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Chapter 1

Introduction

Similarity plays a fundamental role in our daily life. The importance
of similarity is often underestimated, but it is clearly pointed out by
researchers in psychology. Similarity serves as an organizing principle
by which we classify objects, form concepts and make generalizations.
Therefore, it is an important concept, not only in psychology but also in
many research areas, such as biology, chemistry, information retrieval,
machine learning, statistics and many more. The main goal in all these
disciplines is to analyze data sets in order to find patterns and regu-
larities that contain important knowledge about the data. Similarity of
objects is one of the central concepts in data mining and knowledge
discovery.

Numerous definitions of similarity measures have already been
proposed in the literature. Some of them are limited in use to a specific
domain, while others are widely spread and applied in about every dis-
cipline. It is worth mentioning that there does not seem to exist a strict
mathematical definition of a similarity measure, at most a general un-
derstanding about the ordinal interpretation of it: the higher the value,
the more similar the objects. Reflexivity is generally accepted as a basic
property of a similarity measure, but this is certainly not the case for
the property of symmetry.

The origin of many similarity measures can be found in the field
of numerical taxonomy, where a feature-based approach is followed.
Objects are represented by sets of features and in this way, reduced
to {0, 1}-vectors (or binary vectors). Then, similarity is based on fea-
ture commonality and difference. It is self-evident that one loses a lot
of information by using {0, 1}-vectors. Imagine that you would rely
on black/white arguments to make choices. In most cases, a more
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thoughtful approach to a problem is necessary, since in the real world,
many shades of gray exist between black and white. And also in many
scientific domains, it is more likely that objects are transformed into
real-valued vectors, rather than binary ones (for example, microarray
data, document term weights, etc.). Any real-valued vector can be
scaled to the unit interval, and in this way transformed into a [0, 1]-
vector. As {0, 1}-vectors can be identified with ordinary sets, [0, 1]-
vectors can be represented by fuzzy sets.

Fuzzy sets were introduced by Zadeh in 1965 [95] and allow to de-
fine intermediate values between conventional evaluations like yes/no,
true/false, black/white. A fuzzy set is nothing else but a mapping A
from a universe X to the unit interval, where A(x) denotes the degree
to which x belongs to the fuzzy set A. The closer the value of A(x)
is to 1, the more x belongs to A. The use of a numerical scale such as
the unit interval allows for a convenient representation of the gradation
in membership. Therefore, fuzzy set theory provides a perfect toolbox
to generalize many existing similarity measures for binary vectors into
similarity measures for [0, 1]-vectors.

When comparing two objects, one tends to use a similarity measure
to express to what degree these objects are alike. Similarity, however,
is only one of the conceptual ways for looking at possible relationships
between objects. It is equally natural to ask for a measure expressing
the degree to which one of two given objects is contained in the other,
or, in other words, the degree to which one of the two is covered by
the other one. In the attempt to answer this question, one is naturally
led to the concept of inclusion measure. For example, defining how
well a phylogenetic tree is included in the ”tree of life”, searching for
chemical compounds or querying a document database are just some
of the many applications of measuring inclusion.

Before we proceed, let me guide you through this dissertation. An
overview of already existing similarity measures for binary vectors is
given in Chapter 2. As binary vectors can be identified with ordinary
sets, it is natural to convert these comparison measures for binary vec-
tors into measures for ordinary sets. The latter are then based on the
cardinalities of the sets involved. Furthermore, we introduce some al-
ready existing parametric families of similarity and inclusion measures
for ordinary sets and introduce two new parametric families as well.
Since similarity and inclusion measures are defined as fuzzy relations
and since T -transitivity (with T an arbitrary t-norm) is one the most im-
portant properties that can be attributed to fuzzy relations, it is worth
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to investigate this property. Moreover, since TL- and TP-transitivity are
highly related to the concept of a pseudometric, we identify the TL-
and TP-transitive members of our families. Conversely, TM-transitivity
is related to the concept of an ultrametric, but we conclude that none of
two introduced families have TM-transitive members.

In Chapter 3, an introduction to fuzzy set theory is given. Through-
out the sequel of this work, the sigma count is used as the cardinal-
ity of a fuzzy set and we will refer to it as the basic scalar cardinality.
Furthermore, the validity of generalizations of identities on crisp car-
dinalities using t-norms and t-conorms (such as the valuation property
and the fuzzification of the cardinality of the (symmetric) difference
of two fuzzy sets) are investigated on a one-by-one basis. The reader
who is already familiar with concepts such as triangular norm, (quasi)-
copula, sigma count and the fuzzification of intersection and union of
two fuzzy sets can easily skip this chapter.

The Bell inequalities are introduced in Chapter 4 and are rewritten
in the context of basic scalar cardinalities. We prove that some inequal-
ities are fulfilled for (quasi-)copulas. Moreover, considering the Frank
t-norm family and the major parametric t-norm families, we identify all
parameter values such that each of the Bell-type inequalities is fulfilled.
A major contribution of this chapter is that ordinal sums preserve the
Bell-type inequalities.

In Chapter 5, we demonstrate that the Bell-type inequalities are of
particular interest in the context of cardinalities of fuzzy sets. Moreover,
the results on the fuzzified Bell-type inequalities can be exploited to
develop a framework in which the validity of more general inequalities
on fuzzy cardinalities can be checked easily.

The parametric family of similarity measures for ordinary sets,
which was introduced in Chapter 2 is fuzzified in Chapter 6. Next to an
overview of already existing fuzzy similarity measures, we also inves-
tigate the T -transitive members (with T one of the three basic t-norms
TM, TP or TL) of this parametric family of fuzzy similarity measures.
On the other hand, the parametric family of inclusion measures for or-
dinary sets, also introduced in Chapter 2, is fuzzified in Chapter 7. Also
for this family of fuzzy inclusion measures, we identify its T -transitive
members (again, with T one of the three basic t-norms TM, TP or TL).

How these parametric families of fuzzy similarity or inclusion mea-
sures can be used in real-world applications is shown in Chapter 8.
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A Dutch summary of this work can be found in Chapter 9.
Research performed within the context of this PhD thesis resulted

in several publications in peer reviewed high-impact international jour-
nals [22, 44, 47, 48] and in international conference proceedings [26, 42,
43, 45, 46].



Chapter 2

Comparison measures for
ordinary sets

2.1 Introduction

In daily life, we are often confronted with situations where we need
to distinguish between several objects. Therefore, similarity tools are
of great importance to obtain a degree of resemblance between two or
more objects. Also in many scientific domains, such as chemistry, bi-
ology, information retrieval and many more, we come across similar-
ity problems, so the need arises for appropriate similarity measures.
Similarity, however, is only one of the conceptual ways for looking at
possible relationships between objects. With a growing number of data
available, it is necessary to organize this data into files or tables and in
this way, to construct databases. Then, the need to extract knowledge
from these databases is essential. Therefore, among other things, meth-
ods for searching a database are unavoidable. With this in mind, one
takes a query object and searches for a data object, stored in a database,
which has the highest match with the query object. In the attempt to
answer this question, one is naturally led to the concept of inclusion.

The simplest way to compare two objects is to provide an appro-
priate set of features typical for those two objects and to construct for
each object a binary vector encoding the presence (1) or absence (0) of
each of these features. The degree of similarity (or inclusion) of two
objects is then often expressed in terms of the cardinalities of the latter
sets. In this way, one can simply compare binary vectors, rather than
comparing the objects themselves.

There is a vast amount of papers concerning similarity measures
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vector B

vector A

1 0

1 a b

0 c d

Table 2.1: Outcome possibilities when comparing two binary vectors.

available in the literature, nevertheless the contribution to inclusion
measures is rather poor. What strikes one most is that no definition of
similarity is employed, let alone a definition of inclusion. In literature,
a similarity or inclusion measure is just a function that assigns a non-
negative, real number, defining a notion of resemblance. Also the term
“similarity” is rather uncommon, usually one talks about association
coefficient, proximity, resemblance or sometimes dissimilarity. “Inclu-
sion” is an established expression, although one also stumbles across
the term “subsethood”.

In this chapter, we give an overview of commonly used similar-
ity and inclusion measures for binary vectors. As binary vectors can
be represented by ordinary sets, we translate the comparison measures
for binary vectors into comparison measures for ordinary sets. Further-
more, we give an overview of already existing parametrized families of
similarity measures and introduce a new parametrized family for both
similarity and inclusion measures. As T -transitivity is highly related
to the concept of a metric, we investigate the T -transitivity properties,
with T one of the three basic t-norms, for the two families mentioned
above.

2.2 Commonly used similarity measures for binary
vectors

For each object, a binary vector is constructed by selecting an appro-
priate set of features encoding the presence or absence of each of these
features. Then, the comparison of those vectors instead of the objects
themselves is used a lot in practice and, not surprisingly, many similar-
ity measures based on the presence or absence of common features al-
ready exist. An overview of such similarity measures can be found, for
instance, in Sneath and Sokal [79]. The most popular similarity measure



2.2 Commonly used similarity measures for binary vectors 7

encountered in about every discipline is still the Jaccard coefficient [41].
As usual, the similarity measures used to compare binary vectors

are based on Table 2.1 where a denotes the number of features that are
common to both objects, where b and c denote the number of features
that are present in only one object and where d denotes the number of
features that both objects lack.

Example 2.1 Suppose we have three objects represented by a binary
vector.

Object 1 1 0 0 0 1 1 0 0 1 0
Object 2 0 0 0 0 1 0 0 1 1 0
Object 3 0 0 0 0 0 0 0 1 0 0

Computing the similarity using the Jaccard coefficient (J(A, B) =
a

a+b+c , with a, b and c defined as in Table 2.1), we obtain the follow-
ing:

J(Object 1, Object 2) =
2

2 + 1 + 2
= 0.4 ,

J(Object 1, Object 3) =
0

3 + 1
= 0 ,

J(Object 2, Object 3) =
1

1 + 2
≈ 0.33 .

According to Gower and Legendre [39], one of the criteria to choose
an appropriate similarity measure for a certain problem is whether one
should include conjoint absences or not. With the choice of a suitable
measure, often the term d leads to a discussion. In some circumstances,
it would seem ridiculous to compare two species (or more general two
objects) on the basis of the features they both lack, whereas in other sit-
uations it would seem improper to neglect these conjoint absences. For
example, the absence of wings when observed among a group of dis-
tantly related organisms (such as camel, louse and nematode) would be
an absurd indication of similarity [79]. On the other hand, when phar-
maceutical drugs are evaluated in a clinical trial with respect to the
response of a number of patients treated with the drug (where 1 is used
if a drug has a positive effect and 0 if it has a negative effect) it is impor-
tant that both the positive and negative matches should contribute to
similarity [72]. Some authors (e.g. Clifford and Stephenson [17]) clas-
sify the commonly used similarity measures into two groups: measures
that exclude occurrences of negative matches and the ones that include
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these occurrences. Others (e.g. Sneath and Sokal [79]) use a classifica-
tion based on whether the numerator contains occurrences of negative
matches or not. In Section 2.4.3, we present a parametrized family of
similarity measures with the possibility to attribute a certain weight to
the contribution of negative matches.

Commonly used measures that include occurrences of negative
matches are for instance the following measures: the simple matching
coefficient [78], the Russel–Rao coefficient [70], the Rogers–Tanimoto
coefficient [69], the Hamann coefficient [40], and the Sokal–Sneath co-
efficients [79]. The Jaccard coefficient [41], the Dice coefficient [28],
the cosine coefficient [62], the Fager–McGowan coefficient [32] and the
Kulczynski coefficient [56] on the other hand belong to the category of
measures that exclude occurrences of negative matches. An overview
of these coefficients can be found in Tables 2.2 and 2.3. There are so
many similarity measures for binary vectors in the literature available
that any attempt at an exhaustive catalog of them (with details about
use and origin) would require many pages and it is doubtful whether
such a dry enumeration would be of additional value to the reader.
Therefore, only those coefficients that have been used extensively in the
literature (like the Jaccard coefficient, the Dice coefficient, the simple
matching coefficient and the cosine coefficient) are discussed in more
detail.

Coefficient S(A, B) = Range θ φ

Jaccard [41] a
a+b+c [0, 1] − 1

Simple matching [78] a+d
a+b+c+d [0, 1] 1 −

Dice [28] 2a
2a+b+c [0, 1] − 1

2

Rogers and Tanimoto [69] a+d
a+2(b+c)+d [0, 1] 2 −

Sokal and Sneath 1 [79] a
a+2(b+c) [0, 1] − 2

Sokal and Sneath 2 [79] 2a+2d
2a+b+c+2d [0, 1] 1

2 −

Table 2.2: Overview of similarity measures - part 1.
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Coefficient S(A, B) = Range

Hamann [40] a+d−b−c
a+b+c+d [−1, 1]

Russell and Rao [70] a
a+b+c+d [0, 1]

Kulczynski 1 [56] a
b+c [0, +∞]

Kulczynski 2 [56] a
2

(

1
a+b + 1

a+c

)

[0, 1]

Ochiai, Cosine [62] a√
(a+b)(a+c)

[0, 1]

Fager and McGowan [32] a√
(a+b)(a+c)

− 1
2
√

a+b
[0, 1]

Pearson [72] ad−bc√
(a+b)(a+c)(b+d)(c+d)

[−1, 1]

Simpson, Overlap [75] a
a+min(b,c) [0, 1]

Forbes [28] a(a+b+c+d)
(a+b)(a+c) [0, +∞]

Braun-Blanquet [11] a
a+max(b,c) [0, 1]

Baroni-Urbani and Buser [3] a+
√

ad
a+b+c+

√
ad

[0, 1]

Yule [94] ad−bc
ad+bc [−1, 1]

Table 2.3: Overview of similarity measures - part 2.

Jaccard coefficient. The Jaccard coefficient [41] is the most popular
measure in about every discipline. It is a measure that omits occur-
rences of negative matches and reads as the number of common fea-
tures in both objects over the number of all features present in either
one of them.This measure is used in any field where similarity between
objects is involved, notwithstanding the fact that in some disciplines
the term Tanimoto coefficient is used more frequently than the origi-
nal Jaccard coefficient (e.g. in the field of virtual screening of chemical
structure databases [88]). Note that the first coefficient of Sokal and
Sneath resembles the Jaccard coefficient except that mismatches carry a
double weight.
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Simple matching coefficient. The simple matching coefficient is one of
the simplest and oldest measures, which was introduced by Sokal and
Michener [78], to deal with the evaluation of taxonomic relationships,
and used repeatedly ever since in many disciplines. This coefficient is
very similar to the one of Jaccard except that it includes occurrences of
negative matches for measuring similarity.

Note that this coefficient corresponds to different expressions de-
pending on the domain of practice. In information retrieval models, the
similarity between two documents is often based on the number of key-
words (terms). Then, one often uses as the simple matching coefficient
just the number of keywords common to a pair of documents [82, 86],
i.e. S(A, B) = a1. The origin of this expression can be found in the
so-called “vector space model of information retrieval”: documents are
represented by (not necessarily) binary vectors of (weights of) terms.
Taking the inner product of two vectors renders the similarity between
them. When documents are represented by binary vectors of terms, it is
easy to see that the inner product of two vectors reduces to the number
of terms common to both documents.

This has the disadvantage that the similarity is not normalized, i.e.
it takes no account of the numbers of terms in each of the documents,
which is a severe limitation and thus most coefficients that have been
used try to normalize this definition of the simple matching coefficient
in some way [82]. Note that in this way, the Jaccard, Dice, cosine and
overlap coefficients are a kind of normalization of the simple matching
coefficient.

In other domains (like information theory and coding theory) the
simple matching coefficient is often referred to as the Hamming dis-
tance.

In what follows, we always have in mind the definition of Sokal and
Michener when talking about the simple matching coefficient. Note
that as well as the coefficient of Rogers and Tanimoto, the second co-
efficient of Sokal and Sneath as the Hamann coefficient resemble the
simple matching coefficient.
Dice coefficient. In many ecological studies there is a need to express
the degree to which two different species are associated in nature. In
1945, Dice proposed his association coefficient [28], because of the lack
of a measure that was common use among ecologists. First, he in-

1Note that this definition of the simple matching coefficient is related to the Ham-
ming distance. The Hamming distance between two strings is defined as the number
of positions for which the corresponding symbols are different.
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troduced an association index which may differ depending on which
species is used as the basis of comparison. Let a + b be the number
of samples in which species A occurs and a be the number of samples
in which species A and B occur together, then the association index of
species B with species A (denoted by B/A) is defined by a

a+b . Analo-
gously, the association index of species A with species B (denoted by
A/B) is defined by a

a+c , where a + c denotes the number of samples in
which species B occurs. Nevertheless, Dice noticed that in some eco-
logical studies it is desirable to have a measure at one’s disposal that
does not change depending on which species is used as a base. Such
a measure, which he called the coincidence index, has a value inter-
mediate between the association indices B/A and A/B and is defined
as:

S(A, B) =
2a

2a + b + c
.

Further on, we will refer to this similarity measure as the Dice coeffi-
cient. Ecologists often use different names to describe the same index.
For example, the Czekanowski coefficient, the Sørensen coefficient and
the Dice coefficient are all synonyms [17, p. 55].

Note that the Dice coefficient is similar to the Jaccard coefficient but
gives twice the weight to agreements.
Ochiai/Cosine coefficient. The Ochiai coefficient is also known as the
cosine coefficient. This association coefficient is commonly used in doc-
ument clustering techniques (note that it is some normalization of the
simple matching coefficient as defined in document clustering).

The cosine of the angle α between two vectors V = (v1, . . . , vn) and
W = (w1, . . . , wn) in the n-dimensional space is equal to

cos α =

∑n
i=1 viwi

√
∑n

i=1 vi
∑n

i=1 wi

.

It is easy to see that the similarity of two binary vectors can be calcu-
lated using the Ochiai/cosine coefficient as indicated in Table 2.3.

Gower and Legendre [39] have introduced two one-parameter fam-
ilies Sθ and Tφ of similarity measures for binary vectors, with θ and φ
positive reals. Using the notations introduced above, these families can
be written as:

Sθ(A, B) =
a + d

a + d + θ(b + c)
,

Tφ(A, B) =
a

a + φ(b + c)
.
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Some of the measures in Table 2.2 belong to one of these families, as
indicated in the table.

2.3 From binary vectors to ordinary sets

Each binary vector (a1, . . . , an) ∈ {0, 1}n can be represented by an ordi-
nary subset A in a finite universe X = {x1, x2, . . . , xn} of cardinality n
(the feature space) in the following way:

ai = 1 ⇔ xi ∈ A .

When a bit i is set on in a binary vector, then the corresponding feature
xi belongs to a subset A of X and vice versa. The degree of similarity
of two objects (or two binary vectors) is then expressed in terms of the
cardinalities of the latter sets.

If A and B are the set representations of two binary vectors a and b,
then the number of features that are common to both vectors are repre-
sented by the cardinality of A∩B, denoted |A∩B|. The number that are
present in a, but not in b or vice versa is identical to |A \ B| or |B \ A|,
respectively. Finally, |(A ∪ B)c| equals the number of features which
both objects lack.

In this way, Table 2.1 with the outcome possibilities when compar-
ing two binary vectors can be translated into Table 2.4.

set B

set A

xi ∈ B xi 6∈ B

xi ∈ A |A ∩B| |A \B|
xi 6∈ A |B \A| |(A ∪B)c|

Table 2.4: Outcome possibilities when comparing two ordinary sets.

Then, all similarity measures for binary vectors listed in Tables 2.2
and 2.3 can easily be translated into similarity measures for ordinary
sets. However, since we restrict ourselves to the measures from Ta-
ble 2.2 in the remainder of this work, we only translate these measures
into measures for ordinary sets and recapitulate them in Table 2.5. Note
that |A4B| = |A \B|+ |B \A|.

At this moment, we are able to give a formal definition of a simi-
larity measure for ordinary sets. Therefore, we need the concept of a
fuzzy set and the related concept of a binary fuzzy relation.
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Measure Expression θ φ Metric

Jaccard |A∩B|
|A∪B| – 1 yes

Simple Matching 1− |A4B|
n 1 – yes

Dice 2|A∩B|
|A4B|+2|A∩B| – 1

2 no

Rogers and Tanimoto n−|A4B|
n+|A4B| 2 – yes

Sokal and Sneath 1 |A∩B|
|A∩B|+2|A4B| – 2 yes

Sokal and Sneath 2 1− |A4B|
2n−|A4B|

1
2 – no

Table 2.5: Some well-known cardinality-based similarity measures.

Fuzzy sets are a generalization of classical sets and were introduced
by Zadeh in 1965 as a mathematical means to represent vagueness in
everyday life [95]. They were specifically designed to provide formal-
ized tools for dealing with the imprecision intrinsic to many problems.

A fuzzy set A in a universe X is characterized by an X → [0, 1]
mapping where A(x) is interpreted as the degree of membership of el-
ement x in the fuzzy set A, for any x ∈ X . The value 0 means that the
element is not included in the given set, the value 1 describes a fully
included member (this behavior corresponds to ordinary sets), while
values in between are used to represent intermediate degrees of mem-
bership. The family of all fuzzy sets in X will be denoted by F(X).

Definition 2.1 A binary fuzzy relation R is a mapping R : X2 → [0, 1]
where R(x, y) denotes the degree to which x is related to y.

Note that any fuzzy relation R is a fuzzy subset of X × X , i.e. R ∈
F(X ×X). As we are dealing with binary fuzzy relations only, we will
drop the adjective binary further on in this text. A fuzzy relation R on
a finite universe X = {x1, x2, . . . , xn} can also be represented by means
of the matrix AR, with elements aij = R(xi, xj) for any i, j = 1, . . . , n.
For 0 ≤ α ≤ 1, the α-cut Rα of a fuzzy relation R on X is the crisp
relation on X defined by:

(x, y) ∈ Rα ⇔ R(x, y) ≥ α .
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Example 2.2 Let X = {Amsterdam, Brussels, Paris}. Let R be a fuzzy
relation that represents the notion of “far”. Then R can be defined as
follows:

R(Amsterdam, Brussels) = 0.3 ,

R(Amsterdam, Paris) = 0.8 ,

R(Brussels, Paris) = 0.5 .

Equivalently, R can be represented by the 3× 3 matrix AR :

AR =





1 0.3 0.8
0.3 1 0.5
0.8 0.5 1



 .

Definition 2.2 A similarity measure for ordinary sets is a reflexive, symmet-
rical fuzzy relation on the power set P(X) = {0, 1}X .

In this way, a similarity measure S fulfills the following properties for
any subsets A and B of X :

(i) S(A, B) ∈ [0, 1] ,

(ii) Reflexivity: S(A, A) = 1 ,

(iii) Symmetry: S(A, B) = S(B, A) .

Typically, judgements of similarity are assumed to be equivalent to
judgements of dissimilarity and vice versa. The function relating these
concepts is generally assumed to be an inverse relation. For example,
if the similarity between objects A and B equals S(A, B), then the dis-
similarity between A and B is equal to D(A, B) = 1 − S(A, B). In this
way, all similarity measures from Table 2.2 and some of Table 2.3 (only
those of which the range is equal to the unit interval) can be converted
to a dissimilarity measure. A dissimilarity measure represents the dis-
crepancy between two objects and intuitively, it is strongly related to a
measure of distance. Therefore, it is desirable that a dissimilarity mea-
sure observes the properties of a metric.

Definition 2.3 A mapping d : X × X → R+ is a metric if for any
(x, y, z) ∈ X3 holds that:

(i) d(x, y) = 0 ⇔ x = y

(ii) Symmetry: d(x, y) = d(y, x)
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(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

In [39], it was already proven that the families 1−Sθ and 1−Tφ fulfill the
properties of a metric for θ ≥ 1 and φ ≥ 1, respectively. This means that
the Jaccard coefficient, the simple matching coefficient, the coefficient
of Rogers and Tanimoto and the first coefficient of Sokal and Sneath
are metric (see Table 2.5). Note that Gower and Legendre also studied
the metric properties of

√
1− Sθ and

√

1− Tφ, but since this is of no
interest in the remainder of this thesis, we do not pay attention to it.

If instead of (i) a dissimilarity measure d satisfies for any (x, y) ∈ X2

(i’) d(x, y) = 0 ⇐ x = y

then d is called a pseudo-metric. Therefore, every metric is also a
pseudo-metric. When the third property is strengthened to

(iii’) d(x, z) ≤ max(d(x, y), d(y, z))

then d is called an ultrametric. The importance of metrics, pseudo-
metrics and ultrametrics will be clarified in Section 2.5.

In the same way as we defined a similarity measure, we can give a
definition of an inclusion measure for ordinary sets as follows.

Definition 2.4 An inclusion measure for ordinary sets is a binary fuzzy re-
lation I on the power set P(X) = {0, 1}X satisfying:

A ⊆ B ⇒ I(A, B) = 1 . (2.1)

Note that the above condition only involves subsets of X that are con-
tained into one another. It expresses that any subset A of a given set
B is equally well included in that set as the set into itself and this with
maximum degree of inclusion 1, or equivalently, that a set covers all its
subsets to the same degree 1 as it covers itself. Condition (2.1) implies
the property of reflexivity. Indeed, by setting B equal to A in condi-
tion (2.1), one obtains that I(A, A) = 1 , for any A ∈ P(X).

As already indicated, there are only a few inclusion measures
based on the cardinality of ordinary sets known in the literature.
Kuncheva [57] defines an inclusion measure for two ordinary sets A

and B as follows: I(A, B) = |A∩B|
|A| . Willmott [90] also introduced a

cardinality-based inclusion measure : I(A, B) = |B|
|A∪B| . Furthermore, in

the paper of De Baets, De Meyer and Naessens [21] several cardinality-
based inclusion measures are discussed.
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2.4 Parametric families of comparison measures

2.4.1 Tversky’s contrast model

Using set theory, Tversky [81] defined a similarity measure as a feature-
matching process. It produces a similarity value that is not only the
result of common features, but also the result of the differences between
two objects. The matching process is defined by A∩B, A\B and B \A.
Tversky’s contrast model defines the similarity between two objects A
and B, as follows:

S(A, B) = θf(A ∩B)− αf(A \B)− βf(B \A) ,

with θ, α, β ≥ 0 and f an appropriate interval scale satisfying
f(X ∪ Y ) = f(X) + f(Y ) whenever X and Y are disjoint. The param-
eters θ, α and β refer to the weights for common and different features
between the two objects.

Using the cardinality of an ordinary set as an appropriate interval
scale, we can translate Tversky’s contrast model into the following fam-
ily of cardinality-based similarity measures:

S(A, B) = θ|A ∩B| − α|A \B| − β|B \A| .
A disadvantage of Tversky’s contrast model is that this similarity mea-
sure is not bounded by 1. A matching function that normalizes the
value of similarity is the ratio model [81]

S(A, B) =
|A ∩B|

|A ∩B|+ α|A \B|+ β|B \A| , (2.2)

with α, β ≥ 0. Note that this family of similarity measures is reflexive,
but not symmetric. The ratio model generalizes several similarity mea-
sures proposed in the literature. For example, by setting α = β = 1, we
obtain the Jaccard coefficient, substituting α = β = 1

2 yields the Dice
coefficient, while substituting α = β = 2 yields the first coefficient of
Sneath and Sokal. By setting α = 1 and β = 0 we retrieve the Braun–
Blanquet coefficient if |B \ A| ≤ |A \ B|. In case |B \ A| > |A \ B| we
obtain the overlap coefficient. Remark that this coefficient is also equal
to the inclusion measure defined by Kuncheva [57].

Remark that the weights allow for the definition of an asymmetric
measure for similarity. Indeed, symmetry holds whenever the objects
are equal in measure (i.e. f(A) = f(B)) or the task is non-directional
(i.e. α = β). To interpret the latter condition, compare the following
two forms:
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1. assess the degree to which object A and object B are similar to
each other (a non-directional task, i.e. α = β),

2. assess the degree to which object A is similar to object B (a direc-
tional task, i.e. α 6= β).

If S(A, B) is interpreted as the degree to which A is similar to B, then
A is the subject of comparison and B is the referent.

The directionality and asymmetry of a similarity measurement task
are particularly noticeable in word associations. We say ”the son resem-
bles the father” rather than ”the father resembles the son”. But also in
scientific domains, such as chemical similarity, asymmetric similarity is
often used. For example, clustering chemical compounds corresponds
to a non-directional task, while querying a database corresponds to a
directional task [34, 74, 87, 88]. In this respect, inclusion measures can
be seen as asymmetric similarity measures.

A thorough (psychological) analysis whether a similarity measure
should be symmetric or not can be found in [81].

2.4.2 The families of Gower and Legendre

Gower and Legendre [39] have introduced two one-parameter families
Sθ and Tφ of similarity measures for binary data, with θ and φ pos-
itive reals (which were already mentioned in Section 2.2). Using the
notations introduced above, these families can be easily translated into
families of cardinality-based similarity measures:

Sθ(A, B) =
|A ∩B|+ |(A ∪B)c|

θ|A4B|+ |A ∩B|+ |(A ∪B)c| ,

Tφ(A, B) =
|A ∩B|

φ|A4B|+ |A ∩B| ,

with |A4 B| = |A \ B| + |B \ A|. Note that these similarity measures
are reflexive and symmetric for any A, B ∈ P(X).

Each of the measures in Table 2.5 belongs to one of these families,
as indicated in the table. Note that family Tφ corresponds to the sym-
metric part (α = β = φ) of family (2.2) introduced by Tversky [81].
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2.4.3 A parametric family of cardinality-based similarity mea-
sures

De Baets, De Meyer and Naessens [20] have dealt with the system-
atic construction of cardinality-based similarity measures for compar-
ing ordinary subsets of a finite universe X = {x1, x2, . . . , xn}. More
specifically, attention was focused on a class of [0, 1]-valued similarity
measures that are rational expressions in the cardinalities of the sets
involved:

S(A, B) =
x αA,B + t ωA,B + y δA,B + z νA,B

x′ αA,B + t′ ωA,B + y′ δA,B + z′ νA,B
, (2.3)

with A, B ∈ P(X),

αA,B = min(|A \B|, |B \A|) ,

ωA,B = max(|A \B|, |B \A|) ,

δA,B = |A ∩B| ,
νA,B = |(A ∪B)c| ,

and x, y, z, t, x′, y′, z′, t′ ∈ {0, 1}. Note that these similarity measures
are symmetric for any A, B ∈ P(X). Reflexive similarity measures are
characterized by y = y′ and z = z′. In this thesis, we restrict our atten-
tion to the (still large) subclass obtained by putting t = x and t′ = x′:

S(A, B) =
x4A,B +y δA,B + z νA,B

x′ 4A,B +y δA,B + z νA,B
, (2.4)

with 4A,B = |A4B|. On the other hand, the parameters x, y, z and x′

are considered to be positive reals. In this way, the class of cardinality-
based similarity measures (2.3) is enlarged such that a wide spectrum
of similarity measures can be provided to the reader.

In order to guarantee that S(A, B) ∈ [0, 1], we need to impose the
restriction 0 ≤ x ≤ x′. Since the case x = x′ leads to trivial measures
taking value 1 only, we consider from here on 0 ≤ x < x′.

The similarity measures gathered in Table 2.5 all belong to our fam-
ily of similarity measures (2.4); the corresponding parameter values are
indicated in Table 2.6.

It is easy to see that families Sθ and Tφ introduced by Gower and
Legendre belong to the family of similarity measures (2.4). Indeed, Sθ

can be obtained by setting x = 0, y = z = 1 and x′ = θ, while substitut-
ing x = z = 0, y = 1 and x′ = φ leads to Tφ.
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Measure Expression x x′ y z T

Jaccard |A∩B|
|A∪B| 0 1 1 0 TL

Simple Matching 1− |A4B|
n 0 1 1 1 TL

Dice 2|A∩B|
|A4B|+2|A∩B| 0 1 2 0 –

Rogers and Tanimoto n−|A4B|
n+|A4B| 0 2 1 1 TL

Sokal and Sneath 1 |A∩B|
|A∩B|+2|A4B| 0 2 1 0 TL

Sokal and Sneath 2 1− |A4B|
2n−|A4B| 0 1 2 2 –

Table 2.6: Some members of family (2.4).

2.4.4 A parametric family of cardinality-based inclusion mea-
sures

In [21], a systematic way of generating inclusion measures for ordi-
nary sets on a finite universe X = {x1, . . . , xn} in the form of a rational
expression solely based on cardinalities of the sets involved was pre-
sented:

I(A, B) =
x χA,B + t χB,A + y δA,B + z νA,B

x′ χA,B + t′ χB,A + y′ δA,B + z′ νA,B
,

with χA,B = |A \ B|, χB,A = |B \ A| and x, y, z, t, x′, y′, z′, t′ ∈ {0, 1}.
The inclusion measures satisfying (2.1) are then characterized by y = y ′,
z = z′ and t = t′.

In analogy to the class of reflexive similarity measures we consider
the following subclass, by putting t = x′:

I(A, B) =
x χA,B + x′ χB,A + y δA,B + z νA,B

x′ 4A,B +y δA,B + z νA,B
. (2.5)

The parameters x, y, z and x′ are considered to be positive reals. In or-
der to guarantee that I(A, B) ∈ [0, 1], we need to impose the following
restriction: x ≤ x′. Since the case x = x′ leads to trivial measures taking
value 1 only, we consider from here on 0 ≤ x < x′. Note that in this
case also the converse implication in (2.1) holds.
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Some inclusion measures known in the literature are a member of
this parametric family [21, 90]. They are summarized in Table 2.7. Note
that the inclusion measure given by Kuncheva [57] is not a member of
family (2.5).

Measure Expression x x′ y z T

I1
|B\A|
|A4B| 0 1 0 0 TL

I2
|Ac|

|(A∩B)c| 0 1 0 1 TP

I3
|B|

|A∪B| 0 1 1 0 TP

I4
|(A\B)c|

n 0 1 1 1 TL

I5 1− 2|A\B|
n+|A4B| 0 2 1 1 TL

Table 2.7: Some members of family (2.5).

