry, 1984), EC2.5 (Carter and Pearen, 

1985), EC5 (Triantafilis et al., 2000). In addition, Pittman et al (2001) established 

relationships between the electrical conductivity and ions from 1:1 and saturated paste 

extracts using regression equations. They found that these soil properties are highly correlated 

but the correlation depends on ionic charge and soil texture (fine texture with less than 60% of 

sand as opposed to coarse texture). 

When relative salinity is of interest, the soil: water ratios can be used to advantage (Jurinak 

and Suarez, 1990). 

A strong link was found between EC and TSS. For example, White (1997) found that:  

)/(*640)/( mdSEClmgTSS e=          (7) 

while Shaw et al. (1986) and White (1997) showed that: 

)/(*34.0(%) 5:1 mdSECTSS =         (8) 

Soil is considered saline when TSS is > 2500 ppm or equivalently ECe > 4 dS/m. 
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Natural saline soils are called white alkali soils or solonchaks. They have a uniform dark 

brown Ah horizon containing superficial salt efflorescences. Salts are brought up by the 

capillary rise of the saline groundwater. The clay remains flocculated and soil structure is 

stable, provided that a high salt concentration is maintained. 

 

2.4.2. Field measurement of electrical conductivity 

 

As an alternative to the determination of EC in the laboratory, soil salinity can be evaluated in 

the field by reporting the apparent or soil bulk EC (ECa). The latter can be measured in three 

different ways using electrode probes (Rhoades and Ingvalson, 1971; El Oumri and 

Vieillefon, 1983), electromagnetic induction (De Jong et al., 1979; Rhoades and Corwin, 

1981), and time domain reflectometry (Dalton and Van Genuchten, 1986; Topp et al., 1988). 

We present them in the following sections. 

 

2.4.2.1. Electrode sensors 

 

This kind of sensors has two main configurations: horizontal or surface array configuration 

(Rhoades and Ingvalson, 1971, Read and Cameron, 1979), and insertion probes (Rhoades and 

Van Schilfgaarde, 1976). 

 

2.4.2.1.1. Horizontal or surface array configuration. 

 

In the horizontal configuration, four electrodes are equally spaced, placed on a straight line, 

and inserted a few centimetres into the soil. The outer electrodes provide a constant electric 

current while the inner electrodes are used to measure the potential. The depth of current 

penetration is about equal to the interelectrode distance, d. The ECa is determined using the 

equation (Rhoades and Ingvalson, 1971): 

dR
ECa π2

1
=            (9) 

with R, the resistance in ohms, and d, the inter electrode distance in cm. 

The soil volume penetrated by the current is given by (Rhoades and Van Schilfgraade, 1976): 

6
5 3dV π

=            (10) 
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So the expansion of the inter electrode distance, d, increases the depth and volume of soil 

salinity measurements. 

As these sensors require a contact with soil, it is recommended to measure ECa just following 

irrigation or rain (so at field capacity). They have the advantages to be simple, rapid, 

inexpensive, and eliminate the recourse to the tedious soil sampling and laboratory analysis 

(once an ECe - ECa calibration equation is determined). 

This method was used to determine soil salinity in artificially salinized plots (Rhoades and 

Ingvalson, 1971), to identify potential saline seep areas (Halvorson and Rhoades, 1974), and 

to delineate the surface and subsurface boundaries of encroaching and developed saline seeps 

(Halvorson and Rhoades, 1976). 

 

2.4.2.1.2. Insertion or salinity probes 

 

The insertion probes are useful when more accurate measurement of soil salinity distribution 

within the rootzone is desired, particularly when the salinity is not uniform laterally. In this 

configuration the four electrodes are mounted as annular rings. The probe is inserted into the 

soil to a desired depth. An electric current with intensity I is induced between the outer 

electrodes and the potential, E, is measured between the inner electrodes. The soil 

resistance,
I
ER = , is converted to ECa using a cell constant determined experimentally. The 

volume of soil salinity measurement has the shape of an ellipse encircling the probes. 

Soil-depth interval salinities have been estimated using measurements at increasing 

interelectrode distances in the Horizontal configuration while the insertion probe was used to 

evaluate the accuracy of such estimates. The agreement between measurements from both 

configurations is excellent. However the Horizontal array is less suitable when the soil is 

highly stratified or nonhomogeneous laterally while the insertion probe is not so limited and is 

more generally reliable in such cases. 

Comparing the Horizontal array and the insertion probe, Rhoades and Halvorson (1976) 

concluded that the latter can be used to more accurately determine soil salinity of a discrete 

depth interval and very useful for establishing ECe - ECa calibration equations while the 

former is better suited to provide an index of bulk soil salinity. 

The measured ECa is function of many soil properties like moisture content, texture, and salt 

content (Halvorson et al., 1977). 
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2.4.2.2. Electromagnetic induction sensors 

 

With electromagnetic induction the current is supplied to the soil through induction. The 

sensor employs two kinds of coils: a transmitter and a receiver. As the transmitter coil is 

energized, circular currents are induced in the soil. The magnitude of loops of the induced 

current is proportional to ECa. The current loops produce a magnetic field, the strength of 

which is proportional to the current flowing in the loops. A fraction of the magnetic field is 

intercepted by the receiver and creates an output related to ECa. The soil depth characterised 

is function of the frequency of the transmitter, the intercoil spacing, the coil orientation 

relative to the soil surface, and of the soil conductivity. 

There are two main commercially available instruments: EM31 and EM38. For the EM31, the 

intercoil spacing is 3.70 m. In vertical position (coils perpendicular to the soil surface), the 

measurement depth (6 m) is twice as deep as in horizontal position (coils parallel to the soil 

surface). The variation in ECa with depth can be assessed by varying the height of the 

instrument and the coil orientation relative to the soil surface (horizontal or vertical position). 

The technique has considerable potential for providing a rapid and easy method for detecting 

and mapping saline areas. However it has less depth-resolution than the horizontal array 

instrument. 

For EM38, the intercoil spacing is one meter. When placed at ground level, it permits ECa 

measurement to effective depths of approximately one and two meters when the instrument is 

in horizontal and vertical positions, respectively. When the instrument is placed in the 

horizontal position, 75% of its response comes from less than 90 cm while in the vertical 

position; the corresponding depth is less than 190 cm. The instrument can be used to establish 

ECa -depth distribution by holding the device at various heights above the soil surface. 

Job et al. (1995) presented an EMI device with an intercoil distance of 0.60 m, smaller and 

easily manipulable than the existing instruments. It is more sensitive to salinity of the top one 

meter of soil and less sensible to the salinity of the groundwater. 

 

2.4.2.3. Time domain reflectometry 

 

The ECa measurement is based on the velocity of propagation and reflection of an 

electromagnetic pulse along transmission lines. The dielectric constant and the impedance of 

the medium (the soil) can be measured once the transmission lines are placed inside the soil. 

The first parameter (the dielectric constant) is function of the soil water content while the 
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impedance of the transmission lines in the soil produces an attenuation of the signal, the latter 

can be related to ECa. The TDR can be advantageously used to measure simultaneously both 

water content and electrical conductivity of the soil (Dalton et al., 1984; Dasberg and Dalton, 

1985; Dalton and Van Genuchten, 1986). In this way the dependence of the electrical 

conductivity on water content can be taken into account. However, Topp et al. (1988) noted 

that the precedent works ignored the effect of multiple reflections of signal within the soil 

transmission line and the attenuation of the signal by the impedance-matching transformer 

was not accounted for. They found that the frequency dependence of the dielectric constant 

and attenuation needs to be measured independently in order to determine the relative 

contribution of the dielectric constant to the EC measurements made by TDR. 

 

2.4.3. Calibration of laboratory and field electrical conductivity 

 

Once the ECa is measured whatever the instrument used (electrode probes, EMI, or TDR), we 

still need to calibrate these measurements with ECe /ECx, where x represents the ratio of water 

(1, 2, 2.5, 5, etc.). In this way different methods were proposed. 

 

2.4.3.1. Electrode measured ECa 

 

As early as the beginning of the seventies, Rhoades and Ingvalson (1971) found that, based on 

measurements made using a horizontal configuration, a very close relationship exists between 

ECe and ECa. The correlation coefficients varied between 0.981 and 0.997 for different depths 

and different methods of calculation of ECa. In addition, Halvorson and Rhoades (1974) 

found a high significant correlation between ECe and ECa with a correlation coefficient of 

0.98 for a first date, when the soil profile was at or near field capacity, and a coefficient of 

0.96 for a second date, when the soil profile was drier. For the same configuration, Halvorson 

and Rhoades (1976) found correlation coefficients higher than 0.94 for different depths (0 to 

120 cm by 30 cm increments). 

Halvorson et al. (1977) assessed whether the ECe - ECa relationship is different when using 

different methods of calibrations for soils of different parent material and with different 

textures. In this way, the ECa was determined by three different methods: soil sampling 

method (Halvorson and Rhoades, 1974), four electrode cell technique method (Rhoades et al., 

1977), and the EC-probe method (Rhoades and Van Schilfgaarde, 1976). The authors found 

that the slope of the linear regression line linking ECe to ECa decreases as clay content 
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increases and, to a lesser degree, as the soil water content increases. The parent material had a 

limited influence on the correlation between ECe and ECa. They concluded also that the cell 

and EC probe methods required less work and limited samples and were easier to use 

compared to the soil sampling technique. Both former methods were more accurate than the 

latter as they used the same soil volume for the determination of ECe and ECa. 

To take into account the effect of soil properties like clay, sand, and water content on the ECa 

values, Read and Cameron (1979) used the stepwise multiple regression to relate ECe to both 

ECa, determined using a horizontal configuration, and soil properties. They evaluated this 

technique in dryland soils in the Canadian Prairies. They found that, for uniform texture and 

moist soil, ECa was highly correlated with ECe (r=0.96 to 0.98). However, for more 

heterogeneous conditions (differences in salt and texture between depths and soil moisture 

less than field capacity), lower correlations were found (r=0.61). The inclusion of the clay, 

sand, and water contents in the ECe - ECa calibration equations, for the heterogeneous areas, 

improved the correlation coefficient to 0.84. 

Rhoades (1981) went a step further in the consideration of the soil properties that affect ECa, 

and thus the ECe - ECa calibration. He estimated the slope and intercept of the calibration 

equations from several soil properties. He found that the slope was better predicted from 

saturation percentage (or field capacity) and from clay+silt percentage while the intercept was 

best predicted from clay percentage. He concluded that as saturation percentage (or field 

capacity) is related to soil texture, the ECe - ECa calibration equations could be approximated 

from the knowledge of the soil texture. 

All the above research works linked ECe to ECa. We noted in section 2.2.3.1 that ECe is more 

reliable measure of soil salinity than electrical conductivity determined from other soil: water 

ratios. However ECe is time and labour consuming, and is costly. In this regard, McKenzie et 

al. (1983) determined the correlation between four soil EC determinations: ECe, EC2, and ECa 

measured using horizontal array and insertion probe. They found that the 1:2 soil: water 

extract method gave the best agreement with ECe, with coefficients of determination ranging 

between 0.85 and 0.93 while these coefficients ranged between 0.64 and 0.78 from ECe and 

ECa obtained with insertion probe. The agreement was better for the shallower samples than 

for the deeper ones. For the horizontal configuration, the coefficients were lower ranging 

between 0.59 and 0.67.  
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2.4.3.2. EMI measured ECa 

 

The EMI technique for soil salinity measurement, with an EM31 instrument, was first used at 

the end of the seventies. De Jong et al. (1979) found that the coefficient of correlation 

between ECe and ECa was 0.83 when the instrument was carried at 80 cm above soil surface 

and 0.86 when it was on soil surface. For both cases, the readings were on vertical position. 

The authors determined also the coefficient of correlation between ECa determined using EMI 

instrument (with different positions) and horizontal configuration (with different 

interelectrode distances). The correlation coefficients ranged between 0.63 and 0.90. They 

found that the correlation decreased, for a given depth, with interelectrode distance due to 

differences in measured soil volume. 

In addition, Rhoades and Corwin (1981) correlated ECa measured with EMI placed on the 

ground surface to ECa measured with either a horizontal configuration or insertion probe. The 

relationships were strong between ECa determined by EMI and insertion probe, except for the 

first 30 cm soil depth. The coefficients of determination ranged between 0.85 and 0.95 and 

increased with depth. For the horizontal configuration, the coefficients of determination were 

lower than for the insertion probe and decreased with the interelectrode spacing, ranging 

between 0.62 and 0.82. Using a horizontal configuration with an interelectrode distance of 

1.52 m resulted in an almost 1:1 relationship between its ECa and that determined using EMI 

under uniform soil conditions (mainly salt and water contents). 

Wollenhaupt et al. (1986) used the same device, positions, and depths as McNeill (1980) 

except that, in determining the partial contributions, they ignored the depths lower than 1.20 

m and 1.80 m for the horizontal and vertical position readings, respectively. In addition, they 

rescaled the partial contributions of the remaining depths to sum to one.  

McKenzie et al. (1989) studied the influence of temperature, soil texture, and moisture on the 

conversion of ECa to ECe. They used the method of Wollenhaupt et al. (1986) to determine 

first the depth-weighted ECe. The authors found that temperature corrections are essential for 

accurate conversions to ECe. They noted also that the variability of ECa to ECe conversions 

were greater on coarse than on fine textured soils. Thus it is wise to determine separately 

calibration equations for soils with dissimilar parent materials (different textures). Also better 

calibration equations can be obtained if soil moisture is higher than 30%. 

In a somewhat complex method, Rhoades et al. (1990) determined ECe from the ECa 

measurements determined with horizontal array, insertion probe, and EMI as well as from the 

estimates of some soil properties like soil water content, bulk density, and surface 
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conductance. The three instruments give depth-weighted ECa measurements. The weights are 

function of the configuration of the electrodes or the EMI coils, the frequency of the electrical 

current, the distribution of ECa within the depths of the soil profile, etc. (Lesch et al., 1992). 

There are mainly two approaches to determine soil salinity (ECe) by depth from EMI 

measurements (ECa). A salinity prediction model was developed by Rhoades et al. (1989) to 

estimate ECe using EMI or insertion probe ECa measurements supposing that soil water and 

clay content are known. An alternative method, proposed by Lesch et al. (1992), establishes a 

direct relationship between ECe and ECa for homogeneous areas versus water content, bulk 

density, and other soil properties except soil salinity. From the horizontal and vertical EM38 

readings (ECa), the authors selected a limited number of locations for soil sampling to 

determine ECe. The ECe - ECa data were used to determine the parameters of the prediction 

model and the computed model is used to rescale the intensive EM38 data into ECe values. 

The authors recommend using geostatistical methods in cases where fields have substantial 

soil property heterogeneity other than salinity. 

Diaz and Herrero (1992) related the ECe and EC5 to ECa determined from EMI for both 

horizontal and vertical positions. They used simpler equations than McNeill (1980) by 

considering only two depths: the depth at which the samples were collected and a depth larger 

than it. They found that, in general, ECe correlated better to EMI than to EC5. Also ECe and 

EC5 correlated better with EMI horizontal readings than with vertical measurements. 

Moreover, the correlation between the observed and the predicted (from EMI horizontal and 

vertical positions) values were higher for ECe than for EC1:5. 

Similarly, Cannon et al. (1994) found a good agreement between observed and determined 

ECe from EMI readings calculated according to Wollenhaupt et al. (1986). The coefficient of 

correlation was 0.95. 

All the precedent techniques used discrete (discontinuous) depths for the measurement of 

ECa. In contrast, Acworth (1999) used the technique of EC image, which reflects the 

evolution of the ECa continuously with depth. 

The multiple coefficients approach of Rhoades and Corwin (1981) has some drawbacks. It 

requires a large number of EMI measurements made at different heights above the ground 

level in the horizontal and vertical modes, which means that this method is time consuming. 

Also the result, the prediction curve, is discontinuous with depth because the fitting is done 

for each depth separately. To circumvent these disadvantages, Corwin and Rhoades (1982, 

1984) developed the established-coefficients approach, which requires only EMI 

measurements at the ground surface in horizontal and vertical modes instead of measurements 
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at different heights above the soil surface. However the method is empirical, the prediction is 

linear, and the coefficients are different for normal (salinity increases with depth) and inverted 

(salinity decreases with depth) profiles. A more robust calibration approach was developed by 

Lesch et al. (1992) that does not depend on the profile shape. More recently, Lesch et al. 

(1995b, c) developed a new approach called multiple linear regression calibration, which is 

able to produce different types of soil salinity estimates such as point estimates, conditional 

probability estimates, and field average estimates. 

Triantafilis et al. (2000) proposed to fit a logistic model instead of linear models because most 

of the shapes of salinity profiles are sigmoidal. They compared the predictive capabilities of 

their model to those of the linear regression and established coefficients models. They found 

that the logistic model is less time consuming during the fitting step and provides better 

predictions. 

Corwin and Lesch (2003) stated that the ECe is inferred from ECa by two approaches 

(Rhoades et al., 1999a, b): deterministic and stochastic approaches. In the deterministic 

approach, the models are theoretically or empirically determined, they are static meaning that 

all model parameters are considered known and no ECe data need to be determined. Rhoades 

et al. (1989) gives an example of this deterministic approach. This approach is preferred when 

significant and localized variations in soil type exist in the field. It requires the knowledge of 

additional soil properties (water content, saturation percentage, bulk density, soil temperature, 

etc.). In the stochastic approach, the statistical modelling techniques (spatial regression or 

cokriging) are used to directly predict soil salinity (ECe) from ECa. Models are dynamic in the 

sense that model parameters are estimated using soil sample data collected during the soil 

survey. The calibration equations are developed by acquiring soil salinity data (or other soil 

properties like saturation percentage, texture, bulk density, etc.) from a small percentage of 

the sensed locations and estimating a stochastic prediction model for the established model. 

Stochastic and deterministic calibration approaches are described in more detail in Lesch et al. 

(1995b, c) and Rhoades et al. (1999a) and incorporated into the ESAP computer software 

application (Lesch et al., 1995a, 2000). 

 

2.4.3.3. TDR measured ECa 

 

Van Loon et al. (1990) found a slope of about one for regression equations between ECe and 

ECa determined using TDR instrument for water solution and sandy and loamy saturated 

soils. The intercept was significant for the water solution but not for the two soils. The 
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correlation coefficients were very high and amounted to 0.993 for both the water solution and 

the sandy soil and to 0.968 for the loamy soil. The same strength of the ECe - ECa 

relationships was noted by Topp et al. (1988). They found coefficients of determination 

ranging between 0.972 for silty loam soil and 0.999 for clayey loam soil, using a coaxial 

configuration. Using a thin sample approach, the coefficients of determination exceeded 0.99 

for both types of soils. 

 

2.4.4. Mobile apparent electrical conductivity measurement systems 

 

The ECa sensors (electrode probes or EMI) can be mounted on a small tractor or on all terrain 

vehicle (ATV) with a global positioning system (GPS) and a datalogger to obtain a mobile 

system able to measure ECa and register the coordinates of the locations where ECa were 

measured. In this sense, Rhoades (1992, 1993) incorporated a GPS with a four-electrode 

probe on a small tractor to measure ECa. Also, Carter et al. (1993) incorporated EM38 and 

horizontal array sensors to GPS while Jaynes et al. (1993), Cannon et al. (1994), and Sudduth 

et al. (2001) used only the EM38 sensor. In contrast, Rhoades et al. (1997) presented a system 

based on electrode probes providing ECa measurements to a soil depth of 1.30 m by 0.10 m 

increments while Lund et al. (1999) used a mobile system equipped with six coulters 

(electrodes) which is able to provide shallow (0 to 30cm) and deep (0 to 100 cm soil depth) 

measurements of ECa. Recently, Triantafilis et al. (2002) conceived a mobile system, which 

integrates EM31 and EM38 sensors along with a computer datalogger and two GPS units. The 

system was used to provide information for managing soil salinization in a cotton field of 

about 26 ha in the Lower Namoi Valley of New South Wales, Australia. 

 

2.4.5. Other uses of the apparent electrical conductivity 

 

Apparent electrical conductivity, mainly that determined using EMI devices, was used to 

study the spatial distribution of different soil properties like clay content (Williams and Hoey, 

1987; Triantafilis et al., 2001), soil moisture (Kachanoski et al., 1988), soil salinity (Lesch et 

al., 1992; Vaughan et al., 1995), nutrient status of soil (Sudduth et al., 1995), depth to a clay 

layer (Brus et al., 1992; Doolittle et al., 1994; Sudduth et al., 2001), determination of organic 

matter fraction (Jaynes et al., 1995), forest soil quality (McBride et al., 1990), and lateral 

changes in texture (Zalasiewicz et al., 1985). 
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2.4.6. Use of GIS and remote sensing to evaluate salinization risk 

 

Soil salinization is a major problem worldwide and researchers are interested in evaluating its 

risk in order to adapt management techniques to the situation to reduce the occurrence of 

salinization. The integration of the new information acquisition and manipulation tools like 

GPS, GIS, and remote sensing (RS) can enormously help in characterizing and evaluating the 

risk. Bui et al. (1996) used soil survey information and water balance simulations in a GIS 

framework to identify areas at risk of salinization. They determined three permeability and 

drainage classes (low, medium, and high) and recharge and discharge areas from the soil 

survey information (parent material, soil thickness, depth to bedrock, etc.). The study of the 

association between electrical conductivity point measurements (or %TSS) and the recharge 

and discharge areas allowed to assess the salinity hazard. 

In addition to GIS, RS can be very useful in the delineation of saline areas. In this way, Peng 

(1998) used Landsat Thematic Mapper images, which were transformed and classified. The 

classification was based on the generalized Bayes analysis of multisource data (Swain et al., 

1985). Using JERS-1 SAR images and fuzzy k-means classification algorithm (Burrough, 

1989), Metternicht (1998) mapped salt-affected soils. The class determination of saline, sodic, 

and saline-sodic areas was based on the ECe threshold values of 4 dS/m (Richards, 1954). In a 

recent work, Meternicht (2003) refined his precedent approach, following the World 

Reference Base for Soil Resources (Spaargaren, 1994) in which anion ratios, instead of ECe, 

are used. He used a supervised maximum likelihood classification technique where the 

membership grades of the saline fuzzy classes are incorporated as prior probabilities to 

classify Landsat Thematic Mapper data sets. 

 

2.5. Conclusions 
 

In this chapter, we described how salt-affected soils are characterized. We focused 

specifically on soil salinity which is our main concern. 

We conclude, from this chapter, that soil salinity can be accurately measured in the laboratory 

by determining either electrical conductivity from an extract from a saturated paste of soil 

(ECe) or from a soil:water ratio, in our case 1:2.5 (EC2.5). We choose the latter because it is 

easily measured and less time-consuming than the former and also because we are interested 

in the relative change of soil salinity over time instead in its absolute values. In addition, the 
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laboratory measurements were complemented by the survey of the apparent electrical 

conductivity (ECa) using a 4-electrode probe device. This soil propriety, although not a direct 

measure of soil salinity, is strongly correlated to it and needs just a simple calibration based 

on, for example, linear regression models to convert it into soil salinity (EC2.5). 
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3.1. Study site description 
 

Salt-affected soils in Hungary cover more than 10 % of the territory of the country (exceed 

one million hectares) and more than 95 % of these soils are located in the Great Hungarian 

Plain (Szabolcs, 1989). Hortobagy National Park, where lies the study area (Fig. 3.1), forms a 

subregion of this plain, called also Alföld. The area of salt-affected soils in the HNP exceeds 

60000 ha (Tóth and Rajkai, 1994). Therefore the main environmental features of the Great 

Hungarian Plain (GHP) that are pertinent to the occurrence and the formation of salt-affected 

soils will be described. 

 
 Fig. 3.1. Map of Hungary with the Great Hungarian Plain and the study site. 

 

3.1.1. Geology and geomorphology 

 

The Alpine orogenesis is behind the origin of the GHP. This orogenesis contributed, around 

the end of the Miocene, to the formation of the Carpathian basin. This basin, also known as 

Sarmathian or Pannonian sea and which communicated initially with the Mediterranean Sea, 

was reduced, during the Pliocene, to a lake without outlet. The sea and the lakes derived from 

it were filled up, during the end of the Tertiary, by river sediments (Abraham and Bocskai, 

1971; Tóth et al., 1991; Bui et al., 1998). 
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The characteristic soil-forming loess material of the GHP is the product of the Quaternary 

during which the glaciers did not extend in the plain but this latter was strongly influenced by 

the glacial era. Water is another factor that played a decisive role in the formation of the 

parent material of the GHP. The loess formed under its influence is called lowland or 

influence loess, to be distinguished from the loess deposited by wind on dry surfaces 

(Abraham and Bocskai, 1971; Tóth et al., 1991; Bui et al., 1998). 

The height above sea level of the GHP ranges between 85 and 120 m. The plain is formed of 

many smaller basins, most of them occupied by sodic (formerly alkali) soils. The height of 

these basins is 95 to 97 m in the Danube valley, 90 m in Hortobagy, and 80 to 82 m along the 

lower regions of the Tisza river. Tóth and Rajkai (1994), and Tóth and Jozefaciuk (2002) 

noted that a small difference in elevation (some decimeters) results in large difference of salt 

accumulation. The Salic Solonetz (World Reference Base soil nomenclature) is the most sodic 

and saline part of the toposequence. 

 

3.1.2. Meteorology 

 

The Carpathian basin is characterized by a temperate climate, but the GHP is the hottest and 

the driest region of this basin as it is the most continental part of Hungary. The Hortobagy 

region is characterized by a cold winter, 170 to 200 days per year of frost, a temperature range 

of 50-55 °C, and an average sunshine duration of 1900 to 2000 hours per year (Abraham and 

Bocskai, 1971; Tóth et al., 1991). Additional main climate features are reported in table 3.1 

(Tóth et al., 1991). 

 

Table 3.1. Some climatologic parameters of the GHP Central Region. P: precipitation (mm), 

PE: potential evaporation (mm), AE: Actual evaporation (mm), T: Air temperature (°C), DI: 

drought index. 

Months 

 1 2 3 4 5 6 7 8 9 10 11 12 Year

P 30 30 28 41 51 71 53 50 34 33 46 46 527

PE 12 19 40 78 112 136 156 144 106 58 25 14 900

DI 0.4 0.63 1.43 1.90 2.20 1.92 2.94 2.88 3.12 1.64 0.54 0.30 1.71

AE 11 15 27 63 102 91 76 58 35 21 16 12 527

T -1.8 0.5 5.2 10.9 16 19.7 21.3 20.5 16.4 10.7 5.3 0.6 10
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The yearly values are sums for precipitation and potential and actual evaporation whereas 

they are means for drought index and air temperature. 

The rainiest period is from May till August, with a peak of 71 mm in June while the period 

from January to March is the least rainy. The hottest months are June to August and the 

coldest are December to February, with an average monthly temperature below zero in 

January. More interesting is the drought index (DI), the ratio of potential evaporation to 

precipitation. This index exceeds unity for most of the months meaning that for these months 

(from March to October) the amount of rainfall is less than the potential evaporation. This 

will have an important impact on the salinisation of the plain. 

 

3.1.3. Hydrology and Groundwater 

 

Sediments deposited by rivers (mainly Danube and Tisza) and wind filled up the basin of the 

GHP. There were many floods that created marshlands. So, surface water was an important 

factor of soil formation (Tóth et al., 1991). 

Hortobagy is a recharge area of a saline groundwater originating from northern mountains. 

This groundwater is the main source of salt accumulation in the area. Waterlogging induces a 

rise in the groundwater level during the wet season. This results in a flow towards the Salic 

Solonetz elevated zone (Tóth and Jozefaciuk, 2002). However the groundwater flows 

downward during the dry season. 

Groundwater, and more precisely the water table depth, played a decisive role in the 

formation of salt-affected soils in the GHP. As there are regional differences in the 

composition and the concentration of the groundwater, this resulted in different types of salt-

affected soils. This will be discussed later. 

The groundwater table depth varies between 0.5 and 4 m and it fluctuates, on average, 

between 0.5 and 2 m. Waterlogging, which is the consequence of the shallow water table, fine 

texture, and uneven precipitation distribution, is frequent in lower parts of the plain. This 

surface water pounding appears also in low-lying and low permeable areas at the end of the 

winter as the snow melts and/or during high precipitation periods. 

The groundwater has high salt content and a high sodium adsorption ratio. These two features 

contribute to the salinisation and alkalinisation of the soils of the GHP. 
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3.1.4. Soils 

 

There are mainly three soil types. In the hilly marginal regions of the plain, there are soils of 

the Atlantic region (brown forest soils). In the inner plateaus of the plain, soils of the steppe 

region (chernozems) are found. The third type includes the salt-affected soils, meadow soils, 

and the alluvial soils. 

Three main categories of salt-affected soils can be distinguished (Szabolcs, 1989): potentially 

salt-affected soils, saline soils, and sodic soils. The latter, which is found in the study area, is 

characterized by high clay content and unfavorable physical properties, low content of salt, 

high ESP, and high pH in the B horizon. There is a clear difference between the A and B 

horizons. The A or E (eluvial) horizon is most of the time without salt, with a pH of about 7 

or slightly less. It is homogeneous, with dense roots, a texture ranging between sandy and 

silty loam, and it has a laminar structure. In contrast, the B (illuvial) horizon is characterized 

by alkalinity and a finer texture (clay-loam) and it has a columnar structure. The C horizon of 

the sodic (Solonetz) soils is not strongly affected by the different processes of salt 

accumulation. 

 

3.1.5. Ecology and botanics 

 

The GHP is a flat area, with almost no trees. It has an area of 45000 km2 and is covered by 

marshes, rangelands, fishponds, abandoned watercourses, meadows, reeds, and some woody 

patches (Tóth et al., 1991). 

Soil salinity/sodicity and its correlation with the vegetation have been studied in the area by 

many authors, among them Bodrogközy (1965), Tóth et al (1991, 2002b), Van Meirvenne et 

al. (1995). 

As it was noted before, the basin was filled up with sediments from the Danube and Tisza 

rivers during the Pleistocene. The thickness of these sediments varies between 100 and 200 m. 

Upon this layer, 4 to 5 m of loess or meadow clay has been deposited. 

The GHP, in the past, was inundated, 2 to 3 times per year, by the Tisza river. It had open 

forest and marshy vegetation separated by grassland. 

The large-scale formation of the szik soil (solonetz) began in the Holocene. It was due to the 

salts transported by the groundwater to soil surface layers. The area was deforested and dams 

and canals have been built. These anthropogenic factors induced the decreasing of 

waterlogging, and the desiccation of the area and resulted in considerable extension of salt-
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affected soils. Waterlogging may still occur as there is a fast snowmelt, heavy showers can 

occur, and the hydraulic conductivity of the B horizon is very low. 

Chernozems and meadow chernozems (Hungarian soil nomenclature) are found in high sites 

of the GHP while solonetz soils occur in lower lying locations. 

The main catenas of salt-affected soils are reported in table 3.2 and Fig. 3.2 (Tóth et al., 

1991). 

 

Table 3.2. Main types of surface elements, erosion form, plant associations, and soil types. 

Surface element Erosion form Plant association Soil type 
Loess plateau No Cynodonti-Poetum augustifoliae      Meadow chernozem 
Grassy lower place Slight Achilleo-Festucetum pseudovinae    (Steppising) meadow solonetz 
Wormwoody rangeland Torn grasscover Artemisio-Festucetum pseudovinae  Meadow solonetz 
Bare spot on lower part No A horizon Camphoresmetum annuae         Decapitated meadow solonetz 
Bare spot on lower  
temporary water course 

1-2 cm of A 
horizon 

Puccinellietum 
 limosae 

Solonchaky decapited  
solonetz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Soil and vegetation catena in Hortobagy National Park (source: Toth and Kertesz, 

1996). 

