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CHAPTER 1

Outline

This thesis is situated in the area of goodness-of-fit (GOF) testing for the

one-sample problem. For this type of statistical problems we are interested

in whether a sample of observations possibly comes from a given distribution

or not. The null hypothesis of such a statistical problem is that the data fol-

low that particular distribution, which is referred to as the hypothesised or null

distribution. In this area a large number of statistical methods and tests have

been developed since the introduction of the well known Pearson χ2 statistic in

1900. Pearson’s test, which is in principle only applicable to discrete data, of-

ten has been used for categorised continuous data problems as well. Nowadays,

however, many other more competitive GOF methods have been developped

particularly for continuous data problems, and the application of Pearson’s test

is only recommended in the discrete case. Nevertheless, Pearson’s statistic is

still often used as a basis to construct test statistics for continuous data. The

reason is probably that the idea behind Pearson’s statistic is very simple. The

class of sample space partition (SSP) tests, which was originally developed by

Thas (2001), forms an example hereof. In particular, this family of statistics

is constructed by taking the average of the Pearson’s statistics over all possible

partitions of the sample space.

Test statistics of this class can be written in terms of the empirical distri-

bution function (EDF). In such, they are related to a second, quite large class

of GOF tests, the so-called EDF tests. That class includes e.g. the Anderson-
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Darling (AD) test and the Kolmogorov-Smirnov (KS) test.

A third class consists of the smooth tests, which were introduced by Neyman

(1937). The test statistics of this type are particularly useful since they can

often be decomposed into meaningful components which give information on

how the true distribution deviates from the hypothesised. This deviation is

usually expressed in terms of moments, e.g. a difference in skewness which is

related to the third moment. An issue with smooth tests is how to choose the

number of components included in the test statistic, which is in turn related

to the number of parameters in a smooth model. The choice of the order is

particularly important as choosing an inappropriate order might result in a

power loss. In order to overcome the problem of choosing the order, Ledwina

1994 proposed a data-driven version of the smooth test by making an optimal

choice based on the data.

The above described statistics, Pearson’s, EDF and smooth tests are consid-

ered as the three main classes of GOF statistics for linear data.

In this thesis we are particularly interested in GOF techniques for circular

data. Circular data occur in many fields and are essentially observations mea-

sured on a circle. Two typical examples of circular data are wind directions

and arrival times, for which the measuring instrument is the compass and the

clock, respectively. A question that often arises with such data is whether the

directions or time measurements are uniformly distributed over the circle. This

is a GOF problem for which the hypothesised distribution is the circular uni-

form (CU) distribution. In the context of GOF problems on the circle, it is

necessary to use appropriate techniques which take the special structure of the

circle into account. In particular, the proposed methods should be invariant to

the arbitrary chosen origin and rotation direction.

Some of the above GOF methods have been adapted for circular data. For

example, the Kuiper test (1960) is the circular analogue to the KS test. The

smooth test for linear uniformity is adapted for circular uniformity by Bogdan

et al. (2002). Although the same three classes of GOF tests exist also for cir-

cular data, the spectrum of GOF tests for circular data is not as large as that

of the GOF tests for linear data. Most GOF techniques on the line have been

developed for simple null hypotheses as well as for composite null hypotheses.

A simple null hypothesis refers to a completely specified null distribution, while

composite null hypothesis refers to a null distribution for which some parame-

ters are unknown, and are therefore to be estimated in practice. However, the

extension of GOF tests to composite null hypotheses is not always straightfor-

ward. In particular, while Bogdan et al. (2002) proposed the smooth test for

the simple null hypothesis of circular uniformity, a smooth test for composite

hypothesis is harder and has not been developed yet to our knowledge.

In this thesis, we introduce a general framework for the construction of
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smooth tests on the circle. We use the complex-valued representation of cir-

cular data and generalise the theory of smooth tests for linear data by Rayner

and Best (1989) to complex-valued circular data. This allows us to construct a

smooth test for any circular composite distribution. We explicitly develop the

theory in the case of testing for circular normality, which is the circular ana-

logue to the normal distribution on the line. Similarly as in the linear case, we

present a data-driven version of the circular smooth test. As a by-product of the

data-driven smooth test, a non-parametric density estimator can be constructed,

which immediately may give a visual impression of how the true distribution

deviates from the hypothesised.

We also present new results on the class of localised Pearson χ2 tests, which

is closely related to the class of SSP tests, introduced by Thas (2001). The

class of statistics is shown to have some interesting asymptotic properties. In

particular, they are powerful against “local” alternatives, which are alternatives

that deviate from the null distribution only in small intervals of the sample

space. Our initial discussion will deal with the linear case, but we extend this

class of tests to include circular localised Pearson χ2 tests.

Apart from GOF tests, we know that explorative analysis of the distribu-

tional properties of the data is something that should not be omitted. Often

such analyses reveal interesting features in the data. Most of the common ex-

plorative graphs are subjective when it comes to interpretation. Moreover, they

depend on the choice of certain parameters. For example the construction of a

histogram depends on the choice of the bin width. In this thesis we focus on

visualisation techniques that are related to statistical tests. The probability-

probability plot (PP-plot) is such an example since it is related to the KS test.

In fact, the PP-plot is a visual representation of the information that is used by

the KS test in making its decision between the null and the alternative hypoth-

esis. This implies that conclusions can be drawn from this plot which are formal

and objective. The PP-plot, however, is not useful for circular data since it is

not origin-invariant. We therefore develop in this thesis a new graphical tool

that is related to the circular analogue of the KS test, i.e. the Kuiper test. Two

versions of the graph are presented and are referred to as the Circular PP-plot

(CiPP) and the Interval-based PP-plot (IBPP). The graphical diagnostic tool is

particularly useful for localising the region where the true distribution deviates

from the hypothesised, which is also called the location of the lack-of-fit (LOF).

We also illustrate how an adapted version of the IBPP-plot can be used to

assess how well the empirical distribution is fitted by the non-parametric density

estimator associated with the data-driven smooth test. This density estimator

is essentially an orthonormal series density estimator and could be compared

based on the IBPP-plot to, for example, a kernel density estimator.

In Chapter 2 we introduce the GOF problems for linear and circular data

3



in an informal way through some real data examples. We also carry out a

preliminary exploration of the data through some classical graphical techniques

and descriptive summary statistics. The examples described in this chapter will

be used in later chapters to illustrate the developed methods.

An overview of the three main classes of GOF tests for circular as well as for

linear data is presented in Chapter 3. Since there exists a wide spectrum of

GOF tests, it is not the intention of this thesis to be complete in this matter. The

GOF techniques that are included in the overview are relevant to our proposed

methods.

In Chapter 4 we present the general framework for the construction of

smooth tests on the circle. In this framework a smooth test for any circular

distribution can be developed. It is shown that for the special case of circular

uniformity, the smooth test of Bogdan et al. (2002) is obtained. Considerable

attention will be paid in this chapter to the smooth test for composite circular

normality.

The characteristics and extensions to the Localised Pearson χ2 tests are in

Chapter 5 and the new graphical diagnostic tool to detect the location of the

LOF is presented in Chapter 6.

The applicability of the proposed methods is widely demonstrated by the

various examples throughout this thesis.

In Chapter 7 we summarise the conclusions of the thesis, and we provide

some topics for further research.

Finally, we want to stress that the use of the term “local” throughout this

thesis, may not be confused with the use of this term in the context of “local

alternatives”. We will therefore always use the equivalent term “contiguous

alternatives” instead. With “local” we always mean a small subset of the sample.
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CHAPTER 2

Introduction through

examples

In this chapter we introduce in an informal way the one-sample goodness-of-fit

(GOF) problem for linear and circular data. In particular, we present the real

datasets that will be used in the next chapters as examples for demonstrating

the proposed methods. Since we will propose new GOF techniques for linear

as well as for circular data, both types of data will be considered, respectively

in Section 2.1 and Section 2.2. Since we only discuss methods to analyse uni-

variate data, we sometimes use the terms data and the realisations of a random

variable (rv) interchangeably. If confusion is possible, we will be more explicit.

To provide some insight in the data, we add an exploratory analysis for each

example, using summary statistics and classical graphical tools. The descriptive

summary statistics include appropriate estimates for location, scale, skewness

and kurtosis. As graphical tools we consider visualisation techniques for the

raw data, such as a histogram or a kernel density estimate. Additionally, we

consider plots that provide more information concerning the fit of a particular

distribution. The PP-plot is an example of such a tool and has the advantage

that it is related to a formal statistical test (the KS test). However, these plots

are usually not appropriate for circular data since they are not origin-invariant.

In Chapter 6 we propose a new graphical tool to localise the lack-of-fit (LOF)

5



that is appropriate for both linear and circular data.

2.1 Linear data

Linear data, which is the most common type of data, can be measured on the

real line or on some interval of the real line. The examples in this section

introduce the linear one-sample GOF problem. All corresponding datasets can

be found in Appendix C.

2.1.1 Lottery data

The following dataset is a reference dataset provided by the National Insti-

tute of Standards & Technology (NIST) and available from the StRD webpage

(http://www.itl.nist.gov/div898/strd/index.html). It consists of 218 3-

digit numbers (from 000 to 999) resulting from the state of Maryland’s Pick-3

Lottery. The data were collected for the 32-week period from September 3, 1989

until April 14, 1990. One 3-digit random number was drawn per day, 7 days per

week for most weeks, and 6 or 5 days per week for other weeks. An interesting

data-analytic question involving this dataset is whether the lottery numbers are

uniformly distributed. The answer to that question can be given by GOF tests.

The testing problem described here is called the simple one-sample GOF prob-

lem. Here, simple refers to the hypothesised distribution which is completely

specified. Indeed, the probability mass function of the uniform distribution over

numbers from 0 to 999 is completely determined and does not require specifi-

cation of any parameters. A general formulation of the simple one-sample null

hypothesis is given by

H0: the underlying distribution of the data is F0, where F0 is completely

specified.

Classical GOF techniques to test this null hypothesis are described in Chapter

3. Note that the Lottery data in fact concerns observations from a discrete

random variable. However, the number of possibilities within the interval [0,999]

is assumed to be large enough to approach continuity, such that continuous GOF

methods are justified.

An appropriate GOF test for continuous uniformity is for example the Kol-

mogorov - Smirnov (KS) test, which is based on the supremum of the deviations

between the observed and expected probabilities for uniformity (see Section

3.4.2). For this dataset, the KS test statistic has value Dn = 0.048
√
n (n = 218)

which results in a p-value of 0.689, indicating a non-significant result. For the

application of other GOF tests to the Lottery data, we refer to Chapters 5 and

6.
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Besides using formal statistical GOF tests, we stress that it is also important

to use explorative tools in order to recognise features and get more insight in

the data. We use the term explorative to refer to the plots and the descriptive

summary statistics, since their interpretation is subjective. On the other hand,

the term formal refers to GOF techniques from which an objective conclusion

can be drawn. Statistical hypothesis tests form an example of these.

Figure 2.1 shows explorative plots for the Lottery data. The histogram

in panel (a) indicates that the data is probably uniformly distributed up to

some small deviations. The box plot, in panel (b), shows that the three quar-

tiles divide the data in four roughly equal parts and no outliers are present.

The PP-plot in panel (c) plots the observed probabilities versus the expected

probabilities in case the data follows the uniform distribution. The points are

scattered at random around the solid line. Hence, there is no evidence to reject

the null hypothesis.

The absolute distance between the points and the line in the PP-plot is in

fact the basis for the KS test. In particular, the supremum of these absolute

deviations results in the KS statistic. Alternatively, the distances between the

observed and the expected probabilities can be plotted versus the observations

in a detrended PP-plot. If the KS test is significant at the α-level, then the

detrended PP-plot may show where the LOF is located by indicating the values

that exceed the α-level critical value of the KS test. Panel (d) of Figure 2.1

shows the detrended PP-plot for the lottery data. The two horizontal dotted

lines indicate −uα/
√
n and uα/

√
n, where uα = 0.091

√
n is the 5% critical

value of the KS test. The region outside the two dotted lines is the rejection

region of the KS test. If the KS test is significant, at least one point lies in that

rejection region. The coordinates on the horizontal axis of the points in the

rejection region then indicate the location of the LOF. For the Lottery data,

no significant result was found and hence no location of LOF is detected. We

may conclude that the selection of the numbers occurs completely at random

(uniformly distributed). In Section 5.5, we will apply other GOF techniques

to these data. Additionally, in the same section, we will create a corrupted

sample from the lottery data. In particular, the numbers between 800 and 875

are changed. For this new corrupted data, we demonstrate that the localised

Pearson χ2 tests are useful to detect such a deviation from uniformity.

The relation between the (detrended) PP-plot and the KS test is particularly

interesting. The reason is that usually the drawback of explorative tools is

that they are subjective. However, if the plot is related to a formal test, the

conclusions of that test may be derived from the plot. Therefore, such a tool

combines the advantages of a visualization technique with the objectivity of a

test. A graphical tool which corresponds in a similar way to the Kuiper test for

circular distributions will be proposed in Chapter 6.
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Figure 2.1: Histogram (a), box plot (b), PP-plot (c) and detrended PP-plot (d) for

the Lottery data. The region between (outside) the dotted lines in the

detrended PP-plots, shows the acception (rejection) region of the KS test

at the 5% significance level.
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Table 2.1: Descriptive summary statistics for the Lottery data together with the

population characteristic for uniformity.

Minimum 1st Quartile Median 3rd Quartile Maximum

observed 4.0 272.8 522.5 779.2 999.0

expected 0.0 250.0 500.0 750.0 999.0

Mean Variance Skewness Kurtosis

observed 519.0 85088.73 -0.093 -1.193

expected 500.0 83333.33 0.000 -1.200

Finally, we give some descriptive summary statistics of the Lottery data in

Table 2.1. The table also includes the corresponding population characteristics

for the uniform distribution on [0,999]. The sample skewness and sample kurto-

sis in Table 2.1 are calculated from the data. Let m2, m3 and m4 be the second,

third and fourth central sample moments, i.e.

mj =
1

n

n
∑

j=1

(Xi −X)j j = 2, 3, 4. (2.1)

Then, sample skewness and the sample kurtosis are computed by

g1 =

√

n(n− 1)

n− 2

m3

m
3/2
2

and g2 =
n2((n+ 1)m4 − 3(n− 1)m2

2)

(n− 1)(n− 2)(n− 3)

(n− 1)2

n2m2
2

, (2.2)

respectively. These are consistent estimators for the population skewness and

the population kurtosis. For the lottery data, it is seen that the sample charac-

teristics are fairly close to the population characteristics of the uniform distri-

bution.

2.1.2 Lew data

The Lew dataset is also taken from the NIST StRD webpage and is the result

of a study by H. S. Lew of the Structures Division of the Center for Building

Technology at the NIST. The purpose of the study was to characterise the

physical behavior of steel-concrete beams under periodic load. The variable that

was measured is deflection from a rest point of the steel-concrete beam. The

200 observations are equispaced in time. The researchers want to know whether

this beam deflection point is uniformly distributed over the interval [-580,301],

which is assumed to be the sample space. This is again a simple one-sample

GOF problem. The KS GOF test for uniformity gives a value Dn = 0.113
√
n
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(n = 200) which is a significant result (p=0.011) at the 5% level. Hence, the

data shows evidence against uniformity.

The histogram of the data in panel (a) of Figure 2.2 shows two modes near

the limits of the interval. This graph also includes the kernel density estimate,

which is obtained by a Gaussian kernel with bandwidth determined by means

of the unbiased cross-validation method (Silverman (1986) and Venables and

Ripley (1997)). The bimodal pattern is apparent in this kernel density estimate

as well. The red points in the detrended PP-plot in panel (c) of Figure 2.2

indicate the observations that are responsible for the rejection of the KS test.

Many dots are colored red in the interval of beam deflection ranging from -550

to -350 and few dots are colored red near the other end at 200. From the box

plot (see panel (e) in Figure 2.2), it is seen that the first and the third quartiles

are relatively close to the limits of the interval.

For illustrative purposes, we have also taken a small random subsample of

20 observations. We want to see whether the bimodal pattern would also be

noticeable in such a small sample. The KS test for the subsample gives a value

of Dn = 0.249
√
n (n = 20) which is now not significant anymore (p=0.142).

This result can also be derived from the corresponding detrended PP-plot in

panel (d) of Figure 2.2. On the other hand, the histogram and the box plot in

panels (b) and (f) respectively of Figure 2.2 still suggest non-uniformity. Finally,

the summary statistics in Table 2.2 clearly indicate a deviation from uniformity

in both the original sample and the subsample. This small experiment may

suggest that the KS test is not powerful enough to detect the non-uniformity

in such a small sample. In Chapter 5, we will see that the localised Pearson χ2

test succeeds in producing significant results in both the original and the small

subsample. More formal arguments will there be given too. We should of course

be careful with this conclusion, because it involved only one subsample.

2.1.3 Chemical Concentration data

Thas (2001) and Rayner and Best (1989) cited data from a study on the effect

of environmental pollutants on animals. These data was originally given by

Risebrough (1972) and contains concentrations of various chemicals in the yolk

lipids of pelican eggs. For 65 Anacapa birds the concentrations of polychlori-

nated biphenyl (PCB) are considered. These data will further be referred to as

the PCB data. Here, the data-analytic question is whether the PCB concen-

trations are normally distributed. This assumption is needed when one is for

example interested in calculating a parametric confidence interval for the pop-

ulation mean. If the assumption of normality is satisfied, then the parametric

confidence interval is an optimal interval, in the sense that among all unbiased

confidence intervals, it is the most narrow interval.
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Figure 2.2: Histograms (a) and (b), detrended PP-plots (c) and (d) and box plots (e)

and (f) for the Lew data and a subsample of 20 observations of the Lew

data. The region between (outside) the dotted lines in the detrended

PP-plots, shows the acception (rejection) region of the KS test at the

5% significance level.
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Table 2.2: Descriptive summary statistics for the Lew data and a subsample of size

n = 20 together with the population characteristic for uniformity.

Min 1st Quartile Median 3rd Quartile Max

sample -579.0 -451.00 -162.0 93.00 300.0

subsample -577.0 -535.00 -273.5 17.00 194.0

expected -580.0 -359.75 -139.5 80.75 301.0

Mean Variance Skewness Kurtosis

sample -177.4 76913.13 -0.051 -1.496

subsample -230.0 84136.47 0.183 -1.686

expected -139.5 64680.08 0.000 -1.200

Alternatively, the question of normality may be of interest in its own right.

The answer to that question can again be given by GOF tests. However, the

testing problem described here is a composite one-sample GOF problem, where

composite refers to the hypothesised distribution, which is a member of a para-

metric family of distributions. In general, the formulation of the composite

one-sample null hypothesis is as follows

H0: the underlying distribution of the data is F0, where F0 can be any

member of some parametrised family of distributions.

For the GOF problem here, the distribution under the null hypothesis belongs to

the family of normal distributions characterised by the mean µ and the variance

σ2. The mean and the variance of the true distribution are not known to the

researcher. Hence, only the form of the hypothesised distribution is known and

therefore the null distribution actually covers an infinite number of distributions

of the same form.

Usually, the composite GOF problem is handled by the same test statistic as

for the simple null hypothesis, with the unknown parameters simply replaced by

some appropriate estimates. The mean µ and the variance σ2 could for example

be replaced by their sample counterparts. By doing this the null distribution

of the test statistic often becomes more difficult. While GOF test statistics for

simple null hypotheses are usually distribution-free, the asymptotic null distri-

bution of their counterparts for composite null hypotheses may depend on the

parametric family and the unknown parameters. For example, the asymptotic

null distribution of the KS test for simple null hypotheses does not depend on

the distribution specified under the null hypothesis, while the KS test for test-

ing normality with unknown mean and variance needs a correction (see Lilliefors

(1967)).
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Figure 2.3: Histogram (a), box plot (b) and detrended PP-plot (c) for the PCB

data. The region between (outside) the dotted lines in the detrended

PP-plots, shows the acception (rejection) region of the KS test at the

5% significance level.
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Table 2.3: Descriptive summary statistics for the PCB data together with the popu-

lation characteristic for normality. We assume that the population mean

and variance are equal to the sample mean and variance, respectively.

Minimum 1st Quartile Median 3rd Quartile Maximum

observed 46 171.00 205.000 237 452

expected −∞ 160.88 210 259.121 +∞
Mean Variance Skewness Kurtosis

observed 210 5303.656 0.725 1.432

expected 210 5303.656 0.000 0.000

The KS test statistic for composite normality results in a value Dn =

0.109
√
n (n = 65) with corresponding p-value equal to 0.052. This means that

no strong evidence against normality is found at the 5% significance level. The

histogram with density estimate (panel (a) of Figure 2.3), however, shows a

small bump to the right of the main mode. Note that this impression strongly

depends on the number of bars in the histogram and the chosen bandwidth for

the kernel density estimator. The box plot, in panel (b) of Figure 2.3, shows

three outliers for which the concentration is markedly high and one outlier with

a very small concentration. These outliers are responsible for the rather big tails

in the histogram. Apart from that, the box is fairly symmetric, i.e. the median

is right in the middle of the box and the whiskers. The whiskers are the horizon-

tal lines and indicate the largest (smallest) observation that is smaller (larger)

the median plus (minus) 1.5 times the interquartile range. Observations outside

that box are considered outliers. Finally, in the detrended PP-plot (panel (c) of

Figure 2.3), all points fall nicely in the acception region for the KS test. From

the PP-plot, we may conclude that the data is fairly normally distributed.

For completeness, we comment on the summary statistics for the PCB data

in Table 2.3. Note that the expected quartiles are calculated under the as-

sumption that the true mean and variance of the distribution are equal to their

sample equivalents. This assumption will not exactly be satisfied, which compli-

cates the comparison between observed and expected values. While a GOF test

provides the data-analyst with objective criteria concerning the characteristics

of a distribution, a comparison of the observed and expected summary statistics

is very difficult to judge only by eye. Consider for example comparing observed

and expected values for the skewness and kurtosis. The skewness and kurtosis

for a normal distribution do not depend on the mean and variance and are ex-

pected to be zero for all normal distributions. The observed values are different

from zero, but the question is how large the difference should be in order to be

14



Table 2.4: Descriptive summary statistics for the Fastfood data together with the

population characteristic for normality. We assume that the population

mean and variance are equal to the sample mean and variance, respec-

tively.

Minimum 1st Quartile Median 3rd Quartile Maximum

observed 30 108.500 138.000 200.800 413

expected −∞ 101.973 158.324 214.674 +∞
Mean Variance Skewness Kurtosis

observed 158.324 6979.801 1.126 1.575

expected 158.324 6979.801 0.000 0.000

significant. That is the reason why we need to combine the explorative glance

at the data with the formal statistical GOF tests, which are described in the

next chapters. Based on what we explored in this section, it seems possible that

we find a significant difference in skewness and/or kurtosis.

2.1.4 Fastfood data

Hollander and Wolfe (1999) published data on service-times for a Tallahassee

drive-through fastfood restaurant. The service-time is defined as the time (in

seconds) from the moment the car pulled up to the speaker to order, to the

moment the car left the window with the order. The data were obtained around

dinner time on Thursday evening. We assume that the observed times are

independent. In particular, it is reasonable to assume that the time needed to

serve one customer does not have any influence on the time needed to serve the

next or previous customer. Hence, the observations can be viewed as a random

sample from an unknown distribution. The question could now be whether the

underlying distribution is normal or whether it has characteristics that severely

deviate from a normal distribution.

The KS test results in Dn = 0.187
√
n (n = 34) with p-value equal to 0.004,

which indicates a severe deviation from normality. On the detrended PP-plot

in panel (c) of Figure 2.4, it is seen that the deviation corresponds to two ob-

servations, at service-time near 150 seconds, falling within the rejection region.

From the histogram in panel (a) of Figure 2.4, we derive that this deviation

from normality is thus located where most of the observations are located, i.e.

at the mode of the distribution. Moreover, the kernel density estimate in that

panel gives a positively skewed impression. This impression is confirmed by the

box plot in panel (b) and by the summary statistics in Table 2.4.
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Figure 2.4: Histogram (a), box plot (b) and detrended PP-plot (c) for the Fastfood

data. The region between (outside) the dotted lines in the detrended

PP-plots, shows the acception (rejection) region of the KS test at the

5% significance level.
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2.1.5 Old Faithful geyser data

The Old Faithful in Yellowstone National Park is probably the most pho-

tographed geyser in the world. The data of the same name has been widely

discussed as well (see e.g. Azzalini and Bowman (1990), Härdle (1991) or Scott

(1992)). Several datasets are circulating. They all consists of two variables:

the waiting time to an eruption and the time each eruption takes. The dataset

we consider has 272 registered eruptions. We are only interested in the erup-

tion time and would like to get more insight in its distributional characteristics.

From the histogram in panel (a) of Figure 2.5, it is clear that the data has

two modes. Therefore a normal distribution, which is unimodal, would be far

from appropriate. Nevertheless, we here still perform tests for normality, in

order to illustrate how various tests give insight in the deviation from the null

distribution. The purpose of this analysis is more meant for getting knowledge

concerning the deviations from normality.

The KS test has value Dn = 0.181
√
n with n = 272 and a p-value smaller

than 0.001, which shows a severe deviation from normality as was expected.

The detrended PP-plot in panel (c) of Figure 2.5 shows that the deviations are

located at the regions where the two modes are occurring. Almost all points are

in the rejection region of the KS test. The box plot in panel (e) of Figure 2.5

shows that the distribution is clearly asymmetric, due to the second mode being

much larger than the first mode. The summary statistics are given in Table 2.5

and are not in agreement with a symmetric unimodal distribution.

Suppose now we only had 20 observations from this dataset. The question is

then whether it would still be as easy to recognise this bimodal pattern. The KS

test for a random subsample gives a non-significant result (Dn = 0.185
√
n with

n = 20 and p = 0.069). Hence, the detrended PP-plot (panel (d) of Figure 2.5)

has no points in the rejection region. The box plot and the histogram (panel

(b) and (f), respectively) still indicate that the data is probably not normal,

but the bimodal pattern is not that obvious anymore. In Chapters 5 and 6,

we apply other tests and tools that are powerful enough to reveal the deviation

from normality even in such a small dataset.

2.2 Circular data

Circular or directional data arise in many fields. For instance, in meteorology

wind directions are often measured, biologists may be interested in the directions

of migrating animals, or health scientists study the arrival times of patients at

an intensive care unit. All these data have in common that they are measured

on a circle, which represents either a compass or a clock. The measurement

scale is characterised by invariance to the choice of the origin, and the distance
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Figure 2.5: Histograms (a) and (b), detrended PP-plots (c) and (d) and box plots

(e) and (f) for the Old Faithful geyser (OFG) data and a subsample of 20

observations of the OFG data. The region between (outside) the dotted

lines in the detrended PP-plots, shows the acception (rejection) region

of the KS test at the 5% significance level.
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Table 2.5: Descriptive summary statistics for the Old Faithful geyser data and a

subsample of size n = 20 together with the population characteristic for

normality. We assume that the population mean and variance are equal

to the sample mean and variance, respectively.

Min 1st Quartile Median 3rd Quartile Max

sample 1.600 2.163 4.000 4.454 5.1

expected −∞ 2.718 3.488 4.258 ∞
subsample 1.667 2.375 3.792 4.533 5.1

expected −∞ 2.743 3.524 4.305 ∞
Mean Variance Skewness Kurtosis

sample 3.488 1.303 -0.418 -1.506

expected 3.488 1.303 0.000 0.000

subsample 3.524 1.341 -0.252 -1.612

expected 3.524 1.341 0.000 0.000

between two observations is given by the smallest arc instead of the numerical

difference. In the next section some typical circular data examples are described

and some explorative analysis is done. More elaborate analyses of these data is

given in the next chapters. Again, all corresponding datasets can be found in

Appendix C.

2.2.1 Birth time data

Rayner and Best (1989) quoted the following 37 times for consecutive births in

a hospital, which were originally given by Mood et al. (1974). Although the

birth times are recorded from 7.02pm on the first day till 4.31pm twelve days

later, we will ignore this information. The reason is that we are only interested

in the specific times of birth throughout the day. In particular, we would like

to verify whether the time points occur uniformly at random or whether there

is some “preferred” birth time. Since these time points can be interpreted as

measurements on a scale with a period of one day, we are clearly dealing with

circular data. The data can thus be presented on the circle as shown in Figure

2.6. The rotation direction is chosen to be clockwise and the origin is chosen

to be at midnight. In statistical analysis on these data, it is important that

choosing another origin or changing the rotation direction should not change the

conclusions . Furthermore, it is clear that for times of birth throughout the day

the distance between two observations is not given by the numerical difference.

For instance, the difference between two births at 2.00am and 11.00pm (or
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Figure 2.6: Birth time data

equivalently 2h00 and 23h00, on a 24 hours clock) is given by the smallest arc

which is only 3 hours instead of 23− 2 = 21 hours. Note that Rayner and Best

(1989) interpreted these data as linear data.

For such data the classical (linear) distributions are clearly not appropriate,

but many circular distributions have been proposed (see e.g. Jammalamadaka

and SenGupta (2001) and Fisher (1993)). The circular uniform (CU) distribu-

tion and the circular normal (CN) distribution, also called the von Mises (VM)

distribution, are the two most important circular distributions and are formally

defined in the next chapter. The uniform distribution on the circle is similar to

the uniform distribution on a real interval since its density curve is constant, and

it is therefore invariant under rotation. On the other hand, the density curve

of the CN distribution is not rotation invariant. It is a symmetric unimodal

distribution and the circular equivalent to the normal distribution on the real

line.

Just as with linear data, an important aspect of circular data analysis is

testing for GOF. Although for the former type of data many tests exist, these

are often not suited for circular distributions. The question here is whether the

birth times occur uniformly throughout the day. This is in fact the one-sample

GOF problem for circular uniformity, where circular uniformity means that each

time point on the 24h clock (or on the circle in Figure 2.6), has equal probability

to be a birth time. This simple circular GOF problem is discussed in the next

chapter. Here we confine the discussion to a formulation of the distributional

characteristics of the data. Panel (a) of Figure 2.7 shows a classical histogram

with kernel density estimate for the Birth time data, obtained after projecting

the time points on the real line. This plot suggests that the preferred time of

birth is around 12pm and less births occur at night.

The impression from such a histogram can be misleading because it is sen-
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sitive to the point at which the circle is cut off. A useful way to modify the

linear histogram is to make a rose diagram, in which the bars of a histogram

are replaced by circular sectors. The area of the sector is proportional to the

frequency in the corresponding arc. Panel (c) in Figure 2.7 shows a rose diagram

for the Birth time data, from which we see that the idea of a preferred direction

at noon is somewhat less pronounced. The same holds for the circular kernel

density estimate presented in panel (d). Here the kernel density estimate was

based on a von Mises kernel for which the concentration parameter is chosen by

means of cross-validation (see Hall, Watson, and Cabrera (1990)). In Chapter

3 we give some more information on circular kernel density estimation.

We now discuss some descriptive summary statistics that are suitable for

circular data. Regarding estimation of the mean birth time it is clear that the

average as it is defined for linear data is not appropriate here. The reason

is that its value is not origin-equivariant. For instance, the average for the

Birth time data is 12.08pm when the origin is at midnight, while taking the

origin at 6pm, the average is 7.36am. Instead we proceed as follows. Let zj =

eixj = cosxj + i sinxj , j = 1, . . . , n represent the data points on the unit circle.

The circular mean direction of x1, . . . , xn is denoted by Xc and defined as the

direction of the mean resultant vector of the sample unit vectors (cosxj , sinxj),

j = 1, . . . , n. Let

C =
1

n

n
∑

j=1

cosxj and S =
1

n

n
∑

j=1

sinxj ,

then Xc is the solution of the equations

C = R cosXc and S = R sinXc, (2.3)

where the mean resultant length R is given by

R = (C
2

+ S
2
)1/2. (2.4)

Note that Xc is not defined when R = 0. If R is close to 0, then there is no

concentration about any particular direction, and the data approach a circular

uniform distribution. Therefore, the larger the value of R, the more evidence

against circular uniformity. When R > 0, Xc is explicitly given by

Xc =

{

arctan (S/C) if C ≥ 0

arctan (S/C) + π if C < 0,
(2.5)

where arctan takes values in [−π
2 ,

π
2 ]. This definition is equivariant under ro-

tation. In particular, adding a constant γ to the sample directions x1, . . . , xn

results in a mean direction Xc + γ. The mean resultant length R is invariant

under rotation.
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The circular mean direction for the Birth time data is Xc = 12.12pm and

the resultant length of the mean vector is R =0.19. Since all sample vectors are

unit vectors, we have 0 ≤ R ≤ 1, where R = 1 would mean that all observations

are in the same direction. The sample circular variance is defined as

V = 1 −R,

where large and small values indicate widely dispersed and tightly clustered

directions, respectively.

The sample variance for the Birth time data (V=0.81) is rather large which

means that the time points are well spread around the circle. There exist other

measures of dispersion for which we refer to e.g. Mardia and Jupp (2000).

It is useful to combine sample mean direction and sample circular variance

into the first sample trigonometric moment about the zero direction,

m1 = C + iS = ReiXc . (2.6)

For the Birth time data, the complex value m1 = −0.19−0.01i is the first order

trigonometric moment.

Panel (b) in Figure 2.7 shows the detrended PP-plot for the linearised Birth

time data. Different symbols are used to indicate where the data is cut off,

or, in other words, which origin is chosen. It is clear from the figure that such

a plot depends on the choice of the origin. We should draw a detrended PP-

plot for every choice of the origin so as to obtain the complete picture of the

locations where the data deviate from the uniform distribution. It is clear that

the same is required for the KS test, which is related to the detrended PP-plot

as explained in Section 2.1. In Chapter 6 we extend the detrended PP-plot to

an interval-based PP-plot which is directly applicably to circular data and is

related to the origin-invariant Kuiper test. Here, we already give the result of

the Kuiper test, which is in fact the largest value of the KS test statistics among

the set of KS statistic values obtained by taking all possible different origins.

More details are given in Section 3.4.2. Applying the Kuiper test to the Birth

time data we obtain Kn = 1.218 which corresponds to a non-significant p-value

of 0.508. So, from our initial analysis of the Birth time data, we may conclude

that there is no evidence that a specific time point is preferred to give birth.

2.2.2 Homing pigeons

Batschelet (1981) reported data about homing pigeons that were released one

by one in the Toggenburg Valley in Switzerland under sub-Alpine conditions.

The birds did not adjust quickly to the homing direction but preferred to fly

along the axis of the valley. The origin (0o) is taken at the North direction.
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Figure 2.7: A classical histogram with linear density estimation for projected data

(a) A detrended PP-plot for uniformity (b) A rose diagram (c) and a

circular density estimation (d) for the Birth time data.

23



S

W
N

E

W & E

N & S

(a) (b)

Figure 2.8: (a) Original Homing pigeons data and (b) the doubled angles of the

Homing pigeons data.

These observations, which are plotted in panel (a) of Figure 2.8, have also

been studied by Jammalamadaka and SenGupta (2001). Numerous other ex-

periments about homing pigeons are reported and analysed (see Mardia and

Jupp (2000) and Fisher (1993)). The question of interest in these experiments

is whether the birds have a preferred direction of flight. If no direction is pre-

ferred, the data would be uniformly distributed on the circle. Hence a similar

GOF problem arises as with the Birth time data. The Kuiper test results in

Kn = 1.505 with p-value 0.170, which means that no significant difference from

circular uniformity can be recognised at the 5% significance level. However,

from the rose diagram and the kernel density estimate in panels (a) and (c) of

Figure 2.9, it is seen that the birds systematically choose one of two opposite

directions. The data thus possibly come from a bimodal distribution, where the

modes are diametrically opposed. The fact that the modes are opposed may be

the reason why the Kuiper test could not find a difference from circular unifor-

mity. We also see from the summary statistics in the upper part of Table 2.6

that the mean resultant length R is rather low. Hence, the values of this statistic

also explains why the GOF test could not find a difference from uniformity.

We may argue that the high mountains on both sides of the valley force

the pigeons to fly along the axis of the valley and that there is no preference

for flying upstream or downstream. Under this assumption the distribution is

axial and, therefore, the method of doubling the angles may be applied. Indeed,

doubling the angles is equivalent to reducing all angles modulo 180o. Panel (b)

of Figure 2.8 shows the observed angles on a circle with circumference 180o.

Note that data which are perfectly uniformly distributed on the circle with

circumference 360o, will also be uniform on the circle with circumference 180o
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Figure 2.9: A rose diagram (a) and a circular density estimate (c) for the original

Home pigeons data. A rose diagram (b) and a circular density estimate

(d) for the doubled Home pigeons data.

after doubling. Applying the Kuiper test for uniformity to the doubled data

convincingly rejects the null hypothesis (Kn = 2.151, p = 0.003). The second

row in Table 2.6 contains the values for the first trigonometric moment of the

doubled data. The sample circular mean is now clearly in the direction of the

unique mode of the distribution and the length of the resultant vector is much

larger than that of the original data.

The definition of the first trigonometric moment (2.6) is extended to the pth

order trigonometric moment around the zero direction, as

mp = ap + ibp = Rpe
iXp , (2.7)

where

ap =
1

n

n
∑

j=1

cos(pXj) and bp =
1

n

n
∑

j=1

sin(pXj) (2.8)

and where Xp and Rp denote the sample mean direction and the sample mean

resultant length of pX1, pX2, . . . , pXn. Furthermore, the pth central trigonomet-
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Table 2.6: Descriptive summary statistics for the Homing pigeons data.

Xc R m1

original data 344.330o 0.216 0.208-0.058i

doubled data 326.533o 0.735 0 .613-0.405i

X2 R2 m2 q1 q2
original data 326.533o 0.735 0.613-0.405i 0.039 1.190

doubled data 297.111o 0.278 0.127-0.247i -0.143 -0.206

ric moment is defined as

m⋆
p = a⋆

p + ib
⋆

p, (2.9)

where

a⋆
p =

1

n

n
∑

j=1

cos(p(Xj −Xc) and b
⋆

p =
1

n

n
∑

j=1

sin(p(Xj −Xc)). (2.10)

The second order trigonometric moment is related to the circular skewness and

kurtosis which are defined as

q1 =
R2 sin(X2 − 2Xc)

(1 −R)3/2
(2.11)

q2 =
R2 cos(X2 − 2Xc) −R

4

(1 −R)2
, (2.12)

respectively. If the distribution is symmetric and unimodal, q1 is nearly zero

and if the distribution has a unimodal peak similar to the CN distribution, q2 is

close to zero as well. The population versions of the trigonometric moments are

defined in Section 3.1.2 and are important to characterise a circular distribution.

For the Birth time data, we have q1 = −0.124 and q2 = 0.081. For the Hom-

ing pigeons data, the values for the second trigonometric moment together with

the circular skewness and kurtosis are in the lower part of Table 2.6. Note that

the values for the second order trigonometric moment of the original data are

obviously equal to the values of the first trigonometric moment of the doubled

data. Furthermore, for the doubled values skewness and kurtosis are both close

to zero, while for the original data, kurtosis is much larger. Hence, the doubled

data seem to agree with coming from a CN distribution. More GOF techniques

are applied to these data in next chapters.
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2.2.3 Turtles data

The Turtles data is another example on animal movement, which is quoted by

Fisher (1993), who took it from Stephens (1969). The data consist of directions

taken by turtles after some treatment. Interest lies in whether the turtles had

a preferred direction to move away from the place they were released. Some of

the turtles confused forward with backward. We assume that the turtles wanted

to move away in a particular direction, but that due to the treatment some of

the turtles were not able to orientate well. The most common distribution to

model such data is a CN distribution. This distribution (see also Section 3.1.2)

is symmetric, unimodal and the circular analogue of the normal distribution

on the line. Since the distribution is characterised by two parameters, i.e. the

location µ and the concentration κ, we encounter here a composite circular GOF

problem. Recall from Section 2.1 that the KS test for linear uniformity could

be extended to test linear normality. In the same way, the Kuiper test can be

applied to test for circular normality. For more details we refer to Section 3.4.1.

Here we only give the results of this classical test. For the Turtles data we

find Kn = 1.568 with p = 0.008, so the null hypothesis of circular normality is

rejected at the 5% significance level.

This dataset was also analysed by Fernández-Durán (2004) in the context

of density estimation and Mardia and Jupp (2000) used it as an example of a

bimodal distribution. A mixture model of two CN distributions was proposed

to describe the data. Looking at the raw data, the histogram and the kernel

density estimate in Figure 2.10, we see that indeed two modes are recognised in

opposite directions. Also the summary statistics in Table 2.7 are comparable to

those of the original Homing pigeons data. However, doubling the data is not a

biologically motivated option since we would lose useful information about the

confused turtles who choose to go backwards.

2.2.4 Ants data

The Ants data is discussed in Batschelet (1981), but originally this orientation

experiment in biology was published by Jander (1957). The data refer to di-

rections chosen by 100 ants. The ants were put in an evenly illuminated arena

with a black target placed at 180o. The animals could see the target and were

supposed to run towards it. We are interested in whether the data follow a CN

distribution. As it was demonstrated by Fisher (1993), this distribution is not

a suitable model. Indeed, the Kuiper test is highly significant (Kn = 11.369,

p < 0.001). Fernández-Durán (2004) and Jammalamadaka and Kozubowski

(2003) used the example to demonstrate the flexibility of their proposed family

of distributions to skewed and / or peaked data. Here, we briefly present the ex-

plorative analysis of the data, while in the next chapters we give a more detailed
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Figure 2.10: Raw data (a), rose diagram (b) and kernel density estimate (c) for the

Turtles data.

Table 2.7: Descriptive summary statistics for the Turtles data, the Ants data, the

Direzione data and the Arrival data.

Xc R m1

Turtles 64.171o 0.497 0.217+0.447i

Ants 183.139o 0.610 -0.609-0.033i

Direzione 16.740o 0.656 0.628+0.189i

Arrival 5.15pm 0.323 -0.062-0.317i

X2 R2 m2 q1 q2
Turtles 124.874o 0.481 -0.275+0.395i 0.082 1.657

Ants 13.303o 0.459 0.446-0.106i -0.230 2.083

Direzione 8.556o 0.474 0.469+0.071i 0.989 2.069

Arrival 2.12am 0.065 0.055+0.036i 0.097 -0.105
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Figure 2.11: Raw data (a), rose diagram (b) and kernel density estimator (c) for the

Ants data.

analysis to see in what way the true distribution deviates from the hypothesised

normal.

Figure 2.11 shows the raw data (panel (a)), the rose diagram (panel (b)) and

the kernel density estimate (panel (c)). They all give a unimodal impression,

with mode at about 180o (where the target was placed) and with a negative

skewness. The circular sample mean and the circular skewness in Table 2.7 con-

firm this impression. The mean resultant length is quite large, which indicates

strong evidence for a unimodal distribution. Note, that the kurtosis is very large

as well. This suggests that the degree of peakedness is much higher than that

of a CN distribution.
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Figure 2.12: Raw data (a), rose diagram (b) and kernel density estimator (c) for the

Direzione data.

2.2.5 Direzione data

The Direzione data, taken from Agostinelli (2006), contain 310 measurements

of wind direction in the Italian Alpes. The raw data plot, the rose diagram and

the kernel density estimate in Figure 2.12 suggest a unimodal distribution with

its mode at the North direction (about 16o, see Table 2.7). The question is again

whether the underlying distribution for this dataset is a CN distribution. The

Kuiper test has a highly significant p-value (p < 0.001). From the summary

statistics in Table 2.7 and the explorative graphs (Figure 2.12), we have the

impression that the distribution is highly positively skewed with a very long tail

on the positive side. Agostinelli (2006) argued that this large dataset possibly

contains outliers and he provided robust estimation techniques. Another possi-

bility is that this long tail is a second cluster of observations that is widespread

along the first half of the circle.
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2.2.6 Arrival data

Finally, the Arrival data (Fisher 1993) consists of the arrival times on a 24 hours

clock of 254 patients at an intensive care unit, over a period of 12 months. The

question of interest is the same as for the three previous examples. Looking at

the summary statistics, we see that the CN distribution might not be a good fit.

In particular, R is quite small. On the other hand, skewness and kurtosis are not

as large as in the previous datasets. The data are shown in panel (a) of Figure

2.13, together with the rose diagram and kernel density estimate (panel (b)

and (c), respectively). These plots suggest two large clusters of arrivals around

12pm and 5pm and three small clusters of arrivals around 2am, 7am and 10pm.

Nevertheless, the Kuiper test (Kn = 1.174) does not yield a significant result

(p=0.11). In Chapters 4 and 5, however, we obtain significant results with

our new data-driven smooth test and with the data-driven circular SSPc test.

Moreover, the graphical tool introduced in Chapter 6 localises the deviation

from normality.
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Figure 2.13: Raw data (a), rose diagram (b) and kernel density estimator (c) for the

Arrival data.
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CHAPTER 3

Some goodness-of-fit tests

In the previous chapter we illustrated that graphical methods to explore the

distribution of the data are important to get a first impression of the distribu-

tional characteristics and can therefore not be neglected. On the other hand,

the conclusions drawn from these visualisation techniques are often subjective.

Moreover, the impression of e.g. a histogram or a kernel density estimator

depends highly on the choice of the number of classes or the bandwidth, respec-

tively. Therefore, they should not be used without formal statistical tools that

give unambiguous answers to questions about the distribution of the data.

The major part of this chapter deals with GOF tests for linear and circular

data. We give a historical overview of the most important linear and circular

one-sample GOF tests based on the literature. The discussion will be limited

though to tests that are simple, widely used and of practical importance. Addi-

tionally, we consider tests that are related to the new tests that will be proposed

in the next chapters. Finally, some tests with good power characteristics are

also included, which will serve as strong competitors to our new tests.

In the linear case as well as in the circular case, the GOF tests can be

broadly classified into three categories. The first class of Pearson’s χ2 statistics

is described in Section 3.2. Section 3.3 introduces the second class, which are

the smooth tests, while Section 3.4 gives an overview of the techniques based

on the EDF, comprising the third class. How these three classes of statistics

are related to each other is explained in Section 3.5. Section 3.6 describes
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additional relevant tests that can not be classified under one of the three previous

categories. For linear data, D’ Agostino and Stephens (1986) give more details

about many existing GOF techniques. For circular data, no such large spectrum

of GOF tests is developed yet. However, most books about circular statistics

contain one or more chapters where circular GOF tests are described (see e.g.

Jammalamadaka and SenGupta (2001), Fisher (1993) and Mardia and Jupp

(2000)).

Recall that in this thesis we are interested in one-sample GOF tests for

different types of data. If such a GOF hypothesis test gives a significant result,

we conclude that the probability density underlying the data does not follow the

hypothesised density. A question that immediately arises from such a conclusion

is in what way the data deviate from the hypothesised model. To be able

to answer that question, the alternative hypothesis has to be informative or

directional. Examples of directional deviations from the null hypothesis include

a difference in location, variance or higher order moments. This information can

be obtained by the data-driven smooth GOF test. Moreover, it leads naturally

to an estimate of the density which can be used as a diagnostic tool to see

how the true distribution deviates from the hypothesised. The resulting density

estimator is known as an orthonormal series estimator and is briefly described in

Section 3.7 together with two other popular non-parametric density estimation

techniques.

3.1 GOF tests for linear and circular data

3.1.1 Statement of the one-sample GOF problem

Let x1, . . . , xn denote the data values observed either on the line or on the circle.

To refer to one of these sample spaces we use the notation S. The data values

are assumed to be generated by X1, . . . ,Xn, which are continuous or discrete

i.i.d. random variables with unknown distribution function F (x). Thus, F (x) is

an unspecified statistical model that generated the observations, which is often

called the data generating mechanism.

Although all examples treated in this thesis contain continuous data, we

introduce the GOF problem for discrete as well as for continuous data. The

reason is that some test statistics for the continuous case can be formulated as

a function of the Pearson’s χ2 statistic applied to grouped or categorised data.

In particular, some of the tests that we develop in this thesis will make use of

this formulation.

Suppose we are now interested in whether a prespecified model is valid for

the given data. In particular, we wish to test if the data is generated by a certain
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distribution function F0(x,β), which is equivalent to testing the null hypothesis

H0 : F (x) = F0(x,β), for all x and some β ∈ Θ ⊂ IRp, (3.1)

where β is either a known or an unknown p-dimensional parameter vector. The

expression “for all” means that the equality in (3.1) should hold for all x in S
on which both F and F0 are defined. For notational comfort, but without loss

of generality, we will further write (3.1) as

H0 : F (x) = F0(x,β).

The null hypothesis is called simple if the distribution F0(x,β) is completely

specified and unique. This is only the case when β is known. On the other hand,

if β is unknown, the null distribution F0(x, β) represents a parametric family of

distributions which contains more than one element and the null hypothesis is

therefore called composite.

We can also state the null hypothesis of the GOF problem in terms of PDFs

instead of CDFs, i.e.

H0 : f(x) = f0(x,β) (3.2)

for the continuous GOF problem, while for the discrete GOF problem we use

the notation of the probability mass function, i.e.

H0 : p(x) = p0(x,β). (3.3)

Before we give more details about the statistical aspects of linear and circular

GOF problems, we first note that the classical linear CDFs and corresponding

PDFs are clearly not appropriate for circular data. Therefore, in the next section

circular distributions are introduced (see also Jammalamadaka and SenGupta

(2001)).

Note that in many books about circular statistics, the convention is to use θ

as the notation for the direction on the circumference of a circle. In this thesis,

we prefer to use x for both types of data and it will be clear from the context

which type of data are referred to.

3.1.2 Circular distributions

We first introduce a circular distribution of a continuous random variable X

through its PDF, its CDF and its characteristic function and we compare these

definitions with the linear case. We consider circular distributions, without loss

of generality, on the unit circle, i.e. a circle with unit radius, which is also

denoted by arc(0, 2π). Distributions on any other circle can be transformed to

the unit circle. At the end of this section, we define the most common circular

distributions.
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Circular PDF

Let f(x) be a PDF on the line. Then f(x) is assumed to be non-negative and

∫ ∞

−∞
f(x)dx = 1. (3.4)

A circular PDF f(x) is also defined to be non-negative but condition (3.4)

becomes
∫ 2π

0

f(x)dx = 1.

This is because the total probability mass is concentrated on the circumference

of the unit circle. Moreover, a circular f is periodic, i.e. f(x) = f(x+ 2kπ) for

any integer k.

Circular CDF

A distribution on the unit circle can also be characterised by its CDF F (x),

which clearly depends on the initial direction and the orientation of the circle.

Suppose that an arbitrary origin and orientation have been chosen, then F (x)

can be defined as

F (x) =

∫ x

0

f(y)dy for 0 ≤ x ≤ 2π.

By definition, we have F (0) = 0 and F (2π) = 1.

Circular characteristic function and trigonometric moments

A description of the distribution via its characteristic function is more useful in

the circular case. As in the linear case, the characteristic function is defined as

φ(t) = E
[

eitX
]

=

∫ 2π

0

eitxdF (x),

but since x and x+ 2π represent the same direction, we need

E
[

eitx
]

= E
[

eit(x+2π)
]

.

Hence, the condition

eit2π = 1 (3.5)

must be satisfied for all t for which φ is defined. Since (3.5) only holds for integer

valued t, the characteristic function φ(t) of a circular distribution is only defined

for t = 0,±1,±2, . . ..
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The value of this function at an integer t = p is also called the pth-trigonometric

moment and is often denoted by

φp = ρpe
iµp = αp + iβp, p = 0,±1,±2, . . .

where 0 ≤ ρp ≤ 1,

αp = E [cos (pX)] =

∫ 2π

0

cos (px)dF (x),

and

βp = E [sin (pX)] =

∫ 2π

0

sin (px)dF (x).

The first trigonometric moment, φ1 = ρ1e
iµ1 , is simply written as ρeiµ, where µ

and ρ are the population measures for the mean direction and the concentration

towards this mean direction, respectively. The concentration ρ is also referred

to as mean resultant length. Note that the corresponding sample versions Xc

and R are defined in (2.5) and (2.4), respectively.

The pthcentral trigonometric moment is defined as

E
[

eip(X−µ)
]

= α⋆
p + iβ⋆

p ,

which is essentially the trigonometric moment about the mean direction µ, where

α⋆
p = E [cos (p(X − µ))]

and

β⋆
p = E [sin (p(X − µ))] .

