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Abstract. Generating a schedule for a professional sports league is an extremely 

demanding task. Good schedules have many benefits for the league, such as higher 

attendance and TV viewership, lower costs, and increased fairness. The Australian 

Football League is particularly interesting because of an unusual competition format 

integrating a single round robin tournament with additional games. Furthermore, several 

teams have multiple home venues and some venues are shared by multiple teams. This 

paper presents a 3-phase process to schedule the Australian Football League. The 

resulting solution outperforms the official schedule with respect to minimizing and 

balancing travel distance and breaks, while satisfying more requirements. 
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1   Introduction 

Australian Rules football (officially Australian football) was invented in Melbourne, 

Australia, and first played in 1858 (Blainey, 2010). The history of the Australian Football 

League (AFL) dates back to 1897, but games have been played in some kind of league 

format since 1877. Originally intended to keep the cricketers fit during winter time, 

Australian football soon became highly popular in Australia, and is now practised in large 

parts of the world. When measured by attendance, it is by far the most popular sport in 

Australia. The spectator average per match for the season 2013 was 33,500. The most 

popular matches in the regular season have more than 80,000 spectators. 

 

As have many professional sports leagues, the Australian Football League (AFL) has 

become a big business. Accordingly, the quality of the schedules has become increasingly 

important, as the schedule has a direct impact on revenue for all involved parties. For 

instance, the number of spectators in the stadia and the travelling costs for the teams are 

influenced by the schedule, and TV networks that pay for broadcasting rights want the 

most attractive games to be scheduled at commercially interesting times. Scheduling the 

Australian Football League is a very demanding task. It has in fact been claimed to be the 

most difficult mathematical problem in world sport by the Herald Sun
1
. Not surprisingly, 

the problem of scheduling sport leagues has drawn the attention of an increasing number 

of researchers. Nurmi et al. (2010) report on a growing number of cases in which 

academic researchers have been able to close a scheduling contract with a professional 

sports league owner. 
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In a sports tournament, n teams play against each other over a period of time according 

to a given timetable. The teams belong to a league, which organizes games or matches 

between the teams. Each game consists of an ordered pair of teams, denoted i-j, where 

team i plays at home - that is, uses its own venue (stadium) for a game - and team j plays 

away. In a round robin tournament each team plays against every other team a fixed 

number of times. Most sports leagues play a double round robin tournament, where the 

teams meet once at home and once away. Games are grouped in rounds, which are played 

on one or more consecutive days (usually a weekend). If a team does not play on some 

round, we say it has a bye on that round. A schedule is compact if it uses the minimum 

number of rounds required to schedule all the games; otherwise it is relaxed. If a team 

plays two home or two away games in two consecutive rounds, it is said to have a break. 

In general, for reasons of fairness, breaks are to be avoided. However, in order to reduce 

travelling costs, a team may prefer to have two or more consecutive away games. This 

could be the case if its stadium is located far from the opponent’s venues, and the venues 

of these opponents are close to each other. A series of consecutive away games is called 
an away tour. Excellent overviews of sports scheduling can be found in Easton et al. 

(2004) and Rasmussen & Trick (2008). An extensive bibliography can be found on a 

website maintained by Knust
2
 and in an annotated bibliography by Kendall et al. (2010). 

 

The scheduling problem faced by the Australian Football League can be seen as a so-

called Constrained Sports Scheduling Problem (CSSP). In a CSSP, the goal is to find a 

feasible solution that is the most acceptable for the sports league owner - that is, a 

solution that has no hard constraint violations and that minimizes the weighted sum of the 

soft constraint violations. Several types of constraints which occur frequently in 

constrained sport scheduling problems have been listed by Nurmi et al. (2010). 

Nevertheless, the AFL scheduling problem has two interesting and relatively novel 
features. First, the AFL consists of a single round robin tournament complemented with 5 

additional matches for each team. These additional matches are no post-season or play-off 

competition, instead, they are mixed with the round robin matches. Integrating additional 

matches into a round robin tournament is uncommon, but has been studied before by 

academics in the context of the New Zealand Rugby Union Cup (Johnston and Wright, 

2014) and the Finnish Major Ice Hockey League (Kyngäs and Nurmi, 2009). In these 

competitions, the opponents and the home advantage for the additional matches are fixed 

before the schedule is created; in the New Zealand Rugby Union Cup teams get to pick 

their opponents for the additional matches in a media-covered selection event. In the 

AFL, however, deciding the opponents and the home advantage for the additional 

matches is part of the scheduling process. Furthermore, the league uses a relaxed 

schedule, such that each team has a bye in one of the three rounds centered around the 

middle of the season. 