 

The limits of the former river beds are continuously eroded by water derived from heavy 

spring rains and/or snow melting. Trampling animals and vehicles induce erosion of the A 

horizon in the higher locations. This horizon is not saline, however when it is partially or 

fully eroded, the plant roots live in thinner surface horizon, or even on compact, saline B 
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horizon of columnar or prismatic structure. These are the causes of the heterogeneous spatial 

vegetal cover. There are mainly 4 groups of plant associations in the sodic grasslands of 

Hortobagy (Bodrogközy, 1965; Tóth et al., 1991): 

• Beckmannion : salt-affected meadow with Agrostis alba 

• Puccinellion limosae : association of bare salt-affected spots 

• Festucion pseudovinae : salt-affected rangeland 

• Festucion sulcatae : slightly salt-affected rangeland 

 

Tóth and Jozefaciuk (2002) studied 3 soils in a sodic toposequence (Mollic Solonetz, Salic 

Solonetz and Haplic Solonetz according to the World Reference Base soil nomenclature) 

from the Hortobagy National Park (HNP) and found that there exists a close relation between 

the position on the toposequence and the vegetation. Grassland occurs at high locations 

(Mollic Solonetz), meadow in low position (Haplic Solonetz), and short grass in intermediate 

position (Salic Solonetz). 

 

3.1.6. Salt-affected soils of Hungary 

 

Szabolcs (1989) defined salt-affected soils as formations under the dominating influence of 

different electrolytes in solid or liquid phases that alter the physical, chemical, and biological 

properties, and eventually the fertility of the soil. He distinguished 5 groups depending on the 

kind of electrolytes that cause salinity and/or alkalinity: 

• Saline soils: the main electrolytes are sodium chloride and sulphate 

• Alkali soils: sodium ions capable of alkaline hydrolysis 

• Magnesium soil: magnesium ions 

• Gypsiferous soils: calcium ions (mainly calcium sulphate) 

• Acid sulphate soils: ferric and aluminium ions (mainly sulphates) 

 

From the 5 above groups, Hungary is mostly concerned with the second group, as shown in 

table 3.3 (Szabolcs, 1989). 

A further subdivision, based on the classification accepted by the previous subcomission on 

salt-affected soils of the International Union of Soil Science, is to distinguish alkali soils 

which have a structural B horizon from those missing this horizon. The former is again 
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subdivided in the two types depending on the nature of the parent material: it can be 

calcareous or not. 

 

Table 3.3. Extent of salt-affected soils in Hungary. Calc: calcareous; With/Without B: 

with/without structural B horizon; SAS: salt-affected soils. Areas in 1000 ha. 

Alkali soils 

With B 

Type Saline soils 

Non-calc Calc 

Without B

Potential SAS Total 

Area 1.6 294 31 58.6 885.5 1271

Percentage 0.1 23.1 2.5 4.7 69.6 100

 

The geographical distribution of salt-affected soils in Hungary is given in Fig. 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Salt-affected soils in Hungary (based on Szabolcs, 1974 and digitally compiled by 

GIS lab of RISSAC) 

 

In alkali soils without a structural B horizon, the harmfulness of the sodium salts capable of 

alkaline hydrolysis because of the inhibition of plant growth while in alkali soils with a 

structural B horizon, alkalinity causes physical soil properties which interfere with the water 

supply (Szabolcs, 1989). Alkali soils without a structural B horizon are characterized by high 

concentration of water-soluble salts capable of alkaline hydrolysis found even in the top 
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layers. They are similar to saline soils, for example both soils have not readily distinguishable 

horizons separated by abrupt boundaries, they have salic horizon and their electrical 

conductivity exceeds 4 dS/m. However they differ in their pH: alkali soils have bigger pH 

(more than 8.5) than the saline soils. The alkalinity of alkali soils results in compactness, lack 

of structure, low humus and plant nutrients content, and impermeability of the top layers. 

Alkali soils with structural B horizon have very low concentration of water-soluble salts 

capable of alkaline hydrolysis, particularly in the eluvial A horizon, which is less compact and 

less developed than the B horizon. The illuvial or accumulation horizon B is of prismatic or 

columnar structure, is well distinguished from the A horizon (this one can be fully eroded), 

has an ESP bigger than 15, and is rich in humus with presence of clay particles (Szabolcs, 

1971). The high level of ESP implies poor physical and water regime properties, and compact 

structure of the B horizon. 

The thickness of the A horizon is an important parameter as it determines the amount of 

retained water and made available to plants. Based on this factor, alkali soils with a structural 

B horizon can be divided in 3 types (Szabolcs, 1971): 

• Shallow solonetz soil: the depth of the B horizon is less than 7 cm 

• Medium solonetz soil: the depth ranges between 7 and 16 cm 

• Deep solonetz soil: the depth exceeds 16 cm 

The sodic solonchak-solonetz soils occur in the Danube-Tisza interfluve, in lower zones 

where the water table is high (about 1 m). Calcium carbonate is present in the whole profile. 

The parent material is loessial or calcareous sand, loam, or clay. Lepidium cartilagineum and 

draba, Camphorosma ovata, and Puccinellia limosa are the frequent plant species in these 

soils (Abraham and Bocskai, 1971). 

The meadow solonetz soils are the most frequent type of the salt-affected soils in Hungary. 

They are found east from the Tisza river, with however in small patches in the west of the 

Danube. If the A horizon is eroded, they are called crusty meadow solonetz. The parent 

material is loess or calcareous clay or loam. The water table is at a depth of 1.50 to 3.50 m. 

The characteristic plant species are Artemisia salina, Santonicum, and Festuca pseudovinae 

(Abraham and Bocskai, 1971). 

The water table of meadow solonetz turning into steppe formation is deeper than the two 

precedent soil types (3 to 4 m). It has as parent material loess or carbonate-bearing clay or 

loam. Achillea setacea, and Festuca pseudovinea are examples of frequent plant species. 
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3.2. Data description 
 

3.2.1. Soil salinity 

 

The study area covers about 25 ha in the HNP, in the east of Hungary with the central 

coordinates 47°30” N and 21°30” E (Fig. 3.4). 

 

Figure 3.4. Extent of the study area. Circles represent locations where ECa was measured 

and asterisks represent locations where both ECa and EC2.5 were measured. 

 

Initially the sampling design was chosen in a way to check if there is a temporal change in 

soil salinity between two sampling campaigns. In this sense two data sets have been 

collected. The first data set, termed ‘data set to be calibrated’, involves the measurement of 

the bulk soil or apparent electrical conductivity (ECa) in the field at 413 locations in a 

pseudo-regular grid of 25 by 25 m; with mainly in the middle of the study area some larger 

spacings due to the presence of a well where much disturbance occurred. 

The ECa has been measured using an electrical conductivity probe (Fig. 3.5), equipped with 4 

electrodes (Rhoades and Van Schilfgaarde, 1976). The spacing between the inner sensing 

electrodes is 90 cm and between the sensing/receiver (outer pair) and sensing (inner pair) 

electrodes there is 10 cm distance both sides. The electrodes are inserted in the soil at two 

different depths: 8 and 13 cm. The corresponding ECa measures (dS/m) are characteristic for 
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the 0-20 and 0-40 cm soil depth respectively. At each calibration point, there were always 3 

parallel measures of ECa but only one from normal points. It is the first reported extensive 

use of such probes in native grasslands, which are characterized by heterogeneous vegetation, 

elevation and which can undergo large fluctuations in soil moisture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. The 4 electrode probe used during work in Hortobagy. 

 

A spatial site selection algorithm based on response surface design (Lesch et al., 1995c) was 

followed to identify a minimal number of calibration sites. The selected sites are based on the 

spatial configuration of locations for which ECa was measured and on the values of these 

measurements. These are spatially representative of the study area and allow accurate 

estimation of the calibration parameters. These selected sites constitute the second data set, 

called ‘calibration data set’. Soil samples from all sites have been collected, put in plastic 

bags, and analysed in laboratory. Samples were air dried and crushed to pass through a 2 mm 

sieve. The 1:2.5 soil:water suspensions were prepared, and shacked. After 16 hours, pH and 

EC (electrical conductivity) were measured. EC2.5 is reported after conversion to a standard 

25 °C temperature. In addition to the ECa field values, measurements of electrical 

conductivity from the 1:2.5 pH suspension (EC2.5, in dS/m), gravimetric moisture (%), and 

pH were available. Gravimetric moisture was determined by drying soils collected in air-tight 

containers at 105 °C until mass stabilized.  

The EC2.5 is a simple proxy of the water-saturated soil-paste extract (ECe), which is the 

conventional measure of soil salinity (Soil and Plant Analysis Council, 1992). 
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At the calibration points, soil samples were collected down to 40 cm, by 10 cm increments. 

Therefore, bulked samples were taken from two augerings located between the pairs of 

electrodes of the conductivity probe at a distance of 50 cm. 

The sampling of the ‘data set to be calibrated’ and the ‘calibration data set’, has been 

repeated at 21 time instants: November 1994; March, June, September, and December 1995; 

March, June, September, and October 1996; March, June, September, and December 1997; 

September 1998; April, July, and September 1999; April, and December 2000; and March, 

and June 2001. However, at some dates, September and October 1996, we did not have ECa 

data, because of instrumental malfunction and vandalism, and consequently these dates were 

not used. Since the area is an open pasture it is very easily accessed. During the observation 

period the identifying sticks were removed by vandals twice. After the first case new sticks 

have been installed but there was some spatial shift. The second resulted in the ending of the 

observation period. Therefore, in total the useful sampling was repeated 19 times. The 

average temporal lag is 3 months but ranged from 2 to 9 months. 

In general 20 calibration sites have been selected and it was tried to keep the same sites for 

the future sampling campaigns, but at a few time instants some of calibration sites have not 

been measured due to standing water. So the number of calibration sites varied between 13 

and 20 for the different sampling campaigns. 

To have an idea about how soil salinity varies in space and time, before any formal (geo) 

statistical analysis and interpolation, ECa measurements at the 413 space locations and at the 

19 time instants are shown in Fig. 3.6. From this figure some points need to be highlighted. 

First of all, the study site was not equally surveyed during all the time instants; for example it 

was markedly undersampled during March and June 1997, and to a lesser extent in April 

2000. Regarding the temporal variability, ECa measurements were low for some time instants 

like November 1994, June 1996, or September 1997 whereas these measurements were very 

high compared to the general trend for time instants like September 1998 and April and July 

1999. Concerning the spatial variability of soil salinity, it can be noted that some space 

locations are characterized by high/low values for most or all of the time instants. This is an 

indication of temporal stability or persistence which will be demonstrated in chapters 5 and 6. 
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Fig. 3.6. Location of the samples where ECa was surveyed. The level of tone reflects the 

measured values (see legend above). 
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Fig. 3.6. (continued). 
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Fig. 3.6. (continued and end). 
 

 

In addition to the basic soil salinity data sets, other related data were available including 

profile description, vegetal cover, meteorological data, data on groundwater positions, etc. 
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3.2.2. Vegetation 

 

The vegetal cover was identified for the 413 locations by botanical categorization based on 

plant composition. It was reported as detailed description of 14 categories or summarized 

inventory of 6 plant associations.  

 

The categories are: 

  1: Phragmitetum 

  2: Typha sp. 

  3: Schoenoplectus tabernaemonatani 

  4: Bolboschoenetum maritimi 

  5: Agrosti-Glycerietum p. 

  6: Agrosti-Beckmannietum e. 

  7: Eleochari-Alopecuretum geniculati 

  8: Agrosti-Alopecuretum pratensis 

  9: Trifolio-Poetum puccinelliet. 

10: Gypsophilo-Artemisietum 

11: Trifolio-Poetum Artemisio-Festucetum  

12: Achilleo-Festucetum 

13: Cynodonti-Poetum angustifoliae 

14: Salvio-Festucetum rup. or Astragalo-Poetum angustifoli 

 

The numbering order follows ascending elevation. 

The plant associations are the regrouping of the categories: 

I: categories from 1 to 7 

II: category 8 

III: categories 9 and 10 

IV: category 11 

V: category 12 

VI: categories 13 and 14. 

The different plant categories along with the space coordinates were used as explanatory 

variables in the regression models relating EC2.5 to ECa. 
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3.2.3. Groundwater 

 

The depth of the groundwater under the surface (cm) and its electrical conductivity (EC, in 

mS/cm) were measured in 4 wells, which were at the elevations of 90 m, 89.3 m, 88.8 m, and 

88.7 m above the sea level. The groundwater was monitored at different time instants during 

the sampling campaigns; these time instants are reported in table 3.4. 

 

Table 3.4. Frequency of the monitoring of the groundwater depth and its electrical 

conductivity (EC). 

Year 1995 1996 1997 Total 

Depth  33 46 46 125 

EC  8 12 4 24 

 

 

3.2.4. Profile description 

 

At the stick numbers 6, 249, and 419, the description of the soil profile was made. It includes 

4 genetic horizons and their depth (cm); the cations exchange capacity (CEC, in meq/100g); 

the exchangeable and soluble calcium, magnesium, sodium, and potassium (meq/100g); 

exchangeable sodium percentage (ESP, in %); CaCO3 (%); saturation (%); pH; ECe; anions 

(CO2, HCO3, Cl, SO4, and total; in meq/l); cations (Mg, Ca, Na, K, and total; in meq/l); 

sodium adsorption ratio (SAR); particle size fractions (%); saturated hydraulic conductivity 

(cm/day); pF0; and bulk density (g/cm3). 

 

3.2.5. Meteorology 

 

Some climatic data were available like daily measured precipitation (mm), daily calculated 

evapotranspiration (mm), from a nearby meteorological station. Also monthly precipitation 

and temperature for November 1994 and the years 1995 to 1997 were available. Additionally, 

for the Hortobagy National Park, meteorological data were available on a decade basis 

between 1988 and 2000. The following parameters were measured: air temperature (°C), 

precipitation (mm), evapotranspiration (mm), soil moisture,deficit, and mean water loss from 

the soil (0-100 cm) through calculated evaporation (mm). 
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4.1. Introduction 
 

This chapter will review the literature on statistical methods for analysis of space-time data 

and the focus is made on the approaches applied to the available data sets. It is divided into 

four main parts: classical statistical methods (section 4.2), structural analysis (section 4.3), 

kriging (section 4.4), and Bayesian maximum entropy (section 4.5). 

 

4.2. Classical statistical methods 
 

Classical statistical methods are basically aspatial and atemporal methods where the spatial 

and temporal coordinates are ignored. Four assumptions must be checked before any use of 

these methods: linearity of the relationship between dependent and explanatory variables, 

normality of the distribution, equality of variances (homoscedasticity), and independence of 

the residuals. We present in the next section (4.2.1.) the tools used to check these 

assumptions, and then the different approaches: coefficient of variation (4.2.2), variance 

component analysis (4.2.3), temporal stability (4.2.4), and dynamic spatial variation (4.2.5). 

 

4.2.1. Assumptions 

 

4.2.1.1. Linearity of relationship 

 

Linearity means that the amount of change, or rate of change, between values on two 

variables is constant for the entire range of values for the variables. There are both graphical 

and statistical methods for evaluating linearity. Graphical methods include the examination of 

scatterplots, often overlaid with a trend line. This is the first and informal way to check the 

linearity. Plotting the standardized residuals from the regression against the standardized 

predicted values is another useful graphical tool. The absence of nonlinearity should show a 

random pattern in this plot. Statistical methods include diagnostic hypothesis tests for 

linearity, a rule of thumb that says a relationship is linear if the difference between the linear 

correlation coefficient (r) and the nonlinear correlation coefficient is small and examining 

patterns of correlation coefficients. The correlation between, on one hand, the dependent 

variable and its transformations (root square, inverse, or logarithm) and, on the other hand, the 

original and transformed variations of the explanatory variable provides us with a pattern that 
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is easier to interpret. A brief check of these correlations and their significance can help in 

identifying which transformation is required in order to verify the linearity and to increase the 

relationship between the dependent and the explanatory variables. Additionally, when the 

standard deviation of the residuals exceeds the standard deviation of the dependent variable, 

one may suspect a possible nonlinearity. Also, another way to check for nonlinearity is to add 

to a model nonlinear terms like squares or cubes of the explanatory variable and see if the 

coefficient of correlation (determination) improves significantly compared to the restricted 

linear model. 

 

4.2.1.2. Normality of distribution 

 

Again, this assumption can be checked either graphically or statistically. Among the graphic 

tools, there is the histogram of frequencies, for a normal distribution it looks like a well bell-

shaped curve, or equivalently the cumulative distribution function which has a sigmoidal 

shape for normal distribution, the normal probability plot (P-P plot), the Q-Q plot, the steam-

and-leaf plot, etc. 

A first statistical test for normality is to check if kurtosis and skewness coefficients range 

between -1 and +1, or equivalently if these coefficients, when divided by their respective 

standard deviations, belong to the intervals [-3, 3] and [-2, 2] respectively. For a more formal 

test, one can use either the Kolmogorov-Smirnov test or Lillefors test (which is an adjustment 

of the former when the mean and variance are unknown) for large samples or the Shapiro-

Wilk test for small samples, say ≤ 50. 

 

4.2.1.3. Homoscedasticity 

 

The equality of variances or homoscedasticity can be, as for the two above assumptions, 

checked visually using graphs or formally using statistical tests. The most useful graphs in 

this case are the plot of observed or standardized predicted values as function of the 

standardized residuals or the residuals as function of the observed values. A random pattern in 

these graphs is an indicator of homoscedasticity. Again for a formal test, one can use, for 

example, the traditional Bartlett test which requires normality of the distribution or the 

Levene test which is robust to the departure from normality. 
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4.2.1.4. Spatial/temporal independence 

 

When the plot of residuals as function of the identification number, reflecting the order 

(spatial or temporal) of data collection, shows no particular pattern, one may consider that the 

observations are independent. The Durbin-Watson statistic can be used to formally check 

independence, mainly temporal while the Moran test is recommended to check spatial 

independence. This test is presented in section 4.2.5 when dealing with the dynamic spatial 

variation. 

Now we have identified the main assumptions required to be checked before any use of the 

classical statistical methods, we present some of these methods and focus on the ones that will 

be used in our application.  

 

4.2.2. Coefficient of variation 

 

It is assumed that the observed value for a soil attribute (x) at any location (s) at a given time 

instant (t) is: 

( , ) ( , )x t tµ ε= +s s           (1) 

with [ ]E ( , )x t µ=s : the expected value or the population mean and 

ε(s,t) : random, spatially and temporally uncorrelated error assumed normally distributed with 

zero mean and variance σ2. 

The population mean, µ, is estimated from a sample: 

1

1ˆ
n

i
i

x x
n

µ
=

= = ∑           (2) 

with n: the sample size 

and the variance, σ2, is estimated by: 

( )
2

2 2

1

1ˆ
n

i
i

s x x
n

σ
=

= = −∑          (3) 

Its root square, σ̂ , is the standard deviation. 

The coefficient of variation is defined as: 

ˆ
100*CV

x
σ

=            (4) 

The coefficient of variation can be calculated for the temporal probability distribution 

function (pdf) at each space location as well as for the spatial pdf at each time instant. As an 
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example, Van Wesenbeeck and Kachanoski (1988) studied the spatial distribution (from 100 

locations) of the surface soil water content throughout the growing season (65 measurement 

dates). They concluded that there exists a temporal dependence of the spatial variability and a 

spatial dependence of the temporal variability. They also suggested that random sampling of 

the locations should be avoided. James et al. (2003) defined the temporal variability of soil 

moisture content as the coefficient of variation at each site across the whole year (52 time 

instants) and used an analysis of variance (ANOVA) to test for differences between habitats 

(three sites) in the temporal variability of soil moisture content. They found that soil moisture 

varied significantly with time but not between habitats while the interaction between time and 

habitat was significant which reflects differences between habitats in temporal pattern of soil 

moisture. The coefficients of variation were significantly different between habitats. Other 

examples of the use of the coefficient of variation for the assessment of the spatial and 

temporal variabilities can be found in Ehrenfeld et al. (1997) and Guo et al. (2002). 

The standard deviation and, hence, the coefficient of variation do not incorporate spatial 

and/or temporal information and therefore don’t provide a representation of the nature of the 

spatial and/or temporal behaviour of a given soil property. It is considered as an indicator of 

global variability as opposed to local variability (Carter and Pearen, 1985), the latter is  

identified using correlogram, covariance function, or variogram which will be presented later 

in this chapter (section 4.3). 

 

4.2.3. Variance component analysis 

 

In the variance component analysis approach, the spatial and temporal contributions are 

considered as factors with random effects in the ANOVA model. In this way the different 

components of the total variance can be determined. Campbell et al. (1989) adopted the 

following model, for the log concentrations of a given solute (log c) in subsample l (3) from 

sampling area k (2) at site j (2) and at time i (6 dates over 20 days): 

( ) ijklklkjiijkl UAASTc εµ +++++= .log        (5) 

with µ: the grand mean; T: the time effect; S: the site effect; A: the sampling area effect; 

(A.U): the subsampling within sampling area effect, and ε: an error term. 

The temporal and spatial variances were compared to the sampling area variance while the 

latter was compared to the subsampling within sampling area variance. They found that the 

temporal variation was far less significant than the variation between the two sites. Also they 



CHAPTER 4. Methodology
 

 45

found that the variation between areas a few meters apart was greater than that between the 

two sites even though the texture and the management of the sites were quite different. Other 

examples of the evaluation of the temporal and spatial variabilities based on the concept of 

variance component analysis can be found in Van Es (1993) and Van Es et al. (1999). 

The variance component analysis is directly related to the coefficient of variation presented in 

the precedent section. The variance component estimates for each variability source are 

computed, and then the square root of these estimates is divided by the mean value. The 

output is exactly the definition of the coefficient of variation. Thus, the variance component 

analysis is suffering from the same drawbacks as the coefficient of variation approach. 

 

4.2.4. Temporal stability 

 

The concept of temporal stability was first introduced by Vachaud et al. (1985). It is defined 

as the time invariant association between spatial location and statistical parameters of soil 

properties. They distinguished mainly two approaches. 

 

4.2.4.1. Relative differences 

 

The first one is based on the concept of relative differences. 

Let xij be the observed value of a soil property at location i (i=1, …, n) and time j (j=1, …, m). 

The relative differences δij is defined as: 

ij j
ij

j

x x
x

δ
−

=            (6) 

with jx  : the spatial average for the time instant j. 

Using δij we can estimate, for each location i, the temporal average: 

1

1 m

i ij
jm

δ δ
=

= ∑            (7) 

and its corresponding temporal standard deviation is defined as: 

( ) ( )
2

1

1
1

m

i ij i
jm

σ δ δ δ
=

= −
− ∑          (8) 

A zero value for iδ  indicates that the temporal average jx  represents the average value over 

the whole study area at any time. The field average value is overestimated if iδ > 0 while it is 
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underestimated when iδ < 0. A more time stable location will be indicated by a small value of 

( )iσ δ  whereas a high value of the latter is an indication of a less time stable location. The iδ  

values can be plotted against their rank with the corresponding temporal standard deviations. 

Based on the relative differences, Kachanoski and De Jong (1988) showed that a useful test 

for temporal stability is the Pearson correlation coefficient between soil property values 

measured at consecutive time instants. They also showed that temporal stability exists if the 

relative differences remain constant between two time instants: 

12 ii δδ = .           (9) 

This equation implies that  

2
2 1

1
i i

xx x
x

= .           (10) 

1x  and 2x  being spatial average for the time instants j = 1 and 2, respectively. 

Equation (10) establishes a linear relationship between the soil property at two different times 

with an intercept equal to zero and a slope equal to the ratio of the mean value observed at the 

second time frame to the mean value observed at the first time frame. Consequently a good 

test for the temporal stability is the correlation between soil property values measured at 

consecutive time frames (Kachanoski and De Jong, 1988). 

Furthermore, Eq. (10) implies that the regression between relative differences from two 

consecutive time frames should have a zero intercept and a unity slope. This is another way to 

check the existence of temporal stability of the spatial pattern of a variable. However in 

general the regression between 2ix  and 1ix  is of the following form: 

2 1*i ix a x b= +           (11) 

Using Eq. (10) and (11) we expect that if temporal stability exists, the following conditions 

are verified: 

2

1

xa
x

=   and  0=b         (12) 

So another way to check the temporal stability is to test for a zero intercept and a unity slope 

of the regression between two consecutive time instants. 

If there is a constant increase or decrease in the soil property, w, in all the locations between 

two time frames, we expect from Eq. (11) that (Kachanoski and De Jong, 1988): 

1=a  and  wb =          (13) 
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Eq. (13) indicates that if the slope of the regression between values at two consecutive time 

instants is not significantly different from one, then the regression intercept represents the 

constant change that has occurred between the two time instants. 

These refinements of the concept of temporal stability were used by, among others, Van 

Wesenbeeck et al. (1988), Goovaerts and Chiang (1993), Ehrenfeldt et al. (1997), Da Silva et 

al. (2001), and Petrone et al. (2004). 

The concept of relative differences is based on the same statistical parameters as the two 

precedent approaches (mean and standard deviation). However, it uses the standardised data 

(relative differences) for each time instant instead of the original data and the mean and 

standard deviation are computed for each space location. This concept is based on the 

assumptions of Gaussian distribution of data and the absence of autocorrelation. Both 

assumptions must be checked (see section 4.2.1) before the use of relative differences in the 

study of temporal stability. The normality can be checked using the standard statistical tests 

and the independence can be verified using either a test for autocorrelation like the Moran’s I 

or by computing the variogram and determining its range. Normality can be gained via data 

transformation and independence by the selection of sample locations separated by distances 

larger than the autocorrelation range. For non normally distributed data, but still non 

autocorrelated, the Spearman rank correlation can be used. The latter is presented in the next 

section. 

 

4.2.4.2. Spearman rank correlation 

 

The second concept used to assess the temporal stability is the Spearman rank correlation 

coefficient. It refers to the tendency of a soil property, measured at different locations in 

space, to maintain their relative ranking over time. It is defined as: 

( )
( )1

6
1 2

1

2

−

−
−=
∑
=

nn

RR
r

n

i
ikij

s          (14) 

with Rij and Rik the ranks of zij observed at location i on time instants j and k, respectively. A 

value of this coefficient equal one indicates a perfect temporal stability between time instants 

j and k, and thus identity of ranks for any location whereas a lack of temporal stability implies 

that rs = 0. 
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Many researchers used these two concepts to evaluate the temporal stability of different soil 

properties, among them, Reichardt et al. (1993), Farley and Fitter (1999), Wendroth et al. 

(1999), Campbell et al. (2001), Guo et al. (2002), and Si (2002). 

The Spearman rank correlation coefficient is a non parametric statistics therefore it can be 

used even for non normally distributed data. However in the existence of autocorrelation, its 

use is not recommended and it will be cautious to use statistical methods which consider the 

spatial and temporal nature of the given soil property. In addition, even for independent data, 

the Spearman rank correlation inform us only about the relative ranking of space locations 

between two time instants and do not provide a quantification of the temporal change. This 

quantification can be obtained using either paired-t test for comparing mean values or the 

approach of Lesch et al. (1998). The former is presented in what follows while the latter is 

discussed in section 4.2.5. 

 

4.2.4.3. Paired-t test 

 

Equation [10] just indicates if there is a constant change or not between two time instants, but 

we still need to check if the mean values of EC between these two times are significantly 

different or not. To answer this question, the paired-t test (McClave and Sincich, 2000) is 

used. The test statistic t is computed as: 

21 /
d ns

dt =            (15) 

with d  the mean of the differences, di, between the observations for the second and the first 

time frames: 

( )2 1
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n n= =

= = −∑ ∑ ,         (16) 

ds  is the standard deviation of the differences: 

( )
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d i
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s d d
n =

= −
− ∑          (17) 

and n the number of the differences, i.e. the number of locations. 

The test statistic t has (n-1) degrees of freedom. The calculated statistic is compared to a 

tabulated t value with the same degrees of freedom and a probability of error of type I (taken 

generally equal to 5%). Equivalently the corresponding probability to the test statistic t is 

compared to 5% to check if the difference of mean values is significant or not. 
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4.2.5. Dynamic spatial variation 

 

The concept of temporal stability processes each variable (ECa and EC2.5) separately and, as 

described before (section 4.2.4), it can quantify the temporal change even without testing if 

this change is significant or not. Lesch et al. (1998) discussed another approach that can test 

for change in the mean value as well as for a dynamic spatial variation between two time 

instants. Dynamic spatial variation refers to the spatially variable change of a soil property 

between two time instants, i.e., the change is not the same between two time instants for each 

location. 

To test for the existence of dynamic spatial variation, Lesch et al. (1998) identifies different 

steps. 

First of all, the field (ECa) and the laboratory (EC2.5) electrical conductivity data obtained at a 

first time instant, from n space locations, are used to establish a calibration equation based on 

regression model: 

2 5 1 0. aE C b E C b= +           (18) 

The parameters of this regression equation are estimated using the ordinary least squares 

method. 

In a second step, the residuals of the model are tested to check their spatial independence, 

normality, homoscedasticity and the linearity of the relationship. The three last assumptions 

can be verified using classical regression tools (Myers, 1986), see sections 4.2.1.1 to 4.2.1.3.  

The assumption of spatial independence can be checked using the Moran test (Moran, 1950; 

Lesch et al., 1995b) which is summarized in what follows. 

The Moran test is defined by: 

M
'I
'

=
e W e
e e

           (19) 

where e  represents the vector of the residuals from the regression model and W  is a 

proximity matrix reflecting the neighborhood of observations. It incorporates the prior 

structure of dependence between space locations. Frequently, for n space locations, the 

elements of this matrix, ijw , are function of the distance, ijd , separating two locations. Thus: 

0ijw =  when i j= , a location with itself and       
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The expected value, [ ]ME I , and the variance, [ ]2
MIσ , of the Moran test are (Brandsma 

and Ketellapper, 1979): 
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M W           (21) 
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where p equals the number of regression parameters, tr(…) denotes the trace of a matrix, and 

( ) 1' '−= −M I X X X X          (23) 

where I  is an identity matrix and X  is the design matrix (intercept and explanatory 

variables, in our case ECa). 

Cliff and Ord (1981) showed that, in the case of residuals from ordinary least squares 

regression, the Moran test follows an asymptotic normal distribution. Thus, to test its 

significance, it is first standardized: 

[ ] [ ]
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M M
M
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I E I
S td I

Iσ
−

=          (24) 

and then this standardized statistic is compared to the standard normal distribution. 

 

In the next step, a mixed ANOVA model is set: 

ij i j ijx t bµ ε= + + +            (25) 

i=1, 2 are the two time instants and j=1, …, n are the locations. 

This model is equivalent to: 

( )2 1 0 2 1j j j j j jx x d d η ε ε− = = + + −         (26) 

with 120 ttd −=  is the difference between mean values for the second and first time instants 

and jη independently and identically normally distributed with zero mean and variance equal 

to 2
tbσ : ( )20j tbN ,η σ≈ . 

If x1j represents the observed laboratory electrical conductivity at the first time instant and at 

locations j (j=1, …, n) and x2k represents the same property observed at the second time 

instant at the locations k (k=1, …, m), a regression model for the first time is: 

1 1 1 1x β ε= +X X  with ( )2
1 0N ,ε σ≈ I .       (27) 

For the second time instant, and using the explanatory variables of the first time instant, the 

model is: 
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2 1 1 0 2x dβ η ε= + + +X X          (28) 

with ( )20j N ,η θ≈ I  and ( )2
2 0N ,ε σ≈ I  

Thus  

( )2 1 1 1 0 2 1x x d η ε ε− = + + −X X          (29) 

X1 being the design matrix with two columns: ones for the intercept and the observed values 

of ECa surveyed during the first time frame at N space locations with N > n, m. 