Any linear or circular probability distribution is completely determined by

its characteristic function. Consequently, for the circular case, this result is

particularly useful in the sense that any circular distribution is thus completely

determined by its trigonometric moments. The relation with Fourier series ex-

plains this argument. In particular, next to the interpretation in terms of char-

acteristic functions or trigonometric moments, the sequence of complex values

{φp}, p = 0± 1± 2, . . . can also be interpreted in terms of Fourier coefficients of

f(x). If the circular distribution f(x) is square integrable on [0, 2π], i.e.

∫ 2π

0

f(x)2dx <∞

then its Fourier expansion is given by

f(x) =
1

2π

∞
∑

p=−∞
φpe

−ipx =
1

2π

[

1 + 2

∞
∑

p=1

(αp cos (px) + βp sin (px))

]

. (3.6)
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Fernández-Durán (2004) proposed a family of flexible distributions based on a

truncated version of the expansion in (3.6). It turns out that this finite sum is

a nonnegative density only under certain conditions.

It is interesting to note that symmetric distributions about the origin have

real characteristic functions and therefore have a Fourier series expansion only

in terms of cosine functions, i.e.

f(x) =
1

2π

[

1 + 2

∞
∑

p=1

αp cos (px)

]

.

For the linear case, the equivalent result of (3.6) is the inversion formula for

characteristic functions of real-valued random variables and states that if φ(p)

is absolutely integrable, then

f(x) =

∫ +∞

−∞
φ(p)e−ipxdp.

Note that here the density is not written in terms of easily interpretable mo-

ments.

The most common circular distributions are the circular uniform and the

circular normal distribution. There exist many other useful and interesting

families of circular models, which are however not discussed in this thesis. In

fact, any linear distribution can be wrapped around or projected on the cir-

cle. For an overview of general techniques to obtain circular distributions from

known linear distributions, we refer to Jammalamadaka and SenGupta (2001).

Circular uniform distribution

The circular analogue to the linear uniform distribution is called the circular

uniform distribution (CU) and has PDF

fCU (x) =
1

2π
, 0 ≤ x < 2π.

It is often called the isotropic distribution, since all directions are equally likely.

Moreover, it is the unique distribution which is invariant under rotation.

It follows from (3.6) that for this density all trigonometric moments are zero,

except φ0 which is 1, the normalisation constant. The mean resultant length ρ

is zero and the mean direction µ is undefined, which means that the density has

no preferred direction.

The CDF is

FCU (x) =
x

2π
, 0 ≤ x < 2π. (3.7)
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Circular normal or von Mises distribution

The most useful distribution for symmetric unimodal samples is the circular

normal (CN) or the von Mises (VM) distribution with PDF

fCN (x;µ, κ) =
1

2πI0(κ)
eκ cos(x−µ), 0 ≤ x < 2π,

where 0 ≤ µ < 2π and κ > 0 are nuisance parameters and

I0(κ) =
1

2π

∫ 2π

0

eκ cos xdx (3.8)

is the modified Bessel function of the first kind and order zero.

The density is symmetric around its mean direction µ, which is also the mode

of the distribution. The antimode, which is located at the opposite direction of

the mode, is µ + π. The parameter κ gives an indication of the concentration

around the mode. The reason for this is that the ratio of the density at the

mode to the density at the antimode is uniquely determined by κ. In particular,

f(µ)/f(µ+ π) = e2κ.

In Figure 3.1 the von Mises density with mean direction µ = π is shown

for different values of the concentration parameter κ. In the first panel the

PDFs are plotted on the circle while in the second panel the PDFs are shown

unwrapped on the interval [0, 2π].

It can be seen that higher values of κ correspond to higher concentrations

towards the mean direction. If κ = 0, the distribution reduces to the CU

distribution and if κ goes to infinity, the distribution approaches a degenerate

point mass at µ.

Since the density is symmetric about µ, we have for all p = 0,±1, . . . ,

β⋆
p = E [sin(p(X − µ))] = 0.

Furthermore, we have

α⋆
p =

1

2π

∫ 2π

0

cos(p(x− µ))eκ(cos(x−µ))dx

=
Ip(κ)

I0(κ)
,

where

Ip(κ) =
1

2π

∫ 2π

0

cos(px)eκ cos xdx

is the modified Bessel function of the first kind and order p. Consequently, the

pth-trigonometric moments are

φp = (α⋆
p + iβ⋆

p)eipµ = Ap(κ)e
ipµ, p = 0,±1,±2, . . . , (3.9)
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Figure 3.1: The von Mises density with mean direction µ = π and concentration

κ = 0.5, 1, 2 and 4. Panel (a) shows the densities on the circle, while

panel (b) shows the unwrapped versions of the densities on the interval

[0, 2π].

where Ap(κ) denotes
Ip(κ)
I0(κ) . The direction of the first trigonometric moment is

µ, as we expected for symmetry reasons, and its resultant length ρ is A(κ) =

A1(κ) = I1(κ)
I0(κ) .

The CDF is often not useful because it has no closed form. It can be obtained

by integrating the PDF but is not easy to evaluate. In the remainder of this

thesis we use the notation FCN to refer to that CDF.

3.1.3 Additional issues for circular GOF testing

Principle of invariance

For observations measured on the unit circle, an origin and an orientation have

to be chosen arbitrarily. This choice should not influence the results of the sta-

tistical methods applied to these data. In particular, the value of test statistics

for circular data should be invariant under rotation and reflection on the circle

so as to be of any practical use.

We consider GOF problems which are invariant under these types of trans-

formations and we explain which restrictions should be imposed on the statis-

tical procedures so that this invariance property is guaranteed. In Chapter 6

of Lehmann and Romano (2005) a general discussion about invariant problems

under a group of transformations is given. We now formulate the most impor-
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tant results applied to the group of translations, or, equivalently, the group of

rotations.

Suppose M is a function that maps elements of the sample space Sn onto

some subset of Rn. First, we define M as a maximal origin-invariant function

of the random variables X1, . . . ,Xn if

(1) it is origin-invariant, and if

(2) M(X1, . . . ,Xn) = M(X⋆
1 , . . . ,X

⋆
n) implies Xi = X⋆

i + c (i = 1, . . . , n)

where c is some constant.

The latter represents a change in origin or a rotation. It can be shown that a test

statistic T (X1, . . . ,Xn) is origin-invariant if and only if it depends onX1, . . . ,Xn

only through some maximal origin-invariant function M(X1, . . . ,Xn), i.e. there

exists some function g such that

T (X1, . . . ,Xn) = g(M(X1, . . . ,Xn)),

for all (X, . . . ,Xn) ∈ Sn. The set of arc length differences

(X1 −X2,X2 −X3, . . . ,Xn −Xn−1)

is an example of a maximal origin-invariant function. These differences are also

called spacings and they are clearly invariant under rotations. Furthermore,

suppose Xi −Xi+1 = X⋆
i −X⋆

i+1 for i = 1, . . . , n − 1. Let X⋆
n −Xn = c, then

we have directly that Xi = X⋆
i + c, for all i = 1, . . . , n. Tests based on spacings

are therefore directly applicable to circular data. For more details about this

class of tests we refer to Section 3.6. Furthermore, each rotationally invariant

statistic that is useful for circular data, can be expressed in terms of spacings.

This is however not always an easy task. Moreover, doing this is not worth

the effort because other maximal invariant functions can be used as well. For

example the Kuiper and the Watson tests, which are described in Section 3.4,

are based on another maximal origin-invariant function.

In Section 4.1 we use a particularly interesting maximal origin-invariant func-

tion given by the set of arc differences

(X1 −X
c

n,X2 −X
c

n, . . . ,Xn −X
c

n), (3.10)

where X
c

n is the estimator of the circular mean direction defined in Section 2.2.

The proof of its maximal invariance is similar as for the set of spacings.

It is important to note that the property of origin-invariance is no guarantee

for the test statistic to be meaningful. In particular, it is always possible to

construct an origin-invariant statistic from a test statistic which is originally

meant to solve linear GOF problems. For example, if we compute the original
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test statistic for the centered observations in (3.10) instead of applying it directly

to the original observations, we end up with an origin-invariant test statistic,

which is however not necessarily useful.

Probability integral transformation

As in the linear case, testing the GOF null hypothesis for a completely specified

and continuous circular distribution can be translated into testing for circu-

lar uniformity via the probability integral transformation (PIT). Suppose that

X1, . . . ,Xn are i.i.d. from F0(x,β) and consider the simple GOF null hypothe-

sis test as in (3.1), i.e. H0 : F (x) = F0(x,β), where F0 is continuous and β is

known. Then this problem reduces to a test for uniformity on the unit circle,

with null hypothesis

H0 : F (u) =
u

2π
, 0 ≤ u < 2π (3.11)

for which we use the transformed sample ui = 2πF0(xi,β), i = 1, . . . , n. Hence,

any completely specified GOF problem can be transformed to the problem of

testing for circular uniformity. This means that once the GOF problem for

circular uniformity is solved, any other simple GOF problem can be solved

as well. However, in most practical situations the distribution under the null

hypothesis is not completely specified. This is often the case, for instance, when

we are interested in testing the null hypothesis of circular normality, where the

parameters µ and κ are unknown and have to be estimated from the data. In

contrast to the simple GOF problem on the unit circle, only few GOF tests for

composite null hypothesis on the unit circle have been described in the literature.

We refer to Sections 3.2, 3.3, 3.4 and 3.6 for the description of the relevant tests

on the unit circle for simple as well as for composite null hypotheses.

3.1.4 Additional issues for general GOF testing

Parameter estimation and nuisance parameters

In the case of testing for composite null hypothesis, we often need to estimate

unknown parameters from certain families of parametric models. For example,

applying a nonparametric test for circular normality F0(x;µ, κ) involves estima-

tion of the unknown parameters µ and κ within the family of CN distributions.

In general, in order to identify the appropriate member of the parametric family

F0(x,β) for the composite null hypothesis, the unknown parameter vector β has

to be estimated from the data. However, these parameters are not of primary

interest to the researcher and are therefore referred to as nuisance parameters.

In the presence of nuisance parameters, the null distribution of the test statistic

is often more difficult to find. One usually resorts to simulations to obtain the

required critical values.
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Omnibus and directional tests

Suppose that the sample size is sufficiently large. If the alternative hypothesis

to the GOF problem in (3.1) is the complement of the null hypothesis, i.e.

H1 : F (x) 6= F0(x,β),

for at least one x ∈ S, the test is called an omnibus test if it is consistent for

testing against H1. For instance, take as null hypothesis F0 = FCU , as in (3.7),

then an omnibus test should be sensitive to all distributions different from the

CU distribution. On the other hand, if the alternative hypothesis is a smaller

subset of the complement of the null hypothesis, e.g. H1 : F = FCN , then an

appropriate test is called directional and will therefore only have high probability

to reject the null hypothesis if the data follow that specific alternative.

Omnibus tests are consistent against any deviation from the null hypothesis.

This seems to be an appealing property since this makes it likely that all pos-

sible deviations can be detected given that the sample size is sufficiently large.

However, a drawback of this type of tests is that in case the null hypothesis is

rejected, we may have no idea in what way the true distribution differs from

the distribution specified in H0. Moreover, directional tests usually have higher

power towards the specific alternative for which they are constructed. On the

other hand, if the true distribution is not that particular alternative, the di-

rectional test may have negligible power. Smooth tests, which are described

in Section 3.3, can be seen as a compromise between these two types of tests.

Essentially, the individual components of the smooth test statistic provide in-

formation on particular alternative directions and their sum results in a statistic

which has omnibus features.

Goodness-of-fit versus lack-of-fit

Until now, we used the terms statistical model and distribution interchangeably.

In the literature, fitting a statistical model has often a more general interpreta-

tion than fitting a density curve to a sample of observations generated by one

random variable.

As an example of a statistical model, consider a traditional linear regression

model, where the distribution of a response variable Yi is assumed to depend

on an explanatory variable Xi through the simple linear regression equation

Yi = µ+ βXi + ǫi, i = 1, . . . , n, (3.12)

where ǫi are assumed to be independently normally distributed with mean 0

and constant variance, i.e. ǫ ∼ N(0, σ2) for some unknown σ.
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From (3.12), the conditional mean of the response variable Y given the value

of the predictor X is

E [Y |X] = µ+ βX. (3.13)

For more details about parametric linear regression models we refer to, for ex-

ample, Neter, Kutner, Nachtsheim, and Wasserman (1996) or Draper and Smith

(1998). In this context, it is important to know to what extent the proposed

mean model in (3.13) fits the observed data well. Indeed, if the estimated

parametric model turns out to be a poor fit, then inferences made using that

model can be misleading. Statistical tools for these kind of model checks are

called lack-of-fit (LOF) methods. Hart (1997) gives an extensive overview of

nonparametric tests for LOF of a parametric regression model.

Returning to model representation (3.12), the LOF problem for statistical

models poses essentially the same question as formulated in the GOF problems

for distributions. Moreover, sometimes a statistical model can also be seen as

a problem of fitting a distribution to the data. For example, the problem in

(3.12) is equivalent to the distributional fit given by

Yi ∼ N(µ+ βXi, σ
2). (3.14)

Testing whether (3.14) is a good description of the data, conditional on the

covariates X1, . . . ,Xn, is essentially a GOF problem, but with a particular pa-

rameterisation of the mean, involving extraneous variables.

Despite this close relation between statistical models and distributions, the

term LOF is usually preferred over GOF when assessing the quality of statistical

models.

Because we look at distributions as statistical models, we use the term LOF

next to GOF. However, we make some nuance when we use these terms. The

term GOF is used when we want to emphasize the formal statistical decision

making using hypothesis tests. On the other hand, tools for LOF refer in this

thesis to more informative statistical analyses that aim at understanding the de-

viation from the null hypothesis. For example, a LOF method may be designed

to locate in which subset of the sample the true distribution deviates strongly

from the hypothesised distribution.

So far, we have discussed some general concepts concerning GOF testing

procedures for linear and circular data. The next three sections are devoted to

three important classes of nonparametric tests for GOF, namely Pearson’s χ2

tests, smooth tests and EDF tests.
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3.2 Pearson’s χ
2 GOF tests

More than a century ago, Pearson (1900) introduced the first GOF test, which

has probably been one of the most frequently used statistical tests. Even though

this test is in principle only applicable to discrete data, it has also frequently

been used for continuous data. Since continuous data have to be discretised first,

using Pearson χ2 test results in loss of information. Therefore, other tests have

since been developed for continuous data, which usually have better performance

in terms of power. Nevertheless, in this section we thoroughly describe this test

as we need it in the construction of our new class of tests in Chapter 5. The

discussion will be restricted, however, to simple null hypotheses. For composite

null hypotheses, the test is often referred to as the Pearson-Fisher test and was

first proposed by Fisher (1924). After constructing Pearson’s test for simple

null hypotheses, we give some possibilities for applying Pearson’s χ2 tests to

circular data.

3.2.1 An illustration of the original construction of Pearson’s

test through Mendel’s data

Pearson’s χ2 test was one of the foundations of modern statistics. Moreover, it

resulted from the aim to answer the much-discussed question about Mendel’s

inheritance theory, which is in turn the foundation of modern genetics. Mendel

investigated these basic elements of genetics through a large observational study

on peas. He stated in his law of segregation that each organism has two genes

for each trait. The different forms of a gene are called alleles. The two alleles

determine the genotype. When both alleles are present, one allele may mask or

hide the other. The characteristic that is expressed is called the phenotype. The

stronger allele is said to be dominant, and the weaker allele, which is masked,

is said to be recessive. When expressing dominant and recessive alleles, the

dominant allele is by convention written as a capital letter, and the recessive

allele as the same letter, but lower case.

In one of his experiments, Mendel observed 556 peas, classified according to

shape (either round (R) or angular (a)) and color (either yellow (Y) or green

(g)). Round and yellow are dominant, meaning that if these alleles are present,

they will be expressed. Hence, according to Mendel’s law, which assumes also

that all combinations of genes are equally likely, the following 16 genotypes have

equal probability:

RRYY RRYg RRgY RRgg

RaYY RaYg RagY Ragg

aRYY aRYg aRgY aRgg

aaYY aaYg aagY aagg.
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Table 3.1: Observed and expected counts from Mendel’s experiment of 556 peas.

class 1 2 3 4

phenotype RY Rg aY ag

observed counts 315 108 101 32

expected counts 312.75 104.25 104.25 34.75

However, since phenotypes are determined by dominant genes, we expect the

four phenotypes RY, Rg, aY and ag to occur with probabilities 9
16 , 3

16 , 3
16 and

1
16 , respectively.

The observed number of peas for the four phenotypes obtained from Mendel’s

experiment are in Table 3.1. Using elementary probability theory, the expected

frequencies under the null hypothesis that Mendel’s law is correct are denoted

as Ei = nπ0i, i = 1, . . . , 4, where n = 566 is the total sample size and π0i is the

probability for the peas to be classified in class i. These values are presented in

Table 3.1 as well. Now the question is how we should formally check whether

or not these data fit Mendel’s expectation. In other words, are the expected

counts in agreement with the observed counts? In general, Pearson’s statistic

is formulated as a kind of distance measure between expected and observed

counts,

X2
n =

k
∑

i=1

(Oi − Ei)
2

Ei
, (3.15)

where k is the number of classes and Oi and Ei are the observed and expected

frequencies in class i, respectively. To see that X2
n is essentially a GOF statistic

we consider Pearson’s original formulation of the problem. Observe that the

frequencies for the four phenotypes, denoted by X = (X1,X2,X3,X4), follow a

multinomial distribution given by

P (X = x) = p(x,π) =
n!

π1!π2!π3!π4!
π1

x1π2
x2π3

x3π4
x4 , (3.16)

where π = (π1, π2, π3, π4) is the vector of probabilities corresponding to the

four categories. If Mendel’s law is correct these probabilities are equal to π0 =

(π01, π02, π03, π04) = ( 9
16 ,

3
16 ,

3
16 ,

1
16 ). Thus, the discrete GOF problem with null

hypothesis as in (3.3), is equivalent to testing the simple null hypothesis about

the parameters π from the multinomial distribution in (3.16), i.e.

H0 : π = π0. (3.17)

Pearson’s statistic can be written as

X2
n =

k
∑

i=1

(Xi − nπ0i)
2

nπ0i
. (3.18)
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Pearson proved that X2
n has asymptotically a chi-squared distribution with k−1

degrees of freedom under H0, that is, as n→ ∞,

X2
n

d−→ χ2
k−1.

For Mendel’s data the observed value of the statistic is X2
n = 0.74. Using the

asymptotic null distribution χ2
3, the p-value becomes 0.9254, which means that

the null hypothesis is accepted. It is interesting to note here that doubts about

Mendel’s results have been raised because of the fact that the p-value seems

unrealistically large. In fact, there has been a lot of controversy regarding the

reliability of Mendel’s observations (see e.g. Magnello, 1998).

Note that the asymptotic distribution is generally regarded a good approxi-

mation as soon as the expected count Ei in each of the k classes is larger then

5 (see e.g. Lancaster, 1969).

As Pearson’s test is originally constructed for categorical data or discrete

data, an important question is how to deal with grouped continuous data.

Greenwood and Nikulin (1996) thoroughly studied this issue, but nowadays

these guidelines are of less practical importance since other more appealing

techniques can be applied to continuous data as will be seen further in this

thesis.

3.2.2 Pearson’s test for circular data

In Section 3.1.3 we have explained that a test statistic should be independent of

its arbitrarily chosen origin for being meaningful for circular data. One of the

questions that arises is whether the Pearson χ2 in its original form is useful for

circular data.

To answer that question, consider first a discrete circular distribution. For

example, suppose we want to describe the distribution of the stopping position

of the ball on a roulette wheel. If the wheel is unbiased, the distribution of

the stopping position of the ball is a discrete uniform distribution on 37 equally

spaced points on a circle. In general, for the discrete GOF problem (3.3) on the

circle, the Pearson χ2 statistic is origin-invariant since observed and expected

frequencies would not change if another origin is taken. Therefore, one can

apply the test without modification.

Discrete data also arise from grouping continuous data. In the simplest case,

the partition used for the grouping does not depend on the data, in the sense

that it is fixed beforehand. For example, if dates of birth are considered, the

data can be presented on a circle with a period of one year and partitioned into

twelve classes, each corresponding to one month. Since the partition is fixed, the

test statistic is rotation invariant, and thus it makes sense to apply Pearson’s

test to this type of data.
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On the other hand, for continuous distributions in general, Pearson’s χ2 test

clearly depends on how the cells are chosen when grouping the data. Since

this choice in turn depends on the choice of the origin, the test is not directly

applicable to circular data.

Modifications to tests for uniformity in order to make them origin-invariant

include considering the maximum or the average statistic for all possible par-

titions of a certain form. Rao (1972) suggested an average-type χ2 test. Sup-

pose n observations on the circumference are partitioned into k classes of equal

length. Note that this partition depends on the origin x0 and has the form

Cx0
=
{

[x0, x0 + 2π
k [, [x0 + 2π

k , x0 + 2 2π
k [, . . . , [x0 + (k − 1) 2π

k , x0 + 2π[
}

. The

number of classes k in this partition is fixed for the construction of Rao’s test.

The observed cell counts Xi(x0), i = 1, . . . , k are then computed as the number

of observations within the ith arc in the partition Cx0
. Under the null hypothe-

sis of circular uniformity, the expected frequencies are all equal to n
k . Pearson’s

statistic becomes

X2
n(x0) =

k
∑

i=1

(Xi(x0) − n
k )2

n
k

, (3.19)

which clearly depends on the origin x0. Moreover, it also depends on the partic-

ular choice of grouping as is the case on the line. In order to make this statistic

independent of x0, Rao (1972) proposed to integrate x0 out, i.e.

X2
n =

1

2π

∫ 2π

0

X2
n(x0)dx0. (3.20)

He determined the asymptotic null distribution of (3.20) and a computational

formula based on arc lengths between observations. These arc lengths between

observations on the circle are often called spacings. To be rotation or translation

invariant, any test on the circle should have an expression in terms of those

spacings (Lehmann & Romano, 2005) (see also Section 3.1.3). Taking k = 2,

the integral statistic (3.20) reduces to Anje’s statistic (Anje, 1968)

Rn =
1

2πn

∫ 2π

0

(N(x0) −
n

2
)2dx0, (3.21)

where N(x0) denotes the number of observations in the arc(x0, x0 +π), which is

the semi-circle that starts at x0. The computational formula for Anje’s statistic

is given by

Rn =
n

4
− 1

2nπ

n
∑

i=1

n
∑

j=1

d0(xi, xj),

where d0(xi, xj) = min(|xi − xj |, 2π − |xi − xj |) = π − |π − |xi − xj || denotes

the circular distance between two points on the circle. The asymptotic null

distribution of (3.21) was obtained by Watson (1967). Additionally, Anje (1968)
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considered the maximum version of (3.21), which is given by Bn = maxx0
N(x0)

or equivalently n− Bn = minx0
N(x0). This test, for which Anje (1968) found

the exact and asymptotic null distributions, is often referred to as the Hodges-

Anje test. Batschelet (1981) lists critical levels of n−Bn for sample sizes n from

5 to 40. Rothman (1972) proposed an extension to Anje’s tests, replacing N(x0)

by N(x;x0), which denotes the number of observations in the arc(x0, x0 + 2πx)

for 0 ≤ x ≤ 1. The statistic becomes

Rn(x) =
1

2πn

∫ 2π

0

(N(x;x0) − nx)2dx0. (3.22)

Even though these tests are invariant to the choice of the origin, they still de-

pend on the choice of the partition. As mentioned above, these issues are similar

to those discussed for the original Pearson’s χ2 test on the line in Greenwood

and Nikulin (1996).

To compensate partially for this dependence, Rothman (1972) generalised

his Rn(x) test by integrating over all the possible partitions with two cells. The

most general form of his statistic is then given by

RH
n =

1

2πn

∫ 2π

0

∫ 2π

0

(N(x;x0) − nx)2dx0 dH(x), (3.23)

where H(x) is an arbitrary distribution function on [0, 2π] that may be inter-

preted as weight function in a mixture of Rn(x) statistics. Rothman’s test is

now consistent against all alternatives to circular uniformity and reduces to the

Watson statistic (see Section 3.4.3 below) when H(x) is the CU distribution,

which corresponds to each partition receiving equal weight. This link is further

explored in Section 3.5.3 and Section 5.8 and a similar link for GOF tests for

linear distributions is in Section 5.2.

Example 3.2.1. We apply the Hodges-Anje test for uniformity to the Homing

pigeons data from Section 2.2.2. This test can be quickly performed without

any calculation. It is easy to derive the value of the statistic just by looking at

the plotted data. In particular, rotating the diameter around the center of the

circle (see Figure 2.8), it can readily be seen that five is the minimum number

of observations lying on one side of the diameter. This value corresponds to a

p-value of 0.873, which means that a significant deviation from uniformity can

not be established. However, since the data can be interpreted as axial data,

the test can be performed on the doubled data (as explained in Section 2.2.2),

which then leads to significance (p=0.003).
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3.3 Smooth GOF tests

While Pearson is considered the founder of GOF tests, Neyman is often cited

as the founder of smooth GOF tests. Neyman (1937) introduced his smooth

test for uniformity and argued that any other completely specified continuous

distribution could be handled using the PIT (cf. Section 3.1.3). However, when

applying that transformation, the interpretation of the test is in terms of the

transformed distribution instead of the original one. Therefore, we prefer to

use the construction of the smooth test as in Rayner and Best (1989), which is

in terms of the original distribution. Moreover, in contrast to Neyman (1937),

Rayner and Best (1989) derived the smooth test as a score test.

To obtain that score test, a k-dimensional smooth family of alternatives is

constructed which contains the hypothesised distribution. The term “smooth”

refers to the fact that the alternatives differ “smoothly” from the hypothesised

distribution. Neyman’s test is optimal for this type of alternatives, where op-

timal in Neyman’s sense means asymptotically locally uniformly most powerful

symmetric.

Section 3.3.1 is devoted to the construction of the family of smooth alterna-

tives and the derivation of the corresponding smooth test in his most general

form, i.e. without specifying whether nuisance parameters are known or un-

known. In Sections 3.3.2 and 3.3.3, more details about the smooth tests are

outlined for simple and composite null hypotheses, respectively. The order of

the smooth family is important for the power of the test and can therefore bet-

ter be estimated from the data. These data-driven procedures are discussed in

Section 3.3.4. Since in this thesis we are also interested in GOF tests for circular

data, we devote Section 3.3.5 to a smooth test for circular distributions.

3.3.1 General construction

Consider again the continuous GOF problem H0 : f(x) = f0(x,β) and embed

the hypothesised distribution f0(x,β) in an order k family of smooth alternatives

given by the density

gk(x;θ,β) = C(θ,β) exp





k
∑

j=1

θjhj(x;β)



 f0(x;β), (3.24)

where θT = (θ1, . . . , θk) denotes a k-dimensional real parameter vector,

C(θ,β) =
(

∫∞
−∞ gk(x;θ,β)dx

)−1

is the normalising constant, and {hj ; j =

1, . . . , k} represents a set of functions orthonormal on the real line with respect
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to the density f0(x;β), i.e.

∫ +∞

−∞
hl(x;β)hm(x;β)f0(x;β)dx = δl,m, (3.25)

(l,m = 1, . . . , k) where δl,m is the Kronecker delta. If the set of functions

{hj ; j = 1, . . .} forms a complete orthonormal basis of functions with respect

to f0, the family in (3.24) contains every possible continuous density function

provided that the order k may grow infinitely large. Additionally, the orthonor-

mality condition in (3.25) has the advantage that the resulting score statistic,

which will be given soon, can often be written into a sum of asymptotically

independent components which are easily interpretable. Moreover, each of the

individual components is related to each of the individual parameters from the

smooth model, which therefore can be uniquely identified.

Testing for the hypothesised distribution f0(x;β) now reduces to testing

H0 : θ = 0. Note that the latter is essentially a parametric null hypothesis.

The reason is that the true density is assumed to be a member of (3.24), which

is a parametric family of densities as the order k is finite. Hence, any test

for that null hypothesis is strictly speaking a parametric test. This implies

that if these parametric assumptions are not fulfilled, the test will lose power.

Even in case the k-dimensional vector θ truly equals zero, the true distribution

may not be equal to the hypothesised f0(x,β). In particular, this happens if

the true distribution is a member of an m-order smooth family where m > k,

(θ1, . . . , θk) = 0 and (θk+1, . . . , θm) 6= 0.

Suppose X1, . . . ,Xn denotes a sample of i.i.d. observations which have den-

sity f0 under the null hypothesis. Denote h(x;β)T = (h1(x;β), . . . , hk(x;β)),

so that the score vector for θ, evaluated at θ = 0, can be written as

V β =

n
∑

i=1

∂

∂θ
ln gk(Xi;θ,β)

∣

∣

∣

∣

∣

θ=0

=

n
∑

i=1

h(Xi;β).

Then, the score test statistic for testing H0 : θ = 0 versus H1 : θ 6= 0 in (3.24)

has the form

Sk =
1

n
V T

βΣβ
−1V β, (3.26)

where Σβ is the asymptotic covariance matrix of 1√
n
V T

β , evaluated at θ = 0.

The score statistic in (3.26) is asymptotically χ2 distributed under the null

hypothesis with degrees of freedom depending on the number of unknown nui-

sance parameters. Similarly, the explicit computation of the covariance matrix

Σβ depends on the nature of the parameters in β, and the estimation method.

Further details about those computations are treated separately for the simple

and the composite null hypothesis in the next sections.
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Barton (1953) proposed a different smooth family of alternatives, defined as

gk(x;θ,β) =



1 +

k
∑

j=1

θjhj(x;β)



 f0(x;β), (3.27)

which has the advantage that no normalisation constant is needed. This pa-

rameterization is sometimes preferred because the orthonormality properties in

(3.25) can be directly applied to compute the moments of the distributional

family (see Hamdam, 1962). In this perspective, an estimate of (3.27) is use-

ful to approximate the true density. This is because, as we will see in Section

3.7, estimates of the θ-parameters are easily derived from the components in

the smooth test statistic. On the other hand, the drawback is that the density

is not always guaranteed to be positive. Methods for correcting non-positive

densities are proposed in e.g. Gajek (1986) and Glad and Hjort (2003).

The two families of alternatives in (3.24) and (3.27) are referred to as the

Neyman and the Barton model, respectively. The score statistic for the Barton

model is equal to that of the Neyman model and thus also given by (3.26).

3.3.2 Simple null hypothesis

In this section, we discuss the smooth test based on (3.26) for the simple null

hypothesis, and thus the distribution under the null hypothesis, f0(x;β) is com-

pletely specified. Since this means that the parameter β is known, we omit this

parameter in the next part of this section.

Using the orthonormality properties of the h-functions, the covariance matrix

evaluated at θ = 0 of the score vector V in (3.26) is easily computed to be nIk,

where Ik is the k-dimensional identity matrix. The score statistic in (3.26) for

testing H0 : θ = 0 thus simplifies to

Sk =
1

n

k
∑

j=1

V 2
j . (3.28)

Under the null hypothesis, as n→ ∞,

Sk
d−→ χ2

k. (3.29)

Since the terms 1
nV

2
j , j = 1, . . . , k in (3.28) are the k asymptotically inde-

pendent components of the test statistic, each of them can be used as a di-

rectional test. The interpretation of those components depends on the choice

of the orthonormal system {hj}. For example, if f0 is the uniform density on

[0, 1], an orthonormal system based on trigonometric functions can be used (e.g.

hj(x) =
√

2 cos(jπx)). For this basis, which is however not a complete basis, a
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large value of the component 1
nV

2
m for some m indicates a symmetric oscillating

deviation from uniformity with period 2
m . On the other hand, using orthonor-

mal polynomials, the interpretation becomes one in terms of moment deviations.

In particular, large values of 1
nV

2
m then indicate large deviations from f0 in the

m-th moment. For the example of uniformity, the set of normalised Legendre

polynomials, which are listed in Appendix A.2, is the appropriate basis to obtain

that interpretation.

Henze and Klar (1996), Henze (1997) and Klar (2000) argued that the direc-

tional interpretation of the component tests is only guaranteed when at most

one θj 6= 0 in (3.24) or (3.27). The reason is that Σ is calculated under the

full parametric null hypothesis, which means that f and f0 are equal in all mo-

ments. The latter is not necessarily true under the null hypothesis of θ = 0

corresponding to the smooth test. Note that even when the null hypothesis is

not true, it is still possible to have more than one θj 6= 0. To repair the direc-

tional property, they proposed to rescale the score statistic, not by Σ, but by

its empirical covariance matrix

Σemp =
1

n2

n
∑

i=1

h(Xi)h
T (Xi).

The test statistic now becomes

Semp
k =

1

n
VT Σ−1

empV

and its asymptotic null distribution is as before. It should be noted that the

convergence of Semp
k is very slow as compared to the convergence of Sk. So in

practice it is useful to obtain the null distribution of Semp
k by simulation.

In this thesis we take Henze and Klar’s argument into consideration, in the

sense that when the traditional smooth test Sk shows a significant result, we are

cautious about its interpretation. On the other hand, we also take into account

that from empirical studies in Rayner and Best (1989) this traditional approach

seems to be quite good and informative for many distributions.

Example 3.3.2. We choose to take an order four alternative to perform

the Neyman test for uniformity using the Legendre polynomials on the Birth

time data (see Section 2.2.1). Note that the choice of the order is subjective.

Later, in Section 3.3.4, we mention how we can avoid making such a subjective

choice. The value of the statistic is S4 = 3.87, which is not significant using

the asymptotic χ2 critical points (p-value=0.42). In general, even if the result

of the test is not significant, it may still be interesting to have a closer look

at the individual components. After all, the non-significance could be due to

a sample size which is too small, rather than to the null hypothesis actually

being correct. The individual components can then inform us about what type
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of deviation from uniformity is most likely and should be looked for, if further

analysis is planned. The individual components 1
nV

2
2 = 1.80 and 1

nV
2
4 = 2.01

sum up to 3.81, which amounts to 98% of the overall value of the statistic. This

indicates that, if the true distribution deviates from uniformity, this might be

due to the second and fourth moments, i.e. variance and kurtosis. On the other

hand, we should be careful, since this is in fact circular data and the smooth

test used here is not invariant to a change in the origin. We demonstrate this

by computing the same test statistic again, but now taking the origin at 11pm

instead of the original choice of 12am. Then the overall statistic S4 = 6.12

(p-value=0.19) is considerably higher and the interpretation of the individual

components 1
nV

2
1 = 0.50, 1

nV
2
2 = 2.15, 1

nV
2
3 = 3.03 and 1

nV
2
4 = 0.44 change

as well. Here, the second and third moments are the most important ones. In

Section 3.3.5 and Chapter 4, we explain how origin-invariant smooth tests can

be constructed, which are suitable for circular data.

3.3.3 Composite null hypothesis

In the previous section, the p-dimensional nuisance parameter β in the GOF

problem was assumed to be known. However, in most practical situations this

index parameter vector is not known in advance. Usually the unknown param-

eters are estimated from the data using maximum likelihood or the method of

moments. As we will explain later, especially for smooth tests, it is convenient

to replace unknown parameters with their maximum likelihood estimators. Sup-

pose X1, . . . ,Xn is a random sample from f0(x,β). The maximum likelihood

estimator (MLE) β̂ of the p-dimensional vector β is a solution of the set of p

estimation equations

n
∑

i=1

b(Xi) =

n
∑

i=1

∂ ln f0(Xi,β)

∂β
= 0, (3.30)

where b is the score function evaluated under H0. For testing a composite null

hypothesis, the efficient score statistic is needed. Then the efficient score test

statistic for testing H0 : θ = 0 in (3.24) is defined as

Sk =
1

n
V T

β̂
Σβ̂

−1V
β̂
, (3.31)

where V β is the efficient score vector, which is given by

V β =
∑

i

{h(Xi;β) − Cov [h, b] Var [b]
−1

b(Xi)}. (3.32)

Since we are working with MLE, the efficient score vector is as before with β

replaced by β̂, i.e. V
β̂

=
∑n

j=1 h(Xj ; β̂), but the covariance matrix of 1√
n
V

β̂
is
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no longer necessarily diagonal. In particular,

Σ
β̂

=
[

Ik − Cov0 [h, b] Var0 [b]
−1

Cov0 [b,h]
]

, (3.33)

where the index 0 in the Cov and Var operator refers to calculations under the

null hypothesis. Under the null hypothesis, as n→ ∞, we have Sk
d−→ χ2

k−p.

If the density f0 belongs to an exponential family (e.g. the normal distri-

bution), the covariance matrix Σ
β̂

reduces to a diagonal form. In this case,

the sufficient statistics for the parameters of the exponential density are poly-

nomials in the observations. Klar (2000) showed that then the MLE is equal to

the method of moments estimator (MME). The MME is obtained by expressing

equality between theoretical and sample moments. It is particularly useful to

have that the MLE coincides with the MME, because that means that the first

p elements of the score vector are identically zero and the score test statistic re-

duces to a sum of k−p asymptotically independent χ2
1 distributed components,

i.e.

Sk =
1

n

k
∑

j=p+1

V
β̂

2

j
. (3.34)

To obtain directional tests that are diagnostic for the deviation from the

hypothesised distribution in its moments, the covariance matrix Σ
β̂

can again

be replaced by the corresponding empirical covariance matrix. However, for

the composite null hypotheses, Klar (2000) demonstrates that the directional

property only holds when the MLE equals the MME and when the sample size

is large.

Since the null hypothesis includes all distributions of a p-dimensional family

of distributions, an efficient statistic compares that null distribution with its

orthogonal complement, which is a (k−p)-dimensional alternative. By imposing

p constraints on the parameter space, the degrees of freedom of the test naturally

reduce to k − p. Therefore, for any f0, it is always possible to write the score

test statistic in (3.31) as a sum of k−p asymptotically independent components.

This is done by diagonalising the non-singular covariance matrix Σ
β̂
.

Example 3.3.3. We apply the smooth test for composite normality to the PCB

data (see Section 2.1.3). Since for the normal distribution MLE and MME coin-

cide, the smooth test statistic for a family of alternatives of order k = 6 reduces

to the sum of k−2 = 4 asymptotically independent χ2
1 distributed components.

Because the convergence to the asymptotic distribution is slow, we apply the

parametric bootstrap with 10,000 samples to obtain the null distribution of S6

and its components. Since the normal distribution is location-scale invariant,
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which is a distribution that satisfies f(x;µ, σ) = 1
σf(x−µ

σ , 0, 1), the null distri-

bution of S6 does not depend on the values of the parameters µ and σ2. This

means that the observations may first be standardised as Zi = Xi−X√
1
n

∑

n
i=1(Xi−X)2

so that the normalised Hermite polynomials may be used as a set of orthonor-

mal functions to the standard normal distribution. The Hermite polynomials

are given in Appendix A.1. Simulations should thus only be performed for

the standard normal distribution. We obtain S6 = 10.18 (p-value = 0.030),

where the first two non-zero components are 1√
n
V3 = 5.44 (p-value=0.019) and

1√
n
V4 = 4.12 (p-value=0.025) and sum up to almost 95% of the total value of

the test statistic. Hence, at the 5% significance level there is evidence for differ-

ences with respect to skewness and kurtosis but not to higher order moments.

Note that we did not apply the rescaling method of Klar (2000), so we need to

be careful with the diagnostic interpretation. However, relying on the empirical

studies by Rayner and Best (1989), this interpretation seems justified.

Finally, we note that other smooth tests were proposed to deal with the

GOF problem of composite normality. First, as mentioned before, it is possible

to apply the PIT and use Legendre polynomials in a smooth test for uniformity

on the transformed observations. The interpretation will then be in terms of the

CDF instead of the PDF. Another contribution was due to Thomas and Pierce

(1979), who did not use orthonormal polynomials but monomials to construct

a smooth test for composite normality. The authors proved that the limiting

distribution was simply a χ2-distribution. However, the advantages of using the

orthonormal polynomials formulated in Section 3.3.1 are lost with this approach.

3.3.4 Data-driven smooth tests

The problem is now how to choose the number of the components in Neyman’s

test. This choice is particularly important because the smooth test loses power

if the order is either too small or too large.

Since Neyman’s test is obtained as a score test for the parametric null hy-

pothesis θ = 0 in the exponential family in (3.24), this test is asymptotically

optimal against alternatives within this exponential family. However, if the true

density f does not belong to that family of alternatives, in particular when the

dimension of the proposed family is too small to capture the density f , the

smooth test is not consistent anymore and loses power. Note that any “regular”

density f can be represented by a log-linear expansion of infinite dimension.

Hence, we may assume that there exists an order k which is large enough so

that f belongs to this smooth exponential family.

On the other hand, the order can be chosen too large as well, resulting in a so

called dilution effect. Suppose the true distribution differs from the hypothesised

only with respect to its location, then a smooth test with order 1 is the optimal
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choice for the detection of the location shift. If instead a larger order for the

smooth test is chosen, some sensitivity for the location effect is lost to each of

the other extra components.

Consequently, it is clear that the optimal choice for the order is the smallest

order for which the family of alternatives contains the true distribution function.

Unfortunately, in practice, we often have no idea in what sense the true distri-

bution deviates from the hypothesised, which implies that choosing the optimal

order is both hard and subjective. To overcome that problem, the optimal order

can be estimated from the data. The resulting smooth test, using the estimated

order, is called the data-driven smooth test and was first introduced by Ledwina

(1994).

Simple null hypothesis

For the simple null hypothesis, Ledwina (1994) considered choosing an appro-

priate dimension as a model selection problem and uses Schwarz’ Bayesian In-

formation Criterion (BIC) as the selection rule. An advantage of the BIC is that

it asymptotically selects the right model with probability one. For a Neyman

model of order k, the BIC is defined as

BICn(k) = l(k) − 1

2
k log(n),

where l(k) is the log-likelihood of the order k Neyman model, maximised in all

the model parameters. The last term accounts for the complexity of the model

and has larger impact if the sample size is large. The optimal order according

to the BIC is then

K = min{k : 1 ≤ k ≤ m,BICn(k) ≥ BICn(j), j = 1, . . .m} (3.35)

where m is the upper bound of the dimension, which we assume finite here.

When the upper bound m is allowed to grow to infinity with the sample size n,

the resulting data-driven test is omnibus consistent, see Kallenberg and Ledwina

(1995), (1997) and Inglot, Kallenberg, and Ledwina (1997). The smooth test

for the simple null hypothesis has the same form as before in (3.28) except that

the arbitrary order k is replaced by the estimated order K, i.e.

SK =
1

n
V tV =

1

n

K
∑

j=1

(

n
∑

i=1

hj(Xi)

)2

. (3.36)

Composite null hypothesis

Kallenberg and Ledwina (1997) extended Ledwina’s approach for simple null

hypotheses to the composite case, and used a modification of the selection rule
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which makes the computations simpler. The modified selection rule directly uses

the score statistic instead of the maximum log-likelihood. Since both selection

rules are locally asymptotically equivalent, we use the same notation for the

modified BIC, which is now given by

BICn(k) =
1

n
V t

kV k − k log(n),

where V k =
∑n

i=1 h(Xi; β̂) is the k-dimensional score vector with the nuisance

parameter β replaced by its MLE β̂. Note that any other
√
n-consistent esti-

mator can be used as well, but in our discussion we restrict estimation to MLE.

The optimal order K according to the BIC is as in (3.35) and the corresponding

efficient score test for composite null hypothesis in (3.31) becomes

SK =
1

n
V T

β̂

[

IK − Cov0 [h, b] Var0 [b]
−1

Cov0 [b,h]
]−1

V
β̂
. (3.37)

Note that, for composite null hypotheses, it is better to replace the score statistic

by the efficient score statistic for the computation of the BIC criteria as well

(see Janic-Wróblewska, 2004). For each of the previous selection rules based

on the BIC, it can be shown (see Ledwina, 1994, Kallenberg & Ledwina, 1997,

Inglot et al., 1997 and Janic-Wróblewska, 2004) that under H0 : θ = 0, it holds

that

lim
n→∞

P (K = 1) = 1.

Hence for large sample sizes the selection rules always chooses the smallest order

K = 1. This immediately implies that, under H0, as n→ ∞,

SK
d−→ χ2

1.

This means that the limiting null distribution does not depend on m. It should

be noted that convergence towards the null distribution is rather slow because

the selection criterion does not always chooses K = 1 for finite sample sizes, so

that it is better to use its simulated exact null distribution instead. However,

simulations showed that the data-driven smooth test performs well against a

wide range of alternatives.

In the previous discussion we only considered nested exponential models to

derive the optimal order. Claeskens and Hjort (2004) considered any possi-

ble subset of the indices {1, . . .m}. Moreover, they also considered Akaike’s

Information criterion (AIC) as well, among others.

Example 3.3.4. To illustrate the data-driven procedure, we return to the PCB

data we discussed in Example 3.3.3. We assume that the density of the data

belongs to a family of alternatives to the normal distribution of order not larger

than 10, so we believe it is appropriate to take m = 10. The selection criterion
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(3.35) chooses K = 3 and for the corresponding smooth test we have S3 =

5.44. The p-value which is again computed using 10,000 parametric bootstrap

samples, equals 0.028 and is slightly smaller than before. We may conclude that

the PCB data differs from normality with respect to its skewness.

The advantage of a data-driven smooth test is that, upon rejection of the null

distribution, it provides useful information about the true distribution. In fact,

as we will see in Section 3.7, it directly provides an estimate of the underlying

density.

3.3.5 Smooth test for circular uniformity

In many fields in science, the question arises whether every time instant on

a 24h clock, every direction or every angle occurs with the same probability.

This GOF problem for circular uniformity (3.11) generally can not be solved

adequately with the smooth test described in Section 3.3.2. In Example 3.3.2

we have illustrated on the Birth time data that the value of the test statis-

tic is not origin-invariant and is therefore not useful for circular data. Nev-

ertheless, Neyman’s smooth test can be adapted for application to circular

data. It is simply a matter of choosing an appropriate set of functions {hj}
orthonormal on the CU distribution, so that an origin-invariant test statistic

results. Bogdan et al. (2002) proposed to use the set of trigonometric functions

{
√

2 cos(jx),
√

2 sin(jx); j = 1 . . . k}, which is indeed orthonormal to the CU

distribution. The proof that this choice does in fact result in an origin-invariant

smooth test for circular uniformity will be given later in this section and is also

in Bogdan et al. (2002). First we give some more details about the construction

of the test statistic.

As before, the null density is embedded into a larger exponential family. The

order k family of circular alternatives is given by

gk(x,θ) = C(θ) exp





k
∑

j=1

(

θ2j−1

√
2 cos(jx) + θ2j

√
2 sin(jx)

)



 0 < x < 2π,

(3.38)

where θt = (θ1, . . . , θ2k) denotes the parameter vector, C(θ) is a normalizing

constant, and {
√

2 cos(jx),
√

2 sin(jx); j = 1 . . . k} is the set of orthonormal

functions on the CU distribution, which is a complete set if k → ∞.

Note that this family of alternatives, based on the system of trigonomet-

ric functions, is similar to the family of circular distributions proposed by

Fernández-Durán (2004). He studied a linear expansion of the CU density,

which is actually the Barton model but has the drawback that it does not nec-

essarily result in a positive PDF. Taking a log-linear expansion of the density

avoids this problem. In contrast to the family of alternatives discussed before,
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the order k of the family now does not refer to the number of parameters but

rather to the largest order of the trigonometric functions used in the family.

The null hypothesis of circular uniformity is equivalent to testing the para-

metric hypothesis H0 : θ = 0 against H1 : θ 6= 0, and the score test statistic for

this problem becomes

S2k =
1

n
V tV =

1

n

2k
∑

j=1

V 2
j , (3.39)

where V T = (V1, . . . , V2k) is the score vector in which

V2j−1 =
√

2

n
∑

l=1

cos (jXl) and V2j =
√

2

n
∑

l=1

sin (jXl).

This statistic is indeed invariant under rotation since we can write

V 2
2j−1 + V 2

2j = 2

∣

∣

∣

∣

∣

n
∑

l=1

[cos (jXl) + i sin (jXl)]

∣

∣

∣

∣

∣

2

= 2

∣

∣

∣

∣

∣

n
∑

l=1

exp (ijXl)

∣

∣

∣

∣

∣

2

,

for each j = 1, . . . k. Changing the origin is equivalent to adding some constant

γ to each of the Xl, which in turn leads to an extra factor exp(ijγ) with unit

modulus.

As before, under the null hypothesis the smooth test statistic S2k is asymp-

totically χ2 distributed with 2k degrees of freedom and its individual com-

ponents 1
nV

2
j , j = 1, . . . , 2k are asymptotically independently χ2

1 distributed.

Additionally, the jth component 1
n (V 2

2j−1 + V 2
2j) is proportional to the squared

resultant length of the jth trigonometric moment. Hence, this two degrees of

freedom component can be used as a directional test to detect differences in the

jth trigonometric moment.

Later, in Section 3.5, we will describe the relation of this smooth test statis-

tic to the Watson statistic, which is described in Section 3.4.3. For k = 1, the

statistic S2 reduces to probably the simplest test for CU, introduced by Rayleigh

(1919). The Rayleigh test is introduced on the intuitive ground that the resul-

tant length of the first trigonometric moment, say R, is expected to be zero

for uniformity, so large values of 2nR indicate evidence against uniformity (see

Section 2.2). From the theory of the smooth tests we know that the Rayleigh

test only has optimal power against the alternatives

g1(x,θ) = C(θ)e
√

2(θ1 cos x+θ2 sin x) =
1

2πI0(κ)
eκ cos (x−µ), 0 < x < 2π, (3.40)

where the last identity is obtained using the trigonometric relations in which

θ1 = κ sinµ, θ2 = κ cosµ and C(θ) = 1
2πI0(κ) . The Rayleigh test is thus the

score test for uniformity within the von Mises model.
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To make a good choice on the number of the components k, Bogdan et al.

(2002) proposed to use a modified version of the Schwarz selection rule following

Inglot and Ledwina (1996), discussed in the previous section. In particular, let

K be the smallest k for which S2k − 2k log n is maximal. They proved that S2K

is consistent against every fixed alternative and asymptotically χ2
1-distributed

under the null hypothesis. However, simulations showed that convergence is

relatively slow.

Example 3.3.5. We apply the origin-invariant smooth test to the Birth time

data. Before we perform the data-driven version, we first give the results for

order k = 2. This choice, which corresponds to a family of alternatives with

four parameters, is made in order to compare the results with those obtained

in Example 3.3.2. As before, we use asymptotic χ2 critical points. The value of

the test statistic is S4 = 3.57, which is again not significant (p=0.470). The first

component 1
n (V 2

1 + V 2
2 ) = 2.76, accounts for the largest part of S4 (77%) but

also does not indicate a significant effect (p=0.250). Compared to the results

from Example 3.3.2, which were based on a non-origin-invariant statistic, the

p-values are slightly higher. This might indicate a small power loss. On the

other hand, a conclusion can be formulated which does not change by taking

another origin.

The p-values for the data-driven version of the smooth test are computed

using 10,000 bootstrap samples. The selection criterion chooses K = 1 and the

value of the test statistic S2K = 2.76 again shows no significant deviation from

circular uniformity (p=0.283).

This smooth test has the advantage that it is easy to compute. On the other

hand it can only be applied to solve GOF problems for circular uniformity. If

the null distribution is completely specified, one can apply the PIT, but then

the interpretation in terms of trigonometric moments is on the transformed

data. Moreover, for composite null hypotheses, which appear most often in

practice, no smooth tests have been developed yet. Perhaps the reason is that

it seems very difficult to find appropriate orthonormal functions. In Chapter 4

we develop a new general methodology for smooth tests for circular data. We

shall see that the smooth test of Bogdan et al. (2002) is a special case of this

new class of tests.

3.4 EDF GOF tests

In this section the large class of GOF statistics based on the empirical distri-

bution function (EDF) is described. Each test of this class compares the hy-

pothesised distribution function with the EDF, which is the most widely used

estimator of the true distribution. The general construction of the EDF tests is
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discussed in Section 3.4.1.

The type of the EDF test depends on the distance measure used to make the

comparison between the hypothesised distribution and the EDF. Sections 3.4.2

and 3.4.3 are devoted to the two most important types of EDF tests, which are

referred to the supremum and the integral versions, respectively. The oldest,

but still well known, supremum EDF test is the Kolmogorov-Smirnov (KS) test

(Kolmogorov, 1933 and Smirnov, 1939), while the Cramér-von Mises (CvM)

test (Cramér, 1928 and von Mises, 1931, 1947) was the first integral EDF test.

