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Abstract. Frequently the governing failure mode of liquid-filled conical tanks is associated with buckling 
near the lower rim due to compression of the shell wall in meridional direction notwithstanding the 
stabilizing tension in circumferential direction. But important axisymmetric imperfections may increase 
the circumferential tensile stresses in such a way that local yielding precipitates a buckling failure. This 
failure mode is of the same kind as the “elephant’s foot” buckling at the support of axially compressed 
thin steel cylinders with internal pressure. This paper gives numerical results for a series of imperfect 
conical tanks. The collapse is in some cases of the type “elephant’s foot” buckling. The paper explains 
why the imperfections can cause large circumferential tensile stresses leading to plastic collapse of the 
tank. 

1 INTRODUCTION 

A conical shell with a vertical axis of revolution and constant wall thickness is simply supported at 
the lower end of the cone (Fig. 1). The thin-walled conical shell forms a vessel which contains liquid with 
a specific weight γ´ up to a height h´ above the base circle of the cone. The meridional compressive 
membrane stress increases very rapidly along the generatrices of the cone between the surface of the 
liquid and the base of the shell. The meridional membrane stress along the bottom edge of the shell of 
Figure 1 is given by 
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if the weight of the shell is assumed to be negligible compared to that of the liquid. When the level of the 
liquid in the conical vessel rises gradually, the compressive stresses eventually cause the bottom part of 
the shell to buckle, in spite of the stabilizing effect of the circumferential tensile stresses σθ. Since the 
load is a gravity load, the shell fails suddenly and catastrophically. The stresses σ are taken positive in 
the case of compression. 

For these liquid-filled conical shells, design rules are available in the Fourth Edition of the ECCS 
Recommendations of Buckling of Shells [1] and the forthcoming Fifth Edition [2]. The origin of the 
design rules are the numerous experiments that were performed on scale models. In this paper, the results 
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of numerical simulations are compared to the stress design procedure of the ECCS and the discrepancy 
between these two is explained.  
 

 
Fig. 1 The cone geometry. 

 

 
Fig. 2 Measuring the size of the geometric 

imperfection. 

2 STRESS DESIGN 

With the design rules given in the forthcoming Fifth Edition of the ECCS Recommendations, a stress 
design of a liquid-filled conical shell can be performed. The design buckling stress is obtained from 
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The characteristic buckling stress  σxRk is determined as: 
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The relative slenderness ratio is defined as 
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The critical buckling stress of a cone with an angle β  and a small radius 1r  under axial compression is 

given by  
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Eq. (5) provides a good approximation of the meridional buckling stress σxRcr of a perfect elastic simply 
supported weightless liquid-filled conical shell.  
Reduction factor xpχ : 
 
 1xpχ =  when 0λ λ≤  with 0 0,2λ =  (6) 
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The elastic imperfection reduction factor is given by 
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ν = 0,3 is the coefficient of Poisson and E is the Young’s modulus. The quality parameter Q should be 
taken from Table 1 for the specified fabrication tolerance quality. 
 

Table 1: Values of fabrication quality parameter Q 

Quality Description Q 
Class A Excellent 40 
Class B High 25 
Class C Normal 16 

 
The quality classes are defined in paragraph 8.4 of [3], EN 1993-1-6 Strength and Stability of Shell 

Structures. In the case where the behaviour is entirely elastic the characteristic buckling stress may 
alternatively be determined directly from xRk xpe xRcrσ α σ= ⋅ . 

The value of the plastic limit relative slenderness pλ should be determined from: 
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It should be verified that xEd xRdσ σ≤ where xEdσ is the meridional membrane stress at the support 

due to the liquid filling taken with its design (factored) value. 