Equation (29) is equivalent to  

( )2 1 0 2 1j j j j j jx x d d η ε ε− = = + + −         (30) 

with 0d  representing the shift in the average value between the two time instants and η  

representing the dynamic spatial variation. 

Based on the calibration data from the first time instant, equation (27) is estimated: 

1 1ˆ nx b=X X  where          (31) 

1̂x  represents the predicted EC2.5, 

nX  represents the design matrix associated with the n calibration locations, and 

b  represents the estimated regression parameters. 

Using the ECa data from the first time frame and the regression parameters determined above, 

EC2.5 for the second time frame is predicted. Let 1x̂  denotes this predicted EC2.5 and 2x  

denotes the EC2.5 observed at the second time frame, both, at m space locations, m may be 

equal or different than n. 

The prediction error associated with m new locations would be distributed as multivariate 

normal with a mean zero and a variance-covariance matrix, cov(m): 
2cov( ) ( )m mm σ= +I H  with mI  an identity matrix of dimension m x m and 

( )m m n n m' '=H X X X X  with mX  the design matrix associated with the m new locations. 

From equation (28), it can be deduced that the prediction error associated with the m sites 

would be normally distributed with a mean value 0d  and a variance-covariance matrix  

2 2 ( )m m mθ σ+ +I I H . This means that the differences between the observed values at the 

second time instant and the predicted values at the first time instant could be different than 

zero and they will contain two sources of error.   

The differences between the observed and the predicted EC2.5 at the second time frame are: 

i 2i 1iˆd x x= −            (32) 
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with i=1,…, m. These differences have the mean: 

1 m

i
i=1

u d
m

= ∑            (33) 

which represents an unbiased estimate of 0d . The corresponding variance is: 

( )
2

1
1

m
2

i
i=1

w d u
m

= −
− ∑ .         (34) 

Additionally, let 2s  represents the mean square error related to equation (31) with n-p-1 

degrees of freedom with p being the number of regression parameters. To test if 2 0θ > , the 

statistic ϕ  is computed as follows: 

( ) ( )
( )

1

2

'
1

u u
m s

ϕ
−− −

=
−

d Σ d
         (35) 

where m m= +Σ I H . 

The statistic ϕ  is compared to an F distribution with (m-1) and (n-p-1) degrees of freedom. 

Furthermore, the estimated value of 2θ  is: 

( )2 2 2
1 21v w s λ λ= − + −          (36) 

with 

1
1

1 m

ii
i

h
m

λ
=

= ∑            (37) 

and ( )2
1 1

1
1

m m

ij
i j

h i j
m m

λ
= =

= ∀ ≠
− ∑∑         (38) 

where ijh  represents the ith, jth element of mH .  

The shift in the average value 0d = 0 can be tested using an approximate t-test: 

uc
g

=             (39) 

where 2 2 121g v s h
m m µ=

 + + 
 

        (40) 

with ( ) 1
n nx' xh 'µ µ µ

−
= X X          (41) 

where 
1

1 m

i
i

x x
mµ

=

= ∑ .          (42) 

The statistic c is compared with a t distribution with n-p-1 degrees of freedom. 
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An application of the approach of Lesch et al. (1998) can be found in Tóth et al. (2002a). 

The approach of Lesch et al. (1998) is based on the determination of a linear regression 

between EC2.5 and ECa, hence it assumes that the residuals from the regression model are 

normally distributed with equality of variances and spatially non autocorrelated. All these 

assumptions must be checked (see section 4.2.1). If spatial autocorrelation is present in the 

residuals the estimates of the regression parameters and their variances are biased and the 

statistical tests are non longer valid. In this special case, spatial regression (see section 7.3) 

and/or geostatistical approaches (sections 4.3.3 to 4.3.5) are recommended. 

 

4.3. Structural analysis 
 

4.3.1. Definitions 

 

The analysis of space-time data requires the definition of a space-time continuum with a 

coordinate system and a measure of space-time distance and models and techniques which 

make possible the link between spatio-temporally distributed data (Christakos et al., 2002). 

A spatio-temporal continuum E is a set of points associated with a continuous arrangement of 

events combined with their temporal order in which space represents the order of coexistence 

of events while time represents the order of their successive existence. For a continuum to be 

useful, it requires to be equipped with a coordinate system. The latter will allow to identify 

precisely any point in space and time along with a metric which allows to measure distances 

in the space-time domain. The spatial coordinates are defined, in general, in two 

dimensions ( ) 2
21, RSss ⊂∈=s , S the spatial domain, and the temporal coordinate t along the 

temporal axis  1RT ⊂  such that the space-time coordinates are: 

( ) TSEt X=∈= ,sp . 

The most used coordinate system is the Euclidian with its particular case the rectangular or 

Cartesian coordinates. The geographic coordinates (latitude and longitude) are an example of 

currently used coordinates. The term georeferencing is used to design the process of 

registering data to a coordinate system using, for example, a GPS device. 
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4.3.2. Space-time random field model 

 

Christakos et al. (2002) defined space-time random field (STRF) model as ‘a mathematical 

construction that rigorously represents the distribution of natural phenomena across space and 

time. The STRF model provides scientifically meaningful representation, explanation, and 

prediction of these phenomena in uncertain environments. These uncertainties may be due to 

measurement errors, heterogeneous databases, erratic fluctuations in the space-time variation 

of the underlying process, and insufficient knowledge’. 

The STRF model was presented in more detail in Christakos (1992) and Christakos and 

Hristopoulos (1998), and we provide here a brief description. 

A STRF, X(p), is a collection of realizations χ of the space-time distribution of a natural 

variable. It can be viewed as a collection of correlated random variables x=[x1, …, xn]' at the 

space-time points p=[p1, …, pn]' and a realization of the STRF at these points is 

χ=[ χ1, …, χn]'. 

It assigns a probability that a realization χ in n dimensions will occur following the 

multivariate pdf of X(p): 

[ ]1 1 1 1Prob( ) ,..., ( )x n n n n xP x d x d f dχ χ χ χ χ χ= ≤ ≤ + ≤ ≤ + =χ χ χ    (43) 

The pdf is the derivative of the probability that a STRF realization assumes values ≤ χ: 

[ ]
1

1 1 1( ) ,..., ... ... ( )
n

x x n n n xF P x x d d f
χχ

χ χ χ χ
−∞ −∞

= ≤ ≤ = ∫ ∫χ χ      (44) 

The equation above represents the cumulative distribution function (cdf). 

The above two definitions represent a complete characterization of the STRF. A partial but 

sufficient characterization of the STRF is provided by its space-time statistical moments. 

The first order moment, which is the mean function, expresses trends or systematic structures 

in space-time: 

[ ]( ) ( ) ( )x xm E X f d= = ∫p p χ χ χ         (45) 

The moment of second order, the covariance function, expresses correlations and 

dependencies between two different points p and p': 

[ ][ ]{ }
[ ][ ]

( , ') ( ) ( ) ( ') ( ')

( ) ' ( ') ( , ') '

x x x

x x x

c E X m X m

m m f d d

= − −

= − −∫∫
p p p p p p

χ p χ p χ χ χ χ
     (46) 

with xf ( , ')χ χ the bivariate pdf of the random function taken between points p and p'. 

In addition to these two moments, an STRF can be also characterized by its variogram: 
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[ ]{ }21
2

21
2

( , ') ( ) ( ')

( ') ( , ') '

x

x

E X X

f d d

γ = −

= −∫∫

p p p p

χ χ χ χ χ χ
        (47) 

 

4.3.3. Conceptual approaches 

 

Christakos and Raghu (1996) reported that some forms of averaging over time or space are 

done before the analysis of the spatial or temporal random fields. In doing so, the joint space-

time variability is not accounted for and there is some loss of information. Initially to consider 

both space and time variability, some authors resorted to some simplifications. For example, 

Bilonick (1985) and Egbert and Lettenmaeir (1986) decomposed their STRF in a purely 

spatial and a purely temporal components whereas Rodriguéz-Iturbe and Eagelson (1987) 

considered separable models where spatial variations where assumed to be independent of 

temporal variations. Some of these simplifications with some generalizations are discussed in 

section 4.3.6 in which covariance function and variogram models are presented. 

 

Three main approaches for the analysis of the geostatistical space-time data can be 

distinguished (Stein et al., 1998; Stein and Sterk, 1999; Kyriakidis and Journel, 1999): 

- methods using an STRF, thus considering the joint space-time variability; 

- methods based on vectors of spatial random fields (SRF) for the case of many space 

locations and few time instants (Goovaerts and Sonnet, 1993; Papritz and Fluhler, 

1994; Bogaert and Christakos, 1997). It does not include the temporal dependence 

existing between observations and can predict only at the observed time instants. The 

spatial variability is modelled either through a separable spatial variogram for each 

time instant, or by a single spatial variogram considering time instants as replicates; 

-  methods based on vectors of time series (temporal random fields, TRF) for the case of 

long time series with few space locations (Solow and Gorelick, 1986; Rouhani and 

Wackernagel, 1990). This approach doesn’t take into account the spatial dependence 

and it predicts only at the observed locations. In a similar way as above, independent 

TRF or TRF as replicates in space can be considered. 

 

For the second approach, the focus of the analysis is on smooth interpolated soil attribute 

maps over specific time instants. The intention is to capture single instantaneous snapshots (a 

static picture) of the natural process. The objective can be also the comparison of the various 
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maps or the detection of the temporal persistence or change in the spatial patterns (Goovaerts 

and Chiang, 1993; Van Meirvenne et al., 1996). 

The intention of the third group is to capture a sequence of successive snapshots at single 

space locations, which give temporal profiles. 

Only the first group of methods includes both the spatial and temporal dependencies so the 

interpolation is more precise and can be done for unsampled time instants at unsampled space 

locations. The focus is here on video sequence of successive spatial pictures like a movie. 

This approach was used to analyze our salinity data set. 

As a fully satisfactory stochastic model should involve explicitly both spatial and temporal 

aspects, we present in the following sections the STRF concept and, subsequently, some 

special cases. We present in section 4.3.4 the joint STRF while the spatial/temporal random 

fields are presented in sections 4.3.5 and simplifications and other classes of models in 4.3.6. 

Finally the space-time cross covariance function and cross variogram are discussed in section 

4.3.7. 

 

4.3.4. Single space-time random field 

 

4.3.4.1. Space-time covariance function  

 

For spatially homogeneous and temporally stationary random fields, the mean function is 

constant: 

( )x xm m=p            (48) 

and the covariance function depends only on the spatial lag h = s – s' and the temporal lag  

τ = t – t' between any two points p = (s, t) and p' = (s', t')=(s + h, t + τ): 

( , ') ( ', ') ( , )x x xc c t t c τ= − − =p p s s h         (49) 

The space-time covariance function can be written: 

[ ][ ]{ } [ ] 2( , ) ( , ) ( , ) ( , ) ( , )x x x xc E X t m X t m E X t X t mτ τ τ= − + + − = + + −h s s h s s h  (50) 

If the mean function is known (in fact, it is estimated from data), m, the moments estimator of 

the space-time covariance function is: 

{ }
( , )

, 1

1ˆ ( , ) ( , ) ( , )
( , )

N

x i j i j
i j

c x t m x t m
N

τ

τ τ
τ =

   = − + + −   ∑
h

h s s h
h

    (51) 

with ( , )N τh the number of pairs of data separated by the spatial lag h and the temporal lag τ. 
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This estimation does not require that the space locations are collocated for each time instant. 

However, in the case of collocation, the same ns space locations observed at each of the nt 

time instant, the estimate of the above function for zero spatial (temporal) lag is equivalent to 

the average of the estimated temporal (spatial) covariance functions calculated separately for 

the ns (nt) different space locations (time instants). 

This definition of space-time covariance function was applied to our salinity data set in 

chapters 7 and 8. 

Examples of application of the space-time covariance function include Bennett (1975) for the 

analysis of population diffusion and Bell (1987) for the study of rainfall. 

 

For spatially non homogeneous and temporally non stationary random fields, more general 

forms of STRFs were considered. For example, the STRF v/µ was developed by Christakos 

(1991; 1992) and applied by Christakos and Bogaert (1996), Christakos and Raghu (1996), 

Vyas and Christakos (1997), and Christakos and Vyas (1998). 

The STRF v/µ is based on a mathematical operator which filters out space-time trend 

functions involving polynomials of degree v in space and µ in time. The resulting residual 

STRF is then spatially homogeneous and temporally stationary, and the models reviewed here 

can be applied to them. The space-time continuity orders, v and µ, allow a quantitative 

assessment of the average continuity. The distribution of the difference v - µ over the study 

area informs about the relative trends in space and time. A positive difference implies a more 

complex spatial structure and the process can be handled as a space random function while a 

negative difference indicates a more complex temporal trends and the process can be 

considered as a temporal random function.  

 

4.3.4.2. Space-time variogram 

 

If the increments ( , ) ( , )X t X tτ+ + −s h s are second order stationary, the space-time 

variogram is defined as: 

[ ] [ ]{ }21 1( , ) var ( , ) ( , ) ( , ) ( , )
2 2x X t X t E X t X tγ τ τ τ= + + − = + + −h s h s s h s  (52) 

Its moment-based estimator is given by (Stein et al., 1998) : 
( , ) 2

, 1

1ˆ ( , ) ( , ) ( , )
2 ( , )

N

x i j i j
i j

x t x t
N

τ

γ τ τ
τ =

 = − + + ∑
h

h s s h
h

     (53) 
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with ( , )i jx ts  and ( , )i jx t τ+ +s h are pairs of observations with a spatial distance equal h at 

the time instant tj, the total number of such pairs is Nj(h), and a temporal distance equal τ, the 

number of such pairs is N(τ). 

Bilonick (1985) and Stein et al. (1998) are examples of application of the space-time 

variogram. 

To introduce a space-time anisotropy, the spatial and temporal distances are combined to give 

a space-time distance, d, as follows: 

2 2d ϕτ= +h           (54) 

with φ the space-time anisotropy ratio. In addition, the spatial anisotropy can be also 

incorporated by modifying the above distance by including the spatial anisotropy ratio ψ: 

2 2 2( )x yd h hψ ϕτ= + +          (55) 

with hx and hy spatial distances along the x and y axes. 

For a second-order stationary STRF, the space-time variogram and space-time covariance 

function are related to each other: 
2( , ) ( , )x x xcγ τ σ τ= −h h          (56) 

with 2 ( ,0)x xcσ = 0 , the variance of the STRF. 

 

4.3.5. Spatial/temporal random fields 

 

4.3.5.1. Spatial/temporal covariance function 

 

For each of the nt time instants corresponds a spatial random field X(s, tj), j=1, …, nt. The 

spatial variability is modelled by the covariance function (Stein and Sterk, 1999): 
2( ) ( , ) ( , )j j j jc E X t X t µ = + − h s s h        (57) 

where µj is the mean value at the time instant tj. 

Its moment-based estimator is given by: 
( )

1

1ˆ ( ) ( , ) ( , )
( )

jN

j i j j i j j
ij

c x t x t
N

µ µ
=

   = − + −   ∑
h

h s s h
h

     (58) 

The space-time covariance function reduces to the spatial covariance function when the 

temporal lag is zero: 

( ) ( ,0)j xc c=h h           (59) 



CHAPTER 4. Methodology
 

 59

In a similar way to the SRF and by symmetry, the temporal covariance function, ( )ic τ , is 

defined and estimated for each space location si, i=1, …, ns, to which corresponds the 

temporal random field X(si, t). 

The temporal covariance function is a special case of the space-time covariance function 

when the spatial lag is zero: 

( ) ( , )i xc cτ τ= 0           (60) 

Both the spatial and the temporal covariance functions, on which was built the space-time 

covariance function, were used in chapters 7 and 8. 

 

4.3.5.2. Spatial/temporal cross covariance function 

 

The finite set of time instants, tj, j=1, …, nt, corresponds to simultaneous responses observed 

on all space locations, si, i=1, …, ns. The relationship between two SRFs X(s, tj) and X(s, tj’), 

observed at time instants tj and tj’ is characterized by the spatial cross covariance function: 

' ' '( ) ( , ) ( , ) ( , ) ( , )jj j j j jc E X t X t E X t E X t     = + − +     h s s h s s h     (61) 

It is estimated as follows (Ettema et al., 2000): 
( )

' ' '
1

1ˆ ( ) ( , ) ( , )
( )

N

jj i j j i j j
i

c x t m X t m
N

τ

τ =

   = − + −   ∑
h

h s s h
h

     (62) 

with 
1

1 ( , )
sn

j i j
is

m x t
n =

= ∑ s  is the estimate of the mean of the SRF X(s, tj) at the time instant tj. 

mj’ is defined in the same way for the time instant tj’. 

For a second-order stationary STRF, the spatial cross covariance function can be derived from 

the space-time covariance function by fixing the latter at a given time lag, jj tt −= 'τ : 

' ( ) ( ) ( , )jj xc c cτ τ= =h h h  for a fixed τ.       (63) 

The spatial cross covariance function is then easily obtained. 

 

By analogy to the definition of spatial cross covariance function, the finite set of space 

locations corresponds to simultaneous responses observed on all time instants and the 

relationship between two TRFs observed at locations, si and si’, is characterized by the 

temporal cross covariance function ' ( )iic τ . 

For a second-order stationary STRF, the temporal cross covariance function can be derived 

from the space-time covariance function by fixing the latter at a given space lag, ii ssh −= ' : 
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' ( ) ( ) ( , )ii xc c cτ τ τ= =h h   for a fixed h.       (64) 

Consequently the temporal cross covariance function can be easily obtained. 

 

The assumption of the space-time independence of data can be tested by calculating the 

spatial (temporal) cross covariance functions between all pairs of time instants (space 

locations) and compare them to the spatial (temporal) covariance functions computed for each 

time instant (space location). 

 

4.3.5.3. Spatial/temporal variogram 

 

For a fixed time instant, tj, the spatial variogram is defined as: 

{ }21 1( ) var ( , ) ( , ) ( , ) ( , )
2 2j j j j jX t X t E X t X tγ    = − + = − +   h s s h s s h    (65) 

Its corresponding moment estimator is obtained by: 
( )

2

1

1ˆ ( ) ( , ) ( , )
2 ( )

jN

j i j i j
ij

x t x t
N

γ
=

 = − + ∑
h

h s s h
h

      (66) 

with ( )jN h is the number of pairs [ ( , )i jx ts , ( , )i jx t+s h ] of data separated by a spatial 

distance h, at the time instant tj. 

As above, the spatial variogram is a special case of the space-time variogram, i.e. when the 

temporal lag is zero: 

( ) ( ,0)j xγ γ=h h           (67) 

The spatial variograms include the spatial dependence but the dependence in time is not 

accounted for. It is useful in the case of rich data in space and scarce data in time. 

The above procedure was used, for example, by Sterk and Stein (1997) and Ettema et al. 

(1998), among others. 

 

Special cases of the approach above can be found in the literature. For example, Petitgas 

(1997) inferred, upon the condition that the spatial variograms were similar for the different 

time instants, a time-averaged spatial variogram by calculating the mean semi-variances (from 

all the time instants) for each spatial lag. 

 

Many applications of separate spatial variograms, one for each time instant, can be found in 

the soil science literature. Among others, soil carbon (Van Meirvenne et al., 1996; Chevallier 
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et al., 2000), soil salinity and sodicity (Agrawal et al., 1995 ; Mostafa and Yomota, 1998 ; 

Utset and Castellanos, 1999 ; Moameni and Stein, 2002 ; Cetin and Kirda, 2003), soil water 

(Wendroth et al., 1999; Schume et al., 2003), nitrate (Bruckler, 1997), soil biological activity 

(Gorres et al., 1997), soil strength (Castrignanò et al., 2002), and soil fertility (Delcourt et al, 

1996; Shi et al., 2002) were analyzed for their spatial and temporal change. 

By analogy with the spatial variogram, the temporal variogram, ( )iγ τ , at location si, i=1, …, 

ns, can be defined and estimated. 

Similarly to the spatial variogram, the temporal variogram is a special case of the space-time 

variogram when the spatial lag is zero: 

( ) ( , )i xγ τ γ τ= 0           (68) 

The temporal dependence is included whereas the spatial dependence is not considered. Thus 

it is useful if many data are collected in time and few in space. Petitgas (1997) used the same 

procedure as for spatial variogram to compute a space-averaged temporal variogram. 

 

4.3.5.4. Spatial/temporal cross variogram 

 

Following the same approach as for section 4.3.5.2, the spatial cross variogram is defined, for 

second order stationary increments, as follows: 

{ }' ' '
1( ) ( , ) ( , ) ( , ) ( , )
2jj j j j jE X t X t X t X tγ    = − + − +   h s s h s s h     (69) 

Its moment-based estimator is given by: 
( )

' ' '
1

1ˆ ( ) ( , ) ( , ) ( , ) ( , )
2 ( )

N

jj i j i j i j i j
i

x t x t x t x t
N

τ

τ

γ
=

   = − + − +   ∑
h

h s s h s s h
h

   (70) 

with ( )Nτ h is defined as ( , )N τh  for a particular fixed temporal lag τ. 

When τ =0, the space-time variogram is equal to the spatial variogram or the spatial cross 

variogram between time tj and itself: 

( ) ( ,0)jj xγ γ=h h  tnj ,...,1=∀         (71) 

The same is valid for the covariance functions: 

( ) ( ,0)jj xc c=h h  tnj ,...,1=∀         (72) 

 

In a similar way, the temporal cross variogram, ' ( )iiγ τ , is defined and estimated. 
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When h =0, the space-time variogram is equal to the temporal variogram or the temporal 

cross variogram between space location si and itself. The same is valid for the covariance 

functions. 

 

The definition of the spatial (temporal) cross variogram requires that data are observed at the 

same space locations for two different time instants (the same time instants for two different 

space locations). If it is not the case, the spatial (temporal) pseudo cross variogram (Papritz et 

al., 1993) needs to be used. The spatial pseudo cross variogram is presented in the next 

section. 

 

4.3.5.5. Spatial/temporal pseudo cross variogram 

 

The spatial pseudo cross variogram between two SRFs X(si, t1) and X(si’, t2), observed at two 

time instants t1 and t2 but not necessarily at the same space locations (si and si’) is defined by 

(Clark et al, 1989; Myers, 1991; Cressie, 1993): 

[ ] [ ]{ }21

2
1 2 1 2

1 1( ) var ( , ) ( , ) ( , ) ( , )
2 2

p X t X t E X t X tγ = − + = − +h s s h s s h    (73) 

Its moment-based estimator is given by (Papritz et al., 1993; Papritz and Fluhler, 1994): 

[ ]
21

( )
2

1 2
1

1ˆ ( ) ( , ) ( , )
2 ( )

N
p

i i
i

x t x t
N

γ
=

= − +∑
h

h s s h
h

       (74) 

Zhang et al. (1992, 1999) used cokriging with pseudo cross variograms to estimate spatial 

distributions of soil chemicals. 

 

The temporal pseudo cross variogram can be defined in a similar way between two TRFs 

X(s1, tj) and X(s2, tj’), observed at two space locations s1 and s2 but not necessarily at the same 

tim instants (tj and tj’). 

 

4.3.6. Other classes of space-time covariance models 

 

De Cesare et al. (2001b) and De Iaco et al. (2002) distinguished five types of space-time 

covariance models: 

- the metric model (Dimitrakopouolos and Luo, 1994): 
22 2 2( , ) ( )stc C a bτ τ= +h h  with 2, Rba ∈        (75) 
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In this equation, the same type of model is assumed for the spatial and temporal covariances, 

with possibly different ranges. 

- the product or separable model (Rodriguez-Iturbe and Mejia, 1974; De Cesare et al., 

1997; Bourgine et al., 2001; Heuvelink et al. 1997): 

( , ) ( ) ( )st s tc c cτ τ=h h           (76) 

In this case the spatial dependence is separated from the temporal one. However this model is 

severely limited, since for any pair of space locations the cross covariance function of the two 

time series always has the same shape. The same is valid for any pair of time instants and the 

cross covariance function of the two SRFs. 

- Another form of the separability is the linear model (Rouhani and Hall, 1989; 

Heuvelink et al., 1997) where the spatial and temporal covariances are additive: 

( , ) ( ) ( )st s tc c cτ τ= +h h          (77) 

For some data configuration, the covariance matrices are singular (Myers and Journel, 1990; 

Rouhani and Myers, 1990) 

- The integrated product or the nonseparable model (Cressie and Huang, 1999) 

- The product sum model (De Cesare et al, 2001b):  

1 2 3( , ) ( ) ( ) ( ) ( )st s t s tc k c c k c k cτ τ τ= + +h h h        (78) 

with k1, k2, and k3 are constants function of the different sill variances (spatial, temporal, and 

spatio-temporal). 

De Cesare et al. (2001b) showed that the product model is obtained from the product sum 

model by setting 032 == kk , and the linear model is obtained by setting 01 =k . 

Fortran programs (De Cesare et al., 2002) are available for the computation of the product and 

the product sum covariance models. 

The product sum covariance model was generalized to a general product sum model (De Iaco 

et al., 2001a) which provides a large new class of models and is easily modelled using 

techniques similar to those used for modelling spatial variograms. 

The space-time generalized product sum variogram model is given by (De Iaco et al., 2001a): 

( , ) ( ,0) ( , ) ( ,0) ( , )st st st st stkγ τ γ γ τ γ γ τ= + −h h h0 0       (79) 

with k a constant, function of different sills, and ( ,0)stγ h  and ( , )stγ τ0  are spatial and 

temporal bounded variograms, respectively. 

De Iaco et al. (2001b, 2002) applied the generalized product sum model for the mapping of 

total air pollution in Milan, Italy. 
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The product, product sum, and integrated product models were further generalized to provide 

more non separable models (De Iaco et al., 2002). 

 

4.3.7. Space-time cross covariance function and cross variogram 

 

De Iaco et al. (2004) presented the multivariate STRF with the special case of the bivariate 

STRF. Let 

[ ]1 2( , ) ( , ), ( , ) ( , ) ( , )t X t X t t t= = +X s s s Y s M s       (80) 

be a bivariate STRF with 

( , )tM s  representing the trend component such that [ ]1 2( , ) ( , ), ( , )t M t M t= =M s s s M , and 

( , )tY s  is a second order stationary STRF with its expected vector [ ]( , )E t =Y s 0 , its 

covariance function ( , )yc τh , and its variogram ( , )yγ τh . 

The covariance function is given by: 

[ ] [ ][ ]{ }( , ) cov ( , ), ( , ) ( , ) ( , ) ' ( , ) ( , )yc t E t t cαβτ τ τ τ τ τ = + + = − + + − = = h X s h X s X s M X s h M c h h  (81) 

where ( , )cαβ τh are the cross covariance between the space-time random variables Xα(s, t) and 

Xβ(s,+h, t+τ) when βα ≠ , and the autocovariance when βα = . 

The variogram is defined as: 

[ ][ ]{ }1( , ) ( , ) ( , ) ( , ) ( , ) ' ( , )
2y E t t αβγ τ τ τ τ τ γ τ = + + − + + − =  h Y s h Y s Y s h Y s h    (82) 

where ( , )αβγ τh are the cross variogram between the space-time random variables Xα(s, t) and 

Xβ(s,+h, t+τ) when βα ≠ , and the autovariogram when βα = . 

 

4.3.8. Purely and joint spatial/temporal components  

 

More complex natural phenomena require the integration of different components, mostly if 

some form of nonergodicity is suspected. In this way, Bogaert (1996a) developed a regressive 

space-time model which includes, in addition to a space-time mean function ( ( , )tµ s ), purely 

spatial ( ( )M s s ), purely temporal ( ( )tM t ), and a joint space-time ( ( , )Y ts ) components: 

( , ) ( , ) ( ) ( ) ( , )tX t t M M t Y tµ= + + +ss s s s        (83) 

The three stochastic components are considered to be independent and hence the covariance 

function and variogram of STRF are given, respectively, by: 
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( , ) ( ) ( ) ( , )x t yc c c cτ τ τ= + +sh h h         (84) 

( , ) ( ) ( ) ( , )x t yγ τ γ γ τ γ τ= + +sh h h         (85) 

Bogaert and Christakos (1997) applied the above model to the analysis of solute content from 

the Dyle river, Belgium while Beckers (1997) used this model in the analysis of space-time 

field experiments. 

 

4.3.9. Comparison of single STRF with multiple SRF/TRF 

 

Using the single STRF, the spatio-temporal variability is modelled by a joint space-time 

covariance function whereas the approach of multiple SRF/TRF models this variability via the 

linear model of coregionalisation, LMC (Journel and Huijbregts, 1978). The single approach 

allows prediction (space-time kriging, see section 4.4.4) at any location in space and any 

instant in time whereas the prediction through cokriging (section 4.4.3) is limited, under 

LMC, to the observed time instants in the case of nt correlated SRF and to the observed space 

locations in the case of ns correlated TRF. The joint space-time covariance function cannot be 

estimated reliably if the number of space locations and/or time instants is limited. Conversely, 

if this number is large, the LMC becomes cumbersome as it requires the computation and 

modelling of many direct and cross covariance functions. 

Now we have presented the different tools for the description and fitting of the space-time 

variability of soil salinity, we can examine some geostatistical techniques which use these 

tools in order to interpolate data in space and time. 

 

4.4. Geostatistical interpolation: Space-time kriging 
 

4.4.1. Introduction 

 

When a theoretical model is fitted to the experimental space-time covariance function or 

variogram, it becomes possible to tackle the problem of predicting attributes at unsampled 

space locations and/or time instants. 
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Consider the problem of predicting the value of a continuous attribute x at any unsampled 

space location s0 and time instant t0, x(s0, t0), using only the x-data available over the space 

region S and time domain T, say, ∑
=

=
tn

j
jnn

1

data { }( , ), 1,..., ; 1,...,ij j t jx t j n i n= =s . 

Kriging is a family of generalized least squares  regression algorithms that allows to predict 

x(s0, t0). The latter is considered, in geostatistics, as a realization  of the STRF X(s0, t0). The 

problem of predicting x(s0, t0) is defined as (Rouhani and Myers, 1990): 

0 0
ˆ ( , ) ( , )ij ij j

j i

X t X tλ= ∑∑s s           (86) 

with ijλ , the kriging weights for the time instant tj and the space location sij. 

This is the general form and there are some simplifications which are related to the kind of 

STRF considered. We present first the simple cases where we consider only SRF or TRF, and 

then we present the more general case for the single STRF. 

 

4.4.2. Spatial/temporal kriging 

 

In case of spatial (temporal) random fields (section 4.3.5) we saw that the dependence in data 

is modelled via a spatial (temporal) covariance function or variogram. For example, in the 

case of an SRF, we are dealing in the space domain and the different kriging algorithms 

defined for SRF can be applied. 

Let X(s, t0) denotes the SRF at the time instant t0. The predictor X(s0, t0), at the space location 

s0, is a linear combination of the ns observations x1, …, xns available at the time instant t0: 

0 0 0
1

ˆ ( , ) ( , )
sn

i i
i

X t X tλ
=

= ∑s s          (87) 

The ns weights are calculated such that X(s0, t0) is unbiased and that the variance of the 

prediction error is minimal. A detailed description of the computation procedure can be found 

in geostatistical handbooks (Journel and Huibregts, 1978; Cressie, 1993; Goovaerts, 1997). 

Three kriging algorithms can be distinguished (Goovaerts, 1997): 

- Simple kriging: the mean is known and constant through the space region; 

- Ordinary kriging: the mean is unknown but constant in the subdomains of the space 

region; 

- Kriging with trend model or universal kriging: the mean is unknown, is local and 

varies smoothly in the subdomains of the space region. 
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In a similar way, the predictor X(s0, t0), at the time instant t0, is a linear combination of the nt 

observations x1, …, xnt available at the space location s0. 

The prediction is done for each time instant (space location) separately and independently 

from the other time instants (space locations). 