A second interesting feature is the fact that some teams in the AFL have multiple home 

venues. In addition, two stadia, Etihad and MCG, host almost half of all the matches. Half 

of the teams play one or more home matches at these stadia, and some teems need to play 

a minimum number of away matches at Etihad Stadium. Furthermore, as the AFL is 

trying to expand the sport throughout the country and even to New Zealand, some of the 

matches are played in cities and stadia that do not have a permanent home team. Settings 

with multiple venues have been studied from a theoretical point of view by e.g. Urban 

and Russell (2003, 2005), de Werra et al. (2006) and Ikebe and Tamura (2008). However, 

in these contributions, the idea is that the stadia are not linked to any team, and the goal is 

that each team plays the same number of games in each stadium. We are not aware of any 

contribution on real-life sport scheduling that deals with multiple home venues. In 

Section 2, we give a detailed problem description, covering all the requests that need to 

be taken into account for the 2013 season. 
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As the AFL scheduling problem turns out too demanding to solve in a single model, 

we have developed a 3-phase approach. In the first phase, opponents and home advantage 

are decided, the second phase assigns matches to rounds, and the final phase decides on 

the kick-off times and venues. Each of these phases is tackled with an implementation of 

the PEAST (Population, Ejection, Annealing, Shuffling, Tabu) heuristic, which has 

proven its value for several other complex real-life problems as e.g. workforce scheduling 
(Nurmi and Kyngäs, 2011). Details on our solution method are given in Section 3. The 

AFL currently uses software from the firm “Optimal Planning Solutions” to craft the 

schedule. This company creates fixtures for leading competitions across the globe 

including NFL football, European soccer, the NRL Rugby and Super Rugby. Our goal is 

to improve on the official schedule, in particular with respect to minimizing and 

balancing travel distance and the number of breaks. In section 4, we report on our 

computational results and compare our schedule with the official schedule for the 2013 

season.  

2   Problem description 

The Australian Football League has 18 teams (see Table 2). Figure 1 shows the 

location of the teams. While the majority of the teams are situated in or around the 

Victoria region, two of the teams are located remotely in the northeast of the country 

(Queensland) and two are far away in Western Australia. Figure 1 also depicts the stadia 

that are used to host the matches. In order to further popularize Australian Football and to 

create opportunities to attend a game in cities that do not have a home team, the AFL also 

makes use of stadia in cities as Darwin (Northern Australia), Hobart and Launceston 

(Tasmania), Cairns (Northern Queensland) and Wellington (New Zealand, which is not 

depicted in Figure 1). The AFL decides, before the schedule is made, which matches will 

take place in these stadia, and at what date and time. Furthermore, the big stadia in 

Melbourne (MCG, Etihad) are also used to host a number of popular games involving 

home teams that do not have these stadia as their home ground. Moreover, these stadia 

are shared by several teams as their home venue. Contractual agreements determine the 

number of matches that are to be played for every stadium. 

 

Table 2. The eighteen teams in the AFL and their home venues. 
 

Adelaide Crows (AAMI) Hawthorn (MCG) 

Brisbane Lions (Gabba) Melbourne  (MCG) 

Carlton (MCG, Etihad) North Melbourne  (Etihad) 

Collingwood (MCG) Port Adelaide (AAMI) 

Essendon (MCG, Etihad) Richmond (MCG) 

Fremantle (Patersons) St Kilda (Etihad) 

Geelong Cats (Simonds) Sydney Swans (SCG, ANZ) 

Gold Coast Suns (Metricon) Western Bulldogs (Etihad) 

Greater Western Sydney Giants (Skoda, Manuka) West Coast Eagles (Patersons) 

 

The AFL competition has a complicated structure. It consists of each team playing 

against every other team once, i.e., a single round robin. In addition, each team has to 

play 5 extra matches. This adds up to 22 matches for each team: 11 home and 11 away 

matches. The integration of a single round robin and additional matches makes the 

schedule different from most other professional sports league schedules, where additional 

matches are usually played as a play-off tournament, after the regular round robin 

competition. Furthermore, the AFL schedule consists of 23 rounds (i.e. time-relaxed), and 

each team has one bye during rounds 11-13. These 3 rounds consist of 6 matches, while 

the other 20 rounds have 9 matches. 



 

Figure 1: The eighteen AFL teams. Dots represent home venues; squares correspond to 

stadia without a permanent home team (New Zealand is not depicted) 
 

The two main objectives are related to travel distance and breaks. Australia is a big 

country, which causes extensive travel loads for the teams, especially for the teams from 

Queensland and Western Australia. For instance, in 2013, the total travel distance was 

243,125 km. For a remote team like Fremantle, the official season schedule included 

nearly 35,000 km of travel, while for any team in Victoria, the total travel was less than 

11,000 km. One objective in the AFL scheduling problem is to balance total travelling 

between teams from the same state, without exceeding the current total travel distance. In 

particular, travel loads from non-Victorian teams should be as equal in length as possible. 

Therefore, we will measure this balance as the sum of differences in travel distance 

between each pair of non-Victorian local rivals.  