Most EDF tests depend on the choice of the origin and in such are gen-

erally not applicable to circular distributions. However, the KS and the CvM

tests both have their origin-invariant versions, which were introduced by Kuiper

(1960) and Watson (1961), respectively. The Kuiper and the Watson tests are

widely used for linear data as well and are discussed in Sections 3.4.2 and 3.4.3,

respectively.

3.4.1 General Construction

In this section, the EDF is introduced and some of its properties are presented.

Before we state the EDF statistic in its most general form, we first give some

basic results on empirical processes. The reason is that a modern approach based

on empirical processes provide concise expressions for both the EDF statistic

and its asymptotic null distribution.

The empirical distribution function

Suppose X1, . . . ,Xn is a sample of n i.i.d. observations from an unknown dis-

tribution F . The empirical distribution function F̂n is an estimator of the CDF

F (x) = P (X ≤ x) and is given by

F̂n(x) =

∑n
i=1 I(Xi ≤ x)

n
,

where I is the indicator function. The EDF F̂n(x) is a non-decreasing step

function. If there are no ties in the sample, the EDF has steps of size 1
n at

each observation Xi. The definition of an EDF for circular data is analogous

but depends on both an arbitrarily chosen origin and orientation (clockwise or

anti-clockwise).

Since for every x, nF̂n(x) represents a number of observations in a total of

n, it has a binomial distribution with parameters n and F (x). Consequently,

we know that for every x, F̂n(x) is a consistent and unbiased estimator of F (x).

Furthermore, using the central limit theorem, we have that for every x, as

n→ ∞, √
n
(

F̂n(x) − F (x)
)

d−→ N(0, F (x)(1 − F (x))). (3.41)
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Note that the latter result holds for each x separately. An improved result,

which is known as the Glivenko-Cantelli theorem, states uniform convergence

of F̂n, i.e.

P

(

lim
n→∞

sup
x

|F̂n(x) − F (x)| = 0

)

= 1, (3.42)

which can also be written as

sup
x

|F̂n(x) − F (x)| a.s.−→ 0. (3.43)

Empirical processes

The distribution of
√
n
(

F̂n(x) − F (x)
)

in (3.41) has only a pointwise inter-

pretation. Since we would like to compare the functions entirely instead of

just evaluating the difference at individual points, the suggestion is to go from

pointwise to functional properties of the empirical process. The latter is given

by

Bn(x) =
√
n
(

F̂n(x) − F (x)
)

. (3.44)

Then the functional central limit theorem says that the empirical process Bn

converges weakly to a zero mean Gaussian process B(x) with covariance function

Cov [B(x),B(y)] = F (x ∧ y) − F (x)F (y), (3.45)

where ∧ denotes the minimum operator. For more details about this derivation

we refer to van der Vaart (1998). For uniform F , Bn and B are referred to as

the uniform empirical process and the Brownian brigde, respectively.

Another important theorem is the continuous mapping theorem, which is

frequently used in this context. It says that if Bn
d−→ B, then g(Bn)

d−→ g(B),

for g a continuous function.

General construction of the EDF statistic

Suppose we are interested in testing the GOF null hypothesis H0 : F (x) =

F0(x,β), where β is an either known or unknown p-dimensional parameter

vector. A meaningful statistic to test H0 compares the hypothesised distribu-

tion F0(x,β) with the EDF F̂n(x) using some sensible distance measure. For

example, it is clear from property (3.43) that a useful statistic can be con-

structed based on the supremum norm of the difference in distributions. Note

that any distance between F0(x,β) and F̂n(x) is indeed equivalent to a norm of

Bn(x) = Bn(x,β) =
√
n
(

F̂n(x) − F0(x,β)
)

. Consequently, EDF statistics can

generally be denoted by

Tn = g(Bn), (3.46)
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where g is a function that involves an appropriate norm of the empirical process.

If g is continuous, the asymptotic null distribution of the statistic Tn is given

by g(B) as easily derived by applying the continuous mapping theorem. Usu-

ally there is no analytical expression for the distribution function of g(B), and

therefore simulation from g(B) may be used instead. It is however important

to note that both the empirical and the limiting Gaussian processes depend

on the parameter β. Therefore we make this dependence more explicit in the

notation. In particular, we write the Gaussian process B as B(x) = B(x,β) and

its covariance function as

Cov [B(x,β),B(y,β)] = F0(x ∧ y,β) − F0(x,β)F0(y,β). (3.47)

The explicit expression of this covariance function depends on the nature of the

parameter β and the estimation method.

When the parameter β is known, there is no problem in simulating the

Gaussian process B. The nature of the function g then determines whether it is

convenient to simulate the limiting distribution g(B). For example, if g is the

supremum norm, simulating g(B) is straightforward.

When the parameters are unknown, the same statistic can be used, but the

nuisance parameters are replaced by their appropriate estimators. The resulting

process Bn(., β̂) is called the estimated empirical process. The covariance func-

tion of the limiting process becomes more involved, however. Durbin (1973) and

van der Vaart (1998) provided proofs on these asymptotic results for a general

class of efficient estimators while making some assumptions on the hypothesised

distribution F0. Unfortunately, the asymptotic law of the estimated empirical

process depends on F0. Therefore, in the composite null hypothesis case, one

usually turns to the parametric bootstrap to obtain an approximation of the null

distribution of the test statistic. When F0 is a location-scale invariant distribu-

tion, the covariance function in (3.47) becomes independent of the parameter

β, but the dependence on the distribution F0 remains. In this special situation

percentage points may be approximated by one single series of simulations for

each sample size, and with an arbitrary choice for β. For F0 equal to e.g. the

normal distribution, the limiting null distribution of some EDF tests have been

tabulated. In particular, Lilliefors (1967) tabulated critical values for the KS

test (see Section 3.4.2) while Stephens (1976) provided percentage points and

formulas to approximate p-values for the CvM and the AD tests (see Section

3.4.3). On the other hand, the von Mises distribution is location-invariant but

not scale-invariant. The critical values for the Watson statistic (see Section

3.4.3) for different values of the concentration parameter κ are given in Lock-

hart and Stephens (1985). Since in this thesis the null distributions of the EDF

tests are always simulated for the composite null hypothesis, we confine the

further discussion of the EDF tests to the simple null hypothesis. In particular,
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for linear and circular data, we discuss the null hypothesis on the unit interval

[0, 1] and the unit circumference arc(0, 1), respectively.

In the next two sections, two concrete types of norm functions g are discussed,

which are referred to as the supremum and the integral norm.

3.4.2 Supremum EDF tests

The EDF test statistics for which the function g in (3.46) is the supremum norm,

are called supremum EDF test statistics. They are described in this section.

Kolmogorov-Smirnov test

The class of supremum EDF tests found its origin in the KS test (Kolmogorov,

1933 and Smirnov, 1939). For testing the simple null hypothesis H0 : F (x) =

F0(x), the KS test statistic is given by

Dn =
√
n sup

x
|F̂n(x) − F0(x)| = sup

x
|Bn(x)| (3.48)

and can also be written as max(D+
n ,D

−
n ), where

D+
n =

√
n sup

x
(F̂n(x) − F0(x)) = sup

x
Bn

D−
n =

√
n inf

x
(F̂n(x) − F0(x)) = sup

x
(−Bn).

The KS statistic Dn and its related statistics D+
n and D−

n can be read from the

PP-plot. Details about the relation between the graph and the formal tests are

in Section 2.1.1.

Although it has always been a much-discussed topic to find user-friendly

expressions and tabulations of the exact (see e.g. Massey, 1951, Stephens,

1970,Dallal, 1986, and Drew, Glen, & Leemis, 1998) and the asymptotic null

distributions (see Kolmogorov, 1933) of the KS test, we will not pay much at-

tention to it. The reason is that using the results on the empirical processes

described above, we have that, as n→ ∞,

Dn
d−→ D = sup

x
|B(x)|. (3.49)

Therefore the asymptotic null distribution can easily and accurately be simu-

lated. Moreover, convergence of the null distribution is quite fast.

Here we just give the distribution function of the asymptotic null distribution

found by Kolmogorov (1933), i.e.

FD(d) = 1 − 2
∞
∑

j=1

(−1)j+1 exp (−2j2d2).
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This expression clearly does not depend on the distribution F0, nor on the true

distribution F , which implies that the KS test is nonparametric. Note that this

was not clear yet from the right hand side of (3.49).

Kuiper test

The circular analogue of the KS test is the Kuiper test (Kuiper 1960). The test

statistic is given by

Kn = sup
x,y

|Bn(x) − Bn(y)| =
√
n sup

x,y
|F̂n(x) − F̂n(y) − (F0(x) − F0(y))|. (3.50)

This interpretation can be made more clear by rewriting the KS test statistic

as Dn = supx |Bn(x) − Bn(0)|, which is a supremum over intervals [0, x] with

lower bound fixed at the arbitrary origin 0. Hence, the Kuiper test is in fact the

largest value of the KS statistics generated by choosing every possible starting

point on the circle (see also Barr & Shudde, 1973). Consequently, it is intuitively

clear that the statistic is origin-invariant. For a more formal proof of the origin-

invariance property we refer to Mardia and Jupp (2000) or Jammalamadaka and

SenGupta (2001). Also, in the sense of Section 3.1.3 it is directly clear that the

Kuiper test is origin-invariant because the set of differences {F̂n(xi)− F̂n(xj)−
(F0(xi) − F0(xj))} is a maximal origin-invariant set.

The Kuiper statistic can alternatively be written as

Kn = D+
n +D−

n . (3.51)

Its asymptotic null distribution is given by Kuiper (1960) and again implies

the distribution-free property. Note that the Kuiper test can also be applied to

linear data and is often more powerful than the KS test (see e.g. Abrahamson,

1967).

In Chapter 6 we introduce a graphical diagnostic tool, which is related to

the Kuiper test in a sense that it is based on the same interval indexed process

Bn(x) − Bn(y).

The interpretation of this process is intuitively clear when rewriting the process

as √
n{F̂n(x, y) − (F0(x, y)),

where F̂n(x, y) = F̂n(x)−F̂n(y) and F0(x, y) = F0(x)−F0(y). Hence, the process

values can be interpreted as the differences between observed and expected

probabilities of the random variable X falling into the interval [x, y]. From this

argument it is intuitively clear that for a particular interval [x, y], the larger the

process value, the more the true distribution deviates from the null distribution

within that interval.
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3.4.3 Integral tests

This section is devoted to another important class of EDF statistics, where the

function g in (3.46) is based on an integral and which is therefore called the

integral class of EDF statistics.

The class of Anderson-Darling tests

Consider the simple GOF problem for testing H0 : F (x) = F0(x). Anderson

and Darling (1952) introduced a family of statistics defined as

Tn =

∫ 1

0

Bn(x)2w(F0(x))dF0(x), (3.52)

where w(u) is some nonnegative weight function (0 ≤ u ≤ 1). The two most

common choices for this weight function are w(u) = 1 and w(u) = 1
u(1−u) . For

the former weight function, the family of statistics reduces to the CvM statistic.

The statistic based on the latter weight function is more popular and is referred

to as the Anderson-Darling (AD) statistic. This choice of weight function is

particularly useful because the empirical process An(u) = Bn(u)
u(1−u) has covariance

function

Cov [An(s),An(t)] =
s ∧ t− st

√

s(1 − s)t(1 − t)
,

and thus has constant unit variance. We denote the CvM and the AD statistics

as Wn and An, respectively. The computational formulae for the CvM and the

AD statistics are

Wn =
n
∑

i=1

(

U(i) −
2i− 1

n

)

+
1

12n

An = −n− 1

n

n
∑

i=1

(2i− 1)(lnU(i) + ln(1 − U(n+1−i))),

where U(1) ≤ . . . ≤ U(n) are the order statistics of the variable U = F0(X).

Similarly, as for the KS and the Kuiper tests, Stephens (1970) provided a

simple method of approximating the exact null distribution for the CvM test.

He fitted a polynomial in inverse powers of
√
n to simulated critical values.

Based on that empirical study he suggested using a modified test statistic, for

which it turned out that the asymptotic critical values are fairly accurate. For

the AD test, the null distribution is already accurately approximated by its

asymptotic distribution when n > 3.

The asymptotic null distributions of Wn and An can again be found using

the weak convergence of the empirical processes Bn and An, respectively. Fur-
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thermore, applying the continuous mapping theorem we have that, as n→ ∞,

Wn
d−→W =

∫ 1

0

B2(u)du (3.53)

and

An
d−→ A =

∫ 1

0

A2(u)du, (3.54)

where A(u) = B(u)√
u(1−u)

. However, the integral norm is not a convenient function

to simulate from. Another expression, which is more useful for simulations, is

based on the Kac and Siegert or principal components decomposition of the

Gaussian processes in (3.53) and (3.54).

In general, the Kac and Siegert (1947) decomposition of a Gaussian process

P is given by

P(u) =

∞
∑

j=1

√

λjψj(u)Zj , (3.55)

where {λj} and {ψj} are the eigenvalues and the eigenfunctions of the integral

equation
∫ 1

0

ψ(u)Cov [P(u),P(v)] du = λψ(v). (3.56)

The components Zj are i.i.d. standard normal random variables equivalent to

1
√

λj

∫ 1

0

P(u)ψj(u)du,

which are called the principle components. The solutions of (3.56) can only be

found easily in special cases. For P = B, it can be shown that (j=1,2,. . . )

λj =
1

j2π2
and ψj(u) =

√
2 sin(jπu),

while for P = A, it can be shown that (j=1,2,. . . )

λj =
1

j(j + 1)
and ψj(u) = 2

√

1

j(j + 1)

√

u(1 − u)
d

du
Lj(u),

where Lj are the orthonormal Legendre polynomials. The definition of those

polynomials is in (A.11) of Appendix A.2.

By substituting the principle component decomposition (3.55) of the Gaus-

sian processes B and A into the right hand sides of (3.53) and (3.54), respectively,

the limiting null distributions can be rewritten as

W =
∞
∑

j=1

1

j2π2
Z2

j (3.57)
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and

A =
∞
∑

j=1

1

j(j + 1)
Z2

j (3.58)

respectively, where Z1, Z2, . . . are i.i.d. standard normal random variables. This

representation is an infinite sum of weighted χ2 variables, for which the weights

decrease with increasing order j. The downweighting is quite severe so that it

is possible to restrict simulation to the first most important components. When

the principal component decomposition is applied to the empirical processes Bn

or An, the interpretation of the components is related to that of the components

in the smooth test statistics, which will be discussed in Section 3.5.

The Watson test

Watson (1961) proposed a modification of the CvM test which is useful for

testing GOF of circular distributions. The Watson statistic is defined as

Un =

∫ 1

0

(

Bn(x) −
∫ 1

0

Bn(y)dF0(y)

)2

dF0(x), (3.59)

= n

∫ 1

0

(

F̂n(x) − F0(x) −
∫ 1

0

F̂n(y) − F0(y)dF0(y)

)2

dF0(x). (3.60)

Alternatively Un can be written as

Un =
1

2

∫ 1

0

∫ 1

0

(Bn(x) − Bn(y))2dF0(x)dF0(y) (3.61)

=
n

2

∫ 1

0

∫ 1

0

(

F̂n(x) − F̂n(y) − (F0(x) − F0(y))
)2

dF0(y)dF0(x),(3.62)

or as,

Un = inf
x0

∫ 1+x0

x0

Bn(x;x0)
2dF0(x), (3.63)

where Bn(x;x0) is the empirical process calculated with x0 as starting point,

i.e. Bn(x;x0) =
√
n(F̂n(x;x0) − F0(x;x0)). Here, F̂n(x;x0) and F0(x;x0) are

defined as

F̂n(x;x0) =

∑n
i=1 I(x0 ≤ Xi ≤ x)

n
and F0(x;x0) =

∫ x

x0

f0(y)dy, (3.64)

where x is assumed to have values between x0 and x0 + 1. Since x is periodic,

the latter assumption can always be achieved by adding the appropriate integer

constant. The last expression (3.63) implies that the Watson statistic can be

interpreted as the smallest value of the CvM statistics generated by choosing

every possible starting point on the circle. From this interpretation it is again
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intuitively clear that the Watson test is origin-invariant. Jammalamadaka and

SenGupta (2001) provided a more formal proof. The origin-invariance property

can also be derived from each of the expressions (3.59)-(3.62) using the argument

that the integrand is a maximal origin-invariant function.

The computational form of the Watson statistic is given by

Un =

n
∑

i=1

(

U(i) −
2i− 1

2n

)

− n(U − 1

2
) +

1

12n
, (3.65)

where U(1) ≤ . . . ≤ U(n) are the order statistics of the variable U = F0(X) and

U is the sample mean. The asymptotic null distribution can be found using

empirical process theory. In particular, it can be shown that

Un
d−→ U =

∫ 1

0

(

B(u) −
∫ 1

0

B(v)dv

)2

du. (3.66)

Similarly as for the CvM and the AD statistics, this form is not often useful for

simulation.

As an alternative we give the Kac and Siegert representation of the asymp-

totic null distribution (see Watson (1961) or Shorack and Wellner (1986)). Wat-

son found the solutions for the integral equation (3.56) for the Gaussian process

P = B −
∫ 1

0
B(v)dv with corresponding covariance function

Cov [P(u),P(v)] = u ∧ v − (u+ v)/2 + (u− v)/2 + 1/12. (3.67)

The eigenvalues are λ2j−1 = λ2j = 1
4π2j2 , and the eigenfunctions are

ψ2j−1 =
√

2 sin(2πj) and ψ2j =
√

2 cos(2πj) j = 1, 2, . . . .

Consequently, the principal components decomposition is

U =

∞
∑

j=1

1

4π2j2
(Z2

2j−1 + Z2
2j) =

∞
∑

j=1

1

4π2j2
Xj (3.68)

where the Xj = Z2
2j−1 +Z2

2j are i.i.d. χ2
2. Similarly as for the CvM and for the

AD test statistics, the asymptotic null distribution can be simulated from the

first few components, which have the largest weights. Note that from the Kac

and Siegert representations, it can be seen that for the simple null hypothesis,

each test from the integral class of EDF statistics considered here is distribution-

free.

The general framework for the principal components decomposition of inte-

gral statistics was introduced by Anderson and Darling (1952). Later, Durbin

and Knott (1972) provided the exact and asymptotic distribution of the princi-

pal components. Shorack and Wellner (1986) give a comprehensive overview of
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this theory. These principle components decompositions can also be obtained

using the theory of U - or V -statistics. In particular, the classical statistics typi-

cally take the form of a degenerate U - or V -statistic. To obtain the limiting null

distribution of those classes of statistics, we need the solutions of an integral

equation of the form (3.56), where the covariance function is replaced by the

kernel of the U - or V -statistic. For more details about those U - and V -statistics

we refer to Lee (1990). In Chapter 5, we will rewrite one of our new GOF test

statistics as a V -statistic in order to obtain a useful limiting distribution.

Usually, finding the Kac and Siegert representation is not an easy task. Ah-

mad (1993) avoided the problem by using a modification of the EDF, resulting

in a test statistic with limiting normal distribution under the null and the al-

ternative hypothesis. He did this for the CvM and the Watson statistics for

simple null hypotheses. Janssen, Swanepoel and Veraverbeke (2005) extended

this procedure to the composite null hypothesis case. This is worth noting here

since their resulting tests are distribution-free.

3.5 Link between Pearson, EDF and smooth tests

3.5.1 Pearson χ
2 versus smooth tests

Barton (1955), Cox and Hinkley (1974) and Kopecky and Pierce (1979) each

provided a link between the Pearson χ2 test and a smooth test. In this section

we briefly mention how this link naturally arises. In particular, as in Rayner

and Best (1989), we derive the Pearson χ2 statistic as a smooth statistic for

categorised data. Although this link exists for composite null hypotheses as

well, we restrict the discussion to the simple null hypothesis case. Consider

again the discrete GOF problem from Section 3.2.1. We want to test

H0 : π = π0,

where π0 is the m-dimensional vector of expected cell probabilities, which com-

pletely specifies the discrete model. These null probabilities π0 = (π01, . . . , π0m)

are embedded in the order k smooth family of alternatives (k < m)

πki = C(θ) exp





k
∑

j=1

θjhij



π0i, i = 1, . . .m, (3.69)

where C(θ) is the normalising constant and {hT
j = (hij , . . . , hmj)} is a set of

m-dimensional vectors that satisfy the orthonormality condition

m
∑

i=1

hijhilπ0i = δjl with h0j = 1, j, l = 1, . . . , k.
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It can be shown that, given the observed cell frequencies XT = (X1, . . . ,Xm),

the score test for testing H0 : θ = 0 in (3.69) is given by

Sk =
1

n

k
∑

j=1

(

m
∑

i=1

Xihij

)2

.

This score test is asymptotically χ2
k distributed under the null hypothesis and

reduces to the Pearson χ2 statistic (3.18) if k = m − 1. The latter property

is particularly useful because it demonstrates that the Pearson statistic can be

decomposed into m− 1 asymptotically independent components. The interpre-

tation of the components depends on the choice of the system {hj}.

3.5.2 EDF versus smooth tests

In this section we discuss an interesting relation between EDF tests and smooth

tests. In particular, Durbin and Knott (1972) showed that the components

in the orthogonal representation of the AD statistic are similar to those in

the Neyman smooth test using the normalised Legendre polynomials as the

orthonormal basis. In a similar way other integral EDF statistics can be related

to smooth tests by choosing an appropriate orthonormal set of functions to

describe the family of smooth alternatives. Here, we give the relation to smooth

tests for the CvM, the AD and the Watson tests.

Since EDF tests are omnibus consistent it is generally not known to which

alternatives they have high or low power. As we will show soon, the link with

smooth tests is particularly useful to get information about the power charac-

teristics. It turns out that from the corresponding smooth test one can directly

observe to which alternatives the EDF statistic has high power.

Similarly as for the Gaussian processes, the Kac and Siegert decomposition

can be obtained for the empirical processes. In particular, the expression of the

Gaussian process P(u) in (3.55) is analogous to the one for the corresponding

empirical process Pn(u) which is given by

Pn(u) =
∞
∑

j=1

√

λjψj(u)Znj , (3.70)

where the eigenvalues λj and eigenfunctions {ψj} are as before, but the principal

components Znj can be simplified for each of the EDF statistics.

The CvM, the AD and the Watson statistics can thus be rewritten as

Wn =
∞
∑

j=1

1

j2π2
Z2

nj where Znj =

√

2

n

n
∑

i=1

cos (jπUi), (3.71)
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An =

∞
∑

j=1

1

j(j + 1)
Z2

nj where Znj = − 1√
n

n
∑

i=1

Lj(Ui), (3.72)

and

Un =

∞
∑

j=1

1

4π2j2
(Z2

n,2j−1 + Z2
n,2j), (3.73)

where

Zn,2j−1 =

√

2

n

n
∑

i=1

cos (2jπUi) and Zn,2j =

√

2

n

n
∑

i=1

sin (2jπUi). (3.74)

Here, each of the test statistics is represented as an infinite weighted sum of

asymptotically independent squared components. Note that the weights for

each of the statistics decrease fast with the order j. This means that only the

first components are important.

Moreover, it is clear that each of the alternative forms of the test statistics

is similar to the decomposition of some smooth test statistic from Section 3.3.

The corresponding smooth test statistic is the score statistic derived from the

family of smooth alternatives using the set of eigenfunctions {ψj} in (3.70) in

the construction of the set of orthonormal functions {hj} in (3.24).

In particular, the CvM and the AD test statistics are related to the smooth

test for uniformity using the orthonormal systems based on the trigonometric

functions {
√

2 cos (jπu); j = 1 . . . k} and the set of normalised Legendre poly-

nomials {Lj ; j = 1 . . . k}, respectively (see Section 3.3.2). The Watson test is

related to the smooth test for circular uniformity based on the complete basis

of trigonometric functions {cos (2jπu), sin (2jπu); j = 1 . . . k}, which is given in

Section 3.3.5.

From these relations, we derive an important distinction between EDF tests

and smooth tests. Although the EDF tests are omnibus consistent, they have

often low power against alternatives from a smooth family with order strictly

larger than 2. This can be seen from the severe downweighting in the decompo-

sition for the EDF statistics, which implies that only the first two components

are important. On the other hand, smooth tests of arbitrary order k are not

omnibus consistent, but they have higher power against all alternatives in the

family up to the chosen kth order.

As mentioned in Section 3.3.2, there is a difference in interpretation of the

components of the smooth test statistics depending on the choice of the or-

thonormal system. Hence, this difference in interpretation can now be applied

to EDF tests as well. This means that the CvM is sensitive to slowly oscillating

alternatives while the AD test has good power for differences in the first mo-

ments. Furthermore, the Watson test is particularly sensitive to deviations in

the first order trigonometric moments.
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Example 3.5.6. We use the circular package in R of Lund and Agostinelli

(2005) to apply the Kuiper and the Watson tests for circular uniformity on the

Birth time data. Here, the modified versions of the Kuiper statistic and the

Watson statistic proposed by Stephens (1970) are used, which results in values

Kn = 1.218 and Un = 0.085, respectively. The p-value for the Kuiper test

equals 0.508 and is calculated using the first term of the relevant asymptotic

distribution of Kn. This is an approximation which is accurate to the first

two decimals. On the other hand, the value of the Watson statistic is outside

the region where such an approximation is appropriate. Therefore, we simulate

the null distribution using 100,000 uniform bootstrap samples which results

in a p-value of 0.632. Clearly, neither test indicates evidence against the null

hypothesis of circular uniformity. Compared to the results for the smooth test

in Section 3.3.5, the p-values are much larger. A possible explanation is that

the first trigonometric moment of the true distribution is similar to that of the

circular uniform distribution. Since the EDF tests put high weight on that first

component, they give non-significant results. The lower p-value for the smooth

test might be an indication that the higher order moments do not correspond

well with those of the hypothesised distribution.

3.5.3 EDF versus Pearson χ
2 tests

As mentioned in Section 3.2.2, the Watson test is a special case of Rothman’s

test (see Rothman, 1972), which is based on the Pearson χ2 statistic. Later

in Chapter 5 we discuss the class of Sample Space Partition (SSP) tests for

linear data which is based on Pearson’s statistic in a similar way as Rothman’s

test. As we will see in that chapter, there is an analogous relation between the

class of SSP tests and the class of EDF tests. Furthermore, in Section 5.8, we

extend the class of SSP tests to the class of origin-invariant SSP tests which is

applicable to circular data.

3.6 Other GOF tests

Spacings tests

In the previous sections we referred to spacing tests. Therefore, we here briefly

discuss this class of test statistics, which is useful to test the GOF of both the lin-

ear and circular uniform density (see e.g. Jammalamadaka & SenGupta, 2001).

For an extensive overview on the topic of spacings we refer to Pyke (1965).

Compared to EDF tests for uniformity, the latter perform better in detecting

differences between CDFs, while spacings tests are particularly effective in re-

vealing differences between PDFs. Before applying a spacings test, the general
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GOF problem is, without loss of generality, reduced to the GOF problem for

uniformity on [0, 1] using the PIT. Assume that such a transformation has been

made and that U1, . . . , Un is the transformed sample. Suppose U(1) ≤ . . . ≤ U(n)

are the ordered observations. Define the spacings on the line as

Di = U(i) − U(i−1), i = 1, . . . , n+ 1

where U0 = 0 and Un+1 = 1. On the other hand, the spacings on the circle with

unit circumference, also called arc lengths, are defined as

Di = U(i) − U(i−1), i = 1, . . . , n− 1

where U0 = U(n) − 1. Under the null hypothesis of uniformity we expect the

spacings to be equal to 1/n. The family of spacings test statistics is described

as

Tn =
1

n

n
∑

i=1

g(nDi), (3.75)

where g is some meaningful function. Two common choices for that function

result in the circular range test and Rao’s spacings test. Both were introduced

in the context of circular data by Rao (1969), who also found the corresponding

exact null distribution. The circular range statistic is defined as

R1 = 1 − max
1≤i≤n

Di, (3.76)

which corresponds to the smallest arc containing all observations. Rao’s spacings

test, which is sometimes referred to as the test of equal spacings, is based on

R2 =
1

2

n
∑

i=1

|Di −
1

n
| =

n
∑

i=1

max(Di −
1

n
, 0). (3.77)

The statistic is zero only for equally spaced data and is large for clustered

data. Furthermore, the statistic can be interpreted as the uncovered part of the

circumference when placing the arcs (Ui, Ui + 1
n ) i = 1, . . . n on the circle. This

test is known to have good power properties when testing for uniformity against

multimodal densities.

Tests for circular normality

In most practical situations for testing GOF on the circle we are dealing with

a composite null hypothesis. The Kuiper and the Watson tests can be used for

composite null hypotheses after replacing the parameters by their appropriate

estimators. However, the null distribution of the resulting statistic becomes

more complicated and is therefore often obtained using the parametric boot-

strap. For the von Mises distribution, which is the most common distribution

75



on the circle, Lockhart and Stephens (1985) modified the Watson statistic and

tabulated critical values of its asymptotic null distribution. A modification of

the Kuiper test has not been published yet. In Chapter 4 we develop a new

smooth test for circular normality. For comparison we discuss in this section

two other tests for the von Mises distribution which are referred as to the entropy

test and the BarCox test.

The entropy test for circular normality was proposed by Lund and Jammala-

madaka (2000). It is basically an extension of the entropy test for normality

on the line introduced by Vasicek (1976). The entropy of a circular distribution

f(x), 0 ≤ x ≤ 2π, is defined as

H(f) = −
∫ 2π

0

f(x) log f(x)dx (3.78)

and reaches its maximum for the von Mises density, subject to a given mean

direction and concentration. The entropy of a von Mises distribution is then

estimated as

H(f̂CN ) = log

[

2πI0(κ̂)

exp(κ̂A(κ̂))

]

, (3.79)

where κ̂ is the MLE of κ. An intuitive, straightforward approach now is to

compare this estimated maximum entropy value with the sample entropy, which

is given by

Hmn =
1

n

n
∑

i=1

log{ n

2m
(X(i+m) −X(i−m))}, (3.80)

where 2m is the size of the steps for the spacings X(i+m) − X(i−m), with the

restriction that 2m < n. Vasicek (1976) proved the consistency of this nonpara-

metric estimator as n → ∞, m → ∞ and m/n → 0. The entropy statistic is

then given by the ratio of the two estimators for the entropy, Hmn and H(f̂CN ).

In particular,

Kmn = 2π
exp{Hmn}

exp{H(f̂CN )}
. (3.81)

Under the null hypothesis of circular normality, we have that

Kmn
p−→ 2π as n,m→ ∞ and m/n→ 0.

On the other hand, the statistic tends to have lower values if the data do not

come from a von Mises distribution. The null distribution is obtained by simu-

lation and the critical values have been tabulated for various sample sizes and

values of κ (see Lund & Jammalamadaka, 2000). The choice of m corresponds

to the value that maximizes the test statistic.

As a second test for circular normality, Barndoff-Nielsen and Cox (1979,

Section 5.3) derived a score test from a family of distributions constructed

76



by expanding the exponent of the von Mises null density by the second order

trigonometric moment. The density then becomes

f(x) =
1

2πI0(κ)
eβ1 cos(x)+β2 sin(x)+θ1 cos(2x)+θ2 sin(2x)

and the null hypothesis to be examined is H0 : θ1 = θ2 = 0.

The authors used saddle-point approximation methods to prove that

1√
n
Bc =

1√
n

n
∑

i=1

cos 2(Xi−µ̂)−
√
nI2(κ̂)/I0(κ̂) and

1√
n
Bs =

1√
n

n
∑

i=1

sin 2(Xi−µ̂)

are asymptotically independently normally distributed with

Var

[

1√
n
Bc

]

=

[

I2
0 + I0I4 − 2I2

2

2I2
0

− (I0I3 + I0I1 − 2I1I2)
2

2I2
0 (I2

0 + I0I2 − 2I2
1 )

]

and

Var

[

1√
n
Bs

]

=

[

(I0 − I4)(I0 − I2) − (I1 − I3)
2

2I0(I0 − I2)

]

,

where we omit the argument κ for notational comfort. In this way a chi-squared

statistic with two degrees of freedom can be derived. The resulting test statistic

is referred to as the BarCox test statistic and its value is denoted by B. In

Chapter 4, we develop a new framework for the construction of smooth tests

for composite null hypotheses on circular data for which the BarCox test is a

special case.

3.7 Non-parametric density estimation

In this section, we review some techniques for estimating the probability density

function from observed data. We consider two important approaches, both of

which are nonparametric. Hence, no rigid assumptions will be made about the

true distribution of the observed data. For an excellent survey on nonparametric

density estimation for linear data, we refer to Silverman (1986).

The first approach is the kernel density estimation, which we already applied

in Chapter 2. It will be briefly explained in Section 3.7.1. The second density

estimator is called the orthonormal series estimator and will be discussed in

Section 3.7.2. We will see that, in the context of GOF, this estimate naturally

arises from the data-driven smooth test. Both the kernel density and the or-

thonormal series estimator originate from the linear context, but the circular

analogues are relatively straightforward and will also be explained in the re-

spective sections. Note that in Chapter 2 we also applied the histogram and the

rose diagram, which constitute a third approach for density estimation. Their

construction is very simple, but an important drawback is that the choice of

both the origin and the bin width is subjective.
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3.7.1 Kernel density estimator

Rosenblatt (1956) introduced the kernel density estimator for linear data which

is given by

f̂(x;h) =
1

nh

n
∑

i=1

K

(

x−Xi

h

)

, (3.82)

where K is the kernel function and h is the window width that serves as a

smoothing parameter. The Gaussian kernel is a common choice for K, and the

window width is usually chosen in a data-driven way. Here we will use cross-

validation as a method for estimating the integrated squared error loss (ISE),

which is defined as

Λ(f̂) =

∫

S
(f̂(x) − f(x))2dx, (3.83)

for any estimator f̂(x) of the true density f(x). The basic principle of cross-

validation (CV) is to construct an estimator f̂i based on the reduced sample

X1, . . . ,Xi−1,Xi+1, . . . ,Xn, and use Xi to validate f̂i. Let

f̂i(x;h) =
1

n− 1

∑

j 6=i

K

(

x−Xj

h

)

, (3.84)

be the density estimator constructed from all observations except Xi. Further-

more, let

CV(h) =
2

n

n
∑

i=1

f̂i(Xi;h) −
∫

S
f̂2(x;h)dx. (3.85)

If f(x) were known, −CV(h) +
∫

S f
2(x)dx would be, for all h, an unbiased

estimator of the mean integrated squared error loss E
[

Λ(f̂(x;h))
]

(MISE). Since
∫

S f
2(x)dx does not denpend on h, maximising CV(h) gives a good choice of

the smoothing parameter h.

The same procedure can be followed to construct a good circular kernel

density estimator. In particular, Hall et al. (1990) proposed to replace the

euclidean difference x−Xi in (3.82) with the cosine of x−Xi, which results in

the estimator defined by

f̂(x;κ) =
1

n

n
∑

i=1

L (κ cos (x−Xi)) , (3.86)

where L is an arbitrary normalised kernel and κ is the smoothing parameter.

We here take L(t) proportional to et. The circular kernel density estimator

(3.86) is then the average of n von Mises densities localised at the observa-

tions X1, . . . ,Xn and with concentration parameter κ. Minimising the MISE
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E
[

Λ(f̂(x;κ)
]

for the circular kernel density estimator now amounts to maximis-

ing

CV(κ) =
2

n

n
∑

i=1

f̂i(Xi;κ) −
∫

S
f̂2(x;κ)dx, (3.87)

where f̂i(Xi;κ) is the circular kernel density estimator constructed from leaving

out sample value Xi.

The above procedure to choose a good smoothing parameter for the linear

as well as for the circular kernel density estimator is referred to as the method

of unbiased cross-validation (UCV). We applied these kernel density estimators

to the examples in Chapter 2, the results of which will be presented in Chapter

6 and compared to those obtained by the orthogonal series density estimator

(see next section).

3.7.2 Orthonormal series density estimator

The orthonormal series density estimator was introduced by Cencov (1962) and

is essentially the order k smooth density (3.27) considered by Barton (1953).

This estimator is widely discussed and applied in the context of nonparametric

density estimation and is an expansion of the form

gk(x;θ,β) =



1 +

k
∑

j=1

θjhj(x;β)



 f0(x;β), (3.88)

where β is assumed to be either known or replaced by its MLE β̂ and {hj ; j =

1, . . . k} are orthonormal functions with respect to f0. We now aim at finding

appropriate estimates for θ. Note that for the choice of the smooth model in

(3.88), the computation of the estimate for θ is simple. Within model (3.88),

we have that

Ek [hj(X;β)] =

∫ ∞

−∞
hj(x;β)gk(x;θ,β) = θj , (3.89)

where Ek [.] denotes the expected value with respect to the model gk. Note that

the above equation still holds when gk is replaced by the true density f , for

which it is assumed that it may be represented by g∞. Therefore, an unbiased

and consistent estimator of θj is obtained by

θ̂j =
1

n

n
∑

i=1

hj(Xi;β) =
1

n
Vj ,
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where Vj is the jth component in the score vector V β of the test statistic (3.26).

The density estimator is now given by

gk(x; θ̂,β) =



1 +

k
∑

j=1

θ̂jhj(x;β)



 f0(x;β), (3.90)

where β is assumed to be either known or replaced by its MLE β̂. For notational

comfort we will, from now on, omit the dependence on θ̂ and β and refer to this

estimator as ĝk(x).

There exist many variants of this estimator (see e.g. Anderson & de Figueiredo,

1980, Buckland, 1992, Clutton-Brock, 1990 and Diggle & Hall, 1986). In partic-

ular, one can choose different sets of orthonormal functions {hj , j = 1, . . . , k}.
Also, the distribution f0(x;β), which serves as a starting distribution, can be

altered, and most importantly the selection of the order k can be chosen.

Here, for the set of orthonormal functions, we use either the trigonometric

functions or the polynomials orthonormal to the starting distribution, which is

chosen here to be uniform or normal. Concerning the choice of the order k we

use the selection rule considered by Tarter and Kronmal (1976), which is based

on minimising the MISE. However, the authors only used series expansions or-

thonormal to the uniform distribution. In order to discuss the optimal order

selection for series expansion orthonormal to a general f0, we consider the cri-

terion proposed by Anderson and de Figueiredo (1980). The criterion is called

the weighted ISE and is given by

Λ(ĝk) =

∫ ∞

−∞

(ĝk(x) − f(x))2

f0(x;β)
dx. (3.91)

for which the expected value reduces to the same expression as in Tarter and

Kronmal (1976), i.e.

E [Λ(ĝk)] =
1

n

k
∑

j=1

(d2
j − θ2j ) +

∞
∑

j=k+1

θ2j , (3.92)

where d2
j = E

[

h2
j (X)

]

. The optimal choice of k is the value that minimises

E [Λ(ĝk)]. An unbiased estimator Λ̂(ĝk) of E [Λ(ĝk)] is obtained if d2
j and θ2j in

(3.92) are replaced by their respective unbiased estimators,

d̂2
j =

1

n

n
∑

i=1

h2
j (Xi)

and

θ̂2j =
1

n− 1

(

nθ̂2j − d̂2
j

)

.

Minimising Λ̂(ĝk) results in the following decision rule:
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Include the jth term until it fails the test

θ̂2j >
2

n+ 1
d̂2

j .

Another way now to obtain an appropriate order for the orthonormal series

estimator is the following. The data-driven smooth test described in Section

3.3.4 uses the BIC criterion to determine the order in the family of smooth

alternatives (3.88). The conclusion of this GOF test, which indicates whether

the true distribution equals f0 or not, can be accompanied by the density esti-

mator that naturally arises as a member of the family of smooth alternatives.

In particular, at the rejection of the null hypothesis, the density estimator in

(3.90) where the order is determined by the BIC criterion provides additional

information about how the true distribution deviates from the hypothesised f0.

In this way, model estimation and GOF testing combine to give the data-analyst

more statistical information.

Since the density estimators described above are not always guaranteed to

be positive, we apply the correction proposed by Glad and Hjort (2003) when

such a situation occurs. Suppose that
∫

S max{0, f̂}dx ≥ 1, then the modified

estimator is simply given by

f̃(x) = max{0, f̂(x) − ǫ}, (3.93)

where ǫ is chosen such that
∫

S f̃(x)dx = 1. The authors showed that the cor-

rected estimator f̃ has smaller MISE than the original f̂ .

Example 3.7.7. We give an illustration of the previously described approach

for linear data. In particular, we compute four versions of the orthonormal

series estimator (3.90) for the density of the Fastfood data from Section 2.1.4.

We choose the starting distribution f0 to be either uniform or normal, and we

use either the MISE or the BIC criterion to select the order of the expansion.

In case of the uniform starting distribution, the orthonormal series expansion

is based on the Legendre polynomials, which are given in Appendix A.2. Note

that the set of trigonometric functions would also be a good choice. Since these

functions are related to circular distributions, we discuss this type of estimators

in Chapter 4. On the other hand, in case of the normal starting distribution,

the orthonormal series expansion is based on the Hermite polynomials, which

are given in Appendix A.1. The corresponding estimate is referred to as the

Hermite series estimate, while the estimate with uniform starting density is

referred to as the Legendre series estimate.

The resulting density estimates are shown in Figure 3.2. Note that we only

consider nested models for both series density estimators. The kernel density

estimate for which the window width is determined by means of UCV is added
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Figure 3.2: Density estimates for the Fastfood data. The kernel density estimate

with window width determined by means of UCV and the Hermite and

Legendre series density estimates based on BIC and MISE criteria are

plotted.
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to the plot as well. Let us first consider the Hermite series estimates. The

data-driven smooth GOF test for normality is significant (p=0.022) at the 5%

level. Since the BIC criterion chooses order 3, the deviation from normality is

likely due to the skewness. The density estimate that results from this order

selection in the family of smooth alternatives also confirms the positively skewed

impression. Since the MISE criterion similarly selected only up to the third

component for the construction of the Hermite series density estimate, both

estimates coincide on the plot. This estimate is furthermore close to the kernel

density estimate.

On the other hand, for the Legendre series estimate, the BIC criterion se-

lected all components up to the third order while the MISE criterion selected

all components up to the fourth order. Both Legendre series estimates have

negative density values and are thus modified according to the algorithm of

Glad and Hjort (2003) described before. They are more smooth and further

away from the kernel density estimate than the Hermite series estimate. Since

we have no knowledge about the true density we can not say which estimator

performs best in this particular example. However, it has been argued several

times that orthonormal series density estimates for which the starting distribu-

tion is already close to the true distribution are usually preferred (see also Hjort

and Glad (1995) and Buckland (1992)). For this reason it may be assumed that

the estimate based on the normal distribution will be the most accurate one. In

Chapter 6, we use a new graphical tool to explore which density estimate is a

good approximation to the true distribution.

For GOF purposes, the BIC criterion is a natural choice. However, this

model selection criterion does not necessarily result in a good density estimate.

For estimation purposes, we know that the MISE criterion is often preferred.

In this example, apart from estimation purposes, we specifically would like to

know in what sense the true distribution deviates from the null distribution. We

see from Figure 3.2 that with respect to the normal density, the true density

probably has a longer right tail. The difference between the true distribution

and the uniform distribution is much larger. The Legendre series estimate based

on the BIC criterion suggests that the largest difference is probably situated in

the first moment. Note that this density estimate also suggests a larger right

tail, however not very noticeable. The Legendre series density estimate based

on the MISE criterion shows a more pronounced right tail and a more peaked

density than the Legendre series estimate based on the BIC criterion. All these

results confirm the skewed impression we had earlier in Section 2.1.4.

As we mentioned in Section 3.3.5, the Barton version of the family of alterna-

tives to circular uniformity in (3.38) is proposed by Fernández-Durán (2004) to

find an estimate of the density for circular data. This family of circular densities
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is written as

gk(x,θ) =
1

2π



1 +

k
∑

j=1

(

θ2j−1

√
2 cos(jx) + θ2j

√
2 sin(jx)

)



 0 < x < 2π.

(3.94)

Fernández-Durán (2004) used the AIC criterion to determine the optimal order

of the estimate. Note that this family is constructed from functions orthonormal

to the circular uniform distribution. In the next chapter we generalise the

family of smooth alternatives in (3.94) to a family constructed from a general

starting distribution. We refer to Section 4.5 for a more elaborate discussion on

orthonormal series density estimates for circular data.
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CHAPTER 4

Smooth goodness-of-fit

tests on the circle

From the previous chapter we know that applying a smooth test to solve the

GOF problem for a linear distribution has some important advantages. For ex-

ample, the test statistic is easy to compute and the orthogonal decomposition

of the statistic often leads to easily interpretable components. In particular,

each of the components can be used as a directional test that reveals how the

true distribution deviates for the hypothesised. Moreover, the components sum

up to a test statistic with omnibus features by which we mean that most in-

teresting deviations from the hypothesised distribution are detected, at least in

large samples. Another interesting property of a smooth test is that from its

construction an estimator of the true distribution function naturally arises.

In the context of circular distributions, the difficulty with the construction

of smooth tests is to find appropriate orthonormal functions. The reason is that

the class of orthonormal polynomials with respect to a circular distribution is

only defined in the complex field. Until now, only a smooth test for circular uni-

formity has been proposed, based on basic trigonometric functions (see Section

3.3.5), which are real-valued functions. As in the linear case, any circular distri-

bution can be tested for by first applying the PIT. However, performing smooth

tests on transformed data has two important drawbacks. The first difficulty
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arises when interpreting the results, since it has to be done on the transformed

data. The second disadvantage comes into play when p nuisance parameters are

involved. For such a situation, which usually happens in practice, we explained

in Section 3.3.3 that the first p components of the appropriate score statistic

are identically zero when MLE and MME coincide. This interesting property

is no longer valid for the score test based on the transformed data. These dis-

advantages motivate the search for smooth tests that are constructed explicitly

for any arbitrary circular distribution.

In this chapter we propose a new class of smooth tests for circular distri-

butions using the general theory of orthonormal polynomials on the unit circle

(see e.g. Simon, 2005). In Section 4.1 we first introduce a “complex” framework

for smooth tests on the unit circle, where the observations on the circle and

the family of order k alternatives are defined on the field of complex numbers.

The corresponding score test, however, is again a real-valued statistic which is

asymptotically χ2 distributed, and it has again an interpretation in terms of mo-

ment deviations. Since we apply the test to circular data, the origin-invariance

property needs to be checked. We propose a straightforward adaptation of the

statistic when it is not origin-invariant. Section 4.2 explains how this construc-

tion leads to the smooth test of Bogdan et al. (2002) in case of testing for

circular uniformity. In Section 4.3, we apply the method to testing for a family

of von Mises distributions. This test is a generalization of the test proposed

by Barndoff-Nielsen and Cox (1979). Section 4.4 is devoted to the data-driven

version of the new smooth test. The results of that data-driven smooth test

are combined in Section 4.5 with a nonparametric estimate of the true circular

density which arises naturally as a member from the proposed family of smooth

models. All methods are illustrated on real data examples in Section 4.6. Some

characteristics of the smooth test for circular normality are investigated in a sim-

ulation study in Section 4.7. Finally, in Section 4.8, we give a brief discussion

of the proposed methodology.

4.1 General Construction

In this section the theory described in Rayner and Best (1989) is generalised in

order to obtain the smooth tests for complex-valued circular data based on a

complex smooth order k family of alternatives. Working with complex numbers

allows a straightforward construction of smooth tests for any circular distribu-

tion. Specifically, a set of orthonormal polynomials with respect to the hypoth-

esised circular distribution is required for the construction of the smooth family

of alternatives, and such a set is in general only defined in the complex field.

The orthonormal functions do not necessarily need to be polynomials. However,
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in our construction we choose to look for a set of polynomials with respect to a

circular distribution since they are uniquely defined, form a complete basis and

can easily be derived from recurrence relations.

4.1.1 Complex values on the circle

From now on we work with complex values for the data on the unit circle, instead

of projecting the data points on the real interval [0, 2π]. Let z1, . . . zn denote

the n observations on the unit circle expressed as complex numbers. Since the

modulus of each observation is one, the values can be written as

zj = eixj = cosxj + i sinxj , for j = 1, . . . n, (4.1)

where i2 = −1 and x1, . . . , xn are the directions on the unit circle. The complex

conjugate of z is denoted by z and equals e−ix = cosx− i sinx. In what follows,

we use the x and z notations interchangeably. This should not lead to confusion

because Equation (4.1) states a one to one relation between z and x.

4.1.2 Construction of the smooth model

In this section we construct the smooth model based on a set of complex poly-

nomials orthonormal to the hypothesised distribution f0(x,β). The model is

referred to as the complex smooth model. In the next section we will derive the

score statistic for the parameters in the complex smooth model, which is called

the complex score statistic. Note that the asymptotic null distribution of the

complex score statistic is not as usual because the score statistic is in terms

of the complex-valued observations. However, it turns out that the asymptotic

null distribution of the complex statistic is equal to the asymptotic distribu-

tion of an equivalent score statistic in terms of the real-valued directions on the

circle. In particular, the equivalent score statistic, which is referred to as the

real score statistic, is derived from a reparameterisation of the complex smooth

model. This reparameterisation is given in this section and is referred to as

the real smooth model since it is based on real-valued polynomials. The set of

real-valued polynomials is however not necessarily orthonormal to f0. Therefore

we will later prefer to work with the complex smooth model. Note that by the

equivalence described before, the general theory of Rayner and Best (1989) for

real smooth tests can easily be be translated to complex smooth tests.

When testing the null hypothesis H0 : F (x) = F0(x,β), where β is a known

or unknown p-dimensional real-valued parameter, we consider the order k com-

plex smooth family

gk(x;θ,β) = C(θ;β) exp





k
∑

j=1

(

θjhj(z;β) + θjhj(z;β)
)



 f0(x,β), (4.2)
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where θt = (θ1, . . . , θk) denotes a complex parameter vector, C(θ;β) is a nor-

malising constant, and {h1(z;β), . . . , hk(z;β)} is a set of polynomials orthonor-

mal on the unit circle with respect to the density f0(x,β), i.e. they satisfy

∫ 2π

0

hl(z;β)hm(z;β)f0(x,β)dx = δl,m, (4.3)

where δl,m is the Kronecker delta. The general theory of such polynomials is

described by Simon (2005). The sequence of polynomials is unique if we agree

on making the leading coefficient positive. This unique set of polynomials in z

is then of the form

hj(z;β) = κj,jz
j + κj,j−1z

j−1 + . . .+ κj,0, κjj > 0 j = 0, 1 . . . , (4.4)

where the coefficients κj,t (t = 0, . . . , j) depend on the parameter vector β in

f0(x;β). For the monic polynomials qj(z;β) =
hj(z;β)

κjj
, the three term recur-

rence relation for orthogonal polynomials on the real line (see e.g. Szegö, 1975

or Chihara, 1978) is replaced by the Szegö recurrence

zqj(z;β) = qj+1(z;β) + αjq
⋆
j (z;β), j = 0, 1, . . . (4.5)

where q⋆
j (z;β) = zjqj(z;β) is the reversed polynomial and the αj are called the

Verblunsky coefficients. The latter satisfy αj = −κj+1,0, |αj | < 1 for j ≥ 0 and

α−1 = −1.

The expression of the family of smooth alternatives (4.2) is different from

that for a smooth family of alternatives on the real line. In particular, the or-

thonormal functions {hj} are complex-valued functions in terms of z = eix and

the parameters θj , j = 1, . . . , k are complex values for which both real and imag-

inary parts have to be considered. In order to make the density a meaningful

and therefore real-valued function, the complex conjugate of
∑k

j=1 θjhj(z;β) is

added in the exponent of the expression. Note here that a polynomial hj is not

necessarily orthogonal to a polynomial hk for j 6= k. The reason is that the

orthonormality relation in (4.3) does not guarantee

∫ 2π

0

hl(z;β)hm(z;β)f0(x,β)dx = δl,m, (4.6)

or
∫ 2π

0

hl(z;β)hm(z;β)f0(x,β)dx = δl,m. (4.7)

As we will see in the next part of this chapter, the relations (4.6)-(4.7) are

satisfied if f0 is the CU distribution, while they are not satisfied if f0 is e.g. the

CN distribution.

