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Abstract 

While a globally energizing influence of motivation has long been appreciated in 

psychological research, a series of more recent studies has described motivational 

influences on specific cognitive operations ranging from visual attention, to cognitive control, 

to memory formation. In the majority of these studies, a cue predicts the potential to win 

money in a subsequent task, thus allowing for modulations of proactive task preparation. 

Here we describe some recent studies using tasks that communicate reward availability 

without such cues by directly associating specific task features with reward. Despite 

abolishing the cue-based preparation phase, these studies show similar performance 

benefits. Given the clear difference in temporal structure, a central question is how these 

behavioral effects are brought about, and in particular whether control processes can rapidly 

be enhanced reactively. We present some evidence in favor of this notion. Although 

additional influences, for example sensory prioritization of reward-related features, could 

contribute to the reward-related performance benefits, those benefits seem to strongly rely 

on enhancements of control processes during task execution. Still, for a better mechanistic 

understanding of reward benefits in these two principal paradigms (cues vs. no cues), more 

work is needed that directly compares the underlying processes. We anticipate that reward 

benefits can be brought about in a very flexible fashion depending on the exact nature of the 

reward manipulation and task, and that a better understanding of these processes will not 

only be relevant for basic motivation research, but that it can also be valuable for educational 

and psychopathological contexts. 
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Introduction 

While a globally energizing influence of (typically reward-induced) motivation on human 

cognitive and motor functions has long been recognized in psychological research, a series 

of recent studies has described motivational influences on more specific cognitive 

operations. Beyond increasing the frequency of a specific action in accordance with the 

principles of reinforcement learning, the prospect of reward has been shown to improve 

performance in different domains ranging from visual attention, to cognitive control, to 

memory formation (e.g., Adcock et al., 2006; Locke and Braver, 2008; Engelmann et al., 

2009; Pessoa and Engelmann, 2010; Krebs et al., 2011; Padmala and Pessoa, 2011; Krebs 

et al., 2012; Schmidt et al., 2012; Chelazzi et al., 2013; Braver et al., 2014). To date, most 

(but not all) of these studies identified reward effects by using block designs or variants of the 

monetary-incentive delay (MID) task, in which a cue indicates the prospect of reward for an 

upcoming task. In this chapter, we will start with a general description of such paradigms for 

context, but then mostly focus on a more recent line of studies that manipulate reward 

prospect in a trial-by-trial fashion in the absence of pre-target cues by linking reward 

prospect directly to features of the target stimuli.  

The classic paradigm to study the neural underpinnings of reward effects in humans, 

the MID task (Knutson et al., 2000; Knutson et al., 2001), has been inspired by research in 

non-human primates (Schultz et al., 1997; Schultz, 2001). In numerous studies in macaques, 

these researchers observed increased phasic activity of dopaminergic neurons located in the 

midbrain when the animals received a primary reward. Critically, after a learning phase, a 

similar neural response can also be observed for conditioned stimuli that reliably predict such 

rewards (cues), thus “replacing” the response to the actual reward. This reward-anticipation 

response is thought to not only reflect reward value, but to simultaneously represent an 

activating signal that energizes behavioral and mental processes required to obtain the 

predicted reward (Berridge, 2007; Robbins and Everitt, 2007; Salamone, 2009). In the MID 
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task, human participants are typically explicitly informed about the reward contingencies of 

specific visual cues in advance (mostly bonus money), thereby usually, but not always, 

omitting the conditioning phase that is typical for animal studies. Analogous to the animal 

work, it is assumed that reward-predictive cues as well as unexpected rewarding outcomes 

will trigger activity in the dopaminergic system, while outcomes that are reliably predicted by 

a cue will not or no longer elicit such responses (Pagnoni et al., 2002; Knutson and Cooper, 

2005).  

Importantly, dopaminergic responses seem to be capable of altering subsequent neural 

processing in a number of ways, ranging from a global broadcast signal projected to a 

widespread set of cortical and subcortical areas, to more local influences on specific neural 

computations (Braver et al., 2014). As alluded to above, the MID task, that originally involved 

a simple target-detection task (e.g., Knutson et al., 2000; Knutson et al., 2001), has recently 

been extended to other research domains, ranging from visual attention (e.g., Engelmann 

and Pessoa, 2007; Krebs et al., 2012), to various cognitive-control functions (e.g., Padmala 

and Pessoa, 2011; Schmidt et al., 2012), to memory encoding (e.g., Wittmann et al., 2005; 

