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Abstract 

Goal adaptive behavior requires the rapid detection of conflicts between actions and intentions or goals. 

While many studies have focused in the past on the influence of negative affect on this cognitive control 

process (and more specifically, on error monitoring), little is known about possible modulatory effects of 

positive affect on it. To address this question, we used a standard (positive) mood induction procedure 

(based on guided imagery) and asked participants to carry out a speeded Go/NoGo task, while high 

density EEG was recorded concurrently. As a control condition, we used a group with neutral mood. ERP 

results showed that the ERN (error-related negativity) component, reflecting early error detection 

within the dorsal anterior cingulate cortex, was not influenced by happy mood. In contrast, the 

subsequent Pe (error positivity) component, related to the appraisal of the motivational significance of 

errors, was reliably smaller in the happy relative to the neutral mood group. Complementing source 

localization analyses showed that this effect was explained by a decreased activation within the 

posterior cingulate and insular cortices. These results were obtained in the absence of group differences 

regarding behavioral performance and tonic arousal. These findings suggest that happy mood likely 

decreases and changes the motivational significance of worse than expected events (Pe), while leaving 

their earlier automatic detection (ERN) unaltered. We discuss these new results in terms of dynamic 

changes in the complex interplay of performance monitoring with motivation. 
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Modulatory effects of happy mood on performance monitoring:  

Insights from error-related brain potentials 

Human behavior is characterized by a high amount of flexibility, necessary to deal efficiently 

with rapidly changing demands in the environment. This ability stems from dedicated cognitive control 

mechanisms that monitor the occurrence of deviances between intended and actual actions, and if 

detected, trigger in turn specific remedial processes (Botvinick & Braver, 2015). In this framework, 

performance monitoring (PM) is usually achieved by the processing of external incentives (such as 

positive or negative feedback) or internal/motor cues (such as correct responses or response errors) 

(Ullsperger, Fischer, Nigbur, & Endrass, 2014). Feedback-locked and response-locked PM is thought to 

operate via dopaminergic-dependent reward prediction error mechanisms or signals influencing specific 

fronto-striatal loops in the human brain (Frank, Woroch, & Curran, 2005; Holroyd & Coles, 2002; Walsh 

& Anderson, 2012). Interestingly, accumulating evidence shows that PM is not immune to changes in the 

affective state of the participant or specific motivational drives (Koban & Pourtois, 2014; Olvet & Hajcak, 

2008; Weinberg, Riesel, & Hajcak, 2012). More specifically, response-locked PM brain mechanisms 

appear to be reliably influenced by trait negative affect (as anxiety/apprehension/worry) (Moser, 

Moran, Schroder, Donnellan, & Yeung, 2013; Olvet & Hajcak, 2008; Pizzagalli, 2014), as well as induced 

negative emotion (Wiswede, Münte, Goschke, & Rüsseler, 2009; Wiswede, Münte, & Rüsseler, 2009). By 

comparison, much less is known about potential modulation of PM by emotions of positive valence. This 

paucity is somewhat surprising at first sight, given that positive emotions fuel resilience and well-being 

(Sheldon & King, 2001), and they are usually assigned a special, protective or beneficial, role in core 

cognitive processes, such as attention, reasoning or creativity (Fredrickson, 2001). Accordingly, in this 

study, we set out to test the prediction that positive emotions could perhaps influence PM, with a focus 

on early response-locked error monitoring processes, which were previously found to be susceptible to 

effects associated with negative emotions.  
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At the electroencephalographic (EEG) level, error monitoring provides a very good insight into 

PM processes and their malleability by affect or motivation, given that this process is captured by 

systematic amplitude variations of two well-documented event-related potentials (ERPs): the error-

related negativity (ERN or Ne) and the error positivity (Pe) (Falkenstein, Hohnsbein, Hoormann, & 

Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993; Ullsperger, Danielmeier, & Jocham, 2014). 

While the ERN component reflects the early, perhaps automatic, detection of a discrepancy (in terms of 

motor representations) between the incorrect executed and the correct desired or intended action 

(Coles, Scheffers, & Holroyd, 2001; Gehring et al., 1993), the subsequent Pe is usually related to the 

conscious appraisal of response errors and/or the processing of their motivational significance 

(Falkenstein, Hoormann, Christ, & Hohnsbein, 2000; Koban & Pourtois, 2014; Nieuwenhuis, 

Ridderinkhof, Blom, Band, & Kok, 2001; Ridderinkhof, Ramautar, & Wijnen, 2009). Hence, the ERN and 

Pe likely reflect two distinctive processes during error monitoring and PM more broadly defined. 

Despite its ultra-fast neurophysiological time course (as it is usually elicited 0-100 ms after error 

commission over fronto-central electrodes along the midline), and high degree of automaticity, the 

amplitude of the ERN varies however with motivational factors (for example when accuracy is 

emphasized, see Gehring et al., 1993) or emotional variables (like trait anxiety, see (Aarts & Pourtois, 

2010) suggesting that it is not only reflecting motor cognition per se, but probably already capturing 

emotional appraisal processes during PM (for a review see Olvet & Hajcak, 2008). For example, the ERN 

amplitude is usually increased for internalizing traits or disorders, including depression (Chiu & Deldin, 

2007; A. J. Holmes & Pizzagalli, 2008), anxiety (Aarts & Pourtois, 2010; Hajcak, McDonald, & Simons, 

2003a), and obsessive compulsive disorder (Endrass & Ullsperger, 2014). By comparison, its amplitude is 

usually decreased in externalizing traits or disorders, such as in subjects with cocaine dependence 

(Franken, van Strien, Franzek, & van de Wetering, 2007), or impulsive personality characteristics 

(Ruchsow, Spitzer, Grön, Grothe, & Kiefer, 2005). Growing evidence showing a reliable increase of the 
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ERN amplitude with negative affect at a non-clinical level (Hajcak, McDonald, & Simons, 2004; Luu, 

Collins, & Tucker, 2000; Vaidyanathan, Nelson, & Patrick, 2012) has been extended by studies examining 

manipulated sadness, short term negative affect and induced helplessness (Olvet & Hajcak, 2012; 

Pfabigan et al., 2013; Wiswede, Münte, Goschke, et al., 2009; Wiswede, Münte, & Rüsseler, 2009). All in 

all, these studies concur and suggest that negative affect (conceived either as a trait or a state) reliably 

increases the ERN component.  

By comparison, the subsequent Pe component, peaking 145-300ms after error commission over 

more posterior central areas than ERN/Ne, considered to covary closely with the degree of error 

awareness or the amount of salience induced by response errors (Overbeek, Nieuwenhuis, & 

Ridderinkhof, 2005), appears to be much less systematically influenced by negative affect. However, 

scattered evidence suggests that an overactive ERN usually goes along with a decreased Pe, as 

demonstrated in subjects reporting high levels of trait negative affect (Hajcak et al., 2004), in clinical 

depression (Aarts, Vanderhasselt, Otte, Baeken, & Pourtois, 2013; Chiu & Deldin, 2007; A. J. Holmes & 

Pizzagalli, 2010; Olvet, Klein, & Hajcak, 2010; Schrijvers et al., 2009; Schroder, Moran, Infantolino, & 

Moser, 2013), or in studies inducing threat as negative emotional state (Moser, Hajcak, & Simons, 2005). 

The lack of a clear understanding of effects of (negative) affect on the Pe is also reinforced by the fact 

that in many studies the authors usually focus on the ERN exclusively, but they do not report possible 

effects for the subsequent Pe component. 

