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AIM OF THE STUDY 
 

 

 

The interest of researchers in pellets as multiparticulate solid dosage forms derives from 

several important advantages of those multi-unit forms over conventional, single-unit solid 

dosage forms (tablets). Extrusion/spheronisation is one of the most established 

techniques for production of pellets with high quality. Due to the fact that it is a multi-step 

process, a number of process parameters should be controlled. Furthermore, formulation 

development is of special concern since the moistened mass needs to possess specific 

characteristics in order to be successfully extruded and spheronised. 

 

Microcrystalline cellulose is the most widely used excipient for the production of pellets via 

extrusion/spheronisation. Due to some important disadvantages, several excipients have 

been already described in literature as possible alternatives.  

 

The goal of this study was to evaluate the potential of a modified starch (high-amylose, 

crystalline and resistant starch) as an alternative to microcrystalline cellulose in pellet 

production via extrusion/spheronisation. Several issues have been addressed:  

• Evaluation of formulation suitability for production of pellets with acceptable quality. 

• Elucidation of the influence of process parameters on pellet properties during 

extrusion/spheronisation. 

• Optimisation of process parameters and pellet formulation by means of surface 

response methodology. 

• Influence of model drug solubility and concentration on in-vitro drug release from 

immediate-release and enteric-coated pellet formulations.  

• Bioavailability of model drugs from immediate-release and enteric-coated pellet 

formulations after oral administration to dogs. 
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1  

 

INTRODUCTION  
 

 

 

1.1 Pellets as solid dosage forms and preparation methods 

 

Pellets are spherical or nearly spherical, free-flowing granules with a narrow size 

distribution, typically varying between 500 and 1500 µm for pharmaceutical applications 

(Ghebre-Sellassie, 1989a). They are generally produced via a pelletisation process, 

whereby a powder blend consisting of an API and excipient particles is agglomerated into 

spherical granules. After being produced, pellets are usually filled into hard gelatine 

capsules or compressed into tablets. Furthermore, they can be formulated as immediate-

release dosage forms or coated in order to sustain drug release over a longer period of 

time or to deliver a drug to a specific site of action in the gastrointestinal tract.  

 

The multiparticulate nature of pellets offers some important pharmacological as well as 

technological advantages over conventional “single-unit” solid dosage forms (Bechgaard 

and Hagermann, 1978). Consequently, the interest of researchers in this dosage form 

increases continuously (Ghebre-Sellassie and Knoch, 2002). The main advantages are: 

•  Particles smaller than 2-3 mm are rapidly emptied from the stomach regardless of the 

feeding state of the patient and the influence of gastric emptying rate on the upper 

gastrointestinal transit time of pellets is minimised (Follonier and Doelker, 1992). 

Consequently, the intra- and inter-subject variability of drug plasma profiles are lower 

compared to single-unit formulations (Krämer and Blume, 1994). 

•  Uniform dispersion of a drug into small dosage units reduces the risk of high local drug 

concentration and their potentially irritating effect on gastric mucosa. Furthermore, drug 

absorption is maximised and peak plasma fluctuations are reduced (Ghebre-Sellassie, 

1989a). 

•  In case of coated multiparticulates, every pellet acts a single drug reservoir with its own 

release mechanism. Any coating imperfection would therefore only affect the release of a 
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small drug portion, in contrast to complete “dose dumping” from a single-unit drug 

reservoir (Bechgaard and Hagermann, 1978).  

•  Pellets offer the possibility of combining several active components, incompatible drugs 

or drugs with different release profiles in the same dosage unit. 

•  Dosage forms with different dose can be produced from the same batch by adjusting 

the filling weight of pellets (Ghebre-Sellassie and Knoch, 2002). 

•  Owing to their smooth surface morphology, narrow size distribution, spherical shape, 

low friability and improved hardness pellets can be easily coated; they have good flow 

properties which ensure reproducible die or capsule filling and consequently good content 

uniformity; dust formation is minimised and therefore all processing operations are 

facilitated (Erkoboni, 2003). 

 

Several methods are used for pellet preparation. The most widely used techniques can be 

classified based on the equipment type or incorporation method of active ingredient (Table 

1.1). Those and other pelletisation techniques are reviewed in detail by Ghebre-Sellassie 

and Knoch (2002). 

• Solution/suspension layering involves the application of a drug/binder solution or 

suspension to solid cores which can be either inert materials (e.g. sugars) or 

granules/crystals of the same drug (Ghebre-Sellassie and Knoch, 2002). Next to the more 

traditional drum/pan coaters (Zhang et al., 1990, 1991) fluidised bed equipment with 

conventional top spray, Würster bottom spray or rotor tangential spray is used to produce 

pellets (Jones, 1994). 

 

 
 

Table 1.1 Pelletisation techniques according to equipment type and incorporation method of active 

ingredient  (Adapted from Pišek, 2002). 

 

P E L L E T I S A T I O N  T E C H N I Q U E S  

→ incorporation method of active ingredient → equipment type 

 
Layer 
 

 
Powder layering 
Suspension/solution layering 

Fluidised bed 
 
 

Powder layering 
Suspension/solution layering 
Direct pelletisation 

Drum/pan coater 
 

Powder layering 
Suspension/solution layering 

High-shear mixer High-shear pelletisation 

 
Matrix 
 
 

 
Direct pelletisation 
Extrusion/spheronisation 
High-shear pelletisation 

 
 
 
 
 

Extruder and 
spheroniser 

Extrusion/spheronisation 
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• Powder layering comprises the deposition of successive layers of dry powder (drug 

and excipients) on inert materials with the help of a binding liquid (Ghebre-Sellassie and 

Knoch, 2002). The equipment mostly used is a rotor tangential spray fluid-bed (Vupppala 

et al. 1997), although traditionally drum/pan coaters were also used. 

• Direct pelletisation is usually performed using rotor tangential spray fluid-bed 

equipment (direct rotor pelletisation), but conventional fluid-bed granulators can be also 

used (Kleinebudde and Knop, 2007). No seeding material is necessary, since a powder 

mixture of a drug and excipients is wetted with an agglomeration liquid, followed by 

pelletisation by means of a rotating disc (Pišek et al. 2001; Kristensen et al., 2002; Liew et 

al. 2007). According to the nature of the liquid binder, direct pelletisation can be described 

as wet (a binder is added in liquid phase at room temperature) or melt (a molten binder is 

added) pelletisation (Kleinebudde, 2007). Direct pelletisation in fluid-bed processes has 

been recently described in detail by Kleinebudde and Knop (2007). 

• High-shear pelletisation comprises agglomeration of powdered material using a high-

shear mixer. A binder can be added as a liquid (wet pelletisation) or melted before or 

during the process (melt pelletisation) (Zhou et al. 1996, 1997).  

• Extrusion/spheronisation method involves several distinct preparation phases: a 

uniform powder mixture of drug and excipient(s) is initially wet massed by addition of a 

liquid binder, followed by pressing of the moistened mass through an extrusion screen 

(extrusion) to form cylindrical extrudates, which are subsequently broken into smaller 

cylindrical rods and rounded into spherical granules by means of a fast-rotating friction 

plate (spheronisation) and finally dried.  
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1.2 Extrusion and spheronisation process 

 

In the pharmaceutical industry, production of pellets via extrusion/spheronisation was first 

described by Conine and Hadley (1970) and Reynolds (1970). Compared to other 

pelletisation methods, extrusion/spheronisation is especially suitable in cases where the 

active component is highly dosed (Hileman et al., 1993a,b; Lambert et al., 1995;  Sonaglio 

et al., 1997; Podczeck and Knight, 2006) or when a high process efficiency is needed 

since the production time is relatively short. The pellets manufactured via 

extrusion/spheronisation have a high process yield, narrow size distribution, good 

sphericity and low friability.  

 

 

 

 

 

Figure 1.1     Extrusion/spheronisation flow chart with the corresponding process parameters. 

 

 

As mentioned previously extrusion/spheronisation is a multi-step process (Fig. 1.1). Each 

phase of the process (except for dry mixing and wet massing which are often performed in 

Dry mixing 

Wet massing 

Spheronisation 

Extrusion 

POWDER BLEND 

API EXCIPIENTS 

WET MASS 

GRANULATION 
LIQUID 

Drying 

EXTRUDATES 

WET PELLETS 

DRY PELLETS 

- Equipment type 
- Mixing time 

- Equipment type 
- Mixing time 
- Mixing speed 
- Granulation liquid type 
- Granulation liquid level 
- Granulation temperature 

- Extruder type 
- Extrusion die length 
- Extrusion die diameter 
- Extrusion speed 
- Material feeding rate 
- Extrusion temperature 

- Spheroniser plate design 
- Material load 
- Spheronisation time 
- Spheronisation speed 

- Equipment type 
- Drying rate 
- Drying time 
- Drying temperature 



Introduction  

 

 7 

the same equipment type) requires highly specialized equipment, which can be a 

disadvantage in terms of expenses. Furthermore, each production step is a distinct 

process and involves control over a number of process parameters in order to obtain 

pellets of required quality. In recent years a lot of research was also dedicated to the 

influence of formulation variables on the success of extrusion/spheronisation. 

 

 

1.2.1 Dry mixing and wet massing 

 

Obtaining a uniformly blended dry powder mix of active ingredient(s) and excipient(s) is 

the first step in any process involving agglomeration of particles. Dry mixing, followed by 

wet massing or granulation is usually performed in the same equipment (batch-type 

mixer/granulators). Commonly used types reported in the literature are: planetary mixers 

(reviewed by Vervaet et al., 1995), high-shear mixers (Lövgren and Lundberg, 1989; Baert 

et al. 1991; Elbers et al., 1992) and sigma blade mixers (Woodruff and Nuessle, 1972).  

 

The wet massing step of extrusion/spheronisation involves the addition of a granulation 

liquid in much higher amounts than those required for conventional granulation (Newton, 

2002). The amount of granulation liquid has a crucial role in the success of extrusion and 

spheronisation and should therefore be included as a variable during formulation 

development (Kleinebudde, 1995). In addition, temperature generation during wet 

massing can promote water evaporation and significantly influence pellet properties (Baert 

et al., 1991). 

 

Wet massing by means of a continuous granulator was described by Hellén et al. 

(1993a,b) and Hellén and Yliruusi (1993). Moreover, a twin-screw extruder, where 

granulation and extrusion is performed in a single step was described by several authors 

(Gamlen and Eardley, 1986; Lindberg et al., 1987a,b, 1988; Kleinebudde and Lindner, 

1993; Kleinebudde et al., 1994; Kleinebudde, 1995). Schmidt and Kleinebudde (1999) 

evaluated the influence of granulation on pellet quality by comparing different equipment 

used for wet massing. 

 

 

1.2.2 Extrusion 

 

The extrusion phase comprises forcing of the wet plastic mass through a small orifice 

(extrusion die), thus forming cylinders or strands with a breadth corresponding to the die 
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diameter and a length which depends on material properties and extruder type (Hicks and 

Freese, 1989).  

 

 

  

 
 

Figure 1.2      Schematic diagram of extruder types used in extrusion/spheronisation: screw feed (a. axial-, b. 

dome- and c. radial- type), gravity feed (d. cylinder-, e. gear-  and f. radial- type) and          

piston feed (g. ram) extruders (Erkoboni, 2003). 
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Extruders have a part which transports the wet mass towards the extrusion screen and a 

die which shapes the extruded material (Newton, 2002). Several extruder types are used. 

Different authors classified extruders based on several criteria: (a) Rowe (1985) classified 

them into screw-, gravity- and piston-type extruders (Figure 1.2) based on the material 

feeding mechanism; (b) Hicks and Freese (1989) grouped them into four types (screw; 

sieve and basket; roll and ram extruders) and (c) recently Wilson and Rough (2007) 

classified them into extruders with pumping (ram, axial screw) and wiping action (sieve 

and basket, roll, radial screen). 

• Screw feed extruders consist of one or two rotating screws which push the moistened 

mass from the material feeding zone towards the extrusion screen. Based on the 

extrusion screen design, screw feed extruders are classified into axial-, dome- or radial-

types. The major advantages of screw feed extruders are a higher throughput rate, ease 

of changing different screen types and ease of cleaning (Trivedi et al., 2007). 

• In gravity feed extruders the wet mass is transported towards the extrusion screen by 

means of gravitational force and several types are in use: rotary cylinder, rotary gear and 

radial.   

• Piston feed extruders or ram extruders are mainly used as laboratory extruder 

(Erkoboni, 2003) or for extrusion of specialized materials which require strict in-process 

control (Trivedi et al., 2007). 

 

The influence of the extruder type, extrusion screen geometry and extrusion speed on 

extrudate and pellet properties has been reviewed extensively by several authors (Hicks 

and Freese, 1989; Vervaet et al., 1995; Newton, 2002; Erkoboni, 2003; Wilson and 

Rough, 2007). 

 

 

1.2.3 Spheronisation 

 

A spheroniser consists of a bowl with a stationary cylindrical wall and a fast-rotating 

bottom plate with grooved surface to increase the friction. During the initial stage of 

spheronisation extrudates are broken into small cylinders and after a relatively short 

period of time spherical pellets are formed. The spheronised material moves outwards to 

the wall due to centrifugal forces, followed by collision and climbing up the stationary wall. 

Then the particles fall back onto the rotating disk which due to its angular motion pushes 

the mass again towards the wall, creating a typical “rope-like” formation (Fig. 1.3) which is 

considered crucial for successful spheronisation (Reynolds, 1970).  
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Figure 1.3     Schematic representation of the “rope-like” motion during spheronisation (Erkoboni, 2003). 

 

 

The transition of cylindrical into spherical shape occurs via several stages, as proposed by 

two models: Rowe (1985) suggested that after the initial breaking of the extrudates, 

cylinders are initially rounded at the edges, followed by formation of dumbbell-like 

granules and finally spherical pellets are formed (Fig. 1.4 a), while Baert and Remon 

(1993) described an alternative model where cylinders are rounded at the edges but 

additionally bent, followed by twisted dumbbell formation which initiates particle breaking 

into two parts with a cavity on their flat side and further rounding into spheres (Fig. 1.4 b). 

Which mechanism will dominate most likely depends on the formulation, while granulation 

liquid level and spheronisation process parameters influence whether the spheronisation 

step will result in pellets with a broad size distribution, dumbbells, agglomerated material 

or spherical granules with a narrow size distribution (Erkoboni, 2003).  

 

The main spheronisation variables affecting pellet characteristics are: material load, 

residence time, spheroniser type, geometry of spheronisation plate, peripheral velocity 

(rotational speed of the friction plate combined with the plate diameter). Their influence 

has been reviewed in detail by Hicks and Freese (1989), Vervaet et al. (1995) and 

Erkoboni (2003). 

 

 

 

Product roping 

Spinning friction wheel 



Introduction  

 

 11 

a.                                 

 

b. 

 

 
 

Figure 1.4      Schematic representation of different pellet formation stages during spheronisation according to 

two models proposed by: a. Rowe (1985) and b. Baert and Remon (1993) - adapted from 

Erkoboni (2003). 

 

 

 

1.2.4 Drying 

 

Wet pellets are mostly dried in an oven or fluid-bed, although micro-wave and freeze-

drying have been also used to study the influence of drying method on pellet properties. 

The main differences between oven and fluid-bed drying are the rate of granulation liquid 

evaporation and the way how the material is handled during drying: during oven drying in 

a static bed liquid evaporates from the material over longer period of time, while during 

fluid-bed drying the turbulent motion of dried material in a heated air stream promotes 

significantly faster drying (Lieberman and Rankell, 1970). Several authors studied the 

influence of different drying techniques on pellet characteristics (Bataille et al., 1993; Dyer 

et al., 1994; Kleinebudde, 1994; Sousa et al., 1996; Berggren and Alderborn, 2001a,b; 

Pérez and Rabišková, 2002; Bashaiwoldu et al., 2004; Lutchman et al., 2005; Song et al., 

2007). 

 

 

 

 

Cylinder Cylinder with           Dumb-bell     Ellipsoid         Sphere 
               rounded ends 

Cylinder         Rope           Dumb-bell      Sphere        Sphere 
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1.2.5 Binding forces in relation to pellet formation 

 

Since pelletisation is an agglomeration process, there are several binding mechanisms 

which can contribute to pellet formation (Ghebre-Sellassie, 1989b). Those mechanisms, 

as defined by Rumpf (1962) can be divided into five groups:  

• Solid bridges (formed by crystallization of dissolved particles or binder hardening) 

which determine the strength of the dried pellets. 

• Adhesion and cohesion forces in immobile liquid bridges, formed by viscous 

binders. 

• Interfacial forces and capillary pressure in movable liquid surfaces, created after 

addition of the granulation liquid. When increasing the liquid saturation level in 

interparticulate voids, the agglomerates transform over several stages: (a) pendular stage 

where adhesion originates from surface tension of the liquid and the negative suction 

pressure in the liquid bridges (liquid saturation is below 25%); (b) intermediary funicular 

stage; (c) capillary stage where all the void space is filled with liquid (liquid saturation is 

above 80%), granule strength is maximal and the bonding forces mainly originate from 

negative capillary pressure; (d) the droplet stage where the liquid completely envelopes 

the agglomerate (Ghebre-Sellassie, 1989b). 

• Mechanical interlocking bonds, originating from fibrous, lamellar (flat-shaped) or 

bulky materials. This kind of bonds can occur if compression and shear forces are acting 

in the system (Pietsch, 1991). 

• Attraction forces between solid particles (molecular – van der Waals’ forces, 

electrostatic and magnetic forces). 

 

During pelletisation, a uniformly blended powder mixture is granulated with a liquid and 

the strength of the agglomerates depends on the liquid saturation level, the granule 

strength being maximal in the capillary state, as described previously. The granulate 

strength can be additionally increased using more adhesive (viscous) binders. The main 

wet mass densification occurs via extrusion and the resulting extrudates are brought 

together by capillary forces, mechanical interlocking (due to irregularities in particle shape) 

solid bridge formation (via solvent evaporation) and molecular forces (Ghebre-Sellassie, 

1989b). During spheronisation moisture migrates towards the surface of the particles, 

thereby providing additional plasticity for rounding of the pellets. Additionally, 

crystallization of dissolved particles due to solvent evaporation can contribute to solid 

bridge formation. Drying is the final phase where solvent is completely removed via 

evaporation and the pellet strength is mainly related to solid bridge formation.  
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EXCIPIENTS IN EXTRUSION/SPHERONISATION 

 

 

 

2.1 Introduction 

 

Not every moistened powder mixture can be successfully extruded and spheronised. 

Newton (2002) defined the requirements for a wet mass suitable for extrusion and 

spheronisation in the following way: 

“Extrusion mixtures are formulated to produce a cohesive plastic mass that remains 

homogeneous during extrusion. The mass must possess inherent fluidity, permitting flow 

during the process and self-lubricating properties as it passes through the die. The 

resultant extrudate must remain nonadhesive to itself and retain the degree of rigidity so 

that the shape imposed by the die is retained. (…)  

The requirements for spheronisation of the cylindrical extrudate are as follows:  

1. The extrudate must possess sufficient mechanical strength when wet, yet it must be 

brittle enough to be broken down to short lengths in the spheroniser, but not so friable that 

it disintegrates completely. (…)  

2. The extrudate must be sufficiently plastic to enable the cylindrical rods to be rolled into 

spheres by the action of the friction plate in the spheroniser.  

3. The extrudate must be nonadhesive to itself in order that each spherical granule 

remains discrete throughout the process.” 

 

In relation to the above mentioned requirements, formulation variables like the granulation 

liquid type and concentration, as well as the API and excipients properties (including 

concentration, solubility and particle size distribution) significantly influence the pellet 

properties. In the following paragraphs, an overview of the commonly used excipients and 

their influence on pellet properties like sphericity, size distribution, mechanical strength 

and drug release will be presented. 
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2.2 Granulation liquid level and type 

 

As mentioned previously, granulation liquid is an extremely important formulation 

parameter during extrusion/spheronisation and for a given formulation only a relatively 

narrow concentration range is optimal for the process. A sufficiently wetted mass 

possesses the plasticity and cohesiveness required to obtain spherical pellets with a 

narrow size distribution. On the one hand, insufficient moisture gives rise to generation of 

fines and insufficiently round pellets (dumb-bell formation), while a too high moisture 

content promotes uncontrolled pellet agglomeration and broadening of the pellet size 

distribution (Newton, 2002; Erkoboni, 2003). Water is the most often used granulation 

liquid in extrusion/spheronisation. Next to its role as binder during wet massing, water acts 

as a lubricant during the extrusion phase and provides sufficient plasticity of the 

extrudates for successful rounding during spheronisation (Hileman et al., 1993b).  

 

Many authors reported on the influence of water level on pellet properties. Within the 

acceptable liquid concentration range for extrusion/spheronisation, a higher water level 

improved sphericity, narrowed pellet size distribution and increased mean pellet diameter 

(Malinowski and Smith, 1975; Lövgren and Lundberg, 1989; Bains et al., 1991; Pinto et 

al., 1992; Hasznos et al., 1992; Baert et al., 1993; Wan et al., 1993; Hileman et al., 1993b; 

Otsuka et al., 1994; Sognalio et al., 1995; Umprayn et al., 1995; Sousa et al., 1996; 

Varshosaz et al., 1997), reduced pellet friability (Reynolds, 1970; Malinowski and Smith, 

1975; Otsuka et al., 1994 Varshosaz et al., 1997), improved pellet surface properties 

(Hellén et al., 1993a) and prolonged drug release due to increased pellet density and 

hardness (Baert and Remon, 1993; Varshosaz et al., 1997). Water level in relation to 

extrusion/spheronisation was studied by several authors: Harison et al. (1984, 1985a,b) 

used a ram extruder to study the mass flow during extrusion and its relation to water 

content, formulation and extrusion process variables, while Baert et al. (1991,1992), 

Elbers et al. (1992), Kleinebudde and Lindner (1993) and Kleinebudde et al. (1994) 

reported a reduction of torque or power consumption of the extruder with increasing water 

level.  

 

The optimal water level is also related to drug and excipient properties like solubility, 

particle size and concentration in the powder mixture. Elbers et al. (1992), Wan et al. 

(1993) and Hileman et al. (1993a,b) reported that the optimal water level was proportional 

to the MCC concentration due to its high water retaining capacity (Fielden et al., 1988, 

1992a). In contrast to these authors, Bains et al. (1991) reported a higher optimal water 

level for barium sulphate/MCC mixtures with a lower MCC content due to the poor water 
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solubility, particle size and morphology of barium sulphate powder. Furthermore, including 

water soluble excipients (Baert et al, 1992) or active ingredients (Hileman et al. 1997; 

Lustig-Gustafsson et al., 1999) in the powder mixture reduces the optimal water level due 

the contribution of the dissolved fraction to the liquid phase. Fielden et al. (1989, 1992b,c 

1993) evaluated the influence of lactose particle size in lactose/MCC-mixtures on 

extrusion/spheronisation. The authors reported that more water was needed when using a 

finer lactose particle size. Wan et al. (1993) also concluded that using coarser lactose 

increased the mean pellet size when the same water level used.  

 

Millili and Schwartz (1990) studied the influence of water/ethanol mixtures as granulation 

liquid: with an increase of ethanol concentration in the mixture, the mean pellet diameter 

decreased, while their higher pellet friability and porosity promoted a faster drug release. 

Schröder and Kleinebudde (1995a) reported about obtaining disintegrating pellets and 

therefore a faster drug release when using 2-propanol/water mixtures as granulation 

liquid. 
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2.3 Microcrystalline cellulose as extrusion/spheronisation aid 

 

Microcrystalline cellulose (MCC) is commonly used as excipient in 

extrusion/spheronisation (Newton, 2002). In relation to the previously mentioned wet mass 

requirements, the rheological properties of an MCC-based wet mass are suitable for 

successful extrusion and spheronisation (Shah et al. 1995) and it is regarded as a 

spheronisation aid. MCC has good binding properties and provides cohesiveness to the 

wet mass. Furthermore, it is able to absorb and retain a large quantity of water due to its 

large surface area and high internal porosity (Sognalio et al. 1995a), thus facilitating 

extrusion, improving wet mass plasticity and enhancing spheronisation. Moreover, by 

controlling the movement of water through the plastic mass, it prevents phase separation 

during extrusion or spheronisation (Fielden et al., 1992b). 

 

Two models have been proposed to explain the behaviour of MCC during extrusion/ 

spheronisation process:  

• In the first model MCC is described as a “molecular sponge” (Fielden et al., 1988; Ek 

and Newton, 1998). The MCC particles are able to retain water in a similar way as a 

sponge. During extrusion these sponges are compressed and the water which is 

squeezed from the internal structures acts as a lubricant. After extrusion, the volume of 

the sponges increases and they appear dry and brittle, which facilitates the breaking of 

the extrudates during the initial phase of spheronisation. During the spheronisation phase, 

the sponges are densified, and water facilitates spheronisation of pellets. 

• According to the “crystallite-gel” model, during granulation and extrusion in the 

presence of water MCC particles are broken down into smaller units and even partly into 

single crystals of colloidal size. The resulting crystallites and porous particles form a 

coherent gel-like network (with a high fraction of an insoluble solid phase) and immobilize 

the granulation liquid. At a specific water content, which relates to a certain gel strength, 

extrusion and spheronisation becomes possible (Kleinebudde, 1997). 

 

Based on the extensive literature about the use of MCC in extrusion/spheronisation, it can 

be observed that pellets produced with MCC possess good sphericity, low friability, high 

density and smooth surface properties. Furthermore, from a processing viewpoint, 

relatively wide ranges of water content and processing parameters can be employed to 

provide pellets with acceptable quality, indicating the robustness of the formulations.  

 

In spite of its excellent characteristics as an extrusion/spheronisation aid, in several cases 

MCC is not considered as the excipient of choice in the production of pellets via 
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extrusion/spheronisation:  

• Drug decomposition in the presence of MCC (Basit et al., 1999) as well as drug 

adsorption onto the surface of MCC fibres has been reported (Okada et al., 1987; Rivera 

and Ghodbane, 1994; Al-Nimry et al., 1997). 

• Several authors reported about the chemical incompatibility of MCC with a number of 

drugs (Carstensen et al, 1969; Signoretti et al., 1986; Patel et al., 1988; George et al., 

1994; Torres and Camacho, 1994; Brandl et al., 1995). 

• O’Connor and Schwartz (1985) reported a prolonged drug release when using poorly 

soluble drugs in a mixture with MCC. This was attributed to the lack of disintegration of 

MCC-based pellets. Diffusion through an insoluble inert matrix was therefore proposed as 

drug release mechanism (O’Connor and Schwartz, 1993; Zimm et al., 1996). Other 

authors also reported about the influence of drug water solubility on the release from 

MCC-based pellets (Baert and Remon, 1993; Blanqué et al., 1995; Hileman et al., 1997; 

Lustig-Gustafsson et al., 1999; Sousa et al., 2002). 

• Drug/MCC ratio in the powder mixture also influenced the release of poorly water 

soluble drugs, being prolonged if the MCC level was higher (Pinto et al., 1982; O’Connor 

and Schwartz, 1985). 

• Pellet properties were influenced by batch-to-batch variability of MCC powders and 

adjustment of the optimal water content was needed. Furthermore, an effect of MCC 

powders originating from different supplies on pellet properties has been reported 

(Sognalio et al., 1995b; Bataille et al., 1997).  

• Due to its smooth surface properties and optimal sphericity, MCC-based pellets are 

suitable for subsequent coating in order to sustain drug release. However, if the goal is to 

minimize the number production steps, matrix formulations would be more suitable for 

controlled release applications (Tapia et al., 1993; Jess and Steckel, 2007).  

• There is a constant need for reducing the cost of raw materials in pharmaceutical 

industry. 

 

Taking into consideration the above mentioned limitations of MCC, additional excipients 

are often included in an MCC-based formulation (Section 2.4). However, in recent years, 

research has been directed towards the evaluation of potential excipients as 

spheronisation aids, which would partially or completely substitute MCC in formulations 

used for extrusion/spheronisation (Section 2.5).  
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2.4 Excipients used in combination with MCC 

 

Table 2.1 lists the excipients according to their function in MCC-based pellet formulations 

and the references to literature sources. These materials will be briefly discussed in this 

section. 

 

Fillers are mainly used in pellet formulations to add bulk, but sometimes they can facilitate 

extrusion/spheronisation (Harris and Ghebre-Sellassie, 1989). As mentioned previously, 

water solubility and particle size of the filler influence the optimal water range and pellet 

properties. The influence of aqueous solubility of the filler on drug release from pellet 

formulations has also been discussed earlier.   

 

Binders are added to pellet formulations to assure wet mass cohesiveness throughout the 

pelletisation process and to maintain pellet integrity after production. Although MCC has a 

binding function, additional binders might be necessary when an active component of 

unfavorable rheology is highly dosed in the pellet formulation. Funck et al. (1991) 

successfully used several binders (sodium carboxymethylcellulose, methylcellulose, 

hydroxypropylcellulose, polyvinylpyrrolidone, carbomer and pregelatinized starch) at 2% 

(w/w) level in MCC-based formulations with 80% (w/w) of a model drug. Pellet sphericity, 

friability and ease of processing depended on the binder type, while the drug release was 

similar for all formulations due to the low binder concentration. Several authors reported 

on the influence of binder type and concentration on pellet size distribution, sphericity and 

drug release (Umprayn et al., 1995; Varshosaz et al., 1997; Law and Deasy, 1997; Deasy 

and Law, 1997; Luchtman et al., 2005). In addition, a mixture of MCC and sodium 

carboxymethylcellulose was reported in a number of studies as very useful in formulations 

containing a high drug concentration (Malinowski and Smith, 1975; O’Connor et al., 1984; 

O’Connor and Schwartz, 1985; Funck et al., 1991; Elbers et al., 1992; Hileman et al., 

1993a,b; Lambert et al., 1995).  

 

Mesiha and Vallés (1993) evaluated the usefulness of lubricants, glidants and surface 

active agents in reducing surface defects, energy consumption and heat generation during 

extrusion of a highly dosed drug. Surface active agents were the most successful in 

enhancing extrudability of wet mass.  
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Table 2.1 Overview of different classes of excipients combined with MCC in formulations intended for 

extrusion/spheronisation and references to literature sources.  