Adcock et al., 2006). Despite substantial differences between these cognitive domains and 

tasks, the general facilitative effect of reward cues on human performance has proven to be 

remarkably consistent. This notion has been nicely captured in a recent preview article that 

titled “Anything you can do, you can do better: neural substrates of incentive-based 

performance enhancement” (Liljeholm and O'Doherty, 2012). The results of various 

functional magnetic-resonance imaging (fMRI) studies that employed such cuing paradigms 

suggest that the beneficial effects of reward seem to rely on modulations of proactive control 

processes that facilitate the processing of the upcoming target. Hence, it has been proposed 

that reward acts as a mediator on the respective cognitive functions in a top-down 

preparatory fashion (Pessoa and Engelmann, 2010; Chelazzi et al., 2013). In other words, 

the reward information carried by the cue seems to be used in order to prepare an optimal 

state for successful task performance, which will enable improved target-detection sensitivity 

(Engelmann and Pessoa, 2007; Engelmann et al., 2009), enhanced suppression of task-
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irrelevant interfering information (Padmala and Pessoa, 2011), or facilitate stimulus encoding 

into long-term memory (Adcock et al., 2006) – just to name a few processes that seem to be 

amenable to such reward influences.  

The above observations suggest that reward cues largely exert their influence on 

different cognitive systems in a preparatory manner – before the respective task is actually 

executed, with actual task execution being superior as a consequence of this reward-

triggered preparation (see also Manelis and Reder, 2013). In addition to fMRI evidence, with 

its limitation in temporal resolution, there is also evidence from electroencephalography 

(EEG) studies suggesting that indices of preparatory attention, specifically the contingent 

negative variation (CNV) and changes in alpha power, are amplified during the cue-target 

interval of reward compared to no-reward trials, and that the level of preparation indeed 

relates to subsequent task performance (Schevernels et al., 2014; van den Berg et al., 

2014). Moreover, the results of a recent study, in which fMRI and EEG data were acquired 

simultaneously while participants performed an MID task, suggest that the CNV modulation 

during reward anticipation is brought about by a combination of subcortical reward-

anticipation activity and a top-down regulation of it (Plichta et al., 2013).  

While not in the focus of the current chapter, we note that similar beneficial effects 

have been observed using blocked reward manipulations that likely induce changes in 

sustained rather than transient preparation, or a combination thereof (e.g., Locke and Braver, 

2008; Kouneiher et al., 2009; Jimura et al., 2010; Padmala and Pessoa, 2010; Soutschek et 

al., 2014). Ignoring differences in experimental design, the results from both reward cuing 

and blocked reward studies seem to indicate that the beneficial effects of reward prospect on 

task performance largely arise from proactive top-down control mechanisms that modulate 

the processing of the succeeding target stimuli. In what follows we will discuss a set of 

experiments where such proactive control effects are unlikely to impart a differential effect for 

reward-related trials because it is impossible to predict their occurrence, and hence to 

prepare for them in a trial-by-trial fashion. 
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Within-trial reward manipulations without cues 

Considering the before-mentioned studies, one might come to the conclusion that 

preparatory proactive control processes are a necessity for the behavioral benefits of reward 

to occur, especially in tasks that are performed rapidly, which would leave little time to bring 

about reward-related processing enhancements during task execution. The question of 

whether reward effects can occur in the absence of such temporally-separated preparation 

processes may furthermore be ecologically relevant in that real life might not always provide 

a temporal separation between a moment when reward availability is signaled/registered and 

when one needs to act on this information. To explore this topic, a recent series of studies 

has taken a different approach, which excludes a differential influence of global proactive 

control processes by design. Specifically, information about the availability of reward is linked 

to features of the target stimulus itself, for example the color, in the absence of a cue that 

would precede the target in the MID task. Given that such stimulus-reward association (SRA) 

paradigms don’t follow the traditional MID structure (cue-target-feedback), reward benefits in 

such tasks would likely have to rely on more reactive or even automatic processes compared 

to MID tasks. Such a distinction could fit well onto a prominent model of cognitive control, the 

dual mechanisms of control (DMC) framework by Braver and colleagues (Braver et al., 2007; 

Braver, 2012), which posits that control can flexibly be implemented either proactively or 

reactively. Although this model usually assumes that reward motivation generally leads to 

enhanced proactive control (e.g., Jimura et al., 2010), one of the key points of the model is 

the flexibility with which control can be adapted to different situations. Given this notion, it 

seems possible that reactive control might also profit from such motivation, in particular in 

situations in which proactive control cannot easily be used to enhance performance. In the 

following, we will first introduce two SRA paradigms in some detail, one probing conflict 

resolution (Krebs et al., 2010) and one probing response inhibition (Boehler et al., 2012). In 

both paradigms, reward prospect is indicated by the color of the task-relevant stimuli, 

randomly varied from trial to trial. Afterwards, we will discuss the potential neural 



6 
 

mechanisms underlying the observed behavioral effects, also with reference to the more 

common MID manipulations.    

