
Tail probabilities of the delay in a batch-service

queueing model with batch-size dependent service times

and a timer mechanism

Dieter Claeys, Bart Steyaert, Joris Walraevens1, Koenraad Laevens, Herwig
Bruneel

Stochastic Modelling and Analysis of Communication Systems (SMACS) Research
Group, Department of Telecommunications and Information Processing (TELIN), Ghent

University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
Tel.: +32 9 264 3411
Fax: +32 9 264 4295

Abstract

We deduce approximations for the tail probabilities of the customer delay
in a discrete-time queueing model with batch arrivals and batch service. As
in telecommunications systems transmission times are dependent on packet
sizes, we consider a general dependency between the service time of a batch
and the number of customers within it. The model also incorporates a timer
mechanism to avoid excessive delays stemming from the requirement that a
service can only be initiated when the number of present customers reaches or
exceeds a service threshold. The service discipline is first-come, first-served
(FCFS). We demonstrate in detail that our approximations are very useful for
the purpose of assessing the order of magnitude of the tail probabilities of the
customer delay, except in some special cases that we discuss extensively. We
also illustrate that neglecting batch-size dependent service times or a timer
mechanism can lead to a devastating assessment of the tail probabilities of
the customer delay, which highlights the necessity to include these features in
the model. The results from this paper can, for instance, be applied to assess
the quality of service (QoS) of Voice over IP (VoIP) conversations, which is
typically expressed in terms of the order of magnitude of the probability of
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packet loss due to excessive delays.

Keywords: batch service, batch arrivals, batch-size dependent, timer,
customer delay, tail probabilities

1. Introduction

In many real-life circumstances, customers receive some kind of service
in group, which is often referred to as batch service. An elevator can be
conceived as a textbook example, since elevators can convey several people
simultaneously to another floor. Other examples include transport vehicles,
busses, ship locks, ovens in production processes, attractions in amusement
parks, et cetera. Furthermore, in telecommunications, it is often the case
that information packets are grouped in larger entities (batches) and these
batches are transmitted instead of each packet individually. This is mainly
done for efficiency reasons, since only one header per aggregated batch has
to be constructed, instead of one header per single information unit, thus
leading to an increased throughput. Technologies using packet aggregation
include Optical Burst Switched (OBS) networks [1], [2] and IEEE 802.11n
wireless local area networks (WLANs) [3]. More applications can, for in-
stance, be found in [4].

On account of the wide area of applications, queueing models with batch
service have attracted considerable attention. However, the focus was mainly
put on the number of waiting customers (see e.g. [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16]), whereas the waiting time of customers, also
called customer delay, has attracted very few attention, especially in the case
of batch arrivals.
In [17], [18] and [19] we have computed the probability generating function
(PGF) of the customer delay in distinct discrete-time queueing models with
batch arrivals and batch service. Although the established PGFs allow us
to calculate various moments of the customer delay, these are not suitable
to extract tail probabilities. Nevertheless, this is an important performance
measure. For instance, the quality of service (QoS) of Voice Over IP (VoIP)
conversations is generally expressed in terms of the (order of magnitude of
the) probability that packets arrive too late at the end user (see e.g. [20]).
The tail probabilities of the delay in a batch-service queueing model can,
among others, be applied to assess the QoS of VoIP conversations in wireless

2



personal area networks (WPANs). The queueing model then represents a
node’s output and transmission buffer corresponding to a particular destina-
tion and QoS: the output buffer is the queue of the batch-service queueing
model, the transmission buffer is the (batch) server (one typically places
bursts instead of individual packets in the transmission buffer to increase the
throughput), and the time that a burst resides in the transmission buffer is
the service time.
In view of this, we have established in [21] an approximation for the tail
probabilities of the customer delay in a batch-arrival, batch-service queueing
model with single-slot service times and with a server that only serves full
batches (i.e., the server only starts service when at least as many customers
are present as the server capacity). In [22], we have considered a more ver-
satile model with a minimum batch size (also called service threshold) l (i.e.,
service is initiated only if at least l customers are present, with l some value
between 1 and the server capacity) and generally distributed service times.
In this paper, we extend our previous work [22]. In [22], the service times do
not depend on the batch sizes, whereas in actual telecommunications systems
transmission times depend on packet sizes. In addition, it has been shown
in [22] that in case of light traffic, the delay can be extremely high when
a minimum batch size is enforced. Therefore, in the model studied in this
paper, we consider a general dependency between the service time of a batch
and the number of customers within it, and we include a timer mechanism
that avoids excessive delays in case of light traffic as well. It will turn out
that the analysis of these extensions entail various pitfalls and that neglect-
ing those pitfalls leads to inaccurate approximations. In addition, we focus
more on an extensive evaluation of the accuracy of our approach. We demon-
strate that the established approximations are very useful to assess the order
of magnitude of the tail probabilities of the customer delay, except in some
peculiar situations which we discuss in detail. Finally, we illustrate that ne-
glecting batch-size dependent service times or a timer mechanism can lead
to distorted results, which reflects the importance of including these features
in the model.
The remainder of the paper is structured as follows: in section 2 we describe
the model. Then, in section 3, we deduce approximations for the tail prob-
abilities. The accuracy of our approach is evaluated extensively in section 4
and the importance of the model is discussed in section 5. Finally, we draw
some conclusions in section 6.
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2. Model description