2.5 T -transitivity versus pseudo-metrics

The rational similarity and inclusion measures introduced in [20]
and [21], respectively, have also been investigated for properties such
as monotonicity and T -transitivity, with T a triangular norm (or t-norm
for short).

Definition 2.5 [52] A binary operation T : [0, 1]2 → [0, 1] is called a t-norm
if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(T (x, 1) = x) .

(ii) Monotonicity: T is increasing in each variable.

(iii) Commutativity: (∀(x, y) ∈ [0, 1]2)(T (x, y) = T (y, x)) .

(iv) Associativity: (∀(x, y, z) ∈ [0, 1]3)(T (x, T (y, z)) = T (T (x, y), z)) .

Although originating from the field of probabilistic metric spaces,
t-norms are nowadays mainly popular as model for many-valued con-
junction in fuzzy logic and for defining the intersection of fuzzy sets in
a pointwise manner.
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The three basic continuous t-norms are the minimum operator TM,
the algebraic product TP and the Łukasiewicz t-norm TL defined by

TM(x, y) = min(x, y) ,

TP(x, y) = x · y ,

TL(x, y) = max(x + y − 1, 0) .

Another basic t-norm (which is not continuous) is the drastic product
TD defined by

TD(x, y) =

{

0 , if (x, y) ∈ [0, 1[2 ,
min(x, y) , otherwise .

These four t-norms can be ordered as follows: TD < TL < TP < TM.
The three continuous t-norms can be considered as prototypical cases,
since any other continuous t-norm can be built starting from these basic
t-norms. Every continuous t-norm can be expressed as an ordinal sum
of them. Ordinal sums are defined as follows:

Definition 2.6 [52] Let (Tα)α∈A be a family of t-norms and (]aα, eα[)α∈A

be a family of non-empty, pairwise disjoint open subintervals of [0, 1]. The
t-norm T defined by

T (x, y) =

{

aα + (eα − aα)Tα

(

x−aα

eα−aα
, y−aα

eα−aα

)

, if (x, y) ∈ [aα, eα]2 ,

min(x, y) , otherwise ,

is called the ordinal sum of the summands 〈aα, eα, Tα〉, and we write

T = (〈aα, eα, Tα〉)α∈A .

Example 2.3 The ordinal sum

T = (〈0.1, 0.3, TP〉 , 〈0.3, 0.6, TL〉 , 〈0.8, 1, TL〉)

is given by

T (x, y) =















0.1 + 5(x− 0.1)(y − 0.1) , if (x, y) ∈ [0.1, 0.3]2 ,
0.3 + max(x + y − 0.9, 0) , if (x, y) ∈ [0.3, 0.6]2 ,
0.8 + max(x + y − 1.8, 0) , if (x, y) ∈ [0.8, 1]2 ,
min(x, y) , otherwise .

The important parts of the domain of

T = (〈0.1, 0.3, TP〉 , 〈0.3, 0.6, TL〉 , 〈0.8, 1, TL〉)

and its 3D plot are depicted in Figure 2.1.
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Figure 2.1: Construction of ordinal sums: the important parts of the domain
of T = (〈0.1, 0.3, TP〉 , 〈0.3, 0.6, TL〉 , 〈0.8, 1, TL〉) are marked on the left and its
3D plot on the right.

Definition 2.7 A fuzzy relation R is called T -transitive (with T an arbitrary
t-norm) if for any subsets A, B and C of X the following inequality holds:

T (R(A, B), R(B, C)) ≤ R(A, C) .

Note that T -transitivity implies T ′-transitivity for all T ′ ≤ T .
The TM-transitivity (min-transitivity) property reads as

min(R(A, B), R(B, C)) ≤ R(A, C) . (2.6)

Note that a similarity measure which is TM-transitive is also called a
similarity relation. An important theorem states that R is a similarity
relation if and only if every α-cut Rα is a crisp equivalence relation (i.e.
a reflexive, symmetric and min-transitive binary relation) [96].

The TM-transitivity property is well known in the field of hierar-
chical clustering as it plays an essential role in the construction of a
partition tree. If R is a similarity relation, then for each α, Rα is an
equivalence relation on X = {x1, . . . , xn}. The equivalence classes of xi

with respect to Rα constitute the partition of X at cutting level α. It is
clear that with decreasing α, the equivalence classes tend to merge. The
graph representation of this hierarchy of equivalence classes is called
the partition tree.
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Figure 2.2: The partition tree associated to the TM-transitive matrix AS .

Example 2.4 Consider the similarity relation S on X = {1, 2, 3, 4, 5}
with matrix representation

AS =













1 0.9 0.2 0.2 0.2
0.9 1 0.2 0.2 0.2
0.2 0.2 1 0.7 0.4
0.2 0.2 0.7 1 0.4
0.2 0.2 0.4 0.4 1













.

The partition tree associated to AS is depicted in Figure 2.2.

More specifically, for a TM-transitive similarity measure S the map-
ping d = 1−S is an ultrametric. Unfortunately, the family of similarity
measures (2.4) does not contain any TM-transitive members.

However, also TL- and TP-transitive similarity measures are of
interest due to their correspondence with [0, 1]-valued pseudomet-
rics [23, 24]:

(i) A similarity measure S is TL-transitive (Łukasiewicz-transitive) if
it holds that

S(A, B) + S(B, C)− 1 ≤ S(A, C) . (2.7)

It then holds that the mapping d = 1 − S is a pseudo-metric, i.e.
the triangle inequality holds:

d(A, C) ≤ d(A, B) + d(B, C) .

(ii) A similarity measure S is TP-transitive (product-transitive, a
property stronger than TL-transitivity) if it holds that

S(A, B) · S(B, C) ≤ S(A, C) . (2.8)

It now holds that the mapping d = − log S is a pseudo-metric.
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The transitivity of the similarity measures in Table 2.6 and the inclusion
measures in Table 2.7 is indicated in the last column. The TL-transitive,
TP-transitive and TM-transitive members of the families of similarity
measures (2.4) and inclusion measures (2.5) are identified in the follow-
ing sections.

2.6 T -transitive similarity measures

2.6.1 Łukasiewicz-transitive members

In this subsection, we characterize the Łukasiewicz-transitive members
of family (2.4).

Theorem 2.1 The TL-transitive members of family (2.4) are characterized by
the necessary and sufficient condition

x′ ≥ max(y, z) . (2.9)

Proof. In order to identify the conditions on the parameters x, x′, y and
z, we have to verify when inequality (2.7) is fulfilled. Consider the
setting in Figure 2.3, then the following equalities hold:

|A \B| = a1 + b2 , |A ∩B| = b3 + c ,
|A \ C| = a1 + b3 , |A ∩ C| = b2 + c ,
|B \ C| = a2 + b3 , |B ∩ C| = b1 + c ,
|A4B| = a1 + a2 + b1 + b2 , |(A ∪B)c| = a3 + d ,
|A4 C| = a1 + a3 + b1 + b3 , |(A ∪ C)c| = a2 + d ,
|B 4 C| = a2 + a3 + b2 + b3 , |(B ∪ C)c| = a1 + d ,

and inequality (2.7) can be rewritten as

(x′ − x)

(

− a1 + a3 + b1 + b3

x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d)

+
a1 + a2 + b1 + b2

x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d)
(2.10)

+
a2 + a3 + b2 + b3

x′(a2 + a3 + b2 + b3) + y(b1 + c) + z(a1 + d)

)

≥ 0 .

Since x′ > x, we can omit the factor x′ − x.
Setting a2 = b2 = c = d = 0, we obtain the following inequality

− 1

x′
+

a1 + b1

x′(a1 + b1) + yb3 + za3
+

a3 + b3

x′(a3 + b3) + yb1 + za1
≥ 0 .

Converting the fractions of the left-hand side of this inequality such
that they have a common (positive) denominator, it suffices to require
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Figure 2.3: Notations for cardinalities associated with three ordinary subsets
A, B and C of a finite universe X .

the positivity of the numerator, leading to the condition

(x′2 − z2)a1a3 + (x′2 − y2)b1b3 + (x′2 − yz)(a1b3 + a3b1) ≥ 0 .

In particular, setting a1 = a3 = 0, we obtain

(x′2 − y2)b1b3 ≥ 0 .

This inequality is only fulfilled when x′ ≥ y. In the same way, we can
set b1 = b3 = 0, leading to the condition x′ ≥ z. Other combinations do
not lead to further conditions on x′, y and z.

Similarly, we can start by setting a1 = b1 = c = d = 0 or a3 =
b3 = c = d = 0, but none of these choices leads to new conditions. We
conclude that x′ ≥ max(y, z) is a necessary condition for inequality (2.7)
to hold.

If we carefully expand inequality (2.10), it is easy to see that x′ ≥
max(y, z) is also a sufficient condition, since in that case no negative
terms occur in the expanded expression.

Corollary 2.1 The TL-transitive members of the ratio model (2.2) are charac-
terized by α = β ≥ 1.

Corollary 2.2 The TL-transitive members of the family Sθ are characterized
by θ ≥ 1 and those of the family Tφ by φ ≥ 1.

Remark that Gower and Legendre already proved that θ ≥ 1 (resp.
φ ≥ 1) is a sufficient condition for 1−Sθ (resp. 1−Tφ) to satisfy the trian-
gle inequality, but left it open whether this condition is also necessary.
This is now clear.
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2.6.2 Product-transitive members

In this subsection, we identify the product-transitive members of fam-
ily (2.4).

Theorem 2.2 The TP-transitive members of family (2.4) are characterized by
the necessary and sufficient condition

x x′ ≥ max(y2, z2) . (2.11)

Proof. In order to identify the conditions on the parameters x, x′, y and
z, we have to verify when inequality (2.8) is fulfilled. Considering the
setting in Figure 2.3, the latter inequality reads

(x′ − x)

(

−a1 + a3 + b1 + b3

N1
+

a1 + a2 + b1 + b2

N2
+

a2 + a3 + b2 + b3

N3

−(x′ − x)(a1 + a2 + b1 + b2)(a2 + a3 + b2 + b3)

N2N3

)

≥ 0 , (2.12)

with

N1 = x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d) ,

N2 = x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d) ,

N3 = x′(a2 + a3 + b2 + b3) + y(b1 + c) + z(a1 + d) .

Again, we can omit the factor x′ − x. Setting a2 = b2 = c = d = 0, we
obtain the following inequality

− 1

x′
+

a1 + b1

x′(a1 + b1) + yb3 + za3
+

a3 + b3

x′(a3 + b3) + yb1 + za1

− (x′ − x)(a1 + b1)(a3 + b3)

(x′(a1 + b1) + yb3 + za3)(x′(a3 + b3) + yb1 + za1)
≥ 0 .

Converting the fractions of the left-hand side of this inequality such
that they have a common (positive) denominator, it suffices to require
the positivity of the numerator, leading to the condition

(xx′ − z2)a1a3 + (xx′ − y2)b1b3 + (xx′ − yz)(a1b3 + a3b1) ≥ 0 .

In particular, setting a1 = a3 = 0, we obtain

b1b3(x x′ − y2) ≥ 0 .
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This inequality is only fulfilled when x x′ ≥ y2. In the same way, we can
set b1 = b3 = 0, leading to the condition x x′ ≥ z2. Setting a1 = b3 = 0
or a3 = b1 = 0 leads to the condition x x′ ≥ y z, which is weaker than
the two previous conditions. Other combinations do not lead to further
conditions on x, x′, y and z. We conclude that x x′ ≥ max(y2, z2) is a
necessary condition for inequality (2.8) to hold.

Again, if we carefully expand inequality (2.12), it is easy to see that
x x′ ≥ max(y2, z2) is also a sufficient condition.

Corollary 2.3 The ratio model (2.2) does not contain TP-transitive members.

Corollary 2.4 The families Sθ and Tφ do not contain TP-transitive members.

2.6.3 Min-transitive members

In this subsection, we prove that the family of cardinality-based simi-
larity measures (2.4) does not contain any min-transitive members.

Theorem 2.3 Family (2.4) does not contain any TM-transitive members.

Proof. We have to verify when inequality (2.6) is fulfilled. First, we
verify when the following inequality is fulfilled: S(A, B) ≤ S(A, C).

Considering the setting as in Figure 2.3, the latter inequality reads

a1 + a2 + b1 + b2

N1
− a1 + a3 + b1 + b3

N2
≥ 0 , (2.13)

with

N1 = x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d) ,

N2 = x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d) .

Since inequality (2.13) should hold for any ai, bi, c and d, with i ∈
{1, 2, 3}, it should hold for a2 = b2 = 0, c = d = 0, ai 6= 0 and bi 6= 0 for
i ∈ {1, 3} in particular. In that case, inequality (2.13) can be rewritten
as:

a1 + b1

x′(a1 + b1) + yb3 + za3
− 1

x′
≥ 0 .

Converting the fractions of the left-hand side of this inequality such
that they have a common (positive) denominator, it suffices to require
the positivity of the numerator, leading to the condition

−yb3 − za3 ≥ 0 ,

which is obviously a contradiction.
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2.7 T -transitive inclusion measures

The rational inclusion measures introduced in [21] have also been in-
vestigated for properties such as monotonicity and T -transitivity. An
overview of some cardinality-based inclusion measures and their tran-
sitivity properties can be found in Table 2.7.

2.7.1 Łukasiewicz-transitive members

In this subsection, we characterize the Łukasiewicz-transitive members
of family (2.5).

Theorem 2.4 The TL-transitive members of the class of inclusion mea-
sures (2.5) are characterized by

x′ ≥ max(y, z) . (2.14)

Proof. In order to identify the conditions on the parameters x, y, z
and x′ in (2.5), we have to verify when inequality (2.7) is fulfilled. Con-
sidering the setting as in Figure 2.3, then the following equalities hold:

|A \B| = a1 + b2 , |A ∩B| = b3 + c ,
|A \ C| = a1 + b3 , |A ∩ C| = b2 + c ,
|B \ C| = a2 + b3 , |B ∩ C| = b1 + c ,
|A4B| = a1 + a2 + b1 + b2 , |(A ∪B)c| = a3 + d ,
|A4 C| = a1 + a3 + b1 + b3 , |(A ∪ C)c| = a2 + d ,
|B 4 C| = a2 + a3 + b2 + b3 , |(B ∪ C)c| = a1 + d ,

and inequality (2.7) can be rewritten as

(x′ − x)

(

− a1 + b3

x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d)
(2.15)

+
a1 + b2

x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d)

+
a2 + b3

x′(a2 + a3 + b2 + b3) + y(b1 + c) + z(a1 + d)

)

≥ 0 .

Since x′ > x, we can omit the factor x′ − x. In particular, putting a2 =
b2 = c = d = 0, we obtain the following inequality

− a1 + b3

x′(a1 + a3 + b1 + b3)
+

a1

x′(a1 + b1) + yb3 + za3

+
b3

x′(a3 + b3) + yb1 + za1
≥ 0 .
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If we reduce the left-hand side of this inequality to the same denomi-
nator, it is sufficient to study the numerator, since the denominator is
always positive. In particular, if we put a1 = a3 = 0, then the latter
inequality reduces to

b1b3(x
′b1 + yb3)(x

′ − y) ≥ 0 .

This inequality is only fulfilled if x′ ≥ y. In the same way, we can put
b1 = b3 = 0, which leads to the condition x′ ≥ z. Other combinations do
not lead to different conditions on x′, y and z. In a similar way, we can
also put a1 = b1 = c = d = 0 or a3 = b3 = c = d = 0, but none of them
leads to new conditions on x′, y and z. We conclude that x′ ≥ max(y, z)
is a necessary condition for inequality (2.7) to hold.

If we expand inequality (2.15), it is easy to see that x′ ≥ max(y, z)
is also a sufficient condition, since no negative terms occur in the ex-
panded expression.

2.7.2 Product-transitive members

Next, we derive the necessary conditions such that the members of
the family of inclusion measures (2.5) are TP-transitive. Note that we
are not able to identify a set of conditions that are at the same time
necessary and sufficient such that the members of family (2.5) are TP-
transitive.

Theorem 2.5 Necessary conditions on x, y, z and x′ in order that the mem-
bers of the class of inclusion measures (2.5) are TP-transitive, are given by

x′ ≥ max(y, z) ∧ x x′ ≥ max(y z, z(x′ − z), y(x′ − y)) . (2.16)

Sufficient conditions on x, y, z and x′ in order that the members of the class of
inclusion measures (2.5) are TP-transitive, are given by

x′ ≥ max(y, z)

∧ x x′ ≥ max(y z, z(x′ − z), y(x′ − y))

∧ y2 − x′2 + x x′ + x′ z + x z + x′ y ≥ 0

∧ z2 − x′2 + x x′ + x′ z + x y + x′ y ≥ 0 . (2.17)

Proof. In order to identify the conditions on the parameters x, y, z and
x′ in (2.5), we have to verify when inequality (2.8) is fulfilled. Again,
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considering the setting as in Figure 2.3, then the latter inequality re-
duces to

(x′ − x)

(

−a1 + b3

N1
+

a1 + b2

N2
+

a2 + b3

N3

−(x′ − x)(a1 + b2)(a2 + b3)

N2N3

)

≥ 0 , (2.18)

with

N1 = x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d) ,

N2 = x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d) ,

N3 = x′(a2 + a3 + b2 + b3) + y(b1 + c) + z(a1 + d) .

Again, we omit the factor x′ − x, since x′ > x. In particular, putting
a2 = b2 = c = d = 0, we obtain the following inequality

− a1 + b3

x′(a1 + a3 + b1 + b3)
+

a1

x′(a1 + b1) + yb3 + za3

+
b3

x′(a3 + b3) + yb1 + za1

− (x′ − x)a1b3

(x′(a1 + b1) + yb3 + za3)(x′(a3 + b3) + yb1 + za1)
≥ 0 .

If we convert the fractions of the left-hand side of this inequality so that
they have a common denominator, it is sufficient to study the numer-
ator, since the denominator is always positive. In particular, if we put
b1 = a3 = 0, then the latter inequality reduces to

a1b3(xx′ − yz) ≥ 0 .

This inequality is only fulfilled if xx′ ≥ yz. Putting a3 = b3 = c = d = 0
and b1 = b2 = 0, we obtain the following inequality

a2((z
2 − x′z + xx′)a2

1 + z(x′ + x)a1a2 + x′za2
2) ≥ 0 .

This inequality is only fulfilled if xx′ ≥ x′z−z2. This can be seen by con-
sidering a constant a2 > 0, and by letting n → ∞ and a1 → ∞, as the
result should hold for any n. In a similar way, we obtain xx′ ≥ x′y−y2.
Other combinations do not lead to different conditions on x, x′, y and z.
We conclude that conditions (2.16) are necessary conditions for inequal-
ity (2.8) to hold. Note that they are not sufficient for TP-transitivity.
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If we expand inequality (2.18), then it is easy to see that

x′ ≥ max(y, z)

∧ x x′ ≥ max(y z, z(x′ − z), y(x′ − y))

∧ x′2 − y2 + x x′ − x′ z ≥ 0

∧ x′2 − z2 + x x′ − x′ y ≥ 0

∧ y2 − x′2 + x x′ + x′ z + x z + x′ y ≥ 0

∧ z2 − x′2 + x x′ + x′ z + x y + x′ y ≥ 0

∧ x + x′ ≥ y + z

are sufficient conditions. Note that conditions x x′ ≥ y z and x′ ≥
max(y, z) imply x′2 − y2 + x x′ − x′ z ≥ 0, x′2 − z2 + x x′ − x′ y ≥ 0
and x + x′ ≥ y + z. Therefore, the latter conditions can be omitted from
the list of sufficient conditions (2.17).

Note that it is possible to find values for the parameters x, x′, y and
z such that the set of necessary conditions (2.16) are fulfilled, but not the
set of sufficient conditions (2.17) and that the corresponding inclusion
measure is TP-transitive. For example, putting x = 5, x′ = 10, y = 1
and z = 0 leads to the following inclusion measure:

I(A, B) =
5|A \B|+ 10|B \A|+ |A ∩B|

10|A4B|+ |A ∩B| . (2.19)

It is easy to verify that the left part of the following inequality

z2 − x′2 + x x′ + x′ z + x y + x′ y ≥ 0 (2.20)

equals −40 and therefore, inequality (2.20) is obviously not fulfilled.
Analogously, the left part of the following inequality

y2 − x′2 + x x′ + x′ z + x′ y + x z ≥ 0 (2.21)

equals−39 and therefore, inequality (2.20) is also not fulfilled. Next we
prove that the inclusion measure (2.19) is TP-transitive.

Property 2.1 Inclusion measure (2.19) is TP-transitive.

Proof. We have to verify when inequality (2.8) is fulfilled. Consider the
setting as in Figure 2.3, then the latter inequality reduces to

1− 5(a1 + b3)

N1
−

(

1− 5(a1 + b2)

N2

) (

1− 5(a2 + b3)

N3

)

≥ 0 , (2.22)
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with

N1 = 10a1 + 10a3 + 10b1 + 10b3 + b2 + c ,

N2 = 10a1 + 10a2 + 10b1 + 10b2 + b3 + c ,

N3 = 10a2 + 10a3 + 10b2 + 10b3 + b1 + c .

If we convert the fractions of the left-hand side of this inequality so
that they have a common denominator, it is sufficient to study the nu-
merator, since the denominator is always positive. The numerator is a
function of 7 variables and will be denoted by f(a1, a2, a3, b1, b2, b3, c).
Since all terms including b1, a3 or c are positive, the following holds

f(a1, a2, a3, b1, b2, b3, c) ≥ f(a1, a2, 0, 0, b2, b3, 0)

= 5 [ 41b2b
2
3 + 10a2

2b2 − 39a2b2b3

− 35a1a2b2 + 50a2
1a2 + 15a2b

2
2

+ 50a1b
2
3 + 50a1a2b3 + 15b2

2b3 + 50a2
1b3

+ 55a1b2b3 + 10b3
2 + 10a1b

2
2 ]

= 5 [ b2(
√

41b3 −
√

10a2)
2 + (2

√
410− 39)a2b2

+ 5a2(
√

10a1 −
√

3b2)
2 + (2

√
30− 7)a1b2

+ 50a1b
2
3 + 50a1a2b3 + 15b2

2b3 + 50a2
1b3

+ 55a1b2b3 + 10b3
2 + 10a1b

2
2 ] .

Since 2
√

410 − 39 ≥ 0 and 2
√

30 − 7 ≥ 0, f(a1, a2, a3, b1, b2, b3, c) ≥ 0.
This completes our proof.

2.7.3 Min-transitive members

In this subsection, we prove that the family of cardinality-based inclu-
sion measures (2.5) does not contain any min-transitive members.

Theorem 2.6 Family (2.5) does not contain any TM-transitive members.

Proof. We have to verify when inequality (2.6) is fulfilled. First, we
verify when the following inequality is fulfilled: I(A, B) ≤ I(A, C).

Consider the setting as in Figure 2.3, the latter inequality reads

(x′ − x)

(

a1 + b2

N1
− a1 + b3

N2

)

≥ 0 , (2.23)
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with

N1 = x′(a1 + a2 + b1 + b2) + y(b3 + c) + z(a3 + d) ,

N2 = x′(a1 + a3 + b1 + b3) + y(b2 + c) + z(a2 + d) .

Again, we omit the factor x′ − x, since x′ > x. Since inequality (2.23)
should hold for any ai, bi, c and d, with i ∈ {1, 2, 3}, it should hold
for a1 = a2 = b2 = 0, c = d = 0, a3 6= 0 and bi 6= 0 for i ∈ {1, 3} in
particular. In that case, inequality (2.23) can be rewritten as:

− b3

x′(a3 + b1 + b3)
≥ 0 ,

which is obviously a contradiction.

2.8 Conclusions and indications for future research

In this chapter, we have given an overview of the comparison measures
for binary vectors frequently used in practice. As binary vectors can be
identified with ordinary sets, it is natural to convert these comparison
measures for binary vectors into measures for ordinary sets. The latter
are then based on the cardinalities of the sets involved. We mentioned
three already existing parametric families of cardinality-based similar-
ity measures, one family of cardinality-based inclusion measures and
introduced two new parametric families. Moreover, we have identified
the TL-transitive and TP-transitive members of these families. Finally,
we concluded that none of these families have TM-transitive members.

In this thesis, we only consider a family of similarity measures
based on the addition (or substraction) of cardinalities. However, also
similarity measures which rely on the multiplication of cardinalities
(for example, the Cosine coefficient) exist. It is clear that these measures
cannot be a member of the suggested family of similarity measures and
that introducing a new family, which covers the latter type of similarity
measures, is within the bounds of possibilities.

The parameters x, y, z and x′ of the family of similarity measures
are a second limitation. The use of only four parameters causes
that some similarity measures (for instance, the first coefficient of
Kulczynski) are put out of action. This problem could be solved by
considering six parameters instead of four. However, this new direc-
tion also needs further research.
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Chapter 3

Fuzzification schemes

3.1 Introduction

In Chapters 6 and 7, we will fuzzify the parametrized families of
cardinality-based similarity and inclusion measures which were de-
fined in the previous chapter. Since these parametrized families are
based on the cardinality of an ordinary set and the basic classical set
operations, such as intersection, union and (symmetric) difference, we
need to formulate fuzzification schemes in order to translate these
operations to their fuzzy counterpart.

This chapter is organized as follows. The basic scalar cardinality of
a fuzzy set is introduced in Section 3.2 as well as different definitions
of fuzzy cardinalities. Several models to fuzzify the intersection, union
and (symmetric) difference of two ordinary sets are explained in Sec-
tion 3.3 of this chapter.

Before we proceed, we introduce the notions of a normal fuzzy
set, a convex fuzzy set and an α-cut of a fuzzy set. Consider a
finite universe X = {x1, . . . , xn}. A fuzzy set A in X is said
to be normal if and only if there exists an xi ∈ X , for any
i = 1, . . . , n, such that A(xi) = 1. A fuzzy set A in X is convex if and
only if for any x1, x2 ∈ X the following holds: A(λx1 + (1 − λ)x2) ≥
min(A(x1), A(x2)), for any λ belonging to the unit interval. An α-cut of
a fuzzy set A is a crisp set Aα, defined by Aα = {x ∈ X | A(x) ≥ α}.
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3.2 Cardinality of a fuzzy set

Measuring the cardinality of a fuzzy set is a necessary task in many
problems, such as fuzzy querying in databases, expert systems, eval-
uation of natural language statements, and many others. With an eye
to the fuzzification of parametric families (2.4) and (2.5) of cardinality-
based similarity and inclusion measures, we also need a concept of the
cardinality of a fuzzy set.

If we want to count elements in a fuzzy set, the main problem is
that those elements only belong to a fuzzy set to a certain degree. Nev-
ertheless, it would be useful to have at one’s disposal a counterpart for
the cardinality of an ordinary set. As is often the case when extending
a classical set-theoretical notion to fuzzy set theory, various alternative
definitions for the notion of the cardinality of a fuzzy set (on a finite
universe) have been proposed. These proposals can be roughly subdi-
vided in three categories:

(i) scalar cardinalities, where the cardinality of a fuzzy set is a posi-
tive real number (Casasnovas and Torrens [14], De Luca and Ter-
mini [25], Gottwald [38], Kaufmann [49], Wygralak [91]),

(ii) fuzzy cardinalities, where the cardinality of a fuzzy set is defined
as a fuzzy quantity (not necessarily convex) (Blanchard [5], Del-
gado et al. [27], Dubois and Prade [30], Wygralak [91], Zadeh [95]),
and

(iii) integer cardinalities, obtained by defuzzifying in some sense
fuzzy cardinalities (Ralescu [68]) (which essentially reduces to
cardinalities of 0.5-cuts).

In the first approach, the cardinality of a fuzzy set A, denoted by |A|,
is a positive real number. Therefore, this type of cardinality is called a
scalar cardinality. The most basic definition of the scalar cardinality of a
fuzzy set A on a finite universe X = {x1, . . . , xn} proposed by De Luca
and Termini [25] is the following:

|A| =
n

∑

i=1

A(xi) .

This scalar cardinality is often referred to as the sigma count or some-
times the power of a fuzzy set. We will simply refer to it as the basic
scalar cardinality. It goes without saying that this way of defining the
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cardinality of a fuzzy set is rather simplistic, but on the other hand
very convenient to use.

The second approach offers a fuzzy perception of cardinality: it is
again a fuzzy set. In the following, we give an overview of the defini-
tions available in the literature, which can also be found in [27]. A first
definition of fuzzy cardinality is due to Zadeh [97]:

|A|(i) = sup{α | |Aα| = i} , i = 0, . . . , n , (3.1)

The main problem that has been attributed to this method is that the
valuation property (i.e. |A ∪ B| + |A ∩ B| = |A| + |B|) is not fulfilled
as |A| is not a convex fuzzy set [30]. To recover the valuation property,
Dubois and Prade suggested the following definition of the cardinality
of a fuzzy set A [30]:

|A|(i) = sup{α | |Aα| ≥ i} , i = 0, . . . , n .

This definition is in fact nothing more than FGCount(A), defined by
Zadeh [98]. The main drawback of this definition is that FGCount does
not match exactly the idea of cardinality, since for crisp sets, FGCount
provides a set of integers {0, 1, . . . , |A|}. From a practical point of
view, this is not satisfactory. To avoid this problem, Zadeh proposed
FECount(A) as the fuzzy cardinality of A, defined as:

FECount(A) = FGCount(A) ∩ FLCount(A) ,

where

FLCount(A)(i) = sup{α | |Aα| ≥ n− i} , i = 0, . . . , n .

An equivalent expression for FECount(A) was introduced by
Wygralak [91] and also Ralescu has used the same definition in [68].
FECount(A) is a convex fuzzy set, but not normal. Wygralak [91, 92]
showed that the valuation property is fulfilled if and only if the in-
tersection and union of two fuzzy sets are modelled by min and max,
respectively.

Dubois and Prade proposed to define the cardinality of a fuzzy set
as follows,

‖A‖ = |A| ∩ {|A1|, |A1|+ 1, |A1|+ 2, . . .} ,

with |A| defined as in (3.1). The fuzzy cardinality ‖A‖ is a normalized,
convex fuzzy set and moreover, the valuation property is fulfilled if and
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only if the intersection and union of two fuzzy sets are modelled by the
operators min and max, respectively.

In the third approach, the cardinality of a fuzzy set A is obtained by
defuzzifying in some sense fuzzy cardinalities. Ralescu [68] defines the
cardinality of a fuzzy set A as follows:

|A| =







0 if A = ∅
j if A 6= ∅ and A(j) ≥ 0.5
j − 1 if A 6= ∅ and A(j) < 0.5

where j = max{1 ≥ s ≥ n | A(s− 1) + A(s) ≥ 1}. But, this definition is
nothing more than counting the elements of the α-cut of A, with α = 0.5
and therefore |A| = |A0.5|.

From what precedes, we conclude that there are many different
ways of defining the cardinality of a fuzzy set, but we restrict ourselves
through the remainder of this work, to the use of the basic scalar cardi-
nality only.

3.3 Translation of classical set operations

We do not want to restrict ourselves to the study of a parametric family
of cardinality-based measures for ordinary sets only, but also want to
provide a family of fuzzy similarity (or inclusion) measures. Therefore,
we need to fuzzify the parametric families introduced in Chapter 2. For
this fuzzification process, we have two possibilities:

(i) rewrite the families for ordinary sets in terms of intersections
only and fuzzify this new expression, or

(ii) establish fuzzification rules for the complement of a fuzzy set,
fuzzy set union and fuzzy set (symmetrical) difference.

In both cases, we use the basic scalar cardinality for the cardinality of a
fuzzy set and also need to fuzzify the intersection of two fuzzy sets.

3.3.1 Intersection of two fuzzy sets

As usual, we define the intersection of two fuzzy sets A and B on a fi-
nite universe X pointwisely, i.e. A∩B(x) = I(A(x), B(x)), by means of
an appropriate function I that generalizes Boolean conjunction. Since
we will intersect at most two fuzzy sets at the same time, it suffices to
consider as suitable I a commutative conjunctor.



3.3 Translation of classical set operations 39

Definition 3.1 A binary operation I : [0, 1]2 → [0, 1] is called a conjunctor
if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(I(x, 1) = I(1, x) = x) .

(ii) Monotonicity: I is increasing in each variable.

Note that any conjunctor I coincides on {0, 1}2 with the Boolean con-
junction and satisfies:

(i’) Absorbing element 0: (∀x ∈ [0, 1])(I(x, 0) = I(0, x) = 0) .

Moreover, any conjunctor I is bounded from above by the minimum
operator TM, i.e. I(x, y) ≤ TM(x, y) = min(x, y).

In this thesis, we focus our attention on three particular classes of
conjunctors: the class of triangular norms (t-norms), the class of copu-
las and the class of quasi-copulas. Where t-norms, introduced in Sec-
tion 2.5, have the additional properties of associativity and commuta-
tivity [52], copulas have the property of moderate growth, while quasi-
copulas have the 1-Lipschitz property.

Copulas were introduced by Sklar in 1959 [77] and are used for
combining marginal probability distributions into joint probability dis-
tributions. In short, Sklar showed that if H is a bivariate distribution
function with margins F (x) and G(y), then there exists a copula C such
that H(x, y) = C(F (x), G(y)). They are not only of interest in the field
of probability and statistics (as a way of studying measures of depen-
dence or for constructing families of bivariate distributions), but also
for the “fuzzy community”, copulas are of great value. Since associa-
tive copulas are special continuous t-norms, they are applied in several
domains where t-norms play a role.

The notion of quasi-copulas was recently introduced by Alsina et
al. [1] in order to characterize operations on distribution functions that
can or cannot be derived from operations on random variables. The fol-
lowing definition of a quasi-copula is not the original one as introduced
by Alsina et al., but the one of Genest et al. [37].

Definition 3.2 [37, 61] A binary operation C : [0, 1]2 → [0, 1] is called a
quasi-copula if it satisfies:

(i) Neutral element 1 .

(i’) Absorbing element 0 .

(ii) Monotonicity: C is increasing in each variable.