Despite the difference in expression between smooth families on the real line

and on the circle, there exists a one to one relation between the two families.
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This relation is easily seen after reparameterising the expression in (4.2). This

reparameterisation is used in the next section to develop the real score statistic,

which turns out to be equal to the complex score statistic derived from the

complex smooth family in (4.2). Suppose that the orthonormal polynomials

{hj} in z have real coefficients κj,t for t ≤ j = 0, . . . , k. When f0 is one of

the circular distributions we consider in this thesis, namely the CU or the CN

distribution, the orthonormal polynomials indeed have real coefficients. This

means that hj(z;β) = hj(z;β), j = 0, . . . , k. Moreover, for every j = 0, . . . , k,

the real and imaginary part of hj(z;β) = hj(cosx + i sinx;β) can be written

as hc
j(x;β) and hs

j(x;β), respectively, where hc
j(x;β) =

∑j
t=0 κjt cos(tx) and

hs
j(x;β) =

∑j
t=0 κjt sin (tx) for j = 0, . . . , k. Note that the polynomial in sinx

has no constant term since sin 0 = 0. This is in conformity with the imaginary

part of the original polynomial hj(e
ix;β), which has no constant part either.

Let θj = 1
2 (θRj − iθIj) for j = 1, . . . , k. This definition may seem odd, but

it is chosen so that the family of alternatives (4.2) can then conveniently be

rewritten as

gk(x;θ,β) = C(θ;β) exp





k
∑

j=1

(

θRjh
c
j(x;β) + θIjh

s
j(x;β)

)



 f0(x,β), (4.8)

where the set of real-valued polynomials {hc
j(x), h

s
j(x)} is not necessarily or-

thonormal with respect to the distribution f0(x). Here, we refer to the defini-

tion of orthonormality on the real line, as in Section 3.3.1. Again, as we will see

in Sections 4.2 and 4.3, these orthonormality relations are satisfied for the CU

distribution while they are not satisfied for the CN distribution.

Nevertheless, both parameterisations of the smooth family of alternatives are

useful for the construction of a smooth statistic for testingH0 : F (x) = F0(x;β).

Moreover, the smooth statistics derived either from expression (4.2) or from

(4.8) are equal. The complex representation in (4.2), however, uses explicitly

the complex polynomials, which is convenient for most circular distributions.

4.1.3 Construction of the smooth test

Consider first the complex smooth family of alternatives in (4.2). Testing H0 :

F (x) = F0(x,β) is now equivalent to testing H0 : θ = θ = 0. The score statistic

for the latter hypothesis is called the complex score statistic and has the form

S2k =
1

n

(

V T
β ,V

T

β

)

Σ−1
V

(

V β

V β

)

, (4.9)
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where ΣV is the asymptotic complex covariance matrix of 1√
n
V T = 1√

n

(

V T
β ,V

T

β

)

,

evaluated at θ = θ = 0, which is defined as,

nΣV = Cov

[(

V β

V β

)

(

V
T

β ,V
T
β

)

]

= E

[(

V β

V β

)

(

V
T

β ,V
T
β

)

]

− E

[

V β

V β

]

E
[

V
T

β ,V
T
β

]

. (4.10)

Note that because of the above definition, which is taken from Schreier and

Scharf (2003), the covariance matrix is no longer equivalent to the usual Fisher

information matrix. Nevertheless, the test statistic (4.9) is still asymptotically

χ2 distributed under the null hypothesis. The reason is that the complex score

statistic (4.9) is equal to the score statistic for testing

H0 : θR = θI = 0,

where θR = (θR1, . . . , θRk) and θI = (θI1, . . . , θIk) in the real smooth model

(4.8), which is the reparameterised family of alternatives. In particular, this

real score statistic has the form

S⋆
2k =

1

n

(

W T
R,β,W

T
I,β

)

Σ−1
W

(

W R,β

W I,β

)

, (4.11)

where ΣW is the asymptotic covariance matrix of the score vector 1√
n
W T =

1√
n

(

W T
R,β,W

T
I,β

)

, evaluated at θR = θI = 0, which is defined as usual,

ΣW = Cov

[(

W R,β

W I, β

)

(

W T
R,β,W

T
I,β

)

]

.

(4.12)

Here, the covariance matrix is defined in the usual way and is therefore directly

related to the usual Fisher information matrix. Thus, the real score statistic

(4.11) is asymptotically χ2 distributed under the null hypothesis with the de-

grees of freedom depending on how many nuisance parameters in β are to be

estimated. The transformation to build a complex vector V from its real and

imaginary parts (see e.g. Schreier & Scharf, 2003) is used to show the equality

of S2k and S⋆
2k. In particular, we have that

(

V β

V β

)

= T

(

W R,β

W I,β

)

, (4.13)

where T =

(

Ik −iIk
Ik iIk

)

, and Ik is the k × k identity matrix. Thus

ΣV = TΣW T
T
,
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which implies that

S2k =
1

n

(

W T
R,β,W

T
I,β

)

T
T
(

TΣW T
T
)−1

T

(

W R,β

W I,β

)

=
1

n

(

W T
R,β,W

T
I,β

)

T
T
(

T
T
)−1

Σ−1
W T−1T

(

W R,β

W I,β

)

= S⋆
2k.

Because of the orthonormality relations the computation of S2k is easier than the

computation of S⋆
2k. Therefore we prefer to use formula (4.9) in the next part of

this chapter. For further details about the computation of the test statistic and

its asymptotic null distribution, we refer to Sections 4.2 and 4.3 for treatment

of testing for circular uniformity and circular normality, respectively.

4.1.4 Origin-invariance

The resulting test statistic S2k in its general form is not necessarily origin-

invariant. Assume, without loss of generality, that the covariance matrix ΣV is

the identity matrix I2k and omit the index β for notational comfort. The test

statistic can then be rewritten as

S2k =
2

n
V T V

=
2

n

k
∑

j=1

[

n
∑

l=1

hj(e
iXl)

][

n
∑

l=1

hj(e
−iXl)

]

. (4.14)

On the other hand, adding a constant γ to each Xl, results in

2

n

k
∑

j=1

[

n
∑

l=1

hj(e
i(Xl+γ))

][

n
∑

l=1

hj(e
−i(Xl+γ))

]

(4.15)

which is not necessarily equal to (4.14) for a general orthonormal set of poly-

nomials {hj}. In fact, (4.14) and (4.15) are equal only if hj(e
±i(Xl+γ)) can

be rewritten as e±ijγhj(e
±iXl) for every j, which is only the case if the set of

polynomials {hj} are monomials of order j. The set of monomials in eix corre-

sponds to the set of orthonormal polynomials for the CU distribution, for which

we refer to the next section.

The score statistic (4.9) can be made origin-invariant by replacing the ran-

dom variables X1,X2, . . . ,Xn with their centered counterparts

X1 −X
c

n,X2 −X
c

n, . . . ,Xn −X
c

n,

which is a maximal origin-invariant function (see Section 3.1.3). Note that

X
c

n is not the conventional sample mean of directions but the estimator of
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the circular mean direction as defined in Section 2.2. This estimator is origin

equivariant. On could think of applying such a trick to any other statistic

which is originally constructed for linear distributions, in order to make it origin-

invariant and therefore applicable to circular data. Although the statistic is then

origin-invariant, it is not always guaranteed to be a useful statistic. Nevertheless,

in the case of testing for the von Mises distribution (see Section 4.3) this choice

naturally arises as X
c

n is exactly the MLE of the location parameter of the

distribution.

In the next two sections we calculate the complex score statistic in (4.9) and

derive its asymptotic null distribution for the special cases of circular uniformity

and circular normality.

4.2 Simple null hypothesis

We will first focus on the problem of testing for circular uniformity. As men-

tioned in Section 3.1.3, if X1, . . . ,Xn are assumed to be i.i.d. from F0(x) under

the null hypothesis, the GOF test for H0 : F (x) = F0(x), where F0 is com-

pletely specified and continuous, can be reduced to a test for uniformity on the

unit circle, i.e. H0 : F (u) = u
2π , 0 ≤ u < 2π based on the transformed sample

ui = 2πF0(xi), i = 1 . . . n. Here we assume that such a transformation has been

made, but, without loss of generality, we use the notation x instead of u.

The orthonormal polynomials with respect to the CU distribution on the

unit circle are immediately found. First, note that the Verblunsky coefficients

α0, α1, . . . , αk are zero, because the restrictions of the form

1

2π

∫ 2π

0

hj(z)dz =
1

2π

∫ 2π

0

κj,je
ijx + κj,j−1e

i(j−1)x + . . .+ κj,0 dx = 0

reduce to κj,0 = 0 for j = 1, 2, . . . , k. Furthermore, using the Szegö recurrence

relation (4.5), we have hj(z) = qj(z) = zj = ejix, j = 0, 1 . . . , k. Taking into

account that 1√
n
V T which equals

1√
n





n
∑

j=1

eiXj ,
n
∑

j=1

e2iXj , . . . ,
n
∑

j=1

ekiXj ,
n
∑

j=1

e−iXj ,
n
∑

j=1

e−2iXj , . . . ,
n
∑

j=1

e−kiXj





(4.16)

has asymptotic covariance matrix ΣV = E[V T V ] = I2k, the score statistic (4.9)
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becomes

S2k =
1

n
V T V

=
2

n

k
∑

j=1

VjVj

=
2

n

k
∑

j=1

(

n
∑

l=1

eijXl

)(

n
∑

l=1

e−ijXl

)

=
2

n

k
∑

j=1

(

n
∑

l=1

cos (jXl) + i sin (jXl)

)(

n
∑

l=1

cos (jXl) − i sin (jXl)

)

=
2

n

k
∑

j=1





(

n
∑

l=1

cos (jXl)

)2

+

(

n
∑

l=1

sin (jXl)

)2


 ,

which is the same smooth test statistic as in Bogdan et al. (2002). However,

they started their construction with a different order k family of alternatives,

gk(x,θ) = C(θ) exp





k
∑

j=1

(

θ2j−1

√
2 cos(jx) + θ2j

√
2 sin(jx)

)



 0 < x < 2π,

(4.17)

where θt = (θ1, . . . , θ2k) denotes the parameter vector, C(θ) is a normalising

constant, and {
√

2 cos(jx),
√

2 sin(jx)} is a complete set of orthonormal func-

tions on the CU distribution. Note that this family of distributions is equivalent

to the proposed family in (4.8), taking θRj =
√

2θ2j−1 and θIj =
√

2θ2j . More-

over, this family is also similar to the one suggested by Fernández-Durán (2004)

in the context of density estimation. Both families of alternatives (4.2) and (4.8)

can thus be used as density estimators for the true circular distribution.

From Bogdan et al. (2002) we also know that, under the null hypothesis,

the statistic S2k is origin-invariant and asymptotically χ2 distributed with 2k

degrees of freedom. Additionally, the jth component, 2
nVjV j , is the squared

resultant length of the jth trigonometric moment between the true and the

hypothesised distribution. Hence, again the individual two degrees of freedom

component can be used as a directional test to detect differences in the jth

trigonometric moment. The choice of the order k is discussed in Section 4.4.

4.3 Composite null hypothesis of circular normality

Since many important examples involve the CN distribution, we confine our

further discussion to testing the composite null hypothesis of circular normality,
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i.e.

H0 : f(x) = f0(x;µ, κ), (4.18)

where f0 can be rewritten as

f0(x;µ, κ) =
1

2πI0(κ)
eκcos(x−µ) =

1

2πI0(κ)
e

1
2 κ(z+ 1

z
), 0 ≤ x < 2π,

where z = ei(x−µ), 0 ≤ µ < 2π and κ > 0 are nuisance parameters, and I0(κ) is

the modified Bessel function of the first kind and order zero which is defined in

3.8. Note that the relation between x and z is slightly different from the general

setting in Section 4.1. In particular, the mean direction µ is first subtracted

from x before the exponent is taken. The choice for this relation between x and

z arises naturally because the von Mises distribution is a location family with

µ as “location” parameter. To emphasise the dependence of z on µ we write zµ

in what follows.

4.3.1 MLE and MME

The parameters µ and κ are replaced by their MLE µ̂ and κ̂, respectively, which

are the solutions to

κ

n
∑

i=1

sin(Xi − µ) = 0 (4.19)

and

−nA(κ) +
n
∑

i=1

cos(Xi − µ) = 0, (4.20)

where A(κ) = I1(κ)
I0(κ) for which I1(κ) = dI0(κ)

dκ is the modified Bessel function of

order 1. The set of estimation equations (4.19)-(4.20) reduces to

tan (µ) =
S

C
(4.21)

and

A(κ) =
R

n
, (4.22)

where S =
∑n

i=1 sin(Xi), C =
∑n

i=1 cos(Xi) and R =
∑n

i=1 cos(Xi − µ). These

equations give unique solutions for µ and κ. From the first equation it is clear

that the MLE of µ is equal to the circular mean direction, which is defined in

Section 2.2. That is, we have µ̂ = X
c

n. The MLE of κ has no explicit expression

but can be found by evaluating A(κ) for different values of κ. Since A is a non-

linear function, the MLE κ̂ is a biased estimator of κ. Best and Fisher (1981)

therefore proposed the estimator

κ̂⋆ =

{

max (κ̂− 2/(nκ̂), 0), κ̂ < 2,

(n− 1)3κ̂/(n3 + n), κ̂ ≥ 2,
(4.23)
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which is approximately unbiased unless both n and κ are small. This estimator

is asymptotically equivalent to the MLE and is used in what follows. The

MMEs of µ and κ involve equating the theoretical and the sample trigonometric

moments. The first theoretical trigonometric moment can be derived from (3.9)

and is given by

E(eiX) = A(κ)eiµ,

while the first sample trigonometric moment is as in (2.7) and given by

1

n

n
∑

j=1

eiXj .

Consequently, we have the set of equations

A(κ) cos(µ) =
1

n

n
∑

j=1

cos(Xj) =
1

n
C

and

A(κ) sin(µ) =
1

n

n
∑

j=1

sin(Xj) =
1

n
S

which results in the same equations as (4.21) and (4.22). This means that for

the von Mises distribution, the MLE and MME coincide. Consequently, as we

will see soon, the first and the (k+1)th elements of the score vector are exactly

equal to zero.

4.3.2 The orthonormal polynomials

Recall that the set of orthonormal polynomials {hj(zµ̂; κ̂), j = 0, . . . , k} with

respect to the von Mises distribution on the unit circle can be found using the

Szegö recurrence relation (see (4.5)). The Verblunsky coefficients α1, α2, . . . , αk

in that recurrence relation are now found using the non-linear recurrence relation

(see Periwal & Shewitz, 1990)

−κ
2
(1 − α2

j )(αj+1 + αj−1) = (j + 1)αj for αj 6= 0.

The initial values are α−1 = −1 and α0 = A(κ̂). Consequently, the Verblunsky

coefficients are real and therefore the coefficients κjt, t ≤ j = 0, . . . , k for the

polynomials {hj ; j = 0, . . . , k} in (4.4) are real as well. The first polynomials

are

h0(zµ̂; κ̂) = 1 and h1(zµ̂; κ̂) =
ei(x−µ̂) −A(κ̂)
√

1 −A2(κ̂)
.
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The subsequent polynomials can be found using the Szegö recurrence relation

(4.5), which simplifies to

zµ̂qj(zµ̂; κ̂) = qj+1(zµ̂; κ̂) + αjz
j
µ̂qj(1/zµ̂; κ̂).

For example, the second order orthogonal polynomial is given by

q2(zµ̂; κ̂) = z2
µ̂ + zµ̂(1 − α1)α0 − α1, (4.24)

where α1 = 1−
(

α0

1−α2
0

2
κ̂

)

. In general, the normalised polynomials are hj(zµ̂; κ̂) =

qj(zµ̂;κ̂)
Nj

, j = 1, . . . k, where

Nj =

∫ 2π

0

qj(zµ̂; κ̂)qj(zµ̂; κ̂)f0(x; µ̂, κ̂)dx

is the normalising constant.

4.3.3 The efficient score test

Let hT (zµ̂; κ̂) = (h1(zµ̂; κ̂), . . . , hk(zµ̂; κ̂)) so that the score vectors for θ and

θ can be written as V T
µ̂,κ̂ =

∑n
t=1 hT (ztµ̂; κ̂) and V

T

µ̂,κ̂ =
∑n

t=1 h
T
(ztµ̂; κ̂),

respectively. As mentioned before, the first and (k + 1)th elements of the score

vector

V T =
(

V T
µ̂,κ̂,V

T

µ̂,κ̂

)

can be removed since they are identically zero. The reason is that the MLE and

MME of the parameters µ and κ coincide. In particular, the real and imaginary

parts of the first element are equivalent to the left hand side of the estimation

equations (4.19) and (4.20), respectively. The same holds for the (k + 1)th

element since it is the complex conjugate of the first element. We therefore

also remove the first element h1 from the vector h and from the family of

alternatives (4.2) so that only k − 1 complex parameters are considered in the

vector θ. Note that in practice we use the approximately unbiased estimator

κ̂⋆ defined in (4.23). Since this estimator is asymptotically equal to the MLE

κ̂, the asymptotic results described in this section remain valid when using κ̂⋆

instead of κ̂.

For easy computation of the efficient score statistic, we use an equivalent

complex expression for the estimation equations (4.19)-(4.20), for which the real

and imaginary parts refer to the original estimation equations. This complex

estimation equation can for example be written as

n
∑

t=1

h1(Ztµ̂; κ̂) = 0
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or by its complex conjugate

n
∑

t=1

h1(Ztµ̂; κ̂) = 0,

where Ztµ̂ = ei(Xt−µ̂). The efficient score test statistic for testingH0 : θ = θ = 0

becomes

S2k =
1

n
V T Σ−1

V V ,

where V is the 2(k − 1)-dimensional efficient score vector. The asymptotic

covariance matrix ΣV of 1√
n
V is no longer diagonal. In particular,

ΣV =
[

Σhh − Σhh1
Σ−1

h1h1
ΣT

hh1

]

,

where

Σhh =





Ik−1 E
[

hhT
]

E
[

hh
T
]

Ik−1



 ,

Σhh1
=

(

0 E [hh1]

E
[

hh1

]

0

)

and

Σh1h1
=

(

1 E [h1h1]

E
[

h1h1

]

1

)

.

Although f0 belongs to the exponential family, the asymptotic covariance

matrix does not reduce to a diagonal form. The reason is that while the individ-

ual sets of polynomials {hj ; j = 1, . . . , k} and {hj ; j = 1, . . . , k} are orthonormal

to f0, the complete set of polynomials {hj , hj ; j = 1, . . . , k} is not orthonormal

to f0. In particular, from (4.6) and (4.7) we know that E [hlhm] and E
[

hlhm

]

are equal but not necessarily zero for l 6= m. However, for values of κ smaller

than 1, E [hlhm] = 0 holds for every l 6= m. This is illustrated in Figure 4.1,

where E [hlhm], for l ≤ m = 1, . . . , 5 is plotted versus κ ranging from 0.1 to 20

and where the vertical line indicates κ = 1. Note that these values are always

real because the imaginary part of E [hlhm] is zero for l 6= m. In particular, the

imaginary part is equal to E [hc
lh

s
m] + E [hc

mh
s
l ] , in which both terms are zero.

In general, any term E [hc
lh

s
m] can be written as

∫ 2π

0

[(κl,l cos (lx) + . . .+ κl,1 cosx)hs
m(x)f0(x) + κl,0h

s
m(x)f0(x)] dx (4.25)

where we omit dependence on µ̂ and κ̂ for notational comfort. The last term of

the integrand in (4.25) is zero since it is essentially the imaginary part of the

orthogonality relation E [hm] = 0. The other terms in (4.25) are

κl,tκm,s

∫ 2π

0

cos (tx) sin (sx)f0(x)dx, t = 1, . . . , l and s = 1, . . . ,m
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Figure 4.1: The values for E [hlhm] = E
[

hlhm

]

, l ≤ m = 1, . . . , 5 are plotted versus

κ. In Panel (a) m=1, Panel (b) m=2 and Panel (c) m=3,4,5.
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where the integrand is an odd function over the unit circle, for which the integral

vanishes.

As E [hlhm] = 0 for l 6= m holds for κ < 1, Σhh reduces to the identity

matrix and Σhh1
reduces to the null matrix. Hence, for κ < 1, ΣV reduces to

the diagonal matrix I2(k−1).

Let X⋆ = X−µ̂ = X−Xc

n, then from Section 4.1 we know that (X⋆
1 , . . . ,X

⋆
n)

is a maximal invariant function. Hence, for κ < 1, the statistic is equal to

S2k =
1

n

k
∑

j=2

V(µ̂,κ̂)jV (µ̂,κ̂)j

=
2

n

k
∑

j=2

(

n
∑

l=1

hj

[

eiX⋆
l

]

)(

n
∑

l=1

hj

[

e−iX⋆
l

]

)

=
2

n

k
∑

j=2





(

n
∑

l=1

hc
j(X

⋆
l )

)2

+

(

n
∑

l=1

hs
j(X

⋆
l )

)2


 (4.26)

where hc
j(x) and hs

j(x) for j = 2, . . . , k are as in Section 4.1. Since the statistic

is a function of the maximal invariant (X⋆
1 , . . . ,X

⋆
n), it is an origin-invariant test

statistic. The asymptotic results are the same as for the simple null hypothesis.

In particular, the null distribution of the smooth test S2k is asymptotically

χ2
2(k−1) distributed. Moreover, the jth component is approximately equal to

2
nV(µ̂,κ̂)jV (µ̂,κ̂)j , which is the squared resultant length of the jth trigonometric

moment and can therefore be used as a directional test to detect differences

in the jth trigonometric moment. Note that the decomposition in (4.26), and

therefore also the directional interpretation, only holds if κ < 1. As in the linear

case (see Section 3.3.2), we should be careful with the directional interpretation

of the components tests. Following Henze and Klar (1996), Henze (1997) and

Klar (2000), we also rescale the score statistic by its empirical covariance matrix

Σemp in order to obtain the proper diagnostic interpretation. The test statistic

then becomes

Semp =
1

n
V T Σ−1

empV

and its asymptotic null distribution is as before. Note that here convergence is

very slow, similarly as in the linear case.

For κ ≥ 1, such a decomposition is not possible. Therefore, we write the

inverse asymptotic covariance matrix as Σ−1
V = Γ =

(

ΓV V ΓV V

ΓV V ΓV V

)

, where

ΓV V = ΓV V and ΓV V = ΓV V . The efficient score statistic can now be written

as

S2k =
2

n
V T

µ̂,κ̂ΓV V V µ̂,κ̂ +
2

n
V T

µ̂,κ̂ΓV V V µ̂,κ̂ (4.27)

and is asymptotically χ2
2(k−1) distributed.
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4.3.4 Relation to the BarCox test

In this section we show the equivalence between the BarCox test described in

Section 3.6 and our smooth test of order k = 2. The score vector of the smooth

test of order 2 is of the form

V =

( ∑n
t=1 e

i2X⋆
t + eiX⋆

t (1 − α1)α0 − α1
∑n

t=1 e
−i2X⋆

t + e−iX⋆
t (1 − α1)α0 − α1

)

.

From Section 4.1, we know that this vector is equivalent to the vector W con-

taining the real and imaginary parts of the first component of V . In particular,

using the transformation T defined in that section, the relation between the two

score vectors is V = TW , where

W =

( ∑n
t=1 cos (2X⋆

t ) + cos (X⋆
t )(1 − α1)α0 − α1

∑n
t=1 sin (2X⋆

t ) + sin (X⋆
t )(1 − α1)α0

)

.

This vector is equivalent to the vector (Bc, Bs)
T on which the BarCox test is

based. Indeed, the first component of W is based on the score function hc
2(x

⋆)

which can be written as

hc
2(x

⋆) = (cos (2x⋆) − E [cos 2X⋆]) + α0(1 − α1)(cosx⋆ − E [cosX⋆])

where we have that E [cosX⋆] = α0 = I1

I0
and E [cos 2X⋆] = I2(κ̂)

I0(κ̂) = α2
0 −

α2
0α1 +α1. The latter equality is due to the recurrence relation for the modified

Bessel functions of the first kind of natural order m, which results in I2(κ̂) =

− 2I1(κ̂)
κ̂ + I0(κ̂) for m = 2. Similarly, the second component of W is based on

the score function hs
2(x

⋆). This score function is trivially rewritten as

hs
2(x

⋆) = (sin (2x⋆) − E [sin 2X⋆]) + α0(1 − α1)(sinx
⋆ − E [sinX⋆]),

since E [sin 2X⋆] = E [sinX⋆] = 0. On the other hand, we have that Bc and Bs

are based on the functions (cos (2x⋆)−E [cos 2X⋆]) and (sin (2x⋆)−E [sin 2X⋆]),

respectively. Hence the equivalence between the two tests is established.

4.4 Data-driven smooth tests

We propose to choose the order k of the family of alternatives in a similar way as

proposed by Bogdan et al. (2002) (see Section 3.3.5). This choice is essentially

the order k for which the BIC criterion is maximised. Reconsider the general

form for the complex score statistic S2k in (4.9) for testing H0 : θ = θ = 0 in

the order k family of complex smooth alternatives (4.2). The BIC criterion is

defined as

BICn(k, θ) = S2k − p log (n),
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where the last term is the penalty term that accounts for the model complexity

in which p is the degrees of freedom. Let m denote a finite positive integer. The

order selection rule can then be written as

KBIC = inf{k : 1 ≤ k ≤ m,BICn(k, θ) ≥ BICn(j, θ), j = 1 . . . ,m},

and the resulting data-driven smooth test statistic is S2KBIC
. Although Bogdan

et al. (2002) allowed the maximal order m to grow to infinity with increasing

sample size n, we prefer to follow the convention of Claeskens and Hjort (2004)

by considering the maximal order m as fixed and finite. This reflects real situa-

tions where the order is always limited to a certain finite maximum. Following

Claeskens and Hjort (2004), we also consider the AIC criterion for the order

selection. The AIC is given by

AICn(k, θ) = S2k − 2p,

and the corresponding selection rule is given by

KAIC = inf{k : 1 ≤ k ≤ m,AICn(k, θ) ≥ AICn(j, θ), j = 1 . . . ,m}.

The corresponding data-driven smooth test statistic is given by S2KAIC
. Hence-

forth, we denote the data-driven smooth test statistics by SAIC and SBIC,

where the lower index indicates which criterion is used to determine the order

of the family of alternatives in Equation (4.2). The null distributions for the

data-driven statistics based on the AIC and the BIC order selectors are both

obtained by simulation. We refer to Claeskens and Hjort (2004) for more details.

4.5 Nonparametric density estimation

Similarly as in the linear case, the results of the data-driven smooth test for

a circular distribution described in Section 4.4 can be associated with an or-

thonormal series density estimator. The orthonormal series expansion that is

used to find the density estimate, is the Barton version of the order k complex

smooth family of alternatives proposed in (4.2), i.e.

gk(x;θ,β) =



1 +
k
∑

j=1

(

θjhj(z;β) + θjhj(z;β)
)



 f0(x,β), (4.28)

where β is assumed to be either known or replaced by its MLE. Since, in general,

the orthonormality relation for the polynomials {hj} on the unit circle is limited

to the relation (4.3), and does not guarantee the relations (4.6)-(4.7) to be

satisfied, we are not able to find simple expressions for θj or at least not as
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simple as those that were found in the linear case (see (3.89)). The expressions

for θj are now

Ek

[

hj(Z;β)
]

= θj +

k
∑

l=1

θl

∫ ∞

−∞
hj(z;β)hl(z;β)f0(x,β)dx, j = 1, . . . , k

(4.29)

which is a system of equations for which the solution can be found assuming

that the integrals
∫∞
−∞ hj(z;β)hl(z;β)f0(x,β)dx = E0

[

hj(z;β)hl(z;β)
]

exist.

Unbiased estimators of θj are then obtained by solving the set of equations

1

n

n
∑

m=1

hj(Zm; β̂) = θ̂j +

k
∑

l=1

θ̂lE0

[

hj(Z; β̂)hl(Z; β̂)
]

, j = 1, . . . , k. (4.30)

Note that when f0 is the CU distribution, the family (4.28) reduces to the

one proposed by Fernández-Durán (2004). The author used the AIC criterion

to determine the optimal order of the model. Within this model we have that

Ek

[

eijX
]

= θj and hence θj can be estimated by

θ̂j =
1

n

n
∑

l=1

e−ijXl , (4.31)

where
∑n

l=1 e
−ijXl is the (k + j)th element of the score vector in (4.16). The

estimate for the complex conjugate of θj immediately follows since θ̂j = θ̂j .

If f0 is the CN distribution f0(z;µ, κ), the terms E0

[

hj(Z; µ̂, κ̂)hl(Z; µ̂, κ̂)
]

vanish when κ < 1 (see Section 4.3.3) and in that case the parameter estimates

are easily found as well. When κ > 1, estimating θj is more complicated. To sim-

plify the computations, we assume from now on that E0

[

hj(Z; µ̂, κ̂)hl(Z; µ̂, κ̂)
]

=

E0 [hj(Z; µ̂, κ̂)hl(Z; µ̂, κ̂)] = 0 for all j.

When in (4.28) we replace the vector θ by its unbiased estimator θ̂, we obtain

a density estimator given by

gk(x; θ̂,β) =



1 +
k
∑

j=1

(

θ̂jhj(z;β) + θ̂jhj(z;β)
)



 f0(x,β). (4.32)

In our discussion we choose either the CU or the CN distribution (with κ < 1)

as starting distribution f0 and refer to these estimates as the CU series and the

CN series density estimates, respectively. We propose three different selection

criteria to determine the optimal order. First, similar to the linear case in

Section 3.7, we can optimise the order by minimising the weighted ISE criterion.

The circular analogue is given by

Λ(ĝk) =

∫ ∞

−∞

(ĝk(x) − f(x))(ĝk(x) − f(x))

f0(x;β)
dx. (4.33)
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The expected value of this loss function can be written as

E [Λ(ĝk)] =
2

n

k
∑

j=1

(d⋆
j − θjθj) + 2

∞
∑

j=k+1

θjθj , (4.34)

where d⋆
j = E

[

hj(Z)hj(Z)
]

, with Z = eiX . An unbiased estimator Λ̂(ĝk) of

E [Λ(ĝk)] is obtained if d⋆
j and θjθj in (4.34) are replaced by their respective

unbiased estimators,

d̂⋆
j =

1

n

n
∑

l=1

hj(Zl)hj(Zl)

and
ˆθiθi =

1

n− 1

(

nθ̂iθ̂i − d̂⋆
j

)

.

Minimising Λ̂(ĝk) results in the decision rule:

Include the jth term until it fails the test

θ̂j θ̂j >
2

n+ 1
d̂⋆

j .

The other two possibilities considered here are the AIC and BIC criteria used

in the definitions of the data-driven smooth tests.

When the resulting density estimates are non-positive or not appropriately

normalised, we use the correction of Glad and Hjort (2003), as described in

Section 3.7.

We illustrate the usefulness of these density estimators in combination with

the data-driven smooth test on the Arrival example in the next section.

4.6 Examples

In this section we consider four examples of circular data. Each of the exam-

ples has been introduced in Chapter 2. An interesting question is whether the

underlying distribution for these datasets is CN. To assess the validity of the

CN distribution, we apply the data-driven smooth test as well as the Watson,

the Kuiper and the Entropy tests for circular normality. We also consider the

BarCox test, which is equivalent to the circular smooth test of order k = 2.

Parametric bootstrap with 100,000 resamples is used to calculate the p-values

for all tests. For the Watson test, tables with some critical values are avail-

able (Stephens 1985), but bootstrap is preferred here as well, as it allows more

precise p-values.
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4.6.1 Turtles Data

As discussed in Chapter 2, the Turtles dataset has a bimodal impression, where

the two modes are diametrically opposed. Note that the mode at about 60 de-

grees is much larger than the alleged other mode. If this second mode is really

present, we expect that the null hypothesis of the unimodal CN would be re-

jected. The Watson statistic Un=0.16 (p=0.001), the Kuiper statistic Kn=1.57

(p=0.008) and the Entropy statistic Kmn=5.07 (p=0.002) are all highly indica-

tive against circular normality. The BarCox test, with B = 24.91 (p <0.001),

shows even more evidence against symmetric unimodality. Here we used the

asymptotic p-value since none of the 100,000 bootstrap statistics was larger

than the observed statistic. Similarly, the score tests SAIC = 33.64 (p <0.001)

and SBIC = 24.46 (p <0.001) are highly significant. The AIC criterion selected

components up to the fourth order while the BIC criterion only selected the

second order components.

Note that the interpretation in terms of trigonometric moments is probably

not strictly valid here because the decomposition in (4.26) only holds for κ < 1,

and κ is estimated as κ̂⋆ = 1.12. On the other hand, in Figure 4.1 we saw that

the values of E [hlhm] for, l ≤ m = 1, . . . , 5 and for κ = κ̂⋆ are still very close

to zero. The corresponding covariance matrix ΣV is in fact the identity matrix

up to two decimals. Hence a careful interpretation in terms of trigonometric

moments is still possible.

The rescaled version Semp

AIC = 16.32 (p=0.089) is not significant at the 5%

level. Similarly Semp

BIC = 16.32 (p=0.019) has a higher p-value as compared

to its non-corrected counterpart. Both criteria selected only the second order

component. The reason for the higher p-values is that the empirical variance is

much higher than the asymptotic variance. These results indicate that scaling

the score vectors properly before interpreting the different components, may

result in different outcomes. Nevertheless, it is not unnatural that for a relatively

small sample size (n=76) one needs to be more careful with the interpretation

of the different components. It is of course possible that more data would result

in evidence against the von Mises distribution.

Since the properly scaled score test is less powerful for small sample sizes, we

formulate a conclusion based on the original smooth test. From these results, we

conclude that the data deviate from the CN distribution primarily with respect

to the second order trigonometric moment, which is in accordance with the

bimodal impression of the data. See also the conclusions from the simulation

study in Section 4.7.

As the two modes are opposite to each other, it is of interest whether the

movements of the turtles are distributed around one single axis. In fact, it is

possible that the movements are drawn from the same distribution apart from
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being diametrically opposed. To check this, we double the data values and carry

out the same tests. More details about this doubling procedure are in Section

2.2. Now, none of the tests shows evidence against the null hypothesis anymore,

which suggests that the doubled data indeed may originate from a von Mises

distribution.

4.6.2 Ants Data

Regarding the Ants data, we have seen before that the ants clearly prefer the

direction of about 180◦, which corresponds to the direction where the black

target was placed. A von Mises distribution could therefore be a good fit.

However, the Watson statistic Un = 0.3196, the Kuiper statistic Kn = 11.34

and the Entropy statistic Kmn = 4.29 all have p-values smaller than 0.001. The

BarCox statistic B = 20.86 (p <0.001) is also highly significant. From these

tests it is clear that the von Mises distribution is not a good representation.

How does the true distribution differ from circular normality? Our smooth test

gives an answer to that question.

Here the estimated value of κ is κ̂⋆ =1.538. For this value, the covariance

matrix ΣV is the identity matrix up to one decimal. Hence, we can apply the

interpretation of the components in terms of trigonometric moments, but again

we need to be careful.

The score statistics SAIC and SBIC are both equal to 20.53 and their p-

values are p=0.005 and p=0.001, respectively. Both selection criteria chose the

order k = 2. This suggests that the difference from circular normality is due to

the second order trigonometric moment.

In order to give a proper diagnostic interpretation we look at the properly

scaled score statistics. In particular, we have Semp

AIC = 27.59 (p =0.036) and

Semp

BIC = 18.99 (p=0.029). Similarly as for the Turtles data, the p-values are

much larger than for the usual score tests. However, they are still significant

at the 5% significance level. Since the sample size is relatively small as well

(n=100), the same comment on the scaling procedure as for the Turtles data is

useful here.

For the Ants data, we conclude that there is much evidence against circular

normality. The second order trigonometric moment, which is related to the

circular skewness and kurtosis (see Section 2.2) is responsible for this deviation.

4.6.3 Direzione Data

For the Direzione data, the raw data plot suggests a unimodal distribution with

its mode at the North direction. The Kuiper test (Kn = 3.781), the Watson

test (Un = 1.223), the Entropy test (Kmn = 5.076) and the BarCox test (B =
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83.842) have highly significant p-values (p < 0.001). Similarly, the score tests

SAIC = 112.037 and SBIC = 83.152 (p < 0.001) clearly indicate that the data

does not follow a CN distribution. The AIC criterion selected components up to

the fifth order, while the BIC criterion selected only the second order component.

From these results we may argue from a data analytical point of view that the

empirical distribution shows inconsistencies with the CN distribution in at most

the fifth order moment. Moreover, the BIC based test suggests that the second

order component already indicates a severe deviation from circular normality.

The estimation of the concentration parameter yields κ̂⋆ = 1.76, which again

results in a covariance matrix ΣV which is the identity matrix up to one dec-

imal. Therefore, applying the interpretation of the components in terms of

trigonometric moments is again possible.

The properly scaled score statistics Semp

AIC = Semp

BIC = 163.717 (p < 0.001)

also indicate severe deviation from circular normality for the moments up to

the fifth order. The second order component of Semp

AIC and Semp

BIC has the largest

contribution (82.314). This result indicates that there is a difference from cir-

cular normality with respect to the second order trigonometric moment. Since

the second order trigonometric moment is related to the circular skewness and

kurtosis, this is consistent with the skewed unimodal impression of the data.

4.6.4 Arrival Data

In the explorative analysis of the Arrival data in Section 2.2.6 two large clusters

and three small clusters of arrivals are recognised. The Kuiper statistic Kn =

1.174 (p=0.122), the Watson statistic Un = 0.057 (p=0.116) and the Entropy

statistic Kmn = 5.852 (p=0.097) indicate that there is no significant deviation

from circular normality at the 5% level. However, from the BarCox test B =

6.364 (p=0.042) and the score tests SAIC = 21.698 (p=0.003) and SBIC =

6.341 (p=0.045) we conclude at the 5% significance level that the von Mises

distribution is not an appropriate distribution to describe this data. The choice

for the order of the family of alternatives based on the AIC and the BIC criterion

is five and two, respectively.

Since for this example the estimation of the concentration κ̂⋆ is 0.67, the

decomposition in (4.26) holds and the interpretation in terms of trigonometric

moments is justified. The properly scaled score tests result in Semp

AIC = 35.433

(p <0.001) and Semp

BIC = 6.073 (p = 0.053). The latter score test indicates

no significant result at the 5% level while the test based on the AIC criterion

finds large evidence against circular normality. The AIC criterion selected the

components up to the fifth order. From the simulation study in Section 4.7, it

will become clear that the smooth test based on the AIC criterion has better

power against higher order alternatives (order four and five) than the smooth
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test based on the BIC criterion.

Hence, these results suggest that the LOF might be related to the fifth order

trigonometric moment. The fifth term in the family of alternatives describes

a multimodal distribution with five modes. This fifth order departure is thus

consistent with the five clusters of arrival times described above.

To visualise this deviation from normality, we use the family of smooth

alternatives to find an appropriate density estimate. In particular, as described

in Section 4.5, we choose the order of the family according to the AIC, BIC and

MISE criteria and plug in the corresponding estimates. Since the concentration

parameter has an estimated value smaller than 1, we may use the simplified

formulae in (4.31) for the parameter θ. The BIC, AIC and MISE criteria select

components up to order two, five and three, respectively. The corresponding CN

series estimates are plotted in panel (a) of Figure 4.2 together with the kernel

density estimate, for which the window width is chosen via UCV (see Section

3.7). In these plots we projected the data on the real line to make it easier to

compare the density estimates. We thus have to keep in mind that begin and

end points of the considered interval coincide.

The kernel density estimate is the most smooth estimate, followed in respec-

tive order by the CN series based on the BIC, the MISE and the AIC criterion.

The latter estimate shows the locations of the five modes, which were recognised

by the data-driven smooth test. These modes are also called bumps or clusters

of observations. Note that the locations of the five clusters are exactly where we

expected them (Section 2.2.6). The other density estimates have fewer modes,

which are on slightly different locations. To get a better idea which estimate is

the most appropriate we refer to the application of our new explorative tool in

Chapter 6.

Panel (b) of Figure 4.2 shows the CU series density estimates based on the

same order selection criteria. They are included in our study since they were

shown to be useful for general circular densities by Fernández-Durán (2004), who

used the AIC criterion. According to this criterion, the density estimate again

has five modes and here the locations are once more exactly as we expected.

On the other hand, the BIC and the MISE criterion both choose only the first

term and give therefore a unimodal impression. Again, it is very difficult to

say which density estimate is the most appropriate since we obviously have no

information about the true distribution. In Chapter 6, we apply an explorative

tool to get more insight.

107



arrival times

D
e

n
s
it
y

0
.0

0
0

.1
0

0
.2

0
0

.3
0

12am 6am 12pm 6pm 12am

CN series BIC
CN series AIC
CN series MISE
Circular kernel UCV

arrival times

D
e

n
s
it
y

0
.0

0
0

.1
0

0
.2

0
0

.3
0

12am 6am 12pm 6pm 12am

CU series BIC & MISE
CU series AIC
Circular kernel UCV

(a) (b)

Figure 4.2: Density estimates for the arrival data. The kernel density estimate (both

panels) with window width determined by means of unbiased cross-

validation and the CN (panel (a)) and CU (panel (b)) series density

estimates based on BIC, AIC and MISE criteria are plotted.

k KAIC KBIC
2 81433 (81.433%) 97959 (97.959%)

3 11361 (11.361%) 1880 (1.88%)

4 4657 (4.657%) 139 (0.139%)

5 2549 (2.549%) 22 (0.022%)

Table 4.1: Counts of the selected order under the null hypothesis, based on 100, 000

samples of size 50.

4.7 Simulation Study

In this section we present the results of a simulation study in which the diag-

nostic characteristics of the smooth tests for the composite null hypothesis of

circular normality are investigated. We consider the smooth tests SBIC and

SAIC and compare their powers with the Watson, the Kuiper, the Entropy

and the BarCox tests for circular normality. Since data on the unit circle are

directions that take values in the interval as small as [0, 2π], we assume that

in practical situations no more than five modes will appear in that interval.

Therefore, we restricted the choice for the order to maximum five.

First we study the behavior of the order selection rule under the null hy-
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pothesis. We have performed 100,000 Monte Carlo simulation runs. In each

run, a sample of 50 observations is randomly selected from a CN distribution.

The number of times each order is selected by the AIC and BIC criterion is

presented in Table 4.1. These results indicate that the BIC criterion selects

almost always order two. For the AIC criterion we see that the fifth order is

selected for 2549 samples, which is 2.549%. However, for most of the simulated

samples (81%), the AIC criterium again selected order two. For sample sizes

n = 30 and n = 100, similar results are obtained. Since for relatively small

sample sizes (n=30, 50 and 100), the properly scaled smooth tests semp

AIC and

Semp

BIC introduce too much variability, we expect that its power results will be

too low compared to the original smooth tests. Therefore, it is not useful to

include these statistics in this simulation study.

For the empirical power study, the critical points at the 5% significance

level for the smooth tests as well as for the Kuiper and the Entropy tests are

obtained using 100, 000 Monte Carlo simulations. For the Watson test we use

the tabulated critical points (see Lockhart & Stephens, 1985), while for the

BarCox test we use asymptotic critical points. All powers are estimated based

on 10, 000 simulated samples of size n = 30 and n = 50. As an alternative to

the von Mises distribution, we consider mixtures of the von Mises distributions

with densities given by

h(x) =

k
∑

j=1

pjf0(x, µj , κj),

where 0 ≤ pj ≤ 1 for j = 1, . . . k and p1 + . . . pk = 1. This family obviously

includes the von Mises distribution for k = p1 = 1. Table 4.2 shows the al-

ternatives of this family used in our study. They are described as mixtures of

CN distributions. The alternatives are chosen in such a way that k equals the

number of modes in the distribution. As a second alternative, we use a family

of distributions proposed by Bogdan et al. (2002), with density

gj(x) = 1 + ρ cos(jx),

for 1 ≤ j ≤ 5 and −1 ≤ ρ ≤ 1. The latter restriction is needed so as to prevent

the density function from being negative. Note that this family of alternatives

is an approximation to the CN distribution if j = 1. On the other hand if

ρ = 0 the family reduces to the CU distribution. All powers are estimated

based on 10,000 simulation runs. First we report on the simulations for the

mixtures of the CN distributions. The simulated powers are presented in Table

4.3. For all bimodal alternatives, the BarCox test, which is essentially based

on the first two components of our smooth test, has clearly the best power

results. Watson performs well for symmetric bimodal alternatives (MVM1 and
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Alternative k p1, . . . , pk µ1, . . . , µk κ1, . . . , κk

MVM1 2 0.5,0.5 0,π
2 4,4

MVM2 2 0.25,0.75 0,π
2 4,4

MVM3 2 0.5,0.5 0,π 2,2

MVM4 2 0.25,0.75 0,π 4,2

MVM5 3 0.5,0.2,0.3 0,2π
3 ,

4π
3 6,6,6

MVM6 3 1
3 ,

1
3 ,

1
3 0, 2π

3 ,
4π
3 6,6,6

MVM7 4 0.4,0.2,0.25,0.15 0,π
4 , π,

7π
4 4,2,4,2

MVM8 4 0.4,0.2,0.25,0.15 0,π
4 , π,

7π
4 7,7,7,7

MVM9 4 0.25,0.25,0.25,0.25 0,π
2 , π,

3π
2 9,9,9,9

MVM10 5 0.2,0.2,0.2,0.2,0.2 0,2π
5 ,

4π
5 ,

6π
5 ,

8π
5 12,12,12,12,12

Table 4.2: Mixture alternatives considered in the simulation study.

Alternative SBIC SAIC Kn Un Kmn B

MVM1 0.730 0.354 0.681 0.761 0.748 0.801

MVM2 0.608 0.285 0.445 0.551 0.581 0.670

MVM3 0.744 0.430 0.618 0.762 0.567 0.805

MVM4 0.937 0.802 0.681 0.872 0.851 0.949

MVM5 0.975 0.949 0.879 0.948 0.916 0.210

MVM6 0.978 0.914 0.525 0.773 0.855 0.003

MVM7 0.859 0.590 0.565 0.782 0.706 0.897

MVM8 0.998 0.981 0.774 0.959 0.990 0.999

MVM9 0.600 0.830 0.069 0.109 0.517 0.002

MVM10 0.133 0.720 0.006 0.003 0.232 <0.001

Table 4.3: Simulated powers of our data-driven smooth tests (SBIC and SAIC), the

Kuiper test (Kn), the Watson (Un), the Entropy (Kmn) and the BarCox

test (B) for the mixtures of the von Mises distribution, based on 106

samples.
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MVM3), whereas for asymmetric alternatives (MVM2 and MVM4) our smooth

test based on the BIC criterion has higher power. The Entropy and the Kuiper

tests do not have good powers for bimodal alternatives. Moreover, Kuiper has

considerably lower powers for all mixtures we considered. For the three-modal

alternatives (k = 3), the BarCox test shows a power breakdown whereas our

data-driven smooth test has the best power results (both with the BIC and the

AIC criterion), followed by the Watson and the Entropy tests. This is even more

pronounced for symmetric modes. The alternatives MVM7 and MVM8 have four

modes which do not receive equal weight. For these alternatives all tests show

a similar performance as in the bimodal case. For the symmetric four-modal

alternative MVM9, only our smooth tests are doing well. Finally, the five-modal

alternative (MVM10) is only satisfactorily detected by the smooth test based on

the AIC selection criterion.

Before we present the simulation results for the other family of alternatives,

we first verify whether the selection criteria AIC and BIC adapt well towards

the alternative. In particular, we expect the criteria to choose order k for a

k-modal alternative. We consider alternatives MVM3, MVM6, MVM9, MVM10

as examples of distributions with k = 2, 3, 4 and 5 modes. Table 4.4 shows the

number of times each order is selected in 10, 000 samples of size 50. These results

indicate that the AIC criterion most often chooses the right number of modes,

while the BIC criterion only does well if the order of the alternative is two or

three. For higher order alternatives the BIC criterion selects the right order less

frequently. For these reasons the power of the BIC selection criterion is best

for alternatives with two or three modes, while the AIC criterion is a better

selection criterion for alternatives of higher order. Consequently, we conclude

that the data-driven smooth test generally performs well against many different

types of alternatives.

Figure 4.3 shows the estimated power curves for simulations from the alter-

natives gj , j = 2, . . . , 5, which have j evenly distributed modes. The power is

plotted as a function of the parameter ρ. The data-driven smooth test based

on the BIC selection criterion has good overall power results. It is a good com-

promise between the classical test for bimodal distributions and the data-driven

smooth test based on the AIC criterion for higher order alternatives. As a gen-

eral guideline, we recommend to apply both SAIC and SBIC. In case both yield

a significant result, but select a different order, then it is likely that the BIC

selected a lower order than the AIC. In that case, it is probably safest to use

the BIC result for interpreting the deviation, unless there are specific sign that

an important higher order deviation is present (cf. Section 4.6). In case only

one of SAIC or SBIC is significant, we suggest relying on the statistic which

produced the significant result, which is then likely SAIC in case of higher order

deviation and SBIC in case of lower order deviations.
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Figure 4.3: Estimated power functions for the alternatives gj , j = 2, . . . , 5 with

parameter ρ, 0.1 ≤ ρ ≤ 1, n = 50 and α = 0.05.
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no modes 2 3 4 5

alternative MVM3 MVM6 MVM9 MVM10

k BIC

2 9861 219 4001 8672

3 118 9724 6 6

4 19 49 5933 0

5 2 8 60 1322

k AIC

2 8420 18 467 2534

3 857 8816 12 62

4 462 723 8581 11

5 261 443 940 7393

Table 4.4: Counts of the selected order under the alternatives, based on 10, 000 sam-

ples of size 50.

4.8 Discussion

In this chapter we have proposed a class of smooth GOF tests for circular

distributions which are called the complex smooth tests. The construction of the

order k complex smooth model is crucial for the development of the complex

score statistic. We showed that for certain circular distributions the complex

smooth model can be rewritten as a real smooth model for which the score

statistic is equal to the former complex score statistic. Hence, in some sense

this class of tests generalises the framework of Rayner and Best (1989) for

smooth tests on the real line. For circular uniformity and circular normality

we gave the explicit form of the smooth test statistics and their asymptotic

distributions. The complex smooth test for circular uniformity reduces to the

smooth test of Bogdan et al. (2002). The smooth test for circular normality

for an order two complex smooth model reduces to the score test of Barndoff-

Nielsen and Cox (1979). The AIC and BIC selection rules are applied to make

an appropriate choice of the order of the complex smooth model. This results

in two versions of the data-driven smooth test, SAIC and SBIC, for circular

distributions against a general class of order k smooth alternatives. The complex

data-driven smooth test for the CN distribution has been applied on real data

examples and a simulation study showed that they have good power against

many alternatives. Moreover, it is illustrated by means of an example that the

interpretation of the data-driven smooth test can be visualised by means of the

directly related density estimate of the true circular density.
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CHAPTER 5

Localised Pearson χ
2 Test

In this chapter we present some new results on the class of GOF tests closely

related to the sample space partition tests (SSP) originally proposed by Thas

(2001) (see also Thas and Ottoy (2003b)). The tests are constructed by inte-

grating out the Pearson χ2 statistic over all possible partitions of the sample

space in c cells. This is essentially a similar generalisation to the one Rothman

(1972) proposed for circular data, which is described in Section 3.2.2. However,

Rothman only considered partitions of two cells. Where Rothman’s statistic

is a generalisation of the Watson statistic for circular data, the new tests are

generalisations of the AD family of GOF tests for linear data and are indexed

by the so called sample space partition size c. The resulting tests are therefore

called the linear SSPc tests. Clearly, Rothman’s test can be generalised by con-

sidering partitions of general size c. This type of tests will be referred to as the

circular SSPc tests.

In the next section we give a formal introduction to the class of SSPc tests.

In particular, the construction of the test statistics and their asymptotic null

distributions are given. Special attention is given to the simplest case c = 3 for

which the corresponding test statistic can be seen as a V -statistic and for which

a decomposition in terms of Legendre polynomials can be found. From these

results the limiting distribution under contiguous alternatives is an immediate

consequence. In Section 5.3 we intuitively describe the behaviour of the SSPc

test statistics. More specifically, we explore the limiting expected value of the
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SSPc tests under a particular family of local alternatives. In Section 5.4 a data-

driven version of the SSPc test is constructed so that an appropriate subset size

c is chosen from the data at hand. All tests are applied to real data examples

in Section 5.5. In Section 5.6 we present a power study in which our new linear

SSPc tests are compared to some of the classical GOF tests described in Chapter

3. Further extensions to composite null hypotheses and to testing for circular

distributions are described in Sections 5.7 and 5.8, respectively. Finally, a brief

discussion of the proposed class of tests is given in Section 5.9.