Many applications can be found in the literature: ordinary kriging using variograms converted 

from a basic pooled spatial variogram on the sampling time instants (Sterk and Stein, 1997; 

Stein et al., 1997; Stein and Sterk, 1999); ordinary kriging and universal kriging (Ettema et 

al., 1998; Figueira et al., 1999, 2001); and ordinary log normal kriging (Ettema et al., 2000). 

The kriging in the space domain will be used in chapter 7 and compared to space-time kriging 

(see section 4.4.4.2). 

 

4.4.3. Spatial/temporal cokriging 

 

For the same cases as before (spatial/temporal random fields) more accurate estimates, based 

on cokriging,  can be obtained by using the information available at a precedent time instant 

as well as the contemporaneous data for spatial prediction (D’Agostino et al., 1998) or 

information from two different TRFs observed at two different space locations. Cokriging can 

also be used to estimate the temporal change for a spatially correlated soil property between 

two time instants using the pseudo cross variogram (Papritz and Fluhler, 1994; Lark, 2002). 

Under the separability hypothesis and the LMC, Bogaert (1996b) showed that the simple 

cokriging system between nt coregionalized space variables (one for each time instant) is 

equivalent to the simple space-time kriging. This equivalence was shown for a more general 

form of the covariance functions (Kyriakidis and Journel, 1999). Bogaert (1996b) 

demonstrated also that space ordinary cokriging system with one unbiasedness condition is 

equivalent to the space-time ordinary kriging system when it is expressed in terms of 

covariance functions. Pseudo cross variograms should replace the cross variograms if the 

cokriging system has to be written in terms of variograms. However, the use of the unique 

unbiasedness constraint is restricted to the second order stationary situations. The author 

noted also that space-time ordinary kriging is preferable to space ordinary cokriging whenever 

it is possible because, although the differences in the prediction variances are negligible when 

data are abundant, it is not the case when some time instants involve limited data. 

We recall that for SRF, the prediction can be done at unsampled locations only for one or 

more of the observed time instants. As examples of applications, we cite Bogaert and 

Christakos (1997) and D’Agostino et al. (1998). In the case of TRF, cokriging allows 
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forecasting and hindcasting, the latter is useful in the estimation of missing values. Examples 

of application can be found in Rouhani et al. (1992a, b). Cokriging was used also to estimate a 

missing observation at a given time instant by considering the observations at this time instant 

as the variable of interest and the observations at other time instants as covariables (Stein, 

1998). 

Let a given variable been sampled at n1 space locations during the first time instant, 1( )iX s ,   

i = 1, …, n1, and at n2 (less than n1) space locations later during the second time instant, 

2 ( )jX s , j = 1, …, n2. The kriging estimator of X2 at an unsampled location s0 is (Goovaerts, 

1997): 
1 2

2 0 1 1 2 2
1 1

ˆ ( ) ( ) ( )
n n

i i j j
i j

X X Xλ λ
= =

= +∑ ∑s s s         (88) 

with λ1i and λ2j are the kriging weights relative to the variables X1 and X2, respectively. 

Under the hypothesis of stationarity, the weights must satisfy the following conditions: 
1

1
1

0
n

i
i

λ
=

=∑  and 
2

2
1

1
n

j
j

λ
=

=∑          (89) 

Fore cases where the primary and secondary variables relate to the same attribute, the 

unknown mean can be filtered out and the single unbiasedness constraint  
1 2

1 2
1 1

1
n n

i j
i j

λ λ
= =

+ =∑ ∑           (90) 

replaces the above two unbiasedness conditions. 

 

4.4.4. Space-time kriging 

 

For the more general single STRF, two kriging algorithms can be distinguished, i.e. two step 

space-time kriging and anisotropic space-time kriging. They are presented in the next 

sections.  

 

4.4.4.1. Two step space-time kriging 

 

The prediction of the value of X0=X(s0, t0) is a linear combination of nt predictors in space. In 

the first step, at each of the nt time instants tj, j = 1, …, nt, the predictor of the value of X(s0, tj) 

is determined as (Stein et al., 1994): 



CHAPTER 4. Methodology
 

 69

0
1

ˆ ( , ) ( , )
jn

j ij ij j
i

X t X tλ
=

= ∑s s          (91) 

The kriging weights are determined in the standard manner for kriging in the space domain 

(Goovaerts, 1997). 

In the second step X(s0, t0) is predicted, using a linear combination of the predictors 

determined at the first step. This predictor is (Stein et al., 1994): 

0 0 0
1 1 1

ˆ ˆ( , ) ( , ) ( , )
jt t nn n

j j j ij ij j
j j i

X t X t X tθ θ λ
= = =

= =∑ ∑∑s s s       (92) 

with  θj are the kriging weights from the second step. 

The predictor 0 0
ˆ ( , )X ts  explicitly uses spatial variograms that change over time. This 

algorithm was applied in different situations (Stein et al., 1994, 1997, 1998; Stein, 1998). 

 

4.4.4.2. Anisotropic space-time kriging 

 

For this algorithm, the prediction is done in one and unique step capitalizing on a space-time 

variogram model which incorporates the spatial and temporal dependencies with a space-time 

anisotropy ratio (Rouhani and Myers, 1990; Stein et al., 1994, 1997, 1998; Bechini et al., 

2000). The advantage of the anisotropic over the two step space-time kriging is that the 

former allows predictions to be made at every point in space and time. Also it avoids the 

uncertainties related to the predictors determined at the first step for the latter. This algorithm 

was used in our application (chapter 7 and 8) and was compared to kriging limited to the 

spatial domain (chapter 7) and to BME (chapter 8). 

 

4.4.5. Space-time cokriging 

 

De Iaco et al. (2004) extended the LMC to the space-time domain using generalized product 

sum models for the basic variograms. In addition they proposed an extension of ordinary 

cokriging to the space-time domain. Although De Iaco et al. (2004) discussed the more 

general case of several secondary variables, we present here only the case of one variable of 

interest and one covariable. 

A linear space-time predictor of X(s, t) at an unsampled point (s0, t0) in the space-time domain 

is: 
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0 0 0 0
1

ˆ ( , ) ( , ) ( , )
n

i i i
i

X t t t
=

= ∑s s X sΛ         (93) 

where Λi(s0, t0) are the (2x2) matrices of kriging weights whose elements ( , )i tαβλ s  are the 

weights assigned to the value of the βth variable, β = 1, 2, at the ith sampled point to predict the  

αth variable, α = 1, 2 , at the unsampled point (s0, t0). 

The predicted value includes two components: 

0 0 1 0 0 2 0 0
ˆ ˆ ˆ( , ) ( , ), ( , )X t X t X t =  s s s         (94) 

such that 
2

0 0 0 0
1 1

ˆ ( , ) ( , ) ( , )
n

i i i
i

X t t X tαβ
α β

β

λ
= =

= ∑∑s s s , α = 1, 2      (95) 

This corresponds to an extension of ordinary cokriging to the space-time domain. More detail 

on how to determine the kriging weights ( , )i tαβλ s  can be found in De Iaco et al. (2004). In 

their work, they compared space-time ordinary kriging to space-time ordinary cokriging. 

They found that the correlation coefficients between observed and predicted values were 

higher when the latter algorithm was used. Also the cokriging error variances were lower than 

those from kriging. 

 

4.4.6. Other forms of space-time kriging 

 

Additional forms of space-time kriging exist in the literature but will not be used in the 

application to our data sets. Among these variants, indicator kriging (Bilonick, 1988), kriging 

with external drift (Snepvangers et al., 2003), and factorial kriging (Rouhani et al., 1992a, b; 

Van Meirvenne and Goovaerts, 2002; De Iaco et al., 2003) were used in the literature. 

Now the classical geostatistical techniques of space-time interpolation have been laid out, we 

present a versatile and more general method of interpolation, i.e., BME. 

 

4.5. Bayesian Maximum Entropy 
 

4.5.1. Introduction 

 

For most of the classical geostatistical methods of interpolation, i.e. kriging, the prediction is 

based solely on the hard data. However, other data sources can be useful, mostly, for space 
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locations and time instants where hard data are missing and they can improve the accuracy of 

the predictions. Such data can be different types of soft data (interval, probabilistic, etc.), 

physical laws, moments of higher order, etc.   

Bayesian Maximum Entropy (BME) (Christakos, 1990, 2000; Christakos and Li, 1998) is a 

recent approach developed for the spatio-temporal mapping of natural processes using 

uncertain information. It offers the flexibility to incorporate various sources of physical 

knowledge. This incorporation of physical knowledge bases enables global prediction features 

and the adoption of probability distributions without a need for any assumptions like for 

example to be gaussian. The BME was also extended to handle vector and functional 

variables and allows multipoint mapping (Choi et al., 1998; Christakos, 1998; Christakos and 

Hristopoulos, 1998; Christakos et al., 1999). 

 

4.5.2. Knowledge bases 

 

Christakos (2000) defined a knowledge base as ‘a collection of knowledge sources relevant to 

the problem at hand to be involved by a reasoning process aiming at the solution of the 

problem’. In the BME framework, the total knowledge (K) available regarding a natural 

process is considered to be formed from two main bases: the general knowledge (G) and the 

specificatory knowledge (S) such that K G S= ∪ . 

 

4.5.2.1. General knowledge base 

 

The general knowledge represents the knowledge that one has about the distribution of the 

natural variable to be mapped before any specific data. It encompasses physical laws, 

statistical moments of any order (including the mean and variogram or covariance function), 

multipoint statistics, etc. It is said to be general because it does not depend on the specific 

random field realisation at hand.  

The objective in the space-time mapping is to predict the values of an STRF, X(p), at a point 

in space and time, pk, given data at space-time points, pi, i=1, …, m. Let 

[ ]map 1,..., , 'm kχ χ χ=χ  be a realisation of the STRF at the points [ ]map 1,..., , 'm k=p p p p . The 

joint cdf of the m observed and the prediction points is defined by: 

1 1 1( ,..., , ) Pr [ ,..., , )x m k m m k kF ob x x xχ χ χ χ χ χ= ≤ ≤ ≤      (96) 

and its corresponding pdf by: 
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1
1 1 1( ,..., , ) ( ,..., , ) / ...m

x m k x m k m kf Fχ χ χ χ χ χ χ χ χ+= ∂ ∂ ∂ ∂      (97) 

This pdf forms the prior pdf, which can be derived by an estimation process that considers 

physical constraints provided by prior information or knowledge (G). These physical 

constraints are given by: 

[ ] map map map( ) ( )GE g g f dα α= ∫ χ χ χ ,  cN,...,0=α       (98) 

where )( mapχGf  has the same definition as Eq.(97), except that x is replaced by G. It is, in 

fact, the unknown multivariate pdf associated with the general knowledge. The functions αg  

are chosen such that the general knowledge base, G, is taken account of in full in the 

prediction process, and their expectations, [ ]αgE , provide the space-time statistical moments 

of interest (means, variances, covariances, etc.). 

For example, 0=α  defines a normalization constraint such that  

map map( ) 1Gf d =∫ χ χ           (99)

     

This leads to 0 map( ) 1g =χ  and [ ] 10 =gE  

To take into account the means [ ] [ ]iii xEXEm == )( p , at points pi (i=1, …, m, k), we let 

( )i igα χ χ=  and [ ] imgE =α , for α = 1, …, m+1.       (100) 

The covariance function 

[ ]{ }( ) ( )ij i i j jc E X m X m = − − p p         (101) 

between two points pi and pj, is considered by letting   

[ ]( , )i j i i j jg m mα χ χ χ χ = − −          (102) 

 and  

[ ] [ ]{ }i i j jE g E x m x mα  = − −           (103) 

with i, j  = 1, …, m, k and α = m+2, …, (m+1)(m+4)/2. 

It is important to note that BME allows also the use of higher moments (Christakos et al., 

2002, page 37) by letting q
i ig ( )α χ χ= , q is the order of the statistical moment of interest. In 

addition the prior pdf can be derived from physical laws, for example from stochastic 

differential equations (Christakos et al., 1999; Serre et al., 1998; Kolovos et al, 2000). 
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4.5.2.2. Specificatory knowledge base 

 

The specificatory knowledge includes the data specific to a given experiment or situation. It 

refers to a particular occurrence of the natural variable at a particular space location and a 

particular time instant. It is divided into two main categories depending on the accuracy of the 

data. 

The hard data [ ]hard 1,..., 'hχ χ=χ         (104) 

are exact measurements of the natural process and considered to be error-free. It encompasses 

accurate measurements obtained from real-time observation devices, computational 

algorithms, simulation processes, etc. Their accuracy means that the probability that the 

vector hardx  takes the values hardχ  is one: 

[ ]hard hardPr ob 1= =x χ .         (105) 

The soft data [ ]soft 1,..., 'h mχ χ+=χ         (106) 

involve uncertain observations, empirical charts, assessments by experts, etc. They are 

incomplete or qualitative data linked to opinions, intuition, etc. Different kinds of soft data are 

available, often in the form of interval domain data or of a probabilistic nature. The interval 

soft data is given by: 

[ ] [ ]{ }soft 1 , ..., ' , , 1, ...,h m i i i i: I l u i h mχ χ χ+= ∈ = = +χ     (107) 

with il  and iu  representing the lower and upper limits of the interval iI , respectively. This 

means that the unknown exact values iχ , i = h + 1,… , m, lie within the known intervals Ii is 

equal one: 

( )Pr ob , 1i i i iI l uχ ∈ = =           (108) 

The probabilistic soft data is given by: 

soft soft soft soft: ( ) ( )S SP f d
ξ

ξ
−∞

≤ = ∫χ x χ χ        (109) 

with soft( )Sf χ , the specificatory pdf. 

If the specificatory pdf follows a uniform distribution, the probabilistic soft data are, in fact, 

equivalent to interval soft data. 

The total data available for mapping is then the union of both hard and soft data: 

[ ]data hard soft, '=χ χ χ           (110) 
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To illustrate these notions of hard and soft data, we give here an example that is used in the 

application part of this dissertation (see chapter 8). As reported in chapter 2, soil salinity can 

be assessed by measuring the electrical conductivity of the soil. It is measured either in the 

laboratory (EC2.5) or in the field (ECa). The measurement in the laboratory is done with high 

precision in standard conditions and is directly related to soil salinity. Thus it is considered as 

an accurate measurement of the soil salinity and represents our hard data. The apparent 

electrical conductivity measured in the field (ECa) is only an indirect measurement of soil 

salinity and still needs to be calibrated with EC2.5 values. Thus, based on a calibration model 

(frequently a regression model), ECa values are converted into ‘predicted’ EC2.5 values. As 

these values are only predictions from a stochastic model, they are entailed with some 

uncertainty, and are consequently considered as soft data. The predicted EC2.5 values and their 

corresponding standard deviations allow us to define the two kinds of soft data: the 

confidence intervals are built which give the interval soft data while the two statistic 

parameters are used to describe Gaussian pdfs which represent our probabilistic soft data. 

 

4.5.3. The three steps of BME analysis 

 

The BME has a double goal: informativeness (prior information maximization given the 

general knowledge) and cogency (posterior probability maximization given specificatory 

knowledge).  

The BME analysis is done in three main steps of knowledge acquisition, integration and 

processing: the structural or prior step, the meta-prior step, and the integration or posterior 

step. At the end of these three steps, we get the posterior pdf: 

( ) ( )1
soft map( ) ,K k S Gf Aχ −  =  χ χY Y         (111) 

where GY  represents the operator processing the general knowledge, G , SY  the operator 

processing the specificatory kwonledge, S , and A  is a normalization constant. The two 

operators, GY  and SY  are considered to be the two legs on which the BME equations stand 

(Christakos, 2000). This is the general form of the posterior pdf, and it will takes different 

forms depending on the nature of available general and spacificatory knowledge bases. We 

present some specific cases in which follows. 
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4.5.3.1. The structural or prior step 

 

The goal is the maximization of the information content considering only the general 

knowledge before any use of the data, which corresponds to the first goal of the BME. This 

step assumes an inverse relation between information and probability: the more informative 

an evaluation of a mapping situation is, the less probable it is to occur. This means that if a 

theory is general and vague, it includes more alternatives so it is more probable however it is 

less informative. This inversion relation is expressed in the equation below. 

A random field is completely defined by its multivariate probability distribution function 

(pdf), which forms the prior pdf. The latter should be derived by means of an estimation 

process that takes into consideration physical constraints under the form of prior information 

or knowledge. This information is measured, in the context of BME, using the Shannon’s 

entropy function (Shannon, 1948), thus the E in BME, which expresses the given information 

in the random vector xmap as: 

map mapInfo( ) ln ( )Gf = −  x χ          (112) 

This equation represents the uncertainty (in the form of the pdf map( )Gf χ ) regarding the 

random vector mapx : the higher the probability, the lower the uncertainty about mapx  and the 

lesser the amount of information provided by the pdf about mapx . 

The expected information is given by the following entropy function: 

map map map mapE Info( ) ln ( ) ( )G Gf f d   = −   ∫x χ χ χ       (113) 

This function needs to be maximized subject to the physical constraints provided by prior 

information or knowledge G (equation 98), which justifies the M in the BME acronym. This 

maximization requires the use of the Lagrange multipliers. For the physical constraints, αg , 

provided by equation 98, the operator processing the general knowledge, G , is given by: 

map map
1

( ) ( )
cN

G gα α
α

µ
=

=∑Y χ χ          (114) 

where αµ are Lagrange multipliers calculated by substituting equation (98) into equation 

(114). 

At this stage the prior or G-based multivariate pdf is: 
1

map map( ) exp ( )G Gf Z −  =  χ χY         (115) 
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The entropy function, equation (113) modified to include the Lagrange multipliers, is as 

follows: 

( )modif map map map map map
0

E Info( ) ln ( ) ( ) E
cN

G Gf f d gα α
α

µ
=

    = − +     ∑∫x χ χ χ χ    (116) 

This function, when maximized, gives the prior pdf: 

1
map map

1

( ) exp ( )
cN

Gf Z gα α
α

µ−

=

 
=  

 
∑χ χ         (117) 

where ( )map map 0
1

exp ( ) exp
cN

Z g dα α
α

µ µ
=

 
= = − 

 
∑∫ χ χ       (118) 

 is a normalization constant and 0µ  is the first Lagrange multiplier. 

Substituting the expressions (100) and (102) for the functions map( )gα χ  into equation (117) 

gives the following prior pdf: 

( )( )
, ,

1
map

1 , 1
( ) exp

m k m k

G i i ij i i j j
i i j

f Z χ χ m χ mµ µ−

= =

 
= + − − 

 
∑ ∑χ      (119) 

The constraints, means and covariances, are written: 

( )map mapi i Gm f dχ= ∫ χ χ  for i = 1, 2, …, m, k      (120) 

( )( ) ( )map mapij i i j j Gc m m f dχ χ= − −∫ χ χ  for i, j = 1, 2, …, m, k    (121) 

As these constraints are known (mostly estimated from data), the above constraints, equations 

(120) and (121), are solved for the Lagrange multipliers iµ  and ijµ . Solving for these 

multipliers results in the following prior pdf, which is multivariate Gaussian (Serre, 1999): 

( )
( ) ( )'

map map map map map map1
2

map

1 1( ) exp
22

G mf
π

+
 = − − −  

-1χ χ m C χ m
C

   (122) 

where mapm  represents the vector of means and mapC  is the variance-covariance matrix. 

Expression (A7) can be rewritten: 

( )map map map map( ) ; ,Gf φ=χ χ m C         (123) 

where ( )map map map; ,φ χ m C  is the multivariate Gaussian pdf fully characterized by its vector of 

means mapm  and its variance-covariance matrix mapC . 
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4.5.3.2. The meta-prior step 

 

During this step, the specificatory knowledge is collected and organized in appropriate 

quantitative forms that can be easily incorporated in the BME framework. The available data 

can be divided into two main types: the hard data and the soft data. The hard data are 

considered exact and accurate measurements of the natural process while the soft data are 

indirect and inaccurate measures of the variable of interest. The soft data may be in the form 

of intervals, probability distribution functions, etc (see section 4.5.2.2). 

 

4.5.3.3. The integration or posterior step 

 

In this step the two knowledge bases (G and S) are integrated. The goal is the maximization of 

the posterior pdf given the total knowledge K, which is the second goal of BME. The G-based 

pdf is updated, by considering the available site-specific knowledge (the data). This updating 

is performed using a Bayesian conditionalization, thus the B in BME: 

)()()( datamapdata χχχ f/ff GkK =χ         (124) 

where )( dataχkKf χ  and )( mapχGf  are the posterior and the prior pdfs, respectively. The 

posterior pdf should be maximized with respect to kχ . This stage yields the K-based pdf,  

( )K kf χ . 

 

In the case of interval soft data, equation (107), the operator processing the specificatory 

knowledge is: 

1
map map soft( ) exp ( )

u

S G
l

Z d−  =  ∫χ χ χY Y        (125) 

with a multiple integration over a hypercube bounded by the lower (l) and the upper (u) 

limits. 

Writing equation (125) in terms of the prior pdf, equation (115), and combining with equation 

(111) leads to the following posterior pdf: 

map soft

data soft

( )
( )

( )

u

G
l

K k u

G
l

f d
f

f d
χ =

∫

∫

χ χ

χ χ
         (126) 
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where data map( ) ( )G G kf f dχ= ∫χ χ         (127) 

Equation (126) gives a general form for specificatory knowledge involving hard and interval 

soft data. This needs to be combined with the prior pdf, map( )Gf χ , leading to the posterior 

BME pdf ( )K kf χ . 

 

For probabilistic soft data, the operator processing specificatory knowledge is given by: 

( )1
map soft map soft( ) exp ( )S S GZ f d−  =  ∫Y Yχ χ χ χ       (128) 

Writing equation (128) in terms of the prior pdf, equation (115) and combining with equation 

(111) leads to the following posterior pdf: 

soft map soft

soft data soft

( ) ( )
( )

( ) ( )
S G

K k
S G

f f d
f

f f d
χ = ∫

∫
χ χ χ

χ χ χ
        (129) 

Again, equation (129) gives a general form for specificatory knowledge involving hard and 

probabilistic soft data. This needs to be combined with the prior pdf, map( )Gf χ , leading to the 

posterior BME pdf ( )K kf χ . 

As hard and both interval and probabilistic soft data are available in our case study, equations 

(126) and (129) will be used in chapter 8 in conjunction with equation (122). The latter 

defines the prior pdf when the general knowledge is limited to the statistical moments of order 

one and two. This is, in fact, our situation. The results of BME will be compared to those 

from space-time kriging. 

 

4.5.4. Some BME estimators 

 

The posterior pdf, which is not limited to the Gaussian type, describes fully the random field 

at the estimation point. It provides a complete picture of the mapping situation as well as 

different estimators and their associated estimation uncertainty. The prediction points lie, in 

general, on a regular grid and the predictions are used to create space-time maps. The 

different estimates presented in the following sections are specific to a general knowledge 

involving the first two statistical moments and a specificatory knowledge encompassing hard 

data as well as interval and probabilistic soft data. These two kinds of knowledge bases are, in 

fact, available for our application in chapter 8.  
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4.5.4.1. The mode estimate 

 

The mode, kχ , represents the most probable situation. It corresponds to the maximization of 

the posterior pdf, )( kKf χ , with respect to kχ :    

0
k k

K k

k

f

χ χ

χ
χ

=

 ∂
= ∂ 

( )           (130) 

 

4.5.4.2. The conditional mean estimate 

 

The conditional mean estimate, which is in general a nonlinear function of the data, is suitable 

for mapping situations where one is interested in minimizing the mean square estimation 

error: 

k K k k kf ( ) dχ χ χ χ= ∫          (131) 

In the case of interval data, it has the following expression (Serre, 1999): 

( )

( )

map map map soft

data data hs,hs soft

; ,

; ,

u

k k
l

k u

l

d d

d

χ χ φ
χ

φ
=
∫ ∫

∫

χ m C χ

χ m C χ
       (132) 

where datam  is defined as mapm , except that the estimation point is excluded and hs,hsC  is a 

partition of mapC  relative to hard and interval data such that : 

hs,hs hs,k
map

k,hs k,k

 
=  
 

C C
C

C C
          (133) 

For probabilistic soft data, it is given by (Serre, 1999): 

( ) ( )
( ) ( )

map map map soft soft

data data hs,hs soft soft

; ,

; ,
k k S

k
S

d f d

f d

χ χ φ
χ

φ
= ∫ ∫

∫
χ m C χ χ

χ m C χ χ
      (134) 
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4.5.4.3. The uncertainty estimates 

 

A measure of the uncertainty associated with the estimated values is provided by the variance 

of the estimation error: 

( )2 2
k k k K k kˆ - f ( )dσ χ χ χ χ= ∫          (135) 

For interval soft data, it takes the following expression (Serre, 1999): 

( ) ( )

( )

2
map map map soft

2

data data hs,hs soft

; ,
ˆ

; ,

u

k k k
l

k u

l

d d

d

χ χ χ φ
σ

φ

−
=
∫ ∫

∫

χ m C χ

χ m C χ
      (136) 

In the case of probabilistic soft data, it is given by (Serre, 1999): 

( ) ( ) ( )
( ) ( )

2
map map map soft soft2

data data hs,hs soft soft

; ,
ˆ

; ,
k k k S

k
S

d f d

f d

χ χ χ φ
σ

φ

−
= ∫ ∫

∫
χ m C χ χ

χ m C χ χ
.     (137) 

This variance is data-dependent, whereas in kriging it is data-free. Using this uncertainty 

estimate and the conditional mean, one can compute the confidence intervals assuming a 

Gaussian distribution. For example, for an error of type I of 5%, the confidence limits are: 

[ ]1 96 1 96k k k kˆ ˆ. , .χ σ χ σ− −          (138) 

In addition, from the posterior pdf, one can compute directly the confidence intervals (Serre 

and Christakos, 1999a), which provide a more realistic assessment of the estimation error than 

the error variance or the confidence limits derived from equation (138). 

 

4.5.5. Kriging as a special case of BME 

 

When the general knowledge is limited to the mean and covariance functions and the 

specificatory knowledge is restricted to the only hard data, the BME posterior pdf is Gaussian 

(the mean and the mode are equal) and the BME mean estimate is equivalent to the kriging 

(best minimum mean squared error, MMSE) estimate, which is the conditional mean: 

, hardˆ ( )k MMSE kE Xχ =   p χ          (139) 
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When the space-time random field is Gaussian, eq.(139) becomes linear and optimal among 

all MMSE estimators, and expressed as: 
'

, hardˆk MMSEχ = χλ           (140) 

where λ is a vector of weights associated with the data points and involving the space-time 

mean and covariance functions. Thus BME is a more general interpolation approach and 

kriging is a special case in limiting situations. 

 

4.5.6. Examples of BME application 

 

The BME approach has been applied in different research fields. Examples of such 

applications can be found in agricultural sciences (D’Or et al., 2001; Bogaert and D’Or, 2002; 

D’Or and Bogaert, 2003), environmental sciences (Christakos, 1998; Serre and Christakos, 

1999b; Christakos and Serre, 2000; Serre et al., 2001; Choi et al., 2003), etc. 

 

4.6. Conclusions 
 

We presented, in this chapter, different statistical methods suitable for the analysis of space-

time data. We focused on three groups of methods. First, we described classical statistical 

methods which ignore the space-time nature of the data. Then, we reviewed some tools useful 

for characterizing the space-time variability of data along followed by geostatistical 

interpolation techniques. Finally, we presented the modern geostatistical method of BME. 

From the classical statistical methods, we retained the concepts of temporal stability and 

dynamic spatial variation which will be applied to our data set in the following chapters. The 

spatial, temporal and space-time covariance functions were considered in our application for 

the description and modelling of soil salinity variability. Finally, we choose spatial as well as 

space-time kriging and BME for the prediction of soil salinity at unsampled space locations 

and time instants. 
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CHAPTER 5 

 

TEMPORAL STABILITY OF SPATIAL PATTERNS OF SOIL 

SALINITY DETERMINED FROM LABORATORY AND FIELD 

ELECTRICAL CONDUCTIVITY 
 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Douaik A., Van Meirvenne M. and Toth T. Temporal stability of spatial patterns of 

soil salinity determined from laboratory and field electrical conductivity. Submitted for 

publication in Arid Land Research and Management.
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Abstract 
 

We elaborated a procedure for the assessment of the temporal stability of soil salinity and the 

optimization of the sampling effort. Soil electrical conductivity data obtained from field 

electrode probes and laboratory analysis were compared and analyzed to check the temporal 

stability of salinity patterns. Therefore sampling of 20 locations at different depths was 

repeated 19 times over a period from November 1994 to June 2001. Although the use of 

electrical conductivity probes for the assessment of soil salinity is suggested for irrigated 

fields we found that it is applicable in semi-humid natural grassland. Both determination 

methods showed a strong temporal stability. The Spearman rank correlation confirmed the 

persistence of the ranking of the different locations. Additionally, using the technique of 

relative differences, we were able to identify three classes: (1) the low saline locations, (2) 

locations which are representative of the average field soil salinity, and (3) the high saline 

locations. The latter included the least time stable locations while the first class contained the 

most time stable ones. The low saline locations were identified as belonging to the zones of 

waterlogging and/or salt leaching, the high saline locations belonged exclusively to the zone 

of salt accumulation, while locations representative of the average soil salinity belonged to all 

three possible zones. We investigated also how precise the selected locations representing the 

average soil salinity can estimate this average. We found that using only two locations from 

the 20 available, the average was adequately estimated with a difference smaller than 0.3 

dS/m. This representativity was also checked by splitting the measurements into two temporal 

subsamples. We found for both subsamples that the same locations were representative of the 

average soil salinity as when all measurement dates were considered. 
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5.1. Introduction 
 

In Hungary salt-affected soils exceed one million hectares, covering more than 10% of the 

territory of the country. More than 95% of these soils are located in the Great Hungarian Plain 

(GHP). Hortobágy National Park, where our study area was located, forms a subregion of this 

plain. Hortobágy is a recharge area of saline groundwater originating from northern 

mountains. This groundwater is the main source of salt accumulation in the area, so its 

dynamics strongly influences soil salinization (Tóth et al., 2002b). 

Conventionally soil salinity is determined in the laboratory by measuring the electrical 

conductivity of a solution extracted from a water-saturated soil paste (ECe). Alternatively it 

can be measured in the field, and then it is called apparent electrical conductivity (ECa), using 

electrode probes. This approach is easier, less time consuming and cheaper than the 

laboratory approach. 

For an efficient management of salt-affected soils, we need to measure soil salinity; the latter 

is spatially variable and dynamic. This variability is the outcome of different pedological 

factors like water table depth, topography, parent material, etc. As a consequence of the 

spatial and temporal variability, we need measurements from numerous samples from 

different locations and during different time instants. However as soil salinity does not change 

noticeably during short time in natural conditions, the observed spatial pattern could be time 

stable and can persist from one time instant to another. If this is so, the sampling effort could 

be reduced to a limited number of locations representative of the mean, low and high saline 

conditions.  

The concept of temporal stability, or persistence, has been used almost exclusively in the 

context of soil water content. Vachaud et al. (1985) were the first to introduce the concept. 

They analyzed the temporal stability of soil water for three crops (grass, olive trees, and 

wheat) to check if time-invariant characteristic statistical properties of the probability 

distribution functions can be assigned to individual locations. Comegna and Basile (1994) 

analyzed the temporal stability of soil water storage in a cultivated sandy soil in Italy. 

