
Diversiteit voor softwarebescherming

Diversity for Software Protection

Bertrand Anckaert

Promotor: prof. dr. ir. K. De Bosschere
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2007 - 2008

ISBN 978-90-8578-186-8
NUR 980
Wettelijk depot: D/2008/10.500/5

Aan Elisa, mijn vrouw
en Jasper en Febe, onze kindjes

Voorwoord
–Preface–

Als ik bedenk wat voor een gelukkige samenloop van omstandigheden geleid
heeft tot het moment waarop ik dit doctoraat kan afsluiten met het uiten van
mijn dankbaarheid, prijs ik me gelukkig dat niemand kan knoeien met het
verleden.

In de eerste plaats wil ik mijn ouders bedanken voor de onvoorwaardelijke
steun en het vertrouwen dat ze mij geven. Ook mijn broers ben ik bijzonder
dankbaar, onder meer voor hun ongebreidelde nieuwsgierigheid naar alles wat
ook maar iets met wetenschap en techniek te maken heeft, van het zoeken naar
miljoenen jaren oude ammonieten tot bedenkingen bij de futuristische X-files.

Voor de iets minder wetenschappelijke, maar daarom niet minder inter-
essante, vrijetijdsbesteding kon ik altijd terecht bij de Statskaerten. Vinnie,
Dorper, Knorry, Tim, en de anderen, ook al zie ik jullie tegenwoordig door alle
drukte veel te weinig, merci.

De laatste jaren heb ik het genoegen om naast mijn eigen familie ook nog
te kunnen rekenen op die van mijn vrouwtje. Elisa, ge zijt een schatje en ik
kijk er naar uit om nog vele jaren samen voor onze kindjes Jasper en Febe te
zorgen. We gaan van het leven genieten tot we samen oud en versleten zijn.

Met zoveel steun op persoonlijk vlak durfde ik mij wagen aan de studies
Informatica. Van bij het begin kon ik rekenen op Frederik en Werner. Ze
zagen het door de vingers dat ik nog nooit van arrays had gehoord en dat
een string voor mij nog een heel andere betekenis had. Hun mateloze inzet,
in het bijzonder die van Frederik tijdens onze gezamenlijke scriptie, werkte
aanstekelijk.

Toen kwam de keuze tussen doctoreren en een “echte” job. Als ik be-
denk wat ik allemaal had moeten missen als ik niet voor het doctoraat gekozen
had. . . Ik ben mijn promotor, prof. Koen De Bosschere, dan ook bijzonder
erkentelijk voor de begeleiding en de vele kansen die hij mij geboden heeft.
Mede dankzij hem kon ik mij gedurende iets meer dan vier jaar verdiepen

ii Preface

in één van de meest uitdagende onderwerpen in de informatica. Het insti-
tuut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in
Vlaanderen (IWT) stond, samen met Universiteit Gent, in voor de financiële
ondersteuning.

Ik wil ook mijn collega’s Bjorn, Bruno, Dominique, Ludo en Matias en
sinds kort ook Bart en Jonas van harte bedanken voor de goede samenwerking,
het nalezen van dit proefschrift en de vele interessante vergaderingen, zowel
met als zonder pint. Verder bedank ik Ronny om zo goed zorg te dragen voor
mijn data. Ook de rest van ons verdiep en de hele PARIS onderzoeksgroep
maakten dit onderzoek mee mogelijk.

Wetenschappelijk onderzoek beperkt zich echter niet tot één onderzoeks-
groep. Ik kreeg dan ook de kans om mijn werk voor te stellen op internationale
conferenties en tegelijkertijd een stuk van de wereld te zien. Bovendien maakte
dit het mogelijk om mijn ideeën uit te wisselen met de besten uit het domein.
Een aantal van hen werd bereid gevonden in mijn examencommissie te zetelen.

Christian Collberg, Erik D’Hollander, Koen De Bosschere, Daniël De Zut-
ter, Mariusz Jakubowski, Stefan Katzenbeisser, Eric Laermans, Bart Preneel
and Jan Van Campenhout, I am very honored to have you all on my PhD com-
mittee. Thank you for the time you were willing to spend and the enlightening
discussions.

Het professioneel hoogtepunt van de laatste vier jaar was zonder twijfel de
stage, inclusief barbecue bij Bill Gates, bij Microsoft Research. Ik wil Bart
Preneel in het bijzonder bedanken voor het leggen van de eerste contacten.

Ramarathnam Venkatesan and Mariusz Jakubowski, thanks a lot for hav-
ing me over at your research group. I had a wonderful time, both professionally
and personally. I look forward to our next meeting.

Gent, januari 2008
Bertrand Anckaert

Samenvatting

De snelle verspreiding van de PC is ongetwijfeld in de hand gewerkt door de
openheid van het platform. Diezelfde openheid zorgt er ook voor dat software
kwetsbaar is.

Dit is een bron van bezorgdheid omdat software steeds vaker waardevolle
informatie bevat of beschermt. Medische en financiële informatie wordt bij-
voorbeeld meer en meer digitaal opgeslagen. De intellectuele eigendom vervat
in film en muziek wordt steeds vaker beschermd door softwaregebaseerde sys-
temen. Bovendien willen sommige gebruikers het gedrag van hun software
aanpassen. Zo willen sommigen vals spelen in computerspelletjes. Anderen
willen dan weer dat de software functioneert zonder geldige licentie.

Een gebruiker die de volledige controle heeft over het systeem waarop de
software draait, kan het programma naar willekeur observeren en wijzigen. In
een dergelijke omgeving is het voor een kwaadwillende gebruiker slechts een
kwestie van tijd vooraleer de software gekraakt wordt.

Bestaande beschermingsmechanismen verhogen de inspanning vereist voor
de eerste succesvolle aanval. Van zodra de eerste succesvolle aanval beschik-
baar is, neemt het aantal gekraakte kopieën zeer snel toe. In veel gevallen kan
deze aanval immers eenvoudig overgezet worden op andere kopieën.

Dit werk legt de nadruk op het minimaliseren van de gevolgen van zo’n
succesvolle aanval. Met behulp van artificiële diversiteit kunnen we de ver-
spreiding van een aanval tegengaan. Dit zorgt ervoor dat informatie verworven
uit het aanvallen van één kopie niet zonder meer toepasbaar is op een andere
kopie. Bovendien laat het toe om het onderscheid te maken tussen verschil-
lende kopieën. Zo kunnen we de bruikbaarheid van een succesvolle aanval in
de tijd reduceren door de toegang tot updates, bijkomende functionaliteit en
online diensten te ontzeggen aan gekraakte kopieën.

Een andere toepassing van diversiteit is het coderen van berichten. Door
verschillende kopieën te koppelen aan verschillende gebruikers, kan bij het
verspreiden van een illegale kopie of een andere inbreuk de dader makkelij-
ker geı̈dentificeerd worden. Men kan dit het best vergelijken met een digitale
vingerafdruk. Een verwante toepassing is steganografie, waarbij een geheim
communicatiekanaal wordt opgezet.

iv Abstract in Dutch

Bovendien kan diversiteit gebruikt worden om niet-artificiële verschillen te
verbergen. Dit is bijvoorbeeld nuttig wanneer het verschil tussen twee versies
van een DRM-applicatie de gebruikersspecifieke sleutel is. Deze sleutel dient
geheim te blijven, zelfs voor de rechtmatige eigenaar. Kennis van de sleutel
stelt hem immers in staat om de media te ontdoen van de beschermingslaag en
die daarna te distribueren. Zonder bijkomende diversiteit kan de locatie van de
sleutel gevonden worden door het verschil te nemen tussen twee versies.

Er zijn nog een aantal situaties waarbij het verschil tussen versies gevoe-
lige informatie kan bevatten. Bij digitale vingerafdrukken kan het verschil de
plaats van de vingerafdruk verraden, waardoor die makkelijker verwijderd kan
worden. In het geval van een beveiligingsupdate kan het verschil tussen de
versie voor en na de update een kwetsbaar punt in de software identificeren.
Deze informatie kan dan gebruikt worden om een aanval op te zetten tegen
verouderde systemen. Door het aanbrengen van bijkomende artificiële diversi-
teit kunnen de originele verschillen verborgen worden tussen een groter aantal
verschillen.

Al deze toepassingen vereisen een manier om semantisch equivalente, maar
syntactisch verschillende versies te genereren. Daartoe stellen we een geau-
tomatiseerd diversiteitssysteem voor, gebaseerd op een aantal geparameteri-
seerde transformaties uit verschillende domeinen: codegeneratie, optimalisa-
tie, obfuscatie, virtualisatie en zelfwijzigende code.

Het aantal versies dat we op die manier kunnen genereren is erg groot. Zo
kunnen we tussen 2134.150 en 21.339.124 versies genereren voor de C-program-
ma’s uit SPEC CPU2006.

Het aantal versies geeft echter geen volledig beeld. De versies moeten
niet enkel verschillend zijn, ze moeten voldoende verschillend zijn opdat in-
formatie uit één kopie geen informatie bevat over een andere kopie (op de
functionaliteit na). In de praktijk is deze voorwaarde moeilijk te vervullen.
Bovendien hebben we een manier nodig om diversiteit te evalueren zelfs als
aan deze voorwaarde niet voldaan is. Hiertoe introduceren we een metriek die
aangeeft hoe goed de diversiteit een koppelsysteem om de tuin kan leiden.

Een koppelsysteem schat welke paren codefragmenten uit twee versies ver-
want zijn. Deze schatting wordt dan vergeleken met de referentierelatie, die
definieert welke codefragmenten echt verwant zijn. De schatting kan paren co-
defragmenten bevatten die niet verwant zijn. In dit geval spreken we van valse
positieven. De schatting kan ook verwante paren niet bevatten. Dit noemen
we valse negatieven. Hoe meer valse positieven en negatieven, hoe slechter de
schatting en dus hoe beter de diversiteit.

Dit werk bespreekt een koppelsysteem dat bestaat uit zeven vage rang-
schikkers. Elke rangschikker gebruikt een verschillende soort informatie: in-

v

structiesyntaxis, data, controleverloop, dataverloop, het aantal uitvoeringen,
systeemoproepen en het tijdstip van uitvoering. De idee is dat, hoewel trans-
formaties bepaalde types informatie kunnen beı̈nvloeden, de kans klein is dat
alle types informatie tezelfdertijd onbruikbaar worden.

De informatie waarop de rangschikkers gebaseerd zijn, wordt verzameld
door een dynamisch instrumentatieraamwerk. Het voordeel van een dergelijk
raamwerk is dat het geen manuele ontrafeling of programmabegrip vereist.
Aangezien we enkel rekening houden met effectief uitgevoerde code, is de
verzamelde informatie bovendien accuraat en correct.

De invoer van elke rangschikker bestaat uit twee codefragmenten. Door
middel van een waarde uit het interval [0, 1] wordt aangegeven hoe zeker de
rangschikker is dat de twee codefragmenten verwant zijn. Uit evaluatie blijkt
dat de individuele rangschikkers veel niet-verwante codefragmenten toch als
verwant beschouwen. Dit leidt op zijn beurt tot vele valse positieven.

De oorzaak van een groot aantal van de valse positieven is te vinden bij
een aantal grote equivalentieklassen. Om te vermijden dat deze tot een groot
aantal valse positieven leiden, kunnen we het aantal relaties per codefragment
beperken. Een tweede bescherming tegen valse positieven bestaat erin om de
context van de codefragmenten te verruimen. De kans dat twee instructies
schijnbaar identiek, maar niet-verwant zijn is een stuk groter dan de kans dat
twee basisblokken dat zijn.

Tot slot kunnen we de schatting verbeteren door het combineren en itereren
van rangschikkers. Door combinatie kunnen we verschillende types informa-
tie tegelijkertijd beschouwen. De kans dat twee niet-verwante codefragmenten
schijnbaar identiek zijn met betrekking tot één type informatie is significant
groter dan de kans dat ze identiek zijn met betrekking tot verschillende types
informatie tegelijkertijd. Door iteratie kunnen we dan weer eerder verzamelde
informatie gebruiken om de schatting uit te breiden of te reduceren. Zo kunnen
we bijvoorbeeld paren van codefragmenten identificeren die eerder ten onrech-
te als verwant werden beschouwd indien die in de controleverloopgraaf niet in
de nabijheid van andere verwante codefragmenten zitten.

Het doel van een diversiteitssysteem is dan weer om het koppelsysteem om
de tuin te leiden. Er zijn twee mogelijkheden om dit te doen. Ten eerste kunnen
we de uitvoer van het koppelsysteem minder bruikbaar maken door het aantal
valse positieven en negatieven op te drijven. Daarnaast kunnen we er voor
zorgen dat de uitvoer niet binnen redelijke tijd gegenereerd kan worden.

Een eerste reeks van diversifiërende transformaties (gebaseerd op codege-
neratie, optimalisatie en obfuscatie) heeft als hoofddoel om het aantal valse
negatieven te verhogen. De invloed van de individuele transformaties op het
koppelsysteem is vrij beperkt. Zo wordt slechts 24% van de verwante co-

vi Abstract in Dutch

defragmenten niet geı̈dentificeerd en is hoogstens 37% van de geschatte ver-
wantschappen verkeerd. Wanneer we echter de verschillende transformaties
combineren, kunnen we ervoor zorgen dat iets meer dan 3 van de 4 verwan-
te codefragmenten niet langer gedetecteerd worden, terwijl bijna 6 van de 10
geschatte verwantschappen fout zijn.

Met behulp van zelfwijzigende code proberen we het koppelsysteem te
vertragen. Meer bepaald zorgen we ervoor dat het verzamelen van informatie,
die door de rangschikkers wordt gebruikt, bemoeilijkt wordt. Door het ge-
bruik van zelfwijzigende code kunnen we ervoor zorgen dat de vaak gemaakte
veronderstelling dat code constant is niet langer geldt. We introduceren een
voorstelling voor zelfwijzigende code die het mogelijk maakt om fijnkorrelige
zelfwijzigende code te introduceren, te analyseren en te lineariseren. Op basis
hiervan bespreken we twee transformaties die gebruik maken van zelfwijzi-
gende code.

Door de aanwezigheid van zelfwijzigende code dient het instrumentatie-
raamwerk elke schrijfoperatie te controleren om na te gaan of ze niet naar
eerder geı̈nstrumenteerde code schrijft. Dit alleen vertraagt de uitvoering met
een factor twee. Bovendien moet desgevallend code geı̈nvalideerd en geher-
instrumenteerd worden. Dit leidt tot een bijkomende vertraging van meer dan
een factor 200 door de toegepaste transformaties.

De laatste transformatie die besproken wordt, is virtualisatie. De idee is
om het programma te herschrijven in een unieke instructieset en het te verde-
len met een bijhorende virtuele machine. Hierdoor wordt de originele code niet
langer uitgevoerd. De originele code is nu data geworden die geı̈nterpreteerd
wordt door de virtuele machine. Hierdoor ontsnapt de code aan het koppelsys-
teem dat enkel verwante code (en niet verwante data) probeert te identificeren.

Bovendien resulteert de vrijheid van het zelf definiëren van de instructieset
in een grote ontwerpruimte en dus veel potentieel voor diversiteit. Zo kunnen
we zelf de semantiek van de instructies vastleggen en de manier waarop die
gecodeerd worden. Bovendien dienen we ons niet te houden aan het traditio-
nele uitvoeringsmodel.

De voornaamste bijdragen van dit werk zijn het motiveren van de toepasbaar-
heid van diversiteit binnen de context van een kwaadwillende omgeving, het
voorstellen van een praktisch bruikbare metriek voor de evaluatie van diver-
sifiërende transformaties en de introductie van een diversiteitssysteem. Voor
dit diversiteitssysteem bestuderen we als eerste de bruikbaarheid van bestaan-
de transformaties uit verschillende domeinen binnen de context van diversiteit.
Tot slot hebben we een model geı̈ntroduceerd voor zelfwijzigende code.

Abstract

Openness has arguably been an enabler for the widespread proliferation of
the PC (Personal Computer) platform. At the same time, it has left software
vulnerable.

This is a growing concern as software more and more contains or controls
access to valuable information. For example, medical and financial informa-
tion may be stored digitally. The intellectual property of movies, music and
pictures may be protected by software-based DRM (Digital Rights Manage-
ment) systems. Furthermore, some users modify software to alter the behavior
intended by the provider. For example, they may circumvent copy restriction
mechanisms or they may modify a game to become invulnerable.

When the adversary has full control over the environment running the soft-
ware, he can inspect and modify the software at will. In the presence of such a
malicious host, it is only a matter of time before the software is broken.

While most defenses are about delaying the first attack, we focus on mini-
mizing the impact of a successful attack through diversity. As such, this work
is an acknowledgment that attacks will continue to emerge. It is useful in busi-
ness models that can tolerate a limited number of (temporarily) cracked copies.

Without diversity, the number of attacked copies increases very fast as soon
as one attack is crafted. This attack can be reused quickly and easily because
it does not have to guess much about other targets; they are essentially the
same. By introducing artificial diversity, we can delay the spread of an at-
tack. As a result, information learned from one copy may not be applicable to
other copies and automated attacks may only be successful on one or a limited
number of copies. Furthermore, diversity allows us to discriminate between
different versions. Therefore, we can limit the usability of an attack over time
by no longer providing access to updates, extra functionality, online services
and content to copies that are known to be compromised.

Another application of diversity is message encoding. By linking different
versions to different users, traitor tracing can be facilitated. This technique is
referred to as fingerprinting. Alternatively, diversity can be used for steganog-
raphy, i.e., as a covert communication channel.

viii Abstract

Diversity can be used to hide the difference between versions as well. In
a number of scenarios, different versions are distributed to the public. The
difference between those versions may contain personal or security-sensitive
information. In the case of fingerprinting, it may reveal the location of the
identification, which in turn facilitates removing the fingerprints. In the case of
security patches, it may reveal the location of a vulnerability. This information
can subsequently be used to exploit unpatched systems.

Each of these applications requires a way to generate syntactically differ-
ent, but semantically equivalent versions. We therefore present an automated
diversity system, composed of parameterized transformations from different
domains: code generation, code optimization (factorization and inlining), ob-
fuscation, self-modifying code and virtualization.

The number of versions that we can generate by combining the different
transformations is huge for real-life programs. Experimental evaluation shows
that the range is between 2134,150 and 21,339,124 for the C benchmarks of the
SPEC CPU2006 benchmark suite.

However, range does not tell the whole story. The copies should be more
than just different. Ideally, they are sufficiently different so that information
acquired from one copy does not reveal any information about other copies
other than what could be learned from observing only the I/O (Input/Output)
behavior.

In practice, this requirement is hard to fulfill. Furthermore, we need a way
to evaluate systems that, even though not theoretically secure, do increase the
diversity between versions. The metric we introduce measures how successful
the diversifying transformations are in thwarting a matching system.

A matching system estimates which pairs of code fragments from two ver-
sions are related. This estimate is then compared to the reference mapping,
which defines pairs of related code fragments. The estimated mapping may
contain pairs of code fragments which are not related, resulting in false pos-
itives. Conversely, the estimate may fail to identify pairs from the reference
mapping, referred to as false negatives. A higher false positive and false nega-
tive rate indicate a less accurate mapping, and hence a higher level of diversity.

The matching system should be seen as the first automated step in a prac-
tical collusion attack against diversity systems. Firstly, it can be used to find
correspondences between versions despite the introduced artificial diversity.
This can then be used to generalize an attack against one version to other ver-
sions. Secondly, it can be used to separate artificial differences from inher-
ent differences. This is useful for an attacker who wants to learn personal or
security-sensitive information from the original difference.

ix

We present a matching system that is composed of seven fuzzy classifiers.
Every classifier operates on a different type of information: instruction syntax,
data, control flow, data flow, execution count, system calls and first time exe-
cuted. The idea is that, even though transformations may have affected one or
more types of information, they are unlikely to have affected all of the types of
information at the same time.

The information is collected using a dynamic instrumentation framework.
The advantage of such a framework is that it does not require any reverse
engineering or program understanding. The instrumented code is generated on
the fly, while the original program is used for data accesses. The thus collected
information is guaranteed to be accurate and correct, as there is no uncertainty
about the code that is actually executed.

Each of the classifiers takes as input two code fragments and indicates its
confidence that the two code fragments are related by returning a value in the
interval [0, 1]. The evaluation of each of these classifiers in isolation reveals
that many pairs of unrelated code fragments are considered to be related, which
leads to high false positive rates.

A number of large equivalence classes are the root cause of many false
positives. One possible countermeasure is to limit the number of matches per
code fragment, thereby reducing the impact of large equivalence classes on the
false positive rate. A second countermeasure is to widen the scope of the code
fragments under consideration. The probability of observing two seemingly
identical, but unrelated instructions is significantly higher than the probability
of observing two seemingly identical, but unrelated basic blocks.

Finally, we can improve the estimated mapping by combining and iterating
classifiers. Through combination, we will take different types of information
into account at the same time. The probability that two unrelated code frag-
ments appear identical with respect to one type of information is significantly
smaller than the probability that they appear similar with respect to multiple
types of information at the same time.

Through iteration, we can build upon already obtained information to ex-
tend or filter the existing mapping. For example, code fragments that have been
falsely assumed related in an earlier iteration may be detected in subsequent
iterations when it becomes apparent that no related code fragments are within
their proximity in the control flow graph.

The goal of diversity, however, is to thwart a matching system. This can
be done in two ways. Firstly, we can render the output of the matching system
less usable by increasing the false negative or false positive rate. Secondly, we
can prevent the matching system from producing the output within reasonable
time.

x Abstract

A first series of diversifying transformations (based on code generation,
optimization and obfuscation) is targeted primarily at increasing the false neg-
ative rate. Through these diversifying transformations, we try to make related
code fragments seemingly different.

The impact of the individual transformations on a particular matching sys-
tem is relatively modest: the highest observed false negative rate is 0.24 and
the highest false positive rate 0.37. However, when we combine the different
transformations, we can inflict a false negative rate of 0.76. This means that
over 3 out of 4 related code fragments are not detected. The false positive rate
is at 0.58, meaning that almost 6 out of 10 reported matches are incorrect.

In a second approach we try to delay the matching system, in particular
the collection of the information used by the classifiers. By introducing self-
modifying code, we can undermine the commonly made assumption that code
is constant. We introduce a representation for self-modifying code which al-
lows for the generation and analysis of fine-grained self-modifying code. Two
diversifying transformations built on top of this model are discussed.

Due to the presence of self-modifying code, the dynamic instrumentation
framework needs to monitor every write instruction to see if it affects any
previously instrumented code. This alone results in a slowdown of a factor
2. If the write operation affects already instrumented code, the code needs to
be invalidated and re-instrumented. This leads to an additional slowdown of a
factor of over 200 because of the introduced fine-grained self-modifying code.

The last transformation we discuss is virtualization. The idea is to rewrite
the entire program in a custom instruction set and to ship it with an implemen-
tation of a virtual machine that interprets the instruction set. As a result, the
original code of the program is no longer directly executed. It is now data that
is interpreted by the virtual machine. Therefore, it will no longer be considered
by the matching system which only tries to match code, and not data.

Furthermore, the freedom to design our own instruction set architecture
results in a large design space, and hence a lot of potential for diversity. We
get to choose the semantics of the instructions and their encoding, and we can
abandon traditional execution models.

The main contributions of this thesis are the motivation of the applicability of
diversity in the malicious host model, the introduction of a practical metric to
evaluate the success of diversifying transformations, and the presentation of a
practical diversity system. We are the first to extensively study the applica-
bility of existing transformations from different domains within the context of
diversity. Finally, we have introduced a model which facilitates manipulating
self-modifying code.

Contents

Preface i

Abstract in Dutch iii

Abstract vii

Contents xi

List of Tables xv

List of Figures xvii

List of Acronyms xxi

Prologue xxiii

1 Introduction 1
1.1 Diversity to Minimize the Impact of an Attack 2

1.1.1 Incentives for Tampering 2
1.1.2 Related Software Protection Techniques 4
1.1.3 Break Once Break Every Time Resistance 7
1.1.4 Break Once Run Every Time Resistance 8

1.2 Diversity to Encode Messages 8
1.2.1 Steganography . 8
1.2.2 Fingerprinting . 9

1.3 Diversity to Hide the Difference between Versions 10
1.3.1 Hiding Version-specific Information 10
1.3.2 Patches . 10

1.4 A Metric for Diversity . 11
1.4.1 Related Work . 12
1.4.2 The Matching System 12

1.5 Generating Different Tamper-resistant Versions 13
1.5.1 Basic Transformations 15

xii Contents

1.5.2 Self-modifying Code 15
1.5.3 Virtualization . 16

1.6 Contributions . 16
1.7 Publications . 17
1.8 Outline . 19

2 Minimizing the Impact of an Attack 21
2.1 Break Once Break Every Time Resistance 22

2.1.1 The Software Distribution Scheme 22
2.1.2 Impact on the User Base 23
2.1.3 Practical Considerations 27
2.1.4 Case Study: Software Piracy 30

2.2 Break Once Run Every Time Resistance 32
2.2.1 Low-level Debugging versus Tampering 33
2.2.2 Slowing Down the Locate-Alter-Test Cycle 34
2.2.3 Tools of the Trade 36

3 Matching System – Menelaus 41
3.1 Quality of a Matching System 42

3.1.1 False Negatives . 42
3.1.2 False Positives . 43

3.2 Fuzzy Classifiers . 44
3.3 Experimental Setup . 45
3.4 Classifiers Based on Local Information 46

3.4.1 Instruction Syntax 47
3.4.2 Data . 49
3.4.3 Execution Count . 51
3.4.4 System Calls . 53
3.4.5 First Execution Time 53

3.5 Proximity-based Classifiers 54
3.5.1 First Order Control Flow 54
3.5.2 First Order Data Flow 58

3.6 Building a Matching System from Fuzzy Classifiers 59
3.6.1 Combining Fuzzy Classifiers 60
3.6.2 Limiting the Number of Matches 61
3.6.3 Iterating Fuzzy Classifiers 62

3.7 Related Work . 63
3.7.1 Text-based Matching Approaches 63
3.7.2 Graph-based Matching Approaches 64
3.7.3 Trace-based Matching Approaches 64

CONTENTS xiii

3.7.4 Matching Tools . 64

4 Diversity System – Proteus 67
4.1 Combining Diversifying Transformations 67
4.2 Determining the Reference Mapping 70
4.3 Syntactically Different Versions 70
4.4 Diversity Systems in Practice 71
4.5 Experimental Setup . 72
4.6 Diversifying and Anti-tampering Transformations 73

4.6.1 Folding . 75
4.6.2 Unfolding . 78
4.6.3 Control Flow Obfuscation 81
4.6.4 Code Generation . 84

4.7 Evaluation . 90
4.7.1 Representativeness of the Seeds 92
4.7.2 Combining Transformations 93
4.7.3 Receiver Operating Characteristic Curves 94
4.7.4 Representativeness of the Benchmark 98
4.7.5 Steganography – Histiæus 100

5 Advanced Transformations 109
5.1 Self-modifying Code . 109

5.1.1 The State-Enhanced Control Flow Graph 111
5.1.2 Construction and Linearization 117
5.1.3 Analyses and Transformations 120
5.1.4 Folding through Self-modifying Code 122
5.1.5 Evaluation . 125

5.2 Virtualization . 128
5.2.1 ISA Design Principles 129
5.2.2 Available Choices 131
5.2.3 Evaluation . 140

6 Conclusion and Future Work 141
6.1 Summary . 142
6.2 Future Work . 143

Bibliography 147

List of Tables

3.1 Settings of the default matching system 63

4.1 Description of the C programs in the SPEC CPU2006 bench-
mark suite . 73

4.2 Static and dynamic function, basic block and instruction count 74
4.3 Number of candidates for folding per benchmark 77
4.4 Number of candidates for unfolding per benchmark 81
4.5 Number of candidates for control flow obfuscation per bench-

mark . 87
4.6 Number of choices for code generation per benchmark 90
4.7 Settings of the diversity system 99

5.1 Number of candidates for self-modifying code per benchmark 127
5.2 Slowdown (factor) incurred by virtualization for C# versions

of the Java Grande benchmark suite 139

List of Figures

1.1 Techniques to delay tampering: obfuscation, tamper resistance
and diversity . 5

1.2 Schematic of a diversity system 14

2.1 User behavior in a multi-phased economical model 25
2.2 The basic mechanism behind run-time randomization 36

3.1 The reference and estimated mapping are subsets of AxB . . . 43
3.2 Evaluation of the classifier based on instruction syntax 48
3.3 Evaluation of the classifier based on data 50
3.4 Evaluation of the classifier based on execution count 52
3.5 Operation of the classifier based on first execution time 54
3.6 Evaluation of the classifier based on first execution time 55
3.7 Unrealizable paths in first order control flow 56
3.8 Operation of the classifier based on control flow 57
3.9 Comparing instruction sets 57
3.10 Evaluation of the classifier based on control flow with direc-

tion=both and distance=3 . 58
3.11 Evaluation of the classifier based on data flow with direction=both

and distance=3 . 59
3.12 Evaluation of the diversity system composed of the classifiers

based on instruction syntax and data 61
3.13 Evolution of the false positive and negative rate for the trivial

diversity system . 64

4.1 Extended schematic of a diversity system 68
4.2 Two combining operations for diversifying transformations . . 69
4.3 Determining the reference mapping and the impact of folding . 75
4.4 Code bloat and slowdown for the folding transformations . . . 78
4.5 Evolution of the false positive and negative rate for folding . . 78
4.6 Impact of unfolding on the reference mapping 79
4.7 Inlining a basic block at the incoming edge 80

xviii List of Figures

4.8 Predicating a basic block by a two-way opaque predicate . . . 80
4.9 Code bloat and slowdown for the unfolding transformations . . 82
4.10 Evolution of the false positive and negative rate for unfolding . 82
4.11 Control flow flattening . 84
4.12 Jump redirection . 85
4.13 Code bloat and slowdown for the obfuscating transformations . 85
4.14 Evolution of the false positive and negative rate for control

flow obfuscation . 86
4.15 Code bloat and slowdown for instruction selection 91
4.16 Evolution of the false positive and negative rate for the code

generating transformations 91
4.17 False positive and false negative rates for different combina-

tions of seeds for the mcf benchmark 92
4.18 Code bloat and slowdown for the different seeds for the mcf

benchmark . 93
4.19 Evolution of the false positive and negative rate for the com-

bined transformations for the mcf benchmark 94
4.20 An example of an ROC curve 95
4.21 Receiver Operating Characteristic (ROC) curve for the classi-

fier based on instruction syntax 95
4.22 ROC curve for the classifier based on data 96
4.23 ROC curve for the classifier based on execution count 96
4.24 ROC curve for the classifier based on first execution time . . . 97
4.25 ROC curve for the classifier based on control flow 97
4.26 ROC curve for the classifier based on data flow 98
4.27 False positive and false negative rate after the last iteration of

the default matching system 99
4.28 Code bloat and slowdown for the different benchmarks 100
4.29 The prisoners’ problem . 101
4.30 Using a diversity system for steganography 102
4.31 Encoding bits in the choice between 7 alternatives 103
4.32 The average number of embeddable bits for a choice between

alternatives . 104
4.33 Canonicalization ensures that the encoding and decoding phases

start from the same information 105
4.34 Two equivalent code sequences. 106
4.35 Encoding rate before (left) and after (right) countermeasures

for steganalysis . 106
4.36 Code transformation signature: unusual relative frequencies of

instructions . 107

LIST OF FIGURES xix

5.1 Traditional CFG construction 112
5.2 The SE-CFG enables the transformation of constant code into

self-modifying code and the analysis and transformation of the
thus obtained self-modifying code 112

5.3 The CFG of the running example (before optimization) 114
5.4 The SE-CFG of the running example (before optimization) . . 115
5.5 Recursive traversal disassembly algorithm for self-modifying

code . 118
5.6 Operation of recursive traversal disassembly for self-modifying

code . 119
5.7 The State Enhanced Control Flow Graph (SE-CFG) after par-

tial optimization, before unrolling 122
5.8 The SE-CFG after unrolling 123
5.9 Code snippet generation . 124
5.10 Example of coalescing code snippets 126
5.11 Code bloat and slowdown for self-modifying code 127
5.12 High-level overview of virtualization 129
5.13 The execution model and the interfaces of the virtual machine 132
5.14 Prefix code decoding with a binary tree 134
5.15 Unary encoding to promote physical overlap 136
5.16 Linear versus splay tree representation for the factorial function. 139

List of Acronyms

API Application Programming Interface

ASLR Address Space Layout Randomization

CFG Control Flow Graph

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CTS Code Transformation Signature

DRM Digital Rights Management

IA-32 Intel Architecture – 32 bit

ISA Instruction Set Architecture

MSIL Microsoft Intermediate Language

PC Program Counter

RISC Reduced Instruction Set Computer

ROC Receiver Operating Characteristic

SE-CFG State Enhanced Control Flow Graph

TPM Trusted Platform Module

VM Virtual Machine

Prologue

’Menelaus,’ replied she, ’I will make it all quite clear to you. There is an old
immortal who lives under the sea hereabouts and whose name is Proteus. He
is an Egyptian, and people say he is my father; he is Neptune’s head man and
knows every inch of ground all over the bottom of the sea. If you can snare
him and hold him tight, he will tell you about your voyage, what courses you
are to take, and how you are to sail the sea so as to reach your home. He will
also tell you, if you so will, all that has been going on at your house both good
and bad, while you have been away on your long and dangerous journey.’

’The moment you see that he is asleep seize him; put forth all your strength and
hold him fast, for he will do his very utmost to get away from you. He will turn
himself into every kind of creature that goes upon the earth, and will become
also both fire and water; but you must hold him fast and grip him tighter and
tighter, till he begins to talk to you and comes back to what he was when you
saw him go to sleep; then you may slacken your hold and let him go; and you
can ask him which of the gods it is that is angry with you and what you must
do to reach your home over the seas.’