5.1 Introduction

We are concerned with testing the simple null hypothesis of GOF,

H0 : F (x) = F0(x) for all x ∈ S, (5.1)

where F (x) and F0(x) are the true and hypothesised distribution function of the

continuous univariate random variable X, and S represents the common sample

space on which F (x) and F0(x) are defined. Since we will consider omnibus

tests, the alternative hypothesis is

H1 : F (x) 6= F0(x) for some x ∈ S. (5.2)

A very popular type of GOF tests is the class of EDF tests which are based

on the EDF F̂n(x) and are described in Section 3.4. Within that class, the AD

test is often referred to as one of the most powerful omnibus tests (see e.g. D’

Agostino and Stephens, 1986).

Recently, some modifications and generalisations of the AD test have been

proposed.

Both Zhang (2002) and Einmahl and McKeague (2003) considered integral

statistics of the form

Tw
n =

∫

S
Pn(x)dw(x), (5.3)

where w(x) is some weight function and Pn(x) is a localised statistic for testing

GOF in a binomial distribution which is induced by discretising the sample

space S at location x. The AD statistic is obtained with w(x) = F0(x) and

Pn(x) =
n(F̂n(x) − F0(x))

2

F0(x)(1 − F0(x))
, (5.4)

which is the score test statistic for testing F (x) = F0(x) in the induced binomial

distribution. Note that (5.4) is exactly equal to the Pearson χ2 statistic X2
n of
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(3.18) with k = 2, π = (F0(x), 1 − F0(x)) and XT = (nF̂n(x), n − nF̂n(x)).

Indeed, we have

X2
n =

(nF̂n(x) − nF0(x))
2

nF0(x)
+

((n− nF̂n(x)) − (n− nF0(x)))
2

n− nF0(x)

=
n(F̂n(x) − F0(x))

2

F0(x)
+
n((F̂n(x)) − (F0(x)))

2

1 − F0(x)

= Pn(x).

Thas (2001) and Thas and Ottoy (2003b) proposed a similar extension of the

AD statistic as in (5.3) by taking w(x) = F̂n(x), which results in the average of

Pearson statistics, i.e.

T F̂
n =

∫

S
Pn(x)dF̂n(x)

=
1

n

n
∑

i=1

Pn(Xi)

Zhang (2002) considered several choices for the weight function w(x) and

took Pn(x) equal to the Cressie-Read family of divergence statistics (Cressie

and Read, 1984), which makes Tw
n a family of statistics indexed by the same

parameter as in the Cressie-Read family. The same extension was independently

proposed by Thas and Ottoy (2003b). Einmahl and McKeague (2003) choose

the log-likelihood ratio statistic instead of Pn(x) and set w(x) = F0(x). The

term localised, in this context, is due to these authors.

Similarly, Rothman’s test (1972) for circular uniformity in (3.23) can be

rewritten as a localised test. In particular, we write Rothman’s statistic as

Rw
n =

1

2π

∫ 2π

0

∫ 2π+x0

x0

Pn(x;x0)dw(x;x0)dx0, (5.5)

where dw(x;x0) = F0(x;x0)(1 − F0(x;x0))dH(x;x0) and

Pn(x;x0) =
n(F̂n(x;x0) − F0(x;x0))

2

F0(x;x0)(1 − F0(x;x0))
. (5.6)

The dependence on the starting point x0 is now explicitly present in Pn(x;x0)

and w(x;x0) in which F0(x;x0) and F̂n(x;x0) are defined as in (3.64). We again

have that Pn(x;x0) is exactly equal to the Pearson χ2 statistic X2
n, localised at

x, with the origin at x0.

All the integrals of the form (5.3) have in common that they are localised at

exactly one point x. In the next part of this chapter we extend these tests by

localising at a finite number of distinct elements of S. This results in a family
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of tests, indexed by the subset size. Although this type of generalisation applies

to several choices of Pn(x) and w(x), we will focus here on the class of tests

with Pn(x) the Pearson statistic and w(x) = F0(x). A similar generalisation of

the Rothman test (5.5) for circular distributions is explored in Section 5.8.

5.2 The linear SSPc test

5.2.1 Construction of the test statistics

Let Sn = {X1, . . . ,Xn} denote a sample of i.i.d. observations with linear distri-

bution function F (x). Let Dc = {x1, . . . , xc−1} ∈ S with c = #Dc + 1 ≥ 2, but

finite. Suppose further that x(1) ≤ . . . ≤ x(c−1) are the ordered elements of Dc.

Every Dc induces a multinomial distribution with probabilities

π1 = F (x(1));π2 = F (x(2)) − F (x(1)); . . . ;πc = 1 − F (x(c−1)). (5.7)

Thus c has the interpretation of the number of cells of the Dc-induced table of

counts. In Thas (2001) and Thas and Ottoy (2003a,b), c is referred to as the

sample space partition (SSP) size.

As mentioned before, we will only consider the Pearson χ2 statistic for multi-

nomial GOF, though other choices may be interesting as well. Let Pc,n(Dc) now

denote the Pearson χ2 statistic, i.e.

Pc,n(Dc) = Pc,n(x1, . . . , xc−1)

= n

c
∑

i=1

(F̂n(x(i)) − F̂n(x(i−1)) − (F0(x(i)) − F0(x(i−1))))
2

F0(x(i)) − F0(x(i−1))
,

where x(0) ≡ 0 and x(c) ≡ 1. We propose the test statistic

Tc,n =

∫

S
. . .

∫

S
Pc,n(x1, . . . , xc−1)dF0(x1) . . . dF0(xc−1). (5.8)

We omit the superscript w which is from now on always equal to F0. The

statistical tests proposed in Thas (2001) and Thas and Ottoy (2003b) are related

to Tc,n in (5.8) in the sense that F0 is replaced by F̂n, which is essentially an

average instead of an integral. For c ≥ 2, Tc,n represents a class of statistics

indexed by c, which is also referred to as SSP size. The tests based on Tc,n are

therefore also called the SSPc tests. When c = 2 the statistic reduces to the

AD statistic, and thus in this sense the SSPc tests are a generalisation of the

AD test. Without loss of generality we will further suppose that F0(x) = x, i.e.

the hypothesised distribution is the uniform distribution over S = [0, 1]. This

situation can be obtained for any simple null hypothesis by applying the PIT.
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For further study, it is interesting to rewrite Tc,n in a more attractive way.

Let Bn(x) =
√
n
(

F̂n(x) − x
)

, which is the empirical process defined in Section

3.4.1. Then,

Tc,n =

∫ 1

0

. . .

∫ 1

0

[

B2
n(x(1))

x(1)
+

B2
n(x(c−1))

1 − x(c−1)

]

dx1 . . . dxc−1+

∫ 1

0

. . .

∫ 1

0

[

(Bn(x(2)) − Bn(x(1)))
2

x(2) − x(1)
+ . . .

(Bn(x(c−1)) − Bn(x(c−2)))
2

x(c−1) − x(c−2)

]

dx1 . . . dxc−1.

(5.9)

Let I1 and I2 denote the first and the second term of (5.9). Note that I1 results

from the first and the last term in (5.8), while I2 results from the other terms

in (5.8). Further computation of the integrals leads to

I1 = (c− 1)

∫ 1

0

∫ 1

x1

. . .

∫ 1

x1

B2
n(x1)

x1
dxc−1 . . . dx2dx1

+ (c− 1)

∫ 1

0

∫ xc−1

0

. . .

∫ xc−1

0

B2
n(xc−1)

1 − xc−1
dx1dx2 . . . dxc−1, (5.10)

while each term of I2 can be rewritten as

(

c−1
2

)

∫ 1

0

∫ 1

0

∫ 1

xi∨xi−1

. . .

∫ 1

xi∨xi−1

∫ xi∧xi−1

0

. . .

∫ xi∧xi−1

0

(Bn(xi) − Bn(xi−1))
2

xi − xi−1
dx1 . . . dxi−2dxi+1 . . . dxc−1dxi−1dxi(5.11)

where ∧ and ∨ denote the minimum and maximum operator. Hence, I2 becomes

I2 =

(

c− 1

2

)∫ 1

0

∫ 1

0

(Bn(x) − Bn(y))2

x− y
(

(1 − x ∨ y)c−3 + (1 − x ∨ y)c−4(x ∧ y) + . . . (x ∧ y)c−3
)

dxdy.(5.12)

Then, the more attractive formula for the test statistic becomes

Tc,n = I1 + I2

= (c− 1)

∫ 1

0

((1 − x)c−1 + xc−1)
B2

n(x)

x(1 − x)
dx (5.13)

+

(

c− 1

2

)∫ 1

0

∫ 1

0

(1 − (x ∨ y))c−2 − (x ∧ y)c−2

(1 − (x ∨ y)) − (x ∧ y)
(Bn(x) − Bn(y))2

|x− y| dxdy.

Let Ac,n and Uc,n denote the first and the second integral of (5.13), respec-

tively. The statistic Ac,n is basically a weighted CvM statistic with weight

function

ac(x) =
(1 − x)c−1 + xc−1

x(1 − x)
, (5.14)
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which suggests that Ac,n, like the AD statistic, is sensitive to deviations in

the tails of the distribution. The other term, Uc,n, may be seen as a weighted

Watson statistic with weight function

wc(x, y) =
(1 − (x ∨ y))c−2 − (x ∧ y)c−2

(1 − (x ∨ y) − (x ∧ y))|x− y| . (5.15)

The weight function is best interpreted by expanding it into (suppose x < y)

wc(x, y) =
1

|x− y| [x
c−3 +xc−4(1− y)+xc−5(1− y)2 + . . .+(1− y)c−3]. (5.16)

This expansion shows that Uc,n consists basically of c − 1 terms which are all

sensitive to deviations from F0 in small intervals [x, y] and it also implies that

this term gets more important than Ac,n as c increases. Hence, with increasing c,

we suspect that the statistic Tc,n has an increasing sensitivity for deviations from

F0 in small intervals. In Section 5.6 this will be further empirically investigated

in a simulation study.

5.2.2 Computational formulae

The representation in (5.13) is also useful for obtaining computational formulae.

In particular, computational forms are easily obtained by integration. We give

here explicit solutions for c = 2, 3 and 4. Let X(i) denote the i-th order statistic

(i = 1, . . . , n).

c = 2:

T2,n = −n− 1

n

n
∑

i=1

(2i− 1)(ln(X(i)) + ln(1 −X(n+1−i)))

c = 3:

T3,n = 2An − 4Wn +Kn, (5.17)

where An and Wn represent the AD and CvM statistics, respectively, and

Kn =

∫ 1

0

∫ 1

0

(Bn(x) − Bn(y))2

|x − y|
dxdy

= −
2

n

n
∑

i=1

n
∑

j=1

[

X(i∨j) ln(X(i∨j))

+(1 − X(i∧j)) ln(1 − X(i∧j))

|X(j) − X(i)| ln |X(j) − X(i)| + X(i)(1 − X(i)) + X(j)(1 − X(j)) −
1

6

]

c = 4:

T4,n = 3An − 10.5Wn + 3Kn + 1.5n

(

X̄ − 1

2

)2
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5.2.3 Asymptotic theory

The next theorem gives the limiting null distribution of Tc,n. A proof is given

in Appendix B.1.

Theorem 5.1 Let {B(x), x ∈ [0, 1]} denote a Brownian bridge. Suppose c ≥ 2

is given, then, under the simple null hypothesis, as n→ ∞,

Tc,n
d−→ Tc,∞ = (c− 1)

∫ 1

0

ac(x)B
2(x)dx

+

(

c− 1

2

)∫ 1

0

∫ 1

0

wc(x, y)(B(x) − B(y))2dxdy. (5.18)

The proof of the following theorem is in Appendix B.2.

Theorem 5.2 Tc,n is consistent against any fixed alternative.

5.2.4 Empirical levels

To assess the usefulness of the asymptotic null distribution Tc,∞ in small sam-

ples, we have performed a simulation study to obtain the empirical levels of

the SSP3 and SSP4 tests when the corresponding quantiles of the asymptotic

null distribution are used. Since the asymptotic null distribution is expressed

in terms of integrals of Brownian bridges, it is typically approximated by sim-

ulation. In particular, we considered 50,000 simulation runs and in each run

the integrals are approximated using a simulated Brownian bridge on a 10,000

points grid. From the resulting simulated asymptotic null distribution, a nomi-

nal level α quantile is derived. For α = 0.01, α = 0.05 and α = 0.10 the quantiles

are given in Table 5.1. For these levels, and for sample sizes n = 5, n = 20,

n = 50 and n = 100, the empirical levels are then calculated by comparing the

simulated exact null distribution of the test statistics (10,000 simulation runs)

with the approximated asymptotic quantiles. The results are presented in Table

5.1. They suggest that the SSP3 test may satisfactorily be applied using the

asymptotic null distribution, even for sample sizes as small as n = 5. For the

SSP4 test, on the other hand, a bias is observed, in particular for small levels.

For larger levels, however, one may find the bias sufficiently small.

5.2.5 Limiting distribution of SSP3 statistic under contiguous

alternatives

In this section, we focus on the statistic Tc,n for c = 3 and derive its limiting dis-

tribution under contiguous alternatives. This is done by rewriting the statistic

as a V -statistic and determining its decomposition using Legendre polynomials.
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Table 5.1: The asymptotic quantiles (at n = ∞, obtained from expression (5.18)

using simulated Brownian bridges) and the empirical levels for n = 5,

n = 20, n = 50 and n = 100 based on 10,000 simulation runs.

n SSP3 SSP4

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

5 0.013 0.053 0.099 0.021 0.067 0.112

20 0.011 0.051 0.099 0.020 0.069 0.119

50 0.011 0.051 0.100 0.020 0.069 0.119

100 0.011 0.051 0.100 0.019 0.068 0.117

∞ 6.190 4.286 3.500 8.108 6.140 5.301

Recall that the AD statistic has an orthogonal decomposition in terms of Leg-

endre polynomials (see Section 3.5.2). Note that we continue to consider the

simple null hypothesis of uniformity.

SSP3 rewritten as a V -statistic

Instead of localising the Pearson statistic at one point x, as is done for the AD

statistic (c = 2), the statistic (5.8) for c = 3 is localised at two points x1 and

x2. The Pearson statistic for testing GOF in a multinomial distribution with 3

cells then reduces to

Pn(x1, x2) = n

[

(F̂n(x(1)) − x(1))
2

x(1)
+

(F̂n(x(2)) − F̂n(x(1)) − (x(2) − x(1)))
2

x(2) − x(1)

+
(F̂n(x(2)) − x(2)))

2

1 − x(2)

]

.

In particular, for each localisation at some (x(1), x(2)), the hypothesis of unifor-

mity induces a null hypothesis in terms of probability parameters of a multino-

mial distribution

π1 = x(1);π2 = x(2) − x(1);π3 = 1 − x(2). (5.19)

As with the AD statistic, the SSP3 statistic for testing the null hypothesis of

uniformity is the integral of Pn(x1, x2) w.r.t. the hypothesised distribution, i.e.

T3,n =

∫ 1

0

∫ 1

0

Pn(x1, x2)dx1dx2

= 2

∫ 1

0

((1 − x)2 + x2)
B2

n(x)

x(1 − x)
dx+

∫ 1

0

∫ 1

0

(Bn(x) − Bn(y))2

|x− y| dxdy

The latter equality follows from the attractive expression of the statistic in

(5.13).
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Both the AD and the SSP3 test statistics may be seen as V -statistics. Let Xi

(i = 1, . . . , n) be a sample of i.i.d. uniform variates on [0, 1], and let Bn(u,Xi) =√
n(I(Xi ≤ u) − u), so that Bn(x) = 1

n

∑n
i=1 Bn(x,Xi). The general form of a

V -statistic of degree 2 is

Vn(Ψ) =
1

n

n
∑

i=1

n
∑

j=1

Ψ(Xi,Xj), (5.20)

where Ψ denotes a symmetric nonzero kernel for which
∫ 1

0

∫ 1

0
Ψ(x, y)2dxdy <∞.

The kernel Ψ is symmetric if Ψ(x, y) = Ψ(y, x) for all x, y ∈ [0, 1]. Furthermore,

the kernel is assumed to be degenerate throughout this section, i.e.

∫ 1

0

Ψ(x, y)dy = 0 for every 0 ≤ x ≤ 1. (5.21)

From Gregory (1977) we know that the CvM statistic is obtained by taking the

kernel

ΨCvM(x, y) =
1

n

∫ 1

0

Bn(u, x)Bn(u, y)du, (5.22)

while the AD statistic is obtained by taking the kernel

ΨAD(x, y) =
1

n

∫ 1

0

Bn(u, x)Bn(u, y)

u(1 − u)
du. (5.23)

Our SSP3 statistic now corresponds to the kernel

ΦSSP3(x, y) =
1

n

∫ 1

0

∫ 1

0

[

B(u ∧ v, x)Bn(u ∧ v, y)
u ∧ v(1 − u ∧ v)

u ∨ v(1 − u ∧ v)
|u− v|

+
Bn(u ∨ v, x)Bn(u ∨ v, y)

u ∨ v(1 − u ∨ v)
u ∨ v(1 − u ∧ v)

|u− v|

− 2Bn(u ∧ v, x)Bn(u ∨ v, y) 1

|u− v|

]

dudv.

Indeed, taking the sum in (5.20) for the kernel ΦSSP3 we have

Vn(ΦSSP3) =
1

n

n
∑

i=1

n
∑

j=1

ΦSSP3(Xi,Xj)

=

∫ 1

0

∫ 1

0

(Bn(u ∧ v))2 − 2 (Bn(u ∧ v)) (Bn(u ∨ v)) + (Bn(u ∨ v))2
|u− v| dudv

+

∫ 1

0

∫ 1

0

(Bn(u ∧ v))2
|u− v|

(u ∨ v
u ∧ v − 1

)

+
(Bn(u ∨ v))2

|u− v|

(

1 − u ∧ v
1 − u ∨ v − 1

)

dudv

=

∫ 1

0

∫ 1

0

(Bn(u) − Bn(v))
2

|u− v| dudv +

∫ 1

0

∫ 1

0

Bn(u ∧ v)
u ∧ v +

Bn(u ∨ v)
1 − u ∨ v dudv

= T3,n.
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The kernels of the CvM and the AD statistics can be written in a more attractive

form. In particular,

ΨCvM = −x ∨ y +
1

2
(x2 + y2) +

1

3
(5.24)

ΨAD = −1 − ln(x ∨ y − xy). (5.25)

Note that both kernels ΨCvM and ΨAD are symmetric and degenerate. On the

other hand, we see that ΦSSP3 is a non-symmetric function in its arguments,

i.e. ΦSSP3(x, y) 6= ΦSSP3(y, x) if x 6= y. Further note that

Vn(ΦSSP3) = Vn(ΨSSP3), (5.26)

where

ΨSSP3(x, y) =
1

n

∫ 1

0

∫ 1

0

[

Bn(u ∧ v, x)Bn(u ∧ v, y)
u ∧ v(1 − u ∧ v)

u ∨ v(1 − u ∧ v)
|u− v|

+
Bn(u ∨ v, x)Bn(u ∨ v, y)

u ∨ v(1 − u ∨ v)
u ∨ v(1 − u ∧ v)

|u− v| (5.27)

− (Bn(u ∧ v, x)Bn(u ∨ v, y) + Bn(u ∨ v, x)Bn(u ∧ v, y)) 1

|u− v|

]

dudv.

The kernel ΨSSP3 is the symmetrised version of the kernel ΦSSP3. In the

following, without loss of generality, we will use ΨSSP3 instead of ΦSSP3. Fur-

thermore, this kernel has a more attractive formula which is given by the next

lemma. The lemma is proved in Appendix B.3.

Lemma 5.1 The kernel in (5.27) is equal to

ΨSSP3(x, y) = 2 (|x− y| ln |x− y| − (x ∨ y) ln(x ∨ y)
−((1 − x) ∨ (1 − y)) ln((1 − x) ∨ (1 − y))

+x ∨ y + (1 − x) ∨ (1 − y)

− ln(x ∨ y) − ln((1 − x) ∨ (1 − y))) − 5. (5.28)

In addition,

ΨSSP3(x, y) = ΨSSP3(y, x),

ΨSSP3(x, y) = ΨSSP3(1 − x, 1 − y),
∫ 1

0

ΨSSP3(x, y)dy = 0, 0 ≤ x ≤ 1. (5.29)

We also have the following two results.

Corollary 5.1 The kernel of the SSP3 statistic can be expressed as a linear

combination of the kernels of the CvM and the AD statistics, i.e.

ΨSSP3(x, y) = 2ΨAD(x, y) − 4ΨCvM(x, y) + Ω(x, y), (5.30)
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where Ω(x, y) is given in (B.9).

Proof. This results from combining Equations (5.25)-(5.24) and (B.5)-

(B.6). �

Corollary 5.2 The SSP3 statistic can be expressed as

T3,n = Vn(ΨSSP3) = 2Vn(ΨAD) − 4Vn(ΨCvM) + Vn(Ω). (5.31)

In addition Vn(Ω) = Kn ≥ 0 with probability 1.

Proof. The expression of T3,n follows immediately from (5.30). �

Asymptotic properties of V -statistics

We first give a result from Gregory (1977) on the limiting distribution of V -

statistics under contiguous alternatives. We will see that Gregory’s theorem is

not directly applicable to our V -statistic T3,n since the system of eigenvalues

and eigenfunctions for the kernel ΨSSP3 is not known. Nevertheless, we can find

its limiting distribution using an arbitrary system of orthonormal functions for

which the coefficients in the resulting expansion have to be computed explicitly.

Let {λk, k ≥ 0} and {ψk, k ≥ 0} denote the eigenvalues and the system

of orthonormal eigenfunctions of Ψ. Thus {ψk, k ≥ 0} and {λk, k ≥ 0} are

solutions of the integral equation

λψ(x) =

∫ 1

0

Ψ(x, y)ψ(y)dy (5.32)

and for every l,m = 0, . . ., ψl and ψm satisfy the orthonormality relation

∫ 1

0

ψl(x)ψm(x)dx = δlm, (5.33)

where δlm is the Kronecker delta.

This means that Ψ can be written as

Ψ(x, y) =

∞
∑

k=1

λkψk(x)ψk(y). (5.34)

Hence, the test statistic Vn(Ψ) can be orthogonally decomposed, resulting in

the expansion

Vn(Ψ) =
∞
∑

k=1

λk

(

1√
n

n
∑

i=1

ψk(Xi)

)2

(5.35)

=
1

n

∞
∑

k=1

λk

(

n
∑

i=1

ψk(Xi)

)2

. (5.36)
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Theorem 5.3 (Gregory, 1977)

Consider the sequence of alternative distributions Gn to the uniform null distri-

bution given by
dGn

x
= 1 +

1√
n
qn, (5.37)

where {qn} is some sequence of functions in L2[0, 1] converging to some function

q ∈ L2[0, 1], in which L2[0, 1] denotes the set of squared integrable functions on

[0, 1]. If in addition
∑∞

k=1 λk <∞ then for n→ ∞

Vn(Ψ)
d−→

∞
∑

k=1

λk(Zk + υk)2, (5.38)

where υk =
∫ 1

0
q(x)ψk(x)dx and Z1, Z2, . . . are i.i.d. standard normal variables.

Hence, under the null hypothesis we have, as n→ ∞

Vn(Ψ)
d−→

∞
∑

k=1

λkZ
2
k . (5.39)

Unfortunately, the eigenvalues λk and the eigenfunctions ψk of the kernel

ΨSSP3 are very hard to determine. Nevertheless, applying the following result

will provide an alternative expression of the limiting distribution of Vn(ΨSSP3).

The limiting null distribution is given in Theorem 5.4 and the limiting distri-

bution under the contiguous alternatives described in Theorem 5.3 is given in

Theorem 5.5.

Any kernel Ψ ∈ L2[0, 1]2 has an L2-expansion in terms of Legendre polyno-

mials, i.e.

Ψ(x, y) =

∞
∑

k=1

∞
∑

l=1

(2k + 1)(2l + 1)ΨklPk(x)Pl(y), (5.40)

with coefficients

Ψkl =

∫ 1

0

∫ 1

0

Ψ(x, y)Pk(x)Pl(y)dxdy, (5.41)

where
√

2k + 1Pk(x) are the orthonormal Legendre polynomials on [0, 1]. The

Legendre polynomials are defined in Appendix A, which also contains properties

that will be used in the proof of Lemma 5.2.

Let

V∞ =

∞
∑

k=1

∞
∑

l=1

√

(2k + 1)(2l + 1)ΨklZkZl, (5.42)

where Z1, Z2, . . . is a sequence of i.i.d. standard normal random variables.

Theorem 5.4 For a V -statistic based on a kernel as in (5.40), we have under

the null hypothesis, as n→ ∞,

Vn(Ψ)
d−→ V∞. (5.43)
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Moreover, as n→ ∞

sup
x

|P (Vn(Ψ) ≤ x) − P (V∞ ≤ x)| → 0. (5.44)

Proof. From (5.20) and (5.40) we have

Vn =

∞
∑

k=1

∞
∑

l=1

(2k + 1)(2l + 1)Ψkl

(

1√
n

n
∑

i=1

Pk(Xi)

)(

1√
n

n
∑

i=1

Pl(Xi)

)

. (5.45)

According to the CLT, the real-valued random variables of the form 1√
n

∑n
i=1 Pk(Xi)

in (5.45) weakly converge to normal variates, i.e. as n→ ∞,

√
2k + 1√
n

n
∑

i=1

Pk(Xi)
d−→ Zk, (5.46)

for all k ≥ 1, where the standard normal random variables Z1, Z2 . . . , are inde-

pendent by virtue of the orthogonality conditions of the Legendre polynomials.

From (5.45) and (5.46) and with the help of standard arguments we get (5.44).

�

Compared to the expansion in (5.35), the expansion in (5.45) is not or-

thonormal. This is the price we have to pay for not pursuing the solutions of

the integral equation in (5.32). However, we will see in the next section that by

applying the expansion in (5.45) to our SSP3 test statistic, all the coefficients

except Ψkk and Ψk,k+2 k = 1, 2, . . . vanish, resulting in an almost orthogonal

representation.

The next theorem gives the limiting distribution under contiguous alterna-

tives.

Theorem 5.5 Consider the sequence of alternative distributions described in

Theorem 5.3. If in addition
∑∞

k=1

∑∞
l=1 Ψkl <∞ then for n→ ∞

Vn(Ψ)
d−→

∞
∑

k=1

∞
∑

l=1

√

(2k + 1)(2l + 1)Ψkl(Zk + υk)(Zl + υl), (5.47)

where υk =
∫ 1

0
q(x)

√
2k + 1Pk(x)dx and Z1, Z2, . . . are i.i.d. standard normal

variables. Under the null hypothesis, this expression reduces to the first part of

Theorem 5.4.

Proof. The proof is similar to the proof of Theorem 5.3 (see Gregory,

1977). �

The asymptotic distribution of the SSP3 statistic

We use Theorem 5.4 and Theorem 5.5 to find the limiting distribution of T3,n =

Vn(ΨSSP3). In particular, we compute the coefficients Ψkl in (5.41) for Ψ =
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ΨSSP3 in (5.28). The results are summarised in the following lemma. The

proof is given in Appendix B.4.

Lemma 5.2 Consider the series

m
∑

k=1

akPk(x)Pk(y) + bk(Pk(x)Pk+2(y) + Pk+2(x)Pk(y)), (5.48)

where

a1 = 2.1

ak =
(4k + 7)(2k + 1)

k(k + 1)(2k + 3)
+

2(2k + 1)

(2k − 1)(2k + 3)
σk, k ≥ 2

bk = − 1

2k + 3
σk+2,

σk =
k−1
∑

p=2

1

p
, and σ1 = σ2 = 0.

The series (5.48) converges in L2([0, 1]2) to ΨSSP3(x, y). Moreover, this series

is majorised by a function of the type

(x(1 − x)y(1 − y))−1/4 ∈ L2([0, 1]2),

for all 0 < x, y < 1.

Theorem 5.6 The limiting distribution of the SSP3 statistic under contiguous

alternatives (5.37) is

V∞ =
∞
∑

k=1

(

αk(Zk + υk)2 + βk(Zk + υk)(Zk+2 + υk+2)
)

, (5.49)

where

α1 = 0.7

αk =
4k + 7

k(k + 1)(2k + 3)
+

2σk

(2k − 1)(2k + 3)
, k ≥ 2

βk = − 2σk+2

(2k + 3)
√

(2k + 1)(2k + 5)

Under the null hypothesis, the limiting distribution is obtained by setting υk =

0, k = 1, 2, . . . in (5.49).

Proof. The proof is given by applying Theorem 5.5. �

From now on we denote the limiting null distribution of the SSP3 statistic

by V H0∞ .
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Table 5.2: The approximate asymptotic quantiles for the SSP3 statistic (at n = ∞,

obtained from the expansion in terms of Legendre polynomials (5.49)) and

the empirical levels for n = 5, n = 20, n = 50 and n = 100. In the left

and right part of the table, the expansion (5.49)) is calculated up to the

100th (K=100) and the 10,000th term (K=10,000).

n K = 100 K = 10, 000

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

5 0.014 0.060 0.114 0.012 0.052 0.104

20 0.013 0.056 0.114 0.010 0.049 0.100

50 0.011 0.057 0.111 0.009 0.050 0.098

100 0.012 0.056 0.115 0.010 0.050 0.103

∞ 6.039 4.171 3.345 6.301 4.322 3.482

Empirical levels and convergence rate

In Section 5.2.4 we concluded that the asymptotic null distribution T3,∞ of

the SSP3 statistic is useful in small samples. The alternative expression for

that limiting distribution, V H0∞ , may also by useful to determine asymptotic

critical values. Since this expression is a sum with infinitely many terms, it is

impossible to simulate from that distribution. However, note that the weights

αk and βk in the expansion are decreasing in absolute value with increasing

k. This means that we can get an approximation of V H0∞ by truncating the

expansion at a certain order K. Here we will investigate which order is large

enough to obtain good approximations of V H0∞ . We calculate the quantiles of the

distribution simulated for the expansion with terms up to order K = 100 and

K = 10, 000 and compare them to the quantiles obtained from the simulated

T3,∞ based on Brownian bridges (see Table 5.1). In particular, we considered

10,000 simulation runs and the quantiles for α = 0.01, 0.05 and 0.1 are given

in Table 5.2. The quantiles for K = 100 are slightly smaller than the quantiles

obtained from the simulated T3,∞. Hence, we expect that order K = 100 is

still too small to obtain a good approximation of the limiting distribution. On

the other hand, the quantiles for K = 10, 000 are slightly larger for α = 0.01

and 0.05, but about equal for α = 0.1. Meanwhile, we assess whether using

those newly generated quantiles for the asymptotic null distribution is useful in

small samples. Therefore, the empirical levels are calculated for n = 5, 20, 50

and 100 (based on 10,000 simulation runs). It is clear that the quantiles for the

simulated V H0∞ with K = 100 are not appropriate since the empirical levels are

biased. On the other hand, the empirical values for K = 10, 000 are comparable

to the empirical levels obtained from the simulated T3,∞ in Table 5.1 and can

therefore reliably be used in small samples.
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5.3 Limiting behaviour of the SSPc test under con-

tiguous alternatives

In this section we construct a particular family of contiguous alternatives and

explore the behaviour of the SSP3 and SSP4 statistics under those alternatives.

Usually, the behaviour of a test statistic is expressed in terms of the power

characteristics. Instead of focusing directly on the power, we here examine the

expected value of the statistic, which is related to the power as explained by

Mudholkar et al. (1991). In particular, the authors reason that the expected

value of the p-value of a test statistic is 0.5 under the null hypothesis and will

decrease to zero as the distance of the true distribution from the null distribu-

tions increases. Since the expected value of the test statistic increases as the

p-value decreases, we may use the former as an indication of the power.

Suppose the observations x1, . . . , xn are measured on the unit interval [0, 1]

and are generated by the family of contiguous alternatives to uniformity

fn(x) = 1 +
1√
n
δ(x), (5.50)

where δ(x) is an arbitrary drift function that satisfies
∫ 1

0
δ(x)dx = 0, and for

which fn(x) is a proper density function for all n ≥ 1. The corresponding

distribution function of this family is given by

Fn(x) = x+
1√
n

∆(x), (5.51)

where ∆(x) =
∫ x

0
δ(u)du. Under this family of contiguous alternatives, we know

from Janssen (1995) that the empirical process

Bn(x) =
√
n(F̂n(x) − x),

which can be written as

√
n(F̂n(x) − Fn(x)) +

√
n(Fn(x) − x),

converges weakly to

B(x) +

∫ x

0

δ(u)du = B(x) + ∆(x),

where B(x) is a Brownian Bridge. Furthermore, we obtain that the process

Bn(x) − Bn(y) converges weakly under the family of alternatives (5.50) to

B(x) − B(y) +
∫ x

y
δ(u)du = B(x) − B(y) + ∆(y) − ∆(x). This implies that the
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limiting distribution for the SSPc test statistics under this family of contiguous

alternatives becomes

Tc,n
d−→ (c− 1)

∫ 1

0

ac(x)(B(x) + ∆(x))2dx

+

(

c− 1

2

)∫ 1

0

∫ 1

0

wc(x, y)(B(x) − B(y) + ∆(x) − ∆(y))2dxdy.

Hence, the limiting expected value of Tc,n is given by

E [Tc,n] = (c− 1)E [Ac,n] +

(

c− 1

2

)

E [Uc,n] (5.52)

−→ (c− 1)

∫ 1

0

ac(x)∆
2(x)dx

+

(

c− 1

2

)∫ 1

0

∫ 1

0

wc(x, y)(∆(x) − ∆(y))2dxdy. (5.53)

We similarly obtain the limiting expected values under this family of contiguous

alternatives for the CvM, AD and Watson statistics, as

E [Wn] −→
∫ 1

0

∆2(x)dx (5.54)

E [An] −→
∫ 1

0

∆2(x)

x(1 − x)
dx (5.55)

E [Un] −→
∫ 1

0

∫ 1

0

(∆(x) − ∆(y))2dxdy. (5.56)

We are now interested to see for which functions ∆(x) the limiting value in (5.53)

is large or in other words for which alternatives the SSPc test is most powerful.

Similarly we will examine the behaviour of the classical statistics through their

limiting values (5.54)-(5.56). Note that since we here only consider limiting

expected values of the statistics and not the complete limiting distributions,

this does not serve as a basis for comparing the power of the different statistics.

For such a comparison we refer to the simulation study in Section 5.6.

As an example we suppose the data come from the family of contiguous

alternatives (5.50) using a piecewise continuous function for ∆(x), which is

characterised by four parameters as

∆(x) =















0 0 ≤ x ≤ b− d
K
d (x− (b− d)) b− d ≤ x ≤ b

K − l(x− b) b ≤ x ≤ b+K/l

0 b+K/l ≤ x ≤ 1.

(5.57)

To observe how the distribution Fn(x) of (5.51) with ∆ given by (5.57) depends

on the four parameters, we show a graph of Fn(x) in panel (a) of Figure 5.1,
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Figure 5.1: The family of contiguous alternatives Fn(x) with n = 1 (panel (a)) and

the corresponding functions ∆(x) (panel (b)).

for the case of n = 1. When a sample is drawn from Fn(x), the deviation from

uniformity gets smaller for increasing sample size.

The deviation from uniformity starts at b− d and increases linearly to reach

its maximum in b. It then linearly decreases again until it vanishes at b+K/l.

The parameter d is called the run up since large values of d indicate a slow

increase towards the farthest deviated point. The parameter b is the location

of the largest deviation, while l is the decrease rate. The function ∆(x) is

shown in panel (b) of Figure 5.1, from which we see that K is the maximum

of ∆(x). Hence, K serves as the maximal deviation from uniformity. In fact,

for this family of alternatives, the KS test Dn = supx |Bn(x)| converges weakly

to supx |B(x) + ∆(x)| (Janssen, 1995) so that the limiting value of the KS test

is large when supx |∆(x)| = K is large. Also, the Kuiper test statistic for such

alternatives has large limiting expected value when supx supy |∆(x)−∆(y)| = K

is large. In the following, we keep the value of K fixed, so that the KS and the

Kuiper test have constant power throughout. While the power of the KS and

Kuiper test is fixed, we are interested in what the power properties are for the

SSP3 and SSP4 tests for varying b, d and l. We also look at the properties of

the classical CvM, AD and Watson.

In Figure 5.3 we show the functions ∆ which will be considered. In particular,

we set K = 0.3, and take the location b to be either 0.2, 0.4 or 0.6, corresponding

to panels (a), (b) and (c), respectively. The run up d and the decrease rate l are

varied. There is a limited range of possible values for d and l in order for Fn(x)

in (5.53) to be a valid distribution function on [0, 1]. The plots in Figure 5.3
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Figure 5.2: Some examples of the functions δ(x) where K = 0.3 and b = 0.4. In (a) l

is fixed and d takes different values. In (b) d is fixed and l takes different

values.

show the two functions (dotted and full) corresponding to the end points of the

range. In particular, when in panel (a) the location is equal to 0.2, the value

of d ranges between 0 and 0.2. A larger run up indicates an earlier start of the

LOF and the largest run up (d = 0.2) corresponds to a start at the begin point

of the interval. On the other hand, a zero run up corresponds to a start of the

LOF in the location b = 0.2. The decrease rate has always its largest possible

value at 1, which corresponds to the fastest possible decrease (see panel (a) of

Figure 5.1). The slowest decrease rate equals l = K
1−b , corresponding to a LOF

with end point in 1.

To get a better idea which of the previously described alternatives can be

interpreted as local alternatives, we show the function δ(x) for several values

of d and l in Figure 5.2. Since ∆ is piecewise linear, δ is piecewise constant.

In these plots we set K = 0.3 and b = 0.4. The left panel then shows δ(x)

with l fixed at 0.75 for three different values of d (0.1, 0.2, and 0.4). Clearly,

smaller values of d correspond to more localised deviations in density. The right

panel in Figure 5.2 shows how δ(x) varies with l, as we keep d fixed at 0.2.

We see that the parameter l has no large influence on the “local impression”of

the deviation. Therefore, for the family contiguous alternatives Fn(x) of (5.51)

with ∆ given by (5.57), we will refer to a local or global LOF when d is small

or large, respectively.

The expected values under these specific alternatives are computed by piece-

wise integration. Consider first the alternatives with LOF location at 0.2. The
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Figure 5.3: The functions ∆(x) in which, K = 0.3 and b = 0.2, 0.4 and 0.6 are plotted

in the panels (a), (b) and (c), respectively. The values of the parameters

d and l are specified in the panels.
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three panels of Figure 5.4 give the surface plots that represent the expected

values of the CvM, the AD and the Watson statistics, respectively, versus the

parameters d and l. The values for the CvM and AD statistics are high for small

values of l and large values of d, which generally corresponds to a global LOF

over the whole range of the interval. If the run up d decreases and the decrease

rate l increases, which corresponds to more localised LOFs, lower values of both

classical tests are expected. For the Watson test, in panel (c), a different situa-

tion is noticed. In particular, high values of Un are expected if l and d are either

both small or both large. On the other hand, we expect smaller values of Un

for the other two extreme combinations of the parameters d and l. Hence the

Watson test has high expected values for some local as well as for some global

alternatives.

The surfaces that represent the expected values of T3,n and T4,n versus d

and l are given in panels (e) and (f) of Figure 5.5, respectively. We also plot

the expected values of the terms Ac,n and Uc,n in (5.52) versus d and l. For

c = 3, they are in panels (a) and (c), respectively and for c = 4, they are in

panels (b) and (d), respectively. The surfaces for the terms A3,n and A4,n are

similar to the surface for the AD statistic. However, the former surfaces give

a slightly more flat impression, indicating that there is no large difference in

expected values over the range of the parameters. For global LOF, both U3,n

and U4,n have low expected values. From these results, we may conclude that

for c = 3 and 4, the terms Uc,n are more sensitive for local LOF, while the terms

Ac,n are most sensitive to global LOF.

The contribution of the individual terms to the values of the statistic Tc,n

differs between c = 3 and c = 4. In particular, for c = 3 the termAc,n dominates,

while for c = 4 the term Uc,n dominates. However, for both statistics we may

conclude that combining Ac,n and Uc,n results in increased sensitivity for local

alternatives as compared to the AD statistic.

The analogous plots for the locations b = 0.4 and b = 0.6 are presented in

Figures 5.6-5.9. In particular, the limiting expected values for the classical tests

under the specific alternatives in which b = 0.4 and b = 0.6 are shown in Figure

5.6 and 5.8, respectively, while those for the localised tests are in Figures 5.7

and 5.9, respectively.

While the surface for the Watson statistic remains fairly similar when the

location of the LOF is changed (see panels (c) of Figures 5.4, 5.6 and 5.8), the

surfaces of the CvM and the AD exhibit larger differences between values for

local and global LOF as the location increases (see panels (a) and (b) of Figures

5.4, 5.6 and 5.8). In particular, if the location is at the end of the interval, only

large values of d yield large expected values of the statistics. The CvM and

AD tests are indeed less powerful for deviations that occur near the end of the

interval, as can immediately be seen from the construction of their statistics.
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Figure 5.4: The values for the Wn (a), An (b), and Un (c) for contiguous alternatives

Fn(x) in which K = 0.3 and b = 0.2 as a function of the parameters d

and l.

136



0
0.03

0.4 0.05

0.04

0.5
0.6

0.05

0.1
d0.7

0.06

l 0.8 0.15

0.07

0.9

0.08

0.21

0.09

0.1

0
0.02

0.4 0.05
0.5

0.03

0.6 0.1

0.04

d0.7
l 0.8 0.15

0.05

0.9

0.06

0.21

0.07

(a) (b)

0

0.4 0.05

0.045

0.5

0.05

0.6 0.1
d0.7

0.055

l 0.8 0.15

0.06

0.9

0.065

0.21

0.07

0

0.4 0.05

-0.08

0.5
0.6 0.1

-0.04

d0.7
l 0.8 0.15

0

0.9
0.21

0.04

(c) (d)

0
0.12

0.4 0.05
0.5

0.14

0.6 0.1

0.16

d0.7
l

0.18

0.8 0.15

0.2

0.9
0.21

0.22

0.24

0

0.4

-0.1

0.05
0.5

0

0.6 0.1
d0.7

l

0.1

0.8 0.15
0.9

0.2

0.21

0.3

(e) (f)

Figure 5.5: The values for A3,n (a), U3,n (c), T3,n (e), A4,n (b), U4,n (d) and T4,n

(f) for contiguous alternatives Fn(x) in which K = 0.3 and b = 0.2 as a

function of the parameters d and l.
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For the Ac,n terms of the localised statistics, similar steeper surfaces are

observed (see panels (c) and (d) of Figures 5.5, 5.7 and 5.9). On the other

hand, the surfaces of the Uc,n terms give more or less the same impression for

the three different locations (see panel (c) and (d) of Figures 5.5, 5.7 and 5.9).

Hence these terms do not depend on the location of the LOF. The resulting

localised statistics show similar behaviour as well, indicating higher sensitivity

towards local alternatives. These results will be confirmed in the simulation

study in Section 5.6.

5.4 Data-driven Test

5.4.1 Construction of the test statistic

In Section 5.2.3 it has been shown that for every finite c ≥ 2 the SSPc test is

omnibus consistent. On the other hand, for finite sample sizes, it is expected

that the power depends on the choice of c. In particular, for some alternatives

a small c may result in a high power, while for other alternatives an SSPc test

with a large c may perform better. Since the true distribution function F is

unknown to the user, the choice of c is arbitrary, at the risk of selecting a low

power test. For this reason, we propose a method to select an appropriate value

for c based on the observations in the sample. By means of a particular selection

rule, a SSP size Cn is obtained. The data-driven test statistic is then defined

as TCn,n.

Before we continue with the specification of the selection rule, we remark that

our data-driven test differs conceptually from many other data-driven GOF tests

in the literature. Ledwina (1994) introduced the data-driven methodology for

selecting the number of components in Neyman’s smooth GOF statistics, which

is described in Section 3.3.4. Until then, smooth tests were always based on

a finitely truncated series of components, resulting in two drawbacks. First, if

too many components are considered, there is the risk of power loss under low

order alternatives (dilution effect). Second, a finite number of components does

not result in an omnibus consistent test. Ledwina (1994) made the data-driven

test omnibus consistent by allowing the maximal selectable order to converge to

infinity as the sample size goes to infinity. This is exactly the major difference

between her and our approach: we do not need the extension to the data-driven

version so as to make the SSPc test omnibus consistent, because in Theorem

5.2 it has been shown that the SSPc test is omnibus consistent for any c ≥ 2.

Moreover, as we will show below, we may restrict the sample space of Cn to

some finite space Γ of permissible SSP sizes.

Originally, Ledwina (1994) used Schwarz’s selection rule (Schwarz, 1978).

Later, a computationally simpler rule was proposed (Kallenberg & Ledwina,
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Figure 5.6: The values for the Wn (a), An (b) and Un (c) for contiguous alternatives

Fn(x) in which K = 0.3 and b = 0.4 as a function of the parameters d

and l.
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Figure 5.7: The values for A3,n (a), U3,n (c), T3,n (e), A4,n (b), U4,n (d) and T4,n

(f) for contiguous alternatives Fn(x) in which K = 0.3 and b = 0.4 as a

function of the parameters d and l.
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Figure 5.8: The values for the Wn (a), An (b) and Un (c) for contiguous alternatives

Fn(x) in which K = 0.3 and b = 0.6 as a function of the parameters d

and l.
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Figure 5.9: The values for A3,n (a), U3,n (c), T3,n (e), A4,n (b), U4,n (d) and T4,n

(f) for contiguous alternatives Fn(x) in which K = 0.3 and b = 0.6 as a

function of the parameters d and l.

142



1997), which is though still referred to as Schwarz’s Bayesian Information Cri-

terion (BIC). We propose a class of selection rules, indexed by the penalty an

which is a non-decreasing sequence of real positive values. Let Γ denote the set

of permissible SSP sizes, i.e. the selection rule will choose an appropriate SSP

size among the elements of Γ. The class of selection rules which selects the SSP

size Cn is given by

Cn = ArgMaxc∈Γ{Tc,n − 2(c− 1) ln an}. (5.58)

Although the form of this selection rule resembles the BIC (an = n1/2) and the

AIC (an = e) very closely, it has no sound theoretical justification, for Tc,n is

not a log-likelihood, as it is in AIC and BIC, nor a score statistic as it is in

the modified BIC of Kallenberg and Ledwina (1997). Apart from the choices

an = n1/2 and an = e, we also consider a double logarithmic penalty term (LL),

an = lnn. We will refer to the data-driven versions as SSP-AIC, SSP-BIC and

SSP-LL, depending on the penalty used.

From the simulation study (see below) and from personal experience, we

propose to take Γ = {2, 3, 4}, or at most Γ = {2, 3, 4, 5}. With these choices

good powers have been observed.

5.4.2 Asymptotic theory

In this section we present some asymptotic distribution theory. Proofs are

presented in Appendix B.5.

Theorem 5.7 Let cm denote the minimal SSP size, i.e. cm = minc Γ. Suppose

that an → ∞ as n→ ∞. Then, under H0,

P [Cn = cm] → 1

as n→ ∞.

Based on this result, the asymptotic null distribution of the data-driven test

statistic TCn,n is easily obtained.

Theorem 5.8 Let cm = minc Γ. Suppose that an → ∞ as n → ∞. Then, the

asymptotic null distribution of TCn,n is given by

TCn,n
d−→ (cm − 1)

∫ 1

0

acm
(x)B2(x)dx+

(

cm − 1

2

)∫ 1

0

∫ 1

0

wcm
(x, y) (B(x) − B(y))

2
dxdy.
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Theorem 5.9 TCn,n is consistent against any fixed alternative.

Proof. By the omnibus consistency of the SSPc test for every c ∈ Γ

(Theorem 5.2), the omnibus consistency of the data-driven test based on TCn,n

follows immediately. �

5.5 Examples

In Chapter 2 we have introduced the simple one-sample GOF problem through

some real data examples. In this section, we apply the SSPc tests for c = 2, 3

and 4 and the data-driven SSP tests using the AIC, BIC and LL criteria to the

linear data examples introduced in Section 2.1. We will denote the order chosen

by the AIC, BIC and LL criteria as CAIC, CBIC and CLL, respectively.

For comparison reasons, the classical KS, CvM and data-driven smooth tests

(see Chapter 3) are applied as well. The data-driven smooth test is denoted by

SK , where K is the order chosen by the BIC criterion. Finally, the ZA test

described in Section 5.6 below is also included. We determine all p-values using

100,000 simulation runs, so as to make them comparable.

5.5.1 Lottery data

The p-values for all GOF tests for linear uniformity applied to the Lottery

data are presented in the first column of Table 5.3. None of the tests give evi-

dence against the null hypothesis. Note that the BIC selection criterion of the

data-driven smooth test selects order K = 2. The smallest p-value (0.304) is

registered for the data-driven smooth test. All other p-values are larger than

0.5. Applying the SSP tests is particularly useful for this data since a deviation

from uniformity would give some interesting information about how the selec-

tion of the lottery numbers deviates from uniformity. In particular, a global

deviation from uniformity for the Lottery data would imply that a large part of

the possible lottery numbers are not selected from a uniform distribution, while

a local deviation would refer to only some of the lottery numbers that cause the

non-uniformity. The data-driven SSPc test chooses partition size c = 2 for each

of the different selection criteria. The largest p-values are those for the Zhang

test, the SSP3 and the SSP4 tests. Hence, these results suggest that no local

deviations from uniformity are present. From this discussion we accept the null

hypothesis of uniformity and conclude that the lottery numbers are distributed

according to a uniform distribution.

Suppose now the numbers were systematically changed in the sense that 400

is subtracted from all numbers between 800 and 875. The GOF test results for

the changed Lottery data are shown in the second column of Table 5.3. This

induced deviation from uniformity is not detected by the KS, CvM, AD (which
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Table 5.3: GOF test results (p-values and order selections) for the Lottery and the

Lew data.

Lottery changed Lottery original Lew subsample Lew

KS 0.689 0.120 0.011 0.142

CvM 0.509 0.134 0.009 0.123

ZA 0.896 0.561 <0.001 0.045

SK 0.304 0.472 <0.001 0.016

K 2 1 3 2

SSP2 0.624 0.186 <0.001 0.040

SSP3 0.781 0.057 <0.001 0.033

SSP4 0.863 0.02 <0.001 0.036

SSP-AIC 0.624 0.02 <0.001 0.034

CAIC 2 4 4 4

SSP-BIC 0.624 0.186 <0.001 0.042

CBIC 2 4 4 2

SSP-LL 0.624 0.005 <0.001 0.029

CLL 2 4 4 4

is the SSP2 test), the data-driven smooth test and ZA test. The SSP3 test

shows a borderline result, while the SSP4 test is highly significant at the 5%

level. The data-driven SSP-AIC and SSP-LL also show significant results. Since

the corresponding selection criteria choose c = 4, this clearly indicates a local

deviation from uniformity.

5.5.2 Lew data

Regarding the Lew data, the results of the GOF tests for testing whether the

beam deflection observations come from a uniform distribution on [-580,301] are

in the second column of Table 5.3. Here, all tests give clear evidence against

the null hypothesis. The KS test and the CvM test have the largest p-values.

The data-driven smooth test selected the components in the score test up to

the third order, meaning that the deviation from uniformity is related to the

first three order moments. Looking at the individual components (V 2
1 = 4.450,

V 2
2 = 10.551 and V 2

3 = 35.062), it is seen that the first and the second order

component form only a small part of the total value of the statistic. From

this we may conclude that the true distribution for the beam deflection points

deviates from uniformity only with respect to the third moment, which in turn

is related to the skewness.
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Every data-driven SSPc test chooses SSP size four. This means that the

deviation from uniformity is more detectable in small subintervals than in more

global intervals. Note that from the individual SSP2 test a global LOF is con-

cluded to be present as well.