 

Fillers 

Lactose 
 

Wan et al. (1993), Otsuka et al. (1994), Umprayn et al. (1995), 
Blanqué et al. (1995), Santos et al. (2002), Sinha et al. (2005) 

Dicalcium diphosphate 
 

Rodrigues et al. (2001), Sousa et al. (1996, 2002), Santos et al. 
(2002), Sinha et al. (2005) 

Mannitol Hellén et al. (1993a,b), Hellén and Yliruusi (1993), Sousa et al. (2002) 

Starch and derivatives Otsuka et al. (1994), Junnila et al. (1998, 2000) 

Glucose Sousa et al. (2002) 

β-Cyclodextrine Gazzaniga et al. (1998), Santos et al. (2002) 
  

Binders 

Sodium carboxymethylcellulose  
 
 

Malinowski and Smith (1975), O’Connor et al. (1984), O’Connor and 
Schwartz (1985), Funck et al. (1991), Elbers et al. (1992), Hileman et 
al. (1993a,b), Lambert et al. (1995) 

Polyvinylpyrrolidone  
 

Funck et al. (1991), Deasy and Law (1997), Law and Deasy (1997a), 
Varshosaz et al. (1997), Santos et al. (2002) 

Hydroxypropylmethylcellulose  Umprayn et al. (1995), Luchtman et al. (2005) 

Methylcellulose Funck et al. (1991), Umprayn et al. (1995) 

Hydroxypropylcellulose  
 

Funck et al. (1991), Mesiha and Vallés (1993), Otsuka et al. (1994), 
Umprayn et al. (1995) 

Gelatine/starch, gelatine Varshosaz et al. (1997), Rodrigues et al. (2001) 

Starch Funck et al. (1991), Mesiha and Vallés (1993) 

Silicates Law and Deasy (1997b) 

Carbomer Funck et al. (1991) 

Chitosan Goskonda and Upadrashta (1993), Santos et al. (2002) 
  

Lubricants / glidants 

Light mineral oil, sodium stearyl 
fumarate, colloidal silicon dioxide  

Mesiha and Vallés (1993) 
 

Hydrogenated castor oil Law and Deasy (1997b) 

Glycerol behenate (Compritol
®
) Iloanusi and Schwartz (1996) 

Precirol
®
 ato 5, Gelucire

®
 50/02 Edimo et al. (1993), Law and Deasy (1997b) 

  

Disintegrants 

Croscarmellose sodium, sodium 
starch glycolate 

Souto et al. (2005), Schröder and Kleinebudde (1995b) 

  

Surface active agents 

Sodium lauryl sulphate  
Mesiha and Vallés (1993), Edimo et al. (1993), Law and Deasy 
(1997a,b), Deasy and Law (1997)  

Polysorbate 80, glyceryl and 
sorbitan mono-oleate, sorbitan 
mono-palmitate 

Mesiha and Vallés (1993), Junnila et al. (1998) 

 

Glycerol monostearate Blanqué et al. (1995) 

Self-emulsifying systems Newton et al. (2001, 2005), Tuleu et al. (2004) 
  

Miscellaneous 

pH adjusters Bianchini et al. (1992), Law and Deasy (1997b)  

Release modifiers Bianchini et al. (1992), Gouldson and Deasy (1997) 

MCC co-processed with 
hydrophilic polymers  

Law and Deasy (1998) 
 

Cosolvents (PEG) Vervaet et al. (1994), Blanqué et al. (1995) 
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Iloanusi and Schwartz (1996) reported a reduction of extrusion force after addition of 

glycerol behenate to a MCC-based formulation. Edimo et al. (1993) used lipophilic 

substances (Precirol® ato 5, Gelucire® 50/02) to prepare pellets via 

extrusion/spheronisation. However, addition of sodium lauryl sulphate (as a wetting agent) 

and MCC (to provide plasticity and cohesiveness) were needed. Furthermore, up to 40% 

w/w self-emulsifying systems (mixtures of oil, surfactant and water) were used as 

granulation liquid in pellet formulations in order to increase the release of poorly soluble 

drugs (Newton et al., 2001, 2005; Tuleu et al., 2004). 

 

Superdisintegrants (croscarmellose sodium and sodium starch glycolate) were not 

successful to increase drug release from MCC-based pellets containing a poorly water 

soluble model drug (Souto et al., 2005). Previously Schröder and Kleinebudde (1995b) 

reported about the inefficiency of sodium starch glycolate to promote disintegration and 

therefore increase the dissolution of propyphenasone in MCC-based pellets, while it was 

achieved in another study (Schröder and Kleinebudde, 1995a) when using different 2-

propanol/water mixtures as granulation liquid.  

 

Surface active agents were also used either to increase the release of poorly soluble 

drugs (Law and Deasy, 1997a; Deasy and Law, 1997) or to improve the plasticity of wet 

mass (Law and Deasy, 1997b; Junnila et al., 1998).  

 

Law and Deasy (1998) reported on co-processing of hydrophilic polymers with MCC by 

spray-drying. Compared to the physical mixture, pellets obtained after 

extrusion/spheronisation of the mixture containing this co-processed excipient and 80% of 

lactose, were of superior sphericity and yield. Furthermore, the optimal water range was 

broader. 
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2.5 Excipients alternative to MCC 

 

Liew et al. (2005) proposed the following properties as being important for an excipient 

intended for production of pellets via extrusion/spheronisation:  

• water insolubility 

• large water absorption and retention capacity 

• binding properties 

• sufficiently large surface area for interaction with water and other ingredients in the 

powder mixture 

• ability to enhance drug release.  

 

Several excipients were evaluated as alternatives to MCC in extrusion/spheronisation. 

They have been used as spheronisation aids or release modifiers either alone or in 

combination with MCC (Table 2.2) or as complete substitutes for MCC (Table 2.3). 

Nevertheless, none of them succeeded to provide the flexibility in formulation and 

processing which MCC as an excipient can offer. These excipients will be briefly reviewed 

in the following sections.  
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Drug release 

- Additional binder promoted 
immediate drug release (HPMC) 
or sustained drug release (PVP) 
- Chitosan (MCC-free) pellets 
obtained with acetic acid 
solution as granulation liquid 
showed sustained drug release 
- Citosan-alginate  pellets 
showed fast drug release 

- Pellets do not disintegrate, but 
swell in water 
- Drug release faster due to 
higher pellet porosity 

- It was considered as 
spheronisation enhancer rather 
than controlled release additive 
- Drug solubility influenced the 
release in a similar manner as 
in MCC-based pellets 

- Used to sustain the drug 
release 
- Drug release was prolonged 
with increasing Carbopol level 
- Ionic interactions between 
Carbopol and drugs rather than 
drug solubility influenced the 
release 

- Model drug was not used in 
pellets prepared without MCC 
- Drug release was not tested 
from pellets with MCC 

 

Pellet properties 

- Pellets were produced 
with acceptable size, size 
distribution and sphericity, 
low friability, high crushing 
strength and smooth 
surface properties 

- MCC pellets had better 
sphericity 
- L-HPC type influenced 
pellet properties 

- Sphericity acceptable 
- Pellets are larger 
compared to MCC pellets 
- Increased GMS level 
gave larger pellets 
- Porosity depended on 
other materials properties, 
water and GMS level 

- Using CaCl2 yielded 
pellets with the best 
sphericity and smoothest 
surface 

- Pellet sphericity was 
generally not satisfactory, 
except for pellets 
containing native starch 
and 20% of white dextrin 

 

Process 
requirements 

- Takes up large 
quantity of water 
- Processing 
parameters 
influenced pellet 
yield, size, sphericity 
and friability 

- Wider optimal water 
content range 

- Less water required  
 

- Optimal water level 
depended on MCC 
and CaCl2 content 
- Processing 
parameters 
influenced pellet 
properties in a 
complex manner 

 

 

Formulation 

- Used as binder and 
release modifier (with MCC) 
and as spheronisation aid 
(without MCC and/ or with 
sodium alginate) 
- Additional binder 
necessary or acetic acid 
solution as granulation liquid 

- Binder may be needed. 
- Used with MCC 

- Depending on drug 
properties, used with and 
without MCC 
- It was possible to disperse 
drug in molten GMS, to grind 
it and process with MCC and 
water 

- Addition of aqueous 
solution of a strong 
electrolyte (CaCl2) reduced 
tackiness of the wet mass 
- Used up to 55% with MCC 
as the main spheronisation 
aid 

- Native starches up to 30% 
or waxy maize starch up to 
50% combined with MCC 
- Native starches were 
combined with waxy maize 
starch, white or yellow 
dextrin (without MCC) 

 

Physical 
properties 

- Soluble in 
acidic medium 
- Insoluble in 
basic medium 
-Degr. of 
deacetyl. and 
mol. weight 
influenced 
performance 

- Insoluble in 
water 
- Swells in 
water 

- Insoluble in 
water 
 

 
- Swells in 
water 

- Swells in 
water, ratio of 
amylose and 
amylopectine 
determines 
solubility 

Table 2.2 Overview of  excipients used as spheronisation aid in extrusion/spheronisation with or without MCC. 

 

Excipient 

Chitosan 

Low substitu-
ted hydroxyl-
propylcellulo-
se (L-HPC) 

Glyceryl 
monostearate  
(GMS) 

Carbopol
®
 

resins 

Starch and 
starch 
derivatives 
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Drug release 

- Pellets do not disintegrate 
- Drug release faster due to 
higher porosity 

- Model drug was not used 

- Drug release was faster due 
to pellet disintegration  
- Immediate drug release 
achieved, irrespective of drug 
and filler solubility 

- HPMC pellets dissolve into 
gel-like structure, while HEC 
pellets erode 
- Release properties can be 
modified by using different 
HPMC/HEC types 

- High drug load (>80%) 
- Immediate release obtained 

- Pellets disintegrate and 
therefore the release of poorly 
water soluble drugs is faster 
compared to drug release 
from MCC-based pellets 

 

Pellet properties 

- Smaller mean size, broader 
size distribution, rougher 
surface, higher friability and 
porosity compared to MCC 
pellets 

-Narrow size distribution and 
good sphericity 
- Higher mean diameter 

- Acceptable pellet size 
distribution and sphericity  
- Pellets are larger and more 
porous, compared to MCC   

- Rougher surface 
properties, higher friability 
and poor sphericity 
compared to MCC 

- Pellets with acceptable 
yield, sphericity and friability 
were produced 

- Acceptable pellet sphericity 
and mechanical strength 
- Larger pellets and rougher 
surface properties compared 
to MCC 

 

Process 
requirements 

 

- Higher water levels 
required 
- Lower spheronisation 
speed needed 

- Higher water levels 
required and therefore 
longer drying times are 
needed 
- Optimal water level 
range broader 

- Higher liquid levels 
required 

- Processing 
parameters influenced 
pellet yield, sphericity   
and friability in a 
complex manner 

- Less water is  
required, but optimal 
water range is narrow 
compared to MCC 
- Spheronisation 
performed at 45°C to 
improve sphericity 

 

Formulation 

- Binder necessary 

- Binder is not necessary 

- Binder is not necessary  
- Effective in 
concentrations from 5 to 
98 % 

- Binder necessary 
- Non-aqueous granulation 
liquid used 

- PEO provides wet mass 
plasticity, MPEG self-
lubrication  
- Optimal PEO/MPEG/ 
water ratio was 2:1:1 

- Binder is not necessary 
- Effectiveness in 
producing pellets depends 
on drug properties 
- Drug load up to 80% 

 

Physical 
properties 

- Insoluble in 
water 

- Insoluble in 
water 

- Insoluble in cold 
water 
- Swells in water 

- Water soluble 
- Insoluble in  
alcohols 

- Water soluble 

- Insoluble in 
water 

Table 2.3 Overview of  excipients used as spheronisation aid in extrusion/spheronisation without MCC. 

 

Excipient 

Powdered 
cellulose 

Cross-linked 
polyvinyl-
pyrrolidone 

Kappa-
carrageenan 

Hydroxypro-
pylmethyl-
cellulose 
(HPMC), 
Hydroxyethy
l-cellulose 
(HEC) 

Polyethylene 
oxide (PEO) 
with 
methoxypoly
-ethylene 
glycol 
(MPEG) 

Pectinic acid 
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2.5.1 Chitosan 

 

Chitosan is a polycationic copolymer, consisting of glucosamine and N-

acetylglucosamine. It is obtained by N-deacetylation of a natural polysaccharide, chitin. 

Due to its cationic character, chitosan has a pH-dependent solubility in water: it is soluble 

in acidic medium and insoluble in basic medium (Steckel and Mindermann-Nogly, 2004). 

Use of chitosan as a release modifier and/or spheronisation aid in 

extrusion/spheronisation has been reported by several authors.  

 

Pellets with sustained drug release were obtained by Tapia et al. (1993) who added low 

concentrations of chitosan to an acetic acid solution used as granulation liquid and 

produced pellets with MCC as spheronisation aid. Goskonda and Upadrashta (1993) also 

obtained pellets with sustained drug release after investigating different viscosity grades 

of chitosan in concentrations up to 40 % (w/w) in mixtures with MCC and sodium 

carboxymethylcellulose as binder. Santos et al. (2004) used chitosan in combination with 

PVP as binder, MCC as spheronisation aid and different fillers to obtain pellets with 

immediate release of a model drug. The drug release was not retarded due to low 

concentration of chitosan.  

 

Above mentioned authors used chitosan in combination with MCC. In addition, a binder 

was necessary to provide wet mass cohesiveness. Agrawal et al. (2004) prepared MCC-

free pellets using up to 15% (w/w) chitosan and up to 10% (w/w) HPMC as additional 

binder. Pellets disintegrated and the drug release was not sustained. Pellet properties 

depended on the formulation (chitosan, HPMC and water concentration) and processing 

variables (extrusion and spheronisation speed). In general, pellets with acceptable yield, 

size and sphericity, low friability and high density were obtained.  

 

In contrast to Goskonda and Upadrashta (1993), Steckel and Mindermann-Nogly (2004) 

produced pellets comprising equal amounts of MCC and chitosan without additional 

binder. Furthermore, they succeeded to produce pellets with acceptable quality with 

increased chitosan concentration using a 0.1N acetic acid solution as granulation liquid. 

The authors postulated that partial dissolution of chitosan at the particle surface increased 

the wet mass plasticity and cohesiveness. Furthermore, with increasing amount of 

chitosan in the mixture, a higher amount of granulation liquid was needed for successful 

extrusion/spheronisation. In a recent study, Jess and Steckel (2007) investigated the 

influence of the degree of deacetylation of chitosan on the properties of pure chitosan 

pellets. It was concluded that chitosan with the highest degree of deacetylation (99.9 %) 
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and wetted with 0.2N acetic acid provided the best wet mass plasticity to obtain pellets 

with adequate size, sphericity, friability, mechanical strength and surface properties. 

Furthermore, the drug release of a model drug (0.6% budesonide) was sustained 

according to a zero-order model. 

 

Recently, Charoenthai et al. (2007a) investigated the influence of chitosan molecular 

weight on the quality of pellets produced via extrusion/spheronisation. Acetaminophen (10 

and 20 %, w/w) was used as model drug and chitosan level was up to 60 % (w/w). 

Formulations also contained MCC (up to 30 %, w/w) and dibasic calcium phosphate as 

filler. In general, low molecular weight chitosan produced pellets with better sphericity and 

a higher crushing strength. Furthermore, pellet properties were improved when adding 2.5 

% (w/w) of sodium alginate to the pellet formation. Drug release depended on the chitosan 

molecular weight, sodium alginate addition and the pH of dissolution medium. The same 

authors in another study (Charoenthai et al., 2007b) further investigated the influence of 

formation of polyelectrolyte complex between polycationic chitosan and polyanionic 

sodium alginate on the quality of MCC-free pellets. The same model drug was used, while 

lactose monohydrate was used as filler. It was possible to produce pellets with fast drug 

release. Similarly as in the previous study of the same authors, pellet properties and drug 

release depended on chitosan molecular weight, addition of sodium-alginate, filler 

properties and dissolution medium.  

 

 

2.5.2 Low-substituted hydroxypropylcellulose (L-HPC) 

 

In low-substituted hydroxypropylcellulose a small fraction of free hydroxyl groups of 

glucose subunits is substituted with hydroxypropyl ether groups. It is insoluble in water 

and alcohols, but swells in water. Kleinebudde (1993) evaluated pellets containing several 

L-HPC types with different hydroxypropyl content and particle size in concentrations up to 

20% (w/w). In all formulations acetaminophen (30%, w/w) was used as model drug and 

MCC was used as additional spheronisation aid. MCC-based pellets were also produced 

for comparison reasons. Compared to L-HPC free pellets, formulations with L-HPC had a 

higher optimal water content and were less sensitive to water content. However, MCC-

based pellets had a better sphericity compared to pellets containing L-HPC, since the 

addition of L-HPC increased the elasticity of the wet mass, thus reducing the brittleness of 

the extrudates and increasing the pellet length. Furthermore, for the same water content, 

pellet sphericity decreased with increasing particle size of L-HPC. L-HPC based pellets 

did not disintegrate during dissolution tests, but swelled and softened. Drug release was 
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related to pellet porosity: MCC-based pellets had the lowest porosity, and the drug release 

was the slowest. With an increase of hydroxypropyl content in the formulations, pellet 

porosity increased and consequently drug release was faster. Moreover, using a higher 

water level in the formulations reduced the porosity, which also prolonged drug release. It 

was concluded that L-HPC grades with lower particle size and higher hydroxypropyl 

content were of interest to produce pellets with fast drug release. 

 

 

2.5.3 Glyceryl monostearate (GMS) 

 

Glyceryl monostearate and barium sulphate were proposed as excipients alternative to 

MCC for the production of ranitidine pellets due to the chemical degradation of ranitidine 

by means of a complex three-way interaction between drug, MCC and water (Basit et al., 

1999). It was possible to obtain good pellets by completely replacing MCC by a mixture of 

barium sulphate and GMS.  

 

Newton et al. (2004) used barium sulphate and diclofenac sodium as model drugs to 

prepare MCC-free pellets. The optimal water content decreased with an increase of GMS 

in diclofenac sodium-containing formulations, while the opposite trend was observed for 

barium sulphate formulations. Nevertheless, compared to MCC-based formulations, the 

optimal water contents were two times lower, which is a considerable advantage when 

using water-sensitive drugs. Furthermore, GMS-based pellets were larger compared to 

MCC pellets and sphericity was acceptable. Drug release was not sustained and GMS 

was rather considered a spheronisation aid than controlled release additive. 

Chatchawalsaisin et al. (2005) further investigated the potential of GMS as spheronisation 

aid by using several model drugs with varying solubility (drug concentration: 10% w/w). 

None of the model drugs (except diclofenac sodium) could be processed without addition 

of at least 30% (w/w) MCC. With increasing GMS content in the formulations, the optimal 

water level decreased and pellet size increased. Pellet sphericity was acceptable. Drug 

release depended on drug solubility, being slower if a poor water soluble drug was used in 

the formulation.  

 

 

2.5.4 Carbopol®  resins 

 

Carbopol® resins are synthetic, cross-linked acrylic acid polymers. They swell in alkaline 

or neutral media and form a hydrogel due to strong repulsion of negatively charged 
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carboxylic groups. Carbopol® 974P was firstly described by Neau et al. (1996) as a 

release modifier in pellets manufactured via extrusion/spheronisation. Using water as a 

granulation liquid was not successful since the material turned into a tacky mass, making 

it difficult to extrude. However, extrusion and spheronisation was possible when an 

aqueous solution of a strong electrolyte was used as granulation liquid. Neau et al. (1996) 

evaluated the effect of several types and concentrations of inorganic salt aqueous 

solutions on the extrusion and spheronisation of mixtures containing Carbopol® 974P (up 

to 55%, w/w), MCC (as main spheronisation aid) and 5% (w/w) of highly water soluble 

model drug. The electrolyte efficiency in reducing tackiness depended on the type of salt 

and its concentration. In general, when using an aqueous solution of CaCl2, pellets had 

the lowest roundness score (~1.15) and the smoothest surface properties. The drug 

release was prolonged with an increase of Carbopol concentration in the formulation. 

Furthermore, the release of the model drug was also influenced by pH and ionic strength 

of the dissolution medium. In another study the same authors (Neau et al., 2000) 

investigated the influence of formulation (water, Carbopol and CaCl2 concentration) and 

process (spheronisation time and load) variables on pellet properties and drug release. 

The optimal water level depended on Carbopol/MCC ratio and CaCl2 level in the 

formulation. In general, after process optimization, pellets with acceptable quality and 

prolonged drug release were produced. Bommarenddy et al. (2006) used Carbopol® 

974P/ MCC mixtures granulated with the same granulation liquid to test drug release from 

pellets containing four drugs with different water solubilities. Two of them were non-

electrolytes (caffeine and dyphylline) while two were salts of weakly basic drugs 

(chlorpheniramine and dipheniramine maleate). The drug release studies showed that 

drug solubility was not the major factor influencing drug release, but the ionic nature of the 

drug: the release of non-ionic drugs was much faster than the release of weakly basic 

salts, irrespective of their water solubility. It was proposed that in the latter case, ionic 

interactions between the protonated amines of the salts and carboxylic groups of 

Carbopol are responsible for a slower drug release.  

 

 

2.5.5 Starch and starch derivatives 

 

O’Connor et al. (1984) reported about the unsuccessful production of pellets via 

extrusion/spheronisation with starch (native and pregelatinized) as the main excipient in 

the formulation. Erikäinen and Lindqvist (1991) produced starch-based pellets containing 

20% (w/w) of a slightly water soluble drug and gelatine as binder. Drug release was fast, 

but no data on pellet properties were provided. Several authors reported on the use of 



Chapter 2 

 

 34 

starch as binder (Funck et al., 1991; Mesiha and Vallés, 1993; Varshosaz et al., 1997) in 

formulations with MCC. Otsuka et al. (1994) used a mixture of lactose (63%, w/w) and 

starch (27 %, w/w) to produce pellets with 10% (w/w) of theophylline as model drug. 

Furthermore, Junnila et al. (1998) reported on using up to 30% (w/w) native starch, 

combined with MCC and 2.5 % (w/w) of anhydrous theophylline. However, addition of 

polysorbate 80 as surface-active agent was needed to improve wetting and plasticity. The 

same authors (Junnila et al., 2000) introduced waxy maize starch as a co-filler in pellets 

containing MCC and anhydrous theophylline. It was possible to produce pellets containing 

up to 50% waxy maize starch. However, pellet sphericity was at the limits of acceptability 

and data on drug release were not provided. Almeida Prieto et al. (2005) reported on 

using native maize and wheat starch to prepare pellets without MCC. It was possible to 

produce starch-based pellets only after addition of waxy maize starch, white or yellow 

dextrin in concentration up to 20% w/w. However, no model drug was used and pellet 

sphericity was poor, except the ones prepared from mixtures of starch and white dextrin.  

 

 

2.5.6 Powdered cellulose (PC) 

 

Lindner and Kleinebudde (1994) compared the properties of PC-based pellets to MCC-

based pellets containing 30% (w/w) of paracetamol as a model drug. In contrast to MCC-

based pellets, a binder (sodium carboxymethylcellulose) was necessary to prepare pellets 

with powdered cellulose. All pellets had a low friability and did not disintegrate during 

dissolution testing. Furthermore, a faster drug release from PC-based pellets was 

attributed to their higher porosity (22-36%, compared to 3% for MCC-based pellets).  

 

Alvarez et al. (2003) prepared PC-based pellets with furosemide (25 and 50%, w/w) as 

hydrophobic and cohesive model drug, but without additional binder. Compared to the 

reference MCC-based pellets, powdered cellulose pellets had a smaller mean size, 

broader size distribution, rougher surface and higher friability. Moreover, faster dissolution 

was related to a markedly higher micropore volume of PC-based pellets.  

 

In general, differences in porosity between powdered cellulose- and MCC-based pellets 

were explained by the differences in drying behaviour: while MCC pellets shrink during 

drying, the structure of the PC pellets was preserved.   
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2.5.7 Cross-linked polyvinylpyrrolidone (crospovidone) 

 

Liew et al. (2005) evaluated crospovidone (cross-linked polymer of N-vinyl-2-pyrrolidone) 

as spheronisation aid. Three grades of this water-insoluble synthetic polymer, differing in 

particle size, were mixed with lactose in a 1:3 ratio. No model drug was used and pellet 

quality was compared to pellets produced from a mixture containing MCC and lactose. 

Two finer grades of crospovidone were successfully extruded and spheronised using 

water as granulation liquid. Compared to MCC, crospovidone was able to absorb and 

retain higher amounts of water. Favorable properties of this excipient for use in 

extrusion/spheronisation were related to the cross-linked arrangement which formed of a 

mesh-like structure with water retention ability. The pellets had a narrow size distribution, 

good sphericity and high mean diameter. However, a lower spheronisation speed 

combined with longer spheronisation time was required during processing, since the wet 

mass had a low cohesiveness and binding ability. This difference in wet mass consistency 

between MCC and crospovidone mixtures was attributed to differences in powder 

morphology: the fibrous and irregular shape of MCC particles provided extra strength via 

mechanical interlocking, in contrast to the granular structure of crospovidone particles. 

Nevertheless, a binder was not needed and pellets were produced with acceptable quality 

and good process reproducibility.  

 

 

2.5.8 Kappa(κ)-carrageenan 

 

Carrageenans are a group of acid polysaccharides, consisting of mainly potassium, 

sodium, calcium, magnesium and ammonium sulfate esters of galactose and 3,6-

anhydrogalactose, which are alternately linked with α-1,3 and β-1,4 linkages in the 

polymer. There are several carrageenan types (λ-, κ- and τ- type) differing in the amount 

and position of the sulfate group (Bornhöft et al., 2005). After preliminary screening, 

Bornhöft et al. (2005) reported κ-carrageenan as the most suitable for preparation of 

pellets via extrusion/spheronisation. κ-Carrageenan is not soluble in cold water, but swells 

into strong and rigid gels (Thommes and Kleinebudde, 2006a). Compared to MCC, κ-

carrageenan required a higher water content for successful extrusion and spheronisation, 

which might be a disadvantage if water-sensitive drugs are processed. However, the 

optimal water content range was much broader, indicating the robustness of the 

formulation (Bornhöft et al., 2005). The same authors obtained nearly spherical pellets in 

a κ-carrageenan concentration range from 5 to 98% (w/w). Thommes and Kleinebudde 

(2006a) evaluated the influence of filler type and load on the properties of pellets 
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containing 20% (w/w) of κ-carrageenan and water-soluble acetaminophen as model drug. 

The optimal water content was related to water solubility and concentration of the filler: 

using a higher amount of water soluble filler required a lower water content, while addition 

of less soluble fillers required a higher water level. The exception was insoluble, but 

swellable starch, which had a higher water binding capacity. In general, pellets with 

acceptable size distribution, yield and sphericity were obtained, irrespective of the filler 

type and load. Compared to MCC pellets, κ-carrageenan-based pellets were larger and 

had a lower crushing strength due a higher porosity. However, in contrast to MCC-based 

pellets, κ-carrageenan-based pellets disintegrated and an immediate drug release was 

achieved. Furthermore, only a minor influence of filler solubility and load on drug release 

was observed. In a subsequent study, Thommes and Kleinebudde (2006b) prepared 

pellets using four model drugs (acethaminophen, theophylline, mesalamine and 

hydrochlorothiazide) with different water solubility, alone or mixed with an equal amount of 

a filler (lactose, mannitol, maize starch and dicalcium phosphate). In addition, each 

formulation contained 20% of κ-carrageenan as spheronisation aid. The optimal water 

content was influenced on one hand by filler solubility and content as described 

previously, and on the other hand by the solubility of the model drug and the type of 

spheronisation aid. Similarly as in the previous study, all pellets had an acceptable 

sphericity, high yield and compared to MCC-based pellets, a larger size and higher 

porosity. The influence of solubility and load of drug and filler on pellet properties was 

negligible. Furthermore, due to pellet disintegration, the drug release from all κ-

carrageenan-based pellets was immediate, irrespective of drug solubility, which was in 

contrast to MCC-based pellets. 

 

 

2.5.9 Hydroxypropylmethylcellulose (HPMC) and 
hydroxyethylcellulose (HEC) 

 

HPMC and HEC were evaluated as spheronisation aids by Chatlapalli and Rohera 

(1998a). Pellets were prepared without model drug and the properties were compared to 

MCC pellets. It was not possible to use water as granulation liquid, since HPMC and HEC 

are water soluble polymers and the formation of tacky mass did not allow further 

processing. However, it was possible to prepare pellets with isopropylalcohol (IPA) as 

non-dissolving granulation liquid. Furthermore, due to the low mechanical strength of the 

dried pellets, it was necessary to include a binder (hydroxypropylcellulose dissolved in 

IPA) in the formulation. All pellets were of acceptable quality although some differences 

were observed: MCC pellets had smooth surface properties and low friability, while HEC 
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pellets had the roughest surface and highest friability. HEC pellets were also the worst in 

terms of sphericity. The pellets showed a different behaviour when immersed in water: 

MCC pellets did not disintegrate and stayed intact; HPMC pellets absorbed water and 

turned into gel-like structure; and HEC pellets swelled significantly without adhering to 

each other and eroded slowly. These differences were attributed to differences in water 

solubility and viscosity. 

 

 

2.5.10 Polyethylene oxide (PEO) with methoxypolyethylene glycol   
(MPEG) 

 

Polyethylene oxide has been recently suggested (Howard et al., 2006) as spheronisation 

aid in a formulation containing more than 80% of pseudoephedrine hydrochloride as 

water-soluble model drug. Polyethylene oxide, a highly water soluble polymer, provided 

sufficient plasticity to the wet mass. However, methoxypolyethylene glycol was needed to 

improve the self-lubricating properties of the wet mass. A mass ratio of 2:1:1 for 

PEO/MPEG/water was used in an experimental design which studied the influence of drug 

load (all above 80%) and process variables (feeder, extrusion rate, spheronisation speed 

and spheronisation time) on pellet yield, sphericity and friability. The processing 

parameters highly influenced pellet properties: pellet yield ranged from about 56 to 78%, 

friability from 1.1 to 29.1%, while the roundness score ranged from 1.15 to 1.36 (with 1 

representing a perfect sphere). Drug release was immediate. PEO/MPEG mixture was 

proposed to be useful in cases when high drug loads are required and the use of MCC is 

not possible due to incompatibility or incomplete drug release. 

 

 

2.5.11 Pectinic acid 

 

Pectin is a natural polysaccharide with a backbone of polygalacturonic acid. Different 

types of pectin, differing in degree of methoxylation and amide substitution, were 

evaluated as potential excipients for extrusion/spheronisation (Tho et al., 2001a,b). Due to 

polymer swelling and partial water-solubility, extrusion/spheronisation was not possible 

with pure water as granulation liquid. Pectinic acid is a water insoluble pectin derivative 

with a degree of methoxylation of less than 10 and it has been reported by the same 

authors as suitable alternative to MCC in extrusion/spheronisation (Tho et al. 2002, 2003). 

Compared to MCC-based formulations, using pectinic acid as the main excipient required 

less water, but the optimal water content range was narrower. Furthermore, in order to 
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obtain pellets with acceptable sphericity, a double-jacket heated (45°C) spheroniser was 

utilized. The manufactured pellets were larger compared to pellets containing MCC and 

had a slightly lower mechanical strength. Three drugs (riboflavin, paracetamol and 

theophylline) with differing solubility in water and at different concentrations were used as 

model drugs. In contrast to MCC, pectinic acid was more sensitive to drug load. 

Nevertheless, it was possible to successfully extrude and spheronise formulations 

containing up to 80% of paracetamol. In addition, due to disintegration of pellets 

containing pectinic acid as the main excipient, drug release was faster compared to MCC-

based pellets. 
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2.6 Enzyme resistant starch - type III  (UNI-PURE® EX starch) 

 

According to EURESTA (European Flair Concerted Action on Resistant Starch), resistant 

starch is defined as the total amount of starch and products of starch degradation which 

are not absorbed in the small intestine of healthy individuals. In other words, it is the 

starch fraction which is not digested by body enzymes. However, these starches pass into 

the colon where they are fermented by the colonic microflora, releasing short-chain fatty 

acids (acetate, propionate, butyrate) and gases (CO2, CH4 and H2) (Eerlingen and 

Delcour, 1995; Shi and Jeffcoat, 2001). 

 

Resistant starches (RS) are divided into four categories or types (Englyst et al., 1992): 

• RS1 (type I) represents starch which is physical inaccessible to digestion, due to its 

entrapment in a plant cell. This type of RS can be found in legumes and foodstuffs which 

contain partly milled seeds and grains.   

• RS2 (type II) is a native starch which is resistant to digestion due to its compact and 

dense structure. It is also called granular or ungelatinised starch. 

• RS3 (type III) or retrograded starch is the indigestible starch fraction mainly consisting 

of retrograded amylose which is formed during cooling of gelatinised starch.  

• RS4 (type IV) are starches obtained after chemical treatment, where the formation of 

glycosidic bonds other than (1→4)α and (1→6)α provides resistance to digestion. 

 

UNI-PURE® EX starch is a resistant starch type III. Prior to description of its structure, 

properties and method of preparation (Section 2.6.2), the structure of native starch will be 

shortly presented (Section 2.6.1). 

 

 

2.6.1 Starch structure 

 

Next to cellulose and chitin, starch is the most frequently occurring carbohydrate in nature 

(Tharanathan, 2005). It is the major reserve polysaccharide in plants: it is stored in the 

chloroplast of green leaves and the amyloplast of seeds, pulses and tubers (Ellis et al., 

1998).  