Rewarded Stroop task. The first SRA paradigm we will discuss (Krebs et al., 2010) is in 

essence a regular color-naming Stroop task with manual responses (MacLeod, 1991). In 

each trial, a word stimulus is presented on the screen in one of four font colors (red, green, 

blue, yellow) and participants are required to press one out of four buttons to indicate the 

current font color. Additionally, participants are informed before the experiment that fast and 

correct responses to two specific font colors (e.g., red and green) can lead to a monetary 

bonus. As in the regular color-naming Stroop task, the meaning of the word stimulus can be 

congruent (e.g., the word RED written in red ink), incongruent (e.g., the word GREEN written 

in red ink) or “neutral” with respect to the font color (e.g., the word BROWN written in red 

ink), which can be used as a baseline condition. We note that by associating the task-

relevant dimension of the word stimulus (i.e., font color) with reward or no-reward, we 

created two different types of incongruent word meanings – those that are related to reward 

and those that are not (e.g., RED vs. BLUE if red is a rewarded font color but blue is not). 

These incongruent reward-related and reward-unrelated word meanings could occur in both 

reward and no-reward trials, as could congruent and neutral word meanings. Importantly, 

word meanings were always irrelevant to the task and never predictive of reward. All trial 

types were randomly intermixed and occurred with the same probability, which means that 

participants had no way of knowing whether an upcoming trial would entail the chance for 

winning a reward or not and thus could not specifically prepare for reward and no-reward 

trials. Despite this, the behavioral results not only showed facilitation and interference effects 

commonly observed in the Stroop task, but also a large beneficial effect of reward prospect 

in the task-relevant dimension (about 100 ms on average). Interestingly, beyond this 

facilitative effect of reward in the relevant dimension (font color), interference effects were 

aggravated if the task-irrelevant dimension of an incongruent trial was related to reward (in 

the sense that the word referred to a reward color). However, task-relevant reward 

information seemed to prevent this additional interference. In essence, these results 
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demonstrate that within-trial reward information can change the way target stimuli are 

processed, despite the absence of pre-target cues and the preparatory mechanisms that 

may be triggered by such cues.  

Rewarded Stop-signal task. Inspired by the above findings, we applied the SRA logic to 

another cognitive-control function, namely response inhibition, i.e., withholding an already 

initiated response (Boehler et al., 2012). This function is especially interesting in the context 

of extrinsic motivation as it has been argued that response inhibition is a rather stable feature 

within individuals (Cohen and Poldrack, 2008), which is derailed in a number of prominent 

neurological and psychiatric disorders like attention-deficit hyperactivity disorder and 

substance abuse (Barkley, 1997; Chambers et al., 2009; Ersche et al., 2012). Moreover, 

response inhibition has to be implemented relatively fast (typically within 250 ms; see below). 

Response inhibition is often studied using the Stop-signal task (e.g., Verbruggen and Logan, 

2008b), in which participants are asked to respond to a target in the majority of trials (e.g., 

80% Go trials), but to withhold their response whenever the target is rapidly followed by a 

Stop signal (e.g., 20% Stop trials). This task allows an estimation of how rapidly the initiated 

“Go-response” can be cancelled by computing the so-called Stop-signal response time 

(SSRT), which is derived from the stopping success rate in relationship to how fast a given 

participant is responding in Go trials and the stimulus-onset asynchrony between the Go 

signal and the Stop signal and usually yields values of around 200 ms (Verbruggen et al., 

2013).  

In order to investigate whether reward can modulate the ability to inhibit an already 

initiated response in the absence of any global preparatory control processes, our study 

provided reward information by the color of the Stop signal in the current paradigm, i.e., only 

after the Go-response was already triggered (Boehler et al., 2012). In addition to Go trials, 

the design thus included reward and no-reward Stop trials, which could further be divided in 

successful and unsuccessful Stop trials based on performance. The crucial questions were 

whether reward can a) affect response inhibition at all, in particular on such a fast timescale 

and if so, b) whether stopping would benefit or suffer from these within-trial reward 
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associations. The latter outcome would speak for a hard-wired natural mapping between 

reward and response execution that cannot be easily overruled (e.g., Guitart-Masip et al., 

2011; see also Chiu et al., 2014). Despite these alternatives, the results indicate that 

response inhibition can in fact profit from reward associations, both in terms of a faster SSRT 

when stopping success was paradigmatically equated across conditions, as well as in terms 

of stopping success when this was not the case. Both results indicate from different angles 

that reward information can indeed facilitate the implementation of response inhibition even 

in the absence of classic preparatory or strategic influences, which have also been generally 

documented to benefit response inhibition (e.g., Chikazoe et al., 2009). Intriguingly, these 

effects need to be implemented extremely rapidly (average SSRT around 200 ms) and seem 

to indicate that natural mappings between reward and response execution are either not 

relevant here, or are somehow overruled. 