Although still debated in the literature, the enhanced ERN amplitudes accompanying negative 

affect most likely reflect higher significance of response errors for these subjects, i.e. they recruit more 

cognitive resources to detect errors, while the reduced Pe amplitude could reflect a lower awareness or 

salience of error commission, even though it appears then difficult to reconcile these two opposite 

accounts. At any rate, an overactive ERN in negative affect is in line with both the assumption of a mood 

congruency effect during PM(Rusting, 1998), as well as the divergent functional significance of specific 
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mood states (Fredrickson, 2001, 2004). In this latter framework, mood does not simply trigger changes 

in the approach vs. avoidance motivational system in a way which is compatible with the actual mood 

content (negative mood yields avoidance, while positive mood fosters approach). Instead, distinct mood 

states are characterized by different functions that can in turn influence cognition and behavior in non-

transparent ways. According to this model, negative mood signals a potentially threatening 

environment, whereby the individual puts more efforts to timely detect and eventually avoid possible 

dangers or threats. Presumably, unwanted response errors are aversive and belong to this category, and 

their swift detection at the ERN level may therefore be gated with the encounter or experience of 

negative affect. In contrast, positive mood signals a safe environment, where a more creative and 

heuristic processing style is usually promoted, leading to a broadening of attention and the building of 

(additional) mental resources (Fredrickson, 1998, 2001). Therefore, in a happy mood state, there is no 

need for increased error monitoring. Further, this state likely shields the individual from experiencing 

negative affect or distress when encountering worse than expected events, and as such, it helps to 

maintain the current and pleasurable mood state (Schwarz & Bless, 1991). However, whether or not the 

latter affective state (positive mood) leads to a change in the amplitude of the ERN or Pe remains 

unsettled. As a matter of fact, discrepant findings have been reported in the past regarding modulatory 

effects of positive affect onto early error monitoring processes at the ERN level, while results for the Pe 

amplitude were usually not scrutinized or reported. Some studies reported smaller ERN amplitude 

related to higher life satisfaction (Larson, Good, & Fair, 2010), religiosity, which is linked to a general 

positive view on life (Inzlicht, McGregor, Hirsh, & Nash, 2009), or to positive affect after watching movie 

clips (van Wouwe, Band, & Ridderinkhof, 2011). In other studies the opposite pattern was sometimes 

found: Wiswede et al. (2009) found a larger ERN in a Flanker Task, when the stimuli were overlaid on 

pleasant IAPS pictures; Bakic, Jepma, De Raedt, & Pourtois (2014) found a larger ERN amplitude during a 

probabilistic learning task after positive mood induction with guided imagery. Moreover, other studies 
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actually failed to find reliable influence of positive emotions on the size of the ERN component (e.g. Luu 

et al., 2000 where positive affect was assessed using the PANAS). This discrepancy likely stems from the 

fact that different methods to induce and measure positive emotions or mood (in a very broad sense) 

have been used across these different studies. To measure mood, verbal self-reports or subjective 

ratings are often applied, but they show specific limitations, such as introspection, unlike more objective 

psychophysiological measurements. To induce a positive emotional state, very often automatic 

emotional reactions are provoked using specific emotional material (pictures, music, films) or 

rewards/punishments (for a review see Gilet, 2008; Westermann et al., 1996). However, because the 

same material is used for all subjects (to seek standardization), it lacks individualization and may 

therefore be suboptimal. For this reason, more recently, induction techniques based on the use of 

guided imagery and the recall of personal autobiographical information have been proposed as 

alternatives to overcome this limitation and eventually induce more potent subject-specific mood states 

with enhanced ecological validity (Bakic et al., 2014; E. A. Holmes, Mathews, Dalgleish, & Mackintosh, 

2006; E. A. Holmes, Oughtrey, & Connor, 2008; Kross, Davidson, Weber, & Ochsner, 2009; Vanlessen et 

al., 2012; Vanlessen, De Raedt, Mueller, Rossi, & Pourtois, 2015; Vanlessen, Rossi, De Raedt, & Pourtois, 

2014). 

The goal of this study was to gain insight into possible modulatory effects of positive mood (once 

it is induced and maintained) on error monitoring, with a focus on the ERN and Pe ERP components. To 

this aim, we directly manipulated the current mood state of the participants by means of guided 

imagery (E. A. Holmes et al., 2006, 2008), while they performed a standard speeded Go/NoGo 

task/procedure. This task is suited to unlock a large number of unwanted response errors, and has been 

previously validated in a number of studies (Aarts, De Houwer, & Pourtois, 2012; Aarts et al., 2013; Aarts 

& Pourtois, 2010; Vocat, Pourtois, & Vuilleumier, 2008). The elected mood induction procedure (MIP) 

was validated in our laboratory across different studies (see Bakic et al., 2014; Vanlessen et al., 2014, 
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2013). Using it, we induced either a happy or a neutral mood in a between-subjects design. Once 

induced, participants carried out a speeded Go/NoGo task, while 64-channel EEG was recorded 

concurrently, to study the neurophysiology of error monitoring (ERN and Pe components) carefully. The 

“broaden and build” theory for positive emotions (Fredrickson, 2004) provides an important framework 

from which some predictions could be derived in the present case. In this framework, positive mood is 

thought to increase creativity (Isen, 2008; Subramaniam, Kounios, Parrish, & Jung-Beeman, 2009), 

cognitive flexibility (Nadler, Rabi, & Minda, 2010), and broaden attention (Vanlessen et al., 2012, 2014), 

while it can also impair specific components of executive functions, like planning, task switching and 

inhibition abilities (Mitchell & Phillips, 2007), because of the enhanced distractibility accompanying this 

specific mood state (Dreisbach & Goschke, 2004). Hence, in light of this evidence positive mood could 

very well interfere with, rather than increase, performance (accuracy, speed), early error monitoring 

processes and behavioral adaptation following error commission (i.e., post-error slowing). This might 

eventually be translated in a blunted ERN or Pe component during the rapid monitoring of response 

errors in individuals experiencing happy mood, compared to an active control condition with a neutral 

mood content. Besides the changes in the current mood state captured by subjective ratings, we also 

measured physiological arousal concurrently to assess whether modulatory effects of positive mood on 

error monitoring were related to changes in the autonomic nervous system or not. 

Methods 

Participants 

Fifty undergraduate students from Ghent University took part in the study in exchange for 30 

Euro compensation. All of them were right-handed, reported normal or corrected-to-normal vision, and 

had no history of psychiatric or neurological disorders. The study was approved by the local ethics 

committee and all participants gave written informed consent prior to participation. Participants were 
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randomly allocated to either a positive or a neutral mood condition (n = 25 per group). The data of three 

subjects were excluded due to failures of the mood induction (see Bakic, De Raedt, Jepma, & Pourtois, 

2015; Bakic et al., 2014): within the neutral mood condition, two participants were excluded because 

their level of happiness increased and stayed on a very high level after the MIP compared to the rest of 

the neutral group (more than 1.8 SD above the mean), while within the happy mood group the data of 

one subject had to be excluded due to a decrease in levels of happiness following the mood induction 

compared to the baseline measurement prior to it (1.8 SD below the mean). Further, three participants 

(two of the happy group) had to be excluded due to technical problems during EEG data acquisition. 

Hence, 22 participants per mood group were eventually included in the final sample. These two groups 

were matched for gender and age (happy group Mage = 21.8 years, SD =2.52, 14 females; neutral group 

Mage = 22.4 years, SD = 2.26, 15 females). 