Then we rushed upon him with a shout and seized him; on which he began
at once with his old tricks, and changed himself first into a lion with a great
mane; then all of a sudden he became a dragon, a leopard, a wild boar; the next
moment he was running water, and then again directly he was a tree, but we
stuck to him and never lost hold, till at last the cunning old creature became
distressed, and said, ’Which of the gods was it, Son of Atreus, that hatched
this plot with you for snaring me and seizing me against my will?
What do you want?’

After “The Odyssey” by Homeros, translated by Samuel Butler

1
Introduction

In nature, genetic diversity provides protection against an entire species being
wiped out by a single virus or disease. The same idea applies to software,
with respect to resistance to the exploitation of software vulnerabilities and
program-based attacks [van Oorschot 03]. However, the concept of diversity
has not yet been fully embraced by the software community.

In many other domains, however, risk diversification is widely accepted as
good practice. In agriculture, for example, farmers tend to grow more than one
crop, a lesson learned hard over time. In Ireland, e.g., one particular variety
of potato called “the lumper” became the dominant harvest for the country
by 1840, making up the only significant source of food for about 3 million
people. In 1845, a fungus blighted the crops, and more than 1 million people
died of malnutrition or starvation within two years. According to historians,
the catastrophe led to the diversification of Irish crops and the number of acres
devoted to lumper potatoes dropped from 2 million to 300,000 in the two years
following the famine.

In the financial world, most investment professionals agree that diversify-
ing the portfolio is the most important component to reach long-range financial
goals while minimizing risk. Not putting all your eggs in one basket is even
conventional wisdom.

Software, on the other hand, is surprisingly homogeneous: consider the
very small number of different Internet browsers currently in use; and the num-
ber of major operating systems in use, which is considerably smaller than 15
years ago.

2 Introduction

While this clearly facilitates the development and maintenance of compat-
ible software and content, several prominent security engineers have warned
about the dangers of the lack of diversity in software. In a controversial report
Cyber Insecurity: The Cost of Monopoly [Geer 03], the authors claim that the
absence of diversity greatly increases the risk of a single attack compromis-
ing the entire installed base. They argue that risk diversification is a primary
defense against aggregated risk when that risk cannot otherwise be addressed.

Real-life illustrations of this risk are numerous, the NIMDA and Slammer
worms have attacked millions of Windows-based computers. The main reason
is that these worms do not have to guess much about the target computers
because nearly all computers have the same vulnerabilities.

1.1 Diversity to Minimize the Impact of an Attack

Securing software against malicious code is, for the most part, a problem that
has been solved in theory. Yet, in practice, vulnerabilities continue to be dis-
covered at an astonishing rate. Buffer overflows, for example, were a solved
problem as early as the 1960s and continue to be the most common type of
security problem [Park 04].

Due to the complexity of modern software and the increasing body of
legacy code, this and other types of vulnerability continue to exist. Software
diversity as a security mechanism against malicious code attacks was proposed
by Cohen [Cohen 93] under the term program evolution. A number of tech-
niques have been presented since, of which address space layout randomiza-
tion is probably most widely applied. Address space layout randomization
randomizes the location of the stack, heap and shared libraries to fortify sys-
tems against the exploitation of memory-related errors. In a way, it is an ac-
knowledgment that buffer overflow and related types of attack will continue to
emerge. The approach tries to mitigate the problem by removing predictability
and consistency between different executions. The technique has made its way
into widely distributed operating systems, e.g., Mac OS X 10.5, Linux via PaX
and Windows Vista.

Protecting software against a malicious host is, in some cases, a theoreti-
cally unsolvable problem [Barak 01]. Intuitively, any protection scheme other
than a physical one depends on the operation of a finite state machine, and ul-
timately, given physical access, any finite state machine can be examined and
modified at will, given enough time and effort [Cohen 93].

1.1.1 Incentives for Tampering

The incentive to tamper with software originates from the difference between
the behavior intended by the software or content provider and the behavior

1.1 Diversity to Minimize the Impact of an Attack 3

desired by the user. There are many situations where these two differ. Tam-
pering is thus about transforming the semantics intended by the provider to the
semantics desired by the user.

Software Piracy

Some software will not install without a valid license key. Other software stops
working after an evaluation period. For some users, this is undesired behavior.

The behavior intended by the software provider is often enforced through
defense mechanisms such as license keys or activation schemes. Tampering
with these defense mechanisms can turn the behavior intended by the software
provider into the behavior desired by the end user.

In practice, these mechanisms continue to be broken on a regular basis.
If users are able to use the software without compensation, this can impact
the revenues of the software provider. One study, by the Business Software
Alliance, estimates the value of illegally installed software at US$40 billion
for 2006 [BSA 05]. Note that the accuracy of this number is doubtful, as the
Business Software Alliance represents a number of the world’s largest software
providers and may have an incentive to overestimate.

Cheating in Games

Games are a type of software that is susceptible to piracy as well. Additionally,
tampering with games can be used to cheat. This is an increasing concern for
game developers as more and more games are multiplayer games. If one or
more players cheat, this ruins the experience of the honest players. Ultimately,
this could lead to reduced interest in the game and thus impact the revenue of
the gaming industry.

Furthermore, the value of virtual characters and assets in massively multi-
player online games is growing. For example, a virtual space resort in the
game Entropia Universe sold for the equivalent of US$100,0001. It should be
clear that this creates a big incentive to cheat.

Circumventing Content Restrictions

Digital containers are used more and more to provide controlled access to
copyrighted material. Currently, music distribution is a high-profile applica-
tion, with Apple’s FairPlay, Microsoft’s Windows Media and Real’s Helix
Digital Rights Management (DRM) systems. These DRM systems impose
restrictions on the usage of media. Many users do not like these restrictions.
In this type of system, software is often the weakest link. If that link is broken,

1http://news.bbc.co.uk/1/hi/technology/4953620.stm

4 Introduction

copyrighted material may be distributed illegally, again eliminating potential
revenues. The value of illegally obtained music is estimated at US$4.2 billion
by the RIAA and the value of illegally obtained video is estimated at US$6.1
billion according to the MPAA. As the RIAA represents the recording industry
and the MPAA the movie industry, these numbers should be treated with care.

Another example can be found in Adobe Acrobat where, e.g., the printing
or the copying of content can be prohibited. As the user can still view the
content, these are clearly artificially introduced restrictions which some users
find annoying. If the restrictions can be circumvented too easily, the sales of
Adobe’s software may decrease as this particular feature becomes useless.

When the incentive to tamper is as large as illustrated in the previous exam-
ples, we should no longer expect to build one super-strong defense that will
withstand attack for an extended period of time. Even hardware solutions are
not safe [Anderson 96]. In the arms race between software protectors and at-
tackers, the one that makes the last move often has the winning hand. Ac-
knowledging this might be a first important step for software providers. If we
accept that a system will be broken, the remaining defense is to minimize the
impact of a successful attack. We need to make sure that an attack has only
local impact, both spatially and temporally. Reducing the impact of an attack
might furthermore reduce the very incentive that leads to attacks.

1.1.2 Related Software Protection Techniques

The financial losses mentioned above serve as incentives to make software
more tamper resistant. Consequently, both industry and academia have con-
ducted a lot of research in this area. Most defenses against malicious hosts are
about delaying the first attack. The success of these techniques varies in terms
of the additional time and effort required by a tamperer.

Most studies have looked at the issue of software piracy, possibly because
it affects the revenues of software providers most directly. Among the ap-
proaches that have been explored in recent history to address the problem of
tampering with software are legal, ethical and technical means.

Legal means are based on the fear of consequences of violating content
protection laws. But while in most cases the legal means are available, pros-
ecution on a case by case basis is economically infeasible. Furthermore, it is
conceived as bad publicity and can take a long time.

Ethical measures relate to making software tampering morally unappeal-
ing. While the intentions are laudable, it takes even more effort and time to
change the moral standards of a large group of people.

The existing technical means almost all have a static nature of defense, in
which a protection mechanism is built into the distributed software. Once this

1.1 Diversity to Minimize the Impact of an Attack 5

Release Analysis Tampering Automation Distribution

Obfuscation Tamper Resistance Diversity

Cracked Copies

t

Figure 1.1: Techniques to delay tampering: obfuscation, tamper resistance and
diversity

protection is broken, no further steps can be taken to protect the software or
content.

Software-only Technical Defenses

Release Figure 1.1 shows the relation between diversity and the two other main
technical software protection techniques: obfuscation and tamper resistance.
This simplified diagram shows the typical evolution of the number of tampered
copies of a program. First, the attacker needs to comprehend at least some por-
tion of the program so that he can proceed to the phase of intelligent tampering.
The tampering is initially done manually through trial and error. Once the at-
tacker has successfully changed the behavior of the software, he will try to
automate the attack and share it with others. Once the attack is automated and
publicly available, the number of cracked copies increases significantly, as it
is now accessible to people without a thorough technical background. Each of
the software protection techniques operates on a different aspect of the crack
cycle: obfuscation complicates analysis, tamper resistance complicates modi-
fication and diversity complicates automation.

Software fingerprinting [Collberg 99, Venkatesan 01] does not prevent the
copying of software as such, but dissuades the pirate by increasing the likeli-
hood of being caught. It can be seen as a technical means to facilitate legal
protection.

One advantage of fingerprinting over most other copy protection tech-
niques is that it is more difficult for an attacker to be sure that he has removed
a fingerprint, than it is to be sure that a copy protection mechanism has been
cracked. Whereas the latter can often easily be tested, i.e., a copy works or does

6 Introduction

not work, determining whether or not the fingerprint is still present is harder,
and hence a pirate can modify a fingerprinted program at will, but when he
wants to use or redistribute it illegally, the fear that he could be identified re-
mains. On the other hand, fingerprinting comes with the obvious disadvantage
of its reliance on cumbersome legal measures.

Like fingerprinting, software aging [Jakobsson 02], increases the likeli-
hood of the pirate being caught. This technique relies heavily on program
updates, which are crafted to ensure that more recent versions can read the
output of older versions, but not vice versa. For this technique to work, it is
assumed that illegitimate users interact only with the original pirate to obtain
these updates. As a result, either pirated software becomes increasingly unus-
able because it is not kept up to date, or the interaction with the original pirate
increases and as a result the likelihood of him being caught increases as well.
With software aging, what a legitimate user pays for is the guarantee of con-
tinuing access to updates. This protection mechanism can therefore be seen as
a dynamic form of protection.

Software as a Service

The vulnerability of software originates from the openness of the PC archi-
tecture. Therefore, the most straightforward way of protecting software is not
to run it on a PC accessible to the attacker, but on a server. As an example,
consider the closely guarded search algorithm of Google.

Software as a service is a strong protection against analysis and tampering.
There is little more an attacker can learn about the software than its I/O behav-
ior and timing information. Furthermore, he cannot modify the software as it
resides on an external server.

This approach also has some drawbacks: it requires a connection to be
able to use the service and may lead to privacy concerns. Furthermore, it is
not useful for all forms of software and content protection. For example, the
restriction that one can view the document but not print it will still need to be
enforced on the local PC.

Hardware-assisted Technical Defenses

All hardware-based approaches we are aware of use tokens. In these schemes,
it is impossible to execute the program without the presence of a trusted hard-
ware component, such as a specific CD, dongle, smart card, etc.

One approach [Kent 81] involves using encrypted programs, with instruc-
tions decrypted immediately prior to execution. As the decrypted instructions
never leave the trusted hardware, inspection and analysis of the code itself is
very hard.

1.1 Diversity to Minimize the Impact of an Attack 7

One issue that is not addressed by this approach is the extraction of useful
information gained by an adversary examining the memory access patterns
of executing programs. Therefore, Goldreich and Ostrovsky [Goldreich 96]
have reduced the problem of software protection to that of efficient (in the
theoretical sense) simulation on oblivious RAMs. Oblivious RAMs replace
instruction fetches in the original program by sequences of fetches, effectively
randomizing memory access patterns to eliminate information leakage.

The Trusted Computing Group [Felten 03] was started by major players in
the hardware and software market such as AMD, Intel, IBM and Microsoft.
It advocates the adoption of the Trusted Platform Module (TPM), a low-cost
hardware module that provides cryptographic services and a hardware ran-
dom number generator. It furthermore includes support for capabilities such
as remote attestation and binding. Remote attestation creates an unforgeable
summary of the hardware, boot, and host operating system configuration of a
computer, allowing a third party (such as a digital music store) to verify that the
software has not been changed. Binding can be used to make sure that critical
data is only accessible by a single platform when the conditions (e.g., software
configuration) specified in the binding are met. Currently, an estimated 70-80
million PCs have a TPM. However, it is not clear how many TMPs have been
activated.

Being able to rely on a hardware-protected foundation of trust will cer-
tainly facilitate the protection of software and content, especially when com-
bined with secure I/O. Unfortunately, there are some causes for concern. To
name a few: the chain of trust may be too long to verify, the number of valid
configurations may be impractically large, it can facilitate user lock-in and it
raises privacy issues. We will not elaborate on these issues as they are beyond
the scope of this dissertation, but we expect to see many interesting develop-
ments in this domain in the future.

1.1.3 Break Once Break Every Time Resistance

Diversity is a promising additional layer of defense, as, rather than trying to
postpone the first attack, it is about limiting the impact of a successful attack
in space and time. If we can sufficiently diversify the installed base, an attack
against one instance will not compromise other instances (spatially renewable
defense). If we can furthermore discriminate between genuine and tampered-
with copies when updating software (temporally renewable defense), an at-
tacker will ultimately need to revert to time-consuming manual reverse engi-
neering and tampering to craft a specific attack for every instance and every
update. This is discussed in more detail in Section 2.1

8 Introduction

1.1.4 Break Once Run Every Time Resistance

Unfortunately, diverse copies are in conflict with the current software distribu-
tion model, which requires identical copies to leverage the near zero marginal
cost of duplication. Not surprisingly, commercial implementations of this tech-
nique can be found in situations where a network connection can be assumed
to distribute the copies digitally: DRM implementations for on-line stores and
digital broadcasters [Zhou 06].

In an alternative, orthogonal approach, we try to combine the best of both
worlds by introducing diversity after the distribution. The run-time execution
of the code is diversified based upon additional chaff inputs (such as time and
hardware identifiers) and variable program state, including additional fake in-
put dependencies. The goal is twofold: (i) to make it harder for an attacker to
zoom in on a point of failure and (ii) to limit the impact of a successful attack
to a short period of time, a particular computer, a subset of the input space, etc.
We elaborate on this approach in Section 2.2.

1.2 Diversity to Encode Messages

The ability to generate different versions of a program has other applications
as well. We can, for example, associate a different message to each version.
Embedding messages within a program has a number of applications. Firstly, it
can be used to embed additional information about the program itself, such as
debug information or branch hints for the processor. Secondly, it can be used to
exchange secret messages. Thirdly, it can be used to embed information about
the buyer or version of the software, e.g., to facilitate the tracing of illegitimate
sharing. We will discuss the latter two applications in more detail.

1.2.1 Steganography

Steganography embeds a secret message in a seemingly innocuous cover ob-
ject. Certain governments and police agencies claim that widely available en-
cryption software could make wiretapping more difficult and therefore try to
restrict the strength of encryption algorithms. Citizens seeking privacy could
use steganography as an alternative to conceal their communication. While
cryptography is about protecting the content of messages, steganography is
about concealing their very existence [Katzenbeisser 00].

Digital cover objects most often are media, such as image and music files,
that contain noise and are perceived by imperfect human senses. As a result,
they contain many redundant bits, which can be modified to embed secret mes-
sages.

1.2 Diversity to Encode Messages 9

We have looked at the largely unexplored field of steganography for pro-
grams. This differs significantly from steganography for media because chang-
ing as little as a single bit of a program can cause it to fail entirely. Hence
different techniques are required for embedding messages in programs.

Our prototype implementation can achieve an encoding rate of 1/26.96,
four times the encoding rate of the previous state-of-the-art prototype tool
Hydan (1/110) [El-Khalil 04]. Without countermeasures, neither the mes-
sages embedded by our tool nor by Hydan are stealthy. When taking coun-
termeasures to embed the messages more stealthily, our encoding rate drops to
1/88.76. Section 4.7.5 contains a more extensive discussion.

1.2.2 Fingerprinting

Like steganography, fingerprinting embeds a message into a cover object. How-
ever, there are a number of important differences:

• An active warden is assumed: the attack model assumes that attempts
will be made to remove the fingerprint. Therefore, the fingerprint needs
to be resilient against attacks.

• The existence of the message does not need to be a secret, as long as this
does not compromise the resilience.

• The message is typically more strongly related to the cover object: it
typically includes vendor, product, and customer identification numbers,
whereas, in the case of steganography, the message can be completely
unrelated to the cover object.

• It is valid to assume that the original object is available during the ex-
traction.

If the message can be reliably retrieved, and if it has a mathematical prop-
erty that allows us to argue that its presence is the result of deliberate actions,
it may enable theft detection, traitor tracing and legal actions against copyright
violators.

Fingerprinting objects makes them vulnerable to collusion attacks. An
adversary might attempt to gain access to several fingerprinted copies of an
object, compare them to determine the location of the fingerprints, and, as a
result, be able to make them unrecognizable. As we will see in the next section,
artificial diversity can be used to mitigate this type of attack.

10 Introduction

1.3 Diversity to Hide the Difference between Versions

In a number of situations software providers release different versions of soft-
ware to the public. In some cases, the difference between versions reveals
security-critical information. Diversity can be used to hide the difference be-
tween those versions within a large number of artificial differences.

1.3.1 Hiding Version-specific Information

A first example has been discussed in the previous section: fingerprinting. In
this case, the different versions are released more or less simultaneously. The
difference between two versions may reveal the location of the fingerprint.
Finding the exact location of the fingerprint by comparing two or more versions
greatly facilitates removing or distorting it.

As a second example, consider a software implementation of a DRM sys-
tem, e.g., iTunes. This type of software is responsible for enforcing certain
restrictions, e.g., content can only be accessed by one user. As a result, the
software needs to behave differently for different users. This is often enabled
through a user-specific cryptographic key.

If that key is the only difference between two versions, a simple compar-
ison can be used to locate the information within the program. As a result, it
is vital to diffuse the keys over the entire code and to hide the relevant code
snippets.

1.3.2 Patches

A second example is that of software patches. In this case, different versions
are released over time. Software providers rarely succeed in creating flawless
software the first time around. The advent of the Internet has facilitated fixing
some of these flaws after the initial release. As a result, security holes and
other bugs are more and more fixed through patches.

In the case of security patches, the difference between a patched and an
unpatched version allows an attacker to pinpoint the vulnerable part of the
software. The difference is often small, as security updates often patch a se-
curity leak through local changes (e.g., in a single module or function). This
greatly reduces the time to find a vulnerable part of the software and thus fa-
cilitates the creation of an attack against unpatched versions. In practice, there
is a relatively large time frame between the release of a patch and the time that
most systems are actually patched. Some systems never get patched. The term
Exploit Wednesday has been coined in the context of exploiting vulnerabilities
fixed by released patches, referring to Patch Tuesday, the second Tuesday of
the month, when patches are typically released by Microsoft.

1.4 A Metric for Diversity 11

1.4 A Metric for Diversity

One of the hard problems in software protection is obtaining a measure for the
strength of techniques. The holy grail of determining a provable and useful
lower bound on the workload required to attack software is in many practi-
cal settings still a distant dream. Nevertheless, as we highly value quantitative
evaluation, we set out to define a metric for diversity. This metric, albeit imper-
fect, does provide an indication of the diversity introduced by transformations.
We consider this metric to be one of the main contributions of this dissertation.

As the saying goes, we need to set a thief to catch a thief. Therefore, we
have set up a collusion attack against diversity systems. In a collusion attack,
two or more versions are compared against one another in order to break the
system. This type of attack is specific to systems that generate more than one
version and, as such, has not been dealt with in other approaches to tamper
resistance. One notable exception is fingerprinting, where every user gets a
unique version with embedded information to enable traitor tracing. However,
no publicly available research explicitly deals with this type of attack.

Perfect protection against collusion attacks would mean that the versions
are sufficiently diverse to make sure that information learned from one version
does not facilitate attacking another version. The applicability of information
learned from one version to other versions is hard to measure. Therefore, we
will use an approximative metric based on the false positive and false negative
rate of a matching system. In our definition, the output of a matching system
is a set of pairs of code fragments (instructions or basic blocks) from version
A and version B which are considered to be related. Such a matching system
can be used as a first step in the generalization of attacks and the separation of
artificial differences from true differences.

Intuitively, the false negative rate indicates the fraction of related code frag-
ments that was not recognized by the matching system. The false positive rate
indicates the fraction of unrelated code fragments in the reported mapping. As
such, we believe that the false negative rate is more important: if an attacker is
looking for a related code fragment, a false negative rate of 0.5 means that he
has a fifty percent chance of not finding it at all in the reported mapping. On
the other hand, if it is in the reported mapping, but with a false positive rate of
0.5, the incurred penalty is that he has to manually check or try two candidates.

Our metric assumes that a higher false positive and false negative rate in-
dicate a higher level of diversity, as this indicates more success in thwarting a
collusion attack.

12 Introduction

1.4.1 Related Work

It has been understood for long that traditional, text-based matching systems
are insufficient to match sequences of symbols in the language of computer
programs.

Therefore, most related work in this area has focused on graph matching
techniques to match related portions of the code. While this has proved to be
useful for domains where the versions have not been made different deliber-
ately, obfuscating transformations such as control flow flattening [Wang 01]
are capable of foiling these techniques.

This work is closely related to recent work by Zhang et al. [Zhang 05].
However, to the best of our knowledge, this is the first time this type of tech-
nique has been applied to deliberately diversified versions of a program.

1.4.2 The Matching System

Our matching system is built on top of a number of fuzzy classifiers. These
classifiers indicate their confidence that two code fragments are related based
upon different types of information. The advantage is that we do not limit
ourselves to one specific type of information (e.g., only textual or control flow
information). The framework can be readily extended to include new types of
information.

Fuzzy Classifiers

We have chosen to work with information collected during the execution of the
programs. As such, this information is guaranteed to be correct and accurate.
The supported types of information are:

Instruction syntax The classifier based on instruction syntax is the most
related to text-based matching systems. It scores a pair of code fragments
based upon the resemblance of the opcode and operands of the instructions.

Data The classifier based on data compares the values read and written
by two code fragments.

Control flow The classifier based on control flow indicates the proximity
in the control flow graph to other related code fragments. As such, it is closely
related to graph-based matching techniques.

Data flow The classifier based on data flow is similar, but operates on
the data flow graph.

Execution count The classifier based on execution count compares the
execution count of both code fragments.

System calls The classifier based on system call information will com-
pare the values passed to and returned from system calls.

1.5 Generating Different Tamper-resistant Versions 13

First time executed The classifier based on first execution time will
compare the first time a code fragment was encountered in the trace.

To evaluate the strength of these classifiers, we have applied them to two
identical versions of a program. This evaluation shows that there are large
equivalence classes: sets of code fragments which are all perceived as identi-
cal. If we map all the code fragments of version A from an equivalence class
to all code fragments of version B from that equivalence class, we have an un-
acceptably high false positive rate. A number of countermeasures are needed
to have a workable matching system.

Building a Matching System from Fuzzy Classifiers

The most obvious countermeasure is to limit the number of matches per code
fragment. This technique will avoid that a small number of large equivalence
classes is responsible for a huge number of false positives.

The second countermeasure is to look at a broader context. When looking
at two unrelated instructions in isolation, there is a fairly high probability that
they appear similar. The probability that two unrelated basic blocks appear
similar is significantly smaller. The granularity of code fragments can thus be
the basic block level and the instruction level.

The third solution is to look at more than one type of information at the
same time. By combining different classifiers, we can again decrease the false
positive rate. The probability that two unrelated code fragments appear similar
with respect to one type of information is significantly higher than the proba-
bility that they look similar with respect to multiple types of information at the
same time.

The fourth solution is to iteratively apply the matching system. Through
iteration, subsequent phases can build upon the mapping generated by previous
iterations to extend or filter the mapping.

1.5 Generating Different Tamper-resistant Versions

In most applications of code translation and code transformation, the goal is
to create a single version which has some property the original version did
not have, or to create a single version which is optimal with respect to some
properties. For example:

• The goal of compilation is to create a version targeted at a particular
platform.

• The goal of optimization is to create the smallest, fastest or most energy
efficient version.

14 Introduction

Diversifier 

Figure 1.2: Schematic of a diversity system

• The goal of instrumentation is to create a version which records infor-
mation about the execution.

• The goal of obfuscation is to create the least understandable version.

During these translations and transformations, choices need to be made.
The choices are often so abundant that it is infeasible to make the best choice
within reasonable time. Instead, heuristics are used to select an alternative
which leads to a reasonably good version.

This dissertation explores a number of applications which benefit from
not choosing a single alternative each time a choice needs to be made, but
from choosing multiple alternatives when choices need to be made to generate
different versions. This has been illustrated in Figure 1.2.

The main application is to make sure that information learned from one
version is not applicable to other versions. As an approximative metric, we will
use the false positive and false negative rate of our matching system. Higher
false positive and false negative rates indicate a better diversification.

Experience in matching program versions shows that discriminative invari-
ants between versions serve as signposts. Ideally, every discriminative invari-
ant should be eliminated. In practice, it proves to be difficult to design a single
monolithic transformation which removes discriminative invariants for the dif-
ferent types of information at the same time.

However, many transformations each affect one type (or a limited number
of types) of information. Other transformations help to undermine assump-
tions made by the attacker. By combining many of these “smaller” transfor-
mations affecting different types of information, we can increase the range and
complexity of randomization.

1.5 Generating Different Tamper-resistant Versions 15

1.5.1 Basic Transformations

We have studied a number of transformations from different domains. A num-
ber of code factorization and code inlining transformations have been param-
eterized to undermine the assumption that there is at most one match per code
fragment. We use control flow obfuscating transformations to make the infor-
mation based on control flow less accurate and slower to evaluate. By ran-
domizing the code generation process, we can partially fool order- and syntax-
based matching systems.

Experimental results show that it is easy to generate many syntactically
different but semantically equivalent programs. The range of our diversity sys-
tem is far larger than the estimated number of atoms in the universe2 (1081)
for every non-trivial program. For example, the transformation based on in-
struction selection alone has a range of 221936 ≈ 106606 for the smallest C
benchmark in the SPEC CPU2006 benchmark suite.

Clearly, the range is not the problem. However, it is not sufficient for
the versions to be merely different. We can see that when using the different
transformations in isolation, the impact on our metric is relatively small. For
an exemplary matching system, the highest observed false negative rate for an
individual transformation is around 0.24. When different transformations are
combined, with a comparable overall cost, the false negative rate climbs to
over 0.76. The highest observed individual false positive rate is 0.37, while the
false positive rate for the combined transformations is around 0.58.

1.5.2 Self-modifying Code

The results reported above show that we are heading in the right direction. We
can go even further by using self-modifying code. This type of code under-
mines the commonly made assumption that code is constant. Many tools are
not capable of dealing with this type of code, others incur a significant run-time
overhead in the presence of self-modifying code.

Self-modifying code has long been applied in an ad hoc manner. We intro-
duce a model which allows for the generation and analysis of self-modifying
code, when starting from known code. The main novelty is that all instructions
that can ever be executed are represented in a single control flow graph.

Earlier approaches [Dux 05] represent only the code present at a any given
point in time, resulting in a plethora of control flow graphs. As such, they do
not contain code that (i) was executable in an earlier phase, but is no longer
executable, nor (ii) code that may become executable in a later phase. As

2Assuming there are a trillion galaxies with sizes comparable to our galaxy, which probably
has no more than 1069 atoms. This estimate does not count dark matter, brown dwarf stars or
dwarf galaxies.

16 Introduction

such, none of these graphs is a superset of all possible executions, a property
required by many analyses to deal conservatively with all run-time behaviors.

Our model allows us to introduce fine-grained self-modifying code, with
the additional advantage that multiple instructions are actually executed at a
single address. Most existing applications of self-modifying code are more
coarse-grained, e.g., where entire sections are decoded prior to execution, often
leaving the entire program in the clear afterwards. When multiple instructions
reside at the same address, we are guaranteed that it is never entirely in the
clear.

Self-modifying code can be combined with the previously discussed tech-
niques. However, the presence of self-modifying code makes it impractical
for our matching system to collect the required information within reasonable
time. As such, we were unable to report the observed false positive and false
negative rates. We believe an attacker will experience similar setbacks when
analyzing self-modifying code, as it is generally assumed to be one of the main
problems of reverse engineering [Cifuentes 95].

1.5.3 Virtualization

The last introduced transformation is rewriting the code for a custom virtual
machine and shipping it along with an implementation of that virtual machine.

This undermines the basic operation of the matching system, which tries to
relate code fragments between different versions. As a result of virtualization,
the original code is no longer executed, but becomes data interpreted by the
virtual machine.

Furthermore, this approach opens up a whole new range of possibilities
for diversity and tamper resistance, as we get to choose our own instruction set
architecture and it allows us to abandon traditional execution models.

Experimental evaluation indicates that these techniques, unless optimized
significantly, are too expensive to be applied to performance-critical code and
should be used sparingly, for example, in DRM and license systems which are
less performance-critical.

1.6 Contributions

The contributions presented in this dissertation are:

• We were the first to suggest and study the applicability of diversity in
the malicious host model in the academic literature. Past research on
diversity has either focused on the malicious code model or is closely
guarded as company trade secrets.

1.7 Publications 17

• We have designed and implemented a practical and extensible system
to match related code fragments between versions. Furthermore, this
system provides the first quantitative evaluation of a diversity system.

• We have designed and implemented a practical system to generate a
large number of semantically equivalent but syntactically different pro-
grams. The resulting versions are able to fool the matching system to a
large extent.

• We have defined a model for self-modifying code which allows for the
generation and analysis of self-modifying code. Based upon this model,
fine-grained self-modifying code can be introduced, which significantly
slows down run-time observation.

• We were the first to study the potential of virtualization within the mali-
cious host model.

1.7 Publications

Parts of this dissertation have been published earlier at international confer-
ences.

The idea to use diversity as a defense against piracy was introduced at the
Fourth ACM Digital Rights Management Workshop in 2004.

• Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. Software
piracy prevention through diversity. In Proceedings of the 4th ACM
Workshop on Digital Rights Management, pages 63–71. ACM Press,
2004. ([Anckaert 04a])

The idea to embed different versions in a single program has been pre-
sented at the Second International Workshop on Security in 2007. This paper
won the “Best Student Paper Award”.

• Bertrand Anckaert, Mariusz Jakubowski, Ramarathnam Venkatesan, and
Koen De Bosschere. Run-time randomization to mitigate tampering.
In Proceedings of the 2nd International Workshop on Security, volume
4752 of Lecture Notes in Computer Science, pages 153–168. Springer-
Verlag, 2007. ([Anckaert 07a])

The application of diversity for steganography in the context of programs
was discussed at the Seventh International Conference on Information Security
and Cryptology in 2004 and was published in 2005.

18 Introduction

• Bertrand Anckaert, Bjorn De Sutter, Dominique Chanet, and Koen De
Bosschere. Steganography for executables and code transformation sig-
natures. In Proceedings of the 7th International Conference on Infor-
mation Security and Cryptology, volume 3506 of Lecture Notes in Com-
puter Science, pages 425–439. Springer-Verlag, 2005. ([Anckaert 05])

The applicability of virtualization in the context of software protection was
published at the Sixth ACM Digital Rights Management Workshop in 2006.

• Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam Venkatesan.
Proteus: virtualization for diversified tamper resistance. In Proceedings
of the 6th ACM workshop on Digital Rights Management, pages 47–58.
ACM Press, 2006. ([Anckaert 06])

The model for self-modifying code has been presented at the Eighth Infor-
mation Hiding Conference in 2006 and was published in 2007.

• Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A model
for self-modifying code. In Proceedings of the 8th Information Hiding
Conference, volume 4437 of Lecture Notes in Computer Science, pages
232–248. Springer-Verlag, 2007. ([Anckaert 07b])

The author also contributed to a number of publications not discussed in
this dissertation. An alternative application of self-modifying code was pub-
lished at the Sixth International Workshop on Information Security and Cryp-
tology in 2005.

• Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray,
Bjorn De Sutter, and Koen De Bosschere. Software protection through
dynamic code mutation. In Proceedings of the 6th International Work-
shop on Information Security Applications, volume 3786 of Lecture No-
tes in Computer Science, pages 194–206. Springer-Verlag, 2005.
([Madou 05a])

A discussion of the interaction of static and dynamic analysis used by an
attacker was illustrated in a publication at the Fifth ACM Digital Rights Man-
agement Workshop in 2005.

• Matias Madou, Bertrand Anckaert, Bjorn De Sutter, and Koen De Boss-
chere. Hybrid static-dynamic attacks against software protection mech-
anisms. In Proceedings of the 5th ACM workshop on Digital Rights
Management, pages 75–82. ACM Press, 2005. ([Madou 05b])

1.8 Outline 19

A set of metrics from the domain of software complexity have been eval-
uated in the context of obfuscation to measure the potency of a number of
transformations and the effectiveness of deobfuscating transformations. This
work has been presented at the Third Workshop on Quality of Protection in
2007.

• Bertrand Anckaert, Matias Madou, Bjorn De Sutter, Bruno De Bus,
Koen De Bosschere, and Bart Preneel. Program obfuscation: A quan-
titative approach. In Proceedings of the 3rd Workshop on Quality of
Protection, pages 15–20. ACM Press, 2007. ([Anckaert 07c])

Finally, the result of the author’s master thesis was presented at the Tenth
Euro-Par Conference in 2004. This thesis was our introduction to link-time
binary rewriting. Here, the goal was to optimize IA-64 programs.