We consider a discrete-time queueing model. As such, the time axis is
divided into fixed-length contiguous time periods, called slots. Customer ar-
rivals during consecutive slots are modelled by a sequence of independent
and identically distributed (IID) random variables, with common random
variable A whose probability generating function (PGF) is denoted by A(z).
The mean value, often referred to as mean arrival rate, is characterized by
λ and is by definition equal to A

′

(1) (we use primes to indicate derivatives).
Customers queue up in awaitance of service in a queue of infinite size. The
server can serve batches containing up to c customers. We refer to c as the
server capacity. Whenever the server is available at the beginning of a slot
and finds less than l customers (l ≤ c), service is initiated with probability
β and postponed with probability 1 − β. If, on the other hand, at least l
customers are present, a service is initiated of a batch containing a maxi-
mum of c customers. Service times are synchronized with respect to the slot
boundaries, i.e., services always start and end at slot boundaries. Hence,
service times last an integral number of slots. The service time of a batch
containing n customers is represented by Tn and its corresponding PGF by
Tn(z). Under these assumptions, T0(z) describes the length of a server in-
terruption in an empty system. Finally, the service discipline is first-come,
first-served (FCFS).

The results in this paper are valid under the following assumptions:

Assumption 1. The load ρ , λT
′

c(1)/c < 1.

This ensures stability of the system.

Assumption 2. The radius of convergence of each PGF is strictly larger
than 1.

This implies that all order moments are finite and can be calculated by
means of the moment generating property of PGFs. We designate the radius
of convergence of some random variable X by ℜX . In addition, we define ℜn

as the radius of convergence of Tn(A(z)) and ℜ , min{ℜn : 0 ≤ n ≤ c} and
ℜT , min{ℜTn

: 0 ≤ n ≤ c}.

Assumption 3. ℜn ≤ ℜA, n = 0, . . . , c.
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It is worth mentioning that we believe that this assumption is actually a
fact, as we have not been able to construct one counterexample2. However,
as it is tedious to prove that ℜn ≤ ℜA, we mention it as an assumption.

Assumption 4. zc − Tc(A(z)) is aperiodic, i.e., the highest common factor

of the set of integers
{

{c} ∪
{

n ∈ N : dn

dzn
Tc(A(z))

∣

∣

∣

z=0
6= 0

}}

equals 1.

This assumption ensures that the c unknown boundary probabilities d(n),
n = 0, . . . , c − 1 (see further) are solutions of a set of c linear independent
equations. We thus exclude some special cases (for instance when c = 2k,
l = c, β = 0 and A(z) =

∑∞

n=0 Pr [A = 2n] z2n) in order to present a general
solution technique.

Assumption 5. limz↑ℜ Tc(A(z))/z
c > 1.

This assumption will assure that zc − Tc(A(z)) has a zero in the interval
]1,ℜ[. We will show that this entails that the tail probabilities of the customer
delay are not dominated by a specific dominant singularity of Tc(A(z)) (if
any). Although we thus exclude some PGFs Tc(A(z)), the commonly adopted
PGFs satisfy this assumption. The main advantage is that we can present
a general solution whereas otherwise an ad hoc approach would have to be
adopted for each PGF Tc(A(z)).

3. Deduction of approximation formulas

The delay of a randomly tagged customer is defined as the length of the
time period, starting at the end of the slot of arrival, until the customer’s
batch starts receiving service. It can thus be expressed as an integral number
of slots.
In [22] for a system without timer mechanism, we have decomposed the delay
W of a randomly tagged customer as the maximum of two parts:

W = max (W1,W2) .

The queueing delay W1 is the time, starting at the beginning of the slot fol-
lowing the slot wherein the tagged customer arrives (i.e., at the same instant

2When trying to construct a counterexample, one should verify that the constructed
A(z) and Tn(z) are actually PGFs, by checking the normalization condition and verifying
that the coefficients in the Taylor series expansions of A(z) and Tn(z) about z = 0 are
probabilities.
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that W starts), to serve batches of customers that have arrived before the
tagged customer. The postponing delay W2 is the time, starting at the same
moment as the queueing delay, until the batch with the tagged customer
contains at least l customers. In this particular case, the actual service
of a customer can start only if all preceding batches have been processed
(FCFS) and if its own batch contains at least l customers; hence the equa-
tion W = max (W1,W2).
It seems natural to follow a similar approach, by simply redefining W2 some-
what to include the timer mechanism. The postponing delay would then
represent the time, starting at the same moment as the queueing delay, until
the batch containing the tagged customer contains at least l customers or
until the timer has expired. As a result, similar approximations as in [22]
would be obtained: the lower bound

Pr [W > w] ≥ max (Pr [W1 > w] ,Pr [W2 > w]) ,

and the upper bound

Pr [W > w] ≤ Pr [W1 > w] + Pr [W2 > w] .

This approach, however, is incorrect. The reason is that the timer mecha-
nism only runs after the queueing delay. Indeed, the timer is started only
when the server becomes available and finds less than l customers, whereas
when we include the timer in the postponing delay, we implicitly assume that
the timer is already counting during the queueing delay. Therefore, we have
to resort to another approach.