Mood Induction 

A previously validated mood induction procedure (MIP) was used (see Bakic et al., 2014; 

Vanlessen et al., 2014, 2012). In a between-subjects design either positive or neutral mood was induced 

by means of an imagery procedure in which participants were instructed to vividly imagine and re-

experience a specific autobiographical memory episode (E. A. Holmes et al., 2006, 2008). Participants 

were kept naive regarding the purpose of the procedure as they were told it was about episodic 

memory abilities (and not about emotional re-experiencing). Prior to the MIP, participants were trained 

in multisensory imaging from their own perspective with a standard four step imagery exercise 

(manipulating a lemon) (E. A. Holmes et al., 2006, 2008). Then they had to choose an appropriate 

episodic memory that happened at least one week before, and that either made them feel very happy 

(positive mood group), or did not elicit any specific emotions but was linked to a physical activity 

(neutral mood group). We chose this specific instruction in the neutral mood group to try to balance 

levels of arousal (after the MIP) with the happy mood group (where usually both valence and arousal 
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increase, see Bakic et al., 2015). Table 2 provides a summary of the main memory contents retrieved by 

the participants, which shows that in the neutral group they mainly recalled sport-related activities, 

while in the positive mood group, they used activities characterized by the presence of a social 

component primarily. Next, the participants closed their eyes and tried to imagine the situation as 

vividly as possible two times for 60 seconds, intersected by precise questions asked by the experimenter 

about sensations and details, in order to encourage concrete imaginations (E. A. Holmes et al., 2008; 

Watkins & Moberly, 2009) and to ensure that regardless of the mood condition, they engaged similarly 

into vivid mental imagery. Finally, participants were asked (based on a rating scale with five points, 

ranging from ‘not at all’ to ‘completely’) how well they could imagine the situation using their own 

perspective, this was used as a short manipulation check to assess how strongly they could re-

experience the desired memories (in their mind’s eyes).The MIP was repeated after each block of the 

Go/NoGo task (every five minutes, three times) with the aim to maintain the targeted mood state 

throughout the whole experimental session.  

To check (at the subjective level) the current mood state before the first and after every MIP, 

participants were asked to mark on a 10-cm horizontal visual analog scale (VAS) their current feeling of 

happiness, pleasantness and sadness. The left anchor was labeled with “neutral” and the right one with 

“as happy/pleasant/sad as I can imagine”. Furthermore, participants had to rate their current arousal 

level with the Self-Assessment Manikin for Arousal (Bradley & Lang, 1994). 

Task 

Participants performed a modified version of a speeded Go/NoGo task that was previously used 

and validated in different studies (Aarts et al., 2013; Pourtois, 2011; Vocat et al., 2008), see Figure 1 for 

an overview. Visual stimuli consisted of a square or a diamond presented in the center of a white screen. 

Each trial started with a fixation cross (1000 ms), then a black square or diamond was presented for a 

variable time interval (between 1000 – 2000 ms to keep uncertainty of the target time high). Then this 
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geometric figure became either green or orange, while its in-plane orientation remained either identical 

(square-square or diamond-diamond sequence) or swapped (square-diamond or diamond-square 

sequence).This visual stimulus remained on the screen for 1000 ms or till a button press. Participants 

had to perform a speeded color plus shape discrimination task, where both speed and accuracy were 

emphasized. When the geometric figure turned green and kept its original shape (two third of the trials; 

Go trials), participants had to press a pre-defined key on the response box as fast as possible with their 

right index finger. If the geometric figures turned orange (one sixth of the trials) or changed shape (one 

sixth of the trials; all corresponding to NoGo trials), then they had to withhold responding. To ensure 

that every participant would commit a sufficient number of response errors (i.e., false alarms on NoGo 

trials) without creating excessive frustration or blurring task rules however, we used a strict reaction 

time cutoff (see also Aarts et al., 2012; Aarts & Pourtois, 2010; Vocat et al., 2008). On each and every 

(Go) trial, the reaction time (RT) was compared against an arbitrary cutoff. If the RT speed was above 

this limit (Slow hit trial, SH), then a negative feedback was provided 1000ms after response onset (“too 

slow” written in Dutch was presented for 500 ms in the center of the screen). No feedback was provided 

after a so-called Fast hits (FH, i.e., the RT speed was below the cutoff) or errors, to increase internal 

monitoring in these cases. Unknown to the participants, this cutoff was calculated during specific 

calibration blocks that preceded each time the experimental blocks. During the first three experimental 

blocks, participants had to be 10% faster than the mean calculated during the (yoked) calibration blocks, 

and 20% during the last (fourth) experimental block. The added value of this procedure is that the RT 

cutoff is calculated for each participant separately and adjusted during the experimental session to deal 

with the inherent inter-individual variability in RT speed, as well as unspecific effects of time and 

habituation/learning (intra-individual variability; see Vocat et al., 2008). The experiment consisted of a 

practice block of 12 trials (four Go trials, four NoGo trials of each type), two calibration blocks of 14 trials 

(ten Go and two NoGo trials of each type), and four experimental blocks of 84 trials each. Each 
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calibration block was followed by two test blocks. Trial presentation was randomized within blocks. 

Stimuli were shown on a 21-in CRT screen, and the task was programmed and executed using E-Prime (V 

2.0, Psychology Software Tools Inc., Sharpsburg, PA). 

Recording and Preprocessing of Electrophysiological Data 

EEG was recorded using a 64-channel Biosemi Active Two system (http://www.biosemi.com). 

EEG was sampled at 512 Hz and referenced to the Common Mode Sense (CMS) active electrode–Driven 

Right Leg (DRL) passive electrodes. The EEG was preprocessed offline with Brain Vision Analyzer 2.0, 

using a standard scheme of data transformation meant to extract response-locked ERPs (Keil et al., 

2014). First, a 0.016 Hz high pass filter was applied, and the data were re-referenced using the common 

average of all electrodes1. Individual epochs were segmented using a ± 500 ms interval around the 

response onset. Eye blinks were removed automatically with the ocular correction for blinks (Gratton, 

Coles, & Donchin, 1983), using the difference amplitude of the two electrodes attached above and 

below the left eye respectively. Each epoch was baseline corrected using 200 ms time interval (-500 to -

300 ms prior to the response). Artifact rejection was based on a ±70µV amplitude cutoff. Using this 

criterion, at least 70% of the individual segments were kept and included in the averages, with no 

significant group difference in the amplitude cutoff (MPositive = 72.6, SD =9.29, MNeutral = 75.2, SD = 9.82, 

t(1, 42) = .915, p=.37, d = 0.27). Individual trials were averaged separately for each condition, and finally, 

a 30 Hz low pass filter was applied before grand average response-locked ERP waveforms were 

computed. 

                                                           

1 We performed additional analyses showing that the use of average mastoids, as opposed to the common 

average reference (see Supplementary Figure 1), did not change the main outcome of the study (i.e., happy mood 

influences the Pe component selectively). 
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Electro dermal activity (EDA) was recorded continuously (512 Hz sampling rate, using the same 

parameters as for the EEG recording) via two bipolar electrodes that were attached to the volar surfaces 

of the distal phalanges of the left index and middle finger (of the non-dominant hand). Participants were 

instructed to comfortably lay their left forearm on the table, and were asked to not move it during the 

experimental blocks. 

Data Analysis 

Analysis of mood manipulation effects & behavioral data. 