40 Fuzzification schemes

(iii) 1-Lipschitz property: for any (x1, x2, y1, y2) ∈ [0, 1]4 it holds that:

|C(x1, y1)− C(x2, y2)| ≤ |x1 − x2|+ |y1 − y2| .

If instead of (iii) C satisfies

(iv) Moderate growth: for any (x1, x2, y1, y2) ∈ [0, 1]4 such that x1 ≤ x2

and y1 ≤ y2 it holds that:

C(x1, y2) + C(x2, y1) ≤ C(x1, y1) + C(x2, y2) ,

then C is called a copula.

Note that in case of a quasi-copula, condition (i’) is superfluous, while
for a copula condition (ii) can be omitted (as it follows from (iv) and
(i’)). As implied by the terminology used, any copula is a quasi-copula,
and therefore has the 1-Lipschitz property; the opposite is, of course,
not true. It is well known that a copula is a t-norm if and only if it is as-
sociative; conversely, a t-norm is a copula if and only if it is 1-Lipschitz.
The three main continuous t-norms TM, TP and TL are (associative and
commutative) copulas.

In the remainder of this work, it is necessary to know that

Proposition 3.1 [37] For any quasi-copula C it holds that TL ≤ C ≤ TM.

We also need the concept of a stable quasi-copula. By analogy with
the concept of a stable copula [53], we introduce the concept of the sur-
vival quasi-copula.

Definition 3.3 The survival operator Ĉ associated to a quasi-copula C is the
binary operation Ĉ defined by

Ĉ(x, y) = x + y − 1 + C(1− x, 1− y) .

We can prove that Ĉ is again a quasi-copula.

Proposition 3.2 The survival operator Ĉ associated to a quasi-copula C is
again a quasi-copula.

Proof. It is easy to see that Ĉ has neutral element 1 and absorbing
element 0. First, we prove that Ĉ is increasing. Suppose x1 ≤ x2, then
we should verify that the following inequality Ĉ(x1, y) ≤ Ĉ(x2, y) is
fulfilled for any y ∈ [0, 1], or equivalently,

x1 + C(1− x1, 1− y) ≤ x2 + C(1− x2, 1− y) . (3.2)
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Since C is a quasi-copula, C fulfills the 1-Lipschitz property:

|C(1− x1, 1− y)− C(1− x2, 1− y)|
= C(1− x1, 1− y)− C(1− x2, 1− y)

≤ |1− x1 − 1 + x2| = x2 − x1 ,

therefore inequality (3.2) is fulfilled. In the same way, we can prove that
Ĉ(x, y1) ≤ Ĉ(x, y2) for any (x, y1, y2) ∈ [0, 1]3, with y1 ≤ y2.

Next, we show that Ĉ fulfills the 1-Lipschitz property.

|Ĉ(x1, y1)− Ĉ(x2, y2)|
= |Ĉ(x1, y1)− Ĉ(x2, y1) + Ĉ(x2, y1)− Ĉ(x2, y2)|
≤ |Ĉ(x1, y1)− Ĉ(x2, y1)|+ |Ĉ(x2, y1)− Ĉ(x2, y2)| .

Suppose x1 ≤ x2, then the following holds:

|Ĉ(x1, y1)− Ĉ(x2, y1)|
= Ĉ(x2, y1)− Ĉ(x1, y1)

= x2 + C(1− x2, 1− y1)− x1 − C(1− x1, 1− y1)

≤ x2 − x1 = |x2 − x1|

whereas the last inequality follows from C(1−x2, 1−y1)−C(1−x1, 1−
y1) ≤ 0.

In the same way, we can prove that |Ĉ(x1, y1)−Ĉ(x2, y1)| ≤ |x2−x1|
holds when x1 > x2. And analogously,

|Ĉ(x2, y1)− Ĉ(x2, y2)| ≤ |y2 − y1| .

This completes our proof.

Definition 3.4 A quasi-copula C is called stable if Ĉ = C.

Example 3.1 The copula C defined by

C =
TM + TL

2

is a stable copula [53].

One of the most important families of t-norms {TF

λ }λ∈[0,∞] was ob-
tained by Frank [35] as (continuous) solutions of the functional equa-
tion

T (x, y) + T ∗(x, y) = x + y , (3.3)
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where T ∗ denotes the dual t-conorm of T defined by

T ∗(x, y) = 1− T (1− x, 1− y) .

A t-conorm can be defined as follows:

Definition 3.5 [52] A binary operation S : [0, 1]2 → [0, 1] is called a
t-conorm if it satisfies:

(i) Neutral element 0: (∀x ∈ [0, 1])(S(x, 0) = x) .

(ii) Monotonicity: S is increasing in each variable.

(iii) Commutativity: (∀(x, y) ∈ [0, 1]2)(S(x, y) = S(y, x)) .

(iv) Associativity: (∀(x, y, z) ∈ [0, 1]3)(S(x, S(y, z)) = S(S(x, y), z)) .

The family {TF

λ }λ∈[0,∞] of Frank t-norms (all of them are copulas) is
given by

TF

λ (x, y) =















TM(x, y) if λ = 0 ,
TP(x, y) if λ = 1 ,
TL(x, y) if λ = ∞ ,

logλ(1 + (λx−1)(λy−1)
λ−1 ) otherwise .

The cases λ ∈ {0, 1,∞} can be considered as limit cases of the general
case. Note that any other t-norm fulfilling (3.3) is a particular kind of
‘symmetric’ ordinal sum of members of the Frank t-norm family, i.e. if
〈a, b, T 〉 is a summand, then also 〈1 − b, 1 − a, T 〉 is a summand [52].
Moreover, in [53] the following proposition was proven concerning a
stable, associative copula.

Proposition 3.3 Let C be a copula. Then C is associative and stable (i.e. C
fulfills Eq. (3.3)) if and only if there is a λ ∈ [0,∞] such that C = T F

λ or if C
is an ordinal sum of Frank t-norms of the form

C = (〈ak, bk, T
F

λk
)k∈K〉 ,

where for each k ∈ K there is a k′ ∈ K such that λk = λk′ and ak + bk′ =
ak′ + bk = 1.
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3.3.2 Identities on fuzzy set cardinalities

Using the second option to fuzzify the parametric families introduced
in Chapter 2, we need to establish fuzzification rules for the comple-
ment of a fuzzy set, fuzzy set union and fuzzy set (symmetric) differ-
ence. In this subsection we will propose a set of fuzzification rules such
that identities on cardinalities of ordinary sets remain invariant when
fuzzified.

A. The identity |Ac| = n− |A|

As we want to preserve the classical identity |Ac| = n− |A|, we should
define the complement Ac of A as follows:

Ac(xi) = 1−A(xi) .

B. The valuation property

In classical set theory, it holds that

|A ∩B|+ |A ∪B| = |A|+ |B| , (3.4)

called the valuation property. If in fuzzy set theory Eq. (3.4) should
hold, then A ∪B should be defined by A ∪B(x) = J(A(x), B(x)), with
J given by

J(x, y) = x + y − I(x, y) . (3.5)

Proposition 3.4 The operator J has the following properties:

(i) J is a binary operation on [0, 1] if and only if I ≥ TL.

(ii) J is commutative, has neutral element 0 and absorbing element 1.

(iii) J is increasing (in each variable) if and only if I is a commutative
quasi-copula.

(iv) If I is a commutative quasi-copula, then J also satisfies the
1-Lipschitz property.

Proof. Since the proofs of (i) and (ii) are trivial, we restrict ourselves to
the proofs of (iii) and (iv).
(iii) Suppose I is a commutative quasi-copula and x1 ≤ x2. Then,

J(x1, y) ≤ J(x2, y)

⇔ x1 + y − I(x1, y) ≤ x2 + y − I(x2, y) . (3.6)
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Invoking the 1-Lipschitz property of I , inequality (3.6) holds for any
y ∈ [0, 1]. Analogously, consider y1 ≤ y2, then J(x, y1) ≤ J(x, y2) holds
for any x ∈ [0, 1]. In the same way, we can prove that if J is increasing,
then I satisfies the 1-Lipschitz property.
(iv) Suppose I is a commutative quasi-copula and (x1, x2, y1, y2) ∈
[0, 1]4. Then, the following holds:

|J(x1, y1)− J(x2, y2)| ≤ |J(x1, y1)− J(x2, y1)|+ |J(x2, y1)− J(x2, y1)| .

Furthermore, suppose x1 ≤ x2. Then,

|J(x1, y1)− J(x2, y1)| = J(x2, y1)− J(x1, y1)

= x2 + y1 − I(x2, y1)− x1 − y1 + I(x1, y1)

≤ x2 − x1

= |x1 − x2| .

Analogously, we can prove that |J(x1, y1) − J(x2, y1)| ≤ |x1 − x2| if
x1 > x2. In the same way, the following holds:

|J(x2, y1)− J(x2, y1)| ≤ |y2 − y1| ,

and therefore J fulfills the 1-Lipschitz property.
The union of two fuzzy sets can be modelled by the operator J , as

defined in Eq. 3.5. However, we can also model the union of two fuzzy
sets such that the following identity, which holds in classical set theory,

|A ∪B| = |(Ac ∩Bc)c| . (3.7)

is preserved in the fuzzy case, as follows:

A ∪B(x) = 1− I(1−A(x), 1−B(x)) = I∗(A(x), B(x)) .

If we want to preserve Eq. (3.4) as well as Eq. (3.7) in fuzzy set the-
ory, the intersection of two fuzzy sets should be modelled by a stable
commutative copula.

Proposition 3.5 If J is increasing, then J = I∗ if and only if I is a stable
commutative quasi-copula.

Proof. Follows directly from the definition of a stable commutative
quasi-copula.
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C. The identity |A \B| = |A| − |A ∩B|

If we want to preserve the identity |A \ B| = |A| − |A ∩ B|, then the
fuzzy set difference should be defined by

A \B(x) = A(x)− I(A(x), B(x)) , (3.8)

with I a commutative conjunctor. Based on the right-hand side of
Eq. (3.8), we define the difference operator V by

V (x, y) = x− I(x, y) . (3.9)

Proposition 3.6 The operator V has the following properties:

(i) V is a binary operation on [0, 1] and V (x, ·) is decreasing for any
x ∈ [0, 1].

(ii) V (·, y) is increasing for any y ∈ [0, 1] if and only if I is a commu-
tative quasi-copula.

Proof. Similar to the proof of Proposition 3.4.

D. The identity |A4B| = |A \B|+ |B \A|

If we want to preserve the identity

|A4B| = |A|+ |B| − 2|A ∩B| ,

then the symmetric difference of two fuzzy sets should be defined by

A4B(x) = A(x) + B(x)− 2I(A(x), B(x)) , (3.10)

with I a commutative conjunctor. If the difference of fuzzy sets is de-
fined by the operator V in Eq. (3.9), then it also holds that |A 4 B| =
|A \B|+ |B \A|.

Remark that the identities |A \ B| = |A| − |A ∩ B| and |A 4 B| =
|A\B|+|B\A| already have been treated in [19] using the Frank t-norm
family.

3.4 Conclusions and indications for future research

In this chapter, we listed several possibilities to express the cardinal-
ity of a fuzzy set and have chosen to use the basic scalar cardinality
throughout the remainder of this work. Finally, we provided the reader
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with a set of fuzzification rules to model the intersection, the union and
the (symmetric) difference of two fuzzy sets.

This chapter is the ideal operating base for future research. In this
work, we only consider the basic scalar cardinality to define the cardi-
nality of a fuzzy set. We also model the union of two fuzzy sets by the
operator J as defined in Eq. (3.5) such that the valuation property is ful-
filled. Will the valuation property also be fulfilled for other definitions
of cardinalities and how should the operator J then be defined ?

Also a more thorough analysis of the operator V to model the dif-
ference of two fuzzy sets and even more the operator to model the
symmetric difference of two fuzzy sets creates a possibility for future
research.



Chapter 4

The Bell inequalities

4.1 Introduction

In Chapter 5, we will show that the Bell inequalities are of particular
interest in the context of cardinalities of fuzzy sets. The results on the
fuzzified Bell inequalities, which will be expounded in this chapter, can
be employed to formulate two meta-theorems that can be used to check
the validity of more general inequalities on fuzzy cardinalities.

First of all, we give a historical overview of the Bell inequalities.
Then, we describe all Bell inequalities concerning four events in which
at most two events are intersected at the same time and rewrite them
in the context of basic scalar cardinalities. In Section 4.5, we prove that
some inequalities are fulfilled for (quasi-)copulas. Moreover, consid-
ering the Frank t-norm family, we identify all parameter values such
that each of the Bell-type inequalities is fulfilled. We also study in de-
tail the Bell-type inequalities for continuous t-norms. We prove that
ordinal sums preserve the Bell-type inequalities, which was the mo-
tivation for studying continuous Archimedean t-norms only. Finally,
for the most important parametric families of continuous Archimedean
t-norms and each of the Bell-type inequalities, we identify the param-
eter values such that the corresponding t-norms satisfy the inequality
considered.
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4.2 Historical overview

The story of the Bell inequalities goes back to Einstein, Podolsky and
Rosen. In 1935, they claimed that either quantum mechanics is incom-
plete, either we live in a world with ”spooky actions at a distance”, like
Einstein said. Specifically, they showed that according to the theory one
could put a particle in a measuring device at one location and, simply
by doing that, instantly influence another particle arbitrarily far away
(see Intermezzo 4.1). They refused to believe that this effect (known
as non-locality) could really happen, and thus viewed it as evidence
that quantum mechanics was incomplete. With their EPR–paradox,
Einstein, Podolsky and Rosen tried to show that quantum mechanics
isn’t the final word. This proposition is known as the ”hidden variable
theory”.

Intermezzo 4.1 The EPR–paradox
Consider the following quantum mechanical thought-experiment. Take
a particle which is at rest and has spin zero. It spontaneously decays
into two spin-1

2 particles (like electrons, protons, . . .), which stream
away in opposite directions at high speed. Due to the law of conser-
vation of spin, we know that when one particle has spin up, the other
particle has spin down. Which one is which? According to quantum
mechanics, neither takes on a definite state until it is observed. The
EPR–effect demonstrates that if one of the particles is detected, and its
spin is measured, then the other particle, no matter where it is in the
universe, instantaneously is forced to choose as well and take on the
role of the other particle. So it seems that when you measure one of
the particles you immediately measure the other, and this is an effect
faster than light, so it goes against relativity, which says that nothing
can travel faster than light. This is the EPR–paradox, which led Ein-
stein to argue that quantum mechanics was not a complete theory.

The issue of the existence of hidden variables in quantum mechan-
ics is almost as old as quantum mechanics itself. In 1964, Bell [4]
showed that if one makes some ‘reasonable’ assumptions about the
hidden variables, like locality and statistical independence of distant
measurements, the correlations for the outcome of measurements for
an Einstein–Podolsky–Rosen–like experiment have to satisfy a set of
inequalities. When Bell introduced his inequalities, he had in mind
the quantum mechanical situation originally introduced by Bohm [8]
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of correlated spin- 1
2 particles in the singlet spin state.

Later on, Pitowsky [66] developed a generalization of the Bell in-
equalities where any number of experiments and events can be taken
into account. He proved that the situation where the Bell inequalities
are satisfied is equivalent to the situation where, for a set of probabil-
ities connected to the outcomes of the considered experiments, there
exists a Kolmogorovian probability model. This means that the proba-
bility P of some event Ei (i = 1, . . . , n) with respect to a finite universe
X is defined in such a way that P must satisfy the three axioms of Kol-
mogorov:

(i) 0 ≤ P (Ei) ≤ 1 , for any i = 1, . . . , n ,

(ii) P (X) = 1 ,

(iii) Any countable sequence of pairwise disjoint events E1, . . . , En

satisfies P (E1 ∪ E2 ∪ . . . ∪ En) =
∑n

i=1 P (Ei) .

Pykacz and D’Hooghe [67] recently studied which of the numerous
Bell-type inequalities that are necessarily satisfied by Kolmogorovian
probabilities may be violated in various models of fuzzy probability
calculus. They showed that the most popular model of fuzzy probabil-
ity calculus based on minimum and maximum cannot be distinguished
from the Kolmogorovian model by any of the inequalities studied by
Pitowsky. They also proved that if one considers fuzzy set intersec-
tion pointwisely generated by a Frank t-norm TF

λ , then the borderline
between models of fuzzy probability calculus that can be distinguished
from Kolmogorovian ones and models that cannot be distinguished (by
the same set of inequalities) is situated at λ = 9 + 4

√
5.

Nevertheless, the Bell-type inequalities are not only of interest to
fuzzy probability calculus, they also appear in other applications of
fuzzy logic. De Baets and De Meyer [19] proved that one particular
inequality (inequality I2

3 further on in this thesis) is of primordial im-
portance in the design of transitivity-preserving fuzzification schemes
for cardinality-based similarity measures. But, for more details con-
cerning this we try the reader’s patience to Chapter 6.

4.3 Bell-type inequalities in probability theory

Pitowsky [66] showed that the original Bell inequalities can be derived
in a purely mathematical context without any reference to physics so
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Figure 4.1: Geometrical interpretation of the Bell inequalities

that their range of applicability is by no way restricted to physical phe-
nomena. He developed a generalization of the Bell inequalities and
proved that the situation where the Bell inequalities are satisfied is
equivalent to the situation where, for a set of probabilities connected
to the outcomes of the considered experiments, there exists a (classical)
Kolmogorovian probability model.

The probability of a single random event Ai is denoted by pi =
P (Ai) and the probability of the intersection of a pair of random events
Ai and Aj is denoted by pij = P (Ai ∩Aj). Since pi, pj and pij are prob-
abilities, the following inequalities hold:

pij ≤ min(pi, pj) ,

pi + pj − pij ≤ 1 .

They can be expressed jointly as the double inequality

TL(pi, pj) ≤ pij ≤ TM(pi, pj) .

Pitowsky also suggested a geometrical interpretation of these Bell in-
equalities [66].

Consider the three dimensional real space, and in it the set of all vec-
tors of the form p = (pi, pj , pij), where pi, pj and pij satisfy the above
Bell inequalities. This set is a closed convex polytope whose vertices are
the extreme cases (0, 0, 0), (0, 1, 0), (1, 0, 0) and (1, 1, 1) (see Figure 4.1).
Every convex polytope has a dual description: either in terms of its
vertices or in terms of its facets. Under the first description, a given
vector is an element of the polytope if and only if it can be represented
as a convex combination of its vertices. Under the second description,
a given vector is an element of the polytope if and only if its coordi-
nates satisfy a set of linear inequalities which represent the supporting
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hyperplanes of the polytope. The existence for such a dual description
for every polytope is known as the Minkowski-Weyl theorem.

In the specific case of the polytope in Figure 4.1 our starting point
has been the second description. We can obtain the same result consid-
ering the first description.

Example 4.1 Consider two propositions:

a1: it will rain in Brussels tomorrow,

a2: it will rain in Ghent tomorrow.

Obviously, there are four possibilities that can be summed up in the
following truth table:

a1 a2 a1 and a2

0 0 0
0 1 0
1 0 0
1 1 1

The rows in this table, if looked at as vectors in a three dimensional
space, are just the vertices of our polytope. Suppose that we were to bet
on each one of the four possibilities. Let λ1 denote the probability we
assign to the event ”a1 is false and a2 is false”, or equivalently, ”it will
not rain in Brussels nor in Ghent tomorrow” and so forth. Since there
are only four possibilities and since they are mutually incompatible we
must have λ1 + λ2 + λ3 + λ4 = 1. Consider the vector

(p1, p2, p12) = λ1(0, 0, 0) + λ2(0, 1, 0) + λ3(1, 0, 0) + λ4(1, 1, 1)

= (λ3 + λ4, λ2 + λ4, λ4) .

Since it is a convex combination of the vertices, (p1, p2, p12) lies in the
polytope.

Pitowsky proved the following theorem.

Theorem 4.1 [66] The following statements are equivalent:

1. the numbers pi, pj and pij represent probabilities,

2. p = (pi, pj , pij) is a vector in the polytope,

3. the Bell inequalities are satisfied.
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In the case of experiments concerning three or four random events in
which at most two events are intersected at the same time and only
considering four possible intersections, Pitowsky found the following
set of inequalities:

0 ≤ pi − pij − pik + pjk , (4.1)
pi + pj + pk − pij − pik − pjk ≤ 1 , (4.2)

0 ≤ pi + pk − pik − pil − pjk + pjl ≤ 1 , (4.3)

for any different i, j, k, l. Inequalities (4.1) and (4.2) are called the Bell–
Wigner inequalities, while the double inequality (4.3) is referred to as
the Clauser–Horne inequality.

Next to the above inequalities, we have generated the remaining
Bell-type inequalities (taking into account five and six possible inter-
sections) using the cdd package1 of Fukuda [36]:

0 ≤ pi + pj + pij − pik − pil − pjl − pjk + pkl ,

pi + pj + pk + pl − pij − pik − pil − pjk − pjl − pkl ≤ 1 ,

2pi + 2pj + 2pk + 2pl − pij − pik − pil − pjk − pjl − pkl ≤ 3 ,

0 ≤ pi − pij − pik − pil + pjk + pjl + pkl ,

pi + pj + pk − 2pl − pij − pik + pil − pjk + pjl + pkl ≤ 1 ,

for any different i, j, k, l.

4.4 Bell-type inequalities for commutative con-
junctors

We can rewrite the above-mentioned Bell-type inequalities in the con-
text of fuzzy probability calculus, or equivalent in the context of basic
scalar cardinalities. Let A and B be two fuzzy sets in a finite universe
X of cardinality n. Although there are several possible means to de-
fine fuzzy probabilities, we adopt here the definition as introduced by
Zadeh [99]: P (A) =

∑

u A(u)/n.
For instance, the classical inequality

P (A) + P (B)− P (A ∩B) ≤ 1

1The cdd package is a C++ implementation of the ”double description method“
of Motzkin et al. [60] for generating all vertices and extreme rays of a general con-
vex polyhedron in Rd given by a system of linear inequalities: P = {x | Ax ≤
b}, where A is an m × d real matrix and b is a real m-dimensional vector, see
http://www.cs.mcgill.ca/˜fukuda/soft/cdd home/cdd.html
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can be expressed for fuzzy probabilities, with A ∩ B pointwisely mod-
elled by means of a commutative conjunctor I , in the following way,

∑

u A(u)

n
+

∑

u B(u)

n
−

∑

u I(A(u), B(u))

n
≤ 1 . (4.4)

The latter inequality is fulfilled when

A(u) + B(u)− I(A(u), B(u)) ≤ 1

for any u ∈ X , which in turn is fulfilled when

x + y − I(x, y) ≤ 1 , (4.5)

for any (x, y) ∈ [0, 1]2. Hence, (4.5) is a sufficient condition for (4.4).
On the other hand, considering (4.4) for n = 1 and arbitrary A and B
(which are then fuzzy singletons in a one-point universe), then (4.4) is
equivalent to (4.5).

In general, the Bell-type inequalities for commutative conjunctors
are necessary and sufficient conditions for the corresponding Bell-type
inequalities for fuzzy probabilities to hold for any fuzzy sets in a uni-
verse of cardinality n. This leads to the Bell-type inequalities listed in
Table 4.1. To simplify the discussion of these inequalities we introduce
a unique code Ij

i for each inequality where i denotes the number of
events involved and j is a serial number.

Remark 4.1 Note that the double inequality I1
2 is superfluous since it can be

obtained from I2
3 by putting x = 1, resp. z = 0. In general, considering

a higher number of events renders the previous level obsolete. Inequality I2
3

can be obtained by putting t = 0 in inequalities I5
4 or I8

4 . Putting t = 0 in
inequality I6

4 or I9
4 , we obtain inequality I3

3 .

When considering more general scalar cardinalities, in particular
using as scaling function an automorphism φ of the unit interval, the
validity of the Bell-type inequalities for these more general scalar car-
dinalities is equivalent to the validity of the inequalities I1

2–I9
4 applied

to the φ−1-transform of I , i.e. the commutative conjunctor Iφ−1

defined
by Iφ−1

= φ
(

I(φ−1(x), φ−1(y))
)

. As this does not bring any additional
insights and would only make notations heavier, we will restrict our-
selves to basic scalar cardinalities from here on.
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4.5 Bell-type inequalities for quasi-copulas and
copulas

As we were interested in modelling the intersection of two fuzzy sets
by a commutative conjunctor in the previous section, we now focus our
attention on three particular classes of conjunctors: the class of triangu-
lar norms (t-norms), the class of copulas and the class of quasi-copulas.

We will show that inequalities I1
2 , I2

3 and I4
4 , and some generaliza-

tion of I2
3 and I4

4 are fulfilled for any quasi-copula, while for inequality
I5
4 the class of quasi-copulas needs to be further restricted to the sub-

class of copulas. Indeed, commutativity does not enter the play here,
rendering these inequalities available for a broader context as well. For
the remaining inequalities, it will follow from our study of these in-
equalities for the Frank t-norm family in the next section, that they are
not generally valid for commutative copulas.

Theorem 4.2 Inequalities I1
2 , I2

3 and I4
4 are fulfilled for any quasi-copula C.

Proof. The double inequality I1
2 is nothing else but Proposition 3.1.

Next, we prove that I2
3 is satisfied, i.e.

0 ≤ x− C(x, y)− C(x, z) + C(y, z) . (4.6)

We distinguish two cases:

(i) In case x ≤ y, we have that C(x, z) ≤ C(y, z). Since C(x, y) ≤ x,
(4.6) trivially holds.

(ii) In case x > y, the 1-Lipschitz property implies that

0 ≤ x− y − C(x, z) + C(y, z) .

Since C(x, y) ≤ y, (4.6) again holds.

Finally, we prove that the double inequality I4
4 , i.e.

0 ≤ x + t− C(x, z)− C(x, t)− C(y, t) + C(y, z) ≤ 1 (4.7)

holds. The left-hand side of (4.7) is obtained through a double applica-
tion of inequality I2

3 :

x + t− C(x, z)− C(x, t)− C(y, t) + C(y, z)

≥ x− C(x, z)− C(x, y) + C(y, z)

≥ 0 .

Next, we prove the right-hand side. Again, we distinguish two cases:
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(i) In case z ≤ t, it follows using x + t− C(x, t) ≤ 1 and C(y, z) ≤
C(y, t) that

x + t− C(x, z)− C(x, t)− C(y, t) + C(y, z)

≤ 1− C(x, z)− C(y, t) + C(y, z)

≤ 1 .

(ii) In case z > t, it follows using x + z − C(x, z) ≤ 1 that

x + t− C(x, z)− C(x, t)− C(y, t) + C(y, z)

= x + t + z − z − C(x, z)− C(x, t)− C(y, t) + C(y, z)

≤ 1 + t− z − C(x, t)− C(y, t) + C(y, z)

≤ 1 + t− z − C(y, t) + C(y, z) .

Invoking the 1-Lipschitz property of C, we can conclude that the
right-hand side of (4.7) holds.

The following example shows that inequality I2
3 is not characteristic

for the class of quasi-copulas.

Example 4.2 Consider the following commutative conjunctor [54] (see
Figure 4.2)

K(x, y) = max(x + y − 1, 0) (2−max(x, y)) , (4.8)

which is bounded from below by TL. This operator does not fulfil the
1-Lipschitz property. Consider x1 = 0.1, x2 = 0.6 and y1 = y2 = 0.9,
then

|K(x1, y1)−K(x2, y2)| = 0.55 > 0.5 = |x1 − x2|+ |y1 − y2| .

Nevertheless, this operator satisfies inequality I2
3 , i.e.

0 ≤ x−K(x, y)−K(x, z) + K(y, z) .

Indeed, since K is monotone and K ≤ TM, the only non-trivial case
turns out to be x > max(y, z). In view of symmetry, we consider for
instance the case x > y ≥ z and verify that

0 ≤ x−max(x + y − 1, 0)(2− x)−max(x + z − 1, 0)(2− x)

+ max(y + z − 1, 0)(2− y) .
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Figure 4.2: 3D-plot and contour plot of the operator K.

Consider for instance the case x + y ≥ 1, x + z ≥ 1 and y + z ≥ 1, the
other ones being similar. It is easily verified that the above inequality is
equivalent to

0 ≤ 2x2 − y2 + xy + xz − yz − 5x + y + 2 ,

or also
0 ≤ (y + z − 1)(x− y) + 2(1− x)2 ,

which is clearly fulfilled.

Theorem 4.3 For any conjunctor I that satisfies inequalities I2
3 and I4

4 , the
following inequality holds for any n ≥ 3:

0 ≤
n−1
∑

i=2

xi −
n−1
∑

i=1

I(xi, xi+1) + I(x1, xn) ≤
⌈n

2

⌉

− 1 (4.9)

for any (x1, . . . , xn) ∈ [0, 1]n.

Proof. In case n = 3, the double inequality (4.9) reduces to

0 ≤ x2 − I(x1, x2)− I(x2, x3) + I(x1, x3) ≤ 1 .

The left-hand side being inequality I2
3 , we only need to prove the right-

hand side. As observed in Remark 4.1, inequality I2
3 implies in particu-

lar inequality I1
2 . Hence, it indeed holds that

x2 − I(x1, x2)− I(x2, x3) + I(x1, x3)

≤ 1− x3 − I(x1, x2) + I(x1, x3)

≤ 1 .
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The case n = 4 is nothing else but inequality I4
4 .

Now let n ≥ 5. Suppose that the left-hand side of (4.9) holds for
n − 1, then we use induction and inequality I2

3 to prove that it also
holds for n:

x2 + . . . + xn−1 − I(x1, x2)− . . .− I(xn−1, xn) + I(x1, xn)

= (x2 + . . . + xn−2) + xn−1 − (I(x1, x2) + . . . + I(xn−2, xn−1))

− I(xn−1, xn) + I(x1, xn)

≥ xn−1 − I(x1, xn−1)− I(xn−1, xn) + I(x1, xn)

≥ 0 .

Next, suppose the right-hand side of (4.9) holds for n − 2, then we use
induction and I4

4 to prove:

x2 + . . . + xn−1 − I(x1, x2)− . . .− I(xn−1, xn) + I(x1, xn)

≤
⌈

n− 2

2

⌉

− 1 + xn−2 + xn−1

− I(x1, xn−2)− I(xn−2, xn−1)− I(xn−1, xn) + I(x1, xn)

≤
⌈

n− 2

2

⌉

− 1 + 1 =
⌈n

2

⌉

− 1 .

Since (4.9) holds for n = 3 and n = 4 and induction is either based on
n− 2 or n− 1, this completes the proof.

Theorem 4.4 Inequality I5
4 is fulfilled for any copula C.

Proof. In the case x ≤ y, t ≤ z, the moderate growth property implies
that

0 ≤ −C(x, z) + C(x, t) + C(y, z)− C(y, t) .

Since also 0 ≤ x − C(x, y) and 0 ≤ t − C(z, t), a simple addition leads
to

0 ≤ x + t− C(x, y)− C(x, z) + C(x, t) + C(y, z)− C(y, t)− C(z, t) .

The proof of the remaining cases is analogous.
The following example illustrates that inequality I5

4 is not fulfilled
for all commutative quasi-copulas.
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Figure 4.3: 3D-plot and contour plot of the operator N (4.10).

Example 4.3 Consider the binary operator N defined by

N(x, y) =

{

min(x, y, 1
3 , x + y − 2

3) if 2
3 ≤ x + y ≤ 4

3 ,

max(x + y − 1, 0) otherwise ,
(4.10)

which is a commutative quasi-copula, but not a copula [61, p. 13]. How-
ever, it does not satisfy inequality I5

4 . Consider x = 0.4, y = z = 0.7
and t = 0.3, then

x + t−N(x, y)−N(x, z) + N(x, t) + N(y, z)−N(y, t)−N(z, t)

evaluates to −0.13 and is strictly negative.

4.6 Bell-type inequalities for Frank t-norms

Pykacz and D’Hooghe [67] demonstrated that a set of Bell-type inequal-
ities (I1

2 , I2
3 , I3

3 and I4
4 ) does not allow to distinguish Kolmogorovian

probabilities from fuzzy probabilities based on minimum and maxi-
mum, but it allows to distinguish all these models from fuzzy proba-
bility models based on the Łukasiewicz t-norm. They proved that if
one uses fuzzy set intersections pointwisely generated by a Frank t-
norm TF

λ , then the borderline between fuzzy probability models that
can be distinguished from Kolmogorovian ones and these that cannot
be distinguished is situated at λ = 9 + 4

√
5. In this section, we want to

complete the results of Pykacz and D’Hooghe.
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To be perfectly clear, we will recall the Frank t-norm
family {TF

λ }λ∈[0,∞]. This family is given by

TF

λ (x, y) =















TM(x, y) if λ = 0 ,
TP(x, y) if λ = 1 ,
TL(x, y) if λ = ∞ ,

logλ(1 + (λx−1)(λy−1)
λ−1 ) otherwise .

Since all Frank t-norms are copulas, inequalities I1
2 , I2

3 , I4
4 and I5

4 obvi-
ously hold for all Frank t-norms. Now it only remains to identify the
parameter values for which inequalities I3

3 , I6
4 , I7

4 , I8
4 and I9

4 are ful-
filled. The results of this study are summarized in Table 4.2.

4.6.1 Inequality I
3
3

Let us define a function f as follows:

f(x, y, z) = x + y + z − T (x, y)− T (x, z)− T (y, z)− 1 . (4.11)

Writing the right-hand side of (4.11) explicitly for a Frank t-norm with
λ ∈ ]0, 1[∪ ]1,∞[, we obtain

f(x, y, z) = x + y + z − logλ

(

1 +
(λx − 1)(λy − 1)

λ− 1

)

− logλ

(

1 +
(λx − 1)(λz − 1)

λ− 1

)

− logλ

(

1 +
(λy − 1)(λz − 1)

λ− 1

)

− 1 .

