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GENERAL INTRODUCTION 

 

1. The genus Salmonella 

 

Salmonella Choleraesuis was the first Salmonella serotype to be isolated from pigs (Salmon 

and Smith, 1886), only 2 years after the first isolation ever of Salmonella, performed by Gaffky in 

1884 (Le Minor, 1994). In the course of time, more than 2400 different serotypes were isolated 

from different animal species, including pigs. These serotypes are designated based on their 

variation in somatic (O) and 2 phases of flagellar (H1 and H2) antigens. Based on the variations in 

these antigens, Kauffmann (1941) and White (1926) started the first taxonomical efforts, resulting 

in the classification scheme named after them. This classification formed the basis for the 

nomenclature proposed by Le Minor and Popoff (1987), which was adjusted by Reeves et al. 

(1989) to the classification generally accepted nowadays.  

Until recently, the bacterial genus Salmonella contained 2 species: enterica and bongori. Even 

though Salmonella choleraesuis originally was the official type species, Salmonella enterica has 

always been widely accepted and has recently been designated the type species (Judicial 

Commission, 2005). In 2004, a new species was discovered: Salmonella subterranea (Shelobolina 

et al. 2004). Salmonella enterica is divided in 6 subspecies: enterica (I), salamae (II), arizonae 

(III), diarizonae (IV), houtenae (V) and indica (VI). Recently the Salmonella nomenclature has 

been reviewed (Heyndrickx et al., 2005; Tindall et al., 2005). The biochemical properties of some 

pig-associated Salmonella serotypes are summarized in Table 1.  

On the basis of host specificity and pathogenesis, Salmonella serotypes can be classified in 

three distinct types of infection (Wallis and Barrow, EcoSal website). A small number of 

serotypes are capable of producing severe systemic disease in healthy adult individuals of a 

narrow range of animal species (host restricted serotypes). In general, bacterial multiplication is 

considered to take place primarily in the macrophages and monocytes. The alimentary tract 

becomes involved pathologically only in the later stages of the disease, and thus, in the absence of 

disease little intestinal colonization takes place. Examples of these serotypes are Salmonella Typhi 

and Paratyphi A, which produce typhoid in humans, and Salmonella Gallinarum causing systemic 

infections in poultry. A second group of host adapted serotypes is primarily associated with one or 

two closely related host species, but may also infrequently cause disease in other hosts. For 

example, Salmonella Dublin and Salmonella Choleraesuis are generally  
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Table 1: Biochemical properties of pig-associated serotypes. + = positive; (+) = most strains positive; v = variable 

reactions; - = negative 

associated with severe systemic disease in ruminants and pigs, respectively, but may also cause 

disease in humans or other animal species. The vast majority of the remaining serotypes 

(containing for example Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Derby,…) 

seldom produce systemic infections in healthy adult animals. They are, however, able to colonize 

the alimentary tract of a broad range of animals and may cause acute enteritis or subclinical 

infections, also in pigs (Loynachan et al., 2004). As a consequence of intestinal colonization and 

high levels of fecal shedding, particularly in food producing animals, these serotypes can enter the 

human food chain and cause human salmonellosis. 

In the next few chapters and where possible, Salmonella Typhimurium will be discussed as the 

serotype of interest and the pig as host of interest. The importance, epidemiology and control of 

Salmonella infections in pigs, both at the level of the primary production and the slaughterhouse 

has been described extensively (Schwartz, 1999). In addition, some interesting PhD theses 

handling these topics, have been produced at the UGent the last few years (i.e. Nathalie Nollet, 

2005; Nadine Botteldoorn, 2006). In order to avoid repetition, these matters will not be handled 

in this introduction. Instead, special emphasis has been put on the pathogenesis of Salmonella 

infections in pigs and associated Salmonella virulence factors.  

 

 
Salmonella Typhisuis Salmonella Choleraesuis 

Salmonella Choleraesuis 

var Kunzendorf 

most serotypes of Salmonella 

(Salmonella Typhimurium,…) 

Gram staining Gram negative rod Gram negative rod Gram negative rod Gram negative rod 

Motility at 37°C + + + + 

Indol production - - - - 

Glucose fermentation + + + + 

Lactose fermentation - - - - 

Lysine decorboxylase - + + + 

Urease - - - - 

Hydrogen sulphide v - + + 

Citrate fermentation - + + + 

Mannitol fermentation - + + + 

Inositol fermentation + - - v 

Sorbitol fermentation - (+) (+) + 

Trehalose fermentation - - - + 

Maltose fermentation - + + + 
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2. The pathogenesis of Salmonella Typhimurium infections in pigs  

 

2.1. Intestinal phase of infection 

 

Transmission of Salmonella between pigs is thought to occur mainly via the faecal-oral route. 

Oral experimental infection of pigs with Salmonella Typhimurium can result in clinical signs and 

excretion of high numbers of bacteria (Wood and Rose, 1992; Loynachan et al., 2005). Some 

studies showed that the upper respiratory tract and lungs may be an important portal of entry as 

well (Fedorka-Cray et al., 1995; Proux et al., 2001). Indeed, in a recent report, Oliveira and 

coworkers (2006) found that airborne Salmonella transmission in weaned pigs over short 

distances is possible. However, the pathogenesis of Salmonella-infections caused by infection of 

the respiratory tract has not been studied in detail. For the remaining of the text, the pathogenesis 

of Salmonella infections will be discussed using the oral route of infection. 

During ingestion, Salmonella enters the tonsils in the soft palate and persists in the tonsillar 

crypts (Wilcock and Olander, 1978; Wood et al., 1989; Gray et al., 1995; Horter et al., 2003). 

Until now, no detailed information has been gathered on how Salmonella interacts with and 

persists in the porcine tonsillar tissue, although some observations mention persistence of 

Salmonella on the superficial epithelium of the tonsillar crypts (Fedorka-Cray et al., 1995; Horter 

et al., 2003). 

Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial 

concentrations and may contribute to the antimicrobial barrier properties of the dorsal tongue and 

oral epithelium (Shi et al., 1999). After ingestion, the bacteria encounter a second antimicrobial 

barrier: the stomach. Although it has been shown that salmonellae can survive acidic 

environments by producing acid shock proteins (Smith, 2003), the stomach can function as a 

barrier against Salmonella, especially when the pigs are fed a coarsely ground meal (Mikkelsen et 

al., 2004). Bearson and coworkers (2006) determined that the lethal effects of the porcine stomach 

contents are pH-dependent but that low pH is not the sole killing mechanism and identified 

Salmonella genes important in survival of the gastric environment. Bacteria that have survived the 

stomach travel to the small intestines. Even though Salmonella Typhimurium can be highly 

resistant against bile salts (van Velkinburgh and Gunn, 1999), these salts can still repress the 

invasion of Salmonella in epithelial cells, possibly by decreasing virulence gene expression 

(Prouty and Gunn, 2000). In the gut, adhesion to the intestinal mucosa is generally accepted as the 

first step in the pathogenesis of Salmonella infections in pigs. Although multiple putative 

adhesines have been described in Salmonella Typhimurium, the type 1 fimbriae are the only ones 

which have been shown to contribute to the attachment to porcine enterocytes and the 

colonization of swine (Isaacson and Kinsel, 1992; Althouse et al., 2003). 
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Following adhesion, Salmonella invades the intestinal epithelium. It has been shown that 

Salmonella can invade porcine absorptive enterocytes, M-cells and even goblet cells (Pospischil et 

al., 1990; Schauser et al., 2004). Also Meyerholz et al. (2002) suggested that early cellular 

invasion by Salmonella Typhimurium is nonspecific and rapid in swine. Furthermore, they 

suggest that Salmonella Typhimurium may use sites of cell exfoliation as an additional 

mechanism for early invasion. 

 

After invasion, Salmonella Typhimurium and Salmonella Choleraesuis are found within the 

porcine enterocytes (Reed et al., 1986). Both serotypes penetrate the intestinal mucosa and can be 

isolated from mesenteric lymph nodes at 2 hours after inoculation. Intracellular bacteria are 

morphologically intact, free in the cytoplasm or membrane bound, and cause no detectable 

cytotoxic effect to the cell. Schauser and coworkers (2005), however, observed increased cell loss 

during Salmonella infection, as a result of caspase 3 dependent and independent apoptosis of 

epithelial cells in the proximal region of the jejunum. 

As a result of epithelial invasion, the porcine gut will react with the production of several 

cytokines, of which IL-8 is the most studied one and for Salmonella pathogenesis probably the 

most important one (Trebichavsky et al., 1997; Grondahl et al., 1998; Splichal et al., 2002; Cho 

and Chae, 2003; Trebichavsky et al., 2003; Cho and Chae, 2004; Hyland et al., 2006a; Hyland et 

al., 2006b). 

Infection of polarized porcine intestinal epithelial cells with Salmonella Typhimurium or 

Salmonella Choleraesuis increases polarized IL-8 secretion in vitro, but also in vivo at least 24 

hours after inoculation of weaned piglets (Skjolaas et al., 2006). The secretion of IL-8 results in 

the attraction of neutrophils to the lamina propria and eventually the lumen of the gut. These cells 

are the first line of defense against a Salmonella infection. Inefficient uptake of Salmonella by 

PMN may provide an opportunity for the pathogen to colonize and/or replicate to levels that 

facilitate establishment of a carrier state or clinical infection in swine (Stabel et al., 2002). The 

presence of large amounts of neutrophils in the porcine gut is able to prevent successful 

salmonellosis (Foster et al., 2003). The damage induced by these activated neutrophils, however, 

is considered the most important cause of the gut pathology distinctive for Salmonella infections. 

Nevertheless, Foster and coworkers (2005) demonstrated that PMN influx in the gut in itself is not 

necessarily associated with clinical symptoms and/or intestinal pathology.  

Luminal Salmonella endotoxin affects epithelial and mast cell function in the proximal colon 

of pigs (Aschenbach et al., 2003). In addition, gilts at 30 days of gestation that were 

experimentally injected with LPS of Salmonella Typhimurium showed increased PGF2 alpha 

metabolite concentrations accompanied by abortion (Cort and Kindahl, 1990). Although not very 
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likely, it is not known yet if resorption of LPS may be a common phenomenon in pigs naturally 

(subclinically) infected with Salmonella Typhimurium. 

 

At least two types of defensins are described in the porcine small intestine. They are 

differentially expressed along the gut, and expression of both defensins is not altered by 

Salmonella Typhimurium infection (Veldhuizen et al., 2007). 

 

2.2. Systemic phase of infection 

 

The systemic part of a Salmonella infection in pigs is not well documented. Although not yet 

investigated in pigs, it is generally accepted that Salmonella can spread throughout an animal 

using the blood stream or the lymphatic fluids and infect internal organs. By hiding inside 

macrophages or other cells, the bacterium is able to conceal itself from the hostile extracellular 

environment. Being a facultative intracellular organism, Salmonella is able to survive and even 

replicate inside professional phagocytic cells. Most of the research concerning this stage of 

infection was done in vitro using isolated primary cell suspensions.  

Porcine monocytes and polymorphonuclear cells (PMN; neutrophils) respond in vitro to 

Salmonella Typhimurium with phagocytosis, oxidative burst and to some extent intracellular 

killing (Riber and Lind, 1999; Donné et al., 2005). Monocytes obtained from different pigs 

differed markedly in their reactive oxygen species (ROS) production and in their ability to kill the 

bacteria. Interestingly, high ROS production did not coincide with increased intracellular killing. 

No reactive nitrogen intermediates (RNI) production was detected by porcine PBM after 

stimulation with Salmonella Typhimurium or LPS (Donné et al., 2005). This is in agreement with 

other studies (Pampusch et al., 1998; Akunda et al., 2001) that suggested that NO synthase (iNOS) 

is not inducible in porcine immune cells with little or no upregulation following stimulation. 

Therefore, RNI production by iNOS does not appear to be an important component of the innate 

immune response to control intracellular Salmonella populations in pigs. However, a significant 

increase of nitrite and/or nitrate plasma levels, 3-nitro-tyrosine expression and pathological 

changes in mesenteric lymph nodes have been observed in gnotobiotic piglets orally infected for 1 

day with a virulent strain of Salmonella Typhimurium (Trebichavsky et al., 2001). The 

colonization of the mesenteric lymph nodes, spleen and liver can result in prominent systemic and 

local immune responses (Dlabac et al., 1997).  
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2.3. Interactions between Salmonella and other microbial agents 

 

Secondary immunodeficiency is a well known consequence of some bacterial (Mycoplasma 

hyopneumoniae, Actinobacillus pleuropneumoniae) and viral infections (hog cholera virus, 

porcine reproductive and respiratory syndrome (PRRSV), Aujeszky’s disease virus) in pigs. These 

infections are capable of suppressing immune function sufficiently to make the animal more 

susceptible to secondary infections. Furthermore, these and also other swine pathogens (porcine 

parvovirus, swine influenza virus, African swine fever virus) are able to replicate in a variety of 

immune system cells and impair their function (Segales et al., 2004). These infections may lead to 

easier colonization by Salmonella, increased shedding or even higher mortality rates. For 

example, in utero infection with PRRSV inhibits phagocytosis of Salmonella in blood monocytes 

as well as the oxidative burst capacity of alveolar macrophages (Riber et al., 2004) and both 

pathogens may work synergistically to produce disease or persistence (Wills et al., 2000).  

 

Exposure to rumen protozoa led to enhancement of pathogenicity of Salmonella in a bovine 

infection model (Rasmussen et al., 2005). There are no reports describing similar effects in a 

porcine infection model.  Interactions with intestinal nematodes may alter the excretion of 

Salmonella Typhimurium (Steenhard et al., 2002) or the development of enteritis symptoms 

(Arechavaleta et al., 1998). A dose dependency of the interaction was suggested. The relatively 

high number of parasites necessary to influence the Salmonella infection suggests that these 

common pig helminths generally do not influence the course of concurrent Salmonella 

Typhimurium infections under natural conditions (Steenhard et al., 2006). In contrast, the counts 

of Salmonella Typhimurium in the feces and in the cecal contents of piglets infected with both 

Salmonella Typhimurium and Isospora suis were significantly lower than in those infected with 

Salmonella Typhimurium alone (Baba and Gafaar, 1985). No mechanistic model was proposed by 

the authors to explain this phenomenon. 

 

2.4. Genetic resistance to Salmonella 

 

Although genetic-linked variance in immune responses is well known to occur in large 

domestic mammals such as pigs, specific resistance to Salmonella is less characterized (Wigley, 

2004). The influence of miniature swine major histocompatibility complex genes (SLA) upon 

phagocytic and bactericidal activities of peripheral blood monocytes against Salmonella 

Typhimurium was measured in vitro using cultured cells. Uptake and killing of Salmonella 

Typhimurium was highest in homozygous aa and cc haplotypes at 4 weeks and pigs with the c x d 
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recombinant haplotype had highest uptake and killing of Salmonella Typhimurium at 8 weeks 

(Lacey et al., 1989).  

The natural resistance-associated macrophage protein (SLC11a1; also called NRAMP1) has 

been identified and cloned in a number of domestic mammals including pigs (Sun et al., 1998; 

Zhang et al., 2000). In pigs NRAMP1 is strongly expressed on macrophages and neutrophils 

following stimulation with LPS, but any role in Salmonella infection is yet to be demonstrated 

(Zhang et al., 2000). A reference population of pigs bred to study resistance to Salmonella 

Choleraesuis infection indicated that a number of inherited immunological traits influence 

resistance to salmonellosis (Van Diemen et al., 2002). Neutrophils from the resistant animals 

showed increased phagocytic and antimicrobial activity and T-lymphocytes increased mitogen-

induced proliferation, though no genes associated with this resistance were described.  
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3. Virulence factors of Salmonella situated on Salmonella Pathogenicity Islands 

 

Pathogenicity Islands (PAI) are genetic elements on the chromosome of pathogenic bacteria 

encoding virulence factors (for an overview in different bacterial species see Schmidt and 

Hensel, 2004). These Islands are considered “quantum leaps” in bacterial evolution (Groisman 

and Ochman, 1996; Hensel, 2004) and were probably acquired by horizontal gene transfer. As a 

result, the GC content of PAI often differs from that of the core genome. Typically, PAI are 

present in the genome of pathogenic bacteria but absent in nonpathogenic strains of the same or 

related species. PAI are often inserted at specific sites of the genome, frequently tRNA or tRNA-

like genes. Mobility genes, such as integrases, are regularly located at the beginning of the 

island, close to the attachment site. PAI are also often interspersed with other mobility elements, 

such as insertion elements or remnants of insertion elements (Schmidt and Hensel, 2004; Figure 

1). 

 
Figure 1 

General structure of Pathogenicity Islands (PAI). (A) PAI are mostly inserted in the backbone genome of the host 

strain (dark grey bars) in specific sites that are frequently tRNA or tRNA-like genes (hached grey bar). Mobility 

genes, such as integrases (int), are frequently located at the beginning of the island, close to the tRNA locus or the 

respective attachment site. PAI harbor one or more genes that are linked to virulence (V1 to V4) and are frequently 

interspersed with other mobility elements, such as IS elements (Isc, complete insertion element) or remnants of IS 

elements (ISd, defective insertion element). The PAI boundaries are frequently determined by Direct Repeats 

(triangle), which are used for insertion and deletion processes. (B) A characteristic feature of PAI is a G+C content 

different from that of the core genome. This feature is often used to identify new PAI (Schmidt and Hensel, 2004). 
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Many of the virulence factors of Salmonella are encoded by genes situated on so-called 

Salmonella Pathogenicity Islands or “SPI”. To date, 17 different SPI have been described in 

Salmonella. These 17 SPI all comply with at least some of the above mentioned criteria, 

although not all SPI can yet be linked to virulence. The first SPI was discovered in 1995, but 

since then, several hundreds of scientific articles have been written addressing additional 

functions to “old” SPI and describing new SPI. The most important and best characterized 

SPI are SPI-1 and SPI-2. Although until recently the role of SPI-1 was considered limited to 

the intestinal phase of infection and SPI-2 to the systemical phase of infection, the last few 

years, more and more researchers are pointing to evidence suggesting that these 2 SPI may act 

in concert on different stages of the pathogenesis (Jiang et al., 2004; Coombs et al., 2005; 

Drektrah et al., 2005; Hapfelmeier et al., 2005; Mangan et al., 2006). Most of the SPI-related 

researches were conducted with Salmonella Typhimurium in BALB/c mice as the in vivo 

model of choice for the systemic phase of infection and the intestinal loop model in calves as 

the model of choice for the intestinal phase of infection.  

An overview of all known SPI and their virulence properties is given below; a summary is 

presented in Table 2. 

 

Table 2: The characteristics of all currently known Pathogenicity Islands in Salmonella. 

 
 

 

 

Designation 
(alternative) Distribution Stability Associated virulence treats 

SPI-1 Salmonella spp. Conserved T3SS, epithelial  invasion, diarrhoea and macrophage cytotoxicity 

SPI-2 Salmonella enterica  Conserved T3SS, intracellular survival and macrophage cytotoxicity 

SPI-3 Salmonella spp. Variable Mg2+ uptake, intestinal colonization factors 

SPI-4 Salmonella spp. Conserved T1SS, intestinal colonization factors 

SPI-5 Salmonella spp. Variable T3SS effectors for SPI-1 and SPI-2 

SPI-6 (SCI) Salmonella enterica  subsp. I, parts in IIIb, 
IV, VII ? Invasion in epithelial cells, fimbriae 

SPI-7 (MPI) Salmonella enterica  subsp. I Instable Capsular antigen, type IV pilus assembly, T3SS effector SPI-1 

SPI-8 Salmonella Typhi ? Unknown 

SPI-9 Salmonella enterica  subsp. I Conserved T1SS, Putative toxin 

SPI-10 Salmonella enterica  subsp. I ? Sef fimbriae 

SPI-11 Salmonella enterica  subsp. I Conserved Survival in macrophages 

SPI-12 Salmonella enterica  subsp. I Conserved Unknown 

SPI-13 Salmonella Pullorum biotype Gallinarum ? Virulence factors in chicken infection model 

SPI-14 Salmonella Pullorum biotype Gallinarum ? Virulence factors in chicken infection model 

SPI-15, 16, 17 Salmonella Typhi ? Unknown 

SGI-1 Salmonella enterica  subsp. I Variable Antibiotic resistance genes 

HPI Salmonella enterica  subsp. IIIa, IIIb, IV ? Iron uptake 
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3.1. Salmonella Pathogenicity Island 1 

 

SPI-1 was the first genomic region ever called a Salmonella pathogenicity island (Mills et al., 

1995). It forms a 40 kb insertion between 2 genes that are consecutive in Escherichia coli, a 

bacterium presumed to have an ancestor in common with Salmonella (Mills et al., 1995; 

Groisman and Ochman, 2000). SPI-1 encodes a type three secretion system (T3SS; reviewed 

by Galan, 2001). T3SS are complex assemblies that require the function of more than 20 

genes for their activity. Many of the subunits of T3SS involved in virulence show similarities 

to the flagellum assembly machinery system. Although termed "secretion systems," the main 

function of the T3SS is not the secretion of effector proteins into the medium but rather, the 

translocation across a third membrane: the membrane of a eukaryotic host cell (reviewed by 

Ehrbar et al., 2002; Schlumberger and Hardt, 2006). The T3SS consists of a hollow, needle-

like structure (Figure 2) and a pore-forming ring (also called translocon) through which the 

effectors are transported into the cytoplasm of the infected host cell. Surprisingly, a 

substantial number of the SPI-1 effectors are not encoded in SPI-1 itself. The effectors may be 

situated on other parts of the bacterial chromosome, in other SPI or even be associated with 

prophages (Figure 3). The association of SPI-1 virulence genes with bacteriophages can result 

in an extensive exchange of virulence factors between Salmonella serovars and strains and 

create a mosaic of strains with potential presence or absence of different effector genes 

(Mirold et al., 2001; Ehrbar and Hardt, 2005). Not only the presence/absence of virulence 

genes, but also the Salmonella-specific regulatory systems of the different SPI-1 effectors 

may result in strains of different behaviour (Streckel et al., 2004; Ben-Barak et al., 2006). 

Apart from their localization, the SPI-1 effectors can be subdivided in three major categories 

regarding their mode of action. They can modulate the host’s actin skeleton with invasion as a 

consequence, alter the host’s cellular responses with diarrhoea as a consequence and switch 

host cell death pathways on and off. Strikingly, a lot of the SPI-1 effectors have multiple 

tasks, either as a translocator and effector protein or as an effector protein exerting different 

functions. In Table 3, all known SPI-1 related effector genes and their respective functions are 

summarized.  

 



 20 

Table 3: The characteristics of all currently described SPI-1 related effector genes. 
 

Protein Localization Structural function  Function as effector protein References 

SspA/SipA SPI-1 None 

Binding and stabilization of actin and 

subsequently role in cell invasion  

Induction of PMN influx (PEEC) 

Higashide et al., 2002; 

Raffatellu et al., 2005 

Lee et al., 2000 

SspB/SipB SPI-1 Pore forming translocon Induction of macrophage cell death 
Hersch et al., 1999; Van der 

Velden et al., 2003 

SspC/SipC SPI-1 Pore forming translocon 
Nucleation and bundling of actin and 

subsequently role in cell invasion 

Hayward and Koronakis, 1999; 

Chang et al., 2005 

SspD/SipD SPI-1 Pore forming translocon May repress expression of sip genes Kaniga et al., 1995 

SptP SPI-1 None 
Reverses cellular changes stimulated by 

the other effectors 

Fu and Galan, 1998;  

Murli et al., 2001 

AvrA SPI-1 None 
Inhibits the pro-inflammatory and anti-

apoptotic NF-�B pathway 

Hardt and Galan, 1997; Collier-

Hyams et al., 2002 

SopA Chromosome None 

Targets to mitochondria 

Role in epithelial cell invasion Induction 

of enteritis  

Layton et al., 2005 

Raffatellu et al., 2005 

Zhang et al., 2002 

SigD/SopB SPI-5 None 

Modulates actin organization and 

subsequently cell invasion 

Enhances intestinal chloride secretion 

and induces diarrhoea 

Modulates lysosome/vesicular traficking 

Prevents apoptosis in epithelial cells 

Induces NO production  

Zhou et al., 2001; Raffatellu et 

al., 2005 

Zhang et al., 2002; Bertelsen et 

al., 2004 

Hernandez et al., 2004; Dukes 

et al., 2006 

Knodler et al., 2005 

Drecktrah et al., 2005 

SopD chromosome None 

Role in epithelial cell invasion 

Induction of enteritis  

Role in systemic mouse virulence 

Raffatellu et al., 2005 

Zhang et al., 2002 

Jiang et al., 2004 

SopE prophage None 

Modulates actin organization and 

subsequently cell invasion 

Enhances intestinal chloride secretion 

and induces diarrhoea 

Hardt et al., 1998; 

Friebel et al., 2001 

Zhou et al., 2001 

 

SopE2 Chromosome None 

Modulates actin organization and 

subsequently cell invasion 

Induction of enteritis 

Stender et al., 2000; Raffatellu 

et al., 2005 

Zhang et al., 2002 

SlrP Chromosome None Role in mouse virulence Tsolis et al., 1999 

SspH1 Chromosome None Inhibits pro-inflammatory pathways Haraga and Miller, 2003 

SteA Chromosome None Colonization of mouse spleens Geddes et al., 2005 

SteB Chromosome None Putative dipicolinate reductase Geddes et al., 2005 
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Salmonella invasion: modulation of the host cell’s actin cytoskeleton 

Invasion of Salmonella in non-phagocytic cells is considered a crucial step in its pathogenesis 

and was already observed almost 40 years ago (Takeuchi, 1967). Nowadays, the invasion of 

Salmonella in both phagocytic and non-phagocytic cells is considered completely SPI-1 

dependent. Through modulation of the host cell’s actin cytoskeleton, the bacterium forces the 

cell to engulf the attached Salmonella (reviewed by Guiney and Lesnick, 2005). The finger-

like changes in the actin cytoskeleton and the plasma membrane are called ruffles and are 

accompanied by macropinocytosis (Garcia-del Portillo and Finlay, 1994). These changes are 

the result of 3 coordinated steps: stimulation of host signalling pathways to promote indirect 

actin cytoskeleton rearrangements, direct modulation of actin dynamics and a subsequent 

inversion of the cytoskeletal changes. As a result, the Salmonella bacterium has invaded the 

host cell, which has become normal again after invasion. The bacteria reside in the 

Salmonella containing vacuole (SCV; in epithelial cells) or spacious phagosome (SP; in 

phagocytic cells). 

 
Figure 2: Electron microscopic picture and schematic representation of the SPI-1 related type 3 secretion system 

of Salmonella (Galan, 2001; Ehrbar and Hardt, 2005). 

 

The Rho-family of small GTPases Rho, Cdc42 and Rac1, has a central role in the actin 

cytoskeleton rearrangements (Hall, 1998). The injection of SPI-1 effectors SopB, SopE and 

SopE2 results in the recruitment and activation of Rac1 and/or Cdc42 to the apical cell 

membrane, but have no known effect on RhoA. SopB is an inositol phosphatase that increases 

cellular levels of (1,4,5,6)P4, leading to Cdc42 activation (Norris et al., 1998; Zhou et al., 

2001) and decreases the levels of (4,5)P2 leading to the rapid fission of the invaginating 
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membranes (Terebiznik et al., 2002). SopE and SopE2 are guanine nucleotide exchange 

factors for the GTPases (Hardt et al., 1998; Stender et al, 2000; reviewed in Schlumberger and 

Hardt, 2005). SopE can activate both Cdc42 and Rac1 and SopE2 was efficiently activating 

Cdc42, but not Rac1 (Friebel et al., 2001). SopE2 is commonly present in all Salmonella 

enterica strains, including in Salmonella Typhimurium. SopE, however, is encoded by a 

bacteriophage and is found predominantly in a small group of epidemic Salmonella 

Typhimurium strains (Mirold et al., 1999). Although SopE also has been implicated in the 

mechanism of increasing cellular levels of (1,4,5,6)P4 (Zhou et al., 2001),  it was recently 

shown that the SopE-dependent remodelling of the actin cytoskeleton occurs independently 

from the changes in the inositol phosphate turnover (Deleu et al., 2006).  

The presence of multiple, partially redundant effectors may provide an efficient mechanism 

for fine-tuning the interaction of Salmonella with different cell types or host species. 

In concert with the indirect effect on actin rearrangement, Salmonella Typhimurium also 

directly influences actin changes through translocation of two actin binding proteins, SipA 

and SipC. SipA binds actin subunits on opposite strands of polymers, acting as a molecular 

staple to stabilize the actin filaments (Lilic et al., 2003). SipC is a membrane bound protein 

and has separate actin bundling and actin nucleating domains. In this way it is presumed to 

target the actin filament formation to the site adjacent to the attached bacterium (Hayward and 

Koronakis, 1999). SipA and SipC are thought to cooperate in their actions and potentiate each 

others actitivities (McGhie et al., 2001). The exact role of SipC in invasion has not been 

established yet, since sipC mutants are defective for the transport of all SPI1 T3SS effectors, 

being also a translocator protein. 

 
 

Figure 3: The location of important SPI-1 related effector genes in the Salmonella Typhimurium chromosome 

(Ehrbar et al., 2002). 

Salmonella 
Typhimurium 
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After the invasion has occurred, Salmonella actively reverses the changes it has induced, 

returning the cytoskeleton to its original state (reviewed in Schlumberger and Hardt, 2005). 

To accomplish this, Salmonella injects another effector protein, SptP, into the cytosol of the 

infected cell. SptP has a GTPase activating domain in the N-terminal region and a tyrosine 

phosphatase activity in its C-terminal region (Fu and Galan, 1999; Murli et al., 2001). In order 

to be able to exert its functions after the phase of invasion, the SptP protein degradation by the 

proteasome pathway is delayed, compared to the degradation of the other SPI-1 effector 

proteins (Kubori and Galan, 2003). 

Finally, the function of SopA and SopD is not fully understood, but both effectors also 

contribute to invasion (Raffatellu et al., 2005). 

 

Salmonella induced diarrhoea: taking over the host cell responses 

A characteristic feature of the Salmonella-associated pathology is the induction of an 

inflammatory response in the gut and the subsequent influx of neutrophils (reviewed by Tükel 

et al., 2006). SPI-1 plays a central role in both the stimulation and inhibition of the pro-

inflammatory cytokine production. Like every other bacterium, Salmonella can activate the 

pro-inflammatory pathways of the innate immunity system by stimulation of Toll-like 

receptors. These receptors recognize so-called “Pathogen Associated Molecular Patterns” 

(PAMPs), conservated antigenic structures like LPS, flagella, etc. However, since the 

majority of the Toll-like receptors are situated at the basolateral side of the polarized intestinal 

epithelial cells, they can only be reached when the epithelial monolayer was disrupted before 

infection or after disruption, for example through the action of cytotoxins (Hershberg et al., 

2002; Rhee et al., 2005). The SPI-1 dependent induction of an inflammatory response, 

however, possesses the power to initiate an inflammatory response, even when the intestinal 

epithelium is intact. After the integrity of the tight junctions is compromised through the 

Salmonella induced changes of the actin skeleton, the PAMPs and predominantly Toll-like 

receptor 5 are likely to contribute to the intensification of the host response (Jepson et al., 

2000; Huang et al., 2004). 

The activation of the Rho GTPases by SopB, SopE and SopE2, as discussed in the mechanism 

of invasion, also stimulates the Mitogen Activated Protein kinase (MAP kinase) pathways. 

The unity in the mechanisms of stimulation, however, may lead to the incorrect conclusion 

that bacterial invasion per se stimulates the pro-inflammatory cytokine production (Gewirtz et 

al., 1999). The activation of the MAP kinase pathways result in their turn, via activation of the 
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transcription factor NF-�B, in the secretion of pro-inflammatory cytokines, for example IL-8 

(Hobbie et al., 1997; Murli et al., 2001). IL-8, released from the basolateral side of infected 

epithelial cells, plays an important role in the initial movement of neutrophils from the 

circulation into the subepithelial region (McCormick et al., 1995).  

The actual transepithelial migration of the PMN into the lumen of the gut is mediated by 

another cytokine, called the pathogen elicited epithelial chemo-attractant (PEEC), wich is 

secreted on the apical side of the epithelial cells, in response to the SPI-1 effector SipA 

(McCormick et al., 1998; Lee et al., 2000). Recently, PEEC has been identified as the key 

regulator of mucosal inflammation, hepoxilin A3 (Mrsny et al., 2004). The overwhelming 

influx of PMN results in detachment of the epithelial cells from the basal membrane and the 

release of ROS, proteases and other PMN mediators induces extensive necrosis of the 

superficial mucosa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A schematic representation of the different mechanisms leading to invasion of the gut epithelium and 

underlying tissues by Salmonella and to the induction of an inflammatory response (Adapted from Tükel et al., 

2006). 

 

SipB 

with 
macrophages 

Cell death 



 25 

In addition to the mechanisms described above, Salmonella can modulate the chloride 

secretion, thereby contributing to the development of diarrhoea. As described above, SopB is 

an inositol 3-phosphate phosphatase that increases cellular levels of (1,4,5,6)P4 (Norris et al., 

1998). This increase not only results in the activation of cytoskeletal changes, but also 

antagonizes the closure of chloride channels on the intestinal eptithelial cells (Eckmann et al., 

1997; Marcus et al., 2001). Also SopE has been implicated in this mechanism, although not 

having phosphatase properties (Zhou et al., 2001). Recently, it was shown that the Inositol-P5 

dephosphorylation is not promoted by SopE itself, but requires the interaction of SopE with 

other Salmonella virulence proteins (Deleu et al., 2006).  