For these and all subsequent analyses, the significance alpha cutoff was set to 0.05. To check for 

the efficiency of the MIP, a mixed model ANOVA with mood (positive vs. neutral) as between-subjects 

factor and time (5 MIP ratings) as within-subject factor was used, separately for all four assessments 

(happiness, pleasantness, sadness, and arousal). Whenever the two-way interaction was significant, it 

was followed up by independent sample t-tests calculated for each time point to compare mood levels 

between the two groups across the experimental session. Additionally, paired sample t-tests between 

the successive time points for each mood group separately were carried out to assess the strength and 

direction of the mood change resulting from the MIP. To assess if imagination abilities or involvement in 

the (guided imagery) task differed between groups, a mixed model ANOVA with mood as between-

subjects factor and time (5 measurement points) as within-subject factor was used. 

For the main task, errors for the two NoGo trial types (color and orientation) were collapsed (see 

also Aarts & Pourtois, 2010, 2012), while only FH (corresponding to correct and fast, i.e. RT below the 

updated cutoff, decisions on Go trials) were used as correct responses for comparison purposes with 

incorrect ones. Accuracy and RT speed was compared between the two mood groups by means of 

independent sample t-test. The post-error slowing effect(Laming, 1979; Rabbitt, 1966) was also 

computed by comparing the two mood groups with a mixed model ANOVA with mood (positive vs. 
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neutral) as between-subjects factor and post-trial type (hits following errors vs. hits following FHs) as a 

within-subject factor. 

Analysis of ERPs 

We analyzed two error-related components: the ERN/Ne and the subsequent Pe component 

(Falkenstein et al., 2000; Gehring et al., 1993). The ERN is a negative deflection reaching its maximum 

amplitude over fronto-central electrodes along the midline (electrodes Fz and FCz), usually peaking 0 – 

100 ms after (incorrect) response onset. The Pe is the positive deflection following the ERN, and it 

usually peaks around 150-300 ms post-response onset, with the maximum amplitude reached over 

central locations along the midline (electrode Cz). Based on the electrophysiological properties of the 

current ERP data set (see Figure 2A an 2C), the ERN was defined as the mean amplitude during the 10-60 

ms post-response interval at electrode FCz. The Pe was calculated as the mean amplitude during the 

145-205 ms interval following response onset at electrode Cz. For each ERP component separately, a 

mixed-model ANOVA with mood as between-subjects factor and accuracy (error vs. FH) as within 

subject factor was used. To control for arousal-related effects on these two response-locked ERP 

components, an additional ANCOVA was calculated with the same experimental factors, including the 

mean skin conductance level (SCL) as a covariate. To estimate if the current study was sufficiently 

powered to detect any group difference, post-hoc G*power analyses (Faul, Erdfelder, Lang, & Buchner, 

2007) were performed. 

Topographical analysis. 

The classical peak analysis outlined here above was supplemented by a standard topographical 

ERP mapping analysis in order to characterize the topography (i.e., the actual geometrical configuration 

of the electric field defined by all 64 channels concurrently) of these two main response-locked ERP 

components (ERN and Pe), and eventually assess effects of positive mood. All these analyses were 

carried out using CARTOOL software (Version 3.34; developed by D. Brunet, Functional Brain Mapping 



MODULATORY EFFECTS OF HAPPY MOOD ON PM 15 

 

Laboratory, Geneva, Switzerland). The basic principles of this method have been described extensively 

elsewhere (Michel, Seeck, & Landis, 1999; Murray, Brunet, & Michel, 2008; Pourtois, Delplanque, 

Michel, & Vuilleumier, 2008). First, using the K-means cluster analysis (Pascual-Marqui, 2002), the 

dominant topographical maps were identified, using the whole ERP epoch (i.e., from 500 ms before till 

500 ms after response onset, corresponding to 512 time frames at a 512 Hz sampling rate), including the 

ERN and Pe components. Next, using spatial fitting procedures, the dominant topographies identified in 

the preceding step were then fitted back to the individual ERP data/average to determine their 

expressions across subjects and conditions. We used the global explained variance (GEV) as dependent 

variable, which corresponds to the goodness of fit of these dominant topographical maps. Finally, these 

GEV values were entered in an ANOVA with accuracy and map configuration as within-subject factors, 

and mood as between-subjects factor.  

Source localization. 

To estimate the configuration of the neural generators underling the previously identified error-

related field topographical components, a distributed linear inverse solution was used, namely 

standardized low-resolution brain electromagnetic tomography (sLORETA; Pascual-Marqui, 2002). 

SLORETA solutions are computed within a three-shell spherical head model coregistered to the MNI152 

template (Mazziotta et al., 2001). SLORETA estimates the 3-D intracerebral current density distribution 

within a 5-mm resolution (6239 voxels each with an equivalent current dipole). The 3-D solution space is 

restricted to the cortical gray matter and hippocampus. The head model uses the electric potential field 

computed with a boundary element method applied to the MNI152 template (Fuchs, Kastner, Wagner, 

Hawes, & Ebersole, 2002). Scalp electrode coordinates on the MNI brain are derived from the 

international 5% system (Jurcak, Tsuzuki, & Dan, 2007). The calculation was based on the common 

average. The inverse solution results for the ERN and the Pe component were compared between the 

two mood groups using independent sample t-tests performed on log-transformed data. We used a 
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stringent nonparametric randomization test (relying on 5000 iterations) to reveal potential group 

differences in the inverse solution space through direct statistical comparisons between conditions and 

mood groups, setting the level of significance for all the analyses to p <.01 (see also Schettino, Loeys, 

Delplanque, & Pourtois, 2011; Schettino, Loeys, & Pourtois, 2013). 

Analysis of skin conductance. 

EDA was analyzed using Ledalab software V.343 (Benedek & Kaernbach, 2010a, 2010b), 

implemented in MATLAB (Version R2014a). Data were smoothed by convolution with an 8 point 

Gaussian window and a low-pass Butterworth filter of 5 Hz was applied. Artefacts were identified and 

interpolated using visual inspection (M = 1.34 %, SD = 3.02 %). Ledalab returns the SCL as a continuous 

measure of tonic EDA and separates it from a phasic driver underlying the skin conductance data as a 

continuous measure of phasic EDA or skin conductance responses (SCR). While SCL represents the global 

electro dermal level, SCR reflects the physiological response to certain events (here with a focus on 

responses, either correct or incorrect) superimposed to that (Benedek & Kaernbach, 2010b). The mean 

SCL for each and across all blocks (lasting for five minutes) was calculated per subject. Additionally, 

phasic SCR was quantified within a response window of 0.5 to 3.5 s after response onset, and with a 

minimum amplitude criterion of 0.05 µS (Boucsein et al., 2012). Individual data (average phasic driver 

for each epoch) were range corrected using the largest and lowest response per subject following the 

recommendation of Lykken and Venables (1971) before averaged for each condition. Changes of the SCL 

between the two mood groups were compared using a mixed-model ANOVA with mood as between-

subjects factor and task block number (n = 4) as a within-subject factor. Changes in the SCR to different 

responses were also compared using a mixed-model ANOVA with mood as a between-subjects factor 

and accuracy as a within-subject factor. 
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Results 

Manipulation Checks 

There was a significant interaction of time and mood for all subjective ratings, except sadness 

(F(4, 168) = 1.88, p=.12, η²= .040); happiness: (F(4, 168) = 23.5, p <.001, η² = .26); pleasantness: (F(4, 

168) = 9.80, p <.001, .η² = .17); arousal: (F(4, 168) = 7.69, p <.001, η² = .15. No significant group 

differences for mood ratings were found at baseline, prior to the first MIP, for none of the different 

ratings used (all ts(42) ≤1.57, p≥ .10). After the MIP, only the positive mood group showed increased 

levels for happiness, pleasantness and arousal compared to baseline (t(21) ≥ 3.3, p≤.003), and showed 

higher levels of happiness, pleasantness and arousal compared to the neutral mood group for all 

successive time points (all t(42) ≥ 3.3, p<.020). 