In order to find the stationary points of f , we set the first-order deriva-
tives of f equal to zero, and obtain:

fx(x, y, z) = 0 ,

fy(x, y, z) = 0 ,

fz(x, y, z) = 0 ,

or equivalently,

1− λx(λy − 1)

λ + λx+y − λx − λy
− λx(λz − 1)

λ + λx+z − λx − λz
= 0 , (4.12)

1− λy(λx − 1)

λ + λx+y − λx − λy
− λy(λz − 1)

λ + λy+z − λy − λz
= 0 , (4.13)

1− λz(λx − 1)

λ + λx+z − λx − λz
− λz(λy − 1)

λ + λy+z − λy − λz
= 0 . (4.14)
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Subtracting (4.13) from (4.12) yields the following:

λx − λy

λ + λx+y − λx − λy

−(λz − 1)

(

λx

λ + λx+z − λx − λz
− λy

λ + λy+z − λy − λz

)

= 0

⇔ (λx − λy)

(

1

λ + λx+y − λx − λy

− (λz − 1)(λ− λz)

(λ + λx+z − λx − λz)(λ + λy+z − λy − λz)

)

= 0

⇔ λx = λy

⇔ x = y .

In the same way, subtracting (4.14) from (4.12) renders x = z. Inside the
unit cube [0, 1]3 the first-order derivatives of the function f can only
be zero in the symmetric case x = y = z. Therefore, to identify the
parameter values for which inequality I3

3 is satisfied, we can investigate
the inequality

3x− 3T (x, x) ≤ 1. (4.15)

Note that this inequality is trivially fulfilled for TM (λ = 0) and TP

(λ = 1). Pykacz and D’Hooghe [67] have proven that inequality (4.15)
is fulfilled for any Frank t-norm TF

λ , with λ ≤ 9+4
√

5 (for instance, I3
3 is

not fulfilled for TL). From this, we can also conclude that inequality I3
3

does not hold for all commutative copulas.
Pykacz and D’Hooghe also provide a nice example of a physical

realization where inequality I3
3 is violated [67].

Example 4.4 The experiment consists of pouring water into a ”black
box” and then checking whether it leaks through its bottom. The re-
sult of the experiment is positive if the floor under the box remains dry
and negative otherwise. Inside the box there is a cylindrical vessel V of
capacity 1 liter and a gun aimed at it. We assume that the (Kolmogoro-
vian) probability that a bullet shot from the gun makes a hole at a spe-
cific height of the cylinder V is uniformly distributed along the height
of V . Random experiments that we are going to perform consist of a
”public” part: pouring water into the box, and a ”hidden” part: shoot-
ing the gun once. Since the ”hidden” part can be kept in secret, all the
experimenter can do is to pour water into the box and check weather it
leaks. If one pours 0 ≤ q ≤ 1 of a liter of water into the box, it leaves the
upper 1 − q part of V empty, so the probability that the floor remains
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dry is P = 1 − q. Of course, if one pours more than 1 liter, water will
surely pour out of V , so P = 0.

Let us prepare vessels Vi (with i = 1, 2, . . . , n), containing (for any i)
1− pi of a liter of water and let experiment Ei consist of pouring water
from a vessel Vi into the box and checking whether the floor under the
box remains dry. According to the previous considerations P = pi, for
any i. Let us also consider the conjunction of experiments Ei and Ej

consisting of the simultaneous pouring of water from vessels Vi and Vj

into the box and subsequent checking whether the floor remains dry.
If 1 − pi + 1 − pj ≥ 1, i.e. if pi + pj ≤ 1, then water obviously

pours out onto the floor so pij = P (Ei ∩ Ej) = 0. However, if pi +
pj ≥ 1, then the fraction pi + pj − 1 of the cylinder remains empty, so
pij = P (Ei ∩ Ej) = pi + pj − 1. Therefore, we see that probabilities
of conjunctions of random events Ei have to be calculated using the
Łukasiewicz t-norm and Bell-type inequality I3

3 may be violated. For
example, for p1 = p2 = p3 = 0.5, we get p1 + p2 + p3 − p12 − p13 − p23 =
0.5 + 0.5 + 0.5− 0− 0− 0 = 1.5.

4.6.2 Inequalities I
6
4 and I

7
4

In this subsection, we want to give a detailed description of the calcu-
lations made to obtain the parameter values for a Frank t-norm T such
that inequalities I6

4 and I7
4 are satisfied. We consider first inequality I6

4 .
Let

f(x, y, z, t) = x + y + z + t− T (x, y)− T (x, z)− T (x, t)

−T (y, z)− T (y, t)− T (z, t) .

It can easily be shown that inside the unit hypercube [0, 1]4, the first-
order derivatives of f , with T belonging to the Frank t-norm family,
can only be zero in the symmetric case x = y = z = t. Inequality I6

4 is
then equivalent to

4x− 6T (x, x) ≤ 1 . (4.16)

This inequality is trivially fulfilled for TM (λ = 0) and TP (λ = 1).
Writing inequality (4.16) explicitly for λ ∈ ]0, 1[∪ ]1,∞[, we obtain

4x− 6 logλ

(

1 +
(λx − 1)2

λ− 1

)

≤ 1 .

Let us define a function g as follows:

g(x) = 4x− 6 logλ

(

1 +
(λx − 1)2

λ− 1

)
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and investigate for any fixed λ what is the maximum g attains in [0, 1].
The first-order derivative of g equals

g′(x) = 4− 12(λx − 1)λx

λx + λ− 2
.

Solving g′(x) = 0, we find that g reaches an extremal value in xs =

logλ

(

1+
√

1+8λ
4

)

which can be verified to be located in ]0, 1[. Straightfor-
ward computation yields g′′(xs) < 0 and g attains its maximum in xs.
Let us determine for which values of λ this maximum g(xs) equals 1,
i.e. we solve g(xs) = 1 for λ. Using Maple, we find the unique solution
λs = 9.29469. Since inequality (4.16) holds for λ = 0 and λ = 1, we can
conclude that inequality I6

4 holds for any λ ∈ [0, 9.29469].
We have already noticed that inequality I3

3 can be obtained from
inequality I6

4 by putting t = 0, and indeed 9.29469 ≤ 9 + 4
√

5.
The same reasoning can be made to see that inequality I7

4 , for all
members of the Frank t-norm family, is equivalent to

8x− 6T (x, x) ≤ 3 . (4.17)

The parameter values for which inequality (4.17) is fulfilled, can also
be obtained in the same way. Surprisingly, the same upper bound λs =
9.29469 is obtained.

4.6.3 Inequalities I
8
4 and I

9
4

Also for inequalities I8
4 and I9

4 , we want to give a detailed overview of
the calculations made in order to obtain the parameter values. Let

f(x, y, z, t) = −x + T (x, y) + T (x, z) + T (x, t)

−T (y, z)− T (y, t)− T (z, t) .

Again, it can easily be shown that inside the unit hypercube [0, 1]4, the
first-order derivatives of f , with T belonging to the Frank t-norm fam-
ily, can only be zero in the symmetric case y = z = t. Inequality I8

4 is
then equivalent to

−x + 3T (x, y)− 3T (y, y) ≤ 0 . (4.18)

This inequality is trivially fulfilled for TM (λ = 0). Writing inequality
(4.18) explicitly for λ ∈ ]0, 1[∪ ]1,∞[, we obtain

−x + 3 logλ

(

1 +
(λx − 1)(λy − 1)

λ− 1

)

− 3 logλ

(

1 +
(λy − 1)2

λ− 1

)

≤ 0 .
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Let us define a function g as follows:

g(x, y) = −x+3 logλ

(

1 +
(λx − 1)(λy − 1)

λ− 1

)

− 3 logλ

(

1 +
(λy − 1)2

λ− 1

)

and determine the values of λ for which g(x, y) ≤ 0 for all (x, y) ∈
[0, 1]2. In order to find the stationary points of g, we set the first-order
derivatives of g equal to zero, and obtain:

gx(x, y) = 3
λx(λy − 1)

λ + λx+y − λx − λy
= 0 ,

gy(x, y) = 3
λy(λx − 1)

λ + λx+y − λx − λy
− 6

λy(λy − 1)

λ + λ2y − 2λy
= 0 .

Introducing the short notations s = λx and t = λy, we solve the above
equations for λ and t, and obtain:

λ =
2s(2s2 + 1)

5s + 1
= 1 +

(2s− 1)(s− 1)

5s + 1
, (4.19)

t =
2s(s + 2)

5s + 1
= 1 +

(2s + 1)(s− 1)

5s + 1
, (4.20)

from which it is easily verified that λ, t ∈ ]0, 1[ when s ∈ ]0, 1[ and λ, t ∈
]1,∞[ when s ∈ ]1,∞[. Also notice that λ < s when λ < 1 and λ > s
when λ > 1. It follows that the function g has a stationary point (xs, ys)
located in [0, 1]2 for all λ ∈ ]0, 1[∪ [1,∞[. Furthermore, using (4.19) and
(4.20), we compute the value g(xs, ys) in that stationary point is given
by

g(xs, ys) = logλ

(

(5s + 1)3

8s(2s + 1)3

)

.

For s ∈ ]0, 1[, it holds that (5s + 1)3 > 8s(2s + 1)2 and since in that case
λ ∈ ]0, 1[, it follows that g(xs, ys) < 0, whereas for s ∈ ]1,∞[, it holds
that (5s + 1)3 < 8s(2s + 1)2 and since λ ∈ ]1,∞[, it again follows that
g(xs, ys) < 0. However, we still need to verify whether the stationary
point (xs, ys) is a maximum, a minimum or a saddle point of g. To that
end, we compute the second order derivatives of g. Using (4.19) and
(4.20), we obtain:

gxx(xs, ys) =
2

3
lnλ ,

gxy(xs, ys) =
2

3

(

s + 2

s− 1

)

lnλ ,

gyy(xs, ys) = − 4

(

s(s + 2)2

(s− 1)(2s + 1)2

)

lnλ ,
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Code Values for λ

I1
2 λ ∈ R+

I2
3 λ ∈ R+

I3
3 λ ∈ [0, 9 + 4

√
5]

I4
4 λ ∈ R+

I5
4 λ ∈ R+

I6
4 λ ∈ [0, 9.29]

I7
4 λ ∈ [0, 9.29]

I8
4 λ ∈ [0, 9 + 4

√
5]

I9
4 λ ∈ [0, 9 + 4

√
5]

Table 4.2: Values of the parameter λ for which the Bell-type inequalities are
fulfilled considering the Frank t-norm family {T F

λ }λ∈[0,∞].

from which it follows that the determinant of the second-order deriva-
tives of g in the stationary point (xs, ys) is given by

A2 = [gxxgyy − gxy
2](xs, ys) =

−4(s + 2)2(110s2 + 106s + 27)

3(s− 1)2(2s + 1)2
(lnλ)2 .

Since A2 < 0 for all s ∈ ]0, 1[∪ ]1,∞[, the stationary point (xs, ys) is
neither a minimum, nor a maximum (it is a saddle point), and therefore
the maximum of g is reached on the boundary of the domain [0, 1]2. It
is easy to see that on the edges x = 0, y = 0, y = 1, inequality (4.18) is
always fulfilled, while the edge x = 1 leads to inequality (4.28), which
is only fulfilled for all y ∈ [0, 1] if λ ≤ 9 + 4

√
5.

The case λ = 1 can be verified separately in a similar manner.
Hence, we can conclude that inequality I8

4 holds for any λ ∈ [0, 9+4
√

5].
The same reasoning can be made to see that inequality I9

4 , for all
members of the Frank t-norm family, is equivalent to

3x− 2y − 3T (x, x) + 3T (x, y) ≤ 1 . (4.21)

The values of λ such that inequality (4.21) is fulfilled, can also be ob-
tained in a similar way. Again, the same upper bound λ = 9 + 4

√
5 is

obtained.
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4.7 Bell-type inequalities for ordinal sums

Ling [58] has shown that for every continuous t-norm T , either T = TM,
T is Archimedean or T is the ordinal sum of a family of continuous
Archimedean t-norms. We clarify the notions used in this statement.

Definition 4.1 [52] A t-norm T is called Archimedean if

(∀(x, y) ∈ ]0, 1[2)(∃n ∈ N)(x
(n)
T < y) ,

with x
(0)
T = 1 and x

(n)
T = T (x, x

(n−1)
T ).

As the t-norms considered in this thesis are always continuous, it suf-
fices to know that

Proposition 4.1 [52] A continuous t-norm T is Archimedean if and only if

(∀x ∈ ]0, 1[)(T (x, x) < x) .

Note that TM is not Archimedean, while TP and TL are.
This section consists of a single theorem stating that ordinal sums

preserve Bell-type inequalities. We conclude the section with a more
general conjecture.

Theorem 4.5 Consider any of the Bell-type inequalities. The ordinal sum of
a family of t-norms fulfils this inequality if and only if each of the summands
fulfils this inequality.

Proof. The fact that the summands of an ordinal sum fulfil a given
Bell-type inequality when the ordinal sum does, is easily verified. The
converse is more tedious. Unfortunately, at this moment, each of the
inequalities requires its own proof. To illustrate the line of reasoning,
we consider for instance inequalities I3

3 and I4
4 . The proofs for the other

inequalities are similar and are mainly case-based.

Inequality I3
3 . First we remark that substituting x = 0 in I3

3 yields the
left part of I1

2 , i.e. TL ≤ T . Now let T be the ordinal sum of a family of
t-norms that fulfil I3

3 . Due to the symmetry of I3
3 in x, y and z, we can

assume without loss of generality that x ≤ y ≤ z. If x and y, as well
as y and z, do not belong to same summand, then I3

3 is fulfilled since it
holds for TM.
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(i) If x and z belong to the same summand 〈a, b, T ∗〉, with T ∗ a t-
norm that fulfils inequality I3

3 , then also y belongs to this sum-
mand. We can rewrite I3

3 as follows

x + y + z− (a + (b− a)T ∗(x′, y′))− (a + (b− a)T ∗(x′, z′))

− (a + (b− a)T ∗(y′, z′)) ≤ 1 ,

with x′ = x−a
b−a , y′ = y−a

b−a and z′ = z−a
b−a . The latter inequality is

equivalent to

x′ + y′ + z′ − T ∗(x′, y′)− T ∗(x′, z′)− T ∗(y′, z′) ≤ 1

b− a
.

Since I3
3 holds for T ∗ and 1 ≤ 1

b−a , the above also holds.

(ii) If x and z do not belong to the same summand, i.e. T (x, z) =
TM(x, z) = x, then we have to prove the following inequality:

y + z − T (x, y)− T (y, z) ≤ 1 . (4.22)

(a) If x and y belong to the same summand 〈a, b, T ∗〉, then
T (y, z) = TM(y, z) = y and (4.22) is equivalent to

z − a

b− a
− T ∗(x′, y′) ≤ 1

b− a
,

with x′ = x−a
b−a and y′ = y−a

b−a . It easily follows that

z − a

b− a
− T ∗(x′, y′) ≤ 1

b− a
− T ∗(x′, y′) ≤ 1

b− a
.

(b) If y and z belong to the same summand 〈a, b, T ∗〉, then
T (x, y) = TM(x, y) = x and (4.22) is equivalent to

y′ + z′ − x− a

b− a
− T ∗(y′, z′) ≤ 1

b− a
,

with y′ = y−a
b−a and z′ = z−a

b−a . Since T ∗ fulfils I3
3 , it holds that

TL ≤ T ∗ and in particular y′ + z′ − T ∗(y′, z′) ≤ 1. It then
follows that

y′ + z′ − x− a

b− a
− T ∗(y′, z′) ≤ 1− x− a

b− a
=

b− x

b− a
≤ 1

b− a
.
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Inequality I4
4 . First we remark that substituting y = z = 0 in I4

4 again
yields the left part of I1

2 , i.e. TL ≤ T . Now let T be the ordinal sum of
a family of t-norms that fulfil I4

4 . Due to the symmetry of I4
4 in x and t,

and in y and z, we can assume without loss of generality that x ≤ t and
y ≤ z. Therefore, it is sufficient to consider the following 6 cases:

(1) x ≤ y ≤ z ≤ t (2) x ≤ y ≤ t ≤ z (3) x ≤ t ≤ y ≤ z

(4) y ≤ x ≤ t ≤ z (5) y ≤ x ≤ z ≤ t (6) y ≤ z ≤ x ≤ t .

We will restrict ourselves to two of these cases only, the other ones be-
ing similar.
The case x ≤ y ≤ z ≤ t. If x and t belong to the same summand
〈a, b, T ∗〉, with T ∗ a t-norm that fulfils I4

4 , then y and z also belong to
this summand. Therefore, I4

4 is equivalent to

0 ≤ x + t− (a + (b− a)T ∗(x′, z′))− (a + (b− a)T ∗(x′, t′))

− (a + (b− a)T ∗(y′, t′)) + (a + (b− a)T ∗(y′, z′)) ≤ 1 ,

with x′ = x−a
b−a , y′ = y−a

b−a , z′ = z−a
b−a and t′ = t−a

b−a . The latter inequality is
equivalent to

0 ≤ x′ + t′ − T ∗(x′, t′)− T ∗(x′, t′)− T ∗(y′, t′) + T ∗(y′, z′) ≤ 1

b− a
.

Since I4
4 holds for T ∗ and 1 ≤ 1

b−a , the above also holds.
If x and t do not belong to the same summand, then T (x, t) = x

and I4
4 reduces to

0 ≤ t− T (x, z)− T (y, t) + T (y, z) ≤ 1 . (4.23)

It is easy to see that the left inequality is always fulfilled since t −
T (y, t) ≥ 0 and T (y, z) − T (x, z) ≥ 0. Next, we prove that also the
right inequality is fulfilled. Therefore, we split up the proof into differ-
ent cases.

(i) If y and z do not belong to the same summand (hence T (y, z) =
y), then also x and z, as well as y and t, do not belong to the
same summand (hence T (x, z) = x and T (y, t) = y). Therefore,
the right part of (4.23) reduces to t − x ≤ 1, which is obviously
fulfilled.

(ii) Suppose y and z belong to the same summand 〈a, b, T ∗〉, with T ∗

a t-norm that fulfils I4
4 . Again, we have to consider several possi-

bilities:
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(a) Also t belongs to this summand, while x does not (hence
T (x, z) = x). Then the right part of (4.23) is equivalent to

t− x− (a + (b− a)T ∗(y′, t′)) + (a + (b− a)T ∗(y′, z′)) ≤ 1 ,

or also
a− x

b− a
+ t′ − T ∗(y′, t′) + T ∗(y′, z′) ≤ 1

b− a
.

Setting x = 0 in I4
4 and applying it to T ∗, we find that

0 ≤ t′ − T ∗(y′, t′) + T ∗(y′, z′) ≤ 1 .

It then easily follows that

a− x

b− a
+t′−T ∗(y′, t′)+T ∗(y′, z′) ≤ a− x

b− a
+1 =

b− x

b− a
≤ 1

b− a
.

(b) Also x belongs to this summand, while t does not (hence
T (y, t) = y). The right part of (4.23) is then equivalent to

t− (a + (b− a)T ∗(x′, z′))− y + (a + (b− a)T ∗(y′, z′)) ≤ 1 ,

or also
t− a

b− a
− y′ − T ∗(x′, z′) + T ∗(y′, z′) ≤ 1

b− a
.

Setting t = 1 in I4
4 and applying it to T ∗, we find that

−1 ≤ −y′ − T ∗(x′, z′) + T ∗(y′, z′) ≤ 0 .

It then follows that
t− a

b− a
− y′ − T ∗(x′, z′) + T ∗(y′, z′) ≤ t− a

b− a
≤ 1

b− a
.

(c) Neither x, nor t belong to this summand (hence T (x, z) =
x and T (y, t) = y). In this case, the right part of (4.23) is
equivalent to

t− x− y + (a + (b− a)T ∗(y′, z′)) ≤ 1 ,

or also
t− x

b− a
− y′ + T ∗(y′, z′) ≤ 1

b− a
.

Since −y′ + T ∗(y′, z′) ≤ 0, it easily follows that

t− x

b− a
− y′ + T ∗(y′, z′) ≤ t− x

b− a
≤ 1

b− a
.
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The case x ≤ y ≤ t ≤ z. If x and z belong to the same summand
〈a, b, T ∗〉, with T ∗ a t-norm that fulfils I4

4 , then y and t also belong to
this summand. Therefore, inequality I4

4 is fulfilled in the same way as
in the previous case. If x and z do not belong to the same summand
(hence T (x, z) = x), then I4

4 reduces to

0 ≤ t− T (x, t)− T (y, t) + T (y, z) ≤ 1 . (4.24)

Again, it is easy to see that the left inequality is always fulfilled since
t − T (x, t) ≥ 0 and T (y, z) − T (y, t) ≥ 0. Next, we prove that also
the right inequality is fulfilled. Therefore, we split up the proof into
different cases.

(i) Suppose y and t do not belong to the same summand. The proof
is identical to case (i) above.

(ii) Suppose y and t belong to the same summand 〈a, b, T ∗〉, with T ∗

a t-norm that fulfils I4
4 . Then, we have the following possibilities:

(a) Also z belongs to this summand, while x does not. The proof
is identical to case (ii)(a) above.

(b) Also x belongs to this summand, while z does not (hence
T (y, z) = y). Then the right part of (4.24) is equivalent to

t− (a + (b− a)T ∗(x′, t′))− (a + (b− a)T ∗(y′, t′)) + y ≤ 1 ,

or also

t′ − T ∗(x′, t′)− T ∗(y′, t′) + y′ ≤ 1

b− a
.

Since TL ≤ T ∗, it holds that y′+ t′−T ∗(y′, t′) ≤ 1 and we can
conclude that

y′ + t′ − T ∗(x′, t′)− T ∗(y′, t′) ≤ 1− T ∗(x′, t′) ≤ 1 ≤ 1

b− a
.

(c) Neither x, nor z belong to this summand (hence T (x, t) =
x and T (y, z) = y). In this case, the right part of (4.24) is
equivalent to

t− x− (a + (b− a)T ∗(y′, t′)) + y ≤ 1 ,

or also
y′ + t′ − T ∗(y′, t′) +

a− x

b− a
≤ 1

b− a
.
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Again, since TL ≤ T ∗, we can conclude that

y′ + t′ − T ∗(y′, t′) +
a− x

b− a
≤ 1 +

a− x

b− a
≤ b− x

b− a
≤ 1

b− a
.

This completes the proof.

Moreover, from our experience in proving that ordinal sums pre-
serve the Bell-type inequalities and numerous MATLAB experiments
for larger values of n, we can postulate the following more general con-
jecture.
Conjecture. Consider an inequality of the following form (n ≥ 2):

n
∑

i=1

ai xi +
n

∑

i=1

j<i

bij T (xi, xj) + c ≥ 0 ,

with ai, bij ∈ R for all i = 1, . . . , n and j < i. This inequality is pre-
served under ordinal sums if and only if it is fulfilled by TM, which in
turn is equivalent to demanding that c ≥ 0,

ai + c ≥ 0

for any i, and
n

∑

i=1

ai +
n

∑

i=1

j<i

bij + c ≥ 0 .

4.8 Bell-type inequalities for parametric t-norm
families

In this section, we consider the most important parametric t-norm fami-
lies and investigate for which values of the parameter involved the cor-
responding t-norms fulfil a given Bell-type inequality. These families
are taken from [52] and are listed in Table 4.3; the subfamilies consist-
ing of copulas are indicated as well. In view of Theorem 4.5, it is suffi-
cient to concentrate on continuous Archimedean t-norms only. As the
Mayor–Torrens t-norm family consists of continuous non-Archimedean
t-norms, it is excluded from our study, while it does appear in the list
of Klement, Mesiar and Pap [52]. Note that all t-norms in Table 4.3 are
Archimedean (except for TM, which appears as a limit case in some
families).
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In the following subsections, we consider the Bell-type inequalities
one by one and identify for each of the families in Table 4.3, the range
of parameters for which the corresponding t-norms fulfil the given in-
equality. The results of this study are summarized in Table 4.4. The de-
limiting parameter values for the Frank t-norm family are taken from
Section 4.6.

4.8.1 Inequalities I
1
2 , I

2
3 , I

4
4 and I

5
4

Thanks to Theorems 4.2 and 4.4, we already know that inequalities I1
2 ,

I2
3 , I4

4 and I5
4 are fulfilled for any commutative copula. We have veri-

fied that for the parametric families considered, none of its non-copula
members satisfies any of these inequalities.

It can easily be shown that inside the unit square ]0, 1[2 the first-
order derivatives of the function f(x, y) = x + y − T (x, y) − 1, with
T belonging to one of the families in Table 4.3, can only be zero in the
symmetric case x = y. Therefore, inequality I1

2 is equivalent to

2x− T (x, x) ≤ 1 . (4.25)

Let us consider for instance the Yager family and the Schweizer–Sklar
family. The choice of a t-norm family is chosen at random and such that
all t-norm families are given a chance in the following subsections.

Yager t-norm family. Considering a t-norm belonging to the Yager fam-
ily, the above inequality can be written explicitly as

2x−max(0, 1− 21/λ(1− x))− 1 ≤ 0 . (4.26)

Obviously, we have to consider two cases:

(i) The case max(0, 1−21/λ(1−x)) = 0. It then holds that 1−21/λ(1−
x) ≤ 0 and the latter inequality reads 2x− 1 ≤ 0, which holds for
λ ≥ 1.

(ii) The case max(0, 1−21/λ(1−x)) > 0. In that case, inequality (4.26)
reads (2− 21/λ)(x− 1) ≤ 0. It is easy to see that this inequality is
fulfilled if 2− 21/λ ≥ 0, or equivalently, if λ ≥ 1.

Both cases lead to the same restriction on λ, and we can conclude that
inside the Yager family, inequality I1

2 only holds for its copula members.
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Schweizer–Sklar t-norm family. Considering a t-norm belonging to
the Schweizer–Sklar family, the above inequality can be written explic-
itly as

2x− (max(0, 2xλ − 1))
1

λ − 1 ≤ 0 . (4.27)

Again, we have to consider two cases:

(i) The case max(0, 2xλ − 1) = 0. It then holds that 2xλ − 1 ≤ 0 and
the latter inequality reads 2x− 1 ≤ 0, which holds for λ ≤ 1.

(ii) The case max(0, 2xλ − 1) > 0. In that case, inequality (4.27) reads
2x − 1 − (2xλ − 1)

1

λ ≤ 0. The left-hand side of this inequality
defines a function f , with

f(x) = 2x− 1− (2xλ − 1)
1

λ .

The first-order derivative of f equals

f ′(x) = 2− 2
xλ(2xλ − 1)

1

λ

x(2xλ − 1)
.

Solving f ′(x) = 0, we find that f reaches an extremal value in

xs1
= 0, xs2

= 1 or xs3
=

(

1
2

)
1

λ . It is easy to see that f(xs1
) ≤ 0

and f(xs2
) ≤ 0 for any λ. Then,

f(xs3
) ≤ 0 ⇔ 2

(

1

2

) 1

λ

− 1 ≤ 0

⇔
(

1

2

) 1

λ

≤ 1

2

⇔ λ ≤ 1 .

Both cases lead to the same restriction on λ, and we can conclude that
inside the Schweizer–Sklar family, inequality I1

2 only holds for its cop-
ula members.

Similarly, inequality I4
4 is equivalent to

2x− 2T (x, y)− T (x, x) + T (y, y) ≤ 1 ,

while inequality I5
4 is equivalent to

−2x + 4T (x, y)− T (x, x) + T (y, y) ≤ 0 .

Such a simplified equivalent inequality does not exist for inequality I2
3 .

The verification for inequalities I2
3 , I4

4 and I5
4 was done in a numerical

way.
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4.8.2 Inequality I
3
3

It can easily be shown that inside the unit cube ]0, 1[3 the first-order
derivatives of the function

f(x, y, z) = x + y + z − T (x, y)− T (x, z)− T (y, z)− 1 ,

with T belonging to one of the families in Table 4.3, can only be zero in
the symmetric case x = y = z. Therefore, inequality I3

3 is equivalent to

3x− 3T (x, x) ≤ 1 . (4.28)

We focus our attention on the Dombi and Aczel–Alsina t-norm fami-
lies. The delimiting parameter values for the other families can be ob-
tained in a similar way. In case no exact solution to a given problem was
found, the help of Maple was called in to find a numerical solution.

Dombi t-norm family. For the Dombi t-norm family, inequality (4.28)
reads explicitly

1− 3x +
3x

x + 21/λ(1− x)
≥ 0 .

Reducing the left-hand side of this inequality to the same (positive)
denominator, it is sufficient to study the numerator, which defines a
quadratic function g:

g(x) = 3x2(21/λ − 1)− 4x(21/λ − 1) + 21/λ .

We determine the values of λ such that g(x) ≥ 0 for any x ∈ [0, 1].
Solving g′(x) = 0, we find that g reaches an extremal value in xs = 2/3.
Moreover, it is easy to see that the discriminant of g (i.e. 2 · 21/λ − 10 ·
21/λ + 8) is negative or zero when λ ≥ 1/2 and in this case g(x) ≥ 0 for
any x ∈ [0, 1]. On the other hand, the discriminant of g is positive when
λ < 1/2. In this case g(2/3) < 0 and we can conclude that the sign of
g(x) will change in the interval [0, 1]. Therefore, inequality I3

3 holds for
any λ ∈ [1/2, +∞[.

Aczel–Alsina t-norm family. For the Aczel–Alsina t-norm family, in-
equality (4.28) reads explicitly

3x− 3x(2
1

λ ) − 1 ≤ 0 .

Substituting 2
1

λ by t and dividing the left-hand side of the latter in-
equality by 3 defines a function g:

g(x) = x− xt − 1

3
.
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We determine the values of t such that g(x) ≥ 0 for any x ∈ [0, 1].
Solving g′(x) = 0, we find that g reaches an extremal value in
xs = (1

t )
1

t−1 . Substituting this value for xs in g, we obtain a function h

h(t) =

(

1

t

) 1

t−1

−
(

1

t

) t
t−1

− 1

3
.

Solving h(t) = 0 numerically with the help of Maple, we obtain
t = 2.5581 and so λ = 0.7379. Therefore, we can conclude that in-
equality (4.28) is fulfilled when λ ≥ 0.7379.

Note that for the Dombi and Aczel–Alsina families inequality I3
3 is

fulfilled for all of its copula members. This is for instance not the case
for the Frank family. Indeed, although all Frank t-norms are copulas,
inequality I3

3 is only fulfilled for λ ∈ [0, 9 + 4
√

5].

4.8.3 Inequalities I
6
4 and I

7
4

In this subsection, we consider inequalities I6
4 and I7

4 . Again, inside the
unit hypercube ]0, 1[4 the first-order derivatives of the function

f(x, y, z, t) = x + y + z + t− T (x, y)− T (x, z)− T (x, t)

−T (y, z)− T (y, t)− T (z, t) ,

with T belonging to one of the families in Table 4.3, can only be zero in
the symmetric case x = y = z = t. Therefore, inequality I6

4 is equivalent
to

4x− 6T (x, x) ≤ 1 . (4.29)

Let us consider for instance the Hamacher and Yager t-norm families.

Hamacher t-norm family. For the Hamacher family, the above inequal-
ity then reads explicitly:

4x− 6
x2

λ + (1− λ)(2x− x2)
− 1 ≤ 0 .

Reducing the left-hand side of this inequality to the same (positive)
denominator, it is sufficient to study the numerator, which defines a
cubic function g:

g(x) = 4(λ− 1)x3 − 3(3λ− 1)x2 + 2(3λ− 1)x− λ .
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We determine the values of λ such that g(x) ≤ 0 for any x ∈ [0, 1]. For
λ = 1, the function g reduces to the quadratic function h, given by

h(x) = −6x2 + 4x− 1 .

Since its discriminant is negative, the function h is negative for any
x ∈ [0, 1].

Now consider λ 6= 1. The first-order derivative of g is given by

g′(x) = 12(λ− 1)x2 − 6(3λ− 1)x + 2(3λ− 1) .

The discriminant of this quadratic function, i.e. 3(3λ − 1)(λ + 5), is
positive or equal to zero when λ ≥ 1/3. In that case, the function g ′ has
two real roots. We consider two different cases:

(i) The case 1/3 ≤ λ < 1: the smallest root of g′ is always smaller
than 0, while the other one, say xs, belongs to the interval [0, 1].
Therefore, it is necessary and sufficient that g(xs) ≤ 0 to guar-
antee that g(x) ≤ 0 for any x ∈ [0, 1]. Invoking Maple, we can
conclude that g(xs) ≤ 0.

(ii) The case 1 < λ: the smallest root of g′, say xs, belongs to the inter-
val [0, 1], while the other one is always greater than 1. Again, it is
necessary and sufficient that g(xs) ≤ 0 to guarantee that g(x) ≤ 0
for any x ∈ [0, 1]. Invoking Maple, we can conclude that g(xs) ≤ 0
when λ ≤ 2.6529.

Therefore, we can conclude that inequality I6
4 is fulfilled for λ ≤ 2.6529.

Similarly, inequality I7
4 is equivalent to

8x− 6T (x, x) ≤ 3 , (4.30)

which is in the Hamacher family fulfilled when λ ≤ 2.222.

Yager t-norm family. Considering a t-norm belonging to the Yager fam-
ily, inequality (4.29) can be written explicitly as

4x− 6 max(0, 1− 2
1

λ (1− x))− 1 ≤ 0 . (4.31)

Obviously, we have to consider two cases:

(i) The case max(0, 1−21/λ(1−x)) = 0. It then holds that 1−21/λ(1−
x) ≤ 0 and the latter inequality reads 4x− 1 ≤ 0, which holds for
λ ≥ ln 2

ln 4−ln 3 .
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(ii) The case max(0, 1−21/λ(1−x)) > 0. In that case, inequality (4.31)
reads x(4 − 6 · 2 1

λ ) + 6 · 2 1

λ − 7 ≤ 0. The left-hand side of this
inequality defines a linear function f , with

f(x) = x(4− 6 · 2 1

λ ) + 6 · 2 1

λ − 7 .