 

Possible contributions of reactive control and bottom-up processes  

We conclude from the behavioral results above that the direct association between stimulus 

features and reward can facilitate performance in the Stroop as well as in the Stop-signal 

task in the absence of classic global proactive control processes. As a consequence, the 

question is: how are these within-trial effects are brought about, and how fast can they 

happen? Given the above documented speed, a key question is whether top-down control 

mechanisms play a role in bringing about the reward-related benefits, or whether such 

processes are somehow circumvented.  

Before discussing possible contributions of reactive control it is important to clarify what we 

mean by it. Specifically, we consider processes to reflect enhanced reactive control if they 

reflect enhancements of operations that take place in the respective tasks, which themselves 

are usually assumed to reflect reactive control (e.g., Aron, 2011; see also Ridderinkhof et al., 

2010; Scherbaum et al., 2011; Braver, 2012). Hence, one could rephrase the question as 

probing whether reward can rapidly enhance the control functions that are assumed to be 

involved in the respective cognitive-control function or whether the behavioral benefits are 
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brought about in a fashion that does not modulate or even preempt these processes. As 

such it is referring to active enhancements of the control processes that seem to generally 

implement the respective tasks (e.g., conflict resolution or response inhibition) rather than for 

example processes related to a rehashing of the task rules (e.g., Braver et al., 2007). We 

consider these processes to be enhanced reactively in SRA tasks if they display enhanced 

activity in reward compared to no-reward trials during task execution. This notion relates to 

observations that enhanced proactive control usually goes along with diminished activity in 

cognitive-control areas during task execution, and hence less reactive control (e.g., Paxton et 

al. 2008; Jimura et al., 2010, Chikazoe et al., 2009, Fan et al., 2007; Luks et al., 2007). This 

seems to indicate that if reward effects in SRA tasks would largely be driven by some form of 

proactive control, activity in control areas during task execution should be lower. Yet, one 

should note that a possible interplay between proactive and reactive processes cannot fully 

be excluded, as well as possibly independent contributions.  

Reactive control within-trials. Based on the above definition, there are indications in 

support of enhanced within-trial reactive control in the two SRA paradigms presented above. 

In fMRI versions of both the rewarded Stroop (Krebs et al., 2011) and the rewarded Stop-

signal paradigm (Boehler et al., 2014), we observed increased neural activity in the 

respective task-related cortical networks in reward compared to no-reward trials. Specifically, 

reward-related Stroop stimuli were associated with enhanced activity in dorsolateral 

prefrontal and inferior parietal regions, which are commonly implicated in cognitive-control 

tasks, including conflict processing (Banich et al., 2000; MacDonald et al., 2000; Botvinick et 

al., 2001; Nee et al., 2007). We performed an analogous analysis for the Stop-signal task. 

This analysis was further extended by using a conjunction analysis (corresponding to a 

logical “and”) to identify reward modulations that occurred not only in successful (and hence 

eventually rewarded) Stop trials, but also in unsuccessful (and hence ultimately unrewarded) 

Stop trials. This approach excludes reward modulations reflecting the subsequent positive 

evaluation of successful task performance, and should rather target processes that are 

triggered before the behavioral output. Despite this requirement for modulations to also be 
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present in unsuccessful trials, the comparison of reward and no-reward Stop trials revealed a 

network that included central regions of the inhibition-related network (for reviews see 

Chambers et al., 2009; Swick et al., 2011), namely a cluster comprising right anterior insula / 

inferior frontal gyrus as well as a cluster in the dorsal anterior cingulate cortex / pre-

supplementary motor area. This enhanced involvement of critical task-related control areas 

in both the rewarded Stroop and Stop-signal tasks suggests that reward trials indeed entail 

enhanced reactive control (see also O'Connor et al., 2014).  

Turning back to the relationship between proactive preparation and task execution it is 

interesting to compare our fMRI Stroop study described above (Krebs et al., 2011) to a 

similar Stroop study using an MID-like set-up (Padmala and Pessoa, 2011). Specifically, 

Padmala and Pessoa (2011) employed a picture-word interference task in which a pre-target 

cue predicted the reward prospect of performance on the upcoming target display (task-

relevant pictures overlaid with task-irrelevant word labels). The behavioral effects of reward 

were very similar to the ones observed in our rewarded Stroop task, in that the influence of 

interfering words was reduced in cued reward trials. Moreover, the authors found a joint 

activation of reward-processing regions and a network of frontal, parietal, and occipital 

regions implicated in attentional control in response to the cue, which was highly consistent 

with our fMRI results in the rewarded Stroop task during task execution (Krebs et al., 2011). 