The SPI-1 effector SipB mediates macrophage death in the intestine (see further) by caspase-1 

activation, which causes the release of IL-1beta and IL-18, contributing to the inflammatory 

response (Hersch et al., 1999). 

Finally, the function of SopA and SopD is not fully understood, but both effectors also 

contribute to enteritis in a bovine intestinal loop model (Zhang et al., 2002). 

The tools available for Salmonella to induce diarrhoea seem overwhelming. Keeping this in 

mind, it may seem rather peculiar that most of the Salmonella Typhimurium infections in pigs 

and humans are subclinical and asymptomatic. Apart from environmental factors such as the 

infection pressure, the age and immunological status of the host, again Salmonella SPI-1 

effectors may play a role. 

At least 3 SPI-1 effector proteins have been described, able to downregulate the transcription 

factor NF-�B and, subsequently, the host’s inflammatory responses. AvrA was first identified 

as a homologue to a plant anti-virulence factor (Hardt and Galan, 1997). It is a cysteine 

protease which inhibits IL-8 production and in turn the inflammatory response (Collier-

Hyams et al., 2002). Although it was first considered an anti-virulence protein, the lack of 

inflammatory response may help Salmonella to “sneak in” unnoticed. Most of the Salmonella 

enterica strains are avrA positive (Prager et al., 2000), but only epidemic strains of 

Salmonella Typhimurium and Enteritidis seem to express avrA constitutively (Streckel et al., 

2004; Ben-Barak et al., 2006). SspH1 belongs to a family of T3SS effector proteins that share 

leucine-rich repeat motifs and are called Salmonella Translocated Effectors (STE’s; see 

further SPI-2; Miao et al., 1999). Although not all STE’s are linked to a certain virulence 

property, SspH1 is translocated through the SPI-1 T3SS and inhibits NF-�B-dependent gene 

expression (Haraga and Miller, 2003). SptP is described above as the protein reversing SPI-1 

effects concerning invasion. It has also been shown to downregulate NF-�B (Haraga and 



 26 

Miller, 2003). A schematic overview of the different players in the development of enteritis is 

shown in Figure 4. 

 

Salmonella induced host cell death: switching it on and off on demand? 

Salmonella Typhimurium is cytotoxic for several cell types. The most intensively studied cell 

types are murine monocytes/macrophages and dendritic cells. When these phagocytic cells are 

infected with Salmonella Typhimurium that has been grown under conditions that allow high 

SPI-1 expression, death occurs within the next hours (Chen et al., 1996; Van der Velden, 

2003). Although some of the infected cells show signs of apoptosis (Monack et al., 1996), an 

important part do not (Watson et al., 2000). Recently, it has become clear that Salmonella 

induced cell death is very complicated and that more than 1 mechanism is triggered by 

multiple virulence genes (reviewed in Hueffer and Galan, 2004). For example, salmonellae 

that do not cause the SPI-1 dependent rapid cell death and reside in the phagocytic vacuole 

can trigger a SPI-2 or spv dependent cell death 12 to 24 hours after infection (see further). 

Finally, also the toll-like receptors are thought to play a role in Salmonella induced apoptosis 

(Hsu et al., 2004; Zeng et al., 2006). A schematic overview is presented in Figure 5. 

 
 

Figure 5: A schematic representation of the different mechanisms used by Salmonella, that lead to the induction 

or inhibition of cell death (Hueffer and Galan, 2004). 
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Hersch and colleagues (1999) first demonstrated that the SPI-1 translocator protein SipB is 

involved in triggering programmed cell death in macrophages in a caspase 1 dependent 

manner, although also caspase 2 has been implied (Jesenberger et al., 2000). SipB was found 

to disrupt mitochondria, thereby inducing autophagy and a type II programmed cell death 

(Hernandez et al., 2003). The exact mechanism of action, however, is yet to be elucidated. 

Recently, SPI-1 induced membrane permeabilization of the SCV was shown to induce a 

lysosomal repair response and autophagy (Roy et al., 2004; Birmingham et al., 2006). 

Whilst in macrophages a rapid, SipB dependent cell death occurs, the opposite takes place in 

epithelial cells. An anti-apoptotic effect was shown for SopB in epithelial cells (Knodler et 

al., 2005). Comparing the anti-apoptotic versus pro-apoptotic activities of SPI-1 in epithelial 

cells and macrophages, respectively, it is apparent that Salmonella can selectively modulate 

host cell events depending on the type of cell infected, a further example of the remarkable 

ability of this pathogen to adapt to its host cell environment. 

AvrA does induce a late form of apoptosis in epithelial cells through inhibition of the anti-

apoptotic NF-�B pathway (Collier-Hyams et al., 2002). The presence of AvrA resulted in 

accelerated apoptosis, allowing elimination of the infected cells and prevention of systemic 

spread. As epithelial cells are rapidly replaced, cell death occurring only 24 hours after 

infection probably does not have harmful consequences. Salmonella Typhi and Paratyphi are 

strains that evade epithelial defenses and result in severe systemic disease (within 

macrophages). Strikingly, these strains invariably do not possess an avrA allele. Also in pigs, 

apoptotic intestinal epithelial cells have been noticed after Salmonella Typhimurium infection 

(Schauser et al, 2005), but no correlation was made with any virulence factor. 

The biological significance in the pathogenesis of Salmonella infections of these phenomena 

in different cell types and host species is not yet clear at all. A model has been proposed by 

Guiney (2005). 

 

SPI-1: does it stop after invasion? 

SPI-1 has long been considered to play an exclusive role in the invasive phase of infection. 

The last few years, a few researchers found additional SPI-1 related functions, for example 

intracellular proliferation and vacuole biogenesis in epithelial cells and macrophages 

(Mukherjee et al., 2001; Steele-Mortimer et al., 2002), contribution to systemic infection and 

persistence in mice (Jiang et al., 2004; Lawley et al., 2006) and the induction of nitric oxide 

production long after invasion (Drecktrah et al., 2005). Coombes and coworkers (2005) 

recently found that SPI-1 does not play an important role in gut pathology appearing long (>5 
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days) after infection. Aguirre et al. (2006) saw that in contrast to the rest of the genes in the 

SPI-1 locus, orgBC is expressed during and after Salmonella entry into its host cell, and they 

suggest a role for the products of this operon after host cell internalization. 

The most interesting observations, however, were made by Drecktrah and colleagues (2006). 

They showed that the initial interactions of Salmonella with the host macrophages (SPI-1 

dependent invasion, complement mediated or Ig-mediated phagocytosis) determine the 

development of the intracellular niche and the bacterial response. For example, intracellular 

upregulation of SPI-1 was seen when the bacteria were taken up by macrophages by 

phagocytosis, but a downregulation occurred after active invasion of the cells.   

Not all SPI-1 encoded genes are related to the T3SS. The sit gene cluster is also located at 

SPI-1, but it encodes an iron uptake system (Zhou et al., 1999). The sitABCD operon is 

preferentially expressed during the systemic stages of Salmonella Typhimurium infection in 

mice and a sit null mutation confers a virulence defect (Janakiraman and Slauch, 2000). 

 

Regulation of SPI-1 

The control of invasion involves a number of genetic regulators and environmental stimuli in 

complex relationships (reviewed by Altier, 2005 and Jones, 2005). Several environmental 

conditions are known to regulate the expression of SPI-1, including pH, osmolarity, oxygen 

tension, bile, Mg2+ concentration, and short chain fatty acids (Bajaj et al., 1996; Gantois et 

al., 2006). SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) 

with overlapping sets of target genes. These regulators are, in turn, controlled by both positive 

and negative regulators outside SPI-1. A simplified schematic drawing of the SPI-1 regulation 

is presented in Figure 6. 

 
Figure 6: A schematic representation of the regulation of the expression of SPI-1 related genes (Schmidt and 

Hensel, 2004). 
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3.2. Salmonella Pathogenicity Island 2 

Hensel and coworkers (Hensel et al., 1995; Shea et al., 1996) were the first to develop the 

method of signature tagged mutagenesis (STM), using the murine typhoid fever model of 

Salmonella Typhimurium. This not only resulted in a new revolutionary technique to locate 

virulence genes that are relevant in vivo, it also resulted in the discovery of a second 

pathogenicity island, called SPI-2. At the same time, Ochman and coworkers (1996) 

identified SPI-2 as a sequence that was present in Salmonella enterica, but absent in E. coli. 

Unlike SPI-1, SPI-2 is absent in Salmonella bongori, meaning this PAI was acquired at a later 

time point than SPI-1. The SPI-2 T3SS did not arise from gene duplication of SPI-1, is 

phylogenetically only distantly related to the SPI-1 T3SS and both T3SS were acquired in 

completely independent events (Ochman and Groisman, 1996). SPI-2 has a mosaic structure. 

The first 25-kb portion of SPI-2 contains at least 32 genes which code for a T3SS, a few 

effector proteins and their putative chaperones and a 2-component regulatory system. The 

second portion (15 kb) is not required for virulence and harbors genes for metabolic or 

unknown functions, such as the tetrathionate reductase, a specific trait that is commonly used 

for the enrichment and identification of Salmonella (Hensel et al., 1999). A common 

characteristic of SPI-1 and SPI-2 is that only a subset of effector proteins are encoded within 

the island. The majority of effectors are encoded in distinct loci, scattered over the 

chromosome (Miao and Miller, 2000). They can be associated with bacteriophages or can 

even rely in other PAI (ex. SPI-5). In contrast to SPI-1, the exact role and mechanism of 

action of the effectors of SPI-2 are only vaguely understood. In Table 4, all known SPI-2 

related effector genes and their respective functions are summarized.  

 

The function of SPI-2 (reviewed in Waterman and Holden, 2003) is essential for a major 

hallmark in the pathogenesis of salmonellosis, namely the ability to spread throughout the 

body and cause a systemic infection. This is especially so in infections caused by host-

specific serovars. This feature is linked to the ability of Salmonella to survive and replicate 

inside a variety of host cells, including professional phagocytes like macrophages and 

dendritic cells. Therefore, it is not surprising to find that environmental stimuli that 

characterise the SP (a slightly acidic pH or the limitation of inorganic phosphate) are 

sufficient to induce a rapid up-regulation of SPI-2 genes, through the activation of the SsrA/B 

regulatory system (Löber et al., 2006). In contrast, Salmonella Typhimurium mutant strains 

that are SPI-2 deficient are attenuated by at least five orders of magnitude compared with the  
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Table 4: The characteristics of all currently described SPI-2 related effector genes.

Protein Localization 
SsrA/SsrB 

dependent  
Function as effector protein References 

SpiC SPI-2 Yes 
Interferes with vesicular trafficking Possible 

translocator protein 

Uchiya et al., 1999; 

Freeman et al., 2002 

SseF SPI-2 Yes 
Contributes to SIF formation, SCV position 

and alteration of host endosome aggregation 

Guy et al., 2000; 

Kuhle and Hensel, 2002; 

Abrahams and Hensel, 2006 

SseG SPI-2 Yes 
Contributes to SIF formation, SCV position 

and alteration of host endosome aggregation 

Guy et al., 2000; 

Kuhle and Hensel, 2002; 

Abrahams and Hensel, 2006 

SifA Pathogenicity Islet Yes 

Required for SIF formation, SCV integrity 

and intracellular replication 

Interferes with MHC-II presentation  

Stein et al., 1996 

Beuzon et al., 2002 

Mitchell et al., 2004 

SifB Pathogenicity Islet Yes Unknown Miao and Miller, 2000 

SspH1 Gifsy-3 prophage No Inhibits pro-inflammatory pathways Haraga and Miller, 2003 

SspH2 
Uncharacterized 

bacteriophage 
Yes Colocalizes with polymerizing actin  Miao et al., 2003 

SlrP Chromosome No Role in mouse virulence Tsolis et al., 1999 

SseI/SrfH Gifsy-2 prophage Yes Colocalizes with polymerizing actin  Miao et al., 2003 

SseJ 
Uncharacterized 

bacteriophage 
Yes 

Acyltransferase  

Promotes SCV integrity  

Role in mouse virulence 

Ruiz-Albert et al., 2002; 

Miao et al., 2003;  

Ohlsen et al., 2005 

SopD2 Pathogenicity Islet Yes 
SIF formation; 

Role in mouse virulence 

Brumell et al., 2003; 

Jiang et al., 2004 

PipB SPI-5 Yes 

Localizes to the SCV and SIF’s 

Colonization factor specific for the chick 

infection model 

Morgan et al., 2004; 

Knodler and Steele-Mortimer, 2005 

PipB2 Chromosome Yes SIF formation Knodler and Steele-Mortimer, 2005 

SseK1 Pathogenicity Islet Yes Unknown Kujat et al., 2004 

SseK2 Pathogenicity Islet Yes Unknown Kujat et al., 2004 

SteA Chromosome No Colonization of mouse spleens Geddes et al., 2005 

SteB Chromosome No Putative dipicolinate reductase Geddes et al., 2005 

SteC Chromosome Yes 
Colonization factor specific for the chick 

infection model 

Morgan et al., 2004;  

Geddes et al., 2005 

GogB Gifsy-1 prophage Yes Unknown Coombes et al., 2005 

SrfA- SrfM Often phage related Yes 
Unknown; role in apoptosis; manipulating 

motility of infected cells 

Worley et al., 2000; 

Waterman and Holden, 2003; 

Worley et al., 2006 

SseL Chromosome Yes Delayed cytotoxicity in macrophages Rytkönen et al., 2007 
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wild-type strain after oral or intraperitoneal inoculation of BALB/c mice (Shea et al., 1996). 

Although SPI-2 was formerly believed to play a role only in the systemic phase of infection, it 

has also been implicated in the development of intestinal pathology (Coombes et al., 2005; 

Hapfelmeier et al., 2005). Although many cellular phenotypes related to SPI-2 have been 

described, they are only poorly understood compared to the mechanisms of SPI-1. The SPI-2 

related actions can roughly be divided in the escape from intracellular antimicrobial agents, 

the influence on intracellular growth and the induction of a late type of cell death.  

An overview is given below. 

 

SPI-2 mediated intracellular survival 

The ability of Salmonella to survive inside professional immune cells requires the evasion of 

several intracellular antimicrobial mechanisms. In contrast to other facultative intracellular 

pathogens as Listeria or Shigella, Salmonella does not escape from its vacuole to evade the 

host cell defence mechanisms. Instead, it adapts this potentially dangerous environment to a 

‘safe niche’. In here, the bacterium is isolated from the hostile extracellular environment 

(complement, antibodies,…) which allows it to persist intracellularly. 

To accomplish this, Salmonella has a multitude of SPI-2 dependent ways to create its own 

secure spot in the SCV. These can be subdivided in 4 major actions: the inhibition of the 

fusion of lysosomes with the SCV, the inhibition of the NADPH oxidase dependent killing, 

the inhibition of the localization of inducible nitric oxide synthase to the SCV and the 

maintenance of the SCV by the assembly of a refined meshwork around it. 

 

The first SPI-2 effector protein to be identified and characterized was SpiC. A lot of the 

vacuoles containing wild type Salmonella Typhimurium do not fuse with endosomes and 

lysosomes. A mutation in spiC resulted in a significantly greater proportion of vacuoles 

undergoing this fusion, resulting in a survival defect in macrophages and a virulence defect in 

mice (Uchiya et al., 1999). At a later stage, it was found that a spiC mutant strain was 

deficient in the translocation of other SPI-2 related effectors, so its interference with the 

vesicular trafficking may also be explained by the lack of translocation of other SPI-2 effector 

proteins (Freeman et al., 2002). If the latter is the case, the actual effector protein interfering 

with the lysosome/endosome traffic is not yet identified. 

 

The finding that the virulence of SPI-2 deletion mutants was restored in knockout mice 

lacking the NADPH oxidase activity, led to the assumption that SPI-2 interfered with the 



 32 

oxidative burst (Vazquez-Torres et al., 2000). This mechanism normally results in the 

production of large amounts of ROS, which have a devastating effect on intracellular 

pathogens. SPI-2 does not inhibit the production of ROS in general, but mediates the 

exclusion of the NADPH oxidase complex from the phagosomal membrane (Vazquez-Torres 

et al., 2000; Gallois et al., 2001). 

 

Next to the fast production of ROS, which are bactericidal, macrophages also produce RNI, 

which have a more sustained bacteriostatic mode of action. The alteration of the inducible 

nitric oxide reductase (iNOS) localization in macrophages is yet another characteristic of SPI-

2. iNOS was shown to be strongly co-localized with SPI-2 mutants, but not with the wild type 

strain (Chakravorrty et al., 2002). 

 

Garcia-del Portillo and coworkers (1993) first observed that endosomes containing lysosomal 

membrane glycoproteins (lgp or lamp, lysosome associated membrane proteins) fused with 

tubules that connected to the SCV. The biogenesis of the SCV depends on the nature of the 

cell type studied (reviewed by Knodler and Steele-Mortimer, 2003). A univocal theme is that 

in all cell types the SCV is considered a modified endosomal compartment that diverts from 

the normal phagocytic pathway. The association with early and late endosomes, but probably 

not lysosomes, ensures a progressive increase of the SCV membrane surface to accomodate 

the replicating bacterial cells (Beuzon et al., 2000).  

After invasion, the SCV is directed in a SPI-2 independent manner towards a perinuclear 

localization in close apposition to the Golgi-apparatus (Salcedo and Holden, 2003). The 

steady-state position of the SCV near the nucleus is maintained through the interference of the 

SPI-2 effectors SseF and SseG with the host cell microtubule cytoskeleton and the motor-

protein recruitment (reviewed by Abrahams and Hensel, 2006). 

A few hours after invasion, the intracellular salmonellae induce the formation of stable 

filamentous structures (Salmonella induced filaments; sif’s). The formation of these filaments 

was found to be dependent on the SPI-2 effector SifA (Stein et al., 1996). Since transport and 

fusion between late endosomes and lysosomes is controlled by the small GTPase Rab7 and 

given that SifA has been shown to interact with Rab7, SifA could not only be involved in the 

formation of sif’s, but also provide a mechanism for influencing SCV fusion with 

endosomes/lysosomes (Harrison et al., 2004). Recently, it has been shown that SPI-2 effectors 

also modify the exocytotic transport, which results in the recruitment of secretory vesicles to 

the vicinity of the SCV (Kuhle et al., 2006). 
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Complementary to the above described features, F-actin filaments are assembled around the 

SCV (reviewed by Guiney and Lesnick, 2005). These structures are referred to as VAP 

(vacuolar-associated actin polymerizations). The formation of these VAP requires a 

functional SPI-2 T3SS. Two SPI-2 effectors, SspH2 and SseI, have been shown to colocalize 

with the polymerizing actin cytoskeleton (Miao et al., 2003). However, neither SspH2 nor 

SseI is essential for the formation of F-actin around the SCV, since single and double 

sspH2/sseI mutants still show normal morphology of the VAP (Miao et al., 2003). Although 

VAP have been found in different cell types and correlate with the intracellular replication of 

Salmonella, there remains no direct evidence that VAP formation plays an important role 

during intracellular pathogenesis.  

 

SPI-2 and the intracellular replication paradox  

Salmonella is widely known as an intracellular bacterial pathogen that proliferates within 

vacuoles of mammalian cells. However, recent in vivo studies have revealed that the vast 

majority of infected cells contain very few (three to four) intracellular bacteria in both acute 

and chronic infections in mice (Sheppard et al., 2003; Monack et al., 2004). In addition, it was 

found that the intracellular growth is limited in cultured dendritic cells and fibroblasts (Cano 

et al., 2001; Jantsch et al., 2003). These findings are changing our classical view of 

Salmonella as a fast growing intracellular pathogen and suggest that this pathogen may trigger 

responses directed to reduce the growth rate within the infected cell.  

As SPI-2 is clearly necessary for intracellular survival in macrophages and monocytes (Shea 

et al., 1996; Cirillo et al., 1998), its function is less clear in other cell types. SPI-2 was shown 

to be dispensible for bacterial survival or proliferation in dendritic cells (Jantsch et al., 2003), 

but plays a relevant role in the survival of Salmonella in fibroblasts (Cano et al., 2001). The 

role of SPI-2 in the intracellular colonization of epithelial cells still remains a matter of debate 

(Brumell, 2002; Paesold et al., 2002; Waterman and Holden, 2003). SPI-2 may help 

Salmonella to finely orchestrate the defences in the infected cell to reach a perdurable and low 

intracellular growth rate (Tierrez and Garcia-del Portillo, 2005). 

The recent findings collected in animal tissues suggest that intracellular Salmonella may not 

experience more than two to three doublings along its lifetime within the infected cell. Cells 

harbouring more than 10 bacteria represent a minor percentage of the infected cells, even in 

conditions of an acute lethal infection (Tierrez and Garcia-del Portillo, 2005). The data 
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collected in the fibroblast infection model also raise the question of whether Salmonella 

persistence is established exclusively in macrophages, especially in animals infected with non 

host-adapted strains.  

 

Interfering with antigen presentation: key to long term persistence? 

As Salmonella is able to interfere with both endocytotic and exocytotic transport, it was not 

surprising to find that Salmonella is also able to interfere with the antigen presentation in 

dendritic cells (Cheminay et al., 2005). Mitchell and coworkers (2004) suggested an 

additional role for SifA. This SPI-2 effector displayed a down-regulating effect on MHC class 

II expression. Interference with MHC class I antigen presentation has been described (Qimron 

et al., 2004), but it was not SPI-2 dependent. Although the exact mechanism of this 

interference is not understood, it was proposed that a Salmonella transporter system might 

prevent peptide loading of phagosomal MHC class I molecules by flooding the vacuole with 

competing short peptides. Interestingly, the uptake of Salmonella coated with anti-LPS 

antibodies by dendritic cells, does allow the presentation of Salmonella-derived antigens in 

both MHC-I and MHC-II molecules (Tobar et al., 2004). Even though the exact contribution 

of these mechanisms to the pathogenesis of salmonellosis is not clear, they might provide an 

interesting view on persistence. 

 

Delayed type of cell death: SPI-2 and the virulence plasmid acting together? 

Salmonella enterica mutant strains that are deficient in the SPI-1 T3SS (see above) can still 

kill macrophages (Van der Velden et al., 2000; Browne et al., 2002). This type of cell death 

requires prolonged incubation (up to 24 h) and appears to be dependent on the activity of the 

SPI-2 T3SS (Van der Velden et al., 2000; Monack et al., 2001). Although the identity of a 

specific SPI-2 effector is not yet linked to this delayed type of cell death, a candidate protein 

may be the virulence plasmid encoded protein SpvB (Browne et al., 2002). It is possible that 

SpvB may be delivered into cells by the SPI-2 T3SS, although evidence to the contrary has 

been reported (Gotoh et al., 2003). Another study indicated that genes of SPI-2 and the spv 

locus are crucial for the induction of apoptosis and the prolonged bacterial growth in intestinal 

epithelial cells (Paesold et al., 2002). 

Hsu et al. (2004) suggest that the delayed form of Salmonella-induced macrophage cell death 

may require the stimulation of TLR4. It is becoming increasingly clear that stimulation of the 

innate immune system by PAMPs such as LPS leads to both anti-apoptotic as well as pro-

apoptotic pathways (Hueffer and Galan, 2004; Zeng et al., 2006). It is possible that 
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Salmonella, through the activity of some SPI-2 T3SS effector proteins in conjunction with 

SpvB may favour the pro-apoptotic responses that follow TLR activation, thereby triggering 

programmed cell death (Hueffer and Galan, 2004). Nevertheless, also other virulence genes 

may play a role in apoptosis induction (Valle and Guiney, 2005; Figure 5). Only very recent, 

a SPI-2 virulence gene has been described which seems to be directly involved in the delayed 

cytotoxic effect through its deubiquitinating activity (Rytkönen et al., 2007) 

Very little is known about the significance of the different types of macrophage cell death 

triggered by Salmonella as well as their relative contribution to pathogenesis or host defence. 

It is not known if macrophage cell death is triggered by Salmonella to counteract host defence 

mechanisms or whether it constitutes a host response to halt bacterial replication. It is even 

less clear whether the different types of macrophage cell death represent evolutionary 

adaptations of the pathogen or the host. When, where and in what type of cells do the 

different types of Salmonella-induced cell death become predominant? More research will 

help to understand the biological and immunological significance of these different types of 

cell death and their relative contribution to the pathogenesis of and defense against 

Salmonella infections (Hueffer and Galan, 2004). 

3.3. Other SPI encoded virulence genes 

SPI-3 

The genetic organization and function of SPI-3 are markedly different from those of the 

previous SPI’s. The locus is less than half the size of SPI-1 or SPI-2, no T3SS is encoded and 

the overall base composition is similar to that of the core genome (Blanc-Potard et al., 1999). 

It is a complex structure of different virulence factors with unrelated functions. Furthermore, 

SPI-3 shows alternate structures in different subspecies and serotypes of Salmonella 

(Amavisit et al., 2003).  

The most investigated virulence factors are MgtBC, a high affinity magnesium transport 

system, which is required for adaptation to the nutritional limitations of the phagosome, the 

intramacrophage survival and growth in low Mg2+ medium (Blanc-Potard and Groisman, 

1997). 

Recently, MisL, a fibronectin binding protein of the AIDA-I autotransporter family, was 

shown to be required for the colonization of the alimentary tracts of chicks (Morgan et al., 

2004; Dorsey et al., 2005).  
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MarT might be a regulating protein, because of the similarities to the ToxR protein of Vibrio 

cholerae, although some important differences between both proteins were noticed (Blanc-

Potard, et al., 1999). The first gene of the island, sugR, encodes a protein that exhibits closest 

similarity to a putative ATP binding protein encoded in the genome of a clinical isolate of E. 

coli (Lim, 1992). Finally, the rhuM, rmbA, fidL, slsA, and cigR gene products do not exhibit 

sequence similarity to proteins with known functions in the sequence databases (Blanc-

Potard, et al., 1999). 

 

SPI-4 

SPI-4 is a 25 kb segment located at 92 min on the chromosome of Salmonella Typhimurium 

that might constitute a single operon (Wong et al., 1998).  Several putative virulence genes 

are present, for example a putative type 1 secretion system and open reading frames (ORFs) 

with weak similarity to RTX toxins. A previously identified locus required for survival in 

murine macrophages is located in SPI-4 and was the basis for the definition of this segment of 

DNA as a pathogenicity island (Fields et al., 1986). The publication of the complete genome 

sequence of Salmonella Typhimurium strain LT2 refined the sequence of SPI-4 and 

reorganized the operon into six ORFs (McClelland et al. 2001). The regulation of the 

expression and the time point of action of SPI-4 during infection is still controversial (Ahmer 

et al., 1999; Detweiler et al., 2003; Morgan et al., 2004; De Keersmaecker et al., 2005) 

Recently, SPI-4 was identified as being necessary for efficient gut colonization in the calf but 

not in the chick model and the ORFs were renamed as siiA-F, for Salmonella intestinal 

infection (Morgan et al., 2004). The role of SPI-4 in the colonization of pigs is not known. 

 

SPI-5 

SPI-5 is a small locus of 7.6 kb and may thus rather be called a pathogenicity islet 

(pathogenicity Island < 10 kb). It was originally identified as a locus important for the 

enteropathogenicity of Salmonella Dublin in intestinal loops in calves (Wood et al., 1998). It 

encodes effector proteins for both the T3SS of SPI-1 and SPI-2 (Knodler et al., 2002). SopB 

(Salmonella Dublin)/SigD (Salmonella Typhimurium) and its putative chaperone PipC/SigE 

are translocated by the SPI-1 T3SS and are under the control of SPI-1 related regulators (see 

SPI-1). PipB, however, is translocated by the SPI-2 T3SS and localizes to the SCV and Sifs 

(See SPI-2; Knodler and Steele-Mortimer, 2005). Except for a role in the enteropathogenicity 

in calf loops, no concrete role has been established for the remaining genes, PipA, PipD and 

ORFX. 
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SPI-6 or SCI 

A large locus in the genome of Salmonella Typhi has been designated SPI-6 and later the 

Salmonella enterica centisome 7 genomic island (SCI) in Salmonella Typhimurium (Parkhill 

et al., 2001; Folkesson et al., 2002). It contains 37 putative proteins, including the saf fimbrial 

operon and the sinR transcriptional regulator. The open reading frames sciA/Z encode putative 

proteins with homologies to virulence-associated proteins in a number of gram-negative 

bacteria such as Pseudomonas aeruginosa, Yersinia pestis and enterohemorrhagic Escherichia 

coli. The SCI genomic island is restricted to Salmonella enterica subspecies I and deletion of 

the island results in a reduced invasion of cultured cells (Folkesson et al., 2002). The genes 

within the 59-kb island could have been acquired at various evolutionary intervals (Anjum et 

al., 2005). 

 

SPI-7 or MPI 

SPI-7 is a PAI specific for Salmonella Typhi, Salmonella Dublin and Salmonella Paratyphi C. 

It is often referred to as the major pathogenicity island (MPI; Zhang et al., 1997) and is 

transcribed in macrophages infected with Salmonella Typhi (Faucher et al., 2005). One 

important virulence factor in typhoid pathogenesis is the capsular Vi antigen (Pickard et al., 

2003).   

The insertion of the SPI-1 translocated SopE protein (see SPI-1) in the SPI-7 of Salmonella 

Typhi, must have occurred rather recently, since it is not present in the SPI-7 of Salmonella 

Dublin and Salmonella Paratyphi C. Nevertheless, due to its extreme mobility, the SopE 

phage (and correlated gene) is also present in Salmonella serotypes that lack SPI-7.  Another 

putative virulence factor is the type IVB pilus, encoded by the pil genes. The extensive 

similarities between SPI-7 of Salmonella and related loci in plant pathogens and 

Pseudomonas aeruginosa has led to the conclusion that the locus might have been acquired 

through close contact with environmental bacteria (Pickard et al., 2003). 

 

SPI-8 

SPI-8 was identified during whole genome sequencing of Salmonella Typhi (Parkhill et al., 

2001). Putative virulence factors are genes encoding bacteriocins, but no function has been 

ascribed yet. The region appears to be specific for Salmonella Typhi and it was found to be 

transcribed in macrophages infected with Salmonella Typhi (Faucher et al., 2005). 
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SPI-9 

SPI-9 is another locus that was identified in the genome sequence of Salmonella Typhi 

(Parkhill et al., 2001), but is present in different serotypes, including Salmonella 

Typhimurium (Anjum et al., 2005). Putative virulence factors are a type I secretion system 

and a large RTX-like protein. The function and contribution of RTX proteins to virulence 

within Salmonella are not yet known. However, RTX proteins located adjacent to type 1 

secretory systems are commonly involved in virulence (Anjum et al., 2005). 

 

SPI-10 

SPI-10 is a large insertion located at the tRNA leuX and contains a cryptic bacteriophage and 

the sef fimbrial genes (Parkhill et al., 2001). Consistent with the fact that sef fimbriae are 

restricted to a limited subset of serotypes (Typhi and Enteritidis), determining host specificity, 

SPI-10 was transcribed in macrophages infected with Salmonella Typhi but was not found in 

the Salmonella Typhimurium genome (Faucher et al., 2005). 

 

SPI-11 and SPI-12 

Through whole genome sequencing of Salmonella Choleraesuis, Chiu and colleagues (2005) 

discovered 2 pathogenicity islands containing several important genes. SPI-11 contained, 

among other genes, sopB, envF, msgA, pagC and pagD. A similar chromosomal region was 

found in Salmonella Typhimurium already 10 years earlier, but the concept of SPI was not 

introduced at that time (Gunn et al., 1995). Although there is still some discussion, PagC and 

MsgA proteins have been assigned a role in intramacrophagal survival (Gunn et al., 1995). 

PagC may also play a role in the serum resistance phenotype (Nishio et al., 2005). SPI-12 

only contains 5 genes, including msgA and narP and contains only 6.3kb. SPI-12 may thus 

rather be called a pathogenicity islet (pathogenicity Island < 10 kb). 

 

SPI-13 and SPI-14 

The study of Shaha and colleagues (2005) describes the application of a signature-tagged 

mutagenesis system to identify in vivo essential genes of Salmonella Gallinarum. Twenty 

presumptive attenuated mutants were identified, including 2 newly discovered PAI: SPI-13 

and SPI-14. 
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SPI-15, SPI-16 and SP-17 

Very recent, Vernikos and Parkhill (2006), were able to identify 3 more SPI’s in the genome 

of Salmonella Typhi, using a novel computational method, called Interpolated Variable Order 

Motifs.  

 

HPI 

In addition to the PAI, the High Pathogenicity Island (HPI) of Yersinia, encoding an iron 

uptake system, has been described in Salmonella, but not yet in Salmonella Typhimurium 

(Carniel, 2001; Oelschlager et al., 2003).  

 

SGI-1 

The characterization of multidrug resistant Salmonella Typhimurium DT104 strains has led to 

the identification of the Salmonella Genomic Island 1 (SGI-1; Boyd et al, 2001). Strictly 

spoken, this region is not a pathogenicity island, but it combines antibiotic resistant factors for 

ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracyclins. It has also been 

identified in other serotypes (Levings et al., 2005) and in porcine Salmonella isolates 

(O'Mahony et al., 2005). In contrast to plasmid-borne antibiotic resistance genes, this 

chromosomal antibiotic resistance cassette seems to be stable in the absence of selection 

pressure. Variants have been described (Doublet et al., 2004, Levings et al., 2005).  