Consider now the small (n = 20) randomly selected subsample of the Lew

data. The last column of Table 5.3 lists the corresponding p-values, which

expectedly are higher that those of the full sample. In fact, the KS and the

CvM tests are not significant anymore at the 5% level. The Zhang test and the

data-driven SSP-BIC test have p-values which are just below the significance

level of 5%. Here, the BIC criterion chooses SSP size two, which indicates

a global LOF. The data-driven smooth test has again the smallest p-value,

followed by the data-driven SSP-LL test. For the smooth test, components up

to the second order are selected. Hence, only deviations in the first two moments

are responsible for the LOF. The SSP-LL test selected SSP size four indicating

again a local LOF. In Chapter 6 we will demonstrate with our new graphical

tool where these deviations from uniformity are located.

For this example we knew that the original beam deflection data was not at

all uniformly distributed. On the contrary it had a bimodal pattern. Here, we

have shown that this local deviation from uniformity can already be seen from

the data-driven smooth test and the data-driven localised SSPc test in a small

subsample of size 20.

We here also include the results for the circular Birth time data. This is

done to illustrate the usefulness of appropriate circular SSPc tests, which are

proposed in Section 5.8.

5.5.3 Birth time data

None of the classical tests indicated a significant difference from uniformity

for the Birth time data. The p-values range from 0.283 for the data-driven

smooth test of Bogdan to 0.632 for the Watson statistic (see Examples 3.3.5

and 3.5.2). In Example 3.3.2, we have applied Neyman’s smooth test to the

Birth time data and demonstrated that the conclusions are not invariant to the

chosen origin. For the linear SSPc tests, the results are not origin-invariant

either. Nevertheless, we here state the results for the origin chosen at midnight

in order to compare them with the results for the appropriate circular SSPc

in Section 5.8. The p-values for all the data-driven linear SSPc tests where

Γ = {2, 3, 4} equal 0.686, where all selection criteria (AIC, BIC and LL) chose

c = 2. The p-value is equal for all data-driven SSP tests since most (± 85%)

of the bootstrap samples choose the same SSP size. This p-value is the largest

among all tests. The p-values for the separate SSPc tests are 0.686, 0.648 and

0.367 for c = 2, 3 and 4, respectively. Note that the p-values decrease as c
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increases, meaning that over the whole range (c = 2) the fit is accepted to be

uniform. In smaller intervals (c = 4), the conclusion is similar but the p-value is

only half as large. Nevertheless, all the data-driven versions choose c = 2. This

indicates no deviation from linear uniformity if the origin is at 12am. However,

taking any other origin leads to different p-values and may lead to different

conclusions. In Section 5.8, we will present the results for the circular version

of the SSPc tests. The conclusions for the circular SSP tests will not depend on

the choice of the origin.

5.6 Simulation study

In the previous sections it has been shown that the SSPc test and its data-

driven versions are omnibus consistent (Theorems 5.2 and 5.9), which is an

asymptotic property. In practice, however, the finite power characteristics are

of more importance. In this section we give the results of a Monte Carlo study

in which we investigate the power of the SSPc tests (c = 2, 3, 4) and their data-

driven versions (Γ = {2, 3, 4}) for sample sizes 20 and 50. The computational

formulae of Section 5.2.2 are used. For comparison purposes we also include

some traditional GOF tests that are described in Chapter 3. In particular, we

consider the CvM test, the KS test and the data-driven Neyman smooth test.

Furthermore, Zhang’s (2002) test based on his ZA statistic (ZA) is included. The

ZA test statistic is an integral statistic of the form (5.3) with Pn(x) the localised

likelihood ratio statistic and with dw(x) = F̂−1
n (x)(1 − F̂n(x))−1dF̂n(x). The

computational form is given by

ZA = −
n
∑

i=1

[

ln(X(i))

n− i+ 0.5
+

ln(1 −X(i))

i− 0.5

]

.

Zhang reports in his simulation study that ZA has generally good power char-

acteristics. Finally, note that since the AD test is a special case of the family of

the SSPc tests (c = 2), it is already included in the study.

We have performed simulations under two different types of alternatives to

the null hypothesis of standard normality. The first type is a normal distribution

with mean µ and variance σ2. This simple alternative is mainly included to

assess the sensitivity of the SSPc tests to changes in mean µ when the variance

is kept constant at its correct value σ2 = 1, and the sensitivity to changes in σ2

when the mean is kept at its hypothesised value µ = 0. For the former series of

experiments, µ is varied between 0 and 1. In the latter series, σ is varied from

1 to 2.2.

In Section 5.2 we have argued that the form of the SSPc statistic suggests

that with increasing SSP size c, it may become more and more sensitive to
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deviations from F0 in small intervals. As an example of such alternatives, we

have included a family of mixtures of normal distributions. In particular, this

mixture has density

fδ,γ(x) = (1 − γ)φ(x; 0, 1) + γφ(x; δ, 0.01), (5.59)

where φ(x, µ, σ) is the density of a normal distribution with mean µ and standard

deviation σ. Note that (δ, γ) = (0, 0) results in the hypothesised standard

normal distribution. This mixture may be interpreted as a standard normal

distribution which is contaminated with another normal distribution with small

standard deviation, which is therefore clearly “localised”around its mean δ. We

will refer to this alternative as the contaminated normal distribution.

All powers are estimated based on 10,000 Monte Carlo simulation runs. Tests

are performed at the 5% level of significance. To make all powers comparable, we

have used simulated critical points for all tests (based on 50,000 simulation runs).

The results are shown in Figures 5.10 (normal) and 5.11 (contaminated normal).

To avoid the figures to become too messy, we have limited the presentation of

the results of the data-driven SSP test to the one with the largest power.

The results for the normal alternatives with constant variance are in the

upper panels of Figure 5.10 (the left panel corresponds to n = 20, the right to

n = 50). It can be seen that all tests have quite similar powers. However, it

is important to note that there is a small loss in power when the SSP size c is

increased from c = 2 to c = 3 and further to c = 4. The lower panels represent

the situation where the mean is fixed at µ = 0. We see that now the opposite

is observed: the power clearly increases with increasing SSP size. These two

series of simple normal alternatives demonstrate the importance of the choice

of the SSP size. From the three data-driven SSP tests, it is the SSP-LL test

that outperforms the other two. In the fixed σ2 series, this test has powers

in between those of the SSP2 and SSP3 test, and in the fixed µ simulations,

the data-driven test is almost indistinguishable from the SSP4 test. Further, it

is interesting to note that overall the best powers are obtained with the data-

driven smooth test (referred to as KL in the legend of Figures 5.10 and 5.11)

when n = 20, but at the larger sample size (n = 50) the SSP4 test sometimes

performs better. Zhang’s ZA test always has powers in between those of the

SSP2 and SSP4 tests. Finally, note that the traditional KS and CvM tests have

considerably lower powers for detecting variance misspecifications.

Since all tests are very sensitive to changes in the mean, we have shifted the

simulated data from the contaminated normal alternatives by subtracting the

true mean, which is equal to γδ.

The results of the simulation study for the contaminated normal distribution

are presented in Figure 5.11 for δ = 1 (top), δ = 1.5 (middle) and δ = 2 (bot-

tom). From these plots, which show the power as a function of γ, we generally
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(a) (b)

(c) (d)

Figure 5.10: Estimated power curves for the normal distribution alternative. The

legend is only shown in the first plot
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Figure 5.11: Estimated power curves for the contaminated normal distribution al-

ternative. The legend is only shown in the first plot
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Figure 5.12: QQ-plots of the contaminated normal distributions (δ, γ) = (1, 0.2)

(left) and (δ, γ) = (2, 0.2) (right) versus the standard normal distri-

bution.

conclude that the power of the SSPc tests increases as the SSP size c increases.

Furthermore, it is seen that the data-driven version with the LL penalty suc-

ceeds to select an appropriate value for c. In particular, the behaviour of the

SSP-LL test is almost exactly equal to that of the SSP4 test. The powers of

the KS, CvM and ZA tests are never as large as the powers of the new SSP3

and SSP4 tests. Among all tests included, the data-driven smooth test (KL)

shows the highest powers when δ = 2 for sample size n = 20, but it is outper-

formed by the SSPc tests for the larger sample size n = 50. The same sample

size effect on the smooth test is also seen for δ = 1.5 and δ = 1. Furthermore,

as δ decreases from 2 over 1.5 to 1, the smooth test loses power compared to

the SSPc tests. A small absolute value of δ means that the contamination is

better “hidden” in the probability mass of the standard normal compound of

the mixture. This is illustrated in Figure 5.12, where we show normal QQ-plots

for the contaminated normal alternatives with (δ, γ) = (1, 0.2) (left) and with

(δ, γ) = (2, 0.2) (right). The QQ-plot in case of (δ, γ) = (2, 0.2) shows a more

“local” departure from standard normality in the sense that the deviation is

more concentrated in a small interval of the support (the peak at the location

of the LOF is larger compared to the global deviation from the straight line).

With (δ, γ) = (1, 0.2) the departure is seen in a large interval (the peak at the

LOF is relatively smaller).

These observations confirm our intuitive interpretation of the weight func-

tions in the SSPc statistic (Section 5.2).

In order to see whether the conclusions from the discussion in Section 5.3
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about the limiting expected values of the SSPc tests are in accordance with

the power results above, we compare the two families of alternatives considered

in both discussions. In particular, we draw PP-plots comparing some alterna-

tive distributions to the null distribution as considered in the above simulation

study. We then compare these plots to the plot of Fn(x) in (5.51) with ∆

given by (5.57) in panel (a) of Figure 5.1. Note that the latter plot can anal-

ogously be interpreted as a PP-plot since the null distribution is considered to

be uniform on [0, 1]. Recall that small values of d in δ correspond to local de-

viations from uniformity. These local deviations are recognised in the PP-plot

as a steep, almost vertical line at location b. The PP-plots now for the distri-

butions φ(x; 0, 1.5), φ(x; 0.5, 1), f1,0.2(x) and f2,0.2(x) are shown in Figure 5.13,

panels (a), (b), (c) and (d), respectively. The probabilities of the distributions

φ(x; 0.5, 1) and φ(x; 0, 1.5) are plotted versus the standard normal probabilities,

while those of the contaminated normal distributions are plotted versus the nor-

mal probabilities with mean δγ and standard deviation 1. In the PP-plots of the

first two alternatives, which represent a shift in location and scale respectively,

no steep vertical line is recognised. These alternatives are examples of a global

LOF. The PP-plot of a “shift in mean” alternative is comparable to that of an

alternative Fn(x) to uniformity where d is large and l is small, even though the

curve on the former PP-plot is smoother and below the diagonal. A PP-plot for

a normal alternative with mean at -0.5 would yield the same curve but reflected

around the diagonal line. For such alternatives, all tests had similar power.

The alternative which represents the shift in scale in panel (b) of Figure 5.13

does not correspond to a member of the family Fn(x). The PP-plots of the two

contaminated normal alternatives correspond to local alternatives in the family

Fn(x). Indeed, at the location of the LOF, the PP-plot shows a vertical line.

For such alternatives, the expected values of the statistics were relatively high

for the SSP4 test, while the SSP3 test also had a reasonably high expected value

due to the Uc,n term. Generally, we may conclude that the intuition based on

the asymptotic results in Section 5.3 is confirmed by the simulation study, in

the sense that the SSPc tests are most effective in case of local deviation.

5.7 SSPc test for composite null hypothesis

An interesting direction of research is to investigate the properties of the tests in

the case of a composite null hypothesis. In particular, we want to test whether

the true F belongs to some hypothesised family of distributions with unknown

parameters. Similarly to all other tests, the same SSPc statistic that was used

for the simple null hypothesis, is also used for testing the composite null hy-

pothesis. The only adaptation is the replacement of F0(x) by F0(x; β̂), where
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Figure 5.13: PP-plots for the distributions φ(x; 0.5, 1) (a), φ(x; 0, 1.5) (b) and

fδ,γ(x), with (δ, γ) equal to (1, 0.2) (c) and (2, 0.2)(d).
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β̂ is an estimator of β. An important consequence is that the (asymptotic)

null distribution changes and often becomes more complicated. We have briefly

mentioned this problem for general EDF GOF tests in Section 3.4. Here we

will give a more elaborate discussion on EDF tests in the presence of nuisance

parameters. Note that the SSPc family of test statistics belongs to the EDF

class since its expression is also in terms of the empirical process Bn. Therefore,

it is important to see how Bn behaves under nuisance parameter estimation.

We again make the dependence on the p-dimensional parameter β more ex-

plicit by using the notations Bn(x;β) and B(x,β) for the empirical and Gaussian

processes, respectively. The covariance function of the Gaussian process is as

before given by

Cov [B(x,β),B(y,β)] = F0(x ∧ y,β) − F0(x,β)F0(y,β). (5.60)

When the nuisance parameters are estimated, the estimators are plugged in into

the empirical process, resulting in the estimated empirical process, say

B̂n(x) = Bn(x, β̂). (5.61)

To find the asymptotic behaviour of B̂n(x) some assumptions on the distribution

F0 and on the estimation method are required. The estimator β̂ has to be a

locally asymptotically linear estimator, denoted by β̂n, which means that the

following expansion holds,

β̂n − β =
1

n

n
∑

i=1

Υ(Xi,β) + oP (1), (5.62)

where ΥT = (Υ1, . . . ,Υp) is a continuously differentiable vector function IRp →
IRp and has E

[

Υ̇2
j

]

<∞ and E
[

Υ2
j

]

<∞ (Υ̇ denotes the first derivative of Υ).

This property holds for many well known estimators, e.g. maximum likelihood

estimators and method of moment estimators. The following theorem, and its

proof, can be found in e.g. van der Vaart (1998).

Theorem 5.10 Given a locally asymptotically linear estimator β̂n, the esti-

mated empirical process B̂n converges weakly to a zero mean Gaussian process

B̂ with covariance function

Cov
[

B̂(x), B̂(y)
]

= F0(x ∧ y,β) − F0(x,β)F0(y,β)

−ΛT (x,β)g(y,β) − ΛT (y,β)g(x,β)

+gT (x,β)ΣΥg(y,β), (5.63)

where Λ(x,β) =
∫ x

−∞ Υ(z,β)dF0(z,β), g(x,β) = ∂
∂β
F0(x,β), and ΣΥ =

Var [Υ(X,β)].
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Let T̂c,n denote the statistic given by (5.13) where the empirical process

Bn(x) is replaced by B̂n(x). Then the asymptotic null distribution of this SSPc

statistic for composite null hypothesis follows from the preceding discussion and

from (5.18), i.e.

T̂c,n
d−→ T̂c = (c− 1)

∫ 1

0

ac(x)B̂
2(x)dx

+

(

c− 1

2

)∫ 1

0

∫ 1

0

wc(x, y)(B̂(x) − B̂(y))2dxdy. (5.64)

Note that the SSPc test for a composite null hypothesis is not distribution-

free since its limit distribution (5.64) depends on the unknown β and on the

hypothesised distribution F0. We therefore prefer to use the parametric boot-

strap to approximate the null distribution of T̂c,n. Although the parametric

bootstrap procedure is already used in a similar context in Section 3.4, we here

explicitly mention the results concerning the asymptotic equivalence between

the empirical process and its bootstrapped analogue.

The parametric bootstrap procedure consists in generating i.i.d. random

variables from F (x, β̂), say X∗
1 , . . . ,X

∗
n. Let β̂

∗
be the estimator of the parame-

ter vector β in the bootstrap sample. For each bootstrap sample, the empirical

process is given by

Bn(x; β̂
∗
) =

√
n(F̂ ∗

n(x) − F (x; β̂
∗
)), (5.65)

where F̂ ∗
n(x) denotes the EDF of X∗

1 , . . . ,X
∗
n. Many bootstrap samples are

generated, resulting in many empirical process values. These simulated process

values then serve as an approximation to the distribution of Bn(x; β̂) under the

null hypothesis. This procedure is considered sensible since it is proved by Babu

and Rao (2004) and Stute, Gonzáles-Manteiga, and Presedo-Quindimil (1993)

that the distribution of the bootstrapped empirical process Bn(x; β̂
∗
), weakly

converges to the same Gaussian process B̂(x) as the original empirical process

Bn(x; β̂). As mentioned in Section 3.4.1, the process B̂ becomes independent of

the parameter β when F0 is a location-scale invariant distribution. Since the

dependence on F0 remains, one single series of simulations for each sample size

with arbitrary chosen β is sufficient.

Similarly as in the simple case, a data-driven version of the SSP test can

be constructed and its distribution under the null hypothesis can be obtained

using the parametric bootstrap.

5.7.1 Examples

In Chapter 2 we also considered three linear data examples to introduce the com-

posite one-sample GOF problem. We now apply the SSPc tests for c = 2, 3, 4,

the SSP-AIC, SSP-BIC and SSP-LL to those examples to test for normality.
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The classical KS, the CvM, the data-driven smooth tests for composite nor-

mality (see Chapter 3) and the ZA test are considered as well. Note that the

latter can be extended to a test for composite normality, similarly to the SSPc

test. We determine all p-values using 100,000 parametric bootstrap samples.

Since the normal distribution belongs to a location-scale family, only the sam-

ple size is crucial in the bootstrap simulations. In particular, the parameters

of the hypothesised normal distribution have no effect on the bootstrapped null

distribution and can therefore be chosen arbitrarily. We choose to generate

bootstrap samples from the standard normal distribution to obtain the null

distribution for each of the test statistics.

Chemical concentration data

For the PCB data, the different GOF tests for normality give different results,

as can be seen in the first column of Table 5.4. First, the data-driven smooth

test (SK) and the CvM test are significant at the 5% level. Further, the KS test

and the SSP-BIC test give borderline p-values. Finally, the Zhang, the SSP-LL

and the SSP-AIC are clearly not significant at the 5% level. The BIC criterion

for the data-driven smooth test chooses order K = 3, which implies that the

significant result is due to the third order moment. This is consistent with the

skewed impression of the data as was apparent in Section 2.1.3. Each criterion

for the data-driven SSPc test selected SSP size c = 2. Form their non-significant

p-values, we may conclude that there is neither a global nor a local deviation

from normality.

Fastfood data

For the Fastfood data, we again use the same GOF tests to check whether the

service-times are normally distributed. The results are in the second column

of Table 5.4. Here, the Kuiper test has the smallest p-value, followed by the

Zhang test. At the 5% level, the data-driven smooth test is significant as well

and informs us that the deviation is possibly due to the skewness. This again

confirms the skewed impression from the explorative plots in Section 2.1.4.

For this example it is seen that the choice of the SSP size is important to

obtain significant results. Indeed, the SSP4 test is not significant. All selection

criteria choose SSP size c = 2, which seems to indicate that the LOF is located

over the whole range of the sample size. However, from the simulation study

in Section 5.6 we know that the choice of c = 2 also tends to occur in case of

local deviations situated close to the mode (while higher values of c occur for

local deviations away from the mode). It would be reasonable to conclude that

such a situation is present here, since the detrended PP-plot also localised the

deviation from normality in the mode of the distribution (see Section 2.1.4).
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Table 5.4: GOF test results (p-values and order selections) for the PCB, the Fastfood

and the Old Faithful Geyser (OFG) data.

PCB Fastfood original OFG subsample OFG

KS 0.052 0.004 <0.001 0.069

CvM 0.036 0.03 <0.001 0.028

ZA 0.106 0.019 <0.001 0.07

SK 0.035 0.022 0.001 0.03

K 3 3 10 3

SSP2 0.05 0.036 <0.001 0.024

SSP3 0.055 0.044 <0.001 0.022

SSP4 0.058 0.053 <0.001 0.019

SSP-AIC 0.209 0.037 <0.001 0.024

CAIC 2 2 3 2

SSP-BIC 0.055 0.036 <0.001 0.024

CBIC 2 2 3 2

SSP-LL 0.124 0.036 <0.001 0.024

CLL 2 2 3 2

Old faithful geyser data

Finally, consider the Old Faithful geyser data. For the original eruption times,

all GOF tests give extremely significant p-values (<0.001, see Table 5.4, third

column), which is an indication that the normal distribution is not appropriate.

Let us see how these results carry over to the small random subsample of size

20. The results in the last column in Table 5.4, are obviously less striking.

Moreover, the Zhang and the KS test show no difference from normality at the

5% significance level. The CvM test does reject the null hypothesis, but here we

have no information about how the distribution deviates from normality. The

data-driven smooth and the data-driven SSP tests, on the other hand, reveal

interesting information about the true distribution. In particular, the data-

driven smooth test selected order K = 3, which means that in the subsample a

deviation from normality with respect to the skewness is present. The selection

criteria for the data-driven SSP tests each chose c = 2, which implies that the

LOF is over the whole range. Note that for these data-driven GOF tests the

selected order is smaller for the subset than for the original data.
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5.8 The circular SSPc test

5.8.1 Construction of the test statistics

In this section we extend the Rothman test statistic of (5.5) with w(x;x0) =

F0(x;x0), i.e.

Rn =
1

2π

∫ 2π

0

∫ 2π+x0

x0

Pn(x;x0)dF0(x;x0)dx0, (5.66)

to the class of localised circular SSPc tests by considering partitions of general

size c. Note that, as in the linear case, the superscript w is omitted since w

is always chosen equal to F0. The class of circular SSPc statistics can also be

derived from the class of linear SSPc statistics. In fact, we make the class of

linear SSPc statistics origin-invariant by taking the integral over all possible

origins.

We consider X1, . . . ,Xn to be a sample of i.i.d. observations with circular

distribution F0(x), 0 ≤ x ≤ 2π. Note that here the origin is at zero. When we

choose to take the origin at x0, we make this explicit in the notation. The circle

is denoted by Sx0
= arc(x0, x0 +2π) and the set of c− 1 dividing points on that

circle is given by Dx0
c = {x1, . . . , xc−1} ∈ Sx0

. The ordered elements of Dx0
c are

x0 < x(1) ≤ . . . ≤ x(c−1) < x0 + 2π. Similarly as in the linear case, every Dx0
c

induces a multinomial distribution with probabilities

π1 = F0(x(1);x0);π2 = F0(x(2);x0) − F0(x(1);x0); . . . ;πc = 1 − F0(x(c−1);x0).

(5.67)

Let P x0
c,n(Dx0

c ) denote the Pearson χ2 statistic for testing for a multinomial

distribution with probabilities (5.67) induced by the partition Dx0
c of size c, i.e.

P x0
c,n(Dx0

c ) = P x0
c,n(x1, . . . , xc−1)

= n
c
∑

i=1

(F̂n(x(i);x0) − F̂n(x(i−1);x0) − (F0(x(i);x0) − F0(x(i−1);x0)))
2

F0(x(i);x0) − F0(x(i−1);x0)
,

where x(0) ≡ x0 and x(c) ≡ 2π+x0 coincide on the circle. From (3.64), we have

that F̂n(x(0);x0) = F0(x(0);x0) = 0 and F̂n(x(c);x0) = F0(x(c);x0) = 1. We

propose the class of test statistics

Rc,n =

∫ 2π

0

∫

Sx0

. . .

∫

Sx0

P x0
c,n(x1, . . . , xc−1)dF0(x1;x0) . . . dF0(xc−1;x0)dx0.

(5.68)

for which the Rothman test statistic is a special case. In particular, Rothman’s

statistic Rn = R2,n considers partitions of two cells. Alternatively, the statistic
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(5.68) can be viewed as an extension of the linear SSPc statistic to an origin-

invariant SSPc statistic. This can be seen by rewriting Rc,n as a function of

T x0
c,n =

∫

Sx0

. . .

∫

Sx0

P x0
c,n(x1, . . . , xc−1)dF0(x1;x0) . . . dF0(xc−1;x0),

where the superscript x0 indicates the dependence on the origin. With this

notation we get

Rc,n =

∫ 2π

0

T x0
c,ndx0. (5.69)

This relation is particularly helpful for rewriting Rc,n in a more attractive form.

We assume without loss of generality that the hypothesised distribution is the

CU distribution on the circle Sx0
. Because we would like to use the properties of

the linear SSPc tests, we choose to test for circular uniformity on the circle with

circumference equal to one instead of 2π. Then the CDF of the CU distribution

is given by

F0(x;x0) = x− x0 (5.70)

where x is forced to be between x0 and 1 + x0. This means that a multiple of

the period 1 is added if necessary. Let Bn(x;x0) =
√
n
(

F̂n(x;x0) − (x− x0)
)

denote the empirical process starting at x0. Then, we can write

Rc,n = (c− 1)

∫ 1

0

∫ 1+x0

x0

ac,n(x;x0)B
2
n(x;x0)dxdx0 (5.71)

+

(

c− 1

2

)∫ 1

0

∫ 1+x0

x0

∫ 1+x0

x0

wc,n(x, y;x0)(Bn(x;x0) − Bn(y;x0))
2dxdydx0,

where

ac(x;x0) =
((1 − (x− x0))

c−1 + (x− x0)
c−1)

(x− x0)(1 − (x− x0))
and

wc(x, y;x0) =
(1 − (x ∨ y) + x0)

c−2 − ((x ∧ y) + x0)
c−2

(1 − (x ∨ y) − (x ∧ y) + 2x0)|x− y| .

5.8.2 Asymptotic theory

In this section, we give a theorem about the limiting null distribution of Rc,n.

The proof is similar as in the linear case, and is omitted here.

Theorem 5.11 Let {B(x;x0), x ∈ arc[x0, x0 + 1]} denote a Brownian bridge

which starts at x0 and ends at x0 + 1 with mean zero and covariance function

given by

Cov [B(x;x0),B(y;x0)] = F0(x ∧ y;x0) − F0(x;x0)F0(y;x0). (5.72)
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Suppose c ≥ 2 is given, then, under the null hypothesis, as n→ ∞,

Rc,n
d−→ Rc,∞ = (c− 1)

∫ 1

0

∫ 1+x0

x0

ac(x;x0)B
2(x;x0)dxdx0

+

(

c− 1

2

)∫ 1

0

∫ 1+x0

x0

∫ 1+x0

x0

wc(x, y;x0)(B(x;x0) − B(y;x0))
2dxdydx0.

(5.73)

Omnibus consistency is established similarly as in the linear case.

5.8.3 Computational formulae

We give explicit computational formulae for c = 2, c = 3 and c = 4. Recall that

T2,n is the AD statistic and T3,n and T4,n can be written as linear combina-

tion of the AD (An), the CvM (Wn) and the weighted Watson (Kn) statistics.

Furthermore, by (5.69), (5.20) and (5.22)-(5.23), we have that

R2,n =

∫ 1

0

Vn(Ψx0

AD)dx0, (5.74)

R3,n =

∫ 1

0

2Vn(Ψx0

AD) − 4Vn(Ψx0

CvM) + Vn(Ωx0)dx0 (5.75)

R4,n =

∫ 1

0

3Vn(Ψx0

AD) − 10.5Vn(Ψx0

CvM) (5.76)

+3Vn(Ωx0) + 1.5Vn(Ξx0)dx0. (5.77)

where

Ψx0

AD(x, y) =
1

n

∫ 1+x0

x0

Bn(u, x;x0)Bn(u, y;x0)

(u− x0)(1 − u+ x0)
du

Ψx0

CvM(x, y) =
1

n

∫ 1+x0

x0

Bn(u, x;x0)Bn(u, y;x0)du

Ωx0(x, y) =
1

n

∫ 1+x0

x0

∫ 1+x0

x0

(Bn(u ∧ v, x;x0) − Bn(u ∨ v, x;x0))

(Bn(u ∧ v, y;x0) − Bn(u ∨ v, y;x0))
1

|u− v|dudv

Ξx0(x, y) = ((x− x0)mod1 − 0.5)((y − x0)mod1 − 0.5),
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where mod is the modulo operator. We can rewrite (5.74)-(5.77) as

R2,n = Vn

(∫ 1

0

Ψx0

ADdx0

)

, (5.78)

R3,n = 2Vn

(∫ 1

0

Ψx0

ADdx0

)

− 4Vn

(∫ 1

0

Ψx0

CvMdx0

)

+ Vn

(∫ 1

0

Ωx0dx0

)

(5.79)

R4,n = 3Vn

(∫ 1

0

Ψx0

ADdx0

)

− 10.5Vn

(∫ 1

0

Ψx0

CvMdx0

)

(5.80)

+ 3Vn

(∫ 1

0

Ωx0dx0

)

+ 1.5Vn

(∫ 1

0

Ξx0dx0

)

, (5.81)

so that the derivation of the computational formulae is reduced to integrating

out x0 in the kernels of An, Wn and Kn. Hence, the origin-invariant versions of

the SSP2, SSP3 and SSP4 statistics reduce to

R2,n = Vn(Ψoi
AD), (5.82)

R3,n = 2Vn(Ψoi
AD) − 4Vn(Ψoi

CvM) + Vn(Ωoi) (5.83)

R4,n = 3Vn(Ψoi
AD) − 10.5Vn(Ψoi

CvM) + 3Vn(Ωoi) + 1.5Vn(Ξoi), (5.84)

respectively. Here Ψoi
AD,Ψ

oi
CvM, Ωoi and Ξoi are the origin-invariant analogues

(obtained by integrating out the origin) of the kernels ΨAD,ΨCvM and Ω,

which are (after some simple but lengthy algebra)

Ψoi
AD = 2|x− y| ln |x− y| + 2(1 − |x− y|) ln(1 − |x− y|) + 1,

Ψoi
CvM =

7

6
− xy − (1 + x ∧ y)|x− y| − (1 + x ∨ y)(1 − x ∨ y),

Ωoi = 2(1 − |x− y|) ln(1 − |x− y|) − 2(x− y)2 + 2|y − x|(ln(|y − x|) + 1) +
2

3

Ξoi = −0.5(x ∨ y)3 + 0.5(x ∧ y)3 + x2 + y2 − 0.5|x− y|

− 0.5xy|x− y| − 0.5(x+ y)2 + 0.5(x+ y)((x ∨ y)2 − (x ∧ y)2) +
5

60
.

5.8.4 Data-driven Test

Similarly as for the linear SSPc tests, a data-driven version of the circular SSPc

test can be considered. The choice of the partition size is given by (5.58) where

Tc,n is replaced by Rc,n, i.e.

Cn = ArgMaxc∈Γ{Rc,n − 2(c− 1) ln an}. (5.85)

The data-driven test statistic is defined as RCn,n. We consider the same choices

for the penalty term an in (5.85) as in the linear case and refer to the cor-

responding data-driven versions as CSSP-AIC, CSSP-BIC and CSSP-LL. We
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further propose to take the set of permissible SSP sizes as in the linear case, i.e.

Γ = {2, 3, 4}. We refer to the simulation study in Section 5.8.6 below, in which

it is demonstrated that this choice of Γ yields good powers.

Similarly as in the linear case, we can find the asymptotic limiting distribu-

tion of the data-driven test statistic RCn,n. We state the results without proof

since the proofs are analogous to those of Theorem 5.7 and 5.8.

Theorem 5.12 Let cm denote the minimal CSSP size, i.e. cm = minc Γ. Sup-

pose that an → ∞ as n→ ∞. Then, under H0,

P [Cn = cm] → 1

as n→ ∞.

Theorem 5.13 Let cm = minc Γ. Suppose that an → ∞ as n→ ∞. Then, the

asymptotic null distribution of RCn,n is given by

Rc,n
d−→ Rc,∞ = (cm − 1)

∫ 1

0

∫ 1+x0

x0

acm
(x;x0)B

2(x;x0)dxdx0

+

(

cm − 1

2

)∫ 1

0

∫ 1+x0

x0

∫ 1+x0

x0

wcm
(x, y;x0)(B(x;x0) − B(y;x0))

2dxdydx0.

where {B(x;x0), x ∈ arc[x0, x0 + 1]} is a Brownian bridge which starts at x0

and ends at x0 + 1 with mean zero and covariance function given by

Cov [B(x;x0),B(y;x0)] = F0(x ∧ y;x0) − F0(x;x0)F0(y;x0). (5.86)

By the omnibus consistency of the CSSPc test for every c ∈ Γ, the omnibus

consistency of the data-driven test based on RCn,n follows immediately.

5.8.5 Examples

In this section, we briefly present the results for the origin-invariant SSPc tests

for c = 2 and c = 3 applied on two examples. We also perform the three

data-driven versions of the circular SSPc test. The p-values are computed using

10,000 bootstrap simulations.

Birth time data

Recall that for the Birth time data, no evidence against uniformity had been

found based on the Kuiper and Watson test in Example 3.5.2 and based on

the smooth test with k = 2 in Example 3.3.5. The first column of Table 5.5

shows the p-values of the classical origin-invariant GOF tests. For explanation of
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Table 5.5: The p-values of the origin-invariant GOF tests for the Birth time (first

column) and the Homing pigeons data (second column).

GOF test Birth time Homing pigeons

Kuiper 0.508 0.170

Watson 0.632 0.128

Rayleigh 0.255 0.571

Bogdan 0.283 0.001

Rao 0.975 0.091

Anje 0.288 0.654

CSSP-AIC 0.451 0.002

CSSP-BIC 0.437 0.001

CSSP-LL 0.439 0.106

these classical tests, we refer to Chapter 3. The p-values obtained for the in fact

inappropriate SSP-AIC, SSP-BIC and SSP-LL tests were obtained in Section

5.5.3 as all equal to 0.686, where each variant selected c = 2. The individual

CSSP2 test has a p-value of 0.442, while CSSP3 and CSSP4 results in slightly

larger p-values (0.493 and 0.526, respectively). The data-driven versions CSSP-

AIC, CSSP-BIC and CSSP-LL are non-significant as well (p=0.451, p=0.437 and

p=0.439, respectively) and each of the corresponding selection criteria chooses

c = 2. These results are given to see the relatively large difference in p-values

between the linear and the circular versions. In other situations the results of

the linear and circular tests may lead to different conclusions. Once more we

stress that the circular version is applicable to both types of data, while the

linear versions are not appropriate to circular data.

Homing pigeons data

For the bimodal Homing pigeons data introduced in Chapter 2, the second

column of Table 5.5 lists the p-values for the origin-invariant GOF tests for

uniformity. The Rayleigh and Anje test have the highest p-values, indicating no

significant difference from uniformity. Recall that the Rayleigh test is in fact

the first component of the smooth test for circular uniformity introduced by

Bogdan et al. (2002). The high p-value for the Rayleigh test is due to the fact

that the test is only sensitive for unimodal alternatives. Anje’s test statistic

is the integral version of the Hodges-Anje which has a non-significant result as

well (p=0.873, see Example 1 in Section 3.2.2). The classical statistics of the

EDF type (Watson and the Kuiper test) are also non-significant, although the

corresponding p-values are much lower than those of the Rayleigh and Anje tests.

The data-driven smooth test of Bogdan is the only GOF test that recognises the
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difference from circular uniformity at the 5% level of significance. Moreover, this

test informs us about the bimodality, since the BIC selection criterion chooses

order K = 2. The circular data-driven SSP tests CSSP-AIC and CSSP-BIC

also have significant p-values (p=0.002 and p=0.001). Both selection criteria

choose SSP size c = 2. This choice gives us the extra information that the

significance is due to a global LOF. On the other hand, the individual CSSP2

test has a non-significant p-value (0.092), while the p-values for the CSSP3

and CSSP4 are much larger (0.398 and 0.313, respectively). The data-driven

version CSSP-LL, which selected c = 2, is non-significant as well (p=0.106).

This is probably because the sample size (n=13) is too small. We may conclude

that our new CSSP test is useful to detect bimodalty. Moreover, it gives the

additional information that the LOF is located over the whole circumference.

5.8.6 Simulation Study

In this section we present a small power study to investigate the small sample

properties of the CSSPc test. Similarly as for the linear SSPc test, we give results

of a Monte Carlo study in which we investigate the power of the CSSPc tests

(c = 2, 3, 4) and their three data-driven versions (Γ = {2, 3, 4}) for sample sizes

20 and 50. The computational formulae of Section 5.8.3 are used. We compare

the new tests with classical GOF tests described in Chapter 3. In particular, we

consider the Watson test, the Kuiper test, the Rao spacing test, the Rayleigh

test, the data-driven smooth test and the Anje test. We perform simulations

under the same alternatives as for the linear SSPc test, but we replaced the

normal distribution on the real line with the CN distribution on the circle with

unit circumference. The hypothesised distribution is the CN distribution with

parameters µ = 0 and κ = 1. The first type of alternative considered is a CN

distribution where either the location parameter µ is changed while keeping

κ = 1, or the concentration parameter κ is changed while fixing µ = 0. For the

former series, we vary µ between 0 and 0.5. Note that because of the origin-

invariance properties of the test statistics, the powers should be the same for µ

varying between 1 and 0.5. In the latter series, κ is varied from 1 to 2.2. Note

that larger values for the concentration parameter induce a more peaked density

at µ = 0.

As the CSSPc test is the origin-invariant version of the linear SSPc test, we

expect the test to be more sensitive to deviations from the null hypothesis in

small intervals. Such alternatives are represented in this study by the circular

analogues of the contaminated normals in (5.59), given by

fδ,γ(x) = (1 − γ)fCN (x; 0, 1) + γfCN (x; δ, 100),

where fCN is the density of the CN distribution. This family of mixture distri-

164



butions reduces to the hypothesised distribution if γ = 0. Note that the con-

centration parameter κ of the second component in the mixture is very large,

which implies a second mode highly concentrated at δ. We refer to this “lo-

calised ”alternative as the contaminated CN distribution.

We have performed 1,000 Monte Carlo simulations to estimate the powers.

The tests are performed at the 5% significance level and we again use simu-

lated critical points (based on 50,000 simulation runs). The results are shown

in Figures 5.14 and 5.16 for the CN and the contaminated CN distribution,

respectively. Since the power curves are sometimes too close to one another to

differentiate them, we also provide plots where we zoom in on the curves. These

plots are in Figures 5.15 and 5.17, for the CN and the contaminated CN distri-

bution respectively. Note that, the power curves for the data-driven CSSP-AIC

tests are very close to the curves of the CSSP4, while those for the CSSP-BIC

and the CSSP-LL are close to the power curves of the CSSP2.

For CN alternatives with constant concentration, in panels (a) and (b) of

Figure 5.14 we see that all tests, except the data-driven smooth test of Bogdan

and the Rao spacings test, have similar powers. The latter two classical tests

have lower power, with the Rao spacings test as the worst. From the corre-

sponding detail plots in Figure 5.15, we see that our CSSP tests, represented by

the solid curves, have in fact the largest powers. Recall that for the linear SSPc

tests, a small loss in power was seen when the SSP size is increased from c = 2

to 3 and 4. That power loss is also present here, although it is much smaller

than in the linear case.

When µ is fixed at zero, in panels (c) and (d), the opposite is observed as for

the linear SSPc test, the power increases with the increasing SSP size, although

only slightly. Note that the Anje and the Rayleigh tests have now slightly larger

power than the CSSP tests. The choice of the SSP size depends on the criterion

used. If the AIC criterion is used, the power is almost indistinguishable from

the CSSP4 test. On the other hand, when one of the other two criteria is used,

the power curves approach more the curve of the CSSP2 test.

As in the linear case, we have shifted the simulated data from the contami-

nated CN alternatives by subtracting the true mean, which is again equal to δγ.

This correction is made so as to investigate the powers for localised alternatives

where the change in location is less important.

The results of the simulation study for the contaminated CN distribution are

presented in Figure 5.16 for δ = 1 (top), δ = 1.5 (middle) and δ = 2 (bottom).

Corresponding plots where we zoomed in on the middle part of the curves, are

in Figure 5.17. From all these plots, we conclude that the various versions of the

CSSP test outperform all other tests. The detail plots show that the power of

the CSSPc test increases as the SSP size increases. The data-driven CSSP-AIC

test succeeds well in selecting an appropriate value for c. In fact, its behaviour
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is almost exactly equal to that of the CSSP4 test.

5.8.7 Circular SSPc test for composite null hypothesis

Similarly as for the linear SSPc test, the circular SSPc test can be used for

composite null hypotheses. Let R̂c,n denote the statistic given by (5.71) where

the empirical process Bn(x;x0) is replaced by B̂n(x;x0) = Bn(x;x0, β̂). Then

the asymptotic null distribution is stated here without proof.

Proposition 5.1 Let {B̂(x;x0), x ∈ arc[x0, x0 + 1]} denote a Gaussian process

which starts at x0 and ends in x0 + 1 and has covariance function as in (5.63)

where F0(x,β) and Λ(x,β) are replaced by F0(x;x0,β) =
∫ x

x0
f0(y,β)dy and

Λ(x;x0,β) =
∫ x

x0
Υ(z;x0,β)dF0(z;x0,β). Suppose c ≥ 2 is given, then, under

the null hypothesis, as n→ ∞,

R̂c,n
d−→ R̂c,∞ = (c− 1)

∫ 1

0

∫ 1+x0

x0

ac(x;x0)B̂
2(x;x0)dxdx0

+

(

c− 1

2

)∫ 1

0

∫ 1+x0

x0

∫ 1+x0

x0

wc(x, y;x0)(B̂(x;x0) − B̂(y;x0))
2dxdydx0.

(5.87)

Also for the circular SSPc test statistic for composite distributions, we use

parametric bootstrap to approximate the null distribution.

5.9 Discussion

In this chapter we have first presented a new class of GOF tests for the simple

one-sample problem for linear data. The test statistic is constructed as an

average of localised Pearson χ2-statistics with arbitrary degrees of freedom.

The degrees of freedom of the Pearson’s statistics are directly related to the

indexing parameter (SSP size c) of our new class. The tests are generalisations

of the AD test, which is included in the class by taking c = 2. The methodology

presented in this chapter may be used to obtain similar extensions to the tests

proposed by Zhang (2002) and Einmahl and McKeague (2003).

The simulation study that we have presented, indicates that a substantial

power gain may result from choosing some c > 2. On the other hand, the study

also showed that for some alternatives, the highest power is obtained with c = 2.

To avoid the problem of choosing the right value for the indexing parameter c,

we have proposed a data-driven version of the test. The simulations confirmed

that the selection rule succeeds quite well in selecting a good choice for c.

The weight functions that are involved in the test statistic, as well as the

simulation results, suggest that the new tests are very sensitive to deviations
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Figure 5.14: Estimated power curves for the CN alternative. The legend is only

shown in the first plot.
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Figure 5.15: Estimated power curves for the CN alternative. The legend is the same

as in Figure 5.14.
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Figure 5.16: Estimated power curves for the contaminated CN distribution alterna-

tive. The legend is only shown in the first plot.
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Figure 5.17: Estimated power curves for the contaminated CN distribution alterna-

tive. The legend is the same as in Figure 5.16.
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from the hypothesised distribution F0 in small intervals of the support of F0.

Furthermore, this sensitivity increases with the increasing SSP size c.

We have also presented the asymptotic null distributions of the new GOF

tests, and we proved that all tests are omnibus consistent.

In the special case of SSP size c = 3, we have written the statistic as a

V -statistic so as to find an appropriate decomposition in terms of Legendre

polynomials. This decomposition led to the limiting distribution of the statistic

under contiguous alternatives.

Furthermore, we have extended the use of the new class of GOF tests to

composite null hypotheses using the estimated empirical process. If the nuisance

parameters are estimated by asymptotically linear estimators, this estimated

empirical process converges weakly to a Gaussian process with known covariance

function. However, that limiting Gaussian process is difficult to compute and to

simulate from. Therefore, we suggest using the parametric bootstrap to obtain

the approximate null distribution.

Finally, the new class of GOF tests for linear data has been extended to a

new class of GOF tests for circular data. This has been done by making the

class of statistics origin-invariant. We simply integrated out all possible origins

to obtain the origin-invariant class of statistic. The limiting null distribution

was given and computational formulae for SSP size c = 2, 3 and 4 were found.

The methodology to obtain those formulae can easily be extended to any SSP

size. The data-driven version and its asymptotic theory are similar as in the

linear case. A simulation study has indicated that the circular SSP tests have

the same power characteristics as the linear SSPc tests, although, the differences

between their powers are less pronounced than in the linear case. All methods

presented in this chapter are extensively applied to real data examples.
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CHAPTER 6

The Interval-based PP-plot

This chapter is devoted to a new graphical diagnostic tool for the detection of

LOF for circular distributions. Observations measured on the circle are charac-

terised by the invariance to the choice of the origin, and the distance between

observations is given by the smallest arc on the circle. Circular data thus dif-

fer substantially from linear data. These important differences motivate the

search for statistical tools for which the conclusions do not depend on the cho-

sen origin nor on the measurement direction. Classical GOF tests for circular

distributions, such as e.g. the Kuiper test, were described in Chapter 3. In

each of the Chapters 4 and 5, we have proposed a new class of circular GOF

tests. When such a circular GOF test results in rejecting the null hypothesis,

it is important to know in what way the true distribution deviates from the

hypothesised. Our graphical tool enables us to localise those regions of LOF.

Moreover, the graph is constructed from the empirical process which is also the

basis for the origin-invariant Kuiper test statistic. This relation to the Kuiper

test is particularly useful for constructing a formal version of the graph, so that

conclusions for the Kuiper test can immediately be read from the graph.

The construction of the new plot is given in Section 6.1. We will argue that

the location of the LOF is easily recognised by the new plot. However, the plot

in its original form does not reveal significance. Therefore a formal version of

the plot, which contributes to the need for an objective conclusion, is proposed

in Section 6.2. Characteristics of the new plot are investigated through the
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limiting expected value of the process under a particular family of alternatives

in Section 6.3. The tools developed in this chapter are illustrated on real data

examples in Section 6.4. Since these plots are also informative graphical tools

for linear data, we include two linear data examples as well. A small simulation

study in Section 6.5 confirms what we intuitively expected from the applications

in Section 6.4 and from the limiting expected value of the considered process in

Section 6.3. In Section 6.6, we suggest using the new plot as a diagnostic tool to

evaluate the appropriateness of a nonparametric density estimator as described

in Sections 3.7.1 and 4.5. Finally, in Section 6.7, a brief discussion is given.

6.1 Construction of the IBPP-plot

In this section two types of diagnostic plots for GOF of circular data are pro-

posed. These plots aim at “localising” the deviation from the hypothesised

distribution in the sense that they visualise in which arc(s) on the circle the

true and the hypothesised distribution are different. Although these plots are

also informative graphical tools for linear data, we restrict the construction of

these plots to circular data. Later, in Section 6.4, we return to the Old Faithful

geyser data example to illustrate that the tool is also useful to localise bumps

in a linear distribution. The term bump is used to indicate a location where

a small cluster of observations is found which is unusual according to the null

hypothesis. Moreover, in Section 6.5 we investigate the behaviour of the new

plot under linear local alternatives through a simulation study.

Suppose X is a random variable on the circle with unit circumference, i.e.

S =arc(0, 1). Note that we take the origin at 0, but, as we will see soon, the

construction of the new plot is invariant to that choice. The PP-plot is one of the

most popular graphical tools used for diagnosing whether the true distribution

F (x) underlying the data agrees with a hypothesised distribution F0(x,β). Here

β is a p-dimensional nuisance parameter, which is initially assumed to be known.

As mentioned in Section 2.1.1, the detrended PP-plot, which is closely related

to the PP-plot, is also useful to assess GOF for linear data. Moreover, in the

same section we have explained how the KS test is related to the detrended

PP-plot. However, the empirical process Bn(x) =
√
n(F̂n(x)− F0(x,β)), which

is the basis of that plot, is not origin-invariant. Therefore, the detrended PP-

plot is not origin-invariant either and conclusions from graphical assessment

for circular data could be different if another origin or rotation direction was

chosen. This means that the plot is not fully appropriate for circular data. This

has already been demonstrated on the Birth time data in Section 2.2.1.

As the detrended PP-plot is related to the KS statistic, we propose to con-

struct an origin-invariant PP-plot based on the origin-invariant Kuiper statistic.
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Figure 6.1: IBPP-plot for the Birth time data.

In particular, we extend the PP-plot to an origin-invariant PP-plot by using the

interval indexed process

Zn(x, y) = Bn(x) − Bn(y). (6.1)

The supremum of the absolute value of that process over all possible intervals

results in the Kuiper test statistic, which is defined in (3.50) and can be inter-

preted as the circular analogue of the KS test statistic. For each arc(x, y) the

corresponding value for the process Zn(x, y) can be interpreted as the difference

between the empirical probability and the expected probability of the random

variable X falling into the arc(x, y). This interpretation is also mentioned in

Section 3.4.2 and is obvious from the alternative expression of the process, i.e.

Zn(x, y) =
√
n{F̂n(x, y) − F0(x, y)},

where F̂n(x, y) = F̂n(x) − F̂n(y) and F0(x, y) = F0(x,β) − F0(y,β). From this

argument it is intuitively clear that for a particular arc(x, y), the larger the

process value, the more the true distribution deviates from the null distribu-

tion within that arc. We suggest to plot the process values Zn(x, y) versus x

and y as a heat map, using a colour legend. The resulting plot is called the

interval-based PP-plot (IBPP-plot) for which the name refers to the interval-

based interpretation of the process. The IBPP-plot for the Birth time data is

drawn in Figure 6.1. The horizontal and vertical axes of the heat map corre-

spond to the beginning and end points of the arcs, respectively. Red and blue
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regions indicate large positive and large negative process values, respectively.

On the other hand, yellow and green regions indicate values of Zn which are

small in absolute value. As a convention we plot the largest value of the process

in the middle of the horizontal or the vertical axis. Additionally, the beginning

and end points of arc(x, y) with (x < y) where the absolute maximum process

value is observed, are indicated with a vertical and a horizontal line, respec-

tively. Note that the IBPP-plot is antisymmetric. Indeed, the process values

Zn(x, y) for which x is smaller than y are opposite in sign to the process values

Zn(y, x). Hence, we only have to look at the half plane above the line through

the origin with slope one, which is referred to as the diagonal of the IBPP-plot.

From Figure 6.1, we see that for the Birth time data the maximum process

value Zn is obtained in about arc(8.30am,5pm). The red region around that

maximum process value indicates that process values for intervals on the circle

including arc(8.30am,5pm) are large as well. This could possibly indicate that

in these arcs relatively more births occur than expected under uniformity. The

smaller blue region observed for intervals on the circle including arc(6pm,12am)

indicate that for these regions probably less births are occur than expected un-

der uniformity. It is now of our interest whether the results for this graph are

significant. To obtain that information we construct a formal version of the

IBPP-plot, which will be described in the next section.

We propose another type of diagnostic plot for GOF of circular data, which

is closely related to the IBPP-plot. Therefore, consider the process

Yn(x) = sup
y

|Bn(x) − Bn(y)|, (6.2)

which is in fact the supremum of the process Zn(x, y) over one of the end points

of the arc(x, y). We suggest to plot the process values Yn(x) on a circle and we

call it the circular PP-plot (CiPP-plot). Figure 6.2 shows the CiPP-plot for the

Birth time data. The maximum of the absolute value of the process is indicated

by a straight line through xmax and the origin, where xmax is the direction for

which the process in 6.2 or equivalently the process in 6.1 obtains its maximum

value. Note that two such lines through the origin are drawn since the maximum

process value is obtained twice. Moreover, these two lines basically correspond

to the beginning and end points of the arc(x, y) where the maximum process

value of Zn is obtained. A full line circle is drawn, with radius equal to that

maximum process value. The interpretation of the CiPP-plot is similar to that

of the IBPP-plot, but part of the information about the interval is lost since the

supremum of the absolute values is taken over one of the dimensions. For the

Birth time data relatively large and small process values are obtained for acrs

with end points within arc(8.30am,5pm) and arc(6pm,5am), respectively.
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6.2 The formal IBPP-plot

From the plots described in the previous section, interesting information regard-

ing the GOF problem can be derived. This information is subjective, however.

How large should a process value Zn(x, y) be to conclude that there is a LOF

in the arc(x, y)? We suggest two solutions. The first is based on the pointwise

asymptotic null distribution of Zn(x, y). Suppose that F0 is completely speci-

fied and that we performed the PIT such that the GOF problem is reduced to

a uniform null hypothesis on [0, 1]. Using the central limit theorem (CLT) we

have that, under the null hypothesis,

Zn(x, y)
d→ N(0, |F0(x) − F0(y)|(1 − |F0(x) − F0(y)|))

for every (x, y) ∈ arc(0, 1)2\{(0, 0), (0, 1), (1, 0), (1, 1)}. Hence, for each (x, y)

the statistic in (6.1) can be compared with the e.g. 5% critical value of the

corresponding null distribution. A disadvantage of this approach is that on

the IBPP-plot many of these process values are plotted and interpreted simul-

taneously, and therefore a multiplicity problem arises. Our second solution

overcomes this problem by taking the supremum of the process values over all

possible arcs (x, y), which results in the Kuiper test statistic as defined in (3.50).