The second objective is to minimize the total number of breaks. Break minimization is 

quite common as an objective in sport scheduling (see Kendall et al., 2010). In fact, De 

Werra (1981) has presented an efficient algorithm to compute a minimum break schedule 

for a single round robin tournament without further constraints. Apart from the total 

number of breaks, the AFL also wants to minimize the number of consecutive breaks for 

each team (this occurs when a team plays 3 home games or 3 away games in a row), as 

well as the number of breaks for each team. With respect to the latter, 5 breaks or less per 

team is considered reasonable. 

Achieving these objectives is further complicated by an extensive list of constraints 

that need to be taken into account, communicated to us by the league authorities. We have 

grouped these constraints into 3 categories, related to home teams and opponents (section 

2.1), order of the matches (section 2.2), and venues and kick-off times (section 2.3). 

2.1 Home teams and opponents 

The teams play a single round robin with five additional matches. Therefore, each team 

meets five teams twice (home and away) and twelve teams only once during the season. 

The schedule should secure fairness for the teams. It should also increase revenues for 

owners/shareholders by increasing the number of spectators and decreasing travelling 

costs. Finally, it should secure the interest of media, TV network and fans and optimize 

matches considering their needs. The problem is to schedule the home advantage and 

opponents such that all teams play under similar conditions. For instance, the home 



 

advantage should be set such that all teams have to play a minimum of five matches in 

Victoria. Furthermore, the five additional matches should be such that all local rivals and 

“big” clubs should meet each other twice. In total, the league authorities defined 11 

selection rules, which we converted to equally many hard constraints.  

 

The home advantage of the matches is subject to the following constraints: 

(1). All teams have to play a minimum of 5 matches in Victoria. 

(2). Victorian teams should travel outside Victoria a minimum of 5 times. 

(3). Each team must have at least one home match against Collingwood or 

Essendon. 

(4). Each team has to travel to Western Australia at least once.  

(5). For a number of matches, the home advantage is fixed. 

 

The selection of the opponents in the 5 additional matches for each team is as follows: 

(6). Blockbuster matches (i.e. between top teams) must be included.  

(7). Matches between local rivals (Adelaide Crows and Port Adelaide, Brisbane 

Lions and Gold Coast Suns, Fremantle and West Coast Eagles, Greater 

Western Sydney Giants and Sydney Swans) must be included. 

(8). The top four teams from the previous season can have only one meeting with 

the bottom four teams from the previous season, with the exception of the 

Sydney rivals. 

(9). The top eight teams from the previous season should play at least three other 

top eight teams twice 

(10). The bottom ten teams from the previous season should play at least three 

other bottom ten teams twice. 

(11). The bottom two teams from the previous season should not meet the top 

eight teams from the previous season  twice (Sydney rivals are an exception). 

 

Matches are defined as “blockbuster matches” by the league authorities, in consultation 

with the broadcasters. They are a subset of the matches featuring two of the big six teams 

from Victoria (i.e., Carlton, Collingwood, Essendon, Geelong Cats, Hawthorn and 

Richmond). Note that some of these constraints may be conflicting (e.g. depending on 

last season’s ranking). If this is the case, the league authorities make exceptions or slight 

alterations to these rules (for instance, in 2013, Collingwood and Richmond were not 

required to be matched up twice). 

2.2 Order of the matches 

Matches are grouped in rounds, which have an order. The season consists of 23 rounds: 

nine matches can be assigned to rounds 1-10 and 14-23, and 6 matches to rounds 11-13. 

The requirements concerning the order of the matches and grouping in rounds can be 

described with the following nine constraints. 

 

(12). Pre-assigned matches, i.e. for which the round is fixed, must be respected 

(13). There must be at least 6 rounds between two matches with the same 

opponents. 

(14). There should be at most 1 home match per round for each of four pairs of 

teams. The pairs are Adelaide Crows and Port Adelaide, Brisbane Lions and 

Gold Coast Suns, Fremantle and West Coast Eagles, Greater Western Sydney 

Giants and Sydney Swans. 

(15). Non-Victorian teams that travelled in round 23 in the previous season cannot 

travel in round 23 this season. 

(16). If two teams play against each other twice, the second match cannot be 

played before round 11. 

(17). If two teams play against each other only once, this match cannot be played 

on the final round. 



 

(18). There must be at least 6 rounds between visits to Western Australia  

(19). There must be at least 6 rounds between visits to Queensland 

(20). Geelong Cats must play exactly 4 home matches in the first 10 rounds. 

 

The number of matches for which the round has been fixed beforehand may vary from 

year to year; in the 2013 season there were 42 of these matches. Constraint (14) enforces 

that local rivals never play at home in the same round. Constraint (20) is due to venue 

redevelopment and at the request of Geelong Cats; it does not apply in other seasons. 

2.3 Venues and kick-off times 

This group of constraints deals with the exact weekdays and kick-off times, and the 

venues of the matches. A regular round consists of 9 matches, of which 1 is played on 

Friday, 5 are played on Saturday and 3 are played on Sunday. In rounds 11-13, there are 

only 6 matches and the distribution of matches is 1 match on Friday, 3 matches on 

Saturday and 2 matches on Sunday. Moreover, in rounds 1, 7 and 10, one Sunday match 

is actually played on Monday. 