 

4.  Virulence factors of Salmonella playing a role in persistency 

 

Porcine carcasses contaminated with Salmonella Typhimurium pose significant public 

health problems. Prolonged faecal shedding of Salmonella in pigs contributes to the 

contamination level of carcasses. Although the mechanism of prolonged faecal shedding is 

not yet clarified, a few virulence genes have been identified as playing a role in intestinal 

colonization and persistence of Salmonella Typhimurium in mice.  

As SPI-1, SPI-2 and possibly other SPI-related virulence genes, are important factors in 

the intestinal and/or systemic phase of infection, it can be assumed that these genes may also 

be important for long term survival in the host, as has been extensively discussed in the 

chapters above. Here, we intend to review virulence factors important for persistency which 

are not linked to one of the above mentioned SPI. 

Fibronectin binding proteins have been implicated to play a role in the pathogenesis of 

several bacterial diseases. Although their specific role in the pathogenesis is not always 
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known, they frequently mediate adherence and entry into mammalian cells (Joh et al., 1999; 

Schwarz-Linek et al., 2004). A sandwich model has been proposed in which fibronectin acts 

as a molecular bridge between the fibronectin binding proteins on the pathogen and the 

integrins on the host cells (Joh et al., 1999; Menzies, 2003). In Salmonella Typhimurium, two 

putative fibronectin binding proteins have been identified: MisL, encoded by SPI-3, and 

ShdA, encoded in the CS54 Island. Both proteins belong to the autotransporter family. 

Mutants in both genes are attenuated in a mouse model of Salmonella Typhimurium intestinal 

persistence and are impaired in their ability to colonize the gut (Kingsley et al., 2000; 

Kingsley et al., 2003; Morgan et al., 2004; Dorsey et al., 2005).  

Fimbriae encoded by the lpf, fim, and agf (csg) operons mediate attachment of Salmonella 

Typhimurium to epithelial cell lines in vitro (Baumler et al., 1996). These in vitro data 

suggest that fimbriae may be involved in intestinal colonization. Whole-genome sequencing 

has identified 13 operons containing fimbrial gene sequences in the Salmonella Typhimurium 

genome, termed agf (csg), fim, lpf, pef, bcf, stb, stc, std, stf, sth, sti, saf, and stj (McClelland et 

al., 2001). The Salmonella Typhimurium fim operon directs the assembly of type 1 fimbriae 

and has been implicated in the colonization of the porcine gut (Althouse et al., 2003). Using 

genetically susceptible mouse lineages (e.g., BALB/c), the lpf, pef, and agf operons have been 

implicated in colonization of intestinal tissues (Van der Velden, 1998). In a recent report, 

Salmonella Typhimurium strains carrying deletions in lpf, bcf, stb, stc, std, or sth operons 

were recovered at significantly reduced numbers from the feces of resistant mouse lineages 

(Weening et al., 2005). It was concluded that these six fimbrial operons (lpf, bcf, stb, stc, std, 

and sth) contribute to long-term intestinal carriage of Salmonella Typhimurium in genetically 

resistant mice. Interestingly, type I fimbriae were not found to be important for persistency in 

mice. In addition, thin aggregative fimbriae and agfD regulated O-antigens are believed to 

play a role in environmental survival (Gibson et al., 2006; White et al., 2006). 

Isocitrate lyase, encoded by the aceA gene, is required for fatty acid utilization via the 

glyoxylate shunt. Even though isocitrate lyase is essential for Salmonella persistence during 

chronic infection, it is dispensable for acute lethal infection in mice. This may mean that 

substrate availability in the phagosome evolves over time, with increasing fatty acid 

dependence during chronic infection (Fang et al., 2005). 

In a study aimed at identifying Salmonella genes that demonstrated increased expression 

within the intracellular environment (Valdivia and Falkow, 1997), a PhoP-regulated gene 

designated mig-14, was identified. Recently, it was shown that mig-14 contributes to long-

term persistence of Salmonella in the spleen and mesenteric lymph nodes of chronically 
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infected mice, even though mig-14 mutant bacteria can colonize the liver and spleen of mice 

identically to wild-type bacteria until 5 days after inoculation (Valdivia et al., 2000; Brodsky 

et al., 2005.).  

Numerous other genes have been identified contributing to long term survival in various 

hosts, but most of these genes are so-called housekeeping genes and are also necessary for in 

vitro survival or for the acute phase of infection (e.g. aroA, purA, …). Strictly spoken, these 

genes do not specifically contribute to long term persistency. 
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SCIENTIFIC AIMS OF THE STUDY 
 
 

 

According to preliminary data, Salmonella Typhimurium has become the most important 

serotype causing salmonellosis in humans in Belgium. Infections with this serotype are mainly 

associated with the consumption of pork and swine persistently infected with Salmonella 

Typhimurium pose an important public health hazard. When we started our studies, the 

mechanisms by which Salmonella Typhimurium colonizes and persists in pigs were largely 

unknown. The general aim of this thesis was, therefore, to obtain better insights in these 

mechanisms. A thorough knowledge of how this pathogen interacts with the porcine host should 

indeed form the basis for the development and evaluation of efficient monitoring programmes 

and control measures. 

 

The specific aims were: 

 

1. The selection of a Salmonella Typhimurium strain that is able to persistently infect pigs. 

2. The development of in vitro and in vivo models to investigate the pathogenesis of 

Salmonella Typhimurium infections in pigs. 

3. To determine the role of genes situated on Salmonella Pathogenicity Islands 1 and 2 as 

well as of the fibronectin binding protein ShdA in the colonization and persistence of 

Salmonella Typhimurium in pigs. 
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EXPERIMENTAL STUDIES 
 
 
 
 
 
 
 

CHAPTER 1: 

 

Choice of strain used in Salmonella Typhimurium pathogenesis research:  

does it matter? 
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ABSTRACT 

The course of a Salmonella infection depends on the relation host species – 

Salmonella strain. Increasing numbers of virulence factors have recently been shown to be 

host-specific. In addition, numerous genetic transfers between strains of Salmonella result in a 

mosaic of strains harbouring or lacking different virulence factors. Nevertheless, the same 

standard strains are often used for pathogenesis research in different animal species. In this 

study we wanted to characterize a standard strain of Salmonella Typhimurium often used for 

research in mice (NCTC 12023) and a porcine field strain (112910a) in a mouse and in a 

porcine in vivo infection model. Seven week old BALB/c mice were intragastrically 

inoculated and 4-week old piglets were orally inoculated with these Salmonella Typhimurium 

strains. The NCTC 12023 strain was found in significantly higher numbers in the internal 

organs than the porcine 112910a strain in the mouse at 4 days post inoculation (pi).  In 

contrast, faecal excretion by piglets inoculated with the NCTC 12023 strain was significantly 

(p < 0.05) lower at days 12, 20, 22, 26 and 28 pi compared to that of piglets inoculated with 

the 112910a strain. At day 28 pi, the pigs inoculated with strain 112910a were infected to a 

significantly higher extent in the ileum, the contents of the ileum, the caecum and the 

ileocaecal lymph nodes.  

In conclusion, it was shown that different Salmonella Typhimurium strains can follow 

a distinct course of infection in different host species. These findings stress the importance of 

the appropriate choice of strain in pathogenesis research.  

 

KEYWORDS 

Salmonella Typhimurium – pig – mouse – host adaptation 



 64 

INTRODUCTION 

 

The last decennia, the increase in research on the pathogenesis of salmonellosis 

resulted in the identification of many virulence genes in Salmonella Typhimurium, located 

mainly in pathogenicity islands (Kingsley and Bäumler, 2002). Research on the pathogenesis 

of Salmonella Typhimurium infections has been conducted mostly in BALB/c mice using a 

limited number of Salmonella Typhimurium standard laboratory strains. A Salmonella 

Typhimurium infection in mice resembles a Salmonella Typhi infection in humans, so this 

typhoid model has been used extensively for pathogenesis studies. In pigs, however, a 

Salmonella Typhimurium infection predominantly is subclinical, but sometimes results in a 

self-limiting enterocolitis (Fedorka-Cray et al., 2000). Since the course of a Salmonella 

Typhimurium infection in mice (lethal systemic disease) is very different from that in pigs 

(subclinical local infection), the BALB/c mouse model is not biologically relevant to study 

the pathogenesis of Salmonella Typhimurium infections in pigs or even in man.  

The course of a Salmonella infection depends on the relation host species – 

Salmonella strain. Increasing numbers of virulence factors have been shown to be host-

specific (Tsolis et al., 1999; Pasmans et al., 2003; Morgan et al., 2004). Numerous genetic 

transfers may take place between different serotypes or strains of Salmonella (Zhang et al., 

2002; Boyd et al., 2003; Barth et al., 2005), even between different strains of a clonal 

serotype like Salmonella Typhi (Porwollik et al., 2003), resulting in a mosaic of strains 

harbouring or lacking different virulence factors. This means that the choice of the strain may 

be of great importance in pathogenesis research.  

It was the aim of these studies to characterize the behaviour of a standard laboratory 

strain of Salmonella Typhimurium often used in mice and a porcine field strain of Salmonella 

Typhimurium in both a mouse and a pig in vivo model. 

 

MATERIALS AND METHODS 

 

All experiments were approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University. 

 

Bacterial strains and growth conditions 

Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) 

strain 112910a was isolated from a pig stool sample. A genetically identical strain was also 
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isolated from pig carcasses originating from the same farm at the slaughterhouse (ILVO, 

Melle, Belgium). This strain was used as the porcine wild type field strain. The Salmonella 

Typhimurium NCTC 12023 strain was used as a standard laboratory strain (Hensel, 1995; 

Unsworth et al, 2004). 

For the oral inoculation of mice and pigs, the bacteria were grown in brain heart infusion 

broth (BHI; Oxoid, Basingstoke, UK) for 6 h at 37°C. The bacteria were washed three times 

in phosphate buffered saline (PBS, 2000 x g for 10 min at 4°C). The number of viable 

Salmonella bacteria/ml was determined by plating tenfold dilutions on Brilliant Green Agar 

(BGA; Oxoid, Basingstoke, UK).  

 

Experimental infection of mice 

Seven-week-old male BALB/c mice were inoculated using a standard protocol (Cirillo et al., 

1998). In short, all feed was withdrawn 12 h before inoculation. Eight mice per group were 

anaesthetized with isoflurane and subsequently intragastrically inoculated with 5 x 108 cfu of 

one of both Salmonella Typhimurium strains in 200 µl of PBS. On day 1 and day 4 post 

inoculation, 4 animals of each group were killed. For each animal, caecum, spleen and liver 

were removed for bacteriological analysis. All mice were kept in filter-topped cages with ad 

libitum food and water.  

 

Experimental infection of piglets 

Experimental infections were performed in 4-week-old piglets (commercial closed line based 

on Landrace), that were negative for Salmonella at faecal sampling. They arrived at the 

facility 14 days before they were inoculated and were divided at random into 3 groups: 2 

groups of 10 pigs each (groups 1 and 2) and one negative control group of 3 pigs. All three 

groups were housed in separate isolation units at 25°C under natural day-night rhythm with ad 

libitum access to feed and water. Pigs were penned in pairs for the first 5 days and 

individually for the remainder of the experiment. 

The animals of groups 1 and 2 were orally inoculated with 107 cfu of one of both Salmonella 

Typhimurium strains in 2 ml HBSS; the negative control group was sham-inoculated with 2 

ml PBS.  

For the first two days post-inoculation (pi) the rectal temperature was measured twice a day 

and the clinical condition of the pigs was monitored (anorexia, lethargy, diarrhea). From day 

3 till day 7 pi this was performed once a day, and subsequently once every other day until day 

28 pi. For the first 5 days, each pig was given a score to describe the consistency of the 
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faeces. Normal faeces were given score 0, mild diarrhea (loose stools) score 1 and severe 

diarrhea (watery) score 2. 

Fresh faecal samples were taken from each pig on days 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 

24, 26 and 28 pi for bacteriological analysis. 

On days 5 and 28 pi, 5 pigs of each Salmonella inoculated group and 3 control pigs were 

euthanized. Samples of tonsils, mandibular lymph nodes, lung, heart, liver, spleen, kidney, 

ileocaecal lymph nodes, jejunum, ileum, caecum and contents of jejunum, ileum and caecum 

were taken for bacteriological analysis. 

 

Bacteriological analysis 

From all samples, 10% (w/v) suspensions were made in buffered peptone water (BPW; 

Oxoid, Basingstoke, UK) after which the material was homogenized with a stomacher. The 

homogenized samples were examined for the presence of the Salmonella by plating tenfold 

dilutions on BGA. If negative at direct plating, the samples were pre-enriched overnight in 

BPW at 37°C, enriched overnight at 37°C in tetrathionate broth and then plated on BGA. 

Samples that were negative after direct plating but positive after enrichment, were presumed 

to contain 83 cfu/g. Samples that remained negative were presumed to have 0 cfu/g.  

 

Statistical analysis 

Statistical analysis was performed using a Student’s T-test on all results. Differences with a P 

value ≤ 0.05 were considered significant. 

 

RESULTS 

 

Experimental infection of mice 

The results are summarized in Fig. 1. At day 1 pi, the animals of both groups were infected to 

a similar extent in all sampled organs (p > 0.05).  

At day 4 pi, 2 mice inoculated with Salmonella Typhimurium strain NCTC 12023 succumbed 

and all remaining mice were euthanized for sampling. At that time, the animals inoculated 

with strain NCTC 12023 were infected to a significantly higher extent in the spleen, caecum 

and GALT (p < 0.05), and there was a trend towards higher colonization of the liver than in 

animals inoculated with Salmonella Typhimurium strains 112910a (p = 0.07). 
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Figure 1: Dot plot representing the bacterial load in caecum, liver, spleen and mesenterial lymph nodes (Lnn) of 

BALB/c mice, 1 and 4 days after intragastrical inoculation with +/- 108 cfu of either Salmonella Typhimurium 

strain 112910a (�) or strain NCTC 12023 (�).   
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Experimental infection of piglets 

Sham inoculated control piglets did not develop disease signs and Salmonella was not 

isolated from any of the samples taken from these animals throughout the experiment.  

The course of infection of the piglets inoculated with the porcine field strain was similar to 

that observed in several preliminary experiments. The animals had a slight increase in body 

temperature during the first few days after inoculation and some also had mild diarrhoea. At 

days 3 to 5 pi, a peak in Salmonella shedding was noticed in both groups. At day 5 pi, the 

animals of both groups were infected to the same extent in most of the internal organs (Table 

1). The lungs of the animals inoculated with strain NCTC 12023 were significantly more 

infected, while the ileum, the contents of the ileum and the ileocecal lymph nodes of the 

animals inoculated with strain 112910a were colonized to a significantly higher extent (p < 

0.05).  

Approximately two weeks after inoculation, the piglets intermittently shed Salmonella 

at enrichment level. Excretion by animals inoculated with the NCTC 12023 strain was 

significantly (p < 0.05) lower from 20 days pi onwards (Fig. 2). At day 28 pi, the animals 

inoculated with strain 112910a were infected to a significantly higher extent in the ileum, the 

contents of the ileum, the caecum and the ileocaecal lymph nodes (Table 1). 
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Figure 2:  Dot plot representing the faecal excretion of Salmonella Typhimurium after oral inoculation 

of pigs with +/- 107 cfu of either the 112910a strain (�) or the NCTC 12023 strain (�). 
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DISCUSSION 

 

In these experiments, an often used standard laboratory Salmonella Typhimurium 

strain was found to be markedly more virulent in BALB/c mice, compared to the porcine field 

strain, while the porcine field strain seemed to be more efficient in inducing a persistent 

infection in pigs. This finding suggests a degree of adaptation of the Salmonella Typhimurium 

strains to mice and pigs, respectively. The adaptation of the porcine field strain to pigs is not 

as obvious as the well known host-restriction in other serotypes (eg Typhi in men), but was 

expressed as a more efficient colonization, predilection for specific organs and the induction 

of a persistent infection.  

Even though Salmonella Typhimurium is considered a serotype with a broad host 

range, several reports have been made of some strains being more adapted to one host species. 

The most obvious one is the adaptation of phage types 2 and 99 to pigeons.  These phage 

types are highly cytotoxic for pigeon macrophages and induce severe clinical symptoms, 

while other phage types do not (Pasmans et al., 2003). However, until now, attempts to 

distinguish the genomes of Salmonella Typhimurium pigeon isolates from those of other 

Salmonella Typhimurium strains were not successful (Andrews-Polymenis et al., 2004; 

Anjum et al., 2005). More subtle variants of host adapted Salmonella Typhimurium strains are 

found in ducks (DT8 and DT46), wild birds (DT40) (Rabsch et al., 2002) and epidemic cattle-
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associated strains carrying the sopE gene (Mirold et al., 1999). In addition, in vitro adaptation 

of Salmonella Typhimurium to mice has also been described (Nilsson, 2004). 

 

                                                                   Salmonella Typhimurium 
112910a                               Salmonella Typhimurium NCTC 

12023  

 Tissue Frequency Log10 cfu g-1 ± stdev Frequency Log10 cfu g-1 ± stdev  
      
 Mand. lnn. 4/5 1.56 ± 1.11 2/5 0.89 ± 1.50  
 Tonsil 3/5 1.33 ± 1.57 4/5 1.51 ± 1.36  
 Lung  1/5 0.2 ± 0.44 4/5 0.8 ± 0.45 � 
 Heart 2/5 0.4 ± 0.55 2/5 0.4 ± 0.55 
 Liver 4/5 0.8 ± 0.45 3/5 0.6 ± 0.55 
Day 5 pi Spleen 2/5 0.58 ± 0.86 1/5 0.2 ± 0.45 
 Kidney 2/5 0.78 ± 1.27 2/5 0.4 ± 0.55 
 Ileocecal lnn. 5/5 3.69 ± 0.62 * 5/5 2.41± 0.85 
 Jejunum 5/5 2.97 ± 1.97 4/5 1.64 ± 2.05 
 Ileum 5/5 4.92 ± 0.52 * 4/5 2.70 ± 1.67 
 Cecum 5/5 3.85 ± 0.68 5/5 3.50 ± 0.99 
 Content jejunum 5/5 2.64 ± 1.70 2/5 0.96 ± 1.66 
 Content ileum 5/5 4.40 ± 0.73 * 4/5 1.41 ± 1.53 
 Content cecum 4/5 2.74 ± 1.56 5/5 1.97 ± 1.37 
      
 Mand. lnn. 0/5 0 ± 0 0/5 0 ± 0 
 Tonsil 2/5 0.76 ± 1.23 2/5 0.98 ± 1.19  
 Lung  0/5 0 ± 0 0/5 0 ± 0 
 Heart 0/5 0 ± 0 0/5 0 ± 0 
 Liver 0/5 0 ± 0 0/5 0 ± 0 
 Spleen 0/5 0 ± 0 0/5 0 ± 0 
Day 28 pi Kidney 0/5 0 ± 0 0/5 0 ± 0 
 Ileocecal lnn. 4/5 1.32 ± 1.34 * 1/5 0.2 ± 0.45 
 Jejunum 2/5 0.4 ± 0.55 0/5 0 ± 0 
 Ileum 5/5 1.72 ± 1.61 * 2/5 0.4 ± 0.55 
 Cecum 5/5 1.45 ± 1.01 * 2/5 0.4 ± 0.55 
 Content jejunum 0/5 0 ± 0 0/5 0 ± 0 
 Content ileum 5/5 1.58 ± 1.29 * 2/5 0.4 ± 0.55 
 Content cecum 5/5 1 ± 0  3/5 0.6 ± 0.55 
      

 

Table 1: Post mortem bacteriological findings at days 5 and 28 post inoculation of piglets 

orally inoculated with 107 cfu of Salmonella Typhimurium strains 112910a or NCTC 12023. The 

number of positive tissues in relation to the total number of tissues (frequency) and the average 

number of cfu (log10) ± stdev per gram tissue are shown. Samples only positive after enrichment were 

rendered a value of 83 cfu g-1. A significantly (p ≤ 0.05) higher number of bacteria in the organs of 

piglets inoculated with strain 112910a is indicated with a “*”.A significantly (p ≤ 0.05) higher number 

of bacteria in the organs of piglets inoculated with strain NCTC 12023 is indicated with a “�”. 
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The increased virulence of the laboratory strain might be explained by the presence or 

absence of one or more virulence genes (for example mobile genetic elements, including 

phages, plasmids, and plasmid-like and transposable elements; Kang et al., 2006), or altered 

expression levels of virulence genes (for example SPI). This was not investigated in the 

present study, but could be accomplished by using a full genomic indexing of both strains 

with the micro-array technique on DNA and RNA level.  

The two models used in this study represent two distinct strategies of Salmonella to 

colonize a host and to spread to other susceptible hosts. In the BALB/c mouse model, 

Salmonella Typhimurium quickly overgrows the immune system and is spread brusquely by 

the excretion of high numbers of bacteria, often shortly before death occurs. In swine, 

Salmonella normally “sneaks” in, causing no apparent symptoms and inducing no systemic 

disease. The bacteria are spread during a longer period, but in smaller numbers. This also 

means that virulence factors causing systemic disease may differ from those causing a 

persistent infection and the presence/absence of these genes may differ between different 

strains of Salmonella Typhimurium.  

In conclusion, there is no such thing as a single pathogenesis of Salmonella infections 

in general. Both the infected host species and the infecting serotype and even strain influence 

the course of an infection. This also means that the importance of certain virulence factors of 

Salmonella and the interaction with the immune system of different host species can differ 

largely. Care should be taken choosing the optimal animal model and relevant strain before 

pathogenesis studies are conducted.  
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ABSTRACT 

 

Salmonella Typhimurium infections in pigs pose an important human health hazard. 

One promising control measure is the development of live attenuated vaccine strains using 

defined knock-out mutants. Preferably, screening of candidate knock-out vaccine strains for 

attenuation should first be done in models allowing testing of a large number of strains. 

Thereafter, a limited number of selected strains should be further characterized in an 

experimental infection model in pigs. It was the aim of the present study to develop such 

models. 

The invasive and proliferative characteristics of Salmonella Typhimurium were assessed in 

both a non-polarized and a polarized porcine intestinal epithelial cell line. Neutrophils 

obtained from porcine blood were used to study the capacity of Salmonella to withstand 

killing by these phagocytes. The ability to induce an intestinal inflammatory response was 

investigated in an intestinal loop model. The systemic phase of infection was mimicked by 

studying the uptake and intracellular survival of Salmonella Typhimurium in porcine 

pulmonary alveolar macrophages and peripheral blood monocytes. These models should allow 

screening for attenuated strains. For further characterization, an experimental infection model 

was established, providing extensive data on the course of an oral infection and the optimal 

time points for evaluation of colonization (day 3-5 pi) and persistency (days 21-28 pi) in pigs. 

In conclusion, screening for virulence of Salmonella Typhimurium strains with subsequent 

confirmation for a subset of strains in a well defined experimental infection model would 

significantly reduce the number of experimental pigs required. 

 

KEY WORDS 

Salmonella Typhimurium – pig – screening – models – virulence 
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INTRODUCTION 

 

Salmonella enterica serovar Typhimurium infections in pigs cause considerable economic 

losses and public health problems, as pigs are a reservoir of infection for humans (Berends et 

al., 1996). Until today, measures to control Salmonella infections in pigs are often of hygienic 

origin with no guarantee for a satisfactory result. One promising measure in the combat 

against Salmonella is the development of live attenuated vaccine strains using defined knock-

out mutants (Methner et al., 2004; Kirkpatrick et al; 2006; Mohler et al., 2006). Previously, 

virulence of Salmonella strains in pigs was assessed using in vivo infection models (Wood et 

al., 1991; Wood and Rose, 1992; Isaacson and Kinsel, 1992; Fedorka-Cray et al., 1995; 

Althouse et al., 2003). However, screening candidate knock-out vaccine strains for 

attenuation, using solely in vivo infection models is expensive, time consuming and requires 

high numbers of experimental animals.  

Most of our knowledge concerning interactions of Salmonella with the host is derived 

from experiments in mice or murine cell types. Even though many tools are available for 

studying Salmonella pathogenesis in murine models, these results often cannot be reproduced 

in other hosts, compromising extrapolation to human and pig disease (Schwartz, 1999).  

In vitro studies using primary isolated cells or cell lines of porcine origin are rare 

(Donné et al., 2005; Boyen et al., 2006a; Schierack et al., 2006). Comparative data from these 

alternative methods to one another and to those of the in vivo infection model are missing. In 

times of growing animal welfare awareness, there is need for experimental models that 

replace, reduce or refine the use of experimental animals (Russell and Burch, 1959).  

It was the aim of this study to evaluate different in vitro and in vivo models for the 

investigation of host-pathogen interactions and virulence of Salmonella Typhimurium in pigs. 

The intestinal phase of infection was reproduced using an invasion and proliferation assay in 

two porcine intestinal epithelial cell lines, a bacterial killing assay with neutrophils and an 

intestinal loop model in pigs. For modelling the systemic phase of the infection, a bacterial 

killing assay with porcine alveolar macrophages and peripheral blood monocytes was used. 

Finally, the course of a Salmonella Typhimurium infection, different clinical score systems 

and the effect of different infection doses were studied in an experimental infection model in 

pigs. 
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MATERIALS AND METHODS 

 

Experimental animals 

For the in vitro experiments with pulmonary alveolar macrophages (PAM), a total of 3 

male crossbred pigs, aged 3-4 weeks, were used. For the in vitro experiments with 

polymorphonuclear cells (PMN) and peripheral blood monocytes (PBM) 1 female hybrid pig, 

aged 20 weeks, was used. The intestinal loop model was performed on 2 female 6-week-old, 

farm reared Landrace/Large White cross male piglets. For the in vivo experiments, a total of 

38 piglets of mixed sexes (commercial closed line based on Belgian landrace), aged 4 weeks 

were used.  All the pigs used in the experiments came from farms with no history of 

Salmonella infections and were negative for Salmonella at faecal sampling. Pigs arrived at the 

facility 7 days before infection as an acclimatization period. They were kept in pairs in 

isolation units at 25°C under natural day-night rhythm with ad libitum access to feed and 

water in HEPA-filtered stables. Piglets were provided with a rubber ball as environmental 

enrichment. 

The experiments were approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University. 

 

Strains and growing conditions 

Salmonella serovar Typhimurium strain 112910a, phage type 120/ad, isolated from a 

pig without clinical signs of salmonellosis, was used in all experiments. The bacteria were 

stored at –70 °C. The inocula for the intestinal loop model were prepared according to the 

temperature shift method for Salmonella. Cultures in Luria-Bertani broth (LB; Sigma-Aldrich, 

Steinheim, Germany) were shaken at 130 rpm for 24 h at 25 °C. After diluting twofold and 

adjusting the OD600 nm, the cells were incubated for 2 h at 37 °C, with shaking at 130 rpm. 

Afterwards, the OD600 nm was adjusted with fresh LB once again so that equal densities were 

obtained and 3 syringes of 5 ml were filled with the strain. The actual number of bacteria/ml 

was assessed by plating serial dilutions on MacConkey agar (Oxoid, Hampshire, UK) plates. 

For all other experiments, the bacteria were grown in brain heart infusion broth (BHI; 

Oxoid) for 6 h at 37 °C without shaking and then washed twice in phosphate buffered saline 

(PBS). The number of viable microorganisms was determined by plating tenfold dilutions on 

Brilliant Green Agar (BGA; Oxoid). 
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Interactions of Salmonella Typhimurium with intestinal epithelial cells 

The porcine epitheloid intestinal cell line IPI-2I was derived from the ileum of an adult 

boar (Kaeffer et al., 1993). The polarized porcine epithelial intestinal cell line IPEC-J2 is 

derived from jejunal epithelia isolated from a neonatal piglet (Rhoads et al., 1994; Schierack 

et al., 2006). 

The IPI-2I cells were cultured in RPMI (Gibco, Life Technologies, Paisley, Scotland) 

containing 10 % (v/v) fetal calf serum (FCS; Hyclone, Cramlington, England), 2 mM L-

glutamine (Gibco, Life Technologies), 1 mM sodium pyruvate (Gibco, Life Technologies), 

100 units nystatin ml-1 (Gibco, Life Technologies), 100 units penicillin ml-1  and 100 µg 

streptomycin ml-1 (penicillin/streptomycin, Gibco, Life Technologies). The IPEC-J2 cells 

were maintained on 50% DMEM – 50 % (v/v) F12 medium (Gibco, Life Technologies) with 

5 % (v/v) FCS, 1 % (v/v) insulin/transferrin/Na-selenite media supplement (Gibco, Life 

Technologies) and antibiotics as described above. IPI-2I and IPEC-J2 cells were seeded in 24 

well plates at a density of approximately 105 cells per well and were allowed to grow to 

confluency for at least 7 days. These wells were inoculated with Salmonella at a multiplicity 

of infection (MOI) of 10:1. To synchronize the infection, the inoculated multiwell plates were 

centrifuged at 365 x g for 5 min. After 25 min incubation at 37 °C under 5 % CO2, the wells 

were washed and fresh medium supplemented with 50 µg ml-1 gentamicin (Gibco, Life 

Technologies, Paisley, Scotland) was added. After an additional 60 min incubation at 37 °C 

under 5 % CO2, the wells were washed three times. 

To assess invasion, the cells were lysed with 0.25% deoxycholate (Sigma-Aldrich) 90 

min after inoculation and 10-fold dilutions were plated on BGA plates.  

To assess intracellular growth, the medium containing 50 µg ml-1 gentamicin was 

replaced after the 60 min incubation time with fresh medium supplemented with 15 µg ml-1 

gentamicin and the number of viable bacteria was assessed 24 hours after inoculation as 

described above. 

All measurements were performed in triplicate and the experiment was carried on at 

least two occasions. The results were analysed by a paired Student’s t-test. A P - value of < 

0.05 was considered significant. 

 

Interactions of Salmonella Typhimurium with porcine mononuclear cells 

The PAM were collected by broncho-alveolar washes and the PBM by ficoll-paque 

density gradient centrifugation, as described previously (Dom et al., 1992a; Donné et al., 

2005).  The cells were maintained in RPMI supplemented with 10 % (v/v) FCS, 0.3 mg ml-1 
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L-glutamine, 1 mM Na-pyruvate, 1 % (v/v) non-essential amino acids, 10 U ml-1 heparin, 100 

U ml-1 penicillin, 0.1 mg ml-1 streptomycin and 0.1 mg ml-1 kanamycin. After overnight 

incubation in 96 well plates and washing, the cells were inoculated with Salmonella 

Typhimurium in RPMI at a MOI of 10. The determination of invasion and intracellular 

replication of Salmonella Typhimurium, was carried out using a gentamicin protection assay 

as described for the intestinal epithelial cell lines. Cells were lysed at 90 min, 3 h or 7 h post 

inoculation, using 0.5 % (v/v) triton X-100 (Sigma-Aldrich). All measurements were 

performed in triplicate and the experiment was carried out on 3 occasions. The results were 

analysed by a paired Student’s t-test. A P - value of < 0.05 was considered significant. 

 

 

Interactions of Salmonella Typhimurium with neutrophils 

Neutrophils were isolated from heparinised (1500 IU ml-1) blood using discontinuous 

Percoll (Pharmacia, Uppsala, Sweden) density gradient centrifugation according to Dom et al. 

(1992b).  

The determination of the percentage of salmonellae killed by PMN was carried out 

according to Barrio et al. (2000) with some modifications. The assay was run in Eppendorf® 

tubes (Netheler-Hinz GmbH, Hamburg, Germany) in a final volume of 500 µl with the 

following composition: 400 µl HBSS containing 2.5 x 106 ml-1 PMN and 100 µl HBSS 

containing 107 cfu ml-1 bacteria (mixture sample). Control samples consisted of 400 µl HBSS 

and 100 µl HBSS with 107 cfu ml-1 bacteria. The tubes were rotated end-over-end at 37°C for 

60 min. A sample (25 µl) was taken at 0 and 60 min pi. The PMN in the mixture samples were 

lysed with 0.5 % (v/v) triton X-100. The number of bacteria in the mixture and control 

samples was determined by plating tenfold dilutions on BGA plates. The percentages of killed 

bacteria were calculated using the formula described by Barrio et al. (2000). 

 

Intestinal loop model 

Pigs were starved overnight before surgery to empty the intestines. Piglets were sedated 

for intratracheal intubation using 1 ml per 20 kg azaperone (Stressnil, Janssen Pharmaceutics, 

Beerse Belgium). Induction of anaesthesia was performed by slow intraveneous injection of 1 

ml per 4 kg alphaxolone/alphadolone (Saffan, Schering-Plough Animal Health, Middlesex, 

UK). Anaesthesia was maintained with 1-3 % isoflurane in conjunction with 1 % pure oxygen, 

using a closed circuit with CO2 and isoflurane absorbers. The piglets were kept warm and 
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heart and respiratory rate were monitored. A continuous ringer-glucose drip was inserted into 

the dorsal ear vain.  

 The porcine ligated loop model was carried out as follows. Commencing at the mid 

ileum, loops of 7-8 cm were ligated using surgical silk, separated by 1 cm spacers. The lumen 

of the ileum was flushed with 0.9 % (w/v) NaCl before the construction of the loops to remove 

the intestinal contents. The loops were injected with 1-2 x 109 cfu of Salmonella 

Typhimurium. Approximately 10 ml of blood was removed from the piglets to isolate the 

PMN. The isolated PMN were labelled with 111Indium oxinate and re-injected intravenously. 