The idea is to disconnect the postponing delay from the timer mechanism.
We therefore let Ŵ2 represent the number of slots until the batch containing
the tagged customer can be filled with at least l customers. Next, define Θ
as the time period, starting immediately after the queueing delay W1, until
the timer has expired. The random variable Θ is by definition geometrically
distributed, with probability distribution

Pr [Θ = n] = β(1− β)n , n ≥ 0 ,

or, equivalently,
Pr [Θ > n] = (1− β)n+1 , n ≥ 0 .

On account of these definitions, we have the following relation between W ,
W1, Ŵ2 and Θ (see also Fig. 1):

W =























W1 if Ŵ2 ≤ W1 ,

Ŵ2 if W1 < Ŵ2 ≤ W1 +Θ ,

W1 +Θ if Ŵ2 > W1 +Θ .
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(a) Ŵ2 ≤ W1

(b) W1 < Ŵ2 ≤ W1 +Θ

(c) Ŵ2 > W1 +Θ

Figure 1: Illustration of relations between W , W1, Ŵ2 and Θ
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This relation can be rewritten as:

W = max
(

W1,min
(

Ŵ2,W1 +Θ
))

.

As a result, we find that

Pr [W > w] =Pr
[

max
(

W1,min
(

Ŵ2,W1 +Θ
))

> w
]

=Pr
[

W1 > w ∨min
(

Ŵ2,W1 +Θ
)

> w
]

=Pr [W1 > w] + Pr
[

min
(

Ŵ2,W1 +Θ
)

> w
]

− Pr
[

W1 > w ∧min
(

Ŵ2,W1 +Θ
)

> w
]

=Pr [W1 > w] + Pr
[

Ŵ2 > w ∧W1 +Θ > w
]

− Pr
[

W1 > w ∧ Ŵ2 > w ∧W1 +Θ > w
]

=Pr [W1 > w] + Pr
[

W1 +Θ > w ∧ Ŵ2 > w
]

− Pr
[

W1 > w ∧ Ŵ2 > w
]

.

As calculation of the joint probabilities is difficult, we resort to an approxima-
tion: we assume that Ŵ2 is independent of W1 and thus of W1 +Θ (because

W1 and Ŵ2 are independent of Θ), leading to the following expression:

Pr [W > w] ≈ Pr [W1 > w] + Pr
[

Ŵ2 > w
]

{

Pr [W1 +Θ > w]− Pr [W1 > w]

}

. (1)

We now calculate Pr [W1 > w], Pr [W1 +Θ > w] and Pr
[

Ŵ2 > w
]

separately.

3.1. Calculation of Pr [W1 > w]

In [22] we have deduced an approximation for Pr [W1 > w] by applying
a dominant singularity approximation technique (see e.g. [23]) on the PGF
W1(z) corresponding to W1. This PGF W1(z) has been computed in [19]
for the simpler model from [22]. Although we include a timer and batch-size
dependent service times in this paper, the calculation ofW1(z) corresponding
to the current model runs completely along the same lines as in [19]. For this
reason, we immediately mention the final expression for W1(z):

W1(z) =

c−1
∑

k=0

Gk(z)

z −A
(

Tc(z)1/cεk
) ,

with εk the k-th complex c-th root of 1, i.e.,

εk , eı2πk/c , 0 ≤ k ≤ c− 1 ,
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and

Gk(z) =
Tc(z)− 1

cλTc(z)

A
(

Tc(z)
1/cεk

)

− 1
(

Tc(z)1/cεk − 1
)2 Tc(z)

1/cεk

{

(z − 1)(1− β)

l−1
∑

n=0

d(n)
(

Tc(z)
1/cεk

)n

+β

l−1
∑

n=0

d(n)
[

Tn(z)−
(

Tc(z)
1/cεk

)n]

+

c−1
∑

n=l

d(n)
[

Tn(z)−
(

Tc(z)
1/cεk

)n]
}

.

x1/c for some x ∈ C represents hereby the principal branch of the complex c-

th root function, i.e. x1/c , |x|1/ceıArg(x)/c with Arg(x) the principal value of
the argument of x, i.e., a mapping in the interval ]− π, π]. The probabilities
d(n) have to be calculated by solving the set of c linear equations

[1−A(zi)]

l−1
∑

n=0

d(n)zni + β

l−1
∑

n=0

d(n) [A(zi)z
n
i − Tn(A(zi))]

+

c−1
∑

n=l

d(n)[zni − Tn(A(zi))] = 0 , 1 ≤ i ≤ c− 1 , (2)

−c+ E [Tc]λ =− c

l−1
∑

n=0

d(n) + β

l−1
∑

n=0

d(n)[c+ nE [Tc]− cE [Tn]]

+

c−1
∑

n=l

d(n)[nE [Tc]− cE [Tn]] , (3)

with zi the c − 1 zeroes of zc − Tc(A(z)) in the open complex unit disk
{z ∈ C : |z| < 1}. These zeroes can be calculated one-by-one: each zero zi is
the unique root in the open complex unit disk of the equation

zi = Tc(A(zi))
1/cεi .

Each of the c− 1 equations can then be solved by means of a standard root-
finding algorithm such as Newton-Raphson. The method also works when
Tc(A(z)) has infinitely many terms, because the complex unit disk falls within
the region of convergence of Tc(A(z)).