Behavioral Results 

Task performance was similar between the two groups (see Table 1): the error rate was not 

different between them (t(42) = 0.11, p =.91, d =0.034). Likewise, the ratio between fast versus slow hits 

was similar (t (42) = 0.89, p=.38, d =0.027). Moreover, the correlation between speed and accuracy was 

also balanced between the happy and the neutral mood group (rNeutral (20) = -.72, p<.001, rHappy (20) = -.54, 

p = .009; Z = 0.95, p =.34). The groups did not differ in RT speed either (for none of the trial type 

considered, see Table 1), nor in the individual time limit used to demarcate FH from SH (t (42) = 0.027, p 

= .978, d= 0.001). A classical post-error slowing effect was observed. RTs were longer for hits after an 

error compared to hits following a FH (F(1, 42) = 22.1, p<.001, η² = .35). However, the magnitude of the 

post-error slowing effect was not influenced by mood (main effect of mood: F(1, 42) = 0.49, p = .49, η² = 

.008; interaction mood and accuracy: F(1, 42) = 0.18, p = .67, η² = .004). 

Manipulation check of the MIP did not reveal any significant group difference for the 

imagination abilities (F (1, 42) = 0.06, p = .807, η² < .001). This null finding therefore suggests that both 
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groups were equally strongly involved in visual imagery, ruling out thereby a strong asymmetry between 

them regarding (cognitive) load or efforts made to relive actively the targeted memory. 

ERP Results 

The analysis performed on the mean ERN amplitudes at FCz electrode showed a significant main 

effect of accuracy (F(1, 42) = 45.33, p < .001, η² = .51), but no significant effects of mood (F(1, 42) = 1.34, 

p = .25, η²< .001), or interaction between these two factors (F(1, 42) = 1.33, p = .26, η² = .016). The 

amplitude of the ERN (for errors) was larger than the amplitude of the CRN (correct-related negativity, 

for correct responses), see Figure 3A. Entering the mean SCL as a covariate revealed no significant effect 

(F(1, 41) ≤1.33, p≥.26, η² ≤.031). Post-hoc power estimations confirmed that the current study was 

sufficiently powered to detect a group difference at the ERN level (1- β = 0.89). 

For the Pe component recorded at Cz electrode, the analysis showed a significant main effect of 

accuracy (F(1, 42) =75.99, p<.001 η² = .62). Importantly, the main effect of mood (F(1, 42) = 8.74, p = 

.005, η² = .17) and the interaction between these two factors (F(1, 42) =4.13, p=.049, η² = .034) were 

also significant. When the mean SCL was added as a covariate, the main effect of mood (F(1, 41) = 8.52, 

p = .006, η² = .17), and the interaction between accuracy and mood (F(1, 41) = 4.50, p = .040, η² = .092) 

remained significant. The Pe amplitude for errors was larger than the amplitude of the positivity related 

to correct responses (Pc) in both groups (neutral: t(21) = 7.23, p< .001, d = 1.48, happy: t(21) = 4.99, p< 

.001, d = 0.98), but this difference was reduced in the happy group. More specifically, while the Pc was 

only trend significant lower for happy than neutral participants (t(42) = 2.04, p = .047, d = 0.61), the Pe 

was clearly blunted in the happy compared to the neutral mood group (t(42) = 3.07, p =.004, d = 0.93), 

see Figure 3B. Post-hoc power estimations confirmed that the current study was sufficiently powered to 

detect a group difference at the Pe level (1- β = 0.99). 
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Skin Conductance Results 

The ANOVA performed on the SCL values did not reveal any significant change of tonic arousal 

during the experiment (main effect of task block: F(3, 126) = 0.79, p = .50, η² = .019), or any difference 

between the two mood groups (mood: F(1, 42) = 0.017, p= .89, η² < .001, or the interaction task block 

and group: F(1,126) = 0.11, p = .96, η² = .003). However, an analysis performed on the phasic SCR to 

either error or FH did reveal a significant difference between these two opposite response types (F(1, 

42) = 6.44, p =.015, η² = .14), with, as expected, a higher SCR for errors than for FH (t(43) = 2.56, p = 

.014, d = 0.29; MFH=.068, SD FH=.059, M Error= .091, SD Error=.096). The SCR was not globally influenced by 

mood (F(1, 42) = .44, p = .51, η² = .01), and the interaction between mood and accuracy was not 

significant (F(1, 42) = .13, p = .72, η² =.001). 

Topographical Mapping Results 

A solution with seven dominant maps explained 99.0 % of the variance. During the time interval 

of the ERN (10-60 ms post-response onset), a main topographical change between errors and FH was 

evidenced. While the topography of the ERN (errors) was qualified by a clear negative deflection at 

fronto-central electrode positions (around FCz), the CRN map (FH) was characterized by a weaker and 

broader prefrontal negative deflection (see Aarts & Pourtois, 2010; Aarts et al., 2013 for similar results 

with the same task), see Figure 2BC. 

The ANOVA run on the GEV values obtained for each component (ERN/CRN) revealed a 

significant interaction between accuracy and map configuration (F(1, 42) = 20.41, p <.001, η² = .13). 

While the CRN map explained more variance for FH than errors (t(43) = 4.89, p<.001, d = 0.86), the exact 

opposite pattern was found for the ERN map (t(43) = 3.57, p < .001, d=0.56). This effect was not 

modulated by mood, however (mood: F(1, 42) =3.52, p = .068, η² = .07, any interaction with mood: F(1, 

42) < 0.62, p > .44, η² < .01), see Figure 4AB. 
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During the Pe time interval (145 to 205 post-response onset), a specific error-related topography 

could be evidenced alike. It was characterized by a large positivity surrounding the Cz electrode position 

(Pe), while FH elicited a weaker and broader posterior positivity (Pc). Consistent with the observation 

that mood influenced the Pe when considering the amplitude of this component at electrode Cz, the 

ANOVA run on the GEV values obtained after fitting (hence reflecting the topography of this mid latency 

error-related ERP component) revealed a significant interaction between accuracy, map and mood (F(1, 

42) = 4.61, p=.038, η²= .03). As it can be seen from Figure 4, the variance of the topography elicited by 

FH in the neutral group could be explained better with the topographical map of the Pc (t(21) = 3.56, p = 

.002, d = 0.97) and for errors with the Pe topographical map (t(21) = 4.40, p < .001, d = 1.03), while there 

was no such differentiation in the happy group for the Pe map (t(21) = 1.77, p = .091, d = 0.43), but for 

the topographical map of the Pc (t(21) = 2.31, p = .031, d = 0.35), see Figure 4CD. 