 

Most of the constraints related to kick-off times originate from broadcasters (all AFL 

matches are broadcast on television). Foxtel is an Australian pay television company that 

produces and broadcasts five matches a week (in a regular round) – three on Saturday and 

two on Sunday. The Seven Network broadcasts the remaining four matches (in a regular 

round) on a free-to-air network. It is important that the broadcasts do not overlap on 

Saturday or Sunday in Western Australia, Southern Australia, Queensland and New South 

Wales. This is applicable to the Adelaide and Port Adelaide teams, the Fremantle and 

West Coast Eagles teams, the Brisbane Lions and Gold Coast Suns teams, and also to the 

Sydney Swans and GWS Giants teams. This is manageable because there are at least 3 

days on which to play, and subsequently there are also varying timeslots to schedule 

within each day so they can be scheduled on the same day in a different timeslot (e.g. 

afternoon and night). 

 

Australian Football is a very physical game, with a relatively high injury rate. In order 

to give the players a chance to recover from minor injuries, a break of at least six days 

between consecutive matches of a team is mandatory. Anzac Day (25 April) is an 

exception because no matter which weekday it happens to be, at least one match is 

played, including a match between Essendon and Collingwood. All the teams playing on 

Anzac Day must be prepared to play either their preceding or following match with a 

shorter break. Of course, the schedule should be made in such a way that it places these 

teams’ preceding and following matches as far away from Anzac Day as possible. 

 

Two stadia, Etihad and MCG, host almost half of all the matches (93 out of 198) and 

should mostly be used for Friday matches. Furthermore, half of the teams play home 

matches at these stadia. Two of these teams play the majority of their home matches at  

Etihad Stadium and the remaining play a varying number of home matches at both stadia. 

Of the latter, two teams have to play a minimum number of away matches at Etihad 

Stadium. Confidentiality prevents us from disclosing exactly how many (and in some 

cases also which) matches should be played at each stadium, but these requirements are 

crucial for the league organizers.  
 

This results in the following constraints: 
 

(21). There should be a minimum of 6 days between each match (with exceptions 

resulting from Anzac Day). 

(22). There should be no matches in overlapping broadcasting slots, so that all 

local matches can be broadcast on free-to-air in each market. 

(23). All clubs have to play at least one match at the MCG stadium. 



 

(24). There should be a minimum of 45 matches in MCG stadium. 

(25). There should be a minimum of 48 matches in Etihad stadium. 

(26). Other venue contractual requirements (predefined number of matches played 

at each stadium). 

(27). At least 15 matches in the Etihad or MCG stadium should be played on 

Friday. 

(28). No day or twilight matches at TIO stadium 

(29). No Sunday early or Saturday afternoon matches at Patersons stadium. 

(30). No home matches for Geelong Cats at Simonds stadium until Round 10. 

  

Note that for the pre-assigned matches (12), the kick-off time and venue has also been 

fixed by the AFL authorities, prior to the scheduling process. Constraint (30) is also due 

to venue redevelopment at Simons stadium and does not apply in other seasons. 
 

3   Solution Method 

Without any constraints other than that each teams plays against each other team the 

same number of times, and no teams plays more than once per round, creating a schedule 

is easy (see e.g. De Werra, 1981). However, as soon as additional constraints such as 

stadium availability have to be taken into account, the problem becomes NP-hard 

(Easton, 2004), and no constant-factor approximation algorithm exists unless P=NP 

(Briskorn et al., 2010). Therefore, our approach involves decomposing the sports 

scheduling problem into subproblems, which are computationally more manageable and 

solved sequentially. 

A phased approach is quite common in sport scheduling. Most papers apply a so-called 

“first break, then schedule” approach, where in a first phase, the home advantage is 

settled for each team in each round, and in a second phase, the opponents are decided 

(e.g. Nemhauser and Trick, 1998). In settings where breaks are less important, a “first 

schedule, then break” approach, which settles the opponents in each round before the 

home advantage is decided, is typically used (e.g. Trick, 2001). Our approach is different 

in the sense that in our first phase, we decide on the opponents as well as the home 

advantage. However, the assignment of matches to rounds is only handled in the second 

phase. A third phase settles the weekday, kick-off, time and venue for each match. 

3.1 A 3-phased approach 

We build a schedule by solving 3 phases consecutively, where the outcome of each 

phase is the input for the next. In the first phase, the opponents in the 11 home matches 

are determined for each team. Notice that as a result, the five additional matches are 

settled as well. In this phase, we take into account constraints (1)-(11), which are all 

related to opponents and home advantage (see Section 2.1). Furthermore, in order to 

balance the travel distance over the teams, we enforce that all teams travel 2 or 3 times to 

either Western Australia or Queensland (of course, only for teams not from Western 

Australia or Queensland). Including this constraint in phase 1 somewhat equalizes the 

travel load between the teams. Without this restriction, some teams might visit Western 

Australia once and Queensland not at all, while some other teams might make two visits 

to each of these areas. The second phase includes assigning a round for each match. 