3 DESIGN BY GLOBAL NUMERICAL ANALYSIS USING GMNIA ANALYSIS 

EN 1993-1-6 permits a fully nonlinear analysis, including explicit modelling of geometric 
imperfections, termed GMNIA (Geometrically and Materially Nonlinear Imperfection Analysis taking 
into account equivalent imperfections). The first eigenmode found with a LBA (Linear Buckling 
Analysis) analysis of the perfect shell is used as pattern of the equivalent geometric imperfections. The 
amplitude of the adopted equivalent geometric imperfections depends on the fabrication tolerance quality 
class. The maximum deviation of the geometry of the equivalent imperfection from the perfect shape was 
taken the larger of 0, ,1eqw∆ or 0, ,2eqw∆ , where: 
 
 0, ,1 1eq g nw U∆ = ; (11) 
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 0, ,2 225eq nw t U∆ = . (12) 
 

14
cosg

r t
β

=  is the gauge length conformable to paragraph 8.4.4 of EN 1993-1-6. 1nU  and 2nU  are the 

dimple imperfection amplitude parameters for the relevant tolerance quality class as given in Table 2. 
The criteria for collapse in the case of conical tanks are a limit load or a bifurcation. The criterion 

that limits the most highly stressed point of the shell to first yield is too conservative. The characteristic 
buckling stress σxRk is the meridional stress at the base circle corresponding with the liquid level hRk at 
collapse. 
 

Table 2: Values for dimple imperfection amplitude parameters 

Fabrication tolerance quality class Description Value of 1nU  Value of 2nU  

Class A Excellent 0,010 0,010 
Class B High 0,016 0,016 
Class C Normal 0,025 0,025 

 

4    COMPARISON OF STRESS DESIGN AND GMNIA ANALYSIS 

4.1 Purpose of the GMNIA calculations 
The procedure for liquid-filled conical shells, developed by Prof. D. Vandepitte and described in the 

Fourth Edition of the ECCS Buckling of Steel Shells, European Recommendations, is based on hundreds 
of experiments performed at the Laboratory for Research on Structural Models of the Ghent University. 
This procedure was validated in the past by means of numerical simulations with the programs BOSOR 
(D. Bushnell) [4] and F04B08 (M. Esslinger) [5]. The stress design, explained in section 3, is the 
transcription of the original procedure of the Fourth Edition of the ECCS Recommendations to the format 
of EN 1993-1-6 with a slight adaptation allowing the application of the quality classes A, B and C of the 
EN 1993-1-6. The quality classes A and C correspond to the former classification “good” and “poor” and 
the quality class B is added by interpolation.  

A verification of the stress design procedure has recently been performed with the finite element 
package ABAQUS [6]. This research is interesting since previous simulations have shown discrepancies 
between the results with ABAQUS and F04B08 [7].  

4.2 Stress design  
The water level Rdh′  corresponding with xRdσ  was determined with the stress design procedure for 

seven cone geometries and for the quality classes A and C (see Table 3). 

4.3 Design by global numerical analysis 
With the finite element package ABAQUS, the seven geometries were also modelled and the 

GMNIA analyses for the three quality classes were performed. The critical level of the liquid is obtained 
by successive approximations. In the first step of the iteration process the height of the liquid h′  was 

Rcrh′  corresponding with xRcrσ . These values of Rcrh′  are given in Table 3. 
For the nonlinear material properties, a perfect elastic-plastic material was assumed: a linear elastic 

behaviour followed by a plastic horizontal plateau. As explained in section 3 the geometric imperfections 
were given the shape of the first eigenmode of the perfect cone, which is an axisymmetric mode. 
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Table 3: Determination of the critical water level for seven cone geometries and for the EC3 quality 
classes A and C with the stress design procedure 

Number 1 2 3 4 5 6 7 
r1 (mm) 90 3.000 350 579 200 3.794 3.794 
t (mm) 0,3239 10 0,30 0,310 0,1229 8 15 
β (°) 49,93 45 40 40 39,98 51 51 

E (N/mm2) 195.420 210.000 210.000 200.000 5220 196.200 196.200 
ν 0,3 0,3 0,3 0,3 0,3 0,3 0,3 

fyk (N/mm2) 240 240 240 240 elastic 240 240 
 ECCS stress design procedure for the liquid-filled conical shell 