• Bertrand Anckaert, Frederik Vandeputte, Bruno De Bus, Bjorn De Sut-
ter, and Koen De Bosschere. Link-time optimization of IA64 binaries.
In Proceedings of the 10th International Euro-Par Conference, volume
3149 of Lecture Notes in Computer Science, pages 284–291. Springer-
Verlag, 2004. ([Anckaert 04b])

1.8 Outline

This dissertation is organized as follows. Chapter 2 contains a more detailed
discussion of the application of diversity to minimize the impact of an attack.
The matching system is introduced in Chapter 3. The diversity system is intro-
duced and evaluated with respect to a matching system in Chapter 4. The more
advanced transformations, self-modifying code and virtualization, are the topic
of Chapter 5. In Chapter 6, conclusions are drawn, followed by a discussion
of directions for future work.

2
Minimizing the Impact of an Attack

In this chapter we will elaborate on how artificial diversity can help to mini-
mize the impact of a successful attack. Software providers can use diversity
to make it harder to craft a single attack which circumvents the intended be-
havior of all the copies of their software at once. Similarly, content providers
can protect the intended use of their content by diversifying the software that
regulates access to the content.

Artificial diversity can be introduced in a number of different ways. Exist-
ing applications of randomization can be found in the context of the malicious
code model. The approach introduced Barrantes et al. [Barrantes 05] consists
of encrypting the code at load time as a defense against binary code injection
attacks. In the case of Address Space Layout Randomization (ASLR), the op-
erating system positions key data areas in a non-constant way to make it harder
to predict target addresses for the exploitation of memory-related errors.

This type of defense is less viable in the malicious host model, as we can-
not rely on the environment. The only thing that we can partially control is
the program itself and thus the randomization needs to be an integral part of
it. Under these circumstances, there are still a number of possibilities on when
and where to randomize:

• Before distribution: The static representation of the program is ran-
domized before distribution.

• During installation: The static representation of the program is ran-
domized when it is installed. Based upon, e.g., hardware, the license
key, etc.

22 Minimizing the Impact of an Attack

• Between runs: The static representation of the program is randomized
between executions, comparable to metamorphic viruses.

• During execution: The dynamic execution trace of the program is ran-
domized.

Section 2.1 discusses the advantages and disadvantages of introducing di-
versity before distribution and during installation, while Section 2.2 discusses
randomizing the execution trace.

2.1 Break Once Break Every Time Resistance

Despite many initiatives to better protect software and content, the financial
impact discussed in Section 1.1.1 is still huge. We are convinced that this is a
risk that cannot be addressed sufficiently without risk diversification.

Therefore, we present an alternative technical protection scheme, whose
strength is based on diversity. Diversity is an approach which is somewhat dif-
ferent from traditional approaches. Rather than trying to prevent or postpone
every attack on the software, we accept that protection mechanisms can even-
tually be broken. Diversity is a business model which remains viable in the
presence of cracks, because their impact is local in space and time.

In this scheme, each installed copy of a program is unique to make it harder
for an attacker to generalize a successful attack on one version of the software
to other versions.

Furthermore, the proposed scheme includes software updates to migrate
from a static nature of defense to a more dynamic one. In particular, software
updates in our scheme are crafted to ensure that they work for one, and only
one, version. When updates are no longer provided for installed copies that
are known to be compromised, a new line of defense needs to be broken with
every critical update.

2.1.1 The Software Distribution Scheme

The core of our protection scheme consists of two levels of diversification.
At the first level each distributed copy is different. At the second level every
installation of a specific copy is different. We will refer to a specific copy in-
stalled on a specific machine as an instance, and to an instance-specific update
as a tailored update.

An instance must be activated through interaction with the software provid-
er and contains links to the hardware to ensure that an instance cannot simply
be copied to another machine.

The software provider maintains a database that keeps track of the legit-
imate instances and their characteristics. The instances are crafted in such a

2.1 Break Once Break Every Time Resistance 23

way that they differ significantly, allowing the creation of updates fit for one
instance and one instance only in such a way that a tailored update cannot
easily be generalized for other instances.

When a user requests an update, he needs to identify the instance he wants
to obtain the update for. The software provider then checks if the request is
legitimate, looks up the characteristics of the instance and generates a tailored
update.

2.1.2 Impact on the User Base

To assess the impact of this type of protection on the user base we present
an economic model. It is loosely based on the work by Conner and Rumelt
[Conner 91] and Altinkemer and Guan [Altinkemer 03].

Participants

We will assume a simple content distribution model that consists of the follow-
ing participants:

• Content providers, who want to maximize their profits now and in the
future.

• Fair users, who are willing to pay for the content and/or use it as in-
tended. They want to have access without being impaired by the protec-
tion mechanisms.

• Crackers, who have the technical skills and the desire to circumvent the
protection mechanisms and want to minimize the risk of being caught.

• Unfair users or script kiddies, who have little or no technical skills
and want to enjoy the same privileges as legitimate users without proper
compensation (e.g., in the case of piracy), or who want to have their
software behave as desired by the crackers (e.g., cheating in games).

One of the key observations for diversity is that the number of crackers
is much smaller than the number of script kiddies. Script kiddies typically
subsist on the skills of crackers who distribute license keys, patches or patched
versions of software.

Consumer Behaviors

In the following discussion, we index each potential user by i. Let p be the
price of the content, vi the value of the content to the user and ci the cost of

24 Minimizing the Impact of an Attack

altering the behavior intended by the provider to the behavior intended by the
user over time.

From an economical point of view, the sets of legitimate users (L), illegit-
imate users (I) and users who do without (D) would then be:

L = {i : p ≤ min(vi, ci)},
I = {i : ci < min(vi, p)},
D = {i : vi < min(ci, p)}.

Assumptions

We assume that an increase in the level of protection does not influence the
price p of the content.

We furthermore assume that the perceived value of the software vi remains
constant. This implies that we ignore network externalities. Positive network
externalities increase the value of content as more users (legitimately or ille-
gitimately) use that content. In the presence of network externalities, it may be
beneficial to tolerate piracy. This may lead to an increase of the exchangeabil-
ity of data and an increase in the production of complimentary goods. Further-
more, it may help to lock-in consumers in an early phase. Our scheme allows
for a fine-grained control over the distributed copies and as such enables piracy
discrimination, as will be discussed in the next section.

Likewise, it implies that we ignore negative network externalities. An ex-
ample of negative network externalities is the presence of many cheaters in an
on-line game, which decreases the experience of fair users.

The Traditional Two-phase Model

Typically, software protection assumes a two-phase model. When the software
is released, no cracks are available. After a certain time period, cracks can be
found in public distribution channels, such as the Internet. The majority of
the revenue is expected from the first period. This is a common assumption
in games, where a couple of months of unbroken copy protection mechanisms
are sufficient to make profit. Therefore, traditional defense mechanisms go
through great lengths to increase the period of time between the release and
the public availability of a crack.

The different relations between p, vi and ci are shown in Figure 2.1a. The
public availability of cracks results in a decrease of ci for most users.

As a result, in the second time period, a number of users who would oth-
erwise do without or use the software legitimately, will become illegitimate.
We call these users script kiddies. The transitions are indicated by the dashed
arrows in Figure 2.1b.

2.1 Break Once Break Every Time Resistance 25

Legitimate Illegitimate Do-Without

C
o
st

Tr
an
si
ti
o
n
s

(a)

(b)

p iv ic

I IL L D D

increases ic

Legitimate Illegitimate Do-Without

p iv ic p iv ic p iv ic p iv ic p iv ic

decreases ic

Figure 2.1: (a) Possible relations between p, vi and ci, (b) Possible transitions when
ci changes

Crackers are the users who find the cost of cracking smaller than the per-
ceived value or the price when the program is first released. These users typi-
cally have skills to circumvent the protection mechanisms relatively easily.

Some users remain legitimate even when it is no longer technically difficult
to be illegitimate. This is because ci largely consists of three components:

• The perceived cost of obtaining and maintaining access to the content.

• The perceived cost of being caught multiplied by the perceived proba-
bility of being caught.

• The perceived cost of overcoming moral inhibitions (personal ethics,
social factors, habit, etc.) to cracking.

A publicly available crack mainly decreases the first component.
Spatial diversity is an attempt to reduce the usability of a crack for other

users. This way, the public availability of a crack for a single copy does not
result in a significant reduction of ci. As such, spatial diversity is an attempt
to reduce the transition from legitimate (and do-without) users to illegitimate
users (dashed arrows in Figure 2.1b). We are thus trying to block the script
kiddies instead of the crackers.

26 Minimizing the Impact of an Attack

Note that taking into account positive network externalities would enable
transitions from people who do without to legitimate users. Conversely, nega-
tive network externalities would enable transitions from legitimate and illegit-
imate users to people who do without.

A Multi-phase Model

Temporal diversity tries to go from a two-phase model to a multi-phase model.
By diversifying the software over time, content providers can impose new pro-
tection barriers with updates. This way, script kiddies that are illegitimate in
the presence of a crack, will have to become do-without or legitimate until a
cracker makes a patch publicly available for the renewed protection mecha-
nism. Ultimately, requiring new cracks over time increases the total cost ci of
obtaining and maintaining access to the content, even for the crackers. The
resulting transitions are indicated by the solid arrows in Figure 2.1b.

Cost Benefit Analysis

We denote Ld as the set of legitimate users in the presence of diversity, Lu as
the set of legitimate users without diversity (with uniformity), and the cardi-
nality of a set S as |S|. The application of software diversity is then beneficial
if p|Ld \Lu| ≥ Cd −Cu, where Cd and Cu are the total costs in the presence,
respectively absence, of diversity.

Depending on the type of diversification, the cost of the development and
maintenance of the infrastructure required can be considerable. When only
run-time randomizations are considered, fixed costs are limited to the develop-
ment of the software for the diversification of run-time behavior.

When diversifying distributed or installed copies, updates need to be tai-
lored as well. In this case, the marginal costs include the computing and distri-
bution costs per instance. The computing costs include the additional cost per
instance for the purchase and maintenance of hardware needed for the creation
of non-identical copies and tailored updates. To reduce the computing costs,
the process should be fully automated.

The pressing of CDs is no longer economically viable when all distributed
copies are unique. In this case it is more advantageous to burn them, but the
cost per disc will be higher. While it may be acceptable to distribute the initial
software this way, physical distribution of non-identical updates on a regular
basis would significantly increase the cost per instance. Fortunately, in many
cases, the updates could be digitally distributed, given the widespread use of
the Internet.

Furthermore, the debugging process will be complicated as error reports
will be instance-dependent.

2.1 Break Once Break Every Time Resistance 27

2.1.3 Practical Considerations

This section discusses a number of practical problems and possible solutions
related to the proposed scheme. First, the dependency on updates is discussed,
then we explore the possibilities to diversify programs and to ensure that an
update only works for one instance.

Reliance on Updates The dynamic nature of the scheme is only possible
through updates. In the presence of the Internet, they can be distributed easily
and the updating process can be done automatically by the program. Nowadays
software updates are used for the following purposes:

• to fix bugs;

• to add security patches;

• to support new hardware and new file formats;

• to keep a program compatible with other programs;

• to add new functionality.

The first four categories are considered to be critical. Updates increase
the cost ci for illegitimate users. If they want to enjoy the same privileges as
legitimate users, they need to find an update suited for their instance with every
update.

We believe that, for most types of commercial software, a frequency of one
update every couple of months will inflict enough damage on illegitimate users
to persuade them to become legitimate.

However, if the frequency of updates normally required is too low, we can
artificially increase the necessity for updates. Obviously, introducing bugs or
security flaws to make updates necessary is not an option and introducing new
hardware is too expensive.

Software aging [Jakobsson 02] can be used for document-producing pro-
grams. In this approach, instances that are not kept up to date are unable to
read the output of more recently updated instances. As such we can consider
the output to be of a different file format. This decreases the value of a pirated
instance as it cannot be kept compatible with legitimate instances.

Legitimate users could be favored by providing them with access to a col-
lection of add-ons or extra features. As a result, the value of the program for
legitimate users will be higher than for illegitimate users as these add-ons or
features will not work for illegitimate instances.

Another approach is to move from the model in which a user pays once for
the use of the software to a model where a user rents the software for a limited

28 Minimizing the Impact of an Attack

amount of time. The software could disable itself, unless it is updated to enable
the software for an additional time period. This is however a static form of
defense, making it possible for a pirate to remove the disabling code. While the
diversity ensures that each copy needs to be cracked separately, a full, cracked
version could still be distributed, defeating this defense mechanism. Therefore
this approach must be combined with other types of updates, which should be
tailored not to work with instances where the time limitation is removed.

Diverse Instances and Tailored Updates The core of the protection scheme
requires the instances to differ in such a way that updates can be tailored to
work for one instance and one instance only. In this section, we will discuss a
possible approach to achieve this.

A typical program consists of a large number of files, containing code or
data. A distributed update contains the necessary information to convert the
program to a newer version. Obviously, no information needs to be included
regarding unmodified files as this would only make the update larger. Also,
new files need to be included entirely.

There are two possibilities for changed files: in a full-file update the entire
file is included, whereas with an incremental update only the changes over
the installed version are specified. The former has the advantage that when
different users have different installed versions, e.g., because some users have
updated their software more regularly than others, the same update can still
be provided to all the users. An incremental update has the advantage that it
is smaller, but different updates are necessary for different installed versions.
This problem is sometimes solved by providing updates incrementally to the
original version of the files, which needs to be provided by the user by inserting
the installation disk. We will now discuss how our scheme can be put into
practice in both of these cases.

Full-file updates When using full-file updates it is useless to apply the
diversification within a single file as the full file will be included in the update.
We thus need to diversify the interfaces between the different files to ensure
that a file in a tailored update cannot function correctly with an illegitimate
instance.

For data files, the content can be encrypted and decrypted using an instance-
specific key. The same technique can be applied to the interface between code
files, in which arguments passed to functions and the values returned can be
encrypted. The keys could be hidden by techniques for white-box cryptogra-
phy [Chow 03] to make it more difficult to circumvent this protection.

Alternatively, all data, arguments or return values can be transformed to an
instance-specific domain, provided that the computations are also transformed
to this domain.

2.1 Break Once Break Every Time Resistance 29

Incremental updates The main incentive for full-file updates is that it
facilitates the distribution as the same update can be used by each user. Clearly
this is no longer a valid argument in our protection scheme since it requires the
updates to be instance-specific.

Through the use of artificial diversity, every instance can have code files
that differ significantly on a binary level. When an update only specifies which
bits in the existing file need to be flipped to migrate to the new version, it is
clear that this will not work for other instances.

Identification of Legitimate Instances When an update is requested, the in-
stance for which it has to be tailored needs to be identified. This can be done
through a simple serial number of some sort which is assigned to an instance
at activation. The database would then keep track of the serial numbers that
identify legal instances. The database also contains the necessary information
to reconstruct the characteristics of that instance. If the instance is consid-
ered to be legitimate, the software provider tailors an update that migrates that
instance to the new version of the software.

The software provider does not need to worry about illegitimate users that
request an update for a legitimate instance as it will not work for their in-
stances. However, he will keep a log of the different requests to track illegiti-
mate copies. When many requests for the same instance have different origins,
this will rouse the suspicion of the software provider and he will classify this
instance as illegitimate.

To assure that the original, legitimate owner is not damaged as a result (he
may not have been aware of the piracy), he should contact him and provide
him with an update that migrates his instance to a new instance, with a new
serial number.

Clearly, this update should not be provided to the illegitimate users. How-
ever, if illegitimate users would choose to become legitimate through correct
compensation in order to obtain full access to the updates in the future, a simi-
lar process can be used to migrate their illegitimate instance to a new legitimate
instance.

We also note that a legitimate user could accidentally request an update
for the wrong instance. As a result his software might no longer function
correctly. Again, we do not want to damage the legitimate user that has, e.g.,
made a typographical error when submitting the serial number. Therefore,
each update should check whether it is applied to the expected instance, e.g.,
by comparing a checksum over the files that will be changed to the expected
checksum.

The integrity of the database needs to be assured for the correct operation
of the scheme. This can be achieved by the usual means to ensure data integrity
for data centers, including an off-site mirror data center.

30 Minimizing the Impact of an Attack

2.1.4 Case Study: Software Piracy

Circumventing copy restrictions is probably one of the most widespread appli-
cations of tampering. In this section, we will focus on this type of tampering
and discuss how the proposed scheme can defend against different forms of
software piracy.

Countered Forms of Piracy

Many forms of software piracy exist and it is important that a protection scheme
impedes as many of them as possible. We therefore continue with a survey of
these forms, as identified by the Business Software Alliance and the Software
& Information Industry Association [IPR 03, SII 00], and discuss how the pre-
sented scheme can help to make them inviable.

Cracks and Serials The first type of software piracy consists of legally ob-
taining an evaluation version and subsequently entering a copied license code
or applying a generic patch that undoes the copy protection.

This a widespread form of piracy. It is so popular because of the small
amount of information that needs to be exchanged illegally. It is clear that
it is easier to illegally distribute and obtain a license code or a patch than a
complete program. The problem for defenders is to find a way to increase
the difficulty of enabling an additional copy by reducing the uniformity of the
distributed software. In our scheme, since all distributed evaluation versions
are different, a patch for one instance will not necessarily work on another
instance. Moreover the distributed evaluation versions can be designed to be
incompatible with the license codes of other copies.

Softlifting and Hard Disk Loading Softlifting refers to the act of piracy
where one copy is legally obtained and installed on more computers than al-
lowed.

Hard disk loading is the unauthorized installation of copies of software
onto the hard disks of personal computers, often as an incentive for the end
user to buy the hardware.

Both forms consist of installing software on more computers than allowed
by the license. In these cases, we can expect exchange of updates between
the legitimate user of a copy and the illegitimate users of the same copy. We
assume that a software provider cannot easily become aware of these forms of
piracy because of the limited size of the communities sharing a copy.

The proposed scheme involves interaction between the user and the soft-
ware provider to activate an instance as a primary, static line of defense against

2.1 Break Once Break Every Time Resistance 31

this form of piracy. Even though this protection can eventually be broken, the
diversity ensures that only one copy of the software will be broken at a time.

When the first line of defense is broken, a second, dynamic line of defense
is provided by the diversification at installation. As a result the characteristics
of an illegitimate instance will not be considered legitimate and updates will
not be provided. This way these instances cannot be kept sound and up to date.
However, this diversification can be turned off as well in order to ensure that
the illegal instances are identical to the legal instance. To enable the illegal
instances the links between the hardware and the software need to be broken.
We note that it can be harmful to change the installed code to remove the
links to the hardware as it might cause subsequent updates to fail. Changing
the program might change the characteristics which determine the update. An
alternative attack would be to emulate the hardware.

Both lines of defense need to be broken before illegitimate users can fully
enjoy the software. As a result of the diversification an attack would ideally
work on only one distributed copy. As each copy needs to be cracked sep-
arately and as we assume a small number of pirates, we can conclude that,
given the limited size of the sharing communities, this form of piracy will no
longer have a significant impact on the revenues of the software provider.

Internet Piracy and Software Counterfeiting Internet piracy is the act of
making unauthorized copies of copyrighted software available to others elec-
tronically. Software counterfeiting is the illegal duplication and distribution of
copyrighted software in a form designed to make it appear legitimate.

Both forms consist of installing software on more computers than allowed.
The scale is typically larger than of the forms discussed in the previous para-
graph. We assume that there cannot be a continuing interaction between the
pirate and the illegitimate users, as the exposure of the pirate and thus the risk
of legal action against him would be too high.

We only consider the case in which both lines of defense are already bro-
ken. We limit ourselves to this case because of the following reasons: if the
first line of defense is not broken and the user is charged per activation of an
instance, this will bring no harm to the software provider. It will instead be a
free distribution and advertising channel. If the second line of defense is not
broken illegitimate users will not be able to keep their software sound and up
to date, since we ensure that the update for a specific instance cannot easily be
derived from an update targeted towards another instance.

In practice, the majority of versions pirated this way has the same origin.
For example, most of the pirated versions of Windows XP were tied to a few
volume license product keys [Mic 02]. Given the large scale, the software
provider probably can become aware of the piracy, for example, by searching
the Internet for illegally distributed copies. Alternatively, as these illegitimate

32 Minimizing the Impact of an Attack

versions need to be kept sound and up to date and there cannot be a contin-
uing interaction with the original pirate, many requests for updates will be
made from many different locations for the same instance. This would also
rouse the suspicion of the software provider. If an instance is considered to
be corrupted, the software provider will no longer provide updates for these
instances, thereby impairing the illegitimate users.

Mischanneling Mischanneling refers to the form of piracy where, e.g., an
academic license is used for commercial purposes. To our knowledge this is
the only form of piracy of an entire program against which our scheme does
not provide protection. In fact, we are not aware of any technical protection
against this form of piracy.

Piracy Discrimination

As discussed, piracy can help to lock in consumers in an earlier phase and can
lead to higher profits in a later phase. Furthermore, software piracy can create
additional positive network externalities. In our model, software providers
want to maximize their profits now, but also in the future. Users that have
illegitimately used a program for a while and want to turn to a legal version can
be expected to stick to the software they are used to because switching implies
additional costs. These include learning costs, transaction costs (because the
installation and implementation of a new software system is not a trivial task)
and artificial costs: an update can for example be cheaper than the full version.
In some cases the pirate does not have the financial capabilities of obtaining
the software legally, but he can be expected to do so in the future.

The proposed scheme enables a fine-grained control over the distributed
copies and allows a software provider to tolerate an arbitrary level of piracy.
This is made possible through the activation and the tailored updates. A soft-
ware provider can choose which instances are activated and for which instances
updates are provided. Furthermore he knows the origin of the instance for
which an activation or update is requested because of the diversity.

For example, two installations of a copy for private use could be allowed to
enable a user to use the same copy on a desktop and on a laptop. On the other
hand, a copy for commercial use can be limited to one installation or exactly
as many as agreed upon in the license.

2.2 Break Once Run Every Time Resistance

The diversity discussed in the previous section is applied before distribution.
In this section, we propose to combine the best of both worlds — the benefits

2.2 Break Once Run Every Time Resistance 33

of diversity and near-zero marginal costs — by introducing diversity after the
distribution.

The ideas are discussed in the light of a specific model of a tamperer’s be-
havior: the locate-alter-test cycle. It has been understood for long that there are
many similarities between tampering and debugging. In this model, we make
these similarities explicit. As a result, the techniques presented to counter
tampering leverage known difficulties from the domain of debugging: inde-
terministic behavior (from the viewpoint of the program) and the fundamental
limitations of testing (for every input, every environment). Despite originating
from a specific model, the techniques increase the workload to create a fully
functional patched version in a more general attack model, which assumes only
that behavioral changes are made by modifying the program itself.

The underlying ideas are that (i) An attacker typically repeats the execution
of the program with a particular input and slowly zooms in on the part where he
thinks a vulnerability may occur. This becomes harder if the execution cannot
be replayed at will and (ii) If we can fool an attacker into believing that he
has succeeded for a longer period of time, we can delay the feedback loop of
software tampering.

2.2.1 Low-level Debugging versus Tampering

Debugging and tampering are similar in many respects: many of the same
techniques and tools are used in both disciplines. Debugging is about finding
and reducing the number of defects in a computer program to make it behave
as the software provider intends. Likewise, tampering is about finding and
reducing the number of undesired features to make it behave as the user desires.

The incentive to tamper with software thus originates from the difference
between the behavior intended by the software provider and the behavior de-
sired by the user. Examples have been given in Section 1.1.1.

Put another way, debugging is about transforming the semantics encoded
in the program to the semantics intended by the software provider. Tampering
is about transforming the semantics encoded in the program to the semantics
desired by the user. Therefore, it should be no surprise that both disciplines are
alike. Many tools, such as IDAPro and SoftICE, and many techniques, such
as breakpoints and slicing, have been originally designed for debugging, but
are heavily used in tampering. The main difference is that during debugging
a higher-level representation of the program is often available (such as source
code or specification), while tampering typically starts from machine code or
bytecode.

Similar to the edit-compile-test cycle of debugging, tampering is typically
a cyclical process. Since tampering is usually done at a low level, the compile

34 Minimizing the Impact of an Attack

phase can be eliminated. Furthermore we can split up the edit phase, leading
to the following cycle:

1. Locate the origin: To turn the observed undesired behavior into desired
behavior, a tamperer first needs to find the origin of the undesired be-
havior. For example, the displayed health of a game character is only a
manifestation of the internal state. Locally changing the code that dis-
plays his health will not result in the desired behavior. He needs to trace
it back to where the internal representation of his health actually gets
decreased.

2. Alter the behavior: Once the origin is determined, a tamperer needs
to determine and apply a set of changes that will alter the undesired
behavior into desired behavior.

3. Test: In this phase, the tamperer checks whether the behavior of the
software is as desired. If so, his work is done. Otherwise, more cycles
are required.

2.2.2 Slowing Down the Locate-Alter-Test Cycle

If tampering is similar to debugging, we can argue along the same lines that
making tampering harder is the opposite of making debugging easier.

One of the key concepts in making software easier to debug and maintain is
modular design. Modular design facilitates local changes and thus minimizes
the need to verify the impact of a local change on other parts of the program.
Most tamper resistance techniques [Chang 02, Chen 02, Horne 02] have fo-
cused on doing the opposite: making the program more inter-dependent. Ex-
isting techniques are thus about slowing down the alter phase by requiring
an understanding of a larger portion of the program and more binary changes
to possibly unrelated sections of the program to effect a small change in the
behavior of the program.

In this line of work, we focus on slowing down the locate and test phase.

Slowing Down the Locate Phase

Looking again at debugging, the first task when dealing with a bug report is
to reproduce the problem. This is vital, since one cannot observe a problem
and learn new facts if one cannot reproduce it. Furthermore, reproduction is
essential to find out whether the problem is actually fixed. Reproducing is one
of the toughest problems in debugging. One must recreate the environment
and the steps that led to the problem [Zeller 05].

2.2 Break Once Run Every Time Resistance 35

Similarly, reproducing undesired behavior is indispensable for tampering.
The manifestation of undesired behavior needs to be traced back to its origin.
Typically, a tamperer repeatedly executes the application with a particular in-
put and slowly zooms in on a part where he thinks the undesired behavior may
originate.

This requires that execution can be replayed at will. We try to hamper this
process by choosing between different control paths based on pseudorandom
numbers, timing results, thread scheduling, etc.

In software tamper resistance, the “bugs” are features which we want to
manifest every time, so it seems illogical to make their appearance indeter-
ministic. We can, however, make sure that these features manifest themselves
in different ways by duplicating parts of the program, diversifying them and
choosing more or less randomly among the alternatives at run time. This makes
it harder for a tamperer to zoom in on the vulnerable part of the program, as
the semantics of the program may be constant, but the execution paths will not
be identical.

Slowing Down the Test Phase

Testing is also a major issue in debugging and software maintenance. It is
very hard to foresee every input, every environment, every usage scenario and
every combination of applications [DiMarzio 07]. Testing can only show the
presence of undesired behavior, not its absence.

The techniques discussed in this section increase the number of tests re-
quired to manifest all occurrences of the undesired behavior. The underlying
idea is that the impact of a successful patch for a small subset of the input
space, for a small number of computers or for a short period of time does not
pose a great threat to the software or content provider.

The time required to create a fully functional tampered version of the soft-
ware is increased by letting the tamperer believe that he has succeeded, while
the attack only works for a subset of the input space, or for a short period of
time. Tamperers often work by trial and error. Using incomplete knowledge
about the program of which they change parts, hoping that the desired results
will arise. When it is easy to evaluate whether these results have been obtained,
this process can be repeated many times. If this evaluation takes longer, e.g.,
because it works for most of the input sets most of the time, the workload
increases.

Furthermore, the credibility of the tamperer in the cracker community may
decrease if he claims to have successfully patched a program, while it still
behaves as intended by the software provider on other computers.

We could for example use one type of license check in 90% of the cases
and another one in the remainder. This way, the tamperer may be fooled into

36 Minimizing the Impact of an Attack

C D(C,n1) D(C,n2)

P?

(a)

C D(C,n1) D(C,n2)

P?

(b)

Figure 2.2: The basic mechanism behind run-time randomization

believing that he has succeeded for a longer period of time. In this case, the
tamperer has done a good job if the undesired behavior appears randomly: he
can just restart the program and hope that it will work next time. However, if
it is linked to certain input patterns or hardware identifiers, the usability of the
tampered version is decreased significantly.

2.2.3 Tools of the Trade

The core mechanism behind the discussed techniques is illustrated in Fig-
ure 2.2. In its simplest incarnation, a fragment of code is duplicated, both
copies are diversified and, at run time, one of them is selected more or less
randomly through a two-way opaque predicate.

An opaque predicate is a predicate that has a property that is known at
obfuscation time, but for which this property is hard to prove afterward. A
two-way opaque predicate (P ?) has the property that its outcome does not
affect program behavior. This section goes into more detail on two aspects
related to the input of the two-way opaque predicates. Firstly, we explore
techniques to augment the user-observed input with chaff input as a source of
randomness. Secondly, we will discuss the usage of variable program state at
a program point, e.g., as fake input dependencies. The generation of diverse
copies is discussed in Chapter 4.

Chaff Input

We say that run-time randomization delays the locate phase if it introduces
diversity during a single “tamper session”, i.e., if the randomization takes place
even on a single computer, for the same user-observed input and for a limited
period of time (one or a few days). Conversely, run-time randomization is said

2.2 Break Once Run Every Time Resistance 37

to delay the test phase if it requires multiple tamper sessions, i.e., the tampering
itself needs to be repeated for different computers, for different user-observed
inputs, for different periods of time.

Under these specifications, chaff input is needed to delay the locate phase.
This will be used as a source of randomness, which will then serve as in-
put for the opaque predicates. Note that chaff input is likely to stand out in
command-line applications, as there is typically little difference between the
user-observed and the fully specified input. However, many interactive appli-
cations already make use of threads, timing information, information about
mouse movement, on-line content, etc. making them more suited for this tech-
nique.

We will now discuss some sources of chaff input.

• Scheduling of threads In multi-threaded applications several threads
may interact with each other in a non-deterministic manner (from the
viewpoint of the application). The actual scheduling depends on the
operating system (and the virtual machine, if applicable), and is influ-
enced by asynchronous events such as user interaction, other processes,
thread priority, and so on. Therefore, the actual scheduling is an ex-
cellent source of randomness. If necessary, additional threads can be
created to perform part of the original functionality, or to perform other
software protection tasks.

• Return values of system calls System calls also provide a source of
randomness from the viewpoint of the application. Many system (or
library) calls return information that is changeable over different runs:
system time, unallocated memory, network traffic, load of the machine,
file system, etc.

The underhanded C code contest 20051 contains examples on how to
obtain randomness in a covert way. One of the entries leaves a matrix
partially uninitialized, as a result of which it still contains information
from a previous stat()-call (stat returns file info, including time of
last access). This type of call is common in regular programs and will
thus not quickly raise suspicion.

An interesting way of randomizing the program is to change the code
executed (not the behavior) based on the presence of a debugger. This
way an attacker could spend a lot of time making the program behave as
desired in the debugger, only to find that it behaves differently without
the debugger.

1http://www.brainhz.com/underhanded/

38 Minimizing the Impact of an Attack

• Side effects of user input A user generates more input than typically
used by the program. For example, the time between different key-
strokes is unlikely to affect program behavior. Similarly, when a button
is clicked, the exact mouse coordinates are often ignored. Furthermore,
the path along which the user has reached the button is often not taken
into consideration. By including this type of information to guide the
execution, we can add more diversity.

• External service Alternatively, we may require access to an external ser-
vice, which provides a source of randomness. Such an external service
could be trusted hardware or an on-line service.

Record/Replay Mechanisms and Omniscient Debuggers

Clearly, given a fully specified input, the behavior will be deterministic. While
the fully specified input is often a superset of what the user perceives as input,
a tamperer could ultimately use a perfect record/replay system [Ronsse 99] to
make the fully specified input (including data, user interaction, communica-
tion, system calls and scheduling events [Zeller 05]) repeatable, and thus the
execution repeatable. This way he can track down and tamper with one of the
copies of the origins of the undesired behavior. Alternatively, he could use an
omniscient debugger [Bhansali 06], e.g., the Simics Hindsight Debugger, to
backtrack to the origin. Note that the general application of these techniques
can be very expensive in terms of memory requirements. Therefore, a potential
defense against such capabilities is to increase the amount of state necessary
for the debugger to be able to trace backwards. This can be accomplished by
maximizing the number of irreversible operations in the program.

In any case, there will be more origins of the undesired behavior. Unless
the tamperer finds a way to automate detecting copies of that specific origin,
which is undecidable in general, he has to either (i) repeat this labor-intensive
method for every copy of the origin, or (ii) he has to make the choice between
the different copies fixed. As a result, the workload on the tamperer increases.

Fixing the choice between different copies may be complicated as well.
It may be easy to automatically find points where the different executions di-
gress, but some of these points may be part of the original functionality of the
program.

Variable Program State and Fake Input Dependencies

The internal state at a program point is itself highly variable and, therefore, an
excellent source of input for the two-way opaque predicates. Furthermore, it is
less suspicious to select different execution paths based upon the internal state.

2.2 Break Once Run Every Time Resistance 39

Through profiling [Graham 82, Pettis 90], we can easily spot tuples (p, s),
for which either (i) the state s is constant at program point p for a fixed input,
but variable for different inputs, or (ii) the state s is variable at program point
p even for a fixed input. Note that, due to the nature of profiling, we cannot be
certain that a state s is fixed, we can only conclude that a state s is fixed for the
tested inputs.

Tuples for which the first property holds are candidates for introducing
fake input dependencies. As a result, the execution for different inputs will
differ at places where it originally overlapped, thereby delaying the test phase.

Tuples for which the second property holds are useful to delay the locate
phase, because they will increase the amount of information in the static repre-
sentation of the program and the number of different instructions in a trace of a
particular execution. As a result, the trace will be less “foldable”, by which we
mean that constructing a Control Flow Graph (CFG) from the trace will result
in a larger CFG than from the original program.