The influx of PMN in the intestinal wall and in the lumen, as assessed by the counts per 

minute (cpm) emitted from 111Indium-labelled PMN within the loop, was recorded 12 h after 

injection of the loops using a gamma counter. The results were analysed by a paired Student’s 

t-test. A P - value of < 0.05 was considered significant. 

 

 

Course of a Salmonella Typhimurium infection in pigs 

Twenty one pigs were randomly divided into 7 groups of 3 piglets, which were orally 

inoculated with 107 cfu Salmonella Typhimurium in 2 ml PBS, by syringe. One group of 3 

pigs was sham-inoculated orally with 2 ml PBS and served as negative controls. The rectal 

temperature and clinical condition (anorexia, lethargy, diarrhoea) was monitored and faecal 

samples were taken directly from the rectum from each pig on several days post inoculation. 

On day 1, 2, 5, 9, 14, 21 and 28 pi, 3 pigs were euthanized and necropsied. Samples of various 

organs were taken for bacteriological analysis. 

All the samples were stored at -70 °C until further examination. The samples were 

thawed and weighed, 10 % (w/v) suspensions were prepared in buffered peptone water (BPW; 

Oxoid, Hampshire, UK) after which the material was homogenized. The homogenized 

samples were examined for the number of Salmonella bacteria per gram by plating tenfold 

dilutions on BGA. If negative at direct plating, the samples were pre-enriched overnight at 37 

°C in BPW, enriched overnight at 37 °C in tetrathionate broth and then plated on BGA. 

Samples that were negative after direct plating but positive after enrichment were presumed to 

have 10 cfu g-1. Samples that remained negative were presumed to contain 0 cfu g-1.  

 

Dose-response study 

Fourteen pigs were randomly divided into 3 groups of 4 pigs, which were orally 

inoculated with 105 cfu (group 1), 107 cfu (group 2) or 109 cfu (group3) of Salmonella 
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Typhimurium in 2 ml PBS. The animals were weighed before the inoculation and just before 

euthanasia. Their rectal temperature and clinical condition (anorexia, lethargy, diarrhoea) was 

monitored twice daily the first two days pi and daily at day 3 and day 5 pi. On day 5, the pigs 

were euthanized and necropsied. Samples were taken for bacteriological analysis and bacterial 

counts in the tissues and faeces were determined as described above. 

Results of bacterial analysis and loss of weight for the different groups were statistically 

analysed using a Kruskal-Wallis test and significant differences (P < 0.05), were compared in 

a Mann-Whitney test. A P - value of < 0.05 was considered significant. 

 

RESULTS 

 

Salmonella Typhimurim invades and replicates in intestinal epithelial cell lines 

The results of the invasion and proliferation tests in both epithelial intestinal cell lines 

are summarized in Figure 1A. Invasion was significantly (P < 0.05) higher in the polarized 

epithelial cell line IPEC-J2 compared to the IPI-2I cell line. Intracellular replication rates were 

not significantly different.  

 

Salmonella Typhimurium replicates in PAM, but not in PBM 

PAM and PBM were invaded to a similar extent. The bacteria replicated quickly in the 

PAM, but not in the PBM at 7 hours after inoculation. At 24 h pi, the viability of PAM and 

PBM did not allow accurate titration of intracellular bacteria. The results of the invasion and 

proliferation tests are summarized in Figure 1B. 

 

Salmonella Typhimurium induces PMN influx and is killed rapidly by PMN  

The results obtained in the intestinal loop model are shown in Figure 2. Salmonella 

Typhimurium induced massive attraction of PMN in both the lamina propria and the lumen of 

the gut. The loops contained a rather small amount of slimy, pus-like substance. The number 

of PMN was significantly (P < 0.05) higher in the loops inoculated with Salmonella compared 

to the control loops. The intra- and interexperimental variation between loops was relatively 

low. 

In the bacterial killing assay with PMN, 60 minutes after addition of Salmonella 

Typhimurium, 45 % (± 11 % stdev) of the bacteria was killed by the PMN.  
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Figure 1: The invasiveness and intracellular replication of Salmonella Typhimurium in 

intestinal epithelial cells (A) and mononuclear cells (B). In figure A, the results obtained in the 

polarized cell line IPEC-J2 are shown with the open circles and a full line, the results obtained 

in the non polarized cell line IPI-2I are shown with the black circles and the dotted line. In 

figure B, the results obtained in the macrophages are shown with the open circles and a full 

line, the results obtained in the monocytes are shown with the black circles and the dotted line. 

The log values of the number of gentamicin-protected bacteria are shown. The results represent 

the means of at least 2 independent experiments conducted in triplicate ± standard error of the 

means. An asterisk refers to a significant (P < 0.05) difference.   

 

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

0 5 10 15 20 25 30

hours post inoculation

R
ec

ov
er

y 
of

 b
ac

te
ri

a 
lo

g1
0 

(c
fu

/m
l)

 
 

3

3,5

4

4,5

5

5,5

6

0 1 2 3 4 5 6 7 8

hours post inoculation

re
co

ve
ry

 o
f b

ac
te

ri
a 

lo
g1

0 
(c

fu
/m

l)

 
 

A 

B 

* 

* 
* 



 83 

Figure 2: Radio-active � counts per minute per cm loop as a measure for the early PMN influx elicited 

by Salmonella Typhimurium in porcine intestinal loops. Approximately 1.5 x 109 cfu of Salmonella 

Typhimurium were injected into the loops and left for 12 h before analysis. Luria-Bertani broth (LB) 

served as negative control. Each mean ± SEM is calculated from 3 loops in 2 piglets. 

 
Course of a Salmonella Typhimurium infection in pigs 

In the Salmonella inoculated groups, all pigs were colonized. Mean bacterial counts in 

faeces were the highest at day 5 pi and pigs were shedding Salmonella Typhimurium 

intermittently until day 28 pi (Fig. 3).The dynamics of the percentage of piglets that shed 

Salmonella Typhimurium at least at enrichment level and of diarrhoea and fever (> 40 °C) are 

shown in Figure 4. Mean bacterial counts (log10 ± stdev) in the various tissues of the infected 

pigs are shown in Table 1. Mean bacterial counts in the internal organs were highest at day 5 

pi and remained stable at an enrichment level from day 21 pi on. Mean bacterial counts of the 

intestinal contents were in 16 of the 21 cases lower than bacterial counts of the intestinal wall.  

In the negative control group, Salmonella Typhimurium was not isolated from faeces or 

tissues and none of the piglets developed either diarrhoea or fever. 
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Figure 3: Faecal shedding of pigs inoculated with 107 cfu of Salmonella Typhimurium, shown 

as the average number of cfu (log10) ± stdev of Salmonella Typhimurium per gram faeces. 
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Salmonella Typhimurium infection is dose-dependent 

In the Salmonella inoculated groups all pigs were colonized. Mean bacterial counts 

(log10 ± stdev) in the various tissues of these pigs are shown in Table 2. The results of the 

clinical scores (diarrhoea, anorexia, fever) and the mean body weight are summarized in Table 

3. Significantly (P < 0.05) more pigs of group 3 developed diarrhoea than the pigs of group 1 

and 2. The loss of weight in group 3 was significantly (P < 0.05) higher than in groups 1, 2 

and the control group. 

The bacterial load in ileum and caecum and in the contents of ileum and caecum of pigs 

from groups 1 and 2 were significantly (P < 0.05) lower than the bacterial load of the pigs 

from group 3. In the negative control group, Salmonella Typhimurium was not isolated from 

the faeces or tissues at any time point. 

 

Figure 4: Percentages of pigs that excrete Salmonella Typhimurium (-�-), showing diarrhoea  

(-�-) or fever (-�-) after inoculation with 107 cfu. 
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Table 1: Mean log10 cfu/g of Salmonella Typhimurium in different samples at days 1, 2, 5, 9, 14, 21 and 28 after experimental 

inoculation with 107 cfu of Salmonella Typhimurium. The frequency (F) shows the fraction of positive samples in relation to the total 

number of tissues. 

 

Days post inoculation 
  1  2  5  9  14  21  28 

Samples F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

F Log10 cfu/g 
± stdev 

Mand. ln. 2/3 0.67 ± 0.58 2/3 0.67 ± 0.58 3/3 1 ± 0 3/3 1 ± 0 3/3 1 ± 0 3/3 1 ± 0 3/3 1 ± 0 
Tonsil 2/3 1.83 ± 1.6 3/3 2 ± 1.73 3/3 2.6 ± 1.38 3/3 2.17 ± 2.02 3/3 2.17 ± 2.03 3/3 1.87 ± 1.51 3/3 1 ± 0 
Lung 0/3 0 ± 0 2/3 0.67 ± 0.58 3/3 1 ± 0 2/3 0.67 ± 0.58 2/3 0.67 ± 0.58 2/3 0.67 ± 0.58 0/3 0 ± 0 
Heart 0/3 0 ± 0 0/3 0 ± 0 1/3 0.33 ± 0.58 1/3 0.33 ± 0.58 1/3 0.33 ± 0.58 1/3 0.33 ± 0.58 2/3 0.67 ± 0.58 
Liver 2/3 0.67 ± 0.58 1/3 0.33 ± 0.58 3/3 1 ± 0 3/3 1 ± 0 2/3 0.67 ± 0.58 1/3 0.33 ± 0.58 0/3 0 ± 0 
Spleen 1/3 0.33 ± 0.58 1/3 0.67 ± 0.58 1/3 0.33 ± 0.58 1/3 0.33 ± 0.58 0/3 0 ± 0 0/3  0 ± 0 0/3 0 ± 0 
Kidney 0/3 0 ± 0 1/3 0.33 ± 0.58 0/3 0 ± 0 2/3 0.67 ± 0.58 0/3 0 ± 0 0/3 0 ± 0 1/3 0.33 ± 0.58 
Mesent. ln. 1/3 0.33 ± 0.58 3/3 1.9 ± 1.55 3/3 1.55 ± 0.94 3/3 1.56 ± 0.96 2/3 0.67 ± 0.58 2/3 0.67 ± 0.58 3/3 1 ± 0 
Jejunum 1/3 1.64 ± 2.84 2/3 3.32 ± 2.88 3/3 1.75 ± 1.31 1/3 1.26 ± 2.18 1/3 0.33 ± 0.58 2/3 0.67 ± 0.58 3/3 1 ± 0 
Ileum 1/3 0.84 ± 1.46 3/3 1 ± 0 3/3 1.94 ± 1.63 3/3 1.41 ± 0.71 2/3 1.21 ± 1.32 0/3 0 ± 0 3/3 1 ± 0 
Caecum 2/3 1.62 ± 1.99 3/3 2.43 ± 1.25 3/3 3.87 ± 1.09 3/3 3.6 ± 0.56 3/3 1 ± 0 2/3 0.67 ± 0.58 3/3 1 ± 0 
Contents jejunum 1/3 1.63 ± 2.83 2/3 2.23 ± 2.15 2/3 1.33 ± 1.15 2/3 1.33 ± 1.15 1/3 0.96 ± 1.66 0/3 0 ± 0 2/3 1.33 ± 1.15 
Contents ileum 1/3 0.33 ± 0.58 2/3 0.67 ± 0.58 3/3 1 ± 0 2/3 0.67 ± 0.58 1/3 0.33 ± 0.58 3/3 1 ± 0 2/3 0.67 ± 0.58 
Contents caecum 1/3 0.8 ± 1.38 2/3 1.5 ± 1.81 3/3 1.95 ± 1.66 3/3 1.59 ± 1.02 2/3 0.67 ± 0.58 3/3 1 ± 0 3/3 1 ± 0 



 86 

 

Table 2: Mean log10 cfu/g of Salmonella Typhimurium in different tissues at 5 days after 

experimental inoculation of pigs with either 105, 107 or 109 cfu of Salmonella Typhimurium. 

The frequency (Freq.) shows the fraction of positive samples in relation to the total number of 

tissues.  

 
Infection dose 

                                               105 cfu                                     107 cfu                                   109 cfu 

Samples Freq. Log10 cfu/g 

±stdev 

Freq. Log10 cfu/g 

±stdev 

Freq. Log10 cfu/g 

±stdev 

Mand. ln. 2/3 0.92 ± 0.88 3/4 0.92 ± 0.7 4/4 1.41 ± 0.67 

Tonsil 4/4 1.48 ± 0.96 4/4 1.44 ± 0.88 4/4 2.66 ± 1.16 

Bronch. ln 1/4 0.25 ± 0.5 0/4 0 ± 0 1/4 0.25 ± 0.5 

Lung 1/4 0.25 ± 0.5 3/4 0.75 ± 0.5 4/4 1 ± 0 

Heart 0/4 0 ± 0 1/4 0.25 ± 0.5 3/4 0.75 ± 0.5 

Liver 3/4 1.06 ± 0.78 4/4 1 ± 0 4/4 1 ± 0 

Spleen 4/4 1 ± 0 3/4 0.75 ± 0.5 3/4 0.88 ± 0.64 

Kidney 4/4 1 ± 0 3/4 0.75 ± 0.5 2/4 0.71 ± 0.89 

Mesent. ln. 1/4 0.48 ± 0.96 3/4 1.21 ± 1.07 4/4 2.4 ± 0.62 

Jejunum 2/4 1.06 ± 1.53 4/4 3.26 ± 1.57 3/3 3.51 ± 1.29 

Ileum 3/4 1.08 ± 0.94 4/4 1.21 ± 0.29 3/3 3.27 ± 0.4 

Caecum 4/4 2.76 ± 1.18 4/4 3.25 ± 0.96 3/3 4.46 ± 0.32 

Contents jejunum 2/4 0.73 ± 0.92 3/4 2.35 ± 2.18 3/3 5.12 ± 1.67 

Contents ileum 3/4 2.75 ± 0.5 4/4 2.33 ± 1.62 3/3 4.66 ± 0.58 

Contents caecum 4/4 1 ± 0 4/4 1.49 ± 0.98 3/3 5.37 ± 0.51 

 

Table 3: Results of the clinical scores (diarrhoea, fever, anorexia) during 5 days post 

inoculation with either 105 (group 1), 107 (group 2) or 109 (group 3) cfu of Salmonella 

Typhimurium and the mean gain in body weight at 5 days post inoculation. Clinical scores are 

presented as average fractions of animals showing the respective clinical signs over the 5 day 

period. 

 
 Average fraction of animals showing  

Group Diarrhoea Fever Anorexia Mean weight gain 

1 0.05 0 0 - 0.14 kg 

2 0.1 0.05 0 - 0.13 kg 

3 0.45 0.30 0.15 - 0.49 kg 

Negative control 0 0 0 + 0.15 kg 
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DISCUSSION 

 

In this study, we used several in vitro models to assess the virulence of Salmonella 

Typhimurium strains. 

A main virulence property of Salmonella is the ability to invade non-phagocytic cells. 

The invasion of intestinal epithelial cells is generally accepted as a major event in the 

pathogenesis of Salmonella-infections (Schlumberger and Hardt, 2005). In this study, invasion 

was markedly increased in a polarized cell line compared to a non-polarized cell line. Since 

polarized cell lines more closely approach the in vivo situation and since some Salmonella 

virulence features are lost using non-polarized cells (Raffatellu et al., 2005), we suggest using 

polarized cell lines as much as possible.  

One of the most characteristic features of Salmonella induced diarrhoea is the massive 

influx of neutrophils (Tükel et al., 2006). In no longer than 12 hours, the porcine intestinal 

loop model was able to mimic this trait in a reproducible manner. Regarding the fact that 1 

piglet can provide more or less 30 individual loops, one can easily understand that this model 

has tremendous advantages compared to models using individual pigs. Indeed, in several 

species including pigs, the intestinal loop model has been used to explore the intestinal 

inflammation phase during Salmonella infections (Wallis et al., 1989; Mehta et al., 1998; 

Bolton et al., 1999; Boyen et al., 2006). In contrast to the situation in calves (Bolton et al., 

1999), we did not find a large volume of watery fluid in the intestines but rather a small 

amount of slime containing mainly neutrophils, so the measurement of luminal fluids may not 

be as useful in porcine loops as it is in bovine loops. Some degree of fluid response can be 

induced, however, using very young piglets (Clarke and Gyles, 1987). Even though a variant 

form of the intestinal loop model has been used to quantify invasion in intestinal epithelial 

cells (Uzzau et al., 2001; Meyerholz and Stabel, 2003), we recommend to use a polarized 

intestinal epithelial cell line, since it requires no animals to be used and it proves to be cheaper 

and less time consuming. Since Interleukin-8 (IL-8) is a major cytokine in the development of 

Salmonella-induced intestinal inflammation (Tükel et al., 2006), one could try to assess the 

ability of Salmonella strain to induce an intestinal inflammation response by measuring the IL-

8 production by either macrophages or epithelial cells (Boyen et al, 2006a; Tükel et al., 2006). 

However, since also other cytokines play a role in the attraction of neutrophils to the lumen of 

the gut (Tükel et al., 2006) and since enteritis is the result of an extensive interplay of different 

receptors on different cell types (Tükel et al., 2006), the intestinal loop model is a much more 

physiological and reliable model. 
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Intracellular survival and proliferation inside macrophages has been shown to contribute 

to persistent infections of Salmonella in mice (Buchmeier and Heffron, 1989; Leung and 

Finlay, 1991). In spite of the fact that the systemic phase of a Salmonella Typhimurium 

infection is hardly as important in pigs as in BALB/c mice, the role of mononuclear cells, for 

example in lymphoid tissues, in the pathogenesis of Salmonella Typhimurium infections in 

pigs must not be neglected. As in mice (Buchmeier and Heffron, 1989; Hensel et al., 1998), 

the source of isolation of the mononuclear cells determined the degree of growth or survival of 

Salmonella Typhimurium. In our case, the tissue macrophages allowed intracellular growth, 

whereas the monocytes were more restrictive. This finding may reflect the loss of important 

microbicidal functions of resident macrophages compared with blood monocytes (Chitko-

McKown et al., 1991). Therefore, it may be useful to include both cell types in in vitro assays. 

Even though the work with cell lines or single cell suspensions has its advantages, it 

also holds limitations. One of the most important drawbacks is that these models lack the 

interplay of different important cell types (Niewold et al., 2006). This may mean that 

sometimes the use of an in vivo infection model is inevitable. The oral infection may be 

considered the most physiological model. Oral infection of pigs resulted in colonization of and 

persistence in both the tonsils and the gut, using low, moderate or high inoculation doses. 

However, it took an inoculation dose of at least 107 cfu to render all animals positive for 

Salmonella in all gut samples at day 5 pi. This uniformity may be important for 

standardization purposes in comparative assays. Inoculation with 109 cfu also guarantees 

uniform colonization, but this extreme high inoculation dose differs greatly from the natural 

infection, which is often established with low or moderate numbers of Salmonella (Loynachan 

and Harris, 2005). Even though all animals were colonized with 107 cfu, only maximum 50 % 

of the animals displayed signs of diarrhoea and only maximum 20 % had fever, both on days 3 

and 5 pi. These results suggest that the oral inoculation model can be used to investigate 

colonization (at day 5 pi) and even persistence (at day 28 pi), but is not suited as an enteritis 

model or a systemic disease model, due to low and variable numbers of animals showing 

clinical signs. 

In conclusion, the in vitro models and the intestinal loop model evaluated in the present 

study can be used to screen candidate knock-out vaccine strains for attenuation. A promising 

selection of strains may then be used for further in vivo characterization. The data obtained in 

the porcine experimental infection model are helpful to determine optimal inoculation dose, 

time points of sampling and numbers of animals needed in future experimental infection 

studies. 
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ABSTRACT 

Salmonella Pathogenicity Island 1 (SPI-1) genes are indispensable for virulence of 

Salmonella Typhimurium in several animal species. The role of SPI-1 in the pathogenesis of 

Salmonella Typhimurium infections of pigs, however, is not well described.  

The interactions of a porcine Salmonella Typhimurium field strain and its isogenic mutants 

with disruptions in the SPI-1 genes hilA, sipA and sipB with porcine intestinal epithelial cells 

was characterized in vitro and in a ligated intestinal loop model in pigs. HilA and SipB were 

essential in the invasion of porcine intestinal epithelial cells in vitro. A sipA mutant was 

impaired for invasion using a polarized cell line, but fully invasive in a non-polarized cell 

line. All SPI-1 mutants induced a significant decrease in influx of neutrophils in the porcine 

intestinal loop model compared with the wild type strain. 

Pigs were orally inoculated with 108 colony forming units of both the wild type Salmonella 

Typhimurium strain and its isogenic sipB::kan mutant strain. The sipB mutant strain was 

significantly impaired to invade the intestinal, but not the tonsillar tissue, one day after 

inoculation and was unable to efficiently colonize the intestines and the GALT, but not the 

tonsils, 3 days after inoculation.  

This study shows that SPI-1 plays a crucial role in the invasion and colonization of the 

porcine gut and in the induction of influx of neutrophils towards the intestinal lumen, but not 

in the colonization of the tonsils. 

 

Key words 

Salmonella Typhimurium – pig – gut - tonsils – SPI-1  
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INTRODUCTION 

 

Human salmonellosis is frequently associated with Salmonella enterica subspecies 

enterica serovar Typhimurium (Salmonella Typhimurium; Borch et al., 1996; Berends et al., 

1998) and salmonellosis caused by this serovar is mainly associated with the consumption of 

pork. Salmonella Typhimurium is the predominant serovar isolated from pigs in Europe 

(Anonymous, 2004) and pigs may be subclinically infected. These animals generally carry the 

bacterium in the tonsils, the intestines and the gut-associated lymphoid tissue (GALT; 

Fedorka-Cray et al., 2000). Such carriers are a major reservoir of Salmonella Typhimurium 

and pose an important threat to animal and human health Berends et al., 1997; Poppe et al., 

1998).  

The invasion of intestinal epithelial cells is considered a major step in the pathogenesis of 

Salmonella infections. Salmonella Pathogenicity Island 1 (SPI-1) is crucial in the interactions 

of Salmonella with intestinal epithelial cells in several animal species. It encodes a type three 

secretion system (T3SS-1) which consists of a hollow, needle-like structure and a pore-

forming ring (also called translocon) through which effector proteins are transported into the 

cytoplasm of the infected host cell (Zhou and Galan, 2001). Through direct and indirect 

modulation of the host cell’s cytoskeleton, the bacterium forces the host cell to engulf the 

attached Salmonella bacterium (Zhou and Galan, 2001; Garcia-del Portillo and Finlay, 1994).  

SPI-1 also plays a central role in the induction of enteritis and diarrhoea. The secretion of pro-

inflammatory cytokines, for example IL-8, is a result of the activation of the MAP kinase 

pathways and the transcription factor NF-�B by T3SS-1 effector proteins (Hobbie et al., 1997; 

Murli et al., 2001). IL-8, released from the basolateral aspect of infected epithelial cells, plays 

an important role in the initial movement of neutrophils from the circulation into the 

subepithelial region (McCormick et al., 1995). The actual transepithelial migration of the 

polymorphonuclear leucocytes (PMN) into the lumen of the gut is mediated by another 

cytokine, called the pathogen elicited epithelial chemo-attractant (PEEC), which is secreted 

on the apical side of the epithelial cells, in response to the SPI-1 effector SipA (Lee et al., 

2000). Recently, PEEC has been identified as the key regulator of mucosal inflammation, 

hepoxilin A3 (Mrsny et al., 2004). 

 

Most of the findings described above were identified through experiments in mice, cell 

culture chambers or the calf intestinal loop model. Since the course of a Salmonella 

Typhimurium infection varies greatly between different host species, biological effects of 
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bacterial virulence factors may differ. Information on the importance of SPI-1 in the 

pathogenesis of Salmonella Typhimurium infections in pigs is scarce. It was the aim of the 

present study to characterize the role of SPI-1 of a porcine Salmonella Typhimurium field 

strain in the intestinal phase of infection of pigs. 

 

MATERIALS AND METHODS 

 

All animal experiments were approved by the ethical committee of the Faculty of 

Veterinary Medicine, Ghent University. 

 

Bacterial strains and growth conditions 

Table 1: The strains used in this study. 

Strain  Genotype Source or reference 

WT Salmonella Typhimurium 112910a  Donné et al., 2005 

WTnal Salmonella Typhimurium 112910a Nalr This study 

HilA Salmonella Typhimurium 112910a �hilA Boyen et al., 2006a 

SipA Salmonella Typhimurium 112910a �sipA Boyen et al., 2006a 

SipB Salmonella Typhimurium 112910a �sipB Boyen et al., 2006a 

SipBkan Salmonella Typhimurium 112910a sipB::kan Boyen et al., 2006a 

SipBkan/nal Salmonella Typhimurium 112910a Nalr sipB::kan This study 

 

Salmonella Typhimurium strain 112910a, phage type 120/ad, was isolated from a pig 

stool sample and has been shown to persist in tonsils, intestines and gut-associated lymph 

nodes of experimentally infected pigs during at least 28 days (unpublished data). The 

construction and characterization of mutants with non-polar deletion mutations in the genes 

encoding the major SPI-1 regulatory protein HilA, the SPI-1 translocator/effector protein 

SipB and the SPI-1 effector protein SipA have been described before (Boyen et al., 2006a). 

An invasive, spontaneous nalidixic acid resistant derivative of the wild type strain (WTnal) 

was used for the mixed infection assay in order to minimise irrelevant bacterial growth when 

plating out intestinal and faecal samples. The sipB::kan mutation of the original strain 

112910a (Boyen et al., 2006a) was moved by P22 transduction (Schmieger and Backhaus, 
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1976) into the WTnal background and enabled us to make a phenotypical distinction 

(kanamycin resistance) between the wild type strain and the SPI-1 deficient derivative. All 

mutations were confirmed by PCR and sequencing of the relevant PCR fragment, using the 

primers as described before (Boyen et al., 2006a). At different stages of the construction, 

bacteriophage P22 sensitivity was tested to confirm the smooth phenotype.  

To obtain highly invasive late logarithmic cultures (Lundberg et al., 1999) for invasion 

assays, 2 µl of a stationary phase culture was inoculated in 5 ml Luria-Bertani broth (LB; 

Sigma-Aldrich, Steinheim, Germany) and grown for 5 hours at 37 °C without aeration. The 

inocula for the intestinal loop model were prepared as described previously (Boyen et al., 

2006b). For the oral inoculation of pigs, the bacteria were grown overnight in LB with 

aeration at 37 °C. The bacteria were washed twice in phosphate-buffered saline (PBS, 2000 x 

g, 10 min, 4 °C) and diluted in PBS to the appropriate concentrations. The number of viable 

Salmonella bacteria ml-1 in the inoculum was determined by plating tenfold dilutions onto 

Brilliant Green Agar (BGA; Oxoid, Basingstoke, UK).  

 

Cell cultures 

The porcine intestinal epitheloid IPI-2I cell line (Kaeffer et al., 1993) and the 

polarized porcine intestinal epithelial cell line IPEC-J2 (Rhoads et al., 1994) were used for 

invasion assays. The IPI-2I cells were cultured in RPMI (Gibco, Life Technologies, Paisley, 

Scotland) containing 10 % (v/v) fetal calf serum (FCS; Hyclone, Cramlington, England), 2 

mM L-glutamine (Gibco, Life Technologies, Paisley, Scotland), 1 mM sodium pyruvate 

(Gibco, Life Technologies, Paisley, Scotland), 100 units nystatin ml-1 (Gibco, Life 

Technologies, Paisley, Scotland), 100 units penicillin ml-1  and 100 µg streptomycin ml-1 

(penicillin/streptomycin, Gibco, Life Technologies, Paisley, Scotland). The IPEC-J2 cells 

were maintained on 50 % DMEM – 50 % F12 medium with 5 % (v/v) FCS, 1 % (v/v) 

insulin/transferrin/Na-selenite media supplement (Gibco, Life Technologies, Paisley, 

Scotland) and antibiotics as described above.  

 

Analysis of secreted proteins 

Proteins secreted by Salmonella Typhimurium into culture supernatants during growth 

in LB broth were precipitated using trichloroacetic acid as described previously (Watson et 

al., 1998). The resuspended proteins (5 µl) were separated on NuPAGE 10 % Bis-Tris gels 

(Invitrogen) and stained with Coomassie brilliant blue. The presence of SipB in the secreted 

proteins was probed through transfer of 5 µl of each protein preparation to Hybond ECL 
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membrane by standard Western blotting techniques and detection of SipB using the anti-SipB 

monoclonal antibody at 1 µg ml-1. The anti-SipB monoclonal antibody was a kind gift from 

Ed Galyov, IAH Compton. 

 

Invasion and intracellular survival of Salmonella Typhimurium and its SPI-1 mutants in 

porcine intestinal epithelial cells 

IPI-2I and IPEC-J2 cells were seeded in 24 well plates at a density of approximately 

105 cells per well and were allowed to grow to confluency for at least 7 days. These wells 

were inoculated with the different Salmonella strains at a multiplicity of infection (MOI) of 

10:1. To synchronize the infection, the inoculated multiwell plates were centrifuged at 365 x g 

for 5 min. After 25 min incubation at 37 °C under 5% CO2, the wells were washed and fresh 

medium supplemented with 50 µg/ml gentamicin (Gibco, Life Technologies, Paisley, 

Scotland) was added. After an additional 60 min incubation at 37 °C under 5% CO2, the wells 

were washed three times. 

To assess invasion, the cells were lysed with 0.25% deoxycholate (Sigma-Aldrich, 

Steinheim, Germany) 90 min after inoculation and 10-fold dilutions were plated on brilliant 

green agar (BGA) plates.  

To assess intracellular growth, the medium containing 50 µg/ml gentamicin was 

replaced after the 60 min incubation time with fresh medium supplemented with 15 µg/ml 

gentamicin and the number of viable bacteria was assessed 24 hours after inoculation as 

described above. 

 

Induction of an inflammatory response by Salmonella Typhimurium and its SPI-1 

mutants in porcine intestinal loops 

Intestinal loops were made in 6-week-old farm-reared Landrace/Large White cross 

male piglets. This model has been described in detail elsewhere (Wallis et al., 1995; Bolton et 

al., 1999). In short, the lumen of the ileum was gently flushed with 0.9 % NaCl before the 

construction of the loops to remove the intestinal contents. Commencing at the distal ileum, a 

maximum of 30 sequential loops (each 6-7 cm in length and containing both absorptive 

epithelium and follicle associated epithelium) were ligated using surgical silk, separated by 

1 cm spacers. The inoculum injected into each loop, consisting of Salmonella Typhimurium 

112910a or one of the isogenic SPI-1 mutants, was in the range 1-2 x 109 colony forming 

units (cfu). Approximately 10 ml of blood was taken from the piglets to isolate the PMNs. 

The isolated PMNs were labelled with 111Indium and reinjected intravenously. The influx of 
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PMNs in the intestinal wall and in the lumen of the gut, as assessed by the counts per minute 

(c.p.m.) emitted from 111Indium-labelled PMNs within each loop, was recorded 12 h after 

injection of the loops using a Wallac 1275 mini gamma counter. 

 

Experimental mixed infection of piglets 

Experimental infections were performed in 6-week-old piglets (commercial closed 

line based on Landrace), from a serologically negative breeding herd and were negative for 

Salmonella at faecal sampling. They arrived at the facility 7 days before they were inoculated 

and were divided at random into two groups: one group of 10 inoculated pigs and one 

negative control group of 3 pigs. The piglets were housed in pairs in separate isolation units at 

25 °C under natural day-night rhythm with ad libitum access to feed and water.  

The 10 experimental animals were orally inoculated with approximately 108 cfu of a 

stationary phase culture of the WTnal and the SipBkan/nal strains in 2 ml PBS in a 1:1 ratio. The 

negative control group was sham-inoculated with 2 ml PBS.  

Fresh faecal samples were taken from each pig on a daily basis for bacteriological 

analysis. On days 1 and 3 after inoculation, 5 piglets were humanely euthanized. Sham-

inoculated piglets were euthanized 3 days after inoculation. Samples of tonsils, liver, spleen, 

kidney, mesenteric, ileocecal and colonic lymph nodes, jejunum, ileum, cecum and colon 

were taken for bacteriological analysis. The jejunum, ileum, cecum and colon tissue samples 

were separated from their contents and were rinsed in PBS. Both the contents and the rinsed 

tissue samples were bacteriologically examined. 

All samples were stored at -70 °C until use. The samples were thawed and weighed, 

10% (w/v) suspensions were made in buffered peptone water (BPW; Oxoid, Basingstoke, 

UK) after which the material was homogenized with a stomacher. The homogenized samples 

were examined for the presence of the Salmonella strains by plating tenfold dilutions on 

BGA. All samples were plated in duplicate; once on BGA supplemented with 20 µg/ml 

nalidixic acid (BGANAL) and once on BGA supplemented with 20 µg/ml nalidixic acid and 

100 µg/ml kanamycin (BGANAL/KAN). If negative at direct plating, the samples were pre-

enriched overnight in BPW at 37 °C, enriched overnight at 37 °C in tetrathionate broth and 

then plated on BGANAL and BGANAL/KAN.  

Salmonella colonies that grew on BGANAL/KAN were presumed to be the SipBkan/nal 

strain, colonies that grew on BGANAL were both the WTnal and the SipBkan/nal strain. The 

number of colonies on BGANAL/KAN was subtracted from the number of colonies on BGANAL, 

resulting in the number of WTnal colonies. The ratio WTnal / SipBkan/nal was calculated for all 
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samples derived from each piglet. These data were converted logarithmically prior to the 

calculation of averages and statistical analysis. The appropriate detection limits were 

calculated and used to estimate the minimum ratios when samples were not positive after 

direct plating. 