Remark 1. The appearance of β in W1(z) might lead to the premature con-
jecture that W1 and Θ are dependent after all. However, although the queue-
ing delay W1 of the current tagged customer can be influenced by previous
timers, the length of the current timer is by no means influenced by W1: it
starts after W1 with a (geometric) distribution which is independent of W1.
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In order to apply a dominant singularity approximation, it is necessary to
locate the dominant singularities (i.e., those with smallest modulus) of W1(z)
first. As one can observe from the expression for W1(z), the singularities of
W1(z) might consist of zeroes of Tc(z)

1/cεi − 1 outside the closed complex
unit disk, zeroes of z − A

(

Tc(z)
1/cεi

)

outside the closed complex unit disk,

possible singularities of A(Tc(z)
1/cεi), and possible singularities of Tn(z), for

n = 0, . . . , c. We now establish several lemmas that play a crucial role in
locating the dominant singularities.

Lemma 1. The factors (Tc(z)
1/cεi−1)2, i = 0, . . . , c−1, in the denominator

produce no poles for W1(z).

Proof. The proof of this lemma is analogous as for theorem 1 in [22].

Lemma 2. Assumptions 1-5 imply that
(i) zc − Tc(A(z)) has exactly one zero in the interval ]1,ℜ[, where ℜ was de-
fined in section 2 as min{ℜn : 0 ≤ n ≤ c}, with ℜn the radius of convergence
of Tn(A(z));
(ii) This zero has multiplicity one;
(iii) zc − Tc(A(z)) contains no other zeroes with a modulus larger than one
and smaller than or equal to this real zero.

Proof. This lemma has been proved in [24].

Let us denote the only zero of zc − Tc(A(z)) in the interval ]1,ℜ[ by z̃. On
account of lemma 2 and assumption 3, we have z̃ < ℜ ≤ ℜA. Hence, the
following definition makes sense:

Definition 1.
ẑ , A(z̃) .

Some useful properties of ẑ are mentioned in the following lemma:

Lemma 3. (i) ẑ ∈ R;
(ii) 1 < ẑ < ℜT ≤ ℜTc

, whereby ℜT was defined in section 2 as min{ℜTn
:

0 ≤ n ≤ c}, with ℜTn
the radius of convergence of Tn(z).

Proof. (i) Follows naturally from A(z) being a real-valued function within
[1,ℜA[ and z̃ being a real number;
(ii) Ensues from A(1) = 1, z̃ > 1, the PGF A(z) being a monotonically
increasing function within [1,ℜA[, and z̃ < ℜ ≤ ℜc.
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Lemma 4. Assumptions 1-5 imply that
(i) Tc(ẑ)

1/c < ℜA and ẑ is a zero of z − A(Tc(z)
1/c);

(ii) Equations z−A(Tc(z)
1/cεi), i = 0, . . . , c−1, contain no other zeroes with

a modulus larger than one and smaller than or equal to ẑ;
(iii) ẑ is a zero of multiplicity one.

Proof. The proof of this lemma is analogous as for theorem 2 in [22].

Remark 2. At a cursory glance, one would expect that assumption 5 could
be relaxed to:

lim
z↑ℜc

Tc(A(z))/z
c > 1 .

However, the dominant singularities of W1(z) could then stem from singular-
ities of Tn(z) for some n between 0 and c− 1 (in such a case, it would hold
that Rn < z̃ < Rc and, consequently, because z̃ < RA, RT = RTn

≤ ẑ < RTc
).

Although we thus exclude some PGFs Tc(A(z)), the commonly adopted PGFs
satisfy this assumption. The main advantage is that we can present a general
solution whereas otherwise an ad hoc approach would have to be adopted for
each PGF Tc(A(z)).

This brings us to the following lemma:

Lemma 5. The dominant singularities of W1(z) do not stem from possible
singularities of Tn(z).

Proof. Results from ẑ < ℜT and ẑ being a pole of W1(z).

Summarizing the lemmas, we obtain the following theorem about the location
of the dominant singularities:

Theorem 1. W1(z) has one dominant singularity, being a pole ẑ. This
dominant pole is a real number larger than one. It is a zero of z−A(Tc(z)

1/c),
has multiplicity one, and is equal to A(z̃), with z̃ the only zero in ]1,ℜ[ of
zc − Tc(A(z)).

Proof. Ensues directly from lemmas 1-5.

The zero z̃ can be calculated by means of a standard root-finding algorithm,
such as Newton-Raphson, or, because z̃ lies on the real axis, via the bisection
method. As z̃ falls within the region of convergence of Tc(A(z)), this also
works when Tc(A(z)) has infinitely many terms.
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Now that we have located the dominant singularity of W1(z), we can ap-
ply a dominant singularity approximation (see e.g. [23]). As such, we find
the following approximation for Pr [W1 > w]:

Pr [W1 > w] ≈
ẑ−(w+1)

1− ẑ

cG0(ẑ)

c−A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1

c
−1T ′

c(ẑ)
. (4)

We have hereby taken into account that ε0 = 1 by definition.

3.2. Calculation of Pr [W1 +Θ > w]

It seems evident to calculate Pr [W1 +Θ > w] by relating it to Pr [W1 > w]
and taking into account that W1 and Θ are independent:

Pr [W1 +Θ > w] =
w
∑

t=0

Pr [Θ = t] Pr [W1 > w − t] +
∞
∑

t=w+1

Pr [Θ = t] .