 

Starch is a polysaccharide, composed of two types of alpha-glucan: amylose and 

amylopectin. The amylose/amylopectin ratio depends on the botanical origin of starch: 

most naturally occurring starches have between 20 and 35% of amylose, while “waxy” and 

“high-amylose” starches have less than 15 and more than 40 % of amylose, respectively 



Chapter 2 

 

 40 

(Tester et al., 2004).  

 

Amylose is a long, mostly linear polymer, containing α-D-glucose units linked together 

with α(1→4)-D-glycosidic bonds (Fig. 2.1). Although most of the amylose polymer is 

linear, a small fraction was reported to be slightly branched (Parker and Ring, 2001). 

Amylose has a degree of polymerisation (DP) in the range from 500 to 5000 of glucose 

units (Hizukuri et al., 1981).  

 

 

 

 

Figure 2.1     Structure of amylose. 

 

 

 
 

Figure 2.2     Structure of amylopectin (adapted from Jacobs, 1998). 
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Amylopectin is a highly branched polymer, containing about 95 % of α(1→4)-D bonds 

and about 5% of branching α(1→6)-D bonds (Tester et al., 2004). Compared to amylose, 

it is a larger molecule, with a degree of polymerisation between 3.105 and 3.106 (Zobel, 

1988). The cluster model is often used to describe the amylopectin structure (Fig. 2.2). 

According to this model, several types of chains can be distinguished within the 

amylopectin structure, based on their length and position in the granule structure (Tester 

et al., 2004). α-D-glucose units, linked with α(1→4)-D bonds, form short amylopectin 

chains (A-chains) which are linked to the rest of the structure via α(1→6)-D bonds. Longer 

chains (B-chains) contain short A-chains and are connected to the other B-chains or the 

C-chain which contains the non-reducing end. Depending on the position in the cluster, B-

chains have different numbers (from B1 to B4) (Hizukuri, 1986). 

 

Macroscopically, amylose and amylopectin are organised in water-insoluble starch 

granules. The shape and size of the granules depend on the botanical origin of starch. In 

polarised light, starch granules show a dark birefringence cross, typical for crystalline 

materials whose index of refraction depends on the direction of the ray light (Tester et al., 

2004). Based on X-ray diffraction experiments, the semicrystalline character of starch 

granules has been revealed. About 15 to 45 % of starch granule is regarded as crystalline, 

while the remaining part is amorphous (Zobel, 1988).  

 

Exterior chains of amylopectin (A and B1 type) as well as amylose chains can form double 

helices which may be organised into crystalline domains. However, the crystallinity of the 

starch granule is mainly attributed to amylopectin, while amylose forms double helices 

organised into crystalline structures during the process of starch retrogradation, which 

follows the gelatinisation process (Tester et al., 2004). 

 

Based on the diffraction pattern of different starches, starches generate three types of 

polymorphs, which are related to the botanical source of the starch: A-, B- and C-type. 

The last one, C-type is a combination of A- and B- type (Tester et al., 2004). Figure 2.3 

presents two polymorphic forms of starch. The double helical structures are identical for 

both starch types. What distinguishes them is the packing of double helices: the A-type 

crystalline structure is more compact, with a lower water content, while the B-type 

crystalline structure is more open and contains a hydrated helical core (Tester et al., 

2004).  
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Figure 2.3     A- and B-type crystalline structure of starch (adapted from Wu and Sarko, 1978). 

 

 

 

2.6.2 UNI-PURE®  EX starch 

 

UNI-PURE® EX starch is a resistant starch type III and represents a retrograded starch. 

Prior to retrogradation, a starch granule is gelatinised. These two processes will be briefly 

described. 

 

 

2.6.2.1 Starch gelat inisat ion 

 

During the starch gelatinisation process using excess of water (>90 %, w/w) and heat, the 

starch granule is gradually hydrated and irreversibly disrupted. The temperature of 

gelatinisation depends on the starch source and amylose content, and typically ranges 

from 40 to 120°C (Haralampu, 2000; Parker and Ring, 2001). At the beginning of the 

gelatinisation process, starch granules loose their crystalline structure, water is absorbed 

and the granules swell. As heating continues, granule swelling is followed by leaching of 

amylose molecules into the solution, the granule is disrupted and partial solubilisation is 

achieved. If the starch concentration was higher than 6 %, a paste is obtained (Eerlingen 

and Delcour, 1995). 
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2.6.2.2 Starch retrogradat ion 

 

The retrogradation process occurs upon cooling of a starch dispersion or paste obtained 

during gelatinisation. During retrogradation, starch molecules re-associate and form 

double helical structures which are stabilised by hydrogen bonds (Wu and Sarko, 1978). 

 

Depending on the amylose concentration, amylose aggregates or gels are formed. 

Amylose aggregates (amylose concentration is less than 1.5 %) consist of crystalline 

double helices interspersed in amorphous regions. From more concentrated dispersions, 

amylose gels are formed: initially a continuous network of polymer-rich phase is formed, 

followed by double helices formation and after a few hours aggregation into three-

dimensional crystalline structure (B-type) (stabilised by hydrogen bonds) is completed 

(Figure 2.4). Amylose gels are very stabile and show a melting endotherm around 150°C 

(Eerlingen and Delcour, 1995).  

 

 

 

 

 

 

Figure 2.4     Schematic representation of amylose retrogradation (Haralampu, 2000). 

 

 

In contrast to amylose, amylopectin retrogradation is a slow process and occurs over a 

period of several days or weeks. Amylopectin gels are formed from solutions with 

concentrations above 10 %. Since amylopectin molecules associate by crystallization of 

short chains, their stability is lower compared to amylose gels (melting endotherm around 

60°C) (Eerlingen and Delcour, 1995). 

 

 

 

 

Random coil      Junction zones -        Crystallites  
     Double helices 
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2.6.2.3 Structure and formation of  resistant starch type II I  

 

Resistant starch type III is formed by retrogradation of amylose. Two models (Figure 2.5) 

were proposed for the formation of resistant starch from aqueous amylose solutions. In 

the micellar model, double helices are ordered into a crystalline structure which is 

interspersed with amorphous regions. In the lamella model, lamellar structures are formed 

by folding of the polymer chains. The folded zones are amorphous, while the center of the 

lamella is crystalline (Eerlingen and Delcour, 1995). 

 

                    
                    

 

Figure 2.5      Schematic representation of enzyme resistant starch type III formed in aqueous amylose 

solutions: a. Micellar model and b. Lamellar model (C-crystalline and A-amorphous regions) 

(Eerlingen and Delcour, 1995). 

 

 

UNI-PURE® EX starch is produced according to the process described by Chiu et al. 

(1994). The starting material is high amylose starch. The starch slurry is gelatinised and 

further treated with a debranching enzyme in order to remove the amylopectin fraction. 

After amylose retrogradation, the final product is isolated by drying or extrusion.  

 

When viewed under polarized light, UNI-PURE® EX starch powder does not show 

birefringence, since the granular structure was destroyed during gelatinization process. 

However, UNI-PURE® EX starch powder shows the X-ray diffraction patterns typical for B-

type starch crystallinity, since a crystalline structure was formed during process of 

retrogradation. 

a. b. 
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3.1 Introduction  

 

As reviewed in the previous chapter (Section 2.5), several excipients were reported as 

potential alternatives to MCC for production of pellets via extrusion/spheronisation. 

Although some of them showed superiority in immediate release of drugs with poor water 

solubility, none of them reached the universality of MCC in terms of formulation and 

processing robustness.  

 

It has also been shown that addition of other excipients (binders, fillers, release modifiers, 

etc.) or using different types and concentrations of granulation liquid can influence pellet 

properties like process yield, size and size distribution, shape, friability, porosity, 

disintegration properties and drug release profile. Those properties are additionally 

influenced by a number of extrusion/spheronisation process variables (Fig. 1.1). 

Consequently, a large number of experiments would be required to fully investigate the 

influence of formulation and process parameters on pellet quality. The design of 

experiments methodology is often used in extrusion/spheronisation, which offers the 

possibility to obtain maximum information on the tested system while using a minimal 

number of experiments. In general, full (Malinowski and Smith, 1975; Pinto et al., 1982; 
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Chariot et al., 1987; Lindner and Kleinebudde, 1994) and half-fractional (Neau et al., 

2000; Agrawal et al., 2004; Howard et al., 2006) two-level factorial designs were used to 

identify significant variables (factors). The central point, which relates to non-linearity of 

the response, was usually included to test the curvature significance. Surface response 

designs like central composite (Hileman et al., 1997) and Box-Behnken (Hileman et al., 

1993; Liew et al., 2005) designs were used when the responses are non-linear and/or 

when formulation and process optimisation was needed. While above mentioned designs 

were used to evaluate the influence of both process and formulation variables, mixture 

designs (Baert et al., 1992; Schröder and Kleinebudde, 1995b; Vervaet and Remon, 

1996) were used to evaluate the influence of only formulation variables on pellet 

properties.  

 

In this study, the results of preliminary experiments are presented in Section 3.4.1: firstly, 

the influence of formulation and process variables on pellet yield and sphericity was 

investigated and secondly, the acceptable ranges of variables were determined. In 

Section 3.4.4, the most important variables were used in the experimental design for 

formulation and process optimisation. Furthermore, the results of wet mass consistency 

measurements using mixer torque rheometer and their relation to pellet yield was 

described in Section 3.4.2, while the solid state NMR measurements (Section 3.4.3) 

explored the molecular miscibility and intermolecular interactions at nano-scale for the 

tested formulations.  
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3.2 Materials 

 

Anhydrous theophylline (25%, w/w, dry mass) was used as a model drug in this part of the 

study. Physicochemical properties of anhydrous theophylline are presented in Table 3.1, 

while Table 3.2 lists the excipients used during preliminary experiments and in the 

experimental design.  

 

 
 

Table 3.1       Physicochemical properties of anhydrous theophylline (Martindale, 2005). 

 

Properties  Structural formula 

Name:                     Anhydrous theophylline 

Chemical name:   
 
     

3,7-dihydro- 1,3-
dimethylpurine - 2,6(1H)-
dione 

Producer:     
            

Roig Farma (Terrassa, 
Spain) 

Solubility in water:   8.3 g/L at 25°C 

pKa: 0.3; 8.6 
 

 
 
 
 

                     

                    

 

 
 

Table 3.2       Excipients used during preliminary studies and in the experimental design. 

 

Excipient name 
Trade name and excipient 
type 

Producer 

Modified (resistant) starch 
 

* UNI-PURE
®
EX starch 

 
National Starch and Chemical Co., 
Bridgewater, New Jersey, USA 

Hydroxypropylmethylcellulose  * Methocel
®
 E15 LV EP Pharm Colorcon, Dartford, UK 

 Methocel
®
 K4M EP Pharm  

Methylcellulose Methocel 
®
 A4M EP Pharm Colorcon, Dartford, UK 

Hydroxypropylcellulose  Klucel
® 

GF Pharm Aqualon, USA 

 Klucel
® 

MF Pharm  

Polyvinylpyrrolidone Kollidon
®
 30 BASF, Ludwigshafen Germany 

Drum dried waxy maize 
starch 
 

National
®
 5730 

 
National Starch and Chemical Co, 
Bridgewater, New Jersey, USA 

Sorbitol * Sorbidex
®
 P 16616 Cerestar, Vilvoorde, Belgium 

Erythritol Eridex
®
 16955 Cerestar, Vilvoorde, Belgium 

Mannitol Mannidex
®
 16700 Cerestar, Vilvoorde, Belgium 

Microcrystalline cellulose  Avicel
®
 PH 101 FMC, Cork, Ireland 

Demineralised water was used as granulation liquid. 

* Excipients used in the experimental design. 
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3.3 Methods 

 

3.3.1 Pellets production 

 

The model drug and excipients were mixed (batch size: 250 g) for 15 min in a Turbula® 

mixer (model T2A, W.A. Bachofen, Basel, Switzerland) to obtain a uniform powder 

mixture. The mixture was further granulated with demineralised water for 10 min at 60 rpm 

by means of a planetary mixer (Kenwood Chief, Hampshire, UK) with a K-shaped mixing 

arm. Water was added during the first 30 seconds of the wet massing phase. To ensure 

uniform water distribution during wet massing, the material adhering to the mixing bowl 

was regularly removed. The wet mass was extruded at pre-selected extrusion speed 

using a single screw extruder (Dome extruder lab model DG-L1, Fuji Paudal, Tokyo, 

Japan) equipped with a dome-shaped extrusion screen (thickness: 1.2 mm, perforation 

diameter: 1mm). The extrudates were spheronised for a specified time in a spheroniser 

having a friction plate with cross-hatched geometry (Caleva Model 15, Caleva, 

Sturminster Newton, Dorset, UK). To evaluate the effect of densification during extrusion, 

the extrudates were passed through the extruder for a second time prior to spheronisation 

(re-extrusion). Wet pellets were finally dried for 20 min at 60°C in a fluid-bed drier 

(Uniglatt, Glatt, Binzen, Germany). 

 

 

3.3.2 Wet mass characterisation using mixer torque rheometer 

 

A mixer torque rheometer (MTR) consists of a mixing bowl, which is equipped with two 

contra-rotating mixing blades. The mixing bowl is connected to a torque arm which 

presses a load cell during rotation of the mixing blades, thus generating a torque value. 

Torque can be described as the effectiveness of a force to produce rotation. It can be 

expressed by following equation (Eq.3.1): 

  

 M=F*r          (3.1) 

 

where M [Nm] is the torque, F [N] is the force applied and M [m] is the distance from the 

center of rotation to the force applied. The torque is generated in response to the 

movement of the wet powder mass mixed by the blades in the bowl. In general, the torque 

is a measure of the resistance of the material to the rotation of the mixing blades and is 

useful in comparative analysis of the consistency of wet massed material (Martin, 2003). 

 



Influence of formulation and process variables on the quality of starch-based pellets prepared via extrusion/spheronisation 

 61 

A mixer torque rheometer (Model MTR2, Caleva, Sturminster Newton, Dorset, UK) at a 

mixer speed of 50 rpm was used to measure the consistency of wet mass, extrudates and 

re-extruded material (35 g) as described by Parker et al. (1990) and Rowe et al. (1994). 

Prior to sample evaluation, an empty mixing bowl was run for 20 s in order to obtain the 

base-line torque. After addition of the wet mass (granulate, extruded or re-extruded 

material), followed by premixing for 45 s, the data were acquired during 15 s. Each 

sample was analysed in triplicate.  

 

 

3.3.3 Experimental design and data analysis 

 

To elucidate the influence of HPMC and sorbitol on the quality of starch-based pellets, an 

experimental design was set up which included binder and sorbitol concentration in 

combination with spheronisation speed and water as variables. The water level was 

determined based on preliminary tests and corresponded to the level resulting in the 

highest yield. In order to evaluate non-linear responses, a Box-Behnken response surface 

design was used. The influence of three formulation (binder, sorbitol and water level) and 

one process variables (spheronisation speed) was tested at three levels (Table 3.3). The 

total number of experiments was 29 and included 5 replicates of the central point to 

estimate the significance of lack-of-fit tests. Experiments were performed in randomised 

order. The other process parameters remained constant, with an extrusion speed of 50 

rpm and a spheronisation time of 3 min.  

 

 
 

Table 3.3         Definition of the factors used in the experimental design. 

 

Factor Low level (-1) Medium level (0) High level (+1) 

A:  HPMC conc. (% w/w, dry mass) 3 4.5 6 

B:  Sorbitol conc. (% w/w, dry mass) 0 11.25 22.5 

C:  Spheronisation speed (rpm)
 

650 850 1050 

D:  Water level
a
 -1 0 +1 

a 
Water level is shown in coded terms as it depends on the sorbitol level.  

 

 

 

 

 

 
 

 



Chapter 3 

 62 

 

 

 

 

 

Table 3.4       Box-Behnken design for 4 variables (A: HPMC conc., %; B: sorbitol conc., %; C: spheronisation 

speed, rpm; D: water conc., %) at 3 levels and 5 replicates of the central point, presented in 

coded and actual terms (randomised order). 

 

Coded values  Actual values 

R
u

n
 

 

A B C D  A  B  C  D 
 

1  -1 0 0 -1  3 11.25 850 35.76 

2  0 0 1 -1  4.5 11.25 1050 35.76 

3  -1 0 0 1  3 11.25 850 38.76 

4  0 0 0 0  4.5 11.25 850 37.26 

5  0 0 0 0  4.5 11.25 850 37.26 

6  0 -1 -1 0  4.5 0 650 44.47 

7  -1 0 1 0  3 11.25 1050 37.26 

8  -1 0 -1 0  3 11.25 650 37.26 

9  1 0 0 1  6 11.25 850 38.76 

10  -1 -1 0 0  3 0 850 44.47 

11  0 0 -1 -1  4.5 11.25 650 35.76 

12  -1 0.78 0 0  3 20 850 33.31 

13  0 0.78 -1 0  4.5 20 650 33.31 

14  1 0 -1 0  6 11.25 650 37.26 

15  0 0.78 1 0  4.5 20 1050 33.31 

16  1 0.78 0 0  6 20 850 33.31 

17  0 -1 0 1  4.5 0 850 45.97 

18  0 0 0 0  4.5 11.25 850 37.26 

19  0 0 0 0  4.5 11.25 850 37.26 

20  0 0 -1 1  4.5 11.25 650 38.76 

21  0 0.78 0 -1  4.5 20 850 31.81 

22  0 -1 0 -1  4.5 0 850 42.97 

23  0 0 0 0  4.5 11.25 850 37.26 

24  1 0 0 -1  6 11.25 850 35.76 

25  1 -1 0 0  6 0 850 44.47 

26  0 0 1 1  4.5 11.25 1050 38.76 

27  0 -1 1 0  4.5 0 1050 44.47 

28  1 0 1 0  6 11.25 1050 37.26 

29  0 0.78 0 1  4.5 20 850 34.81 

 

 

The selection of variables and their ranges was based on the results of preliminary 

experiments.  Water levels are displayed in coded values because the optimal water level 

depended on the sorbitol concentration. At different sorbitol levels (0, 7.5, 15 and 22.5 % 

w/w, dry mass) the optimal water level was determined and plotted against the 

corresponding sorbitol level. Based on a quadratic function (Eq. 3.2) the optimal water 

concentration (W, % w/w, wet mass) at the sorbitol level (S, w/w, dry mass) of interest 

was calculated and set as the medium water level (0). The water concentration varied by 

±1.5% to obtain the low (-1) and high (+1) water levels in the experimental design.  
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W(%)=0.129*S²-0.7865*S+44.471 (R²=0.9997)             (3.2)  

 

Initially the highest sorbitol level was set at 22.5% (w/w, dry mass). However, the pellet 

yield of these formulations was too low (<5%) due to a large fraction of fines. Therefore, 

the sorbitol concentration was reduced to 20% (0.78 as coded value) in order to obtain a 

better prediction model for process optimisation. All experiments with the coded and 

actual values of the variables are listed in Table 3.4. 

 

The results were analysed using Design-Expert®, v.6.0.6. (Stat-Ease, Minneapolis, USA). 

Pellet yield, sphericity (aspect ratio and shape factor) and size were determined for each 

batch of the experimental design and those values were used as responses for modelling 

and process optimisation. Analysis of variance (ANOVA) with P<0.05 was performed for 

each response. 

 

 

3.3.4 Pellet characterisation 

 

3.3.4.1 Pel let yield 

 

Pellets (100g) were sieved for 10 min at an amplitude of 3 mm on a shaker (Type VE 

1000, Retsch, Haan, Germany) using 1400, 1000, 710, 500 and 250 µm sieves (Retsch, 

Haan, Germany). The pellet yield was calculated based on the pellet fraction between 710 

and 1400 µm and presented as a percentage of the total pellet weight. This size fraction 

was used for all further measurements. 

 

 

3.3.4.2 Pel let size 

 

Pellet size was determined using an image analysis system. Photomicrographs of pellets 

were taken with a digital camera (Camedia® C-3030 Zoom, Olympus, Tokyo, Japan), 

linked with a stereomicroscope system (SZX9 DF PL 1.5x, Olympus, Tokyo, Japan). A 

cold light source (Highlight 2100, Olympus, Germany) and a ring light guide (LG-R66, 

Olympus, Germany) were used to obtain top light illumination of the pellets against a dark 

surface. The images were analysed by image analysis software (AnalySIS®, Soft Imaging 

System, Münster, Germany). The magnification was set in a way that one pixel 

corresponded to 5.7 µm and around 300 pellets were analysed from every batch. Each 

individual pellet was characterised by mean Feret diameter (FD) (average of 180 calliper 
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measurements with an angle of rotation of 1°). An average value for all pellets has been 

calculated as the mean pellet size (mean FD). 

 

 

3.3.4.3 Pel let spher ic ity 

 

Pellet shape was also determined using an image analysis system as described in the 

previous paragraph. Next to the mean FD, each individual pellet was characterised by 

aspect ratio (AR) (ratio of the longest Feret diameter and its longest perpendicular 

diameter) and two-dimensional shape factor (eR), as described by Podczeck and Newton 

(1994) (Eq. 3.3): 

 

 

           (3.3) 

 

 

where r is the pellet radius, Pm is the perimeter, l is the pellet length (longest Feret 

diameter) and b is the pellet width (longest diameter perpendicular to the longest Feret 

diameter). 

 

 

3.3.4.4 Friabi l i ty 

 

A sample of pellets (FS, 10g) was placed in an abrasion wheel together with 200 glass 

beads (diameter: 4mm) and fitted to a friabilator (Type PTF, Pharma Test, Hainburg, 

Germany). The sample was subjected to falling shocks for 10 min at a rotational speed of 

25 rpm. Afterwards the fines were removed by sieving through a 250 µm mesh for 5 min 

(2 mm amplitude). The fraction above 250 µm (FA) was used to calculate the friability of 

pellets according to Eq. 3.4: 

 

Friabi l i ty(%) = [(FS  – FA)/FS ]*100      (3.4) 
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3.3.4.5 Scanning electron microscopy 

 

Scanning electron microscopy (SEM) was used to visualise the pellet surface morphology. 

Pellets were coated with platinum by means of a sputter coater (Auto Fine Coater, JFC-

1300, Jeol, Tokyo, Japan) to assure conductivity. Photomicrographs were taken with a 

scanning electron microscope (Jeol JSM 5600 LV, Jeol, Tokyo, Japan).  

 

 

3.3.4.6 Disintegrat ion 

 

The pellet disintegration time was measured in a disintegrator (Type PTZ, Pharma Test, 

Hainburg, Germany) using a method modified from the Eur. Ph. 4th ed. monograph for 

tablet disintegration: a 500 µm mesh cloth was placed at the bottom of the tubes. Discs 

were used to increase the mechanical stress on the pellets. Water was used as 

disintegration medium and the sample amount was 100 mg. Results are presented as the 

average of 6 determinations.   

 

 

3.3.4.7 Dissolut ion tests 

 

The dissolution tests were performed according to the USP basket apparatus (VK 8000, 

VanKel, New Jersey, USA) at a rotational speed of 50 rpm and at a temperature of 37°C. 

Demineralised water (900 mL) was used as dissolution medium and the sample amount 

used for analysis (~300 mg) was adjusted to obtain sink conditions. Samples of 5 mL were 

withdrawn from the dissolution vessel at 5, 10, 15, 20, 30, 45 and 60 min. The samples 

were spectrophotometrically analysed at 272 nm by means of a double-beam 

spectrophotometer (Perkin-Elmer UV/VIS λ12, Norwalk, CT, USA). Each batch was 

analysed in triplicate. 

 

 

3.3.4.8 X-ray dif f ract ion 

 

X-ray diffraction patterns of pure UNI-PURE®EX starch, anhydrous theophylline, sorbitol, 

HPMC, as well as of pellets containing anhydrous theophylline (25%), HPMC (4.5 % w/w) 

combined with sorbitol (0, 11.25 and 20% w/w, dry mass) were determined using an X-ray 

diffractometer (D-500, Siemens, Germany) with CuKλ radiation (0.154 nm). The angular 

range (2θ) varied from 10 to 60° with steps of 0.02° and the measuring time was 1s/step. 
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3.3.4.9 Sol id state NMR 

 

The solid-state 13C CP/MAS NMR spectra of pellets containing anhydrous theophylline 

(25%), HPMC (4.5 %), sorbitol (0, 7.5, 11.25 and 20 % w/w, dry mass) and UNI-PURE®EX 

starch were recorded at room temperature on an Inova 200 Varian spectrometer operating 

at a static magnetic field of 4.7 T. Magic angle spinning was performed at 5 kHz using 

ceramic Si3N4 rotors. The proton spin-lattice relaxation time (T1H) was measured via the 

chemical shift selective carbon nuclei by means of the inversion-recovery method. 

Because of the long T1H and TCH (time needed to build up the cross-polarisation) of 

anhydrous theophylline, two independent experiments were performed. A fast experiment 

was performed in order to determine the short T1H’s of UNI-PURE®EX starch and sorbitol 

by means of a fixed contact time CT of 1 ms and a variable evolution time between 0.05 

and 8 s. A longer experiment was set up to determine the extremely long T1H of anhydrous 

theophylline by means of a fixed contact time CT of 7.5 ms (a sufficient build up of 

theophylline magnetisation) and a variable evolution time between 0.05 and 240 s. The 

recycle time was always set to 5 times T1H and a spin-lock field of 50 kHz was used for 

cross-polarisation. The following equation (Eq. 3.5) was used for the T1H analysis of the 

integrated signals: 

 

M(t) = Mo(1-2 exp(-t /T1H))        (3.5) 

 

where t is the variable evolution time and Mo is the intensity of the resonance at 

equilibrium. The proton spin-lattice relaxation time in the rotating frame T1ρH was 

measured by means of the variable contact time method, in which the proton 

magnetisation is kept in spin lock before it is cross-polarised to the carbon nuclei: CT was 

varied between 0.5 and 12.5 ms and a short recycle time of 4 s was used to suppress the 

theophylline contribution. The integrated signals were analysed according to the equation 

(Eq. 3.6): 

 

M(CT) = Moexp(-CT/T1ρH)       (3.6) 
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3.4 Results and discussion 

 

3.4.1 Preliminary experiments 

 

3.4.1.1 Formulat ion var iables 

 

The goal of the preliminary experiments was to produce pellets with maximum yield and 

acceptable sphericity as visually observed. Pellets without model drug were produced in 

this part of the study. UNI-PURE®EX starch had a favourable extrusion/spheronisation 

behaviour: it could be extruded with minimal resistance (generating limited friction and 

heat), the extrudate fragmented evenly during spheronisation and the fragments could 

easily be spheronised. However, when using UNI-PURE®EX starch as the only powder 

component and water as granulation liquid, a large amount of fines was generated. 

Addition of a binder was therefore required to obtain pellets with an acceptable size 

distribution (Fig. 3.1). 

 

 

             

 
 

Figure 3.1      Photomicrographs of extruded and spheronised material containing UNI-PURE® EX starch 

granulated with water: a. formulation without a binder and b. formulation with a binder   

 

 

Several binders (Table 3.2) commonly used in wet granulation were tested as potential 

binders for UNI-PURE® EX: polyvinylpyrrolidone (PVP), drum dried waxy maize starch 

(DDWMS), hydroxypropylcellulose (HPC, two types with different viscosity grade), 

methylcellulose and hydroxypropylcellulose (HPMC, two viscosity grades). Using PVP and 

HPC was not beneficial, since the strength of the extruded material was reduced and the 

end product still contained too many fines. In contrast, HPMC, MC and DDWMS improved 

the binding efficiency of the extrudates, yielding sufficiently large pellets after 

spheronisation. However, MC (Methocel® A4M EP Pharm; 4000 mPas, 2% w/w sol. at 

 b.  a. 
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20°C) and HPMC of a higher viscosity grade (Methocel® K4M Pharm; 4000 mPas, 2% w/w 

sol. at 20°C) yielded sticky extrudates, which promoted pellet agglomeration during 

spheronisation. A low viscosity HPMC-grade (Methocel® E15 LV Pharm; 15 mPas, 2% 

w/w sol. at 20°C) was selected for further experiments, because it provided the best 

binding properties combined with minimal sticking of the extrudates during spheronisation. 

HPMC has already been used as a binder in pellet formulations containing chitosan as the 

main excipient (Agrawal et al., 2004). Chatlapalli et al. (1998a) even investigated the 

extrusion/spheronisation behaviour of formulations containing HMPC as the main 

excipient. 

 

Preliminary experiments also showed that polyols increased the mechanical strength of 

the extruded material. In addition, pellet surface properties were improved when polyols 

(erythritol, sorbitol and mannitol) were added to the formulation mixture. When comparing 

effects of different polyols, the addition of sorbitol improved the wet mass consistency and 

mechanical strength to the highest extent without reducing pellet sphericity. Moreover, this 

beneficial effect of sorbitol was concentration dependent, which will be explained in the 

following sections. 

 

 

3.4.1.2 Process variables 

 

Formulations containing anhydrous theophylline (25% w/w, dry mass) as model drug and 

HPMC (Methocel® E15 LV, 5% w/w, dry mass) as a binder were used to evaluate the 

influence of the following process variables: extrusion speed, spheronisation speed, 

spheronisation time and spheronisation load. Furthermore, each formulation was prepared 

without and with 10% (w/w, dry mass) sorbitol, at two water levels (low and high) and 

using UNI-PURE® EX starch as the main excipient. 

 

Extrusion was performed using extrusion speeds of 30, 50 and 70 rpm and the results 

showed that pellet yield (Fig. 3.2) and sphericity were not affected by extrusion speed. An 

extrusion speed of 50 rpm was selected for further experiments. As reviewed by Vervaet 

et al. (1995), the reports on the influence of extrusion speed on pellet properties were 

contradictory: while several authors reported about the influence of extrusion speed on 

pellet quality, others claimed that there was no influence.  
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Figure 3.2      Weight distributions (%) of pellets prepared with different water levels (a. formulations without 

sorbitol and b. formulations with sorbitol) and extrusion speed (30, 50 and 70 rpm). All 

formulations contained 4.5 % (w/w, dry mass) HPMC and 25% (w/w, dry mass) anhydrous 

theophylline. 

 

 

Using several spheronisation speeds during preliminary tests revealed its major influence 

on pellet yield and sphericity: using a lower spheronisation speed led to dumb-bell 

formation due to insufficient spheronisation, while a higher energy input by means of a 

higher spheronisation speed promoted formation of spherical pellets. However, in that 

case the pellet yield was lower due to excessive breaking of the extrudates. This process 

a. 

b. 
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variable was therefore selected for further evaluation and will be discussed in detail later 

in this chapter (Section 3.4.4). 

 

Preliminary experiments also showed that a short spheronisation time (around 3 minutes) 

was sufficient to produce pellets with maximum yield and acceptable sphericity. Using 

longer spheronisation times did not improve pellet sphericity, but promoted broadening of 

pellet size distribution and pellet agglomeration. The spheronisation speed was therefore 

fixed at 3 min in further experiments.  
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Figure 3.3      Weight distribution (%) of pellets prepared with and without sorbitol, with different water levels 

(low-L and high-H) and different spheronisation load (250 and 500 g). All formulations 

contained 25 % (w/w, dry mass) anhydrous theophylline and 5 % (w/w, dry mass) HPMC          

as a binder. 