Grayson and Western (1998) defined the concept of Catchment Average Soil Moisture 

Monitoring (CASMM) sites using the approach of Vachaud et al. (1985). More recently 

Gómez-Plaza et al. (2000) studied the temporal stability of the spatial pattern of soil moisture 

encompassing different scales from a semi-arid region of Spain. Mohanty and Skaggs (2001) 

analyzed the influence of factors like soil, slope, and vegetation on the temporal stability of 

soil moisture within three remote sensing footprints. The temporal stability of soil water 



CHAPTER 5. Temporal stability 
 
 

 86

content and matric potential were investigated by Van Pelt and Wierenga (2001). The most 

recent work on time stability of soil moisture was done by Martínez-Fernández and Ceballos 

(2003). 

All the previous studies focused on soil water. There is one exception (Castrignanò et al. 

1994). The authors studied the temporal persistence of three indicators of soil salinity:  

electrical conductivity (EC), sodium content and sodium adsorption ratio (SAR) of the soil 

saturation extract. They collected 28 soil samples from an agricultural field of 80 x 350 m at 

three different depths during 8 time instants for a period over two years. 

The first objective of our research was to apply the concepts of temporal stability to soil 

salinity determined by two techniques (a field and laboratory determinations of electrical 

conductivity), at different depths sampled within a large field and repeated over a long 

temporal domain. The second objective was to study the relationship between the salt 

accumulation processes and their temporal stability. We also tried to find simple covariables 

(like vegetation pattern or elevation) with soil salinity that would allow the identification of 

optimal sampling locations without an extensive sampling effort. 

 

5.2. Material and methods 
 

5.2.1. Data description 

 

In this chapter, only data from the ‘calibration data set’ were used (see chapter 3, section 

3.2.1). The 20 locations where ECa was surveyed and EC2.5 measured are given in Fig. 5.1. 

Also, we consider only the ECa at the depth 0-40 cm and the mean EC2.5 calculated over the 

four depths. 
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Fig.5.1. Spatial locations (with their number) where ECa was sensed and soil was sampled for 

the determination of EC2.5 

 

5.2.2. Temporal stability 

 

The two concepts of temporal stability were presented in detail in chapter 4 (sections 4.2.3.1 

and 4.2.3.2). This chapter used the first definition of temporal stability based on relative 

differences (Vachaud et al, 1985) as well as the Spearman rank correlation. 

 

5.3. Results and discussion 
 

5.3.1. Exploratory data analysis 

 

Basic statistics about the apparent (ECa) and laboratory (EC2.5) electrical conductivity, 

calculated using all locations (20) and all time instants (19) are reported in table 5.1. 
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Table 5.1. Descriptive statistics for ECa and EC2.5 (in dS/m) measured at different depths. 

Min: minimum; Max: maximum; Stdev: standard deviation; CV: coefficient of variation. 

Property  Depth (cm) Mean Median Min Max Stdev CV % 

ECa 0-20 

0-40 

1.40

1.94

0.90

1.31

0.02

0.03

9.19

10.05

1.64 

1.99 

117 

103 

 

EC2.5 0-10 

10-20 

20-30 

30-40 

0-40 (mean) 

1.29

1.72

2.33

2.69

2.01

1.02

1.37

1.92

2.28

1.67

0.10

0.08

0.07

0.07

0.10

13.50

8.30

13.70

11.50

7.50

1.29 

1.41 

1.77 

1.84 

1.38 

100 

82 

76 

68 

69 

 

Since bulk soil electrical conductivity is affected by spatial variability of texture and soil 

moisture, ECa has higher CV’s compared to EC2.5, and for both soil properties the CV 

decreased, and the mean value increased, with depth. Regarding the extreme values, there are 

some non saline locations (minimum of 0.02 to 0.10 dS/m) as well as some highly saline sites 

(maximum values ranging between 8.3 and 13.7 dS/m). 

 

5.3.2. Temporal stability using the Spearman’s rank order correlation 

 

As the Spearman rank order correlation is a non parametric (free distribution) test it is less 

restrictive than the Pearson linear correlation. It indicates the strength and the direction of a 

rising or falling relationship between two different variables, or the same variable observed at 

two different time instants. 

Table 5.2 gives the rank correlation coefficients with regard to EC2.5 for the 19 time instants. 

Rank correlation coefficients ranged between 0.46 and 0.96 and were generally greater than 

0.85. The table shows that EC2.5 presented time stable spatial patterns across the whole study 

period. This is indicated by the values of order correlation which were highly to very highly 

significant in most of the cases. For example only one of the 171 coefficients was not 

significant at 5%, while 153 coefficients were significant at the 0.1%. Also, the loss of 

information between two measurement times was small. The rank correlations of the other 

variables (results not shown) were mostly significant, although the number of non significant 

coefficients was larger for some of the depths. 
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5.3.3. Temporal stability using the mean relative differences 

 

Using the Pearson linear and Spearman rank correlation coefficients, we were able to show 

that there was a strong temporal stability of the spatial pattern of the soil salinity across the 

whole spatial domain and the whole study period. However we still need to quantify this 

temporal stability by identifying locations which are time stable and simultaneously which are 

representative of the mean and/or extreme saline conditions. Therefore the concept of relative 

differences (Vachaud et al., 1985) was used. 

The plots of the mean relative differences ranked in ascending order are reported in Fig. 5.2 

for ECa and in Fig. 5.3 for EC2.5. The corresponding temporal standard deviations (vertical 

bars represent +/- one standard deviation) were also drawn to indicate the dispersion around 

the mean relative differences. 

Fig. 5.2 shows that at locations 1, 2, and 12 the mean field ECa was observed consistently 

within +/- 0.1 dS/m at any time instant. At the locations 10, 11, 13, 14, and 18 this mean was 

systematically underestimated by more than 0.5 dS/m. From these locations 11, 13, and 18 

were the least saline. On the other hand at locations 8, 15, 16, 19, and 20 the spatial mean ECa 

was overestimated by more than 0.5 dS/m, with locations 15, 16, and 19 being the most saline. 

The temporal stability, indicated by the vertical bars corresponding to ± one temporal 

standard deviation, is very strong for the locations with low salinity, intermediate for 

locations representative of the mean field ECa, and low for locations with high salinity. 

The locations representative of the least saline conditions in terms of EC2.5 were identified 

from Fig. 5.3. These are locations 11, 13, and 18. They maintain their temporal stability, 

although these locations were less time stable as the temporal standard deviations were 0.06, 

0.02, and 0.25 dS/m for ECa, and 0.21, 0.19, and 0.30 dS/m for EC2.5. When the locations 

representative of the most saline conditions, based on EC2.5, were selected from Fig. 4.3, the 

same locations were obtained as for ECa except one (location 8). Also, as for ECa, they 

displayed a weak temporal stability although the standard deviations were smaller (e.g. the 

temporal standard deviation for location 15 is 0.73 for ECa, and 0.50 for EC2.5). The locations 

most representative of the average field salinity were 2, 3, 6, and 12. 
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Fig. 5.2. Mean relative differences for ECa. Vertical bars represent +/- one standard 

deviation. 

-2.0

-1.0

0.0

1.0

2.0

18 13 11 14 17 10 5 4 9 1 6 2 3 12 7 8 16 20 15 19

Location number

M
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e

 
Fig. 5.3. Mean relative differences for EC2.5. Vertical bars represent +/- one standard 

deviation. 
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Table 5.2. Spearman rank order correlation coefficients for EC2.5 at the 19 time instants. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0.65                                   

3 0.77 0.72                                 

4 0.89 0.71 0.94                               

5 0.87 0.72 0.96 0.96                             

6 0.69 0.66 0.94 0.92 0.94                           

7 0.87 0.73 0.92 0.96 0.94 0.88                         

8 0.59 0.71 0.85 0.88 0.85 0.89 0.83                       

9 0.82 0.79 0.94 0.96 0.95 0.92 0.92 0.94                     

10 0.79 0.71 0.89 0.94 0.92 0.91 0.92 0.89 0.95                   

11 0.69 0.72 0.95 0.93 0.94 0.96 0.91 0.93 0.95 0.93                 

12 0.76 0.67 0.86 0.84 0.87 0.85 0.80 0.85 0.88 0.89 0.88               

13 0.70 0.54 0.85 0.90 0.87 0.90 0.84 0.86 0.90 0.84 0.86 0.80             

14 0.46 0.74 0.88 0.86 0.85 0.78 0.87 0.86 0.93 0.84 0.84 0.71 0.85           

15 0.85 0.74 0.95 0.94 0.94 0.93 0.92 0.87 0.95 0.95 0.95 0.90 0.87 0.85         

16 0.77 0.73 0.92 0.93 0.93 0.91 0.91 0.89 0.96 0.95 0.94 0.90 0.90 0.89 0.95       

17 0.70 0.78 0.89 0.85 0.88 0.84 0.87 0.86 0.95 0.92 0.90 0.86 0.76 0.88 0.94 0.93     

18 0.91 0.64 0.90 0.94 0.95 0.89 0.92 0.80 0.90 0.90 0.89 0.85 0.86 0.82 0.91 0.91 0.79   

19 0.76 0.66 0.82 0.90 0.88 0.90 0.88 0.84 0.95 0.96 0.85 0.87 0.81 0.83 0.90 0.94 0.88 0.87

1 to 19 refer to: Nov 1994, March, June, Sept, and Dec 1995, March and June 1996, March, June, Sept, and Dec 1997, Sept 1998, Apr, Jul and 

Sept 1999, Apr and Dec 2000, March and June 2001 respectively. 
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5.3.4. Classification of the locations as low, average or highly saline 

 

Analyzing corn yield data, Taylor et al. (2000) considered locations with a temporal standard 

deviation smaller than the mean relative difference to be consistently different from the mean. 

They further subdivided this group by separating locations for which the mean relative 

difference is negative from those for which this mean is positive. Also they distinguished a 

third group, locations similar to the mean, for which the temporal standard deviation is larger 

than the mean relative difference and overlapped with the mean value (this is illustrated in Fig. 

5.2 and 5.3 by the x axis intersecting with the vertical bars). Based on these definitions we 

classified the locations as low, average or highly saline (table 5.3). 

 

Table 5.3. Location membership to low, average, and high salinity groups. 

Property Low salinity Average salinity High salinity 

ECa 

 

EC2.5 

4, 5, 9, 10, 11, 13, 

14, 17, 18 

5, 10, 11, 13, 14, 17, 

18 

1, 2, 3, 6, 7, 12 

 

1, 2, 3, 4, 6, 7, 9,  12 

8, 15, 16, 19, 20 

 

8, 15, 16, 19, 20  

 

These groups contain more locations than when we used a restrictive criterion, like +/- 0.1 

dS/m for the mean and +/- 0.5 dS/m for the extreme values (section 5.3.3). We included 

almost the same locations for the three classes. For example the low saline class contained 

locations 5, 10, 11, 13, 14, 17, and 18; the average salinity class grouped locations 1, 2, 3, 6, 7, 

and 12 while locations 8, 15, 16, 19, and 20 belonged to the high salinity class.  

The average soil salinity for the three classes and the total proportion of locations in each 

class are shown in table 5.4. 
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Table 5.4. Mean salinity and proportion of locations for the three salinity classes. 

 

Proportion of locations (%) Property Salinity 

class 

Mean salinity 

(dS/m) Total Waterlogg

ing 

Accumul

ation 

Leaching

ECa 

 

 

EC2.5 

Low 

Average 

High 

Low 

Average 

High 

0.64

2.00

4.25

0.89

1.89

3.77

45

30

25

35

40

25

15

5

0

15

5

0

0 

20 

25 

0 

20 

25 

30

5

0

20

15

0

 

The proportion of locations classified as highly saline fluctuates between 15% and 25% while 

this proportion ranges between 25 and 45% for the low saline class, and 30 and 60% for the 

average saline class. Consequently most of the 20 locations were classified as average saline, 

followed by low saline and lastly highly saline. 

  

5.3.5. Salt accumulation processes and temporal stability 

 

The geology, the natural vegetation, and a conceptual model of salt accumulation of the study 

site were described in Tóth et al. (2002a). In the study area the maximal difference in 

elevation is 1.76 m. Although this difference is small, it was found that elevation is a major 

factor in the soil salinization. The other factors are the groundwater depth and its chemical 

composition, which are related to the elevation. All these three factors contribute to the 

mosaic distribution of the natural vegetation. 

Tóth and Kuti (2002) used a k-means clustering procedure (Burrough, 1989) to classify the 

413 locations where ECa was measured into one of the three strata of salt accumulation. These 

strata were identified as waterlogging, salt accumulation, and salt leaching (Tóth et al, 2001a). 

For 3 locations (numbers 8, 10, and 11) a morphologic description and horizon-wise sampling 

for laboratory analysis was carried out as a way for validation. The waterlogging zone 

corresponds to the wet area with the lowest elevation, the natural vegetation is a meadow, and 

location 10 represents a typical profile.  
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The zone of salt accumulation is intermediate in elevation, is the most sodic and saline, 

covered with short grass, and location 8 can be considered as a typical profile. The salt 

leaching zone has the highest elevation, is the least sodic, the natural vegetation is a tall grass, 

and location 11 is a typical profile. 

All the 413 locations were subject to a k-means clustering, but only the membership of the 20 

locations considered in this study was reported (table 5.5). 

 

Table 5.5. k-means membership of the locations to the three salt accumulation strata. 

Salt accumulation stratum Waterlogging Salt accumulation Salt leaching 

Location number 2, 10, 14, 17 1, 3, 7, 8, 12, 15, 

16, 19, 20 

4, 5, 6, 9, 11, 13, 

18 

 

From tables 5.4 and 5.5 we can conclude that the locations classified as low saline belong to 

the zones of waterlogging or leaching, the latter being more frequent than the former. 

Locations classified as highly saline originate exclusively from the accumulation zone while 

locations representative of the average field salinity encompass the three possible zones with 

the predominance of the accumulation zone, leaching and waterlogging zones are equally 

represented but less than the accumulation zone. 

The A horizon of the salt accumulation zone (location 8) has a very limited hydraulic 

conductivity compared to the waterlogging zone (location 10) and the salt leaching zone 

(location 11). Also, the range of soil moisture change is the largest for the accumulation zone. 

The region is characterized by sudden showers during summer with large amount of rainfall. 

The soil shows swelling/shrinking properties which results in cracking. The cracks, open on 

the dry surface, allow a sudden leaching of salts. Consequently it can be expected that the 

large temporal deviations (less time stable) for locations in the accumulation zone are related 

to the cracking and the subsequent leaching processes. 

Waterlogging and leaching zones showed soil patterns which are strongly time stable. During 

the wet season, in the leaching zone, the changes in soil salinity occur at greater depth 

because the groundwater table is deep, and during the warm season, there is no change in 

salinity as the groundwater is too deep. However in the waterlogging zone the changes occur 

at depth during the wet season because waterlogging keeps salinity low while during warm 

season there is no change because groundwater rise is controlled by strong rain infiltration. 

Based on the description above, it is possible to optimize the selection of locations used to 

monitor salinity in the future. The selection of the locations should consider the 3 salt 
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accumulation zones, which can be identified considering the elevation and the vegetation 

pattern. The characterization of low saline areas will be based on samples taken from the 

lowest locations covered with meadow (waterlogging zone) or from the highest zones covered 

with tall grass (leaching zone) while the investigation of highly saline areas considers the 

locations with intermediate elevations and covered with short grass (accumulation zone). 

However if we are interested in characterizing the average field salinity, we will need to 

obtain samples from the three zones. 

 

5.3.6. How good the selected sites are representative of the average salinity? 

 

To investigate how good the selected sites are representative of the average salinity we 

focused on EC2.5. The average salinity is an important input parameter for salinity predictive 

models. For example Saltmod (Oosterbaan, 1997) uses the cumulative Gumbel distribution 

which is assumed to fit the cumulative probability distribution of the root zone salinity. This 

distribution requires the average salinity and the standard deviation which is function of the 

average salinity.  

Locations 2 and 3 had a mean relative difference approaching zero and the smallest temporal 

standard deviation. The mean relative difference and its corresponding standard deviation 

were -0.01 dS/m and 0.15 dS/m for location 2, and 0 dS/m and 0.22 dS/m for location 3.  

Comparing the two series of means for using, either all 20 locations or only locations 2 and 3, 

we found that they agreed in most of the 19 cases. For example allowing for a difference of 

+/- 0.3 dS/m, they agreed for 14 out of the 19 cases, and in all the cases the difference is not 

more than 0.5 dS/m. The differences would be smaller if locations 2 and 3 had reduced 

temporal standard deviations, implying if they were more time stable. 

To explore the possibility to use only a limited number of locations to estimate the average 

EC2.5 instead of using all the 20 locations, we split our data set into two subsamples (Grayson 

and Western, 1998): the first subsample involving only the 9 first measurement times 

(excluding November 1994), and the second subsample covering the last 9 time instants. We 

computed the relative differences, their means and their standard deviations for each 

subsample separately. Then we plotted the average relative differences corresponding to the 

first subsample ranked from the smallest to the largest difference (Fig. 5.4) and overlayed the 

corresponding differences computed from the second subsample. 
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Fig. 5.4. Mean relative differences for EC2.5 for the first half of the data, the equivalent values 

for the second half are overlayed. Vertical bars represent +/- one standard deviation. 

 

 

We note from this figure that, using only half time coverage data, we reached the same 

locations representative of the average EC2.5 for both halves; these locations were also 

selected using the whole data (Fig. 5.3). This result provides more confidence in the ability of 

the method of relative differences to consistently identify and select locations which seems 

representative of the average field EC2.5. 
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5.4. Conclusions 
 

We applied the concept of temporal stability to soil salinity measurements provided by 

laboratory analysis (EC2.5) and field probes (ECa). The samples were collected from 20 

locations at four depths while ECa was sensed at two depths. Additionally we analyzed the 

mean EC2.5 over the four depths. The sampling was repeated at 19 time instants over 7 years. 

The Spearman rank order correlation showed a temporal persistence of the spatial pattern of 

both properties at all depths. It indicates the strength and the direction of a rising or falling 

relationship between measurements made at two different time instants. As the Spearman 

correlation measures only the degree of concordance between two rankings and to find out the 

locations which were time stable we applied the technique of relative differences. We found 

no temporal stability of the complete soil salinity pattern. However the low saline conditions 

were the most time stable while the locations representative of the average soil salinity had 

intermediate time stability and the high saline locations were the least time stable. Also, the 

low saline locations were related to zones of waterlogging and/or salt leaching while the high 

saline locations were related to the zone of salt accumulation. The locations representative of 

average soil salinity were present in the three zones: salt accumulation, salt leaching, and 

waterlogging. The concept of temporal stability allowed us to select a limited number of 

locations (as small as two), which were used to estimate the average soil salinity instead of 

using the 20 available locations. So this technique can be used to select the locations 

representative of average and extreme saline conditions, which will be used as ‘ground truth’ 

for the calibration and the validation of remote sensing data for the determination, for 

example, of a soil salinity index. According to the results on the temporal stability of soil 

salinity in the studied native solonetzic landscape, the zonation of the toposequence 

(vegetation pattern and elevation) was a very good indicator of the differences in soil salinity 

and its temporal stability and supports the previous/ongoing soil mappings based on 

vegetation type.  

The elaborated procedure is a general one and can be used in different ecosystems 

(agricultural field, native vegetation like grassland, bushland, forest), for different soil 

proprieties (moisture, salinity, soluble nutrients), and under different climatic zones (semi-

humid, arid, semi-arid). 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

 

DETECTING AND MONITORING TEMPORAL CHANGES OF 

SPATIAL PATTERNS OF SOIL SALINITY USING ELECTRODE 

PROBES 
 

 

 

 

 

 

 

 

 

 

Based on: Douaik A., Van Meirvenne M. and Toth T. Detecting and monitoring temporal 

changes of spatial patterns of soil salinity using electrode probes. Submitted for publication in 

Soil Science Society of America Journal.
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Abstract 
 

Soil salinity was evaluated in the east of Hungary by measuring electrical conductivity from 

1:2.5 soil:water extract (EC2.5) and using 4-electrode probes (ECa) at 13 to 20 locations during 

19 time instants between November 1994 and June 2001. Spearman rank correlation and a 

stronger criterion, the test of significance of the slope and the intercept of the regression, were 

used to test the temporal stability of soil salinity. To check the significance of the mean 

temporal change we used the paired-t test and the first test of Lesch et al. (1998) while their 

second test was used to check if there is a dynamic spatial variation. Spearman correlation 

revealed an overall temporal stability in ECa and EC2.5. The stronger criterion showed that the 

relative differences did not remain constant for some pairs of time instants while it did for 

others. In the latter case, the change in the spatial pattern was constant for ECa between 

March and June 2001 (a decrease of 0.66 dS m-1) while there was a constant decrease for 

EC2.5 between March and June 1995 (0.28 dS m-1) and between March and June 1996 (0.18 

dS m-1). The paired-t test indicated that the mean difference in ECa was significant in 14 out 

of the 18 pairs while for EC2.5 it was significant only for 4 pairs. The first test of Lesch et al. 

(1998) confirmed, for 3 of the 4 pairs, the results of the paired-t test. Their second test 

revealed that there was a dynamic spatial variation for 3 pairs while for the remaining pairs, 

there was no change or the change was proportional. The results indicate that the temporal 

variability of soil salinity is complex and unstable. 
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6.1. Introduction 
 

Soil salinity is one of the most important factors of worldwide land degradation. To control its 

harmful effect, we need to monitor it both in space and time. Soil salinity can be assessed in 

the laboratory by determining the electrical conductivity of a solution extracted from a water-

saturated soil paste (ECe). However, this procedure is time consuming and expensive. As an 

alternative, it can be evaluated by measuring the apparent electrical conductivity (ECa) in the 

field using electrode probes or electromagnetic induction instruments. This approach is fast 

and cheaper, and allows a more intensive surveying of soil salinity. Nevertheless it still needs 

the collection of soil samples for their analysis in the laboratory to establish calibration 

equations linking ECa to ECe. 

As soil salinity is variable in space and time, its monitoring requires numerous measurements. 

However the spatial pattern of soil salinity can manifest some persistence over time. In this 

case we can identify certain measuring locations where deviations of soil salinity 

measurements from the field mean value are nearly constant at all times. This implies that a 

reduced number of locations could be identified which are able to characterize the soil salinity 

status of the field and consequently the sampling and survey effort can be reduced.  

To check the presence of temporal persistence, also known as temporal stability, Vachaud et 

al. (1985) introduced two concepts. The first one is based on the Spearman rank correlation. It 

consists in the determination of the rank correlation coefficient between two time instants. 

The spatial pattern is considered to be persistent or stable when this correlation coefficient is 

close to one. The lack of temporal stability is indicated by a coefficient near zero. 

The second concept is based on the relative difference. Kachanoski and De Jong (1988) used 

the relative differences and showed that a good test for the temporal persistence is the Pearson 

correlation and the simple linear regression between values observed at two consecutive time 

instants. This finding was applied by many researchers. Van Wesenbeek et al. (1988) 

examined the temporal persistence of the spatial pattern of soil water storage by computing 

the coefficient of determination between successive pairs of measurement dates. In addition, 

Winkel et al. (1995) studied the temporal stability of the shoot biomass production of 

grapevine response to a soil texture gradient. Da Silva et al. (2001) used the regression 

between successive dates to determine factors that contribute to the temporal stability in 

spatial pattern of the water content while the temporal stability of soil moisture was studied 

by Martínez-Fernández and Ceballos (2003). Similarly, the temporal persistence of the spatial 

variability of soil moisture was studied by Petrone et al. (2004).  
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Using the procedure based on the relative differences and the regression between consecutive 

times, it is possible to check if there is persistence in the spatial pattern of a soil property 

between two time instants. This temporal persistence implies that the values, measured at 

various locations, tend to retain their relative ranking over time even though the mean value 

might have increased or decreased between two measurement instants. We still need to know 

and test if the mean value has significantly increased or decreased. The latter can be achieved 

by comparing the mean difference based on the paired-t test (McClave and Sincich, 2000). 

This approach was used by Kenny et al. (2002) to check the temporal trend of the mean 

thickness of the Ap horizon. 

Lesch et al. (1998) introduced a procedure to check the temporal change between two time 

instants by combining ECa and EC2.5. Their approach was based on the determination of a 

calibration equation relating ECa to EC2.5 from the first time frame. Using this equation, they 

predicted EC2.5 for the second time frame and tested for two kinds of change. The first test is 

used to check if the observed mean value at the second time frame and the mean of the 

estimated values, from the calibration equation of the first time frame, are significantly 

different. The second test allows detecting a dynamic spatial variation, i.e. the change in soil 

salinity was different from one location to another. If this was not the case then the spatial 

variation was not dynamic meaning either no change or that the change occurred in the same 

proportion between two time frames for all locations. 

The objectives of our study were to check if: 

• the mean soil salinity changed (increased or decreased) between two time frames 

using the paired-t test and the first test of Lesch et al. (1998); 

• the change was the same or not from location to location, i.e. if this change was 

dynamic using the concept of temporal stability and the second test of Lesch et al. 

(1998). 

The paired-t test and the temporal stability were applied to ECa and EC2.5 while the tests of 

Lesch et al. (1998) were applied only to EC2.5 as the latter was predicted from ECa. 
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6.2. Material and methods 
 

6.2.1. Data Description 

 

The same data sets and the same variables considered in the last chapter are used here (see 

chapter 5, section 5.2.1 and chapter 3, section 3.2.1). 

 

6.2.2. Methods 

 

For more detail about the different statistical approaches used in this chapter, see sections 

4.2.3 and 4.2.4. 

 

6.3. Results 
 

6.3.1. Correlation Coefficients 

 

The Pearson linear and Spearman rank correlation coefficients between successive time 

instants for ECa and EC2.5 are reported in table 6.1. 

All Pearson correlation coefficients for both variables are very highly significant indicating 

the presence of temporal stability in the spatial pattern of ECa and EC2.5. The coefficients 

ranged between 0.81 and 0.98 for ECa and between 0.58 and 0.94 for EC2.5. The Spearman 

correlation coefficients varied between 0.69 and 0.98 for ECa and between 0.65 and 0.95 for 

EC2.5. The probability that ranks were not preserved between any two consecutive times was 

less than 0.001, except for EC2.5 between the two first times (0.02), which indicates a very 

high degree of temporal persistence for the ranking of both variables. 

The square of the Pearson correlation coefficients, the coefficients of determination, indicate 

how much of the spatial variance observed at one time can be explained by the variance 

present at the precedent time. The values ranged between 66 and 96% for ECa and between 34 

and 88% for EC2.5. All the coefficients of determination, except the one for EC2.5 between the 

first two times, were more than 60%, which means that more than 60% of the spatial pattern 

persisted over time. 
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Table 6.1. Pearson linear and Spearman rank correlation coefficients for ECa and EC2.5. 

 

   

Pearson correlation 

  

Spearman correlation 

  

Times ECa EC2.5 ECa EC2.5 

   dS m-1  

1 - 2 0.85 0.58 0.69 0.65 

2 - 3 0.87 0.78 0.82 0.72 

3 - 4 0.91 0.93 0.91 0.94 

4 - 5 0.93 0.92 0.92 0.96 

5 - 6 0.98 0.93 0.98 0.94 

6 - 7 0.96 0.84 0.96 0.88 

7 - 8 0.88 0.78 0.90 0.83 

8 - 9 0.88 0.92 0.92 0.94 

9 - 10 0.92 0.93 0.95 0.95 

10 -11 0.88 0.90 0.91 0.93 

11 - 12 0.86 0.90 0.92 0.88 

12 - 13 0.94 0.82 0.94 0.80 

13 - 14 0.94 0.94 0.92 0.85 

14 - 15 0.81 0.91 0.80 0.85 

15 - 16 0.87 0.94 0.89 0.95 

16 - 17 0.94 0.94 0.93 0.93 

17 - 18 0.83 0.79 0.89 0.79 

18 - 19 0.86 0.85 0.91 0.87 

 

1 to 19 refer to: November 1994; March, June, September, and December 1995; March and 

June 1996; March, June, September, and December 1997; September 1998; April, July and 

September 1999; April and December 2000; March and June 2001, respectively. 

 

6.3.2. Linear regression models 

 

The intercept of the fitted linear regression models and the slope are reported in table 6.2 for 

ECa and in table 6.3 for EC2.5 together with some related statistics. 

 



CHAPTER 6. Detecting and monitoring temporal change 
 
 

 105

 

Table 6.2. Regression intercepts and slopes (computed and expected) between ECa values for 

consecutive times. I: intercept; p(I=0): probability that the intercept is equal 0; S: slope, 

p(S=1): probability that the slope is equal 1; ES: expected slope; p(S=ES): probability that 

the slope is equal to the expected value. 

 

Times I p(I=0) S ES p(S=1) p(S=ES) 

 dS m-1  dS m-1 dS m-1  

1 - 2 0.07 0.74 3.94 4.23 0.002 0.69 

2 - 3 0.12 0.75 1.17 1.23 0.30 0.71 

3 - 4 0.07 0.79 0.82 0.85 0.07 0.77 

4 - 5 0.31 0.20 0.94 1.10 0.53 0.10 

5 - 6 0.11 0.42 0.80 0.85 0.0004 0.26 

6 - 7 -0.03 0.70 0.38 0.37 0.0001 0.71 

7 - 8 0.44 0.09 2.13 2.75 0.0007 0.04 

8 - 9 0.02 0.92 0.58 0.60 0.0004 0.85 

9 - 10 -0.03 0.76 0.62 0.59 0.0001 0.71 

10 -11 0.45 0.007 1.15 1.78 0.33 0.0004 

11 - 12 0.30 0.47 1.85 2.09 0.005 0.38 

12 - 13 -0.01 0.98 1.20 1.19 0.07 0.94 

13 - 14 0.78 0.17 1.06 1.28 0.65 0.09 

14 - 15 -0.95 0.31 0.75 0.54 0.15 0.22 

15 - 16 1.41 0.002 0.75 1.36 0.03 0.0001 

16 - 17 -0.68 0.02 0.76 0.54 0.002 0.005 

17 - 18 1.11 0.0005 0.64 1.31 0.003 0.0001 

18 - 19 -0.66 0.11 1.01 0.70 0.96 0.052 

 

From tables 6.2 and 6.3 we note that the regression intercept was significantly different from 

zero for 4 and 6 consecutive times for ECa and EC2.5, respectively. 

The temporal stability implies that there is a small variation and temporal independence in the 

relative differences between two time instants. This is indicated by a regression intercept 

equal to zero and a slope equal to the ratio of the mean value of the observed data at the 

second time frame to the mean for the first time frame. We note that, for ECa, this is not 

checked for the consecutive times 7-8, 10-11, 15-16, 16-17, and 17-18. 
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Table 6.3. Regression intercepts and slopes (computed and expected) between EC2.5 values 

for consecutive times. The abbreviations are the same as in table 6.2. 