Source Localization Results 

The statistical comparison in the inverse solution space between errors and FH within the time 

window of the ERN/CRN (10-60 ms post-response onset) revealed widespread clusters with stronger 

activation for errors compared to FH: one located within the midcingulate/anterior cingulate cortex 

(ACC) (including Brodmann Area (BA) 24, 32; max. at 5x, 40y, 5z; 32; BA 24; t(43) = 2.98, p = .003) and 

another one corresponding to the left frontal gyrus (FG) (including BA 7-11, max. at -15x, 50y,10z; BA 7; 

t(43) = 2.63, p = 0.007), see Figure 2D. However, mood did not influence these effects (group 

comparison for errors at ACC: t(42) = 0.16, p = .44; at FG: t(42) = 0.38, p =.35; group comparison for FH 

at ACC: t(42) = 0.40, p = .34; at FG: t(42) = 0.35, p =.36). 

During the time interval corresponding to the Pe component (145-205 ms post-response onset), 

the statistical comparison between errors and FH showed that errors led to a stronger activation in a 

broad cluster extending from anterior/posterior parts of the cingulate gyrus (including BA 23, 24, 30-32; 

max. at 5x, -10y, 30z, BA 24; t(43) = 8.0, p< 0.001) to frontal (including BA 2-7, 18, 19, 37, 40) and 
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parietal regions (including BA 8-11, 20-22, 39). Further, a bilateral cluster within the insula with stronger 

activation for errors than FH was found (BA 13, max. at -35x, -25y, 20z, t(43) = 7.89, p< 0.001), Figure 2D. 

Importantly, a direct statistical comparison between the two mood groups for errors confirmed an 

alteration of the intracranial generators giving rise to the Pe: in the happy mood group, decreased 

activations (relative to the neutral mood group) within the posterior part of the cingulate cortex 

spreading to superior frontal and parietal gyrus (including BA 3-6, 8, 24, 31; max. at -5x, -10y, 70z, BA 6; 

t(42) = 4.13, p < 0.001), as well as the insula bilaterally (with an effect more pronounced in the right 

hemisphere, max. at 45x, -15y, 15z, BA 13; t(42) = 3.29, p < 0.001) were observed. By comparison, only 

very few nodes in the posterior parietal cortex showed a small difference between the two mood groups 

for FH (max -20x, -55y, 70z, BA 7; t(42) = 2.79, p = .007), see Figure 5. 

Discussion 

To explore possible modulatory effects of positive mood on error monitoring processes, we induced 

either a happy or a neutral mood (using a guided imagery technique) in healthy participants (unselected 

university undergraduates). After the MIP, all participants performed a speeded Go/NoGo task while 64-

channels EEG and SCL (as a measure of autonomic arousal) were recorded concurrently. We chose this 

specific task because it allows to unlock a large number of response errors in each and every participant 

within a relatively short period of time, thereby facilitating its combination with an orthogonal mood 

manipulation (Bakic et al., 2015, 2014; Vanlessen et al., 2012, 2015, 2014). Moreover, this task is suited 

to examine and characterize, using scalp EEG methods, the neurophysiology of error monitoring, with 

the generation of two clear-cut and well-documented response-locked ERP components observed after 

error commission in this task, namely the ERN/Ne and the Pe (Aarts & Pourtois, 2010; Pourtois, 2011; 

Vocat et al., 2008). More specifically, we sought to assess whether experimentally induced positive 

mood could alter one (or both) of these two ERP components, in the opposite direction compared to 
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effects usually created by negative affect (when conceived as a state or mood effect at the subclinical 

level) or internalizing traits and psychopathology (for which the ERN is usually found to be overactive, 

while the subsequent Pe is decreased, compared to neutral mood; see Koban & Pourtois, 2014; 

Weinberg, Kotov, & Proudfit, 2015). Our new results show that positive mood decreases selectively the 

Pe component, while leaving the preceding ERN/Ne component unchanged (relative to an active control 

condition with a neutral mood content), suggesting a component-specific effect triggered by the happy 

mood state during error monitoring. Importantly, this effect was evidenced in the absence of obvious 

differences at the behavioral level between the two mood groups for both task performance and post-

error adaptation. Likewise arousal did not differ between the two groups. Moreover, by using 

complementing topographical and source localization methods, we could gain insight into the actual 

neurophysiological expression of this selective change at the Pe level, as well as the underlying neural 

sources likely giving rise to it. Here below, we discuss the implications of these new results in greater 

detail. 

The MIP used in this study led to the elicitation of a specific mood or emotional state characterized by a 

high level of experienced happiness and pleasure (positive emotion dimension) while leaving sadness (as 

negative affective dimension) unchanged. Moreover, we found that this manipulation gave rise to an 

interesting dissociation between arousal at the subjective level (that was increased in the happy 

compared to the neutral mood group; see also Bakic et al., 2015), and tonic activity as measured at the 

autonomic nervous system (ANS) level using SCL (that was not different between the two mood groups). 

Importantly, the lack of SCL difference between the two mood groups could not be explained by the 

absence of normal and differential ANS reactions detected in our participants since they did respond 

stronger to response errors compared to FH, as captured by the concurrent SCR measurement. 

However, the lack of group difference in tonic activity (SCL) should be interpreted with caution in the 

present case because the elected experimental design and task demands used may have obscured a 
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systematic change in SCL with happy mood. One factor likely accounting for this dissociation pertains to 

the way the measurement was made. While the subjective ratings were performed immediately after 

the mood induction, the (objective) skin conductance level was defined as the mean throughout the 

task. It has been shown previously that the induced arousal, but not valence, decreases over time 

(Gomez, Zimmermann, Schär, & Danuser, 2009), which has been explained as a down-regulation of 

physiological arousal that interferes with task performance. At any rate, it appears plausible to conclude 

that the specific happy mood state elicited by the MIP in our study was not unspecific or 

undifferentiated, but instead, it likely corresponded to genuine joy or pleasure (i.e., a state of well-being 

characterized by contentment), as opposed to other positive mood states, such as bliss, euphoria or 

conversely serenity, ataraxis, for which arousal related changes in the ANS are likely to be observed 

(Christie & Friedman, 2004; Shiota, Neufeld, Yeung, Moser & Perea, 2011). As a limitation, we note 

however that because participants reported an increased level of both happiness and pleasantness 

following the MIP, the specific mood induced probably lacked clear differentiation in terms of positive 

emotion content experienced by them.. Nevertheless, our attempt to specify the actual mood state 

elicited by the MIP, based on both subjective ratings and objective (psychophysiological) measurements, 

is important because positive emotion or affect is usually not conceived as an unitary construct, but it 

likely encompasses different forms or expressions (spanning from astonishment to euphoria), each of 

them being susceptible to influence cognition, physiological responding, motivation or behavior in a 

specific way (Shiota et al., 2014). In fact, as our behavioral results clearly show, the elicited joy in the 

happy mood group did not interfere with cognitive control or inhibition “directly” (as well as post-error 

adjustments) since behavioral performance was matched between the two mood groups (see Vanlessen 

et al., 2015 for a similar conclusion). This observation is important because it confirms that the 

idiosyncratic joy or contentment experienced by the participants (in the happy mood group) was not 

merely bringing noise or distraction (Dreisbach & Goschke, 2004), but it did however alter the subjective 
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experience of specific events, namely response errors, as revealed by the corresponding ERP results. 

From a methodological point of view, the balanced behavioral performance between the two mood 

groups is valuable because the differential error monitoring seen at the ERP level between them can 

therefore not be accounted by asymmetries in the number of responses errors or the speed with which 

they were committed, two factors that reliably influence the shape and morphology of response-locked 

ERP components, especially the ERN/NE (Gehring et al., 1993; Olvet & Hajcak, 2009). Noteworthy, the 

lack of group differences at the behavioral level (speed and accuracy) was not odd in the present case, 

but expected given the specifics of the Go/NoGo task used. Since the RT deadline was calibrated and 

updated at the single subject level, it inevitably led to a comparable number of response errors (and 

balanced speed) between the two groups, as already reported in previous studies using the same task 

and between-subjects experimental design (see Aarts & Pourtois, 2010; Aarts et al., 2013; Koban, Brass, 

Lynn, & Pourtois, 2012; Rigoni, Pourtois, & Brass, 2015; Walentowska, Moors, Paul, & Pourtois, 2016).  