 

 

Figure 3.3 shows the pellet weight distribution of formulations with different sorbitol and 

water levels. In addition, the influence of spheronisation load on pellet size distribution is 

presented. It can be observed that in case of a higher spheronisation load, the fraction of 

larger pellets increased. Consequently, pellet yield was either increased mainly due to a 

reduction of fines (fraction of pellets with size <710 µm) or reduced due to increase of 

agglomerated particles (pellets with size >1400 µm). Those results are in agreement with 

the findings of Hasznos et al. (1992), who reported an increase of mean pellet diameter 

and yield with an increase of spheronisation load. Barrau et al. (1993) reported an 

increase of agglomerates and a reduction of fines at higher spheronisation load, while the 
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yield fraction remained the same. This influence of spheronisation load was explained by 

a lower moisture loss via evaporation when employing a higher load during spheronisation 

(Hasznos et al., 1992; Hellén et al., 1994) which promoted an increase of mean pellet 

diameter and yield as explained in Section 2.2. It can be further observed from Fig. 3.3 

that introducing sorbitol in the formulation improved pellet yield.  

 

The results of the sphericity (aspect ratio) presented in Fig. 3.4, show a reduction of pellet 

sphericity (a higher aspect ratio) when using a higher spheronisation load. This might be 

due to pellet agglomeration in case of a higher spheronisation load, as can be observed in 

Fig. 3.3. Newton et al. (1995) studied the influence of spheronisation load on the 

sphericity of MCC-based pellets and concluded that a longer spheronisation time was 

needed to obtain spherical pellets in case of a higher spheronisation load. In our case, 

prolonged spheronisation was not possible since it would lead to excessive 

agglomeration. For the economy reasons, a spheronisation load of 250 g was used for 

further experiments, even though higher loads are used for commercial applications.  
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Figure 3.4      Aspect ratio of pellets prepared with and without sorbitol, with different water levels (low-L and 

high-H) and different spheronisation load (250 and 500 g). All formulations contained 25 % 

(w/w, dry mass) anhydrous theophylline and 5 % (w/w, dry mass) of HPMC as a binder. 
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3.4.2 Wet mass consistency in relation to pellet yield 

 

Mixer torque rheometry (MTR) has been widely used to determine the optimal water level 

in formulations intended for extrusion and spheronisation (Chatlapalli et al., 1998b).  
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Figure 3.5     Mean torque values (n=3) of wet mass after granulation, extrusion and re-extrusion as a 

function of sorbitol concentration and water level: a. formulations with 4.5 % and b. 6 % (w/w, 

dry mass) HPMC.  

 

 

a. 

 b. 
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The optimal water level has been related to the maximum mean torque value which 

corresponds to the capillary state of wet mass, when all the pores are filled with 

granulation liquid and the number of capillary bridges is the largest (Parker et al., 1990; 

Rowe and Parker, 1994). In addition, MTR was used to measure the wet mass 

consistency, where a higher mean torque value indicates a higher bonding strength of the 

wet mass.   

 

Since the preliminary experiments revealed that sorbitol and binder concentration affected 

the wet mass consistency, MTR was used to characterise the rheological properties of 

formulations containing varying amounts of sorbitol (0, 7.5, 15 and 22.5 % w/w, dry mass) 

and binder (4.5 and 6 % w/w, dry mass). In addition, each formulation was granulated with 

two water levels (low and high), both determined during preliminary tests as the levels 

closest to the optimal value for obtaining pellets with maximal yield and acceptable 

sphericity. All formulations contained 25% (w/w, dry mass) anhydrous theophylline. 

 

Figure 3.5 presents the mean torque values (average of three measurements) of wet 

masses after granulation, extrusion and re-extrusion as a function of sorbitol, water and 

binder concentration.  

 

When comparing the mean torque values for each phase of wet mass processing, it can 

be observed that the main densification of the wet mass occurred during extrusion. The 

mean torque values of wet granules containing UNIPURE® EX starch as the main 

excipient were lower (<0.1 Nm) compared to MCC-based wet granules (0.27-0.33 Nm, 

Parker et al., 1990). 

 

Furthermore, sorbitol concentration significantly influenced the consistency of the 

extruded material: the mean torque value was higher when increasing the sorbitol 

concentration. However, at the highest concentration (22.5 % w/w, dry mass) the mean 

torque dropped dramatically. This wet mass behaviour correlated well with the low pellet 

yield after extrusion and spheronisation of formulations containing the highest sorbitol 

level (Fig. 3.6). Since the mean torque measures the strength of the interactions which 

occur between the components of the wet mass, the extrudates from the formulations with 

the highest sorbitol level could not resist the friction forces during spheronisation and a 

high amount of fines was formed.  

 

 



Chapter 3 

 74 

HPMC: 4.5 %

Water: LOW

0

20

40

60

80

100

0 7.5 15 22.5 0 7.5 15 22.5

Extrusion Re-extrusion

FORMULATION: Sorbitol conc. (%) 

W
e

ig
h

t 
fr

a
c

ti
o

n
 (

%
)

< 710 µm

710-1400 µm

>1400 µm

 

 

HPMC: 4.5 %

Water: HIGH

0

20

40

60

80

100

0 7.5 15 22.5 0 7.5 15 22.5

Extrusion Re-extrusion

FORMULATION: Sorbitol conc. (%) 

W
e

ig
h

t 
fr

a
c

ti
o

n
 (

%
)

< 710 µm

710-1400 µm

>1400 µm

  

 

 

Figure 3.6     Weight distributions (%) of pellets prepared with different sorbitol and water levels (a. low and b. 

high), produced after spheronisation of extruded and re-extruded wet mass. All formulations 

contained 4.5 % (w/w, dry mass) HPMC and 25% (w/w, dry mass) anhydrous theophylline. 

 

 

For the formulations with a low binder and water level, the consistency of extruded 

material increased with an increase of sorbitol level up to 15 % (Fig. 3.5a). A higher 

mechanical strength of extrudates correlated well with an increase of pellet yield after 

spheronisation due to reduction of the fines fraction (Fig. 3.6a). Furthermore, additional 

densification of the wet mass via re-extrusion affected the wet mass rheology since the 

mean torque of re-extruded material was higher compared to product extruded only once. 

Consequently, the yield of pellets after spheronisation of re-extruded material was higher, 

due to a further reduction of fines. The influence of re-extrusion could be explained by the 

liquid saturation (Kristensen et al. 1987): since the degree of filling of intragranular voids 

(liquid saturation) depends on the granulation liquid and intragranular porosity, additional 

 a. 

b. 
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densification via re-extrusion reduced the intragranular porosity and therefore increased 

the liquid saturation and binding capacity. In addition, re-extrusion probably assured a 

better distribution of water through the wet mass and a smoother extrudate surface was 

obtained (Fig. 3.7). Consequently, the fragmentation of the extrudates at the beginning of 

the spheronisation was uniform and resulted in a reduction of fines and a higher yield.  

 

 

                     

 
 

Figure 3.7      Photomicrographs of extrudates (4.5 % HPMC, low water level, without sorbitol):   

 a. after extrusion and b. after re-extrusion 

 

 

Using a higher water level in the formulations (Fig. 3.5a and 3.6b) only slightly increased 

the consistency of extruded material and pellet yield remained similar to formulations with 

lower water content, mainly due to an increase of agglomerates. As expected, the 

consistency of re-extruded material was higher compared to the extrudates, but lower 

compared to re-extruded material granulated with less water. This can be explained by an 

increase of liquid saturation when a formulation having a higher moisture level is densified 

during re-extrusion. If the liquid saturation corresponding to the capillary state is 

exceeded, pellet agglomeration occurs.   

 

In formulations with a higher binder concentration and a lower water level (Fig. 3.5b and 

3.8a), the consistency of extruded mass was increased and pellet yield was consequently 

higher. However, when adding a higher water level the wet mass consistency dropped 

due to exceeding the optimal liquid saturation. This correlated well with a lower pellet yield 

due to agglomeration (Fig. 3.8b). This effect of water level was even more pronounced in 

case of re-extruded material.  

 

 

 

 

 a.  b. 



Chapter 3 

 76 

 

HPMC: 6 %

Water: LOW

0

20

40

60

80

100

0 7.5 15 22.5 0 7.5 15 22.5

Extrusion Re-extrusion

FORMULATION: Sorbitol conc. (%) 

W
e

ig
h

t 
fr

a
c

ti
o

n
 (

%
)

< 710 µm

710-1400 µm

>1400 µm

 

 

 

HPMC: 6 %

Water: HIGH

0

20

40

60

80

100

0 7.5 15 22.5 0 7.5 15 22.5

Extrusion Re-extrusion

FORMULATION: Sorbitol conc. (%) 

W
e

ig
h

t 
fr

a
c

ti
o

n
 (

%
)

< 710 µm

710-1400 µm

>1400 µm

 
 

 

Figure 3.8     Weight distributions (%) of pellets prepared with different sorbitol and water levels (a. low and b. 

high), produced after spheronisation of extruded and re-extruded wet mass. All formulations 

contained 6 % (w/w, dry mass) HPMC and 25% (w/w, dry mass) anhydrous theophylline. 
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 b. 
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3.4.3 Solid state NMR  

 

Since MTR measurements revealed the importance of sorbitol to obtain the optimal wet 

mass consistency for successful extrusion/spheronisation, solid state NMR spectroscopy 

and relaxometry was used to study the molecular miscibility at nano-scale and the 

intermolecular interactions in UNI-PURE®EX starch-based formulations.  

 

Information about the level of mixture heterogeneity can be obtained from the proton 

relaxation decay times T1H and T1ρH. The intrinsic relaxation decay times of the pure 

components will be averaged out towards a single decay time if homogeneous mixing is 

achieved or if the dimensions of existing molecular domains are smaller than the 

maximum path length over which proton-proton spin diffusion can occur. Table 3.5 

presents the T1H values of pure components and blends with variable sorbitol content. 

Note that for the mixtures the decay times of the resonances 2, 3 and 4 were determined 

by using a relative short cross-polarisation contact time (1 ms) and recycling delay (5 s). 

In this way, the contribution of theophylline to resonance 2 was completely suppressed. In 

all blends, regardless the sorbitol content, sorbitol and UNI-PURE®EX starch were mixed 

homogeneously on the T1H scale, since a single decay time is observed for the 

corresponding resonances 2, 3 and 4. Both components clearly relaxed very efficiently via 

the short T1H of UNI-PURE®EX starch. It was remarkable that this T1H value goes through 

a maximum for a blend containing 11.25 % sorbitol. In contrast, theophylline remained 

phase separated and the extremely long T1H relaxation time of about 50 s indicated the 

preservation of the crystalline state in the blends. 

 

Table 3.5 also presents the T1ρH decay times of pure components and of mixtures with 

variable sorbitol content. The T1ρH relaxation of pure sorbitol behaved bi-exponentially with 

both a short and very long decay time. This pointed to a (semi) crystalline state which 

could also explain the rather long T1H decay time. In the processed blends sorbitol 

became amorphous with only a short T1ρH decay time. Additionally, sorbitol in the mixtures 

also relaxed via the efficient pathway of UNI-PURE®EX starch, which indicated that they 

are homogeneously mixed on the nm-level. Furthermore, the relaxation occurred more 

efficiently at higher sorbitol concentration. The T1ρH decay time of theophylline is so 

extremely long that it could not be determined experimentally, confirming the crystalline 

state of theophylline in the blends.  
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Table 3.5       T1H and T1ρH decay times of the pure components and of blends with variable sorbitol 

concentration as measured by 
13

C solid-state NMR. Resonances 1 and 5 originate from 

theophylline, 2 from theophylline and UNI-PURE
®
EX starch, 3 and 4 from UNI-PURE

®
EX starch 

and sorbitol. The extremely long T1ρH of theophylline can not be determined experimentally (ND: 

not determined). 

 
 

Resonance  Resonance 
 

1 2 3 4 5  1 2 3 4 5  
 

T1H (s)  T1ρH (ms) 

UNI-PURE
®
EX starch   0.76 0.75 0.70    4.6 3.9 4.2  

Sorbitol    10.5 10.5     
11 (21%) 
172(79%) 

11 (21%) 
172(79%) 

 

Theophylline  51.2 45.2   54.0  ND ND   ND 

0 % sorbitol  50.0 0.61 0.61 0.62 51.0  ND 4.5 4.6 5.0 ND 

7.5 % sorbitol  48.4 0.68 0.67 0.65 49.6  ND 2.6 2.4 2.5 ND 

11.25 % sorbitol  52.2 0.76 0.74 0.72 46.3  ND 2.8 2.4 2.3 ND 

20 % sorbitol  48.3 0.67 0.66 0.65 50.7  ND 1.9 1.8 2.1 ND 

 

 

As a conclusion, it was demonstrated that the T1H relaxation time increased with the 

amount of sorbitol, reaching a maximum for a blend containing 11.25 % sorbitol. The 

relaxation is completely determined by UNI-PURE®EX starch. Adding sorbitol to the 

formulation reduced the molecular mobility of starch with an increase of T1H. However, in 

blends with higher sorbitol concentration (20%), sorbitol acted as a plasticiser, providing 

increased starch mobility and reducing the T1H value. Above mentioned observations are 

in good agreement with MTR measurements: at lower sorbitol levels the mean torque 

increased due to strong starch-sorbitol interactions and a lower molecular mobility, 

whereas at the highest sorbitol level (20%, w/w) the mean torque decreased due to the 

plasticising effect of the higher molecular mobility. Gaudin et al. (1999) already described 

the plasticising and anti-plasticising effect of sorbitol on starch as a function of sorbitol 

concentration: at low sorbitol levels brittle starch-sorbitol films were formed, whereas the 

mechanical strength of these films increased at sorbitol concentrations above 21%. These 

interactions between starch and sorbitol were also confirmed by NMR, showing that at low 

sorbitol levels the molecular mobility was lower due to strong hydrogen bonding between 

sorbitol and starch molecules. When exceeding a critical sorbitol concentration, other 

interactions were identified, namely starch-sorbitol-sorbitol interactions. This clustering of 

sorbitol molecules was associated with higher system mobility and therefore sorbitol 

exhibited a plasticising effect.  
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3.4.4 Development and optimisation of starch-based pellets 
containing anhydrous theophylline as model drug 

 

3.4.4.1 Pel let yield 

 

Table 3.6 lists the actual values of pellet yield (fraction of pellet size between 710 and 

1400 µm), fines (fraction of pellet size <710 µm), pellet sphericity (aspect ratio, AR and 

two-dimensional shape factor, eR) and size (mean Feret diameter), while Table 3.7 

presents the results of the ANOVA analysis of the responses modelled in the experimental 

design. 

 
 

Table 3.6       Results of pellet yield, fines, aspect ratio (AR), two-dimensional shape factor (eR) and Feret 

diameter (FD).  

 

Coded values  Results 

R
u

n
 

 

A B C D  Yield (%) Fines (%) AR eR FD (µm) 

1  -1 0 0 -1  83.6 16.3 1.17 0.51 1013 

2  0 0 1 -1  73.4 26.5 1.14 0.55 980 

3  -1 0 0 1  77.2 16.5 1.15 0.54 1062 

4  0 0 0 0  88.4 8.9 1.14 0.54 1047 

5  0 0 0 0  87.4 10.0 1.12 0.57 1066 

6  0 -1 -1 0  85.8 1.8 1.15 0.53 1140 

7  -1 0 1 0  37.4 62.3 1.13 0.55 996 

8  -1 0 -1 0  90.2 7.8 1.20 0.48 1073 

9  1 0 0 1  83.7 1.7 1.16 0.52 1155 

10  -1 -1 0 0  59.2 35.3 1.13 0.56 1159 

11  0 0 -1 -1  94.0 6.0 1.25 0.45 1095 

12  -1 0.78 0 0  39.0 60.9 1.15 0.52 1063 

13  0 0.78 -1 0  45.9 54.1 1.16 0.52 1020 

14  1 0 -1 0  90.1 0.6 1.19 0.48 1168 

15  0 0.78 1 0  7.6 92.4 1.16 0.51 952 

16  1 0.78 0 0  14.8 85.2 1.14 0.54 918 

17  0 -1 0 1  71.1 4.8 1.15 0.53 1134 

18  0 0 0 0  87.6 11.0 1.13 0.55 1071 

19  0 0 0 0  86.6 11.9 1.11 0.58 1020 

20  0 0 -1 1  76.3 0.7 1.15 0.52 1193 

21  0 0.78 0 -1  35.5 64.5 1.19 0.48 963 

22  0 -1 0 -1  75.8 22.5 1.13 0.54 1062 

23  0 0 0 0  88.9 9.3 1.12 0.57 1054 

24  1 0 0 -1  91.8 7.9 1.18 0.50 1048 

25  1 -1 0 0  79.2 3.0 1.16 0.53 1108 

26  0 0 1 1  73.5 21.9 1.17 0.52 1022 

27  0 -1 1 0  42.1 47.2 1.14 0.54 1042 

28  1 0 1 0  80.9 18.5 1.14 0.54 1029 

29  0 0.78 0 1  33.1 46.9 1.15 0.52 1069 
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The results of the ANOVA analysis of pellet yield (Table 3.7) suggested that a reduced 

cubic model can be used for data fitting (P<0.05) and process optimisation. The lack-of-fit 

was not significant (P>0.05) and the predicted R-squared value was in reasonable 

agreement with the R-squared value adjusted for the degrees of freedom. All linear and 

quadratic factors of the model (except the quadratic term of water) were significant 

(P<0.05) as well as some interaction terms. Therefore, when evaluating the influence of a 

specific factor (variable) on process yield, significant interactions between spheronisation 

speed and the other variables and between sorbitol and binder level should be 

considered. The regression equation in terms of the coded values is the following (Eq. 

3.7): 

 

Yield (%) = 88.11+3.67*A-32.83*B-5.85*C-3.27*D-4.82*A²-47.61*B²- 

                   -8.55*C²-14.18*A*B+10.91*A*C-2.62*B*C+4.43*C*D- 

                   -9.62*A²*C-7.83*A*B²+7.18*A*C²-18.62*B²*C   (3.7) 

 

 
 

Table 3.7         ANOVA results for yield, aspect ratio and Feret diameter 

 

 

 

Figure 3.7 presents 3D-surface response diagrams of pellet yield as a function of sorbitol 

and binder level for a fixed (medium) water level at different spheronisation speeds. The 

Yield   Aspect ratio   Feret diameter 

Source P value  Source P value  Source P value 

Model < 0.0001  Model < 0.0001  Model < 0.0001 

A: HPMC 0.0010  C: Sph. speed 0.0011  B: Sorbitol < 0.0001 

B: Sorbitol < 0.0001  D: Water 0.0249  C: Sph. speed < 0.0001 

C: Sph. speed < 0.0001  C² 0.0017  D: Water 0.0010 

D: Water < 0.0001  D² 0.0009  Lack of Fit 0.1008 

A² < 0.0001  CD 0.0010  R² 0.7314 

B² < 0.0001  Lack of Fit 0.1817  Adjusted  R² 0.6991 

C² < 0.0001  R² 0.7149    

AB < 0.0001  Adjusted  R² 0.6529    

AC < 0.0001       

BC 0.0296       

CD 0.0002       

A²C < 0.0001       

AB² 0.0003       

AC² < 0.0001       

B²C < 0.0001       

Lack of Fit 0.0724       

R² 0.9977       

Adjusted  R² 0.9951       
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graphs show that a high yield was obtained (>90%). Pellet yield was the highest at 

medium or low spheronisation speed (Fig. 3.9 a, b). At the highest spheronisation speed, 

yield increased with increasing binder concentration (Fig. 3.9 c). A higher binder level 

promoted binding of the wet mass and additionally made the extrudate more resistant to 

friction forces at higher spheronisation speed. As seen in the previous sections, the lowest 

yield was obtained for the highest sorbitol level and this was confirmed at each 

spheronisation speed. When reducing the sorbitol amount to the medium value, the 

influence of spheronisation speed on pellet yield was less pronounced, being lower only 

for a lower binder concentration combined with the highest spheronisation speed. A 

formulation without sorbitol resulted in a lower yield at a higher spheronisation speed and 

lower binder concentration. 

 

 

             a.        b.          

            
 

      c. 

        
 

Figure 3.9      3D surface response diagrams of pellet yield as a function of sorbitol and binder level for fixed 

amount  of water (medium level) and fixed spheronisation speed: a. 650 rpm (low), b. 850 rpm 

(medium), and c. 1050 rpm (high). 
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As already mentioned, the amount of water is a critical parameter for the 

extrusion/spheronisation process. The optimal water level depended on the sorbitol 

concentration, being lower if a higher sorbitol level was used.  Sorbitol as a water-soluble 

component dissolved in water during wet massing, reducing the solids amount and 

inducing pellet agglomeration during spheronisation. Similar relationships between the 

solubility of drug and filler and the optimal water concentration were reported by Baert et 

al. (1991), Hileman et al. (1997) and Lustig-Gustafsson et al. (1999). 

 

The response surface graphs (Fig. 3.10) showed that at medium sorbitol level, a high 

binder level did not increase pellet yield. This is probably due to the low molecular weight 

of sorbitol, which interacts with the starch molecules and additionally accumulates in the 

cavities between HPMC molecules and thereby reduces the adhesion of HPMC polymer 

chains. This effect of low molecular weight materials on self-adhesion of polymers has 

been described by Millili et al. (1990).  

                      

 

 
 

Figure 3.10    3D surface response diagrams of pellet yield as a function of water and binder level at fixed 

spheronisation speed (medium) and sorbitol level:  a. 0% (low), b. 11.25% (medium), and c. 

20% (high). 
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3.4.4.2 Pel let spher ic ity 

 

Table 3.7 lists the results of the ANOVA analysis with the aspect ratio as response value. 

The quadratic model was significant (P<0.05) and the statistics (insignificant lack-of-fit and 

agreement of predicted and adjusted R-squared values) indicated that the model can be 

used to describe the data and optimise the process. Spheronisation speed, water level 

(linear and quadratic functions) as well as their interactions were significant factors 

(P<0.05), while the binder and sorbitol level did not have a significant influence on pellet 

sphericity. The regression equation in terms of the coded factor values can be presented 

by the following equation (Eq. 3.8):  

 

Aspect ratio = 1.135 - 0.018*C - 0.012*D + 0.023*C² +  

+ 0.024*D² + 0.032*C*D             (3.8) 

 

 

 

 

 

Figure 3.11    3D surface response diagram of pellet aspect ratio as a function of water level (coded) and 

spheronisation speed at fixed binder and sorbitol level (medium). 

 

 

An increase of spheronisation speed has been already reported as beneficial for pellet 

sphericity (Baert et al., 1993; Wan et al., 1993; Hellén et al., 1994). For this pellet 

formulation, we confirmed that increasing spheronisation speed lowered the aspect ratio. 

Using a suboptimal amount of water resulted in dumbbells, whereas at higher water 

concentrations agglomeration occurred. Results (Fig. 3.11, Table 3.6) showed that for 

most formulations the aspect ratio was between 1.12 and 1.20, which complied with the 

range defined by Chopra et al. (2002) for acceptable pellet sphericity. The significant 
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interaction between water and spheronisation speed indicated that a low spheronisation 

speed and water level decreased the sphericity of the end product, confirming the 

importance of energy input during spheronisation as well as of an adequate water level for 

successful spheronisation. Sphericity improved at higher spheronisation speeds, but the 

influence of water was less pronounced, suggesting that a wider water range could be 

used to obtain acceptable sphericity. The binder concentration and its interactions were 

not significant, indicating that the concentration range (3-6 %, w/w, dry mass) selected 

during preliminary study was optimal. Agrawal et al. (2004) employed HPMC as a binder 

in a higher concentration range (5-10 %, w/w) in pellet formulations containing chitosan 

and reported significant interactions between binder concentration and spheronisation 

speed.  

 

ANOVA analysis of shape factor (eR) resulted in similar significant factors compared to 

aspect ratio as a response parameter, with sorbitol as an additional significant factor 

(P=0.0493). The shape factor was lower at high sorbitol level due to an increase of pellet 

surface roughness, since the shape factor combined by definition pellet geometry and 

surface roughness (Podczeck et al., 1994). Due to the low mechanical strength of 

extrudates at this sorbitol concentration, fine particles were sticking to the surface of larger 

pellets during spheronisation, thus increasing surface roughness (Fig. 3.15 d).  

 

 

3.4.4.3 Pel let size 

 

The ANOVA analysis of pellet size (mean Feret diameter) is presented in Table 3.7. 

Significant linear model (P<0.05), insignificant lack-of-fit test (P>0.05) and agreement of 

predicted and adjusted R-squared values allow data modelling. Only linear functions of 

spheronisation speed, water and sorbitol concentration were significant (P<0.05). The 

regression equation (Eq. 3.9) in terms of the coded factor values is:  

 

Feret diameter = 1056.6 - 60.5*B - 55.6*C + 39.4*D    (3.9) 

 

3D surface response diagrams of pellet size (Fig. 3.12) showed that for all batches the 

mean pellet diameter was between 900 and 1200 µm. Furthermore, a higher water 

concentration generated larger pellets due to particle agglomeration during 

spheronisation. Additionally, at higher spheronisation speed excessive fragmentation of 

the extrudates occurred at the beginning of the spheronisation phase, yielding smaller 

pellets. Furthermore, the results revealed that increasing sorbitol concentrations reduced 
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pellet size. The addition of sorbitol provided a more uniform breaking of the extrudates at 

the beginning of the spheronisation phase. Formulations with the highest sorbitol 

concentration had the lowest pellet size due to insufficient mechanical strength of 

extrudates. 

 

 

 

 

                                                                             

 

 

 

 

 

 

 

 

 

 

Figure 3.12    3D surface response diagrams of pellet size (mean Feret diameter) as a function of:  a. sorbitol 

and binder level at fixed spheronisation speed and water level (medium), and b. spheronisation  

speed and water level at fixed sorbitol and binder level (medium). 

 

 

 

3.4.4.4 Val idat ion of  model predict ion 

 

The regression equations of pellet yield and aspect ratio were used to determine the 

levels of all variables resulting in an optimal process in terms of maximum yield and 

minimal aspect ratio. For example, Figure 3.13 presents the spheronisation speed and 

sorbitol concentration providing a pellet yield above 85% and an aspect ratio below 1.15 

for medium binder and water level. It can be observed that an acceptable yield and 

sphericity is to be expected at a spheronisation speed between 750 and 950 rpm 

combined with sorbitol concentrations up to about 10 % (w/w).  

 

To test the validity of the model, one point of the model was selected and the good 

agreement between the predicted and actual values (Table 3.8) indicated that the 

proposed statistical models can be used as a tool for successful process optimisation. 

 

a. 
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Figure 3.13    Graphical presentation of process optimisation (yield>85% and AR<1.15) at medium water and 

binder level.  

 

 

 
  

Table 3.8        Predicted and actual response values for a formulation consisting of 25% theophylline, 5.8 % 

binder, 9.7 % sorbitol and UNIPURE
®
EX starch (water level: 0.33 (coded value); spheronisation 

speed: 846 rpm). 

 

Response Prediction value SEM 95% CI - low 95% CI - high Obtained value 

Yield (%) 91.36 0.97 89.27 93.45 91.80 

Aspect ratio 1.134 0.005 1.123 1.144 1.125 

Shape factor 0.541 0.007 0.527 0.556 0.552 

 

 

 

3.4.4.5 X-ray dif f ract ion 

 

X-ray diffractograms of raw materials and pellets (Fig. 3.14) support the solid state NMR 

findings that theophylline preserved its crystallinity, while sorbitol became amorphous 

during processing. Furthermore, no differences between diffraction patterns of 

formulations with different sorbitol content were observed. 
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Figure 3.14    X-ray powder diffraction patterns: a. pellets containing 0, 11.25 and 20 %, w/w of sorbitol, b. 

anhydrous theophylline, c. sorbitol, and d. UNI-PURE
®
EX starch. 

 

 

a. 

b. 

c. 

d. 
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3.4.4.6 Pel let surface morphology 

 

SEM pictures showed that sorbitol had a significant effect on surface morphology (Fig. 

3.15): pellets without sorbitol had a cracked surface, whereas pellets containing sorbitol 

had a smoother surface. Since the presence of cracks is not a preferred feature for pellets 

intended for coating, the addition of sorbitol to the formulation is crucial to obtain a 

successful sustained-release coat. 

 

 

 

               

 

           

 

                              
 

 

 

                                                                                                                                                   

 

 

 

 

Figure 3.15    SEM pictures of pellets containing different amounts of sorbitol (w/w, dry mass):  a. 0 %, b. 

11.25 %, c. 20 % and d. 20 % 

 

 

 

3.4.4.7 Friabi l i ty 

 

Starch-based pellets had a high mechanical strength, since friability values of less than 

0.01% were obtained for all batches. In general, a low friability indicates the pellets ability 

to withstand the shear forces during fluid bed coating. 

 

    a. 

  

b. 

  

d. c. 
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3.4.4.8 Disintegrat ion 

 

Disintegration tests showed that pellets containing starch as the main excipient 

disintegrated, the disintegration time being determined by the sorbitol level: pellets with 

20% sorbitol disintegrated within 2 min, whereas the other batches (irrespective of sorbitol 

level) had a similar disintegration time (between 5 and 7 min). The other variables of the 

experimental design did not have a significant influence on disintegration time. 

 

 

3.4.4.9 In-vitro drug release 

 

Drug release profiles (Fig. 3.16) showed that all starch-based pellets completely released 

theophylline in less than 20 minutes, which is significantly faster than MCC-based pellets 

(only 50 % drug was released within the same time interval), mainly due to the ability of 

starch-based pellets to disintegrate.  
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Figure 3.16    Dissolution profiles of pellets containing different amounts of a binder (A: 3, 4.5 or 6 % w/w, dry 

mass) and sorbitol (B: 0 or 11.25 % w/w, dry mass). Water level (D) is presented in coded 

values. 

 

 

The binder and sorbitol concentration only determined drug release during the initial 10 

minutes of the test: pellets containing a high amount of binder or sorbitol at medium level 

had a slightly slower drug release. In contrast, formulations without sorbitol had slightly 
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faster drug release, possibly due to surface irregularities (cracks). Nevertheless, 

immediate drug release was obtained for all batches, irrespective of formulation and 

process parameters. 

 

Figure 3.17 shows the dissolution profiles of theophylline from pellets produced using the 

same variables of the experimental designs (central point was repeated five times). Since 

the standard deviation (three samples of each batch were analysed) for each sampling 

point was less than 1%, it can be concluded that the dissolution profiles are reproducible.  
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Figure 3.17    Dissolution profiles of pellet batches produced using the same (central) point of the 

experimental design (SD values for n=3 are included in the graph). 
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3.5 Conclusion 

 

UNI-PURE®EX starch was successfully used as the main excipient in formulations 

intended for extrusion/spheronisation. However, a binder was necessary to obtain an 

acceptable yield and the addition of sorbitol improved the surface properties of the pellets. 

Based on the high process yield (>90%), good pellet sphericity (AR<1.2), low friability 

(<0.01%), fast disintegration (<10 min) and complete drug release in less than 20 minutes 

for all formulations, UNI-PURE®EX starch can be proposed as an alternative to 

microcrystalline cellulose during processing of formulations (containing 25% drug) via 

extrusion/spheronisation.  
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MODEL DRUGS  
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“Immediate release of poorly soluble drugs from starch-based pellets prepared via 

extrusion/spheronisation.”  

 

 

 

4.1 Introduction  

 

An important disadvantage of MCC-based pellets is the lack of disintegration (Chapter 2) 

and therefore drug release occurs via diffusion through an insoluble inert matrix. Although 

pellet disintegration is not required if pellets are used for sustained drug delivery, 

disintegration is an important issue for enteric-coated pellets or colon targeted drug 

delivery, where immediate drug release is required after the functional coating has 

dissolved in gastrointestinal fluids. The lack of MCC-based pellet disintegration becomes 

very critical if the active component has poor solubility in water, since the drug release is 

prolonged. As reviewed in the second chapter, MCC formulations have been modified in 

order to increase drug release, or alternative excipients as substitutes for MCC have been 

investigated. 

 

The first part of this study (Chapter 3) showed the potential of UNI-PURE® EX starch to 

produce spherical pellets with a narrow particle size distribution and high process yield. 