Using the same argumentation as earlier, an attacker needs to patch at least
one of the copies, and needs to patch additional ones or remove the fake de-
pendencies on the program state.

3
Matching System – Menelaus

A matching system tries to identify related code fragments between two pro-
grams. As such, it can be used to help identify similarities and differences
between programs. There are numerous situations in which this is useful:

• During an incident response, one may find a modified version of some
program and want to know which modifications have been made to it.

• An undocumented third-party Application Programming Interface (API)
may have changed and you need to figure out what has changed in a new
version or after a patch.

• Crackers may want to use the difference between a version before and
after patching to figure out how to set up an attack against unpatched
systems.

• System administrators may want to verify the impact of a patch or check
if a bug has indeed been fixed.

• Crackers may have crafted an attack against a single version and try to
generalize it to other versions. For example, a conditional branch guard-
ing the outcome of a license check may be a single point of failure for a
copy protection mechanism. A cracker can save time breaking another
version if matching techniques can readily indicate the corresponding
conditional branch in the other version.

• It can help to prove that some code fragment has been pirated.

42 Matching System – Menelaus

• It can facilitate detecting the modification responsible for a bug (delta
debugging).

• It can be used to port information between different versions. Profile
information, for example, is expensive to collect and has been shown to
be portable to newer versions [Wang 00].

This chapter discusses a matching system that can be useful in all of these
applications. However, our main goal is to evaluate how successful related
code fragments can be matched between different versions.

3.1 Quality of a Matching System

We informally define a matching system for code as follows. Let C be the set
of all syntactically correct code fragments. In this dissertation, a code frag-
ment is a sequence of one or more assembly instructions starting at a particu-
lar address. Two granularities will be considered: single instructions and basic
blocks.

For notational simplicity, we will consider a program to be a set of code
fragments. A matching system M takes as input two programs A,B ∈ P(C)
and produces a mapping µ. A mapping is defined as a subset of the pairs of
code fragments from A and B (µ ⊆ A×B). M is thus of the following type:

M : P(C)× P(C) 7→ P(C × C) .

We will refer to the output of a matching system M for two programs A
and B as the estimated mapping: µe. To determine the correctness of this
estimated mapping, we need a reference mapping µr, which defines which
code fragments are related (belongs to µr) and which are not (belongs to
µr, µr = (A × B)\µr). These sets are illustrated in Figure 3.1. For now,
we will simply assume that such a mapping exists. We will discuss in the next
chapter how such a mapping can be obtained in practice.

The difference between the estimated mapping µe and reference mapping
µr is an indication of how well we have succeeded in matching code fragments
between the two versions. As usual, there can be two types of errors in the
estimated mapping: false negatives and false positives.

3.1.1 False Negatives

False negatives are pairs of code fragments in the reference mapping that are
not in the estimated mapping, i.e., the set of false negatives is µr\µe.

A lower number of false negatives indicates a better estimate. Intuitively,
this indicates how well the matching system can link related code fragments.

3.1 Quality of a Matching System 43

BA×

false positives false negativescorrect
eμrμ

Figure 3.1: The reference and estimated mapping are subsets of AxB

If a pair of related code fragments is in the estimated mapping, those code
fragments are also correctly perceived as related by the matching system. Oth-
erwise, they are falsely perceived as unrelated.

For evaluation purposes, we will use the false negative rate (ν): the fraction
of pairs of code fragments in the reference mapping that is not in the estimated
mapping, i.e.,

ν =
|µr\µe|
|µr|

.

A false negative rate of 0.5, for example, means that we have only found
half of the required matches. Clearly, it is trivial to reduce the false negative
rate to zero by including every pair of fragments in the estimated mapping
(µe = A × B). However, this will result in many reported pairs of unrelated
code fragments.

3.1.2 False Positives

False positives are pairs of code fragments that are not in the reference map-
ping, but that are in the estimated mapping, i.e., the set of false positives is
µe\µr.

A lower number of false positives indicates a better estimate. Intuitively,
this indicates how well the matching system can distinguish unrelated code
fragments between two versions. If a pair of unrelated code fragments is in the
estimated mapping, they are incorrectly perceived as related by the matching
system. Otherwise, they are correctly perceived as unrelated.

For evaluation purposes, we will use the false positive rate (π): the frac-
tion of pairs of code fragments in the estimated mapping that are not in the
reference mapping, i.e.,

π =
|µe\µr|
|µe|

.

44 Matching System – Menelaus

A false positive rate of 0.5, for example, means that for every correctly
reported match, we have one falsely reported match.

In some cases, we will also indicate the fraction of the worst case of false
positives that is reported in the estimated mapping (φ), i.e.,

φ =
|µe\µr|
|µr|

.

Clearly, it is trivial to reduce the false positive rate to zero by not including
any pair of code fragments in the estimated mapping (µe = ∅). However, this
will result in many unreported pairs of related code fragments.

Therefore, we will quantify the quality of a mapping by a pair of numbers: the
false negative rate and the false positive rate.

3.2 Fuzzy Classifiers

Our prototype matching system is built on top of a number of classifiers.
A classifier c will help to estimate whether or not a pair of code fragments
(a, b), a ∈ A, b ∈ B is related. An ideal classifier c would return 1 for a pair
of code fragments that is supposed to match, and 0 otherwise, i.e.,

c(a, b) =
{

0, (a, b) ∈ µr ,
1, (a, b) ∈ µr .

In general, such an ideal classifier is impossible to create. Therefore, we
settle for fuzzy classifiers. Each of these fuzzy classifiers will indicate its con-
fidence as to whether or not to match two instructions by returning a value in
the interval [0, 1].

Alternatively, the classifier may have no information available on the code
fragments in question. In that case, it can return the “no opinion” value: ⊥.
This value will be used in situations where the classifier has no information
available for the code fragments under consideration. As we will see later, it
will behave as the value 0 when selecting new pairs for the estimated mapping
µe, and as the value 1 when removing pairs from the estimated mapping. This
will ensure that the status (∈ or /∈ µe) of a pair for which no information is
available does not change.

Precise Information

Conceptually, the input of a classifier is made up of two code fragments, as
described above. In practice, the code fragments will be augmented with dif-
ferent types of information, depending on the classifier at hand.

3.3 Experimental Setup 45

If the software has been diversified deliberately, we cannot rely on debug
information or heuristics about the compiler or linker used to obtain this infor-
mation. Furthermore, it can be expected that measures will have been taken to
prevent disassembly and control flow graph construction.

Therefore, we rely on a dynamic instrumentation framework to collect in-
formation about the versions: DIOTA [Maebe 02]. The advantage of such a
framework is that it does not require reverse engineering, program understand-
ing tools or heuristics about the compiler or linker used. The basic idea is that
instrumented code is generated on the fly, while the original process is used
for data accesses. As such, the framework deals correctly with traditionally
hard to instrument features such as data in code and code in data, as there
is no uncertainty about the code that actually gets executed. Therefore, this
information is guaranteed to be correct and accurate [Ernst 03].

3.3 Experimental Setup

The strength of a matching system will be evaluated with respect to a diversity
system. In this chapter, we will use a trivial diversity system consisting of
a single transformation: the identity function. The reference mapping µr is
trivial to obtain for this diversity system: code fragments are related to, and
only to, the code fragments at the same address in the other version. A non-
trivial diversity system will be introduced in the next chapter.

Evaluating a matching system on two identical programs can already pro-
vide useful insight in how well a matching system can recognize unrelated
code fragments.

False Positive Rate

We will use two types of graphs in this chapter to evaluate the different clas-
sifiers. The first type of graph plots the false positive rates π and φ for both
levels of granularity: basic block level (bbl) and instruction level (ins). See,
for example, Figure 3.2(a).

The x-axis denotes different thresholds for the confidence of the classi-
fier. The set of estimated mappings µe is obtained by including every pair of
code fragments for which the classifier returns a confidence higher than the
threshold. The y-axis indicates the false positive rate.

For example, the 1950 related pairs of basic blocks, which make up the
reference mapping, are all assigned a confidence of 1 with respect to the clas-
sifier at hand. Furthermore, 7910 pairs of unrelated basic blocks result in a
confidence of 0.98 or more. If we were to include every pair with a confi-
dence of 0.98 or more, we would have 7910 false positives on a total of 9860

46 Matching System – Menelaus

(= 7910+1950) reported matches, or a false positive rate of about 0.8. Hence
the value of 0.8 on the y-axis for x=0.98 for π(bbl).

Equivalence Classes

The second type of graph shows the number of equivalence classes (along the
y-axis) of a given size (along the x-axis). Note that, in the interest of clarity,
we do not show the number of equivalence classes of a given size if the number
is zero. The numbers in the graph deal with the static portion of the code that
is executed at least once.

Equivalence classes are defined by an equivalence relation. We can derive
such a relation from the fuzzy classifier c as follows:

∀(a, b) ∈ C2 : a ≈ b ⇔ c(a, b) = 1 .

To make this relation an equivalence relation, we impose the following
restrictions on the classifiers:

∀a ∈ C : c(a, a) = 1 , (Reflexivity)
∀a, b ∈ C : c(a, b) = 1 ⇒ c(b, a) = 1 , (Symmetry)
∀a, b, c ∈ C : c(a, b) = 1 ∧ c(b, c) = 1 ⇒ c(a, c) = 1 . (Transitivity)

As a result of the first requirement, the false negative rate ν is 0 for any
threshold of confidence when considering the trivial diversity system.

Benchmark

The evaluation in this chapter considers the mcf benchmark from the SPEC
CPU2006 benchmark suite. This benchmark uses combinatorial optimization
to solve a single-depot vehicle scheduling problem. It has been compiled with
gcc 3.2.2 and statically linked to glibc 2.3.2. The tracing of the benchmark has
been done with the test input set. During this run, 1950 different basic blocks
and 8494 different instructions are executed.

3.4 Classifiers Based on Local Information

In this section, we will discuss a number of classifiers which operate on addi-
tional information about the code fragments under consideration. In the next
section, we will take into account the proximity of the code fragments to other
code fragments.

The building block of the code of a program is the instruction. Therefore,
we will first use this granularity for code fragments. As will become apparent
when evaluating the quality of the classifiers, many properties of instructions
are not sufficiently discriminative to distinguish similar (or identical), but un-
related instructions.

3.4 Classifiers Based on Local Information 47

This comes as no surprise: just consider the number of times instructions
such as the jump instruction and the return instruction appear in a program at
different locations. In order to partially mitigate this problem, we can take into
account a broader context of the instruction, the basic block. By operating at
the more coarse-grained basic block level, we will leverage the knowledge that
the instructions in the basic block are always executed in combination. This
will help to decrease the false positive rate.

3.4.1 Instruction Syntax

One of the most obvious types of information to collect is the syntax of the
instructions that make up the program. This information corresponds to the
information that would be available from an assembly representation of the
instructions that have been executed during a particular run. This includes the
opcode, source and destination operands.

The classifier reflects how comparable the opcode and operands are be-
tween two instructions.

Evaluation

The graphs in Figure 3.2 evaluate the discriminative strength when applied to
the trivial diversity system. As can be seen from part (a) of the figure, the false
positive rate at the instruction level is very high. This means that a lot of pairs
of instructions will be considered related wrongfully.

Even at threshold 1, were we include only pairs of instructions that appear
to be identical in the estimated mapping, we still have a very high number of
false positives. A more in depth analysis of this phenomenon is given in part
(b), where we have plotted the number of equivalence classes (y-axis) of size n
(x-axis) at the instruction level. For example, there is one equivalence class of
size 1089. As these instructions cannot be distinguished based on instruction
syntax, they will all be considered to be related, resulting in 1089×1089−1089
false positives. This results from each instruction having exactly one related
instruction. As such, the false positives generated by this equivalence class
alone dwarf the true matches (8494).

Manual inspection shows us that the most frequently appearing instructions
are:

jcc 1089 times
testl %eax %eax 244 times
jmp 220 times
call 216 times
ret 142 times

48 Matching System – Menelaus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl)

φ (ins)

False Positive Rate

(a) False positive rates

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

Classes

Size of Equivalence Class

(b) Equivalence classes at instruction level

0

500

1000

1500

0 10 20 30 40 50 60

Classes

Size of Equivalence Class

(c) Equivalence classes at basic block level

Figure 3.2: Evaluation of the classifier based on instruction syntax

3.4 Classifiers Based on Local Information 49

The reason we cannot discriminate between different (conditional) jumps,
calls, etc. is that we do not take into account encoded offsets and addresses.
This measure has been taken in order not to be fooled by reordering transfor-
mations. Clearly, for the identity diversity system, taking this information into
account would yield better results.

For the mcf benchmark, 18.5% of the instructions can be discriminated
perfectly. These instructions are mainly exotic instructions and instructions
with encoded rarely-occurring constants.

For the basic block granularity, we can observe slightly better results in
part (a). Still, at threshold 1, about 8 in 10 reported matches are false posi-
tives. Again, a more in depth analysis is given in part (c). The most frequently
appearing basic block consists of a single jump instruction. Other frequently
appearing basic blocks are testing the value of a register for zero and branching
conditionally upon the outcome of the test.

About 65% of the basic blocks can be discriminated perfectly. As a result,
if we would only match basic blocks in an equivalence class of size 1, we
would have a false negative rate of 35% and a false positive rate of 0%. This
is an example of how limiting the number of matches per code fragment can
substantially improve the results of a matching system. In practice, there are
typically only a couple of correct matches per code fragment. We will use this
assumption again later on to decrease the false positive rate.

3.4.2 Data

We collect the values read and written by the instructions. As this may become
too much information to store, we limit this collection to the first n executions
of each instruction, where n can be chosen depending on the (expected) size
of the trace.

The classifier simply counts the number of matching values read and writ-
ten by the instructions under consideration, independently of the location of
the data, to avoid being fooled by data reordering or register reassignment.
Furthermore, we exclude data values that look like addresses and the values
in the set {−1, 0, 1}. The latter are excluded because they occur so frequently
that they would result in many false positives.

In some cases (e.g., an unconditional jump), no data is available. When
the classifier has to deal with two code fragments which both have no data
available, the classifier will report that it has no opinion on whether or not the
two code fragments should be matched. If only one of a pair of code fragments
has no data available, it will return 0.

50 Matching System – Menelaus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl) φ (ins)

False Positive Rate

(a) False positive rates

0

500

1000

1500

0 50 100 150 200 250

Classes

Size of Equivalence Class

(b) Equivalence classes at instruction level

0
200
400
600
800

1000

0 10 20 30 40 50 60 70

Classes

Size of Equivalence Class

(c) Equivalence classes at basic block level

Figure 3.3: Evaluation of the classifier based on data

3.4 Classifiers Based on Local Information 51

Evaluation

Similarly to the evaluation of the classifier based on instruction syntax, the
graphs in Figure 3.3 evaluate the discriminative strength of the classifier based
on data when applied to the trivial diversity system. For the purpose of eval-
uation we have considered the first five executions of each code fragment
(n = 5).

The false positive rate is very high for this classifier. Furthermore, the clas-
sifier has no opinion on a large number of basic blocks (32%) and instructions
(57%). When looking at the data values responsible for the larger equiva-
lence classes, we observed low integer values (e.g. 2,3,4,8,10) and flag values
(0x1000, 0x10).

3.4.3 Execution Count

We keep track of the number of times each instruction is executed. We be-
lieve that the order of magnitude of the execution count is hard to change. It
is possible to manipulate execution counts slightly, for example, decreasing
them by loop unrolling or duplication and increasing them by executing code
from contexts in which it only produces dead values. However, the order of
magnitude is harder to change: if an operation needs to be performed a million
times, it is no longer feasible to keep unrolling it until each instance of that
operation executes only, e.g., ten times. Furthermore, increasing the execution
count of less frequently executed or garbage code can have adverse effects on
the performance of the application and is therefore best avoided.

If freq(ai) is the number of times a code fragment ai has been executed,
then the score of the classifier C for a pair of code fragments (ai, bj) is deter-
mined by the following formula:

C(ai, bj) = 1− | freq(ai)− freq(bj)|
max(freq(ai), freq(bj))

.

Evaluation

The evaluation of the classifier based on execution count is shown in Fig-
ure 3.4. The top five of most frequently occurring execution counts for basic
blocks is as follows: 1 (461), 2 (372), 3 (102), 265319 (90), 4 (75). This is
more or less what could be expected: a lot of basic blocks are infrequently
executed. As such, they will create a lot of false positives. Apparently, 90 ba-
sic blocks have been executed 265319 times, which indicates a relatively large
loop.

52 Matching System – Menelaus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl)

φ (ins)

False Positive Rate

(a) False positive rates

0

10

20

30

40

0 500 1000 1500 2000

Classes

Size of Equivalence Class

(b) Equivalence classes at instruction level

0

50

100

150

0 100 200 300 400 500

Classes

Size of Equivalence Class

(c) Equivalence classes at basic block level

Figure 3.4: Evaluation of the classifier based on execution count

3.4 Classifiers Based on Local Information 53

3.4.4 System Calls

System calls are a very useful source of information about the program. All
information passed to the operating system needs to be converted back into a
format readable by the operating system (assuming the operating system itself
is not part of the diversification). In many cases, this means that the data
needs to be normalized, requiring a normalization routine to be present in the
program. Furthermore, it is hard to remove or reorder existing system calls or
to execute redundant system calls in a non-trivial way.

The same arguments hold for library functions if they are not part of the
diversification. In this work, we only consider statically linked programs and
assume that the libraries have been included in the diversification. Therefore,
this is not discussed any further.

We keep track of the system calls and the information passed to them. The
associated classifier scores the system calls based upon the correspondence
between the values passed.

Evaluation

The classifier based on system calls yields perfect results: no false positives
and no false negatives (except at threshold 0). Unfortunately, only 14 system
calls appear in the program. As a result, this classifier has no opinion on many
instructions and basic blocks.

3.4.5 First Execution Time

Finally, we keep track of the first time instructions are executed.
The classifier measures the difference between the actual first time it was

executed, compared to the expected time. The expected time is computed by
taking the difference between the total number of executed instructions of each
version into account. This is illustrated in Figure 3.5. If, for example, version
1 has five executed instructions and version 2 has ten, then the expected time
of the counterpart of instruction ins v1.3 is: 3× 10

5 = 6. If our classifier would
then score the pair ins v1.3 and ins v2.10, the score would be: |10−6|

10 .

Evaluation

The evaluation of the classifier based on first execution time is shown in Fig-
ure 3.6. The classifier behaves very similarly at both granularities. At the
instruction level however, the false positive rate is not zero at threshold 1. The
origin of that behavior is that we assign the same first execution time to every
instruction in a basic block. As a result, the graph of equivalence classes in
part (b) indicates how many instructions there are in basic blocks of the sizes

54 Matching System – Menelaus

ins_v1.1
ins_v1.2
ins_v1.3
ins_v1.4
ins_v1.5

ins_v2.1
ins_v2.2
ins_v2.3
ins_v2.4
ins_v2.5
ins_v2.6
ins_v2.7
ins_v2.8
ins_v2.9
ins_v2.10

Figure 3.5: Expected execution time takes into account the difference in total size
between the versions. The dashed lines connect instructions that get a perfect

score according to the classifier based on first execution time.

given by the size of the equivalence classes. For illustrative purposes, we have
also plotted the number of instructions divided by the sizes of the equivalence
classes, as this indicates the number of basic blocks of a given size.

3.5 Proximity-based Classifiers

The previously discussed classifiers are based upon information local to the
code fragments under consideration. The evaluation of the false positive rates
for basic blocks and instructions shows us that looking at a larger context leads
to better false positive rates.

By taking into account neighboring blocks in the control flow or data flow
graph, we can take into account even more context information.

3.5.1 First Order Control Flow

One of the properties we consider hard to modify is the order in which the
code gets executed. Therefore, we collect information about the possible flow
of control through the program. Every control transfer between instructions in
the program is recorded. As such, we collect first order control flow.

In practice, this results in a control flow graph that may contain unrealiz-
able paths: paths containing more than one control transfer may be represented
by the graph, but never executed in practice. This is illustrated in Figure 3.7.
Assume that the execution trace is A-C-D-B-C-E, then the first order control
flow information is represented by the graph. However, this graph also rep-
resents the (sub)path A-C-E, which has not been observed and may even be
unrealizable.

3.5 Proximity-based Classifiers 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl)

φ (ins)

False Positive Rate

(a) False positive rates

0

200

400

600

0 20 40 60 80

Classes

Size of Equivalence Class

(b) Equivalence classes at ins level

Figure 3.6: Evaluation of the classifier based on first execution time

56 Matching System – Menelaus

C

ED

A B

Figure 3.7: Unrealizable paths in first order control flow

The classifier based upon this type of information has two parameters: dis-
tance and direction. The direction indicates whether to go up, down or in
both directions in the control flow graph. The distance indicates how many in-
structions to ascend and/or descend. When there are multiple outgoing and/or
incoming edges, all of them are traversed. This is illustrated in Figure 3.8.
For the purpose of illustration, instructions which are supposed to match have
been given the same coordinates in version 1 and version 2. The difference
between the two versions could have been obtained by inserting two garbage
instructions in version 2.

The obtained sets of instructions are shown in Figure 3.9. The arrows
indicate instructions that have previously been matched. Six out of the ten
instructions of the first set have a match in the second set, six out of eight
instructions of the second set have a match in the first set. The score is then
computed as follows:

6
10

+ 6
8

2 = 27
40 .

Evaluation

As this classifier requires previously matched instructions, its strength will de-
pend on how well matches have been found in earlier iterations of the matching
system. To eliminate this dependency on earlier iterations, we have evaluated
the classifier assuming that all pairs of code fragments, except for the pair un-
der consideration, have been classified correctly. The settings of the classifier
for the purpose of this evaluation are direction=both and distance=3.

As can be seen in Figure 3.10, this classifier has significantly more dis-
criminative strength than the classifier based on instruction syntax, both at the
instruction and at the basic block level of granularity. At threshold 1, the false

3.5 Proximity-based Classifiers 57

ins v2.k
ins v2.l

ins v1.e
ins v1.f
ins v1.g

ins v1.k

ins v1.a
ins v1.b

ins v1.c
ins v1.d

ins v1.h
ins v1.i
ins v1.j

3
2
1

5
4

2
1

UP

d
is
ta
n
ce ins v2.e

ins v2.f
ins v2.g

ins v2.a
ins v2.b

ins v2.c
ins v2.d

ins v2.h
ins v2.i
ins v2.j

UP

d
is
ta
n
ce 5

4
3

ins v2.m

(a) version 1

ins v2.k
ins v2.l

ins v1.e
ins v1.f
ins v1.g

ins v1.k

ins v1.a
ins v1.b

ins v1.c
ins v1.d

ins v1.h
ins v1.i
ins v1.j

3
2
1

5
4

2
1

UP

d
is
ta
n
ce ins v2.e

ins v2.f
ins v2.g

ins v2.a
ins v2.b

ins v2.c
ins v2.d

ins v2.h
ins v2.i
ins v2.j

UP

d
is
ta
n
ce 5

4
3

ins v2.m

(b) version 2

Figure 3.8: Control flow graph traversal for instructions ins v1.k and ins v2.m with
direction=up and distance=5

ins v1.a

ins v1.b

ins v1.c

ins v1.d

ins v1.e

ins v1.f

ins v1.g

ins v1.h

ins v1.i

ins v1.j

ins v2.e

ins v2.f

ins v2.g

ins v2.h

ins v2.i

ins v2.j

ins v2.k

ins v2.l

Figure 3.9: Comparing instruction sets

58 Matching System – Menelaus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl)

φ (ins)

False Positive Rate

Figure 3.10: Evaluation of the classifier based on control flow with direction=both
and distance=3

positive rate is almost 0. At the instruction level, all but four instructions are in
an equivalence class of size 1. At the basic block level, all but 43 basic blocks
are in an equivalence class of size 1.

As such, this classifier will be very useful in improving an existing rela-
tively good mapping, by filtering matches that are not related when looking
at their context in the control flow graph, or by extending correctly matched
regions along the flow of control.

3.5.2 First Order Data Flow

Similar to control flow, we keep track of first order data flow. This is typically
represented by a data dependency graph. In a data dependency graph, edges
connect instructions to the instructions that last defined the values used. Sim-
ilarly to control flow, we consider data flow to be particularly hard to modify
for programs in general.

The classifier operates similarly to the classifier operating on first order
control flow.

Evaluation

Many of the comments made in the evaluation of the classifier based on first
order control flow are valid for the classifier based on first order data flow

3.6 Building a Matching System from Fuzzy Classifiers 59

0.759
0.773

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

π (ins)

π (bbl)

φ (bbl)
φ (ins)

False Positive Rate

π (ins)

π (bbl)

φ (bbl)
φ (ins)

False Positive Rate

Figure 3.11: Evaluation of the classifier based on data flow with direction=both and
distance=3

as well. Furthermore, we have used the same settings, direction=both and
distance=3.

The results (Figure 3.11) illustrate that π (as opposed to φ) is not neces-
sarily decreasing as the threshold increases. The numerator for both π and
φ is the absolute number of false positives, which is non-increasing. As the
denominator is constant for φ, φ is non-increasing as well. However, for π,
the denominator is the size of the estimated mapping, which is non-increasing.
When passing threshold 0.5, we lose 46,205,330 false positives, but we also
lose 1925 correctly identified matches.

Similarly, ν is non-decreasing as the threshold increases.
Again, at threshold 1, the false positive rate is almost 0. At the instruction

level, we observe only 71 instructions in equivalence classes with sizes greater
than one. At the basic block level, all but 9 basic blocks are in an equivalence
class of size 1.

3.6 Building a Matching System from Fuzzy Classi-
fiers

The fuzzy classifiers discussed in the previous sections each indicate their con-
fidence as to whether two code fragments are related. When evaluating the suc-
cess of matching two identical versions, it already becomes apparent that the
false positive rate is unacceptably high, even at threshold 1, with the exception

60 Matching System – Menelaus

of the proximity-based classifiers and the classifier based on first execution
time.

The evaluation of the proximity-based classifiers is good because we have
assumed a perfect mapping of all of the code fragments, excluding those under
consideration. Clearly, this assumption is not viable in a real setting. Further-
more, the classifier based on first execution time is very vulnerable at lower
thresholds, as can be observed from Figure 3.6. This indicates that it will not
be as successful once we are dealing with truly diversified versions and are
forced to pick a lower threshold.

We have taken three approaches to mitigate the problem of unacceptably
high false positive rates: combination and iteration of fuzzy classifiers and
limiting the number of matches per code fragment.

3.6.1 Combining Fuzzy Classifiers

Let’s assume that the event that two unrelated code fragments are perceived
similar by one classifier c is independent of the event that they are perceived
similar by another classifier d, i.e.,

∀(A,B) ∈ P(C)2,∀(x, y) ∈ [0, 1]2,∀a ∈ A,∀b ∈ B : (a, b) /∈ µr

⇒ P [c(a, b) ≥ x ∧ d(a, b) ≥ y] = P [c(a, b) > x]P [d(a, b) > y] .

In that case, the probability of two unrelated code fragments being con-
sidered similar by two classifiers at the same time is lower (except when both
probabilities are one) than the probability that they are considered similar by
only one classifier.

Clearly, this is an oversimplification. Yet, in practice, we can observe that
the correlation is still small enough to reduce the number of false positives
through the combination of fuzzy classifiers: unrelated code fragments may
often seem related with respect to a single classifier, but they rarely seem re-
lated when looking at multiple classifiers at the same time.

Note that if one of the selected classifiers has no opinion on a pair of code
fragments, the combined classifier will have no opinion either.

Evaluation

We have illustrated this phenomenon in Figure 3.12. Here, we have plotted π
at the granularity of basic blocks. When looking at instruction syntax alone,
π, even at threshold 1, is still around 0.8 (see Figure 3.2). Similarly, it was at
0.86 for the classifier based on data (see Figure 3.3). When they are combined,
we can observe far better results, with π around 0.16 when both classifiers are
set at threshold 1.

3.6 Building a Matching System from Fuzzy Classifiers 61

0

0.2

0.4

0.6

0.8

1

Data
Threshold

π

Instruction Syntax
Threshold

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Figure 3.12: Evaluation of the diversity system composed of the classifiers based on
instruction syntax and data

We can observe the same graph as in Figure 3.3 for π (bbl) when the clas-
sifier based on instruction syntax is set to threshold 0. The same does not hold
for the classifier based on instruction syntax, because by combining it with the
classifier based on data, the combined classifier no longer has an opinion on a
significant number of pairs, even at threshold 0.

3.6.2 Limiting the Number of Matches

From the number of code fragments in equivalence classes of size n, we can
conclude that a large fraction of the false positives is the result of code frag-
ments in large equivalence classes: an equivalence class of size n leads to
n × n − n false positives. Assuming that there will be a limited number of
related code fragments between versions, a first protective measure is to limit
the number of matches per code fragment.

Therefore, we have added the option to match only the most related code
fragment during an iteration. As the basis of comparison may be a tuple of
values when different classifiers are combined, we do not have a total order
relation, but a partial order relation. Currently, the best (worst) candidate is the
first encountered candidate on the Pareto front.

Another parameter determines the maximum number of matches per code
fragment.

62 Matching System – Menelaus

3.6.3 Iterating Fuzzy Classifiers

The quality of the proximity-based classifiers depends heavily upon the qual-
ity of the existing mapping. In the earlier evaluation, we have assumed that a
perfect mapping was available for all pairs of code fragments with the excep-
tion of the pair under consideration. Clearly, this assumption is not viable in a
real-life scenario. Therefore, we will need to obtain an initial mapping during
an earlier iteration, before we can use these classifiers in subsequent iterations.

The final mapping of a matching system will therefore be obtained in a
number of iterations. Each iteration either introduces new matches between
code fragments or removes existing matches between code fragments.

During the first iteration, while producing the initial estimate, no existing
matches are available. As a result, classifiers that require a preexisting pre-
liminary mapping (the proximity-based classifiers) are not available during the
initial estimate. In subsequent iterations, any combination of fuzzy classifiers
is available to either add pairs of code fragments to the estimated mapping (an
extend iteration) or to remove pairs of code fragments (a filter iteration).

During an extend iteration, only pairs of code fragments (ai, bj) for which
every selected classifier c returns a value higher than or equal to the associated
threshold can be added. Similarly, during a filter iteration, only pairs of code
fragments (ai, bj) for which every selected classifier returns a value lower than
or equal to the threshold can be removed.

The “no opinion” value behaves as the value 0 during an extend phase and
as the value 1 during a filter phase. As a result, pairs for which the (combined)
classifier does not have an opinion will not be added or removed from the
reference mapping for reasonable confidence thresholds (in the interval]0, 1]
during an extend phase and in the interval [0, 1[during a filter phase).

The Default Matching System

In order to have a uniform basis for comparison, we put forward a matching
system defined by the iterations shown in Table 3.1.

The other settings are fixed over the different iterations: we look at basic
block granularity and add only the best matches. For simplicity, we will refer
to this matching system as the default matching system.

Evaluation

When we apply this matching system on two identical copies of the mcf bench-
mark, we obtain the false positive and false negative rates as shown in Fig-
ure 3.13. After the last iteration, we have a false negative rate of about 0.8%
and a false positive rate of about 2.5%.

3.7 Related Work 63

General Settings Classifier Settings
Iteration Phase #Matches Classifier Threshold Direction ∆

1 Init 1 Syscalls 0.3
2 Extend 1 Syntax 0.5

Data 0.5
Order 0.5
Freq. 0.5

3 Extend 2 Syntax 0.1
CF 0.1 BOTH 3

4 Filter CF 0.1 UP 3
5 Filter CF 0.1 DOWN 3
6 Filter DF 0.1 UP 3
7 Filter DF 0.1 DOWN 3
8 Extend 2 Data 0.7

DF 0.3 BOTH 3
9 Extend 2 Syntax 0.7

CF 0.3 BOTH 3

Table 3.1: Settings of the default matching system

Note that we could easily get a perfect match in one iteration using the clas-
sifier based on first execution time at threshold 1. However, we have included
the evaluation with the default diversity system as a baseline for comparison
to the diversifying transformations in the next chapter.

3.7 Related Work

Matching two versions of some piece of information has many applications,
ranging from text file comparison to DNA matching. In this section, we briefly
discuss related work relevant to the matching of program versions.

3.7.1 Text-based Matching Approaches

Text-based matching algorithms are about finding the minimum script of sym-
bol deletions and insertions that transform one sequence into another. This
type of matching is used in, e.g., spelling correction systems and file compari-
son tools [Miller 85, Wagner 74]. However, due to the limitations on the types
of changes (insertions and deletions), they cannot fully capture the degrees of
freedom in the language of programs. While this typically is not a problem

64 Matching System – Menelaus

0
0.01
0.02
0.03
0.04
0.05

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(a) Full view

0
0.01
0.02
0.03
0.04
0.05

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(b) Zoomed

Figure 3.13: Evolution of the false positive and negative rate for the trivial diversity
system

in the application domain of text-based matching algorithms, it does become
problematic when, e.g., statements have been deliberately reordered.

3.7.2 Graph-based Matching Approaches

More recently, graph-based binary matching algorithms [Dullien 05, Sabin 04]
have been proposed, which compare high-level structures like control flow
graphs, as opposed to source code, assembly or code bytes. Often this offers a
more illuminating view of relevant differences between two program versions.
This approach can also foil diversification methods that do not alter the control
flow graph much, e.g., reordering transformations.

3.7.3 Trace-based Matching Approaches

Trace-based matching approaches collect information about the execution of
the program, such as control flow, values produced, addresses referenced and
data dependencies exercised [Zhang 05]. They have been evaluated by com-
paring unoptimized and optimized versions of a program. Recently, they have
been used to compare original and obfuscated versions as well [Nagarajan 07].

3.7.4 Matching Tools

Different tools have been developed with different goals in mind built upon one
or more of the previously discussed matching techniques. BMAT [Wang 00]
is a binary matching tool that has been developed with the primary goal of
reusing profile information in subsequent builds.