 

Times I p(I=0) S ES p(S=1) p(S=ES) 

 dS m-1  dS m-1 dS m-1  

1 - 2 1.05 0.008 0.52 1.62 0.052 0.006 

2 - 3 -0.28 0.56 1.00 0.88 1.00 0.54 

3 - 4 0.33 0.09 0.84 1.00 0.058 0.06 

4 - 5 0.15 0.43 0.84 0.91 0.07 0.40 

5 - 6 0.54 0.008 0.78 1.06 0.02 0.004 

6 - 7 -0.18 0.64 1.00 0.92 0.98 0.64 

7 - 8 0.59 0.01 0.55 0.88 0.0004 0.005 

8 - 9 -0.24 0.38 1.34 1.18 0.052 0.33 

9 - 10 -0.57 0.06 1.23 1.60 0.13 0.02 

10 -11 0.37 0.047 0.76 0.98 0.01 0.02 

11 - 12 0.32 0.45 1.86 2.06 0.001 0.38 

12 - 13 -0.33 0.45 0.66 0.56 0.006 0.37 

13 - 14 0.69 0.01 0.72 1.04 0.005 0.002 

14 - 15 -0.20 0.68 1.23 1.14 0.22 0.63 

15 - 16 0.24 0.27 0.78 0.88 0.006 0.16 

16 - 17 0.02 0.93 1.15 1.16 0.17 0.90 

17 - 18 0.63 0.04 0.49 0.75 0.0001 0.01 

18 - 19 -0.25 0.54 1.27 1.13 0.17 0.47 

 

Regarding EC2.5, the intercept and the slope were significantly different from the expected 

values for the consecutive times 1-2, 5-6, 7-8, 9-10, 10-11, 13-14, and 17-18. This means that 

for these pairs of times there was no temporal stability and consequently the relative ranking 

of the locations did not remain the same between two consecutive times. We deduce also that, 

for the remaining pairs of times, the relative differences remained constant and the relative 

ranking of the locations remained approximately the same. However we still don’t know if the 

change between the above two successive measurements was the same for all the locations or 

if it was different from one location to another. If there was a change which affected 

uniformly all the spatial positions between consecutive times, the regression slope should be 

equal to one and the intercept represents the constant change that has occurred (Kachanoski 
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and De Jong, 1988; Winkel et al., 1995). Based on the results from tables 2 and 3, we can note 

that, for ECa, a constant change occurred between consecutive times 2-3, 3-4, 4-5, 12-13, 13-

14, 14-15, and 18-19. This variable increased between 2-3 (0.12 dS m-1), 3-4 (0.07 dS m-1), 4-

5 (0.31 dS m-1), and 13-14 (0.78 dS m-1) while it decreased between 12-13 (0.01 dS m-1), 14-

15 (0.95 dS m-1), and 18-19 (0.66 dS m-1). For EC2.5, the constant change has occurred 

between consecutive times 2-3 to 4-5, 6-7, 8-9, 14-15, 16-17, and 18-19 with a uniform 

increase between 3-4 (0.33 dS m-1), 4-5 (0.15 dS m-1), and 16-17 (0.02 dS m-1) and a constant 

decrease between 2-3 (0.28 dS m-1), 6-7 (0.18 dS m-1), 8-9 (0.24 dS m-1), 14-15 (0.20 dS m-1), 

and 18-19 (0.25 dS m-1). 

The precedent results were based on a probability of the error of type I of 5%. However the 

regression slope was equal to one, senso stricto, only between times 18 and 19 for ECa, and 

between times 2 and 3, and 6 and 7 for EC2.5. The mean difference values between two 

consecutive times are reported in table 5.4. We note from tables 2 to 4 that the mean 

difference value was equal to the intercept only for the consecutive times for which the 

regression slope was effectively equal to one but not in the statistical significance sense. The 

discrepancy between these two values became larger as the significance level of the unity 

slope became smaller. 

 

6.3.3. Temporal mean change 

 

The results of the paired-t test applied to ECa and EC2.5 are reported in table 6.4. We note that 

the mean ECa difference between two consecutive times was significantly different from zero 

for 14 out of the 18 pairs of times. For these cases the mean value decreased or increased for 

the same number of occasions (7). However the results were different for EC2.5. For this 

variable the hypothesis that the mean difference was not equal to zero was rejected only for 4 

consecutive times, from which the mean value decreased between one pair of times while it 

increased for the three others. 
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Table 6.4. Paired-t test for consecutive ECa and EC2.5 measurements. MD: mean difference; 

p(MD=0): probability that the mean difference is not significantly different from zero. 

 

Times   ECa   EC2.5 

  MD p(MD=0) MD p(MD=0)

 dS m-1  dS m-1

1 - 2 0.77 0.0005 0.37 0.006

2 - 3 0.43 0.06 -0.27 0.09

3 - 4 -0.33 0.08 -0.01 0.97

4 - 5 0.20 0.21 -0.17 0.06

5 - 6 -0.36 0.01 0.11 0.24

6 - 7 -1.25 0.0001 -0.17 0.20

7 - 8 1.24 0 -0.22 0.09

8 - 9 -0.73 0.003 0.27 0.03

9 - 10 -0.44 0.002 -0.17 0.25

10 -11 0.55 0 -0.03 0.83

11 - 12 1.37 0.0002 1.70 0

12 - 13 0.51 0.03 -1.46 0

13 - 14 0.98 0.01 0.08 0.72

14 - 15 -2.06 0.003 0.32 0.26

15 - 16 0.84 0.02 -0.29 0.10

16 - 17 -1.44 0 0.33 0.06

17 - 18 0.52 0.06 -0.58 0.06

18 - 19 -0.65 0.007 0.22 0.33

 

The first approach of Lesch et al. (1998) compares the mean value for the observed EC2.5 at 

the second time frame to the mean of the predicted values based on the regression modeling 

using ECa and EC2.5 from the first time frame. Table 6.5 shows the parameters (intercept and 

slope), the coefficient of determination and the mean square error of the regression calibration 

equations linking EC2.5 to ECa for each time frame. 
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Table 6.5. Parameters of the calibration regression models linking EC2.5 to ECa with the 

coefficient of determination (r²) and the mean square error (MSE). 

 

Time Intercept Slope r² MSE

 dS m-1 dS m-1 

1 0.81 2.56 0.72 0.07

2 1.29 0.54 0.83 0.13

3 0.87 0.50 0.77 0.29

4 0.97 0.54 0.89 0.11

5 0.83 0.47 0.85 0.13

6 1.20 0.44 0.75 0.17

7 0.87 1.35 0.76 0.20

8 0.82 0.41 0.80 0.08

9 0.91 0.80 0.69 0.32

10 0.51 1.59 0.88 0.19

11 0.36 0.99 0.82 0.21

12 0.95 0.89 0.72 1.37

13 -0.10 0.62 0.86 0.44

14 0.38 0.43 0.83 0.47

15 0.85 0.62 0.83 0.65

16 0.20 0.61 0.89 0.32

17 0.83 0.92 0.87 0.49

18 0.12 0.77 0.95 0.08

19 0.70 0.86 0.74 0.84

 

Based on the parameters from table 6.5, EC2.5 was predicted for successive times and the 

differences between the observed and the predicted EC2.5 values with their mean were 

computed. The latter with the test statistic c and its probability of significance are reported in 

table 6.6. 

 

 

 



CHAPTER 6. Detecting and monitoring temporal change 
 
 

 110

Table 6.6. Mean difference values and their significance level for consecutive times. MD: 

mean difference; p(MD=0): probability that the mean difference is not significantly different 

from zero. 

 

Times MD Statistic c p(MD=0)

 dS m-1  

1 - 2 0.37 2.32 0.04

2 - 3 -0.28 -1.48 0.16

3 - 4 0 -0.02 0.99

4 - 5 -0.18 -1.02 0.32

5 - 6 0.15 0.83 0.42

6 - 7 -0.17 -0.86 0.40

7 - 8 -0.22 -1.05 0.31

8 - 9 0.22 1.28 0.22

9 - 10 -0.17 -0.55 0.59

10 -11 -0.03 -0.12 0.90

11 - 12 1.70 4.41 0

12 - 13 -1.45 -2.84 0.01

13 - 14 0.21 0.67 0.51

14 - 15 0.32 0.73 0.48

15 - 16 -0.18 -0.49 0.63

16 - 17 0.33 1.15 0.27

17 - 18 -0.56 -1.48 0.16

18 - 19 0.23 0.90 0.38

 

The shift in the mean field salinity was significantly different for three pairs of time frames 

with an increase between times 1-2 (0.37 dS m-1) and 11-12 (1.70 dS m-1) while the mean 

EC2.5 decreased between 12-13 (1.45 dS m-1). For all the remaining pairs of times, the mean 

change in EC2.5 may be considered as not significantly different from zero. 

Comparing the mean differences from tables 6.4 and 6.6 we can note a good agreement 

between the two series of means even if the methods of computation are basically different. 

Also we note that the mean difference was significantly different from zero for three pairs of 

measurements instead of four pairs when the paired-t test was used (table 6.4). 
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6.3.4. Dynamic spatial variation 

 

The approach of Lesch et al. (1998) allows to test, in addition to the mean change, if the 

salinity pattern has changed in a spatially variable manner, i.e. if the change was different 

from location to location, between two time frames (space-time interaction). The results from 

this test are shown in table 6.7. 

 

Table 6.7. Test of significance of the dynamic spatial variation: statistic φ and its significance 

p(φ=0). 

 

Times Statistic φ p(φ=0)

1 - 2 1.95 0.13

2 - 3 2.19 0.051

3 - 4 0.58 0.88

4 - 5 2.18 0.053

5 - 6 1.40 0.24

6 - 7 0.65 0.81

7 - 8 1.09 0.43

8 - 9 2.52 0.03

9 - 10 1.12 0.43

10 -11 1.42 0.23

11 - 12 9.62 0

12 - 13 0.80 0.68

13 - 14 0.66 0.76

14 - 15 2.06 0.11

15 - 16 1.02 0.48

16 - 17 1.57 0.18

17 - 18 1.88 0.10

18 - 19 10.84 0

 

From the results of table 6.7, we can consider that the spatial variation in EC2.5 was different 

from location to location for three pairs of times: between times 8-9, 11-12, and 18-19. For all 

the other consecutive times, there was either no change between the pairs of times or the 
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spatial variation was constant or proportional from location to location between each pair of 

times. 

Based on the results from tables 6.6 and 6.7, we note that we have four different scenarios in 

the spatial pattern of EC2.5: 

• For the pairs of times 1-2, and 12-13: there was a significant change in the mean value 

but this change was not different from location to location, 

• For the pairs of times 2-3 to 7-8, and 13-14 to 17-18: the mean change was not 

significantly different from zero and this change was static (not different from location 

to location), 

• For the pairs of times 8-9, and 18-19: the mean change was not significantly different 

from zero however this change was dynamic (different from location to location), but 

when averaged over all the locations it was not significant, 

• For the pair of times 11-12: the mean change was significantly different from zero and 

this change was dynamic. 

 

6.4. Discussion and conclusions 
 

The utility of the concept of temporal stability lies in the possibility to identify particular 

locations that represent important statistics of the variable under study as the mean value or 

the mean value ± one standard deviation. This implies that the sampling effort for monitoring 

soil proprieties could be noticeably reduced. The Spearman rank correlation and the relative 

differences, two techniques used to check the temporal stability, allow to test if the relative 

ranking of locations remained the same between two time instants. However we still need to 

know if the change that occurred is the same for all locations between the two time instants or 

if it was different. The linear transformation between a variable measured at two consecutive 

times, as a consequence of the existence of the temporal stability of the spatial pattern, can be 

used to check this hypothesis. When the slope of the regression between values from two 

consecutive times is equal to the ratio of the means and the intercept is zero, we are able to 

conclude that the temporal stability exists, the relative differences remain constant, and the 

relative ranking of locations remains the same. Nevertheless the relative ranking does not 

inform us about the nature of the change that occurred because the relative ranking can remain 

the same for the cases of no change, a constant change (increase or decrease) or even a 

different change from location to location. Using the concept of temporal stability, the only 
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situation for which we are able to know the nature of the change, is when there is no change 

or constant change between two times. In this case the constant change is also the mean 

change that occurred between two measurements. We still need an approach to check if the 

change in the mean value is significant. The paired-t test is used to answer this question. It 

can be also checked using the first test of Lesch et al. (1998). Moreover their second test 

allows checking the existence of a dynamic spatial variation, meaning if the soil salinity 

changed differently from location to location. The usefulness of their approach lies in the fact 

that only the ECa - EC2.5 pairs of values from the first time frame are needed along with the 

EC2.5 values from the second time frame. If it is found that there was no change, or the change 

was constant, between the two time frames, the regression equation computed using the first 

time frame data can be used to determine the EC2.5 values for the second time frame using a 

larger ECa survey data set. However if a dynamic spatial variation was detected, then a new 

regression equation should be estimated using the ECa - EC2.5 pairs of values from the second 

time frame.  

Based on the Spearman rank correlation coefficient, we found that the spatial pattern of ECa 

and EC2.5 appeared to be stable over time. However using the stronger criterion of the equality 

of the relative differences between two time instants, we found that for some pairs of time 

frames, the relative differences did not remain constant even though the ranking remained 

almost the same. This was the case for ECa between the time instants 7-8, 10-11, 15-16, 16-17, 

and 17-18 while for EC2.5 between time frames 1-2, 5-6, 7-8, 9-10, 10-11, 13-14, and 17-18. 

The spatial pattern of ECa and EC2.5 was found to be time stable for the other pairs of times. 

Among the latter, the change in the spatial pattern was constant between time instants 18-19 

(a decrease of 0.66 dS m-1) for ECa and between 2-3 (a decrease of 0.28 dS m-1) and 6-7 (a 

decrease of 0.18 dS m-1) for EC2.5. These constant changes reflected also the mean change. To 

further test if the mean change was significant or not, we used the paired-t test and the first 

test of Lesch et al. (1998). Both techniques identified a significant mean difference for three 

common pairs of times: mean change between time instants 1-2, 11-12, and 12-13, while the 

paired-t test identified an additional pair of times (8-9) for which the mean change was also 

significant. So both techniques agreed in their results even if they are based on different data 

sources. The dynamic spatial variation was checked using the second test of Lesch et al. 

(1998). We found that the spatial variation was different from location to location for three 

pairs of measurements: 8-9, 11-12, and 18-19. For the remaining couples of times, the spatial 

pattern was considered to have not been changed or changed in a constant or proportional 

manner.  



CHAPTER 6. Detecting and monitoring temporal change 
 
 

 114

The temporal stability concept requires a large number of measurements, but once it is 

checked, future measurements are reduced to locations that represent important statistics. 

Therefore the sampling effort can be reduced. Likewise, based on the Lesch et al. (1998) 

approach, if it is found that there is no dynamic spatial variation, the sampling effort can be 

further reduced to the ECa survey for the first time frame while the laboratory analysis can be 

done for two time frames but at a reduced number of locations. So the joint use of the concept 

of temporal stability and the two tests of Lesch et al (1998) could drastically reduce the 

sampling effort. 
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CHAPITER 7 

 

SPATIO-TEMPORAL KRIGING OF SOIL SALINITY RESCALED 

FROM BULK SOIL ELECTRICAL CONDUCTIVITY 
 

 

 

 

 

 

 

 

 

Based on: Douaik A., Van Meirvenne M. and Toth T. (2004). Spatio-temporal kriging of soil 

salinity rescaled from bulk soil electrical conductivity. In : Sanchez-Vila X., Carrera J. & 

Gómez-Hernández J. (eds.) geoENV IV – Geostatistics for Environmental Applications, 

Kluwer Academic Publishers, Dordrecht, The Netherlands, volume 13: 413-424 (ISBN : 1-

4020-2114-3). 
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Abstract. 
 

Our spatial data consist of 413 measurements of the apparent electrical conductivity (ECa) 

obtained with electrical probes in the east of Hungary. Additionally, a limited subset of the 

locations (15 to 20) was sampled for laboratory analysis of soil electrical conductivity of 1:2.5 

soil:water suspension (EC2.5), a simple proxy for the electrical conductivity of soil saturation 

extract (ECe). The latter formed our calibration data set. This procedure was repeated 17 times 

between November 1994 and December 2000 yielding a large spatio-temporal database. 

The first step was to rescale EC2.5 from ECa, based on the calibration data sets, using classical 

and spatial regression models. The residuals of the ordinary least squares model were tested for 

the absence of spatial dependence using the Moran’s I test. This hypothesis was accepted, the 

EC2.5 was rescaled using the classical regression model. The next step was to identify the 

structure of the variability of the rescaled EC2.5 by computing and modeling the spatial, the 

temporal, and the spatio-temporal covariance functions. Finally, soil salinity maps were 

produced for the study area and for any time instant using spatio-temporal kriging. The 

estimates were more precise compared to the ones obtained using only the spatial covariance 

function computed and modeled separately for each time instant.   
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7.1. Introduction 
 

The effective control of soil salinity requires the knowledge of its magnitude and extent, and 

also its changes over time. Detecting trends, which occur in salinity conditions over time, is 

an important step to identify emerging problems, and to determine the progress of reclamation 

efforts. 

Soil salinity assessment requires inventory and monitoring of soil salinity, since it is spatially 

variable and temporally dynamic in nature. 

Soil salinity is conventionally determined by measurements of the electrical conductivity of the 

extract of a water-saturated soil-paste (ECe). This property can also be observed indirectly 

from measurements of the apparent electrical conductivity (ECa) of the bulk soil. The latter is 

measured in the field using electrical probes.  

The conventional soil sampling and laboratory analysis procedure is very expensive. A cost-

effective way is to use mobile techniques for rapidly measuring ECa as a function of the spatial 

position, to infer ECe from ECa, and to map ECe at any location in space and any instant in 

time. 

 

Lesch et al. (1998) developed a statistical monitoring strategy. It requires the estimation of a 

conditional regression model to predict ECe from ECa, and the use of 2 statistical tests: one for 

detecting dynamic spatial variation in the salinity pattern and the other for detecting a change 

in the field median salinity level with time. The drawback of this approach is that we get 

salinity maps only for the observed time instants, and at the observed locations. 

We propose in this work to use an alternative approach, based on geostatistical tools, which is 

capable of using the spatial and temporal dependencies as well as producing maps for any 

location in space and any time instant. 

 

7.2. Data sets 
 

Both ‘calibration data set’ and ‘data set to be calibrated’ were used in this chapter (see chapter 

3, section 3.2.1). A lot of research on salinity/sodicity and its correlation to the vegetation has 

been done in this natural ecosystem (Toth et al., 1991; Van Meirvenne et al., 1995; Toth et al., 

1998; Toth et al., 2001b; and Toth et al., 2002b).  
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7.3. Analysis 
 

The histograms of the ECa and also of EC2.5 showed skewed distributions and after a 

logarithmic transformation, the distributions became less asymmetric. The linearity of their 

relationship was also improved (see section 7.4.1). All the analysis was based on the 

transformed data. The calibration data set was used to compute the calibration equations (one 

equation for each time instant) as a first step. We tried to relate EC2.5 to ECa using 2 

approaches. The first method is the classical ordinary least squares regression (OLS): 

ξ++= )ln()ln( 5.2 aECbaEC  

where a and b are the regression coefficients and ξ represents the independently Gaussian 

errors. 

 

The other approach is the spatial regression (Anselin, 1988). For this method we checked 4 

different models: 

- the spatial autoregressive model (SAM): 

2.5 2.5ln( ) ln( ) ln( )aEC EC b ECρ ξ= + +W  

It is also known under the name of spatial lag model. The spatial dependence is incorporated, 

in this case, as an additional regressor in the form of a spatially lagged dependent variable 

[ 2.5ln( )ECW ]. The coefficient related to this additional regressor reflects the spatial 

dependence inherent in the sample data and measures the average influence of neighbouring 

or contiguous observations on the observed dependent values. This model is appropriate when 

the concern is the assessment of the existence and strength of spatial interaction 

- the spatial error model (SEM): 

2.5ln( ) ln( )aEC b EC ω= +             with  ξωλω += W  or ( )λ ω ξ− =I W , I being the identity 

matrix. 

For this model, the spatial dependence is incorporated in the error structure, which means that  

0i jE ξ ξ  ≠  . It is appropriate when the focus of interest is with correcting for the potentially 

biasing influence of the spatial autocorrelation. It captures the influence of unmeasured 

independent variables. 
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- the spatial general model (SGM) which is the combination of the 2 above models: 

2.5 2.5ln( ) ln( ) ln( )aEC EC b ECρ ω= + +W     with  ξωλω += W  or ( )λ ω ξ− =I W . 

In these equations ρ and λ are the spatial autocorrelation parameters, ω represents the errors 

with spatial dependence, and W is the matrix of the spatial weights build from the distance 

separating 2 observations using the Delaunay triangulation algorithm (see section 4.2.5). 

- The geographically weighted regression, GWR (Brundson et al., 1996): 
1/ 2 1/ 2

2.5ln( ) ln( )i aEC b EC ξ= +iW W  

The approach is, in essence, non-parametric. It is a method of analysing spatially varying 

relationships, assuming that data are spatially non-stationary. It uses distance-weighted sub-

samples of the data to produce locally linear regression estimates for every point in space. 

Each estimated set of parameters is based on a distance-weighted sub-sample of neighbouring 

observations based on distances separating the observations. The distance-based weights can 

be determined based on a vector of distance between a given observation (space location) and 

all other observations in the sample in a similar way to the definition of the proximity matrix 

(see section 4.2.5). 

 

The residuals of the OLS regression were tested for the presence of spatial autocorrelation 

using the Moran’s I test (Cliff and Ord, 1981). Further, we used maximum likelihood-based 

tests, on the results of the spatial regression, to check the significance of the spatial 

autocorrelation parameters (ρ and λ) and to choose the most adequate model. 

 

At the end of this step, we got a data matrix of 17 columns (time instants) and 413 rows 

(locations) of EC2.5 values with some missing values corresponding to the locations for which 

ECa was not available. 

This data matrix can be considered as a space-time random field, STRF (Christakos, 1992): 

X(s, t), (s, t) ∈ D x T   

with  D ⊂ ℜ2 (real numbers set) and T ⊂ ℜ+ (positive real numbers set) 

with s : 2-D spatial coordinates and t : temporal coordinate. 
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The second step in our analysis was to model the spatial, the temporal and the spatio-temporal 

dependence of the salinity data matrix.  

The procedure is as follows (Christakos et al., 2002): 

- First, the space-time mean trend is estimated. The smoothed spatial components (one for each 

location) were computed using an exponential spatial filter applied to the averaged 

measurements (for each location, over all the time instants). We computed also the smoothed 

temporal components (one for each time instant) using an exponential temporal filter applied 

to the averaged measurements (for each time instant, over all the locations); 

- Then, the above components of the space-time mean trend were interpolated to the data grid 

giving m(s, t); 

- The residuals were computed as the space-time mean trend subtracted from the original data 

matrix:  R(s, t) = X(s, t) – m(s, t); 

- The residual data matrix was used to compute the spatial c(h, τ=0), temporal c(h=0, τ) and 

spatio-temporal c(h, τ) covariance functions : 

 

[ ]( ,0) cov ( ), ( )c R R= +h s h s , 

[ ]( , ) cov ( ), ( )c R t R tτ τ= +0 , 

[ ]( , ) cov ( , ), ( , )c R t R tτ τ= + +h s h s  

 

where h and τ are the spatial and temporal lags, respectively, and cov is the covariance 

function. 

- Finally we fitted theoretical models to the computed experimental covariance functions. The 

available data were sparse and so we were restricted to an isotropic model,  ( , ) ( , )c cτ τ=h h . 

The last step was the estimation at unobserved locations and time instants using space-time 

kriging (Chiles and Delfiner, 1999; Christakos, 1992) and the fitted covariance functions. 

As we used the residual covariance functions, the resulting estimated data corresponded to the 

residual values. To get the values in the original scale, we interpolated the spatial and 

temporal components of the space-time mean trend to the kriging grid. These estimated values 

were added to the interpolated space-time mean trend values to obtain the kriged values in the 

original scale. 
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The classical regression was done using the SAS software (SAS Institute, 1993), the spatial 

regression was fitted using the Econometrics Toolbox (Lesage, 1999) running under Matlab 

software. The geostatistical computations were handled using the BMElib library (Christakos 

and al., 2002). The toolbox and the library are built on the Matlab software (Mathworks, 

1999).   

 

7.4. Results 
 

7.4.1. Exploratory data analysis 

  

As there was only up to 20 data available for EC2.5 and ECa from the calibration data set at 

each of the 19 time instants, their histograms were not so well behaved. Even tough, we can 

still note the tail heaviness of the distributions of the data on the original scale whereas these 

distributions looked less asymmetric and even like a normal distribution when a logarithmic 

transformation was applied to data. Some examples are shown in Fig. 7.1 for ECa and in Fig. 

7.2 for EC2.5 on both original and logarithmic scales for September and December 1997. 

Additionally, the histograms of the ECa (Fig. 7.3) from all the surveyed locations (413) from 

which the 20 space locations above were selected for soil sampling, showed that for all time 

instants, the distribution is markedly skewed. When their cumulative histograms where 

plotted on a logarithmic scale (Fig. 7.4), the distributions have a sigmoidal shape, which is a 

characteristic of normal distributions. These graphical assertions were confirmed using the 

statistical test of Shapiro-Wilk. The results of this test are given, for EC2.5, in table 7.1 on both 

original and logarithmic scales. The Shapiro-Wilk statistic W may be thought of as the 

correlation between EC2.5 and their corresponding normal scores, with   W = 1 when EC2.5 

data are perfectly normal in distribution. When W is significantly smaller than 1, the 

assumption of normality is not met. Equivalently, a significant W statistic, for example p(W) 

less than 5%, causes the rejection of the assumption that the distribution of EC2.5 is normal. 

Consequently, all analyses were done based on the logarithmic transformed data. From table 

7.1, we note that the logarithmic transformation contributed to the increase of W for 14 out of 

the 19 time instants. Also, this transformation reduced the rejection of the hypothesis of 

normality from 6 to only 2 time instants. 
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Table 7.1. Shapiro-Wilk test of normality for EC2.5. W: test statistic, p(W): probability of 

significance of W. Bold values for time instant for which the assumption of normality was 

rejected. 

 

EC2.5 ln(EC2.5) Time 

W p(W) W p(W) 

Nov-94 0.87 0.05 0.83 0.02 

Mar-95 0.90 0.05 0.94 0.30 

Jun-95 0.90 0.05 0.97 0.67 

Sep-95 0.93 0.14 0.96 0.51 

Dec-95 0.89 0.03 0.92 0.12 

Mar-96 0.95 0.49 0.94 0.35 

Jun-96 0.92 0.13 0.93 0.15 

Mar-97 0.97 0.78 0.92 0.12 

Jun-97 0.91 0.16 0.96 0.67 

Sep-97 0.88 0.02 0.97 0.68 

Dec-97 0.96 0.47 0.93 0.19 

Sep-98 0.93 0.14 0.88 0.02 

Apr-99 0.79 0.00 0.97 0.81 

Jul-99 0.92 0.21 0.93 0.36 

Sep-99 0.87 0.01 0.91 0.07 

Apr-00 0.91 0.08 0.93 0.19 

Dec-00 0.89 0.02 0.90 0.05 

Mar-01 0.90 0.06 0.91 0.06 

Jun-01 0.83 0.00 0.93 0.16 
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Fig. 7.1. Histograms of ECa from calibration locations. Above: original scale, below: 

logarithmic scale. 

     

     

Fig. 7.2. Histograms of EC2.5 from calibration locations. Above: original scale, below: 

logarithmic scale. 
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Fig. 7.3. Histograms of ECa from all the space locations (413).
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Fig. 7.3. Histograms of ECa. (continued).
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Fig. 7.3. Histograms of ECa. (continued and end). 
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Fig. 7.4. Cumulative distribution functions of ECa from all the space locations, plotted on a 

logarithmic scale.
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Fig. 7.4. Cumulative distribution functions of ECa (continued).
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Fig. 7.4. Cumulative distribution functions of ECa (continued and end). 
 

7.4.2. Calibration Equations 

 

The OLS residuals showed no significant spatial dependence. This result was confirmed by 

the maximum likelihood-based tests of the non-appropriateness of an additional spatial 

parameter in the spatial regression models as well as the Moran’s I test. The results of the 

latter are given in table 7.2. When the standardized I statistic is larger than 1.96 or, 

equivalently, when its corresponding probability is lesser than 5 %, the hypothesis of no 

spatial correlation is rejected. In our case, this hypothesis was rejected only 3 out of the 19 

time instants. However, when we fitted a first autoregressive model to the full ECa survey 
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from the ‘data set to be calibrated’ (ECa regressed on its neighbours), we found a significant 

spatial dependence. The absence of spatial autocorrelation in the EC2.5- ECa relationship may 

be due to the fact that we have very few locations (13 to 20) which are far apart comparatively 

to the ECa data (286 to 413). Consequently, we adopted the classical OLS regression model to 

relate EC2.5 to ECa. The scatterplots of these two variables, one for each time instant, are 

shown in Fig. 7.5 for data on original scale and in Fig. 7.6 for log transformed data. 

 

Table 7.2. Moran’s I test for spatial independence of residuals from OLS regression linking  

EC2.5 to ECa. Moran’s I : statistic of Moran, E(I) : its expected value, Var(I) : its variance,  

Std(I) : standardized Moran’s I, Proba : probability of significance of Std(I). Bold values for 

time instant for which the assumption of no spatial correlation was rejected. 

 

Time Moran’s I  E(I) Var(I) Std(I) Proba 

Nov-94 0.34 -0.06 0.03 2.50 0.02 

Mar-95 0.23 -0.04 0.02 1.82 0.08 

Jun-95 0.16 -0.04 0.02 1.36 0.16 

Sep-95 0.21 -0.04 0.02 1.64 0.10 

Dec-95 -0.01 -0.04 0.02 0.21 0.39 

Mar-96 0.15 -0.05 0.04 1.04 0.23 

Jun-96 0.22 -0.03 0.02 1.72 0.09 

Mar-97 0.31 -0.04 0.02 2.36 0.02 

Jun-97 0.11 -0.05 0.02 1.13 0.21 

Sep-97 0.11 -0.03 0.02 0.97 0.25 

Dec-97 -0.10 -0.04 0.02 -0.40 0.37 

Sep-98 -0.18 -0.04 0.02 -0.89 0.27 

Apr-99 -0.19 -0.04 0.02 -1.02 0.24 

Jul-99 -0.20 -0.05 0.03 -0.93 0.26 

Sep-99 0.54 -0.04 0.02 3.78 0.00 

Apr-00 0.00 -0.04 0.03 0.29 0.38 

Dec-00 -0.05 -0.03 0.02 -0.11 0.40 

Mar-01 -0.11 -0.04 0.02 -0.43 0.36 

Jun-01 -0.23 -0.03 0.02 -1.34 0.16 
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Fig. 7.5. Scatterplot of EC2.5 as function of ECa on the original scale.
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Fig. 7.5. Scatterplot of EC2.5 as function of ECa on the original scale (continued).
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Fig. 7.5. Scatterplot of EC2.5 as function of ECa on the original scale (continued).
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Fig. 7.6. Scatterplot of EC2.5 as function of ECa, both variables log transformed.
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Fig. 7.6. Scatterplot of EC2.5 as function of ECa (continued).
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Fig. 7.6. Scatterplot of EC2.5 as function of ECa (continued and end). 
 

It can be inferred from figures 7.5 and 7.6 that the relationship between EC2.5 and ECa can be 

considered as linear. Also, this relationship is very strong. Most of the correlation coefficients 

were higher than 0.85 (for all except one of the 19 time frames) with a maximum value of 

0.97. The logarithmic transformation required to obtain normal or, at least, less skewed 

distributions improved the correlation between both variables. This coefficient was increased 

for 11 out of the 19 time instants by as much as 0.08. 
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Different models were tried by adding other covariates than ECa, for example the coordinates 

and the vegetal coverage. The best model, chosen among all possible combinations between 

the covariables (ECa, x and y coordinates and the vegetal cover), which had the highest 

adjusted coefficient of determination, the lowest mean square error and all its coefficients 

being significant was the following: 

2
2.5 0 1 2 3 4 5ln( ) ln( )a j jEC b b EC b u b u b v b cover= + + + + +  

( )x

x

x mu
s
−

=  with mx and sx: mean and standard deviation of the x coordinate  

( )y

y

y m
v

s
−

=  with my and sy: mean and standard deviation of the y coordinate 

coverj, j=1,…,4, represents the 4 categories of vegetal coverage. 

We fitted this model at each time instant separately, so finally we obtained 17 equations 

corresponding to the 17 time instants.  