In this expression we could then use approximation (4) for Pr [W1 > w]. This
approach however, might lead to inaccurate results as for t approaching w,
formula (4) for Pr [W1 > w − t] can be inaccurate because w− t is very small
(dominant singularity approximations for Pr [X > w] with X some random
variable can be inaccurate for small values of w). Let us therefore consider
the PGF corresponding to W1+Θ, which is, because Θ is independent of W1,
equal to W1(z)Θ(z), with

Θ(z) , E
[

zΘ
]

=

∞
∑

n=0

(1− β)nβzn =
β

1− (1− β)z
.

Note that the dominant singularity of Θ(z), say z∗, is equal to 1/(1 − β).
The dominant singularity of W1(z)Θ(z) is thus either equal to z∗ (stemming
from Θ(z)) or ẑ (stemming from W1(z)), depending on which is the smallest.
We thus have to consider three scenarios.

z∗ < ẑ
The dominant pole equals z∗ and it has multiplicity one. By applying a
dominant singularity approximation (see e.g. [23]) we find:

Pr [W1 +Θ > w] ≈
(z∗)−(w+1)

1− z∗
−β

1− β
W1(z

∗) = (1− β)w+1W1

(

1

1− β

)

.

z∗ > ẑ
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In this case, ẑ is the dominant pole, with multiplicity one. The dominant
singularity approximation leads to

Pr [W1 +Θ > w] ≈
ẑ−(w+1)

1− ẑ

β

1− (1 − β)ẑ

cG0(ẑ)

c−A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1

c
−1T ′

c(ẑ)
.

z∗ = ẑ
In this case, ẑ = z∗ is the dominant pole and it has multiplicity two. The
dominant singularity approximation leads in this case to:

Pr [W1 +Θ > w] ≈
(z∗)−w

z∗ − 1
G0(z

∗)β
−(1− β)c

c−A′(Tc(z∗)1/c)Tc(z∗)1/c−1T ′

c(z
∗)
w . (5)

Remark 3. When z∗ 6= ẑ, it is better to take into account both contributions
of z∗ and ẑ in Pr [W1 > w], especially when z∗ ≈ ẑ (see e.g. [25]), leading
to:

Pr [W1 +Θ > w] ≈(1− β)w+1W1

(

1

1− β

)

+
ẑ−(w+1)

1− ẑ

β

1− (1− β)ẑ

cG0(ẑ)

c−A′
(

Tc(ẑ)1/c
)

Tc(ẑ)
1

c
−1T ′

c(ẑ)
. (6)

We adopt this approach in the numerical examples in section 4.

3.3. Calculation of Pr
[

Ŵ2 > w
]

The calculation of Pr
[

Ŵ2 > w
]

runs along the same lines as in [22],

leading to

Pr
[

Ŵ2 > w
]

=
1

c

l−2
∑

m=0

l − 1−m

m!

dm

dxm
A(x)wg(x)

∣

∣

∣

∣

x=0

, (7)

with

g(x) =
1−A(x)

λ(1 − x)

+

c−1
∑

i=1

A(εi)−A(x)

λ(εi − x)

εi(x− 1)

x− εi

β
∑l−1

n=0 d(n)(ε
n
i − 1) +

∑c−1
n=l d(n)(ε

n
i − 1)

A(εi)− 1
.

Formula (7) can be implemented in a mathematical program such as matlab.
This procedure suffers from the drawback that high-order derivatives may
have to be computed, which causes a considerable reduction in speed and
even is infeasible if l and c are quite large.
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Therefore, we deduce an approximation for Pr
[

Ŵ2 > w
]

whereby no deriva-

tives have to be calculated. Multiplying both sides of (7) by zw, taking the
sum over all values of w, applying Leibniz’s rule for the derivative of a prod-

uct, and taking into account that [Ŵ2(z)−1]/(z−1) =
∑∞

w=0Pr
[

Ŵ2 > w
]

zw,

we find the following expression for the PGF Ŵ2(z) corresponding to Ŵ2:

Ŵ2(z)− 1

z − 1
=

1

c

l−2
∑

m=0

l − 1−m

m!

m
∑

j=0

Cm,j(z)

[1− zA(0)]j+1
, (8)

whereby Cm,j(z) are functions of z that have no factor 1 − zA(0) in the
denominator. As opposed to Cm,j(z) for j 6= m, Cm,m(z) is relatively easy to
calculate:

Cm,m(z) = m!g(0)zmA
′

(0)m .

From equation (8), it is clear that z = 1/A(0) is the dominant pole of [Ŵ2(z)−
1]/(z−1) and that it has multiplicity l−1. Analogously as in [22], we retain
in (8) for every m the term that produces the largest power of 1 − zA(0)
in the denominator. We thus take advantage of the fact that we can easily
calculate Cm,m(z) for all m. Hence, in the neighborhood of z = 1/A(0),

[Ŵ2(z)− 1]/(z − 1) is proportional to

Ŵ2(z)− 1

z − 1
∼

1

c

l−2
∑

m=0

(l − 1−m)g(0)zmA
′

(0)m

[1− zA(0)]m+1
. (9)

Next, as

1

[1− zA(0)]m+1
=

1

m!A(0)m

∞
∑

w=m

A(0)wzw−m w!