 

Localization of Salmonella Typhimurium in porcine tonsils 

Four piglets were orally inoculated with approximately 108 cfu of a stationary phase 

culture of the WTnal as described above. One and 3 days after inoculation, 2 piglets were 

humanely euthanized. Samples were taken from the tonsils for bacteriological examination 

and for immunohistochemical analysis. Tonsillar tissue was fixed in 10% formalin, embedded 

in paraffin and sectioned at 10 µm. The sections were incubated with rabbit polyclonal 

antiserum to Salmonella O4 somatic antigen (Pro-Lab Diagnostics, Neston, UK) diluted 1:50. 

Biotinylated goat anti-rabbit antibodies (Zymed Laboratories, San Francisco, USA) diluted 

1:500 were added to the tissue sections (45 min, room temperature). Positive cells were 

stained brown after adding StreptABComplex/HRP (DakoCytomation, Glostrup, Denmark) 

and diaminobenzidine (Sigma-Aldrich, Steinheim, Germany). Sections were counterstained 

with haemaluin. As negative controls, sections were stained as described above, using rabbit 

polyclonal antiserum to Salmonella O9 somatic antigen (Pro-Lab Diagnostics, Neston, UK) as 

primary antibody. This somatic antigen is not expressed by Salmonella Typhimurium. 

Sections were evaluated using the Leica DM LB2 microscope. Pictures were taken using the 

Leica DFC 320 camera and the Leica IM50 imaging software. 

 

Statistical analysis 

The gentamicin protection assays were carried out in triplicate with three repeats per 

experiment. The in vitro invasion and intestinal loop data were analysed by one-way analysis 

of variance method, using the SPSS 12.0 software for Windows and Bonferroni corrections 

were applied. A paired Student’s t-test was used to determine whether the log value of the 

WTnal / SipBkan/nal ratio of the samples was significantly different from the log value of the 

WTnal / SipBkan/nal ratio of the inoculum.  
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RESULTS 

 

Secreted protein analysis 

Both the wild type strain and its nalidixic resistant derivative express and secrete the 

full complement of Sip proteins. The hilA mutant strain was defective in the secretion of 

several SPI-1 encoded effector proteins, including SipA, SipB, SipC and SipD. The sipA 

mutant strain was defective in the secretion of the SipA protein exclusively. All sipB mutant 

strains were defective in the secretion of SipB, but showed no altered secretion of other SPI-1 

encoded proteins. The results of both the gel electrophoresis and the western blot are shown in 

Fig 1. 

 
 

Figure 1: Profiles of proteins secreted by Salmonella Typhimurium 112910a and its derivative strains 

into the culture supernatant. Arrows indicate the molecular weights of SipA, SipC and SipD. The 

molecular sizes of marker proteins are given on the left. Beneath the respective lanes, the results are 

shown of the western blots performed on all strains, using an anti-SipB monoclonal antibody. 

 

Invasion in porcine intestinal epithelial cells is SPI-1 dependent 

Invasion and intracellular replication of Salmonella Typhimurium 112910a and its 

isogenic mutant strains was compared in porcine IPI-2I and IPEC-J2 cells strains, using a 

gentamicin protection assay. The results are summarized in Fig. 2. Ninety minutes post 

inoculation (pi), the wild type strain and its nalidixic resistant derivative showed identical 

45.7 kDa 
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invasion and survival rates in both cell lines. The HilA, SipB, SipBkan and SipBkan/nal strains 

invaded the IPI-2I and IPEC-J2 cells respectively 10 times or 1000 times less than the wild 

type strain (statistically significant, p < 0.005). The sipA mutant strain did not show any 

significant differences from the wild type strain (p > 0.05) in the IPI-2I cell line, but was 

significantly (p < 0.005) attenuated in invasion using the IPEC-J2 cell line. The SPI-1 mutant 

strains were not impaired in intracellular replication. 

 

Induction of intestinal inflammation in pigs is SPI-1 dependent 

In the porcine intestinal loop assays, inoculation with the wild type strain resulted in 

intestinal inflammation 12 hours after inoculation as quantified by influx of 111In-labelled 

neutrophils. Although the number of neutrophils in the tissue was only modestly increased 

over control loops, the number of neutrophils in the lumen was increased by more than 100-

fold compared to the sham-inoculated loops. The inflammatory response in the intestinal 

loops inoculated with the SPI-1 mutant strains was abolished. Although there was a slight 

increase in the induction of a neutrophil influx, especially in the lumen, compared to the 

control loops, this was significantly lower (p < 0.005) than in the loops inoculated with the 

wild type strain. These results are shown in Fig. 3. 

 

SPI-1 is necessary for efficient invasion of the porcine gut 

The ability of the WTnal and SipBkan/nal strains to colonize porcine tissues were quantified 

following oral inoculation of 6 week old piglets 

One day after inoculation, the WTnal was recovered in numbers at least two orders of 

magnitude higher than the SipBkan/nal strain in the jejunal, ileal and cecal wall, the jejunal 

contents and the ileocecal lymph nodes. In these organs, the output ratio WTnal / SipBkan/nal 

was significantly higher (p < 0.05) than in the inoculum. In contrast, the ileal and cecal 

contents and the tonsils were colonized to a similar extent by both strains. The numbers of 

bacteria in the liver, spleen, kidney, mesenteric lymph nodes and colon were very low, 

impairing a meaningful quantitative comparison between both strains. The average log values 

of the ratio WTnal/SipBkan/nal of 5 piglets are summarized for all samples in Table 2 and Fig. 4. 
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Figure 2: The invasiveness and intracellular replication of all Salmonella Typhimurium strains 

described in this paper in IPI-2I (A) and IPEC-J2 (B) cells. The log values of the number of 

gentamicin protected bacteria are shown. The results represent the means of three independent 

experiments conducted in triplicate ± standard error of the means for the IPEC-J2 cell line and a 

representative of three independent experiments conducted in triplicate for the IPI-2I cell line. An 

asterisk refers to a significantly lower invasion relative to the wild type strain (p < 0.01).   
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SPI-1 is necessary for efficient colonization of the porcine gut, but not the tonsils 

Three days pi, the intestines and the GALT of all piglets were colonized by the WTnal 

strain, with very high numbers of bacteria in the ileum and cecum. The SipBkan/nal strain was 

found in markedly lower numbers in the intestinal wall, in the intestinal contents and in the 

GALT than the WTnal strain. In these samples, the output ratio WTnal / SipBkan/nal was 

significantly higher (p < 0.05) than in the inoculum. In contrast, the tonsils were colonized to 

a similar extent by both strains. The numbers of bacteria in the liver, spleen, kidney and 

colonic lymph nodes were very low, impairing a meaningful quantitative comparison between 

both strains. The average log values of the ratio WTnal / SipBkan/nal for all samples of 5 piglets 

are summarized in Table 2 and Fig. 4. 

Salmonella was not isolated from any of the samples taken from the control animals 

throughout the experiment.  

In stained sections of the tonsils, immunopositive bacilli, but also immunonegative cocci, 

were frequently seen attached to the surface of the epithelium. No immunopositive cells were 

seen intracellularly in the basal layers of the epithelium or in the lymphoid tissue. 

Representative pictures are shown in Fig. 5. 

 

Figure 3: Influx of PMN in the porcine intestinal loop model. The results represent the means of 2 

independent experiments conducted in triplicate ± standard error of the means. The loops inoculated 

with the SPI-1 mutant strains all induced significantly lower numbers of cpm/cm loop compared to the 

loops inoculated with the wild type strain (p < 0.005).  
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Table 2: Post mortem bacteriological findings at day 1 and day 3 post inoculation of piglets 

inoculated with an equal mixture of WTnal and SipBkan/nal. Number of positive tissues in 

relation to the total number of tissues (frequency) and the average number of cfu (log10) ± 

stdev per gram tissue are shown. Samples only positive after enrichment were rendered a 

value of log 83 cfu g-1 and negative samples of log 1 cfu g-1.  

 

                                                                   WTnal    SipBkan/nal  

 Tissue Frequency Log10 cfu/g ± stdev Frequency Log10 cfu/g ± stdev  
      
 Tonsil 5/5 4.94 ± 0.70 5/5 4.35 ±0.57 
 Liver 3/5 1.02 ± 0.83 1/5 0.34 ± 0.68 
 Spleen 1/5 0.34 ± 0.68 0/5 0 ± 0 
 Kidney 1/5 0.34 ± 0.68 1/5 0.34 ± 0.68 
 Mesenterial lnn. 3/5 1.65 ± 1.61 1/5 0.38 ± 0.77 
 Ileocecal lnn. 5/5 2.30 ± 0.74 1/5 0.34 ± 0.68 
Day 1 pi Colonic lnn. 4/5 1.46 ± 0.76 1/5 0.34 ± 0.68 
 Jejunal wall 5/5 1.99 ± 0.47 0/5 0 ± 0 
 Ileal wall 5/5 5.21 ± 0.45 5/5 2.46 ± 0.50 
 Cecal wall 5/5 4.34 ± 0.52 5/5 1.93 ± 0.36 
 Colonic wall 5/5 1.88 ± 0.27 5/5 1.74 ± 0.09 
 Contents jejunum 4/5 1.57 ± 0.89 1/5 0.34 ± 0.68 
 Contents ileum 5/5 5.32 ± 0.29 5/5 4.35 ± 1.37 
 Contents cecum 5/5 3.03 ± 0.78 5/5 2.51 ± 0.75 
 Contents colon 5/5 2.65 ± 0.87 5/5 2.05 ± 0.50 
      
 Tonsil 5/5 3.68 ± 0.94 5/5 4.19 ± 0.54 
 Liver 2/5 0.77 ± 0.94 0/5 0 ± 0 
 Spleen 1/5 0.38 ± 0.77 0/5 0 ± 0 
 Kidney 0/5 0 ± 0 0/5 0 ± 0 
 Mesenterial lnn. 5/5 3.72 ± 0.79 1/5 0.34 ± 0.68 
 Ileocecal lnn. 5/5 3.90 ± 0.24 2/5 0.72 ± 0.89 
 Colonic lnn. 4/5 1.77 ± 1.00 2/5 0.68 ± 0.83 
Day 3 pi Jejunal wall 5/5 3.77 ± 1.31 2/5 0.88 ± 1.12 
 Ileal wall 5/5 5.39 ± 0.82 4/5 1.80 ± 1.06 
 Cecal wall 5/5 4.90 ± 0.85 3/5 1.80 ± 1.64 
 Colonic wall 5/5 2.22 ± 0.60 1/5 0.34 ± 0.68 
 Contents jejunum 5/5 3.38 ± 1.35 1/5 0.34 ± 0.68 
 Contents ileum 5/5 5.52 ± 0.86 4/5 2.34 ± 1.31 
 Contents cecum 5/5 3.17 ± 1.13 3/5 1.45 ± 1.25 
 Contents colon 5/5 2.42 ± 1.00 3/5 1.39 ± 1.32 
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DISCUSSION  

Deletion of the gene encoding the major SPI-1 regulator HilA causes a serious decrease in 

expression of the SPI-1 encoded genes (Altier, 2005). Alternatively, a Salmonella 

Typhimurium strain lacking the translocator SipB does not influence SPI-1 expression levels, 

but renders the effector translocation inefficient, because of a deficient SPI-1 type three 

secretion system (T3SS; Zhou et al., 2001). Both mutations constructed independently in this 

study resulted in a significant decrease of invasion of porcine enterocytes and in the 

abolishing of the influx of PMN in a porcine intestinal enteropathogenesis assay. This 

confirms the role of SPI-1 in the intestinal phase of Salmonella Typhimurium infections of 

pigs. The role of SPI-1 in the intestinal phase of infection has been shown earlier for 

Salmonella Choleraesuis in pigs (Lichtensteiger and Vimr, 2003) and for Salmonella 

Typhimurium and Salmonella Dublin in calves (Zhang et al., 2002; Galyov et al., 1997). 

Recently, Grondahl and coworkers (2005) found that an invH mutant strain, although not 

impaired for invasion, was attenuated for the induction of an inflammatory response in pigs. 

 

Figure 4: Recovery of bacteria from various organs of 5 piglets at days 1 and 3 after inoculation with 

an equal mixture of WTnal and SipBkan/nal. The log value of the ratio of the number of cfu/g sample of 

WTnal and SipBkan/nal is given as the mean ± standard deviation. An asterisk indicates that the output 

ratio was significantly different (p < 0.05) from that present in the inoculum. 

-2

-1

0

1

2

3

4

5

ton
sil

liv
er

sp
lee

n

kid
ne

y

jej
un

al 
wall

jej
un

al 
co

nte
nts

mese
nte

ric
 ly

mph
 no

de
s

ile
al 

wall

ile
al 

co
nte

nts

ce
ca

l w
all

ce
ca

l c
on

ten
ts

ile
oc

ec
al 

lym
ph

 no
de

s

co
lon

ic 
wall

co
lon

ic 
co

nte
nts

co
lon

ic 
lym

ph
 no

de
s

L
og

 r
at

io
 (W

T
na

l /
 S

ip
B

ka
n/

na
l)

Day 1 pi

Day 3 pi

*

*

*

** *

*

*
*

*

*

*

*
*

 

 



 110 

Although the sipA mutant strain was attenuated for invasion in the polarized epithelial cell 

line, it was fully invasive in the non-polarized epitheloid cell line. This remarkable result 

reflects the recent findings in human cell lines (Raffatellu et al., 2005). The sipA mutant strain 

elicited an inflammatory response similar to that of the non-invasive hilA and sipB mutant 

strains in the porcine intestinal loop model. Although the sipA mutant strain is not fully 

invasive, it is still significantly more invasive than the SPI-1 deficient strains. The sipA 

mutant strain induced neutrophil influx similar to that induced by hilA and sipB mutant 

strains, might be explained by its role as indirect chemo-attractant, since it induces the 

excretion of hepoxilin A3 (Lee et al., 2000; Mrsny et al., 2004). This finding is in agreement 

with the inflammatory scores in bovine intestinal loops as assessed by microscopic 

examination of thin sections (Zhang et al., 2002). No difference was seen between the 

intestinal changes induced by the sipA and sipB mutant strains based on the infiltration of 

PMN in the intestinal tissue. Nevertheless, a sipA mutant strain induced more fluid 

accumulation than the sipB mutant strain in bovine intestinal loops (Zhang et al., 2002). This 

could not be confirmed in our experiments, as the degree of fluid accumulation in porcine 

loops is much less than in bovine loops and impairs an accurate estimate of the fluid 

accumulation.  

To our knowledge, this is the first published report describing the use of a mixed infection 

model to assess the quantitative importance of a virulence factor of Salmonella Typhimurium 

in the pig. Mixed inoculum assays are more capable of discriminating differences in the 

ability of strains to colonize the host because the substantial variation in colonization 

observed between piglets is overcome by considering the ratio of the two strains in a single 

animal. In this way, it allowed us to reduce the number of animals needed to detect significant 

differences between two Salmonella strains. This model may be applicable to study other 

virulence genes or even serotypes in the future.  

To evaluate the in vivo importance of SPI-1 in the short-term colonization of Salmonella 

Typhimurium in pigs, we chose to work with a mutant with a Kan insertion in sipB as the 

importance of HilA as a regulator of the expression of genes in the Salmonella pathogenicity 

island SPI-4 is still controversial (Ahmer et al. 1999; Detweiler et al., 2003; Morgan et al., 

2004). Although SPI-4 has a major role in influencing intestinal colonization of cattle, it does 

not in the colonization of chickens (Morgan et al., 2004). It is not yet known if SPI-4 may 

affect porcine colonization. To our knowledge, a mutation in sipB has not been linked to other 

than SPI-1 related effects. Hence, the observed in vivo effects can be attributed entirely to the 

absence of a functional T3SS-1. 
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The in vivo attenuation of the SPI-1 deficient mutant strain at 24 hours after inoculation 

may be ascribed to its decreased capacity to invade the epithelial cells. This is supported by 

the fact that the wild type strain / SPI-1 mutant strain ratio was more than 100 in the gut 

tissue, while no significant changes in this ratio were noticed in the contents of the same gut 

samples compared to the ratio in the inoculum. It may be concluded that a functional SPI-1 

secretion system is necessary for the efficient invasion of the porcine intestinal wall. 

 

Figure 5: Light microscopical images from immunohistochemically stained sections of the tonsils 

obtained from inoculated piglets. In Figure 4A, Immunonegative cocci and in Figure 4B, 

immunopositive bacilli are shown attached on the surface of the superficial epithelium from a section 

of tonsil taken at 3 days p.i. Approximate magnification is 1000x. 

 

The SPI-1 deficient strain was unable to persistently colonize the intestines and the 

associated lymphoid tissue, as shown three days after inoculation. At this stage of infection, it 

is less straightforward to ascribe this attenuation completely to the defect in invasion. 

Although the lack of efficient intestinal invasion will probably account for the largest part of 

the colonization defect observed only a few days after inoculation, other SPI-1 related effects 

may also play a role. Indeed, SPI-1 has been assigned functions that are important after the 

phase of invasion in epithelial cells (Steele-Mortimer et al., 2002), although this was not seen 

in porcine intestinal epithelial cells in our experiments, in macrophages (Hersch et al., 1999; 

Mukherjee et al., 2001; Boyen et al., 2006a; Drektrah et al., 2006) and in dendritic cells (Van 

der Velden et al., 2003). It can be concluded that intestinal invasion probably plays an 

important role in the colonization of the porcine gut. 

B A 
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Both the wild type strain and the SPI-1 deficient strain were present in high and 

comparable numbers in the porcine tonsils at days 1 and 3 pi. This is in sharp contrast with 

the intestinal findings. The lack of an invasive defect at day 1 pi may be partially explained by 

our experimental design, in which the bacteria of the inoculum were grown under conditions 

that do not allow high SPI-1 expression levels. While SPI-1 expression is gradually induced 

in the lumen of the gut, this may not be the case in the oral cavity. The fact that the 

colonization defect was still not detectable 3 days pi may point out that SPI-1 mediated 

invasion is not a major issue in the colonization of tonsils. The crypts of the porcine tonsils 

are delineated with lympho-epithelium containing various professional phagocytes (Horter et 

al., 2003), so SPI-1 mediated invasion may not be a prerequisite to massively enter the 

tonsillar tissue. Besides, salmonellae may colonize the tonsils by adhering to the epithelium, 

remaining extracellularly (Horter et al., 2003). Indeed, stained sections of inoculated tonsils 

showed various immunopositive bacteria attached to the surface of the epithelium, but no 

immunopositive cells were seen intracellularly in the basal layers of the epithelium or in the 

lymphoid tissue. The observation that a SPI-1 deficient strain does not show a colonization 

defect in the tonsils may have important implications and deserves further research. 

In conclusion, we have shown that SPI-1 plays a crucial role in the invasion of porcine 

intestinal epithelial cells by Salmonella Typhimurium, thereby contributing to the efficient 

short term colonization of the porcine gut, and to the induction of influx of neutrophils into 

the intestinal lumen. However, the invasive and colonizing defect of a SPI-1 mutant strain 

was absent in the tonsils.  
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ABSTRACT 

 

Salmonella Pathogenicity Island 1 (SPI-1) genes are indispensable for virulence of 

Salmonella Typhimurium in mice after oral challenge. These genes mediate invasion in 

intestinal epithelial cells and induce cell death in murine macrophages. The role of SPI-1 in 

the pathogenesis of Salmonella Typhimurium infections in food producing animals is not 

known. It was the aim of the present study to characterize the interactions of a porcine 

Salmonella Typhimurium field strain and its isogenic mutants in the SPI-1 genes hilA, sipA 

and sipB with porcine macrophages. SPI-1 was found to be important in the invasion of 

porcine pulmonary alveolar macrophages (PAM) and the induction of the formation of 

spacious phagosomes. Both early and delayed cytotoxicity were seen in PAM, but only the 

early cytotoxicity was SPI-1 dependent. Exposure of PAM to Salmonella Typhimurium 

induced the production of reactive oxygen species (ROS) and interleukin-8, but no differences 

were noticed between the induction mediated by the wild type strain and its SPI-1 mutant 

strains. In conclusion, invasion of porcine macrophages and the induction of early, but not 

delayed, cytotoxicity by Salmonella Typhimurium is SPI-1 dependent. SPI-1 dependent 

invasion, however, is not a prerequisite to induce a pro-inflammatory response. 
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INTRODUCTION 

 

Salmonellosis in humans is one of the most important bacterial zoonotic diseases in 

developing as well as developed countries (Graham et al., 2000; Dalton et al., 2004). In 

Europe, human salmonellosis is most frequently associated with Salmonella enterica 

subspecies enterica serovars Enteritidis and Typhimurium (Anonymous, 2004). These 

serovars are mainly associated with the consumption of eggs, chicken meat and pork. In the 

European countries, Salmonella enterica subspecies enterica serovar Typhimurium 

(Salmonella Typhimurium) is by far the dominant serovar isolated from pigs (Anonymous, 

2004). In most cases, Salmonella Typhimurium will subclinically colonize the pigs, without 

causing obvious symptoms (Fedorka-Cray et al., 2000). Salmonella Typhimurium is rarely 

responsible for the septicaemic form of salmonellosis in pigs (Fedorka-Cray et al., 2000). This 

is in contrast with Salmonella Choleraesuis.  The latter however is very infrequently isolated 

in Europe (Fedorka-Cray et al., 2000; Anonymous, 2004). Nevertheless, Salmonella 

Typhimurium is capable of causing severe enterocolitis in pigs. This enterocolitis is 

characterized by a high morbidity rate, but a low mortality rate (Wilcock and Schwartz, 

1992). Infected pigs can shed Salmonella for at least 28 weeks (Wood et al., 1989). These 

carrier pigs are a vast reservoir of Salmonella Typhimurium and pose an important threat to 

animal and human health (Berends et al., 1997; Poppe et al., 1998). 

Virulence factors situated on Salmonella Pathogenicity Island 1 (SPI-1) are important for 

the interactions of standard Salmonella Typhimurium laboratory strains with intestinal 

epithelial cells (reviewed by Zhou and Galan, 2001) and macrophages (Monack et al., 2001; 

Takaya et al., 2005). Most studies on the interaction of Salmonella with these cells were 

carried out with murine cells. Since the course of a Salmonella Typhimurium infection in 

mice is markedly different from that in pigs, biological effects induced by bacterial virulence 

factors such as SPI-1, may differ. However, data relating to the role of SPI-1 in the 

interactions of Salmonella Typhimurium with macrophages from food producing animals are 

scarce. It has been suggested that macrophages may play an important role in the generation 

of the long term carrier state in pigs (Santos and Bäumler, 2004), but a thorough investigation 

of the interaction between Salmonella Typhimurium and pig macrophages is not yet 

described. It was therefore the aim of the present study to characterize the interactions of a 

porcine Salmonella Typhimurium field strain with porcine macrophages, with special 

emphasis on the role of SPI-1. 
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MATERIALS AND METHODS 

 

Bacterial strains and growth conditions 

Salmonella Typhimurium strain 112910a was isolated from a pig stool sample and has 

been shown to persist in tonsils, intestines and gut-associated lymphoid tissue (GALT) of 

experimentally infected pigs during at least 28 days (unpublished data). This strain was used 

for the construction of deletion mutants in the genes encoding the major SPI-1 regulatory 

protein HilA, the SPI-1 translocator/effector protein SipB and the SPI-1 effector protein SipA.  

To obtain highly invasive late logarithmic cultures (Lundberg et al., 1999) for invasion 

assays, spacious phagosome formation, early cytotoxicity assays, Il-8 production and ROS 

production, 2 µl of a stationary phase culture of the Salmonella Typhimurium strain 112910a 

and its isogenic deletion mutants was inoculated in 5 ml Luria-Bertani broth (LB; Sigma-

Aldrich, Steinheim, Germany) and inoculated for 5 hours at 37°C without aeration.  

To suppress the SPI-1 mediated early cytotoxic effects in the intracellular survival and 

late cytotoxicity assays (Lundberg et al., 1999), stationary phase cultures were used. They 

were obtained by aerated, overnight culture in LB.  

In order to obtain high and comparable numbers of intracellular bacteria of both the 

wild type strain and its isogenic mutant strains, the bacteria used in the intracellular survival 

and delayed cytotoxicity assays, were opsonized unless otherwise stated. For opsonization, 

approximately 5 x 107 CFU of the Salmonella strains were suspended in 1 ml RPMI (Gibco, 

Life Technologies, Paisley, Scotland) with 2mM L-glutamine (Gibco, Life Technologies, 

Paisley, Scotland), 1mM sodium pyruvate (Gibco, Life Technologies, Paisley, Scotland) and 

10% serum from Salmonella free pigs and incubated at 37°C for 20 minutes.  

 

Construction of the deletion mutants  

Deletion mutants in virulence genes situated on SPI-1 were constructed according to 

the one-step inactivation method, using a linear PCR product, first described by Datsenko and 

Wanner (2000), with some modifications (Donné et al., 2005). Primers used to create the 

gene-specific linear PCR fragments are summarized in Table 1. In short, these primers and the 

template plasmid pKD4 DNA were utilized to amplify the linear fragment that was used for 

the substitution of the gene of interest. The helper plasmid pKD46, encoding the λ Red 

recombinase was introduced into Salmonella Typhimurium strain 112910a by electroporation. 

Subsequently, the gene-specific linear PCR fragments were introduced into the resulting 

strain Salmonella Typhimurium 112910a (pKD46), again by electroporation. Substitution of 
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the target genes by a kanamycin resistance cassette was selected for on LB medium 

containing kanamycin. The substituted loci were transduced into a fresh wild type background 

using bacteriophage P22HTint (Schmieger and Backhaus, 1976). After the elimination of the 

antibiotic resistance cassette, using the helper plasmid pCP20 encoding the FLP recombinase, 

the gene was deleted from the start codon till the stop codon. A scar of 83 bp was left in the 

resulting strains. This was confirmed by sequencing the relevant PCR fragment. At different 

stages of the construction, bacteriophage P22 sensitivity was tested to confirm the smooth 

phenotype. 

 

Table 1: Primers used in this study to create the deletion mutants. 

Primers Sequences 

 

hilA forward 

hilA reverse 

sipA forward 

sipA reverse 

sipB forward 

sipB reverse 

5’-TTGTATTAGTTATTATAACTTTTCACCCTGTAAGAGAATACACTATTATCTGTGTAGGCTGGAGCTGCTTC-3’ 

5’-CAACCAGATTACGATGATAAAAAAATAATGCATATCTCCTCTCTCAGATTCATATGAATATCCTCCTTAG-3’ 

5’-TGGAAACCGCCAAAAGCTTCCTGCAAGGATAACAGAAGAGGATATTAATATGTGTAGGCTGGAGCTGCTTC-3’ 

5’-TTTTTGACTCTTGCTTCAATATCCATATTCATCGCATCTTTCCCGGTTAACATATGAATATCCTCCTTAG-3’ 

5’-CTAAAAACGGCGGAGACAGAGCAGCACAGTGAACAAGAAAAGGAATAATTTGTGTAGGCTGGAGCTGCTTC-3’ 

5’-ATTCCCACATTACTAATTAACATATTTTTCTCCCTTTATTTTGGCAGTTTCATATGAATATCCTCCTTAG-3’ 

 

Isolation of porcine pulmonary alveolar macrophages 

Porcine pulmonary alveolar macrophages (PAM) were isolated by broncho-alveolar 

washes from lungs of euthanized 3-4 week old piglets, obtained from a Salmonella-negative 

farm, as previously described (Dom et al., 1994). Cells derived from three piglets were pooled 

and frozen in liquid nitrogen in 1 ml aliquots at approximately 107cells/ml. These experiments 

were performed according to animal welfare guidelines and were approved by the ethical 

committee of the Faculty of Veterinary Medicine, Ghent University. 

 Purity of the PAM was checked by flow cytometry, using 74.22.15 anti-SWC3 mouse 

monoclonal antibody. SWC3 is defined as a specific myelomonocytic antigen of 230 kDa. 

Forward scatter and side scatter of macrophages were analysed in a FACScalibur flow 

cytometer (Becton Dickinson, San Jose, California) using CELLQuest software. Viability of 

the cells was estimated using a trypan blue exclusion test. 

Prior to seeding the PAM, frozen aliquots were thawed in phosphate-buffered saline 

(PBS) with 10% foetal calf serum (Hyclone, Cramlington, England) at 4°C. Cells were 

washed 3 times in PBS and cultured in RPMI (Gibco, Life Technologies, Paisley, Scotland) 
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containing 2 mM L-glutamine (Gibco, Life Technologies, Paisley, Scotland) and 1 mM 

sodium pyruvate (Gibco, Life Technologies, Paisley, Scotland). 

 

Invasion and intracellular survival assays 

Macrophages were seeded in 24 well plates at a density of approximately 5 x 105 cells 

per well and were allowed to attach for at least 2 hours. These wells were inoculated with the 

different Salmonella strains at a multiplicity of infection (moi) of 10:1. To synchronize the 

infection, the inoculated multiwell plates were centrifuged at 365 x g for 5 min. After 25 min 

incubation at 37°C under 5% CO2, the wells were rinsed and fresh medium supplemented 

with 100 µg/ml gentamicin (Gibco, Life Technologies, Paisley, Scotland) was added. After an 

additional 30 min incubation at 37°C under 5% CO2, the wells were rinsed again three times. 

For the invasion assays, the macrophages were lysed with 1% Triton-X100 (Sigma-

Aldrich, Steinheim, Germany) for 10 min and 10-fold dilutions were plated on brilliant green 

agar (BGA) plates. To assess intracellular growth, the medium containing 100 µg/ml 

gentamicin was replaced after the 30 min incubation time with fresh medium supplemented 

with 15 µg/ml gentamicin and the number of viable bacteria was assessed 6 hours after 

infection as described above. 

 

Spacious phagosome formation 

In order to follow up the formation of spacious phagosomes in PAM, the cells were 

seeded and infected as described above with the wild type strain and its isogenic SPI-1 mutant 

strains. Non-infected cells were used as controls. After the indicated time points, the cells 

were rinsed carefully with PBS and fixed with a solution of 10% formaldehyde in PBS. Phase 

contrast micrographs were taken at a magnification of 400 using a Nikon Eclipse TS100 light 

microscope and a Minolta Dimage 7 Hi digital camera. 

 

Cytotoxicity assays 

Macrophages were seeded in 96 well plates at a density of approximately 105 cells per 

well and were allowed to attach for at least 4 hours. The wells were inoculated with the 

different strains at a moi of 10:1 after opsonization as described above. Six and 20 hours after 

inoculation, the wells were carefully rinsed. The surviving adherent cells were fixed with 10% 

formaldehyde in PBS and stained with 1% crystal violet in PBS. The absorption at 

wavelength 650 nm was read on a microplate reader (Multiscan MS, Thermo Labsystems, 

Helsinki, Finland) as a measure for cell detachment. The percentages of Salmonella induced 
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cytotoxicity for the wild type strain and its isogenic mutant strains were calculated using the 

following formula: 

          (c - b) - (a - b) 

% cytoxicity = 100 x  

  (c - b) 

In this formula: 

a = OD650 derived from the wells inoculated with Salmonella Typhimurium 

b = OD650 derived from blank wells  

c = OD650 derived from uninfected control wells  

 

For comparison, the LIVE/DEAD viability/cytotoxicity kit (Molecular Probes Europe, 

Leiden, The Netherlands), using calcein AM as fluorescent marker for viable cells, was used 

according to the manufacturers guidelines. In short, PAM were seeded and inoculated as 

described for the crystal violet cytotoxicity assay. After the appropriate time points, the cells 

were washed with PBS to remove interfering extracellular esterases. Viable cells were dyed 

with 200 µl of a 1 µM calcein solution in PBS during 45 minutes. Fluorescence was measured 

using a Fluoroscan Ascent Fl (Thermo Labsystems, Helsinki, Finland) and the 

excitation/emission filters of 485/527 nm respectively. As a positive control PAM maintained 

in culture medium were used and as a negative control, PAM incubated for 30 minutes with 

70% methanol in PBS were used. 

 

Macrophage chemiluminescence 

Reactive oxygen species (ROS) production was measured using a chemiluminescence 

technique with Lucigenin (Sigma Biosciences, St. Louis, USA) diluted in HBSS to final assay 

concentrations of 400 µM as chemiluminogenic probe (Donné et al., 2005).  

In short, PAM were seeded in 96-well plates at 106 cells per well in 100 µl RPMI. 

Spontaneous CL (PAM without triggering agents) was recorded for 10 minutes. The CL 

reaction was started by adding 50 µl/well of the bacterial suspensions at 10 bacteria per 

macrophage and the production of ROS was measured during 1 h. The CL response is 

expressed as Relative Light Units per minute (RLU). As a positive control, cells were 

stimulated with phorbol 12-myristate 13-acetate (PMA; Sigma Biosciences, St. Louis, USA). 

PAM seeded in RPMI were used as negative controls. 
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Interleukin-8 production 

Porcine macrophages were seeded and inoculated as described above. Four hours after 

infection, supernatant was collected, filtered and stored at -80°C. A commercial ELISA kit 

(cytoscreen swine Il-8, Biosource International, Camarillo, USA) was used to quantify the Il-

8 production. The absorption at wavelength 450 nm was read on a microplate reader 

(Multiscan MS, Labsystems) as a measure for Il-8 production. A standard curve was prepared 

using dilution series of porcine Il-8 provided in the ELISA kit. Salmonella Typhimurium 

lipopolysaccharide (LPS; Sigma-Aldrich, Steinheim, Germany) was added as a positive 

control at 10 µg/ml, negative control wells were incubated with culture medium only. 