 

7.4.3. Descriptive Statistics 

 

The main statistic parameters of the predicted EC2.5 data are summarized in table 7.3. The 

mean EC2.5 varied between 1.39 (November 1994) and 2.74 dS.m-1 (September 1998). The 

minimum is enclosed between 0.06 (December 2000) and 0.68 (March 1996) and maximum 

varying between 2.59 (November 1994) and 9.41 (December 2000). The data are moderately 

to highly variable with coefficients of variation ranging between 0.28 (March 1997) and 0.64 

(December 1997 and 2000). 

For all the time instants, the range in salinity values was large in comparison to the mean 

indicating that soil salinity is highly variable in space. Moreover, the differences in the 

statistic parameters (mean, median and range) between time instants are an indication of a 

temporal variation. 
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Table 7.3. Statistic parameters of predicted salinity data (EC2.5 in dS m-1). N: number of 

observations, cv: coefficient of variation, min: minimum, med: median, max: maximum. 

EC2.5 N mean cv min med max

Nov-94 411 1.39 0.37 0.45 1.38 2.59

Mar-95 411 2.03 0.32 0.60 1.94 4.78

Jun-95 412 1.74 0.39 0.48 1.62 4.66

Sep-95 410 1.77 0.33 0.54 1.70 3.66

Dec-95 413 1.65 0.38 0.53 1.53 3.93

Mar-96 392 1.96 0.29 0.68 1.86 3.30

Jun-96 411 1.54 0.42 0.31 1.41 4.52

Mar-97 310 1.48 0.28 0.42 1.43 2.91

Jun-97 286 1.69 0.59 0.24 1.48 8.33

Sep-97 411 1.50 0.58 0.13 1.32 5.83

Dec-97 412 1.44 0.64 0.13 1.18 6.99

Sep-98 411 2.74 0.55 0.31 2.47 8.35

Apr-99 409 1.43 0.63 0.17 1.19 6.90

Jul-99 409 1.96 0.50 0.16 1.81 5.85

Sep-99 411 1.93 0.63 0.11 1.58 6.39

Apr-00 312 1.78 0.58 0.09 1.57 7.07

Dec-00 411 2.10 0.64 0.06 1.76 9.41

Overall 6640 1.78 0.54 0.06 1.59 9.41

 

7.4.4.  Covariography 

 

The purely spatial and purely temporal experimental covariance functions as well as the 

theoretical models fitted to the observed EC2.5 data are shown in Fig. 7.7. Although, the 

spatial covariance tended towards zero as the spatial lag tended towards infinity, the temporal 

covariance function did not when the temporal lag tended towards infinity. This represents the 

existence of a trend in the data, which need to be detrended before their use for structural 

analysis. For illustration, the mean temporal trend is given in Fig. 7.8 for four different space 

locations. The observed EC2.5 (in fact, the predicted EC2.5 using the adopted multiple 
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regression models) as well as the mean spatial trend and the resulting residual EC2.5 are 

shown in Fig. 7.9 for two time instants. 

 

 
Fig. 7.7. Purely spatial and purely temporal covariance functions for the observed EC2.5  

data. Circles: experimental values and solid lines: fitted theoretical models. 
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Fig. 7.8. Temporal mean trend for some space locations. Circles: observed EC2.5, solid line: 

mean trend. 
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Fig. 7.9. Observed EC2.5, mean spatial trend and residual EC2.5 for time instants 3 and 4 

(March and June 1995). The size of the points is function of the EC2.5 values. 

 

 The spatial, temporal and spatio-temporal dependencies in the salinity data were described 

and modelled using covariance functions after the removal of the mean space-time trend. The 

spatial covariance function was fitted with a nested exponential model as is illustrated in Fig. 

7.10 (a). The small-scale range is about 250 m with a sill equal to 0.27 (dS m-1)2, which 
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represents 79.4% of the total variance and the large-scale range is beyond the dimensions of 

the study area (1500 m): 

01 1 02 2( ,0) exp( 3 / ) exp( 3 / )c c as c as= − + −h h h  

with c01 and c02 the sills of the nested models and as1 and as2 their corresponding ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. (a): Spatial covariance function; (b): temporal covariance function. Circles: 

experimental covariance function; curve: fitted model. 
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The same nested model was used to fit the temporal covariance function, Fig. 7.10 (b), with a 

small-scale range of 8 months and a large-scale range far beyond the time period covered 

(200 months): 

01 1 02 2( , ) exp( 3 / ) exp( 3 / )c c at c atτ τ τ= − + −0   

with at1 and at2 the small-scale and large-scale ranges 

The space-time covariance function (Fig. 7.11) is a nested structure of two space-time 

separable covariance models: 

01 1 1 02 2 2( , ) exp( 3 / )exp( 3 / ) exp( 3 / ) exp( 3 / )c c as at c as atτ τ τ= − − + − −h h h  

The non-separable space-time covariance function of Fig. 7.11 provides a more accurate 

representation of the correlation structure of salinity in both space and time than that 

described by a purely spatial covariance model, or a covariance model where time is taken as 

an additional spatial coordinate. Its parameters are summarized in table 7.4. 

 

Figure 7.11. Space-time covariance function of the residual data R(s, t). 
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Table 7.4. Parameters of the fitted space-time covariance model. 

Component Spatial range (m) Temporal range (month) Sill (dS m-1)2 

First nested model 250 8 0.27 

Second nested model 1500 200 0.07 

 

7.4.5. Space-time Kriging 

 

As the spatio-temporal dependence of EC2.5 was modelled using a nested separable space-

time covariance function, it was used to estimate soil salinity at any location in space and any 

instant in time by defining a search neighbourhood. 

For illustration purposes, we show only results for the most frequently observed month 

(September of the years 1995, 1997, 1998, and 1999). We estimated on a dense spatial grid 

including the 413 locations for which we have the observed EC2.5 values for September from 

1995 to 2000 (Fig. 7.12). 

First, we note that for the non-observed time instants (September 1996 and 2000), the 

smoothing effect is stronger than for the observed time instants (September 1995, 1997, 1998, 

and 1999). This is due mainly to the fact that for the latter ones, the neighbours come mostly 

from the simultaneous time instant but for the former ones the neighbours are from different 

time instants. Also, there is a net general increase in soil salinity from September 1995 to 

1999. 

To check the contribution of the additional temporal dependence, we compared the space-

time kriging to a simple spatial kriging by modeling independently and separately the spatial 

dependence for each time instant. Sterk and Stein (1997) computed a single spatial variogram 

pooling the data of the 4 time instants that they had. This was required to circumvent the lack 

of sufficient observations (100 or more as reported by Webster and Oliver, 1992) to compute 

a reliable variogram. Ettema et al. (2000) adopted the same procedure. As we had sufficient 

observations at each time instant (at least 286), we computed the spatial variograms separately 

for each time instant. The results of the comparison are reported in Fig. 7.13 for the 

histograms of the estimated EC2.5 values and in Fig. 7.14 for those of their corresponding 

estimation errors. The estimated values are more or less the same but it is clear that the spatio-

temporal estimates are more precise comparatively to the spatial estimates. Ettema et al. 
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(2000) reached the same conclusions in their study of the spatio-temporal patchiness of 

nematode species. 

 

7.5. Conclusions 
 

The space-time kriging estimates were more precise than the estimates obtained using only 

the spatial component of the soil salinity dependence (the most frequent estimation error is 

bigger for the latter than for the former). Also, the smoothing effect seems to be more 

pronounced in the case of the spatial kriging than in the space-time kriging (the extreme 

values are lesser for the former than for the latter). These conclusions were deduced from the 

graphic representation of the estimates and their estimation errors for the 2 approaches. For a 

more formal comparison, it would be better to use some quantitative criteria. So in this sense, 

it may be suitable to leave some locations for a validation data set that will be used in the 

computation of, for example, the mean error or the mean square error. Another possible 

improvement is to fit the product-sum model of De Cesare et al. (2001a) to the experimental 

covariance function. 
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Figure 7.12. EC2.5 estimates (dS m-1) using the space-time covariance models for each 

September between 1995 (a) and 2000 (f).  
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Figure 7.13. Spatial (S) and spatio-temporal (SpT) estimates of EC2.5 (dS m-1) for September 

1995 (a), 1997 (b), 1998 (c), and 1999 (d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14. Spatial (S) and spatio-temporal (SpT) estimation errors of EC2.5 (dS m-1) for 

September 1995 (a), 1997 (b), 1998 (c), and 1999 (d). 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 8 

 

SOIL SALINITY MAPPING USING SPATIO-TEMPORAL 

KRIGING AND BAYESIAN MAXIMUM ENTROPY 
 

 

 

 

 

 

Based on:  

• Douaik A., Van Meirvenne M. and Toth T. Soil salinity mapping using spatio-temporal 

kriging and Bayesian maximum entropy with interval soft data. Accepted for publication in 

Geoderma; 

• Douaik A., Van Meirvenne M., Toth T. and Serre ML. (2004). Space-Time mapping of 

soil salinity using probabilistic Bayesian maximum entropy. Stochastic Environmental 

Research and Risk Assessment, 18: 219-227. 
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8.1. Introduction 
 

Soil salinity limits food production in many countries of the world. There are mainly two 

kinds of soil salinity: naturally occurring dryland salinity and human-induced salinity caused 

by the low quality of water. In both cases the development of plants and soil organisms are 

limited leading to low yields. In Hungary, where more than 10% of the land is affected by 

salt, groundwater is the major cause of salinization. 

Saline and sodic soils have particular physical and chemical properties that require specific 

management. As a first step for the better management of salt-affected soils, soil salinity 

needs to be monitored in space as well as in time to determine where it is, where it is 

spreading to, and the rate at which it is spreading. Therefore, we need to sample the soil for 

laboratory analysis to determine the electrical conductivity of the saturated soil paste extract 

(ECe). The latter is a measure of soil salinity. This conventional procedure (Soil and Plant 

Analysis Council, 1992) is expensive, time consuming, and provides an incomplete view of 

the extent of soil salinity. 

An alternative to laboratory analysis is to assess soil salinity in the field by determining the 

apparent electrical conductivity (ECa). This can be done using sensors such as the four-

electrode probes (Rhoades and van Schilfgaarde, 1976) or by electromagnetic induction 

instruments (McNeil, 1980). This procedure is cheaper and less time-consuming than the 

conventional one, and the sensors can be mounted on a small vehicle enabling a more 

intensive survey of the study area. 

The appraisal of space-time variability of soil salinity has been approached in different ways. 

Lesch et al. (1998) used a classical statistical method to monitor the temporal change of soil 

salinity between two time periods. The approach can be applied easily to a few measurement 

times. However it is of limited practical use for many time periods as the procedure must be 

repeated for each pair of times. In addition, the technique takes no account of any possible 

temporal correlation between two or more successive measurements. 

Douaik et al. (2004) proposed an alternative approach. They rescaled the ECa measurements 

into EC2.5 (the electrical conductivity determined by laboratory analysis from 1:2.5 soil-water 

suspensions, which is a simple representation of the electrical conductivity of the water-

saturated soil-paste extract, ECe) using calibration equations based on regression models. This 

was followed by spatio-temporal kriging to predict soil salinity at unknown places and times. 

The approach takes into account the spatial and the temporal correlations between the soil 
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salinity measurements. However the resulting EC2.5 values from the calibration equations are 

estimates of the actual soil salinity. This means that they have some degree of uncertainty 

which needs to be considered in the analysis. 

The method of Bayesian maximum entropy (BME) (Christakos, 1990; 2000) enabled a 

rigorous analysis of our data by distinguishing formally between the accuracy of the 

laboratory and the field electrical conductivity measurements. The former are direct and 

accurate measurements of the soil salinity; they are considered as hard data. The latter are 

indirect measurements that represent uncertain estimates of soil salinity. They provide less 

accurate values of soil salinity and can be considered as soft data since they are determined, 

not only by the soil salinity (EC2.5), but also by the soil moisture content, temperature, particle 

size distribution, etc. 

Bayesian maximum entropy provides a general framework for space-time interpolation. It can 

incorporate different physical knowledge bases such as statistical moments (not limited to the 

second-order), multipoint statistics, physical laws, hard and soft data, etc. Kriging, the 

classical geostatistical method of interpolation, is a special case of BME. When physical 

knowledge is restricted to the second-order statistical moments (mean and covariance or 

variogram functions) and to the hard data, kriged and BME predictions are equivalent 

(Christakos and Li, 1998; Lee and Ellis, 1997). 

BME has been successfully applied in different areas. D’Or and Bogaert (2001), D’Or et al. 

(2001), Bogaert and D’Or (2002), and D’Or and Bogaert (2003) mapped soil texture using 

BME in the space domain. Serre and Christakos (1999a) studied the water-table elevations of 

an aquifer in Kansas while Christakos and Serre (2000) analyzed the distribution of 

particulate matter in North Carolina. These two studies have been done in the space-time 

context. Bogaert (2002) extended the approach to include categorical variables. 

This study has three main objectives: (i) to apply the BME method to soil salinity data set 

using interval and probabilistic soft data, (ii) to compare the prediction performance of BME 

with two types of kriging: ordinary kriging with hard data only (HK), and ordinary kriging 

with hard data and the mid-interval of the soft data (HSK), and (iii) to determine the 

probability, based on BME and kriging, that soil can be considered saline in the study site. 
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8.2  Data description  
 

As in the precedent chapter, both data sets were used (see chapter 3, section 3.2.1 and chapter 

7, section 7.2). The calibration data sets were used to determine the relationships between 

EC2.5 and ECa. These relationships were used to convert ECa data from data to be calibrated 

sets’ into EC2.5. The measured EC2.5 represents the hard data whereas the predicted EC2.5 

represents the soft data. 

 

8.3. Methods 
 

8.3.1. Data analysis 

 

The adopted methodology to determine the mean trend and the covariance function were 

presented in the precedent chapter (section 7.3). They were used as general knowledge for 

both space-time interpolation methods presented in this study. 

In our case study, the observed EC2.5 are the hard data available at up to h = 20 locations in 

space. Two kinds of soft data were used in the BME framework: interval and probabilistic 

data whereas the mid-point of interval data was considered in the second approach of kriging. 

The calibration data set was used to calculate the interval data. The pairs of data values of ECa 

and EC2.5 were used to determine the calibration equations, one for each time instant, by 

calculating simple ordinary least squares regression models: 

ln( ) ln( )2.5 aEC a b EC= + ,         (1) 

where a is the intercept and b is the slope of the regression model. 

These calibration equations were applied to the ‘data set to be calibrated’ to give the expected 

values and their standard deviations for all locations (413) and 17 time periods; the two 

remaining periods (sampling campaigns 18 and 19, which correspond to March and June 

2001, respectively) were kept for validation. These parameters were used to determine the 

95% confidence intervals; their lower and upper limits form our interval soft data: 

[ ] [ ]{ }soft 1 : 1'
h m i i i i,..., I l ,u ,i h ,...,mχ χ χ+= ∈ = = +χ     (2) 

This means that the non observed exact values iχ  have probabilities of one within known 

intervals iI  with il  and iu  the lower and upper limits, respectively. All the intervals constitute 

the definition domain mhh III ∪∪∪= ++ ...21I . 
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The interval midpoint data used in kriging were calculated simply as the average of the lower 

and upper limits, which is in fact the expected value. 

The same expected values and their corresponding standard errors were used to determine the 

soft pdfs, ( )Sf ξ , for each of the 413*17 points assuming a Gaussian distribution. These soft 

pdfs were used as probabilistic soft data: soft soft soft soft: ( ) ( )S SP f d
ξ

ξ
−∞

≤ = ∫χ χ χx   (3) 

For illustration, the probabilistic soft data for some points are reported in Fig. 8.1. The soft 

data from location 1 at November 1994 is smaller in magnitude than the 3 others, however it 

is less uncertain as its pdf is less dispersed around the mean value. 

 
Fig. 8.1. Examples of probabilistic soft data (based on the residuals). Full curve: location 1 in 

November 1994; dashed curve: location 2 in March 1995; dash-dotted curve: location 3 in 

June 1995; dotted curve: location 4 in September 1995. 

 

We compared two methods of space-time prediction, each with two variants. They differ in 

the way the soft data are processed: 

(1) Ordinary kriging using only the hard data (HK), which provides no direct way of 

integrating soft data and ignores them; 

(2) Ordinary kriging using hard data and the midpoint of the interval soft data, regarding the 

latter as if it was a hard datum (HSK), and disregards their uncertainty. The difference 

between the two types of kriging is in the number of data considered during the analysis. 
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Ordinary kriging (HK) is limited to the hard (observed EC2.5) data only, whereas HSK treats 

both sets of data (observed and predicted EC2.5) as hard essentially; 

(3) Bayesian maximum entropy using the hard and interval soft data (BMEI), which integrates 

the interval soft data in the prediction as they are and maintaining the difference in the degree 

of uncertainty between hard and soft data; 

(4) Bayesian maximum entropy using the hard and interval soft data (BMEP), which 

integrates the full distribution of the soft data in the prediction. Because BME processes the 

full pdf of the soft data rather than just the mid point of its confidence interval, it uses more 

information and it is expected to lead to more accurate predictions. 

The methods were compared by cross-validation on observed EC2.5 data of sampling 

campaigns 18 and 19.  

 

8.3.2. Validation and comparison criteria 

 

Soil salinity was predicted at each of the sites (19 for March 2001 and 20 for June 2001), 

which have not been used in all the previous computations (structural analysis and 

neighborhood) and for which we had measurements, by deleting in turn the value of each 

location where the prediction was being made. This gave pairs of estimated-observed soil 

salinity values for the two time periods. This was done for the three first methods (HK, HSK, 

and BMEI) and not for BMEP. Three quantitative criteria were computed from these pairs of 

values: the Pearson correlation coefficient (r), the mean error or bias (ME), and the mean 

squared error (MSE). The first, r, measures the strength of the linear relation between the 

estimated and the observed soil salinity values, and should be close to one for an accurate 

prediction. The ME should be close to zero, and the MSE should be as small as possible. We 

also represented graphically the distribution of the estimation errors for a visual comparison 

of the three methods. 

The MSE can be divided further into components that identify and quantify the deviation of 

estimated values from the observations. They represent different aspects of the discrepancy 

between the estimates and the measurements (Kobayachi and Us Salam, 2000). Let xi and yi (i 

= 1, ..., n) represent the estimated and the observed soil salinity values, respectively, and di = 

xi - yi the deviation of the estimated values from the observations. The mean error (ME) or 

bias is defined by: 

yxyx
n

ME
n

i
ii −=−= ∑

=1
)(1 ,         (4) 
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where x  and y  represent the means of the estimated and the observed values, respectively, 

and n is the number of locations for which observations are available. The mean squared error 

(MSE) is: 

[ ]∑∑
==

−−−+−==
n

i
ii

n

i
ii yyxx

n
yxyx

n
MSE

1

22

1

2 )()(1)()-(1 .    (5) 

 

The first term on the right is the square of the bias (SB):  
22)( MEyxSB =−= .         (6) 

The second term is the mean squared difference between the estimates and the measured 

values with respect to the deviation from means. It is known as the mean squared variation 

(MSV) and represents the proportion of the MSE that is not due to the bias. A larger MSV 

indicates that the model did not estimate the variability of the observed values around their 

mean adequately, i.e. the precision of the predicted values is poor. 

Equation (5) can be rewritten as:  

MSVSBMSE += .          (7) 

The MSV can be divided, in turn, into two components: 

LCSSDSDrSDSDSDSDMSV oeoe +=−+−= )1(2)( 2 ,     (8) 

where ∑
=

−=
n

i
ie )xx(

n
SD

1

21  ,        (9)     

which is the standard deviation of the estimated values, and 

∑
=

−=
n

i
io )yy(

n
SD

1

21 ,         (10) 

is the standard deviation of the observed values. The SDSD is the difference in the magnitude 

of fluctuation between the estimated and measured values. A larger value implies that the 

model failed to estimate the magnitude of fluctuation among the measurements. The LCS is 

the lack of positive correlation (1-r) weighted by the standard deviations. A large value means 

that the model did not estimate the degree of fluctuation in the observations. 

Equation (7) can be rewritten as:  

LCSSDSDSBMSE ++=          (11) 

 

The validation study was followed by predicting soil salinity for time instant n° 12 

(September 1998) along with the corresponding estimation variances. The data for this time 

instant were included in the structural analysis. We used a fine estimation grid (10x10 m). The 
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probability that the soil salinity could exceed 4 dS m-1 was mapped; this value is the threshold 

used to distinguish between saline and non-saline soils (Spaargaren, 1994; USDA, 1996).  

 

All the analyses were done using the BMElib toolbox (Christakos et al., 2002) written for 

Matlab (MathWorks, 1999). 

 

8.4. Results and discussion 
 

 8.4.1. Descriptive statistics 

 

Table 8.1 gives the summary statistics of soil salinity (EC2.5) for the different time periods. 

The mean values, which vary between 1.42 dS m-1 for November 1994 and 3.30 dS m-1 for 

September 1998, suggest the presence of strong temporal variability. There is also 

considerable spatial variation shown by the large ranges between the minimum and maximum 

values for the different time periods. For example, December 2000 has a range of 7.38 dS m-1, 

which is the largest for the data examined.  

The Pearson correlation coefficients between ECa and EC2.5 are strong. They vary from 0.83 

to 0.97. 

 

 8.4.2. Covariography 

 

The structural analysis was fully described in the precedent chapter (see section 7.4.3).  
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Table 8.1. Summary statistics for the hard data EC2.5 (dS m-1). 

 

EC2.5 N Mean std Range r Skewness Kurtosis 

Calibration data 

Nov-94 

Mar-95 

Jun-95 

Sep-95 

Dec-95 

Mar-96 

Jun-96 

Mar-97 

Jun-97 

Sep-97 

Dec-97 

Sep-98 

Apr-99 

Jul-99 

Sep-99 

Apr-00 

Dec-00 

13 

20 

20 

20 

20 

16 

20 

20 

15 

20 

20 

20 

20 

13 

20 

18 

20 

1.42 

2.29 

2.02 

2.01 

1.84 

2.07 

1.83 

1.61 

1.77 

1.63 

1.60 

3.30 

1.84 

2.27 

2.29 

2.11 

2.32 

0.34 

0.70 

1.10 

0.99 

0.90 

0.81 

0.90 

0.63 

0.97 

1.24 

1.04 

2.17 

1.74 

1.57 

1.89 

1.63 

1.91 

0.96 

2.23 

3.66 

3.73 

2.59 

2.57 

2.86 

2.20 

3.12 

4.25 

3.61 

6.95 

6.41 

4.86 

6.52 

6.32 

7.38 

0.85 

0.91 

0.88 

0.94 

0.92 

0.87 

0.87 

0.89 

0.83 

0.94 

0.90 

0.85 

0.93 

0.91 

0.91 

0.94 

0.93 

-0.71 

0.66 

0.80 

0.89 

0.45 

0.08 

0.28 

-0.08 

0.78 

1.06 

0.51 

0.50 

1.70 

0.73 

1.07 

1.19 

1.31 

-1.00 

-0.78 

-0.50 

0.67 

-1.31 

-1.26 

-1.12 

-0.87 

-0.23 

0.20 

-0.62 

-0.69 

2.48 

-0.52 

0.10 

1.51 

1.71 

Validation data 

Mar-01 19 1.80 1.21 4.42 0.97 1.05 1.18 

Jun-01 20 1.99 1.75 5.83 0.86 1.22 0.42 

 

N is the number of observations, std is the standard deviation, and r is the Pearson 

correlation coefficient. 

 

 8.4.3. Comparison of results 

 

Soil salinity was predicted for two time periods, March and June 2001, using the four 

approaches discussed above. The cross validation criteria ME, MSE, and r are given in table 

8.2 for both times. Figure 8.2 gives the distributions of the errors for March 2001. 
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The HSK results are the poorest; they have the largest bias (ME) compared to the three other 

approaches, although it is still not significantly different from zero, and the largest MSE for 

both time periods. Figure 8.2 shows that HSK has the broadest error distribution, mostly on 

the negative side of the curve. This implies that this method is likely to produce larger errors 

than the other two. The errors for BME have a higher mode and a narrower distribution 

compared with both kriging techniques (Fig. 8.2): this is confirmed by its having the smallest 

MSE values (table 8.2). The MSE for HK is between those of BME and HSK, therefore this 

method provides more accurate estimates than HSK but less accurate ones than both BME 

techniques. However, HK gives estimates that are less biased than BME (mainly for March 

2001). The estimates are strongly correlated with the observations for the three techniques and 

both time periods. 

 

Table 8.2. Quantitative criteria for the comparison of the three approaches. 

 

Criterion Time  HK HSK BMEI BMEP

March 2001 0.87 0.92 0.93 0.94r 

June 2001 0.93 0.93 0.95 0.95

March 2001 -0.176 -0.323 -0.226 -0.173ME (dS m-1) 

June 2001 0.062 -0.057 -0.017 -0.019

March 2001 0.489 0.650 0.387 0.254MSE (dSm-1)² 

June 2001 0.378 0.513 0.337 0.223

 

r is the Pearson correlation coefficient, ME is the mean error, and MSE is the mean squared 

error. 
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Fig. 8.2. Distributions of estimation error for March 2001. The solid line is for BMEP, the 

dash-dotted line is for BMEI, the dotted line is for HK, and the dashed line is for HSK. 

 

When BME is used without any soft data, the results are strictly equivalent to HK. This is in 

accordance with the theory (Christakos and Li, 1998). Bayesian maximum entropy can also 

give estimates of soil salinity in the absence of hard data; the results of this cross validation 

are given in table 8.3. The estimates show more bias (but still negligible) and are slightly less 

accurate (particularly for March 2001), but the differences in the results when hard (the 

neighborhood research was limited to a maximum of the 10 nearest data) and soft data were 

used are not significantly greater (BMEI column of table 8.2, and table 8.3). This is a useful 

feature of BME, and D’Or and Bogaert (2003) used this property to map soil texture using 

only the intervals defined from a textural triangle. 
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Table 8.3. Quantitative criteria for BMEI when hard data were excluded. 

 

Criterion  March 2001 June 2001

r 0.91 0.94

ME 0.294 -0.075

MSE 0.701 0.348

 

To investigate further the incorporation of soft data by HSK and BME, we analyzed, in 

addition to the hard data, only data with the largest intervals (from 30 spatial locations for 

each time period) rather than the full set of 393 spatial locations for each time period (see 

table 8.2 and Fig. 8.2). Table 8.4 gives the results for March 2001 and the distributions of the 

estimation errors are shown in Fig. 8.3. 

 

Table 8.4. Quantitative criteria to compare HSK and BMEI methods of prediction using only 

the largest interval data. 

 

Criterion  HSK BMEI

r 0.23 0.86

ME -88.4 -0.192

MSE 106079.4 0.612

 

HK is not reported in table 8.4 as this technique takes no account of the soft data. The ME for 

BME, -0.192, is not markedly different from that in table 8.2 when all the interval data were 

used (-0.226), but the MSE is larger, 0.612 instead of 0.387 for the full interval data. The 

results for HSK show that the estimates are biased and inaccurate, giving erroneous estimates 

for some spatial locations. The quantitative criteria confirm the graphical representation in 

Fig. 8.3. 
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Fig. 8.3. Distributions of the estimation errors for March 2001, using only the largest interval 

data. The solid line is for BMEI, the dotted line is for HK, and the dashed line is for HSK. 

 

The components of MSE can provide more information about the difference between the 

estimated and the observed values. They are given in absolute values in table 8.5 and shown 

as proportions in Fig. 8.4. The HSK has the largest MSE for both time periods, whereas BME 

has the smallest values. This suggests that BME provides more accurate predictions than the 

two methods of kriging used. In addition, the contribution of the bias to the MSE is almost 

zero for the three approaches for June 2001, but for March 2001 it is largest for HSK (16 %), 

followed by BME (13.2 %), and finally HK (6.3 %). This confirms that HK estimates are the 

least biased and those of HSK are the most biased. 

The lack of positive correlation (LCS) is the component that contributed the most to the MSE 

of the three interpolation methods for both time periods (table 8.5 and Fig. 8.4); the larger 

contribution is for June 2001. In particular, it contributed the most to the MSE of the HK 

estimates with 87 % and 95 %, whereas it contributed least to that of HSK (47 % and 62 % ), 

and its contribution was intermediate for BME (63 % and 76 %); the first value refers to 

March and the second to June 2001. This suggests that HK failed to estimate the degree of 

fluctuation in the observed soil salinity even if its MSE is smaller than that of HSK. However, 

the SDSD contributed more to the MSE of HSK (36.8 % and 36.5 %) than to that of HK (6.7 

% and 4 %) and BME (23.8 % and 24.3 %), which indicates that HSK failed to estimate the 

magnitude of fluctuation in the measured electrical conductivity. The three components of 

MSE (SB, SDSD, and LCS) for BME are intermediate to those of HK and HSK. The MSE of 
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BME is the smallest, indicating that it performs better than the two kriging techniques, and the 

SDSD shows that it represents the degree of fluctuation in the observations reasonably.  

The small MSE for BME in March 2001 can be explained as follows. The standard deviation 

SDo for this time period is 1.18 dS m-1. Since SB (0.051) and SDSD (0.092) are negligible, 

LCS (0.244) is the component that contributes most to the MSE (0.387). As the Pearson 

correlation coefficients (0.92 for HSK and 0.93 for BME) are the same and SDo is the same, 

the larger SDe for HSK (1.67) led to a larger LCS, and hence larger MSE. The smaller SDe for 

BME (1.48) resulted in a small LCS, and hence small MSE. The overall deviation (MSE) 

between the measurements and the BME predictions for March 2001 is small because the 

predicted soil salinity shows limited variation (compared to HSK estimates) for the 19 sites 

and BME predicted the observations with a reduced bias (─0.226 against ─0.323 for HSK). 

 

Table 8.5. The components of MSE as absolute values. 

 

Criterion Time  HK HSK BMEI 

March 2001 0.031 0.104 0.051 SB 

June 2001 0.003 0.004 0.000 

March 2001 0.033 0.239 0.092 SDSD 

June 2001 0.015 0.187 0.082 

March 2001 0.425 0.307 0.244 LCS 

June 2001 0.360 0.322 0.255 

March 2001 0.489 0.650 0.387 MSE 

June 2001 0.378 0.513 0.337 

 

SB is the squared bias, SDSD is the squared difference between standard deviations, and LCS 

is the weighted lack of positive correlation. 
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(a)       

 
 (b) 

 
 

Fig. 8.4. Contribution of the components of MSE to its total. (a): March 2001, (b): June 2001. 

The SB is the squared bias, SDSD is the squared difference between standard deviations, 

and LCS is the weighted lack of positive correlation.  
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Using only the largest interval data instead of all of them, table 8.6 and Fig. 8.5, the SDSD 

becomes the major component of MSE for HSK (92.1 %). This means that HSK failed to 

estimate the magnitude of fluctuation accurately among the observed electrical conductivity 

values. The minimum and maximum values of the latter for March 2001 are 0.16 and 4.58 

dSm-1, respectively, whereas for the HSK estimates they are 0 and 1408 dSm-1. This large 

range for the latter resulted in the large SDe of 313.74 dS m-1 compared to the small SDo of 

1.18 dSm-1; these values explain the large SDSD. In comparison BME performed well. Its 

minimum and maximum predictions are 0.10 and 5.24 dSm-1, respectively. This is a 

consequence of how the soft data are integrated into the prediction process. The HSK used 

only the midpoint of intervals, disregarding their range and the uncertainty associated with 

them, whereas BME considers the full information provided by the soft data. It takes into 

account the upper and lower limits of the interval data, and the uncertainty associated with 

them. More importantly, BME distinguishes clearly between accurate (hard) and uncertain 

(soft) data and processes them differently. 

 

Table 8.6. The components of MSE as absolute values, using only the largest interval data for 

March 2001. 