A novel and important result of our study is that despite the balanced behavioral performance 

between the two mood groups, the experience of joy did influence error monitoring, in a component 

specific fashion however. While the ERN component was similar between the groups, i.e. early error 

detection mechanisms remained impermeable to positive mood, the Pe component was reliably 

diminished in the happy compared to the neutral mood group. This effect was visible at the scalp level 

using both standard component/peak measurements, as well as a complementing topographical ERP 

mapping analysis. Furthermore, we found, using source localization methods, that this effect was likely 

caused by a decreased activation in a network comprising posterior cingulate and insular cortices. The 

contribution of these specific brain regions to the generation of the Pe component was already shown 

previously (Dhar, Wiersema, & Pourtois, 2011; Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 2004; 

Mathewson, Dywan, & Segalowitz, 2005; Van Veen & Carter, 2002). Several authors have put forward 

the notion that the Pe component might reflect the processing of the motivational significance of 
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response errors (Leuthold & Sommer, 1999; O’Connell et al., 2007; Overbeek et al., 2005; Ridderinkhof 

et al., 2009; Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010). In this context, errors are considered as 

salient events (because they are deviant and usually worse than expected events), eliciting an 

“automatic” orienting response (Notebaert et al., 2009) and activating a ‘‘salience network’’, where the 

anterior insular cortex (and its reciprocal anatomical connections with the ACC) plays a critical role 

(Inzlicht, Bartholow, & Hirsh, 2015; Seeley et al., 2007; Uddin, 2014; Ullsperger et al., 2010). For 

example, error monitoring was found to be heightened at the Pe level selectively during placebo 

analgesia (Koban et al., 2012), suggesting that this specific state likely increases the motivational 

significance of errors while happy mood conversely appears to decrease it. In light of this evidence, it is 

therefore plausible – but somewhat speculative at this stage- to assume that the experience of joy or 

contentment could very well transiently decrease the otherwise heightened salience usually associated 

with error commission. Importantly, we can rule out the possibility that this effect results from a 

dampened reaction to response errors in happy relative to neutral participants in general. First, the 

post-error slowing, which is thought to reflect an unspecific attention orienting to (deviant) response 

errors (Notebaert et al., 2009), and is increased by (subjective) arousal (De Saedeleer & Pourtois, 2016), 

was preserved in the happy mood group. Second, the ANS reaction to errors, as captured by the SCR, 

was preserved in happy participants. Third, when controlling statistically for changes in SCL (tonic 

arousal) using an ANCOVA, the Pe component to response errors was still found to be reliably blunted in 

the happy compared to the neutral mood group. Therefore, we conjecture that the experience of 

joy/contentment in adult healthy participants likely alter the subjective evaluation of response errors 

(and more specifically, their perceived salience) rather than the arousal or ANS reaction to them. When 

considering the assumption of mood congruency effects (Rusting, 1998; Sharot, Korn, & Dolan, 2011; 

Tamir & Robinson, 2007), it is therefore possible that happy mood elicited in our study did “shield” 

participants from negative (mood incongruent) information, such as response errors. This could be 
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achieved by down-regulating their salience or meaning (at the Pe level), thereby fostering the pursuit 

and maintenance of the (pleasant) mood state currently experienced by the participant. Hence, happy 

mood could provide participants with an adaptive mechanism that seeks to conserve the benefits 

associated with the current mood state, which has been related to building up additional resources and 

protecting from the experience of stress or negative affect (Fredrickson, 2004; Schwarz & Bless, 1991). 

In such a state of joy or contentment, there is presumably no need to enhance or trigger alertness to 

response to errors since the environment in which they happen is regarded as “safe” and errors forfeit 

therefore their negative motivational significance or salience. Because this Pe effect related to the 

induction of happy mood was observed in the absence of any change at the behavioral level (compared 

to the control condition with a neutral mood content), and since no direct evidence is provided 

concerning a possible change in the actual motivational or emotional processing of errors with happy 

mood in this study, further research is however needed to corroborate this assumption more directly. In 

this context, the use of priming methods meant to explore the motivational or emotional value of 

actions, including errors (e.g. see Aarts et al., 2012), might be valuable. 

The observation of a component-specific effect during error monitoring triggered by joy or 

contentment, at the Pe level, and the direction of this neurophysiological effect (namely, a reduced Pe 

amplitude) are worth discussing further. Interestingly, previous ERP studies already reported decreased 

Pe amplitude during error monitoring in depression or trait-related negative affect (Aarts et al., 2013; 

Alexopoulos et al., 2007; A. J. Holmes & Pizzagalli, 2010; Olvet et al., 2010; Schrijvers et al., 2009; 

Schroder et al., 2013),which can be considered – with some reservation however since trait and state 

effects do not always produce comparable changes in PM – as the opposite mood state compared to the 

emotion (transiently) experienced in the happy mood group in this study, yet with a similar 

electrophysiological effect seen in both cases. Although puzzling, this similar neurophysiological effect 

found in two opposite mood states could actually reflect different underlying processes or mood-
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dependent alterations in these two cases. While in the case of depression (and trait negative affect), a 

reduced Pe is often interpreted as reflecting an inability to timely adapt or change cognitive control 

functions in response to negative events (or perhaps reflecting impairments to consciously register 

them, see Frank, D’Lauro, & Curran, 2007; Hajcak, McDonald, & Simons, 2003b; Nieuwenhuis et al., 

2001), such an interpretation appears difficult to hold in the case of happy mood and positive emotions 

given that they usually promote (but not undermine) creativity, flexibility, and perhaps even augment 

cognitive control in specific circumstances (Fredrickson, 2004; Nadler et al., 2010). Interestingly, our new 

findings are also compatible with an earlier ERP study showing decreased Pe amplitude with relaxed 

mood (following a social meal) (Sommer, Stürmer, Shmuilovich, Martin-Loeches, & Schacht, 2013), 

suggesting that a reduced Pe with positive affect (conceived as a state) could be observed across 

different contexts or task settings. More generally, our new ERP results cast doubt on the assumption 

that a reduced Pe during error monitoring necessarily denotes decreased cognitive control during error 

monitoring and/or is a (neurophysiological) landmark of negative affect. Similarly, the lack of a 

modulation of the ERN with positive mood in our study is also informative, given that amplitude 

variations of this early error-related component have often been linked to negative affect and 

internalizing traits or disorders in the past (Hajcak et al., 2003b, 2004; Luu et al., 2000; Wiswede, Münte, 

Goschke, et al., 2009). We previously reported an enhanced ERN amplitude in a positive mood state, 

when errors were embedded in a reinforcement learning context (Bakic et al., 2014). However, in this 

study errors likely acquired a different meaning than in the present case, where they rather reflected 

attentional lapses or break down of impulse control. Hence, it appears that positive mood is versatile 

and can produce different effects during error monitoring depending on specific contextual or 

situational cues or task demands (Huntsinger, 2012). It can either increase (at the ERN level) reward 

prediction error when errors serve as potent learning signals (Bakic et al., 2014), or alternatively, lower 



MODULATORY EFFECTS OF HAPPY MOOD ON PM 28 

 

their motivational significance or salience (at the Pe level) when they provide clear challenges of self-

efficacy, as found in our current study. 