3.7 Related Work 65

Other tools, such as BinDiff1 and the eEye Binary Diffing Suite2 are tar-
geted more specifically at pinpointing differences between different versions.
Both tools are extensions to the popular IDA Pro Disassembler and Debugger,3

and are primarily targeted at analyzing patches.

1http://www.sabre-security.com/products/bindiff.html
2http://research.eeye.com/html/tools/RT20060801-1.html
3http://www.datarescue.com/idabase/

4
Diversity System – Proteus

The central part of every application of software diversity is a system to gen-
erate semantically equivalent, but syntactically different code: a diversity sys-
tem.

We will define a diversity system as follows. If C denotes the set of all
syntactically correct code fragments in whatever language the code is speci-
fied, a diversity system D takes as input a fragment of code c ∈ C and a set
of nonces (numbers used once) {1, . . . , k} and produces a set of code frag-
ments {D(c, 1), . . . , D(c, k)} so that ∀i ∈ {1, . . . , k} : D(c, i) has the same
functionality as c, yet ∀(i, j) ∈ {1, . . . , k}2, i 6= j ⇒ D(c, i) is syntactically
different from D(c, j).

Similar to Kerckhoffs’ principle for cryptography (a cryptosystem should
be secure even if everything about the system, except the key, is public knowl-
edge), we must assume that everything about the system, excluding the used
nonces (numbers used once) is public knowledge. We should also assume that
an attacker will have access to one or more of the diversified versions. This is
illustrated in Figure 4.1.

4.1 Combining Diversifying Transformations

In order to fool the type of matching system discussed in the previous chap-
ter, we need to avoid any type of information that can identify related code
fragments accurately. In practice, it proves to be difficult to design a single

68 Diversity System – Proteus

1−k

Diversifier K

k 12K
k

1−k

2
1

Figure 4.1: Extended schematic of a diversity system

monolithic transformation which removes discriminative invariants for the dif-
ferent types of information at the same time.

However, many transformations each affect one type (or a limited number
of types) of information. By combining many of these “smaller” transforma-
tions affecting different types of information, we can increase the range and
complexity of randomization. While such primitives may be insecure when
used alone, iterated application can create complexity, including emergent
properties due to interaction among various transformations. This is similar to
behavior found in complex systems such as cellular automata, and also helps
to create confusion and diffusion, as in iterated application of rounds in block
ciphers and hash functions.

Increasing the Range

The goal of combining these transformations is to enlarge the set of semanti-
cally equivalent fragments of code that can be generated by the resulting di-
versity system D from a fragment of code c ∈ C. As usual this is referred to
as the “range” property, ran(D, c).

The cardinality of the range of a diversity system can easily become very
large. Consider the diversity system which chooses for every instruction in the
original code whether or not to precede it by a nop-instruction. If that fragment
of code consists of n instructions, then the cardinality of the range is 2n. This
diversity system has a large range, yet has little merit for most applications of
diversity. Therefore, the cardinality of the range alone is not a good indication
of the quality of a diversity system.

On the other hand, a diversifier E of which the range is a superset of the
range of another diversifier D (∀c ∈ C : ran(D, c) ⊆ ran(E, c)) will typically

4.1 Combining Diversifying Transformations 69

},...,1{ lj∈
0 1

ji
DE

|
ooperation:

nonce:

(a) choice

scheme:

(b) product

⎩
⎨
⎧

∨

E if ,|1
D if ,|0

j
i

ED

},...,1{ ki∈

D E

},...,1{ ki∈

},...,1{ lj∈

D

E

Figure 4.2: Two combining operations for diversifying transformations

be preferred, as this indicates that more diversity can be achieved. We will
abbreviate this relation as follows: D ≤ E

Choice Operation

Fortunately, given two diversity systems D and E, it is easy to create a third
diversifier F for which ran(D) ⊆ ran(F) and ran(E) ⊆ ran(F) through the
choice operation (Figure 4.2(a)): F = D ∨ E. This corresponds to making a
preliminary choice as to whether system D or E is to be used. When this is
done, D or E is used as originally defined. Note that D ∨ E = E ∨D.

Product Operation

A second combining operation (Figure 4.2(b)): F = E ◦D, corresponds to di-
versifying the program with the first diversifier D and diversifying the resulting
program with the second diversifier E, the nonces for D and E being chosen
independently. This total operation is a diversifier whose transformations con-
sist of all the products (in the usual sense of products of transformations) of
transformations in E with transformations in D.

70 Diversity System – Proteus

Logging the Applied Transformations

Keeping track of the applied transformations is important as some applications
may need to be able to recreate the diversified copies. Consider for example
randomizing programs before distribution. When updates are needed after-
wards, the software provider may need to tailor them to a specific copy. Main-
taining a database of nonces requires less storage than keeping a copy of every
distributed version.

This choice operation is recorded in the resulting nonce as follows: if
{1, . . . , k} (respectively {1, . . . , l}) is the range of nonces accepted by D (re-
spectively E), then for i ∈ {1, . . . , k}, j ∈ {1, . . . , l} the nonce becomes 0|i
or 1|j, where ’|’ is the concatenation operator. The nonce of the product oper-
ation then becomes i|j.

4.2 Determining the Reference Mapping

In order to evaluate the quality of an estimated mapping µe, we need a refer-
ence mapping µr. To this end, each of the transformations has been designed
to maintain a mapping to the addresses of the original instructions. As a result,
every instruction has a set of original addresses. Instructions from version 1
which have an original address in common with instructions from version 2
are considered to be related.

This is illustrated in Figure 4.3. Here, two instructions of the original
program Oi and Oj have been merged into a single instruction in version 1:
ai. Therefore, this instruction in version one will have a set of two original
addresses, i.e., ai : {Oi, Oj}. In version 2, the two original instructions are
still separate. Therefore, they will each have a single original address, i.e., bi :
{Oj} , bj : {Oi}. These sets of original addresses are then used to determine
the correct mapping between the two versions: µr = {(ai, bi), (ai, bj)}. This
mapping will determine the number of false positives and false negatives in the
estimated mapping.

4.3 Syntactically Different Versions

An important property of a diversity system is that the resulting programs are in
fact diverse. Therefore, we want different nonces to lead to different programs.

Nonce-injective

A diversity system is said to be nonce-injective if:

∀c ∈ C,∀i, j ∈ {1, . . . , k} : i 6= j ⇒ D(c, i) 6= D(c, j) .

4.4 Diversity Systems in Practice 71

Typically, this property will hold for basic transformations (not a compo-
sition of other transformations). It may however become an issue when many
transformations are combined using the combination operations described ear-
lier, as the product of two nonce-injective transformations is not necessarily
nonce-injective.

Injective

A transformation is injective in the traditional sense if:

∀(c1, c2) ∈ C2,∀(i, j) ∈ {1, . . . , k}2 :
c1 6= c2 ∨ i 6= j ⇒ D(c1, i) 6= D(c2, j) .

Clearly, the composition of two injective transformations is injective. Fur-
thermore, if E is an injective transformation and D is a nonce-injective trans-
formation, then E ◦D is nonce-injective. Note that if c1 and c2 have different
semantics, c1 cannot be syntactically equal to c2. This definition is therefore
only useful when c1 and c2 are two semantically equivalent, but syntactically
different versions of a fragment of code (e.g., after applying a diversity sys-
tem).

Disjoint

We say that two diversity systems D and E are disjoint if and only if

∀c ∈ C,∀i ∈ {1, . . . , k},¬∃j ∈ {1, . . . , l} : D(c, i) = E(c, j) .

The choice of two disjoint injective transformations (D ∨ E) is injective.

4.4 Diversity Systems in Practice

The injective property and related properties discussed earlier prove to be a
useful guideline in the selection of transformations to add to the mix. For
example, it is not useful to add a transformation D to a diversity system E if
the range is not increased as a result (D ≤ E).

Clearly, injective transformations disjoint with the already present diver-
sity system are preferred. However, in practice, this requirement is not so
stringent. Because of the large range, the probability of actually obtaining
two identical code fragments after a number of transformations is small. If
required, a hash can be computed of every generated code fragment and newly
generated code fragments can simply be discarded if their hash matches one of
the earlier ones.

A practical diversity system may be composed of a number of transforma-
tions: (D1∨D2∨ . . .∨Dn)◦(D1∨D2∨ . . .∨Dn)◦ . . .◦(D1∨D2∨ . . .∨Dn).

72 Diversity System – Proteus

Conditions on Transformations

The probabilities which determine which transformation to choose can be made
assignable, and change as the result of earlier transformations. It may, for
example, be useless to apply the same transformation twice, which can be
recorded by setting its probability to zero. Furthermore, some transformations
may no longer be possible once other transformations have been applied. Like-
wise, some transformations may require other transformations to have taken
place. These dependencies can be represented by postconditions and precon-
ditions. For a more elaborate discussion on the selection of transformations
with dependencies, we refer to closely related work on selecting transforma-
tions in the domain of obfuscation by Heffner and Collberg [Heffner 04].

Selecting Nonces

In practice, it proves to be complicated to determine the range of nonces ac-
cepted by a composed diversity system. The application of one transformation
will lead to more or less possibilities for the next transformation in a way that
is hard to predict without actually applying the transformation. As the range
quickly becomes unmanageable, generating all possibilities to determine the
range in advance is also not practically viable. Therefore, we cannot prede-
termine a uniform range of nonces from which to choose in advance. Rather,
every transformation will return its range once it is selected as the next trans-
formation (and all previous transformations have been applied), after which
an element from its range is selected. The nonces are thus built dynamically
during the randomization as shown in Figure 4.2 and can have variable lengths.

4.5 Experimental Setup

In our experiments, the nonce selection is guided by a pseudorandom number
generator. Most experiments are based on two versions generated from two
different seeds. Section 4.7 contains a more extensive study with 50 different
seeds to show that the results are relatively independent of the chosen seeds.

Benchmarks

In this chapter, we will continue to work with the mcf benchmark of the SPEC
CPU2006 benchmark suite. We will study the impact of the transformations
on the other benchmarks of the suite in Section 4.7 to indicate the dependence
of the results on the benchmark under consideration.

4.6 Diversifying and Anti-tampering Transformations 73

The other C benchmarks in the evaluation suite will also be used to indicate
the ranges of the transformations. A brief description of the functionality of
these benchmarks is provided in Table 4.1.

We have reported the number of functions, basic blocks and instructions
in these benchmarks, and the number of those that were executed at least
once during the test runs in Table 4.2. These figures can be used to relate
the number of candidates for the described transformations to the number of
code fragments of a given type. From this table, we can learn that gcc, perl-
bench and gobmk are the largest benchmarks in terms of function, basic block
and instruction count. Furthermore, gobmk seems to execute a lot of small
functions.

Benchmark Description
400.perlbench PERL programming language
401.bzip2 Compression
403.gcc C compiler
429.mcf Combinatorial optimization
433.milc Physics: quantum chromodynamics
445.gobmk Artificial intelligence: go
456.hmmer Search gene sequence
458.sjeng Artificial intelligence: chess
462.libquantum Physics: quantum computing
464.h264ref Video compression
470.lbm Fluid dynamics
482.sphinx Speech recognition

Table 4.1: Description of the C programs in the SPEC CPU2006 benchmark suite

Cost of the Transformations

When reporting timing results, they represent the average over three different,
non-consecutive runs on an otherwise idle system. The impact on the code size
is measured taking into account only the size of the code sections, as all of our
transformations are code transformations.

4.6 Diversifying and Anti-tampering Transformations

The main goal of diversifying transformations is to introduce a high level of
diversity between the different versions. This will be measured by how well
they succeed in thwarting the matching techniques discussed in the previous
chapter.

74 Diversity System – Proteus

static executed
benchmark # fun # bbl # ins # fun # bbl # ins
400.perlbench 2428 84375 304978 829 13578 52484
401.bzip2 855 22475 91097 145 2589 13609
403.gcc 5334 214343 766059 2339 67566 254761
429.mcf 814 20440 80380 178 1950 8494
433.milc 979 24433 99557 249 3564 17994
445.gobmk 3329 55301 238493 1273 5444 22351
456.hmmer 1077 27988 112283 257 3286 14855
458.sjeng 909 25745 100242 218 3822 15638
462.libquantum 854 21407 85153 158 1735 8721
464.h264ref 1310 40624 191885 456 7733 40712
470.lbm 821 20689 82355 160 1463 7866
482.sphinx 1047 27044 109870 373 6050 28118

Table 4.2: Static and dynamic function, basic block and instruction count

In general, there are two ways to thwart a matching system. Firstly, we can
make it harder to obtain an estimated mapping. This can be done by under-
mining assumptions made by the attacker or by effecting a slowdown on the
used algorithms.

Secondly, we can make the estimated mapping less accurate. This can be
done either by making unrelated code fragments seemingly related (increasing
the false positive rate) or by making related code fragments seemingly unre-
lated (increasing the false negative rate).

Besides introducing diversity between versions, we need to take into ac-
count the tamper resistance of the individual copies as well. Therefore, where
appropriate, we will highlight choices that can increase the tamper resistance
of individual copies.

Parameterizing Transformations

In this section, we will study the applicability of a number of existing transfor-
mations from different domains within the context of software diversity. These
transformations are taken from the domain of code optimization (factorization
and unrolling), code obfuscation and code generation.

In particular, we will discuss how they can be parameterized to lead to
syntactically different programs. In general, we distinguish between two types
of transformations. The first type are transformations for which we can only
choose whether or not to apply them. In these cases, we can set the probability
p with which we will apply the transformation. Depending on the outcome of

4.6 Diversifying and Anti-tampering Transformations 75

bj

ai

version b

bi

bj

ai

version a

0i

original

0j

originalai

0i

bi

version bversion a

version a

ai

aj

0i

original bi

version b version a

ai

aj

bi

version b

(a) Old addresses of version a and b

bj

ai

version b

bi

bj

ai

version a

0i

original

0j

originalai

0i

bi

version bversion a

version a

ai

aj

0i

original bi

version b version a

ai

aj

bi

version b

(b) Correct mapping

Figure 4.3: Determining the reference mapping and the impact of folding

the pseudorandom number generator, the transformation will then be applied
or not.

The second type of transformations allow us to choose between different
alternatives. For this type of transformation we will randomly select one of the
alternatives based on the pseudorandom number generator.

4.6.1 Folding

Folding transformations reduce the number of (almost) identical code frag-
ments within the program by reusing one of them in the different contexts in
which the (almost) identical code fragments originally appeared.

Folding transformations can help at foiling matching algorithms because
they invalidate the assumption that a code fragment from one version has at
most one corresponding code fragment in another version. This is illustrated
in Figure 4.3. Part (a) illustrates the original program, which contains a pair
of instructions that can be folded. In version a, we choose to fold them, while
we choose not to fold them in version b. As a result, the folded instruction in
version a corresponds to two instructions in version b, as illustrated in part (b).

The assumption that the number of matches per code fragment is limited
can significantly reduce the false positive rate generated by a couple of very
large equivalence classes, as discussed in the previous chapter. If the number of
code fragments in version a is given by na, and for version b by nb, then there
can be at most min(na, nb) false positives if the number of matches per code
fragment is limited to 1. When folding transformations have been applied, the
number of matches per code fragment is no longer limited to 1. If we would
be unable to impose any limitation, the number of false positives can be of the
order of na × nb.

76 Diversity System – Proteus

Folding is furthermore an excellent form of tamper resistance. An attacker
typically wants to obtain a small semantic change of the software through a
small syntactical change. As discussed in the case studies of Section 1.1.1,
the small semantic change is aimed at turning the behavior intended by the
software provider into the behavior desired by the attacker. A small syntactical
change allows the attacker to tamper with the program even with a very narrow
view on a limited aspect of the program.

Folding operations increase code reuse from different contexts and there-
fore a small change may affect many conceptually hardly related aspects of the
software. As a result, after folding operations, a small syntactical change may
result in a large semantic change of the program. An attacker generally does
not want a large change in the behavior of the software: if that were the case,
he would not be interested in the software in the first place and may be better
off rewriting the software from scratch.

Unfortunately, the available range of folding transformations is inherently
limited by the redundancy of the original program. Diversity can be obtained
by selecting different subsets of the folding candidates for different versions.

Function Factoring

We can choose for each list of identical functions whether or not to factor
them. Identical functions can originate from, a.o., copy-paste behavior, C++
templates and small wrapper functions.

Epilogue Factoring

We can choose for each list of identical function epilogues whether or not
to factor them. Function epilogues are the return basic blocks of a function.
These can be factored easily because we do not need to make special precau-
tions to redirect control flow depending on what context they are called from:
the ret instruction simply fetches the address from the stack.

Basic Block Factoring

We can choose for each list of basic blocks with identical bodies whether or
not to factor them. The body of a basic block is obtained by stripping the
basic block from its control transfer instruction. These blocks can be factored
by using the call/return mechanism to ensure correct transfer at the end of the
basic block back to the context from which it is executed.

4.6 Diversifying and Anti-tampering Transformations 77

Evaluation

We have indicated the number of opportunities for the folding transformations
in Table 4.3. For perlbench, e.g., we have 182 pairs of identical functions
(fi, fj) and we can choose for each pair whether or not to redirect all calls to
fj to fi and to remove fj . This choice can be made independently for each
pair, resulting in a range of 2182 different programs.

benchmark function epilogue basic block
400.perlbench 182 208 3383
401.bzip2 46 71 1029
403.gcc 1230 311 9321
429.mcf 46 69 954
433.milc 121 89 1135
445.gobmk 15188 239 2338
456.hmmer 50 98 1267
458.sjeng 47 81 1327
462.libquantum 49 68 1010
464.h264ref 54 114 1977
470.lbm 51 67 989
482.sphinx 52 97 1181

Table 4.3: Number of candidates for folding per benchmark

In Figure 4.4, we have plotted the cost of the transformations in terms of
code size and execution time. On the x-axis, we have assigned different values
to p, the probability with which a folding transformation is applied. We have
chosen to use the same p for the three transformations at the same time.

Function and epilogue factoring require no additional instructions to be
executed. The additional instructions required for basic block factoring have
little impact on the execution time. A small improvement in code size can
be observed when the transformations are applied more often. This is in the
line of the expectations of factoring operations. However, as the goal of the
folding operations is not compaction, but diversity, we also allow folding even
if there is no net gain. Hence, the code size decrease would be even bigger if
the folding operations were optimized for that criterion.

Given a pair of candidates for folding, the probability that they are only
selected in one version (and not in the other one) is given by 2× p(1− p). As
we want to maximize this probability, we have set p = 0.5.

The impact of the folding transformations on our default matching system
is shown in Figure 4.5. After the last iteration, we have a false negative rate
of about 5% and a false positive rate of almost 10%. This indicates that the

78 Diversity System – Proteus

-4

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

%

p

slowdown

code bloat

Figure 4.4: Code bloat and slowdown for the folding transformations

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν (false negative rate)

π (false positive rate)

Figure 4.5: Evolution of the false positive and negative rate for the combination of
the three folding transformations (p=0.5)

matching system has considerably more difficulty to match all code fragments
correctly, despite the very low cost of the transformations in terms of execution
time and even a gain in terms of code size.

4.6.2 Unfolding

Unfolding transformations increase the number of identical code sequences
within the program by using a different copy depending on the context where
the original sequence appeared.

Unfolding operations can typically be applied repeatedly. For example,
a loop can be unrolled infinitely and recursive function calls can be inlined
infinitely. Diversity can be obtained by selecting different (code fragment,
context) pairs to unfold.

Similarly to folding transformations, unfolding transformations invalidate
the assumption that an instruction from one version has at most one corre-
sponding instruction in another version. This is illustrated in Figure 4.6. In

4.6 Diversifying and Anti-tampering Transformations 79

bj

ai

version b

bi

bj

ai

version a

0i

original

0j

originalai

0i

bi

version bversion a

version a

ai

aj

0i

original bi

version b version a

ai

aj

bi

version b
(a) Old addresses of version a and b

bj

ai

version b

bi

bj

ai

version a

0i

original

0j

originalai

0i

bi

version bversion a

version a

ai

aj

0i

original bi

version b version a

ai

aj

bi

version b
(b) Correct mapping

Figure 4.6: Impact of unfolding on the reference mapping

version 1, an instruction was duplicated during an unfolding transformation,
while this transformation was not applied in version 2. As a result, two in-
structions from version 1 correspond to the same instruction in version 2.

Unfolding is likewise an excellent form of tamper resistance. As men-
tioned earlier, an attacker wants to obtain a small semantic change of the soft-
ware through a small syntactical change. As a result of the unfolding transfor-
mations, a larger syntactical change may be needed to effect a small semantic
change of the program.

Function Inlining

If a function is called from multiple sites, we can choose for each call-site
whether or not to inline the function at the call-site.

Basic Block Unfolding

If a basic block has multiple incoming edges, we can choose for each incoming
edge whether or not to duplicate the block and to redirect the incoming edge
to the newly created block. This is illustrated in Figure 4.7.

Two-way Opaque Predicating

We can choose for each basic block whether or not to duplicate it and to
choose between one of the two alternatives based upon a two-way opaque
predicate. A two-way opaque predicate is a predicate that can evaluate to
both true and false during the execution. For each selected basic block, a
two-way opaque predicate can be chosen from a library of two-way opaque
predicates [Collberg 98b]. In this particular transformation, we thus artificially

80 Diversity System – Proteus

C C C’

(a)

C C C’

(b)

Figure 4.7: Inlining a basic block at the incoming edge

C C C’

P?

(a)

C C C’

P?

(b)

Figure 4.8: Predicating a basic block by a two-way opaque predicate

create an additional context from which to transfer control to (a copy of) the
basic block. This is illustrated in Figure 4.8.

Evaluation

The range of the different unfolding transformations is shown in Table 4.4,
when applied during a single iteration to the original program. As already
mentioned, we could reapply these transformations: unfolding a loop can be
done indefinitely, leading to an infinite range. Furthermore, the range of two-
way opaque predicates only takes into account the candidates for predicating,
not the choice between different predicates.

As could be expected, these ranges are significantly larger than those of
the folding transformations. The cost of these transformations with respect to
code size is also higher. However, the cost of unfolding results in no adverse
effect for the matching system when it is done on code that is never executed
(frozen code). Therefore we will use profiling information (from the training
input sets) to avoid this type of code.

4.6 Diversifying and Anti-tampering Transformations 81

No restrictions With restrictions
benchmark fun bbl 2way fun bbl 2way
400.perlbench 8052 54071 83759 1063 23980 16938
401.bzip2 1377 12646 22269 43 2441 2195
403.gcc 19995 150632 212431 5040 85106 54097
429.mcf 1299 11425 20240 64 2309 1792
433.milc 2139 13986 24212 305 3729 3278
445.gobmk 6527 34016 54875 2193 17660 18004
456.hmmer 2557 16366 27754 297 4279 3238
458.sjeng 1858 14813 25508 230 3951 3294
462.libquantum 1397 12050 21194 59 2016 1648
464.h264ref 2666 22692 40362 442 7286 7461
470.lbm 1315 11571 20418 45 1958 1368
482.sphinx 2730 15688 26794 759 5488 5843

Table 4.4: Number of candidates for unfolding per benchmark. Without restrictions
and with restrictions to (i) non-frozen code for function and basic block

inlining, (ii) lukewarm code for two-way opaque predicating

With the exception of two-way opaque predicating, which introduces over-
head to evaluate the predicate, the cost in terms of execution time is still neg-
ligible. It is worth noting that the slowdown is not very predictable. If we
accidentally predicate a frequently executed basic block, the slowdown may
be significant. On the other hand, the impact may be hardly noticeable for
code that is not frequently executed.

The cost of unfolding frequently executed code (hot code) is in some cases
too high to justify the adverse effect on the matching system. Therefore, we
will avoid this type of code as well when introducing two-way opaque pred-
icates. In this case, we will thus restrict ourselves to cold code: code that is
neither hot nor frozen. The resulting cost is shown in Figure 4.9. The range
after taking these restrictions into account is shown in Table 4.4.

The impact of the different transformations on the default matching system
for p = 0.5 is shown in Figure 4.10. This shows that these transformations
result in higher false negative rates than the unfolding transformations, while
having a higher, but still moderate cost.

4.6.3 Control Flow Obfuscation

Control flow obfuscating transformations aim to make the control flow of the
program less intelligible. This is typically achieved by either (i) adding redun-
dant decision points, (ii) hiding the realizable paths within a large number of

82 Diversity System – Proteus

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

p
slowdown fun inlining
slowdown bbl inlining

code bloat fun inlining
code bloat two-way

code bloat bbl inlining
slowdown two-way

Figure 4.9: Code bloat and slowdown for the unfolding transformations

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(a) Function inlining

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(b) Basic block inlining

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(c) Two-way opaque predicating

Figure 4.10: Evolution of the false positive and negative rate for the three unfolding
transformations (p=0.5)

4.6 Diversifying and Anti-tampering Transformations 83

non-realizable paths, or (iii) invalidating common assumptions of static control
flow graph construction algorithms.

Because they complicate and thus alter control flow, they are ready candi-
dates to fool classifiers based on control flow information. Furthermore, their
goal is to make it harder to understand the program and, therefore, they com-
plicate intelligent tampering. Note that two-way opaque predicating can be
seen as a form of control flow obfuscation as well.

Opaque Predicates

Our library of diversifying transformations contains one transformation based
on true/false opaque predicates. A true (false) opaque predicate is a predi-
cate that always evaluates to true (false) during execution, but for which this
property is hard to detect for an attacker [Collberg 98b].

We can choose for each basic block whether or not to prepend it with a true
or false opaque predicate. The target of the branch that cannot be executed
can be chosen from the instructions in the function of the basic block. For
each selected basic block, an opaque predicate can be chosen from a library of
opaque predicates.

Control Flow Flattening

Control flow flattening significantly increases the number of paths represented
by a control flow graph by replacing the original control flow graph by a new
control flow graph where all original basic blocks have the same predecessor
and successor [Wang 01]. The transformation is illustrated in Figure 4.11.
Semantic equivalence is guaranteed by inserting a redirection variable guiding
the execution.

We can choose for each function whether or not to apply control flow
flattening to it. For each basic block in the selected function we can choose
whether or not to redirect it.

Jump Redirection

We can choose for each jump instruction whether or not to redirect it through a
branch function [Linn 03]. Branch functions are functions that do not return to
the caller; instead control is transferred to a different address computed from
the return address and offset passed to the branch function. Once a branch
function is inserted, jumps can be transformed into calls to the branch function
while arguments to correctly redirect control flow can be put on the stack.
Figure 4.12(a) show an unconditional jump which is transformed into a call to
the branch function in Figure 4.12(b).

84 Diversity System – Proteus

1

2 3

4

1 2 3 4

switch

(a) Original CFG

1

2 3

4

1 2 3 4

switch

(b) Flattened CFG

Figure 4.11: Control flow flattening

Evaluation

The number of candidates for the obfuscating transformations without restric-
tions is shown in Table 4.5. This does not take into account the choice be-
tween different opaque predicates, nor the choice on where to redirect the non-
realizable path for opaque predicates, nor the selection of blocks to redirect for
flattening.

As these transformations can incur a significant increase in code size and
execution time, we have decided to limit them to cold code as well. The range
after this restriction is also shown in Table 4.5.

The cost of these transformations after restrictions for p ∈ [0, 0.6] is shown
in Figure 4.13. We have chosen to impose an upper limit to the incurred over-
head in code size and execution time of 10% per transformation. Therefore,
we evaluate the impact of the transformations on the default matching system
for p = 0.2 for opaque predicates, p = 0.5 for flattening and p = 0.28 for
jump redirection. The results are shown in Figure 4.14.

4.6.4 Code Generation

We have grouped a number of diversifying transformations that are closely
related to the backend phases of a compiler under the term code generation.
These transformations are instruction selection, instruction scheduling, and
code layout.

4.6 Diversifying and Anti-tampering Transformations 85

1

jump 2

2

1

call branch

2

garbage
Branch

Procedure

(a) Original code

1

jump 2

2

1

call branch

2

garbage
Branch

Procedure

(b) Code using branch function

Figure 4.12: Jump redirection

-10

0

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5 0.6

%

p

code bloat redirect

slowdown opaque
slowdown redirect
code bloat opaque
code bloat flatten
slowdown flatten

Figure 4.13: Code bloat and slowdown for the obfuscating transformations

86 Diversity System – Proteus

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(a) Opaque predicates (p=0.2)

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(b) Control flow flattening (p=0.5)

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

(c) Jump redirection (p=0.28)

Figure 4.14: Evolution of the false positive and negative rate for control flow
obfuscation

4.6 Diversifying and Anti-tampering Transformations 87

No restrictions With restrictions
benchmark opaque flatten jmp opaque flatten jmp
400.perlbench 43978 1737 16831 9324 548 2560
401.bzip2 12583 502 5057 1354 81 205
403.gcc 111544 3510 37649 30335 1256 6383
429.mcf 11395 474 4768 1094 107 250
433.milc 13938 612 5330 2039 165 450
445.gobmk 31124 2712 10230 10493 981 2352
456.hmmer 16164 677 5933 2094 168 444
458.sjeng 14276 551 5914 1887 121 640
462.libquantum 12017 500 4903 1101 98 219
464.h264ref 25004 904 8223 5085 328 899
470.lbm 11491 474 4817 868 93 195
482.sphinx 15751 680 5498 3843 278 649

Table 4.5: Number of candidates for control flow obfuscation per benchmark

These different transformations are a compromise between an exhaustive
search for semantically equivalent code sequences to perform a given operation
and the time it takes to generate a semantically equivalent code sequence.

To explore the full range of semantically equivalent code sequences, we
initially developed a tool that is capable of exhaustively generating all possible
instruction sequences for the Intel Architecture – 32 bit (IA-32). This tool
operates in a similar manner as the so-called superoptimizer [Massalin 87].

Its input consists of a code sequence, a set of output registers and a set of
(scratch) registers whose value is no longer used after the sequence has been
executed in a program. For all generated sequences, the tool checks whether
they perform the same function as the original code sequence, by testing the
output values for all possible input values. If the test succeeds an equivalent
sequence is found.

Because of the halting problem, it is in general undecidable if a generated
sequence will terminate. Hence the equivalence test can run forever. By re-
stricting the set of instructions to the integer instructions, that do not include
any control flow instructions, we can assure that each tested sequence termi-
nates. But even then the number of potential equivalent sequences is still too
large. To make the problem tractable, and to terminate the exhaustive gener-
ation within reasonable time, we further limit the immediate operands (con-
stants encoded in an instruction) that can be used to {−1, 0, 1, 31}. Finally, we
restrict the length of the generated sequences.

Even with these restrictions we can still find many equivalent sequences
that perform realistic computations. For the operation ECX= max(EAX,EDX),

88 Diversity System – Proteus

e.g., our tool was able to find 433 different encodings of three instructions.
Similarly, for the computation EAX= (EAX/2), 3708 equivalent sequences of
4 instructions were generated. Note that the tool did not find shorter sequences
because of the limited list of immediates that does not contain 2.

It should be noted that these examples are no exception. Moreover, the
number of alternatives is exponential in the number of instructions: if we have
n instructions which we can divide into groups of i instructions of which each
group has at least a alternatives, then combined we have at least an/i alter-
natives. Furthermore, many additional alternatives arise when considering the
larger fragment as a whole, in which instructions can be moved from one group
to another.

While our tool thus shows great potential for generating diverse code frag-
ments, it is too slow for a practical tool. Therefore, we split the generation of
semantically equivalent code sequences into three parts: instruction selection,
instruction scheduling and code layout.

Instruction Selection

We used the aforementioned tool to generate a database of equivalence classes
for the instructions that occur most often in our suite of training programs.
During this process, we imposed the additional restriction that equivalent in-
structions can only read/write locations that are read/written in the original
instruction. However, if liveness analysis [Aho 86] determines that certain sta-
tus flags are dead, we allow them to be overwritten as well. Finally, the set of
immediates is expanded with the immediates used in the original instruction
and the two’s complement thereof.

We can choose for each operation in our database which of the semanti-
cally equivalent instructions to use.

Instruction Scheduling

Within each block there is some degree of freedom in the ordering of instruc-
tion, as two or more instructions that perform independent operations can be
permuted.

This freedom is used for diversity by constructing a dependency graph
of a block’s instructions, in which dependent instructions are connected by
directed edges. By iteratively removing instructions from this graph that do
not depend on other instructions in it, a valid schedule can be determined.
At each iteration, multiple instructions may be ready to be removed from the
graph. They are, in other words, in the ready set [Aho 86] of instructions.

Whenever there are multiple instructions in the ready set, we can choose
which one to schedule next.

4.6 Diversifying and Anti-tampering Transformations 89

Code Layout

Once the order of instructions in a basic block is determined, we still need to
determine the order of basic blocks in the program. There is a lot of freedom in
choosing this order. Only fall-through paths need to be respected. Fall-through
paths connect basic blocks between which control can be transferred without
explicit indication of the target of the transfer. Examples include: the basic
block at which the execution continues when a callee returns, the location to
which control is transferred when a conditional jump is not taken.

Firstly, in many cases we can choose which of the targets of a conditional
jump to select as the fall-through block as for every conditional jump instruc-
tion, a jump instruction with the inverted condition exists in our target architec-
ture (x86). Then, all basic blocks connected by fall-through paths are chained
together.

Secondly, we can freely choose the order of the generated chains. We can
then iteratively select the next chain to place in the final layout of the program.

Evaluation

The number of choices available during code generation is huge. To facilitate
comparing the ranges to the ranges of the previously evaluated transforma-
tions, we have normalized them to choices between two alternatives. All of
the ranges shown hitherto indicate the choice between applying the transfor-
mations or not applying them, i.e., two alternatives.

For example, if we have to choose between 5 alternatives, we will report
this as log2(5) choices between two options. As a result, the range is still given
by 2n for n in Table 4.6.