ω 28,33 155,12 190,2 401,4 1272 320,57 170,97 
xRcrσ (N/mm2) 274 299 83,42 49,63 1,487 157,52 295,34  

Perfect 
Rcrh′  (mm) 1.234 13.222 1.464 1.322 166 8.300 13.627 

xRdσ (N/mm2) 48,45 84,69 24,96 18,24 0,7516 54,42 85,79 
Class A 

Rdh′  (mm) 664 8.032 900 862 121 5.350 8.370 

xRdσ (N/mm2) 43,96 78,30 23,13 17,05 0,7112 50,73 79,41 
Class C 

Rdh′  (mm) 641 7.780 872 836 118 5.193 8.113 
 
The amplitude of the geometric imperfection in the adopted pattern of the equivalent geometric 
imperfection was interpreted in a manner consistent with the gauge length method, defined in 8.4.4 of EN 
1993-1-6 (see Fig. 2). For each geometry, both GMNIA analyses with the first half wave oriented 
outward and with the first half wave oriented inward were investigated. The lowest collapse load always 
corresponded with the first half wave oriented outward. 

For the GMNIA analyses, the modified Riks algorithm was used. In the analyses, the liquid level was 
constant and the density of the liquid was increased until bifurcation or a limit load occurred. Eq. (1) was 
used to determine the meridional compressive stress at the lower rim for the ultimate specific weight γ’ 
and the constant liquid level h’. With this meridional stress, an estimation of the critical water level could 
be obtained if the specific weight of water was inserted in Eq. (1). For this new liquid level, a new 
GMNIA analysis was performed and a new ultimate liquid density was obtained. This procedure was 
repeated until the ultimate density was (almost) equal to the density of water. The results of this iterative 
process are given in Table 4 for the seven cone geometries and the three quality classes. Also the results 
of the GMNA analyses for the perfect cones are given, and the results of the GNIA (pure elastic) analyses 
of the cones of Class C. The parameter λ indicates the ratio of the ultimate density and the water density. 

The results in Table 4 for the quality classes A and C can be compared with the results obtained with 
the stress design procedure taken from the ECCS Recommendations (Table 3). For that purpose, the 
ratios of σxRd obtained with numerical simulations and σxRd obtained with the ECCS procedure are given 
in Table 5. As can be seen, these ratios are not always equal to or larger than 1. For Class A, the lowest 
ratio is 0,94, which is still close to unity. For Class C however, the ratio is ≈ 0,60 for geometry 2, 6 and 7. 
The ABAQUS analyses show that for these geometries the von Mises stresses at the first axisymmetric 
bulge close by the lower rim are equal to the yield stress and that this is due to the large circumferential 
stresses. It is clear that the failure pattern for these cones is “Elephant’s foot” and thus a plastic failure 
phenomenon.  

These results suggest that the ECCS procedure may in some cases overestimate the buckling stress, 
which is dangerous. However the ECCS procedure is based on a very extensive experimental research, 
combined with a theoretical investigation, and has thus a solid underpinning. Furthermore, the relevance 
of the first – axisymmetric – eigenmode as imperfection shape can be argued. It is very unlikely to have 
an axisymmetric imperfection in practice. And it is precisely the presence of the axisymmetric 
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imperfection in the numerical simulations that causes the drastic reduction of the buckling stress 
compared to the one of the perfect cone. This explains why the GMNIA calculations give lower buckling 
loads than the lower bounds derived from hundreds of tests. 

In Table 6, the ratios of the meridional design buckling stresses at the lower rim and the yield stress 
are given. Although some failure patterns indicate plastic failure, the ratios are smaller than 40% for 
imperfections of Class A and smaller than 25% for imperfections of Class C. Clearly, due to the presence 
of the imperfections and the deformations, the actual circumferential stresses are much higher than the 
theoretical ones and the combination of these actual circumferential and meridional stresses can lead to 
early yielding and causes the critical water level to be significantly lower than the value predicted with 
the ECCS procedure for some geometries. 
 