In the MID context of the Padmala and Pessoa study (2011), this activity pattern is 

interpreted as proactive control in preparation for the upcoming target in the form of selective 

attentional filtering of task-irrelevant information. Importantly, this enhanced proactive control 

went along with attenuated conflict-related activity during actual task execution, hence 

indeed suggesting that reward-related preparatory processes can alleviate the need for such 

processes during task execution. This contrasts with another recent study employed an MID 

version of the Stop-signal task to investigate proactive influences on response inhibition in 

the context of reward (Rosell-Negre et al., 2014). Here, the prospect of reward benefited Go-

trial performance, but also Stop-trial performance in that the SSRT was shorter after reward 

cues (note that reward cues only indicated that the next trial could yield a reward without 
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limiting this possibility to either Go trials or Stop trials) – the latter is analogous to the results 

of our rewarded Stop-signal paradigm (Boehler et al., 2012). In contrast to the Stroop task by 

Padmala and Pessoa (2011) discussed above, the study of Rosell-Negre and colleagues 

(2014) reported enhanced neural activity during response inhibition after reward cues in a 

network of prefrontal and parietal areas implicated in response inhibition, which resembles 

the findings of our rewarded Stop-signal task (Boehler et al., 2014). Of note, the neural 

responses during the cue phase were not explicitly analyzed in the study by Rosell-Negre 

and colleagues (2014).  

This general overlap of neural reward-related effects between MID and SRA studies 

raises a number of intriguing questions related to the relationship between reward-induced 

modulations in response to the cue and during actual task execution. In this context, the two 

aforementioned studies (Padmala & Pessoa 2011 vs. Rosell-Negre et al. 2014) seem to be 

somewhat at odds with each other, in the sense that proactive control seems to attenuate the 

need for control during task performance in the Stroop study (Padmala & Pessoa 2011), but 

not in the Stop-signal study (Rosell-Negre et al. 2014). This might relate to the fact that in the 

conflict task, participants can achieve better performance by enhancing their attentional 

focus on the task-relevant stimulus dimension, regardless of whether the upcoming task 

entails a conflict or not. Such focusing is not easily possible in the aforementioned version of 

the Stop-signal task, because the two potential tasks (stopping and going) would require 

different preparatory mechanisms, but the cue does not provide any information about the 

upcoming trial type. Along these lines, it is important to note that activity in areas related to 

response inhibition can indeed be diminished when participants could proactively prepare to 

inhibit (Chikazoe et al., 2009). Given that, it is also possible, albeit quite speculative, that 

reward benefits in a Stop-signal task in which both going and stopping are possibly rewarded 

are brought about in a fashion that is in fact mostly reactive, even if the general set-up is an 

MID task.  

Relationship to training effects. An important concept to consider is whether the general 

activity enhancement of task-related networks in reward trials reflects a basic training effect 
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that is further enhanced for reward trials. Specifically, one could argue that, although 

randomly intermixed, reward trials benefit more from practice in terms of a steeper learning 

curve. Yet, the data does not seem to support this notion. First and foremost, there is no 

indication for a differential effect of practice in reward trials in the behavioral data. We 

explicitly tested this in the fMRI Stop-signal paradigm by comparing the reward-related 

facilitation of SSRT between the first and second half of the experiment (Boehler et al., 

2014). While SSRTs were generally shorter in the second half due to practice, this effect was 

not enhanced for reward trials. We have analyzed the behavioral data of the fMRI Stroop 

paradigm in the same fashion (Krebs et al., 2011), and found an overall RT facilitation in the 

second compared to the first half of the experiment (p<.01), but no interaction with the 

facilitative effect of reward (interaction p>.5; unpublished data).  

Although a more fine-grained analysis might be necessary to clearly answer this 

question, the neural data also seem to speak against a differential practice effect. It has been 

shown that task-related networks display decreased activity with increased practice in 

cognitive tasks, including the Stroop task (e.g., Beauchamp et al., 2003; Chen et al., 2013). 