The scheduling and code layout transformations have little effect on the
classifiers discussed in Chapter 3. Yet, they do defend against text-based com-
parisons. Furthermore, the choice of classifiers is based on the assumption that
code will be reordered. If we could assume that this is not the case, one could
build classifiers to exploit this knowledge.

The cost of choosing a random schedule rather than the compiler-generated
schedule is negligible in terms of code size and execution time, as we are
working on a superscalar architecture with out-of-order execution. The cost of
choosing a random layout, rather than a more logical order (group related code
to minimize jump offsets and maximize spatial locality) is negligible for the
mcf benchmark in terms of execution time and about 7% in terms of code size.
In a random layout, many more (jump) offsets will have to be encoded in four
bytes as opposed to one byte. Code layout does have a significant impact on
the execution time for some of the other benchmarks. This is due to caching
effects which become more prevalent for programs with a larger kernel.

90 Diversity System – Proteus

benchmark instruction selection scheduling code layout
400.perlbench 68530.25 42309.83 253725.55
401.bzip2 24386.30 16552.32 64176.33
403.gcc 170790.70 94904.96 607946.06
429.mcf 21936.82 13428.83 59641.90
433.milc 24796.76 17232.51 70292.00
445.gobmk 53826.39 49332.87 169634.26
456.hmmer 28219.20 18922.05 79437.27
458.sjeng 27409.95 17503.91 75258.28
462.libquantum 22840.17 14830.94 61940.67
464.h264ref 43884.79 43460.11 114463.68
470.lbm 22034.62 13704.27 60322.90
482.sphinx 27334.81 18663.84 75663.56

Table 4.6: Number of choices for code generation per benchmark, normalized to
choices between two options for ease of comparison

To evaluate the impact of selecting a random instruction rather than the
shortest, or fastest alternative, we have applied it with different probabilities:
replace instructions by equivalent ones in 0-100% of the cases where it is pos-
sible. This cost is illustrated in Figure 4.15.

We can see that the code size increase is linear and fairly predictable. Code
size increase occurs when an instruction in the original program is replaced by
a semantically equivalent, but longer instruction.

The slowdown is less predictable, although we can observe a slight in-
crease when the transformation is applied more times. We assume that cache
effects resulting from different code size and layout are responsible for this
variation.

The impact of the diversity introduced during code generation on the de-
fault matching system is shown in Figure 4.16. These transformations have
very little effect on the matching system at hand. Yet, as already mentioned,
any diversity system should apply reordering, directly or indirectly, to thwart
matching systems which take the location of code in the program into account.

4.7 Evaluation

In the previous measurements, we have used only two different seeds for the
pseudorandom number generator: 1 and 2. This may have lead to accidentally
poor or accidentally good results. We will first experimentally verify that the
thus obtained results are representative for other (combinations of) seeds as
well.

4.7 Evaluation 91

-1

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

p

code bloat

slowdown

Figure 4.15: Code bloat and slowdown for instruction selection

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

Figure 4.16: Evolution of the false positive and negative rate for the code generating
transformations

92 Diversity System – Proteus

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4

π

ν

Figure 4.17: False positive and false negative rates for different combinations of
seeds for the mcf benchmark

Next, we will look at the effect of combining different diversifying trans-
formations on the default matching system. We will also evaluate the impact
of the combined transformations on the different individual classifiers for dif-
ferent thresholds. Then, we will study how portable the results are to the other
programs in the SPEC CPU2006 benchmark suite.

Finally, we will evaluate the transformations based on code generation
within a different context: steganography.

4.7.1 Representativeness of the Seeds

To experimentally verify that the resulting false positive and false negative
rates are relatively independent of the chosen seeds, we have set up the fol-
lowing experiment: we have generated 50 versions for a given transformation
and evaluated the impact on the default matching system for any two versions
generated. This leads to

(
50
2

)
= 1225 experiments.

We have chosen to apply this experiment to the transformation based on
opaque predicates, as this transformation has one of the higher impacts on the
matching system and the experiments finish within a time frame acceptable for
this number of experiments. Other transformations have a smaller impact on
the matching system, or significantly delay the matching process. The jump
redirection and control flow flattening, for example, increase the sets of neigh-
boring blocks and thereby slow down the classifier based on control flow.

We have plotted the obtained false positive and false negative rates of the
default matching system in Figure 4.17 for the different experiments.

4.7 Evaluation 93

0

1

2

3

4

5

6

0 5 10 15 20 25

C
o

d
e

 B
lo

at
 (

%
)

Slowdown (%)

Figure 4.18: Code bloat and slowdown for the different seeds for the mcf benchmark

The results show that the errors are relatively constant for every evaluated
combination of seeds. The average false negative rate is 0.28 with a standard
deviation of only 0.0182. The average false positive rate is 0.1953 with a stan-
dard deviation of only 0.0109. We are confident that similar observations can
be made for the entire range of random seeds. In the current implementation,
these are limited to 232 values, enabling us to generate as many versions with
a similar degree of diversity.

The impact on the execution time is less predictable, as shown in Fig-
ure 4.18 due to the variance in the execution count of the transformed code,
despite the limitation to cold code, with an average of 10.81% and a standard
deviation of 4.03. If this proves to be a major issue in practical settings, it could
be partially solved through better profiling and a more fine-grained distinction
between execution counts (as opposed to only three possibilities: frozen, cold
and hot). The impact on the code size, on the other hand, is relatively predica-
ble, with an average of 4.33% and a standard deviation of 0.32.

4.7.2 Combining Transformations

We have combined the different transformations to evaluate the impact on the
matching system. The settings for the different transformations are the same
as the settings used for the individual transformations. They are applied in
the order they are treated above. Furthermore, we have made sure that the
unfolding transformations cannot undo the folding transformations.

The impact on the default matching system is shown in Figure 4.19. The
matching system fails to identify 76% of the required matches. About 58%

94 Diversity System – Proteus

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9

Rate

Iteration

ν

π

Figure 4.19: Evolution of the false positive and negative rate for the combined
transformations for the mcf benchmark

of the reported matches are between unrelated code fragments. With these
settings, the slowdown is around 54%, while the code bloat is around 70%.
This shows that we are able to fool the matching system to a large extent,
however at a relatively high cost.

4.7.3 Receiver Operating Characteristic Curves

We will evaluate the impact of the combined transformations on the individual
classifiers through ROC curves. ROC curves have been used extensively in
signal detection theory and are graphical plots of the True Positive Rate (TPR)
versus the False Positive Rate (FPR) as the threshold of the classifier is varied.

Using our notation, the true positive rate equals 1−ν and the false positive
rate is φ. An example of an ROC curve is shown in Figure 4.20. A point on the
line of no discrimination indicates that the classifier performs no better than a
random guess. The optimal result is the point at coordinate (0, 1).

As can be derived from Figure 4.21, the performance of the classifier based
on instruction syntax is much better than a random guess. This indicates that
the diversity is far from perfect with respect to this classifier. However, it
should be noted that the false positive rate (φ) is expressed as the fraction of
the worst-case number of false positives. Hence, even a small false positive
rate represents many false positives.

The classifier based on data has a good performance when we only take
code fragments into account for which it does have an opinion. We have also
plotted the results when code fragments for which the classifier has no opinion
are marked as unrelated. This is shown in Figure 4.22.

As we can see from Figure 4.23 and Figure 4.24, the classifiers based on
execution count and first execution time have a fairly high false positive rate.
This shows that these classifiers cannot easily identify unrelated code frag-
ments. This is often referred to as a poor specificity.

4.7 Evaluation 95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

perfect

better

worse

Figure 4.20: An example of an ROC curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

Figure 4.21: ROC curve for the classifier based on instruction syntax

96 Diversity System – Proteus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

no opinion = unrelated

restrict to classified

Figure 4.22: ROC curve for the classifier based on data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

Figure 4.23: ROC curve for the classifier based on execution count

4.7 Evaluation 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

Figure 4.24: ROC curve for the classifier based on first execution time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

Figure 4.25: ROC curve for the classifier based on control flow

98 Diversity System – Proteus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

TPR (1-ν)

FPR (φ)

no opinion = unrelated

restrict to classified

Figure 4.26: ROC curve for the classifier based on data flow

The classifiers based on control flow and data flow on the other hand seem
to perform very well (Figure 4.25 and Figure 4.26). However, these classifiers
require an existing mapping. The reported results are under the assumption
that all pairs of code fragments, except for the pair under consideration, have
been classified correctly. As such, these results indicate a high potential for the
classifiers based on control flow and data flow to extend or filter a sufficiently
accurate mapping.

4.7.4 Representativeness of the Benchmark

We have applied the diversity system defined by the settings shown in Table 4.7
on the C programs of the SPEC CPU2006 benchmark suite. Note that these
settings are different from the settings used earlier for the mcf benchmark. We
have selected different, less powerful settings to limit the slowdown incurred
by larger sets of neighboring blocks, e.g., due to jump redirection and control
flow flattening.

The resulting false positive and false negative from the default matching
system are shown in Figure 4.27. The average false negative rate is 0.48, with
a standard deviation of only 0.0809. The average false positive rate is 0.24,
with a standard deviation of 0.0225.

4.7 Evaluation 99

Transformation p

Function factoring 0.5
Epilogue factoring 0.5
Basic block factoring 0.5
Function inlining 0.1
Two-way opaque predicating 0.1
Basic block inlining 0.1
Control flow flattening 0.1
Jump redirection 0.1
Opaque predicating 0.1
Instruction selection 1
Instruction scheduling 1

Table 4.7: Settings of the diversity system

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ν
π

Figure 4.27: False positive and false negative rate after the last iteration of the
default matching system

100 Diversity System – Proteus

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

code bloat

slowdown

Figure 4.28: Code bloat and slowdown for the different benchmarks

The cost of applying this diversity system is a 36.2% code increase (with
a standard deviation of 0.0577) and a slowdown of 17.7% (with a standard
deviation of 0.2165).

4.7.5 Steganography – Histiæus

The first reported occurrence of steganography is due to Herodotus. He tells
of Histiæus, who shaved the head of his most trusted slave, tattooed a message
on his head, and then waited for his hair to grow back. The slave was then sent
to Aristagoras, who was instructed to shave the slave’s head again and read the
message.

Many other physical objects have since been used as cover objects, e.g.,
earrings, written documents, and music scores. Digital steganography has
mainly been applied to media, such as images, sound and video.

Steganography in the context of programs has, to the best of our knowl-
edge, only been addressed by Hydan [El-Khalil 04]. We will apply the trans-
formations based on code generation (instruction selection, instruction schedul-
ing and code layout) within the context of steganography.

The Prisoners’ Problem

We will follow Simmons’ [Simmons 84] classic model, a.k.a. the prisoners’
problem for invisible communication. Alice and Bob are two prisoners in dif-
ferent cells. Wendy, the warden, arbitrates all communication between them,

4.7 Evaluation 101

1

Alice Bob

WendyEmbedder Extractor

Figure 4.29: The prisoners’ problem

and will not let them communicate through encryption or suspicious commu-
nication. Both prisoners therefore need to communicate invisibly about their
escape plan.

Furthermore, we will assume that the mechanism in use is known to the
warden (Kerkhoffs’ principle [Kerkhoffs 83]). Hence its security must depend
solely on a secret key that Alice and Bob managed to share, possibly before
their imprisonment.

The general principle of steganography is as follows (see Figure 4.29). To
share a secret message with Bob, Alice randomly chooses a harmless message,
called a cover object c, which can be transmitted to Bob without raising sus-
picion. The secret message m is then embedded in the cover object using the
secret key k, resulting in a stego object s. This is to be done in such a way
that Wendy, knowing only the apparently harmless message s, cannot detect
the presence of the secret. Alice then transmits s to Bob via Wendy. Bob can
reconstruct m since he knows the embedding method and has access to the
key k. It should not be necessary for Bob to know the original cover c. The
security of invisible communication lies mainly in the inability to distinguish
cover objects from stego objects. The task of Wendy can be formalized as a
statistical hypothesis testing problem, for which she defines a test function on
objects (of the set O) f : O → {0, 1} :

f(o) =
{

1 if o contains a secret message ,
0 otherwise .

This function can make two types of errors: detect a hidden message when
there is none (false positive) and not detect the existence of a hidden message
when there is one (false negative).

102 Diversity System – Proteus

Embedder

EPACSE

EPACSEExtractor

(a) The secret message is used as nonce

Embedder

EPACSE

EPACSEExtractor

(b) Extracting the secret message from the cover object

Figure 4.30: Using a diversity system for steganography

We furthermore assume that the warden is passive, i.e., she will not mod-
ify the object, but only classify it. This is generally accepted in steganogra-
phy [Anderson 98]. On the other hand, watermarking and fingerprinting (see
Section1.2.2) typically assume an active warden.

Fitness of Programs as Cover Objects

While changing a single bit in a program can cause it to fail, this does not imply
a lack of redundancy for the purpose of steganography. Instead the specific
characteristics of software indeed result in many choices. So far, we have used
these choices to create many different versions. We can use the same choices
to embed a secret message in the program. The nonce is then replaced by the
secret message, resulting in a single copy with an embedded message. This is
illustrated in Figure 4.30.

For each of the choices between alternatives, a number of bits can be en-
coded in the program. If there are n equivalent programs because of some type
of choice, the number of bits that can be encoded can be computed as follows.

As n ≥ 2blog2(n)c, it is clear that at least blog2(n)c bits can be encoded:
it suffices to assign an integer to each alternative, and to take that alterna-
tive whose (binary) number corresponds to the bit string to be encoded. This
simple approach may result in a significant decrease in encoding capabilities
however: if log2(n) /∈ N for large n, many alternatives may not correspond to
an encodable bit string.

A more efficient scheme is as follows: if log2(n) /∈ N, then blog2(n)c =
dlog2(n)− 1e. We can thus always embed dlog2(n)− 1e bits. If we associate
each of the remaining n− 2dlog2(n)−1e alternatives with one of the 2dlog2(n)−1e

4.7 Evaluation 103

7=n

⎡ ⎤ 1)(log22 −n

⎡ ⎤)(log22 n

alternatives:
bits encoded: 000 010 100 11 001 011 101

Figure 4.31: Encoding bits in the choice between 7 alternatives

already used ones, we can embed an additional bit by allowing the embedder to
choose between one of the two associated alternatives, as illustrated for n = 7
in Figure 4.31. Therefore, we can embed an extra bit in n− 2dlog2(n)−1e of the
2dlog2(n)−1e possibilities for the next dlog2(n)− 1e bits.

If the embedded message is encrypted with the secret key k, all bit strings
to be embedded have equal probability, and hence the average number of bits
that can be encoded in the choice out of n valid alternatives is given by

b(n) = dlog2(n)− 1e+
n− 2dlog2(n)−1e

2dlog2(n)−1e . (4.1)

One can easily verify that equation (4.1) also holds if log2(n) ∈ N. As illus-
trated in Figure 4.32, the average number of embeddable bits is a lot closer to
log2(n) in this scheme.

Interactions Between the Techniques

The techniques (instruction selection, instruction scheduling and code layout)
are not completely orthogonal. In order to combine them successfully, a couple
of issues need to be addressed.

First, it is worth noting that the number of bits that can be encoded in
instruction selection is dependent on the chosen ordering of instructions in
the basic block, and vice versa. When the ordering changes, liveness ranges
change, and hence the condition flags and scratch registers that may be changed
by equivalent instructions also change.

For the same reason, instruction selection influences the order in which an
embedder or extractor will generate equivalent orderings, and hence how spe-
cific bit sequences are encoded in the ordering. Vice versa, if scheduling is
applied first, it influences the order in which equivalent instructions are gener-
ated.

Moreover, if the embedder first encodes bits in the instruction selection
of the instructions in their original order in the program, and subsequently re-
orders the instructions, the extractor does not know the order in which the in-
formation embedded in the instruction selection needs to be extracted. Clearly,

104 Diversity System – Proteus

)(log2 n

5

4

3

2

1

0
1 2 4 8 16 32

⎣ ⎦)(log2 n

number of alternatives

)(nb

Figure 4.32: The average number of embeddable bits for a choice between
alternatives

the extractor and the embedder need to start from the same dependency graph
in order for the extractor to obtain the correct embedded information.

Before the embedding and the extraction, all basic blocks in a program
should therefore be transformed into a canonical form, in which both the in-
struction selection and scheduling are predetermined. This is illustrated in
Figure 4.33.

Practical Considerations for Extracting an Embedded Message

In order to extract embedded information from a program, an extractor needs to
identify the basic blocks, and the extractor needs to pinpoint relocated operands,
since these should be neglected for the ordering of chains.

The necessary relocation information is available at the embedding phase,
as the embedding is done at link time, when the whole program is first avail-
able. However, this information is lost in the resulting program.

Fortunately most of the necessary information can be derived from a static
analysis of the program itself. As a consequence, we only need to commu-
nicate the discrepancy between the derived information and the actual infor-
mation to the decoder. To do so, we can store this information in the first
instructions of the resulting program, without taking liveness information into

4.7 Evaluation 105

Alice Bob

Layout

Scheduling

Selection

Layout

Scheduling

Selection

Canonicalize

Canonicalize

Figure 4.33: Canonicalization ensures that the encoding and decoding phases start
from the same information

account. This is the only option since the decoder cannot identify basic blocks
or chains and it cannot compute liveness information at this point.

Code Transformation Signatures

While the encoding rate achieved by the discussed techniques is fairly high, its
security is too low. The reason is that the techniques introduce very unusual
code that will arouse suspicion of the warden. Consider, e.g., the equivalent
code sequences in Figure 4.34. Anyone somewhat familiar with assembly code
will agree that the likelihood of a compiler generating the code on the right is
extremely low. But this code is present in programs that have been put through
Hydan or on which our techniques have been applied (without countermea-
sures). In short, the application of our tool has left an obvious signature.

We have identified four types of code transformation signatures that may
reveal the presence of an embedded message. Firstly, there are a number of
instructions which do not appear at all in programs created by a typical tool
chain. Secondly, in the case that multiple equivalent instructions, say n, are
used in practice, their relative frequency is not 1/n in regular programs. How-
ever, it will be when using instruction selection to embed messages (if they
are encrypted beforehand). Thirdly, different tool chains may generate differ-
ent schedules for identical basic blocks, because they use different heuristics,
target a different micro-architecture, etc. However, the same tool chain will
show little diversity in scheduling identical basic blocks. Finally, the average
jump offset will typically be small. This is, a.o., the result of most jumps be-
ing intraprocedural. If code layout is random, the average jump offset will be
suspiciously large.

106 Diversity System – Proteus

55 push EBP 55 push EBP
89 e5 mov ESP,EBP 89 e5 mov ESP,EBP
83 ec 08 sub 0x8,ESP 83 c4 f8 add 0xfffffff8,ESP

Figure 4.34: Two equivalent code sequences.

0

0.01

0.02

0.03

0.04

En
co

d
in

g
ra

te

Benchmarks

Instruction selection

Instruction scheduling

Code Layout

Figure 4.35: Encoding rate before (left) and after (right) countermeasures for
steganalysis

Using statistical models built upon a collection of regular programs, we
have restrained the freedom of the different transformations to avoid being
detected by these code transformation signatures.

Results

We have applied the techniques on 9 integer programs of the SPEC CPU2000
benchmark programs to embed and extract the plaintext of “King Lear” by
William Shakespeare. The programs were compiled with GCC 3.2.2 and stati-
cally linked to glibc 2.3.2 for Linux. For each benchmark, the embedding and
extraction took less than a minute on a 2.8GHz Pentium IV.

The obtained encoding rates are presented in Figure 4.35. The distribu-
tion over the different techniques is also indicated. We achieve an encoding
rate between 1/29.6 and 1/25.49 and a total encoding rate of 1/26.96 before
countermeasures, four times the encoding rate of the previous prototype tool
Hydan (1/110).

4.7 Evaluation 107

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sc
o
re

Benchmarks

Clean

Histaeus -safe

Histaeus -unsafe

Figure 4.36: Code transformation signature: unusual relative frequencies of
instructions

Without countermeasures, neither our tool nor Hydan, as noted by its au-
thors, is stealthy. Most importantly, their encoding rate achieved through in-
struction selection is achieved by and large by choosing very unusual instruc-
tions. However, as the clean instruction distribution is uniform across pro-
grams [El-Khalil 04], little information can be stealthily embedded this way.
When we take countermeasures to address this problem, only 9% of the en-
coding rate due to instruction selection remains, as can be seen in Figure 4.35.
This clearly illustrates the usual trade-off between data rate and stealth.

The presence of code transformation signatures is illustrated in Figure 4.36.
These results have been obtained as follows. Suppose that there are n alterna-
tives for some instruction, whose relative frequencies in a program p are repre-
sented by f(p) = [f1(p), ... fn(p)]. We then compute the Euclidean distance
from f(p) to f(P), in which P is large set of reference programs.

We then postulate that this distance follows a normal distribution, of which
the parameters µ and σ2 can be estimated by computing the average and vari-
ance of the distance in the set of reference programs.

The score of a program p is the probability of observing a distance larger
than the observed distance between f(p) and f(P). A low likelihood indicates
a high probability that a secret message is present. The reliability of this test
is increased by averaging the likelihoods of a number of sets of alternative in-
structions. The classification could then classify programs with a score below,
e.g., 0.5 as suspect. These results confirm that unlimited instruction selection
freedom indeed results in big, easily detectable discrepancies from clean code.

108 Diversity System – Proteus

Fortunately, there is a much greater variation in schedules across programs
and 47% of the encoding rate due to instruction scheduling can be safely re-
tained. Furthermore, as code layout is largely determined by the source code,
a piece of information that is no longer available to the warden, 59% of the
encoding rate due to code layout can be safely retained.

Combined, we achieve a stealthy encoding rate ranging from 1/108.59 to
1/80.1.This is still higher than the unsafe rate of Hydan.

5
Advanced Transformations

In the previous chapter, we have studied the effectiveness of a number of ex-
isting transformations from different domains within the context of software
diversity. In this chapter, we will look at two techniques which have been
developed from the ground up with diversified tamper resistance in mind.

The main benefit of the first of these techniques, self-modifying code, is
that it undermines the commonly made assumption that code is constant. As
such, many tools are not able to deal correctly with this type of code. Other
tools can work conservatively with this type of code, but are optimized for the
common case, i.e., constant code. As a result, they experience a significant
delay because of self-modifying code.

The goal of the second technique, virtualization, is to open up a whole new
range of possibilities. Virtualization gives us the freedom to design our own
Instruction Set Architecture (ISA). This results in a large number of choices
and thus a lot of room for diversity. Furthermore, it allows us to abandon
traditional execution models, which may lead to increased tamper resistance.

5.1 Self-modifying Code

Self-modifying code has a long history of hiding program internals. It was
used to hide copy protection instructions in 1980s MS DOS based games. The
floppy disk drive access instruction ’int 0x13’ would not appear in the
program’s image but it would be written into the program’s memory image
after the program started executing.

110 Advanced Transformations

While hiding the internals of a program can be used to protect the intellec-
tual property contained within or protected by software, it has been applied for
less righteous causes as well. Viruses, for example, try to hide their malicious
intent through the use of self-modifying code [Leprosy 90].

Self-modifying code is very well suited for these applications as it is as-
sumed to be one of the main problems in reverse engineering [Cifuentes 95].
Because self-modifying code is so hard to understand, maintain and debug,
it is rarely used nowadays. As a result, many analyses and tools make the
assumption that code is not self-modifying, i.e., constant. Note that we dis-
tinguish self-modifying code from run-time generated code as used in, e.g., a
Java Virtual Machine.

Our goal is to leverage the known complications of self-modifying code to
increase the tamper resistance of individual copies, and, by making the trans-
formations parameterizable, increase the diversity between versions. The pres-
ence of self-modifying code can delay the collection of information used by the
classifiers and furthermore forces them not to assume that the code is constant.

To make this possible, we need a representation that enables us to turn con-
stant code into self-modifying code and to analyze, transform and linearize the
resulting self-modifying code. Fortunately, we are at an advantageous position,
as our starting point is a known, constant-code program, whereas a matching
system starts from unknown, possibly self-modifying program.

The representation often used for traditional code, which neither reads nor
writes itself, is the control flow graph. Its main benefit is that it represents a
superset of all executions. As such, it allows analyses to reason about every
possible run-time behavior of the program. Furthermore, it is well understood
how a control flow graph can be constructed, how it can be transformed and
how it can be linearized into an executable program.

Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

We will discuss why the basic concept of the control flow graph is inade-
quate to deal with self-modifying code and introduce a number of extensions
which can overcome this limitation. These extensions are: (i) a data structure
keeps track of the possible states of the program, (ii) an edge can be condi-
tional on the state of the target memory locations, and (iii) an instruction uses
the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow

5.1 Self-modifying Code 111

graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The Running Example For our example, we introduce a simple and limited
instruction set which is loosely based on the 80x86. For the sake of brevity, the
addresses and immediates are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set value of byte to to value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to

As a running example, we have chosen to hide one of the simplest opera-
tions. The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG construction on this code, we would
obtain a single basic block as shown in Figure 5.1(a). If we step through the
program however, we can observe that instruction A changes instruction D into
instruction G, resulting in a new CFG as shown in part (b). Next instruction B is
executed, followed by instruction C which changes itself into jump instruction
H (c). Then, instruction G transfers control back to B after which H and F are
executed. The only possible trace therefore is A,B,C,G,B,H,F. While not
apparent at first sight, we can now see that these instructions could be replaced
by a single instruction: inc %ebx.

5.1.1 The State Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data flow analysis to determine global information about the manipulation
of data [Muchnick 97]. They have proved to be a very useful representation
enabling the analysis and transformation of code. Given the vast amount of
research that has gone into the development of analyses on and transformations

112 Advanced Transformations

A) movb 0xc 0x8
B) inc %ebx
C) movb 0xc 0x5
D) inc %edx
E) push %ecx
F) dec %ebx

 

B) inc %ebx
C) movb 0xc 0x5
G) jmp 0x3

E) push %ecx
F) dec %ebx

A) movb 0xc 0x8



F) dec %ebx

E) push %ecx

G) jmp 0x3

B) inc %ebx
H) jmp 0xc

A) movb 0xc 0x81

2
3

4

5

6

7

(a) before execution

A) movb 0xc 0x8
B) inc %ebx
C) movb 0xc 0x5
D) inc %edx
E) push %ecx
F) dec %ebx

 

B) inc %ebx
C) movb 0xc 0x5
G) jmp 0x3

E) push %ecx
F) dec %ebx

A) movb 0xc 0x8



F) dec %ebx

E) push %ecx

G) jmp 0x3

B) inc %ebx
H) jmp 0xc

A) movb 0xc 0x81

2
3

4

5

6

7

(b) after the first write instruc-
tion A

A) movb 0xc 0x8
B) inc %ebx
C) movb 0xc 0x5
D) inc %edx
E) push %ecx
F) dec %ebx

 

B) inc %ebx
C) movb 0xc 0x5
G) jmp 0x3

E) push %ecx
F) dec %ebx

A) movb 0xc 0x8



F) dec %ebx

E) push %ecx

G) jmp 0x3

B) inc %ebx
H) jmp 0xc

A) movb 0xc 0x81

2
3

4

5

6

7

(c) after the second write instruc-
tion C

Figure 5.1: Traditional CFG construction. The numbers indicate the actual
execution order of instructions

010010101101110

101011111101101

101101101011001

100110011011101

010111001101101

010101111101111

110111000001110

010011101101101

101101010110101

001001010100

011101011111

010010101101110

101011101101101

101101101011001

100110011011101

010111001101101

010101111101111

110111000001110

010011101101101

101101010110101

001011010100

011101011111

Figure 5.2: The SE-CFG enables the transformation of constant code into
self-modifying code and the analysis and transformation of the thus obtained

self-modifying code

5.1 Self-modifying Code 113

of this program representation, we are eager to reuse the knowledge resulting
from this research.

A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely
on this representation to reason about every possible behavior of the program.
Unfortunately, traditional CFG construction algorithms fail in the presence of
self-modifying code. If they are applied on our running example at different
moments in time, we obtain the three CFGs shown in Figure 5.1. However,
none of these CFGs allows for both a conservative and accurate analysis of the
code.

We can illustrate this by applying unreachable code elimination on these
CFGs. This simple analysis removes every basic block that cannot be reached
from the entry block. If it is applied on Figure 5.1(a), then no code will be
considered to be unreachable. This is not accurate as, e.g., instruction E is un-
reachable. If we apply it on Figure 5.1(b), instructions E and F are considered
to be unreachable, while Figure 5.1(c) would yield G and E. However, both F
and G are reachable. Therefore in this case, the result is not conservative.

We can however still maintain the formal definition of a CFG: a CFG is
a directed graph G(V,E) which consists of a set of vertices V , basic blocks,
and a set of edges E, which indicate possible flow of control between basic
blocks. A basic block is defined to be a sequence of instructions for which
every instruction in a certain position dominates all those in later positions,
and no other instruction executes between two instructions in the sequence.

The concept of an edge remains unchanged as well: a directed edge is
drawn from basic block a to basic block b if we conservatively assume that
control can flow from a to b. The CFG for our running example is shown in
Figure 5.3.

In essence, this CFG is a superposition of the different CFGs observed at
different times. In the middle of Figure 5.3, we can easily detect the CFG of
Figure 5.1(a). The CFG of Figure 5.1(b) can also be found: just mask away
instruction D and H. Finally, the CFG of Figure 5.1(c) can be found by mask-
ing instruction C and D. We will postpone the discussion of the construction
of this CFG given the binary representation of the program to Section 5.1.2.
For now, note that, while this CFG does represent the one possible execution
(A,B,C,G,B,H,F), it also represents additional executions that will never
occur in practice. This will be optimized in Section 5.1.3.

114 Advanced Transformations

A) movb 0xc 0x8

B) inc %ebx

C) movb 0xc 0x5

D) inc %edx

E) push %ecx

F) dec %ebx

G) jmp 0x3

H) jmp 0xc

Figure 5.3: The CFG of the running example (before optimization)

Extension 1: Codebytes

The CFG in Figure 5.3 satisfies the basic property of a CFG: it represents a
superset of all possible executions. As such it can readily be used to reason
about a superset of all possible program executions. Unfortunately, this CFG
does not yet have the same usability we have come to expect of a CFG.

One of the shortcomings is that it cannot easily be linearized. There is no
way to go from this CFG to the binary representation, simply because this CFG
does not contain sufficient information.

For example, there are two fall-through paths out of block B. Note that we
follow the convention that a dotted arrow represents a fall-through path, mean-
ing that the two connected blocks need to be placed consecutively. Clearly,
in a linear representation, only one of these successors can be placed after the
increment instruction. Which one should we then choose?

Finally, although this is not the case in our running example, two instruc-
tions may need to be placed in overlapping locations, while there is no indica-
tion of this constraint in the CFG.

To overcome this and other related problems, we will augment the CFG
with a data structure, called codebytes. This data structure will allow us to
reason about the different states of the program. Furthermore, it will indicate
which instructions overlap and what the initial state of the program is.

In practice, there is one codebyte for every byte in the code segment. This
codebyte represents the different states the byte can be in. By convention, the
first of these states represents the initial state of that byte, i.e., the one that
will end up in the binary representation of the program. For every instruction,
there is a sequence of states representing its machine code. For our running

5.1 Self-modifying Code 115

0x8
40
0c

0x0
c6 0x1

0c

0x2
08

0x9
03

0xc
48

0xd
01

0x6
0c

0x7
05

0xa
ff

0xb
02

0x4
01

G) jmp 0x3

A) movb 0xc 0x8

B) inc %ebx

C) movb 0xc 0x5

D) inc %edx

E) push %ecx

F) dec %ebx

H) jmp 0xc

0x3
40

0x5
c6
0c

*(0x5)==0c
*(0x5)==c6

*(0x8)==0c

*(0x8)==40

Figure 5.4: The SE-CFG of the running example (before optimization)

example, this is illustrated in Figure 5.4. We can see that instruction A and C
occupy three codebytes, while the others occupy two codebytes. A codebyte
consists of one or more states. For example, codebyte 0x0 has one state: c6
and codebyte 0x8 has two states: 40 and 0c. We can also see that instruction
H and C overlap as they have common codebytes. As the first state of codebyte
0x5 is that of instruction C, and the other states are identical, instruction C
will be in the binary image of the program, while instruction H will not.

Codebytes are not only useful for the representation of the static code sec-
tion, but also for the representation of code that could be generated in dynam-
ically allocated memory. A region of memory can be dynamically allocated
and filled with bytes representing a fragment of code which will be executed
afterwards. The difference between a codebyte representing a byte in the static
code section and a codebyte representing a byte that will be dynamically pro-
duced at run time is that it has no initial state because the byte will not end up
in the binary representation of the program.

116 Advanced Transformations

Extension 2: Codebyte Conditional Edges

We have repeatedly stressed the importance of having a superset of all possible
executions. Actually, we are looking for the exact set of all possible executions,
not a superset. In practice, it is hard, if not impossible, to find a finite repre-
sentation of all possible executions and no others. The CFG is a compromise
in the sense that it is capable of representing all possible executions, at the cost
of representing executions that cannot occur in practice. Therefore, analyses
on the CFG are conservative, but may be less accurate than optimal because
they are safe for executions that can never occur.

A partial solution to this problem consists of transforming the analyses into
path-sensitive variants. These analyses are an attempt to not take into account
certain non-realizable paths.

Clearly, for every block with multiple outgoing paths, only one will be
taken at a given point in the execution. For constant code, the chosen path may
depend upon a status flag (conditional jump), a value on the stack (return),
the value of a register (indirect call or jump), and so on. However, once the
target of the control transfer is known, it is also known which instruction will
be executed next. For self-modifying code, the target address alone does not
determine the next instruction to be executed. The values of the target loca-
tions determine the instruction that will be executed as well. To take this into
account, we introduce additional conditions on edges. These conditions can be
found on the arrows itself in Figure 5.4. As instruction B is not a control trans-
fer instruction, control will flow to the instruction at the next address: 0x5. For
constant code, this would determine which instruction is executed next: there
is at most one instruction at a given address. For self-modifying code, this is
not necessarily the case. Depending on the state of the program, instruction B
can be followed by instruction C (*(0x5)==c6) or instruction H (*(0x5)==0c).