The most influential formulation and process variables have been identified. The most 

important feature of UNI-PURE® EX starch-based pellets was found to be their 
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disintegration, which might provide a solution for the slower release of poorly soluble 

drugs observed in MCC-based pellets.  

 

It was shown that due to pellet disintegration, the release of anhydrous theophylline as a 

model drug with medium water solubility was complete in less than 20 minutes. This part 

of the study evaluates UNI-PURE® EX starch as the main excipient for pellets containing 

poorly soluble drugs. Two model drugs (hydrochlorothiazide at low and high drug content, 

and piroxicam at low drug content) were used to evaluate the pellet quality and drug 

release. An in-vivo study was conducted in order to determine the bioavailability of 

hydrochlorothiazide pellets compared to immediate release tablets.  
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4.2 Materials 

 

The physicochemical properties of hydrochlorothiazide and piroxicam, used as model 

drug used in this part of the study, are presented in Table 4.1, while Tables 4.2 and 4.3 list 

the excipients used for pellet preparation and the materials used for determination of 

hydrochlorothiazide in dog plasma, respectively.  

 

 
 

Table 4.1       Physicochemical properties of hydrochlorothiazide and piroxicam (Martindale, 2005) 

 

Properties  Structural formula 

Name: Hydrochlorothiazide 

Chemical name: 
 
 

6-chloro-3,4-dihydro-2H-1,2,4-
benzothiazidine-7-
sulphonamide-1,1-dioxide 

Producer: 
 

Bufa (Uitgeest, 
The Netherlands) 

Solubility in water: Very slightly soluble
 a

 

Particle size D[v,0.5]:    102.4 (± 9.6) µm 

pKa : 8.8 ; 9.9 

   

       

  

Name: Piroxicam 

Chemical name: 
 
 

4-hydroxy-2-methyl-N-(2-
pyrydil)-2H-1,2-benzothiazine-
3-carboxamide-1,1-dioxide 

Producer: Sagran (Milan, Italy) 

Solubility in water: Practically insoluble
 a
 

Particle size D[v,0.5]: 9.9 (± 0.6) µm 

pKa : 1.8; 5.1 

 

      

 

a 
Source:

 
Ph. Eur. 4 

 

 
 

Table 4.2       Excipients used during extrusion/spheronisation. 

 

Excipient name Trade name Producer 

Modified (resistant) starch UNI-PURE
®
EX starch 

National Starch and Chemical Co., 
Bridgewater, New Jersey, USA 

Hydroxypropylmethylcellulose  Methocel
®
 E15 LV EP Pharm  Colorcon, Dartford, UK 

Sorbitol  Sorbidex
®
 P 16616 Cerestar, Vilvoorde, Belgium 

Microcrystalline cellulose  Avicel
®
 PH 101 FMC, Cork, Ireland 

Demineralised water was used as granulation liquid. 

 

H3C 
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Table 4.3       Materials used for determination of hydrochlorothiazide in dog plasma. 

 

Excipient name Producer 

Hydrochlorothiazide  Sigma Chemical Co., St. Louis, MO, USA 

Hydroflumethiazide Sigma Chemical Co., St. Louis, MO, USA 

Methyl tert.-buthylether, HPLC quality Sigma Chemical Co., St. Louis, MO, USA 

Acetonitrile, HPLC quality Biosolve, Valkenswaard, The Netherlands 

Toluene, HPLC quality Biosolve, Valkenswaard, The Netherlands 

Tetrahydrofurane, HPLC quality Biosolve, Valkenswaard, The Netherlands 

NaOH, pro analyse VWR International, Fontenay sous Bois, France 

KH2PO4, pro analyse VWR International, Fontenay sous Bois, France 

Distilled water 

 

 



In-vitro and in-vivo evaluation of immediate-release starch-based pellets containing poorly soluble model drugs  

 

 99 

4.3 Methods 

 

4.3.1 Pellets containing hydrochlorothiazide as model drug - 
Experimental design 

 

To identify significant formulation variables a 24 - factorial design with a central point for 

curvature estimation was used. Table 4.4 lists the four factors at both levels used in the 

design. Hydrochlorothiazide (10 and 50 % w/w, dry mass) and HPMC concentration (4 

and 7 % w/w, dry mass) were numerical variables in the design. The optimal range of the 

water content was determined based on preliminary experiments and two water levels 

providing the highest pellet yield were selected for the experimental design. Since the 

water concentration depended on the amount of water soluble components in the 

formulation (sorbitol in this case), both sorbitol and water concentration were introduced in 

the design as categorical variables. The codes used for the categorical variables were the 

following: O (formulation without sorbitol), S (formulation containing sorbitol), L (low water 

level) and H (high water level). Sorbitol concentration was set to 10 % of the UNI-PURE® 

EX starch content in the formulation. 

 

 
 

Table 4.4       Definition of the factors used in the experimental design. 

 

Factor Low level (-1) High level (+1) 

A: HCT conc. (% w/w, dry mass) 10 50 

B: HPMC conc. (% w/w, dry mass) 4 7 

C: Sorbitol level
 a,b 

O S 

D: Water level
b
 L H 

a
 Sorbitol concentration is expressed as the percentage of UNI-PURE

®
 EX starch amount in the formulation: 

O=formulation without sorbitol, S=formulation containing sorbitol in a concentration which is 10% of the UNI-
PURE

® 
EX starch content of the formulation. 

b
 Sorbitol and water level are categorical variables in the design.

 

 

 

Table 4.5 lists all experiments with the coded and actual values of the variables. The total 

number of experiments was 20 (including 4 experiments using the central point of each 

numerical variable combined with each level of both categorical variables). Experiments 

were performed in a randomised order using the same process parameters.  
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Table 4.5        2
4
- factorial design (randomised order) presented in coded and actual values: A -  HCT conc. 

(% w/w, dry mass), B -  HPMC conc. (% w/w, dry mass), C -  sorbitol conc. (% w/w, dry mass) 

and  D - water conc. (% w/w, wet mass). 

 

Coded values  Actual values 

R
u

n
 

 

A B C D  A  B  C  D 
 

1  0 0 O L  30 5.5 0 42.86 

2  1 -1 O L  50 4 0 37.50 

3  -1 -1 O H  10 4 0 50.00 

4  -1 1 S L  10 7 8.3 42.86 

5  1 1 O H  50 7 0 37.50 

6  0 0 S L  30 5.5 6.5 40.30 

7  -1 -1 O L  10 4 0 49.37 

8  -1 -1 S H  10 4 8.6 45.95 

9  0 0 S H  30 5.5 6.5 41.18 

10  1 -1 O H  50 4 0 39.39 

11  1 1 O L  50 7 0 35.48 

12  1 1 S L  50 7 4.3 33.33 

13  1 -1 S H  50 4 4.6 36.51 

14  -1 1 S H  10 7 8.3 44.44 

15  1 1 S H  50 7 4.3 35.48 

16  -1 -1 S L  10 4 8.6 44.44 

17  1 -1 S L  50 4 4.6 35.48 

18  0 0 O H  30 5.5 0 44.44 

19  -1 1 O L  10 7 0 48.05 

20  -1 1 O H  10 7 0 48.72 

 

 

Pellet yield, sphericity (aspect ratio and shape factor) and size (Feret diameter) were 

determined for each batch of the experimental design and those values were used as 

responses for modelling. Results were analysed using Design-Expert®, v.6.0.6. software 

(Stat-Ease, Minneapolis, USA). Analysis of variance (ANOVA) with P<0.05 was performed 

for each response. 

 

In order to compare the drug release profiles, reference pellets were made with MCC as 

the main excipient, containing the same concentrations of hydrochlorothiazide and using 

the same process parameters, as well as an optimised amount of water as granulation 

liquid. 
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4.3.2 Pellets containing piroxicam as model drug 

 

Piroxicam was used as a second model drug and was incorporated at a low concentration 

(2.5 %, w/w, dry mass) in the pellets. Pellets were prepared with 7 % HPMC (w/w, dry 

mass) and 10 % sorbitol (w/w, dry mass). Piroxicam pellets without sorbitol were also 

prepared. The optimal range of the water content was determined based on preliminary 

experiments and pellets were prepared at two water levels which provided the highest 

yield. 

 

Reference pellets with the same piroxicam concentration were prepared with MCC as the 

main excipient, to compare the drug release profiles. Furthermore, the same process 

parameters and an optimised amount of water as granulation liquid were used for 

extrusion/spheronisation. 

 

 

4.3.3 Pellet production 

 

The model drug (hydrochlorothiazide or piroxicam), HPMC, sorbitol and modified starch 

were mixed (batch size: 250 g) for 15 min in a Turbula® mixer (model T2A, W.A. 

Bachofen, Basel, Switzerland), followed by granulation with demineralised water by 

means of a planetary mixer (Kenwood Chief, Hampshire, UK) (granulation time: 10 min; 

mixing speed: 60 rpm). Water was added during the first 30 s of the wet massing phase. 

During granulation, the material was repeatedly scraped from the mixing bowl walls, to 

ensure uniform water distribution. The wet mass was extruded at an extrusion speed of 50 

rpm using a single screw extruder (Dome extruder lab model DG-L1, Fuji Paudal, Tokyo, 

Japan) equipped with a dome-shaped extrusion screen (thickness: 1.2 mm, perforation 

diameter: 1mm). The extrudates were spheronised for 3 min at 850 rpm in a spheroniser 

with a “cross-hatched” friction plate (Caleva Model 15, Caleva, Sturminster Newton, 

Dorset, UK) and finally dried for 20 min at 50°C in a fluid-bed drier (Uniglatt, Glatt, Binzen, 

Germany). 

 

 

4.3.4 Pellet and powder characterisation 

 

Methods for determining the pellet yield, size, sphericity, friability and disintegration were 

described in the previous chapter, Section 3.3.4. Scanning electron microscopy (also 

described in Section 3.3.4) has been used to visually observe the morphology of 
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hydrochlorothiazide, piroxicam and UNI-PURE® EX starch powders.  

 

 

4.3.4.1 Laser dif f ract ion 

 

The particle size of hydrochlorothiazide, piroxicam and UNI-PURE® EX starch powders 

was determined by laser diffraction (Mastersizer-S long bed, Malvern Instruments, 

Malvern, UK) with data acquisition time of 2 ms. A small sample dispersion unit (stirrer 

speed of 1500 rpm) was used to suspend powders in a dispersion medium: Miglyol 812N, 

capric triglyceride, refraction index 1.4493 (Sasol, Witten, Germany) with 0.2 % of 

polysorbate 80 (Tween® 80, Alpha Pharma, Nazareth, Belgium). All measurements were 

performed in triplicate and the particle size was expressed as D [v,0.5]. 

 

 

4.3.4.2 Water content 

 

The water content of powders and pellets was determined by means of a Karl Fischer 

titrator (Mettler DL 35, Beersel, Belgium) coupled with infrared (IR) oven (Mettler DO 337, 

Beersel, Belgium). Hydroquant-Uniquant 2 (Biosolve, Valkenswaard, The Netherlands) 

and extra dry methanol (Biosolve, Valkenswaard, The Netherlands) were the titration 

reagent and solvent, respectively. The sample was placed in an oven for 10 min at 150°C 

and a stream of dry nitrogen (150 mL/min) transported evaporated water into the titration 

vessel. Each batch was analysed in triplicate. 

 

 

4.3.4.3 Dissolut ion 

 

The dissolution tests were performed using a dissolution apparatus according to the USP 

paddle apparatus (VK 8000, VanKel, New Jersey, USA) at a rotational speed of 100 rpm 

and temperature of 37°C. The sample amount used for analysis was adjusted to obtain 

sink conditions. The dissolution medium (900 mL) depended on the model drug: 0.1 N HCl 

for pellets containing hydrochlorothiazide and phosphate buffer (pH 6.8) for pellets with 

piroxicam. Samples of 5 mL were withdrawn from the dissolution vessel at 5, 10, 15, 20, 

30, 45, 60 and 75 min and spectrophotometrically analysed at 272 and 354 nm for 

hydrochlorothiazide and piroxicam pellets, respectively, by means of a double-beam 

spectrophotometer (Shimadzu UV-1650PC, Shimadzu Co., Kyoto, Japan). Each batch 

was analysed in triplicate. 
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4.3.5 Bioavailability testing 

 

4.3.5.1 Oral administrat ion 

 

Six male mixed-breed dogs (aged 1-4 years) weighing from 21 to 42 kg were used for the 

study. Prior to oral dose administration food was restricted for 12h as well as during the 

experiment (24h), while access to water was unlimited. In a randomised cross-over 

design, each dog received 50 mg of hydrochlorothiazide on three occasions: twice as 

pellet formulation (filled into hard gelatine capsules) and once as an immediate release 

tablet (Esidrex® 50 mg, Novartis Pharma, Bern, Switzerland) (reference formulation). One 

pellet formulation contained 10% of hydrochlorothiazide, while the other was formulated 

with 50% of hydrochlorothiazide (both formulations had the same binder level, 7% w/w dry 

mass). There was a 1-week wash-out period in between each experiment. Each dosage 

form was administered to a dog with a small amount of water to prevent sticking to the 

buccal mucosa. A blood sample was taken from the sphenoid vein at 0, 0.25, 0.5, 0.75, 1, 

1.5, 2, 4, 6, 8, 12 and 24h, collected into heparinised borosilicate test tubes and after 

centrifugation at 1400g for 10 min, plasma was stored at -20°C until analysed. 

 

 

4.3.5.2 Analysis of  plasma samples 

 

100 µL of internal standard (IS) solution was added to 500 µL of plasma sample, vortexed 

for 15 s and after adding 5 mL of methyl tert.-buthylether vortexed for another 2 min. After 

5 min of centrifugation at 2500g, 4.5 mL of organic phase was removed into a new 

borosilicate glass test tube and dried under a N2-stream at 40°C until complete 

evaporation of the organic solvent. The residue was further dissolved in 200 µL of distilled 

water, followed by addition of 3 mL toluene. The mixture was further vortexed for 2 min 

and after 10 min of centrifugation at 2500g, the toluene layer was removed. Once again 3 

mL of toluene was added, and the extraction procedure was repeated. After removing the 

organic phase, the mixture was dried under a N2-stream at 40°C. 200 µL of a mobile 

phase was added to the residue, homogenized by vortexing for 10 s and 100 µL of this 

solution was injected into the HPLC-system. 

 

Hydrochlorothiazide plasma concentrations were determined using a validated high 

performance liquid chromatography (HPLC) method (Vervaet et al., 1997).  
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2.1.1.1 Pharmacokinet ic and stat ist ical analysis 

 

Individual hydrochlorothiazide plasma concentrations were adjusted for the body weight of 

the dogs and plotted against the time. AUC0→24 was calculated using the pharmacokinetic 

programme MW/Pharm (ver. 3.0; Mediware, Utrecht, The Netherlands), while Cmax and 

tmax were determined from the concentration-time profiles. The relative bioavailability of the 

pellet formulation (Frel, %) was calculated as the ratio of AUC0–24h between a pellet 

formulation and the immediate release tablets. Data were statistically analysed using 

SPSS 14 software (SPSS, Chicago, USA). Multiple comparisons of AUC0→24h and Cmax 

were performed by means of repeated measures univariate analysis for within-subject 

factors and an assumption of sphericity of covariances with Mauchly’s test (P value 

<0.05). 

 

 

4.3.6 Validation of an HPLC method for determination of 
hydrochlorothiazide in dog plasma 

 

Method was validated based on the ICH-guidelines (1995). The following validation 

criteria have been taken into account: specificity, linearity, precision, accuracy, recovery, 

detection limit and quantification limit. 

 

 

4.3.6.1 HPLC system 

 

The HPLC-system consisted of an isocratic pump (L-7110, Merck Hitachi, Tokyo, Japan), 

automatic injection system (234 Autoinjector, Gilson, Middleton, WI, USA) with a 100 µL 

loop, a precolumn (LiChrospher® 100 RP-18, 4 x 4 mm, 5 µm, Merck, Darmstadt, 

Germany) followed by a reversed-phase C-18 column (LiChrospher® 100 RP-18, 250 x 4 

mm, 5 µm, Merck, Darmstadt, Germany) and a variable wavelength UV/VIS detector (L-

7400, Merck Hitachi, Tokyo, Japan). A software package D-7000 HSM Chromatography 

Data Station version 4.1. (Hitachi Instruments, San Jose, CA, USA) was used for 

integration of the chromatographic peaks. The mobile phase consisted of a phosphate 

buffer pH 7.0 (50 mL 0.2 M KH2PO4 + 29.1 mL 0.2 M NaOH + H2O ad 200 mL; USP 

XXVII), tetrahydrofurane and acetonitrile (85/10/5; v/v/v). The precolumn and column were 

conditioned at 40°C, the pump flow was 0.8 mL/min and the wavelength of the detector 

was set to 272 nm.  

 



In-vitro and in-vivo evaluation of immediate-release starch-based pellets containing poorly soluble model drugs  

 

 105 

4.3.6.2 Sample preparat ion 

 

The stock solution of hydrochlorothiazide (50 µg/mL) was prepared by dissolving 50 mg of 

hydrochlorothiazide in 10 mL of methanol and adding distilled water up to 1000 mL. The 

IS solution was prepared by dissolving hydroflumethiazide in 10 mL of methanol and 

dilution with distilled water to obtain a concentration of 1.25 µg/mL. The stock solution of 

hydrochlorothiazide was used to prepare the standard solutions (concentrations: 0.050, 

0.125, 0.250, 0.500, 1.0, 1.5, 5 and 10 µg/mL) for the method validation and the IS was 

always added in the same concentration (1.25 µg/mL). 

 

For the determination of calibration curves, 100 µL of IS solution (1.25 µg/mL) was added 

to 500 µL of blank plasma (zero point) and to 400 µL of blank plasma together with 100 µL 

of standard HCT solutions to obtain serum concentrations of 10, 25, 50, 100, 200, 500, 

1000 and 2000 ng/mL. This mixture was vortexed for 15 s and after adding 5 mL of methyl 

tert.-buthylether for another 2 min. After 5 min of centrifugation at 4000 rpm (2524g), 4.5 

mL of organic phase was removed into new test tube and dried under a N2-stream at 40°C 

until the evaporation of the organic solvent. The residue was further dissolved in 200 µL of 

distilled water, followed by addition of 3 mL toluene for the extraction of lipofilic serum 

components. The mixture was further vortexed for 2 min and after 10 min of centrifugation 

at 4000 rpm, the toluene layer was removed. 3 mL of toluene was added once again, and 

the extraction procedure was repeated. After the organic phase was removed, the mixture 

was dried under a N2-stream at 40°C. 200 µL of a mobile phase was added to the residue, 

homogenized by vortexing for 10 s and 100 µL of this solution was injected into the HPLC-

system. 

 

 

4.3.6.3 Specif icity 

 

ICH definition: Specificity is the ability to asses unequivocally the analyte in the presence 

of components that may be expected to be present (Chan et al., 2004). 

 

Comparing the chromatogram of blank dog plasma (Fig. 4.1 a) spiked with the one of 

blank dog plasma spiked with hydrochlorothiazide (HCT, conc. 200 ng/mL) and internal 

standard (IS, hydroflumethiazide conc. 1.25 µg/mL) (Fig. 4.1 b) it is clear that no 

interference exists between hydrochlorothiazide, internal standard, endogenous 

components of plasma and/or components used for extraction. When observing the 

chromatogram of dog plasma after intake of hydrochlorothiazide reference tablets 
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(Esidrex® 50 mg) (Fig. 4.1 c), similar retention times of hydrochlorothiazide and internal 

standard were obtained as with spiked plasma: 5.5 and 9.8 s for hydrochlorothiazide and 

internal standard, respectively (Fig. 4.1 b). Since no interfering peaks have been 

observed, the method is specific for the determination of hydrochlorothiazide and 

hydroflumethiazide (internal standard) in dog plasma.  

 

a. 

 

b. 

 

c. 

 
 

Figure 4.1      Chromatograms of HCT analysis in plasma: a. blank dog plasma, b. blank dog plasma spiked 

with hydrochlorothiazide (HCT, conc. 200 ng/mL) and internal standard (IS, hydroflumethiazide, 

conc. 1.25 µg/mL) and c. dog plasma after intake of HCT tablets (Esidrex
®
 50 mg). 

HCT (5.50 s)   

IS (9.83 s)   

IS (9.81 s)   

HCT (5.47 s)   
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4.3.6.4 Linear ity 

 

ICH definition:  The linearity of an analytical procedure is its ability (within a given range) 

to obtain results that are directly proportional to the concentration of analyte in the sample 

(Chan et al., 2004). 

 

It is recommended to use five to eight concentrations (excluding blank value) to define a 

standard curve (Shah et al., 1992). The linearity of a standard curve is expressed by the 

correlation coefficient, the intercept and the slope of each individual calibration curve and 

of the average response curve. Eight concentrations in the range from 0 to 2000 ng/mL 

were used for determination of the standard curve. A correlation coefficient (R²) > 0.9999 

demonstrates linearity of the standard curve in the entire concentration range.  

 

 
 

Table 4.6        Linearity: Within-day variation (n=5). 

 

 Peak area (HCT / Internal standard) HCT conc. 
(ng/mL)  1 2 3 4 5 Average SD CV 

0  0.000 0.000 0.000 0.000 0.000 0.000 0.000 -- 

10  0.042 0.046 0.052 0.049 0.044 0.046 0.004 8.63 

25  0.102 0.097 0.105 0.119 0.098 0.104 0.009 8.32 

50  0.222 0.244 0.217 0.238 0.229 0.230 0.011 4.73 

100  0.457 0.417 0.488 0.486 0.454 0.460 0.029 6.28 

200  0.909 0.889 0.915 0.910 0.874 0.899 0.017 1.92 

500  2.265 2.236 2.305 2.267 2.216 2.258 0.034 1.49 

1000  4.514 4.451 4.548 4.442 4.469 4.485 0.045 1.01 

2000  9.161 8.834 9.154 8.960 8.836 8.989 0.162 1.81 

Slope  0.00457 0.00442 0.00457 0.00447 0.00443 0.00449 0.00008 1.67 

Intercept  -0.01027 0.00308 0.00246 0.01254 0.00263 0.00209 0.00812 - 

Corr. coef. 
(R²) 

 
0.99995 0.99996 0.99997 0.99996 0.99996 0.99996 0.00001 - 

 

 

The variation within one day is presented as the mean value of the slopes obtained after 

five injections of eight standard solutions during one day (Table 4.6), while the variation 

between days was assessed from the mean value of the slopes obtained after five 

injections of eight standard solutions during one month (Table 4.7). The mean slope and 

its coefficient of variation calculated within one day (0.00449; 1.67 %) and between days 
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(0.00453; 2.78 %) calibration curves only show small differences. 

 

 
 

Table 4.7       Linearity: Between-day variation (n=5) 

 

 Peak area (HCT / Internal standard) HCT conc. 
(ng/mL)  1 2 3 4 5 Average SD CV 

0  0 0 0 0 0 0 0 - 

10  0.051 0.048 0.045 0.042 0.043 0.046 0.004 8.19 

25  0.107 0.107 0.104 0.102 0.126 0.109 0.010 8.97 

50  0.227 0.223 0.207 0.222 0.221 0.220 0.008 3.50 

100  0.446 0.452 0.396 0.457 0.472 0.445 0.029 6.46 

200  0.915 0.860 0.882 0.909 0.901 0.894 0.022 2.50 

500  2.288 2.193 2.224 2.265 2.359 2.266 0.064 2.82 

1000  4.493 4.440 4.677 4.514 4.784 4.581 0.144 3.14 

2000  9.064 8.716 8.824 9.161 9.374 9.028 0.264 2.92 

Slope  0.00453 0.00437 0.00446 0.00457 0.00471 0.00453 0.00013 2.78 

Intercept  0.00072 0.00703 0.00354 -0.01027 -0.00001 0.00020 0.00648 - 

Corr. coef. 
(R²) 

 
0.99997 0.99992 0.99918 0.99995 0.99988 0.99978 0.00034 - 

 

 

 

4.3.6.5 Precision 

 

The precision of a method is a measure of data spreading around the mean value during 

repeated determinations. It can be defined at three levels (ICH definition): repeatability 

(intra-assay precision), which is the precision under the same operating conditions over a 

short interval of time; intermediate precision (within-laboratory precision), which expresses 

within-laboratory variations like different days, analysts, equipment, etc.; reproducibility, 

which is the precision between laboratories. Precision is expressed as the coefficient of 

variation (CV, %) of series of measurements for each standard concentration of the 

calibration curve (Lee et al., 2004). 

 

CV values for repeatability (Table 4.6) are between 1.01 and 8.63 % for the whole 

concentration range of the standard curve, while the values for intermediate precision 

(Table 4.7) are in the range between 2.50 and 8.97 % for the same concentration range. 

As recommended by Shah et al. (1992), the precision around the mean should not exceed 
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15 % CV, except for the lowest concentration, where it should not exceed 20 % CV. It is 

clear that the method is precise to determine hydrochlorothiazide levels in plasma. 

 

 

4.3.6.6 Accuracy 

 

ICH definition: The accuracy of an analytical procedure expresses the closeness of 

agreement between the true value and the determined value (Chan et al., 2004). It is 

expressed as the percent agreement between the mean determined and the true 

concentration. 

 

It is determined from blank plasma samples spiked with known amounts of 

hydrochlorothiazide (standard concentrations) and then analysed by HPLC. Obtained 

values of hydrochlorothiazide concentration are compared with the theoretical 

concentration of hydrochlorothiazide. Each concentration was determined ten times. Table 

4.8 lists the mean accuracies and their coefficients of variation (CV) for both within-day 

and between-day accuracy. Since all CV values are below the acceptance limit of 15 % 

CV, as suggested by Shah et al. (1992), we can conclude that the method is accurate. 

 

 
 

Table 4.8      Mean accuracies (CV) (%) within-day (n=5) and between-day (n=5). 

  

Mean accuracy (CV), % 
HCT conc. (ng/mL) 

Within-day (n=5) Between-day (n=5) 

10 103.1 (14.0) 100.4 (10.9) 

25 110.6 (6.3) 104.5 (7.1) 

50 98.8 (5.2) 103.1 (4.6) 

100 98.3 (5.2) 102.2 (6.4) 

200 100.1 (0.9) 101.4 (2.2) 

500 99.6 (0.6) 99.9 (0.6) 

1000 100.2 (0.9) 98.8 (2.3) 

2000 100.0 (0.2) 100.3 (0.5) 

 

 

4.3.6.7 Recovery 

 

The amount of analyte in biological samples can be reduced during sample treatment like 

extraction with organic solvents, etc. The closeness of agreement (in %) between the 

peak surface area of an analyte in non-extracted and extracted medium for the same 
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analyte concentration is represented by the recovery (Lee et al., 2004). 

 

The recovery was determined for both hydrochlorothiazide and internal standard. Blank 

plasma was spiked with known concentrations of hydrochlorothiazide and internal 

standard and the sample was treated according to the HPLC method. The obtained peak 

areas were compared with the peak areas obtained after HPLC analysis of aqueous 

hydrochlorothiazide and internal standard solutions of the same concentration. Recovery 

was presented as the mean value of 10 determinations for standard hydrochlorothiazide 

concentrations of 10, 50, 200, 500 and 1000 ng/mL, as well as for internal standard (Table 

4.9). 

 
 

Table 4.9     Mean recoveries (%) (± SD) and CV (%) of HCT and internal standard from plasma (n=10). 

 

Concentration Mean recovery (%) ± SD CV (%) 

HCT 10 ng/mL 96.3 ±  9.4 9.7 

HCT 50 ng/mL 82.8 ± 3.8 4.6 

HCT 200 ng/mL 77.1 ± 10.1 13.1 

HCT 500 ng/mL 78.3 ± 2.6 3.3 

HCT 1000 ng/mL 78.5 ± 3.0 3.8 

IS 1.25 µg/mL 84.8 ± 6.5 7.7 

 

 

 

4.3.6.8 Detect ion and quant i f icat ion l imits 

 

Detection limit (DL) and quantification limit (DQ) were calculated from the mean calibration 

curve (n=10), according to the following equations (Eq. 4.1 and 4.2): 

 

DL = (3.3 * σ) /  S          (4.1) 

 

DQ = (10 * σ) /  S          (4.2) 

where σ represents the standard deviation of the Y-intercept of the mean calibration curve 

and S the slope of the mean calibration curve (Lee et al., 2004). 

 

The detection limit for HCT determination in dog plasma was 4.45 ng/mL and the 

quantification limit was calculated as 13.49 ng/mL. 
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4.4 Results and discussion 

 

4.4.1 In-vitro evaluation of hydrochlorothiazide pellets 

 

In the previous chapter (Chapter 3) it was shown that adding a binder to UNI-PURE® EX 

starch significantly improved the yield of pellets prepared via extrusion/spheronisation. 

Furthermore, the addition of sorbitol increased the mechanical strength of wet extrudates 

and consequently improved the process yield and the surface structure of the pellets. In 

contrast, higher sorbitol concentrations were detrimental for the pellet quality. Based on 

these observations sorbitol and HPMC concentrations were included as variables in an 

experimental design evaluating the quality of pellets containing poorly soluble drugs. 

Process parameters were not varied in the experimental design, but were selected based 

on the previous results (Chapter 3).  

 

 
 

Table 4.10      2
4
-Factorial design (randomised order) presented in coded terms (A: HCT level, B: HPMC 

level, C: sorbitol level, D: water level) and the corresponding results of pellet yield, aspect ratio 

(AR), two-dimensional shape factor (eR) and Feret diameter (FD).  

 

Coded values  Responses 

R
u

n
 

 

A B C D  Yield (%) AR eR FD (µm) 

1  0 0 O L  82.7 1.12 0.57 1100 

2  1 -1 O L  65.3 1.12 0.55 1133 

3  -1 -1 O H  46.1 1.12 0.58 1162 

4  -1 1 S L  90.9 1.12 0.56 1038 

5  1 1 O H  51.5 1.16 0.53 1246 

6  0 0 S L  86.9 1.26 0.45 1300 

7  -1 -1 O L  50.8 1.15 0.53 1096 

8  -1 -1 S H  53.9 1.15 0.55 1117 

9  0 0 S H  76.7 1.15 0.54 1210 

10  1 -1 O H  50.0 1.11 0.59 1147 

11  1 1 O L  85.1 1.12 0.56 1095 

12  1 1 S L  81.8 1.16 0.54 1155 

13  1 -1 S H  52.4 1.19 0.47 1246 

14  -1 1 S H  92.3 1.16 0.52 1038 

15  1 1 S H  37.1 1.16 0.51 1170 

16  -1 -1 S L  53.6 1.13 0.57 1071 

17  1 -1 S L  77.7 1.12 0.55 1093 

18  0 0 O H  80.7 1.14 0.55 1151 

19  -1 1 O L  89.0 1.14 0.55 1142 

20  -1 1 O H  83.5 1.15 0.52 1155 
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Table 4.11     ANOVA results for yield and Feret diameter. 

 

 

 

4.4.1.1 Pel let yield  

 

Figure 4.2 presents the water concentrations which have been used in the experimental 

design in order to maximize pellet yield. Water concentration was directly related to the 

sorbitol and hydrochlorothiazide concentration: it was lower in formulations containing 

sorbitol and when the hydrochlorothiazide load was increased. The influence of sorbitol is 

a consequence of its solubility in water: since it increases the volume of the liquid phase 

during wet massing, less water is required before pellet agglomeration occurs during 

spheronisation. A similar relationship between the required water amount and the 

concentration of a water-soluble filler or drug has been reported by Baert et al. (1991), 

Hileman et al. (1997), Lustig-Gustafsson et al. (1999) and Sousa et al. (2002). The effect 

of sorbitol on water concentration was higher for batches with a lower hydrochlorothiazide 

concentration since the UNI-PURE® EX starch content in these formulations was higher 

and the sorbitol concentration was correlated with the UNI-PURE® EX starch fraction of 

the formulation. Substituting a part of the UNI-PURE® EX starch by hydrochlorothiazide to 

increase the drug load also required less water for successful spheronisation, since the 

hydrophilic starch molecule is able to bind more water before overwetting occurs. In 

addition, increasing the hydrochlorothiazide concentration in the powder mixture reduced 

the total powder surface area as hydrochlorothiazide particles (D [v,0.5]=104.4 µm) are 

larger compared to UNI-PURE® EX starch particles (D [v,0.5]=43 µm), thus liquid 

saturation was obtained at lower water levels (Holm, 1997). Similar relationships between 

the amount of granulation liquid and the particle size were observed by Kristensen et al. 