(w −m)!
,

(9) transforms into:

Ŵ2(z)− 1

z − 1
∼

g(0)

c

l−2
∑

m=0

A
′

(0)m(l − 1−m)

∞
∑

w=m

zw
w!

m!(w −m)!
A(0)w−m

=
g(0)

c

∞
∑

w=0

zw
min(l−2,w)

∑

m=0

A
′

(0)m(l − 1−m)

(

w

m

)

A(0)w−m .

Equating powers of zw at both sides of the equation finally yields

Pr
[

Ŵ2 > w
]

≈
g(0)

c

min(l−2,w)
∑

m=0

A
′

(0)m(l − 1−m)

(

w

m

)

A(0)w−m . (10)
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Note that for large w, formula (10) becomes a sum from 0 to l−2. We further
point out that the binomial coefficient causes no difficulties, since efficient
routines exist to calculate them, even for large w.

Remark 4. As in [22], this approach is not suited for cases whereby A
′

(0) =
0, as only the term corresponding to m = 0 in (9) differs from 0. In these
cases, additional terms with j < m must be taken into account from (8).

3.4. Summary of computation steps

To close this section, we give a brief overview of the steps required to
calculate the approximation for Pr [W > w]:

• Calculate the c− 1 zeroes z1, . . . , zc−1 of zc − Tc(A(z)) inside the open
complex unit disk {z ∈ C : |z| < 1};

• Solve the set of c linear equations (2)-(3) in the c unknown probabilities
d(0), . . . d(c− 1);

• Calculate z̃: the unique zero in ]1,ℜ[ of zc−Tc(A(z)) and set ẑ = A(z̃);

• Calculate Pr [W1 > w] via formula (4);

• Calculate Pr [W1 +Θ > w]:

– If z∗ , 1/(1− β) = ẑ: use formula (5);

– Else: use formula (6);

• Calculate Pr
[

Ŵ2 > w
]

via formula (10);

• Calculate Pr [W > w] via formula (1) and invoke the calculated values

for Pr [W1 > w], Pr [W1 +Θ > w] and Pr
[

Ŵ2 > w
]

.

4. Evaluation of approximation formulas

In this section, we evaluate the accuracy of our approach. We have there-
fore studied an extensive set of examples, corresponding to several values of
l, c and β, and various combinations of distributions for the number of cus-
tomer arrivals (“Poisson” A(z) = eλ(z−1); “Geometric” A(z) = 1/(1+λ−λz);
“C-center” A(z) = 1 − λ/c + λ/(2c)(zc−1 + zc+1)) and service times (“Geo-
metric” Tn(z) = z/[E [Tn] + (1− E [Tn])z]; “25” Tn(z) = (25− E [Tc])z/24 +
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(E [Tc]−1)z25/24). We believe that these combinations cover both commonly
adopted (Poisson, geometric) as well as more special (burstier) distributions.
We prefer not to present all these examples, in order to keep the paper con-
cise. Instead, we summarize our findings and we focus on the circumstances
where one should be careful. The approximations and the real values of

Pr [W1 > w], Pr [W1 +Θ > w], Pr
[

Ŵ2 > w
]

and Pr [W > w] are depicted

versus the load in Figures 2-7 for the peculiar situations.

Note that only for Pr
[

Ŵ2 > w
]

we have an exact formula at our disposal

(formula (7)). In order to evaluate the other tail probabilities, we show the
mean values resulting from 20 Monte Carlo simulations whereby each simula-
tion generates W1, W1+Θ andW for 109 customers (we do not plot the entire
confidence intervals to enhance the readibility of the figures and because the
confidence intervals are very small anyway). We discuss successively the ac-
curacy of formula (4) for Pr [W1 > w] (section 4.1), expressions (5)-(6) for

Pr [W1 +Θ > w] (section 4.2), approximation (10) for Pr
[

Ŵ2 > w
]

(section

4.3) and expression (1) for Pr [W > w] (section 4.4).

4.1. Pr [W1 > w]

Approximation (4) is very accurate. Only when the load (and thus the
mean arrival rate) is small, the approximation can become inaccurate. We
observe from Figures 2-7 that the approximation is very accurate in case of
service times of 1 or 25 slots, whereas it is not always accurate in case of
geometric services. The key issue is that in the latter case, each Tn(z) has
a singularity γn , E [Tn] /[E [Tn] − 1]. In order to gain deeper insight, we
have reported in Table 1 the dominant pole ẑ of W1(z) versus the load, and
γn versus n. We notice that, in case of Poisson and geometric arrivals, the
smaller the load, the more ẑ approaches to the singularity γc. This is the rea-
son why the approximation becomes inaccurate for small loads in these cases.
This anomaly is not specific for our model but is inherent to approximations
based on dominant singularities in general. In case of c-centered arrivals,
ẑ approaches γn a lot slower, which entails a much better accuracy of the
approximation (see Fig. 5). Fig. 3 also exhibits that the approximation is
precise in case of Poisson arrivals and services of either 1 or 25 slots for all
values of the load. The reason is that Tn(z) has no singularities in this case,
as explained above.
In general, the approximation is accurate except when the load is small in
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combination with Tn(z) (and/or A(z)) having singularities. In such situa-
tions, it is possible to enhance the approximation by adopting an ad hoc
approach whereby the contributions of the other singularity(ies) nearby ẑ is
(are) also incorporated (see e.g. [25]).