Enhanced practice effects in reward trials should therefore be reflected in decreased task-

related activity on average compared to no-reward trials. Similarly, a recent EEG study 

indicates that training in the Stop-signal task also results in a reduced engagement of the 

cortical (top-down) response-inhibition network (Manuel et al., 2013), which is the opposite of 

what we observed for the comparison of reward and no-reward Stop trials. Furthermore, 

when looking at response-inhibition tasks beyond the standard Stop-signal task, it has been 

shown that such tasks can (under specific circumstances) lead to the development of an 

automatic mapping between stimuli and response inhibition (e.g., Verbruggen and Logan, 

2008a). This effect, in turn, has been suggested to rely on an alternative route involving 

parietal areas that circumvents the frontal areas usually involved in response inhibition 

(Manuel et al., 2010; but see also Lenartowicz et al., 2011; Spierer et al., 2013); again, an 

effect that our data did not show an indication for as contributing to the reward-related 

enhancement of response inhibition. Together, it seems that differential practice effects in 
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reward versus no-reward trials were not responsible in bringing about the behavioral benefits 

in our SRA tasks. In both cases, the task-related networks are significantly more active 

during reward compared to no-reward trials, which seems to indicate an enhanced reactive 

engagement of the regions that are implicated in the task at hand. 

Bottom-up facilitation. That said, there is also evidence for some level of bottom-up 

prioritization in SRA paradigms, which we will detail in the following section. First, the 

rewarded Stroop EEG experiment discussed above did also reveal reward-related 

modulations that preceded the ERP components associated with conflict processing (Krebs 

et al., 2013). Specifically, we found that reward information was already registered as early 

as 200 ms after target onset, reflected in frontal and occipital ERP modulations. These 

effects are comparable with modulations in response to stimuli that have been associated 

with a positive outcome (Schacht et al., 2012), as well as to salient emotional stimuli of both 

negative and positive valence (e.g., Herbert et al., 2006; Stolarova et al., 2006; Kanske, 

2012). Moreover, in the visual-search domain, reward prospect has been found to modulate 

occipital ERP components related to the attentional orienting toward target singletons in a 

similar time range (Kiss et al., 2009). Together, it seems likely that the early ERP effects 

observed in the rewarded Stroop task index some sort of bottom-up prioritization of a salient 

reward-related feature, which could improve behavioral performance in a fashion that may 

not directly depend on reactive control processes. In addition, it is possible that such 

prioritization is not (exclusively) reflecting a bottom-up process but could also relate to 

proactive top-down processes that monitor more strongly for reward-related features in a 

strategic fashion (see also next section). Whatever the nature of such influences, however, it 

is important to note that in the SRA designs described above, such a possible sensory 

prioritization does not seem to alleviate the need for (likely reactive) control processes, in 

that reward trials still displayed more control-related activity. Yet, it is quite possible that the 

respective processes interact, such that e.g. an enhanced sensory response could facilitate 

control processes.Second, we have additional indications for some degree of automaticity 

with which reward information is processed and affects behavior. One behavioral observation 
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supporting this notion is the detrimental effect of task-irrelevant reward information carried by 

incongruent words in the rewarded Stroop task (Krebs et al., 2010). The most likely 

explanation for this is that reward-associated colors capture attention (or get prioritized in 

another fashion), regardless of whether they occur in the task-relevant or task-irrelevant 

target feature, due to some degree of acquired saliency. If the salient (reward-related) 

feature is in line with the task goal, and thus with the required behavioral response, this 

capture leads to response facilitation, while it will disrupt performance if it is incompatible with 

the task goal (incongruent word meaning). One can moreover approach the question of 

automaticity by removing reward contingencies from a previously rewarded task, thereby 

also removing any reward-trial-specific voluntary top-down engagement. We did this in the 

case of the rewarded Stroop task by adding an extra run with the explicit instruction that no 

reward is at stake anymore. Despite this instruction, participants were still significantly faster 

in trials with former reward colors, again speaking in favor of some (residual) enhanced low-

level saliency/prioritization. We applied a similar logic to the rewarded Stop-signal task and 

added an extra run in which participants were required to perform a speeded discrimination 

response to Go stimuli of different colors, including those that were previously used to 

indicate reward and no-reward Stop trials (Boehler et al., 2012). Like in the extra run of the 

Stroop task, there was nothing to win in this part of the experiment, which was made explicit 

to the participants, as well as the fact that there would be no Stop trials. Nevertheless, the 

results indicate that Go-trial responses were slower for trials that used former reward-related 

Stop colors compared to former reward-unrelated Stop colors. This suggests that some 

association between the reward feature and inhibition has been acquired in the main task, 

which lingers even if the task instructions and the task context (going instead of stopping) 

change. However, it should be noted that this effect was very small, and that we failed to 

replicate it (Boehler et al., 2014). 