Clearly, in this phase we take into account constraints (12)-(20), which involve the order 

and grouping of the matches (see Section 2.2). The third and final phase settles the 

weekday and kick-off time, as well as the venue for each match, taking into account 

constraints (21)-(30) as discussed in Section 2.3. 

 

The success of a phased approach depends on the importance and complexity of the 

constraints and objectives handled in each phase. Ideally, the more difficult and important 

a constraint or objective is, the earlier in the phased approach it should be dealt with. The 



 

first phase deals with all constraints that are essential with respect to fairness of the 

schedule and attractiveness of the fixtures. Furthermore, travel distance is mostly 

determined by setting the opponents in the additional games and the home advantage 

(phase 1). In other sports (e.g. Major League Baseball (Easton et al., 2001)), travel costs 

are minimized by creating away tours. In the AFL, this is not option: given that a break of 

at least six days between consecutive matches of a team is mandatory, teams travel back 

to their home city after every match. Hence the order of the rounds (phase 2) is of little 

importance with respect to travel distance. Although the third phase determines the home 

venues, its impact on travel distance is also limited. Indeed, the matches to be played in 

the remote cities without a permanent home team (e.g. Darwin) are all pre-fixed by 

contract. Furthermore, if a team has multiple home venues, they tend to be close to each 

other. For instance, the MCG and Etihad stadium are less than 5 km apart. Hence, in 

general, a good solution for phase 1 offers interesting prospects for high-quality schedule, 

if feasibility issues in the subsequent phases can be avoided.  

 

Phase 2 determines the second objective: the number of breaks, and how they are 

balanced over the teams. With respect to the constraints, it handles the important, but 

relatively easy requirement that local rivals should not play home games on the same 

round, as well as a number of fairness constraints that are considered less crucial by the 

AFL authorities. In the third phase, the two heavily used stadia Etihad and MCG might at 

first sight seem to cause a feasibility issue. However, this is not the case in practice. 

Because of the local rivals, who can never play a home game in the same round (phase 1), 

there are always 4 matches played in stadia other than Etihad and MCG. This leaves a 

maximum of five matches to be played at Etihad, MCG and/or Simonds Stadium, which 

can easily be handled in a weekend. Constraint (30), which forbids home matches for 

Geelong Cats at their home venue (Simonds stadium) until Round 10, is another example 

of a tough constraint in phase 3. Again, we anticipate possible feasibility issues earlier in 

the decision process: constraint (20) in phase 2 limits the number of home matches for 

Geelong Cats in the first 10 rounds. Eventually, phase 3 has never turned out infeasible in 

any of our test runs. 

3.2 The PEAST algorithm 

In this section we discuss the PEAST algorithm, which was used to solve all of the 

three phases described in Section 3.1. The PEAST algorithm is a heuristic which has been 

implemented to optimize several types of real-world scheduling problems and is in 

industrial use. The PEAST algorithm is in essence a population-based local search 

method; the pseudo-code of the algorithm is given in Figure 2. Population-based methods 

use a population of solutions in each iteration, which enables them to explore a wide 

range of promising areas in the search space. At the same time, they are highly suited to 

escape from local optima. Our algorithm is a variant of the cooperative local search 

introduced by Preux and Talbi (1999). In a cooperative local search scheme, each 

individual carries out its own local search, in our case the greedy hill-climbing mutation 

(GHCM) heuristic.  



 

Figure 2: The pseudo-code of the PEAST algorithm. 

 

The GHCM operator explores promising areas in the search space by extending the 

basic hill-climbing step to generate a sequence of moves in one step, leading from one 

solution to another. The operator is based on ideas similar to the Lin-Kernighan 

procedures (Lin and Kernighan, 1973) and ejection chains (Glover, 1992). It moves an 

object, o1, from its old position, p1, to a new position, p2, and then moves another object, 

o2, from position p2 to a new position, p3, and so on, ending up with a sequence of moves. 

Picture the positions as cells as shown in Figure 3. The initial object selection is random, 

using tournament selection. The cell that receives the object is selected by considering all 

the possible cells and selecting the one that causes the least increase in the objective 

function when only considering the relocation cost. Then, another object from that cell is 

selected by considering all the objects in that cell and picking the one for which the 

removal causes the biggest decrease in the objective function when only considering the 

removal cost. Next, a new cell for that object is selected, and so on. The sequence of 

moves stops if the last move causes an increase in the objective function value and the 

value is larger than that of the previous non-improving move, or if the maximum number 

of moves is reached.  

 

 

 

 

 

 

  

 

 

Figure 3: A sequence of moves in the GHCM heuristic. 

In the first phase, the GHCM framework has a position for each of the 11 home games 

for each team. The objects that are being moved around correspond with the opponents 

(i.e. the away teams) in these matches. In the second phase, a position is a round and there 

is an object for each match determined in phase 1. In the third phase, there is a position 

for each allowable (timeslot,venue)-pair. The objects are again the matches. 