 

Component HK HSK BME

SB 0.031 7813.7 0.037

SDSD 0.033 97695.5 0.086

LCS 0.425 570.2 0.489

MSE 0.489 106079.4 0.612

 

SB is the squared bias, SDSD is the squared difference between standard deviations, and LCS 

is the weighted lack of positive correlation. 
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Fig. 8.5. Contribution of the components of MSE to its total, using only the largest interval 

data for March 2001. The SB is the squared bias, SDSD is the squared difference between 

standard deviations, and LCS is the weighted lack of positive correlation. 

 

8.4.4. Space-time mapping of soil salinity 

 

We predicted the soil salinity for September 1998 to compare the HK, HSK, and BMEP 

graphically. The soil salinity maps are given in Fig. 8.6 and their corresponding estimation 

variances in Fig. 8.7. 

The soil salinity is strongly smoothed in the map obtained by HK. This is the consequence of 

the limited number of hard data (19, in fact as we interpolated in the space-time domain, we 

have the 19 locations of some previous time instants as well; however, geographically, we 

used the same 19 locations). In contrast, the maps of HSK and BME show much more detail 

due to the additional data (’hardened’ for HSK or used as soft for BME). Furthermore, for the 

BME, we mapped the conditional mean (minimizing a least square criterion), Fig. 8.6 (c), as 

well as the mode (the most probable value) of the posterior pdf, Fig. 8.6 (d). The map of the 

BME mode estimate is less smooth than that of the BME mean estimate. 

The estimation variance maps (Fig. 8.7) reflect the difference in data availability. The HK 

map shows a zero estimation variance at the locations where hard data were present and a 

gradual increase in the estimation variances as one goes further away from these hard data 

locations. In the case of HSK, the estimation variance is zero for the hard as well as soft data 

points, resulting in a small estimation variance for the entire study area (except in the centre 

where the locations are more spaced), which results in an under-prediction of the true 

uncertainty. On the other hand, BME map has a zero estimation variance at the hard data 
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points only, and a small but non-zero estimation variance at the soft data points, which is a 

better representation of the true uncertainty in the estimated map. 

We also mapped the probability that the estimated soil salinity exceeds 4 dS m-1, which is 

considered as a critical threshold separating non-saline from saline conditions (Fig.  8.8). As 

the estimation standard errors for HK are higher than those for HSK and BME, and as the 

estimated soil salinity is smoothed, a larger area of saline soil was delineated. In contrast we 

obtained, for HSK and BME, clearly delimited and smaller areas of saline soil. 

 

 

 
Fig. 8.6. Soil salinity (EC2.5 in dS m-1) estimates for September 1998; (a): HK, (b): HSK, (c): 

BME mean, (d): BME mode. On the maps, triangles and circles indicate points where hard 

and soft data were available, respectively. 
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Fig. 8.7. Soil salinity estimation variances for September 1998; (a): HK, (b): HSK, (c): 

BMEP. 
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Fig. 8.8. Probability that estimated soil salinity exceeds 4 dS m-1 for September 1998; (a): 

HK, (b): HSK, (c): BMEP mean. 
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8.5. Conclusions 
 

The main aim of this work was to compare the performance of two prediction techniques, 

each with two variants: BME which incorporates either interval or probabilistic soft data, and 

two variants of kriging (one using only hard data and the other using hard data as well as the 

midpoint value of interval soft data, treating them as if they were hard data). The four 

approaches were evaluated by cross-validation for two different time periods which had not 

been used in the previous analyses. 

The BME provided reliable estimates even in the absence of any hard data. When no soft data 

were used, the BME estimates were strictly equivalent to those from kriging (HK). Based on 

the ME and MSE, we can conclude that the predictions from BME are less biased and more 

accurate than those from the two kriging techniques. Of these two techniques, the one using 

the soft data (HSK) resulted in more bias and less accuracy in the predictions. The results 

showed that BME improved substantially the accuracy of the predictions compared to kriging, 

by taking into account soft data (interval or probabilistic). 

The Pearson correlation coefficients were of the same magnitude for HSK and BME. 

However, by dividing the MSE into three components, we found that HSK gave more biased 

estimates (large SB) and failed to reproduce the true magnitude of fluctuation among the 

observations. 

Also the BME estimation error distribution showed a higher peak around zero than the two 

other techniques, indicating that the probability of obtaining an estimate equal to the observed 

soil salinity is higher for BME than for the two versions of kriging. In addition, BME allows 

one to delineate more rigorously saline areas from non-saline zones. 

The failure of HSK to incorporate the soft information was more pronounced when we used 

only the largest interval data, in addition to the hard data, instead of the full interval data. In 

this case HSK produced some unrealistic predictions of electrical conductivity (very large and 

unreliable predictions). In contrast, the way that BME integrates soft data into the prediction 

process resulted in more accurate predictions, whether we used the full interval data or only 

the largest ones. 

Ancillary data are cheap and readily available, sometimes for the whole study area 

(exhaustive secondary information). This secondary information can be used in an efficient 

way to complement the scarcity of the direct measurements of a soil property. This work 

showed that BME can incorporate and process soft data rigorously, leading to more accurate 
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predictions. It can use cheap, dense and easily obtained data (like ECa), to estimate with less 

bias and more accuracy, a scarce, time consuming and expensive soil property of interest 

(such as EC2.5). 
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9.1. Introduction 
 

Our research work had two main objectives: (i) evaluating temporal stability and monitoring 

temporal change of the spatial pattern of soil salinity and (ii) predicting this soil salinity at 

unsampled space locations and time instants. 

In this chapter, we briefly summarize our major findings and the contributions of this research 

work to the accomplishment of these objectives. Then, some recommendations for further 

research are given. 

 

9.2. Major findings 
 

In a first application (chapters 5 and 6), we examined the temporal stability of soil salinity in 

terms of electrical conductivity determined, in the laboratory, in an extract from a 1:2.5 

soil:water ratio, EC2.5 and apparent electrical conductivity, ECa, surveyed in the field using a 

4-electrode probe sensor. 

 

Based on the first concept of temporal stability, the Spearman rank correlation coefficient, we 

found that there exists temporal persistence in the spatial pattern of soil salinity. However, as 

this statistical tool is just measuring the degree of concordance between two series of 

rankings, it cannot be used to foresee the positions of the measurement locations. This goal 

can be achieved using the second concept of temporal stability, i.e., the mean relative 

difference. The analysis of deviations between individual and field average soil salinity 

showed that some space locations are time stable. If, in addition, these locations have a mean 

relative difference about zero, they are representative of the field average soil salinity and thus 

the sampling effort can be drastically reduced in the future to these field average soil salinity 

monitoring sites. The soil salinity average value is an important parameter for mathematical 

modelling of solute transport if quasi steady state assumptions can be made. For example, 

Oosterbann (1997) developed the SALTMOD model based on the cumulative Gumbel 

distribution. This distribution is assumed to fit the cumulative distribution function of the root 

zone salinity and requires the mean value and the standard deviation (it is function of the 

mean value) as parameters for its full characterization. In addition, time stable locations with 

positive (negative) mean relative difference can be useful to identify more (less) than average 

saline locations. Both these groups of locations with those representative of the field average 
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value can be used to determine the probability distribution function of soil salinity and then 

determine its main parameters like the mean or the standard deviation from a very limited 

number of measurement locations. Moreover, temporal stability of spatial patterns of ECa 

may be relevant to the management of agricultural fields leading to the challenging site-

specific management or precision agriculture. However, precision agriculture depends on 

identifying parts of a field that will be managed differently (management units or zones) and 

heavily on the size and the stability of the units through time. The next requirement in 

precision agriculture would be to map the management units. This can be readily 

accomplished via ECa which can be easily and intensively surveyed and which was proven to 

be strongly correlated to soil salinity (EC2.5). 

The time stable locations may also be relevant to the calibration and validation of remote 

sensing products like aerial photographs or satellite images. These locations could be used to 

gather ‘ground truth’ data required for calibration and validation of remote sensed materials in 

order to determine, for example, a soil salinity index. 

A key problem to resolve, in connection with time stable locations, is how to locate easily in 

the field these sites. We found that the different salt processes (accumulation, leaching, and 

waterlogging) are strongly linked to easily measurable factors like vegetation pattern or 

elevation and the level of soil salinity is, in turn, related to these processes. Therefore, based 

on vegetation pattern and elevation, one can easily identify high, average or low saline 

locations with a minimum sampling. 

 

The temporal stability of soil salinity was assessed using both variables (ECa and EC2.5) 

separately and using measurements of these variables for a given number of time instants (in 

our case, 19). However, as EC2.5 is strongly correlated with ECa the sampling effort for 

monitoring the temporal change of soil salinity can be further reduced provided that there is 

no dynamic spatial variation. The latter refers to no or a proportional change for all space 

locations between two time instants. In this case, one requires surveying ECa only at the first 

time instant and, based on a response surface spatial design algorithm, selecting a limited 

number of space locations (in general 12 to 20) from which soil samples will be analyzed in 

the laboratory for the determination of EC2.5. The latter will be determined for both time 

instants. Thus the ECa surveying at the second time instant is avoided and consequently the 

sampling effort reduced. 

However, if dynamic spatial variation is detected between two time instants, a new calibration 

equation should be estimated. This means that ECa should be surveyed at both time instants in 
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contrast to one ECa surveying in the absence of dynamic spatial variation. Thus, in the 

presence of dynamic spatial variation between any pair of consecutive time instants, the 

regression linking EC2.5 to ECa should be estimated in order to convert the intensively 

measured ECa into ‘predicted’ EC2.5. 

 

The second objective of our research work was achieved when the space-time variability of 

the ‘predicted’ EC2.5 values was determined and modelled and then used in geostatistical 

algorithms to predict soil salinity at unobserved space locations and time instants. 

In this way, we determined and modelled the joint space-time variability by using the space-

time covariance function. Afterwards, we compared first space-time kriging to spatial kriging 

and then space-time kriging to BME. For both space-time prediction methods, we used two 

approaches: kriging based only on hard data (observed EC2.5) and kriging using observed as 

well as mid interval of soft (‘predicted’ EC2.5) data while for BME we used hard data and two 

kinds of soft data, i.e., interval and probabilistic. These soft data were derived from the 

‘predicted’ EC2.5 values. 

The results of this work showed that the space-time covariance function provides a more 

accurate and realistic representation of the correlation structure of the soil salinity both in 

space and time than that described by a purely spatial or a purely temporal covariance 

function. Also, and as a consequence of the precedent result, the space-time kriging provided 

more accurate predictions than kriging limited to the spatial domain. In addition, space-time 

kriging using hard and mid interval soft data was the worst with the highest bias and the least 

accuracy compared to the other approaches. Moreover, BME produced less biased and more 

accurate predictions than kriging based only on hard data. Finally, BME based on hard and 

probabilistic soft data gave the most accurate predictions among all compared approaches. 

These results confirm the conclusions from precedent works which compared BME to 

kriging. 

 

The BME is a versatile space-time prediction method and more general than the classical 

geostatistical prediction method, i.e., kriging which has many limitations. It has many 

advantages over kriging which are reported in what follows: 

• Kriging uses only statistical moments of first and second order (mean and covariance 

function) and hard data whereas BME uses these moments as well as moments of higher 

order, hard and soft data of different kinds, and physical laws can be easily integrated in the 

knowledge processing rule. Moreover, soft data at prediction points can be taken into account; 
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• Kriging is limited to single point estimation. In contrast, BME offers single as well as 

multipoint mapping; 

• Kriging is the Best Linear Unbiased Estimator (BLUE) so it is restricted to linear 

estimators whereas BME provides estimators that are, in general, non linear and thus BME is 

simply Best Unbiased Estimator (BUE); 

• Additional constraints like unbiasedness are imposed by kriging. Conversly BME does 

not require these constraints; 

• Kriging is limited to interpolation whereas BME allows interpolation and 

extrapolation; 

• Most of the kriging techniques produce as output the conditional mean and the 

estimation error variance; only indicator kriging provides a step cumulative distribution 

function with some severe drawbacks. In contrast, BME provides the full pdf from which 

different estimators like the conditional mean, the variance, the mode, any percentile, etc. can 

be easily derived and mapped; 

All these points emphasize the flexibility of BME and its more general character which make 

it a very powerful method for space-time mapping. 

 

9.3. Recommendations for further research 
 

Other data sources can be readily used to improve the space-time analysis of soil salinity. 

Also, there are a number of areas arising from the work presented in this thesis that demand 

further investigation, specifically in data processing. 

 

9.3.1. Data sources 

 

In this thesis, soil salinity data were analyzed for their space-time variability. We used 

electrical conductivity determined in the laboratory (EC2.5) and measured in the field (ECa) 

using 4-electrode probe. An additional consideration might be to complement ECa values 

from 4-electrode probe with those measured using an electromagnetic induction device since 

the latter needs no contact with soil, hence extensive measurements can be done within a 

similar time. This is expected to be done during 2005 using a dipole EM38 device in our 

study site.  
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Also, additional and easily collected ancillary data can be made available via remote sensing 

like aerial photographs or even better, satellite images. Remote sensing is a valuable tool for 

obtaining relevant data on soil salinity. Multi-temporal images are a suitable way to detect the 

changing state of soil salinity by considering them as secondary covariables in the cokriging 

paradigm or as explanatory variables in the regression calibration models. 

Finally, as was noted before, BME is able to incorporate different sources of data. General 

knowledge in the form of a physical law can be accounted for. This allows obtaining space-

time predictions by considering the law that governs the natural process (soil salinity) while 

the predictions also embody the case-specific data (hard and soft data). 

 

9.3.2. Data processing 

 

As data become available for more time instants and space locations, using for example 

electromagnetic induction or remote sensing, other geostatistical methods can be used. As 

example, the space-time cokriging (sections 4.3.7 and 4.4.5) can apply to our data by 

considering EC2.5 as the property of interest and ECa and/or remote sensing data as 

covariables. This will increase the accuracy and the reliability of the predictions. Also, the 

different covariance functions would be fitted using more elaborate models like the ones 

reported in section 4.3.6. Moreover, in our application we considered only the space-time 

component in the model, but it may be more cautious to add a purely spatial and/or a purely 

temporal component to the model (Bogaert, 1996a; see also section 4.3.8), especially when 

some non ergodicity is present in the data. Also, the covariables can be used in the BME 

framework which is then called vectorial BME. Additionally, as we noted in the precedent 

section, BME can be used to incorporate the physical law governing the processes related to 

soil salinity. Space-time simulation algorithms can also be used to evaluate the space-time 

uncertainty in soil salinity and to forecast different scenarios and thus to choose between 

different soil management alternatives. Finally, it would be challenging to find connexions 

between the temporal stability and the covariance function even though these two concepts 

are based on completely different assumptions (spatial/temporal independence for the former 

method whereas spatial/temporal correlation for the latter) and have somewhat contradictory 

objectives, i.e., the former tries to reduce the sampling effort as the interest is in the average 

or extreme values whereas the computation of the covariance function requires numerous 

space-time data and the objective is to map the entire study site at different time instants (in 

the past as well as in the future). 
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SUMMARY 
 

Evaluation of the space-time variability of soil salinity by 

statistical, geostatistical and Bayesian maximum entropy methods. 
 

by ir Ahmed DOUAIK 

 

Aims 

 

This thesis aims to the development of statistical and geostatistical methods for the analysis of 

space-time data and their application to soil salinity. Special emphasis was put on how to 

characterize soil salinity. Also, the focus was on three groups of methods, i.e. statistical, 

geostatistical and Bayesian maximum entropy (BME) approaches. Although, the methods 

were applied to soil salinity, they can be applied to other fields of research as well. 

In summary, the two main objectives of this study were: 

- monitoring the temporal change of the spatial pattern of soil salinity using classical 

statistical methods; 

- mapping of soil salinity at unobserved space locations and time instants using classical 

and modern geostatistical methods like the BME. 

 

Outline  

 

After a general introduction (chapter 1), a literature review on soil salinity was presented 

(chapter 2). It was deduced from this chapter that soil salinity can be measured in the 

laboratory or in the field. For laboratory analysis, soil salinity is determined either from an 

extract from a saturated soil paste (ECe) or from an extract from a given soil:water ratio, for 

example 1:1, 1:2.5, 1:5. In the field, soil salinity can be evaluated by measuring the apparent 

or bulk soil electrical conductivity (ECa) using 4-electrode probe or electromagnetic induction 

devices. In our case study we used EC2.5 and ECa from 4-electrode probe. These soil 

properties were measured at different space locations and repeated in time from November 

1994 to March 2001. The study site and data were described in chapter 3. 

In the review of methods for analysis of space-time data (chapter 4), we distinguished three 

groups of methods. First, classical statistical methods which ignore the space and time 
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coordinates were considered. In this group, we presented the coefficient of variation, the 

analysis of variance and the variance component analysis, the temporal stability, and the 

dynamic spatial variation. The last two methods were used in our soil salinity application 

(chapters 5 and 6). The second group of methods involves classical geostatistical approaches 

including structural analysis (variogram and covariance function) and interpolation (kriging) 

in the space-time domain while the third group of methods includes modern geostatistical 

approaches, i.e. BME. Both the second and third approaches were applied to our soil salinity 

data (chapters 7 and 8). 

 

Classical statistical methods 

 

Soil electrical conductivity values obtained, at different locations and times, from field 

electrode probes and laboratory analysis were compared and analysed to check the temporal 

stability of salinity patterns. The statistical methods used were the Spearman rank correlation, 

the technique of relative differences, the significance of the parameters of the regression 

linking data from one period to those from its precedent, the paired-t test, and the test of 

significance of the dynamic spatial variation. Based on the Spearman correlation, we found 

that the ranking of the different locations persisted over time. We identified, based on the 

relative differences, three salinity classes with different temporal stability: the most time 

stable low saline area belonging to the zones of waterlogging and/or salt leaching, the least 

time stable high saline area belonging to the salt accumulation zone, and finally an area with 

locations which are representative of the average field soil salinity with an intermediate 

temporal stability belonging to the zones of salt accumulation, salt leaching and waterlogging. 

A dynamic spatial variation was found only for three pairs of times while for the remaining 

pairs there was no change or the change was proportional. 

 

Geostatistical and Bayesian maximum entropy methods 

 

A step further was reached when the field electrical conductivity was converted to laboratory 

electrical conductivity based on calibration equations linking laboratory to field electrical 

conductivity values. The converted laboratory electrical conductivity values were analysed for 

their space-time variability using variograms and interpolated using the kriging algorithm in a 

space-time domain. The space-time kriging was compared to kriging limited to the space 

domain. In addition, two variants of space-time kriging (using, on one hand, only the 
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observed laboratory electrical conductivity data and, on the other hand, the latter as well as 

the converted laboratory electrical conductivity data) were compared to the method of BME.  

BME is an interpolation technique which distinguishes between the difference in the accuracy 

of the observed and the converted laboratory electrical conductivity data as the latter are less 

accurate (as they are estimates) than the former. We found that the prediction in space-time 

domain was not different from those from the space domain but the former predictions were 

more accurate than the latter ones. Also we found that the BME is less biased, more accurate, 

and giving estimates which were better correlated with the observed laboratory electrical 

conductivity values than the two kriging techniques. Finally, using probabilistic soft data 

instead of intervals in the BME framework reduced the bias and increased the accuracy of the 

predictions. 

The dissertation finishes with a concluding section (chapter 9) stressing the major results and 

giving recommendations for further research. 
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SAMENVATTING 
 

Evaluatie van de ruimte-tijd variabiliteit van bodemverzilting via 

statistische, geostatistische en Bayesiaanse maximum entropie methoden. 
 

door ir Ahmed DOUAIK 

 

Doel 

 

Deze thesis poogt de ontwikkeling van statistische en geostatistische methodes voor de 

analyse van ruimte-tijd gegevens en hun toepassing voor bodemverzilting. Speciale nadruk 

werd gelegd op het karakteriseren van bodemverzilting. De aandacht werd gericht op drie 

groepen van methodes: statische, geostatische en Bayesiaanse maximum entropie (BME) 

benaderingen. Hoewel de methodes werden toegepast op gegevens over het zoutgehalte van 

de bodem,  zijn ze ook van nut voor andere onderzoeksdomeinen. 

Samengevat, de twee hoofddoelen van deze studie waren: 

- het opvolgen van de temporele verandering van het ruimtelijk patroon van 

bodemzouten op basis van klassieke statistische methoden; 

- het in kaart brengen van bodemzouten op niet geobserveerde locaties en ogenblikken 

gebruik makend van klassieke en moderne geostatistische methodes zoals BME. 

 

Overzicht  

 

Na een algemene inleiding (hoofdstuk 1) werd een literatuurstudie over bodemzouten 

gegeven (hoofdstuk 2). Uit dit hoofdstuk werd afgeleid dat het zoutgehalte van de bodem 

zowel in het laboratorium als op het veld kan opgemeten worden. Voor laboratorium analyses 

wordt het zoutgehalte bepaald ofwel op basis van een extract van een verzadigde bodempasta 

(ECe) ofwel op basis van een extract met een bepaalde bodem:water ratio, zoals bijvoorbeeld 

1:1, 1:2.5, 1:5. Op het veld word het zoutgehalte bepaald met een 4-electrode sonde of met 

electromagnetische inductie instrumenten die de schijnbare of bulk bodem elektrische 

geleidbaarheid (ECa) meten. In onze studie gebruikten we EC2.5 en ECa gemeten met een 4-

elektrode sonde. Deze bodemeigenschappen werden gemeten op verschillende locaties en 
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verschillende tijdstippen gaande van november 1994 tot maart 2001. Het studiegebied en de 

gegevens werden beschreven in hoofdstuk 3. 

De methodes voor analyseren van ruimte-tijd gegevens (hoofdstuk 4) hebben we opgesplitst 

in drie groepen. De eerste groep, de klassieke statistische methodes, negeren ruimtelijke en 

temporele coordinaten. Hierin kwamen aan bod de variatiecoefficient, de variantie analyse en 

de variantie component analyse, de temporele stabiliteit en de dynamische ruimtelijke 

variabiliteit. Deze laatste twee methodes werden toegepast op onze bodemzoutgegevens 

(hoofdstuk 5 en 6). De tweede groep methodes bestaat uit de klassieke geostatistische 

methodes met inbegrip van de structuuranalyse (variogram en covariantie functie) en 

interpolatie (kriging) in het ruimte-tijd domein. De derde groep methodes omvat de moderne 

geostatistische benaderingen, i.e. BME. Zowel de tweede als derde benadering werden 

toegepast op onze bodemzoutgegevens (hoofdstuk 7 en 8).  

 

Klassieke statistische methodes 

 

Metingen van de bodem elektrische geleidbaarheid, bekomen op verschillende locaties en 

tijdstippen met zowel de elektrode sondes als via laboratiumanalyses, werden vergeleken en 

geanalyseerd om de temporele stabiliteit van zoutpatronen te onderzoeken. De gebruikte 

statistische methodes waren ‘Spearman rank’ correlatie, de techniek van relatieve verschillen, 

de significantie van de regressie parameters die gegevens van één periode koppelt aan die van 

de voorgaande periode, de gepaarde t-test en de significantie test van de dynamische 

ruimtelijke variabiliteit. Gebaseerd op de Spearman correlatie konden we concluderen dat  de 

rangorde van de verschillende locaties stabiel bleef doorheen de tijd. Op basis van de relatieve 

verschillen werden drie verziltingsklassen met elk een verschillende temporele stabiliteit  

geïndentificeerd. Het meest temporeel stabiele verziltingsgebied had lage zoutgehaltes en 

omvatte de zones van waterverzadiging en/of zoutuitloging, de minst temporeel stabiele 

gebieden waren de zoutaccumulatiezones met een hoog zoutgehalte en tot slot een gebied met 

locaties die representatief waren voor het gemiddelde bodemzoutgehalte met een 

intermediaire temporele stabiliteit waaronder de zones van zoutaccumulatie, zoutuitloging en 

waterverzadiging vallen.  

Een dynamisch ruimtelijk patroon werd gevonden voor drie paren in de tijd terwijl er bij de 

overblijvende paren geen verandering was of de verandering was proportioneel 
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Geostatistische and Bayesiaanse maximum entropie methoden 

 

In een volgende stap werd de veld elektrische geleidbaarheid omgezet naar laboratorium 

elektrische geleidbaarheid op basis van kalibratievergelijkingen die laboratorium en veld 

elektrische geleidbaarheidwaardes relateren. De ruimte-tijd variabiliteit van de geconverteerde 

laboratorium elektrische geleidbaarheidwaardes werd onderzocht met variogrammen en 

geinterpoleerd met het kriging algoritme in het ruimte-tijd domein. Deze ruimte-tijd kriging 

werd vergelijken met een kriging beperkt tot enkel het ruimte domein. Bovendien werden 

twee varianten van ruimte-tijd kriging (gebruik makend van enerzijds geobserveerde 

laboratorium elektrische geleidbaarheid en anderzijds de laatstgenoemde uitgebreid met de 

geconverteerde laboratorium elektrische geleidbaarheid) vergeleken met de methode van 

BME. BME is een interpolatietechniek die onderscheid maakt in de nauwkeurigheid van de 

geobserveerde en geconverteerde laboratorium elektrische geleidbaarheid gegevens daar de 

laatstgenoemde minder nauwkeurig is dan de eerstgenoemde (het zijn immers schattingen). 

We ontdekten dat de voorspelling in het ruimte-tijd domein niet verschilde van de 

voorspelling in het ruimte domein maar de voorspellingen in het ruimte-tijd domein waren 

nauwkeuriger.  BME was ook minder vertekend, nauwkeuriger en de schattingen waren beter 

gecorreleerd met de geobserveerde laboratorium elektrische geleidbaarheid waardes dan de 

twee kriging technieken. Tenslotte, gebruik maken van probabilistische zachte gegevens in 

plaats van intervallen in de BME procedure verminderde de vertekening en vergrootte de 

nauwkeurigheid van de voorspellingen.  

 

De verhandeling sluit af met een concluderende sectie (hoofdstuk 9) die de voornaamste 

resultaten benadrukt en aanbevelingen geeft voor verder onderzoek. 
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RESUME 

 

Evaluation de la variabilité spatio-temporelle de la salinité du sol par des 

méthodes statistiques, géostatistiques, et d’entropie maximale bayesienne. 
 

par ir Ahmed DOUAIK 

 

Objectifs 

 

Cette thèse a pour objectif le développement de méthodes statistiques et géostatistiques pour 

l’analyse de données spatio-temporelles et leur application à la salinité du sol. Un intérêt 

spécial a été porté sur comment caractériser la salinité du sol. Aussi, le focus était sur trois 

groupes de méthodes d’analyse, à savoir les méthodes statistiques classiques, les méthodes 

géostatistiques classiques et les méthodes géostatistiques modernes, c’est à dire l’entropie 

maximale bayesienne. Quoique les méthodes en question aient été appliquées à la salinité du 

sol, elles pourront être appliquées également à d’autres domaines de recherche. 

En résumé, les deux principaux objectifs de notre étude étaient : 

- suivi de l’évolution dans le temps du pattern spatial de la salinité du sol par 

l’utilisation de méthodes statistiques classiques ; 

- cartographie de la salinité du sol aux endroits et aux instants non échantillonnés par 

l’utilisation des méthodes géostatistiques classiques et modernes comme l’entropie 

maximale bayesienne. 

 

Aperçu  

 

Après une introduction générale (chapitre 1), une étude bibliographique sur la salinité du sol a 

été présentée (chapitre 2). Il ressort de ce chapitre que la salinité du sol peut être mesurée soit 

au laboratoire soit au champ. Au laboratoire, on peut déterminer la conductivité électrique 

d’un extrait de pâte saturée (ECe) ou d’un extrait d’un rapport sol:eau donné, par exemple 1:1, 

1:2.5, 1:5, etc. Quant au champ, la salinité du sol peut être évaluée par la mesure de la 

conductivité électrique apparente (ECa) via un quadripôle ou un instrument d’induction 

électromagnétique. Dans notre étude nous avons opté pour l’utilisation de EC2.5 et ECa 

mesurée par un quadripôle. Ces propriétés du sol ont été mesurées en divers sites et les 
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mesures ont été répétées dans le temps entre novembre 1994 et mars 2001. Le site d’étude et 

les données ont été décrits au chapitre 3. 

Concernant l’analyse des données spatio-temporelles (chapitre 4), on a distingué trois groupes 

de méthodes. D’abord les méthodes statistiques classiques, qui ignorent les coordonnées dans 

l’espace et dans le temps, ont été présentées. Elles regroupent le coefficient de variation, 

l’analyse de la variance et l’analyse des composantes de variance, la stabilité temporelle, et la 

variation spatiale dynamique. Les deux dernières méthodes ont été appliquées à nos données 

(chapitres 5 et 6). Le deuxième groupe de méthodes est l’approche géostatistique classique 

incluant l’analyse structurale (variogramme et fonction de covariance) et l’interpolation 

(krigeage) dans le domaine spatio-temporel. Le troisième groupe concerne les méthodes 

géostatistiques modernes, c’est à dire l’entropie maximale bayesienne. Les méthodes 

géostatistiques classiques et modernes ont été appliquées à nos données (chapitres 7 et 8). 

 

Méthodes statistiques classiques 

 

Les valeurs de la conductivité électrique obtenues, en différents sites et instants, à partir de 

l’analyse au laboratoire (EC2.5) et d’un quadripôle (ECa) ont été comparées et analysées pour 

vérifier la stabilité temporelle des patterns spatiaux de la salinité du sol. Les méthodes 

statistiques utilisées ont été la corrélation de rang de Spearman, la technique des différences 

relatives, le test de signification des paramètres de la régression liant les données d’une 

période à celle de la période précédente, le test t de Student par paires, et le test de 

signification de la variation spatiale dynamique. Basé sur la corrélation de Spearman, on a 

trouvé que le classement des différents sites persiste avec le temps. On a identifié, basé sur les 

différences relatives, trois classes de salinité ayant différentes stabilités temporelles. Les sites 

de faible salinité sont les plus stables avec le temps et appartiennent aux zones de stagnation 

de l’eau et de lessivage des sels, les sites de forte salinité sont les moins stables et 

appartiennent aux zones d’accumulation des sels, alors que les sites représentatifs de la 

salinité moyenne du champ ont une stabilité temporelle intermédiaire et appartiennent aux 

trois zones de processus liés à la salinisation. 

Une variation spatiale dynamique a été identifiée pour trois paires de temps alors que pour les 

autres paires, il n’y a pas eu de changement dans la salinité ou bien ce changement a été 

constant pour tous les sites entre les deux instants considérés. 
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Méthodes géostatistiques et d’entropie maximale bayésienne 

 

La conductivité électrique apparente (ECa) a été convertie en salinité du sol (EC2.5) en 

utilisant les équations de calibration basées sur des modèles de régression. Ces valeurs 

converties ont été analysées pour leur variabilité spatio-temporelle en utilisant les 

variogrammes / fonctions de covariance et ont été interpolées via le krigeage dans le domaine 

spatio-temporel. Ce dernier a été comparé au krigeage limité au domaine spatial. En outre, 

deux variantes du krigeage spatio-temporel, utilisant d’un côté uniquement les valeurs 

observées et de l’autre aussi bien les valeurs observées que les valeurs converties, ont été 

comparées à la méthode de l’entropie maximale bayesienne. Cette dernière est une technique 

d’interpolation qui distingue entre la précision des données observées de celle des données 

converties. On a trouvé que la prédiction via le krigeage spatio-temporel ne différait pas de 

celle du krigeage limité au domaine spatial, cependant la précision du premier était plus 

grande. On a trouvé, aussi, que l’entropie maximale bayesienne fournit des prédictions moins 

biaisées, plus précises, et sont mieux corrélées aux valeurs observées que les prédictions 

fournies par les deux variantes du krigeage. 

La dissertation se termine par une section de conclusion (chapitre 9) en résumant les 

principales conclusions et en présentant quelques recommandations de recherche pour le 

future. 
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