Evidence for the notion that reward can increase sensory saliency comes for a large 

part from yet another reward regime, namely the biasing of visual attention after reward 

feedback (Della Libera and Chelazzi, 2006; Hickey et al., 2010; Anderson et al., 2011; Yantis 
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et al., 2012; Chelazzi et al., 2013; Chelazzi et al., 2014). The crucial difference to the SRA 

paradigms presented above is that reward signals modulate attentional selection in an 

incidental, bottom-up fashion. Specifically, reward is signaled after task execution and is not 

predictive of reward in the next trial, which excludes the contribution of any proactive and 

reactive control mechanisms (but see Kristjansson et al., 2010). Nevertheless, these 

incidental reward signals induce substantial attentional biases, such as performance benefits 

or costs depending on whether the previous and the current target stimulus share a feature 

or not. Similar bottom-up effects have also been observed in the conflict-control domain (van 

Steenbergen et al., 2009; Braem et al., 2012). These studies report a modulation of the 

behavioral-adaptation effect that is typically observed after incongruent compared to 

congruent trials by incidental reward feedback. Taken together, it is not possible to exclude 

contributions of changes in sensory saliency to what we consider enhanced reactive control, 

but if so, this seems to enhance reactive control rather than circumventing it.  

Possible additional proactive effects. We have argued above that the results of the SRA 

tasks do not reflect the action of global proactive preparatory control as would be typical for 

MID-like tasks. However, this is not to say that any proactive influences are fully excluded, 

which theoretically could come in the form of specific preparation for a subset of 

stimuli/features in an SRA task, or global preparation. Concerning specific preparation, we 

cannot fully exclude that preparatory effects contribute to our reactive control enhancements, 

e.g., akin to a prepared reflex that specifies ahead of a trial a rule like “if X happens, do Y” 

(Verbruggen et al., in press), or top-down attentional biasing for the reward-related stimulus 

features, which both could be selectively applied to reward-related features. Again, however, 

if either mechanism would be implemented during the described SRA tasks they do not seem 

to  diminish the necessity for cognitive control during task execution in that activity in control-

related areas was enhanced rather than reduced in reward trials.   

 Concerning global preparation, the experiments we have detailed were designed to 

equate global proactive control levels by making the stimulus sequences unpredictable. Yet, 

this does not mean that there may not be an additional sustained (proactive) effect brought 
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about by the general reward context, which would become visible if one would compare task 

performance of no-reward trials that are presented in the context of reward trials with trials 

from a control block that exclusively features no-reward trials. Along such lines, a study on 

the influence of motivation on working memory has found that when (reward-sensitive) 

participants switch to a proactive control mode, it will be in fact the intermixed non-reward 

trials that profit most (Jimura et al., 2010). This latter study used a mixed event-related / 

block design, which is a very elegant approach for determining global pro-active context 

effects on no-reward trials. Finally, there are indications that the general context of reward 

can modulate more incidental aftereffects of behavioral performance - sometimes even to the 

disadvantage of non-reward trials. In brief, typical performance signatures of a) conflict 

adaptation (Braem et al., 2012) and b) action-effect binding (Muhle-Karbe and Krebs, 2012) 

were abolished in no-reward trials when they were intermixed with reward trials. This context 

effect might arise from a sustained strategic re-distribution of cognitive resources. 

The role of dopamine. Although neither fMRI nor EEG data directly reflect neurotransmitter 

dynamics, we would like to focus on the putative role of dopamine in SRA paradigms, in 

particular because the SRA task structure leaves substantially less time for any 

neuromodulatory process to unfold compared to the MID task, in which dopamine is 

assumed to play a central role. MID tasks were designed to mimic the animal model of the 

dopaminergic reward-anticipation response in the midbrain (where the cell bodies are 

located) and (particularly) the ventral striatum (where dopamine is released). Specifically, 

dopamine neurons increase their phasic activity in response to a cue that reliably predicts a 

primary reward, and in turn, more dopamine is released in the target regions (Schultz, 2001; 

Wise, 2004). As this response is highly similar to the one triggered by primary reward itself, it 

is assumed to reflect the appetitive value of the reward. However, dopamine responses to a 

cue not only reflect reward value, but are often intermixed with the behavioral activation or 

mental effort required to obtain the reward (Berridge, 2007; Robbins and Everitt, 2007; 

Salamone, 2009). Crucially, neural responses in the dopaminergic midbrain can also be 

elicited in the absence of reward when participants prepare for a high demand versus a low 
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demand task (Boehler et al., 2011; see also Krebs et al., 2012), which suggests that the 

dopaminergic system can be recruited in a top-down fashion. And indeed, there is evidence 

from functional-connectivity data that lateral prefrontal cortex is the prime input region that 

explains activity in the dopaminergic midbrain during cue processing in the MID task (Ballard 

et al., 2011). Together, it seems most likely that cue-locked dopamine responses reflect a 

mixture of value signals (‘I like that’) and activation signals (‘I will work for it’).  