 

Input  the population size n, the iteration limit t, the cloning interval c,  

          the shuffling interval s and the ADAGEN update interval a 
Generate a random initial population of schedules Si for i = 1, …, n 

Set best_S = null and iteration = 1 

WHILE iteration ≤  t 

    k = 1 
    WHILE k ≤  n 

        (explore promising areas in the search space) 

        Apply GHCM to schedule Sk to get a new schedule 

        IF Cost(Sk) < Cost(best_S) THEN Set best_S = Sk 

        k = k + 1 

    END REPEAT 

    (avoid staying stuck in the promising search areas too long) 

    Update the simulated annealing framework 

    IF iteration ≡ 0 (mod c) THEN 

        (favor the best schedule, i.e. use elitism) 

        Replace the worst schedule with the best one 

    IF iteration  ≡ 0 (mod s) THEN 

        (escape from the local optimum) 

        Apply shuffling operators 

    IF iteration ≡ 0 (mod a) THEN 
        Update the ADAGEN framework 

    iteration = iteration + 1 

END WHILE 
Output best_S 

 



 

A new cell for an object in GHCM is selected by evaluating all possible cells and 

greedily selecting the best one. Furthermore, in every c
th
 iteration, the least fit schedule in 

the population is replaced with a clone of the fittest individual. This operation is 

completely irrespective of the globally fittest schedule (best_S in Figure 2) found by that 

time in the search process. A greedy approach combined with elitism implies the risk of 

staying stuck in the same areas of the search space (i.e., the objective function value does 

not improve for some predefined number of generations). We counter this by using tabu 

search and a refined simulated annealing method. A tabu list (Glover et al., 1985) is used 

to prevent reverse order moves in a single application of the GHCM operator. The 

simulated annealing refinement is used to decide whether or not to commit to a sequence 

of moves in the GHCM operator. This refinement is different from the standard simulated 

annealing (Kirkpatrick et al., 1983). It is used on three occasions: 1) when choosing an 

object to be moved, 2) when choosing the destination of the object, and 3) when the 

sequence of moves is cut short (a worsening move is made, and it worsens the solution 

more than the previous worsening move did). A detailed discussion of the tabu search and 

simulated annealing refinement can be found in Kyngäs et al. (2012). 

 

The PEAST algorithm applies a number of shuffling operators to perturb a solution 

into a potentially worse solution in order to escape from local optima. The idea of 

shuffling is the same as in hyper-heuristics (Burke et al., 2013) but used with the opposite 

intention. Hyper-heuristic is a mechanism that chooses a heuristic from a set of simple 

heuristics, applies it to the current solution to get a better solution, then chooses another 

heuristic and applies it, and continues this iterative cycle until the termination criterion is 

satisfied. We introduce a number of simple heuristics that are used to worsen the current 

solution instead of improving it. We used the following five shuffling operators: 1) 1-5 

random moves, e.g. moving a match from a random round to another random round, 2) 

swapping the rounds of 1-5 games, 3) moving 1-all games from a round to random 

rounds, 4) swapping the home advantage between 1-5 pairs of games and 5) swapping all 

the games in two random rounds. 

The AFL problem is a multi-objective optimization problem, i.e., a problem where 

multiple objective functions have to be optimized simultaneously. The objective functions 

usually compete in such a way that improving one objective function value most likely 

decreases the other objective function values. In the PEAST algorithm, the objective 

functions are considered as soft constraints, while constraints (1)-(29) are hard 

constraints. Traditional penalty methods assign positive weights (penalties) to the soft 

constraints and sum the violation scores to the hard constraint values to get a single value 

to be optimized. The PEAST algorithm uses the an adaptive genetic penalty method 

(ADAGEN), which assigns dynamic weights to the hard constraints based on the search 

trajectory and the constant weights assigned to the soft constraints, according to their 

significance. The significance is given by the problem owner. This means that we are 

searching for a solution that minimizes the following (penalty) function: 

 

( ) ( ),i i i i

i i

f x c g x     

where 

αi = a dynamically adjusted weight for hard constraint i 

fi(x)  = cost of violations of hard constraint i 

ci = a fixed weight for soft constraint i 

gi(x) = cost of violations of soft constraint i 

 

The weights of the hard constraint are repeatedly updated after a fixed number of 

generations using the method given in by Nurmi (1998). 

 



 

The PEAST algorithm uses random initial solutions. In our extensive test runs we have 

found no evidence that a sophisticated initial solutions significantly improve our results. 

On the contrary, random initial solutions tend to yield superior or at least as good results. 

Even though the best parameter values vary depending on the problem and the instance, 

our experience with the PEAST algorithm has shown that the following values can safely 

be used in different real-world problems and instances: 

 The population size is 10. 

 The cloning interval is 500. 

 The shuffling interval is 5,000. 