 

Statistical analysis 

All experiments were carried out in triplicate with three repeats per experiment, unless 

otherwise stated. In assays with high inter-experimental variabilities, the results were divided 

by the mean of the respective experiment to reduce inter-experimental variations. The data 

were analysed by one-way analysis of variance methods, using the SPSS 12.0 software for 

Windows. Bonferroni corrections were applied for all results.  

 

RESULTS 

 

Macrophage yield 

The average yield of pooled PAM isolated from 3 piglets was 4 x 108 cells. The purity 

varied between 90% and 97% and the viability was more than 95%.  

 

Invasion, but not replication, of Salmonella Typhimurium in PAM is hilA and sipB, but 

not sipA dependent 

Invasion of the Salmonella Typhimurium 112910a wild type strain in porcine PAM 

was compared with the invasion of its isogenic deletion mutant strains in a gentamicin 

protection assay. The results are summarized in Figure 1. One hour post inoculation, the hilA 

and sipB mutant strains invaded the macrophages approximately 10 times less than the wild 

type strain (statistically significant, p < 0.005). The sipA mutant strain did not show any 

significant differences with the wild type strain (p > 0.05). Opsonization with serum derived 

from Salmonella-free pigs resulted in a partial loss of the differences between the invasion 

rates of the wild type strain and its isogenic SPI-1 mutants, as visualized in Figure 1.  
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The invasion rates of the hilA and sipB mutant strains were nevertheless still 

significantly reduced compared to the opsonized wild type strain (p < 0.05). 

The SPI-1 mutant strains did not show significant differences in intracellular 

replication compared to the wild type strain (data not shown). 

 

Figure 1. The invasiveness of the  Salmonella Typhimurium 112910a wild type strain and its isogenic 

SPI-1 mutant strains in PAM with (grey bars) and without (white bars) opsonization with pig serum is 

shown. The invasiveness of the opsonized and non-opsonized strains are expressed as percentages 

relative to the invasiveness of the opsonized and non-opsonized wild type strain respectively and no 

conclusions can be drawn concerning absolute numbers of intracellular bacteria between both groups. 

The results represent the means of at least 3 independent experiments conducted in triplicate and their 

standard error of the means. Superscript (a) refers to significantly lower invasion relative to the 

unopsonized wild type strain (p < 0.005); superscript (b) refers to significantly lower invasion relative 

to the opsonized wild type strain (p < 0.05).   
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The formation of spacious phagosomes in PAM is hilA and sipB, but not sipA dependent 

From five minutes after inoculation, the salmonellae were associated with the 

macrophages and some early spacious phagosomes were apparent. No spacious phagosomes 

were seen in the negative control cells. The number of spacious phagosomes was greatly 

reduced in macrophages infected with the hilA mutant or the sipB mutant strain. No 

differences were noticed between the wild type and the sipA mutant. The spacious 

phagosomes remained visible throughout the experiment. Porcine macrophages can be 

heavily infected, showing numerous phagosomes or very large vacuoles containing multiple 
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salmonellae. In Figure 2, pictures are shown of PAM inoculated with the wild type strain and 

the hilA mutant strain, compared with sham-inoculated PAM, 5 minutes and 2 hours post 

inoculation. Pictures of PAM inoculated with the sipA or sipB mutant strains are not shown. 

 

Figure 2. Pictures of PAM cells sham inoculated (A, B), inoculated with Salmonella Typhimurium 

112910a (C, D) and inoculated with 112910a�hilA (E, F). Pictures were taken after an incubation time 

of 5 min (A, C, E) and 2h (B, D, F) respectively. The spacious phagosomes are indicated by an arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Early Salmonella-induced cytotoxicity of PAM is hilA and sipB, but not sipA dependent 

Six hours after inoculation, no significant cytotoxicity was noticed in the crystal violet 

cytotoxicity assay compared to non-inoculated wells (data not shown). In the fluorescent 

calcein viability assay, however, approximately 40% less viable PAM were found in the wells 

inoculated with the wild type strain and the sipA mutant strain. The wells inoculated with the 

hilA and sipB mutant strains showed significant higher numbers of viable cells (p < 0.005) 

compared to the PAM inoculated with the wild type strain. The results are shown in Figure 3.  
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Figure 3. The Percentage of viable PAM 6h after the inoculation with Salmonella 

Typhimurium 112910a wild type strain and its isogenic SPI-1 mutant strains, as measured by the 

fluorescent calcein viability assay.. The results are expressed relative to the amount of viable cells 

after 6 h incubation in PAM culture medium. As a control for 100% viable cells, non inoculated PAM 

were maintained in culture medium. PAM incubated for 30 minutes with 70% methanol in PBS were 

used as a control for dead cells. The results represent the means of 2 independent experiments 

conducted in 4 fold and their standard error of the means. Superscript (a) refers to significantly higher 

numbers of viable cells compared to the wells inoculated with the wild type strain (p < 0.005).  
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Delayed Salmonella-induced cytotoxicity of PAM is SPI-1 independent 

In contrast to the observations 6 hours after incubation, approximately 50% of the 

macrophages were detached from the wells in the crystal violet cytotoxicity assay when they 

were inoculated with the Salmonella Typhimurium wild type strain for 20 hours. No 

significant differences (p > 0.05) were seen between the wild type strain and any of the SPI-1 

deletion mutant strains (data not shown). Comparable results were obtained with the Calcein 

AM viability assay (data not shown). 

 

ROS production by PAM is SPI-1, and thus invasion independent 

The porcine macrophages were able to produce ROS after stimulation with phorbol 

12-myristate 13-acetate (PMA) and after inoculation with Salmonella Typhimurium 112910a. 

The results are summarized in Figure 4. No significant differences (p > 0.05) were noticed 

between the wild type strain and any of the SPI-1 mutant strains. 
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Figure 4. The ROS production of PAM after stimulation with the Salmonella Typhimurium 112910a 

wild type strain and its isogenic SPI-1 mutant strains. As a standard stimulus phorbol 12-myristate 13-

acetate (PMA) was used and non inoculated PAM in RPMI were used as a negative control. The 

results represent the means of at least 3 independent experiments conducted in triplicate and their 

standard error of the means. 

0

50

100

150

200

250

Non
infected

PMA WT HilA SipA SipB

R
L

U
   

 

Interleukin-8 production is SPI-1, and thus invasion independent 

The PAMs produced increased amounts of IL-8 after stimulation with both LPS and 

viable Salmonella Typhimurium. There were no significant differences (p > 0.05) between the 

wild type strain and its isogenic SPI-1 mutant strains. These results are illustrated in Figure 5. 

 

Figure 5. The Il-8 production of PAM after stimulation with the Salmonella Typhimurium 112910a 

wild type strain and its isogenic SPI-1 mutant strains. As a standard stimulus Salmonella LPS was 

used and non inoculated PAM in culture medium were used as a negative control. The figure shows 

the results of a representative of 3 experiments conducted in triplicate. 
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DISCUSSION 

 

The virulence genes of Salmonella Typhimurium situated on SPI-1 are necessary for 

invasion of non-phagocytic (reviewed in Zhou and Galan, 2001; Altier, 2005) and phagocytic 

cells (Monack et al., 1996; Forsberg et al., 2003). The importance of SPI-1 in the invasion of 

porcine macrophages in vitro was documented in our study, since both a mutation in a major 

regulator (hilA) and in a translocator (sipB) of SPI-1, leading to a deficient SPI-1 type three 

secretion system (TTSS), resulted in a 10-fold decrease of invasion and associated formation 

of spacious phagosomes. Jepson et al. (2001) found that a mutant in sipA is less invasive in 

Madin-Darby canine kidney (MDCK) cells than its parental strain at the earliest stages of 

infection. But this effect was no longer apparent 15 min after inoculation. This is in 

agreement with the obtained results, since we did not find any significant differences in 

invasion with the wild type strain 1 hour after inoculation. As in other host species, 

opsonization with negative serum reduces the differences in invasion (Buchmeier and 

Heffron, 1991; Watson et al., 2000). Although the invasion of Salmonella in macrophages and 

phagocytosis of Salmonella by macrophages has been studied in vitro (Forsberg et al., 2003; 

Valle and Guiney, 2005), the relative importance of both phenomena in vivo is not clear. 

Also, the contribution of complement mediated and antibody mediated opsonization in vivo is 

not known and needs further study.  

Salmonella is capable of inducing cell death in macrophages in 2 stages (reviewed by 

Hueffer and Galan, 2004). An early SipB dependent form of cell death occurs within a few 

minutes to hours after infection (Monack et al., 1996; Schwan et al., 2000; Valle and Guiney, 

2005). Salmonellae that do not cause this rapid cell death and reside in the phagocytic vacuole 

can trigger a SPI-2 or spv dependent cell death 12 to 24 hours after infection (Libby et al., 

2000; Van der Velden et al., 2000; Monack et al., 2001). With the use of calcein AM as a 

fluorescent marker for viable cells, a marked difference in early cytotoxicity was found 

between the wild type strain and SPI-1 TTSS deficient mutant strains. These differences were 

less obvious when the crystal violet cytotoxicity test was used. When PAM were given more 

time to die and detach (as in the delayed cytotoxicity test), both assays led to comparable 

results. The crystal violet cytotoxicity test has been used with success to detect the cytotoxic 

effect of Salmonella Typhimurium on murine macrophages (Monack et al., 1996). However, 

while early macrophage cytotoxicity is very fast and explicit in murine macrophages, the cell 

death induction in porcine PAM was less pronounced and dying PAM did not seem to detach 
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from the wells as easily.  This may explain why the crystal violet cytotoxicity test failed to 

measure the early cytotoxicity in PAM.  

Murine macrophages respond to Salmonella infection by the production of reactive 

oxygen species (ROS) during the respiratory burst, potentially resulting in the destruction of 

the invading bacteria (Tomita et al., 1981; Vazquez-Torres et al., 2000). Exposure of porcine 

PAM to viable salmonellae also resulted in the induction of ROS production. The SPI-1 

mutants induced ROS production similar to the wild type. Induction of ROS may thus be 

invasion independent. Since no inducible reactive nitrogen intermediates (RNI) production 

can be detected in porcine PBM (Donné et al., 2005), the effect of SPI-1 on the RNI 

production in PAM was not investigated. 

Interleukin-8, secreted from the basolateral side of infected epithelial cells, is an important 

chemokine in the pathogenesis of salmonellosis. It plays a key role in the initial movement of 

neutrophils from the circulation into the subepithelial region of the gut in several animal 

species, including swine (McCormick et al., 1995; Cho and Chae, 2003; Trebichavsky et al., 

2003; Zeng et al., 2003). Macrophages are able to produce IL-8 as well, in response to 

stimulation of toll-like receptors (Zeng et al., 2003; Zughaier et al., 2005). In our model, 

invasion was not a prerequisite to induce the secretion of Il-8 by macrophages. Since the toll-

like receptors are situated on the cell membrane of the macrophage, this is not surprising. 

In summary, invasion of porcine macrophages and the induction of early, but not 

delayed, cytotoxicity by a Salmonella Typhimurium field strain is SPI-1 dependent. SPI-1 

mediated invasion, however, is not a prerequisite for the production of ROS or Interleukin-8 

by porcine macrophages upon contact with Salmonella Typhimurium.  

 

ACKNOWLEDGEMENTS 

 

The technical assistance of Gunther Massaer, Venessa Eeckhaut and Marleen Foubert is 

gratefully appreciated.  

This work was supported by the Institute for the Promotion of Innovation by Science and 

Technology in Flanders (IWT Vlaanderen), Brussels, Belgium and the Fonds voor 

Wetenschappelijk Onderzoek Vlaanderen (grants FWOAL215 and FWOAL241). 



 132 

 

REFERENCES 

 
Altier, C., 2005. Genetic and environmental control of Salmonella invasion. J. Microbiol. 43, 85-
92. 
 
Anonymous, 2004. Trends and sources of zoonotic agents in animals, feedingstuffs, food and man 
in the European Union and Norway in 2003. Health and Consumer Protection Directorate-
General, European Union.  
http://europa.eu.int/comm/food/food/biosafety/salmonella/ 03_salm_2001.pdf 
 
Berends, B.R., Van Knapen, F., Snijders, J.M., and Mossel, D.A., 1997. Identification and 
quantification of risk factors regarding Salmonella spp. on pork carcasses. Int. J. Food Microbiol. 
36, 199-206. 
 
Buchmeier, N.A., Heffron, F., 1991.  Inhibition of macrophage phagosome-lysosome fusion by 
Salmonella Typhimurium. Infect. Immun. 59, 2232–2238. 
 
Cho, W.S., Chae C., 2003. Expression of inflammatory cytokines (TNF-alpha, IL-1, IL-6 and IL-
8) in colon of pigs naturally infected with Salmonella Typhimurium and S. choleraesuis. J. Vet. 
Med. A Physiol. Pathol. Clin. Med. 10, 484-487. 
 
Dalton, C.B., Gregory, J., Kirk, M.D., Stafford, R.J., Givney, R., Kraa, E., Gould, D., 2004. 
Foodborne disease outbreaks in Australia, 1995 to 2000. Commun. Dis. Intell. 28, 211-224. 
 
Dom, P., Haesebrouck, F., de Baetselier, P., 1994. Chemiluminescence properties of porcine 
pulmonary alveolar macrophages and polymorphonuclear cells. Vet. Q. 16, 87-90. 
 
Donné, E., Pasmans, F., Boyen, F., Van Immerseel, F., Adriaensen, C., Hernalsteens, J.P., 
Ducatelle, R., Haesebrouck, F., 2005. Survival of Salmonella serovar Typhimurium inside porcine 
monocytes is associated with complement binding and suppression of the production of reactive 
oxygen species. Vet. Microbiol. 107, 205-214.  
 
Fedorka-Cray, P.J., Gray, J.T., Wray, C., 2000. Salmonella infections in pigs. In: Wray, C., Wray, 
A. (eds.), Salmonella in domestic animals, CAB International, Wallingford, pp. 191-207. 
 
Forsberg, M., Blomgran, R., Lerm, M., Särndahl, E., Sebti, S.M., Hamilton, A., Stendahl, O., 
Zheng, L., 2003. Differential effects of invasion by and phagocytosis of Salmonella Typhimurium 
on apoptosis in human macrophages: potential role of Rho-GTPases and Akt. J. Leukoc. Biol. 74, 
620-629. 
 
Graham, S.M., Molyneux, E.M., Walsh, A.L., Cheesbrough, J.S., Molyneux, M.E., Hart, C.A. 
2000. Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr. Infect. Dis. J. 19, 
1189-1196. 
 
Hueffer, K., Galan, J.E., 2004. Salmonella-induced macrophage death: multiple mechanisms, 
different outcomes. Cell. Microbiol. 6, 1019-1025. 
 
Jepson, M.A., Kenny, B., Leard, A.D., 2001. Role of sipA in the early stages of Salmonella 
Typhimurium entry into epithelial cells. Cell. Microbiol. 3, 417-426. 
 
Libby, S. J., Lesnick M., Hasegawa P., Weidenhammer E., Guiney D.G., 2000. The Salmonella 
virulence plasmid spv genes are required for cytopathology in human monocyte-derived 
macrophages. Cell. Microbiol. 2, 49-58. 



 133 

 
Lundberg, U., Vinatzer, U., Berdnik, D., von Gabain, A., Baccarini, M., 1999. Growth phase-
regulated induction of Salmonella-induced macrophage apoptosis correlates with transient 
expression of SPI-1 genes. J. Bacteriol. 181, 3433-3437. 
 
McCormick, B.A., Hofman, P.M., Kim J., Carnes, D.K., Miller, S.I., Madara, J.L., 1995. Surface 
attachment of Salmonella Typhimurium to intestinal epithelia imprints the subepithelial matrix 
with gradients chemotactic for neutrophils. J. Cell. Biol. 13, 1599-1608. 
 
Monack, D..M., Raupach, B., Hromockyj, A.E., Falkow, S., 1996. Salmonella Typhimurium 
invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. USA 93, 9833-9838. 
 
Monack, D.M., Detweiler, C.S., Falkow, S., 2001. Salmonella pathogenicity island 2-dependent 
macrophage death is mediated in part by the host cysteine protease caspase-1. Cell. Microbiol. 3, 
825-837. 
 
Poppe, C., Smart, N., Khakhria, R., Johnson, W., Spika, J., Prescott, J., 1998. Salmonella 
Typhimurium DT104: a virulent and drug-resistant pathogen. Can. Vet. J. 39, 559-565. 
 
Santos, R.L., Bäumler, A.J., 2004. Cell tropism of Salmonella enterica. Int. J. Med. Microbiol. 
294, 225-233. 
 
Schmieger, H., Backhaus, H., 1976. Altered cotransduction frequencies exhibited by HT-mutants 
of Salmonella-phage P22. Mol. Gen. Genet. 143, 307-309. 
 
Schwan, W.R., Huang, X.-Z., Hu, L., Kopecko, D.J., 2000. Differential bacterial survival, 
replication and apoptosis-inducing ability of Salmonella serovars within human and murine 
macrophages. Infect. Immun. 68, 1005-1013. 
 
Takaya, A., Suzuki, A., Kikuchi, Y., Eguchi, M., Isogai, E., Tomoyasu, T., Yamamoto, T., 2005. 
Derepression of Salmonella pathogenicity island 1 genes within macrophages leads to rapid 
apoptosis via caspase-1- and caspase-3-dependent pathways. Cell. Microbiol. 7, 79-90. 
 
Tomita, T., Blumenstock, E., Kanegasaki, S., 1981. Phagocytic and chemiluminescent responses 
of mouse peritoneal macrophages to living and killed Salmonella Typhimurium and other bacteria. 
Infect. Immun. 32, 1242-1248. 
 
Trebichavsky, I., Splichal, I., Splichalova, A., Muneta, Y., Mori, Y., 2003. Systemic and local 
cytokine response of young piglets to oral infection with Salmonella enterica serotype 
Typhimurium. Folia Microbiol. 48, 403-407. 
 
Valle, E., Guiney, D.G., 2005. Characterization of Salmonella-Induced Cell Death in Human 
Macrophage-Like THP-1 Cells. Infect. Immun.  73, 2835-2840. 
 
Van der Velden, A.W., Lindgren, S.W., Worley, M.J., Heffron, F, 2000. Salmonella pathogenicity 
island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica 
serotype Typhimurium. Infect. Immun. 68, 5702-5709. 
 
Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H., Fang, F.C., 2000. 
Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in 
experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in 
vitro. J. Exp. Med. 192, 227-236. 
 



 134 

Watson, P.R., Paulin, S.M., Jones, P.W., Wallis, T.S., 2000. Interaction of Salmonella serotypes 
with porcine macrophages in vitro does not correlate with virulence. Microbiology 146, 1639-
1649. 
 
Wilcock, B.P., Schwartz, K., 1992. Salmonellosis. In: Leman, A.D., Straw, B.E., Mengeling, 
W.E., D'Allaire, S., Taylor, D.J. (Eds), Diseases of Swine, Iowa State University Press, Iowa, 570-
583. 
 
Wood, R.L., Pospischil, A.P., Rose R., 1989. Distribution of persistent Salmonella Typhimurium 
infection in internal organs of swine. Am. J. Vet. Res. 50, 1015-1021. 
 
Zeng, H., Carlson, A.Q., Guo, Y., Yu, Y., Collier-Hyams, L.S., Madara, J.L., Gewirtz, A.T., 
Neish, A.S., 2003. Flagellin is the major proinflammatory determinant of enteropathogenic 
Salmonella. J. Immunol. 171, 3668-3674. 
 
Zhou, D., Galan, J., 2001. Salmonella entry into host cells: the work in concert of type III secreted 
effector proteins. Microbes Infect. 3, 1293-1298. 
 
Zughaier, S.M., Zimmer, S.M., Datta, A., Carlson, R.W., Stephens, D.S., 2005. Differential 
Induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by 
endotoxins. Infect. Immun. 73, 2940-2950. 

 



 135 



 136 

 

 

 

 

A limited role for Ssra in persistent Salmonella Typhimurium infections  

in pigs 
 

 

 

 

Filip Boyena, Frank Pasmansa, Filip Van Immerseela, Eirwen Morganb, Nadine Botteldoornc#, 

Marc Heyndrickxc, Jiri Volfd, Herman Favoreele, Jean-Pierre Hernalsteensf, Richard 

Ducatellea, Freddy Haesebroucka 

 

 

 
aDepartment of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, 

Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium 
bDivision of Microbiology, Institute for Animal Health, Compton, Nr Newbury, Berks, RG20 

7NN, UK 
cInstitute for Agricultural and Fisheries Research (ILVO), Technology & Food Unit, 

Brusselsesteenweg 370, 9090 Melle, Belgium 
dVeterinary Research Institute, 621 32 Brno, Czech Republic 

e Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, 

Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium 

#Present affiliation: Scientific Institute for Public Health, Juliette Wytsmanstraat 14, 1050 

Brussels, Belgium 
fViral Genetics Laboratory, Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 

Brussels, Belgium 



 137 

ABSTRACT 

Virulence genes regulated by the SsrA/B system are indispensable for systemic disease in 

BALB/c mice. The role of this regulating system in the pathogenesis of Salmonella 

Typhimurium infections in pigs is not documented. In the present study, the interactions of 

Salmonella Typhimurium and an ssrA deletion mutant were compared in vitro and in vivo. 

The ssrA mutant strain displayed decreased Salmonella Pathogenicity Island 2 (SPI-2) 

expression levels, showed a replication defect in mouse macrophages and was attenuated in a 

mouse model after oral inoculation. Using real time RT-PCR and a porcine intestinal loop 

model, it was shown that the ssrA mutant strain was not significantly attenuated in overall 

virulence and SPI-1 expression in specific. Flowcytometric analysis demonstrated that the 

ssrA mutant strain was defective in intracellular replication in porcine macrophages. After 

oral inoculation of piglets with the wild type strain or the ssrA mutant strain, the animals of 

both groups excreted Salmonella and were colonized by Salmonella to the same extent. In an 

intravenous mixed infection model, the ssrA mutant strain was defective in the colonization of 

several organs. These results suggest that the ssrA gene of Salmonella Typhimurium plays a 

limited role in the persistent colonization of pigs. 

KEY WORDS 

Salmonella Typhimurium – pig – macrophage – ssrA 
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INTRODUCTION 

 

Salmonellosis is one of the leading zoonoses in the world. Human infections with non-

typhoidal Salmonella are generally foodborne and are a major public health concern. Over the 

last two decades, the emergence of Salmonella strains carrying multiple antibiotic resistance 

genes has led to an increased risk for hospitalization, invasive illness, and death. This is 

particularly the case for Salmonella enterica subspecies enterica serovar Typhimurium 

(Salmonella Typhimurium; Velge et al., 2005).  

Second to Salmonella Enteritidis, Salmonella Typhimurium is the most common 

serotype associated with human salmonellosis in Europe (Fisher et al., 2004). Due to a drop in 

Salmonella Enteritidis infections in poultry in 2005 and 2006, the relative importance of 

Salmonella Typhimurium infections in pigs will increase the next few years. Salmonella 

Typhimurium is the most frequently isolated serotype from pigs and pork (Anonymous, 

2004). Infected pigs can shed Salmonella for at least 28 weeks (Wood et al., 1989). These 

carrier pigs are a vast reservoir of Salmonella Typhimurium and pose an important threat to 

animal and human health (Berends et al., 1997). The mechanism underlying this carrier state 

of infection is unknown. 

The virulence genes located on Salmonella Pathogenicity Island 2 (SPI-2), which 

encodes a type III secretion system (T3SS), may play a role in the persistence of Salmonella 

in food-producing animals since these genes are indispensable for the induction of systemic 

disease and persistence in mice (Cirillo et al., 1998; Hensel et al., 1998). The two-component 

regulatory system, ssrAB, responds to environmental signals (Löber et al., 2006) and controls 

the expression of the type III secretion system and the secreted effector proteins. Through 

interaction with the intracellular traffic of macrophages and dendritic cells, the injected SPI-2 

effector proteins manage to create a safe niche for the salmonellae inside the phagocyte.  

It becomes increasingly clear that the pathogenesis of Salmonella infections varies 

depending on the host - strain combination (Pasmans et al., 2003, Morgan et al., 2004). 

Therefore, pathogenesis studies that use both the host species of interest and relevant 

Salmonella strains are of crucial importance. 

The aim of the present study was to determine the contribution of SsrA to the 

colonization and persistence of pigs by a Salmonella Typhimurium field strain. 
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MATERIALS AND METHODS 

 

Bacterial strains and plasmids 

Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella 

Typhimurium) strain 112910a was isolated from a pig stool sample on a pig farm with a 

persistent Salmonella problem and was used as the wild type strain (WT) in which all mutant 

strains were constructed. The construction and characterization of the non-polar deletion 

mutant in the major SPI-1 regulatory protein HilA, has been described before (Boyen et al., 

2006a,b). A mutant strain in which ssrA was deleted (designated SsrA) was constructed 

accordingly. Briefly, ssrA was first substituted by a PCR-modified kanamycin resistance 

cassette with the aid of a helper plasmid encoding the λ Red system. Primers used to create 

the PCR- modified resistance cassettes for the ssrA gene were 5’-

TAGTGATCAAGTGCCAAAGATTTTGCAACAGGCAACTGGAGGGAAGCATTTGTGT

AGGCTGGAGCTGCTTC-3’ and 5’-AAGATCTTATATTCTTTCATTTTGCTGCCCTCGC 

GAAAATTAAGATAATACATATGAATATCCTCCTTAG-3’. The mutant allele was 

subsequently transduced, using bacteriophage P22HTint, in a fresh wild type Salmonella 

background to discount effects on virulence due to unlinked mutations. In the last step, the 

antibiotic resistance cassette was eliminated using the helperplasmid pCP20. The targeted 

gene was completely deleted from the start codon till the stop codon. This was confirmed by 

sequencing.  

For all in vitro experiments and the loop assays, the WT and SsrA strains were used. 

For the in vivo assays, an invasive, spontaneous nalidixic acid resistant derivative (WTnal) was 

used. The ssrA::kan mutation was moved by P22 transduction into the WTnal strain, resulting 

in the SsrAkan/nal strain. This strain was used in the mixed in vivo assay. For the oral infection 

model, the kanamycin resistance cassette was eliminated as described above, resulting in the 

SsrAnal strain. At different stages of the construction, bacteriophage P22 sensitivity was tested 

to confirm the smooth phenotype.  

For flowcytometric analysis, fluorescence microscopy and confocal imaging, the 

pFPV25.1 plasmid expressing green fluorescent protein under the constitutive promoter of 

rpsM was used (Valdivia and Falkow, 1996).  
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Cell cultures and growing conditions 

The mouse macrophage cell line RAW 264.7 or porcine pulmonary alveolar 

macrophages (PAM) were used for all experiments. PAM were isolated and kept in culture as 

previously described [Dom et al., 1994; Boyen et al., 2006a).  

For intracellular survival assays, stationary phase cultures were obtained following 

growth overnight with aeration in Luria-Bertani broth and opsonized with serum obtained 

from Salmonella negative pigs. For the mouse infection model, bacterial strains were grown 

to stationary phase, washed in phosphate buffered saline (PBS) and resuspended at a 

concentration of ~ 2.5 x 109 CFU/ml in PBS. The inocula for the oral infection models and the 

intestinal loop model were prepared as described previously (Boyen et al., 2006c). For the 

intravenous infection assay, overnight cultures of both strains were assembled, washed three 

times in PBS and resuspended to obtain ~ 3 x 108 CFU/ml in PBS. 

 

SPI-1 and SPI-2 expression studies 

The relative expression levels of the hilA (encoding a major SPI-1 regulator), sipA 

(encoding a SPI-1 effector), ssrA (encoding a major SPI-2 regulator) and sifB (encoding a 

T3SS-2 secreted effector) genes of the Salmonella Typhimurium wild type strain and the ssrA 

mutant strain were compared in LB broth. A hilA mutant strain was used as an internal 

control.  

Total RNA was extracted from 1 ml of the bacterial culture using the RNeasy Mini Kit 

and the RNAprotect Bacteria reagent (Qiagen, Valencia, USA) followed by a DNase 

treatment. To quantify gene expression, the quantitative real time reverse transriptase PCR 

method (qRT-PCR) according to Botteldoorn et al. (2006) was used. Primers used are shown 

in Table 1. As control house keeping genes 16S rRNA, gmk and rpoD were used. The 

normalisation factor (NF) was calculated using the GeNorm software (Vandesompele, 2002).  

 

Table 1: Primers used for quantitative real time PCR (5’- 3’ directed) 

gene Nucleotide sequence forward primer Nucleotide sequence reverse primer 

hilA GGTTCAATCCGAGAGTCTGCAT AGGCCAAAGGGCGCATA 

sipA GGCTTGCGTGCGGAAATA ATCGCTACATTGCGCTTTCA 

ssrA GGCCAGTGAGCGATGTAGTA AAATCCCCTTTACATTAACAGCATTG 

sifB GAGGCAACATCACATAATTCCTTTATATAT GCTCITTCTTTACGTTACTATGGGAAA 
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Intestinal loop model 

To check the behaviour of the ssrA mutant strain during the intestinal phase of 

infection, an intestinal loop model was performed on 6-week-old piglets. This model has been 

described in detail elsewhere (Watson et al. 1995; Boyen et al., 2006b). In short, intestinal 

loops of 6-7 cm in length were ligated and inoculated with 1-2 x 109 CFU Salmonella 

Typhimurium 112910a or its isogenic deletion mutants in hilA and ssrA. Approximately 10 ml 

of blood was removed from the piglets to isolate the polymorphonuclear leucocytes (PMNs). 

The isolated PMNs were labeled with 111Indium and reinjected intravenously. The influx of 

PMNs in the intestinal wall and in the lumen of the gut, as assessed by the counts per minute 

(cpm) emitted from 111Indium-labelled PMNs within each loop, was recorded 12 h after 

injection of the loops. A hilA mutant strain was used as an internal control. 

 

Flow cytometric analysis of intracellular replication 

To assess the intramacrophagal replication deficit of the ssrA mutant strain, RAW 

264.7 cells or PAM were seeded in 25 cm2 culture flasks at a density of approximately 5 x 106 

cells per flask and were allowed to attach overnight. The cells were inoculated with the wild 

type strain or the ssrA mutant strain carrying the pFPV25.1 plasmid, at a multiplicity of 

infection (moi) of 1:1. To synchronize the infection, the flasks were centrifuged at 365 x g for 

5 min. After 25 min incubation at 37°C under 5% CO2, the cells were washed and fresh 

medium supplemented with 100 µg/ml gentamicin was added. After additional 60 min 

incubation at 37°C under 5% CO2, the cells were washed. To assess the initial bacterial load, 

cells were released using trypsin and maintained on ice, protected from light until use. To 

assess intracellular growth, fresh medium supplemented with 15 µg/ml gentamicin was added 

and cells were released and handled as described 6 hours after inoculation.  

Flow cytometric measurements were made using a FACScantoTM cytometer (Becton-

Dickinson, Erembodegem, Belgium). Macrophages were discriminated from bacteria and 

debris based on forward (FSC) and side (SSC) light scatter. GFP fluorescence was recorded 

using the FL1 channel (emission wavelength: 515-545 nm). Data were expressed in arbitrary 

units and both the average fluorescence and the median fluorescent value of infected 

macrophages were calculated from the fluorescence histograms using the FACSDiva software 

(Becton-Dickinson, Erembodegem, Belgium). 
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Experimental infection of BALB/c mice 

Seven-week-old female BALB/c mice were randomly divided in 2 groups, 

anesthetized with isoflurane and inoculated orally with ca. 1 x 108 CFU of Salmonella 

Typhimurium 112910a or Salmonella Typhimurium 112910a∆ssrA. On day 1 and day 4 after 

inoculation, a subset of animals of both groups were humanely killed. For each animal, 

cecum, spleen and liver were removed, homogenized and the number of CFU/g tissue was 

determined on brilliant green agar (BGA) plates.  

 

Experimental infections of piglets 

In the experimental infection studies, 5-week-old piglets, obtained from a 

serologically negative breeding herd, that were negative for Salmonella at fecal sampling 

were used. Oral experimental infections were performed in piglets as described before (Boyen 

et al., 2006c). In short, animals of groups 1 and 2 were orally inoculated with ca. 1 x 107 CFU 

of Salmonella Typhimurium 112910a and Salmonella Typhimurium 112910a∆ssrA 

respectively in 2 ml PBS. Group 3, the negative control group, was sham-inoculated with 2 ml 

PBS. The rectal temperature and the clinical condition were monitored and fresh fecal 

samples were collected on several days for bacteriological analysis. On days 5 and 28 pi, 5 

piglets of each group were euthanized. Samples of tonsils, mandibular lymph nodes, lung, 

heart, liver, spleen, kidney, ileocecal lymph nodes, jejunum, ileum, cecum and contents of 

jejunum, ileum and cecum were taken for bacteriological analysis. All samples were 

examined for the presence of the Salmonella strains by plating tenfold dilutions on BGA 

supplemented with 20 µg/ml nalidixic acid. If negative at direct plating, the samples were pre-

enriched in Buffered Peptone Water (BPW), enriched in tetrathionate broth and plated on 

BGA supplemented with 20 µg/ml nalidixic acid. Samples that were negative after direct 

plating but positive after enrichment were presumed to contain 83 CFU/g. Samples that 

remained negative were presumed to contain 0 CFU/g.  