In the case of our SRA tasks, the reward feature of the target stimulus is probably to 

some extent processed like a reward-predicting cue considering that it also acts as a symbol 

for delayed reward delivery (i.e., bonus money). Indeed, both MID and SRA tasks elicit 

similar neural responses in the ventral striatum, one of the prime target regions of 

dopaminergic neurons (e.g., MID: Engelmann et al., 2009; Padmala and Pessoa, 2011; 

Krebs et al., 2012; SRA: Krebs et al., 2011; Boehler et al., 2014). In keeping with the animal 

model, these responses could reflect an initial value assessment of the presented cue or 

target stimulus, which corresponds to the fast phasic response of dopaminergic neurons at 

about 50 to 100 ms after cue onset (Schultz, 2001). The crucial question that remains to be 

answered is whether there is enough time for the dopaminergic system to unfold activating, 

top-down influences in SRA paradigms - in addition to representing the reward value of a 

given stimulus, with some of the assumed functions presumably requiring some time to 

unfold (Braver et al., 2007). Intriguingly, the ventral striatum might nevertheless play a role in 

shaping performance in the SRA version of the Stroop task, in that its activity level was 

correlated with the behavioral benefit (Krebs et al., 2011). In contrast, in the SRA version of 

the Stop-signal task, we found that the striatum in all likelihood exclusively signaled 

performance outcome rather than contributing to shaping it, because it did not display any 

sensitivity to reward during unsuccessful Stop-trials, which also start off with the prospect of 

reward but ultimately don’t garner it. In the same task, we furthermore found that reward 

information seemed to impinge on the task-relevant areas via a pregenual anterior cingulate 

cortex area; a function that in MID-like tasks usually gets assigned to the ventral striatum 

(Schmidt et al., 2012). This may suggest that reward information can use qualitatively 
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different routes to impact behavior, depending on how much time there is for such influences 

to unfold. As a more general point related to such timing, it might be worth investigating 

whether the exact mechanism may sometimes not only depend on the sequence of events 

but also on the speed of progression, wherein a task that by definition involves reactive 

control might still use mechanisms that fall into a more proactive realm provided that there is 

sufficient time to implement them. Such general flexibility would again in principal fit the DMC 

model of Braver and colleagues (Braver et al., 2007; Braver, 2012), which states that the 

exact nature of control processes will strongly depend on a number of factors pertaining to 

the task at hand, as well as on differences within and between groups of participants. 

 

Conclusions and outlook 

In the preceding chapter we have described a line of research that is only just unfolding. 

Specifically, we have reported a number of studies investigating the influence of reward on 

cognitive-control tasks that breaks with the typical reward-cuing procedure (MID) by 

associating reward directly to task-relevant stimuli (SRA). While it is evident that reward can 

nevertheless still have profound effects on behavioral performance, the underlying 

mechanisms have yet to be fully characterized. In particular, there is evidence that reward 

associations lead to enhanced activity in task-related control areas, which speaks in favor of 

the notion that reward associations enhance actual reactive control within a given trial. Yet, 

there is also evidence for some contribution by more automatic bottom-up processes mostly 

in the sense of increased saliency/prioritization of reward-related features, which however 

does not seem to alleviate the need for enhanced activity in control regions during task 

execution. While these processes mostly seem to act in concert to benefit performance, the 

bottom-up facilitation of a salient feature that is not compatible with the task goal can disrupt 

reactive control and ultimately impede performance. This latter observation is clearly in 

contrast to the solely beneficial effects of preparatory mechanisms triggered by reward cues. 

An important future extension would be a systematic investigation of the role of dimensional 

overlap between task-related and reward-related features. In the studies discussed in this 
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chapter, this overlap was maximal in the Stroop task, where a subset of target colors was 

made reward-relevant, so that reward trials were associated to a different behavioral 

response than no-reward trials. In the Stop-signal task, this overlap was less in that both 

Stop-stimulus colors required the same response (i.e., response inhibition). Yet, it was still 

the task-relevant stimulus that also communicated reward availability. Future studies might 

try to further limit this overlap, which would further emphasize the reactive nature of possible 

reward-related behavioral benefits. Moreover, while the combined results of different MID 

and SRA tasks suggest that the balance is tipped more towards proactive preparatory control 

in the former and more towards reactive control in the latter case, a direct comparison 

between the two paradigms with closely matched stimuli and task requirements will be critical 

to further illuminate the relationship and potential interaction between these two control 

realms.  
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