Since 4− 6 · 2 1

λ ≤ 0 for any λ ≤ 0, it’s easy to verify that f(x) ≥ 0
if λ ≥ ln 2

ln 7−ln 6 .

We can conclude that inside the Yager family, inequality (4.29) holds for
λ ≥ ln 2

ln 7−ln 6 .
In the same way, we obtain λ ≥ ln 2

ln 3−ln 2 such that inequality (4.30)
is satisfied.

Note that for the Hamacher family inequalities I6
4 and I7

4 are ful-
filled for all of its copula members, while this is clearly not the case for
the Yager or the Frank family.

4.8.4 Inequalities I
8
4 and I

9
4

Finally, we consider inequalities I8
4 and I9

4 . For inequality I8
4 , for in-

stance, the first-order derivatives of the function

f(x, y, z, t) = −x+T (x, y)+T (x, z)+T (x, t)−T (y, z)−T (y, t)−T (z, t) ,

with T belonging to one of the families in Table 4.3, can only be zero in
the symmetric case y = z = t. This renders inequality I8

4 equivalent to

−x + 3T (x, y)− 3T (y, y) ≤ 0 .

This time, we consider the Sugeno–Weber family. The above inequality
then reads:

−x + 3 max

(

0,
x + y − 1 + λxy

1 + λ

)

− 3 max

(

0,
2y − 1 + λy2

1 + λ

)

≤ 0 .

(4.32)
We distinguish four different cases. When both maxima are equal
to zero, inequality (4.32) reduces to the trivial inequality −x ≤ 0.
Also, when max(0, x+y−1+λxy

1+λ ) = 0, inequality (4.32) reduces to −x −
3

(

2y−1+λy2

1+λ

)

≤ 0 which is easily verified for any λ > −1. The third
case being similar to the previous one, it only remains to consider the
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case that both maxima are different from zero. In that case, inequal-
ity (4.32) reads:

−x + 3
x + y − 1 + λxy

1 + λ
− 3

2y − 1 + λy2

1 + λ
≤ 0 . (4.33)

Note that this inequality only needs to be considered in the domain
enclosed by the boundaries x = 1, y = 1, x + y − 1 + λ xy = 0 and
y = −1+

√
1+λ

λ . If we reduce the left-hand side of this inequality to the
same (positive) denominator, the numerator determines a two-place
function g:

g(x, y) = −3λy2 + 3λxy − 3y + (2− λ)x .

We determine the values of λ such that g(x, y) ≤ 0 for any (x, y) ∈
[0, 1]2. In order to find the stationary points of g, we set the first-order
derivatives of g equal to zero, and obtain:

gx(x, y) = 3λy + 2− λ = 0 ,

gy(x, y) =−6λy + 3λx− 3 = 0 .

Solving this system of equations we obtain a single solution

(xs, ys) =

(

2λ− 1

3λ
,
λ− 2

3λ

)

,

which is a stationary point of g. Furthermore, it holds that

g(xs, ys) =
2− λ

3λ
.

We need to verify whether this stationary point is a minimum, max-
imum or saddle point. To that end, we compute the second-order
derivatives of g:

gxx(xs, ys) = 0 ,

gyy(xs, ys) =−6λ ,

gxy(xs, ys) = 3λ ,

from which it follows that the determinant of these derivatives of g in
the stationary point (xs, ys) is given by

A2 = [gxxgyy − g2
xy](xs, ys) = −9λ2 .

Since A2 < 0 for any λ ∈ ] − 1, +∞[, the stationary point (xs, ys) is
neither a minimum, nor a maximum (it is a saddle point). Therefore,
the maximum of g will be reached on the boundaries of the domain
of g.
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(i) On the boundary y = −1+
√

1+λ
λ , we obtain a linear function h in

x:

h(x) = x

(

3
√

1 + λ− 1− λ

1 + λ

)

+ 3
λ
√

1 + λ− 1− λ

λ(1 + λ)
.

We determine the values of λ such that h(x) ≤ 0 for any
x ∈ [1+λ−

√
1+λ

λ
√

1+λ
, 1]. It is easily verified that h is an increasing

function when −1 < λ ≤ 8, while h is decreasing when λ > 8.
If h is increasing, h(1) should be negative in order that h(x) ≤ 0,
for any x ∈ [1+λ−

√
1+λ

λ
√

1+λ
, 1]. It is easy to see that h(1) ≤ 0 when

3 ≤ λ ≤ 8. In the same way, if h is decreasing, h( 1+λ−
√

1+λ
λ
√

1+λ
)

should be negative. This is the case when λ > 8. Therefore, we
can conclude that h(x) ≤ 0 for any x ∈ [ 1+λ−

√
1+λ

λ
√

1+λ
, 1] when λ ≥ 3.

(ii) Similarly, on the boundary x + y − 1 + λxy = 0 (or equivalently,
y = x−1

−λx−1 ), we obtain another function h in x:

h(x) =
−λ2(1 + λ)x3 + λ(1 + λ)x2 + 5(1 + λ)x− 3(λ + 1)

(λx + 1)2
.

In the same way, it holds that h(x) ≤ 0 for any x ∈ [0, 1+λ−
√

1+λ
λ
√

1+λ
]

when λ ≥ 175/81.

(iii) It is easy to see that on the boundary y = 1, inequality (4.33) re-
duces to (1 + λ)(2x − 3) ≤ 0 and is always fulfilled, while the
boundary x = 1 leads to inequality (4.28), which is certainly ful-
filled when λ ≥ 3.

Summarizing all cases above, we can conclude that inequality I8
4 is sat-

isfied when λ ≥ 3.
Similarly, inequality I9

4 is equivalent to

3x− 2y − 3T (x, x) + 3T (x, y) ≤ 1 ,

which is in the Sugeno–Weber family fulfilled when λ ≥ 3.

Note that it is not that easy to find the delimiting parameter values
for all families. In most cases, the resulting functions were too compli-
cated to find analytical solutions or even numerical ones. As a way out,
we used contour plots to conclude that no extrema occurred inside the
unit square ]0, 1[2, and in some cases, only saddle points (see also Inter-
mezzo 4.2). Hence, for all families an extremum will be reached on the
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Intermezzo 4.2 Critical points of f(x, y).
A function z = f(x, y) defines a three-dimensional surface. Like its
analog in two dimensions, f(x, y) may have maximum and minimum
values. The critical points (minima, maxima or saddle points) can be
found by taking the partial derivatives of f and solving the following
system for x and y:

{ ∂f
∂x (x, y) = 0

∂f
∂y (x, y) = 0

.

The (analytical) solution to this system of equations may be difficult to
find, even when using numerical tools, like Maple. Therefore, we are
thrown back on other methods. Although, there exist various numer-
ical optimization techniques to solve this problem, also contour lines
can be used to gain more insight in the behavior of f . Therefore, we
represent the “landscape” of the surface z = f(x, y) by contour lines,
which are curves in the (x, y)−plane on which f(x, y) takes different
constant values.
Around a maximum, the value of f(x, y) is always smaller than its
value z∗ at the maximum. The contours are closed loops around the
stationary point (see Figure 4.4). Around a minimum, f(x, y) > z∗ and
again the contours are closed loops around the stationary point (see
Figure 4.5). The representation of a saddle point by contour lines has
the characteristic appearance as depicted in Figure 4.6.

boundaries of the unit square [0, 1]2 (which can be seen from Table 4.5).
Therefore, the parameter values such that I8

4 and I9
4 are satisfied, are

the same as the ones obtained for I3
3 . These results are summarized in

Table 4.4.

Example 4.5 Consider the Hamacher t-norm family. Inequality I8
4

reads as

−x +
3xy

λ + (1− λ)(x + y − xy)
− 3y2

λ + (1− λ)(2y − y2)
≤ 0 .

For λ < 1, we obtain contour plots as in Figure 4.7, while for λ ≥ 1
contour plots as in Figure 4.8 are obtained. In both cases, it is easy
to see that an extremum will be reached on the boundary of the unit
interval.
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Figure 4.5: The representation of a
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Figure 4.6: The representation of a
saddle point by contour lines.

4.9 A family of Bell-type inequalities

Taking a closer look at the inequalities of type c1 x − c2 T (x, x) ≤ c3,
with constants c1, c2, c3 ≥ 0, such as the inequality 3x − 3T (x, x) ≤ 1,
suggests the following general form, n ≥ 2:

nx−
(

n

2

)

T (x, x) ≤ 1 . (4.34)

For n = 2, we obtain the inequality 2x − T (x, x) ≤ 1 and for n = 3, we
retrieve the inequality 3x−3T (x, x) ≤ 1, i.e. the necessary and sufficient
condition for inequality I3

3 to hold for a Frank t-norm. Similarly, for
n = 4, we find 4x − 6T (x, x) ≤ 1, i.e. the equivalent of inequality I6

4 .
We can prove the following theorem:
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Boundaries I8
4 I9

4

x = 0 −2y ≤ 1 −3T (y, y) ≤ 0
x = 1 y ≤ 1 3y − 3T (y, y) ≤ 1
y = 0 3x− 3T (x, x) ≤ 1 −x ≤ 0
y = 1 3x− 3T (x, x) ≤ 0 2x− 3 ≤ 0

Table 4.5: Inequalities obtained on the boundaries of the unit square for I8
4

and I9
4 .
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Figure 4.7: Contour plot for a Ha-
macher t-norm with λ = 0.2 < 1.

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

Figure 4.8: Contour plot for a Ha-
macher t-norm with λ = 2 ≥ 1.

Theorem 4.6 The only Frank t-norms for which inequality (4.34) is fulfilled
for all n ≥ 2 are the t-norms TF

λ between the algebraic product TP and the
minimum operator TM (i.e. with λ ∈ [0, 1]).

Proof. Let us first consider the case T = TP, i.e. λ = 1. The expression
nx − n(n − 1)x2/2 − 1 reaches a maximum in xs = 1/(n − 1), a point
located in [0, 1] for all n ≥ 2, and the maximum value being −(n −
2)/2(n − 1), inequality (4.34) is clearly fulfilled for all n ≥ 2. For all
T ≥ TP, in particular for all members of the Frank family with λ ∈ [0, 1[,
inequality (4.34) is then obviously also fulfilled.

We still have to investigate the case λ > 1. We have to determine
the values λ > 1 for which

nx− n(n− 1)

2
logλ

(

1 +
(λx − 1)2

λ− 1

)

≤ 1 ,

or, equivalently, introducing the notation s = λx, the values λ > 1 for
which

sn

(

1 +
(s− 1)2

λ− 1

)−n(n−1)/2

≤ λ ,
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or

s− 2/(n−1)

(

1 +
(s− 1)2

λ− 1

)

≤ λ− 2/(n(n−1)) .

In the limit of n →∞, this condition becomes

1 +

(

1 +
(s− 1)2

λ− 1

)

≤ 1 ,

which is clearly not fulfilled for all s ∈ [1, λ], and hence not for all
x ∈ [0, 1].

When generating all Bell-type inequalities for any n > 0, we will
obtain inequalities of the form (4.34) as necessary and sufficient con-
ditions for the Frank t-norm family. From this, we can conclude that
within this family at most all t-norms between the minimum operator
TM and the algebraic product TP will satisfy all Bell-type inequalities.

In general, the algebraic product TP is not the smallest t-norm that
satisfies inequalities (4.34). This is confirmed by the following example.

Example 4.6 The Hamacher t-norm with λ = 2, i.e. T H

2 (x, y) =
xy

2−x−y+xy , which is smaller than the algebraic product (T H

2 < TH

1 =
TP), fulfills inequality (4.34) for any n ≥ 2.

Proof. Writing inequality (4.34) explicitly, we obtain

nx− n(n− 1)

2

x2

x2 − 2x + 2
− 1 ≤ 0 .

If we reduce the left-hand side of this inequality to the same (positive)
denominator, then the numerator determines a function f :

f(x) = 2nx3 − (n2 + 3n + 2)x2 + 4(n + 1)x− 4 .

For n = 2, this function reduces to f(x) = 4(x − 1)3 and obviously
f(x) ≤ 0 for any x ∈ [0, 1]. Now suppose n ≥ 3. The first-order deriva-
tive of f is given by

f ′(x) = 6nx2 − (2n2 + 6n + 4)x + 4(n + 1) .

Next we solve the equation f ′(x) = 0. Since n ≥ 3, the discriminant
of this quadratic function (D = (n − 2)(n + 1)(n2 + 7n − 2)) is always
positive, and therefore f ′ has two real roots. It is easy to see that one
root of this equation, say xs, lies between 0 and 1, while the second one
is always greater than 1. Therefore, a necessary and sufficient condition
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in order that f(x) ≤ 0 for any x ∈ [0, 1] is that f(xs) should be negative
for any n ≥ 3. Straightforward computation yields

f(xs) =−(n− 2)

54n2

(

(n + 1)(n2 + 7n− 2)
√

D

+ (n− 1)(n4 + 12n3 + 31n2 − 12n + 4)
)

,

with D = n4 + 6n3 − 11n2 − 12n + 4, which is negative for all n ≥ 3.
This completes our proof.

4.10 Conclusions and indications for future re-
search

In this chapter, we have described all Bell-type inequalities concerning
four events in which at most two events are intersected at the same
time. We have rewritten them in the context of fuzzy probability calcu-
lus, or equivalently, to the context of basic scalar cardinalities and have
proven that some inequalities are fulfilled for (quasi-)copulas. More-
over, considering the Frank t-norm family, for each of the Bell-type in-
equalities we have identified all parameter values such that it is ful-
filled. These results are summarized in Table 4.2.

We have also studied in detail the Bell-type inequalities for con-
tinuous t-norms. A major contribution of this chapter is that ordinal
sums preserves the Bell-type inequalities, which was the motivation
for studying continuous Archimedean t-norms only. As general results
based on additive generators are unlikely to be obtained, we have dis-
cussed in an exhaustive way the major parametric t-norm families. The
results of this study are recapitulated in Table 4.4. Finally, for a particu-
lar form of these inequalities, we have shown that the algebraic product
TP is not the smallest t-norm fulfilling them.

In this chapter, we have rewritten the Bell inequalities in the con-
text of basic scalar cardinalities. But, the basic scalar cardinality is only
one of the possibilities to define the cardinality of a fuzzy set. It is in-
teresting to ask whether the Bell inequalities would also be fulfilled for
integer cardinalities or even fuzzy cardinalities.
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Chapter 5

Inequalities on scalar
cardinalities

5.1 Introduction

In Chapter 3, identities on cardinalities were discussed in detail. How-
ever, not only identities on cardinalities are of interest, but even more,
inequalities. The basic inequalities that come to mind are the Bell in-
equalities. As the Bell inequalities deal with classical probabilities, it
is straightforward to formulate analogous inequalities on cardinalities.
We have already investigated in depth the validity of these Bell inequal-
ities on cardinalities in a fuzzy context, mainly focusing on the choice
of logical connectives involved. The purpose of this chapter is twofold.
On the one hand we will demonstrate that the Bell inequalities are of
particular interest in the context of cardinalities of fuzzy sets. On the
other hand, we want to show how the results on the fuzzified Bell in-
equalities can be exploited to develop a framework in which the valid-
ity of more general inequalities on fuzzy cardinalities can be checked
easily, thus avoiding unnecessary repetitions of tedious calculations.

5.2 Bell-type inequalities for cardinalities

As Bell inequalities deal with classical probabilities, it is straightfor-
ward to formulate analogous inequalities on cardinalities. Consider a
finite universe X of cardinality n, then the classical probability P (A) is
given by |A|/n and the Bell inequalities can be rewritten in the follow-
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ing form:

B1
2 : |A|+ |B| − n ≤ |A ∩B| ≤ min(|A|, |B|) ,

B2
3 : 0 ≤ |A| − |A ∩B| − |A ∩ C|+ |B ∩ C| ,

B3
3 : |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C| ≤ n ,

for any A, B, C ∈ P(X). Note that the vertices of the polytope now
correspond to the extreme cases A, B, C ∈ {∅, X}.

Remark 5.1 Remark that the double inequality B1
2 follows from inequality

B2
3 by putting A = X , resp. C = ∅.

Although it is possible to rewrite all Bell inequalities in terms of cardi-
nalities, we don’t mention them explicitly since only inequalities B1

2–B3
3

will be of further interest in this work.
The Bell-type inequalities B1

2–B3
3 are of particular interest in the

context of cardinalities of fuzzy sets. Consider for instance the classical
inequalities

|A \ C| ≤ |A \B|+ |B \ C| , (5.1)
|A4 C| ≤ |A4B|+ |B 4 C| . (5.2)

They can be rewritten less elegantly in terms of intersections as follows

0 ≤ |B| − |A ∩B| − |B ∩ C|+ |A ∩ C| ,
0 ≤ 2(|B| − |A ∩B| − |B ∩ C|+ |A ∩ C|) ,

respectively. Modelling fuzzy set intersection by means of a commuta-
tive conjunctor I , the latter inequalities will remain valid for fuzzy sets
if and only if I satisfies

0 ≤ x− I(x, y)− I(x, z) + I(y, z) ,

i.e. if and only if I satisfies inequality I2
3 , for instance, when using a

commutative quasi-copula I .
In a setting where additionally |A\B| = |A|−|A∩B| and |A4B| =

|A|+ |B|−2|A∩B| hold for cardinalities of fuzzy sets, we can also con-
clude that inequalities (5.1) and (5.2) will hold for fuzzy cardinalities
if inequality I2

3 is satisfied. These observations have proven to be cru-
cial for the design of fuzzification schemes for cardinality-based sim-
ilarity measures which preserve transitivity. In [19], the authors pro-
pose a class of fuzzification schemes, whereby the intersection of two
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X

A B

a1 a2c12

d12

Figure 5.1: Notations for cardinalities associated with two ordinary subsets A
and B of a finite universe X .

fuzzy sets is modelled by a Frank t-norm, that can be used to trans-
late cardinality-based similarity measures for ordinary sets into fuzzy
similarity measures preserving transitivity.

Similarly as for inequality (5.2), we can restate the classical inequal-
ity

|A1 4An| ≤
n−1
∑

i=1

|Ai 4Ai+1|

which is valid for ordinary sets A1, . . . , An in a finite universe X of
cardinality n, in terms of intersections only. The left-hand side of (4.9)
can then be seen as a necessary and sufficient condition for this new
inequality to remain true for fuzzy sets.

5.3 Meta-theorems

In this section we present two meta-theorems, the first one involving
two fuzzy sets and their intersection, the second one involving three
fuzzy sets and their pairwise intersections, which state that certain in-
equalities satisfied by cardinalities of ordinary sets, are preserved un-
der fuzzification.

5.3.1 A meta-theorem for inequalities involving two fuzzy
sets

Before we can formulate and prove our meta-theorem, we first have to
prove three lemmata.
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Lemma 5.1 Consider a, b, u, n ∈ N, then the following inequalities are ful-
filled

0 ≤ a, b ≤ n ,

max(a + b− n, 0) ≤ u ≤ min(a, b) , (5.3)

if and only if there exist two ordinary subsets A and B of a finite universe X
such that |A| = a, |B| = b, |A ∩B| = u and |X| = n.

Proof. The proof from right to left is nothing else but Bell inequality
B1

2 . Consider a, b, u, n ∈ N satisfying inequalities (5.3), then we need to
build two subsets A and B of some universe X . Consider the setting as
in Figure 5.1. It suffices to show that there exist a1, a2, c12, d12 ∈ N such
that

|A| = a = a1 + c12 , |A ∩B| = u = c12 ,
|B| = b = a2 + c12 , |X| = n = a1 + a2 + c12 + d12 .

Due to (5.3), the unique solution c12 := u, a1 := a − c12 = a − u, a2 :=
b − c12 = b − u, d12 := n − a1 − a2 + c12 = n − a − b + u is obviously
positive.

Lemma 5.2 If for any ordinary subsets A and B of an arbitrary finite uni-
verse X it holds that

H(|A|, |B|, |A ∩B|, |X|) ≥ 0 ,

where H denotes a (continuous) function that is homogeneous in its argu-
ments, then it also holds that

H(a, b, u, n) ≥ 0 ,

for any a, b, u ∈ Q+ and n ∈ N satisfying inequalities (5.3).

Proof. Consider a, b, u ∈ Q+ and n ∈ N satisfying inequalities (5.3).
Let λ be the lowest common multiple of the denominators of a, b and
u, then a′ = λa, b′ = λb, u′ = λu and n′ = λn. Moreover, the following
inequalities are fulfilled:

0 ≤ a′, b′ ≤ n′ ,

max(a′ + b′ − n′, 0) ≤ u′ ≤ min(a′, b′) .

Since a′, b′, u′, n′ ∈ N, according to Lemma 5.1 there exist two subsets A
and B of a finite universe X , such that |A| = a′, |B| = b′, |A ∩ B| = u′

and |X| = n′ and therefore inequality H(a′, b′, u′, n′) ≥ 0 is ful-
filled. Since H is homogeneous in its arguments, also H(a, b, u, n) ≥ 0
holds.
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Lemma 5.3 If for any ordinary subsets A and B of an arbitrary finite uni-
verse X it holds that

H(|A|, |B|, |A ∩B|, |X|) ≥ 0 ,

whereH denotes a continuous function that is homogeneous in its arguments,
then it also holds that

H(a, b, u, n) ≥ 0 ,

for any a, b, u ∈ R+ and n ∈ N satisfying inequalities (5.3).

Proof. Consider a, b, u ∈ R+ and n ∈ N satisfying (5.3). The idea
is to approximate a, b, u within an ε-range by aε, bε, uε ∈ Q+ such that
aε, bε, uε and n also satisfy (5.3). Some boundary cases are easily dealt
with.

(i) If a = 0 then also u = 0, and we consider bε ∈ [b− ε, b+ ε]∩ [0, n]
for any ε > 0 and put aε = uε = 0. The case b = 0 is similar.

(ii) If a = n then b = u, and we consider bε ∈ [b− ε, b + ε]∩ [0, n] for
any ε > 0 and put aε = n and uε = bε. The case b = n is similar.

(iii) If a > 0, b > 0 and u = 0, then we consider aε ∈ [a − ε, a] and
bε ∈ [b− ε, b], for any ε ≤ min(a, b) and put uε = 0.

From here on, we can assume that 0 < a < n, 0 < b < n and 0 < u.

(iv) If a + b− n ≤ 0, then we distinguish two cases.

(a) If u = min(a, b), then we consider aε ∈ [a − ε, a] and bε ∈
[b− ε, b], for any ε ≤ min(a, b) and put uε = min(aε, bε).

(b) If u < min(a, b), then we consider aε ∈ [a−ε, a], bε ∈ [b−ε, b]
and uε ∈ [u− ε, u], for any ε ≤ min(a, b, u, min(a, b)− u).

(v) Consider a + b− n > 0. Since a + b− n = u = min(a, b) implies
max(a, b) = n, only three cases remain to be studied.

(a) If a+ b−n = u < min(a, b), we consider aε ∈ [a− ε
2 , a] and

bε ∈ [b− ε
2 , b], for ε ≤ 2 min(a, b) and put uε = max(aε + bε −

n, 0).
(b) If a + b − n < u = min(a, b), we consider aε ∈ [a − ε, a],

bε ∈ [b− ε, b], for ε ≤ min(a, b) and put uε = min(aε, bε).
(c) If a + b − n < u < min(a, b), we consider aε ∈ [a − ε, a],

bε ∈ [b−ε, b] and uε ∈ [u−ε, u], for ε ≤ min(a, b, u, min(a, b)−
u, u− a− b + n).



94 Inequalities on scalar cardinalities

One easily verifies that in all cases aε, bε and uε are positive and |a −
aε| ≤ ε, |b − bε| ≤ ε and |u − uε| ≤ ε. Using Lemma 5.2 it follows
that H(aε, bε, uε, n) ≥ 0. Since H is continuous, considering the limit
for ε → 0, we can conclude that also the inequality H(a, b, u, n) ≥ 0 is
fulfilled.

We are now able to formulate and prove our meta-theorem.

Theorem 5.1 If for any ordinary subsets A and B of an arbitrary finite uni-
verse X it holds that

H(|A|, |B|, |A ∩B|, |X|) ≥ 0 , (5.4)

whereH denotes a continuous function that is homogeneous in its arguments,
then it also holds for any fuzzy sets on an arbitrary finite universe Y , provided
the commutative conjunctor I modelling fuzzy set intersection satisfies Bell
inequality I1

2 .

Proof. Consider two fuzzy sets C and D on an arbitrary finite universe
Y . Let n := |Y | and Y = {y1, . . . , yn}, a := |C|, b := |D| and u := |C∩D|.
Then obviously 0 ≤ a, b ≤ n. Since any conjunctor I is bounded from
above by TM it holds that

u =
n

∑

i=1

I(C(yi), D(yi)) ≤
n

∑

i=1

min(C(yi), D(yi)) ≤ min(a, b) .

If I is also bounded from below by TL, i.e. if I satisfies inequality I1
2 ,

we can also conclude that

u ≥
n

∑

i=1

max(C(yi) + D(yi)− 1, 0) ≥ a + b− n .

Since a, b, u ∈ R+ and n ∈ N satisfy inequalities (5.3), we can use
Lemma 5.3 to conclude that inequality (5.4) is also fulfilled for C and D
on Y .
Having a closer look at the proof of Theorem 5.1, we can derive the
following, more specialised version of the meta-theorem, which does
not require Bell inequality I1

2 .

Theorem 5.2 Under the assumptions of Theorem 5.1: if H does not depend
explicitly upon |X|, then (5.4) also holds for any fuzzy sets on an arbitrary
finite universe Y .

Proof. Since H does not depend upon |X|, we can augment the value
of n (i.e. we add zero components to the fuzzy sets involved) such that
the inequality a + b − n ≤ u is always satisfied without changing the
value of a, b and u.



5.3 Meta-theorems 95

X

A Ba1 a2

a3

C

d123

b1b2

b3

c123

Figure 5.2: Notations for cardinalities associated with three ordinary subsets
A, B and C of a finite universe X .

5.3.2 A meta-theorem for inequalities involving three fuzzy
sets

The same reasoning as in the previous subsection can be followed for
inequalities involving three sets and their pairwise intersections.

Lemma 5.4 Consider a, b, c, u, v, w, n ∈ N, then the following inequalities
are fulfilled

0 ≤ a, b, c ≤ n ,

max(a + b− n, 0) ≤ u ≤ min(a, b) ,

max(a + c− n, 0) ≤ v ≤ min(a, c) ,

max(b + c− n, 0) ≤ w ≤ min(b, c) ,

w − u− v + a ≥ 0 ,

v − u− w + b ≥ 0 ,

u− v − w + c ≥ 0 ,

n− (a + b + c− u− v − w) ≥ 0 , (5.5)

if and only if there exist three ordinary subsets A, B and C of a finite universe
X such that |A| = a, |B| = b, |C| = c, |X| = n, |A ∩ B| = u, |A ∩ C| = v
and |B ∩ C| = w.

Proof. The proof from right to left is nothing else but Bell inequalities
B1

2–B3
3 . Consider a, b, c, u, v, w, n ∈ N satisfying inequalities (5.5),

then we need to build three subsets A, B and C of some universe X .
Consider the setting as in Figure 5.2. It suffices to show that there exist
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a1, a2, a3, b1, b2, b3, c123, d123 ∈ N such that

|A| = a = a1 + b2 + b3 + c123 , |A ∩B| = u = b3 + c123 ,
|B| = b = a2 + b1 + b3 + c123 , |A ∩ C| = v = b2 + c123 ,
|C| = c = a3 + b1 + b2 + c123 , |B ∩ C| = w = b1 + c123

and
|X| = n = a1 + a2 + a3 + b1 + b2 + b3 + c123 + d123 .

We obtain the following solution

a1 := a− u− v + c123 , b1 := w − c123 ,
a2 := b− u− w + c123 , b2 := v − c123 ,
a3 := c− v − w + c123 , b3 := u− c123 ,

and
d123 := n− (a + b + c− u− v − w)− c123 ,

with c123 still to be chosen. Due to inequalities (5.5), it holds that

p := max(u + v − a, u + w − b, v + w − c, 0)

≤ q := min(u, v, w, n− (a + b + c− u− v − w)) .

Choosing any c123 ∈ [p, q] renders the solution positive and concludes
the proof.

Lemma 5.5 If for any ordinary subsets A, B and C of an arbitrary finite
universe X it holds that

H(|A|, |B|, |C|, |A ∩B|, |A ∩ C|, |B ∩ C|, |X|) ≥ 0 ,

where H denotes a (continuous) function that is homogeneous in its argu-
ments, then it also holds that

H(a, b, c, u, v, w, n) ≥ 0 ,

for any a, b, c, u, v, w ∈ Q+ and n ∈ N satisfying inequalities (5.5).

Proof. Similar to the proof of Lemma 5.2.

Lemma 5.6 If for any ordinary subsets A, B and C of an arbitrary finite
universe X it holds that

H(|A|, |B|, |C|, |A ∩B|, |A ∩ C|, |B ∩ C|, |X|) ≥ 0 ,
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whereH denotes a continuous function that is homogeneous in its arguments,
then it also holds that

H(a, b, c, u, v, w, n) ≥ 0 ,

for any a, b, c, u, v, w ∈ R+ and n ∈ N satisfying inequalities (5.5).

Proof. Similar to the proof of Lemma 5.3.
We are now ready to formulate and prove our second

meta-theorem.

Theorem 5.3 If for any ordinary subsets A, B and C of an arbitrary finite
universe X it holds that

H(|A|, |B|, |C|, |A ∩B|, |A ∩ C|, |B ∩ C|, |X|) ≥ 0 , (5.6)

whereH denotes a continuous function that is homogeneous in its arguments,
then it also holds for any fuzzy sets on an arbitrary finite universe Y , provided
the commutative conjunctor I modelling fuzzy set intersection satisfies Bell
inequalities I2

3 and I3
3 .

Proof. Consider three fuzzy sets D, E and F on an arbitrary finite
universe Y . Let n := |Y |, a := |D|, b := |E|, c := |F |, u := |D ∩ E|,
v := |D ∩ F | and w := |E ∩ F |. Then obviously 0 ≤ a, b, c ≤ n.

Since any conjunctor I is bounded from above by TM it again holds
that u ≤ min(a, b), v ≤ min(a, c) and w ≤ min(b, c). If I is also bounded
from below by TL, i.e. if I satisfies inequality I1

2 (which follows from I2
3 ),

it also holds that a+b−n ≤ u, a+c−n ≤ v and b+c−n ≤ w. Moreover,
if I satisfies Bell inequality I2

3 , we can conclude that w − u− v + a ≥ 0,
v − u− w + b ≥ 0 and u− v − w + c ≥ 0. In the same way, if I satisfies
Bell inequality I3

3 , the inequality n− (a+ b+ c−u− v−w) ≥ 0 follows.
Since a, b, u ∈ R+ and n ∈ N satisfy inequalities (5.5), we can use

Lemma 5.6 to conclude that inequality (5.6) is also fulfilled for D, E
and F on Y .

Again, a more specialised version of this meta-theorem can be
stated.

Theorem 5.4 Under the assumptions of Theorem 5.3: if H does not depend
explicitly upon |X|, then (5.6) also holds for any fuzzy sets on an arbitrary
finite universe Y , provided the commutative conjunctor I satisfies Bell in-
equality I2

3 .

Proof. Since H does not depend upon |X|, we can augment the value
of n such that the inequalities a+ b−n ≤ u, a+ c−n ≤ v, b+ c−n ≤ w
and n−(a+b+c−u−v−w) ≥ 0 are always satisfied without changing
the value of a, b, c, u, v and w.
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5.4 Applications

5.4.1 Linear inequalities involving two sets

Since the Bell inequalities B1
2–B3

3 are particular linear inequalities, we
wonder which linear inequalities are valid in general, both in the crisp
case and in the fuzzy case.

Theorem 5.5 Consider a linear inequality with real coefficients of the form

a1|A|+ a2|B|+ b12|A ∩B|+ c|X| ≥ 0 , (5.7)

with A and B ordinary subsets of an arbitrary finite universe X .
The following statements are equivalent:

(i) Inequality (5.7) holds for all ordinary subsets A and B of X .

(ii) Inequality (5.7) holds for all (A, B) ∈ {∅, X}2.

(iii) The following conditions on a1, a2, b12 and c hold:

c ≥ 0 ,

a1 + c ≥ 0 ,

a2 + c ≥ 0 ,

a1 + a2 + b12 + c ≥ 0 . (5.8)

Proof. We give a circular proof. Since (i) trivially implies (ii) and it is
easily verified that (iii) follows from (ii), it suffices to show that (iii) im-
plies (i). Consider two ordinary subsets A and B of X = {x1, . . . , xn}.
Identifying A and B with their characteristic mapping, inequality (5.7)
is clearly equivalent with

n
∑

i=1

(a1A(xi) + a2B(xi) + b12 min(A(xi), B(xi)) + c) ≥ 0 .

Due to conditions (5.8), every term in the above sum is positive, and
therefore inequality (5.7) is fulfilled as well.

We next apply our first meta-theorem to these linear inequalities.

Theorem 5.6 Consider a linear inequality with real coefficients of the form

a1|A|+ a2|B|+ b12|A ∩B|+ c|X| ≥ 0 , (5.9)

with A and B fuzzy sets on an arbitrary finite universe X .
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(i) If I satisfies I1
2 , then inequality (5.9) holds for all fuzzy sets A and B

on X if and only if conditions (5.8) hold.

(ii) If c = 0, then inequality (5.9) holds for all fuzzy sets A and B on X
if and only if conditions (5.8) hold.

Proof. The first part follows from Theorems 5.1 and 5.5, while the
second part follows from Theorems 5.2 and 5.5.

The following theorem shows that in some cases more general re-
sults can be obtained through a direct proof. Indeed, in some cases I
does not need to satisfy I1

2 , i.e. it does not need to be bounded from
below by TL.

Theorem 5.7 Consider a linear inequality with real coefficients of the
form (5.9), with A and B fuzzy sets on an arbitrary finite universe X , such
that max(a1, a2) ≥ 0 or b12 ≤ 0. Then inequality (5.9) holds for all fuzzy sets
A and B on X if and only if conditions (5.8) hold.