Table 4: Determination of the critical water level for seven cone geometries and for the three EC3 quality 

classes with ABAQUS  
Number 1 2 3 4 5 6 7 
r1 (mm) 90 3.000 350 579 200 3.794 3.794 
t (mm) 0,3239 10 0,30 0,310 0,1229 8 15 
β (°) 49,93 45 40 40 39,98 51 51 

E (N/mm2) 195.420 210.000 210.000 200.000 5.220 196.200 196.200
ν 0,3 0,3 0,3 0,3 0,3 0,3 0,3 

fyk (N/mm2) 240 240 240 240 elastic 240 240 
ABAQUS GMNA 

xRdσ  (N/mm2) 187,24 165,66 76,00 46,56 1,42 113,82 165,15 

Rdh′  (mm) 1.079 10.499 1.412 1.287 163 7.272 10.868 
Perfect 

λ  1,00 1,00 0,99 1,00 1,00 1,00 1,00 
ABAQUS GMNIA 

xRdσ  (N/mm2) 90,30 81,21 31,72 23,86 1,05 53,54 80,40 

Rdh′  (mm) 832 7.897 993 968 142 5.313 8.154 Class A 

λ  0,99 1,00 1,00 1,04 1,00 0,99 0,99 

xRdσ  (N/mm2) 74,10 65,05 27,06 20,49 0,94 42,42 63,88 

Rdh′  (mm) 775 7.215 931 907 135 4.813 7.425 Class B 

λ  1,01 1,00 1,02 0,98 0,99 0,99 0,98 

xRdσ  (N/mm2) 58,62 49,27 23,91 16,98 0,81 31,98 48,61 

Rdh′  (mm) 712 6.436 885 835 126 4.263 6.637 Class C 

λ  1,01 1,00 1,03 1,01 1,02 0,99 0,99 
ABAQUS GNIA 

σxRd(N/mm2) 63,13 111,44 23,66 18,31 0,81 67,08 112,80 
Rdh′  (mm) 732 8970 881 864 125 5842 9343 Class C 

λ  0,97 0,93 1,00 0,95 1,01 0,96 0,95 
 

Table 5: Ratios of design buckling stresses with GMNIA calculations and ECCS procedure 
Number 1 2 3 4 5 6 7 

Class A 1,86 0,96 1,27 1,31 1,40 0,98 0,94 _

_

xRd GMNIA

xRd ECCS

σ
σ

 
Class C 1,33 0,63 1,03 1,00 1,14 0,63 0,61 
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Table 6: Ratios of the design buckling stress at the lower rim and the yield stress 
Number 1 2 3 4 5 6 7 

Class A 0,38 0,34 0,13 0,10 - 0,22 0,33 
_xRd GMNIA

ykf
σ  

Class C 0,24 0,21 0,10 0,07 - 0,13 0,20 
 

Table 7 shows that in the case of pure elastic behaviour the ECCS procedure leads to safe results for 
all the geometries even for the quality class C. 
 

Table 7: Ratios of design values of the stresses with GNIA calculations and ECCS procedure 
Number 1 2 3 4 5 6 7 

Class C _ _/xRd GNIA xRd ECCSσ σ  1,44 1,42 1,02 1,07 1,14 1,32 1,42 
 

5   ORIGIN OF THE LARGE CIRCUMFERENTIAL STRESSES IN IMPERFECT 
CONICAL TANKS 

With the characteristic buckling stress 21,1 49,27 54,20 /xRk m xRd N mmσ γ σ= ⋅ = ⋅ =  for cone 2 and 
quality class C in Table 4 corresponds a characteristic water level 6705Rkh mm′ = . With this water level 
corresponds a circumferential stress 
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if the membrane theory is applied, the geometrical imperfections of the conical tank are neglected and 
the principal radii of curvature 1R = ∞  and  2 1 / cosR r β=  are used in the well known formula for shells 
of revolution loaded symmetrically with respect to their axis 
 

 
1 2

N N Z
R R

ϕ θ+ = . (13) 

 
xN tϕ σ= − ⋅  and N tθ θσ= − ⋅  denote the magnitudes of the membrane forces, per unit length, in the 

meridional and the circumferential direction. Z hγ ′ ′=  is the component of the external load normal to the 
surface of the shell. The corresponding von Mises stress is 
 
 2 2 272,30 /eq x x N mmθ θσ σ σ σ σ= + − ⋅ =  (14) 
 
and doesn’t attain the yield stress as in the GMNIA calculation. 