For the mixed infection assay, 11 experimental animals were intravenously inoculated 

with approximately 1.5 x 108 CFU of each strain of a 1:1 mixture of the WTnal and the 

SsrAkan/nal strains in 0.5 ml PBS. The negative control group consisted of 3 piglets which were 

sham-inoculated with PBS. The Salmonella-inoculated piglets were euthanized on days 1 (5 

piglets) and 3 (6 piglets) after inoculation. Sham-inoculated piglets were euthanized 3 days 

after inoculation. Samples of tonsils, lung, liver, spleen, kidney, bronchial, mesenterial and 

ileocecal lymph nodes, ileum and cecum were taken for bacteriological analysis. The ileum 

and cecum tissue samples were separated from their contents and were rinsed in PBS. Both 
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the contents and the rinsed intestinal samples were bacteriologically examined. All samples 

were processed as described before (Boyen et al., 2006b). The ratio WTnal / SsrAkan/nal was 

calculated for all samples derived from each piglet. These data were converted logarithmically 

prior to statistical analysis. The appropriate detection limits were used to estimate the 

minimum ratios when samples were not positive after direct plating. 

 

Ethical considerations 

The animal work presented here was approved by the Ethical committee of the Faculty of 

Veterinary Medicine of the Ghent University (EC 2004/103 and EC 2006/104) and in the UK 

were conducted according to the requirements of the Animal (Scientific Procedures) Act 

1986. 

 

Statistical analysis 

All in vitro experiments were carried out in triplicate with three repeats per experiment, 

unless otherwise stated. The data from the intestinal loops were analyzed by one-way analysis 

of variance methods, using the SPSS 12.0 software for windows. A Student’s t-test was used 

to determine whether the flow cytometric fluorescence values of both strains differed and to 

determine whether the log value of the WTnal / SipBkan/nal ratio of the samples was 

significantly different from the log value of the WTnal / SipBkan/nal ratio of the inoculum. In the 

oral infection assay, statistical analysis was performed using a non-parametric Kruskal-Wallis 

test. Differences with a P value ≤ 0.05 were considered significant. 

 

RESULTS 

 

The ssrA mutant strain is attenuated in a BALB/c infection model 

SPI-2 deficient Salmonella Typhimurium strains are severely attenuated in virulence 

in a BALB/c infection model. Deletion of the ssrA gene resulted in a colonization defect in 

this model, as shown in Figure 1. Although the ssrA mutant strain and the wild type strain 

were found in similar numbers in the murine ceca 1 day after inoculation, the ssrA mutant 

strain was found in lower numbers in the ceca 4 days after inoculation, though not statistically 

significant (P > 0.05). The ssrA mutant strain was found in significantly (P < 0.05) lower 

numbers in liver and spleen 4 days after inoculation.  
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Figure 1: Recovery of bacteria from the ceca, liver and spleen from 4 BALB/c mice at days 1 and 4 

after oral inoculation with either WTnal or SsrAnal. The results represent the mean log values of the 

number of cfu per gram tissue and their standard deviation. An asterisk refers to a significantly lower 

number of SsrAnal cfu compared to the wild type strain (p < 0.05).   
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The ssrA mutant strain is defective in SPI-2 expresssion 

To check the deletion of ssrA and the expression of downstream T3SS-2 -secreted 

effector genes, the expression levels of ssrA and sifB (Miao and Miller, 2006) were measured 

using qRT-PCR. The ssrA gene was expressed in the wild type strain and the hilA mutant 

strain, but not in the ssrA mutant strain. The expression of sifB was considerably decreased in 

the ssrA mutant strain. Both the expression of hilA (a major SPI-1 regulator) and sipA (coding 

for a SPI-1 effector protein) were dramatically diminished in the hilA mutant strain, but not in 

the ssrA mutant strain (results not shown). 

 

The ssrA mutant strain elicits an intestinal inflammatory response 

In the porcine intestinal loop assays, the virulence of the wild type strain and the ssrA 

mutant strain in the intestinal phase of the infection were compared. Twelve hours post 

inoculation, both the wild type strain and the ssrA mutant strain, but not the hilA mutant 

strain, induced intestinal inflammation. There was no statistically significant difference in 

neutrophil influx between the wild type strain and the ssrA mutant strain (P > 0.05). These 

results are shown in Figure 2. 

*
*
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Figure 2: Radio-active γ counts per minute per cm loop as a measure for the early PMN influx elicited 

by Salmonella Typhimurium strains in porcine intestinal loops. White bars represent the influx of 

neutrophils into the gut tissue, light grey bars the influx into the lumen of the gut and dark grey bars 

the total neutrophil influx into the gut. Loops inoculated with the wild type strain and the ssrA mutant 

strain contained significantly (P < 0.05) more neutrophils than the control loops and the loops 

inoculated with the hilA mutant strain. The wild type strain did not induce significantly more 

neutrophil influx than the ssrA mutant strain (P > 0.05). 
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The ssrA deletion mutant shows impaired intracellular replication in murine and 

porcine macrophages 

At time point 0 h, both the mean fluorescence and the median fluorescent value of the 

infected RAW 264.7 cells and PAM were similar for the wild type strain and the ssrA mutant 

strain. At 6 h after inoculation, however, both the mean fluorescence and the median 

fluorescent value of the infected macrophages was significantly higher in the cells infected 

with the wild type strain, compared to the cells infected with the ssrA mutant strain. These 

results are shown in Table 2.  

 

The ssrA deletion mutant is not impaired in porcine colonization after oral inoculation 

Sham-inoculated control piglets did not develop disease signs and Salmonella was not 

isolated from any of the samples taken from these animals throughout the experiment.  

The animals from both Salmonella-inoculated groups had a slight increase in temperature 

during the first few days after inoculation and some presented with mild diarrhea.  
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Table 2: Mean and median fluorescent values of infected RAW 264.7 cells and porcine macrophages 

(PAM) at 0 h and 6 h after inoculation. The average values of 3 independent experiments ± sd are 

shown. Both the mean and median fluorescent values of the cells infected with the ssrA mutant strain 

at 6 h pi were statistically significant lower (P < 0.05) than the values of the cells infected with the 

wild type strain and are indicated with a “*”. 

 

The animals of both groups showed a similar fecal excretion pattern (data not shown).  

Four days pi, a peak in shedding was noticed in both groups. Two weeks after 

inoculation, the piglets intermittently shed Salmonella at enrichment level. Although during 

the last few days of the experiment, the ssrA mutant strain was shed by fewer animals, this 

difference was not significant due to the low level of shedding reached at this stage of the 

infection.  

At days 5 and 28 pi, the animals of both groups were infected to the same extent in the gut 

and gut-associated lymphoid tissue, as well as in the internal organs (Table 3). No significant 

differences (P > 0.05) were seen.  

 

The ssrA deletion mutant is attenuated after intravenous inoculation of piglets 

One day after inoculation, both strains were recovered from all pigs inoculated 

intravenously with a 1:1 mixture of the WTnal and SsrAkan/nal strains. The numbers of bacteria 

in the blood, the heart, the tonsils and the gut samples were very low, impairing a meaningful 

quantitative comparison between both strains in these organs. Bacteria were found in 

relatively higher numbers, although still low, in the liver, spleen, kidney, lungs and bronchial 

lymph nodes. In these organs, except for the liver, the output ratio WTnal / SsrAkan/nal was not 

significantly different (P > 0.05) from the ratio in the inoculum.  

 Mean fluorescence ± sd  Median fluorescent value ± sd 

RAW 264.7 0 h 6 h  0 h 6 h 

WT 1165 ± 110 3236 ± 488  831 ± 26 1862 ± 189 

�ssrA 1073 ± 124 1594 ± 298*  801 ± 57 1042 ± 166* 

PAM 0 h 6 h  0 h 6 h 

WT 744 ± 84 1028 ± 202  594 ± 42 710 ± 126 

�ssrA 749 ± 59 674 ± 122*  578 ± 38 531 ± 74* 
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Table 3: Post mortem bacteriological findings at days 5 and 28 after oral inoculation of piglets 

with 1 x 107 CFU of the wild type Salmonella Typhimurium strain or the ssrA mutant strain. 

The number of positive tissues in relation to the total number of tissues (frequency) and the 

average number of CFU (log10) ± sd per gram tissue are shown. Samples only positive after 

enrichment were given a value of 83 CFU/g.  

 

                                                                   Wild type strain                               ssrA mutant strain  
 Tissue Frequency Log10 CFU/g ± sd Frequency Log10 CFU/g ± sd  
      

 Mand. ln. 4/5 1.56 ± 1.11 3/5 0.98 ± 1.17  
 Tonsil 3/5 1.33 ± 1.57 4/5 3.14 ± 1.77  
 Lung  1/5 0.2 ± 0.44 2/5 0.4 ± 0.55 
 Heart 2/5 0.4 ± 0.55 1/5 0.2 ± 0.45 
 Liver 4/5 0.8 ± 0.45 2/5 0.4 ± 0.55 
Day 5 pi Spleen 2/5 0.58 ± 0.86 1/5 0.2 ± 0.45 
 Kidney 2/5 0.78 ± 1.27 2/5 0.6 ± 0.55 
 Ileocecal ln. 5/5 3.69 ± 0.62 5/5 4.04 ± 0.79 
 Jejunum 5/5 2.97 ± 1.97 5/5 3.30 ± 1.48 
 Ileum 5/5 4.92 ± 0.52 5/5 5.17 ± 1.39 
 Cecum 5/5 3.85 ± 0.68 5/5 3.40 ± 2.29 
 Content jejunum 5/5 2.64 ± 1.70 4/5 1.18 ± 1.04 
 Content ileum 5/5 4.40 ± 0.73 5/5 3.92 ± 2.74 
 Content cecum 4/5 2.74 ± 1.56 4/5 2.53 ± 2.70 
      

 Mand. ln. 0/5 0 ± 0 2/5 0.74 ± 1.18 
 Tonsil 2/5 0.76 ± 1.23 4/5 1.88 ± 1.74  
 Lung  0/5 0 ± 0 1/5 0.2 ± 0.45 
 Heart 0/5 0 ± 0 1/5 0.2 ± 0.45 
 Liver 0/5 0 ± 0 1/5 0.2 ± 0.45 
 Spleen 0/5 0 ± 0 2/5 0.4 ± 0.55 
Day 28 pi Kidney 0/5 0 ± 0 0/5 0 ± 0 
 Ileocecal ln. 4/5 1.32 ± 1.34 4/5 0.98 ± 0.68 
 Jejunum 2/5 0.4 ± 0.55 2/5 0.4 ± 0.55 
 Ileum 5/5 1.72 ± 1.61 5/5 1.18 ± 0.41 
 Cecum 5/5 1.45 ± 1.01 2/5 1.04 ± 0.79 
 Content jejunum 0/5 0 ± 0 1/5 0.2 ± 0.45 
 Content ileum 5/5 1.58 ± 1.29 4/5 0.8 ± 0.45 
 Content cecum 5/5 1 ± 0  2/5 0.4 ± 0.55 
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Three days pi, neither strain could be recovered from the blood samples. The number 

of WTnal bacteria found in most of the organs was comparable with the number of WTnal 

bacteria found 1 day after inoculation. The number of SsrAkan/nal bacteria, however, showed an 

overall decrease. The number of positive lymphoid tissues (tonsils, gut associated lymphoid 

tissue) was markedly lower for the ssrA mutant strain. For the kidney, heart, ileal wall and the 

bronchial and mesenteric lymph nodes, this resulted in an output ratio WTnal / SsrAkan/nal that 

was significantly higher (P < 0.05) than in the inoculum. The numbers of bacteria in the 

tonsils, lungs and contents of ileum and cecum were very low, impairing a meaningful 

quantitative comparison between both strains. The average log values of the ratio WTnal / 

SsrAkan/nal for all samples are summarized in Figure 3. 

 

Figure 3: Recovery of bacteria from various organs of piglets at days 1 and 3 after intravenous 

inoculation with an equal mixture of WTnal and SsrAkan/nal. The log value of the ratio of the number of 

CFU/g sample of WTnal and SsrAkan/nal is given as the mean ± standard deviation. An asterisk indicates 

that the output ratio was significantly different (P < 0.05) from that present in the inoculum. 
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DISCUSSION 

 

In this report we characterized an ssrA deletion mutant in a porcine field strain of 

Salmonella Typhimurium. The deletion was confirmed, both at the transcriptional level and 

the phenotypic level, using qRT-PCR, a RAW replication model and a BALB/c mouse model. 

Recently it has been found that the expression of SPI-2 encoded genes is regulated 

exclusively through the induction of the SsrA/B regulatory system (Löber et al., 2006). This 

means that disabling the SsrA/B system undeniably results in the loss of the SPI-2 T3SS. 

Nevertheless, it can not be ruled out that the SsrA/B system also regulates genes which are 

not associated to SPI-2. Using qRT-PCR, it was confirmed that the expression of the SPI-2 

secreted effector gene sifB was abolished in the ssrA mutant strain. The overall virulence and, 

specifically, the expression of SPI-1 were checked in different assays, confirming that the 

attenuation in mice is linked to the deletion of ssrA.  

 Using GFP-expressing bacteria, it was shown that the ssrA mutant strain was slightly 

attenuated in intracellular replication in PAM. This defect was more subtle compared to the 

defect that was observed in mouse macrophages. However, it can not be ruled out that the 

difference observed in this assay, may also be attributed to the nature of the cells used 

(primary cells vs. cell line). 

In the first part of this pathogenesis study, we chose to perform a single in vivo 

infection assay that resembled the natural infection, which is often established with low or 

moderate numbers of Salmonella (Loynachan and Harris, 2005), to be able to investigate the 

biological relevance of SsrA in the course of infection in the field. The fact that very few 

differences were seen in the long-term colonization of pigs orally inoculated with an ssrA 

mutant strain and its isogenic parental wild type strain may come as a surprise. However, a 

closer look at pathogenesis studies performed in various host species may shed a clearer light 

on this matter. In laboratory mice, SsrA-regulated genes have an important impact on the 

pathogenesis of Salmonella Typhimurium infections, particularly on the systemic phase of the 

infection (Cirillo et al., 1998; Hensel et al., 1998), but also on the enteric phase (Hapfelmeier 

et al., 2005). Data obtained in food-producing animals, however, are scarce. The role of SsrA-

regulated genes in host-restricted/adapted serotypes seems consistent in the literature: they are 

important virulence factors for systemic disease and as a consequence for colonization of the 

host. For example, for Salmonella Gallinarum and Salmonella Pullorum, which cause severe 

systemic disease in fowl, SPI-2 is a prerequisite for virulence and colonization in chickens 
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(Jones et al., 2001; Wigley et al., 2002). In mice and calves, SPI-2 genes are required for 

virulence in Salmonella Choleraesuis (Dunyak et al., 1997) and Salmonella Dublin (Bispham 

et al., 2001) infections respectively. In broad host range serotypes, however, like Salmonella 

Enteritidis and Salmonella Typhimurium (except in NRAMP-/- mice), the importance of SPI-2 

is less described. In calves, a Salmonella Typhimurium SPI-2 mutant strain was attenuated in 

colonization after oral inoculation in a signature-tagged mutagenesis assay (Coombes et al., 

2005), but was still able to cause lethal infections (Tsolis et al. 1999). In a recent report, SPI-2 

was found to play a role in the colonization of Salmonella Typhimurium in calves, but not in 

chickens (Morgan et al., 2004). In addition, a screening of 7,680 Salmonella Enteritidis 

mutants for attenuation in a chicken macrophage infection model resulted in the detection of 

mutations in several flagellar, LPS and SPI-1 associated genes, but not in SPI-2 genes (Zhao 

et al., 2002). The role of SPI-2 in the enteric phase of a Salmonella Typhimurium infection in 

food-producing animals also seems negligible. In a rabbit intestinal loop model and in calves, 

Salmonella Typhimurium SPI-2 mutant strains induced inflammation and fluid accumulation 

to the same extent as the wild type strain (Tsolis et al., 1999; Everest et al., 1999). 

Considering these reports, the results shown here are not as surprising as expected at first 

sight. 

It is generally accepted that mixed inoculum assays are more capable of discriminating 

differences in the ability of strains to colonize the host. Using a mixed inoculum assay and a 

high inoculation dose, we could indeed show that an ssrA mutant strain is attenuated for the 

colonization of internal organs of pigs after intravenous injection. These findings are 

consistent with the intramacrophagal replication defect of the ssrA mutant strain we observed 

in vitro. The mixed intravenous infection protocol, however, does not fit closely to the natural 

route of infection and bacteria may reach their host cells in a more artificial manner. Recently, 

it has been shown that the magnitude of the intracellular SPI-2 gene expression is dependent 

on the mechanism of internalization by macrophages (Drektrah et al., 2007). This 

phenomenon may additionally explain the differences that were seen in both in vivo 

experiments.  

In conclusion, we have shown that an ssrA mutant of a porcine field strain of 

Salmonella Typhimurium is fully capable of colonizing pigs and to establish a long term 

persistent infection after oral inoculation. Using an intravenous mixed infection model, 

however, the ssrA mutant strain was defective in the colonization of several internal organs. 

This work contributes to the recent insights in the serotype- and host-dependent pathogenesis 

of salmonellosis in food producing animals. 
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ABSTRACT 

 

The aim of this study was to assess the contribution of ShdA in faecal shedding of Salmonella 

Typhimurium in pigs. Pigs were orally inoculated with a Salmonella Typhimurium wild type 

field strain or its isogenic shdA mutant strain. For the first few days after inoculation, the shdA 

mutant strain was excreted more, induced more pronounced diarrhoea and was found in 

higher numbers of infected internal organs. No effect on long-term shedding was found. In a 

porcine intestinal loop model, the wild type strain and shdA mutant strain did not show any 

differences in the induction of neutrophil influx into the intestinal wall and lumen. In 

conclusion, we have shown that a Salmonella Typhimurium deletion mutant in shdA is more 

virulent during the first days after inoculation and is not significantly impaired in persistence 

or prolonged shedding in pigs. 
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INTRODUCTION 

 

Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella 

Typhimurium) is an important zoonotic agent. The prolonged excretion of Salmonella 

Typhimurium in pig faeces is a major risk factor both for human and animal health (Berends 

et al., 1997; Beloeil et al., 2004). It has been estimated that 5-30% of finisher pigs originally 

infected may still excrete Salmonella at the end of the finishing period, and this percentage 

can double in periods of stress, for example during transport and lairage (Berends et al., 

1996). The mechanisms leading to the carrier state or to prolonged faecal shedding in pigs are 

unknown.  

The CS54 Island has been characterized as an important locus for intestinal colonization 

and prolonged shedding in mice (Kingsley et al., 2000; Kingsley et al., 2003). The most 

important component of this island is ShdA, an outer membrane protein of the autotransporter 

family, which is expressed solely in the intestine. Its passenger domain mediates adhesion to 

fibronectin possibly through a heparin-mimicking binding (Kingsley et al., 2002; Kingsley et 

al., 2004). Fibronectin binding proteins are common in bacterial pathogens and mainly in 

Gram positive bacteria. Although their specific role in pathogenesis is not always known, they 

frequently mediate adherence and entry into mammalian cells (Joh et al., 1999; Schwarz-

Linek et al., 2004). A sandwich model has been proposed in which fibronectin acts as a 

molecular bridge between the fibronectin binding proteins on the pathogen and the integrins 

on the host cells (Joh et al., 1999; Menzies, 2003). 

Kingsley et al. (2002) demonstrated that a Salmonella Typhimurium strain harbouring a 

mutation in shdA was shed in reduced numbers and for a shorter period of time in the faeces 

of mice compared to its isogenic parent strain. Although these studies are of great value, they 

were exclusively conducted in mice and the role of ShdA in the pathogenesis of salmonellosis 

in other animal species was not investigated. It was, therefore, the purpose of the present 

studies to determine the role of this fibronectin binding protein in the persistence and 

shedding of Salmonella Typhimurium in the pig. 

 

MATERIALS AND METHODS 

 

All experiments were approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University. 
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Bacterial strains and growth conditions 

Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella 

Typhimurium) strain 112910a phage type 120/ad, was isolated from a pig stool sample and 

was used as the wild type strain. The shdA deletion mutant was constructed in this strain. 

The inocula for the intestinal loop model were prepared as follows. Cultures in LB 

medium were shaken at 130 rpm for 18 hours at 25 °C. After diluting twofold with fresh LB, 

the cells were incubated for 2 hours at 37 °C, while shaking at 130 rpm. Afterwards, 3 

syringes of 5 ml were filled with cultures of each strain. The actual number of bacteria ml-1 

was assessed by plating serial dilutions on McConkey agar (Oxoid, Basingstoke, UK) plates.  

For the oral inoculation of pigs, the bacteria were grown in brain heart infusion broth 

(BHI; Oxoid, Basingstoke, UK) for 6 h at 37 °C. The bacteria were washed twice in 

phosphate buffered saline (PBS, 2000 x g for 10 min at 4 °C). After a third wash with sterile 

Hanks’ balanced salt solution (HBSS) with Ca2+/Mg2+ (Gibco, Life Technologies, Paisley, 

Scotland), the bacteria were resuspended in 10 ml HBSS with Ca2+/Mg2+. The number of 

viable Salmonella bacteria ml-1 was determined by plating tenfold dilutions on Brilliant Green 

Agar (BGA; Oxoid, Basingstoke, UK).  

 

Construction of a non polar shdA deletion mutant 

The deletion mutant in shdA was constructed according to the one-step inactivation 

method first described by Datsenko and Wanner (2000) and slightly modified for use in 

Salmonella as described before (Boyen et al., 2005). Primers were designed using the 

nucleotide sequence with accession number AE008813. The primers shdA-P1 

5'aaagggaaatttaaaaattgaacaggacttacagtattgtctggagcgcctgtgtaggctggagctgcttc3’ (primer 

homologous with sequence upstream of ATG startcodon) and shdA-P2 

5'tgtcattcgcctcaaaacgggcagggaacacccgcccggttttgtctaaccatatgaatatcctccttag3’ (primer 

homologous with sequence downstream of stopcodon) were constructed. These primers and 

the plasmid pKD4 DNA were utilized to amplify the linear fragment, containing the antibiotic 

resistance gene kan, that was used for the substitution of the gene. The helper plasmid 

pKD46, encoding the λ Red recombinase, was introduced into Salmonella by electroporation, 

followed by selection on LB agar supplemented with 100 mg carbenicillin l-1 (Duchefa 

Biochemie, Haarlem, The Netherlands). Substitutions of the genes by a kanamycin resistance 

gene were obtained by electroporation of competent Salmonella (pKD46) cells, cultured in 

presence of 0.2 % (w/v) arabinose, with the linear PCR fragment and selection on LB medium 

containing 100 mg kanamycin l-1 (Duchefa Biochemie, Haarlem, The Netherlands). This was 
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transduced in a fresh wild type background using bacteriophage P22HTint (Schmieger, 

Backhaus, 1976). Finally, using the helper plasmid pCP20, shdA was deleted from the start 

codon till the stop codon. A scar of 83 bp was left in the resulting strain 112910a∆shdA. This 

was confirmed by sequencing the relevant PCR fragment. At different stages of the 

construction, bacteriophage P22 sensitivity was tested to confirm the smooth phenotype. 

Two primer pairs were designed: one internal primer pair to confirm the presence of the shdA 

gene, as used in a previous study (Pasmans et al., 2003), and a second primer pair located 

outside the shdA gene, to confirm the substitution and the deletion.  

 

Experimental infection of pigs 

Experimental infections were performed in 4-week-old piglets (commercial closed line 

based on Landrace), that were originating from a serologically negative breeding herd and 

were negative for Salmonella at faecal sampling. They were divided at random into 3 groups: 

2 groups of 10 pigs and one negative control group of 6 pigs. All three groups were housed in 

separate isolation units at 25 °C under natural day-night rhythm with ad libitum access to feed 

and water. Pigs were penned in pairs for the first 5 days and individually for the remainder of 

the experiment. 

The animals were orally inoculated with 107 cfu of Salmonella Typhimurium in 2 ml 

HBSS. Group 1 was inoculated with Salmonella Typhimurium 112910a, group 2 was 

inoculated with Salmonella Typhimurium 112910a∆shdA and group 3, the negative control 

group, was sham-inoculated with 2 ml PBS.  

For the first two days post-inoculation (pi) the rectal temperature was measured twice 

a day and the clinical condition of the pigs was monitored (anorexia, lethargy, diarrhoea). 

From day 3 till day 7 pi this was performed once a day, and subsequently once every other 

day until day 28 pi.  

Fresh faecal samples were taken from each pig on days 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 

24, 26 and 28 pi for bacteriological analysis. 

On day 5 and day 28 pi 5 pigs of each Salmonella inoculated group and 3 control pigs 

were euthanized. Samples of tonsils, mandibular lymph nodes, bronchial lymph nodes, lung, 

heart, liver, spleen, kidney, ileocaecal lymph nodes, jejunum, ileum, caecum and contents of 

jejunum, ileum and caecum were taken for bacteriological analysis. 

All samples were stored at -70 °C until use. The samples were thawed and weighed, 

10% (w/v) suspensions were made in buffered peptone water (BPW; Oxoid, Basingstoke, 

UK) after which the material was homogenized with a stomacher. The homogenized samples 
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were examined for the presence of the Salmonella strains by plating tenfold dilutions on 

BGA. If negative at direct plating, the samples were pre-enriched overnight in BPW at 37 °C, 

enriched overnight at 37 °C in tetrathionate broth and then plated on BGA. Samples that were 

negative after direct plating but positive after enrichment, were presumed to contain 10 cfu g-

1. Samples that remained negative were presumed to have 0 cfu g-1. Salmonella colonies 

isolated from each group were analyzed for the presence or absence of the shdA gene by 

means of PCR to exclude cross contamination between groups. Statistical analysis was 

performed using a non-parametric Kruskal-Wallis test. Differences with a P value ≤ 0.05 were 

considered as significant. 

 

Intestinal loop model 

The intestinal loop model was performed on 6-week-old farm-reared Landrace/Large 

White cross male piglets. This model has been described in detail elsewhere (Wallis et al., 

1995). In short, commencing at the distal ileum, a maximum of 30 sequential loops (each 6-

7 cm in length and containing both absorptive epithelium and follicle associated epithelium) 

were ligated, separated by 1 cm spacers. The lumen of the ileum was gently flushed with 0.9% 

NaCl before the construction of the loops to remove the intestinal contents. The inoculum 

injected into each loop, consisting of Salmonella Typhimurium 112910a and Salmonella 

Typhimurium 112910a∆shdA respectively, was in the range 1-2 x 109 c.f.u. Approximately 

10 ml of blood was removed from the piglets to isolate the polymorphonuclear leucocytes 

(PMNs). The isolated PMNs were labelled with 111Indium and reinjected intravenously. The 

influx of PMNs in the intestinal wall and in the lumen of the gut, as assessed by the counts per 

minute (c.p.m.) emitted from 111Indium-labelled PMNs within each loop, was recorded 12 h 

after injection of the loops using a Wallac 1275 mini gamma counter. The data were analyzed 

using a paired t-test, with the SPSS 12.0 software for Windows. A P-value� 0.05 was 

considered significant. 
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RESULTS  
 

The course of infection of the piglets inoculated with the wild type strain was similar to 

several preliminary experiments. Sham inoculated control piglets did not develop disease 

signs and Salmonella was not isolated from any of the samples taken from these animals 

throughout the experiment.  

 

shdA mutant strain is more virulent early after inoculation 

During the first days after oral inoculation of the piglets, the shdA mutant strain was 

shed in higher numbers than the wild type strain (Fig. 1). On days 1 and 2 pi, the difference 

between the wild type strain and the shdA mutant strain was significant (p ≤ 0.05). In 

accordance with the excretion data, diarrhoea in the group of piglets inoculated with the shdA 

mutant strain was more pronounced (Table 1). At day 5, the number of infected internal 

organs (bronchial lymph nodes, lung, heart, liver, spleen and kidney) of the piglets inoculated 

with the shdA mutant strain (21/30) was higher than the number of infected internal organs of 

the piglets inoculated with the wild type strain (10/30), even though the average number of 

cfu per gram tissue was not significantly different (Table 2). The post mortem bacteriological 

results are summarized in Table 2. One piglet inoculated with the shdA mutant strain died 

suddenly at day 4 pi. The internal organs were massively infected (>106 cfu gram-1 tissue) 

with Salmonella.  

 

 

 

 

 

Table 1: The number of clinically affected piglets in relation to the total number of piglets during the 

first 5 days after inoculation with either the wild type strain or the shdA mutant strain are shown.  

 

shdA mutant strain is not impaired in long-term colonization 

From day 8 until day 28, no significant differences in mean faecal shedding were 

noticed between piglets inoculated with the mutant and wild type strain (Fig. 1). From day 18 

on, all animals of both groups shed Salmonella intermittently at enrichment levels. At day 28, 

all animals of both groups were positive for Salmonella in the ileum and caecum and only the 

tonsils were colonized in significantly higher numbers in the piglets inoculated with the shdA 

mutant strain. The post mortem bacteriological results are summarized in Table 2.  

Days p.i. wild type strain  shdA mutant strain  
1 0/10 5/10 
2 0/10 3/10 
3 1/10 4/10 
4 2/10 4/10 
5 0/10 3/9 
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Table 2: Post mortem bacteriological findings at day 5 and day 28 post inoculation of piglets 

inoculated with 107 cfu of the wild type strain or the shdA mutant strain. Number of positive 

tissues in relation to the total number of tissues (frequency) and the average number of cfu 

(log10) ± stdev per gram tissue are shown. Samples only positive after enrichment were 

rendered a value of log 10 cfu g-1. A significantly (p ≤ 0.05) higher mean score of the 

112910a∆shdA strain compared to the wild type strain is indicated with a “*”. 

 

                                                                   Wild type strain                               shdA mutant strain  

 Tissue Frequency Log10 cfu/g ± stdev Frequency Log10 cfu/g ± stdev  
      
 Mand. ln. 4/5 1.16 ± 0.72 5/5 2.35 ± 1.69  
 Tonsil 4/5 1.75 ± 1.22 5/5 2.81 ± 1.96  
 Bronch. ln. 0/5 0 ± 0 2/5 0.25 ± 0.5 
 Lung  3/5 0.6 ± 0.55 4/5 0.75 ± 0.5 
 Heart 2/5 0.4 ± 0.55 3/5 0.50 ± 0.58 
 Liver 4/5 0.8 ± 0.45 5/5 1.00 ± 0 
Day 5 pi Spleen 1/5 0.2 ± 0.45 4/5 0.75 ± 0.5 
 Kidney 0/5 0 ± 0 3/5 1.21 ± 1.81 
 Ileocecal ln. 5/5 2.59 ± 1.06 5/5 3.07 ± 0.29 
 Jejunum 5/5 2.77 ± 1.92 5/5 2.60 ± 1.22 
 Ileum 5/5 4.64 ± 1.09 5/5 4.52 ± 0.94 
 Cecum 5/5 4.49 ± 0.52 5/5 4.12 ± 0.61 
 Content jejunum 5/5 2.5 ± 2.17 5/5 2.08 ± 1.46 
 Content ileum 5/5 3.75 ± 2.28 5/5 4.88 ± 1.68 
 Content cecum 4/5 3.14 ± 1.87 5/5 3.50 ± 1.43 
      
 Mand. ln. 4/5 0.8 ± 0.45 5/5 1 ±  0 
 Tonsil 5/5 1 ± 0 5/5 2,79 ± 1.64 ∗ 
 Bronch. ln. 0/5 0 ± 0 1/5 0,2 ± 0.45 
 Lung  0/5 0 ± 0 2/5 0,4 ± 0.55 
 Heart 0/5 0 ± 0 0/5 0 ± 0 
 Liver 0/5 0 ± 0 1/5 0,2 ± 0.45 
 Spleen 0/5 0 ± 0 2/5 0,4 ± 0.55 
Day 28 pi Kidney 2/5 0.4 ± 0.55 1/5 0,2 ± 0.45 
 Ileocecal ln. 5/5 1 ± 0 4/5 0,8 ± 0.45 
 Jejunum 1/5 0.2 ± 0.45 3/5 0,6 ± 0.55 
 Ileum 5/5 1 ± 0 5/5 1 ± 0 
 Cecum 5/5 1 ± 0 5/5 1 ± 0 
 Content jejunum 2/5 0.4 ± 0.55 0/5 0 ± 0 
 Content ileum 4/5 0.8 ± 0.45 4/5 0,8 ± 0.45 
 Content cecum 5/5 1 ± 0 5/5 1 ± 0 
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shdA mutant does not induce an increased neutrophil influx in the gut 

In the loop assays, infections with the wild type strain and the shdA mutant strain both 

resulted in enteritis 12 hours after inoculation. The loops contained a rather small amount of 

slimy, pus-like substance, which made it impossible to quantify the fluid accumulation in the 

lumen. The shdA mutant strain did not show any significant differences in the induction of 

neutrophil influx in the intestinal wall or in the lumen of the gut compared to its isogenic wild 

type strain, 12 hours after inoculation (Fig. 2).  