(1985) (granule growth by coalescence was achieved at lower liquid saturation values 

when increasing the mean particle size of dicalcium phosphate powder) and Bains et al. 

Yield   Feret diameter   

Source P value  
 

Source P value  

Model < 0.0001   Model 0.0005  

A: HCT 0.0384   A: HCT 0.0012  

B: HPMC 0.0001   D: Water 0.0067  

D: Water 0.0003   AD 0.0259  

AB 0.0001   Curvature 0.2259  

AD 0.0009   R² 0.6794  

Curvature 0.0009   Adjusted  R² 0.6153  

R² 0.9000      

Adjusted  R² 0.8616      
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(1991) (substituting part of the MCC-fraction by the smaller sized barium sulphate 

increased the amount of liquid required for successful extrusion/spheronisation). 
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Figure 4.2      Water levels (% w/w, wet mass; LW-low and HW-high) used in formulations without (O) and 

with sorbitol (S) for different drug (HCT) and binder (HPMC) concentrations (% w/w, dry mass). 

 

 

Table 4.11 presents the results of ANOVA analysis for pellet yield. A factorial model was 

significant (P<0.05) and the predicted R2 value was in reasonable agreement with the R2 

value adjusted for the degrees of freedom, which indicated that the data can be fitted by 

the model. Significant curvature (P<0.05) suggested non-linearity of the response plots, 

indicating that more points (surface response design) should be included in the design 

space if formulation optimisation is needed. All factors except sorbitol content were 

significant (P<0.05) as well as the interactions between drug concentration and binder 

level and between drug and water level. The regression equation for pellet yield in terms 

of the coded values is the following (Eq. 4.3): 

 

Yield (%) = 66.32 - 3.70*A + 10.09*B - 6.97*D - 8.83*A*B - 6.90*A*D  (4.3) 

 

 

3D diagrams of pellet yield in function of binder level and drug load are presented in 

Figure 4.3. The weight distribution of the different pellet formulations are presented in 

Figure 4.4, indicating that a pellet yield (710-1400 µm fraction) higher than 90% could be 

obtained.  
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Figure 4.3      3D diagrams of pellet yield as a function of binder and drug level for formulations without 

sorbitol and different water levels: a. low water level and b. high water level. 

 

 

For formulations with a low hydrochlorothiazide load, maximal yield was obtained at the 

highest binder level since the binder increased the mechanical strength of wet extrudates 

and consequently fewer fines were formed during spheronisation. Similar results were 

obtained in the first part of the study (Chapter 3) and were reported by Agrawal et al. 

(1994), who used HPMC as a binder in chitosan-based pellets. In addition, using a higher 

water level did not influence pellet yield, but the amount of fines was reduced in favour of 

the larger pellet fraction (agglomerates).  

 

At the highest hydrochlorothiazide load and low water level, pellet yield was high, 

irrespective of the binder level. Furthermore, at the same (low) binder concentration, 

higher hydrochlorothiazide amounts significantly increased pellet yield due to the 

difference in morphology between hydrochlorothiazide and starch particles: spherical UNI-

PURE® EX starch particles (Fig. 4.5 a) yielded mechanically weaker extrudates and an 

adhesive binder (HPMC) was required to increase the mechanical strength of wet 

extrudates. In contrast, the larger and irregular hydrochlorothiazide particles (Fig. 4.5 b) 

can significantly improve the mechanical strength of the wet extrudates via mechanical 

interlocking of particles (Holm, 1997). At high water levels (Fig. 4.3 b) pellet yield was 

lower for a higher HCT load due to pellet agglomeration.  
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Figure 4.4.       Weight distribution (%) of pellet formulations containing different HCT (10, 30 and 50 % w/w, dry mass), binder (4, 5.5 and 7 %, w/w, dry  

                         mass), sorbitol (yes or no) and water (low or high) levels. 
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Figure 4.5     Scanning electron micrographs of: a. UNI-PURE® EX starch, b. hydrochlorothiazide and  

                      c. piroxicam powder. 

 

 

In the previous chapter it was revealed that sorbitol improved mechanical strength of the 

wet extrudates and increased pellet yield due to its interaction with starch molecules, but 

in this study the effect of sorbitol on pellet yield was not significant (P>0.05).   

 

 

4.4.1.2 Pel let spher ic ity 

 

A mathematical correlation between the experimental design variables and pellet 

sphericity (aspect ratio and shape factor) could not be established. This was not surprising 

because spheronisation speed (together with the amount of granulation liquid and 

spheronisation time) is the most important factor determining pellet sphericity (Baert et al., 

1993). Since a constant spheronisation speed was used (selected based on the previous 

results) the formulation variables in this experimental design had a limited effect on pellet 

sphericity. Majority of pellets had an aspect ratio between 1.11 and 1.19 (except of one 

formulation with AR of 1.25) and a two-dimensional shape factor >0.50 (except of two 

formulations with eR of 0.45 and 0.47), both complying with the ranges for acceptable 

 b.   c. 

 a. 
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pellet sphericity defined by Chopra et al. (2002). 

 

4.4.1.3 Pel let size  

 

The results of ANOVA analysis for pellet size are presented in Table 4.11. The model was 

significant (P<0.05) and the predicted R2 value was in reasonable agreement with the 

adjusted R2 value. The curvature was not significant (P>0.05), indicating the linearity of 

response plots. Drug and water level were significant (P<0.05) as well as their interaction. 

The regression equation for pellet size in terms of the coded values is the following (Eq. 

4.4): 

 

Pellet size (µm) = 1137.24 + 42.51*A + 30.02*D + 26.42*A*D  (4.4) 

 

The mean pellet diameter ranged from 1000 to 1300 µm for all batches. Interaction 

diagrams of pellet size (Fig. 4.6) showed that a higher water concentration generated 

larger pellets for a higher hydrochlorothiazide load due to particle agglomeration during 

spheronisation. 

 

 

 
 

Figure 4.6     Interaction diagram of pellet size (mean Feret diameter, µm) as a function of HCT load (%) and 

water level (LW- low water level; HW- high water level). 

 

 

4.4.1.4 Water content  

 

The residual moisture content determined by Karl Fischer titration was for all pellet 

batches within the range from 3.6 to 7.8 %. Generally, pellets with a lower 
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hydrochlorothiazide load had a higher residual moisture content (6.2 to 7.8 %) than pellets 

with a higher hydrochlorothiazide concentration (3.6 to 4.4 %), irrespective of binder, 

sorbitol or water level. This was due to a higher starch content in formulations with low 

hydrochlorothiazide load since the hydrophilic starch polymer has a higher residual 

moisture content (9.3 % vs. 0.8 % for hydrochlorothiazide).  

 

 

4.4.1.5 Friabi l i ty 

 

Similarly as in the previous study, the friability of all pellet batches was less than 0.01% 

since the solid HPMC bridges formed during drying yielded pellets with high mechanical 

strength (Augsburger and Vuppala, 1997).  

 

 

4.4.1.6 Disintegrat ion  

 

Due to disintegrating properties of UNI-PURE®EX starch as the main excipient, 

disintegration time of all batches was between 5 and 10 minutes.  

 

 

4.4.1.7 In-vitro  drug release  

 

The release profiles of starch-based pellets containing 10 and 50 % of hydrochlorothiazide 

are presented in Figures 4.7 and 4.8. The in-vitro drug release from starch-based pellets 

was compared to the release of hydrochlorothiazide from MCC-based pellets. It can be 

observed that more than 80 % hydrochlorothiazide was released in 30 minutes for all 

starch-based pellet formulations, while MCC-based pellets released less than 40 % 

hydrochlorothiazide after 75 minutes. This significant difference in drug release profiles 

was due to disintegration of starch-based pellets, which ensures fast exposure of the 

poorly soluble drug to the dissolution medium.  

 

Hydrochlorothiazide release was slightly faster for formulations containing sorbitol due to 

its high solubility in water. Initial drug release was influenced by the binder level only for 

pellets loaded with lower hydrochlorothiazide concentration. Nevertheless, immediate 

release of the poorly soluble drug was obtained, irrespective of the composition. 
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Figure 4.7      Hydrochlorothiazide (HCT, 10 %) release profiles of pellets containing different amounts of      

binder (HPMC) and sorbitol, compared to reference pellets (MCC-based). 
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Figure 4.8      Hydrochlorothiazide (HCT, 50 %) release profiles of pellets containing different amounts of      

binder (HPMC) and sorbitol, compared to reference pellets (MCC-based). 
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4.4.2 In-vitro evaluation of piroxicam pellets 

 

4.4.2.1 Pel let character isat ion (pellet yield, s ize,  sphericity and f r iabi l i ty)  

 

Piroxicam was used as a second poorly soluble model drug in this study. Pellet yield for 

all piroxicam formulations was around 90 %, sphericity was acceptable (between 1.12 and 

1.14), pellet friability was below 0.01 % and pellet size (mean Feret diameter) varied 

between 1000 and 1100 µm. 

 

 

4.4.2.2 Pel let dis integrat ion and in-v itro drug release  

 

Since piroxicam was incorporated at a low concentration (2.5 %, w/w, dry mass), pellet 

disintegration becomes even more critical to obtain fast drug release (compared to a non-

disintegrating MCC matrix). Furthermore, based on its hydrophobic nature, dissolution of 

piroxicam was prolonged due to its poor wetting by the dissolution medium.  

 

As expected, starch-based pellets containing piroxicam also disintegrated in less than 15 

minutes, which consequently increased the drug release rate: when comparing the 

dissolution profiles of piroxicam from starch- and MCC-based pellets (Fig. 4.9), it can be 

observed that more than 90 % piroxicam was released within 45 minutes from starch-

based pellets, while only 30 % piroxicam was released from MCC-based pellets during the 

same period of time.  

 

From Figure 4.9 it can be also observed that addition of sorbitol increased piroxicam 

release: more than 90 % of piroxicam was released in only 30 minutes, since sorbitol-

containing formulations had a shorter disintegration time (10 min, vs. 15 min for starch-

based pellets without sorbitol). Furthermore, since piroxicam powder is a very fine          

(D [v,0.5]= 9.9 µm) and cohesive powder (Fig. 4.5 c), agglomeration of these hydrophobic 

particles would reduce the effective surface area available for dissolution. The addition of 

a hydrophilic component (sorbitol) might increase the effective surface area of piroxicam 

particles possibly by hydration and wetting of piroxicam particles surface during 

granulation of the powder mixture and drying, thereby improving the immediate release 

properties of piroxicam (Hoener and Benet, 1996; Schreiner et al, 2005). 
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Figure 4.9     Dissolution profiles of piroxicam from starch-based pellets with and without sorbitol compared 

with MCC-based pellets. 

 

 

 

4.4.3 In-vivo evaluation of hydrochlorothiazide pellets 

 

An in-vivo study was performed to compare the bioavailability of two hydrochlorothiazide 

pellet formulations against fast-disintegrating immediate-release Esidrex®-tablets as a 

reference (relative bioavailability, FRel). The absorption of hydrochlorothiazide is limited to 

the upper part of intestine (duodenum) (Beermann et al., 1976), which combined with its 

poor solubility in water indicates possible bioavailability problems (Dalton and Meyer, 

2002). Therefore, fast dissolution of hydrochlorothiazide is essential for obtaining its 

maximal concentration at the absorption site.  

 

Fig. 4.10 presents in-vitro dissolution profiles of the formulations used in the in-vivo study, 

while Fig. 4.11 presents the mean (n=6) plasma hydrochlorothiazide concentration versus 

time profiles of both pellet formulations and the immediate-release tablet, while Fig. 4.12 

presents individual plasma profiles for all tested formulations. Table 4.12 summarises the 

pharmacokinetic parameters. No statistically significant differences of AUC0→24h, Cmax and 

tmax were detected between pellet and reference formulations (P>0.05, repeated measures 

univariate test), indicating that similar drug concentrations were available at the absorption 

site after administration of disintegrating pellets compared to immediate-release tablets. 

Relative bioavailabilities (FRel) of both pellet formulations were similar. 
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Figure 4.10   In-vitro drug release profiles for pellets containing 10% and 50% HCT and immediate release 

HCT tablets. 
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Figure 4.11   Mean HCT plasma concentration-time profiles (±SD; n=6) obtained after administration of an 

oral dose of 50 mg HCT  for pellets containing 10% and 50% HCT and  immediate release HCT 

tablets  
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Figure 4.12    Individual and mean (n=6) HCT plasma concentration-time profiles obtained after 

administration of an oral dose of 50 mg HCT for pellets containing: a. 10% and b. 50% HCT 

and c. immediate release HCT tablets.  

  

 

 
 

Table 4.12    Mean AUC0→24h, Cmax,  tmax and FRel values (±SD) after oral administration of 50 mg HCT to dogs  

                     (n=6). 

 

Formulation 
AUC0→24h 

(µg.h.kg/mL) 
Cmax 

(µg.kg/mL) 
tmax (h) FRel (%) 

HCT: 10%  149 (± 42) 
a
 40 (± 11)

 a
 1.7 (± 0.4)

 
 109 (± 35) 

HCT: 50%  131 (± 21) 
a
 38 (± 8)

 a
 1.6 (± 0.4)

 
 98 (± 29) 

Immediate release HCT tablet 141 (± 39) 
a
 46 (± 18)

 a
 1.3 (± 0.5)

 
  

 

a
 Treatments are not significantly different  

 (P>0.05, univariate repeated measures test with assumed sphericity). 
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4.5 Conclusion 

 

Due to pellet disintegration, fast dissolution of poorly soluble drugs such as 

hydrochlorothiazide and piroxicam was achieved (>80% drug release in 30 min) when 

using UNI-PURE®EX starch as the main excipient in pellet formulations prepared via 

extrusion/spheronisation. Pellets with a high yield and acceptable sphericity were 

obtained. The bioavailability in dogs of orally administered hydrochlorothiazide pellets was 

similar to that of fast-disintegrating immediate-release hydrochlorothiazide tablets. 
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5  
 

IN-VITRO AND IN-VIVO EVALUATION OF ENTERIC-COATED 

STARCH-BASED PELLET FORMULATIONS  

 

 

 

Submitted for publication in: 
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A. Dukić-Ott, T. De Beer, J.P. Remon, W. Baeyens, P. Foreman, C. Vervaet 

“In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via 

extrusion/spheronisation.” 

 

 

 

5.1 Introduction  

 

Due to their multiparticulate nature, pellets are mainly coated in order to either sustain 

drug release or to deliver a drug to the specific absorption site in the gastro-intestinal tract 

(enteric-coated or colon-targeted drug delivery). Enteric-coated pellets as dosage forms 

are especially suited for administration of drugs which are not stable in gastric fluids, can 

cause irritation of gastric mucosa and/or are absorbed in the duodenum or upper intestine 

(Erkoboni, 2003). After the acid-resistant coating has dissolved in the basic environment 

of intestine, immediate drug release is essential for complete absorption in the duodenum 

or upper intestine. However, when producing pellets with MCC as the main excipient 

immediate release of a poorly water soluble drug can be difficult to obtain due to the lack 

of disintegration of these pellets (O’Connor and Schwartz, 1985). 

 

The aim of this study was to produce enteric-coated pellet formulations with modified 

starch as the main excipient. In order to evaluate the influence of model drug solubility on 

the drug release profiles from coated pellets, two model drugs were used: piroxicam (poor 

water solubility) and theophylline anhydrous (medium water solubility). The influence of 

pellet core composition (drug load, drug particle size and sorbitol level) was also 

evaluated. Moreover, a uniform coating thickness is essential for obtaining modified drug 
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release profiles, since coating defects could lead to faster drug release or dose dumping. 

Next to the factors related to the coating process, a smooth surface morphology of the 

pellet core is very important, since surface roughness results in uneven coating thickness 

and hence a variable drug release (Porter and Ghebre-Sellassie, 1994). Since the 

previous experiments (Chapter 3) revealed the influence of sorbitol on surface 

morphology and several authors reported on the influence of drying method on pellet size, 

porosity and drug release (Chapter 1), the drying method was included as process 

variable in this part of the study. Finally, an in-vivo study in dogs was performed to 

compare piroxicam plasma levels after oral administration of enteric-coated and uncoated 

starch-based piroxicam pellets to the plasma levels after administration of a commercially 

available piroxicam capsule formulation.  
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5.2 Materials 

 

The solubility and particle size of anhydrous theophylline and piroxicam, which were used 

as model drugs in this part of the study, are listed in Table 5.1.  

 

 
 

Table 5.1       Solubility and particle size
a
 of model drugs used in this  study. 

 

Model drug: Anhydrous theophylline Piroxicam 

 Coarse grade (TC) Micronised powder (TM) Micronised powder 

Particle size D [v, 0.5]: 157.9 (± 3.7) µm 19.2 (± 0.5) µm 9.9 (± 0.6) µm 

Solubility: 
 

8.3 g/L at 25°C (in water) 
 

Practically insoluble in 
water 

b
 

Producer: 
 

Roig Farma (Terrassa, 
Spain) 

Bufa (Uitgeest,  
The Netherlands) 

Sagran ( Milan, Italy) 
 

a
 Particle size was determined by laser diffraction as described in Chapter 4. 

b 
Source:

 
Ph. Eur. 4 

 

 
 

Table 5.2       Excipients used for preparation of coating dispersion. 

 

Excipient name Function Producer 

Eudragit
®
 L30 D-55 acid-resistant film-forming polymer Röhm, Darmstadt, Germany 

Triethylcitrate plasticizer 
Sigma-Aldrich Chemie, Steinheim, 
Germany 

Polysorbate 80 wetting agent Alpha Pharma, Nazareth, Belgium 

Glycerol monostearate glidant Federa, Braine-l’Alleud, Belgium 

Demineralised water dispersion medium  

 

 

The materials used for pellet coating and for determination of piroxicam in dog plasma are 

listed in Tables 5.2 and 5.3, respectively, while the same excipients as presented in Table 

4.1 (Chapter 4) were used for pellet preparation. 
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Table 5.3       Materials used for determination of piroxicam in dog plasma. 

 

Excipient name* Producer 

Meloxicam Boehringer Ingelheim, Ingelheim, Germany 

Acetonitrile Biosolve, Valkenswaard, The Netherlands 

Methanol Biosolve, Valkenswaard, The Netherlands 

Triethylamine Sigma-Aldrich Chemie, Steinheim, Germany 

Acetic acid Sigma-Aldrich Chemie, Steinheim, Germany 

Diethylether VWR International, Leuven, Belgium 

Hydrochloric acid 37% VWR International, Leuven, Belgium 

*  All solvents and reagents were of HPLC-grade. 
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5.3 Methods 

 

5.3.1 Experimental set-up 

 

Table 5.4 lists the formulation variables of the performed experiments. Pellets were 

prepared using two model drugs: piroxicam (2.5 % w/w) and anhydrous theophylline (2.5 

and 25 % w/w). To evaluate the influence of drug particle size, additional pellets were 

prepared using micronised anhydrous theophylline in two concentrations (2.5 and 25 % 

w/w). Based on preliminary experiments, a binder was added in a concentration 

depending on the drug level: 7 and 5% w/w HPMC (Methocel® E15 LV) at a drug load of 

2.5 and 25 % w/w, respectively. Each drug formulation was prepared without or including 

sorbitol (10 % w/w, dry mass). In order to obtain maximum process yield and acceptable 

pellet sphericity, optimal water content (determined by preliminary experiments) was used 

in the wet massing step, followed by extrusion/spheronisation. Pellets were dried either in 

an oven or using a fluid-bed drier. Other process parameters were the same for all 

batches and were selected based on previous experiments with UNI-PURE® EX starch 

(Chapters 3 and 4).  

 

The drug release of enteric-coated starch-based pellets was compared to the release from 

coated pellets containing microcrystalline cellulose as the main excipient.  

 

 
 

Table 5.4      Overview of the formulation variables used in the experimental set-up. 

 

Formulation Model drug Drug conc.
1
 Sorbitol conc.

1
 HPMC conc.

1
 Water content

2,3
 

      

Px-0 0 50.0 

Px-10 
Piroxicam 

2.5 
 10 

7 
45.2 

 

TC-2.5-0 0 49.5 

TC-2.5-10 
2.5 

10 
7 

44.5 

TC-25-0 0 44.0 

TC-25-10 

Theophylline 
anhydrous 
(coarse) 25 

10 
5 

38.0 

 

TM-2.5-0 0 49.5 

TM-2.5-10 
2.5 

10 
7 

44.5 

TM-25-0 0 44.7 

TM-25-10 

Theophylline 
anhydrous 

(micronised)* 25 
10 

5 
38.5 

 

1
 % (w/w, dry mass) 

2
 % (w/w, wet mass) 

3
 Water content has been optimised in order to obtain maximal pellet yield and sphericity. 

* Pellets with micronised theophylline were only dried in fluid-bed. 
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5.3.2 Pellet production 

 

A uniform dry powder mixture (batch size: 250 g) containing a model drug and excipients 

was obtained by mixing in a Turbula® mixer (model T2A, W.A. Bachofen, Basel, 

Switzerland) for 15 min. Water was added during first 30 seconds of the granulation 

phase, performed by means of a planetary mixer (Kenwood Chief, Hampshire, UK) during 

10 min and with a mixing speed of 60 rpm. To ensure uniform water distribution during 

granulation, the material was repeatedly scrapped from the mixing bowl walls. The wet 

mass was extruded at a speed of 50 rpm using a single screw extruder (Dome extruder 

lab model DG-L1, Fuji Paudal, Tokyo, Japan) equipped with a dome-shaped extrusion 

screen (thickness: 1.2 mm, perforation diameter: 1mm). The extrudates were spheronised 

at 850 rpm during 3 minutes in a spheroniser with a cross-hatched friction plate (Caleva 

Model 15, Caleva, Sturminster Newton, Dorset, UK). Wet pellets were finally dried for 20 

min at 50°C in a fluid-bed (GPCG1, Glatt, Binzen, Germany), except of theophylline 

pellets which were dried for 20 min at 60°C in a fluid bed or for 24h at 40°C in an oven . 

 

 

5.3.3 Coating of pellets 

 

400 g of pellet cores (900-1400 µm fraction) were coated using a bottom-spray fluid-bed 

coating technique with Würster insert (GPCG1, Glatt, Binzen, Germany). A coating 

dispersion containing 15.3 % dry polymer was prepared. Triethylcitrate (final concentration 

in coating suspension: 3.1 % w/w; 20 % w/w on polymer weight), 33 % aqueous solution 

of polysorbate 80 (1.6 % w/w) and water were mixed and heated to 70-80°C (above the 

melting point of glycerol monostearate). Glycerol monostearate (1.3 % w/w, suspension 

weight) was added to this solution and homogenised for 10 min by means of a rotor-stator 

mixer (Silverson, Bucks, UK). The dispersion was left to cool down to room temperature 

while mixing with a magnetic stirrer. After cooling, the glycerol monostearate dispersion 

was added to an aqueous pseudolatex dispersion of Eudragit® 30L D-55 and gently stirred 

with a magnetic stirrer for at least 30 minutes to stabilize the dispersion before starting the 

coating process. The dispersion was further gently mixed throughout the entire coating 

process. Prior to suspension spraying, pellets were pre-heated to 23-26°C. The coating 

dispersion was sprayed at a rate of 4.0-4.5 g/min, through a 0.8 mm nozzle using an 

atomizing air pressure of 1.5 bar. The inlet air temperature was set between 30 and 33°C 

in order to maintain product temperature between 25 and 26°C. After coating, pellets were 

dried at the same product temperature for 15 min. Pellets were coated until 10, 15, 25 and 

30 % dry polymer weight gain was obtained. 
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5.3.4 Pellet and powder characterisation 

 

Pellet cores were characterised by process yield (900-1400 µm fraction), pellet size (mean 

Feret diameter), sphericity (aspect ratio, AR and two-dimensional shape factor, eR) as 

described in Chapter 3 (Section 3.3.4). The scanning electron micrographs of 

theophylline, piroxicam, MCC and UNI-PURE® EX starch powders were taken as 

described in Section 3.3.4.  

 

 

5.3.4.1 Mercury intrusion porosimetry 

 

Mercury intrusion porosimetry was used for determination of pore size distribution of 

uncoated pellets. Prior to measurement, pellet cores were dried in an oven at 40°C for a 

minimum of 72 h, in order to minimize residual water in the pellets and facilitate the 

evacuation phase. Mercury porosimetry was performed using an AutoPore III 

(Micromeritics Instrument, Norcross, Georgia, US). Sample size (from 0.7 to 1.7 g) was 

adjusted in order to use 20-80 % of the stem volume. The sample was evacuated to 50 

mm Hg, followed by low-pressure mercury intrusion in a pressure range from 3.4 to 193 

kPa, with a mercury filling pressure of 3.4 kPa, maximal intrusion volume of 0.001 mL/g 

and equilibration time of 10 s. High-pressure mercury intrusion was performed in a 

pressure range from 0.193 to 71 MPa (due to pellet compression when applying higher 

pressures than 71 MPa, Schröder and Kleinebudde, 1995), using the same maximal 

intrusion volume and equilibration time. Measurements were performed in duplicate for 

each sample. 

 

 

5.3.4.2 Raman spectroscopy 

 

Pellets containing 25 % (w/w) theophylline (with and without sorbitol, dried in an oven and 

fluid-bed) were evaluated by Raman microscopic measurements in order to evaluate the 

hydration state of theophylline. A RamanRxn 1 Microprobe (Kaiser Optical Systems, Ann 

Arbor, USA) equipped with an air cooled CCD detector (back-illuminated deep depletion 

design) was used to inspect the pellet surface and core. Per pellet, five spectra, each 

representing a different place, were collected on the surface and inside of the pellet using 

a 10x long working distance objective lens (spot size laser = 50 µm). The laser 

wavelength during the experiments was the 785 nm line from a 785 nm Invictus NIR diode 

laser. All spectra were recorded at a resolution of 4 cm-1 using a laser power of 400 mW 
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and a laser light exposure time of 5 seconds per spectrum. Before data analysis, spectra 

were baseline corrected and normalized. Data collection and analysis was done using the 

HoloGRAMSTM data collection software package, the HoloMAPTM data analysis software 

package and the Matlab® software package (ver. 6.5). 

 

 

5.3.4.3 Dynamic vapour sorpt ion 

 

Water sorption isotherms of powders were gravimetrically obtained at 25°C using a DVS 

Advantage 1 with a Cahn D200 microbalance (Surface Measurement Systems, London, 

UK). A powder sample (around 10 mg) was dried until constant weight, followed by 

sorption (increasing the relative humidity up to 90 % with an incremental steps of 10%) 

and desorption (reducing the relative humidity until 0 % in the steps of 10%) phase. Prior 

to changing the relative humidity during sorption or desorption, each sample reached an 

equilibrium (the mass of sample changed less than 0.002% during 10 min). The sample 

weight was recorded every minute during the experiment. 

 

 

5.3.4.4 Dissolut ion 

 

Depending on the model drug used, the dissolution tests were performed using the USP 

apparatus (VK 8000, VanKel, New Jersey, USA) with paddles (piroxicam pellets) or 

baskets (theophylline pellets) at a rotational speed of 100 rpm, in 900 mL dissolution 

medium at 37°C. For enteric-coated pellets, acidic dissolution medium (0.1N HCl) was 

used during the first 2h, followed by 1h in pH 6.8 phosphate buffer (PB). The pellet 

amount used for analysis was adjusted to obtain sink conditions. Samples of 5 mL were 

withdrawn from the dissolution vessel at 5, 10, 15, 20, 30, 45, 60, 75, 90, 105 and 120 min 

during dissolution in 0.1N HCl and at 5, 10, 15, 20, 30, 45 and 60 min in pH 6.8 PB. Drug 

concentration was determined spectrophotometrically at 272 nm for theophylline pellets 

and at 334 and 354 nm for piroxicam pellets in 0.1N HCl and pH 6.8 PB, respectively, 

using a double-beam spectrophotometer (UV-1650PC, Shimadzu, Kyoto, Japan). From 

each batch three samples were taken for analysis.  

 

According to the requirements from USP XXVII, an enteric coat was successfully applied if 

less than 10 % of drug is released after 2 h of dissolution in acid dissolution medium (0.1N 

HCl).  
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5.3.4.5 Stabil i ty study 

 

Pellets containing piroxicam as model drug were used to test the stability of starch-based 

pellet formulations. Coated and uncoated pellets (with and without sorbitol) were stored 

for 9 months under controlled relative humidity (RH, %) and temperature (T, C°): 60% 

RH/25°C and 75% RH/40°C. Samples were taken after 0, 1, 3, 6 and 9 months of storage. 

 

Piroxicam release profiles from coated pellets were determined via dissolution testing for 

2 h in 0.1N HCl (to test the quality of enteric coating after storage) and in phosphate buffer 

(pH 6.8) (to test the immediate release of the drug). The immediate drug release from 

uncoated pellets in phosphate buffer was also determined. The residual water content of 

samples was determined by means of Karl-Fischer titration as described in Section 

4.3.4.2. 

 

 

5.3.5 Bioavailability testing 

 

5.3.5.1 Oral administrat ion 

 

Two enteric-coated (with and without sorbitol) and one uncoated (without sorbitol) 

piroxicam pellet formulation (filled into hard gelatine capsules), as well as immediate 

release Feldene® capsules (Pfizer, NY, USA) containing piroxicam were orally 

administered to 6 male mixed-breed dogs (aged 1-4 years, weighing 21-42 kg) in a 

randomised cross-over study. Each dog was weighed one day before each drug 

administration in order to receive 0.3 mg piroxicam/ kg body weight. Food was restricted 

for 12h before dosage form administration and until the 12h sample was taken. Water was 

always available. A minimum wash-out period of 1-week was respected between each 

experiment. A blood sample was taken from the sphenoid vein at 0, 0.5, 1, 1.5, 2, 3, 4, 8, 

12, 24, 48, 60 and 72 h after oral administration and collected into heparinised borosilicate 

test tubes, centrifuged at 1400g for 10 min and stored at -20°C until analysed. 

 

5.3.5.2 Analysis of  plasma samples 

 

500 µL of plasma sample was added to the residue after drying of 20 µL internal standard 

solution (20 µg/mL meloxicam dissolved in methanol) under N2-stream at 40°C. The 

mixture was sonicated for 10 s and vortexed for 10 s. After adding 250 µL of 1M HCl, the 

sample was vortexed for 10 s. The extraction was performed by adding 5 mL of diethyl 
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ether. The mixture was further shaken for 5 min and finally centrifuged for 5 min at 1420g. 

The organic layer was transferred into a new test tube and evaporated under N2-stream at 

40°C. The residue was dissolved in 200 µL of mobile phase, vortexed for 10 s and 50 µL 

of this solution was injected into HPLC-system.  

 

A validated high performance liquid chromatography (HPLC) method was used to 

determine piroxicam plasma concentrations (adapted from Debunne et al., 2004). 

 

 

5.3.5.3 Pharmacokinet ic and stat ist ical analysis 

 

Piroxicam plasma concentrations were plotted against time to obtain the concentration-

time profiles and to determine Cmax and tmax. The pharmacokinetic program MW/Pharm 

(version 3.0, Mediware, Utrecht, The Netherlands) was used to calculate AUC0→72h. Data 

were statistically analysed using SPSS 14 software (SPSS, Chicago, USA). Multiple 

comparisons of AUC0→24h and Cmax were performed by means of repeated measures 

multivariate ANOVA analysis within-subjects with the formulation as factor (P-value<0.05). 