 The maximum length of the move sequence in the GHCM operator is 10. 

 The size of the tournament selection is 7. 

 The length of the tabu list is 10, which equals the length of the move sequence. 

 In the simulated annealing framework we stop the cooling at some predefined 
temperature. Therefore, after a certain number of iterations, m, we continue to 
accept an increase in the cost function with some constant probability. We choose 
m equal to t /2, where t is the maximum number of iterations and p is equal to 
0.0001. 

We are aware of the fact that we have used many different heuristic methods in the 

PEAST algorithm. The acronym PEAST stems from the methods used: Population, 

Ejection, Annealing, Shuffling and Tabu. One might think that the outcome is nothing 

more than a collection of old ideas. However, to the best of our knowledge, the heart of 

the algorithm, the GHCM operator, is one of a kind. The same applies to our 

implementation of the shuffling operators, simulated annealing and the ADAGEN penalty 

method. A tabu list improves the efficiency of the GHCM operator considerably. 

4 Computational Results 

In this section, we compare our schedule to the official schedule for the 2013 season
3
. 

Tables 2 and 3 summarize the comparison with respect to the constraints and objectives 

respectively. The requirements and objectives were provided to us by the league 

authorities, and we also received feedback from them on our optimization model. The 

comparison shows that according to the criteria communicated to us, our solution is better 

than the official schedule, which was also acknowledged by the league authorities.  

 

Table 2 lists the constraints, grouped as discussed in Section 2. In the official schedule, 

4 constraints were violated. Adelaide, which was a top 4 team in 2012, was paired up 

with bottom team Western Bulldogs twice, and Fremantle only met 2 other top 8 teams 

from 2012 twice. Both violations were avoided in our schedule. In fact, we implemented 

a more strict version of constraint (9) in our model - that is, “exactly three times” - 

because we think it would be unfair if a team had to meet the top eight teams more than 

three times (as was the case in the official schedule). We were able to find such a 

tightened solution. None of the schedules succeeded in having at least 6 rounds between 

long-distance travels to Western Australia and Queensland. Nevertheless, in our schedule 

it occurs just once that a team has only 5 rounds between visits to Western Australia 

(compared to 3 times in the official schedule). For travels to Queensland, two teams have 

an interval of only 4 rounds in our schedule. However, this still seems better than the 

official schedule, which features 1 team with 5 rounds and another with merely 2 rounds 

in between. Finally, we point out that although the official schedule satisfies the 

                                                           
3
 The official 2013 schedule can be found at http://en.wikipedia.org/wiki/2013_AFL_season; 

our schedule is available upon request from the authors. 

http://en.wikipedia.org/wiki/2013_AFL_season


 

constraint of having at least 15 Friday matches at MCG or Etihad, our schedule 

outperforms the official schedule with 17 Friday matches in these stadia. 

 

Table 2: Comparison between the official schedule and our schedule in terms of 

constraints (violated constraints are highlighted).  
 

Constraints Official schedule Our schedule 

(1) All clubs play a minimum of 5 matches in Victoria 5-7 6-7 

(2) Victoria teams travel maximum of six times ok ok 

(3) Each team has at least one home match against Essendon or 

Collingwood 
ok ok 

(4) Each team travels to Western Australia once ok ok 

(5) For a number of matches, the home advantage is fixed ok ok 

(6) Blockbuster matches included in additional matches ok ok 

(7) Local derbies included in additional matches ok ok 

(8) Top 4 teams do not play against bottom 4 teams twice – 

exception Sydney Rivals 

Western Bulldogs vs. 

Adelaide 
ok 

(9) Top 8 teams play at least 3 other top 8 teams twice One top 8 team plays 
only 2 top 8 team twice 

ok 
 

(10) Bottom 10 teams play at least 3 other bottom 10 teams 

twice 

ok 

 

ok 

 

(11) Bottom 2 teams do not play top 8 teams twice – exception 
Sydney Rivals 

ok ok 

(12) Pre-assigned matches ok ok 

(13) Must be a minimum of 6 rounds between two matches with 
the same opponents 

ok ok 

(14) Local rivals never playing home in same round ok ok 

(15) Alternate travel between non-Vic teams in round 23 ok ok 

(16) No teams meet for the second time before round 11 ok ok 

(17) All teams must play each other once by round 22 ok ok 

(18) At least 6 rounds between visits to Western Australia 3 times 5 rounds gap 1 time 5 rounds gap 

(19) At least 6 rounds between visits to Queensland 1 time 2 rounds gap 

1 time 5 rounds gap 
2 times 4 rounds gap 

(20) Geelong Cats must play exactly 4 home matches in the first 

10 rounds 
ok ok 

(21) Minimum six-day break between each match, with 

exceptions for Anzac Day 
ok ok 

(22) No matches in overlapping broadcasting slots, so that all 
local matches can be broadcast on free-to-air in each market. 