Remark 5. In [22], we have also considered an example with Poisson ar-
rivals and geometric service times. There however, the approximation for
Pr [W1 > w] did not suffer as much as here from the singularity of the PGF
of the service times. The reason for this is that here we deal with several
PGFs of the service times depending on the number of customers in the served
batch, and that the dominant pole ẑ of W1(z) also approaches the singulari-
ties of Tc−1(z), Tc−2(z), et cetera when the load becomes very small. It has
been shown that approximations based on dominant singularities become less
accurate the more other singularities approach the dominant singularity(ies)
(see e.g. [25]).

4.2. Pr [W1 +Θ > w]

Approximations (5)-(6) for Pr [W1 +Θ > w] are accurate in all scenarios.
Indeed, for larger loads, W1 is dominant in W1 + Θ and, as discussed be-
fore, the approximation for Pr [W1 > w] is precise for larger loads, whereas
for smaller loads, W1 becomes small, so that Θ determines the behaviour of
W1 +Θ and the formula for Pr [Θ > w] is exact (due to its geometric distri-
bution).
In some special cases however, the approximation might become inaccurate
for smaller loads. Consider for instance the system with Poisson arrivals,
geometric service times with E [Tn] = 8+ 0.2n, c = 10, l = 5 and β = 0.2. In
this situation, the singularity of Θ(z) equals 1/(1− β) = 1.25 and the singu-
larity γc of Tc(z) equals 1.11 . . . (see Table 1). Hence, 1/(1−β) is, regardless
of the load, larger than ẑ (because ẑ < γc), which means that ẑ is always the
dominant pole of W1(z)Θ(z). Hence, W1 even dominates W1 +Θ for smaller
loads, which results in an inaccurate approximation (see Fig. 6). When, on
the other hand, E [Tn] is equal to 3 + 0.1n, γc is equal to 1.333 . . ., so that Θ
will again dominate for smaller loads, which leads to a good approximation
(see Fig. 7).
Hence, approximations (5)-(6) for Pr [W1 +Θ > w] are accurate, except for
special cases whereby 1/(1 − β) is always larger than ẑ, which can lead to
awkward results for small loads. Again, this can be resolved by following an
ad hoc approach in such situations.
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4.3. Pr
[

Ŵ2 > w
]

Approximation (10) is very accurate for larger values of w, except in the
case of c-centered arrivals (see Fig. 5). The reason is that A

′

(0) = 0 in that
case, and we have explained in remark 4 that approximation formula (10)
can become inaccurate in such a case. We can thus conclude that approxi-
mation (10) is extremely suited for quickly assessing the order of magnitude

of Pr
[

Ŵ2 > w
]

, except when A
′

(0) = 0.

4.4. Pr [W > w]

Finally, we discuss the accuracy of approximation (1) for Pr [W > w].
Approximation (1) is accurate, except for values of the load between, roughly
speaking, 0.15 and 0.35, where it is less precise but still acceptable for the
purpose of assessing the order of magnitude of Pr [W > w]. This can be ob-
served from Figures 2-7 (we have utilized the approximations for Pr [W1 > w],

Pr [W1 +Θ > w] and Pr
[

Ŵ2 > w
]

in formula (1)).

The approximation being extremely accurate for larger loads follows from
Pr [W1 > w] then dominating in (1) and the approximation of Pr [W1 > w] be-
ing outstanding in this area. For “medium” values of the load, Pr [W1 > w] ≈

Pr
[

Ŵ2 > w
]

, so that Pr [W1 > w] still plays a considerable role in (1). As

explained in subsection 4.1, the approximation for Pr [W1 > w] for geometric
service times combined with Poisson or geometric arrivals is not excellent
but still adequate in this area. When the load is small, Pr [W1 > w] <<

Pr
[

Ŵ2 > w
]

, so that Pr
[

Ŵ2 > w
]

and Pr [W1 +Θ > w] dominate in (1).

In addition, as the load is small, it generally holds that Pr [W1 +Θ > w] ≈
Pr [Θ > w] (except in some special cases, of which we discuss one at the end

of this subsection). As the approximation for Pr
[

Ŵ2 > w
]

is precise and the

formula for Pr [Θ > w] is exact (it has a geometric distribution), the approx-
imation is very accurate.

Let us now study the accuracy in the very special case of c-centered arrivals
(where either 0, c − 1 or c + 1 customers arrive in a slot) in combination
with l > 1 and β 6= 0 (see Figure 5). We observe that, although we adopt
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exact expression (7) for Pr
[

Ŵ2 > w
]

in approximation (1) for Pr [W > w],

approximation (1) is inaccurate for smaller values of the load. The reason
is that approximation (1) is mainly based on the assumption that Ŵ2 is in-
dependent of W1, which is not a good assumption in this peculiar example.
Indeed, on account of the low load, the system is very likely to be empty at
slot mark J (we here denote the slot wherein the tagged customer arrives by
J). In such a case, W1 can only differ from zero when c+1 customers arrive
during slot J and if the tagged customer is the final arrival in that slot. As a
result, the batch wherein the tagged customer will be served, only contains
the tagged customer itself at slot mark J + 1, which means that Ŵ2 > 0.
When, on the other hand, W1 = 0, Ŵ2 can only differ from zero when c− 1
customers arrive during slot J and if l = c. In other words, W1 and Ŵ2 are
strongly correlated in this specific case.