 

 

5.3.6 Validation of an HPLC method for determination of piroxicam    
in dog plasma 

 

The method was validated based on the ICH-guidelines (1995). Specificity, linearity, 

precision, accuracy, recovery, detection limit and quantification limit (described in Chapter 

4) have been determined as the validation criteria. 

 

 

5.3.6.1 HPLC system 

 

The HPLC-system consisted of an isocratic pump (L-7110, Merck Hitachi, Tokyo, Japan), 

automatic injection system (234 Autoinjector, Gilson, Middleton, WI, USA) with a 50 µL 

loop, a precolumn (LiChrospher® 100 RP-18, 4 x 4 mm, 5 µm, Merck, Darmstadt, 

Germany) followed by a reversed-phase C-18 column (LiChrospher® 100 RP-18 e, 125 x 

4 mm, 5 µm, Merck, Darmstadt, Germany) and a variable wavelength UV/VIS detector (L-

7400, Merck Hitachi, Tokyo, Japan). The software package D-7000 HSM Chromatography 

Data Station (version 4.1, Hitachi Instruments, San Jose, CA, USA) was used for 

integration of the chromatographic peaks. The mobile phase consisted of acetonitrile, 0.1 
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% (v/v) aqueous solution of triethylamine and 30 % (v/v) aqueous solution of acetic acid 

(40/55/5; v/v/v). The pump flow was set to 1.0 mL/min and the detector wavelength was 

357 nm.  

 

 

5.3.6.2 Sample preparat ion 

 

The stock solution of piroxicam (500 µg/mL) was prepared by dissolving 50 mg of 

piroxicam in 100 mL of methanol. The internal standard solution was prepared by 

dissolving meloxicam in methanol to obtain a concentration of 20 µg/mL. The stock 

solution of piroxicam was used to prepare standard solutions of the following 

concentrations: 5, 10, 15, 25, 40, 50 and 60 µg/mL. The internal standard solution was 

always added in the same concentration. 

For the determination of calibration curves for method validation, a mixture of 20 µL 

internal standard solution (20 µg/mL) and 20 µL of standard piroxicam solution was dried 

under N2-stream at 40°C. 500 µL of blank plasma was added to the residue in order to 

obtain the following serum concentrations: 0.2, 0.4, 0.6, 1.0, 1.6, 2.0 and 2.4 µg/mL. The 

mixture was sonicated for 10 s and vortexed for another 10 s. After adding 250 µL of 1M 

HCl, the sample was vortexed for another 10 s. The extraction was performed by adding 5 

mL of diethyl ether. The mixture was further shaken for 5 min and finally centrifuged for 5 

min at 3000 rpm (1420g). The organic layer was then transferred into a new test tube and 

dried under N2-stream at 40°C. The residue was dissolved in 200 µL of a mobile phase, 

vortexed for 10 s and 50 µL of this solution was injected into HPLC-system. 

 

 

5.3.6.3 Specif icity 

 

The absence of interference between piroxicam, internal standard, endogenous plasma 

components and materials used for the extraction, was confirmed after comparing the 

chromatogram of blank serum (Fig. 5.1 a) with the one of blank serum spiked with 

piroxicam (Px, conc. 1.0 µg/mL) and internal standard (IS, meloxicam, conc. 0.8 µg/mL) 

(Fig. 5.1 b). Furthermore, similar retention times of piroxicam (4.3 s) and internal standard 

(7.3 s) were obtained from chromatograms of blank plasma spiked with piroxicam and 

internal standard (Fig. 5.1 b) and of dog plasma after intake of piroxicam reference 

capsules (Feldene®) (Fig. 5.1 c). Since no interfering peaks have been observed, the 

method is specific for the determination of piroxicam and meloxicam (internal standard) in 

dog plasma.  
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a. 

 

 

 

b. 

 

 

 

c. 

 

 
 

Figure 5.1      Chromatograms of piroxicam analysis in dog plasma: a. blank plasma, b. blank plasma spiked 

with piroxicam (Px, conc. 1.0 µg/mL) and internal standard (IS, meloxicam, conc.0.8 µg/mL)  

and c. dog plasma after intake of piroxicam capsules (Feldene
®
). 

 

IS (7.26 s)   

Px  (4.26  s)   

Px  (4.26  s)   

IS (7.28 s)   
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5.3.6.4 Linear ity 

 
 

Table 5.5       Linearity: Within-day variation (n=6) 

 

 Peak area (Px / Internal standard) Px  conc. 
(µg/mL)  1 2 3 4 5 6 Average SD CV 

0.0  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 

0.2  0.17 0.18 0.17 0.20 0.16 0.18 0.18 0.01 7.2 

0.4  0.38 0.36 0.38 0.35 0.36 0.42 0.38 0.02 6.5 

0.6  0.56 0.55 0.63 0.70 0.61 0.62 0.61 0.05 8.9 

1.0  0.95 1.01 1.20 1.03 1.00 0.96 1.02 0.09 8.8 

1.6  1.50 1.67 1.72 1.96 1.56 1.58 1.66 0.16 9.9 

2.0  1.90 2.03 2.30 2.35 2.00 2.15 2.12 0.18 8.4 

2.4  2.22 2.30 2.65 2.59 2.51 2.67 2.49 0.19 7.6 

Slope  0.9369 0.9986 1.1316 1.1469 1.0341 1.0920 1.0567 0.0815 7.7 

Intercept  -0.0007 -0.0101 -0.0286 -0.0277 -0.0357 -0.0467 -0.0249 0.0168 - 

Corr. coef. 
(R²) 

 
0.9997 0.9964 0.9970 0.9912 0.9981 0.9945 0.9961 0.0030 - 

 

 
 

Table 5.6       Linearity: Between-day variation (n=5) 

 

 Peak area (Px / Internal standard) PX conc. 
(µg/mL)  1 2 3 4 5 Average SD CV 

0.0  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 

0.2  0.18 0.18 0.21 0.23 0.23 0.21 0.02 12.0 

0.4  0.39 0.42 0.48 0.50 0.45 0.45 0.04 9.7 

0.6  0.61 0.62 0.63 0.62 0.58 0.61 0.02 2.8 

1.0  1.01 0.96 1.08 0.97 1.04 1.01 0.05 4.9 

1.6  1.76 1.58 1.86 1.56 1.66 1.68 0.13 7.5 

2.0  2.09 2.15 2.27 2.09 2.24 2.17 0.08 3.9 

2.4  2.63 2.67 2.68 2.59 2.71 2.66 0.05 1.8 

Slope  1.0955 1.0920 1.1316 1.0427 1.1181 1.0960 0.0340 3.1 

Intercept  -0.0383 -0.0467 -0.0085 0.0005 -0.0310 -0.0248 0.0201 - 

Corr. coef. 
(R²) 

 
0.9983 0.9945 0.9986 0.9949 0.9968 0.9966 0.0019 - 

 

 

The variation within one day was calculated as the mean value of the slopes obtained 

after six injections of seven standard solutions during one day (Table 5.5). The variation 



Chapter 5 

 142 

between days was presented as the mean value of the slopes obtained after five 

injections of seven standard solutions during a period of one month (Table 5.6). The mean 

slope and its coefficient of variation of the calibration curves calculated for within-day 

(1.0567; 7.7 %) and between-day (1.0960; 3.1 %) injections only showed small 

differences. 

 

 

5.3.6.5 Precision 

 

CV values for repeatability (Table 5.5) and intermediate precision (Table 5.6) for the whole 

concentration range of the standard curve, are between 7.2 and 9.9 % and 1.8 and 12.0 

%, respectively. Based on the recommendations of Shah et al. (1992) mentioned in the 

Chapter 4, it can be concluded that the method is precise for piroxicam determination in 

dog plasma.  

 

 

5.3.6.6 Accuracy 

 

Table 5.7 lists the mean accuracies and their coefficients of variation (CV) for both within-

day and between-day accuracy. Since all CV values are below the acceptance limit of 15 

% CV, as suggested by Shah et al. (1992), we can conclude that the method is accurate. 

 

 
 

Table 5.7      Mean accuracies (CV) (%) within-day (n=6) and between-day (n=5). 

  

Mean accuracy (CV), % 
Px conc. (µg/mL) 

Within-day (n=6) Between-day (n=5) 

0.2 107.1 (5.5) 97.7 (4.4) 

0.4 108.4 (8.7) 93.0 (8.0) 

0.6 100.1 (4.5) 102.0 (3.3) 

1.0 99.6 (6.5) 106.0 (2.1) 

1.6 98.9 (5.8) 102.2 (5.8) 

2.0 98.4 (1.9) 100.3 (1.7) 

2.4 101.7 (3.3) 98.2 (2.2) 
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5.3.6.7 Recovery 

 

Recovery was presented as the mean value of 11 determinations for standard piroxicam 

concentrations of 0.2, 0.4, 0.6, 1.0, 1.6, 2.0, 2.4 µg/mL, as well as for internal standard 

(Table 5.8). The recovery of piroxicam after extraction varied between 77.3 and 82.4 % 

depending on the concentration, while 81.6 % of internal standard was recovered. 

 

 
 

Table 5.8     Mean recoveries (%) (± SD) and CV (%) of piroxicam and internal standard from plasma (n=11). 

 

Concentration Mean recovery (%) ± SD CV (%) 

Px  0.2 µg/mL 77.3 ± 6.3 8.1 

Px   0.4 µg/mL 79.0 ± 5.4 6.9 

Px  0.6 µg/mL 80.6 ± 9.0 11.2 

Px  1.0  µg/mL 82.4 ± 9.9 12.0 

Px  1.6  µg/mL 82.0 ± 10.5 12.8 

Px  2.0 µg/mL 78.2 ± 8.0 10.3 

Px  2.4 µg/mL 81.8 ± 9.1 11.1 

IS  0.8 µg/mL 81.6 ± 9.3 11.4 

 

 

 

5.3.6.8 Detect ion and quant i f icat ion l imits 

 

Detection and quantification limits were calculated from the mean calibration curve (n=11) 

based on the equations presented in the previous chapter (Section 4.3.6.8). The detection 

limit for piroxicam determination in dog plasma was 0.05 µg/mL and the quantification limit 

was calculated as 0.16 µg/mL. 

 



Chapter 5 

 144 

5.4 Results and discussion 

 

5.4.1 In-vitro evaluation of pellets 

 

Based on the previous experiments (Chapters 3 and 4), HPMC was included as a binder 

in the starch-based pellet formulations. Furthermore, it was shown in Chapter 3 that 

including sorbitol into starch-based pellet formulation had a twofold effect on pellet 

properties: firstly, a higher mechanical strength of extrudates (increased wet mass 

consistency) increased pellet yield and secondly, pellet surface properties improved as 

less cracks appeared on the surface. In-vitro release of model drugs like anhydrous 

theophylline (Chapter 3), hydrochlorothiazide (Chapter 4) and piroxicam (Chapter 4) was 

immediate, irrespective of drug solubility, pellet formulation and process parameters due 

to the quick disintegration of starch-based pellets.  

 

In this study, sorbitol was included as a formulation variable due to its influence on pellet 

surface structure. Binder (HPMC) and water concentration were previously optimised to 

obtain pellets with maximum yield and acceptable sphericity. Extrusion and spheronisation 

parameters have been selected based on the experiments presented in Chapters 3 and 4. 

Furthermore, the influence of drying method on pellet properties has been studied by 

several authors (Chapter 1). In this study, prior to coating, wet pellets were dried in an 

oven or in fluidised-bed in order to investigate the influence of drying method on pellet 

core properties as well as on drug release from coated pellets.  

 

 

5.4.1.1 Pel let character isat ion (pellet yield, s ize,  sphericity and f r iabi l i ty)  

 

Table 5.9 lists the formulations and the corresponding values of pellet yield, sphericity 

(aspect ratio, AR and two-dimensional shape factor, eR) and size (mean Feret diameter, 

FD) of pellet cores dried by means of oven or fluid-bed drying.  

 

The yield has been defined as the pellet fraction between 900 and 1400 µm, since a 

broader pellet size distribution could influence coating thickness uniformity due to 

differences in available pellet surface area (Wesdyk et al., 1990; Ragnarsson and 

Johansson, 1988). As discussed in Chapter 4, optimal water level for successful 

extrusion/spheronisation was lower when introducing sorbitol as water-soluble excipient 

and when increasing theophylline concentration in the pellet formulation (Table 5.4).  
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Aspect ratio (AR) and two-dimensional shape factor (eR) ranged from 1.11 to 1.16 and 

from 0.51 to 0.57, respectively. Based on the values suggested by Chopra et al. (2002), 

sphericity can be described as acceptable. In addition, the data presented at Table 5.9 

showed that pellets were slightly more spherical (lower AR and higher eR) when sorbitol 

was added and pellets were dried in a fluid-bed.  

 

 
 

Table 5.9       Pellet yield (%), sphericity (aspect ratio, AR;  two-dimensional shape factor, eR) and size (mean 

Feret diameter, FD) for pellets died in an oven (O) and fluid-bed (FB). 

 

Drying method:  O FB  O FB  O FB  O FB 

Formulation  Yield (%)  AR  eR  Mean FD (µm) 

Px-0  77.1 75.3  1.14 1.13  0.53 0.54  1101 1129 

Px-10  78.5 78.3  1.12 1.12  0.56 0.57  1032 1109 

TC-2.5-0  77.2 76.5  1.16 1.13  0.51 0.54  1110 1152 

TC-2.5-10  79.9 79.3  1.15 1.11  0.53 0.57  1072 1119 

TC-25-0  76.9 72.3  1.14 1.13  0.52 0.55  1144 1179 

TC-25-10    82.0 81.4  1.14 1.13  0.53 0.53  1102 1145 

TM-2.5-0  - 72.6  - 1.13  - 0.54  - 1108 

TM-2.5-10  - 78.3  - 1.13  - 0.55  - 1102 

TM-25-0  - 71.3  - 1.11  - 0.55  - 1176 

TM-25-10  - 86.3  - 1.11  - 0.57  - 1080 

  

 

Mean pellet core size was around 1100 µm for all formulations. Nevertheless, pellets 

containing sorbitol as well as oven-dried pellets were always slightly smaller compared to 

pellets without sorbitol and dried in fluidised-bed (Fig. 5.2). As reported by Kleinebudde 

(1994), pellets made from water-absorbing excipients tend to shrink during drying and the 

extent of shrinking depends on the drying method. Bashaiwoldu et al. (2004) studied the 

influence of several drying methods on pellet properties: compared to fluid-bed dried 

pellets, oven drying enabled a higher extent of shrinkage and pellet size was smaller. This 

was related to static nature of oven drying, where water slowly evaporated over a longer 

period of time and the contraction of the solid material is enabled via generation of 

capillary pressure due to the surface tension of water.  

 

Pellet friability was less than 0.01% for all formulations, which is an important feature of 

pellets intended for coating. 
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Figure 5.2     Cumulative number frequency distributions of pellets containing piroxicam (2.5 %) and coarse 

theophylline (2.5 and 25 %). 
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5.4.1.2 Mercury intrusion porosimetry 

 

Mercury intrusion porosimetry was used to determine pore size distribution of pellet cores. 

Since a smooth pellet surface structure is important for a successful coating process, the 

evaluation of cracks and large pores on the pellet surface was of major interest. Mercury 

intrusion volumes in the low-pressure range corresponding to pore sizes between 6 and 

100 µm were used to evaluate pellet surface properties. Mercury intrusion in the pore 

range above 100 µm was observed for all pellets, but related to mercury intrusion into the 

voids between pellets. Logarithmic differential intrusion volumes (mL/g) plotted against 

pore diameter (R, µm) in logarithmic scale are presented in Figure 5.3. Due to the 

logarithmic transformation (∆V/∆logR), the large pores fraction is overemphasised, which 

is in this case useful for comparison of the 6-100 µm pore range of the different pellet 

cores (Juppo, 1996; Meyer and Klobes, 1999).  

 

Figure 5.3a displays the pore volume vs. size distribution of starch-based pellets 

containing piroxicam (2.5 % w/w) and for comparison the pore volume vs. size distribution 

of MCC-based pellets containing piroxicam (fluid-bed dried) is also presented. For MCC 

pellets as well as starch-based pellets dried in an oven (irrespective of sorbitol level) no 

intrusion of mercury was observed in the pore range of interest, indicating that no cracks 

were present on the surface of the pellets. In contrast to oven-drying, starch-based pellets 

dried in a fluid-bed yielded a high mercury intrusion in the large pores range, which 

indicated an irregular pellet surface. Moreover, addition of sorbitol reduced the total 

intrusion volume in the large pore range: the mercury intrusion peak shifted from 6-80 µm 

pore size range for pellets without sorbitol to 6-60 µm for pellets with sorbitol, indicating a 

lower extent of surface roughness and less cracks on the surface.  

 

Above mentioned observations were supported by SEM photos of the pellets: cracks on 

the surface of fluid-bed dried starch-based pellets and a smooth surface in case of oven-

dried starch-based pellets and MCC-based pellets (Fig. 5.4).  

 

A similar influence of drying method and sorbitol addition on pellet surface morphology 

was observed for pellets containing anhydrous theophylline as model drug (Fig. 5.3 b,c). 
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Figure 5.3     Mercury intrusion volumes vs. pore size distribution (n=2) of pellets containing: a. piroxicam, 

and theophylline (coarse (T) and micronised (TM)) at b. 2.5 % and c. 25 %  load. 
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Figure 5.4      Scanning electron micrographs of starch-based piroxicam pellets dried in oven without (a) and 

with (b) sorbitol, of starch-based piroxicam pellets dried in fluid bed without (c) or with sorbitol 

(d) and of microcrystalline cellulose-based piroxicam pellets dried in fluid-bed (e). 

 

 

In general, the surface cracking during drying is a consequence of differential shrinkage of 

the solid material and the likelihood of fracturing depends on the evaporation rate and the 

strength of the network (Scherer, 1990). A major difference between oven and fluid-bed 

drying is the drying rate. As mentioned previously, in static-bed systems like ovens, drying 

is driven by capillary forces which allow water to slowly migrate to the surface and 

evaporate. Consequently, pellets shrink and the surface is smoother (Bataille et al., 1993). 

b. a. 

c. d. 

e. 
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In contrast, fluid-bed drying is dynamic process which involves turbulent movement of 

particles in an air stream and due to the intensive contact of each particle with the heated 

air fast evaporation of water occurs (Lieberman and Rankell, 1970). This faster drying rate 

and therefore higher pressure gradient of evaporating liquid might be a driving force for 

pellet contraction and can lead to crack formation (Scherer, 1990; Hasatani et al., 1993; 

Berggren et al., 2001).  

 

The probability of crack formation can be reduced by increasing the network strength 

(Scherer, 1990). It was shown in Chapter 3 that the wet mass consistency (mean torque 

values) of starch-based granules was lower compared to MCC-based granules. This is not 

surprising, since MCC particles have fibrous structure (Fig. 5.5 a) which - in contrast to 

globular starch particles - provides a higher mechanical strength (Fig. 5.5 b). Although 

during extrusion and spheronisation additional material densification occurs, it can be 

assumed that resulting starch-based wet pellets have a lower mechanical strength and 

compared to MCC-based pellets, these formulations are more sensitive to the faster 

evaporation rate during fluid-bed drying. Similarly, the lower extent of crack formation 

during fluid-bed drying in case of sorbitol addition may be a consequence of improved 

mechanical strength of starch-based wet extrudates, as shown in Chapter 3. 

 

Intrusion volume vs. pore size distribution graphs also show a difference in mercury 

intrusion volumes and peak position for fluid-bed dried pellets containing different 

theophylline concentrations (Fig. 5.3 b,c): pellets with 2.5 % drug have an intrusion peak 

in the same range as starch-based piroxicam pellets, while for pellets at higher 

theophylline concentration (25 %) the intrusion peak is shifted to the smaller pore size 

range. This shift may be linked to a higher wet mass consistency (higher network 

strength) and therefore lower extent of crack formation: addition of a higher concentration 

of needle-like (coarse) theophylline powder (Fig. 5.5 c) and a lower level of globular starch 

particles (Fig. 5.5 b) increased the wet mass consistency due to mechanical interlocking 

of particles. Moreover, increasing the concentration of micronised theophylline powder 

(Fig. 5.5 d) increased the wet mass consistency due to a larger particle surface area 

(Holm, 1997). Compared to pellets with coarse theophylline, introducing micronised 

theophylline at the same concentration promoted a shift of peak intrusion range towards 

smaller pores and a reduction of the total intrusion volume. Those results comply with the 

results of Niskanen (1992) who reported that reducing the particle size of theophylline 

powder in pellet formulations decreased the fraction of large pores.  
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Figure 5.5      Scanning electron micrographs of (a) Avicel
®
  PH101, (b) UNI-PURE

®
 EX starch, (c) coarse 

and (d) micronised anhydrous theophylline powder. 

 

 

 

5.4.1.3 Raman spectroscopy  

 

The Raman spectra at the 1650 – 1730 cm-1 range of different theophylline forms 

(anhydrous, monohydrate and metastable), as well as the spectra of excipients used in 

pellet formulations are presented in Figure 5.6 a. It can be observed that all theophylline 

forms are easily distinguished and there is no spectral overlap originating from other 

excipients. Figure 5.6 b shows the Raman spectra of pellet formulations containing 

different sorbitol levels and dried in an oven and fluid-bed. Anhydrous theophylline peaks 

were detected in the samples irrespective of sampling place (at the surface or inside the 

pellets) and drying method.  

 

The theophylline forms have a significant influence on drug release. Herman et al. (1988) 

reported that the transition of anhydrous theophylline into a monohydrate polymorph 

a. 

c.  d. 

b. 
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occured during wet granulation. If theophylline dehydration during drying is not complete, 

the dissolution might be prolonged due to theophylline monohydrate which has a lower 

aqueous solubility (Shefter and Higuchi, 1963). Furthermore, depending on the drying 

conditions, theophylline monohydrate dehydration into a stabile anhydrous form can occur 

via a metastable form with lower dissolution rate compared to the stabile anhydrous 

polymorph (Phadnis and Suryanarayanan, 1997; Airaksinen et al., 2004).     
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Figure 5.6      Raman spectra: (a) raw materials including theophylline monohydrate and metastable form;  

(b) pellets dried in oven and fluid-bed, with and without sorbitol (25 % theophylline) and 

sampled at the surface and inside of the pellets . 

 

 a. 

 b. 
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5.4.1.4 In-vitro  drug release  

 

Figures 5.7 and 5.8 show theophylline release profiles from enteric-coated pellets (with 15 

and 30 % polymer weight gain, respectively) during 2 hours in acidic dissolution medium 

(0.1N HCl).  
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Figure 5.7 In-vitro drug release in 0.1N HCl during 2h from enteric-coated pellets (15 % polymer weight 

gain) containing (a) 2.5 % (w/w, dry mass) and (b) 25 % (w/w, dry mass) of theophylline 

anhydrous. Legend: TC and TM – coarse and micronised theophylline; S and O – formulation 

with and without sorbitol; FB and Ov – pellet cores dried in fluid-bed and oven. 

 b. 

 a. 
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Figure 5.8 In-vitro drug release in 0.1N HCl during 2h from enteric-coated pellets (30 % polymer weight 

gain) containing (a) 2.5 % (w/w, dry mass) and (b) 25 % (w/w, dry mass) of theophylline 

anhydrous. Legend: TC and TM – coarse and micronised theophylline; S and O – formulation 

with and without sorbitol; FB and Ov – pellet cores dried in fluid-bed and oven. 

 

 

For pellets coated with 15 % weight gain theophylline release ranged from 5 to about 30 

%, while after applying a higher coating thickness all theophylline pellet formulations were 

 a. 

b. 
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successfully coated (<10% drug release after 2 h in acidic dissolution medium).  

 

Furthermore, since the reference pellets (MCC-based) containing 25% theophylline 

(coarse), fluid-bed dried and coated until 15% polymer weight gain released only 3% of 

the drug after 2h in acidic medium (Fig. 5.7), the differences in theophylline release from 

enteric-coated starch-based pellets were related to the pellet surface properties. 

Therefore, the drug release depended on pellet composition and drying method as these 

factors determined the surface properties. It was already reported that surface roughness 

promoted the formation of an uneven coating thickness (especially in the case of larger 

pores or cracks) and resulted in a faster drug release (Porter and Ghebre-Sellassie, 

1994).  

 

For pellets coated with 15 % of polymer weight gain and at the lower theophylline 

concentration, the highest release was observed for pellets without sorbitol and dried in 

fluidised bed (25 and 30 % release from pellets with micronised and coarse theophylline, 

respectively) (Fig. 5.7 a). This correlated with the worst surface defects as identified via 

mercury intrusion. The slightly lower drug release for micronised theophylline is also 

linked with a shift of mercury intrusion peak towards smaller pore size. In case of oven-

dried pellets dried, drug release was less than 10% as a smooth pellet surface was 

identified. Enteric-coated pellets containing a higher drug level (Fig. 5.7 b) released about 

15 % from fluid-bed dried pellets containing coarse theophylline and no sorbitol, whereas 

all other formulations released about 5 % of theophylline. Furthermore, when comparing 

pellets of the same formulation but with different coating thickness (15, 20, 25 and 30 % of 

polymer weight gain), theophylline release progressively reduced with an increase of 

polymer coat thickness. 

 

The influence of pellet surface properties was negligible for pellets containing piroxicam: 

drug release from enteric-coated pellets during 2h in acid medium was less then 1%, 

irrespective of the coating level. In this case the poor water solubility of piroxicam reduced 

the drug diffusion rate through the water-filled pores.  

 

Figures 5.9 and 5.10 present drug release from enteric coated pellets (containing 2.5 and 

25 % theophylline, respectively) during 45 minutes of dissolution test in phosphate buffer 

(pH 6.8). As expected, the theophylline release was faster completed in case of lower 

coating thickness (in 20 and 30 minutes for formulations coated until 15 and 30 % polymer 

weight gain, respectively) due to a shorter lag time period required for dissolution of 

polymer film. In addition, it can be observed that for the same coating thickness, the 
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release profiles were similar for all formulations containing a lower theophylline level 

(Figure 5.9 a,b). In contrast, for pellets with a higher drug level (Figure 5.10 a,b), 

theophylline release was initially faster for formulations without sorbitol, which might be 

related to the pellet surface structure (more cracks). Nevertheless, due to pellet 

disintegration the release of theophylline in phosphate buffer was complete in less than 30 

minutes for all formulations, irrespective of the theophylline level. 
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Figure 5.9 In-vitro drug release in phosphate buffer (pH 6.8) during 45 min from pellets containing 

anhydrous theophylline (2.5 %) and enteric-coated until (a) 15 % polymer weight gain and (b) 

30 % polymer weight gain. Legend: TC and TM – coarse and micronised theophylline; S and O 

– formulation with and without sorbitol; FB and Ov – pellet cores dried in fluid-bed and oven. 

 

a. 

b. 
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Figure 5.10 In-vitro drug release in phosphate buffer (pH 6.8) during 45 min from pellets containing 

anhydrous theophylline (25 %) and enteric-coated until (a) 15 % polymer weight gain and (b)  

30 % polymer weight gain. Legend: TC and TM – coarse and micronised theophylline; S and O 

– formulation with and without sorbitol; FB and Ov – pellet cores dried in fluid-bed and oven. 

 

 

Initial piroxicam release from coated pellets in phosphate buffer (pH 6.8) was faster from 

pellets with lower coating thickness (Fig. 5.11). In addition, pellet formulations containing 

sorbitol showed faster release due to wetting effect of sorbitol, as explained in Chapter 4.  

 a. 

b. 
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Figure 5.11    In-vitro drug release in phosphate buffer (pH 6.8) during 90 min from enteric-coated piroxicam 

pellets (2.5 %) dried in fluid-bed. Legend: S and O – formulation with and without sorbitol; 15 % 

and 30 % refers to polymer weight gain after coating. 
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Figure 5.12 In-vitro drug release in phosphate buffer (pH 6.8) during 90 min from uncoated pellets 

containing piroxicam (2.5 %) Legend: S and O – formulation with and without sorbitol; FB and 

Ov – pellets  dried in fluid-bed and oven.  
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Figure 5.12 presents the drug release profiles in phosphate buffer (pH 6.8) from piroxicam 

pellet cores dried in an oven and fluidised bed. It can be observed that piroxicam release 

is initially faster from oven-dried pellets, irrespective of sorbitol level. This might be 

explained by the difference in pellet size distribution between oven and fluid-bed dried 

pellets (Fig. 5.2): oven dried pellets were slightly smaller and, due to a higher surface 

area, more exposed to dissolution medium (Pinto et al., 1997). This effect of pellet fraction 

size is more pronounced if a drug has poor water solubility. 

 

 

5.4.2 Stability study 

 

Coated and uncoated starch-based pellets containing piroxicam as model drug were 

stored for 9 months under controlled relative humidity and temperature (60% RH/25°C 

and 75% RH / 40°C).  
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Figure  5.14   Mean water content (±SD, n=3) of pellets (Px- piroxicam, Co- coated pellets, O- pellets without 

sorbitol, S- pellets with sorbitol) after 0, 1, 3, 6 and 9  months storage under controlled relative 

humidity and temperature (60% RH/25°C and 75% RH/40°C).  

 

 

After one month of storage at the higher relative humidity and temperature, coated pellets 

agglomerated due to sticking of the polymer film. Similar behaviour of piroxicam pellets 

coated with a mixture of Eudragit® polymers (L 30 D-55/ FS 30 D in a 60/40 ratio) and 

stored for one month under similar storage conditions has been reported by Debunne 



Chapter 5 

 160 

(2004). This effect was attributed to the plasticising effect of water following water sorption 

at higher temperature: the Tg of film forming polymer is reduced, the molecular mobility of 

polymer chains increased and consequently sticking of coated pellets occured. 

 

Figure 5.14 shows the results of residual water content of pellets as determined by Karl-

Fischer titration. It can be observed that equilibrium water content is reached after 3 

months storage for all formulations. Moreover, pellets containing sorbitol and coated 

pellets had a lower residual water content compared with the pellet formulations without 

sorbitol and uncoated pellets. This may be explained by the higher moisture sorption of 

starch (Fig. 5.15), which is present in a higher concentration in uncoated pellets and in 

formulations without sorbitol.  
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Figure 5.15 Water sorption and desorption curves of UNI-PURE 
®
 EX starch.  

 

 

Piroxicam release profiles from uncoated pellets in phosphate buffer showed no change in 

the release after storage of the pellets at 60% RH/25°C and at 75% RH/40°C during the 9 

month period (Fig. 5.16). The same was observed for coated pellets stored at 60% RH / 

25°C (Fig 5.17). All drug release profiles were normalised, due to the large difference in 

residual water content. Furthermore, coated pellets stored at 60% RH / 25°C did not show 

any change of piroxicam release in acid medium (less than 1% of piroxicam was released 

after 2 h in 0.1N HCl). 