Proof. This theorem, in particular the fact that I does not need to
satisfy I1

2 , does not follow from the meta-theorem (except for the case
c = 0) and needs to be proven explicitly.

Suppose that conditions (5.8) hold. A direct proof of Theorem 5.5
(which is given in Section 5.4.3) shows that only in the case a1 < 0,
a2 < 0 and b12 > 0 (and then necessarily c > 0) the left-hand side
of B1

2 (or equivalently, the left-hand side of I1
2 ) needs to be invoked.

Indeed, consider for instance the subcase min(|a1|, |a2|, b12) = b12 (the
other subcases being similar), then we can write a1 = a′1 − b12 and
a2 = a′2 − b12, with a′1 ≤ 0 and a′2 ≤ 0. For any two fuzzy sets A and B
on X = {x1, . . . , xn}, it then holds that

a1|A|+ a2|B|+ b12|A ∩B|+ c|X|
= a′1|A|+ a′2|B|+ b12(−|A| − |B|+ |A ∩B|) + c n .

Using the left-hand side of B1
2 it follows that

a1|A|+ a2|B|+ b12|A ∩B|+ c|X|
≥ a′1|A|+ a′2|B| − b12 n + c n

≥ a′1 n + a′2 n− b12 n + c n

= a1 n + a2 n + b12 n + c n ≥ 0 .

The positivity in the last step is due to the last of conditions (5.8).
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Let us demonstrate one of the other cases where the left-hand side of
B1

2 is not necessary. Suppose that a1 ≥ 0, a2 ≥ 0 and b12 < 0. Consider
for instance the subcase min(a1, a2, |b12|) = |b12|, then we can write a1 =
a′1 − b12 and a2 = a′2 − b12, with a′1 ≥ 0 and a′2 ≥ 0. For any two fuzzy
sets A and B on X = {x1, . . . , xn}, it then holds that

a1|A|+ a2|B|+ b12|A ∩B|+ c n

= −b12(|A|+ |B| − |A ∩B|) + a′1|A|+ a′2|B|+ c n .

Using the right-hand side of B1
2 it follows that |A| + |B| − |A ∩ B| ≥ 0

and hence

a1|A|+ a2|B|+ b12|A ∩B|+ c n

≥ a′1|A|+ a′2|B|+ c n ≥ 0 .

This completes the proof.

5.4.2 Linear inequalities involving three sets

Theorem 5.8 Consider a linear inequality with real coefficients of the form

a1|A|+a2|B|+a3|C|+b12|A∩B|+b13|A∩C|+b23|B∩C|+c|X| ≥ 0 (5.10)

with A, B and C ordinary subsets of an arbitrary finite universe X .
The following statements are equivalent:

(i) Inequality (5.10) holds for all ordinary subsets A, B and C of X .

(ii) Inequality (5.10) holds for all (A, B, C) ∈ {∅, X}3 of X .

(iii) The following conditions on ai, bij and c hold for all i = 1, . . . , 3 and
j > i:

c ≥ 0 ,

ai + c ≥ 0 ,

ai + aj + bij + c ≥ 0 ,

a1 + a2 + a3 + b12 + b13 + b23 + c ≥ 0 . (5.11)

Proof. We give a circular proof. Since (i) trivially implies (ii) and
it is easily verified that (iii) follows from (ii), it suffices to show that
(iii) implies (i). Consider three ordinary subsets A, B and C of X =
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{x1, . . . , xn}. Identifying A, B and C with their characteristic mapping,
inequality (5.10) is clearly equivalent with

n
∑

i=1

(a1A(xi) + a2B(xi) + a3C(xi) + b12 min(A(xi), B(xi))

+ b13 min(A(xi), C(xi)) + b23 min(B(xi), C(xi)) + c) ≥ 0 . (5.12)

Due to conditions (5.11), every term in the above sum is positive, and
therefore inequality (5.10) is fulfilled as well.

Now, we can apply our second meta-theorem.

Theorem 5.9 Consider a linear inequality with real coefficients of the form

a1|A|+ a2|B|+ a3|C|+ b12|A∩B|+ b13|A∩C|+ b23|B ∩C|+ c|X| ≥ 0 ,
(5.13)

with A, B and C fuzzy sets on an arbitrary finite universe X .

(i) If I satisfies I2
3 and I3

3 , then inequality (5.13) holds for all fuzzy sets
A, B and C on X if and only if conditions (5.11) hold.

(ii) If c = 0 and I satisfies I2
3 , then inequality (5.13) holds for all fuzzy

sets A, B and C on X if and only if conditions (5.11) hold.

Proof. The first part follows from Theorems 5.3 and 5.8, while the
second part follows from Theorems 5.4 and 5.8.

The following theorem shows that in some cases more general re-
sults can be obtained through a direct proof. Indeed, in some cases I
does not need to satisfy I3

3 .

Theorem 5.10 Consider a linear inequality with real coefficients of the
form (5.13), with A, B and C fuzzy sets on an arbitrary finite universe X ,
such that

max(ai, aj , ak) ≥ 0 ∨ min(bij , bjk, bik) ≤ 0

∨ [ (aj + bij > 0 ∨ c + ak − bij ≥ 0)

∧ (aj + bij ≤ 0 ∨ ai ≤ aj + ak ∨ ai + bjk ≤ aj ∨ c + ai + ak ≥ 0) ] ,

and I satisfies I2
3 . Then inequality (5.13) holds for all fuzzy sets A, B and C

on X if and only if conditions (5.11) hold.
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Proof. This theorem, in particular the fact that I does not need to
satisfy I3

3 , does not follow from the meta-theorem (except for the case
c = 0) and needs to be proven explicitly.

Suppose that conditions (5.11) hold. A direct proof of Theorem 5.8
(which is given in Section 5.4.3) shows that only in the case

max(ai, aj , ak) < 0 ∧ min(bij , bjk, bik) > 0

∧ [ (aj + bij ≤ 0 ∧ c + ak − bij < 0)

∨ (aj + bij > 0 ∧ ai > aj + ak ∧ ai + bjk > aj ∧ c + ai + ak < 0) ] ,

inequality B3
3 (or equivalently, inequality I3

3 ) needs to be invoked.
Indeed, consider for instance the subcase ai < 0, bij ≥ 0,

min(|a1|, |a2|, |a3|, b12, b13, b23) = b12 and c − b12 + a3 < 0. Then, we
can write a1 = a′1 − b12, a2 = a′2 − b12, a3 = a′3 − b12, b13 = b′13 + b12 and
b23 = b′23 + b12, with a′1 ≤ 0, a′2 ≤ 0, a′3 ≤ 0, b′13 ≥ 0 and b′23 ≥ 0. We then
obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|+ b23|B ∩ C|+ c|X|
= a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ c n

+ b12(−|A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C|)
≥ a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12) n .

Furthermore, suppose min(|a′1|, |a′3|, b13) = |a′3| (again, other cases can
be proven in a similar way), then we can write: a′1 = a′′1 + a′3 and b′13 =
b′′13 − a′3, with a′′1 ≤ 0 and b′′13 ≥ 0. We obtain:

a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12) n

≥ a′′1|A|+ a′2|B|+ b′′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′3) n

≥ a′′1 n + a′2 n + b′′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′3) n

≥ 0 ,

since c− b12 + a′3 + a′′1 + a′2 = c + a1 + a2 + b12 ≥ 0.
Let us demonstrate one of the other cases where inequality B3

3 is not
necessary. Suppose that ai < 0, bij ≥ 0, min(|a1|, |a2|, |a3|, b12, b13, b23) =
b12 and c − b12 + a3 ≥ 0. Then, we can write a1 = a′1 − b12 and a2 =
a′2 − b12, with a′1 ≤ 0 and a′2 ≤ 0. We then obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|+ b23|B ∩ C|+ c n

= a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|+ c n

+ b12(−|A| − |B|+ |A ∩B|)
≥ a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|+ (c− b12) n .
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Furthermore, suppose min(|a′2|, |a3|, b23) = |a′2| (again, other subcases
can be proven in a similar way), then we can write: a3 = a′3 + a′2 and
b23 = b′23 − a′2, with a′3 ≤ 0 and b′23 ≥ 0. We obtain:

a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|+ (c− b12) n

≥ a′1|A|+ a′3|C|+ b13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′2) n .

Consider the subcase min(|a′1|, |a′3|, b13) = |a′1|, then we can write: a′3 =
a′′3 + a′1 and b13 = b′13 − a′1, with a′′3 ≤ 0 and b′13 ≥ 0. We obtain:

a′1|A|+ a′3|C|+ b13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′2) n

≥ a′′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′1 + a′2) n

≥ (c− b12 + a′1 + a′2 + a′′3) n

≥ 0 ,

since c− b12 + a′1 + a′2 + a′′3 = c− b12 + a3 ≥ 0.
This completes the proof.

5.4.3 Direct proofs of Theorems 5.5 and 5.8

For the sake of completeness, we give the direct proofs of Theorem 5.5
and Theorem 5.8.

Theorem 5.11 A linear inequality with real coefficients of the form

a1|A|+ a2|B|+ b12|A ∩B|+ c|X| ≥ 0 (5.14)

holds for all ordinary subsets A and B of a finite universe X if and only if it
holds for all (A, B) ∈ {∅, X}2.

Proof. Suppose that inequality (5.14) holds for any (A, B) ∈ {∅, X}2,
then the following conditions on a1, a2, b12 and c hold:

c ≥ 0 ,

a1 + c ≥ 0 ,

a2 + c ≥ 0 ,

a1 + a2 + b12 + c ≥ 0 .

Consider two arbitrary subsets A and B of X . We split the proof into
several cases. Suppose a1 ≥ 0 and a2 ≥ 0. If b12 ≥ 0, then inequal-
ity (5.14) is trivially fulfilled. Suppose b12 < 0 and consider the follow-
ing subcases:
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(i) The case min(a1, a2, |b12|) = |b12|. Then we rewrite a1 = a′1 − b12

and a2 = a′2 − b12, with a′1 ≥ 0 and a′2 ≥ 0. Due to the right-hand
side of B1

2 , it holds that

a1|A|+ a2|B|+ b12|A ∩B|+ c|X|
= −b12(|A|+ |B| − |A ∩B|) + a′1|A|+ a′2|B|+ c|X|
≥ a′1|A|+ a′2|B|+ c|X| ≥ 0 .

(ii) The case min(a1, a2, |b12|) = a1 (the case min(a1, a2, |b12|) = a2 is
analogous). Then we rewrite b12 = b′12 − a1, with b′12 ≤ 0. Due to
the right-hand side of B1

2 , it holds that

a1|A|+ a2|B|+ b12|A ∩B|+ c|X|
= a1(|A| − |A ∩B|) + a2|B|+ b′12|A ∩B|+ c|X|
≥ a2|B|+ b′12|A ∩B|+ c|X| .

Consider the subcase min(a2, |b′12|) = |b′12| (the subcase
min(a2, |b12|) = a2 is analogous). We rewrite b′12 = b′′12 − a2, with
b′′12 ≤ 0, and obtain

a2|B|+ b′12|A ∩B|+ c|X|
= a2(|B| − |A ∩B|) + b′′12|A ∩B|+ c|X|
≥ b′′12|A ∩B|+ c|X|
≥ (b′′12 + c)|X| ≥ 0 ,

since b′′12 + c = a1 + a2 + b12 + c ≥ 0.

In the same way, one can prove that inequality (5.14) holds for the cases
a1 ≥ 0, a2 ≤ 0; a1 ≤ 0, a2 ≥ 0 and a1 ≤ 0, a2 ≤ 0. Nevertheless, we
mention here the proof for the case a1 < 0, a2 < 0 and b12 > 0, since
it is the only case where we need to invoke the left-hand side of B1.
Suppose min(|a1|, |a2|, b12) = b12 (the other cases being similar), then
we write a1 = a′1 − b12 and a2 = a′2 − b12, with a′1 ≤ 0 and a′2 ≤ 0. We
obtain the following

a1|A|+ a2|B|+ b12|A ∩B|+ c|X|
= a′1|A|+ a′2|B|+ b12(−|A| − |B|+ |A ∩B|) + c|X|
≥ a′1|A|+ a′2|B| − b12|X|+ c|X|
≥ (a′1 + a′2 − b12 + c)|X| ≥ 0 ,

since a′1 + a′2 − b12 + c = a1 + a2 + b12 + c ≥ 0.
This completes our proof.
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Theorem 5.12 A linear inequality with real coefficients of the form:

a1|A|+a2|B|+a3|C|+b12|A∩B|+b13|A∩C|+b23|B∩C|+c|X| ≥ 0 (5.15)

holds for all ordinary subsets A, B and C of a finite universe X if and only if
it holds for all (A, B, C) ∈ {∅, X}3.

Proof. Suppose that inequality (5.15) holds for any (A, B, C) ∈
{∅, X}3, then the following conditions on ai, bij and c hold for all
i = 1, . . . , 3 and j > i:

c ≥ 0 ,

ai + c ≥ 0 ,

ai + aj + bij + c ≥ 0 ,

a1 + a2 + a3 + b12 + b13 + b23 + c ≥ 0 .

Again, we split up the proof into several parts. Suppose all ai ≥ 0. If
also all bij ≥ 0, inequality (5.15) is trivially fulfilled.

(i) Suppose b12 ≤ 0, b13 ≥ 0 and b23 ≥ 0. Since a1|A|+a2|B|+b12|A∩
B| + c′ ≥ 0 for any a1, a2, b12 and c satisfying c ≥ 0, a1 + c ≥ 0,
a2 + c ≥ 0, and a1 + a2 + b12 + c ≥ 0 (see Theorem 5.11), we can
conclude that

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|
+ b23|B ∩ C|+ c|X|
≥ a3|C|+ b13|A ∩ C|+ b23|B ∩ C| ≥ 0 .

(ii) Next, suppose b12 ≤ 0, b13 ≤ 0 and b23 ≥ 0. Furthermore, suppose
b23 ≤ min(a1, |b12|, |b13|), then we can rewrite a1 = a′1 + b23, b12 =
b′12− b23 and b13 = b′13− b23, with a′1 ≥ 0, b′12 ≤ 0 and b′13 ≤ 0. Due
to B2, it holds that

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|
+ b23|B ∩ C|+ c|X|
= b23(|A| − |A ∩B| − |A ∩ C|+ |B ∩ C|)

+ a′1|A|+ a2|B|+ a3|C|+ b′12|A ∩B|+ b′13|A ∩ C|+ c|X|
≥ a′1|A|+ a2|B|+ a3|C|+ b′12|A ∩B|+ b′13|A ∩ C|+ c|X| .

Furthermore, consider the subcase min(a2, |b′12|) = |b′12| (other
subcases can be proven in a similar way). Then we write a2 =



106 Inequalities on scalar cardinalities

a′2 − b′12, with a′2 ≥ 0. Due to the right-hand side of B1, it follows
that

a′1|A|+ a2|B|+ a3|C|+ b′12|A ∩B|+ b′13|A ∩ C|+ c|X|
≥ a′1|A|+ a′2|B|+ a3|C|+ b′13|A ∩ C|+ c|X| ≥ 0 ,

since a′1|A|+ a3|C|+ b′13|A ∩ C|+ c′ ≥ 0, due to Theorem 5.11.

All other cases and subcases are proven in a similar way. Nevertheless,
we mention here the proof for some subcases where we need to invoke
B3. Suppose all ai < 0 and all bij ≥ 0.

(i) Suppose min(|a1|, |a2|, |a3|, b12, b13, b23) = b12 and c− b12 + a3 < 0.
Then, we can write a1 = a′1 − b12, a2 = a′2 − b12, a3 = a′3 − b12,
b13 = b′13 + b12 and b23 = b′23 + b12, with a′1 ≤ 0, a′2 ≤ 0, a′3 ≤ 0,
b′13 ≥ 0 and b′23 ≥ 0. We then obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|
+ b23|B ∩ C|+ c|X|
= a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ c|X|

+ b12(−|A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C|)
≥ a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|

+ (c− b12)|X| .

Furthermore, suppose min(|a′1|, |a′3|, b13) = |a′3| (again, other sub-
cases can be proven in a similar way), then we can write: a′1 =
a′′1 + a′3 and b′13 = b′′13 − a′3, with a′′1 ≤ 0 and b′′13 ≥ 0. We obtain:

a′1|A|+ a′2|B|+ a′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12)|X|
≥ a′′1|A|+ a′2|B|+ b′′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′3)|X|
≥ a′′1 n + a′2 n + b′′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′3)|X|
≥ 0 ,

since c− b12 + a′3 + a′′1 + a′2 = c + a1 + a2 + b12 ≥ 0.

(i’) Let us demonstrate that when min(|a1|, |a2|, |a3|, b12, b13, b23) =
b12 and c− b12 + a3 ≥ 0 (other subcases can be proven in a similar
way), inequality B3 is not necessary. In that case, we can write
a1 = a′1 − b12 and a2 = a′2 − b12, with a′1 ≤ 0 and a′2 ≤ 0. We then
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obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|
+ b23|B ∩ C|+ c|X|
= a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|+ c|X|

+ b12(−|A| − |B|+ |A ∩B|)
≥ a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|

+ (c− b12)|X| .

Furthermore, suppose min(|a′2|, |a3|, b23) = |a′2| (again, other sub-
cases can be proven in a similar way), then we can write: a3 =
a′3 + a′2 and b23 = b′23 − a′2, with a′3 ≤ 0 and b′23 ≥ 0. We obtain:

a′1|A|+ a′2|B|+ a3|C|+ b13|A ∩ C|+ b23|B ∩ C|+ (c− b12)|X|
≥ a′1|A|+ a′3|C|+ b13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′2)|X| .

Consider the subcase min(|a′1|, |a′3|, b13) = |a′1|, then we can write:
a′3 = a′′3 + a′1 and b13 = b′13 − a′1, with a′′3 ≤ 0 and b′13 ≥ 0. We
obtain:

a′1|A|+ a′3|C|+ b13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′2)|X|
≥ a′′3|C|+ b′13|A ∩ C|+ b′23|B ∩ C|+ (c− b12 + a′1 + a′2)|X|
≥ (c− b12 + a′1 + a′2 + a′′3)|X|
≥ 0 ,

since c− b12 + a′1 + a′2 + a′′3 = c− b12 + a3 ≥ 0.

(ii) Suppose min(|a1|, |a2|, |a3|, b12, b13, b23) = |a1| and c + a1 + a3 < 0
(other subcases can be proven in a similar way). Then, we can
write a2 = a′2 + a1, a3 = a′3 + a1, b12 = b′12 − a1, b13 = b′13 − a1 and
b23 = b′23 − a1, with a′2 ≤ 0, a′3 ≤ 0, b′12 ≥ 0, b′13 ≥ 0 and b′23 ≥ 0.
We then obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|
+ b23|B ∩ C|+ c|X|
= a′2|B|+ a′3|C|+ +b′12|A ∩B|+ b′13|A ∩ C|+ b′23|B ∩ C|+ c|X|

+ a1(|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|)
≥ a′2|B|+ a′3|C|+ b′12|A ∩B|+ b′13|A ∩ C|+ b′23|B ∩ C|

+ (c + a1)|X| .
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Furthermore, suppose min(|a′2|, |a′3|, b′23) = |a′3| (again, other sub-
cases can be proven in a similar way), then we can write: a′2 =
a′′2 + a′3 and b′23 = b′′23 − a′3, with a′′2 ≤ 0 and b′′23 ≥ 0. We obtain:

a′2|B|+ a′3|C|+ b′12|A ∩B|+ b′13|A ∩ C|+ b′23|B ∩ C|
+ (c + a1)|X|
≥ a′′2|B|+ b′12|A ∩B|+ b′13|A ∩ C|+ b′′23|B ∩ C|

+ (c + a1 + a′3)|X|
≥ (c + a1 + a′′2 + a′3)|X|
≥ 0 ,

since c + a1 + a′′2 + a′3 = c + a2 ≥ 0.

(ii’) Let us demonstrate that when min(|a1|, |a2|, |a3|, b12, b13, b23) =
|a1| and c + a1 + a3 ≥ 0, inequality B3 is not necessary. In that
case, we can write a2 = a′2 + a1 and b12 = b′12 − a1, with a′2 ≤ 0
and b′12 ≥ 0. We then obtain

a1|A|+ a2|B|+ a3|C|+ b12|A ∩B|+ b13|A ∩ C|+ b23|B ∩ C|
+ c|X|
≥ a′2|B|+ a3|C|+ b′12|A ∩B|+ b13|A ∩ C|+ b23|B ∩ C|

+ (c + a1)|X| .

Furthermore, suppose min(|a′2|, |a3|, b23) = |a′2| (again, other sub-
cases can be proven in a similar way), then we can write: a3 =
a′3 + a′2 and b23 = b′23 − a′2, with a′3 ≤ 0 and b′23 ≥ 0. We obtain:

a′2|B|+ a3|C|+ b′12|A ∩B|+ b13|A ∩ C|+ b23|B ∩ C|
+ (c + a1)|X|
≥ a′3|C|+ b′12|A ∩B|+ b13|A ∩ C|+ b′23|B ∩ C|

+ (c + a1 + a′2)|X|
≥ (c + a1 + a′2 + a′3)|X|
≥ 0 ,

since c + a1 + a′2 + a′3 = c + a1 + a3 ≥ 0.

This completes our proof.
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5.5 Conclusions

In this chapter, we have shown that the Bell-type inequalities contribute
greatly to the verification of inequalities on fuzzy cardinalities. More-
over, we have formulated two meta-theorems, which state that certain
inequalities which are valid in the crisp case stay invariant when fuzzi-
fied. These meta-theorems will be extensively used in the next two
chapters.
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Chapter 6

A parametric family of fuzzy
similarity measures

6.1 Introduction

In Chapter 2, we have given an extended overview of commonly used
similarity measures for binary vectors denoting the presence or ab-
sence of features. However, similarity measurement does not restrict
to binary vectors only. Many times, graded feature vectors, i.e. vectors
whose elements are scaled to the real unit interval, are to be compared.
Therefore, one of the aims of this chapter is to provide the reader with a
class of similarity measures for comparing graded feature vectors. We
will refer to these similarity measures as fuzzy similarity measures, as
will become clear in Section 6.2.

In the literature, fuzzy similarity measures appear in various ways
and in several domains. For example, in image processing [15, 63],
fuzzy similarity measures are used to compare different images (which
are reduced to graded feature vectors). Blanco et al. [11] prove that
fuzzy similarity measures can be used for calculating the effectiveness
in information retrieval, rather than the traditional measures of recall
and precision. In fuzzy modelling [16], a fuzzified version of the Jac-
card coefficient (not only based on the basic scalar cardinality of a fuzzy
set, but also on the cardinality of a fuzzy set which is characterized by a
symmetrical, continuous membership function) can be used to remove
redundant fuzzy rules and to minimize the number of fuzzy sets.

It is always possible to derive in an axiomatic setting fuzzy similar-
ity measures from scratch. Nevertheless, a simpler method to construct
fuzzy similarity measures is to start from a similarity measure for or-
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dinary sets and to establish a set of fuzzification rules by which the
measure is transformed in a consistent manner into a fuzzy similarity
measure. In most papers concerned with fuzzy similarity measures, ac-
cording to a well-known recipe of Zadeh [95], the minimum and max-
imum operator are used to model pointwise intersection and union of
fuzzy sets and the basic scalar cardinality is used to define the cardi-
nality of a fuzzy set. Many papers have already been dedicated to the
fuzzification of cardinality-based similarity measures. They are mainly
based on the fuzzification of Tversky’s contrast model [81].

The fuzzified version of the Jaccard coefficient is by far the most
popular fuzzy similarity measure [6, 10, 15, 64], but also fuzzifications
of the simple matching coefficient [10], the Dice coefficient [15, 64] and
the Ochiai coefficient [63] appear. Furthermore, new families of fuzzy
similarity measures based on Tversky’s contrast model were given by
Tolias et al. [80] and by Santini and Jain [71]. Next to the fuzzification
of the Jaccard coefficient and the Dice coefficient, Pappis and Karacapi-
lidis [64] also provide a fuzzification of the following similarity mea-
sure for ordinary sets S(A, B) = 1 − |A 4 B| (which also appeared in
Dubois and Prade [29]).

Wang, De Baets and Kerre [84] take a different direction. They
provide a class of fuzzy similarity measures based on the work by
Bandler and Kohout [2] and inspired on the classical equivalence
A = B ⇔ A ⊆ B and B ⊆ A. Considering different implica-
tors (an implicator is a [0, 1]2 → [0, 1] mapping for which I(0, 0) =
I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 and whose first (second) partial
mappings are decreasing (increasing)), a class of similarity measures
EI(A, B) = min(infx I(A(x), B(x)), infx I(B(x), A(x))) is then ob-
tained. One particular member of this class, the fuzzified version of the
above-mentioned similarity measure based on the symmetric dif-
ference, is obtained by considering the Łukasiewicz implicator, i.e.
I(x, y) = min(1− x + y, 1).

Bouchon-Meunier et al. [10] propose a classification of measures of
comparison enabling to compare fuzzy characteristics of objects, ac-
cording to their properties and the purpose of their utilization. These
measures of comparison are subdivided into measures of dissimilar-
ity and measures of similitude (both are based on Tversky’s contrast
model). The latter are subsequently divided into measures of satisfia-
bility and measures of resemblance.

This chapter is organized as follows. In Section 6.2, a definition of a
fuzzy similarity measure is given and a family of fuzzy similarity mea-
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sures is proposed, based on the fuzzification of a family of cardinality-
based similarity measures for ordinary sets introduced in Chapter 2. In
Section 6.3 the TL- and TP-transitive members are identified.

6.2 A parametric family of fuzzy similarity mea-
sures

Similarity measurement does not restrict to binary vectors only. Of-
ten, the presence or absence of a feature is not clear-cut and is rather a
matter of degree. Hence, if instead of binary vectors we have to com-
pare vectors with components scaled to the real unit interval [0, 1] (the
higher the number, the more the feature is present), the need arises to
generalize the similarity measures described in Chapter 2. In fact, in
the same way as binary vectors can be identified with ordinary subsets
of a finite universe X , vectors with components in [0, 1] can be identi-
fied with fuzzy subsets of X . We define a fuzzy similarity measure as
follows:

Definition 6.1 A fuzzy similarity measure is a reflexive, symmetrical binary
fuzzy relation on F(X).

Having introduced fuzzification rules for the cardinality of a fuzzy
set and translated classical set operations in Chapter 3, we are now able
to fuzzify the parametric family of similarity measures (2.4). Therefore,
we rewrite expression (2.4) in terms of intersections only,

S(A, B)

=
x(|A|+ |B| − 2|A ∩B|) + y|A ∩B|+ z(n− |A| − |B|+ |A ∩B|)
x′(|A|+ |B| − 2|A ∩B|) + y|A ∩B|+ z(n− |A| − |B|+ |A ∩B|) .

Consider two fuzzy sets A and B in a finite universe X = {x1, . . . , xn},
then we fuzzify the above expression into

S(A, B) =
x(a + b− 2u) + yu + z(n− a− b + u)

x′(a + b− 2u) + yu + z(n− a− b + u)
, (6.1)

with a =
n

∑

i=1

A(xi), b =
n

∑

i=1

B(xi) and u =
n

∑

i=1

Q(A(xi), B(xi)), where

Q denotes a commutative quasi-copula. Remark that if we model the
intersection of two fuzzy sets by means of a stable, commutative quasi-
copula, it doesn’t matter whether we first rewrite expression (2.4) in
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terms of intersections only and then fuzzify this new expression, or
whether we fuzzify expression (2.4) directly. In Table 6.1, we summa-
rize the fuzzy similarity measures (that are a member of family (6.1)
and whose crisp counterparts can be found in Table 2.6) for some com-
monly used quasi-copulas, TM, TP and TL.

Again, remark that in order to guarantee that S(A, B) ∈ [0, 1], we
need to impose the following restriction: 0 ≤ x ≤ x′. Analogously to
the parametric family of similarity measures for ordinary sets, the case
x = x′ leads to trivial measures taking value 1 only, and therefore we
consider from here on 0 ≤ x < x′.

6.3 T -transitive members

It is highly desirable that T -transitivity is preserved along the fuzzifi-
cation process from crisp to fuzzy similarity measures. First, we iden-
tify the TL-transitive members of family (6.1) to continue with the TP-
transitive members. These results are in line with the ones obtained for
the family of crisp similarity measures.

6.3.1 Łukasiewicz-transitive members

Let us recall that a fuzzy similarity measure is TL-transitive if the fol-
lowing inequality is fulfilled:

1− S(A, B)− S(B, C) + S(A, C) ≥ 0 . (6.2)

Theorem 6.1 The TL-transitive members of family (6.1) of fuzzy similarity
measures are for any commutative quasi-copula that satisfies I3

3 characterized
by:

x′ ≥ max(y, z) . (6.3)

Proof. In Theorem 2.1 we proved that inequality (6.2) holds for all n
and all ordinary sets A, B and C if and only if the parameters satisfy
conditions (6.3). For fuzzy sets A, B and C, the left-hand side of in-
equality (6.2) is a homogeneous function of |A|, |B|, |C|, |A∩B|, |A∩C|,
|B ∩ C| and |X|. When inequality I3

3 is fulfilled (inequalities I1
2 and I2

3

are satisfied for any quasi-copula), we can use Theorem 5.3 to conclude
that inequality (6.2) also holds for all fuzzy sets A, B and C under the
same parameter conditions (6.3).
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Theorem 6.2 The TL-transitive members of family (6.1) of fuzzy similarity
measures with z = 0 are for any commutative quasi-copula characterized by
parameter conditions (6.3).

Proof. When z = 0, the homogeneous function on the left-hand side
of (6.2) is independent of |X| and using Theorem 5.4 we can conclude
that inequality (6.2) also holds for all fuzzy sets A, B and C under the
same parameter conditions (6.3).

Using the latter theorem, we can conclude that the fuzzified version of
the Jaccard coefficient as well as the fuzzified version of the first coeffi-
cient of Sokal and Sneath are TL-transitive, since both are members of
family (6.1) with z = 0.

However, with Theorem 6.1 we are not able to verify the TL-
transitivity of other fuzzy similarity measures when we model the in-
tersection of two fuzzy sets by a commutative quasi-copula which does
not satisfy Bell-type inequality I3

3 . To solve this problem, we provide
a third theorem. It requires a direct proof and has nothing to do with
the meta-theorems discussed above. First, we prove the following lem-
mata:

Lemma 6.1 Let s1, s2, s3 ∈ R with s1 > 0, s2 > 0 and s3 > 0 such that

1

s1
+

1

s2
− 1

s3
≥ 0 ,

then also the following holds

1

s1 + t
+

1

s2 + t
− 1

s3 + t
≥ 0 ,

for any t ≥ 0.

Proof. Since the denominators of the left part of the latter inequality
are always positive, we have to verify that the following inequality is
fulfilled:

(s1 + t)(s3 + t) + (s2 + t)(s3 + t)− (s1 + t)(s2 + t) ≥ 0 (6.4)

for any t ≥ 0. Inequality (6.4) can be rewritten as

t2 + 2s3t + s3(s1 + s2)− s1s2 ≥ 0 .

Since 1
s1

+ 1
s2
− 1

s3
≥ 0, or equivalently s3(s1 +s2)−s1s2 ≥ 0, and s3 > 0,

inequality (6.4) is fulfilled for any t ≥ 0.
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Lemma 6.2 Let f be a quadratic function in x, defined as f(x) = αx2+βx+
γ, with α, β and γ real coefficients such that γ = f(0) ≥ 0. If there exists a
y > 0 such that f(y) ≥ 0 and 2γ + βy ≥ 0, then f(x) ≥ 0 for any x ∈ [0, y].

Proof. Since f(0) ≥ 0 and f(y) ≥ 0 for y > 0, the quadratic function f
could only change sign in [0, y] if f ′(0) = β < 0, f ′(y) = 2αy + β > 0
and f ′′(0) = α > 0. Suppose α > 0 and 0 < −β < 2αy. Then, the
discriminant of the quadratic function f is equal to

4 = β2 − 4αγ < −2αβy − 4αγ = 2α(−βy − 2γ) .

Since 2γ + βy ≥ 0, we can conclude that 4 ≤ 0 and therefore the func-
tion f is always positive in [0, y].

In the next two lemmata, we prove that some inequalities on fuzzy
set cardinalities are always fulfilled (these inequalities will show up in
the proof of Theorem 6.3). We introduce the following notations:

a =
n

∑

i=1

A(xi) , u =
n

∑

i=1

Q(A(xi), B(xi)) ,

b =
n

∑

i=1

B(xi) , v =
n

∑

i=1

Q(A(xi), C(xi)) ,

c =
n

∑

i=1

C(xi) , w =
n

∑

i=1

Q(B(xi), C(xi)) ,

where Q denotes a commutative quasi-copula.

Lemma 6.3 Consider the notations introduced above, then the inequality

(a + c)(a + b− 2u)(b + c− 2w) + uv(b + c− 2w)

− uw(a + c− 2v) + vw(a + b− 2u) ≥ 0 (6.5)

is always fulfilled.

Proof. Let us consider the expression

E = c(b− u)(b + c− 2w) + uv(c− w)− uw(c− v) + vw(b− u) ,

which can also be written as

E = c(b− u)(b + c− 2w) + uc(v − w) + vw(b− u) . (6.6)
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Since inequality I2
3 is fulfilled for any commutative quasi-copula, the

following inequality is satisfied: v−u−w+b ≥ 0. Additionally, making
use of the fact that c ≥ 0 and u ≥ 0, we obtain from (6.6) that

E ≥ c(b− u)(b + c− 2w) + uc(u− b) + vw(b− u)

= [c(b + c− 2w − u) + vw](b− u) .

Since c ≥ 0 and b − u ≥ 0, and since inequality I2
3 also yields that

b− u ≥ w − v, it follows that:

E ≥ [c(c− 2w + w − v) + vw](b− u)

= [c(c− w)− v(c− w)](b− u) = (c− v)(c− w)(b− u) .