Some limitations warrant comment. First, although sLORETA is an empirically well supported 

source localization technique (Mulert et al., 2004; Pizzagalli et al., 2004; Zumsteg, Friedman, Wennberg, 

& Wieser, 2005), the inverse solutions obtained should be interpreted with caution because these 

mathematical reconstructions necessarily remain imprecise and they suffer from a low spatial 

resolution. Second, because the Pe was previously associated with error awareness (see Nieuwenhuis et 

al., 2001; Ullsperger et al., 2010), changes not only in error detection or monitoring , but also in error 

awareness as a function of happy mood should be evaluated more systematically in the future. The 

reduced Pe component found in the happy mood group in our study is unlikely to be explained by a 

change in error awareness in this group however, because almost all (99%) response errors are usually 

consciously detected by all participants in this speeded Go/NoGo task (see Vocat et al., 2008), and a 

normal post-error adaptation was found in both groups in the present case. Third, we observed a 

relatively large CRN component in our study. However, this result was not unexpected, but very much in 

line with previous ERP studies using the same speeded Go/NoGo task with a very strict time pressure 

and updated RT deadline (Vocat et al., 2008). These conditions necessarily increased uncertainty at the 

time of key press given that performance was based on both accuracy and speed (Walentowska et al., 

2016). As a matter of fact, (enhanced) uncertainty also increases the CRN component (Coles et al., 2001; 

Falkenstein et al., 2000; Gehring et al., 1993). Accordingly, it remains to be tested whether effects of 

(positive) mood might also be observed at the ERN level, when uncertainty (regarding accuracy and/or 

speed) is kept low. Last, although we tried to measure and control levels of arousal in the two mood 

groups, subjective arousal was still larger after the MIP in the happy compared to the neutral mood 

group (despite the use of physical activity-related memories during guided imagery in this latter group), 

while the objective arousal (skin conductance as a measure of automatic arousal) was comparable 
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between the two groups. Even though arousal was unlikely to explain the modulation of the Pe 

component with happy mood in our study (see here above and results section), future studies are 

needed however to assess the specific contribution of (subjective and objective) arousal vs. valence 

(during the experience of a specific mood state) to error monitoring brain functions. 

In conclusion, our results show that an emotional state induced and characterized by joy or 

contentment can reliably alter and presumably lower the motivational significance or salience of 

response errors inadvertently committed during a speeded Go/NoGo task, with effects visible at the Pe 

level selectively (as opposed to the preceding ERN/Ne component that remained impermeable to these 

mood changes). This neurophysiological effect, which does not correspond simply to a blunted arousal 

reaction to errors with happy mood, likely stemmed from a reduced activation in the anterior insula and 

posterior cingulate cortex (as confirmed by complementing source localization results), which are 

presumably both involved in the processing of the salience of these worse than expected events. 

Therefore, we conclude that the transient experience of joy or contentment in healthy adult participants 

does not merely interfere with cognitive control, inhibition or automatic error detection (reflected by 

the ERN component, or concurrent changes in the SCR), but instead, it appears to enable an adaptive 

and mood-congruent change in the organisms such that the (negative) meaning or impact of these 

unwanted events is transiently downplayed.  
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Figure 1. Stimuli and task. (A) On each trial, a black square was presented. After a variable interval 

(1000 ms–2000 ms), the black square (two thirds, Go trials) became green and kept its initial 

orientation (either square or diamond). (B) On the remaining one third of the trials, it became either 

orange or green but with a change in orientation (NoGo trials). 



 

Figure 2. Main ERP results. (A) A butterfly view of the grand-average error-related ERP data in the 

neutral mood shows that ERN reached its maximum around 10-50 ms at FCz while the subsequent Pe 

peaked at 145-200 ms post-response-onset at electrode Cz. The waveforms recorded at FCz and Cz 

are depicted in black. (B) Result of the corresponding topographical ERP mapping analysis. Two 

distinct topographical maps, the ERN/Ne and Pe, were isolated using a clustering method (see 

methods section for details). (C) These two topographical maps unambiguously corresponded to the 

ERN/Ne and Pe component. (D) Using sLORETA, a direct statistical comparison between Errors and 

FH during the ERN time interval (left panel) showed enhanced error-related activity arising in the 

rostral part of the ACC, while during the Pe time interval, this error-related activity encompassed 

more dorsal and posterior cingulate regions



Figure 3. ERP results. (A) Grand average ERP waveforms at FCz (ERN) shown for each mood group 

(neutral and happy) and response type (error and FH) separately. (B) Grand average ERP waveforms 

at Cz (Pe) shown for each mood group (neutral and happy) and response type (error and FH) 

separately. (C) Mean amplitude at FCz (expressed in µV) for the ERN (errors) and CRN (hits) for the 

two groups separately. A significant main effect of accuracy was found whereby the ERN was larger 

than the CRN, equally so in the two mood groups. (D) Mean amplitude at Cz (expressed in µV) for the 

Pe (errors) and Pc (correct hits) for the two groups separately. Unlike the ERN, the Pe was reliably 

reduced in the happy mood group, as revealed by a significant group x accuracy interaction effect. 

The error bar represents the 95 % confidence interval (CI). * refers to p < .05, ** refers to p < .001..



 
Figure 4. Results of the topographical ERP mapping analysis. (A) The scalp map of the ERN showed a 

negative activity over prefrontal electrodes along the midline, while the CRN had a qualitatively 

different scalp configuration. (B) For both groups, the ERN/Ne topographical component explained 

more variance for errors than hits, while the topographical component corresponding to the CRN 

showed the reversed pattern. (C) The scalp map of the Pe was characterized by a broad positive 

activity over central electrode positions whereas FH were associated with a qualitatively different 

scalp configuration during the same time interval (Pc). (D) The Pe topographical component 

explained more variance for errors than FH, but in the neutral group only (this effect was 

substantially attenuated in the happy mood group), while the Pc component explained more 

variance for FH than errors in both groups. Error bars correspond to 95 % CI. * refers to p < .05. 



 

Figure 5. Source localization results (sLORETA). (A) Inverse solution for the Pe (errors) shown 

separately for the neutral and the happy mood group, revealing a main (and extended) cluster 

encompassing the dorsal ACC and posterior parts of the cingulate gyrus (BA 24), which was reliably 

reduced in the latter group. (B) Inverse solution for the Pc (FH), separately for the neutral and the 

happy mood group, revealing an overall smaller cluster (than the activity elicited for errors) in 

posterior parts of the cingulate gyrus (BA 31), which was less active in the latter group. (C) A direct 

statistical comparison between the two groups for errors revealed that the neutral group had 

stronger activations than the happy group within the dorsal ACC and posterior cingulate gyrus (BAs 

24, 31, 6), as well as the insula bilaterally (BA 13). (D) For FH, group differences (in these same 

regions) were clearly more modest and circumscribed than for errors. 



 

Table 1. Accuracy and mean reaction times per mood group for each trial type 

 

 

 

 

Table 2. Content of the reported memory. Participants in the neutral mood group used sport-related 

activities (in line with the instructions), while the ones in the positive mood group retrieved activities 



including primarily a social component.

 

Supplementary Figure 1. Additional analyses showed that the use of average mastoids, as opposed 

to the common average reference, did not change the main outcome of the study (i.e., happy mood 

influences the Pe component selectively). 