Using the asymptotic theory of Shorack and Wellner (1986), we know that the

asymptotic null distribution of the Kuiper test statistic is given by

sup
0≤x,y≤1

|Zn(x, y)| = sup
0≤x,y≤1

|Bn(x) − Bn(y)| d−→ sup
0≤x,y≤1

|B(x) − B(y)|, (6.3)
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where B is a Brownian bridge. Since a Brownian bridge B(x) has mean function

zero and covariance function Cov [B(x),B(y)] = F0(x)∧F0(y)−F0(x)F0(y), the

process B(x) − B(y) has mean zero too, and variance function

var(B(x) − B(y)) = F0(x) − F0(x)
2 − 2(F0(x) ∧ F0(y)

−F0(x)F0(y)) + F0(y) − F0(y)
2

= |F0(x) − F0(y)|(1 − |F0(x) − F0(y)|).

If the p-dimensional parameter vector β in F0(x,β) is unknown, we suggest

replacing it by its MLE β̂ and the empirical process Bn(x) is then replaced by

the estimated empirical processes B̂n(x) defined in (5.61). The corresponding

estimated versions of the proces Zn is similarly denoted by Ẑn. The asymptotic

distribution of the Kuiper statistic is then given by

sup
0≤x,y≤1

|Ẑn(x, y)| = sup
0≤x,y≤1

|B̂n(x) − B̂n(y)| d−→ sup
0≤x,y≤1

|B̂(x) − B̂(y)|, (6.4)

where B̂ is given in Theorem 5.10. Hence, when an unknown parameter vector

β is present in F0, the variance function var(B̂(x) − B̂(y)) becomes more com-

plicated. In particular, for a locally asymptotically linear estimator of β the

Cov
[

B̂(x), B̂(y)
]

is given in (5.63) of Theorem 5.10. Since the computation of

such a covariance function is usually difficult, the critical values for the Kuiper

test for composite null hypotheses are obtained using the parametric bootstrap.

A formal version of the plot is then constructed by indicating only the process

values that exceed the α-level critical value of the corresponding Kuiper test.

In this way the new plot is directly linked to a formal statistical test, as is the

case with the detrended PP-plot and the KS test.

We refer to this plot as the formal IBPP-plot, whereas the first version of

the graph, which is still informative but which does not reveal significance, is

referred to as the exploratory IBPP-plot. On the formal version of the IBPP-

plot, black and white regions indicate significant and non-significant process

values, respectively. As the Kuiper test is origin and rotation invariant, the

construction of the two plots is guaranteed to be invariant too.

Since for each arc(x, y) the process value Zn(x, y) has a different variance, it

may be argued that the process values should be standardised for making the

process values comparable among one another. Therefore, we here also consider

the standardised IBPP-plot, which is based on the process values

Qn(x, y) =
Bn(x) − Bn(y)

√

|F0(x) − F0(y)|(1 − |F0(x) − F0(y)|)
(6.5)

instead of Zn(x, y). Note that this standardisation is only appropriate for the

simple null hypothesis case. For composite null hypotheses the variance becomes
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more complicated as explained above. A standardised IBPP-plot for composite

null hypotheses is out of the scope of this thesis. Similarly as for the original

IBPP-plot, we can use a formal version by indicating only the process values that

exceed an α-level critical value. This critical value is determined by simulating

the null distribution of the supremum of the standardised process Qn(x, y) over

all possible intervals. As the original IBPP-plot, the standardised IBPP-plot is

thus also related to a formal test statistic given by

Ks
n = sup

0≤x,y≤1
|Qn(x, y)|, (6.6)

which is in fact a weighted or standardised version of the Kuiper test statistic.

Some properties of the original and standardised IBPP-plots are investigated in

the next section. In particular, we investigate the limiting expected value of the

corresponding processes under a family of contiguous alternatives. From that

investigation we will see that the IBPP-plots are expected to localise the LOF

well. A simulation study in Section 6.5 confirms these expectations.

6.3 Limiting behaviour of IBPP-plots under con-

tiguous alternatives

In this section we illustrate the ability of the formal and exploratory IBPP-

plots to locate the LOF, by displaying its expected behaviour for large sample

sizes. We examine both the original and the standardised IBPP-plots. Since

the (standardised) IBPP-plot is related to (a weighted version) of the Kuiper

test, we use contiguous alternatives to circular uniformity for which the Kuiper

test is known to be powerful. We limit the discussion to the simple null hypoth-

esis, so that without loss of generality the null hypothesis is chosen as circular

uniformity.

We expect the IBPP-plots to be able to localise in which arc(s) the true

distribution deviates from the hypothesised. Moreover, we expect that the

IBPP-plots excel in recognising alternatives that only deviate from the null dis-

tribution in some interval. We refer to such alternatives as “local alternatives”.

To see how the IBPP-plots asymptotically behaves under such alternatives, we

focus on the limiting expected values of the corresponding statistics Qn(x, y)

and Zn(x, y). As explained in Section 5.3, the limiting expected values give an

indication of the power of the test statistic.

Suppose the observations x are measured on the circle with unit circumfer-

ence S =arc(0, 1) and are generated by the family of contiguous alternatives to

uniformity,

fn(x) = 1 +
1√
n
δ(x), (6.7)
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where δ(x) is an arbitrary non-zero drift function that satisfies
∫ 1

0
δ(x)dx = 0,

and for which fn(x) is a proper density function for all n ≥ 1. The same

distributions have been considered in Section 5.3, and each has a corresponding

distribution function given by

Fn(x) = x+
1√
n

∆(x), (6.8)

where ∆(x) =
∫ x

0
δ(u)du. From Section 5.3 we know that, under this family

of alternatives the empirical process Bn(x) =
√
n(F̂n(x) − x) converges weakly

to B(x) +
∫ x

0
δ(u)du, where B(x) is a Brownian Bridge. These results, which

are in fact from Janssen (1995), are also valid for data on the circle with unit

circumference. In the context of the IBPP-plot we therefore obtain that the

process Bn(x) − Bn(y) converges weakly under the family of alternatives (6.7)

to B(x) − B(y) +
∫ x

y
δ(u)du. Since the mean of a Brownian bridge B(x) is zero,

the expected value of the standardised process Qn(x, y) in (6.5) under the family

of contiguous alternatives equals

Q(x, y) =

∫ x

y
δ(u)du

√

|x− y|(1 − |x− y|)
=

∆(x) − ∆(y)
√

|x− y|(1 − |x− y|)
. (6.9)

Analogously, the limiting expected value of the process Zn(x, y) in (6.1) equals

Z(x, y) =

∫ x

y

δ(u)du = ∆(x) − ∆(y). (6.10)

Similarly as in Section 5.3, we look for which functions ∆(x) asymptotic

means Q(x, y) or Z(x, y) are large, or in other words for which alternatives the

IBPP-plot is expected to locate the LOF. Let us suppose the data come from

the family of contiguous alternatives (6.7) using the Mexican hat wavelet as

drift function δ(x), i.e.

δ(x) = C

(

1 − (x− µ)2

σ2

)

e−0.5
(x−µ)2

σ2 , (6.11)

where µ, σ and C are the location, the scale and the amplitude of the wave

function, respectively. This particular wavelet is chosen because it can gener-

ate very local deviations from uniformity at various locations. Note that the

range of the constant C is limited in order to have a valid distribution function

Fn(x) in (6.8). Figure 6.3 shows this wavelet function for different values of the

parameters µ, σ and C, while Figure 6.4 shows the corresponding distribution

functions (6.8) with n = 1. Note that this wave function is similar to the func-

tions δ in (5.57), although the functions δ considered here are more smooth.

To obtain densities with more than one local deviation from uniformity we can
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take a sum of different wavelets. For example, suppose the data come from the

family of contiguous alternatives to uniformity (6.7) using a sum of two wavelets

as drift function δ(x), i.e.

δ(x) = C1

(

1 − (x− µ1)
2

σ2
1

)

e
−0.5

(x−µ1)2

σ2
1 + C2

(

1 − (x− µ2)
2

σ2
2

)

e
−0.5

(x−µ2)2

σ2
2 .

(6.12)

In panel (a) of Figure 6.7 we plotted such a drift function.

Figure 6.5 shows for which arc(x, y) the standardised process Qn in (6.5) has

large limiting values assuming the data come from fn(x) in (6.7) with δ(x) as

in (6.11). In particular, we use heat maps with a colour legend to show Q(x, y)

in (6.9) as a function x and y for the function δ equal to each of the Mexican

wavelet functions plotted in Figure 6.3. The same is done for the original process

Zn for which the plots are in Figure 6.6. Note that the limiting behaviours of

both processes are very similar. We see that the location µ of the peak of the

wavelet function is easily recognised by both processes Qn and Zn. Moreover,

the concentration of the expressed deviation in the plot is in accordance to the

scale σ of the wavelet. Also, in case of a sum of different wavelet functions,

each of the peaks is recognised and localised with the same resolution as for

one wavelet function. The latter is demonstrated in Figure 6.7, which shows an

example of such a δ-function (panel(a)) together with the corresponding heat

maps for Q(x, y) (panel (b)) and Z(x, y) (panel (c)).

As mentioned above, the limiting behaviours of the original process Zn and

the standardised process Qn are similar. These results suggest that the IBPP-

plot is an effective graphical tool for localising small deviations from a distribu-

tion. To examine its ability to detect localised deviations in practice, we refer

to the small-sample simulation study in Section 6.5, as well as to the real-data

examples in the following section.

6.4 Examples

In this section we apply the new graphs to the circular data examples introduced

in Section 2.2. We present both the CiPP-plot and the exploratory IBPP-plot

for each example. The formal IBPP-plot is only given when the Kuiper test

yields significant results. Points falling outside the dashed circle on the CiPP-

plot correspond to process values larger than the critical value of the Kuiper

test at the 5% significance level. We also add the standardised versions of the

IBPP-plot in case we are interested in whether the data is coming from a CU

distribution. For the examples with composite null hypotheses, we only give the

original non-standardised IBPP-plot. The reason is that the variance becomes

too complicated as mentioned above.
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Figure 6.3: The Mexican hat wavelet for different parameter values of µ, σ and C.
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Figure 6.5: Limiting expected value of the standardised process Qn versus its loca-
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alternatives (6.7) using the Mexican hat wavelet in (6.11) as noise func-

tion δ(x). The parameter values µ, σ and C for the Mexican hat wavelet
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Figure 6.8: Explorative Circular (a) and IBPP-plot (b) for the Birth time data.

Since the plots are also useful for linear data, we also consider some of the

linear examples introduced in Section 2.1. For these examples, we confine the

discussion to the original explorative and formal versions of the IBPP-plots.

6.4.1 Birth time data

Recall that for the Birth time data (Section 5.8.5), no evidence against unifor-

mity was found based on the classical tests as well as on the circular SSPc tests.

Figure 6.8 shows the explorative CiPP and the explorative IBPP-plot for the

Birth time data. From both graphs we see that the maximum process value Zn

is obtained in about arc(8.30am,5pm), which clearly includes the largest sector

on the rose diagram in panel (c) of Figure 2.7. We also see that observations

between 6pm and 12am induce process values which have opposite sign to the

maximum process value (see for example the smaller red or blue area which is

below or above the diagonal in the IBPP-plot, respectively). This is probably

because only few births appear in that period. As there is a large gap between

the dashed circle on the CiPP-plot and the maximum process value, there is no

reason to believe this arc is the result of a deviation from circular uniformity.

However, the explorative graphs suggest a need for more observations in order

to detect whether indeed there are relatively more births between 8.30am and

5pm. Panel (a) of Figure 6.9 shows the standardised explorative IBPP-plot.

The latter gives a completely different impression of the location of the LOF. In

particular, higher process values occur closer to the diagonal and the maximum
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Figure 6.9: Explorative standardised IBPP-plot for the Birth time data (a) and for

the Homing pigeons data (b).

process value originates from an extremely small arc at 12am. Furthermore,

the two large red and blue regions above the diagonal completely dissappeared.

This result motivates further investigation on the ability of the standardised

IBPP-plot to localise a LOF. The simulation study in Section 6.5 will indeed

confirm that the standardisation causes a loss in power for global as well as local

deviations.

6.4.2 Homing pigeons data

For the Homing pigeons data, the classical origin-invariant GOF tests for uni-

formity are non-significant. The smooth test of Bogdan et al. (2002) and the

circular SPPc tests, however, recognise the bimodal deviation. These results

were presented in Section 5.8.5. Since the Kuiper test detected no difference

from uniformity, only the explorative versions of the plots are shown in Figure

6.10. The dashed circle in the CiPP-plot is much closer to the maximum pro-

cess value which is obtained for the arc reaching from North-West to somewhat

beyond North. The color pattern on the explorative IBPP-plot is not quite

smooth. The reason may be that we only have 13 observations in this dataset.

The change in colors just above the diagonal indicates that from just beyond

South to just beyond West the process values are too low (too negative). The

region from just beyond West to beyond North has process values that are too

high, while the process values are again too low for the region from beyond

188



S

W
N

E

homing directions
h

o
m

in
g

 d
ir
e

c
ti
o

n
s

W N E S

W
N

E
S

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) (b)

Figure 6.10: Explorative Circular (a) and IBPP-plot (b) for the Homing pigeons

data.

North to beyond East. Such a pattern is typical of a bimodal dataset.

Similarly as for the Birth time data, the standardised IBPP-plot, which is

given in panel (b) of Figure 6.9, shows that the typical bimodal pattern has

become less expressed while the largest value of the process is again near the

diagonal, for a very small arc just before North. This arc includes the three tied

observations in the data.

When the data is doubled so as to see whether the birds are flying across

the diagonal direction of the Valley, we obviously get a different result. The

corresponding plots, including the formal IBPP plot, are presented in Figure

6.11, and we immediately see that there is now a clear deviation from uniformity.

This deviation is located from West to beyond North.

Similarly as for the original Homing pigeons data, the standardised explo-

rative IBPP-plot attains its maximum very close to the diagonal for an interval

that includes the four tied observations. Also, the dark regions away from the

diagonal are now lighter regions, while the light regions near the diagonal be-

come more coloured. In Section 6.5 we will see that these shifts in colours,

caused by the standardisation of the process, correspond to a loss in power of

the corresponding weighted Kuiper test. This is already seen here since the

weighted Kuiper test is not significant anymore and hence no formal standard-

ised IBPP-plot is drawn. This implies that probably for small samples, the

standardised process is not as useful as was suggested by its limiting behaviour

in Section 6.3.
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Figure 6.11: Explorative Circular (a), explorative original (b) and standardised (c)

IBPP-plot and formal original IBPP-plot (d) for the doubled Homing

pigeons data.
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6.4.3 Turtles data

For the Turtles example, we would like to examine whether the moving directions

are normally distributed. From Section 4.6.1, we concluded from the data-driven

circular smooth test that the data deviate from CN primarily with respect to the

second trigonometric moment. This confirmed the bimodal impression discussed

in Chapter 2. Also the classical tests indicated a significant deviation from CN,

but no information about the alternative can be derived from those tests. Recall

that we use parametric bootstrap to find the 5% quantile of the null distribution

of the Kuiper statistic. Since the von Mises distribution is a location equivariant

distribution (not scale equivariant), the 100,000 bootstrap samples are generated

using location µ equal to zero and concentration parameter κ equal to its MLE.

From the explorative CiPP and IBPP-plots in panels (a) and (b) of Figure

6.12, we see that the maximum significant process value of Zn is obtained for the

arc from about 40o to about 100o, where most observations are concentrated. In

the explorative IBPP-plot, a similar pattern as for the Homing pigeons data is

recognised. This seems to imply that these data deviate from circular normality

in a bimodal way. In particular, the comparison distribution, which is the

distribution that describes the difference between observed and hypothesised

distribution, is probably bimodal. However, if we look at the formal IBPP-plot

(panel (c) of Figure 6.12), we see that only two intervals of LOF are recognised,

i.e. arc(0o,90o) and arc(45o,90o). Hence, the significant deviation from normality

is only located in the largest cluster of the observations.

6.4.4 Ants data

For the Ants data, we concluded from the circular data-driven smooth test in

Section 4.6.2 that there is much evidence against circular normality. In particu-

lar, the second order trigonometric moment, which is related to the skewness and

kurtosis is responsible for this deviation. The classical GOF tests for circular

normality also have highly significant results.

Figure 6.13 shows the same three plots for the Ants data. The largest sig-

nificant deviation from normality is located in arc(180o,210o) (see panel (a)).

Too many ants chose a direction in this interval instead of moving towards

the black target placed at 180o. This causes a distribution of moving direc-

tions that is skewed to the right. Note that this confirms the impression in

the explorative discussion in Section 2.2.4. More information could be obtained

from the explorative and the formal IBPP-plots (see panel (b) and (c) of Fig-

ure 6.13). In particular, three adjacent regions with alternating sign are seen

in the explorative version. Above the diagonal, for instance, we first notice a

blue region, roughly indicating an underestimation of the density in intervals
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Figure 6.12: Explorative Circular (a), explorative (b) and formal (c) IBPP-plot for

the Turtles data.
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that include arc(90o,180o). Then a red region is observed for intervals includ-

ing arc(180o,200o). This region causes the largest overestimation of the density.

Finally, the last region includes arc(220o,270o) and causes an underestimation.

As is seen from the formal IBPP-plot, these three regions are significant at the

5% level.

6.4.5 Direzione data

In Section 4.6.3, similar highly significant test results have been obtained for

the Direzione data as for the Ants data. For the Direzione data, panels (a)

and (b) of Figure 6.14 show the explorative version of, respectively, the CiPP

and IBPP-plots, whereas panel (c) shows the formal analogue of the IBPP-plot.

Again we are testing for circular normality. It can be seen that all Yn(x) process

values (panel (a)) are in the rejection region, which means that no specific LOF

location can be indicated from that plot. The peak occurs around the North

direction (0o), where most observations are situated. More information on the

LOF location can be extracted from the explorative IBPP-plot and from the

formal IBPP-plot. All significant intervals contain locations near the North

direction as begin or end point. We conclude that the location of LOF is an

interval containing the North direction.

6.4.6 Arrival data

As a final circular data example, we consider the Arrival data. In Section 4.6.4,

the data-driven circular smooth tests indicated that there is a highly significant

deviation from circular normality in at least the second and at most the fifth

order trigonometric moment. On the other hand, the classical tests found no

significant deviation from the CN distribution. The explorative versions of the

CiPP and the IBPP-plot are in Figure 6.15. The formal IBPP-plot is not given

since no significant process values were found for the Kuiper test. In accordance

with the non-significance, no points are outside the dashed critical circle on the

CiPP-plot in panel (a). However, the process values in the CiPP-plot as well as

those in the IBPP-plot (see panel (b)) do suggest an oscillating departure from

normality by the wiggly pattern. Also, a pattern with the five clusters is seen

in both the exploratory IBPP and CiPP-plot. The same pattern was seen for

the orthonormal series density estimate of the Arrival data presented in Section

4.6.4.

6.4.7 Contaminated Lottery data

We now consider two linear data examples. In Section 5.5.1, we have considered

the Lottery data but systematically changed it in the sense that 400 is subtracted
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Figure 6.13: Explorative Circular (a), explorative (b) and formal (c) IBPP-plot for

the Ants data.
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Figure 6.14: Explorative Circular (a), explorative (b) and formal (c) IBPP-plot for

the Direzione data.
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Figure 6.15: Explorative Circular (a) and IBPP-plot (b) for the Arrival data.

from all numbers between 800 and 875. We showed that the SSPc test was

particularly useful to detect this contamination in the data.

The IBPP-plots, which are given in Figure 6.16, visualise where the con-

tamination occurs. In particular, from panel (a), we see that intervals that

include the interval [400,500] show an increased process value, while intervals

that include [800,900] show a decreased process value. The formal IBPP-plot

in panel (b) reveals that the Kuiper test is in fact significant at the 5% level.

Moreover, the plot gives information on the location of the LOF, namely that

the largest value of the process Zn is located in the interval [400,450]. Note that

the classical detrended PP-plot, as described troughout Chapter 2, would not

indicate a deviation, since the related KS test is not significant.

6.4.8 Old Faithful geyser data

The Old Faithful geyser data, which was introduced in Section 2.1.5, showed a

severe deviation from normality. We are now interested in whether the deviation

from normality could still be located if we would only have a subsample of size

20 available. More specifically, we wonder if the bimodal pattern that is present

in the original data, is still detectable in such a small subsample.

Before we give the results for the subsample, we first comment on the IBPP-

plots of the original data, which are shown in panels (a) and (b) of Figure

6.17. Preliminary analysis for the original data revealed roughly two clusters

of observations, which are also called bumps or modes. In between the two
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Figure 6.16: Explorative (a) and formal (b) IBPP-plot for the contaminated Lottery

data.

bumps, a region with almost no concentration of observations was found, which

is often referred to as a dip. The explorative IBPP-plot in panel (a) confirms

this and shows precisely how the data deviates from normality. In particular,

above the diagonal we first recognise the first bump in the distribution as the red

region for intervals including [1.5,2.2], which indicates that the concentration of

observations is higher than expected in case of normality. This red region is

followed by a blue region for intervals including [2.5,4], which indicates that the

density of the true distribution is clearly lower than for the normal distribution.

The absolute value of the process also obtains its largest value for that interval

where the dip is located. Finally, the second bump is recognised by the second

red region in the plot, which corresponds to intervals roughly including [4,5].

The formal IBPP-plot in panel (b), which shows the rejection region for the

Kuiper test, clearly indicates the intervals where the bumps and dip occur.

These regions were also seen from the detrended PP-plot in panel (c) from

Figure 2.5.

In Section 2.1.5, we have found that the KS test for the subsample was not

significant anymore. This means that the related detrended PP-plot would not

give useful information on the location of the bumps in the distribution. On

the other hand, the new IBPP-plots here prove particularly useful to localise

the bumps in the small dataset. The explorative and formal IBPP-plots are

presented in panels (c) and (d) of Figure 6.17, respectively. The explorative

IBPP-plot gives the same impression for the subsample as for the original sam-
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ple, although, the colours are alternating less smoothly, which is due to the

smaller sample size. The largest process value is observed in a larger interval,

i.e. [1.5,4.2] than for the original data. The first bump is less extreme, while

the second is more extreme. The formal IBPP-plot shows significant deviation

at the location of the dip and the second bump. This example illustrates the

usefulness of the IBPP-plot to detect deviating bumps in a distribution.

6.5 Simulation Study

In this section we present the results of an empirical simulation study that

aims at demonstrating the localisation ability of the formal IBPP-plot and the

formal standardised IBPP-plot. As we mentioned before and illustrated in the

previous section, these plots are also applicable to linear data. Here, we take

1,000 samples from alternatives to the linear standard normal distribution of

sample size 50. In particular, we use the same alternatives as in the simulation

study of Section 5.6: normal distributions with either µ or σ fixed, as well as

contaminated normal distributions. We expect that similar results would be

obtained when simulating from the circular analogues, used in the simulation

study of Section 5.8.6.

For each simulated dataset, we applied the Kuiper test as well as the stan-

dardised Kuiper test. Before presenting the results on the localisation ability of

the IBPP-plots, we compare the estimated powers of the two tests for each of

the alternatives. Figure 6.18 presents the power curves of both statistics for the

four selected alternatives. Panel (a) shows the curves for a normal alternative

with σ = 1 as a function of the mean µ, while panel (b) gives the powers for

a normal alternative with µ = 0 for increasing σ. Panels (c) and (d) show the

powers of the contaminated normal distributions f1,γ and f2,γ versus γ, respec-

tively. All plots show that the standardised Kuiper has lower power than the

original Kuiper test. In particular, for the normal alternative with fixed σ = 1,

almost zero power is found for the standardised Kuiper test. For the contami-

nated normal alternatives the power of the standardised Kuiper is much better,

but still less than the original Kuiper test. From this we may conclude that

standardising the Kuiper test statistic in the way of (6.5) is a GOF test with

questionable power in practice.

Let us now focus on the IBPP-plot. In case the Kuiper test or its standard-

ised version rejected the null hypothesis, we recorded for which intervals the

process Zn and Qn exceeded the 5% critical value of the corresponding test.

Intervals considered were all those with observations as end points (hence the

process values of
(

n
2

)

intervals are computed for each sample, with n = 50).

Let any interval (x, y) be represented by a point on the plane, as in the IBPP-
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Figure 6.17: Explorative (a) and formal (b) IBPP-plots for the Old Faithful geyser

data. Explorative (c) and formal (d) IBPP-plots for a random subsam-

ple (n=20) of the Old Faithful geyser data.
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Figure 6.18: Estimated power curves of the original and the standardised Kuiper

test. Panel (a) are the power curves under a normal alternative with σ =

1 versus µ. Panel (b) are the power curves under a normal alternative

with µ = 0 versus σ. Panels (c) and (d) are the power curves under

a contaminated normal alternative with δ = 1 and δ = 2, respectively,

versus γ.
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plot. We then divided the plane into 100 × 100 cells. The size of the cells was

scaled relative to the normal density, in the sense that cells in the tails of the

distribution are largest. For each cell, we then counted how many of the 1,000

samples resulted in at least one rejection occurring within the cell. The relative

frequencies are presented in heat maps and may be seen as estimated rejection

probabilities for the respective areas on the IBPP-plots.

Figure 6.19 shows the rejection probabilities of both IBPP-plots when sim-

ulation is performed under the null hypothesis. In panel (a), we see that the

nonzero rejection probabilities for the standardised IBPP-plot are only situated

close to the diagonal of the plot, which correspond to very small intervals. On

the other hand, the nonzero rejection probabilities for the original IBPP-plot

are scattered over the whole area of the plot, except on the diagonal and in the

upper left and lower right corners. The latter regions correspond to intervals

over the whole range of the sample. Hence, under the null hypothesis, a type

I error occurs mainly in small intervals in case of the standardised Kuiper test.

On the other hand, the type I errors made by the original Kuiper test appears

most frequently for intervals of intermediate size. We believe that in order to

obtain an optimal power to localise any LOF, type I errors should be scattered

randomly across the whole area. The original IBPP-plot succeeds in achieving

this property. On the other hand, the randomly scattered impression for the

standardised IBPP-plot is clearly less obvious.

Figure 6.20 shows the estimated rejection probabilities for the standardised

and the original IBPP-plot for the alternative normal distribution with σ = 1

fixed and with µ = 0.4 and µ = 1 in the panels (a), (b) and (c), (d), respectively.

We see that for the standardised IBPP-plot small intervals in the right tail has

relatively high rejection probability since the shift is to the right of the standard

normal distribution. On the other hand, the original IBPP-plot clearly shows

large rejection probabilities for intervals which include the region where the

LOF occurs. Note that these intervals are rather large, which indicates a global

LOF. From these plots and by comparing the rejection probabilities we may

conclude that a global LOF is better detected by the non-standardised version

of the IBPP-plot.

Figure 6.21 shows the estimated rejection probabilities for the standardised

and the original IBPP-plot for the normal alternative distribution with µ =

0 fixed and with σ = 1.4 and σ = 2.2 in the panels (a), (b) and (c), (d),

respectively. Similarly as for the normal alternatives shifted to the right, we

see that the standardised IBPP-plot gives some indication that the LOF is due

to a shift in variance. In particular, small intervals in both tails correspond to

relatively large rejection probabilities and large intervals over the whole range

also show large rejection probabilities. Therefore, we may conclude that the

standardised IBPP-plot detects the variance shift correctly. For the original
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Figure 6.19: Estimated rejection probabilities to reject the null hypothesis of stan-

dard normality in each interval [x,y] for the standardised (a) and the

original (b) IBPP-plot. Simulations are performed under the null hy-

pothesis.

IBPP-plot, large rejection probabilities for symmetric intervals around zero are

observed. We also see that the larger the tails of the alternative distribution,

the larger the rejection intervals are. In either case, a global LOF would be

concluded.

Figure 6.22 shows the estimated rejection probabilities for the IBPP-plots

for the contaminated normal alternatives f1,γ . Panels (a) and (c) correspond to

the standardised IBPP-plots for simulations from f1,0.2 and f1,0.4, respectively.

Panels (b) and (d) show the same cases for the original IBPP-plot. Similarly

as in Section 5.6, we subtracted the true mean, which is δγ, from the simulated

data. The location of the LOF is detected by the standardised IBPP-plot. A

white dot on the diagonal at the location of the induced LOF (δ = 1) shows

relatively large rejection probability. The original IBPP-plot also localised the

LOF, but not as precisely as the standardised IBPP-plot. In particular, the

interval that corresponds to the LOF is almost always smaller for the standard-

ised IBPP-plot than for the non-standardised IBPP-plot. For γ = 0.2, other

intervals than the one purely concentrated on δ = 1 show large rejection prob-

abilities as well. Note that all those other intervals include the location of the

LOF, and they all have reasonably small length. When γ is increased to 0.4,

the intervals are much smaller and almost all concentrated on the location of

the LOF.
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Figure 6.20: Estimated rejection probabilities to reject the null hypothesis of stan-

dard normality in each interval [x,y] for the standardised (a) and (c)

and the original (b) and (d) IBPP-plot. Simulations are performed un-

der a normal alternative with σ = 1 and µ either 0.4 ((a) and (b)) or 1

((c) and (d)).
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Figure 6.21: Estimated rejection probabilities to reject the null hypothesis of stan-

dard normality in each interval [x,y] for the standardised (a) and (c)

and the original (b) and (d) IBPP-plot. Simulations are performed un-

der a normal alternative with µ = 0 and σ either 1.4 ((a) and (b)) or

2.2 ((c) and (d)).
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Figure 6.22: Estimated probabilities to reject the null hypothesis of standard nor-

mality in each interval [x,y] for the standardised (a) and (c) and the

original (b) and (d) IBPP-plot. Simulations are performed under a con-

taminated normal alternative with δ = 1 and γ either 0.2 ((a) and (b))

or 0.4 ((c) and (d)).
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Figure 6.23: Estimated probabilities to reject the null hypothesis of standard nor-

mality in each interval [x,y] for the standardised (a) and (c) and the

original (b) and (d) IBPP-plot. Simulations are performed under a con-

taminated normal alternative with δ = 2 and γ either 0.2 ((a) and (b))

or 0.4 ((c) and (d)).
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Figure 6.23 shows the estimated rejection probabilities for the IBPP-plots

for the contaminated normal alternatives f2,γ . Panels (a) and (c) again cor-

respond to the standardised IBPP-plot for simulations from f2,0.2 and f2,0.4,

respectively. Panels (b) and (d) show the same plots for the original IBPP-plot.

As in the previous plots, the location of the LOF is clearly pin-pointed by the

standardised IBPP-plot. The white dot on the diagonal at the location of the

induced LOF (δ = 2) is now larger. The reason is that the grid is constructed

in such a way that the more the intervals are situated in the tails, the larger

the cells. Nevertheless, the cell on the diagonal at location δ = 2 has higher

rejection probability than for the previous alternative. The original IBPP-plot

also localised the LOF, although again less precise in the location than the stan-

dardised IBPP-plot. For γ = 0.2, large intervals containing the location of the

LOF have large rejection probabilities. When γ is increased to 0.4, also smaller

intervals that are more concentrated on the location of the LOF occur with large

probability.

These simulation results indicate that the standardised and the original

IBPP-plot succeed fairly well in indicating the location of the LOF. If the stan-

dardised version finds the LOF, then the plot is more precise than the original

IBPP-plot. However, the associated weighted Kuiper test has lower power than

the original Kuiper test and hence the original IBPP-plot may prove more valu-

able in many situations than the standardised plot.

6.6 The IBPP-plot as a tool for comparing density

estimates

In the context of GOF, we have illustrated in Sections 3.7 and 4.5, how a density

estimate naturally arises from the data-driven smooth test. In particular, if we

use the Barton smooth model for the construction of the family of smooth

alternatives, estimates of the parameters θj in the model can easily be found.

Moreover, the form of such a density estimator is exactly that of the well-known

orthonormal series density estimator (see e.g. Silverman, 1986). Hence, if the

data-driven smooth test leads to the rejection of the null hypothesis, the order

chosen by the selection criterion not only gives information about how the true

model deviates from the hypothesised, it also yields an appropriate order for the

associated orthonormal series density estimator. The latter can then be used

to get an immediate visual impression of the deviation. The density estimate

based on the linear data-driven smooth test has been illustrated in Section

3.7.2 on the Fastfood data, while an example in case of circular data has been

presented in Section 4.6.4 (Arrival data). These orthonormal series estimates

have been compared to a kernel density estimate. That comparison, however,
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was restricted to the visual inspection of the density curves.

In this section we will use the IBPP-plot as a graphical tool for assessing

the quality of the fit of the proposed density estimates. We explain the general

methodology in Section 6.6.1 and illustrate it on the Fastfood and the Arrival

data in the Sections 6.6.2 and 6.6.3, respectively.

6.6.1 Construction

In the IBPP-plot we compare the empirical probabilities and the expected prob-

abilities under the null hypothesis of the random variable X falling into the

arc(x, y) or interval [x, y]. Suppose x1, . . . , xn are observations in S. Then we

computed

Zn(x, y) =
√
n
(

F̂n(x) − F0(x,β) − (F̂n(y) − F0(y,β))
)

for each arc(x, y) or interval [x, y] of S, where β is replaced by its MLE if it is

unknown.

When the null hypothesis is rejected according to the data-driven smooth

test and an alternative density estimate ĝk in (3.90) is obtained, we may compare

the empirical probabilities and the expected probabilities under the alternative

density estimate. In particular, instead of the process Zn(x, y) we compute the

process

Sn(x, y) =
√
n
(

F̂n(x) − Ĝk(x) − (F̂n(y) − Ĝk(y))
)

, (6.13)

where Ĝk is the CDF of ĝk. Moreover,

Ki
n = sup

x,y∈S
|Sn(x, y)| (6.14)

can be interpreted as a distance measure between the EDF and the estimated

CDF. The smaller this distance measure, the better the density estimate ĝk fits

the data. Note that we could also replace Ĝk in (6.13) by any other estimate of

the true CDF which is obtained from an appropriate density estimate. We can

then plot the process values in (6.13) versus x and y in an explorative IBPP-plot

for comparing the true distribution with the density estimate. We will refer to

this plot as the improved IBPP-plot for the estimate ĝk. This term refers to

the density estimate, which is in a sense an improvement to the hypothesised

density f0(x,β). As the original IBPP-plot is sensitive to local alternatives to

the null distribution, we expect the improved IBPP-plot to be sensitive to local

deviations from the estimated distribution Ĝk. We now illustrate the improved

IBPP-plot on a linear as well as on a circular data example in the next two

sections. The discussion is confined to the explorative version of the IBPP-plot

since for the application of the formal version we need additional theoretical

208



results on the limiting distribution of the process Sn(x, y), and thus is beyond

the scope of this thesis.

6.6.2 Fastfood data

From Example 3.7.2 we know that the data-driven smooth test for composite

normality based on the BIC yields a significant result for the Fastfood data. The

test selected components up to the third order. To obtain the corresponding

Hermite series density estimate we therefore need estimates for three parameters

θj next to the MLEs for the parameters µ and σ. The MISE criterion also

selected components up to the third order and therefore resulted in the same

density estimate. In the same section, we have also given the kernel density

estimate and the Legendre series estimates based on the BIC and the MISE

criterion. For the Legendre series the BIC criterion selected components up to

the third order while the MISE criterion selected components up to the fourth

order.

The improved IBPP-plots of all these estimates are in Figure 6.25, while the

original IBPP-plot is shown in Figure 6.24. All plots are drawn on the same

colour scale to enable meaningful comparison. The minimum and maximum

process values are indicated in each of the legends. The maximum value cor-

responds to the value of the statistics Ki
n and Kn in the improved and the

original IBPP-plots, respectively. The largest among these values is obviously

Kn = 1.607 corresponding to the original IBPP-plot. This plot shows a red

region above the diagonal which indicates that the empirical probabilities are

larger than the probabilities expected under normality. This happens for inter-

vals including [90,150]. On the other hand, intervals including [150,350] induce

negative values of the process, which indicates that the empirical probabilities

are smaller than expected. This blue region is larger but less extreme. Such an

impression is typical for a skewed deviation from the null distribution.

The improved IBPP-plots in Figure 6.25 now reveal to which extent the var-

ious density estimates modeled this skewness correctly. The maximum process

values Ki
n for each of the density estimates are listed in increasing order as

Kernel UCV 1.12

Legendre series MISE 1.16

Hermite series BIC & MISE 1.18

Legendre series BIC 1.42.

From the corresponding improved IBPP-plot of the Legendre series BIC es-

timate, we see that the skewed impression is still present. Comparing both

Legendre estimates, we may conclude that the inclusion of the order four term,

as suggested by MISE criterion but not by BIC, makes a considerable difference.
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Figure 6.24: Explorative IBPP-plot for the Fastfood data.

The kernel density estimate comes out as the estimate which best follows the

data, but the differences with the Legendre series estimate based on the MISE

criterion and the Hermite series estimate are minor. Note that this conclusion

is only an explorative one, and no formal decision can be made from these plots.

6.6.3 Arrival Data

The improved IBPP-plots for the density curves fitted to the Arrival data in

Section 4.6.4 are presented in Figures 6.26 and 6.27. For comparison purposes

we show the original IBPP-plot in panel (a) of 6.26 and all plots are based on

the same colour scale. The Ki
n value for the kernel density estimate is equal to

0.94, while those of the orthonormal series density estimates are

CU CN

BIC 0.96 1.05

AIC 0.71 0.72

MISE 0.96 0.95,

while the corresponding selected orders are
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Figure 6.25: The explorative IBPP-plots for the nonparametric density estimates of

the Fastfood data. (a) the kernel density estimator with bandwidth

chosen by unbiased cross validation. (b) the Hermite series density

estimator with BIC and MISE order selection criterion, and Legendre

series estimator with BIC (c) and MISE (d) order selection criterion.
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CU CN

BIC 1 2

AIC 5 5

MISE 1 3.

It is expected that, using either Legendre or Hermite series estimates, the

estimate better approximates the data as the order of the series increases. Hence,

as the table above shows, the Ki
n values decrease as the order increases for each

of the two types of series estimators. The question is now two-fold. On the one

hand, we are interested in whether there is a difference in performance between

the two series estimates. In particular, is there a considerable difference in using

either the CU or the CN distribution as a starting distribution in the series

estimators? Moreover, what is their performance compared to the classical

kernel density estimate? On the other hand, we want to know whether the

inclusion of more parameters makes a considerable difference in the sense that

less systematic deviation is present in the improved IBPP-plots.

Since the AIC criterion selected the largest order (5) for both series estimates

it has also the smallest Ki
n values. On the corresponding improved IBPP-

plots we see that there is a considerable difference between those estimates and

e.g. the CU series estimates of order one. Even the selection of order two for

the CN series estimate still shows some systematic deviations. The pattern of

its corresponding improved IBPP-plot is similar to that of the kernel density

estimate. Furthermore, we see that the pattern of the improved IBPP-plot of

the the CN series with order 3 (MISE) is only slightly different from the series

with AIC selection criterion.

To compare the CU series with the CN series, we first mention that for this

example, the selected orders are different for the BIC and the MISE. The CN

series choose higher orders, and therefore their corresponding improved IBPP-

plots result in patterns that show less systematic error. This seems to confirm

that choosing a starting distribution that approaches better the true distribution

probably results in a better density estimate (see also Sections 3.7 and 4.5).

We may conclude from the IBPP-plots that the CN series estimate with

the MISE criterion might be a good choice of density estimate, since the sys-

tematic deviation has considerably diminished and overfitting seems to have

been avoided. The series estimates based on the AIC criterion, on the other

hand, probably do suffer from overfitting, while the other improved IBPP-plots

still display some systematic deviation between estimated distribution and true

distribution.
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Figure 6.26: The original IBPP-plot (a) and the IBPP-plot for checking the compat-

ibility of the kernel density estimate (b) for the Arrival data.

6.7 Discussion

A graphical tool for LOF on a circle is developed, called the IBPP-plot. Two

types of the plot, which is useful to detect and locate LOF are described. Both

are based on the Kuiper test. Therefore they are origin-invariant and may be

used as a formal diagnostic tool. A standardised version of the IBPP-plot is

described as well. This plot has also good properties to localise small deviations

with a high precision. However, the related standardised version of the Kuiper

test has a considerable power loss to detect both local and global LOF.

The methods described in this chapter are applicable to linear data as well.

Furthermore, it was illustrated how an adapted version of the IBPP-plot can

be constructed to enable an explorative comparison between different density

estimates.
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Figure 6.27: The IBPP-plots for checking the compatibility of the non-parametric

density estimates for the Arrival data.
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CHAPTER 7

Conclusions and further

research

An important statistical question is whether a sample of observations agrees

with a certain prespecified distribution or family of distributions. To deal with

this kind of statistical problems, we can either use formal goodness-of-fit (GOF)

tests or explorative graphical tools. It is however recommended to apply both

simultaneously. The sample space from which the observations are drawn is

usually the real line, but data on a circle also arise in many fields. GOF methods

for this kind of data need to be origin-invariant, since their conclusions should

not depend on the chosen origin.

In this thesis, three contributions to the statistical analysis of linear and

circular data are presented. In this chapter we discuss the results together with

possible further research topics.

Applying smooth tests to solve the GOF problem for linear distributions

has the advantage that the components in the orthogonal decomposition of the

corresponding score statistic often lead to easy interpretation and sum up to a

test statistic with limiting omnibus features. The difficulty with the construction

of smooth tests for circular distributions is to find appropriate orthonormal

polynomials, because these are usually described in the complex field. Therefore,

we have first defined the circular observations and the family of order k smooth
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alternatives on the field of complex numbers. Nevertheless, the latter family

is constructed so that its functions are real-valued and proper densities. The

score test for the complex parameters in the model is also based on a real-valued

statistic which is asymptotically χ2 distributed, and has an interpretation in

terms of trigonometric moment deviations. This construction and the general

theory of orthonormal polynomials on the unit circle (e.g. Simon, 2005) leads

to a new class of smooth GOF tests for circular distributions. The tests are

called the complex smooth tests since they are constructed using the “complex”

framework described above. We have shown that the complex smooth model

can be rewritten as a real smooth model for which the score statistic is equal

to the former complex score statistic. Hence, in some sense this class of tests

generalises the methodology of Rayner and Best (1989) for smooth tests on the

real line.

Since we apply the test to circular data, the origin-invariance property needs

to be checked. When the smooth test is not origin-invariant, we propose to

subtract the circular mean direction from each observation before computing

the test statistic.

For circular uniformity and circular normality we have given the explicit

form of the smooth tests and its asymptotic distribution. In case of testing for

circular uniformity we have explained how this construction leads to the smooth

test of Bogdan et al. (2002). We have also shown that in case of testing for

circular normality, our test generalizes the test proposed by Barndoff-Nielsen

and Cox (1979).

Similarly as for a linear smooth test, the choice of the order of the family of al-

ternatives in the smooth model is crucial to obtain optimal power. To overcome

the problem of choosing the order, a data-driven version of the complex smooth

test is discussed. Both the AIC and BIC selection rules have been considered to

make an appropriate choice on the order of the complex smooth model, resulting

in two versions of the data-driven smooth test for circular distributions against

a general class of order k smooth alternatives. The parametric bootstrap was

used to approximate the null distributions for the data-driven statistics. The

complex data-driven smooth test for the CN distribution has been applied on

real data examples. It has been demonstrated that, if the null hypothesis is

rejected, the components of the smooth test may contain interesting informa-

tion about how the true distribution deviates from the hypothesised. Some

characteristics of the data-driven smooth test for circular normality have been

investigated in a simulation study, which showed that it has good power against

many different alternatives. In particular, the data-driven smooth test based on

the AIC criterion has good power against higher order alternatives, while the

test based on the BIC criterion has good power against low order alternatives.

In this thesis it has also been illustrated by means of an example how the
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application of the data-driven smooth test naturally leads to a nonparametric

estimate of the true circular density. The result is essentially an orthonormal

series density estimator, i.e. graph which can reveal how the true distribution

deviates from the hypothesised. In that sense, the interpretation of the results

from the test can be visualised.

Regarding future research perspectives, it would be interesting to study com-

plex smooth tests for univariate circular distributions other than the CU or CN

distribution, or for multivariate circular distributions. Developing a smooth test

for multivariate circular distributions such as the von Mises-Fisher distribution

on a multi-dimensional sphere, will also require a complex framework. Rayner

and Best (1989) considered the smooth test for a multivariate normal distribu-

tion. Their approach can be generalised, resulting in a complex smooth test for

multivariate circular normality. Furthermore, smooth tests for discrete circular

distributions would be interesting as well since many circular data examples

involve categorised data. Rayner and Best’s (1989) test for categorised data

can similarly be used as a basis to construct a complex smooth test for circular

discrete distributions. The main issue for each of the previous generalisations is

finding appropriate polynomials orthonormal to the hypothesised distributions.

Also, origin-invariance will need to be checked and useful adaptations should be

proposed if necessary. We presume that the adaptation will reduce to changing

the origin to a sensible mean direction.

For the von Mises distribution with concentration parameter larger than 1,

we have encountered problems with the smooth test statistic, in the sense that

it could not easily be decomposed into orthogonal components. This problem

was also reflected in the estimation of the parameters in the orthonormal series

density estimator. We therefore aim to look for methods to find the parameter

estimates such that the density estimate easily follows. If we find a solution to

this problem, it will immediately enable us to interpret how the true distribu-

tion deviates from the hypothesised from the visual inspection of the density

estimate.

We have also presented some new results on the integral version of the class

of GOF tests proposed by Thas (2001). The tests are constructed by integrating

out the Pearson χ2 statistic over all possible partitions of the sample space in

c cells. The degrees of freedom of Pearson’s statistic are directly related to

the indexing parameter of our new class, the SSP size c. The resulting tests

are therefore called the linear SSPc tests. The tests are generalisations of the

Anderson-Darling test, which is included in the class by taking c = 2. The

methodology may be used to obtain similar extensions to the tests proposed by

Zhang (2002) and Einmahl and McKeague (2003).

The construction of the linear SSPc test statistics and their asymptotic null

distributions were given, and omnibus consistency was proved. We have written
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the linear SSP3 statistic as a V -statistic so as to find an appropriate decompo-

sition in terms of Legendre polynomials. This decomposition led to the limiting

distribution of the statistic under contiguous alternatives. The limiting values

of the linear SSP3 and SSP4 statistics under a particular family of local alterna-

tives have been studied, from which we found that the statistics have relatively

high values for “local” alternatives, i.e. alternatives which deviate from the null

distribution in small intervals of the sample space only.

To avoid the problem of choosing the right value for the indexing parameter

c, we have proposed a data-driven version of the test. Simulations confirmed

that the selection rule succeeds quite well in selecting a good choice for c. The

usefulness of those data-driven tests has also been demonstrated on real data

examples. The power study for the linear SSPc tests indicated that a substantial

power gain may result from choosing some c > 2. On the other hand, the

study also showed that for some alternatives, the highest power is obtained

with c = 2. The weight functions that are involved in the test statistic, as

well as the limiting behaviour and the simulation results, suggest that the new

tests are very sensitive to deviations from the hypothesised distribution F0 in

small intervals of the support of F0. Furthermore, this sensitivity increases with

increasing SSP size c.

Extensions to composite null hypothesis have been described as well. In par-

ticular, the theory of the new class of GOF tests to composite null hypotheses

is based on the estimated empirical process. If the nuisance parameters are

estimated by asymptotically linear estimators, this estimated empirical process

converges weakly to a Gaussian process with known covariance function. How-

ever, the limiting Gaussian process is quite complicated. Therefore, we suggest

using parametric bootstrap to obtain the approximate null distribution.

The new class of GOF tests for linear data has been extended to a similar

class of GOF tests for circular data. This was done by making the class of

statistics origin-invariant. We have simply integrated out all possible origins

resultingin the origin-invariant class of statistics. The resulting type of tests is

called the circular SSPc tests and reduces to Rothman’s test (1972) if c = 2.

The limiting null distribution of the linear SSPc statistic has been derived

and computational formulae for SSP size c = 2, 3 and 4 have been found. The

formulae for the circular analogues were then found by rewriting the statistic as

a linear combination of V -statistics. This methodology can be extended to any

SSP size.

The data-driven version and its asymptotic theory are similar as in the linear

case. A simulation study indicated that the circular SSPc test has the same

power characteristics as the linear SSPc test, though the differences between

their powers are less pronounced than in the linear case. The power study

showed that the SSPc tests perform at least as good as their competitors for all
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alternatives considered.

Additional simulations for both the linear and the circular SSPc tests, as

well as the data-driven versions would be desirable for the context of composite

null hypotheses. Indeed, it would be nice to know whether the localising small

sample properties remain valid in the composite case.

In the final part of the thesis we have developed and discussed the IBPP-plot,

which is a useful graphical tool for detecting and localising LOF on the circle.

Two types of plots have been described, both of which are based on the Kuiper

statistic. Similarly as for the PP-plot, the IBPP-plot is thus related to a formal

statistical test, which is particularly intersting since the results of that test can

be derived from the graph. Hence, the conclusions obtained from that graph

are objective. This is in contrast to most other graphial tools, which are merely

explorative and hence subjective. A standardised version of the IBPP-plot has

been described as well. However, the related standardised version of the Kuiper

test shows a considerable power loss to detect both local and global LOF as

compared to the unstandardised version. Further research is needed to study

the standardised version and to examine whether alternative standardisation

techniques may improve the procedure.

All methods for circular data are applicable to linear data as well. Further-

more, we have extended the use of the IBPP-plot and demonstrated that an

adapted version enables explorative comparison between different appropriate

density estimates.

A formal version of this type of IBPP-plot can be developed if more re-

search is performed on the asymptotic properties of the process used for the

construction of that plot.
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APPENDIX A

Orthonormal polynomials

A.1 Hermite polynomials

The Hermite polynomials for the standard normal distribution are defined by

Hk(x) = (−1)nex2/2 d
k

dxk
e−x2/2, (A.1)

The first Hermite polynomials are,

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

We have that

∫ ∞

−∞
Hk(x)Hl(x) e

−x2/2 dx = n!
√

2πδkl (A.2)
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A.2 Legendre polynomials

The orthogonal Legendre polynomials on [0, 1] are defined by

Pk(x) =
1

k!

dk

dxk
(x(x− 1))k (A.3)

or

Pk(x) =
k
∑

l=0

(−1)k−l

(

k

k − l

)(

k + l

k

)

xl (A.4)

The first Legendre polynomials are,

P0(x) = 1

P1(x) = 2x− 1

P2(x) = 16x2 − 6x+ 1

P3(x) = 20x3 − 30x2 + 12x− 1

Some properties of these polynomials are

∫ 1

0

Pk(x)Pl(x)dx = 0, k 6= l (A.5)

∫ 1

0

Pk(x)dx = 0, l < k (A.6)

∫ 1

0

xlPk(x)dx =
l!

(l − k)!

l!

(l + k + 1)!
, l ≥ k (A.7)

∫ 1

0

P 2
k (x)dx =

1

2k + 1
, k ≥ 0 (A.8)

Pk(x) = (−1)kPk(1 − x), k ≥ 0 (A.9)

and for all 0 < x < 1 and k ≥ 1

|Pk(x)| ≥ 1√
πk

(x(1 − x))−1/4. (A.10)

From (A.8) we obtain the orthonormal Legendre polynomials, denoted by

Lk, k = 0, 1, . . .

Lk(x) =
√

2k + 1Pk(x) (A.11)
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APPENDIX B

Proofs

B.1 Proof of Theorem 5.1

Let

Ac =

∫ 1

0

((1 − x)c−1 + xc−1)
B2(x)

x(1 − x)
dx (B.1)

and

Uc =

∫ 1

0

∫ 1

0

(1 − (x ∨ y))c−2 − (x ∧ y)c−2

(1 − (x ∨ y)) − (x ∧ y)
(B(x) − B(y))2

|x− y| dxdy (B.2)

and Tc = (c − 1)Ac +
(

c−1
2

)

Uc. The convergence of Tc,n is obtained if we can

prove that for the Skorokhod construction of B(.),

|Tc,n − Tc|
p−→ 0 as n→ ∞.