Hence, E ≥ 0, and adding to E the positive quantity c(a−u)(b+c−2w)
enforces the inequality, so that:

c(a+ b−2u)(b+ c−2w)+uv(c−w)−uw(c− v)+ vw(b−u) ≥ 0 . (6.7)

This inequality holds for any A, B and C and corresponding a, b and c.
Therefore, we may change the role of A and C, which implies that we
can simultaneously change a into c, c into a, u into w and w into u to
obtain that:

a(a+ b−2u)(b+ c−2w)+uv(b−w)−uw(a−v)+vw(a−u) ≥ 0 . (6.8)

The side by side addition of inequalities (6.7) and (6.8) results in in-
equality (6.5).

Lemma 6.4 Consider the notations introduced above, then the inequality

4n2(v − u− w + b)− n[(a + b− 2u)(v + w)

+ (a + c− 2v)(u + w)− (b + c− 2w)(u + v)] ≥ 0 (6.9)

is always fulfilled.

Proof. Since n ≥ 0, it suffices to show that the following inequality is
fulfilled:

4n(v − u− w + b)− (a + b− 2u)(v + w)

− (a + c− 2v)(u + w)− (b + c− 2w)(u + v) ≥ 0 .
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Since the latter inequality should hold for any fuzzy sets A, B and C,
we can substitute the fuzzy sets by their complements. Then the fol-
lowing inequality should be fulfilled:

4n(b− u− w + v)− (a + b− 2u)(n− a− c + v + n− b− c + w)

−(a + c− 2v)(n− a− b + u + n− b− c + w)

+(b + c− 2w)(n− a− b + u + n− a− c + v) ≥ 0 . (6.10)

The left-hand side of inequality (6.10) can be rewritten as follows:

4n(b− u− w + v)− (a + b− 2u)(n− a− c + v + n− b− c + w)

− (a + c− 2v)(n− a− b + u + n− b− c + w)

+ (b + c− 2w)(n− a− b + u + n− a− c + v)

= (a + b− 2u)(a + b + 2c− v − w) + (a + c− 2v)(a + 2b + c− u− w)

− (b + c− 2w)(2a + b + c− u− v)

= (a + b− 2u)(c− v) + (a + c− 2v)(b− u)

+ (2a + b + c)(a− u− v + w) .

Since inequality I2
3 is fulfilled, also inequality (6.10) will hold.

Theorem 6.3 The TL-transitive members of family (6.1) of fuzzy similarity
measures are for any commutative quasi-copula characterized by parameter
conditions (6.3).

Proof. In order to identify the conditions on the parameters x′, y and z
in (6.1), we have to verify when the following inequality is fulfilled:

(x′ − x)

(

− a + c− 2v

x′(a + c− 2v) + y v + z(n− a− c + v)
(6.11)

+
a + b− 2u

x′(a + b− 2u) + y u + z(n− a− b + u)

+
b + c− 2w

x′(b + c− 2w) + y w + z(n− b− c + w)

)

≥ 0 .

Again, we can omit the factor x′ − x, since x′ > x.
Case z = 0.
Substituting z = 0 in inequality (6.11) and converting the fractions of
the left-hand side of this inequality so that they have a common denom-
inator, it is sufficient to study the numerator, since the denominator is
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always positive. Then, the following inequality should be verified:

K(x′, y) = x′2(a + b− 2u)(a + c− 2v)(b + c− 2w)

+2x′y(a + b− 2u)(b + c− 2w)v

+y2(uv(b + c− 2w)− uw(a + c− 2v) + vw(a + b− 2u))

≥ 0 .

Since inequality (6.5) is satisfied (which was proven in Lemma 6.4), we
can conclude that

uv(b + c− 2w)− uw(a + c− 2v) + vw(a + b− 2u)

≥ −(a + c)(a + b− 2u)(b + c− 2w)

and therefore the following will hold:

K(x′, y) ≥ (x′2 − y2)(a + b− 2u)(a + c− 2v)(b + c− 2w)

+2y(x′ − y)(a + b− 2u)(b + c− 2w)v .

It is obvious that K(x′, y) ≥ 0 if x′ ≥ y. Therefore, the condition

x′ ≥ y ∧ z = 0

is a sufficient condition for inequality (6.11) to hold.

Case y = 0.
Since a + b − 2u = (n − a) + (n − b) − 2(n − a − b + u) (and similar
equalities for v and w), this case is completely analogous to the previous
one provided that the roles of y and z are interchanged and that one
turns into complements. Therefore, the condition

x′ ≥ z ∧ y = 0

is a sufficient condition for inequality (6.11) to hold.

Case y 6= 0, z 6= 0.
Since changing the fuzzy sets into their complements leads to changing
the role of y and z, we can suppose y ≤ z. We will study the following
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expression:

L(x′, y, z) =
a + b− 2u

x′(a + b− 2u) + y u + z(n− a− b + u)

− a + c− 2v

x′(a + c− 2v) + y v + z(n− a− c + v)

+
b + c− 2w

x′(b + c− 2w) + y w + z(n− b− c + w)

=
1

x′ + (y u + z(n− a− b + u))/(a + b− 2u)

− 1

x′ + (y v + z(n− a− c + v))/(a + c− 2v)

+
1

x′ + (y w + z(n− b− c + w))/(b + c− 2w)
.

Due to Lemma 6.1 it is sufficient to prove that L(z, y, z) ≥ 0 in order
that L(x′, y, z) ≥ 0 for any x′ ≥ z. We obtain

L(z, y, z) =
a + b− 2u

z(n− u) + y u
− a + c− 2v

z(n− v) + y v
+

b + c− 2w

z(n− w) + y w

=
1

z

{

a + b− 2u

n− µ u
− a + c− 2v

n− µ v
+

b + c− 2w

n− µ w

}

,

with µ = y−z
z , taking values between 0 (i.e. y = z) and 1 (i.e. y = 0).

Now, the problem reduces to proving that L(z, y, z) ≥ 0 for any µ ∈
[0, 1]. Converting the fractions of the latter expression for L(z, y, z) so
that they have a common denominator and omitting this denominator
since it is always positive, we have to verify that

M(µ) = (n− µ v)[(a + b− 2u)(n− µ w) + (b + c− 2w)(n− µ u)]

−(a + c− 2v)(n− µ u)(n− µ w)

= µ2[(a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv]

−µ n[(a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+(b + c− 2w)(u + v)] + 2n2(v − u− w + b)

is always positive for any µ ∈ [0, 1]. Since inequality I2
3 is fulfilled, also

M(0) = 2n2(b − u − w + v) ≥ 0 will hold. Since µ = 1 corresponds
to y = 0, we can also conclude that M(1) ≥ 0. This was proven in
the previous case. To apply Lemma 6.2, we still have to verify that the
following inequality will hold:

4n2(v − u− w + b)− n[(a + b− 2u)(v + w)

+ (a + c− 2v)(u + w)− (b + c− 2w)(u + v)] ≥ 0 .
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It was proven in Lemma 6.4 that the latter inequality is always satisfied.
Due to Lemma 6.2, M(µ) ≥ 0 for any µ ∈ [0, 1]. We can conclude that

x′ > x ∧ x′ ≥ max(y, z) ,

are sufficient conditions such that the members of family (6.1) of fuzzy
similarity measure are TL-transitive.

The proof that these conditions are also necessary conditions is al-
ready given in Theorem 2.1.

Corollary 6.1 The TL-transitive members of family (6.1) of fuzzy similar-
ity measures are for any Frank t-norm characterized by parameter condi-
tions (6.3).

This corollary immediately follows from Theorem 6.3. It only follows
from Theorem 6.1 for λ ≤ 9+4

√
5 or from Theorem 6.2 when z = 0 (this

is the case for the Jaccard coefficient and the first coefficient of Sneath
and Sokal).

6.3.2 Product-transitive members

The same reasoning can be made for identifying the parameters of the
family of fuzzy similarity measures such that the members of this fam-
ily are TP-transitive. Let us recall that a fuzzy similarity measure is
TP-transitive if the following inequality is fulfilled:

S(A, C)− S(A, B) · S(B, C) ≥ 0 . (6.12)

Theorem 6.4 The TP-transitive members of family (6.1) of fuzzy similarity
measures are for any commutative quasi-copula that satisfies I3

3 characterized
by:

x x′ ≥ max(y2, z2) . (6.13)

Proof. In Theorem 2.2 we proved that inequality (6.12) holds for all n
and all ordinary sets A, B and C if and only if the parameters satisfy
(6.13). For fuzzy sets A, B and C, the left-hand side of (6.12) is a ho-
mogeneous function of |A|, |B|, |C|, |A ∩ B|, |A ∩ C|, |B ∩ C| and |X|.
When inequality I3

3 is fulfilled (inequalities I1
2 and I2

3 are satisfied for
any quasi-copula), we can use Theorem 5.3 to conclude that inequality
(6.12) also holds for all fuzzy sets A, B and C under the same parameter
conditions (6.13).
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Theorem 6.5 The TP-transitive members of family (6.1) of fuzzy similarity
measures with z = 0 are for any commutative quasi-copula characterized by
parameter conditions (6.13).

Proof. When z = 0, the homogeneous function on the left-hand side of
inequality (6.12) is independent of |X| and using Theorem 5.4 we can
conclude that inequality (6.12) also holds for all fuzzy sets A, B and C
under the same parameter conditions (6.13).

Again, we are not able to verify the TP-transitivity of fuzzy simi-
larity measures in which the intersection of two fuzzy sets is modelled
by a commutative quasi-copula which does not satisfy inequality I3

3 .
Therefore, we provide a direct algebraic proof to overcome this prob-
lem.

Theorem 6.6 The TP-transitive members of family (6.1) of fuzzy similarity
measures are for any commutative quasi-copula characterized by parameter
conditions (6.13).

Proof. In order to identify the conditions on the parameters x, x′, y and
z in (6.1), we have to verify when the following inequality is fulfilled:

(x′ − x)

(

a + b− 2u

N1
− a + c− 2v

N2
+

b + c− 2w

N3

− (x′ − x)(a + b− 2u)(b + c− 2w)

N1 N3

)

≥ 0 . (6.14)

with,

N1 = x′(a + b− 2u) + y u + z(n− a− b + u) ,

N2 = x′(a + c− 2v) + y v + z(n− a− c + v) ,

N3 = x′(b + c− 2w) + y w + z(n− b− c + w) .

Again, we can omit the factor x′ − x, since x′ > x. After converting the
fractions of the left part of inequality (6.14) so that they have a common
denominator and omitting this denominator since it is always positive,
we divide the expression by x′. In addition suppose x = x/x′, y = y/x′

and z = z/x′ such that 0 ≤ x < 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1, then we
have to identify the conditions on the parameters x, y and z such that
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the following expression is greater or equal to zero:

K(x, y, z) = x (a + b− 2u)(b + c− 2w)(a + c− 2v)

+ y2[(a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv]

+ z2[(a + b− 2u)(n− a− c + v)(n− b− c + w)

− (a + c− 2v)(n− a− b + u)(n− b− c + w)

+ (b + c− 2w)(n− a− b + u)(n− a− c + v)]

+ y(1 + x)(a + b− 2u)(b + c− 2w)v

+ z(1 + x)(a + b− 2u)(b + c− 2w)(n− a− c + v)

+ yz[(a + b− 2u)(v(n− c− b + w) + w(n− a− c + v))

+ (b + c− 2w)(v(n− a− b + u) + u(n− a− c + v))

− (a + c− 2v)(w(n− a− b + u) + u(n− b− c + w))] .

Remark that K(x, y, z) is a non-decreasing function of x. Therefore,
if we can prove that K(x0, y, z) ≥ 0 for x0 = max(y2, z2), then
K(x, y, z) ≥ 0 for any x ∈ [x0, 1[.

When we replace the fuzzy sets in expression (6.14) by their com-
plements, then only the parameters y and z are changed and therefore
also y and z. Therefore, we can suppose that z ≤ y and also z ≤ y. Let
x0 = y2, then

K(y2, y, z) = y2 (a + b− 2u)(b + c− 2w)(a + c− 2v)

+ y2 [(a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv]

+ z2 [(a + b− 2u)(n− a− c + v)(n− b− c + w)

− (a + c− 2v)(n− a− b + u)(n− b− c + w)

+ (b + c− 2w)(n− a− b + u)(n− a− c + v)]

+ y(1 + y2) (a + b− 2u)(b + c− 2w)v

+ z(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + v)

+ yz [(a + b− 2u)(v(n− c− b + w) + w(n− a− c + v))

+ (b + c− 2w)(v(n− a− b + u) + u(n− a− c + v))

− (a + c− 2v)(w(n− a− b + u) + u(n− b− c + w))] .

This expression can be considered as a quadratic form αz2 + βz + γ in
z, with z ∈ [0, y]. We will use Lemma 6.2 to prove that K(y2, y, z) ≥ 0
as follows: first, we prove that K(y2, y, 0) = γ ≥ 0, next we prove that
K(y2, y, y) = α + β + γ ≥ 0 and finally we prove that 2γ + βy ≥ 0.
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Substituting z = 0, we obtain:

K(y2, y, 0) = y2 (a + b− 2u)(b + c− 2w)(a + c− 2v)

+ y2 [(a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv]

+ y(1 + y2) (a + b− 2u)(b + c− 2w)v .

From inequality (6.5) it follows that

K(y2, y, 0) ≥ −2y2 (a + b− 2u)(b + c− 2w)v

+ y(1 + y2) (a + b− 2u)(b + c− 2w)v

= y(1− y)2 (a + b− 2u)(b + c− 2w)v .

Since 0 ≤ y ≤ 1, a + b − 2u ≥ 0 and b + c − 2w ≥ 0, we can conclude
that K(y2, y, 0) ≥ 0. Substituting z = y, we obtain the following:

K(y2, y, y) = y2 ((a + b− 2u)(b + c− 2w)(a + c− 2v)

+ (a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv

+ (a + b− 2u)(n− a− c + v)(n− b− c + w)

− (a + c− 2v)(n− a− b + u)(n− b− c + w)

+ (b + c− 2w)(n− a− b + u)(n− a− c + v)

+ (a + b− 2u)(v(n− c− b + w) + w(n− a− c + v))

+ (b + c− 2w)(v(n− a− b + u) + u(n− a− c + v))

− (a + c− 2v)(w(n− a− b + u) + u(n− b− c + w)))

+ y(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + v)

= y2 ((a + b− 2u)(b + c− 2w)(a + c− 2v)

+ (a + b− 2u)(n− a− c + 2v)(n− b− c + w)

− (a + c− 2v)(n− a− b + 2u)(n− b− c + w)

+ (b + c− 2w)(n− a− b + 2u)(n− a− c + v))

+ y(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + v) .
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Furthermore, we can write K(y2, y, y) as follows:

K(y2, y, y) = y2 (2(a + b− 2u)(b + c− 2w)(a + c− 2v)

− 2n(a + b− 2u)(b + c− 2w) + 2n2(v − u− w + b)
)

+ y(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + v)

= 2y2n2(v − u− w + b)

− 2y2(a + b− 2u)(b + c− 2w)(n− a− c + v)

+ y(1 + y2)(a + b− 2u)(b + c− 2w)(n− a− c + v)

= 2y2n2(v − u− w + b)

+ y(1− y)2(a + b− 2u)(b + c− 2w)(n− a− c + v) .

Since Bell inequalities I1
2 and I2

3 are fulfilled for any commutative quasi-
copula and since 0 ≤ y ≤ 1 , we can conclude that K(y2, y, y) ≥ 0.

We can conclude that K(y2, y, z) ≥ 0 for any z ∈ [0, y] using
Lemma 6.2 if we can prove that the following expression

L(y) = 2y2 ((a + b− 2u)(b + c− 2w)(a + c− 2v)

+ (a + b− 2u)vw − (a + c− 2v)uw + (b + c− 2w)uv)

+ 2y(1 + y2) (a + b− 2u)(b + c− 2w)v

+ y(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + v)

+ y2 ((a + b− 2u)(v(n− c− b + w) + w(n− a− c + v))

+ (b + c− 2w)(v(n− a− b + u) + u(n− a− c + v))

− (a + c− 2v)(w(n− a− b + u) + u(n− b− c + w))) .

or equivalently,

L(y) = y2 (2(a + b− 2u)(b + c− 2w)(a + c− 2v)

+ n [(a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+ (b + c− 2w)(u + v)]− 2(a + b− 2u)(b + c− 2w)v)

+ y(1 + y2) (a + b− 2u)(b + c− 2w)(n− a− c + 3v)

= y {y2 (a + b− 2u)(b + c− 2w)(n− a− c + 3v)

+ y (2(a + b− 2u)(b + c− 2w)(a + c− 3v)

+ n ((a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+ (b + c− 2w)(u + v)))

+ (a + b− 2u)(b + c− 2w)(n− a− c + 3v)}
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is greater than or equal to zero. In what follows, we discuss the expres-
sion L∗(y) = L(y)/y, given by

L∗(y) = y2 (a + b− 2u)(b + c− 2w)(n− a− c + 3v)

+ y [2(a + b− 2u)(b + c− 2w)(a + c− 3v)

+ n [(a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+ (b + c− 2w)(u + v)]]

+ (a + b− 2u)(b + c− 2w)(n− a− c + 3v) .

This expression can be considered as a quadratic form in y, with
y ∈ [0, 1]. Again, we will use Lemma 6.2 to prove that L∗(y) ≥ 0.
Note that n− a− c + 3v ≥ 0, such that L∗(0) ≥ 0. On the other hand it
also holds that

L∗(1) = n [(a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+ (b + c− 2w)(u + v) + 2(a + b− 2u)(b + c− 2w)]

≥ 0 .

This can easily be verified by dividing L∗(1) by n and substituting
a, b, c, u, v and w in L∗(1)/n by the expressions which hold in the crisp
case. In the crisp case, L∗(1)/n ≥ 0 is always satisfied and therefore
Theorem 5.4 can be used to conclude that L∗(1)/n ≥ 0 also holds for
fuzzy cardinalities. In order to prove that L∗(y) ≥ 0 for all y ∈ [0, 1] it
is sufficient, due to Lemma 6.2, to study the expression

2(a + b− 2u)(b + c− 2w)(n− a− c + 3v)

+ 2(a + b− 2u)(b + c− 2w)(a + c− 3v)

+ n [(a + b− 2u)(v + w)− (a + c− 2v)(u + w)

+ (b + c− 2w)(u + v)] ,

which is also equal to

n [2(a + b− 2u)(b + c− 2w) + (a + b− 2u)(v + w)

− (a + c− 2v)(u + w) + (b + c− 2w)(u + v)] .

The latter expression is the same as L∗(1) and therefore it is always
greater than or equal to zero.

We can conclude that L∗(y) ≥ 0, and therefore also L(y) ≥ 0 for all
y ∈ [0, 1]. From this, it also follows that K(y2, y, z) ≥ 0 for all z ∈ [0, y]
and y ∈ [0, 1]. We can conclude that the conditions

x ≥ max(y2, z2) ,
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or equivalently,
x x′ ≥ max(y2, z2) ,

are sufficient conditions such that the members of the family (6.1) of
fuzzy similarity measure are TP-transitive.

The proof that these conditions are also necessary conditions is al-
ready given in Theorem 2.2.

Corollary 6.2 The TP-transitive members of family (6.1) of fuzzy similar-
ity measures are for any Frank t-norm characterized by parameter condi-
tions (6.13).

Again, this corollary immediately follows from Theorem 6.6. It only
follows from Theorem 6.4 for λ ≤ 9 + 4

√
5 or from Theorem 6.5 when

z = 0.

6.4 Conclusions

In this chapter, we have fuzzified the parametric family of similarity
measures for ordinary sets, which was introduced in Chapter 2, using a
commutative quasi-copula to model the intersection of two fuzzy sets.
The main result of this chapter is that transitivity, and hence also the
corresponding dual metric interpretation, is preserved along this fuzzi-
fication process.



130 A parametric family of fuzzy similarity measures



Chapter 7

A parametric family of fuzzy
inclusion measures

7.1 Introduction

Traditionally, fuzzy set inclusion is defined according to Zadeh’s origi-
nal proposal [95]. For two fuzzy sets A and B, Zadeh defined

A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤ B(x)) ,

for any x ∈ X . However, in this sense A is either utterly or not at
all a subset of B, whereas one should expect, to be consistent with the
spirit of fuzzy set theory, that A is a subset of B to some degree. This
observation has led to the introduction of several inclusion measures
for fuzzy sets in the literature.

Mainly, two approaches to introduce inclusion measures can be dis-
tinguished:

(i) constructing new measures from fuzzy implicators and

(ii) providing an axiomatic approach.

The first method to define a fuzzy inclusion measure consists in a
direct fuzzification of the following crisp definition of set inclusion:

A ⊆ B ⇔ (∀x ∈ X)(x ∈ A ⇒ x ∈ B) .

Using an implicator I (recall that an implicator is a [0, 1]2 → [0, 1] map-
ping for which I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 and
whose first (second) partial mappings are decreasing (increasing)), the
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degree of inclusion of a fuzzy set A in a fuzzy set B is defined as fol-
lows:

I(A, B) = inf
x∈X

I(A(x), B(x)) .

Bandler and Kohout [2] follow this approach and define several in-
clusion measures starting from six different implicators. Also Will-
mott [89] follows this approach and added two inclusion measures
to the list of Bandler and Kohout (by using two additional implica-
tors). In [90], Wilmott concluded that all fuzzy inclusion measures de-
fined in [2] and [89] are TL-transitive. Moreover, he proposed a TL-
transitive measure based on the cardinality of the sets involved. Later
on, De Baets, De Meyer and Naessens [21] proved that this specific
inclusion measure is also TP-transitive. Furthermore, Bodenhofer [7]
proved that an inclusion measure based on the residual implicator
IT (x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y} (with T an arbitrary t-norm)
is always T -transitive.

Sinha and Dougherty [76] follow the second approach and postulate
a collection of axioms for fuzzy set inclusion in terms of an indicator,
also called ‘inclusion grade’. Independently of Sinha and Dougherty,
Kitainik [51] also developed an axiomatic approach to deal with inclu-
sion. According to Kitainik, a fuzzy inclusion should fulfill four prop-
erties (contrapositivity, distributivity, symmetry and heritage).

A combination of these two approaches can also be found. Burillo
et al. [13] provide a characterization of a family of inclusion grade oper-
ators, based on implicators (a form of generalized Łukasiewicz opera-
tors L, defined by L(x, y) = min(1, λ(x)+µ(y)), with λ and µ functions
from [0, 1] to [0, 1] and λ(0) = µ(1) = 1 and λ(1) = µ(0) = 0). Young [93]
presented a set of axioms for fuzzy subsethood that allows one to con-
nect with fuzzy entropy. The author offers these axioms as alternatives
to the ones of Sinha and Dougherty. In [33], Fan et al. comment on
the subsethood measure defined by Young and give some new defi-
nitions of a subsethood measure. They define a subsethood measure
starting from a set-theoretic approach and also provide a construction
from fuzzy implicators.

Remark that the inclusion measure which was given by Kuncheva
is a restriction to the crisp case of the fuzzy inclusion measure inves-
tigated by Kosko [55] and Fan et al. [33], and defined by I(A, B) =
M(A∩B)/M(A), where M(A) denotes the cardinality of a fuzzy set A.

Bouchon-Meunier, Rifqi and Bothorel [10] propose a family of in-
clusion measures as a refinement of a family of measures of simili-
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tude. Kosko’s inclusion measure is a member of the family defined
by Bouchon-Meunier et al.

In this thesis, the starting point is the parametric family of inclusion
measures for ordinary sets, which was introduced in Chapter 2.

This chapter is organized as follows. In Section 7.2, we define a
fuzzy inclusion measure and propose a family of fuzzy inclusion mea-
sures, based on the fuzzification of a family of cardinality-based inclu-
sion measures for ordinary sets introduced in Chapter 2. In Section 7.3
the TL-transitive members are identified.

7.2 A parametric family of fuzzy inclusion mea-
sures

Also inclusion measurement does not restrict to binary vectors only,
but is rather applied with vectors whose components are scaled to the
unit interval. Therefore, we need fuzzy inclusion measures. We define
a fuzzy inclusion measure as follows:

Definition 7.1 A fuzzy inclusion measure I is a binary fuzzy relation on
F(X) such that

(∀A, B ∈ P(X))(A ⊆ B ⇒ I(A, B) = 1) .

Having introduced a fuzzification rule for the cardinality of a fuzzy set
and translated classical set operations in Chapter 3, we are now able
to fuzzify the parametric family of inclusion measures (2.5). Therefore,
we rewrite the expression (2.5) in terms of intersections only,

I(A, B)

=
x(|A| − |A ∩B|) + x′(|B| − |A ∩B|) + y|A ∩B|+ z(n− |A| − |B|+ |A ∩B|)

x′(|A|+ |B| − 2|A ∩B|) + y|A ∩B|+ z(n− |A| − |B|+ |A ∩B|)
.

Consider two fuzzy sets A and B in a finite universe X = {x1, . . . , xn},
then we fuzzify the above expression into

I(A, B) =
x(a− u) + x′(b− u) + y u + z(n− a− b + u)

x′(a + b− 2u) + y u + z(n− a− b + u)
, (7.1)

with a =
n

∑

i=1

A(xi), b =
n

∑

i=1

B(xi) and u =
n

∑

i=1

Q(A(xi), B(xi)), where Q

denotes a commutative quasi-copula.
Again, remark that in order to guarantee that I(A, B) ∈ [0, 1], we

need to impose the following restriction: 0 ≤ x ≤ x′. Analogously to
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the parametric family of inclusion measures for ordinary sets, the case
x = x′ leads to trivial measures taking value 1 only, and therefore we
consider from here on 0 ≤ x < x′. In Table 7.1, we summarize the
fuzzy similarity measures (that are a member of family (7.1) and whose
crisp counterparts can be found in Table 2.7) for some commonly used
quasi-copulas, TM, TP and TL.

7.3 T -transitive members

First, we identify the TL-transitive members of family (7.1). Next, we
fuzzify inclusion measure (2.19) and show that it is TP-transitive. These
results are in line with the ones obtained for the family of crisp inclu-
sion measures.

7.3.1 Łukasiewicz-transitive members

Let us recall that a fuzzy inclusion measure is TL-transitive if the fol-
lowing inequality is fulfilled:

I(A, C)− I(A, B)− I(B, C) + 1 ≥ 0 . (7.2)

Theorem 7.1 The TL-transitive members of family (7.1) of fuzzy inclusion
measures are for any commutative quasi-copula that satisfies I3

3 characterized
by:

x′ ≥ max(y, z) . (7.3)

Proof. In Theorem 2.4 we proved that inequality (7.2) holds for all n
and all ordinary sets A, B and C if and only if the parameters satisfy
conditions (7.3). For fuzzy sets A, B and C, the left-hand side of in-
equality (7.2) is a homogeneous function of |A|, |B|, |C|, |A∩B|, |A∩C|,
|B ∩ C| and |X|. When inequality I3

3 is fulfilled (inequalities I1
2 and

I2
3 are satisfied for any commutative quasi-copula), we can use Theo-

rem 5.3 to conclude that inequality (7.2) also holds for all fuzzy sets A,
B and C under the same parameter conditions (7.3).

Theorem 7.2 The TL-transitive members of family (7.1) of fuzzy inclusion
measures with z = 0 are for any commutative quasi-copula characterized by
parameter conditions (7.3).

Proof. When z = 0, the homogeneous function on the left-hand side
of (7.2) is independent of |X| and using Theorem 5.4 we can conclude
that inequality (7.2) also holds for all fuzzy sets A, B and C under the
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same parameter conditions (7.3).

Using the latter theorem, we can conclude that the fuzzified versions of
the following inclusion measures

I1(A, B) =
|B \A|
|A4B| , I4(A, B) =

|(A \B)c|
n

,

which read as

I1(A, B) =

∑n
i=1 B(xi)−Q(A(xi), B(xi))

∑n
i=1 A(xi) + B(xi)− 2Q(A(xi), B(xi))

,

I4(A, B) = 1−
∑n

i=1 A(xi)−Q(A(xi), B(xi))

n
,

respectively, are TL-transitive, since both are members of family (7.1)
with z = 0.

However, with Theorem 7.1 we are not able to guarantee the TL-
transitivity of other fuzzy inclusion measures when we model the in-
tersection of two fuzzy sets by a commutative quasi-copula which does
not satisfy Bell-type inequality I3

3 . To solve this problem, we provide
a third theorem. It requires a direct proof and has nothing to do with
the meta-theorems discussed in Chapter 5. We first prove the following
lemma:

Lemma 7.1 The following identity is always fulfilled:

(b− u− w + v)[n(b + 2c− u)− ac− bw] + n(c + u− v − w)(a− u)

+ (n− b)(a− u)(c− w) + (n− v)(b− u)(b− w)

+ 2(c− v)(b− w)(a− u) + 2n(a− u)(b− w)

+ (b− w)(bw − uv) ≥ 0 . (7.4)

Proof. Since Bell inequalities I1
2 and I2

3 are fulfilled for any commuta-
tive quasi-copula, we already know that

(n− b)(a− u)(c− w) ≥ 0 ,

(n− v)(b− u)(b− w) ≥ 0 ,

2(c− v)(b− w)(a− u) ≥ 0 ,

n(c + u− v − w)(a− u) ≥ 0 ,
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and b+ v−u−w ≥ 0. First we prove that n(b+2c−u)− ac− bw is also
positive. Since b− u ≥ w − v, we have that

n(b + 2c− u)− ac− bw

≥ n(2c + w − v)− ac− bw

= c(n− a) + n(c− v) + w(n− b)

≥ 0 .

Next, we prove that 2n(a− u)(b− w) + (b− w)(bw − uv) ≥ 0 is always
fulfilled:

2n(a− u)(b− w) + (b− w)(bw − uv)

= n(a− u)(b− w) + (b− w)(n(a− u) + bw − uv)

≥ n(a− u)(b− w) + (b− w)(n(a− u) + uw − uv)

≥ n(a− u)(b− w) + (b− w)(n(a− u)− u(a− u))

= n(a− u)(b− w) + (b− w)(n− u)(a− u)

≥ 0 .

Therefore inequality (7.4) is always fulfilled.

Theorem 7.3 The TL-transitive members of family (7.1) of fuzzy inclusion
measures are for any commutative quasi-copula characterized by parameter
conditions (7.3).

Proof. In order to identify the conditions on the parameters x, x′, y and
z in (7.1), we have to verify when the following inequality is fulfilled:

(x′ − x)

(

− a− v

x′(a + c− 2v) + y v + z(n− a− c + v)
(7.5)

+
a− u

x′(a + b− 2u) + y u + z(n− a− b + u)

+
b− w

x′(b + c− 2w) + y w + z(n− b− c + w)

)

≥ 0 .

Since x′ > x we can omit the factor x′ − x.
Case z = 0.
Substituting z = 0 in inequality (7.5), converting the fractions such that
they have a common denominator and omitting this denominator since
it is always positive, the following inequality should be verified:

K(x′, y) = αy2 + βy + γ ≥ 0 ,
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with

α = −auw + avw − uvw + buv ,

β = x′(2abv − abw − acu + acv + acw + 2auw − 4avw + b2v

+ bcu− 4buv − 2cuw + 4uvw) ,

γ = x′2(a2b + ac2 − a2w + abc− abu− 3abv + abw + acu− acv

− 3acw + 4avw + b2c− b2v − 3bcu + bcv − bcw + 4buv

− c2u + 4cuw − 4uvw) .

It is easy to prove, using Theorem 5.4, that K(x′, 0) = γ ≥ 0 and
K(x′, x′) = x′2(α + β + γ) ≥ 0. To apply Lemma 6.2, we still have
to verify that 2γ + βx′ ≥ 0. Again, using Theorem 5.4 it is easy to see
that this inequality is fulfilled. Remark that since every commutative
quasi-copula satisfies Bell inequality I2

3 , applying Theorem 5.4 does not
impose any limitations to our theorem.

We can conclude that the condition

x′ ≥ y ∧ z = 0

is a sufficient condition for inequality (7.5) to hold.

Case y = 0.
Substituting z = 0 in inequality (7.5), we obtain a quadratic function
K(x′, z) in z. In the same way as the previous case, we can prove that
K(x′, z) ≥ 0 for any z ∈ [0, x′]. Therefore, the condition

x′ ≥ z ∧ y = 0

is a sufficient condition for inequality (7.5) to hold.

Case y 6= 0, z 6= 0.
In this case we have to verify that the following inequality

K(x′, y, z) = c1y
2 + c2yz + c3z

2 + c4y + c5z + c6 ≥ 0 , (7.6)

with c4 and c5 proportional to x′ and c6 proportional to x′2, is fulfilled
for any y, z ∈ [0, x′].

Consider the left part of inequality (7.6) as a quadratic function
in y. Since K(x′, 0, z) ≥ 0 (this was proven in the case y = 0) and
K(x′, x′, z) ≥ 0 (again, we use Lemma 6.2: since K(x′, x′, 0) ≥ 0, which
was proven in the case z = 0, and K(x′, x′, x′) = n2(b− u−w + v) ≥ 0,
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it follows that K(x′, x′, z) ≥ 0 for any z ∈ [0, x′]), we can use Lemma 6.2
to prove that inequality (7.6) is fulfilled for any y ∈ [0, x′]. Therefore,

2(c3z
2 + c5z + c6) + (c2z + c4)x

′ ≥ 0 ,

or equivalently,

2c3z
2 + (2c5 + c2x

′) + 2c6 + c4x
′ ≥ 0

should be fulfilled for any z ∈ [0, x′]. Again, we invoke Lemma 6.2.
Since K(x′, y, 0) ≥ 0 and K(x′, y, x′) ≥ 0, we should only verify that
the following inequality

c2x
′2 + 2(c4 + c5)x

′ + 4c6 ≥ 0 (7.7)

is fulfilled for any x′. Since x′ ≥ 0, inequality (7.7) is equivalent to

(b− u− w + v)[n(b + 2c− u)− ac− bw] + n(c + u− v − w)(a− u)

+ (n− b)(a− u)(c− w) + (n− v)(b− u)(b− w)

+ 2(c− v)(b− w)(a− u) + 2n(a− u)(b− w)

+ (b− w)(bw − uv) ≥ 0 .