The formula (13) is now applied taking into account the axisymmetric initial geometrical 
imperfections of quality class C plus the deformations of the shell wall at the start of yielding in the mid 
surface of the shell.  The GMNIA calculation shows that yielding of the mid surface starts for a load 
factor 0,967 and that the corresponding deformations in the vicinity of the base circle of the conical tank 
can be approximated by the initial geometrical imperfections multiplied by 0,35. The deviation of the 
deformed meridian of the conical tank from the straight line is approximated by : 
 

 
0,025 2(1 0,35) sin

2
g

g
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where g0,025  represents the amplitude of the assumed initial sinusoidal imperfection and 

14 824
cosg

r t mm
β

= =  the gauge length. The first half wave is taken in outward direction. The 

coordinate x  is measured along the meridian. The maximum curvature of the meridian is 
2

max
1,35 0,025 2 0,6662

824g
y π⋅ ⋅ ⋅′′ = − = −  and the corresponding principal radius of curvature of the shell 

wall 1
max

1 824 1237
0,6662

R mm
y

= = =
′′

. At that location x  is 824 / 4 206mm= , the radius of the parallel 

circle 3000 206 sin 45 3146r mm= + ⋅ = , the principal radius 2 / cos45 4449R r mm≅ ° =  and the water 
height 6705 206 cos45 6559h mm′ = − ⋅ ° = . We calculate meridional membrane stress xσ  at that location 
by writing the equilibrium of the shell above the parallel circle 
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The application of formula (13) in the deformed state of the shell gives 
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The corresponding von Mises stress is given by 
 
 2 2 2 2 248,91 ( 203,6) 48,91 ( 203,6) 232,1 /eq x x N mmθ θσ σ σ σ σ= + − ⋅ = + − − ⋅ − = . 
 
and matches very well the equivalent stress fyk obtained in the GMNIA calculation. Although this result 
confirms our statement that the early yielding is caused by the enlarged circumferential stresses due to 
the imperfections and deformations, the accuracy of the analytical method that is used here is limited. 
The shape of the first eigenmode and the deformations are approximated by a sine wave. A membrane 
analysis is used and the disturbance of the membrane state by the adjacent boundary conditions is 
neglected… The main lesson of this analytical method is that the presence of the imperfection leads to 
very large circumferential stresses which – in combination with the meridional stresses – can lead to 
early yielding. 

The method can also be used when the first half wave is taken inwards. In this case the sign of the R1  
changes and the new values for the stresses are  
 

2444,9 (0,0622 0,3954) 148,2 /N mmθσ = − ⋅ − = (compression) and  
 

2 2 248,91 (148,2) 48,91 (148,2) 130,8 /eq N mmσ = + − ⋅ = . 
 

This confirms that in the case of “elephant’s foot” buckling initial geometric imperfections with the 
first half wave outwards are more detrimental than imperfections with the first half wave inwards. 

With this approximate calculation the unexpected large circumferential stresses in conical tanks with 
large axisymmetric imperfections are explained. This approximate calculation doesn’t claim any 
accuracy but allows to understand the origin of large circumferential stresses and can be used to evaluate 
the risk for “elephant’s foot” buckling.  
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6   INVESTIGATION OF OTHER IMPERFECTION SHAPES 

6.1 Realistic imperfection shapes 
In [3] guidelines are given for the choice of equivalent geometric imperfections in GMNIA analyses. 