Extension 3: Consumption of Codebyte Values

The third, and final extension is designed to model the fact that when an in-
struction is executed, the bytes representing that instruction are read by the
CPU. Therefore, in our model, an instruction uses the codebytes it occupies.
This will enable us to treat code as data in data flow analyses. For example, if
we want to apply liveness analysis on a codebyte, we have the traditional uses
and definitions of that value: it is read or written by another instruction. For
example, codebyte 0x8 is defined by instruction A. On top of that, a codebyte
is used when it is part of an instruction, e.g., codebyte 0x8 is used by instruc-
tion D and G. Note that this information can be deduced from the codebyte
structure.

5.1 Self-modifying Code 117

Wrap-up

The SE-CFG still contains a CFG and therefore, existing analyses which op-
erate on a CFG can be readily applied to an SE-CFG. Furthermore, code can
be treated exactly the same way as data: the initial values of the codebytes are
written when the program is loaded, they can be read or written just as any
other memory location and are also read when they are executed.

Note that in our model traditional code is just a special case of self-modify-
ing code. The extensions can be omitted for traditional code as: (i) the code can
easily be linearized since instructions do not overlap, (ii) the target locations
of control transfers can only be in one state, and (iii) the result of data analyses
on code are trivial as the code is constant.

Where possible, we will make the same simplifications. For example, we
will only add constraints to arrows where necessary and limit them to the
smallest number of states to discriminate between different successors.

5.1.2 Construction and Linearization of the SE-CFG

In this section, we discuss how an SE-CFG can be constructed from assembly
code. Next, it is shown how the SE-CFG representation can be linearized.

SE-CFG Construction

Static SE-CFG construction is only possible when we can deduce sufficient
information about the code. If we cannot detect the targets of indirect control
transfers, we need to assume that they can go to any byte of the program. If
we cannot detect information about the write instructions, we need to assume
that any instruction can be at any position in the program. This would result in
overly conservative assumptions, hindering analyses and transformations.

When looking at applications of information hiding, it is likely that at-
tempts will have been made to hide this information. It is nevertheless useful
to devise an algorithm for SE-CFG construction, because there are applica-
tions of self-modifying code outside the domain of information hiding which
do not actively try to hide such information. Furthermore, reverse engineers
often omit the requirement of proven conservativeness and revert to approxi-
mate, practically sound information. Finally, such an algorithm could be used
to extend dynamically obtained information over code not covered in observed
executions. For programs which have not been obfuscated deliberately, linear
disassembly works well. As a result, the disassembly phase can be separated
from the flow graph construction phase. However, when the code is inter-
mixed with data in an unpredictable way, and especially when attempts have
been made to thwart linear disassembly [Linn 03], it may produce wrong re-
sults. Kruegel et al. [Kruegel 04] introduce a new method to overcome most

118 Advanced Transformations

00: proc main()
01: for (addr = code.startAddr; addr ≤ code.endAddr; addr++)
02: codebyte[addr].add(byte at address addr);
03: while (change)
04: MarkAllAddressesAsUnvisited();
05: Recursive(code.entryPoint);
06: proc Recursive(addr)
07: if (IsMarkedAsVisited(addr)) return;
08: MarkAsVisited(addr);
09: for each (Ins) — Ins can start at codebyte[addr]
10: DisassembleIns(Ins);
11: for each (v,w) — Ins can write v at codebyte w
12: codebyte[w].add(v);
13: for each (target) — control can flow to target after Ins
14: Recursive(target);

Figure 5.5: Recursive traversal disassembly algorithm for self-modifying code

of the problems introduced by code obfuscation but the method is not useful
when a program contains self-modifying code. To partially solve this problem,
disassembly can be combined with the control flow information. Such an ap-
proach is recursive traversal. The extended recursive traversal algorithm which
deals with self-modifying code is provided in Figure 5.5

Disassembly starts at the only instruction that will certainly be executed
as represented in the static image of the program: the entry point (line 5).
When multiple instructions can start at a codebyte, all possible instructions are
disassembled (line 9, codebyte 0x8 in Figure 5.6(a)). When an instruction
modifies the code, state(s) are added to the target codebyte(s) (line 11-12).
This is illustrated in Figure 5.6(a): state 0c is added to codebyte 0x8. Next, all
possible successors are recursively disassembled (line 13-14). In our example,
the main loop (line 3) will be executed three times, as the second instruction
at codebyte 0x5 will be missed in the first run. It will however be added in
the second run. In the third run, there will be no further changes. The overall
result is shown in Figure 5.6(b).

The construction of the SE-CFG is straightforward once the instructions
have been detected: every instruction I is put into a separate basic block
basicblockI . If control can flow from instruction I to codebyte c, then for
every instruction J that can start at c, an edge basicblockI → basicblockJ

is created. Finally, basic blocks are merged into larger basic blocks where
possible. The thus obtained SE-CFG for our running example is shown in
Figure 5.4. Note that it still contains instructions that cannot be executed and

5.1 Self-modifying Code 119

jmp 0x3

inc %edxinc %edx

0x0
c6

0x1
0c

0x2
08

0x3
40

0x4
01

0x5
c6
0c

0x6
0c

0x7
05

0x8
40
0c

0x9
03

0xa
ff

0xb
02

0xc
48

0xd
01

movb 0xc 0x8 movb 0xc 0x5

push %ecx dec %ebx

jmp 0xc

(a)

jmp 0x3

inc %edxinc %edx

0x0
c6

0x1
0c

0x2
08

0x3
40

0x4
01

0x5
c6
0c

0x6
0c

0x7
05

0x8
40
0c

0x9
03

0xa
ff

0xb
02

0xc
48

0xd
01

movb 0xc 0x8 movb 0xc 0x5 push %ecx dec %ebx

jmp 0xc

(b)

Figure 5.6: Operation of recursive traversal disassembly for self-modifying code

edges that cannot be followed. Section 5.1.3 discusses how these instructions
can be pruned.

SE-CFG Linearization

Traditional CFG linearization consists of concatenating all basic blocks that
need to be placed consecutively in chains. The resulting chains can then be
ordered arbitrarily, resulting in a list of instructions which can be assembled to
obtain the desired program.

When dealing with self-modifying code, we cannot simply concatenate all
basic blocks that need to be placed consecutively and write them out. One of
the reasons is that this is impossible when dealing with multiple fall-through
edges. Instead, we will create chains of codebytes. Two codebytes need to be
concatenated if one of the following conditions holds: (i) c and d are succes-
sive codebytes belonging to an instruction, (ii) codebyte c is the last codebyte
of instruction I and codebyte d is the first codebyte of instruction J and I
and J are successive instructions in a basic block, and (iii) codebyte c is the
last codebyte of the last instruction in basic block A and d is the first code-
byte of the first instruction in basic block B and A and B need to be placed
consecutively because of a fall-through path.

120 Advanced Transformations

The resulting chains of codebytes can be concatenated in any order into
a single chain. At this point, the final layout of the program has been deter-
mined, and all relocated values can be computed. Next, the initial states of the
codebytes can be written out.

For example, in Figure 5.4, codebyte 0x0, 0x1 and 0x2 need to be con-
catenated because of condition (i), codebyte 0x9 and 0xa because of con-
dition (ii) and codebyte 0x4 and 0x5 because of condition (iii). When all
conditions have been evaluated, we obtain a single chain. If we write out the
first state of every codebyte in the resulting chain, we obtain the binary code
listed in Section 5.1.

5.1.3 Analyses on and Transformations of the SE-CFG

In this section, we will demonstrate the usability of the SE-CFG representation
by showing how it can be used for common analyses and transformations. We
will illustrate how issues concerning self-modifying code can be mapped onto
similar issues encountered with constant code in a number of situations.

Note that once the SE-CFG is constructed, the eventual layout of the code
is irrelevant and will be determined by the serialization phase. Therefore, the
addresses of codebytes are irrelevant in this phase. However, for the ease of
reference, we will retain them. In practice, addresses are replaced by reloca-
tions.

Constant Propagation

The CFG of Figure 5.3 satisfies all requirements of a CFG: it is a superset
of all possible executions. As this CFG is part of the SE-CFG in Figure 5.4,
analyses which operate on a CFG can be reused without modifications. This
includes constant propagation and liveness analysis.

Because of the extensions, it is furthermore possible to apply existing
data analyses on the code as well. This can be useful when reasoning about
self-modifying code. A common question that arises when dealing with self-
modifying code is: “What are the possible states of the program at this program
point?”. This question can be answered through traditional data analyses on
the codebytes, e.g., constant propagation.

If we would perform constant propagation on codebyte 0x8 on the SE-
CFG of Figure 5.4, we can see that codebyte 0x8 it is set to 40 when the
program is loaded. Subsequently, it is set to 0c by instruction A. Continuing
the analysis, we learn that at program point C it can only contain the value
0c. Therefore, the edge from instruction C to instruction D is unrealizable,
since the condition *(0x8)==40 can never hold. The edge can therefore be
removed.

5.1 Self-modifying Code 121

Unreachable Code Elimination

Traditionally, unreachable code elimination operates by marking every basic
block that is reachable from the entry node of the program. For self-modifying
code, the approach is similar. For our running example, this would result in
the elimination of basic blocks D and E. Note that the edge between C and D is
assumed to have been removed by constant propagation.

Similarly, we can remove unreachable codebytes. A codebyte can be re-
moved if it is not part of any reachable basic block and if it is not read by any
instruction. This allows us to remove codebyte 0xa and 0xb. While we have
removed the inc %edx-instruction, its codebytes could not be removed, as
they are connected through another instruction. Note that we now have a con-
servative and accurate unreachable code elimination.

Liveness Analysis

Another commonly asked question with self-modifying code is as follows:
“Can I overwrite a fragment of code?”. Again, this is completely identical
to the question whether you can overwrite a fragment of data. You can over-
write a fragment of the program if you can guarantee that the value will not be
read later on by the program before it is overwritten. In our model, for self-
modifying code, a value is read when (i) it is read by an instruction (standard),
(ii) the flow of control can be determined by this value (extension 2), and (iii)
the CPU will interpret it as (part of) an instruction (extension 3).

We could, for example, perform liveness analysis on codebyte 0x8. This
shows us that the value 40, which is written when the program is loaded, is a
dead value: it is never read before it is written by instruction A. As a result, it
can be removed and we could write the second state 0c immediately when the
program is loaded. In our representation, this means making it the first state of
codebyte 0x8.

Subsequently, an analysis could point out that instruction A has now be-
come an idempotent instruction: it writes a value that was already there. As a
result, this instruction can be removed. We have now obtained the SE-CFG of
Figure 5.7.

Loop Unrolling

Subsequently, we could peel off one iteration of the loop to see if this would
lead to additional optimizations. This results in the SE-CFG in Figure 5.8.
Note that we had to duplicate the write operation C, as we should now write
to both the original and the copy of the codebyte in order to be semantically
equivalent.

122 Advanced Transformations

C) movb 0xc 0x5

G) jmp 0x3
0x8
40
0c

0x9
03

0xc
48

0xd
01

0x6
0c

0x7
05

0x4
01 B) inc %ebx

F) dec %ebx

H) jmp 0xc

0x3
40

0x5
c6
0c

*(0x5)==0c
*(0x5)==c6

Figure 5.7: The SE-CFG after partial optimization, before unrolling

Finishing Up

Similarly to the previously discussed constant propagation, we can now find
out that the paths B’→ H’ and B → C are unrealizable. As a result, we no
longer have a loop. Instruction C, C2, G and H’ are unreachable. Applying
the same optimization as in Section 5.1.3, we can remove the first state of
codebyte 0x5 and instruction C’. The value written by C2’ is never used
and thus C2’ can be removed. Through jump forwarding, we can remove
instruction H. Finally, given that the decrement instruction performs exactly
the opposite of the increment instruction, we now see that the code can be
replaced by a single instruction: inc %ebx.

5.1.4 Folding through Self-modifying Code

Based upon our model for self-modifying code, the SE-CFG, we have imple-
mented another form of folding. This choice is motivated by the same argu-
ments as given in Section 4.6.1. Again, the goal of this type of folding is not
necessarily to shrink the program, but to make it more tamper resistant. As a
result, in some cases, we will also perform folding if the cost (in terms of size,
speed and power) is higher than the gain.

The transformation operates as follows. In the first phase, we split the
code up in what we call code snippets. These code snippets are constructed as
follows: if a basic block is not followed by a fall-through edge, the basic block

5.1 Self-modifying Code 123

0x8
0c

0c

B’) inc %ebx

H’) jmp 0xc C’) movb 0xc 0x5

C2’) movb 0xc _c

B) inc %ebx

H) jmp 0xc

F) dec %ebx

C) movb 0xc 0x5

C2) movb 0xc _c
G) jmp 0x3

_a
40

_b
01

_c
c6

_d
0c

_e
05

0xc
48

0xd
01

0x5
c6

0x6
0c

0x7
05

0x9
03

_f
0c

_g
0c

_h
_c

_i
0c

_j
0c

_k
_c

0x3
40

0x4
01

0c

*(_c)==0c *(_c)==c6

*(0x5)==0c *(0x5)==c6

Figure 5.8: The SE-CFG after unrolling

124 Advanced Transformations

1

jcc 3

2 3

1

jcc 3

jmp 2

3

2

code snippet

(a)

1

jcc 3

2 3

1

jcc 3

jmp 2

3

2

code snippet

(b)

Figure 5.9: Code snippet generation

itself makes up a code snippet. If basic block a was followed by a fall-through
edge e to basic block b, a new basic block c is created with a single instruction:
a jump to b. The target of e is then set to c. The combination of a and c is then
called a code snippet. This is illustrated in Figure 5.9.

A code snippet is thus a small fragment of code that can be placed indepen-
dently of the other code. It consists of at most two consecutive basic blocks. If
there is a second basic block, this second basic block consists of a single jump
instruction. The advantage of code snippets is that they can be transformed
and placed independently. The downside is that their construction introduces
a large number of jump instructions. This overhead is partially eliminated by
performing jump forwarding and basic block merging at the end of the trans-
formation.

Next, we perform what we call code snippet coalescing. Wherever this is
possible with at most one modifier, we let two code snippets overlap. Both
code snippets are then replaced by at most one modifier and a jump instruction
to the coalesced code snippet. On the 80x86, this means that code snippets are
merged if they differ in at most 4 consecutive bytes.

5.1 Self-modifying Code 125

As an example, consider the two code snippets in Figure 5.10(a). While
these two code fragments seem to have little in common, their binary repre-
sentation differs in only one byte. Therefore, they are eligible for code snip-
pet coalescing. The result is shown in Figure 5.10(b). The codebytes of the
modifier and jump instructions are not shown to save space. In this example,
subsequent branch forwarding will eliminate one of the jumps. (Note that this
example uses the actual 80x86 instruction set.)

Intuitively, this makes the program harder to understand for a number of
reasons. Firstly, as overlapping code snippets are used within multiple con-
texts, the number of interpretations of that code snippet increases. It also be-
comes more difficult to distinguish functions as their boundaries have been
blurred. And most importantly, the common difficulties encountered for self-
modifying code have been introduced: the code is not constant and therefore,
the static image does not contain all the instructions that will be executed. Fur-
thermore, multiple instructions will be executed at the same address, so there
is no longer a one to one mapping between addresses and instructions.

Folding with a One-byte Modifier

For each pair of code snippets that differs in exactly one byte, we can choose
whether or not to merge them using the above described transformation. Note
that this can be done repeatedly if a next code snippet differs in the same byte
as an earlier merged pair of code snippets.

Folding with a Four-byte Modifier

For each pair of code snippets that differs only in the offset of the final control
transfer instruction (e.g., jmp and call), we can choose whether or not to
merge them using the above described transformation. Note that this can be
done repeatedly if a next code snippet differs in the same way as an earlier
merged pair of code snippets.

5.1.5 Evaluation

The number of opportunities for the folding transformations based on self-
modifying code are shown in Table 5.1.

In Figure 5.11, we have plotted the cost of these transformations in terms
of code size and execution time. On the x-axis, we have assigned different
values to p, the probability with which a folding transformation is applied. We
have chosen to use the same p for the two transformations at the same time.

Despite the folding nature of these transformations, we can still observe
a marginal increase in code size (0.7% for p = 1). The reason is that the

126 Advanced Transformations

0x1
5c

0x2
24

0x3
04

0x4
a8

0x5
5b

0x6
c3

0x0
8b
68

push 0xa804245c
pop %ebx

ret

0x0
68

0x1
5c

0x2
24

0x3
04

0x4
a8

0x7
8b

0x9
24

0xa
04

0x8
5c

0x5
5b

0x6
c3

0xc
5b

0xd
c3

0xb
a8

mov 4(%esp),%ebx
test 0x5b,%al

ret

push 0xa804245c
pop %ebx

movb 0x68, 0x0
jmp 0x0

movb 0x8b, 0x0
jmp 0x0

mov 4(%esp),%ebx
test 0x5b,%al

ret

(a) Snippets to coalesce

0x1
5c

0x2
24

0x3
04

0x4
a8

0x5
5b

0x6
c3

0x0
8b
68

push 0xa804245c
pop %ebx

ret

0x0
68

0x1
5c

0x2
24

0x3
04

0x4
a8

0x7
8b

0x9
24

0xa
04

0x8
5c

0x5
5b

0x6
c3

0xc
5b

0xd
c3

0xb
a8

mov 4(%esp),%ebx
test 0x5b,%al

ret

push 0xa804245c
pop %ebx

movb 0x68, 0x0
jmp 0x0

movb 0x8b, 0x0
jmp 0x0

mov 4(%esp),%ebx
test 0x5b,%al

ret

(b) Coalesced snippets

Figure 5.10: Example of coalescing code snippets

5.1 Self-modifying Code 127

No restrictions With restrictions
benchmark 1-byte 4-byte 1-byte 4-byte
400.perlbench 1029 13384 422 1530
401.bzip2 93 3784 20 229
403.gcc 1917 31671 1098 5553
429.mcf 273 3386 32 137
433.milc 507 3944 54 243
445.gobmk 1603 8009 564 1923
456.hmmer 417 4229 46 252
458.sjeng 338 4039 44 356
462.libquantum 325 3512 30 102
464.h264ref 368 6100 121 585
470.lbm 310 3393 21 77
482.sphinx 415 3181 85 467

Table 5.1: Number of candidates for self-modifying code per benchmark

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

p

slowdown

code bloat

Figure 5.11: Code bloat and slowdown for self-modifying code

reduction in code size is undone by the large size of the modifying instructions.
A one-byte modifier takes seven bytes, while a four-byte modifier takes ten
bytes. Note that we apply the transformation even if there is no net gain, as our
goal is not compaction.

The cost in terms of execution time is considerable. However, it is still
small compared to the slowdown we expect an attacker to experience, e.g., if
techniques such as dynamic instrumentation are being used.

128 Advanced Transformations

Slowdown of Information Collection

Most tools for program analysis assume that code is constant and have little or
no provisions for self-modifying code.

When using a dynamic instrumentor, we need to monitor every write in-
struction to see if it doesn’t modify any already instrumented code in order
to correctly deal with self-modifying code. Furthermore, if already instru-
mented code is modified, we need to invalidate and re-instrument the related
code fragments. Finally, when executing instrumented code, we will want to
know to what version the executed code corresponds to, to map it correctly to
the instructions and basic blocks in the CFG. This requires some additional
bookkeeping as well.

DIOTA already contained support for this type of code. Yet, little measures
were taken to minimize the execution overhead. As a result, we were unable to
collect the information in reasonable time. Monitoring every write instruction
causes a slowdown of a factor 2. Invalidation and re-instrumentation results in
an additional slowdown of a factor of more than 200 for the discussed trans-
formations based on self-modifying code.

Clearly, this does not prove that the information cannot be collected faster.
Another, more advanced analysis, or even attempts to rewrite the code in a
non-self-modifying version may accelerate the process. However, given the
general consensus that self-modifying code is hard to deal with, we assume
that this is one of the ways to significantly increase the attacker’s workload for
a relatively moderate cost.

5.2 Virtualization

The last diversifying and anti-tampering transformation we discuss is also the
most radical transformation: virtualization. The idea is to rewrite the entire
program for a custom virtual machine and ship it along with an implementation
of that virtual machine. This is illustrated in Figure 5.12.

Having the freedom to design our own ISA leaves us with many choices.
We would like to use this freedom of choice to create a set of different versions
of the program with the following properties: (i) each version in the set has a
reasonable level of defense against tampering and (ii) it is hard to retarget an
existing attack against one version to work against another version.

A number of design principles to achieve the first goal are discussed in
Section 5.2.1. This involves a trade-off: the many choices, discussed in Sec-
tion 5.2.2, result in a large design space for ISAs. We can consider this entire
space to allow for more diversity. Alternatively, we can focus on subspaces
which we believe to lead to more tamper resistant programs than other parts.

We will evaluate the cost of the applied transformations in Section 5.2.3.

5.2 Virtualization 129

resulting binary

original
MSIL

binary

custom
VM

VM
description

backend

frontend

custom
bytecode

binary

Figure 5.12: High-level overview of virtualization

5.2.1 Design Principles for an ISA Targeted at Software Protec-
tion

The design principles to steer towards tamper resistant properties are: (i) pre-
vent static analysis of the program; (ii) prevent dynamic analysis of the pro-
gram; (iii) prevent local modifications and (iv) prevent global modifications.

The first two are closely related to the problem of obfuscation, while the
latter two are more tamper resistance oriented. However, intelligent tampering
requires at least some degree of program understanding, which is typically
gained from observing the static image of the program, observing the running
program or a combination and/or repetition of the two previous techniques.

The Trend Towards RISC Architectures

It seems as if these design principles conflict with the trend in general purpose
ISA design. The concept of the Complex Instruction Set Computer (CISC) has
lost ground to Reduced Instruction Set Computer (RISC). Because of the com-
plexity of CISC instruction sets, often accompanied by fewer restrictions on
the program, CISC programs are usually more complex to analyze than RISC
programs. The complexity of CISC architectures can complicate analysis and
allows for a number of tricks that cannot be used as easily on RISC architec-
tures. For example, Linn et al. [Linn 03] have exploited variable instruction
lengths and intermixing of code and data to try to confuse the disassembler.
Self-modifying code (see Section 5.1) is facilitated on the IA-32 because ex-

130 Advanced Transformations

plicit cache flushes are not required to communicate the modifications to the
Central Processing Unit (CPU).

Other research, such as control flow flattening, does not rely on architec-
ture or CISC-specific features, and can thus be applied to RISC architectures
as well.

The Trend Towards Virtualized Execution Environments

More recently, the advent of Java bytecode and managed Microsoft Intermedi-
ate Language (MSIL) has promoted ISAs that are even more easily analyzed.
This is due to a number of reasons. First, these programs are typically not
executed directly on hardware, but need to be emulated or translated into na-
tive code before execution. To enable this, boundaries between code and data
need to be known and there can be no confusion between constant data and
relocatable addresses. This, of course, comes with the advantage of portabil-
ity. Besides portability, design principles include support for typed memory
management and verifiability. To assure verifiability, pointer arithmetic is not
allowed, control flow is restricted, etc. To enable typed memory management,
a lot of information needs to be communicated to the executing environment
about the types of objects.

All of these design principles have led to programs that are easy to analyze
by the executing environment, but are equally easy to analyze by an attacker.
This has led to the creation of decompilers for both Java (e.g., DejaVu and
Mocha) and managed MSIL programs (e.g., Reflector).

As a result of this vulnerability, a vast body of valuable research can be
found in the protection of Java bytecode [Badger 01, Collberg 03]. Note that
most of the developed techniques are theoretically applicable to CISC and
RISC programs as well, while in practice their application is complicated by
the absence of rich information.

One can clearly observe a trend where the design principles of ISAs are
increasingly in conflict with the design principles that would facilitate software
protection. Surprisingly, one way to counter this trend is to add an additional
layer of virtualization. We will emulate our own ISA. This idea has been
mentioned in the academic literature as table interpretation [Collberg 98a].

Reusing Experience

Experience and intuition tell us that the average IA-32 program is far more
complex to understand and manipulate than the average managed program.
We believe that three key factors are in play: (i) variable instruction length;

5.2 Virtualization 131

(ii) no clear distinction between code and data and (iii) no clear distinction
between constant data and relocatable addresses.

Since instructions (opcode + operands) can have variable length (1-15
bytes), instructions need only be byte-aligned, and can be mixed with padding
bytes or data on the IA-32, disassemblers can easily get out of synchronization.
This has been studied in detail by Linn et al. [Linn 03].

As there is no explicit separation between code and data, both can be
read and written transparently and used interchangeably. This enables self-
modifying code, which has been discussed in Section 5.1.

The feature that the binary representation of the code can easily be read
has been used to enable self-checking mechanisms [Chang 02, Horne 02]. The
absence of restrictions on control flow has enabled techniques such as control
flow flattening [Chow 01, Wang 01] and instruction overlapping [Cohen 93].

While we know of no explicit publication which specifically exploits this
feature, the fact that addresses can be computed, and that they cannot easily
be distinguished from regular data, complicates the tampering with programs:
an attacker can only make local modifications, as he does not have sufficient
information to relocate the entire program.

These observations are an important inspiration when looking for ways to
generate a hard to analyze ISA. We will highlight subspaces which lead to
increased tamper resistance when discussing the available choices.

5.2.2 Available Choices

We have identified a number of different choices based on the operation of
a Virtual Machine (VM). A high-level overview of the execution engine is
provided in Figure 5.13. The different components are:

1. instruction semantics;

2. opcode encoding;

3. operand encoding;

4. fetch cycle;

5. program counter and program representation.

In order to keep the diversity manageable, we have fixed the interface of
the different components of the ISA. As a result, we can diversify their in-
ternal implementation regardless of the transformations applied on the other
components. This allows for a modular design and independent development.

132 Advanced Transformations

while(true)
{

DecodeOpcode Fetch

DecodeOperands
EmulateIns

ManipulateState
}

(3)

custom
bytecode

binary

PC

memory

registers

Code Data structures

internal state

(1)

(2)

(4) (5)

Figure 5.13: The execution model and the interfaces of the virtual machine

The arrows in the Figure 5.13 indicate interface dependencies. For exam-
ple, DecodeOpcode expects to be able to fetch a number of bits. The main
internal data structures of the VM are shown as well.

The above components are sufficient to generate a program in the custom
bytecode language, i.e., these determine the ISA. When desired, the virtual
machine itself can be diversified as well. Additionally, we can also diversify
the code of the original program before the layer of virtualization is added.

Instruction Semantics

To allow for the diversification of instruction semantics, we use the concept
of micro-operations. An instruction in the custom bytecode language can be
any sequence of a predetermined set of micro-operations. The set of micro-
operations can, for example, include the instructions of the original archi-
tecture and a number of additional instructions to: (i) communicate meta-
information required for proper execution and (ii) enable additional features
such as changing semantics (see Section 5.2.2). This can be compared to the
concept of micro-operations (µops) in the P6 micro-architecture [Patterson 90].
Each IA-32 instruction is translated into a series of µops which are then ex-
ecuted by the pipeline. This could also be compared to the super-operators
by Proebsting [Proebsting 95]. Super-operators are virtual machine opera-
tions automatically synthesized from smaller operations to avoid costly per-
operation overheads and to reduce program size.

5.2 Virtualization 133

We have provided stubs to emulate each of the micro-operations and these
can simply be concatenated to emulate more expressive instructions in our
custom bytecode language.

Tamper-resistance Not knowing the semantics of an instruction will com-
plicate program understanding. We can however go one step further and choose
our instruction semantics to adhere to some design principles for a tamper re-
sistant ISA.

Conditional execution We can use conditional execution to further pro-
mote merging slightly differing fragments of code. In the presence of condi-
tional execution, instructions can be predicated by predicate registers. If the
predicate register is set to false, the instruction is interpreted as a no-op, other-
wise it is emulated. The idea is to set these registers on or off along different
execution paths to be able to outline slightly different fragments of code.

Limited instruction set The VM is tailored to a specific program. There-
fore, we can make sure that the VM can only emulate operations that are re-
quired by that program. We can further limit the instruction set. A common
way for an attacker to remove undesired functionality (e.g., a license check) is
to overwrite that functionality with no-ops. There is little reason to include a
no-op instruction in our custom ISA and not having this instruction will com-
plicate padding out unwanted code.

Statistics furthermore show that, for example, of the integer literals from
some 600 Java programs, 1.4 million lines in all, 80% are between 0-99, 95%
are between 0 and 999, and 92% are powers of two or powers of two plus or
minus 1 [Cousot 03]. This allows us to limit the number of operands that can
be represented, again limiting the freedom of the attacker.

Another example can be found with conditional branches. Usually, there
are two versions for each condition: branch if condition is set and branch if
condition is not set. Since this is redundant, we could rewrite the code so that
only one version is used and not include its counterpart in the ISA. This may
be useful, for example, when a license check branches conditionally depending
on the validity of the serial number: it will prevent the attacker from simply
flipping the branch condition.

Opcode Encoding

Once instruction semantics has been determined, we need to determine an op-
code encoding for those instructions. The size of all opcodes for traditional
architectures is usually constant or slightly variable. For example, MSIL op-
codes are typically one byte, with an escape value (0xfe) to enable two-byte

134 Advanced Transformations

0

0

0

0

0

0

0 0

0

1

11

1 1

1 1

11

add mul

…

…

Figure 5.14: Prefix code decoding with a binary tree

opcodes for less frequent instructions. The limited variability facilitates fast
lookup through table interpretation. But, more generally, any prefix code (no
code word is a prefix of any other code word) allows for unambiguous inter-
pretation.

In its most general form, decoding opcodes to semantics can be done
through a binary-tree traversal. Decoding starts in the root node; when a ’0’
bit is read, we move to the left child node; when a ’1’ bit is read, we move
to the right child node. When a leaf node is reached, we have successfully
decoded an opcode. This is illustrated in Figure 5.14. The leaf node contains
a reference to the case-statement emulating the semantics of the instruction.

If we allow arbitrary opcode sizes, without illegal opcodes, the number of
possible encodings for n instructions is:(

2(n−1)
n−1

)
n

n! .

The fraction represents the number of planar binary trees with n leaves
(Catalan number), while the factorial represents the assignment of opcodes to
leaves.

If we choose fixed opcode sizes with the shortest possible encoding, i.e.
dlog2(n)e bit, we might introduce illegal opcodes. In this case, the number of
possible encodings is: (

2dlog2(n)e

n

)
.

5.2 Virtualization 135

Many more possibilities would arise if we allowed illegal opcodes for other
reasons than minimal fixed opcode sizes. However, this increases the size of
a program written in the custom ISA without any clear advantages. Therefore
we do not consider this option.

We currently support the following modes: (i) fixed-length opcodes with
table lookup; (ii) multi-level table encoding to enable slightly variable instruc-
tion sizes (escape codes are used for longer opcodes) and (iii) arbitrary-length
opcodes with binary-tree traversal for decoding.

Tamper-resistance Again, not knowing the mapping from bit sequences to
semantics introduces a learning curve for the attacker, as opposed to having
that information in a manual. Again, there are a number of additional tricks to
choose this mapping in such a way that it allows for tamper resistance proper-
ties.

Variable instruction sizes We already know that variable instruction
sizes introduce complexity in disassembling CISC programs. When designing
our own ISA, we can introduce even more variance in the length of opcodes.

Variable instruction sizes can also be used to make local modifications
more complicated. It is easy to see how a larger instruction cannot simply
replace a smaller instruction, because it would overwrite the next instruction.
We can also make sure that smaller non-control-transfer instructions cannot
replace larger instructions. This can be done by making sure that they cannot
be padded out to let control flow to the next instruction.

For example, if we have 64 instructions, we could assign each of them a
unique size between 64 and 127 bits. Clearly, larger instructions do not fit into
the space of smaller instructions. Smaller instructions do fit in the space of
larger instructions, but when control falls through to the next bit, a problem
arises: there is no instruction available to pad out the remaining bits with no-
ops to make sure that control flows to the next instruction. Under this scheme
it is useful to make control-transfer instructions the longest, to keep an attacker
from escaping to another location where he can do what he wants.

Unary encoding To entangle the program further, we could try to maxi-
mize physical overlap. We want to be able to jump into the middle of another
instruction, and start decoding another instruction. We could facilitate this
by choosing a good encoding. For example, we could use unary encoding to
encode the opcodes (0, 01, 001, ..., 0631); there is a good chance that we find
another instruction when we jump one bit after the beginning of an instruction.
This is illustrated in Figure 5.15. Four instructions have been assigned an op-
code using unary encoding. We can see that if decoding is started at the second

136 Advanced Transformations

0001: add
0001: mul
0001: sub
0001: div

Figure 5.15: Unary encoding to promote physical overlap

bit of the ’divide’ instruction, the ’subtract’ instruction is revealed. Likewise,
looking at the last bit of the ’divide’, ’subtract’ and ’multiply’ instruction re-
veals the ’add’ instruction.

Non-local semantics Having a unique bytecode language for every dis-
tributed copy is clearly a major barrier for attackers. There is no documentation
available on: (i) the mapping from bit patterns to instructions; (ii) the seman-
tics of instructions; (iii) the mapping from bit patterns to operands; (iv) the
representation of data structures; etc.

However, this information can eventually be obtained through static or dy-
namic inspection. We can further complicate this process by making sure that
a bit pattern has different meaning along different execution paths.

A program is just a sequence of ’1’s and ’0’s, which is given mean-
ing by the processor. The meaning between bit patterns and interpretation is
typically fixed by the ISA. On traditional architectures, if the opcode of a cer-
tain instruction is represented by a given bit pattern, this pattern is constant for
every program, everywhere it occurs. We want to make this variable.