 

Figure 1. The mean log(10) cfu gram-1 faeces per piglet (n = 10 at days 1,2 and 4; n = 5 at the 

remaining days) after oral inoculation of piglets with 107 cfu of the wild-type strain 112910a (�) and 

112910a∆shdA (�) respectively. A significant (p ≤ 0.05) higher mean faecal score of the 

112910a∆shdA strain is indicated with a “*”. 
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DISCUSSION 

 

The increased faecal excretion levels during the first few days after inoculation of the 

piglets inoculated with the shdA mutant strain are consistent with the results of Kingsley et al. 

(2003), who reported a threefold increase in excretion of the shdA mutant strain at day 5 after 

inoculation of CBA/J mice with an equal mixture of the wild type strain and the shdA mutant 

strain.  

Although Kingsley et al. (2000, 2003) found a reduction in excretion of the shdA mutant 

strain in comparison with its isogenic wild type strain by 15 days after inoculation of CBA/J 

mice, we did not observe any signs of decreased shedding of the shdA mutant strain until the 

end of the experiment (28 days pi). It is becoming more and more obvious that the 

pathogenesis of Salmonella-infections and the importance of some virulence factors are 

strongly host-related (Pasmans et al., 2003; Morgan et al., 2004). As a consequence, the 

extrapolation of results from pathogenesis studies in one host species to another host is not 

always possible. In this respect, it might be possible that ShdA has a different role in the 

pathogenesis of Salmonella Typhimurium infections in porcine and murine hosts. It must be 

stated, however, that the experiments of Kingsley and coworkers were conducted in a 

competitive infection model. This type of infection model is capable of detecting small 

differences in colonization capacities between strains because the rather large variation 

between animals is overcome by considering the ratio of the 2 strains in 1 animal. The 

disadvantage of this model is, however, that no conclusions can be drawn concerning the 

development of disease or diarrhoea. Since mice do not develop an acute intestinal phase of 

infection, this was not a determining factor for choosing the single infection model for the 

work in mice. In pigs, the intestinal phase of Salmonella infections is definitely important.  

Although it was found that fibronectin could play an important role in the invasion of 

Salmonella in epithelial cells (Walia et al., 2004), the shdA gene is expressed solely in the gut 

and it has not been proven to be induced by any in vitro condition (Kingsley et al., 2002). 

Therefore, it was impossible to use a relevant in vitro model to investigate the role of ShdA in 

the invasion of porcine epithelial intestinal cells. 

Even though still speculative, altered interactions with the epithelium of the gut could 

explain the increased colonization capacity of the shdA mutant strain in the early phase of 

infection.  Moreover, loss of fibronectin binding proteins has led to an increased virulence in 

various other bacteria (McElroy et al., 2002; Nyberg et al. 2004).  
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Figure 2. Radio-active γ counts per minute per cm loop as a measure for the early PMN influx elicited 

by S. Typhimurium strains in porcine intestinal loops. Approximately 1.5 × 109 CFU of the wild-type 

strain 112910a (WT) and 112910a∆shdA (ShdA) was injected into each loop and left for 12 h before 

analysis. Luria-Bertani broth (LB) was used as a negative control. Each mean is calculated from 3 

loops in 2 piglets and is presented with the SEM. 
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In summary, we have shown that a Salmonella Typhimurium shdA deletion mutant is not 

significantly impaired in persistence in pigs in a single infection model. It is excreted in 

higher numbers during the first days after inoculation, possibly because of altered interactions 

with the intestinal epithelial cells. The role of fibronectin as adherence factor, as non-specific 

host defense factor or as important modulating factor in inflammatory processes remains an 

intriguing field of research in host-pathogen interactions. 
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GENERAL DISCUSSION 

 
 

Porcine carcasses are an important source for Salmonella infections in humans. Due to 

an apparent and spectacular drop in Salmonella Enteritidis infections in poultry in 2005 and 

2006 (Davies et al., 2004; Collard et al., 2007), the relative importance of Salmonella 

Typhimurium infections in pigs will probably increase the next few years. In addition, the 

increasing multiple antimicrobial resistance associated with strains belonging to this serotype 

can pose an important human health hazard in the future (Butaye et al., 2006). Both European 

and national governments try to anticipate this menace by starting monitoring programmes 

and coordinating control measures on farm and in the slaughterhouse. 

The implementation of efficient control measures is impaired by the lack of 

knowledge on host-pathogen interactions in pigs. This knowledge may not only provide 

insights in the efficacy of certain measures or products, it can also provide fundamental keys 

to improve these control measures. In addition, ongoing research may help in fine-tuning the 

present monitoring programmes.  

 

Salmonella pathogenesis research 

 

Research on the pathogenesis of Salmonella Typhimurium infections has been 

conducted mostly in BALB/c mice (NRAMP1-/-) using Salmonella Typhimurium laboratory 

strains. Since a Salmonella Typhimurium infection in these mice resembles a Salmonella 

Typhi infection in humans, this typhoid model has been used extensively to study the 

pathogenesis of Salmonella infections. However, since the course of a Salmonella 

Typhimurium infection in BALB/c mice (lethal systemic disease) is very different from that 

in pigs (subclinical local infection), the mouse model is not biologically relevant to study the 

pathogenesis of Salmonella Typhimurium infections in pigs. Recently, a mouse model has 

been created for intestinal pathogenesis research, using germ free mice or NRAMP1+/+ or 

NRAMP1-/- mice pretreated with streptomycin (Barthel et al., 2003; Stecher et al., 2005; 

Stecher et al., 2006). Even though these models offer several important advantages for 

pathogenesis researchers in terms of tools, the biological relevance of these “artificial models” 

for food producing animals and even humans may be questionable. 

In order to investigate the pathogenesis of persistent infections, a strain that is able to 

induce a persistent infection in pigs after experimental inoculation is needed. Therefore, the 
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characteristics of a field strain, isolated from a pig that was persistently infected, were 

compared with the characteristics of a standard laboratory strain often used in mice. The 

standard laboratory strain was markedly more virulent in a BALB/c mouse model, compared 

to the porcine field strain, while the porcine field strain seemed to be more efficient in 

inducing a persistent infection in pigs. This difference may point to the phenomenon of host-

specificity. Some serotypes are very host specific, causing disease in only one or a limited 

number of animals, whereas others can infect a broad range of host species (Uzzau et al., 

2000). However, differences in host-specificity may be present also within a given serotype 

(Nilsson et al., 2004). This host-specificity may be expressed as a more efficient colonization, 

predilection for specific organs (for example Salmonella Enteritidis and the chicken 

reproductive tract) and the induction of persistent infections. This means, however, that there 

is no such thing as a pathogenesis of Salmonella infections in general. Both the infected host 

and the infecting serotype or even strain influence the course of an infection. This also means 

that the importance of certain virulence factors of Salmonella and the interaction with the 

immune system of different host species can differ greatly (Morgan et al., 2004; McMeechan 

et al., 2006). Several virulence genes of Salmonella Typhimurium have been assigned to play 

an important role in the pathogenesis of salmonellosis in laboratory mice. In our studies, we 

wanted to determine the role of these virulence factors in the pathogenesis of Salmonella 

Typhimurium infections in pigs. 

 

It was found that only some, but not all of the investigated virulence factors, important 

for inducing disease in BALB/c mice, were also important in the pathogenesis of Salmonella 

Typhimurium infections of pigs. The Salmonella pathogenicity islands, and more specifically 

SPI-1 and SPI-2, are generally accepted as being crucial virulence factors for Salmonella 

pathogenesis in mammals, including man. However, until now, 17 pathogenicity islands have 

been described, and this number will probably keep rising the next few years. It is getting 

more and more obvious that the distribution and biological significance of these islands may 

vary greatly between different serotypes or even strains. The presence/absence or regulation 

of expression of these virulence factors may contribute to a host specific pathogenesis. 

 

Salmonella Typhimurium in pigs: to invade or not to invade? 

 

The present results suggest that Salmonella Typhimurium uses two distinct sites for 

colonization of pigs: the tonsils on the one hand and the intestine and associated lymph nodes 
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on the other hand. Since these colonization sites have anatomically and physiologically 

diverse structures and functions, it may not come as a surprise that Salmonella shows distinct 

interactions with both organs.  

 

Salmonella Typhimurium is using at present unidentified virulence factors to colonize 

the tonsillar epithelium, most probably without actively invading the cells. Indeed, a non-

invasive strain (�sipB; a SPI-1 deficient mutant strain) was perfectly capable of colonizing 

the tonsils. The tonsils are often heavily infected in pigs and should, therefore, not be 

underestimated as a source of increased Salmonella load during slaughter (Kühnel and Blaha, 

2004). The mode of colonization of the tonsils is in sharp contrast with the colonization of the 

intestine. Active invasion, using the SPI-1 T3SS, was shown to be of critical importance for 

efficient colonization of the porcine gut. A non-invasive strain (�sipB) was found to be 

substantially attenuated in colonization of the gut and the associated lymphoid tissue. 

 

In order to combat Salmonella infections in pigs, measures that interfere with both 

tonsillar and intestinal colonization will probably be needed. Since the mechanisms of 

colonization of these important sites seem to be very different, the control measures should be 

designed accordingly.  

Even though no thorough research has been done concerning the control of a 

Salmonella infection at the tonsillar level, some control measures used nowadays may show 

to be effective. The administration of acidified drinking water in pig farms has been shown to 

lower the prevalence of serologically positive pigs (Van der Wolf et al., 2001). However, no 

experimental assays have been performed using acidified drinking water, nor has the effect on 

the colonization of the different organs been investigated. One might expect these products to 

exert an immediate effect in the oral cavity and on the colonization of the tonsils. This has to 

be further explored in the future.  

Considering the importance of invasion in the colonization of the gut, one could 

expect that any measure that interferes with this invasion step will decrease the bacterial load 

in the gut. Indeed, using coated butyric acid we were able to lower intestinal colonization and 

bacterial shedding in pigs (unpublished results) as has also been described in poultry 

(reviewed by Van Immerseel et al., 2006).  
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Do macrophages matter? 

 

 Macrophages are the cells of interest for Salmonella Typhimurium to disseminate into 

the internal organs of BALB/c mice. The bacteria replicate rapidly intracellularly and cause 

the systemic phase of the infection, while interfering with the antibacterial mechanisms of the 

macrophages and inducing cell death. Liver, spleen and lymphoid tissue are the target organs 

and act as a continuous source of bacteria, which spread all over the body, including the gut. 

The long term presence of the bacteria in BALB/c mice, therefore, is a result of systemic 

dissimination and replication in the internal organs and ultimately often results in death of the 

animal. In pigs, however, sporadic bacteria present in liver and spleen shortly after 

experimental inoculation, do not seem to replicate fast and are even cleared from these organs 

a few weeks after inoculation. Nevertheless, the bacteria are still found in the gut and gut-

associated lymph nodes. At these sites, macrophages can be important players when it comes 

to long term persistency. Keeping these differences in mind, the pathogenesis of persistency 

in pigs and in mice, will probably be very different. Also the virulence genes used by 

Salmonella may obviously differ.  

In order to evade the antibacterial mechanisms of murine macrophages, two important 

pathogenicity islands of Salmonella Typhimurium have been described: SPI-1 and SPI-2. SPI-

1 is not only crucial for intestinal invasion, but also plays a role in the interactions of 

Salmonella Typhimurium with murine macrophages as inducer of apoptosis. Therefore, we 

evaluated the role of SPI-1 in the interactions of Salmonella Typhimurium with porcine 

macrophages. In vitro, SPI-1 seems to play a similar role in the interactions with porcine 

macrophages compared to murine macrophages. However, our studies demonstrated that SPI-

1 effectors are not only involved in interactions of the bacteria with macrophages, but also 

have other functions, including the invasion in several other cell types. This implies that the 

contribution of SPI-1 related interactions with macrophages to in vivo persistence is not easy 

to determine. 

As reviewed in the introduction of this thesis, data describing the importance of SPI-2 

in the systemic phase of infection and the induction of a persistent infection in BALB/c mice 

are overwhelming. The importance of SPI-2 in the systemic phase of a Salmonella infection 

in food producing animals is less described. For host-restricted or host-adapted serotypes 

(Pullorum, Dublin, Choleraesuis) SPI-2 is a prerequisite for virulence and colonization in 

their respective hosts (Dunyak et al., 1997; Bispham et al., 2001; Jones et al., 2001; Wigley et 

al., 2002). However, for broad host range serotypes, such as Salmonella Typhimurium, the 



 174 

role of SPI-2 in the pathogenesis of Salmonella infections in food producing animals is less 

straightforward (Tsolis et al., 1999; Zhao et al., 2002; Morgan et al., 2004). In accordance, 

our results suggest that SPI-2 of Salmonella Typhimurium may not contribute to persistence 

in pigs to the same extent as it does in the mouse typhoid model, since SPI-2 defective 

mutants were able to colonize the internal organs of pigs to a similar degree as their respective 

wild type strain and were able to persist until 28 days post inoculation. 

 

Persistent Salmonella Typhimurium infections in pigs 

 

Clinical salmonellosis is not a common problem in Belgian pig farms. Salmonella 

infections are mostly subclinical, but can develop into a lasting, but often unnoticed infection. 

This is called the carrier state. Several Salmonella virulence genes have been shown to play a 

role in persistency and long term shedding in laboratory mice (shdA, SPI-2). In the studies 

described in this thesis, the role of these genes in the development of a carrier state in pigs 

could not be confirmed.  

Since the carrier state in pigs is difficult to detect, either by bacteriological or 

serological methods (Baggesen and Wegener, 1993; Nollet et al., 2005), these pigs can bias 

monitoring programmes. The mechanism of this concealed, but prolonged infection is not yet 

unravelled. However, the latest findings are changing our classical view of Salmonella as a 

fast growing intracellular pathogen and devastating bacterium. It has been suggested that 

Salmonella may reduce its own intracellular growth rate (Cano et al., 2001; Jantsch et al., 

2003; Sheppard et al., 2003; Monack et al., 2004) and may actively decrease its impact on the 

infected tissues (Collier-Hyams et al., 2002; Haraga and Miller, 2003), almost as if it was a 

commensal. In addition, it was found recently that Salmonella is able to interfere with the 

antigen presentation and the development of acquired immunity (Mitchell et al., 2004; 

Qimron et al., 2004; Cheminay et al., 2005; Van der Velden et al., 2005; Alaniz et al., 2006; 

Luu et al., 2006). Even though the exact contribution of these mechanisms to the pathogenesis 

of the carrier state in pigs is not clear, it has been shown that serologically negative herds may 

still provide pigs that are bacteriologically positive in the gut and associated lymph nodes 

(Nollet et al., 2005). It has been suggested that these pigs were recently infected, so that the 

serological response was not fully developed at the time of sampling. However, if some 

Salmonella strains are truly able to actively decrease the immunological response, the current 

national monitoring programmes, which are based solely on serology, may show inadequate 

in these cases. It is clear that more research in this area is needed. 
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Future directions? 

 

It is clear that still a lot of work has to be done to unravel the pathogenesis of Salmonella 

infections in pigs and a lot of questions arise from this work. Does Salmonella use specific 

virulence factors to colonize the tonsils and, if yes, which are those virulence factors? Which 

interactions ultimately result in a persistent infection and the carrier state? Which virulence 

genes are used by Salmonella to accomplish this? What is the contribution of the suppressed 

immunological response in the pathogenesis of Salmonella infections in swine and the 

development of a carrier state? Which cells are the target cells for persistency? Which 

mechanisms allow Salmonella to arise from its “hibernation” in carrier pigs during periods of 

stress and which sites/organs/cells are the sources of these high numbers of bacteria? 

Next to these more fundamental questions, more detailed information about strategic 

control measures is needed. The models described in this thesis are useful to investigate the 

efficacy of these control measures in pigs.  

 

Conclusions 

 

 Research on the pathogenesis of Salmonella infections in food producing animals 

remains an interesting and challenging topic. For relevant pathogenesis research, both host 

species and appropriate Salmonella strains should be chosen with care. SPI-1 driven invasion 

is crucial for intestinal, but not tonsillar colonization of pigs. The contribution of SPI-2 and 

shdA to the pathogenesis of persistent Salmonella infections in pigs is not as important as in 

the mouse typhoid model. It would be presumptuous, however, to exclude macrophages as 

possible sites of persistent colonization in pigs.  
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SUMMARY 

 

 

Human salmonellosis is frequently caused by an infection with Salmonella enterica 

subspecies enterica serovar Typhimurium (Salmonella Typhimurium). Salmonellosis caused 

by this serovar is mainly associated with the consumption of pork. Pigs infected with 

Salmonella Typhimurium are generally subclinically colonized. These animals carry the 

bacterium in the tonsils, the intestines and the gut-associated lymphoid tissue (GALT). Such 

carriers are a major reservoir of Salmonella Typhimurium and pose an important threat to 

animal and human health. The mechanism by which Salmonella Typhimurium colonizes and 

persists in pigs is unknown. A thorough knowledge of the host-pathogen interactions should 

form the basis for the development and evaluation of efficient monitoring programmes and 

control measures. 

 

Numerous Salmonella virulence genes have been described to play a role in the 

pathogenesis of salmonellosis in various animal species, especially in mice. These virulence 

genes are often situated on Salmonella Pathogenicity Islands (SPI). The Pathogenicity Islands 

are considered “quantum leaps” in bacterial evolution and were probably acquired by 

horizontal gene transfer. Typically, Pathogenicity Islands are present in the genome of 

pathogenic bacteria but absent in nonpathogenic strains of the same or related species. To 

date, 17 different SPI have been described in Salmonella. The most important and most 

characterized SPI are SPI-1 and SPI-2. Until recently, the role of SPI-1 was considered 

limited to the intestinal phase of infection and SPI-2 to the systemical phase of infection. 

Most of the SPI-related research was conducted with Salmonella Typhimurium in NRAMP-/- 

BALB/c mice. 

 

The overall aim of this thesis was to get insights into the mechanisms by which 

Salmonella Typhimurium colonizes and persists in pigs. Therefore, the role of several 

Salmonella virulence genes in the pathogenesis of Salmonella Typhimurium infections in pigs 

was determined. 

 

In the first chapter of this thesis, a Salmonella Typhimurium strain that was able to 

persistently infect pigs was selected. A porcine field strain and a standard laboratory strain of 

Salmonella Typhimurium were compared in vitro and in vivo. The standard laboratory strain 
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was more virulent in mice, while the porcine field strain was more effective in the induction 

of a persistent infection in pigs. The porcine field strain was chosen for further experiments. 

 

In the second chapter, different in vitro and in vivo models to investigate the 

pathogenesis of Salmonella Typhimurium infections in pigs were evaluated. The invasive and 

proliferative characteristics of a Salmonella Typhimurium strain were assessed in both a non-

polarized and a polarized porcine intestinal epithelial cell line. Neutrophils obtained from 

porcine blood were used to study the capacity of Salmonella to withstand killing by these 

phagocytes. The ability to induce an intestinal inflammatory response was investigated in an 

intestinal loop model. The systemic phase of infection was mimicked by studying the uptake 

and intracellular survival of Salmonella Typhimurium in porcine pulmonary alveolar 

macrophages and peripheral blood monocytes. Invasion in the polarized epithelial cell line 

was more pronounced and more reproducible compared to invasion in the non-polarized cell 

line. Salmonella Typhimurium was able to replicate quickly in macrophages, but not in 

monocytes. Neutrophils were able to rapidly kill Salmonella Typhimurium and migrated 

massively into the gut tissue and lumen in the porcine intestinal loop model. In an  

experimental oral infection model in pigs, it was shown that the course of the infection was 

dose dependent and that a uniform colonization status was achieved using at least 107 cfu. 

Days 5 and 28 post inoculation proved to be the optimal time points for assessment of 

colonization and persistency in pigs. 

 

In the third chapter, the role of different Salmonella virulence genes in the 

pathogenesis of Salmonella Typhimurium infections in pigs was investigated. 

 

In a first series of experiments, the role of the SPI-1 genes hilA, sipA and sipB in the 

interactions of Salmonella Typhimurium with the porcine gut and macrophages was 

investigated. HilA and SipB proved to be essential for the invasion of porcine macrophages 

and intestinal epithelial cells in vitro. A sipA mutant was impaired for invasion using a 

polarized epithelial cell line, but fully invasive in macrophages and a non-polarized epithelial 

cell line. In macrophages, SPI-1 was needed for the formation of spacious phagosomes. All 

SPI-1 mutants induced a significant decrease in influx of neutrophils in the porcine intestinal 

loop model compared with the wild type strain. Exposure of PAM to Salmonella 

Typhimurium induced the production of reactive oxygen species (ROS) and interleukin-8, but 

no differences were noticed between the induction mediated by the wild type strain and its 
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SPI-1 mutant strains. Both early and delayed cytotoxicity were seen in PAM, but only the 

early cytotoxicity was SPI-1 dependent. When pigs were orally inoculated with 108 colony 

forming units of both the wild type Salmonella Typhimurium strain and its isogenic sipB::kan 

mutant strain, the sipB mutant strain was significantly impaired to invade and colonize the 

intestines and the GALT, but not the tonsils.  

In conclusion, SPI-1 mediated invasion is crucial for the colonization of the gut and 

for the influx of neutrophils towards the gut, but not for the colonization of the tonsils. SPI-1 

also plays a role in the interactions of Salmonella Typhimurium with porcine macrophages, 

for example by inducing cell death.  

 

 In a second series of experiments, the interactions of a porcine field strain of 

Salmonella Typhimurium and a non-polar isogenic SPI-2 (�ssrA) deletion mutant were 

compared in both in vitro and in vivo models. The ssrA mutant strain displayed decreased 

SPI-2 expression levels, showed a replication defect in mouse macrophages in vitro and was 

attenuated in a mouse model after oral inoculation. SPI-1 expression was not affected. Using 

green fluorescent protein expressing strains and flowcytometric analysis, the ssrA mutant 

strain was shown to be defective in intracellular replication in porcine macrophages. In an oral 

infection assay, piglets inoculated with the ssrA mutant strain followed a similar infection 

course as piglets infected with the wild type strain. At days 5 and 28 post inoculation, the 

animals of both groups were infected to the same extent in the gut and gut-associated 

lymphoid tissue, as well as in the internal organs.  

These results demonstrate that a SPI-2 mutant strain of Salmonella Typhimurium is 

fully capable of colonizing pigs and is able to establish a long term persistent infection.  

 

 In a third series of experiments, the contribution of the fibronectin binding protein 

ShdA in the prolonged faecal shedding of Salmonella Typhimurium by pigs was investigated. 

Although the mechanism of prolonged faecal shedding is not yet clarified, this gene was 

identified as an important locus for intestinal colonization and persistence of Salmonella 

Typhimurium in mice. In these experiments, pigs were orally inoculated with a Salmonella 

Typhimurium wild type field strain or its isogenic shdA mutant strain. For the first few days 

after inoculation, the shdA mutant strain was excreted in higher numbers in the faeces and 

more internal organs were infected. However, 2 to 4 weeks after inoculation, the shdA mutant 

strain was excreted to a similar extent as the wild type strain. In a porcine intestinal loop 
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model, the wild type strain and shdA mutant strain did not show any differences in the 

induction of neutrophil influx into the intestinal wall and lumen.  

 In conclusion, although ShdA is important for long term shedding in mice, we could 

not confirm these findings in pigs. 

 

The results presented in this thesis demonstrate that both host species and appropriate 

Salmonella strains should be chosen with care for relevant pathogenesis research. SPI-1 

driven invasion is crucial for intestinal, but not tonsillar colonization of pigs. The contribution 

of SPI-2 and shdA to persistency of Salmonella in pigs is not of the same extent as in 

laboratory mice.  
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SAMENVATTING 
 
 

Salmonellose bij de mens wordt vaak veroorzaakt door Salmonella enterica subspecies 

enterica serovar Typhimurium (Salmonella Typhimurium). De ziekte, veroorzaakt door dit 

serotype, is voornamelijk geassocieerd met het eten van varkensvlees. Varkens die 

geïnfecteerd zijn met Salmonella Typhimurium zijn meestal subklinisch gekolonizeerd. Deze 

dieren zijn dragers van de kiem in hun tonsillen, hun darmen en de met de darmen 

geassocieerde lymfeknopen. Dragerdieren zijn een reservoir voor Salmonella Typhimurium 

en betekenen een gevaar voor de volksgezondheid. De mechanismen die Salmonella 

Typhimurium gebruikt om varkens te kolonizeren en om te persisteren in deze gastheer zijn 

niet gekend. Nochtans zou een grondige kennis van de kiem-gastheerinteracties de basis 

moeten vormen voor het ontwikkelen en de evaluatie van bewakingsprogramma’s en 

bestrijdingsmaatregelen.  

 

Er zijn reeds zeer veel Salmonella virulentiegenen beschreven die een rol spelen in het 

ontwikkelen van ziekte bij verschillende diersoorten, voornamelijk bij de muis. Deze 

virulentiegenen zijn vaak op Salmonella Pathogeniciteitseilanden gelegen (Salmonella 

Pathogenicity Islands; SPI). Deze eilanden van virulentiegenen zijn waarschijnlijk op een 

welbepaald tijdstip in het ontstaan van Salmonella min of meer in hun geheel verworven en 

zijn bijvoorbeeld afwezig in Escherichia coli, een nauw verwante bacteriesoort. Tot op 

vandaag zijn reeds 17 verschillende SPI beschreven in Salmonella. De belangrijkste en meest 

onderzochte zijn SPI-1 en SPI-2. SPI-1 is voornamelijk van belang voor de kolonizatie van de 

darmen en het ontstaan van diarree.  SPI-2 is voornamelijk van belang voor het spreiden van 

de kiem in het lichaam van de gastheer en voor persistentie. Het belang van deze genen voor 

Salmonella Typhimurium infecties werd voornamelijk onderzocht in het BALB/c muismodel. 

 

Het algemene doel van deze thesis was om inzicht te verkrijgen in de mechanismen 

die Salmonella Typhimurium gebruikt om varkens te kolonizeren en erin te persisteren. 

Hiervoor werd de rol van verschillende virulentiegenen onderzocht in de pathogenese van 

Salmonella Typhimurium infecties bij het varken. 

 

In het eerste hoofdstuk van deze thesis werd een Salmonella Typhimurium stam 

geselecteerd die een persisterende infectie bij varkens kan veroorzaken. Hiervoor werd een 

veldstam, geïsoleerd uit een persistent geïnfecteerd varken, vergeleken met een standaard 



 185 

laboratoriumstam die vaak wordt gebruikt voor onderzoek in muizen. De laboratoriumstam 

was virulenter in muizen, maar de varkensstam was efficiënter in het veroorzaken van een 

persisterende infectie bij varkens. Deze varkensstam werd gekozen om te gebruiken in 

verdere experimenten. 

 

In het tweede hoofdstuk werden verschillende in vitro en in vivo modellen geëvalueerd 

om de pathogenese van Salmonella Typhimurium infecties bij varkens te onderzoeken. De 

invasieve capaciteiten van Salmonella in de darm werden nagebootst aan de hand van een 

invasiemodel met twee verschillende epitheliale intestinale varkenscellijnen. De intestinale 

fase van de infectie, waaronder het ontstaan van diarree, kon verder worden gekarakteriseerd 

aan de hand van een varkensdarmlusmodel en aan de hand van een zuivere cultuur van 

bloedneutrofielen van het varken. De systemische fase van de infectie werd nagebootst door 

gebruik te maken van modellen met monocyten en longmacrofagen die bij het varken werden 

geïsoleerd. De invasie in de gepolarizeerde epitheliale cellijn was meer uitgesproken en beter 

herhaalbaar in vergelijking met de invasie in de niet-gepolarizeerde epitheliale cellijn. 

Salmonella Typhimurium kon snel vermeerderen in macrofagen, maar niet in monocyten. 

Neutrofielen doodden Salmonella Typhimurium snel af en migreerden massaal naar het 

darmweefsel en het darmlumen in het varkensdarmlusmodel.  In een experimenteel oraal 

infectiemodel bij varkens werd aangetoond dat het verloop van de infectie dosis afhankelijk 

was. Een uniforme kolonizatie van de varkens werd bekomen na inoculatie met ten minste 107 

kve. Dag 5 en dag 28 na inoculatie waren de beste tijdstippen om respectievelijk de 

kolonizatie en de persistentie van de Salmonella Typhimurium stam in varkens te 

onderzoeken. 

 

In het derde hoofdstuk van deze thesis werd de rol van verschillende virulentiegenen 

van Salmonella in de pathogenese van Salmonella Typhimurium infecties bij het varken 

onderzocht.  

 

In een eerste reeks experimenten werden de interacties van de Salmonella 

Typhimurium veldstam en zijn isogene deletiemutanten in de SPI-1 genen hilA, sipA en sipB 

met de varkensdarm en met varkensmacrofagen onderzocht.  HilA and SipB waren essentieel 

voor Salmonella Typhimurium om in vitro varkensdarmcellen en macrofagen te kunnen 

invaderen. De sipA mutant was volledig invasief in de niet gepolarizeerde epitheliale cellijn 

en in de macrofagen, maar was minder invasief dan de wild type veldstam wanneer met de 



 186 

gepolarizeerde epitheliale cellijn werd gewerkt. In de macrofagen was SPI-1 tevens belangrijk 

om de zogenaamde ‘spacious phagosomes’ te vormen. Alle SPI-1 mutanten waren sterk 

verzwakt in hun vermogen om neutrofielen aan te trekken naar de darm en bijgevolg ook om 

diarree te veroorzaken. De interleukine-8 en zuurstofradicaalproductie door de macrofagen 

werden niet beïnvloed door een mutatie in SPI-1. Zowel vroege als late celdood werd gezien 

in de macrofagen, maar enkel de vroege celdood bleek SPI-1 afhankelijk. Wanneer varkens 

peroraal geïnfecteerd werden met een combinatie van de Salmonella Typhimurium veldstam 

enerzijds en de sipB deletiemutant anderzijds, bleek dat de mutantstam sterk verzwakt was in 

het invaderen en koloniseren van de darmen, maar niet in het kolonizeren van de tonsillen.  

De SPI-1 afhankelijke invasie is bijgevolg van cruciaal belang voor de kolonizatie van 

de darmen en het onstaan van diarree, maar niet voor de kolonisatie van de tonsillen. SPI-1 

speelt tevens een rol in de interacties van Salmonella Typhimurium met varkensmacrofagen, 

onder andere door het induceren van celdood.  

  

 In een tweede reeks experimenten werden de interacties van de wild type veldstam 

vergeleken met een deletiemutant in het ssrA gen, een belangrijke regulator van SPI-2. De 

ssrA mutant vertoonde verlaagde expressie van SPI-2 gerelateerde genen, was verzwakt voor 

vermeerdering in muizenmacrofagen in vitro en was tevens verzwakt in laboratorium muizen 

na orale inoculatie. Hoewel dit voor sommige SPI-2 mutanten beschreven wordt, werd er in 

de ssrA mutant geen significante daling van expressie van SPI-1 gecodeerde genen gezien. 

Aan de hand van flowcytometrische analyse van groen fluorescente Salmonella stammen, 

werd duidelijk dat de ssrA mutant ook verzwakt was in het overleven in varkensmacrofagen. 

In een oraal infectiemodel vertoonden biggen die geïnoculeerd waren met de ssrA mutantstam 

een gelijkaardig verlopende infectie in vergelijking met biggen die geïnoculeerd waren met de 

wild type veldstam.  Zowel 5 als 28 dagen na inoculatie waren de dieren uit beide groepen in 

dezelfde mate geïnfecteerd in de inwendige organen. 

 Deze resultaten tonen aan dat een SPI-2 mutant van Salmonella Typhimurium nog 

steeds in staat is om aanleiding te geven tot een persisterende infectie in varkens. 

 

 In een derde reeks experimenten, werd het belang van het fibronectinebindend eiwit 

ShdA in het ontstaan van een persisterende infectie onderzocht. Alhoewel het mechanisme 

van een langdurige uitscheiding van Salmonella in de faeces nog niet is opgeklaard, werd dit 

gen bij muizen recent geïdentificeerd als een belangrijke factor in de intestinale kolonizatie en 

persistentie in muizen. Varkens werden peroraal geïnoculeerd met de wild type Salmonella 
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Typhimurium veldstam of met een isogene shdA deletie mutant. De eerste dagen na inoculatie 

scheidden de biggen die werden geïnoculeerd met de shdA deletiemutant, meer bacteriën uit 

en vertoonden ze vaker diarree vergeleken met de dieren die met de wild type veldstam 

werden geïnoculeerd. Op lange termijn werden geen verschillen gezien in het verloop van de 

infectie of de uitscheiding van de kiem in de mest. In het varkensdarmlusmodel was de shdA 

mutant even efficiënt in het aantrekken van neutrofielen naar de darm in vergelijking met de 

wild type veldstam.  

In deze experimenten werd aangetoond dat een shdA mutant van Salmonella 

Typhimurium in staat is om aanleiding te geven tot een persisterende infectie in varkens. 

 

De resultaten van deze thesis tonen aan dat zowel de gastheermodellen als de Salmonella 

stammen met zorg gekozen moeten worden om relevant onderzoek te kunnen doen naar de 

pathogenese van Salmonella infecties. Tevens kan geconcludeerd worden dat SPI-1 

afhankelijke invasie cruciaal is voor de kolonizatie van de darmen, maar niet van de tonsillen. 

De bijdrage van SPI-2 en shdA tot de persistentie van Salmonella Typhimurium in varkens is 

veel kleiner dan beschreven voor muizen.  
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