Basically, since in many cases this is the most unfavourable pattern, an eigenmode-affine pattern is 
recommended, unless such a pattern can be eliminated for being unrealistic. Based on these 
recommendations, the authors already mentioned in section 4 that the first eigenmode of the cone – 
which is an axisymmetric one – is probably not a realistic pattern and that the results of the GMNIA 
analyses should be put in perspective. 

In order to validate the design procedure of the ECCS Recommendations [2], two other imperfection 
shapes and the results of the corresponding GMNIA analyses are studied here. For that purpose, the 
geometry of cone 2 and quality class C is chosen. These somewhat more realistic imperfection shapes are 
shown in Fig. 3. In Fig. 3(b) the 15th eigenmode of cone 2 is given. This eigenmode is chosen for the 
rather large number of waves in circumferential direction in combination with the waves in meridional 
direction. In Fig. 3(c), the second imperfection shape is presented. This shape represents a local dimple in 
the cone wall near the lower rim. 
 

            
(a)    (b)   (c) 

Fig. 3 The three imperfection studied. (a) The first eigenmode – axisymmetric, (b) the 15th eigenmode 
with waves in circumferential and meridional direction, (c) the local dimple. 

 

6.2 Eigenmode with waves in circumferential and meridional direction as imperfection shape 
The new GMNIA analysis was performed on an imperfect cone with the dimensions of geometry 2 as 

given in Table 4. In this table, the results of the GMNIA analyses with the axisymmetric imperfection 
(Fig. 3(a)) are presented. These results lead to a characteristic water level of 6705 mm in combination 
with an ultimate liquid density equal to the density of water. In order to reduce the number of 
simulations, the iterative procedure of section 4.3 is abandoned and replaced by GMNIA analyses with 
constant liquid level. The parameter that is varied is the liquid density. The stress design for this liquid 
level, geometry 2 and quality Class C leads to a characteristic ultimate liquid density that is 1,71 times 
larger than the density of water. 

In order to check whether a more realistic imperfection shape leads to an ultimate liquid density that 
is larger than the value given by the ECCS procedure, a new eigenmode was chosen rather randomly. The 
15th eigenmode is shown in Fig. 3(b) and is characterised by buckles in circumferential and meridional 
direction. The amplitude of the imperfection is the maximum equivalent amplitude corresponding to 
Class C. With these characteristics, the GMNIA analysis led to an ultimate liquid density that is equal to 
1,72 times the liquid density. This means that the ECCS procedure leads to a slightly conservative value.  

6.3 Local dimple as imperfection shape 
The second alternative imperfection shape that was investigated is a local dimple with a sinusoidal 

shape with wavelength g  in both circumferential and meridional direction (Fig. 3(c)). The dimple was 
placed just above the lower rim and the amplitude was equal to the maximum equivalent amplitude 
corresponding to Class C. The GMNIA analysis for this imperfection shape gave an ultimate liquid 
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density of 2,54 times the water density if the imperfection was oriented outward and an ultimate liquid 
density of 2,63 times the water density if the imperfections was oriented inward. 

6.4 Discussion of imperfection study 
In Fig. 3, the three imperfection shapes studied are shown. It is clear that based on this rather limited 

study no definitive conclusions can be drawn. Nevertheless, some tendencies can be seen. With an axi-
symmetric imperfection the consequences for the structural behaviour are dramatic. The circumferential 
stresses are severely increased and the danger of yielding is obvious. This behaviour is not covered by the 
ECCS Recommendations. However, an axisymmetric buckling shape as imperfection is not realistic. 
With the non axisymmetric imperfections studied so far, the results show that the ECCS procedure leads 
to a lower bound. However, other shapes should be studied before solid conclusions can be made. 

7    CONCLUSION 

The numerical simulations of conical tanks with large axisymmetric imperfections lead in some cases 
to unexpected low buckling stresses due to local yielding of the type “elephant’s foot” buckling. An 
approximate analytical method shows that these important axisymmetric imperfections increase the 
circumferential stresses in such a way that local yielding precipitates the buckling failure.  
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