It was already proven in Lemma 7.1 that the latter inequality is always
satisfied, therefore, inequality (7.7) is fulfilled for any x′. Consequently,
also inequality (7.6) is satisfied for any y, z ∈ [0, x′]. We can conclude
that

x′ > x ∧ x′ ≥ max(y, z) ,

are sufficient conditions such that the members of family (7.1) of fuzzy
inclusion measure are TL-transitive.

The proof that these conditions are also necessary conditions is com-
pletely analogously to that of Theorem 2.4.

Corollary 7.1 The TL-transitive members of family (7.1) of fuzzy inclu-
sion measures are for any Frank t-norm characterized by parameter condi-
tions (7.3).

This corollary immediately follows from Theorem 7.3. It only follows
from Theorem 7.1 for λ ≤ 9 + 4

√
5 or from Theorem 7.2 when z = 0.



7.4 Conclusions 141

7.3.2 Product-transitive members

Since it is not possible to establish a set of conditions that are at the same
time necessary and sufficient such that the product-transitive members
of family (2.5) are characterized, we are not able to characterize the TP-
transitive members of family (7.1). However, we can fuzzify inclusion
measure (2.19), which reads as

I(A, B) =
5(a− u) + 10(b− u) + u

10(a + b− 2u) + u
, (7.8)

and prove the following proposition.

Proposition 7.1 Fuzzy inclusion measure (7.8) is TP-transitive.

Proof. We have to verify when the following inequality is fulfilled:
(

5(a− u) + 10(b− u) + u

10(a + b− 2u) + u
· 5(b− w) + 10(c− w) + w

10(b + c− 2w) + w

)

≤ 5(a− v) + 10(c− v) + v

10(a + c− 2v) + v
. (7.9)

Since inequality (7.9) is independent of n, we can use Theorem 5.4 to
conclude that inequality (7.9) is fulfilled for any commutative quasi-
copula and hence inclusion measure (7.8) is TP-transitive.

7.4 Conclusions

In this chapter, we have fuzzified the parametric family of inclusion
measures for ordinary sets, which was introduced in Chapter 2. To
that end, we have modelled the intersection of two fuzzy sets by a
commutative quasi-copula. The main result of this chapter is that TL-
transitivity, is preserved along this fuzzification process. Unfortunately,
we were not able to establish a set of conditions that are at the same
time necessary and sufficient such that the product-transitive members
of family (2.5) are characterized. Therefore, we were not able to charac-
terize the TP-transitive members of family (7.1) either.
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Chapter 8

Applications

8.1 Similarity measures in clustering tasks

8.1.1 Introduction

Many machine learning tasks require similarity measures that estimate
likeness between observations. Similarity measures are particularly
important for clustering algorithms that depend on estimates of the
distance between data points. However, standard measures such as
the Euclidean distance or the Jaccard coefficient often fail to capture
an appropriate notion of similarity for a particular domain or dataset.
This problem can be alleviated by employing a family of fuzzy similar-
ity measures such that a whole range of similarity measures becomes
available.

Clustering can be roughly defined as the problem of partitioning a
data set into disjoint groups so that observations belonging to the same
cluster are similar, while observations belonging to different clusters
are dissimilar. Clustering has been widely studied for several decades
and a variety of algorithms exists. Similarity measures, however, are
central to the clustering problem regardless of the particular algorithm
used, since all of them utilize similarity measures between observations
and clusters or between individual observations [59].

8.1.2 A small clustering example

In this section, we want to illustrate, with a small example, that us-
ing different similarity measures when clustering a data set can have a
strong impact. For this experiment, we have used the wine data set, on-
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line available from the UCI Machine Learning Repository1. This dataset
contains information about 178 bottles of wine originating from three
different winegrowers. A desirable clustering consist in three clusters,
each corresponding to a particular winegrower.

Many algorithms have been proposed for cluster analysis. Hierar-
chical clustering is a similarity-based bottom-up clustering technique
in which at the beginning every data point forms a cluster of its own.
Then, the algorithm iterates over the step that merges the two most sim-
ilar clusters still available, until one arrives at a universal cluster that
contains all data points. In our experiments, we use one particular strat-
egy to calculate the similarity between clusters: complete linkage. Note
that also single linkage and average linkage clustering do exist. These
three strategies measure the dissimilarity between two non-trivial clus-
ters in different ways. If nr is the number of objects in cluster r and ns

is the number of objects in cluster s, and xri is the ith object in cluster
r, for any i ∈ {1, . . . , nr}, and xsj is the jth object in cluster s, for any
j ∈ {1, . . . , ns}, then complete linkage defines the distance between the
clusters r and s as the maximum distance between them, i.e.

d(r, s) = max
i,j

(dist(xri, xsj)) ,

while single linkage uses the smallest distance between objects in the
two clusters and average linkage uses the average distance between all
pairs of objects in cluster r and cluster s.

The wine data set consists of 178 instances, each with 14 fields.
The first field indicates to which class (or equivalently, to which wine-
grower) an instance belongs, while the next 13 fields are the feature
values2, which are real numbers. First, the 13 feature values were trans-
formed into values belonging to the unit interval such that the family of
similarity measures (6.1) can be employed. Therefore, we determined
for each feature j (with j = 1, . . . , 13) its maximum value uj and its
minimum value lj . Then, the feature values xij , for any i = 1, . . . , 178
and for any j = 1, . . . , 13, are transformed into

zij =
xij − lj
uj − lj

such that zij ∈ [0, 1].
1http://www.ics.uci.edu/˜mlearn/MLRepository.html
2The attribute values are alcohol, malic acid, ash, alcalinity of ash, magnesium, phe-

nols, flavonoids, nonflavonoid phenols, proanthocyanins, color intensity, hue, dilution
and proline.
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Dissimilarity coefficient Number of misclassified
instances

Jaccard 75

Simple matching 10

Rogers and Tanimoto 10

Sokal and Sneath 10

Euclidean distance 12

Euclidean distance 58
(original data set)

Table 8.2: Overview of misclassified instances using different dissimilarity
measures.

Next, we constructed the 178 × 178 matrix of pairwise distances
using the following dissimilarity measures: Euclidean distance, the Jac-
card dissimilarity coefficient, the simple matching dissimilarity coeffi-
cient, the Rogers and Tanimoto dissimilarity coefficient and the Sokal
and Sneath dissimilarity coefficient, which are clarified in Table 8.1. We
also constructed the 178 × 178 matrix of pairwise distances using the
Euclidean distance on the original data set (i.e. the last 13 fields of the
178 instances without transforming them to the unit interval).

We performed a complete linkage clustering (using three clusters)
on these distance matrices and verified how many instances were mis-
classified. We conclude that using the simple matching dissimilarity
coefficient, the Rogers and Tanimoto dissimilarity coefficient or the
Sokal and Sneath dissimilarity coefficient the number of misclassified
instances (which is equal to 10) is much lower than using the standard
dissimilarity measures like Euclidean distance (on the original data set)
and the Jaccard dissimilarity measure. In the latter case, the number of
misclassified instances is equal to 58 and 78, respectively. We also con-
clude that using the Euclidean distance on the transformed data set the
number of misclassified instances (which is equal to 12) is much lower
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than using the Euclidean distance on the original data set (which is
equal to 12). The results are summarized in Table 8.2. All experiments
were done in MATLAB using the Statistics Toolbox.

This small experiment shows that the family of fuzzy similarity
measures (6.1) can be of great value when choosing a dissimilarity mea-
sure in a clustering task. Although we did not perform other experi-
ments, we are convinced that this family of fuzzy similarity measures
will be useful in any other real-world application where (dis)similarity
is involved.

8.2 Inclusion measures for leaf-labelled trees

8.2.1 Introduction

Whether biologists are interested in the history of life (the Tree of Life),
or in using evolutionary relationships to analyze biological data from
other fields (e.g. analyzing rapidly mutating viruses such as HIV, iden-
tifying species that may disrupt ecosystems, etc.), phylogenetic trees
provide a comparative framework for understanding and interpreting
these biological data. Many methods to reconstruct these trees have al-
ready been developed; the three main schools of reconstruction meth-
ods are maximum likelihood methods, maximum parsimony methods
and distance-based methods.

A phylogenetic tree is usually represented by a leaf-labelled tree,
where the internal nodes refer to hypothetical ancestors, the leaves are
labelled by the taxonomic unit (genes, species, populations, individu-
als) and the branches define the relationship between the taxonomic
units in terms of descent and ancestry. The tree can be rooted or un-
rooted depending on the availability of sufficient information to decide
the orientation of the evolution. If the tree is rooted, then the root is a
common ancestor for all the species in the tree. A phylogenetic tree is
unordered, i.e. for rooted trees one does not distinguish between differ-
ent orderings of the children of a node and for unrooted trees one does
not distinguish between different orderings between the neighbours.
Finally, they can be binary as well as non-binary.

The comparison of phylogenetic trees is a fundamental problem in
biology. Different evolutionary hypotheses arise when different recon-
struction methods are applied to the same set of data, or when a single
method is applied to different data sets. Several similarity metrics be-
tween phylogenetic trees are currently in use. First, we will present an
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overview of major approaches to tree comparison.
According to Boorman and Olivier [9], there are two basic ap-

proaches to constructing tree metrics. The first one is to formalize the
concept of ‘transformation of a tree’ and to define a metric on trees as
the least number of moves necessary to transform one tree into another.
An example of such a metric is the nearest neighbour interchange (nni)
metric [85]. The similarity of two binary trees is represented by count-
ing the minimum number of nni operations required to change one tree
into another. An nni operation swaps two subtrees that are separated
by an internal edge. Computing the nni distance is NP-complete [18].
A more general metric than the nni metric, the partition metric, is due
to Penny and Hendy [65]. Trees are compared by counting the number
of edges in one tree for which there is no equivalent edge on the other
tree (and vice versa). The partition metric is suitable for both rooted
and unrooted trees, as well as binary and non-binary trees. Another
example which also fits in this particular class is the tree editing dis-
tance. The distance between two trees is then defined as the cost of a
sequence of edit operations (delete or insert a node or modify a label of
the node) to transform one tree into the other one [73].

The second approach consists of representing a tree in terms of sim-
pler structures for which adequate metrics are available. Estabrook
et al. [31] propose various kinds of similarity and dissimilarity mea-
sures to compare unrooted phylogenetic trees for the same collection
of species. Their ideas are based on the fact that four species (a quar-
tet) is the smallest number about which distinct statements concerning
branching patterns in unrooted trees can be made. Bryant et al. [12] de-
scribe an O(n2) algorithm that computes the quartet distance between
two phylogenetic trees.

A third approach can be added to the previous ones. In this ap-
proach, the similarity between phylogenetic trees is based on subtree
similarity. Zhong et al. [100] have developed a general comparison
methodology between different leaf-labelled trees. They use a similar-
ity measure for ordinary sets to compare first pairs of subtrees (which
are simply reduced to their leaf node sets) and they further propose
a corresponding algorithm, the so-called webbing matrix method, for
measuring overall similarity between leaf-labelled trees.

With the growing number of phylogenetic trees available, the need
of managing phylogenetic databases is great. The comparison of such
trees is one thing, but on the other hand also methods for searching
and retrieval in these databases are needed. In [83], an inclusion mea-
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sure for phylogenetic trees (TreeRank) was proposed and successfully
implemented in the phylogenetic information system TreeBASE. This
method can only be applied to rooted, unordered trees and is based on
the additive distance matrix of a phylogenetic tree and a data tree reduc-
tion technique where nodes that are not in common to the trees to be
compared are removed. Other approaches in the literature are mainly
based on the minimal number of operations needed to transform one
tree into another: a tree T1 is included in T2 if and only if T1 can be
obtained only by deleting nodes from T2 (e.g. [50]).

8.2.2 Tree inclusion

In this section, we propose a method based on fuzzy inclusion mea-
sures for attributing a degree of inclusion of one leaf-labelled tree in
another one. Our method aims at representing a tree in terms of sim-
pler structures. Therefore, we attribute weights to the nodes of a tree
and associate a symmetric matrix with the tree. We further assume that
the tree is an unordered rooted tree with internal nodes possessing at
least two children.

First, we attribute weights to the nodes of a tree as follows. Among
all paths in the tree from the root to a leaf node and passing through
a given node, we select a path with maximum length. If that path
has length q (i.e. it contains q edges) and the given node lies p edges
away from the root, the weight p/q is attributed to that node. Note
that the root has weight 0 and all the (labelled) leaf nodes have
weight 1. This procedure of attributing weights to tree nodes is illus-
trated in Figures 8.1 and 8.2 on two example trees: a query tree Q and a
data tree D. The common leaf node label set isL = {C, D, E}, the labels
A, B, F are missing in Q and the label G is missing in D. If we order
the leaf node labels in a standard but otherwise arbitrary way (here we
choose the alphabetical order), we can unambiguously associate with
any tree T a symmetric matrix T̂ indexed by the ordered leaf labels.
For any X, Y ∈ L, the element T̂X,Y equals the weight of the least com-
mon ancestor in the tree T of the two leaf nodes with respective labels
X and Y . With any label that is not present in the tree, we associate a
row and column of all zeros in the matrix. Finally, we remark that the
tree is nothing else but the partition tree associated with the matrix (ig-
noring the zero-rows and zero-columns), and therefore the matrix itself
is TM-transitive. In Figures 8.1 and 8.2 the matrices corresponding to Q
and D are shown under the trees.
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

Figure 8.1: A query tree Q with its corresponding matrix Q̂.

An overall coefficient of inclusion between two trees Q and D is
obtained by first selecting a particular fuzzy inclusion measure I and
then calculating I(Q̂, D̂), where the matrices are interpreted as fuzzy
sets in the universe L2. For the previous example, we obtain with the
members of the family of fuzzy inclusion measures (7.1) whereby the
intersection of two fuzzy sets is modelled by TM (note that these inclu-
sion measures are also listed in Table 7.1):

I1(Q̂, D̂) = 0.7544 ,

I2(Q̂, D̂) = 0.8313 ,

I3(Q̂, D̂) = 0.9478 ,

I4(Q̂, D̂) = 0.9524 .

Remark that one could opt to calculate I(Q̂, D̂) using upper triangle
matrices only, but this does not result in any major differences.

One of the methods of measuring inclusion available in the litera-
ture is called TreeRank [83]. Consider a query and a data tree, then this
method also builds a simpler structure from those trees, the so-called
UpDown matrix, based on the number of up and down operations be-
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Figure 8.2: A data tree D with its corresponding matrix D̂.
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tween two nodes in a tree.

Example 8.1 Consider the query tree Q form Figure 8.1 and the data
tree D from Figure 8.2. Then the UpDownmatrices UQ and UD are given
by

UQ =









0 1 1 1
2 0 1 1
3 2 0 1
3 2 1 0









and UD =

















0 1 2 2 2 2
1 0 2 2 2 2
2 2 0 1 1 1
4 4 3 0 1 2
4 4 3 1 0 2
3 3 2 1 1 0

















,

respectively.

A data reduction tree technique is incorporated in their method: the
data tree results in a reduced data tree by removing nodes in such a
way that the reduced data tree only possesses nodes that are common
to both the query and the data tree.

Example 8.2 Consider again the query tree Q and the data tree D from
Figures 8.1 and 8.2, respectively. The common leaf label node set is
L = {C, D, E}. Then the data tree D is reduced to the tree D′ as de-
picted in Figure 8.3. Note that also the UpDownmatrix UD changes
into UD′ , with

UD′ =





0 1 1
2 0 1
2 1 0



 .

Then the TreeRank score form Q to D′ is calculated as follows. Let VQ

be the set of labeled nodes in Q and let VD′ be the set of labeled nodes in
D′. Let L denote the common leaf label node set, i.e. L = VQ ∩ VD′ and
let J denote the leaf labels which are present in Q, but not in D′, i.e.
J = VQ \ VD′ . Then the distance from Q to D′, denoted as dist(Q, D′),
is defined as

dist(Q, D′) =
∑

u∈L

∑

v∈L
|UQ(u, v)− UD′(u, v)|+

∑

u∈J

∑

v∈J
UQ(u, v) .

The TreeRank score from Q to D, is calculated by

TreeRank(Q, D) = 1− dist(Q, D′)
∑

u∈VQ

∑

v∈VQ
UQ(u, v)

.
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Figure 8.3: Example showing how tree D is reduced to D′ using the data tree
reduction technique.

The advantage of our method is that no changes (neither delete, nor
insert operations) have to be performed on any of the trees involved in
order to obtain a degree of inclusion. Another difference between our
method and TreeRank is that our method takes more into account the
label context when the topological relationship of a query tree is found
to be similar to that in the data tree. Take the previous example, then
TreeRank gives a score 1, which means that, according to TreeRank,
tree Q is considered to be fully included in tree D. Nonetheless, it is easy
to see that the topological relationship of both trees is very similar, but
the leafs labelled G and F differ from each other, which is not taken
into account by TreeRank.

Another approach in the literature is the use of delete, insert and
relabelling operations to transform one tree into another. The ‘tree in-
clusion problem’ is then defined as follows: T1 is included in T2 if and
only if T1 can be obtained by deleting nodes from T2 [50]. Obviously,
this ‘is included in’ relation is transitive, yet crisp. Our method of mea-
suring inclusion leaves room for nuance as it is [0, 1]-valued; moreover,
TL- or TP-transitivity can be guaranteed as well.

In our approach I(Q̂, D̂) = 1 if and only if Q̂XY ≤ D̂XY for all
(X, Y ) ∈ L2

Q, which implies in particular that LQ ⊆ LD. It is impor-
tant to realize that I(Q̂, D̂) = 1 does not necessarily mean that tree Q
‘is included in’ tree D. Also, if tree Q ‘is included in’ tree D, then
we do not necessarily have that I(Q̂, D̂) = 1. The following exam-
ple will make things clear. Consider the trees as in Figure 8.4. Then
I1(Q̂1, D̂1) = 0.9856, while tree Q1 ‘is included in’ tree D1. On the



154 Applications

Q1 0

1
3

2
3

1

A

1

B

2
3

1

C

1

D

1

E

D1 0

1
5

2
5

3
5

4
5

1

A

1

M

1

B

3
4

1

C

1

D

1

E

1

N

Q2 0

1
2

1

A

1

B

1

C

D2 0

1
5

2
5

3
5

4
5

1

A

1

C

1

B

1

D

1

E

1

F

Figure 8.4: Two query trees Q1 and Q2 and two data trees D1 and D2.
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other hand, tree Q2 is certainly ‘not included in’ tree D2, while our
method yields I1(Q̂2, D̂2) = 1. In the latter case, our method is ob-
viously blurred by the larger context of tree D2.

8.3 Conclusions

In this chapter, we showed that the family of fuzzy similarity mea-
sures (6.1) as well as the family of fuzzy inclusion measures (7.1) can
be of great value in real-world applications.
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Chapter 9

Nederlandstalige
samenvatting

In ons dagelijks leven vergelijken we continu dingen met elkaar.
We vergelijken personen of objecten en maken voortdurend keuzes,
meestal zonder dat we er ons van bewust zijn. Vergelijkbaarheid speelt
dus een belangrijke rol. Maar niet alleen in ons alledaagse leven, ook in
vele wetenschappelijke domeinen neemt ”het vergelijken” een promi-
nente rol in. Het vergelijken van objecten is immers één van de deel-
aspecten in het proces om informatie uit data te extraheren.

We zullen in dit werk methodes invoeren om te bepalen in welke
mate twee objecten gelijk zijn. Deze methodes zullen we aanduiden
met de term similariteitsmaten. Maten om objecten met elkaar te verge-
lijken zijn niet nieuw. In de literatuur vinden we reeds heel wat simila-
riteitsmaten terug die doorheen de jaren geı̈ntroduceerd werden in ver-
schillende domeinen en voor uiteenlopende toepassingen. De meeste
similariteitsmaten vinden hun oorsprong in het domein van de nu-
merieke taxonomie. Biologen hadden immers een instrument nodig om
de objecten die ze bestudeerden (in dit geval meestal planten of dieren)
te vergelijken met elkaar en zo een taxonomie op te stellen. Deze si-
milariteitsmaten berusten op een telprincipe, waarbij een zekere we-
ging gemaakt wordt van gemeenschappelijke en/of ontbrekende ken-
merken van de te vergelijken objecten.

Om de reeds bestaande similariteitsmaten te kunnen gebruiken,
moeten we de objecten die we willen vergelijken met elkaar, vertalen
naar {0, 1}-vectoren (ook wel binaire vectoren genoemd). Voor deze ob-
jecten wordt dan een verzameling van kenmerken xi, voor i = 1, . . . , n
gedefinieerd (d.i. het universum X) zodat de corresponderende binaire
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vectoren een weerslag zijn van de aan- of afwezigheid van elk van die
kenmerken. Een kenmerk dat afwezig is, wordt dan voorgesteld door
een 0 in een binaire vector, terwijl een 1 staat voor de aanwezigheid
van dat kenmerk. Zo’n {0, 1}-vector kan echter geı̈dentificeerd wor-
den met een scherpe verzameling op de volgende manier: kenmerk xi

behoort tot deze verzameling als en slechts als op plaats i in de vec-
tor een 1 staat. Als gevolg hiervan kunnen de reeds bestaande maten
eenvoudig omgezet worden naar maten voor scherpe verzamelingen,
louter gebaseerd op de cardinaliteiten van de doorsnede, de unie of het
verschil van deze (scherpe) verzamelingen. Similariteitsmaten worden
vervolgens gedefinieerd als reflexieve, symmetrische (binaire) vaag-
relaties over de machtsverzameling van het universum X . Enkele
bestaande families, zoals Tversky’s contrast model en de families van
Gower en Legendre worden op deze manier vertaald naar families
gebaseerd op cardinaliteiten van scherpe verzamelingen.

In dit werk voeren we ook een nieuwe, geparametriseerde fami-
lie similariteitsmaten in, die louter gebaseerd is op de cardinaliteiten
van scherpe verzamelingen. De meest bekende similariteitsmaten
(zoals de Jaccard coëfficiënt, de Dice coëfficiënt, de Simple Matching
coëfficiënt en andere) behoren tot deze familie, alsook de twee families
geı̈ntroduceerd door Gower en Legendre. Deze familie similariteits-
maten voorziet de lezer van een breed spectrum aan maten en laat hem
ook toe nieuwe similariteitsmaten te gebruiken.

Een similariteitsmaat kan gemakkelijk in een dissimilariteits-
maat omgezet worden. Deze laatstgenoemde maten meten het
verschil tussen bepaalde objecten en zijn nauw verwant met
een afstandsmaat (zoals bijvoorbeeld de Euclidische afstand).
Daarom is het sterk aan te raden dat een dissimilariteitsmaat
voldoet aan de eigenschappen van een metriek (scheidingseigen-
schap, symmetrie en de driehoeksongelijkheid). Wanneer uit-
sluitend identieke koppels onderlinge afstand 0 hebben, dan
wordt de dissimilariteitsmaat een pseudometriek genoemd,
terwijl wanneer de driehoeksongelijkheid versterkt wordt naar
max(d(x, y), d(y, z)) ≥ d(x, z), we te maken hebben met een ultrame-
triek.

T -transitiviteit (waarbij T een willekeurige driehoeksnorm
voorstelt) wordt gezien als één van de belangrijkste eigenschappen
die een vaagrelatie kan bezitten. Er bestaat echter een verband tussen
T -transitiviteit en een ultrametriek en een pseudometriek: wanneer
een similariteitsmaat S min-transitief (resp. Łukasiewicz-transitief)
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is, is de corresponderende dissimilariteitsmaat D = 1 − S een ul-
trametriek (resp. pseudometriek) en wanneer een similariteitsmaat
S produkt-transitief is, is de corresponderende dissimilariteitsmaat
D = − log S een pseudometriek.

Deze verbanden duiden meteen het belang van T -transitiviteit bij
een similariteitsmaat aan (want dan blijft immers de duale metrische
interpretatie ook bewaard). Eén van de belangrijkste bijdragen van dit
werk, naast het introduceren van een nieuwe parametrische familie si-
milariteitsmaten, is dan ook het identificeren van de parameters zodat
we de Łukasiewicz- en product-transitieve leden van deze familie kun-
nen karakteriseren. Helaas bevat deze familie geen enkel min-transitief
lid.

We hebben het hier echter steeds over het vergelijken van objecten.
De graad van overeenkomst tussen twee objecten uitdrukken is dan
ook het eerste wat in ons opkomt wanneer we het hebben over het ver-
gelijken van objecten. Nochtans is het vergelijken slechts één van de
mogelijkheden om naar de verwantschap tussen objecten te kijken. We
kunnen ons evengoed afvragen in welk mate het ene object vervat zit
in het andere. Het ideale gereedschap om deze probleemstelling aan te
pakken is een inclusiemaat.

Alhoewel in de literatuur heel veel artikels in verband met simila-
riteitsmaten kunnen gevonden worden, is het aanbod van publicaties
in verband met (scherpe) inclusiematen zeer beperkt. We introduceren
dan ook een parametrische familie inclusiematen, gebaseerd op cardi-
naliteiten, en onderzoeken eveneens voor welke waarden van de pa-
rameters de leden van deze familie Łukasiewicz- of product-transitief
zijn.

Om deze op cardinaliteiten gebaseerde families van similariteits-
of inclusiematen te kunnen gebruiken, moeten we echter nog steeds
de objecten die we met elkaar willen vergelijken, reduceren naar {0, 1}-
vectoren. Wanneer we echter denken aan louter zwart/wit argumenten
om keuzes te maken, dan is het logisch dat deze vereenvoudiging van
objecten naar {0, 1}-vectoren ervoor zorgt dat heel wat informatie ver-
loren gaat. Het is meer aannemelijk dat objecten getransformeerd wor-
den naar vectoren met reële coefficiënten, waarbij een hoge waarde van
deze coëfficiënt duidt op een kenmerk dat in een hoge mate aanwezig
is, terwijl een lage waarde aangeeft dat een kenmerk in mindere mate
aanwezig is (zoals bijv. microarray data, gewichten van kernwoorden
in documenten, enz.). Elke vector met dergelijke reële coefficiënten
kan evenwel herschaald worden naar een vector met coefficiënten in
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[0, 1]. En zo belanden we bijna automatisch bij de vaagverzamelingen-
leer.

Een vaagverzameling wordt immers gekarakteriseerd door een
X → [0, 1] afbeelding waarbij A(x) de lidmaatschapsgraad voorstelt
van x in A. Wanneer A(x) gelijk is aan 0, behoort x niet tot A, de waarde
1 daarentegen geeft aan dat x volledig tot A behoort (dit gedrag cor-
respondeert dus met scherpe verzamelingen), terwijl een waarde die
tussen 0 en 1 ligt een intermediaire graad van lidmaatschap aangeeft.
Dus, zoals {0, 1}-vectoren geı̈dentificeerd kunnen worden met scherpe
verzamelingen, zo kunnen [0, 1]-vectoren geı̈dentificeerd worden met
vaagverzamelingen.

We willen in dit werk dan ook een familie vage similariteitsma-
ten en een familie vage inclusiematen construeren, vertrekkende van
de respectievelijke families voor scherpe verzamelingen, zodanig dat
de transitiviteitseigenschappen die gelden voor scherpe verzamelin-
gen bewaard blijven. Het is frappant dat we, bij het nagaan van die
transitiviteitseigenschappen, steeds dezelfde ongelijkheden aantreffen
die moeten vervuld zijn. Deze ongelijkheden lijken formeel op de Bell
ongelijkheden.

De Bell ongelijkheden komen voort uit een discussie tussen Ein-
stein en Bohr in het begin van de twintigste eeuw naar aanleiding van
de EPR-paradox, die beweerde dat er ofwel acties van op een afstand
konden genomen worden ofwel dat de kwantummechanica een in-
complete theorie was. Bell formuleerde als antwoord hierop bepaalde
ongelijkheden voor correlaties (dit zijn kansen dat twee gebeurtenis-
sen beide plaatsvinden), zodanig dat, als aan deze ongelijkheden was
voldaan, er een klassiek waarschijnlijkheidsmodel bestond voor de
probabiliteiten die met de uitkomsten van de experimenten gerelateerd
zijn.

Aangezien de Bell ongelijkheden gelden voor (klassieke) probabi-
liteiten, kunnen ze herschreven worden als ongelijkheden voor cardi-
naliteiten. Deze Bell ongelijkheden worden op hun beurt herschreven
in termen van vage, scalaire cardinaliteiten1. De kans dat twee gebeur-
tenissen samen optreden, wordt dan gemodelleerd aan de hand van
een commutatieve conjunctor. Bovendien tonen we aan dat de Bell
ongelijkheden voor commutatieve conjunctoren nodige en voldoende
voorwaarden zijn zodanig dat de corresponderende Bell ongelijkheden
voor vage probabiliteiten vervuld zijn voor elke vaagverzameling.

1In dit werk beschouwen we immers enkel de vage, scalaire cardinaliteit (de zoge-
naamde σ-count) als mogelijkheid voor de cardinaliteit van een vaagverzameling.
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We richten onze aandacht echter niet alleen op commutatieve con-
junctoren, maar ook op een aantal bekende klassen ervan, namelijk
quasi-copulas, copulas en driehoeksnormen. We tonen aan dat som-
mige Bell ongelijkheden voldaan zijn voor (quasi-)copulas. Verder be-
schouwen we de Frank familie van driehoeksnormen en hebben we,
voor deze familie, de waarden van de parameter bepaald zodat de Bell
ongelijkheden vervuld zijn.

Ook het verband tussen de Bell ongelijkheden en continue
driehoeksnormen komt in dit werk aan bod. Een belangrijk resul-
taat is dat ordinale sommen de Bell ongelijkheden bewaren zodat het
voldoende is om enkel continue, Archimedische driehoeksnormen te
bestuderen. De belangrijkste parametrische families van driehoeksnor-
men (die opgesomd worden door Klement, Mesiar en Pap) worden in
dit werk onderzocht.

De resultaten die we verkrijgen voor de vervaagde Bell ongelijk-
heden kunnen nu gebruikt worden om twee belangrijke stellingen te
formuleren die ervoor zorgen dat meer algemene vergelijkingen met
betrekking tot vage cardinaliteiten gemakkelijk kunnen geverifieerd
worden (met als gevolg dat herhaalde berekeningen vermeden wor-
den). Deze twee stellingen worden als volgt opgedeeld: een eerste
stelling heeft enkel betrekking op twee vaagverzamelingen, terwijl de
tweede stelling drie vaagverzamelingen in acht neemt. Beide stellin-
gen drukken echter hetzelfde uit: wanneer een ongelijkheid (met
betrekking tot cardinaliteiten) geldt voor scherpe verzamelingen en
de commutative conjunctor, die gebruikt wordt om de doorsnede
van twee vaagverzamelingen te modelleren, voldoet aan bepaalde
Bell ongelijkheden, dan geldt deze ongelijkheid ook voor vaagver-
zamelingen. Voor beide stellingen formuleren we eveneens een meer
specifieke stelling voor ongelijkheden die niet afhangen van de cardi-
naliteit van het universum.

Vage similariteitsmaten worden reeds frequent toegepast in
verschillende domeinen (bijvoorbeeld in de beeldverwerking, in vage
modelleringstoepassingen of bij het extraheren van informatie uit do-
cumenten). Het is natuurlijk steeds mogelijk om met niets te beginnen
en zo een vage similariteitsmaat op te bouwen, maar er bestaat een
veel simpelere methode. We vertrekken hiervoor van een similariteits-
maat voor scherpe verzamelingen (of equivalent hiermee, binaire vec-
toren) en stellen een schema met vervagingsregels op om zo een vage
similariteitsmaat te construeren. De bestaande toepassingen met vage
similariteitsmaten zijn alle van deze aard. De meest gebruikte simila-
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riteitsmaat is een vervaging van de Jaccard coefficient, alhoewel ver-
vagingen van de Dice coefficient, de Simple Matching coefficient of de
Ochiai coefficient niet ontbreken. Bij de vervaging van deze similari-
teitsmaten wordt echter bijna altijd gebruik gemaakt van de minimum
en maximum operator om respectievelijk doorsnede en unie van twee
vaagverzamelingen te modelleren.

Het belangrijkste resultaat omtrent de geparametriseerde familie
vage similariteitsmaten is dan ook dat de transitiviteitseigenschappen
die vervuld zijn voor scherpe verzamelingen, ook geldig blijven voor
vaagverzamelingen op voorwaarde dat de doorsnede van twee vaag-
verzamelingen gemodelleerd wordt aan de hand van een commuta-
tieve quasi-copula.

Omtrent vage inclusiematen is veel meer te vinden in de liter-
atuur dan hun tegenhangers in het scherpe geval. De meeste vage
inclusiematen worden geconstrueerd aan de hand van een implica-
tor (deze maten zijn gebaseerd op de definitie van scherpe inclusie:
A ⊆ B ⇔ (∀x ∈ X)(x ∈ A ⇒ x ∈ B)). Sommige auteurs
verkiezen echter een axiomatische aanpak om een vage inclusiemaat
te definiëren. Wij nemen echter opnieuw als vertrekpunt de familie in-
clusiematen voor scherpe verzamelingen om een familie van vage in-
clusiematen op te stellen. Op deze manier voorzien we de lezer van
een heel scala aan vage inclusiematen. Bovendien modelleren we op-
nieuw de doorsnede van twee vaagverzamelingen aan de hand van een
commutatieve quasi-copula zodat Łukasiewicz-transitiviteit ook na het
vervagingsproces behouden blijft.

Tenslotte tonen we aan dat zowel vage similariteitsmaten als vage
inclusiematen hun nut kunnen bewijzen in reële toepassingen.
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