 

Sorption  
Desorption 
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Figure 5.16 In-vitro drug release in phosphate buffer (pH 6.8) from uncoated fluid-bed dried pellets 

containing piroxicam (Px, 2.5 %) without (O) and with sorbitol (S), after 0, 1, 3, 6 and 9 months 

storage under controlled relative humidity and temperature ( 60% RH/25°C and 75% RH/40°C).  
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Figure 5.17 In-vitro drug release in phosphate buffer (pH 6.8) from coated fluid-bed dried pellets containing 

piroxicam (Px, 2.5 %) without (O) and with sorbitol (S), after 0, 1, 3, 6 and 9 months storage 

under controlled relative humidity and temperature (60% RH/25°C).  
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5.4.3 In-vivo evaluation of piroxicam pellets 

 

Piroxicam is a highly potent non-steroidal anti-inflammatory drug and exhibits a gastric 

irritation as the major side effect associated with the use of non-steroidal anti-

inflammatory drugs. Formulating an enteric-coated multiparticulate solid dosage would be 

an advantage due to the protection provided to the gastric mucosa by such a dosage 

form.  
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Figure 5.13 Mean piroxicam plasma concentration-time profiles (±SD; n=6) obtained after administration of 

an oral dose of 0.3 mg piroxicam / kg body weight, formulated as uncoated and coated pellets 

as well as immediate release capsules. 
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Three piroxicam pellet formulations (one uncoated without sorbitol, and two coated with 

and without sorbitol) were used in an in-vivo study to compare their bioavailability with a 

fast disintegrating formulation (Feldene®-capsules used as a reference).  

 

Fig. 5.13 presents the mean (n=6) piroxicam plasma concentration versus time profiles of 

the pellet formulations and the immediate-release capsule, while Fig. 5.14 shows 

individual plasma concentration-time profiles. The pharmacokinetic parameters are 

summarised in Table 5.10.  

 

Table 5.10 shows that there are no statistically significant differences of AUC0→72h and 

Cmax between th pellet and reference formulations (P>0.05, multivariate repeated 

measures test), indicating a similar drug availability at the absorption site. It can also be 

observed that application of an enteric coat did not influence the bioavailability of 

piroxicam. However, in Fig. 5.13 a lag time of 30 min was observed for the drug release 

from coated pellet formulations. This can be attributed to acidoresistivity of the coating 

polymer (Eudragit® L 30 D-55), which dissolves only at pH>6 (i.e., when the coated 

pellets are emptied from the stomach). In addition, one and four hours after 

administration, a small increase of mean piroxicam plasma concentration was observed. 

As reported by several authors, this could indicate an enterohepatic recirculation of 

piroxicam (Debunne et al., 2004; Galbraith and McKellar, 1991, Polli et al., 1996). 

 

 
 

Table 5.10     Mean AUC0→72h, Cmax and  tmax values (±SD) after oral administration of piroxicam (0.3 mg / kg 

body weight) to dogs (n=6). 

 

Formulation 
AUC0→72h 
(µg.h/mL) 

Cmax 
(µg/mL) 

tmax (h) 

Uncoated pellets without sorbitol 66.4 (± 7.7) 
a 

1.7 (± 0.3) 
a
 6.1 (± 3.9)  

Coated pellets without sorbitol 71.2 (± 6.8) 
a
 1.8 (± 0.1) 

a
 7.7 (± 4.1)  

Coated pellets with sorbitol 67.1 (± 14.3) 
a
 1.8 (± 0.3) 

a
 5.7 (± 2.6)  

Immediate release piroxicam capsule 87.5 (± 13.5) 
a
 2.2 (± 0.3) 

a
 2.8 (± 1.1) 

a
 Treatments are not significantly different (P>0.05, multivariate repeated measures test). 
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Figure 5.14    Individual and mean (n=6) Px plasma concentration-time profiles obtained after oral 

administration of piroxicam formulated as: a. uncoated pellets without sorbitol, b. coated pellets 

with and c. without sorbitol and d. immediate release capsule.  
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5.5 Conclusion 

 

Pellets of acceptable sphericity, process yield and containing modified starch as the main 

excipient were successfully enteric-coated (<10 % drug release after 2 h in acidic 

dissolution medium). However, the extent of drug release during two hours in acidic 

medium ranged from <1 % to about 30 %, depending on model drug solubility, particle 

size and concentration, pellet formulation and drying method as these factors determined 

the pellet core surface properties. The influence of pellet core surface roughness was 

reduced by increasing the coating thickness up to 30 % of polymer weight gain. Due to 

pellet disintegration, the drug release in phosphate buffer was immediate for all 

formulations. Values of AUC0→72h and Cmax after oral administration of piroxicam pellets to 

dogs were comparable to the values obtained from immediate release capsules. 
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GENERAL CONCLUSION AND FUTURE PERSPECTIVES 

 

 

 

This study demonstrated the performance of UNI-PURE® EX starch as the main excipient 

during production of pellets via extrusion and spheronisation. It was possible to obtain 

pellets with a high process yield (>90 %), acceptable sphericity (aspect ratio < 1.2) and 

low friability (<0.01 %). In contrast to microcrystalline-based pellet formulations, the main 

feature of starch-based pellets is their fast disintegration (< 10 min), which promotes faster 

release of drugs with poor water solubility. Therefore, irrespective of the model drug 

solubility, all starch-based pellet formulations in this study showed immediate drug release 

profiles. In addition, two in-vivo studies in dogs showed no significant differences in 

bioavailability (AUC and Cmax) of two poorly soluble model drugs (hydrochlorothiazide and 

piroxicam) compared to immediate release reference formulations (P>0.05).  

 

Concerning the formulation properties, pellets with UNI-PURE® EX starch as the main 

excipient required a binder to obtain acceptable pellet yield and sphericity. Furthermore, 

addition of sorbitol increased the mechanical strength of the wet mass and consequently 

improved pellet yield and surface properties. Water content was another important 

formulation variable. Compared to MCC-based pellet formulations, the optimal water 

content range was narrower in case of starch-based pellets. Furthermore, spheronisation 

time was limited to 3 min and the optimal spheronisation speed was at moderate intensity 

(around 850 rpm). Moreover, a smooth pellet surface morphology is an important pellet 

feature, especially when the application of a functional coating is needed. The results of 

the study showed that the quality of enteric coating (drug release after 2 h in acid 

dissolution medium) depended on the surface irregularities of the pellet cores and on the 

drug solubility. Cracks in the pellet surface were reduced if sorbitol was added to the pellet 

formulation or when using oven drying. Nevertheless, applying a higher coating thickness 

(up to 30 % of the polymer weight gain) yielded satisfactory drug release profiles from 
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enteric-coated pellets. 

 

Future challenges for the application of UNI-PURE® EX starch during 

extrusion/spheronisation are linked to several issues: 

•  All experiments have been performed with a single batch of UNI-PURE® EX starch.  

Since this research project is the first reported study on use of this excipient in 

extrusion/spheronisation process, batch-to-batch variability of UNI-PURE® EX starch 

could represent the problem when assessing reproducibility of pellet quality. Therefore, 

the future work might involve optimisation of excipient specification in order to reduce 

batch-to-batch variability. In addition, it will be important to identify those starch 

specification parameters which determine its extrusion/spheronisation behaviour (e.g. 

degree of crystallinity, amylose/amylopectin ratio, etc.)  

•  All formulations used in this study were produced on laboratory scale using a single 

type of equipment. It is known that the change of equipment type and the batch size (due 

to a difference in energy input and generation of heat due to longer processing time) can 

affect the material behaviour, thus influencing pellet quality. Therefore, scale-up would be 

another challenging step when evaluating the performance of UNI-PURE® EX starch as 

excipient in extrusion/spheronisation. 

•  Finally, the success of using UNI-PURE® EX starch in extrusion/spheronisation, 

depends to a great extent on the amount and properties of the drug which is being 

formulated.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

SUMMARY 

 

 

 

Pellets are spherical free-flowing granules with a narrow size distribution, 

typically varying between 500 and 1500 µm for pharmaceutical applications. 

Being multiparticulate solid dosage forms, pellets offer several important 

advantages when compared single-unit dosage forms such as tablets. A number of 

methods are used to produce pellets: extrusion/spheronisation, layering, direct 

pelletisation and high-shear pelletisation. Extrusion/spheronisation is a multiphase 

process which comprises several distinct steps: a uniform powder mixture of drug and 

excipient(s) is initially wet massed by addition of a liquid binder, followed by pressing of 

the moistened mass through an extrusion screen (extrusion) to form cylindrical extrudates, 

which are subsequently broken into smaller cylindrical rods and rounded into spherical 

granules by means of a fast-rotating friction plate (spheronisation) and finally dried. Each 

production step is a distinct process and involves control over a number of process 

parameters in order to obtain pellets of required quality.  

 

Next to the variables relating to the process of extrusion/spheronisation, 

formulation variables (e.g. granulation liquid type and concentration) as well as 

the API and excipients properties (e.g. concentration, solubility and particle size 

distribution) significantly influence the pellet properties. In Chapter 2, an overview of the 

commonly used excipients and their influence on pellet properties (sphericity, size 

distribution, mechanical strength and drug release) was presented. Microcrystalline 

cellulose (MCC) is commonly used as excipient in extrusion/spheronisation due to its 

favorable rheological properties when wetted with granulation liquid, thus assuring the 

production of high quality pellets . However, in several cases microcrystalline cellulose is 

not the excipient of choice, the most important disadvantage being lack of disintegration of 

MCC-based pellets, which leads to prolonged drug release from pellets formulated with 

poorly water soluble drugs. In order to circumvent the disadvantages of MCC, different 
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research approaches have been reviewed in this chapter: modification of MCC-based 

pellet formulations by addition of other excipients and partial or complete substitution of 

MCC by an alternative excipient. The aim of this study was to evaluate UNI-PURE® EX 

starch as an alternative to MCC in the production of pellets via extrusion/spheronisation. 

This modified starch was obtained by an enzymatic debranching of amylose-rich starch. 

After debranching, the starch was retrograded and further isolated by extrusion or drying, 

yielding a crystalline, high-amylose material consisting of D-anhydroglucose units linked 

by α-1,4-D-glycosidic bonds and organised into double-helical crystalline chains. Due to 

its double-helical structure, the α-1,4-D-glycosidic linkages are inaccessible to α-amylase 

in small intestine and therefore it belongs to the group of resistant starches. 

 

In the first part of Chapter 3, preliminary experiments were performed in order to 

identify the formulation and process variables, as well as their optimal ranges 

for the preparation of pellets with high process yield and acceptable sphericity. 

It was revealed that a binder was necessary to obtain an acceptable yield and that the 

addition of sorbitol (when used in a specific concentration range) improved the mechanical 

strength of the wet mass as well as the pellet surface properties. Mixer torque rheometry 

revealed the influence of formulation variables on wet mass consistency and indirectly on 

pellet yield, while solid state NMR confirmed the starch-sorbitol interaction at a molecular 

level. In the second part of this chapter, the process optimisation of a pellet formulation 

(containing theophylline anhydrous (25%, w/w) as model drug) was performed by means 

of surface response methodology. The Box-Behnken surface response design included 

four variables at three levels: binder concentration (HPMC; 3, 4.6 and 6 %, w/w), sorbitol 

concentration (0, 11.25 and 22.5 %, w/w), spheronisation speed (650, 850 and 1050 rpm) 

and water level (which depended on the sorbitol level in the formulation). Pellet yield, 

sphericity (aspect ratio and two-dimensional shape factor, eR) and size (mean Feret 

diameter) were modelled as responses. Pellet friability, disintegration properties and drug 

release profiles were also determined. It was possible to obtain a high pellet yield (>90%) 

and all variables of the design as well as their interactions were significant for pellet yield 

(P<0.05). Pellet sphericity was acceptable (AR<1.2), while spheronisation speed and 

water level, as well as their interactions were significant variables. The mean pellet size 

was between 900 and 1200 µm, with spheronisation speed, water and sorbitol level as 

significant variables. All pellet formulations had a low friability (<0.01%), fast disintegration 

(<10 min) and complete drug release in less than 20 minutes.   
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In Chapter 4, UNI-PURE® EX starch was evaluated as the main excipient for 

immediate-release pellets containing poorly soluble drugs (hydrochlorothiazide 

and piroxicam). A 24-factorial design with central point was used to evaluate the 

influence of hydrochlorothiazide (10 and 50%, w/w), HPMC (binder, 4 and 7%, w/w), 

sorbitol (0 and 10% , w/w) and water (granulation liquid, low and high level) on pellet yield, 

size (mean Feret diameter) and sphericity (aspect ratio and two-dimensional shape factor, 

eR). The optimal granulation liquid content depended on the drug and sorbitol level in the 

formulation. All factors (except sorbitol content) as well as the interactions between drug 

concentration and binder level and between drug and water level were significant (P<0.05) 

for pellet yield, while a significant curvature (P<0.05) suggested non-linearity of the 

response plots. The model was not significant for pellet shape, while hydrochlorothiazide 

and water level as well as their interaction were significant (P<0.05) for pellet size. Pellet 

friability, disintegration, residual water content and in-vitro drug release were determined. 

Pellets containing 2.5% (w/w) piroxicam were also evaluated. For both model drugs, 

pellets with a high yield (>90%), acceptable sphericity (AR<1.2) and low friability (<0.01%) 

were obtained. Due to pellet disintegration, fast dissolution of both hydrochlorothiazide 

and piroxicam was achieved: >80% drug released in 30 min. The bioavailability of pellets 

(containing 50 mg hydrochlorothiazide) was determined after oral administration to 6 

dogs. An HPLC method, validated according to the ICH-guidelines, was used for 

determination of drug levels in dog plasma. No interference with endogenous components 

was detected. Calibration curves were linear in the whole concentration range (r² = 

0.99986 ± 0.00026; n=10). The recovery of hydrochlorothiazide (10-2000 ng/mL range) 

after extraction varied between 77.1 and 96.3 %, while 84.8 % of internal standard 

(hydroflumethiazide) was recovered. The method was precise for the same concentration 

range, since the repeatability and intermediate precision coefficients of variation ranged 

between 1.01 and 8.63 % and between 2.05 and 8.97 %, respectively. The limits of 

detection and quantification were 4.45 and 13.49 ng/mL, respectively. The bioavailability 

(AUC0→24h and Cmax) of hydrochlorothiazide pellets in dogs was not significantly different 

from fast-disintegrating immediate-release hydrochlorothiazide tablets (P>0.05). 

 

In Chapter 5, pellet cores containing UNI-PURE® EX starch as the main 

excipient were enteric-coated with an Eudragit® L30 D-55 based dispersion. 

The polymer weight gain was from 15 to 30% (w/w). Pellet cores were prepared 

using piroxicam (2.5 % (w/w), poor water solubility) and anhydrous theophylline (2.5 and 

25 % (w/w), coarse and micronised powder, medium water solubility) as model drugs. 

Next to the water solubility, particle size and concentration of the model drugs, the 
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influence of sorbitol (0 and 10%, w/w) and drying method (oven and fluid-bed) on pellet 

yield, size (Feret mean diameter), sphericity (aspect ratio and two-dimensional shape 

factor, eR), friability, surface morphology and drug release were evaluated. Binder (HPMC) 

and granulation liquid (water) level were optimised in order to obtain maximum yield (size 

fraction between 900 and 1400 µm) and acceptable sphericity (AR<1.2). Pellet friability 

was <0.01% for all formulations, while the mean pellet diameter was lower for pellets with 

sorbitol and the ones dried in an oven. Mercury intrusion porosimetry combined with 

scanning electron microscopy revealed an influence of drying method and sorbitol level on 

the surface structure: the surface of fluid-bed dried pellets without sorbitol and with 2.5% 

of model drug was cracked, which correlated with a Hg-intrusion peak at the 6-80µm pore 

size range. Due to improved mechanical properties of the wet mass, sorbitol addition 

smoothened the pellets as the main peak of Hg-intrusion shifted to a smaller pore size 

range. Using a higher drug concentration and micronised theophylline shifted the main 

peak of Hg-intrusion further towards the smaller pore size range. Oven-dried pellets 

showed no Hg-intrusion and no cracks were observed. When applying the highest coating 

thickness (30% weight gain), all theophylline pellet formulations were successfully coated 

(<10% drug release after 2 h in acid dissolution medium), while pellets with the lowest 

coating thickness (15% weight gain) released from 5 to about 30 % Theophylline. The 

extent of drug release depended on the pellet composition and drying method as these 

factors determined the surface properties. Piroxicam release in acid medium was less 

than 1% irrespective of the surface characteristics, due to its poor water solubility. In basic 

medium (phosphate buffer, pH 6.8) all pellets released the drug in less than 45 min. The 

bioavailability of coated and uncoated piroxicam pellets was determined after oral 

administration to 6 dogs. An HPLC method, validated according to the ICH-guidelines, 

was used for determination of drug levels in dog plasma. Interference of piroxicam and 

meloxicam (internal standard) with endogenous components was not detected. The 

calibration curves were linear (R² = 0.99655 ± 0.00247; n=11) in the 0.2 to 2.4 µg/mL 

concentration range. The recovery of piroxicam after extraction varied between 77.3 and 

82.4 % depending on the concentration, while 81.6 % of internal standard was recovered. 

The method was precise: the repeatability and coefficients of variation for intermediate 

precision ranged from 7.2 to 9.9 % and from 1.8 to 11.9 %, respectively. The limits of 

detection and quantification were 0.05 and 0.16 µg/mL, respectively. Values of AUC0→72h 

and Cmax after oral administration of piroxicam pellets to dogs were not significantly 

different from the values obtained from immediate release capsules (P>0.05). 

 

 



 

 

 

 

SAMENVATTING 

 

 

 

De focus van dit onderzoeksproject zijn pellets als farmaceutische 

doseringsvorm. Pellets worden gedefiniëerd als sferische partikels met goede 

vloei-eigenschappen en met een nauwe deeltjesgroottedistributie (voor 

farmaceutische toepassingen variërend tussen 500 en 1500 µm). Als multiparticulaire 

doseringsvorm bieden pellets een aantal belangrijke voordelen ten opzichte van single-

unit vormen zoals tabletten. Pellets kunnen via een aantal technieken worden 

geproduceerd: extrusie/sferonisatie, layering, directe pelletisatie en high-shear pelletisatie. 

Extrusie/sferonisatie, de techniek aangewend tijdens dit onderzoeksproject, bestaat uit 

een aantal verschillende stappen: in een eerste fase wordt een poedermengsel van het 

geneesmiddel en de hulpstoffen bevochtigd door toevoeging van een granulatievloeistof. 

Vervolgens wordt deze vochtige massa doorheen een extrusiescherm geperst (extrusie) 

waardoor cylindrische extrudaten worden gevormd. Deze worden daarna in kleinere 

cylindrische staafjes opgebroken en afgerond tot sferische granules (pellets) door middel 

van een roterende frictieplaat (sferonisatie). De laatste stap in het extrusie/sferonisatie-

proces is een droogfase. Op basis van literatuurgegevens is het duidelijk dat het 

controleren van de procesparameters tijdens de verschillende stappen van het proces 

essentieel is om de kwaliteit van de pellets te waarborgen.  

 

 

De eigenschappen van de pellets worden echter niet alleen duidelijk beïnvloed 

door de procesvariabelen gedurende het extrusie-/sferonisatieproces, maar ook 

door de formulatieparameters (vb. type en concentratie van de 

granulatievloeistof) en door de eigenschappen van het actief bestanddeel en de 

hulpstoffen (vb. concentratie, oplosbaarheid en deeltjesgroottedistributie). In Hoofdstuk 2 

wordt een overzicht gegeven van de belangrijkste hulpstoffen aangewend tijdens 

extrusie/sferonisatie en hun invloed op de eigenschappen van de pellets (sfericiteit, 
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deeltjesgroottedistributie, hardheid en geneesmiddelvrijstelling). Microkristallijne cellulose 

(MCC) wordt het frequentst aangewend als hulpstof tijdens extrusie/sferonisatie 

aangezien de rheologische eigenschappen van dit product – na bevochtigen met water – 

optimaal zijn voor extrusie en sferonisatie zodat de kwaliteit van de pellets verzekerd 

wordt. In bepaalde gevallen is het gebruik van MCC echter niet aangewezen omwille van 

een aantal specifieke nadelen, waarvan het niet desintegreren van MCC-pellets het 

belangrijkste is. Dit heeft een verlengde geneesmiddelvrijstelling tot gevolg indien de 

pellets geformuleerd zijn met een slecht wateroplosbaar geneesmiddel. Om de nadelen 

van MCC tijdens extrusie/sferonisatie te vermijden kunnen verschillende strategieën 

worden aangewend die besproken worden in dit hoofdstuk: het aanpassen van 

formulaties op basis van MCC door toevoeging van specifieke hulpstoffen (vulmiddel, 

bindmiddel, lubrifieermiddel, desintegrator, ...) en het (gedeeltelijk of volledig) vervangen 

van de MCC-fractie door een alternatieve hulpstof die eveneens optimale eigenschappen 

voor extrusie/sferonisatie bezit. Deze laatste strategie wordt aangewend tijdens dit 

onderzoeksproject waarbij de extrusie/sferonisatie-eigenschappen van een specifiek 

zetmeelderivaat (UNI-PURE® EX zetmeel) worden geëvalueerd. Dit zetmeelderivaat is 

een kristallijn product met een hoog amylose-gehalte dat wordt bekomen na 

enzymatische behandeling en retrogradatie van zetmeel en dat is opgebouwd uit D-

anhydroglucose eenheden verbonden via α-1,4-D-glycosidische bindingen en 

georganiseerd in een kristallijne dubbele helix. Door deze dubbele helix-structuur zijn de 

α-1,4-D-glycosidische bindingen ontoegankelijk voor α-amylase in de dunne darm en 

behoort UNI-PURE® EX zetmeel tot de groep van resistente zetmelen. 

 

Via preliminaire testen uitgevoerd tijdens het eerste deel van Hoofdstuk 3 

werden de formulatie- en procesparameters geïdentificeerd die van belang zijn 

voor het produceren van pellets met een hoge opbrengst en een goede 

sferiiciteit. Hieruit bleek dat een bindmiddel noodzakelijk was om een aanvaardbare 

opbrengst te garanderen en dat het toevoegen van sorbitol (binnen een specifieke 

concentratiegebied) de mechanische sterkte van de vochtige massa en ook de 

oppervlakte-eigenschappen van de pellets verbeterden. Met behulp van een mixer torque 

rheometer werd de invloed van de formulatieparameters op de consistentie van de 

vochtige massa (en onrechtstreeks op het rendement van het extrusie/sferonisatie 

proces) aangetoond, terwijl vaste stof NMR de interactie tussen zetmeel en sorbitol op 

een moleculair niveau bevestigde. In het tweede deel van dit hoofdstuk werd via de 

oppervlakterespons methodologie de optimalisatie beschreven van een 

extrusie/sferonisatie-proces voor een formulatie op basis van anhydrische theophylline 
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(25%, w/w, aangewend als modelgeneesmiddel). Het Box-Behnken oppervlakte-respons 

design omvatte vier variabelen uitgetest op drie niveaus: bindmiddel-concentratie (HPMC: 

3, 4.6 en 6 %, w/w), sorbitol-concentratie (0, 11.25 en 22.5 %, w/w), sferonisatiesnelheid 

(650, 850 en 1050 rpm) en watergehalte (afhankelijk van de sorbitol-concentratie in de 

formulatie). De procesopbrengst, sfericiteit (aspect ratio, AR en tweedimensionale 

vormfactor, eR) en grootte (gemiddelde Feret diameter) van de pellets werden 

gemodelleerd als responsfactoren. De friabiliteit, desintegratie-eigenschappen en 

geneesmiddelvrijstelling van de pellets werden eveneens bepaald. Voor pellets op basis 

van UNI-PURE® EX zetmeel was het mogelijk een hoge pelletopbrengst (>90%) te 

bekomen en alle variabelen van het design (evenals hun interacties) hadden een 

significante invloed op de pelletopbrengst (P<0.05). De sfericiteit van de pellets was 

aanvaardbaar (AR<1.2), waarbij de sferonisatiesnelheid, de waterconcentratie en hun 

interacties significante parameters waren. De gemiddelde pelletgrootte bedroeg tussen 

900 en 1200 µm, met de sferonisatiesnelheid, water- en sorbitolconcentratie als 

significante parameters. Alle pelletformulaties hadden een lage friabiliteit (<0.01%), een 

snelle desintegratie (<10 min) en een volledige geneesmiddelvrijstelling in minder dan 20 

minuten. 

 

In Hoofdstuk 4 werd UNI-PURE® EX zetmeel geëvalueerd als voornaamste 

bestanddeel van pellets met onmiddellijke geneesmiddelvrijstelling die slecht 

wateroplosbare geneesmiddelen bevatten (hydrochlorothiazide en piroxicam). 

Een 24 factorial design met centraal punt werd gebruikt om de invloed van de concentratie 

aan hydrochlorothiazide (10 en 50%, w/w), HPMC (bindmiddel, 4 en 7%, w/w), sorbitol (0 

en 10%, w/w) en water (granulatievloeistof, laag en hoog gehalte) te evalueren op de 

pelletopbrengst, grootte (gemiddelde Feret diameter) en sfericiteit (aspect ratio, AR en 

tweedimensionale vormfactor, eR). Het optimale gehalte van de granulatievloeistof was 

afhankelijk van de geneesmiddel- en sorbitol-concentratie in de formulatie. Alle factoren 

(behalve de sorbitol-concentratie) en de interacties tussen de geneesmiddel- en 

bindmiddel-concentratie en tussen de geneesmiddel-concentratie en het watergehalte 

waren significant (P<0.05) voor de pelletopbrengst. Het model was niet significant voor de 

pelletvorm, terwijl de hydrochlorothiazide-concentratie en het watergehalte (alsook hun 

interacties) een significante invloed (P<0.05) hadden op de pelletgrootte. De friabiliteit, 

desintegratie, residueel vochtgehalte en in-vitro vrijstelling van de pellets werden bepaald. 

Pellets met 2.5% (w/w) piroxicam werden eveneens geëvalueerd. Voor beide 

modelgeneesmiddelen was het mogelijk om pellets met een hoog rendement (>90%), 

aanvaardbare sfericiteit (AR<1.2) en lage friabiliteit (<0.01%) te produceren. Ten gevolge 
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van de snelle pelletdesintegratie werden zowel hydrochlorothiazide als piroxicam snel 

vrijgesteld uit de pellets: meer dan 80% van de geneesmiddeldosis in 30 minuten. De 

biologische beschikbaarheid van pellets (beladen met 50 mg hydrochlorothiazide) werd 

bepaald na orale toediening aan 6 honden. Via een HPLC methode (gevalideerd volgens 

de ICH-richtlijnen) werden de plasmaconcentraties aan hydrochlorothiazide bepaald. Er 

werd geen interferentie vastgesteld tussen hydrochlorothiazide, de interne standaard en 

endogene plasmacomponenten. De calibratiecurves waren lineair binnen het gehele 

concentratiegebied (r2=0.99986 ± 0.00026; n=10). De recovery van hydrochlorothiazide 

(10-2000 ng/mL range) na extractie varieerde tussen 77.1 en 96.3 %, terwijl 84.8 % van 

de interne standaard (hydroflumethiazide) werd teruggevonden. De methode was precies 

binnen dezelfde concentratierange, aangezien de variatie-coëfficienten voor de 

herhaalbaarheid en intermediaire precisie respectievelijk tussen 1.01 en 8.63 % en tussen 

2.05 en 8.97 % lagen. De detectie- en kwantificatie-limieten bedroegen respectievelijk 

4.45 en 1.49 ng/mL. De biologische beschikbaarheid (AUC0
�

24h en Cmax) van 

hydrochlorothiazide pellets bij honden was niet significant verschillend ten opzichte van 

sneldesintegrerende hydrochlorothiazide-tabletten met onmiddellijke vrijstelling (P>0.05). 

 

In Hoofdstuk 5 werden pellets op basis van UNI-PURE® EX zetmeel enterisch 

omhuld met een Eudragit® L30 D-55 dispersie. De gewichtstoename aan 

polymeer na coating was 15 tot 30% (w/w). De pellets bevatten piroxicam (2.5 

% (w/w), slecht wateroplosbaar) of anhydrische theophylline (2.5 en 25 % (w/w), grof en 

gemicroniseerd poeder, medium wateroplosbaar) als modelgeneesmiddelen. Naast de 

wateroplosbaarheid, deeltjesgrootte en concentratie van het modelgeneesmiddel werden 

ook de invloed van sorbitolconcentratie (0 en 10 %, w/w) en de droogmethode (oven en 

fluid-bed) op de pelletopbrengst, grootte (Feret gemiddelde diameter), sfericiteit (aspect 

ratio, AR en tweedimensionale vormfactor, eR), oppervlakte-morfologie en 

geneesmiddelvrijstelling geëvalueerd. Het bindmiddel (HPMC) en het gehalte aan 

granulatievloeistof (water) werden geoptimiseerd om een maximale opbrengst (fractie 

tussen 900 en 1400 µm) en een aanvaardbare sfericiteit (AR<1.2) te bekomen. De 

pelletfriabiliteit was lager dan 0.01% voor alle formulaties, terwijl de gemiddelde 

pelletdiameter lager was voor pellets met sorbitol en voor formulaties die in de oven 

werden gedroogd. Kwikporosimetrie in combinatie met scanning electron microscopie 

toonde de invloed aan van de droogmethode en van de sorbitolconcentratie op de 

oppervlaktestructuur: het oppervlak van de pellets gedroogd via fluid-bed zonder sorbitol 

en met 2.5% aan modelgeneesmiddel vertoonde barsten, dit was gecorreleerd met een 

Hg-intrusiepiek voor poriën binnen een range van 6-80 µm. Als gevolg van de betere 
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mechanische eigenschappen van de vochtige massa in aanwezigheid van sorbitol, 

werden pellets met een vlak oppervlak bekomen aangezien de belangrijkste piek van Hg-

intrusie verschoof naar een kleinere poriegrootte. Door het gebruik van een hogere 

geneesmiddelconcentratie en gemicroniseerde theophylline verschoof de Hg-intrusie nog 

verder in de richting van kleinere poriën. Na ovendroging werd geen Hg-intrusie in de 

pellets gedetecteerd en visueel werden geen barsten waargenomen. Indien de dikste 

polymeerfilm werd aangebracht (30 % gewichtstoename) werden alle pelletformulaties 

geformuleerd met theophylline succesvol gecoat (<10% geneesmiddelvrijgave na 2 u in 

zuur midden, 0.1N HCl), terwijl pellets met de laagste coatingsdikte (15% 

gewichtstoename) 5 tot max. 30 % theophylline vrijstelden. Hierbij was de 

geneesmiddelvrijstelling afhankelijk van de samenstelling van de pellets en van de 

droogmethode aangezien deze factoren de oppervlakte-structuur van de pellets 

bepaalden. De vrijstelling van piroxicam in een zuur medium bedroeg minder dan 1% 

anafhankelijk van de oppervlakte-eigenschappen van de pellets, wat te wijten is aan de 

slechte wateroplosbaarheid van piroxicam. In een basisch medium (fosfaatbuffer pH 6.8) 

stelden de pellets de geneesmiddeldosis vrij in minder dan 45 min. De biologische 

beschikbaarheid van gecoate en niet-gecoate piroxicam-pellets werd bepaald na orale 

toediening aan 6 honden. Voor de bepaling van het geneesmiddelgehalte in 

hondenplasma werd gebruik gemaakt van een HPLC-methode die gevalideerd was in 

overeenstemming met de ICH-richtlijnen. Er werd geen interferentie waargenomen van 

piroxicam en meloxicam (interne standaard) met endogene componenten. De 

calibratiecurves waren lineair (R2= 0.99655 ± 0.00247; n=11) in een concentratiegebied 

van 0.2 tot 2.4 µg/mL. De recovery van piroxicam na extractie varieerde afhankelijk van 

de concentratie tussen 77.3 en 82.4 %, terwijl 81.6 % van de interne standaard werd 

gerecupereerd. De methode was exact: de variatie-coëfficiënten voor de herhaalbaarheid 

en intermediaire precisie varieerden respectievelijk van 7.2 tot 9.9 % en van 1.8 tot 11.9 

%. De detectie- en kwantificatieimieten bedroegen respectievelijk 0.05 en 0.16 µg/mL. De 

AUC0
�

24h en Cmax waarden na orale toediening van piroxicam pellets aan honden 

vertoonden geen significant verschil met de waarden bereikt na toediening van piroxicam-

capsules met onmiddellijke vrijstelling (P>0.05). 
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