ok ok 

(23) All teams to play at least one match at MCG ok ok 

(24) Minimum of 45 matches in MCG ok ok 

(25) Minimum of 48 matches in Etihad ok ok 

(26) Other venue contractual requirements ok ok 

(27) Number of Friday matches at MCG or Etihad  15 17 

(28) No day or twilight matches at TIO Stadium ok ok 

(29) No Sunday early or Saturday afternoon matches at 

Patersons Stadium 
ok ok 

(30) No home matches for Geelong Cats at Simonds Stadium 
until round 10. 

ok ok 

 

Our results with respect to the two objectives, travel distance and number of breaks are 

given in Table 3. The most significant difference is the sum of differences in travel 

distance between each pair of non-Victorian local rivals. This show that travel distance is 

far better balanced in our schedule, which is also illustrated by the pairwise comparison 

of travel distance for local rivals in Table 3. Additionally, we managed to reduce the total 

travel distance, with a little over 1%. Table 3 also shows that we reduced travelling for 

the heavily burdened non-Victoria teams, at the expense of the centrally located teams. 

Balancing the travelling distance of local teams most certainly increases overall 

satisfaction. Our solution also has considerably fewer breaks: 74 instead of 94 in the 

official schedule. Another improvement is that no team has 3 away games in a row; we 

were not able to avoid two series of 3 consecutive home games though. Furthermore, the 

breaks are better balanced over the teams. We only have four teams that exceed 5 breaks, 

the number which is considered reasonable by the AFL authorities; only one team has 8 

breaks. Overall, we managed to reduce the number of breaks for 9 teams; no team ended 

up with more breaks than in the official schedule.  

 



 

Table 3: Comparison between the official schedule and our schedule in terms of 

objectives (travel distance and break related).  

 
Objectives Official schedule Our schedule 

The sum of differences of the total travelling of non-Victoria 

teams 
9,474 632 

Total travel distance 243,125 240,165 

Total travelling of non-Victoria teams 160,208 153,558 

Total travelling of Victoria teams 82,917 86,607 

Total travelling of Gold Coast and Brisbane Lions GC 18,347 

BL 21,614 

GC 18,347 

BL 18,347 

Total travelling of Adelaide and Port Adelaide PA 11,176 
A 13,126 

PA 11,776 
A 11,850 

Total travelling of West Coast Eagles and Fremantle WCE 33,601 

F 34,801 

WCE 34,101 

F 34,101 

Total travelling of Sydney Swans and GWS SS 12,243 

GWS 15,300 

GWS 12,243 

SS 12,800 

Range of total travelling for Victoria teams 6,718–10,992 6,711–10,987 

Total number of breaks 94 74 

Number of 3-breaks at home 2 2 

Number of 3-breaks away 3 0 

Number of breaks per team (exceeding five) 8: four times 

7: once 
6: four times 

8: once 

7: once 
6: twice 

5 Conclusions 

Scheduling the Australian Football League (AFL) is a challenging task. The format of 

the AFL fixture is quite different compared to other professional sports leagues. One of 

the most interesting features is that it includes a single round robin with 18 teams, 

integrated with 5 additional matches per team. These extra matches should be selected in 

a way that the league can offer attractive games at commercially interesting times, 

however without bringing too much imbalance with respect to fairness and travel cost 

between the teams. Another remarkable feature is the fact that some teams have multiple 

home venues, and at the same time, stadia are the home venue for multiple teams. Indeed, 

two stadia host almost half of all the matches, and half of the teams play home matches at 

these stadia.  

Travelling is a big issue for the teams. The travelling distance ranges from 6,000 

kilometers up to nearly 35,000 kilometers per season per team. These are big numbers 

considering only 11 away matches are played during the season. Another concern is 

reducing and balancing the number of breaks. 

Like many other studies of complex real-life problems, the fact that our results are 

based on a single problem instance is a drawback that forces us to formulate conclusions 

with due caution. Nevertheless, we showed that a phased approach is capable of 

producing a high quality solution for the 2013 AFL scheduling problem. Each phase in 

this approach was solved using the PEAST algorithm, which turned out quite flexible to 

handle the various constraints in each phase. Although the AFL already made use of a 

renowned private company to optimize their schedule, our approach was able to offer 

significant improvements in terms of reducing and balancing travel costs as well as the 

number of breaks. At the same time, we managed to satisfy more constraints than the 

official schedule. Despite these results and the fact that the league authorities recognize 

the superiority of our schedule, at the time of writing, we have not been able to come to 

an agreement to schedule future seasons of the AFL. 

Each year there is a lot of debate in the media about the quality and fairness of the 

schedule. For instance, experts claimed that Hawthorn had a very rough start to the 2013 

season because they played against strong teams in the beginning of the season. They also 

pointed out that Hawthorn had to face five of the eight strongest teams from the previous 

year twice. Nevertheless, Hawthorn ended up as number one at the end of the season. So, 

although we were able to find a fairer schedule for Hawthorn it seems they would not 

have needed it. The reduction and improved balance of the travel costs, however, is more 

tangible. 
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