A bit pattern should only be assigned meaning depending on previously
executed code. The first observation we need to make if we want the interpre-
tation to depend on previously executed code is that, depending on the (fully
specified) input, we can get to a program point along different execution paths.
However, we still want to have control over the interpretation of bits at a given
program point. To accommodate this variability, we have chosen to make in-
terpretation changes explicit in the ISA, rather than implicit as a side effect of
some other event.

Another consideration that we need to make is that it should not be overly
complex to get the executing environment in a specific interpretation state, so
that if we can get to a program point from different execution paths in dif-
ferent interpretation states, we can relatively easily migrate to a single target
interpretation state no matter what those different interpretation states are.

The approach we have taken is the result of the following observation: if
we look back at Figure 5.14, it is easy to see that changing interpretation is
nothing more than rearranging the decoding tree.

5.2 Virtualization 137

Taking into account the previous observations, we can only allow a lim-
ited form of diversification. To this end, we have chosen a level at which
subtrees can be moved around. This choice is a trade-off between how many
different interpretations are possible and how easy it is to go to a fixed inter-
pretation from a set of possibly different interpretation states. We have chosen
the third level. Assuming that the shortest opcode is 3 bit, this allows for 8!
interpretation states, while any interpretation state is reachable in at most 8
micro-operations.

The micro-operations we have added to the set of micro-operations to en-
able this are:

• Swap(UInt3 position1, UInt3 position2), which
exchanges the nodes at positionposition1 and position2 and

• Set(UInt3 label, UInt3 position), which exchanges the
node with label label(wherever it may be) and the node at position
position.

In the case of table interpretation, this is implemented as a two-level ta-
ble interpretation. The first level simply refers to other tables which can be
swapped.

Operand Encoding

As our micro-operations largely correspond to the instructions of the original
architecture, the operand types correspond largely to the operand types in the
original architecture. Micro-operation emulation stubs that use operands use
function calls to ensure that opcode encoding can be diversified orthogonally
to what we have previously discussed. These callbacks furthermore pass an
argument insNr identifying the custom VM instruction from which it was
called. This allows us to encode operands differently for different custom VM
instructions. Note that due to the concatenation of stubs, an arbitrary number
of operands can follow the opcode.

Similar observations on diversifying the opcode encoding can be made as
for instruction encoding.

Fetch Cycle

Diversifying the fetch cycle is really an artificial form of diversification. In
its most simple form, the fetch cycle simply gets a number of bits from the
custom bytecode program, depending on the current Program Counter (PC).
However, we will allow a number of filters to be inserted into this phase to

138 Advanced Transformations

allow for improved tamper resistance. Basically, they will transform the actual
bits in the program to the bits that will be interpreted by the VM.

These filters will typically combine the requested bits with other infor-
mation. For example, the actual requested bits may be combined with other
parts of the program. This way, the program becomes more inter-dependent
as changing one part of the program may impact other parts as well. Other
applications include combining it with a random value derived from a secret
key, or combining it with the program counter to complicate pattern matching
techniques.

Program Representation and Program Pointer

We are very familiar with the traditional representation of the code as a linear
sequence of bytes. The program counter then simply points to the next byte to
execute, and control transfers typically specify the byte to continue execution
at as a relative offset or an absolute address. This could be seen as representing
the code as an array of bytes.

However, it is worth noting that an array is not the only data structure that
can be used to represent code. In fact, almost any data structure will do. We
could represent the code as a hash table, as a linked list, as a tree structure, etc.

So far, we have implemented representing the code as a linear sequence
and as a splay tree [Sleator 85]. Related research includes keeping data, as
opposed to code, in a splay tree [Varadarajan 06]. Splay trees have a number of
advantages: they are self-balancing, which will allow for automatic relocation
of code. Furthermore, they are nearly optimal in terms of amortized cost for
arbitrary sequences. Finally, recently accessed nodes tend to be near the root
of the tree, which will allow us to partially leverage temporal locality.

Because of the self-balancing property, a fragment of code could be in
many different locations in memory, depending on the execution path that led
to a certain code fragment. Code fragments can be moved around, as long as
there is a way to refer to them for control flow transfers, and we can retrieve
them when control is transferred to them. We will use the keys of the nodes
in the splay tree to make this possible: control transfers specify the key of the
node to which control needs to be transferred.

As such, it is required that targets of control flow be nodes. We cannot
jump into the middle of the code contained within a node. In practice this
means that we start a new node for each basic block. We deal with fall-through
paths by making all control flow explicit. All control flow targets are specified
as the keys of the node containing the target code.

This is illustrated in Figure 5.16 for the factorial function. When, for ex-
ample, the function is called for the first time, the node with key 1 will be
referenced and percolated to the root, as shown in part (2).

5.2 Virtualization 139

ldarg.0
ldc.i4.1
bne.un.s
ldc.i4.1
ret
ldarg.0
ldarg.0
ldc.i4.1
sub
call
int32 Fac(int32)

mul
ret

3:
ldarg.0
ldarg.0
ldc.i4.1

sub
call 1

1:
ldarg.0
ldc.i4.1

bne.un.s 3
br

4:
mul
ret

2:
ldc.i4.1

ret

3:
ldarg.0
ldarg.0
ldc.i4.1

sub
call 1

1:
ldarg.0
ldc.i4.1

bne.un.s3
br

4:
mul
ret

2:
ldc.i4.1

ret

Linear Splay tree (1) Splay tree (2)

Figure 5.16: Linear versus splay tree representation for the factorial function.

benchmark: Arith. Cast. Create. Loop. FFT MatMult
slowdown: 50.38 284.02 1557.39 253.8 1823.39 3516.39

Table 5.2: Slowdown (factor) incurred by virtualization for C# versions of the Java
Grande benchmark suite

We also want to note that if this technique is implemented naively only
pointers will be moved around, and the actual code will remain at the same
place on the heap. To overcome this, we can explicitly exchange the actual
contents (of primitive types) of the nodes, or alternatively, we can allocate a
new code buffer and copy the code buffer there, possibly with re-encryption
with different garbage padding.

VM Generation

Once the choices for the above specified forms of diversification have been
made, the backend will combine code fragments from various locations along
with some auto-generated code to assemble a custom virtual machine, which
is then shipped with the rewritten program.

140 Advanced Transformations

5.2.3 Evaluation

The slowdown for some C# versions of benchmarks of the Java Grande Bench-
mark suite is shown in Table 5.2. The overhead of the techniques is consider-
able, ranging between a factor 50 and 3500. There are several reasons for this
overhead.

Firstly, this slowdown is a worst-case slowdown. Every function in the pro-
gram has been transformed. The tool has been configured to use binary tree
decoding as opposed to more optimal table interpretation to leave the instruc-
tion length completely randomizable. This results in a significant overhead for
every decoded bit. Furthermore, the code is represented as a splay tree, which
is clearly less optimal than an array representation.

Secondly, this is a recently developed proof-of-concept evaluation frame-
work for research in software protection. As such, it has not been optimized.
Thirdly, there is an inherent overhead involved with adding an extra layer of
virtualization.

There are applications in DRM and license systems where this kind of
slowdown could be acceptable. These applications typically boil down to some
computations followed by one or more Boolean checks. Computations that are
too time-consuming (e.g., asymmetric cryptography with large keys) would
need to be omitted from virtualization. Both run-time profiling and program-
mer input could be used to determine which parts are practically virtualizable.
The significant slowdown does show us that this level of transformation will
typically not be acceptable for performance-critical parts of the program.

6
Conclusion and Future Work

Even though the value of software diversity in the malicious code model was
documented by Cohen as early as 1993 [Cohen 93], it appears to only have
gained significant attention in the security community very recently. The end
user can benefit from diversity through ASLR in Windows Vista, Mac OS X
10.5 and Linux (via PaX). The interest in the topic from academia is illustrated
by publications at major venues such as the ACM Conference on Computer and
Communications Security ([O’Donnell 04, Shacham 04]) and Usenix Security
([Sovarel 05]).

Diversity for software protection has initially been focused on protecting
benign environments against malicious code. This is similar to many other ar-
eas in computer science. For example, computer security has originally been
about “keeping the bad guys out”. More recently, software protection tech-
niques, such as obfuscation and tamper resistance, have been studied as a de-
fense against malicious end users.

Likewise, cryptography has initially assumed that the execution environ-
ment could be trusted. The goal of the more recent direction of white-box
cryptography is to be able to deal with hostile execution environments as well.

Similarly, software diversity as a defense against malicious hosts has re-
ceived far less attention that its counterpart in the malicious code model. The
work covered in this dissertation is among the first publicly available litera-
ture in this domain and we expect to see many interesting developments in the
future.

142 Conclusion and Future Work

6.1 Summary

We started with an extensive discussion of the potential benefits of diversity.
From a simplified multi-phased economical model, we derived that diversity
can limit the number of illegitimate users in the presence of a successful attack
against one or a limited number of copies. Furthermore, diversity makes it
possible to discriminate between legitimate and illegitimate copies and enables
us to decrease the value of an illegitimate copy over time by restricting access
to updates, additional content and features to legitimate copies.

In an alternative setting, where diversity is introduced at run time, we have
used a model of the tamperer’s behavior, the locate-alter-test cycle, to discuss
how diversity can be used to delay the locate phase by making it harder to
zoom in on the origin of undesired behavior. Diversity can furthermore delay
the test phase by making the software behave differently for different hardware,
different input types, different days, etc.

As a result of the novelty of this research direction, there is no consensus
on how to evaluate this type of techniques. Ideally, we would be able to prove
some property such as “an attacker can learn no more from this version about
another version than its I/O behavior” or “the combined time of attacking each
copy in isolation is smaller than the time required to set up a generic attack”.
In practice, this goal is not yet within reach. As an alternative way to quantify
techniques that do intuitively increase the diversity between versions, we have
defined an approximative metric.

This metric describes how successful the diversity is at fooling a first au-
tomated step in a practical collusion attack: a matching system. The goal of
a matching system is to identify related pairs of code fragments from the two
versions. The matching system can make two types of errors: identifying code
fragments as related that are not related (false positives) and failing to identify
code fragments that are related (false negatives). The false positive and false
negative rate are then used as an indication of the quality of the diversity.

Experimental evaluation shows that we are able to fool the matching sys-
tem to a large extent by combining a number of smaller transformations from
different domains. The false positive rate was increased to 0.58, while the false
negative rate was increased to 0.76.

Through the use of self-modifying code, we are able to significantly slow
down the matching system. The time required to collect the information used
by the matching system is increased by a factor of over 400 if it has to deal with
fine-grained self-modifying code conservatively. Part of this slowdown can be
explained because the tool has been optimized for the average case: constant
code. Yet, a significant slowdown is likely to remain after optimization for
self-modifying code.

6.2 Future Work 143

Self-modifying code is considered bad practice by many and some operat-
ing systems go through great lengths to rule it out. The main goal is to defend
against some buffer overflow attacks. However, as self-modifying code has
been, and still is, used for optimization, run-time code generation and software
protection, it can be used by taking the necessary precautions. Furthermore, on
some architectures, e.g., the Pentium architecture, the usage of self-modifying
code is completely transparent, i.e., no explicit cache flushes are required.

Finally, through virtualization, we are able to undermine the basic oper-
ation of the matching system: matching code. Because of virtualization, the
original program is no longer code, but data interpreted by a virtual machine.

The delay incurred by the current implementation makes these techniques
unusable for performance-critical parts of the program. There are however ap-
plications in DRM and license systems where this type of slowdown may be
acceptable. These typically consist of some infrequently executed computa-
tions and one or more Boolean checks. The interest of industry for this type
of technique and the usability of a production quality implementation has been
proved by the recent acquisition of Secured Dimensions by Microsoft. The
main product of Secured Dimensions is based on Virtual Machines.

6.2 Future Work

Since software diversity as a defense against malicious hosts is a relatively
young domain, we expect many insights and discoveries to lay ahead. In this
section, we take a look at possible extensions to the work presented in this
dissertation to help further the domain.

An Evaluation Suite

Evaluation is one of the most challenging issues in software protection. A
proof of a lower bound on the amount of work required by an attacker is very
hard to obtain. Peer review may very well be the best available alternative.
Furthermore, assessing the quality of a particular transformation merely from
a description thereof is challenging. One really needs to be able to take a look
at the resulting code for a real-life application.

Unfortunately, applications requiring software protection are often propri-
etary and closed source. Therefore, we advocate the development of an evalu-
ation suite. This suite could include a number of different types of programs:
a time-limited evaluation copy, a digital container with limited access to the
content, a document processor that allows the viewing but not the printing of
certain documents, a game, and so on.

We suggest to clearly define when these programs are considered to be
broken. For example, the program is broken if it continues to work even if

144 Conclusion and Future Work

the system clock is set after a particular date. This way it can be verified
automatically whether or not an attack is successful.

At the time of writing, websites based upon similar ideas can be found on
the web, e.g., http://www.crackmes.de. We suggest to extend these ideas and
to promote them as a peer review channel for research.

Increasing the Number of False Positives

The goal of the transformations discussed in this dissertation is to make it
harder to detect that two code fragments are related by transforming them to
make sure that they are no longer perceived as identical. The primary goal is
thus to increase the false negatives.

We have not discussed intentional attempts to make unrelated code frag-
ments appear related. This could be an interesting research direction as well.

One suggested approach is to use a smaller instruction set. By using
a smaller instruction set, we can increase the size of equivalence classes, a
known cause for false positives. An instruction set such as the IA-32 contains
a lot of redundant instructions. The instructions call, ret, push, pop,
inc, dec, sub, . . . can all be replaced by other instructions or instruction se-
quences. As a result, e.g., call instructions are no longer easily separated
from other instructions, increasing the candidates with which they can be con-
fused.

Generating a Small Number of Versions

In our experiments, the nonce generation was guided by a pseudorandom num-
ber generator. As a result, we are confident that we can generate many different
versions for which the diversity between each pair is comparable. However, in
some situations, a limited number of versions suffices. In the case of hiding
the operation of a patch, for example, there are only two versions which should
be as different as possible.

If we only need a limited number of versions, it would be beneficial to
steer the diversity system to generate the most different versions. For example,
instead of factoring functions with probability p = 0.5, we could keep track of
which functions we have factored in one version and factor the other candidates
in the other version.

Divide and Conquer Matching

The matching system discussed above considers the entire program at a time. It
searches for related code fragments within the entire program. A more efficient
strategy might be to split the program into smaller parts. For example, only the

6.2 Future Work 145

code executed between two system or library calls of both versions can be
considered. Code fragments from these portions of the code are then mapped
onto each other without considering the rest of the code.

Matching Input Divergences

System calls proved to be a very reliable way to match code fragments. Un-
fortunately, they are not numerous. Another reliable source of information
for matching may be the points where the execution diverges for different in-
puts. Sooner or later, the behavior of the program needs to depend on the
input and different inputs may follow different execution paths. We believe
that the points where the execution diverges because of difference in the input
are likely to remain in diversified copies.

Canonicalization Attack

The matching system operates directly on the code of the versions. It may be
improved by transforming both versions into some sort of canonical form be-
fore the matching. This canonical form may help to eliminate the impact of
certain transformations such as instruction selection and scheduling. For ex-
ample, we could transform the instructions into a small set of micro-operations.
This could help, o.a., to identify the similarity between an increment and an
add instruction with immediate one. Similarly, we could define a canonical
way to schedule these micro-operations.

Targeted Attacks

We have deliberately kept the matching system generic and designed it with-
out consideration of the specific diversifying transformations. If we know in
advance what transformations will be applied, we can take this into account to
improve the matching.

For example, if we know that control flow flattening has been applied, we
can keep track of the different paths through the redirect block. We can then
forward the edges and skip the redirect block to overcome the impact of control
flow flattening on our matching system.

Bibliography

[Aho 86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers, Principles,
Techniques and Tools. Addison-Wesley, 1986.

[Altinkemer 03] Kemal Altinkemer and Junwei Guan. Analyzing protection
strategies for online software distribution. Journal of Electronic Commerce
Research, 4(1):34–48, 2003.

[Anckaert 04a] Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere.
Software piracy prevention through diversity. In Proceedings of the 4th
ACM Workshop on Digital Rights Management, pages 63–71. ACM Press,
2004.

[Anckaert 04b] Bertrand Anckaert, Frederik Vandeputte, Bruno De Bus,
Bjorn De Sutter, and Koen De Bosschere. Link-time optimization of
IA64 binaries. In Proceedings of the 10th International Euro-Par Confer-
ence, volume 3149 of Lecture Notes in Computer Science, pages 284–291.
Springer-Verlag, 2004.

[Anckaert 05] Bertrand Anckaert, Bjorn De Sutter, Dominique Chanet, and
Koen De Bosschere. Steganography for executables and code transforma-
tion signatures. In Proceedings of the 7th International Conference on In-
formation Security and Cryptology, volume 3506 of Lecture Notes in Com-
puter Science, pages 425–439. Springer-Verlag, 2005.

[Anckaert 06] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam
Venkatesan. Proteus: virtualization for diversified tamper-resistance. In
Proceedings of the 6th ACM workshop on Digital Rights Management,
pages 47–58. ACM Press, 2006.

[Anckaert 07a] Bertrand Anckaert, Mariusz Jakubowski, Ramarathnam
Venkatesan, and Koen De Bosschere. Run-time randomization to mitigate
tampering. In Proceedings of the 2nd International Workshop on Secu-
rity, volume 4752 of Lecture Notes in Computer Science, pages 153–168.
Springer-Verlag, 2007.

148 Bibliography

[Anckaert 07b] Bertrand Anckaert, Matias Madou, and Koen De Bosschere.
A model for self-modifying code. In Proceedings of the 8th Information
Hiding Conference, volume 4437 of Lecture Notes in Computer Science,
pages 232–248. Springer-Verlag, 2007.

[Anckaert 07c] Bertrand Anckaert, Matias Madou, Bjorn De Sutter, Bruno
De Bus, Koen De Bosschere, and Bart Preneel. Program obfuscation: A
quantitative approach. In Proceedings of the 3rd Workshop on Quality of
Protection, pages 15–20. ACM Press, 2007.

[Anderson 96] Ross Anderson and Markus Kuhn. Tamper Resistance - a Cau-
tionary Note. In Proceedings of the 2nd Usenix Workshop on Electronic
Commerce, pages 1–11, 1996.

[Anderson 98] Ross Anderson and Fabien Petitcolas. On the limits of
steganography. IEEE Journal of Selected Areas in Communications,
16(4):474–481, 1998.

[Badger 01] Lee Badger, Larry D’Anna, Doug Kilpatrick, Brian Matt, An-
drew Reisse, and Tom Van Vleck. Self-protecting mobile agents obfusca-
tion evaluation report, 2001.

[Barak 01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. In Proceedings of the 21st IACR Crypto Con-
ference, volume 2139 of Lecture Notes in Computer Science, pages 1–18,
2001.

[Barrantes 05] Elena Gabriela Barrantes, David Ackley, Stephanie Forrest,
and Darko Stefanovi. Randomized instruction set emulation. ACM Trans-
actions on Information and System Security, 8(1):3–40, 2005.

[Bhansali 06] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Ed-
wards, Ron Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. Frame-
work for instruction-level tracing and analysis of program executions. In
Proceedings of the 2nd International Conference on Virtual Execution En-
vironments, pages 154–163. ACM Press, 2006.

[BSA 05] BSA (Business Software Alliance) and IDC (International Data
Corporation). Second Annual BSA and IDC Global Software Piracy Study,
2005.

[Chang 02] Hoi Chang and Mikhail Atallah. Protecting software code by
guards. In Proceedings of the 1st ACM Workshop on Digital Rights Man-
agement, volume 2320 of Lecture Notes in Computer Science, pages 160–
175. Springer-Verlag, 2002.

BIBLIOGRAPHY 149

[Chen 02] Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruom-
ing Pang, Saurabh Sinha, and Mariusz Jakubowski. Oblivious hashing: a
stealthy software integrity verification primitive. In Proceedings of the 5th
Information Hiding Conference, volume 2578 of Lecture Notes in Computer
Science, pages 400–414. Springer-Verlag, 2002.

[Chow 01] Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir Zakharov.
An approach to the obfuscation of control-flow of sequential computer pro-
grams. In Proceedings of the 4th Information Security Conference, volume
2200 of Lecture Notes in Computer Science, pages 144– 155. Springer-
Verlag, 2001.

[Chow 03] Stanley Chow, Philip Eisen, Harold Johnson, and Paul Van
Oorschot. White-box cryptography and an AES implementation. In Pro-
ceedings of the 9th Workshop on Selected Areas in Cryptography, volume
2595 of Lecture Notes in Computer Science, pages 250–270. Springer-
Verlag, 2003.

[Cifuentes 95] Cristina Cifuentes and John Gough. Decompilation of binary
programs. Software - Practice & Experience, 25(7):811–829, 1995.

[Cohen 93] Frederick Cohen. Operating system evolution through program
evolution. Computers and Security, 12(6):565–584, 1993.

[Collberg 98a] Christian Collberg, Clark Thomborson, and Douglas Low.
Breaking abstractions and unstructuring data structures. In Proceedings
of the 6th International Conference on Computer Languages, pages 28–38.
IEEE Computer Society Press, 1998.

[Collberg 98b] Christian Collberg, Clark Thomborson, and Douglas Low.
Manufacturing cheap, resilient, and stealthy opaque constructs. In Pro-
ceedings of the 25th Conference on Principles of Programming Languages,
pages 184–196. ACM Press, 1998.

[Collberg 99] Christian Collberg and Clark Thomborson. Software water-
marking: Models and dynamic embeddings. In Proceedings of the 26th
Conference on Principles of Programming Languages, pages 311–324.
ACM Press, 1999.

[Collberg 03] Christian Collberg, Ginger Myles, and Andrew Huntwork.
Sandmark - a tool for software protection research. IEEE Security and Pri-
vacy, 1(4):40–49, 2003.

[Conner 91] Kathleen Conner and Richard Rumelt. Software piracy: an anal-
ysis of protection strategies. Management Science, 37(2):125–139, 1991.

150 Bibliography

[Cousot 03] Patrick Cousot and Radhia Cousot. An abstract interpretation-
based framework for software watermarking. In Proceedings of the 30th
Conference on Principles of Programming Languages, pages 311–324.
ACM Press, 2003.

[DiMarzio 07] Jerome DiMarzio. The Debugger’s Handbook. Auerbach Pub-
lications, 2007.

[Dullien 05] Thomas Dullien and Rolf Rolles. Graph-based comparison of
executable objects. In Symposium sur la Sécurité des Technologies de
l’Information et des Communications, page count 13, 2005.

[Dux 05] Bradley Dux, Anand Iyer, Saumya Debray, David Forrester, and
Stephen Kobourov. Visualizing the behavior of dynamically modifiable
code. In Proceedings of the 13th International Workshop on Program Com-
prehension, pages 337–340. IEEE Computer Society Press, 2005.

[El-Khalil 04] Rakan El-Khalil and Angelos Keromytis. Hydan: Information
hiding in program binaries. In Proceedings of the 6th International Confer-
ence on Informaton and Communications Security, volume 3269 of Lecture
Notes in Computer Sciece, pages 187–199. Springer-Verlag, 2004.

[Ernst 03] Michael Ernst. Static and dynamic analysis: synergy and duality. In
Proceedings of the 1st ICSE Workshop on Dynamic Analysis, pages 25–28,
2003.

[Felten 03] Edward Felten. Understanding trusted computing: will its benefits
outweigh its drawbacks. IEEE Security and Privacy, 1(03):60–62, 2003.

[Geer 03] Daniel Geer, R. Bace, Peter Gutmann, Perry Metzger, Charles
Pfleeger, John Quarterman, and Bruce Schneier. Cyber insecurity: The
cost of monopoly. Technical report, Computer & Communications Industry
Association, 2003.

[Goldreich 96] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious RAMs. Journal of the ACM, 43(3):431–473,
1996.

[Graham 82] Susan Graham, Peter Kessler, and Marshall Mckusick. Gprof:
A call graph execution profiler. In Proceedings of the 2nd SIGPLAN Sym-
posium on Compiler Construction, pages 120–126. ACM Press, 1982.

[Heffner 04] Kelly Heffner and Christian Collberg. The obfuscation execu-
tive. In Proceedings of the 7th Information Security Conference, volume
3225 of Lecture Notes in Computer Science, pages 428–440. Springer-
Verlag, 2004.

BIBLIOGRAPHY 151

[Horne 02] Bill Horne, Lesley Matheson, Casey Sheehan, and Robert Tarjan.
Dynamic self-checking techniques for improved tamper resistance. In Pro-
ceedings of the 1st ACM Workshop on Digital Rights Management, vol-
ume 2320 of Lecture Notes in Computer Science, pages 141–159. Springer-
Verlag, 2002.

[IPR 03] IPR (International Planning and Research Corporation). Software
Management Guide, 2003.

[Jakobsson 02] Markus Jakobsson and Michael Reiter. Discouraging software
piracy using software aging. In Proceedings of the 1st ACM Workshop on
Digital Rights Management, volume 2320 of Lecture Notes in Computer
Science, pages 1–12. Springer-Verlag, 2002.

[Katzenbeisser 00] Stefan Katzenbeisser and Fabien Petitcolas. Information
hiding techniques for steganography and digital watermarking. Artech
House, 2000.

[Kent 81] Stephen Kent. Protecting Externally Supplied Software in Small
Computers. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1981.

[Kerkhoffs 83] Auguste Kerkhoffs. La cryptographie militaire. Journal de
Sciences Militaires, 9:5–38, 1883.

[Kruegel 04] Christopher Kruegel, William Robertson, Fredrik Valeur, and
Giovanni Vigna. Static disassembly of obfuscated binaries. In Proceed-
ings of 13th USENIX Security Symposium, pages 255–270, 2004.

[Leprosy 90] Leprosy. The Leprosy-B virus, 1990.
http://familycode.atspace.com/lep.txt.

[Linn 03] Cullen Linn and Saumya Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, pages 290–299.
ACM Press, 2003.

[Madou 05a] Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya
Debray, Bjorn De Sutter, and Koen De Bosschere. Software protection
through dynamic code mutation. In Proceedings of the 6th International
Workshop on Information Security Applications, volume 3786 of Lecture
Notes in Computer Science, pages 194–206. Springer-Verlag, 2005.

[Madou 05b] Matias Madou, Bertrand Anckaert, Bjorn De Sutter, and
Koen De Bosschere. Hybrid static-dynamic attacks against software pro-
tection mechanisms. In Proceedings of the 5th ACM workshop on Digital
Rights Management, pages 75–82. ACM Press, 2005.

152 Bibliography

[Maebe 02] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. DIOTA:
Dynamic Instrumentation, Optimization and Transformation of Applica-
tions. In Compendium of Workshops and Tutorials in Conjunction with the
11th International Conference on Parallel Architectures and Compilation
Techniques, page count 11, 2002.

[Massalin 87] Henry Massalin. Superoptimizer: a look at the smallest pro-
gram. In Proceedings of the 2nd International Conference on Architectual
Support for Programming Languages and Operating Systems, pages 122–
126. IEEE Computer Society Press, 1987.

[Mic 02] Microsoft. Microsoft Knowledge Base Article - 326904, 2002.
http://support.microsoft.com/kb/326904.

[Miller 85] Webb Miller and Eugene Myers. A file comparison program. Soft-
ware - Practice & Experience, 15(11):1025–1040, 1985.

[Muchnick 97] Steven Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[Nagarajan 07] Vijayanand Nagarajan, Xiangyu Zhang, Rajiv Gupta, Matias
Madou, Bjorn De Sutter, and Koen De Bosschere. Matching control flow
of program versions. In Proceedings of the 23rd IEEE International Con-
ference on Software Maintenance, pages 83–94. IEEE Computer Society
Press, 2007.

[O’Donnell 04] Adam O’Donnell and Harish Sethu. On achieving software
diversity for improved network security using distributed coloring algo-
rithms. In Proceedings of the 11th ACM conference on Computer and Com-
munications Security, pages 121–131. ACM Press, 2004.

[Park 04] Yong-Joon Park and Gyungho Lee. Repairing return address stack
for buffer overflow protection. In Proceedings of the 1st ACM International
Conference on Computing Frontiers, pages 335–342. ACM Press, 2004.

[Patterson 90] David Patterson and John Hennessy. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1990.

[Pettis 90] Karl Pettis and Robert Hansen. Profile guided code positioning. In
Proceedings of the 8th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 16–27. ACM Press, 1990.

[Proebsting 95] Todd Proebsting. Optimizing an ANSI C interpreter with su-
peroperators. In Proceedings of the 22nd Conference on Principles of Pro-
gramming Languages, pages 322–332. ACM Press, 1995.

BIBLIOGRAPHY 153

[Ronsse 99] Michiel Ronsse and Koen De Bosschere. Recplay: a fully inte-
grated practical record/replay system. ACM Transactions Computer Sys-
tems, 17(2):133–152, 1999.

[Sabin 04] Todd Sabin. Comparing binaries with graph isomorphisms. Tech-
nical report, BindView RAZOR Team, 2004.

[Shacham 04] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Na-
gendra Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Conference on Computer
and Communications Security, pages 298–307. ACM Press, 2004.

[SII 00] SIIA (Software and Information Industry Association). Report on
global software piracy, 2000. http://www.siaa.net/.

[Simmons 84] Gustavus Simmons. The prisoners’ problem and the subliminal
channel. In Advances in Cryptology, Proceedings of CRYPTO ’83, pages
51–67. Plenum Press, 1984.

[Sleator 85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting
binary search trees. Journal of the ACM, 32(3):652–686, 1985.

[Sovarel 05] Ana Sovarel, David Evans, and Nathanael Paul. Where is the
FEEB? The effectiveness of instruction set randomization. In Proceedings
of the 14th USENIX Security Symposium, pages 145–160, 2005.

[van Oorschot 03] Paul van Oorschot. Revisiting software protection. In Pro-
ceedings of the 6th Conference on Information Security, volume 2851 of
Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, 2003.

[Varadarajan 06] Avinash Varadarajan and Ramarathnam Venkatesan. Lim-
ited obliviousness for data structures and efficient execution of programs.
Technical report, Microsoft Research, 2006.

[Venkatesan 01] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh
Sinha. A graph theoretic approach to software watermarking. In Proceed-
ings of the 4th Information Hiding Conference, volume 2137 of Lecture
Notes in Computer Science, pages 157–168. Springer-Verlag, 2001.

[Wagner 74] Robert Wagner and Michael Fischer. The string-to-string correc-
tion problem. Journal of the ACM, 21(1):168–173, 1974.

[Wang 00] Zheng Wang, Ken Pierce, and Scott McFarling. Bmat – a binary
matching tools for stale profile propagation. The Journal of Instruction-
Level Parallelism, 2:1–20, 2000.

154 Bibliography

[Wang 01] Chenxi Wang, Jack Davidson, Jonathan Hill, and John Knight.
Protection of software-based survivability mechanisms. In Proceedings of
the 2nd International Conference of Dependable Systems and Networks,
pages 193–202. IEEE Computer Society Press, 2001.

[Zeller 05] Andreas Zeller. Why Programs Fail: A Guide to Systematic De-
bugging. Morgan Kaufmann, 2005.

[Zhang 05] Xiangyu Zhang and Rajiv Gupta. Whole execution traces and their
applications. ACM Transactions on Architecture and Code Optimization,
2(3):301–334, 2005.

[Zhou 06] Yongxin Zhou and Alec Main. Diversity via code transformations:
A solution for NGNA renewable security. In NCTA - The National Show,
2006.

	Title

	Preface
	Abstract in Dutch
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Prologue
	Introduction
	Diversity to Minimize the Impact of an Attack
	Incentives for Tampering
	Related Software Protection Techniques
	Break Once Break Every Time Resistance
	Break Once Run Every Time Resistance

	Diversity to Encode Messages
	Steganography
	Fingerprinting

	Diversity to Hide the Difference between Versions
	Hiding Version-specific Information
	Patches

	A Metric for Diversity
	Related Work
	The Matching System

	Generating Different Tamper-resistant Versions
	Basic Transformations
	Self-modifying Code
	Virtualization

	Contributions
	Publications
	Outline

	Minimizing the Impact of an Attack
	Break Once Break Every Time Resistance
	The Software Distribution Scheme
	Impact on the User Base
	Practical Considerations
	Case Study: Software Piracy

	Break Once Run Every Time Resistance
	Low-level Debugging versus Tampering
	Slowing Down the Locate-Alter-Test Cycle
	Tools of the Trade

	Matching System -- Menelaus
	Quality of a Matching System
	False Negatives
	False Positives

	Fuzzy Classifiers
	Experimental Setup
	Classifiers Based on Local Information
	Instruction Syntax
	Data
	Execution Count
	System Calls
	First Execution Time

	Proximity-based Classifiers
	First Order Control Flow
	First Order Data Flow

	Building a Matching System from Fuzzy Classifiers
	Combining Fuzzy Classifiers
	Limiting the Number of Matches
	Iterating Fuzzy Classifiers

	Related Work
	Text-based Matching Approaches
	Graph-based Matching Approaches
	Trace-based Matching Approaches
	Matching Tools

	Diversity System -- Proteus
	Combining Diversifying Transformations
	Determining the Reference Mapping
	Syntactically Different Versions
	Diversity Systems in Practice
	Experimental Setup
	Diversifying and Anti-tampering Transformations
	Folding
	Unfolding
	Control Flow Obfuscation
	Code Generation

	Evaluation
	Representativeness of the Seeds
	Combining Transformations
	Receiver Operating Characteristic Curves
	Representativeness of the Benchmark
	Steganography -- Histiæus

	Advanced Transformations
	Self-modifying Code
	The State-Enhanced Control Flow Graph
	Construction and Linearization
	Analyses and Transformations
	Folding through Self-modifying Code
	Evaluation

	Virtualization
	ISA Design Principles
	Available Choices
	Evaluation

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