First, note that

|Tc,n − Tc| ≤ (c− 1)|Ac,n −Ac| +
(

c− 1

2

)

|Uc,n − Uc|. (B.3)

We will proceed by showing that both |Ac,n − Ac| and |Uc,n − Uc| are asymp-

totically negligible.

Since (1 − x)c−1 + xc−1 ≤ 1 for all c ≥ 2 and 0 ≤ x ≤ 1,

|Ac,n −Ac| ≤
∣

∣

∣

∣

∫ 1

0

B2
n(x) − B2(x)

x(1 − x)
dx

∣

∣

∣

∣

.
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Shorack and Wellner (1986) proved that
∣

∣

∣

∫ 1

0
B
2
n(x)−B

2(x)
x(1−x) dx

∣

∣

∣

p→ 0 as n → ∞.

Hence |Ac,n −Ac|
p→ 0.

Suppose x ≤ y, then

(1 − (x ∨ y))c−2 − (x ∧ y)c−2

(1 − (x ∨ y)) − (x ∧ y) = xc−3 + xc−4(1 − y) + . . .+ (1 − y)c−3

=

c
∑

d=3

xc−d(1 − y)d−3

Hence,

Uc,n =

c
∑

d=3

∫ 1

0

∫ 1

0

(x∧y)c−d(1− (x∨y))d−3(1−|x−y|) (Bn(x) − Bn(y))2

|x− y|(1 − |x− y|)dxdy.

Since for all c ≥ 3, all d = 3, . . . , c and all x, y, we have

(x ∧ y)c−d(1 − (x ∨ y))d−3(1 − |x− y|) ≤ 1,

it follows that

|Uc,n − Uc| ≤
∣

∣

∣

∣

∫ 1

0

∫ 1

0

(Bn(x) − Bn(y))2 − (B(x) − B(y))2

|x− y|(1 − |x− y|) dxdy.

∣

∣

∣

∣

(B.4)

Since Shorack and Wellner (1982) have shown that the right hand side of (B.4)

converges to zero in probability, we find |Uc,n − Uc|
p→ 0. Finally, by (B.3), we

conclude for the Skorokhod construction

|Tc,n − Tc|
p→ 0 as n→ ∞

.

B.2 Proof of Theorem 5.2

Omnibus consistency of the test based on Tc,n is easily established by recognising

that for all finite c ≥ 2 and all nested subsets Dc ⊂ Dc+1,

Pc+1,n(Dc) ≥ Pc,n(Dc+1)

with probability 1 (see e.g. Section 5.1 in Cressie & Read, 1984). It follows that

also Tc+1,n ≥ Tc,n with probability 1. Since the AD test is omnibus consistent

(in particular, T2,n becomes unbounded as n→ ∞), omnibus consistency of the

SSPc test follows immediately.
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B.3 Proof of Lemma 5.1

First, we have in (5.27)

u ∨ v
u ∧ v

1

|u− v| =
1

|u− v|
(

1 +
u ∨ v
u ∧ v − 1

)

=
1

|u− v| +
1

u ∧ v ,

1 − u ∧ v
1 − u ∨ v

1

|u− v| =
1

|u− v|

(

1 +
1 − u ∧ v
1 − u ∨ v − 1

)

=
1

|u− v| +
1

1 − u ∨ v

and

Bx(u∧v)By(u∧v)+Bx(u∨v)By(u∨v)−Bx(u∧v)By(u∨v)−Bx(u∨v)By(u∧v)

= (Bx(u ∧ v) − Bx(u ∨ v))(By(u ∧ v) − By(u ∨ v))

Hence, in (5.27)

ΨSSP3(x, y) = Φ(x, y) + Ω(x, y), (B.5)

where

Φ(x, y) =
1

n

∫ 1

0

∫ 1

0

(

Bx(u ∧ v)By(u ∧ v)
u ∧ v +

Bx(u ∨ v)By(u ∨ v)
1 − u ∨ v

)

dudv

Ω(x, y) =
1

n

∫ 1

0

∫ 1

0

(Bx(u ∧ v) − Bx(u ∨ v))(By(u ∧ v) − By(u ∨ v)) 1

|u− v|dudv

Let Φ1 and Φ2 be the first and the second term in Φ(x, y), respectively. Then,

we write

Φ1 =
1

n

∫ 1

0

∫ 1

0

Bx(u ∧ v)By(u ∧ v)
u ∧ v dudv

= 2
1

n

∫ 1

0

∫ v

0

Bx(u)By(u)

u
dudv

= 2

∫ 1

0

∫ v

0

1

u
(I(x ≤ u) − u)(I(y ≤ u) − u)dudv

= 2

∫ 1

0

∫ v

0

1

u
I(x ≤ u)I(y ≤ u)dudv + 2

∫ 1

0

∫ v

0

ududv

−2

∫ 1

0

∫ v

0

I(x ≤ u)dudv − 2

∫ 1

0

∫ v

0

I(y ≤ u)dudv.
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Further

∫ 1

0

∫ v

0

1

u
I(x ≤ u)I(y ≤ u)dudv =

∫ 1

x∨y

∫ v

x∨y

1

u
dudv

=

∫

x∨y

(ln v − ln(x ∨ y)dv

= −1 + x ∨ y − ln(x ∨ y),
∫ 1

0

∫ v

0

ududv =
1

6
,

∫ 1

0

∫ v

0

I(x ≤ u) =

∫ 1

x

∫ v

x

dudv =
1

2
(1 − x)2

and

∫ 1

0

∫ v

0

I(x ≤ u) =
1

2
(1 − y)2.

Therefore,

Φ1 = 2

(

−1 + x ∨ y − ln(x ∨ y) − 1

2
(1 − x)2 − 1

2
(1 − y)2 +

1

6

)

.

Similarly we find

Φ2 = 2

(

−1 + (1 − x) ∨ (1 − y) − ln((1 − x) ∨ (1 − y)) − 1

2
x2 − 1

2
y2 +

1

6

)

.

As a result, we obtain the formula

Φ(x, y) = 2

(

− ln(x ∨ y) − ln((1 − x) ∨ (1 − y))

+x ∨ y + (1 − x) ∨ (1 − y) + x(1 − x) + y(1 − y) − 8

3

)

.(B.6)

Since for all 0 ≤ x ≤ 1

∫ 1

0

ln(x ∨ y)dy = x− 1,

∫ 1

0

x ∨ ydy =
1

2
(1 + x2) and

∫ 1

0

y(1 − y)dy =
1

6

the function Φ possesses the property of degeneracy, i.e

∫ 1

0

Φ(x, y)dy = 0. (B.7)

Moreover, in (B.6) we see that

Φ(x, y) = Φ(y, x) and Φ(x, y) = Φ(1 − x, 1 − y). (B.8)
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Further, we rewrite Ω(x, y) in (B.5) as

Ω(x, y) =
1

n

∫ 1

0

∫ 1

0

(Bx(u ∧ v) − Bx(u ∨ v))(By(u ∧ v) − By(u ∨ v)) 1

|u− v|dudv

=
2

n

∫ 1

0

∫ v

0

(Bx(u) − Bx(v))(By(u) − By(v))
1

v − u
dudv

= 2

∫ 1

0

∫ v

0

(v − u− I(u < x ≤ v)) (v − u− I(u < y ≤ v))
1

v − u
dudv

= 2

∫ 1

0

∫ v

0

I(u < x ≤ v)I(u < y ≤ v)
1

v − u
dudv + 2

∫ 1

0

∫ v

0

(v − u)dudv

− 2

∫ 1

0

∫ v

0

I(u < x ≤ v)dudv − 2

∫ 1

0

∫ v

0

I(u < y ≤ v)dudv

Here
∫ 1

0

∫ v

0

I(u < x ≤ v)I(u < y ≤ v)
1

v − u
dudv =

∫ 1

x∨y

∫ x∧y

0

1

v − u
dudv

=

∫ 1

x∨y

(ln v − ln(v − x ∧ y))

= |x− y| ln |x− y| − x ∨ y ln(x ∨ y)
− ((1 − x) ∧ (1 − y)) ln((1 − x) ∧ (1 − y)),

∫ 1

0

∫ v

0

(v − u)dudv =
1

6
,

∫ 1

0

∫ v

0

I(u < x ≤ v)dudv =

∫ 1

x

∫ x

0

du = x(1 − x),

∫ 1

0

∫ v

0

I(u < y ≤ v)dudv = y(1 − y).

As a result

Ω(x, y) = 2

(

|x− y| ln |x− y|

−x ∨ y ln(x ∨ y) − ((1 − x) ∧ (1 − y)) ln((1 − x) ∧ (1 − y))

−x(1 − x) − y(1 − y) +
1

6

)

. (B.9)

Again, for all 0 ≤ x ≤ 1

∫ 1

0

|x− y| ln |x− y|dy =
1

2

(

x2 lnx+ (1 − x)2 ln(1 − x)
)

− 1

4

(

x2 + (1 − x)2
)

,

∫ 1

0

x ∨ y ln(x ∨ y)dy =
1

2
x2 lnx+

1

4
(x2 − 1)
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Hence, the function Ω(x, y) is degenerate as well, i.e.

∫ 1

0

Ω(x, y)dy = 0. (B.10)

Evidently, we have

Ω(x, y) = Ω(y, x) and Ω(x, y) = Ω(1 − x, 1 − y). (B.11)

From (B.5), (B.6) and (B.9), we have (5.28). Similarly, from (B.5), (B.7) and

(B.10), it follows that Φ(x, y) is degenerate. Together with (B.8) and (B.11),

we proved (5.29).

B.4 Proof of Lemma 5.2

In this proof the index SSP3 is omitted for notational comfort. As mentioned

before we only need to compute the coefficients Ψkl in (5.41) for the kernel Ψ in

(5.27). Note that these coefficients are invariant w.r.t. permutations of indices,

i.e. Ψkl = Ψlk.

We will first prove that these coefficients are zero for all odd k− l ≥ 1. This

is done by rewriting the kernel Ψ in (5.40) as

Ψ(x, y) =
∞
∑

k=1

(2k + 1)2ΨkkPk(x)Pk(y)

+
∑

1≤k 6=l<∞
(2k + 1)(2l + 1)ΨklPk(x)Pl(y)

for which the second term can be rewritten as

1

2

∑

1≤k 6=l<∞
(2k + 1)(2l + 1)Ψkl[Pk(x)Pl(y) + Pk(y)Pl(x)]

=
∑

1≤k<l<∞
(2k + 1)(2l + 1)Ψkl[Pk(x)Pl(y) + Pk(y)Pl(x)]

=
∞
∑

k=2

k−1
∑

l=1

(2k + 1)(2l + 1)Ψkl[Pk(x)Pl(y) + Pk(y)Pl(x)]

Hence,

Ψ(x, y) =

∞
∑

k=1

(2k + 1)2ΨkkPk(x)Pk(y) (B.12)

+

∞
∑

k=2

k−1
∑

l=1

(2k + 1)(2l + 1)Ψkl[Pk(x)Pl(y) + Pk(y)Pl(x)]
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By the virtue of properties (5.29) and (A.9) we have

Ψkl =

∫ 1

0

∫ 1

0

Ψ(x, y)Pk(x)Pl(y)dxdy

= (−1)k+l

∫ 1

0

∫ 1

0

Ψ(1 − x, 1 − y)Pk(1 − x)Pl(1 − y)dxdy

= (−1)k+l

∫ 1

0

∫ 1

0

Ψ(x, y)Pk(x)Pl(y)dxdy

= (−1)k−lΨkl.

We see that

for all odd k − l ≥ 1, Ψkl = 0 (B.13)

In the following, we will consider Ψkl for all even k − l ≥ 0. By the definition

of Ψkl (see (5.41)) we write

Ψkl =

∫ 1

0

Pk(x)

∫ 1

0

Ψ(x, y)Pl(y)dydx

= 2

∫ 1

0

Pk(x)

∫ 1

0

|x− y| ln |x− y|Pl(y)dydx

−2

∫ 1

0

Pk(x)

∫ 1

0

(x ∨ y) ln(x ∨ y)Pl(y)dydx

−2

∫ 1

0

Pk(x)

∫ 1

0

((1 − x) ∨ (1 − y)) ln((1 − x) ∨ (1 − y))Pl(y)dydx

+2

∫ 1

0

Pk(x)

∫ 1

0

(x ∨ y + (1 − x) ∨ (1 − y))Pl(y)dydx

−2

∫ 1

0

Pk(x)

∫ 1

0

(ln(x ∨ y) + ln((1 − x) ∨ (1 − y)))Pl(y)dydx. (B.14)

Let Ψ1, . . . ,Ψ5 be each of five integrals in (B.14), respectively, i.e.

Ψkl = 2Ψ1 − 2Ψ2 − 2Ψ3 + 2Ψ4 − 2Ψ5. (B.15)

Here each integral is computed explicitly,

Ψ1 =

∫ 1

0

Pk(x)

∫ x

0

(x− y) ln(x− y)Pl(y)dydx

+

∫ 1

0

Pk(x)

∫ 1

x

(y − x) ln(y − x)Pl(y)dydx

After the change of the integrand variables x→ 1 − x, y → 1 − y in the second

line and by (A.9)

= 2

∫ 1

0

Pk(x)

∫ x

0

(x− y) ln(x− y)Pl(y)dydx
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After the change y → xy

= 2

∫ 1

0

Pk(x)x2 lnx

∫ 1

0

(1 − y)Pl(xy)dydx

+ 2

∫ 1

0

Pk(x)x2

∫ 1

0

(1 − y) ln (1 − y)Pl(xy)dydx, (B.16)

Ψ2 + Ψ3 =

∫ 1

0

Pk(x)

∫ x

0

(x ∨ y) ln(x ∨ y)Pl(y)dydx

+

∫ 1

0

Pk(x)

∫ 1

0

((1 − x) ∨ (1 − y)) ln((1 − x) ∨ (1 − y))Pl(y)dydx

After the change x→ 1 − x, y → 1 − y and by (A.9)

= 2

∫ 1

0

Pk(x)

∫ x

0

(x ∨ y) ln(x ∨ y)Pl(y)dydx

= 2

∫ 1

0

Pk(x)x lnx

∫ x

0

Pl(y)dydx

+ 2

∫ 1

0

Pk(x)

∫ 1

x

y ln yPl(y)dydx

= 2

∫ 1

0

Pk(x)x lnx

∫ x

0

Pl(y)dydx

− 2

∫ 1

0

Pk(x)

∫ x

0

y ln yPl(y)dydx

After the change y → xy

= 2

∫ 1

0

Pk(x)x2 lnx

∫ 1

0

(1 − y)Pl(xy)dydx

− 2

∫ 1

0

Pk(x)x2

∫ 1

0

y ln yPl(xy)dydx, (B.17)
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Ψ4 =

∫ 1

0

Pk(x)

∫ 1

0

(x ∨ y + (1 − x) ∨ (1 − y))Pl(y)dydx

= 2

∫ 1

0

Pk(x)

∫ 1

0

x ∨ yPl(y)dydx

= 2

∫ 1

0

Pk(x)x

∫ x

0

Pl(y)dydx

+ 2

∫ 1

0

Pk(x)

∫ 1

x

yPl(y)dydx

= 2

∫ 1

0

Pk(x)x

∫ x

0

Pl(y)dydx

− 2

∫ 1

0

Pk(x)

∫ x

0

yPl(y)dydx

After the change y → xy

= 2

∫ 1

0

Pk(x)x2

∫ 1

0

(1 − y)Pl(xy)dydx, (B.18)

Ψ5 =

∫ 1

0

Pk(x)

∫ 1

0

(ln(x ∨ y) + ln((1 − x) ∨ (1 − y)))Pl(y)dydx

= 2

∫ 1

0

Pk(x)

∫ 1

0

lnx ∨ yPl(y)dydx

= 2

∫ 1

0

Pk(x) lnx

∫ x

0

Pl(y)dydx

+ 2

∫ 1

0

Pk(x)

∫ 1

x

ln yPl(y)dydx

= 2

∫ 1

0

Pk(x) lnx

∫ x

0

Pl(y)dydx

− 2

∫ 1

0

Pk(x)

∫ x

0

ln yPl(y)dydx

After the change y → xy

= −2

∫ 1

0

Pk(x)x

∫ 1

0

ln yPl(xy)dydx, . (B.19)
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From (B.14)-(B.16), it follows that for all even k − l = 0, 2, 4, . . .

Ψkl = 4

∫ 1

0

Pk(x)x2

∫ 1

0

(1 − y) ln (1 − y)Pl(xy)dydx

4

∫ 1

0

Pk(x)x2

∫ 1

0

(y ln y + 1 − y)Pl(xy)dydx

4

∫ 1

0

Pk(x)x

∫ 1

0

ln yPl(xy)dydx. (B.20)

By the definition of the Legendre polynomials (see (A.4)), we have

Pl(xy) =

(

2l

l

)

xlyl −
(

l

1

)(

2l − 1

l

)

xl−1yl−1 +

(

l

2

)(

2l − 2

l

)

xl−2yl−2 + . . .

(B.21)

By substituting (B.21) in (B.20) and taking account of (A.6) we see that

for all 1 ≤ l ≤ k − 4, Ψkl = 0, (B.22)

for l = k − 2 ≥ 1

Ψk,k−2 = 4

(

2k − 4

k − 2

)∫ 1

0

xkPk(x)

∫ 1

0

(1 − y) ln(1 − y)yk−2

+4

(

2k − 4

k − 2

)∫ 1

0

xkPk(x)

∫ 1

0

(y ln y + 1 − y)yk−2 (B.23)

and for l = k ≥ 1

Ψk,k = 4

(

2k

k

)∫ 1

0

Pk(x)xk+2

∫ 1

0

(1 − y) ln(1 − y)ykdydx

−4

(

k

1

)(

2k − 1

k

)∫ 1

0

Pk(x)xk+1

∫ 1

0

(1 − y) ln(1 − y)yk−1dydx

+4

(

k

2

)(

2k − 2

k

)∫ 1

0

Pk(x)xk

∫ 1

0

(1 − y) ln(1 − y)yk−2dydx

+4

(

2k

k

)∫ 1

0

Pk(x)xk+2

∫ 1

0

(y ln y + 1 − y)ykdydx

−4

(

k

1

)(

2k − 1

k

)∫ 1

0

Pk(x)xk+1

∫ 1

0

(y ln y + 1 − y)yk−1dydx

+4

(

k

2

)(

2k − 2

k

)∫ 1

0

Pk(x)xk

∫ 1

0

(y ln y + 1 − y)yk−2dydx

+4

(

2k

k

)∫ 1

0

Pk(x)xk+1

∫ 1

0

ln(y)ykdydx

−4

(

k

1

)(

2k − 1

k

)∫ 1

0

Pk(x)xk

∫ 1

0

ln(y)yk−1dydx. (B.24)

232



In (B.23) and (B.24) all integrals are one-type. For example,

∫ 1

0

ln(1 − y)ykdy = − 1

k + 1

k+1
∑

p=1

1

p
, k ≥ 0

∫ 1

0

ln(y)ykdy = − 1

(k + 1)2
, k ≥ 0

∫ 1

0

(y ln y + 1 − y)ykdy = − 1

(k + 1)2(k + 1)
, k ≥ 0

∫ 1

0

((1 − y) ln(1 − y) + y ln y + 1 − y)yk−2dy =

{

− 1
k(k−1)

∑k−1
p=2

1
p , k ≥ 3

0 k = 2

We use the formula (A.7) for l = k, k + 1 and k + 2. For example for l = k, it

becomes

∫ 1

0

Pk(x)xk =
k!

(2k)!

k!

2k + 1
.

From (B.23) we have for k ≥ 3

Ψkk = 4

(

2k − 4

k − 2

)

k!

2k!

k!

2k + 1

(

− 1

(k − 1)k

k−1
∑

p=2

1

p

)

= − 1

(2k − 3)(2k − 1)(2k + 1)

(

k−1
∑

p=2

1

p

)

= − σk

(2k − 3)(2k − 1)(2k + 1)
. (B.25)
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From (B.24) we obtain for k ≥ 2

Ψkk = 4

(

2k

k

)

(k + 2)!(k + 2)!

2(2k + 3)!

(

− 1

(k + 1)(k + 2)

k+1
∑

p=2

1

p

)

−4

(

k

1

)(

2k − 1

k

)

(k + 1)!(k + 1)!

(2k + 2)!

(

− 1

k(k + 1)

k
∑

p=2

1

p

)

+4

(

k

2

)(

2k − 2

k

)

k!k!

(2k)!(2k + 1)

(

− 1

(k − 1)k

k−1
∑

p=2

1

p

)

−4
(2k)!

k!k!

(k + 1)!(k + 1)!

(2k + 2)!

1

(k + 1)2

+4
k!

(k − 1)!

(2k − 1)!

(k − 1)!k!

k!k!

(2k)!(2k + 1)

1

k2

= − k + 2

(2k + 1)(2k + 3)

(

k+1
∑

p=2

1

p

)

+
1

2k + 1

(

k
∑

p=2

1

p

)

− k − 1

(2k − 1)(2k + 1)

(

k−1
∑

p=2

1

p

)

+
2

k(k + 1)(2k + 1)

= − k + 2

(2k + 1)(2k + 3)

(

σk +
1

k
+

1

k + 1

)

+
1

2k + 1

(

σk +
1

k

)

− k − 1

(2k − 1)(2k + 1)
σk +

2

k(k + 1)(2k + 1)

=

(

1

2k + 1
− k + 2

(2k + 1)(2k + 3)
− k − 1

(2k − 1)(2k + 1)

)

σk

+
1

k(2k + 1)
− k + 2

k(2k + 1)(2k + 3)
− k + 2

(k + 1)(2k + 1)(2k + 3)

+
2

k(k + 1)(2k + 1)

=
2σk

(2k − 1)(2k + 1)(2k + 3)
+

4k + 7

k(k + 1)(2k + 1)(2k + 3)
(B.26)

From (B.24) we obtain for k = 1 that

Ψ11 =
1

3
− 1

10
(B.27)
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From (B.12)-(B.13) and (B.22) it follows

Ψ(x, y) =

∞
∑

k=1

(2k + 1)2ΨkkPk(x)Pk(y)

= +

∞
∑

k=3

(2k + 1)(2k − 3)Ψk,k−2(Pk(x)Pk−2(y) + Pk−2(x)Pk(y))

after the change k → k + 2 in the second sum

=

∞
∑

k=1

(2k + 1)2ΨkkPk(x)Pk(y)

=

∞
∑

k=1

(2k + 5)(2k + 1)Ψk+2,k(Pk(x)Pk+2(y) + Pk+2(x)Pk(y))

by virtue of (B.25) and (B.26)

= 9
7

30
P1(x)P1(y) +

∞
∑

k=2

(

(2k + 1)(4k + 7)

k(k + 1)(2k + 3)

)

Pk(x)Pk(y)

−
∞
∑

k=1

σk+2

2k + 3
(Pk(x)Pk+2(y) + Pk+2(x)Pk(y)).

This leads to (5.48) and hence Lemma 5.2 is proved.

B.5 Proof of Theorem 5.7

P [Cn 6= cm] =
∑

c∈Γ\{cm}
P [Cn = c] .

Next we make use of the characteristic that a selected order equal to c implies

that the order c beats the minimal order cm, and hence Tc,n − 2(c − 1) ln an >

Tcm,n − 2(cm − 1) ln an. Let d = (c− 1) − (cm − 1). Then,

P [Cn 6= cm] ≤
∑

c∈Γ\{cm}
P [Tc,n − 2(c− 1) ln an >

Tcm,n − 2(cm − 1) ln an]

≤
∑

c∈Γ\{cm}
P [Tc,n − Tcm,n > 2d ln an]

≤
∑

c∈Γ\{cm}
P [Tc,n > 2d ln an] ,
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where in the last step we made use of the fact that Tcm,n ≥ 0. Let µc,n =

E0 [Tc,n] and νc,n = Var0 [Tc,n] (the index 0 refers to the hypothesised distribu-

tion F0). Then, we continue by subtracting µc,n, taking the absolute value and

applying Chebychev’s inequality.

P [Cn 6= cm] ≤
∑

c∈Γ\{cm}
P [Tc,n − µc,n > 2d ln an − µc,n]

≤
∑

c∈Γ\{cm}
P [|Tc,n − µc,n| > 2d ln an − µc,n]

≤
∑

c∈Γ\{cm}

νc,n

(2d ln an − µc,n)
2 . (B.28)

From the definition of Tc,n (Equation 5.8) it is seen that µc,n → (c − 1) and

that νc,n → (c − 1)σ (Varg [T2,n] → σ as n → ∞) as n → ∞. σ is finite and c

is assumed to be finite. Furthermore is was assumed that an → ∞ as n → ∞.

Hence each term in Equation B.28 converges to zero. Since #Γ is finite, only a

finite number of terms appear in Equation B.28. Thus, we have

P [Cn 6= cm] → 0 (B.29)

as n→ ∞, which completes the proof.

B.6 Proof of Theorem 5.8

We proceed as Inglot et al. (1997). Under H0, for all x ∈ S,

P [TCn,n ≤ x] = P [TCn,n ≤ x,Cn = cm] + P [TCn,n ≤ x,Cn 6= cm]

= P [TCn,n ≤ x|Cn = cm] P [Cn = cm] + P [TCn,n ≤ x,Cn 6= cm]

Thus, with P [TCn,n ≤ x|Cn = cm] = P [Tcm,n ≤ x],

P [TCn,n ≤ x] = P [Tcm,n ≤ x] P [Cn = cm] + P [TCn,n ≤ x,Cn 6= cm] ,

where, by Equation B.29, the last term tends to zero, and P [Cn = cm] → 1

as n → ∞. Thus, the result follows immediately from the asymptotic null

distribution of Tc,n with c = cm.
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APPENDIX C

Datasets

C.1 Lottery data

162 671 933 414 788 730 817 33 536

875 670 236 473 167 877 980 316 950

456 92 517 557 956 954 104 178 794

278 147 773 437 435 502 610 582 780

689 562 964 791 28 97 848 281 858

538 660 972 671 613 867 448 738 966

139 636 847 659 754 243 122 455 195

968 793 59 730 361 574 522 97 762

431 158 429 414 22 629 788 999 187

215 810 782 47 34 108 986 25 644

829 630 315 567 919 331 207 412 242

607 668 944 749 168 864 442 533 805

372 63 458 777 416 340 436 140 919

350 510 572 905 900 85 389 473 758

444 169 625 692 140 897 672 288 312

860 724 226 884 508 976 741 476 417

831 15 318 432 241 114 799 955 833

358 935 146 630 830 440 642 356 373

271 715 367 393 190 669 8 861 108

795 269 590 326 866 64 523 862 840

219 382 998 4 628 305 747 247 34

747 729 645 856 974 24 568 24 694

608 480 410 729 947 293 53 930 223

203 677 227 62 455 387 318 562 242

428 968
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C.2 Lew data
-213 -564 -35 -15 141 115 -420 -360

203 -338 -431 194 -220 -513 154 -125

-559 92 -21 -579 -52 99 -543 -175

162 -457 -346 204 -300 -474 164 -107

-572 -8 83 -541 -224 180 -420 -374

201 -236 -531 83 27 -564 -112 131

-507 -254 199 -311 -495 143 -46 -579

-90 136 -472 -338 202 -287 -477 169

-124 -568 17 48 -568 -135 162 -430

-422 172 -74 -577 -13 92 -534 -243

194 -355 -465 156 -81 -578 -64 139

-449 -384 193 -198 -538 110 -44 -577

-6 66 -552 -164 161 -460 -344 205

-281 -504 134 -28 -576 -118 156 -437

-381 200 -220 -540 83 11 -568 -160

172 -414 -408 188 -125 -572 -32 139

-492 -321 205 -262 -504 142 -83 -574

0 48 -571 -106 137 -501 -266 190

-391 -406 194 -186 -553 83 -13 -577

-49 103 -515 -280 201 300 -506 131

-45 -578 -80 138 -462 -361 201 -211

-554 32 74 -533 -235 187 -372 -442

182 -147 -566 25 68 -535 -244 194

-351 -463 174 -125 -570 15 72 -550

-190 172 -424 -385 198 -218 -536 96

C.3 Chemical concentration data
452 184 115 315 139 177 214 356

166 246 177 289 175 296 205 324

260 188 208 109 204 89 320 256

138 198 191 193 316 122 305 203

396 250 230 214 46 256 204 150

218 261 143 229 173 132 175 236

220 212 119 144 147 171 216 232

216 164 185 216 199 236 237 206

87

C.4 Fastfood data
54 108 115 129 92 138 43 141 110 118

78 88 340 230 138 177 150 125 80 148

205 413 276 146 188 99 134 30 182 223

135 269 224 257

C.5 Old Faithful geyser data

3.600 1.800 3.333 2.283 4.533 2.883 4.700 3.600 1.950 4.350 1.833 3.917

4.200 1.750 4.700 2.167 1.750 4.800 1.600 4.250 1.800 1.750 3.450 3.067

4.533 3.600 1.967 4.083 3.850 4.433 4.300 4.467 3.367 4.033 3.833 2.017

1.867 4.833 1.833 4.783 4.350 1.883 4.567 1.750 4.533 3.317 3.833 2.100

4.633 2.000 4.800 4.716 1.833 4.833 1.733 4.883 3.717 1.667 4.567 4.317

2.233 4.500 1.750 4.800 1.817 4.400 4.167 4.700 2.067 4.700 4.033 1.967

4.500 4.000 1.983 5.067 2.017 4.567 3.883 3.600 4.133 4.333 4.100 2.633

4.067 4.933 3.950 4.517 2.167 4.000 2.200 4.333 1.867 4.817 1.833 4.300

4.667 3.750 1.867 4.900 2.483 4.367 2.100 4.500 4.050 1.867 4.700 1.783

4.850 3.683 4.733 2.300 4.900 4.417 1.700 4.633 2.317 4.600 1.817 4.417

2.617 4.067 4.250 1.967 4.600 3.767 1.917 4.500 2.267 4.650 1.867 4.167

2.800 4.333 1.833 4.383 1.883 4.933 2.033 3.733 4.233 2.233 4.533 4.817

4.333 1.983 4.633 2.017 5.100 1.800 5.033 4.000 2.400 4.600 3.567 4.000

4.500 4.083 1.800 3.967 2.200 4.150 2.000 3.833 3.500 4.583 2.367 5.000

1.933 4.617 1.917 2.083 4.583 3.333 4.167 4.333 4.500 2.417 4.000 4.167

1.883 4.583 4.250 3.767 2.033 4.433 4.083 1.833 4.417 2.183 4.800 1.833

4.800 4.100 3.966 4.233 3.500 4.366 2.250 4.667 2.100 4.350 4.133 1.867

4.600 1.783 4.367 3.850 1.933 4.500 2.383 4.700 1.867 3.833 3.417 4.233

2.400 4.800 2.000 4.150 1.867 4.267 1.750 4.483 4.000 4.117 4.083 4.267

3.917 4.550 4.083 2.417 4.183 2.217 4.450 1.883 1.850 4.283 3.950 2.333

4.150 2.350 4.933 2.900 4.583 3.833 2.083 4.367 2.133 4.350 2.200 4.450

3.567 4.500 4.150 3.817 3.917 4.450 2.000 4.283 4.767 4.533 1.850 4.250

1.983 2.250 4.750 4.117 2.150 4.417 1.817 4.467
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C.6 Birth time data

7.02pm, 11.08pm, 3.56am, 8.12pm, 8.40am, 12.25pm,

1.24am, 8.25am, 2.02pm, 11.46pm, 10.07am, 1.53pm,

6.45pm, 9.06am, 3.57pm, 7.40am, 3.02am, 10.45am,

3.06pm, 6.26am, 4.44pm, 12.26am, 2.17pm, 11.45pm,

5.08am, 5.49am, 6.32am, 12.40pm, 1.30pm, 12.55pm,

3.22pm, 4.09pm, 7.46pm, 2.28am, 10.06am, 11.19am,

4.31pm

C.7 Homing pigeons data

20o, 135o, 145o, 165o, 170o, 200o, 300o, 325o, 335o, 350o, 350o, 350o and 355o

C.8 Turtles data

8 9 13 13 14 18 22 27 30 34

38 38 40 44 45 47 48 48 48 48

50 53 56 57 58 58 61 63 64 64

64 65 65 68 70 73 78 78 78 83

83 88 88 88 90 92 92 93 95 96

98 100 103 106 113 118 138 153 153 155

204 215 223 226 237 238 243 244 250 251

257 268 285 319 343 350

C.9 Ants data

330 290 60 200 200 180 280 220 190 180

180 160 280 180 170 190 180 140 150 150

160 200 190 250 180 30 200 180 200 350

200 180 120 200 210 130 30 210 200 230

180 160 210 190 180 230 50 150 210 180

190 210 220 200 60 260 110 180 220 170

10 220 180 210 170 90 160 180 170 200

160 180 120 150 300 190 220 160 70 190

110 270 180 200 180 140 360 150 160 170

140 40 300 80 210 200 170 200 210 190
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C.10 Direzione data
356.800 59.180 8.600 41.250 126.100 26.380 36.370 82.900 21.460

111.600 4.478 8.690 18.720 5.213 5.299 356.700 2.718 351.600

359.800 353.300 357.300 345.000 351.700 358.300 0.452 308.100 303.700

322.300 43.980 76.500 351.900 12.700 357.100 133.600 207.000 28.190

350.900 0.833 0.125 26.320 12.700 30.490 25.990 165.000 49.580

8.130 6.603 3.280 5.688 51.230 351.600 5.484 351.900 8.510

339.000 7.500 61.220 45.910 155.800 123.500 38.050 46.320 3.608

4.490 6.423 11.390 2.114 6.314 348.000 19.430 5.219 3.133

11.700 341.200 3.645 30.120 357.100 14.920 0.574 1.482 6.545

47.930 85.600 25.340 91.000 22.070 1.016 11.540 38.880 357.700

44.730 35.070 13.340 1.061 7.380 34.240 9.330 26.500 5.166

55.030 48.050 21.930 4.281 347.900 89.100 8.100 1.805 323.700

123.100 59.040 28.840 42.140 0.361 350.300 348.800 42.790 46.600

113.200 137.900 97.700 307.200 314.100 312.300 320.000 304.600 303.400

324.100 318.000 333.100 356.400 9.910 2.213 12.970 23.490 0.811

357.400 352.500 31.290 11.760 353.600 89.900 138.400 122.400 10.460

1.063 13.420 333.200 329.700 7.940 344.700 59.640 136.200 99.100

345.000 11.550 4.690 1.147 2.585 87.200 14.900 12.210 11.510

22.840 354.700 20.370 358.800 300.800 323.600 356.700 350.400 359.200

7.390 33.130 143.100 199.700 115.000 117.100 146.300 23.970 9.290

356.200 10.710 352.900 5.984 10.870 109.000 51.060 359.300 6.938

12.510 345.200 186.300 178.900 283.100 12.680 198.200 198.200 151.500

87.100 205.600 12.670 23.350 110.600 85.400 81.700 354.900 335.900

355.200 346.100 36.950 349.900 356.300 353.700 327.600 340.100 323.400

261.500 356.800 339.500 148.400 101.900 17.700 18.430 12.520 39.960

94.000 31.000 110.600 19.750 355.300 344.400 332.600 343.700 343.600

337.500 205.200 355.800 32.840 3.879 318.700 29.130 12.640 359.000

349.300 14.230 29.630 265.500 138.000 61.690 74.100 159.500 196.300

167.300 341.900 2.127 89.300 98.200 112.700 99.600 354.500 352.300

307.700 17.330 60.360 150.900 13.750 13.260 167.300 137.500 58.970

8.450 2.462 27.370 5.342 15.150 289.500 141.300 26.380 17.170

29.370 296.300 95.500 23.000 52.730 45.890 332.800 10.270 34.400

21.840 6.574 313.300 21.190 9.630 352.400 354.100 335.700 58.580

34.920 291.500 105.100 6.438 327.400 36.820 65.980 2.350 10.640

29.230 9.320 47.910 34.740

C.11 Arrival data
11.00 17.00 23.15 10.00 12.00 08.45 16.00 10.00 15.30 20.20

04.00 12.00 02.20 12.00 05.30 07.30 12.00 16.00 16.00 01.30

11.05 16.00 19.00 17.45 20.20 21.00 12.00 12.00 18.00 22.00

22.00 22.05 12.45 19.30 18.45 16.15 16.00 20.30 23.40 20.20

18.45 16.30 22.00 08.45 19.15 15.30 12.00 18.15 14.00 13.00

23.00 19.15 22.00 10.15 12.30 18.15 21.05 21.00 00.30 01.45

12.20 14.45 22.30 12.30 13.15 17.30 11.20 17.30 23.00 10.55

13.30 11.00 18.30 11.05 04.00 07.30 20.00 21.30 06.30 17.30

20.45 22.00 20.15 21.00 17.30 19.50 02.00 01.45 03.40 04.15

23.55 03.15 19.00 21.45 21.30 00.45 02.30 15.30 21.00 08.45

14.30 17.00 03.30 15.45 17.30 14.00 02.00 11.30 17.30 17.10

21.20 03.00 13.30 23.00 20.10 23.15 20.00 16.00 18.30 21.00

21.10 17.00 13.25 15.05 14.10 19.15 14.05 22.40 09.30 17.30

12.30 17.30 14.30 16.00 14.10 14.00 15.30 04.30 11.50 11.55

15.20 15.40 11.15 02.15 11.15 21.30 03.00 00.40 10.00 09.45

23.45 10.00 07.50 13.30 12.30 13.45 19.30 00.15 07.45 15.20

18.40 19.50 23.55 01.45 10.50 07.50 15.30 18.00 23.05 19.30

19.00 16.10 10.00 02.30 22.00 21.50 19.10 11.45 15.45 16.30

18.30 10.05 20.00 13.35 16.45 02.15 20.30 14.00 21.15 18.45

14.05 14.15 01.15 01.45 18.00 14.15 15.15 16.15 10.20 13.35

17.15 19.50 22.45 07.25 17.00 12.30 23.15 10.30 13.45 02.30

12.00 15.45 17.00 17.00 01.30 20.15 12.30 15.40 03.30 18.35

13.30 16.40 18.00 20.00 11.15 16.40 13.55 21.00 07.45 22.30

16.40 23.10 19.15 11.00 00.15 14.40 15.45 12.45 17.00 18.00

21.45 16.00 12.00 02.30 12.55 20.20 10.30 15.50 17.30 20.00

02.00 01.45 01.45 02.05
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Summary

An important statistical question is whether a sample of observations agrees

with a certain prespecified distribution or family of distributions. To deal

with this kind of statistical problems, it is recommended to apply both for-

mal goodness-of-fit (GOF) tests or explorative graphical tools simultaneously.

The sample space from which the observations are drawn is usually the real line,

but data on a circle also arise in many fields. GOF methods for this kind of

data need to be origin-invariant, since their conclusions should not depend on

the chosen origin.

In this thesis, three contributions to the statistical analysis of linear and

circular data are presented.

Applying smooth tests to solve the GOF problem for linear distributions

has the advantage that the components in the orthogonal decomposition of

the corresponding score statistic ofthen lead to easy interpretation and sum

up to a test statistic with limiting omnibus features. The difficulty with the

construction of smooth tests for circular distributions is to find appropriate

orthonormal polynomials, because these are usually described in the complex

field. We used the “complex” framework and the general theory of orthonormal

polynomials on the unit circle (e.g. Simon, 2005) to construct a new class of

smooth GOF tests for circular distributions, which is called the class of complex

smooth tests. This class of tests generalises the framework of Rayner and Best

(1989) for smooth tests on the real line.

Since we apply the test to circular data, the origin-invariance property needs

to be checked. In case the smooth test is not origin-invariant, we proposed to

subtract the circular mean direction from each observation before computing

the test statistic.

For circular uniformity and circular normality we gave the explicit form of

the smooth tests and its asymptotic distribution. We explained how, in case
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of testing for circular uniformity, this construction leads to the smooth test of

Bogdan et al. (2002). We have also shown that in case of testing for circular

normality, our test generalizes the test proposed by Barndoff-Nielsen and Cox

(1979).

Similarly as for a linear smooth test, the choice of the order of the family

of alternatives in the smooth model is crucial to obtain good power. To over-

come the problem of choosing the order, two data-driven version of the complex

smooth test are discussed. The parametric bootstrap was used to approximate

the null distributions for the data-driven statistics. The complex data-driven

smooth test for the CN distribution has been applied on real data examples. It

has been demonstrated that, if the null hypothesis is rejected, the components of

the smooth test may contain interesting information about how the true distri-

bution deviates from the hypothesised. Some characteristics of the data-driven

smooth test for circular normality have been investigated in a simulation study,

which showed that it has good power against many different alternatives.

In this thesis it has also been illustrated by means of an example how the

application of the data-driven smooth test naturally leads to a nonparametric

estimate of the true circular density. The result is essentially an orthonormal

series density estimator, i.e. graph which can reveal how the true distribution

deviates from the hypothesised. In that sense, the interpretation of the results

from the test can be visualised.

We have also presented some new results on the integral version of the class

of GOF tests for simple linear null hypothesis proposed by Thas (2001). The

new versions of the tests are constructed by integrating out the Pearson χ2

statistic over all possible partitions of the sample space in c cells. The degrees

of freedom of Pearson’s statistic are directly related to the indexing parameter

of our new class, the SSP size c. The resulting tests are therefore called the

linear SSPc tests. The tests are generalisations of the Anderson-Darling test,

which is included in the class by taking c = 2.

The construction of the linear SSPc test statistics and their asymptotic null

distributions were given, and omnibus consistency was proved.

To avoid the problem of choosing the right value for the indexing parameter c,

we have proposed a data-driven version of the test. Simulations confirmed that

the selection rule succeeds quite well in selecting a good choice for c. The weight

functions that are involved in the test statistic, as well as the limiting behaviour

and the simulation results, suggest that the new tests are very sensitive to

deviations from the hypothesised distribution F0 in small intervals of the support

of F0. Furthermore, this sensitivity increases with increasing SSP size c.

Extensions to composite null hypothesis were described as well. In particular,

the use of the new class of GOF tests to composite null hypotheses is based

on the estimated empirical process. The limiting Gaussian process is quite
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complicated, however, and we used parametric bootstrap to obtain the null

distribution.

The new class of GOF tests for linear data was adapted to a similar class

of GOF tests for circular data. This was done by making the class of statis-

tics origin-invariant. We simply integrated out all possible origins to obtain

the origin-invariant class of statistics. The resulting type of tests is called the

circular SSPc tests and reduces to Rothman’s test (1972) if c = 2.

The limiting null distribution of the circular SSPc test was derived and com-

putational formulae for SSP size c = 2, 3 and 4 were found.

The data-driven version and its asymptotic theory are similar as in the linear

case. A simulation study indicated that the circular SSPc test has the same

power characteristics as the linear SSPc test, although the differences between

their powers are less pronounced than in the linear case. The power study

showed that the SSPc tests perform at least as good as their competitors for all

alternatives considered.

In the final part of the thesis we have developed and discussed the IBPP-

plot, which is a useful graphical tool for detecting and localising LOF on the

circle. Two types of plots have been described, both of which are based on the

Kuiper test. Similarly as for the PP-plot, the IBPP-plot is thus related to a

formal statistical test, which is particularly intersting since the results of that

test can be derived from the graph. Hence, the conclusions obtained from that

graph are objective in contrast to most other graphial tools which are merely

explorative and hence subjective.

All methods for circular data are applicable to linear data as well and thus so

is the IBPP-plot. Furthermore, we have extended the use of the IBPP-plot and

demonstrated that an adapted version enables explorative comparison between

different density estimates.

251



252



Samenvatting

Een belangrijke en vaak voorkomende statistische vraag is of een steekproef van

observaties al dan niet in overeenstemming is met een welbepaalde distributie, of

familie van distributies. Zulke statistische problemen worden doorgaans behan-

deld tegelijkertijd op basis van formele toetsen voor aanpassing (goodness-of-fit,

GOF) als op basis van explorerende grafische technieken. De steekproefruimte

waaruit de observaties worden getrokken is gewoonlijk de reële rechte, maar ook

data op een cirkel komt in vele toepassingsgebieden voor. Toetsen voor aan-

passing voor zulke circulaire data dienen oorsprongsinvariant te zijn, opdat de

conclusies niet zouden afhangen van de gekozen oorsprong.

In deze thesis worden drie bijdragen geleverd op het gebied van de statistische

analyse van lineaire en circulaire data.

Het toepassen van zogenaamde gladde toetsen (smooth tests) ter behandeling

van het GOF probleem voor lineaire distributies heeft als voordeel dat de com-

ponenten in de orthogonale decompositie van de overeenkomstige scorestatistiek

leiden tot duidelijke interpretatie. Samengeteld vormen de componenten boven-

dien in de limiet een toets met omnibus kenmerken. De moeilijkheid die gepaard

gaat met het opstellen van gladde toetsen voor circulaire data is het vinden van

geschikte orthonormale veeltermen, aangezien deze doorgaans moeten gezocht

worden in het complexe veld. Het “complexe” kader en de algemene theorie

van orthonormale veeltermen op de eenheidscirkel (bv. Simon, 2005) werden

gebruikt om een nieuwe klasse van gladde toetsen van aanpassing op te stellen

voor circulaire distributies, namelijk de klasse van complexe gladde toetsen. De

klasse van toetsen veralgemeent het werk van Rayner en Best (1989) in verband

met gladde toetsen op de reële rechte.

Aangezien het toetsen voor circulaire data betreft, moet de oorsprongsinvari-

antie nagegaan worden. Indien de toets in eerste instantie niet oorsprongsinvari-

ant is, stellen we voor om dit op te lossen door de circulaire gemiddelde richting
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af te trekken van de observaties alvorens de toetsingsstatistiek te berekenen.

Voor circulaire uniformiteit en circulaire normaliteit hebben we de explici-

ete vorm gegeven van de gladde toets, alsook zijn asymptotische verdeling. We

hebben aangetoond dat ingeval van circulaire uniformiteit de toets zich herleidt

tot de toets van Bogdan et al. (2002). Ingeval van normaliteit zijn onze toet-

sen een veralgemening van de toets voorgesteld door Barndorff-Nielsen en Cox

(1979).

Net zoals bij de lineaire gladde toetsen is de keuze van de orde van de familie

van alternatieven van groot belang opdat de toets optimaal krachtig zou zijn.

Om die keuze niet op een subjective manier te moeten maken, hebben we twee

data-gedreven versies van de complexe gladde toetsen besproken. De nuldis-

tributies van de data-gedreven statistieken kunnen worden bekomen door mid-

del van parametrische bootstrap. We hebben de data-gedreven complexe gladde

toetsen voor normaliteit uitgebreid toegepast op bestaande data voorbeelden.

We hebben zo bijvoorbeeld aangetoond dat, bij verwerping van de nulhypothese,

de componenten van de gladde toetsingsstatistiek interessante informatie kun-

nen bevatten omtrent de aard van het verschil tussen de werkelijke distributie

en de hypothetische distributie. Verder werden verschillende karakteristieken

van de data-gedreven gladde toetsen voor circulaire normaliteit onderzocht in

een simulatiestudie, dewelke heeft aangetoond dat de toetsen relatief krachtig

zijn voor vele verschillende alternatieven.

Tenslotte werd ook geillustreerd, door middel van een voorbeeld, hoe de

toepassing van de data-gedreven gladde toets op een natuurlijke wijze leidt tot

een niet-parametrische schatting van de werkelijke circulaire dichtheid. Het be-

treft dan in feite een orthonormale reeksschatter, en een grafische voorstelling

hiervan kan helpen uitwijzen hoe de werkelijke distributie verschild van de hy-

pothetische. In deze zin kunnen de interpretaties van de resultaten dus gevisu-

aliseerd worden.

In het volgende deel van de thesis werden enkele nieuwe resultaten voor-

gesteld betreffende de integraalversie van de klasse van toetsen van aanpass-

ing voorgesteld door Thas (2001). De nieuwe versies van deze toetsen werden

geconstrueerd door het integreren van de Pearson χ2-statistiek over alle mogeli-

jke partities van de steekproefruimte (sample space partitions, SSP) in c cellen.

Het aantal vrijheidsgraden van de Pearson statistiek is rechtstreeks gerelateerd

aan de indexparameter van onze nieuwe klasse van toesten, namelijk de SSP

grootte c. De resulterende toetsen worden daarom lineaire SSPc toetsen ge-

noemd. De toetsen zijn veralgemeningen van de Anderson-Darling toets, die

overeenkomt met de SSPc toets ingeval c = 2.

Naast de constructie van de SSPc toetsen werd ook hun asymptotische

verdeling afgeleid en werd omnibus consistentie bewezen. Om het probleem

te omzeilen van de keuze van de waarde van de indexparameter c, hebben
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we opnieuw een data-gedreven versie van de toets voorgesteld. Simulaties

hebben bevestigd dat de data-gedreven selectie succesvol is in het vinden van

de geschikte keuze voor c. De gewichtsfuncties die in de toetsingsstatistiek

voorkomen, het onderzochte limietgedrag en de simulatieresultaten duiden er

alle op dat de nieuwe toetsen specifiek erg gevoelig zijn voor lokale afwijkin-

gen van de veronderstelde distributie. Deze gevoeligheid wordt nog groter met

toenemende SSP grootte c.

De SSPc toetsen werden in eerste instantie ingevoerd voor enkelvoudige hy-

pothesen, maar we hebben vervolgens de uitbreiding naar samengestelde hy-

pothesen beschreven. Het gebruik van de de nieuwe klasse van GOF toetsen

voor samengestelde hypothesen is gebaseerd op het geschatte empirische proces.

Het Gaussische proces dat de limiet vormt is erg gecompliceerd en we hebben

daarom de bootstrap gebruikt om de nuldistributie van de toetsingsstatistiek te

bekomen.

Daarnaast werd de nieuwe klasse van GOF toetsen voor lineaire data aangepast

om tot een gelijkaardige klasse te komen van toetsen voor circulaire data. De

nodige aanpassing betrof het oorsprongsinvariant maken van de statistieken,

hetgeen we hebben bewerkstelligd door te integreren over alle mogelijke oor-

sprongen. Naar het resulterende type van toetsen werd dan verwezen als de

klasse van circulaire SSPc toetsen. Ingeval c = 2 wordt de bestaande toets van

Rothman (1972) bekomen.

We hebben de asymptotische nuldistributie van de circulaire SSPc toets

afgeleid en computationele formules bekomen voor de gevallen c = 2, 3 en 4.

De data-gedreven versie en zijn asymptotische distributie zijn gelijkaardig aan

het lineaire geval. Een simulatiestudie wees aan dat betreffende de gevoeligheid

en kracht van de toetsen, de circulaire versies ongeveer dezelfde karakteristieken

vertonen als hun lineaire tegenhangers, al is de gevoeligheid nu minder afhanke-

lijk van de indexparameter c. Een belangrijke conclusie van de simulatiestudie

was ook dat de SSPc toetsen minstens even krachtig (en vaak krachtiger) zijn

als alle andere onderzochte toetsen, tenminste voor de families van alternatieven

die beschouwd werden in de studie. Alle methoden uit dit deel van de thesis

werden eveneens toegepast op bestaande data voorbeelden.

In het laatste deel van de thesis hebben we de zogenaamde Interval-Based

Probability-Probability-plot of IBPP-plot, ontwikkeld en besproken. Deze grafis-

che voorstelling is een nuttige techniek om gebrek aan aanpassing (lack-of-fit,

LOF) van een distributie op de cirkel te detecteren en te lokaliseren. Twee ver-

sies van de techniek werden besproken, dewelke beide gebaseerd zijn de Kuiper

toets. Net als de klassieke PP-plot is de IBPP-plot dus gerelateerd aan een

formele statistische toets, hetgeen interessant omdat zodoende de resultaten

van de toets kunnen afgeleid worden van de grafische voorstelling. De con-

clusies van de IBPP-plot zijn daarom objectief, terwijl de meeste andere grafis-
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che voorstellingen enkel explorerend van aard zijn en dus subjectief.

Alle methoden voor circulaire data zijn evenzeer toepasbaar op lineaire data

en dat geldt dus ook voor de IBPP-plot, zoals we hebben gëıllustreerd met enkele

voorbeelden. Tenslotte hebben we de toepassing van de IBPP-plot uitgebreid

en hebben we aangetoond dat een aangepaste versie de mogelijkheid biedt tot

een explorerende vergelijking tussen verschillende dichtheidsschattingen.
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