Before closing this section, we return to the examples where β = 0.2. When
E [Tn] = 8 + 0.2n (Fig. 6), the approximation for Pr [W > w] is inaccurate
for small loads, which is a direct result of W1 dominating over Θ and ap-
proximation (4) for Pr [W1 > w] being inaccurate in this case. On the other
hand, when E [Tn] = 3 + 0.1n (Fig. 7), Θ again dominates over W1 for small
loads, which results in a good approximation.

5. Importance of the model

As compared to the model of our previous paper [22], we have included
batch-size dependent service times and a timer mechanism in this paper. In
this section, we briefly demonstrate that ignoring these features can lead to
very distinct results, which highlights the importance of the current paper.
In Fig. 8, we have depicted Pr [W > w] versus w and versus ρ, both for
E [Tn] = 1+0.9n (i.e., batch-size dependent) and E [Tn] = 10 (i.e., batch-size
independent) geometric service times. We have set c = 10 so that E [Tc] = 10
in both scenarios. In addition, we have considered Poisson arrivals, l = 3,
and β = 0.01. In this example, the average service time of a batch with less
than c customers is smaller in case of batch-size dependent service times.
We thus expect smaller tail probabilities of the customer delay in that case.
Hence, the only remaining question sounds: is the difference significant? We
observe from Fig. 8 that in cases of very small and very large load, the dif-
ference is small. This is because the timer dominates the delay in case of
very small load and the timer is independent of the distribution of the service
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times. In case of very large load, the server almost always serves batches of
c customers, which leads to the same average service time. However, Fig. 8
exhibits that the batch-size dependent service times do play a significant role
for all other loads. For ρ ≈ 0.3 the difference even mounts to three orders
of magnitude. Ignoring batch-size dependent service times can thus lead to
very distorted results.
Let us now examine the influence of the timer mechanism. In Fig. 9,
Pr [W > w] is shown versus w and versus ρ both for β = 0 (i.e., without
timer mechanism) and β = 0.2 (i.e., with timer mechanism) in case of l = 5,
c = 10, Poisson arrivals, and geometric service times with E [Tn] = 8 + 0.2n.
We observe that the larger w and the smaller ρ, the more pronounced is the
benefit of adopting β = 0.2 instead of β = 0. The difference even mounts
to many orders of magnitude. This confirms that a timer is very effective to
avoid excessive delays due to postponing service in case of light traffic.
We can thus conclude that these examples clearly reflect that batch-size de-
pendent service times and a timer mechanism can have a major impact on
the tail probabilities of the customer delay. This highlights the importance
of the inclusion of these features in the studied model.

6. Conclusions

In this paper, we have deduced approximations for the tail probabilities
of the customer delay in a queueing model with batch arrivals and batch
service. As compared to our previous paper [22], we have included two very
important features in the model. We have considered a general dependency
between the service time of a batch and the number of customers within it,
and we have incorporated a timer mechanism as well. We have demonstrated
that deducing approximations for this extended model entails various pitfalls
that would lead to inaccurate approximations and we have dealt with those
pitfalls. We have also evaluated the performance of our approach in much
more detail in this paper. We feel that it is justified to state that our approx-
imations are very useful for the purpose of assessing the order of magnitude
of the customer delay, except in some special cases that have been discussed
extensively. Finally, we have illustrated that neglecting batch-size dependent
service times or a timer mechanism can lead to a devastating assessment of
the tail probabilities of the customer delay, which highlights the necessity to
include these features in the model.
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Figure 2: Evaluation of the approximation formulas; Poisson arrivals, geometric services
E [Tn] = 8 + 0.2n, c = 10, l = 5, β = 0.05
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Figure 3: Evaluation of the approximation formulas; Poisson arrivals, 1 or 25 slots service
E [Tn] = 5, c = 10, l = 5, β = 0.05
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Figure 4: Evaluation of the approximation formulas; geometric arrivals, geometric services
E [Tn] = 8 + 0.2n, c = 10, l = 5, β = 0.05
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Figure 5: Evaluation of the approximation formulas; c-centered arrivals (exact formula

(7) for Pr
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Ŵ2 > w
]

is used in formula (1)), geometric services E [Tn] = 8 + 0.2n, c = 10,

l = 5, β = 0.05
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Figure 6: Evaluation of the approximation formulas; Poisson arrivals, geometric services
E [Tn] = 8 + 0.2n, c = 10, l = 5, β = 0.2
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Figure 7: Evaluation of the approximation formulas; Poisson arrivals, geometric services
E [Tn] = 3 + 0.1n, c = 10, l = 5, β = 0.2
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Table 1: Singularities γn of Tn(z) versus n, and dominant pole ẑ of W1(z) versus the load
ρ, for several distributions of A(z); c = 10, geometric services E [Tn] = 8 + 0.2n

n γn ρ ẑ Poisson ẑ geometric ẑ c-centered
0 1.142857142857 0.9 1.019517053853 1.017984717482 1.011049828292
2 1.135135135135 0.7 1.055046820392 1.052088641246 1.033151838444
4 1.128205128205 0.5 1.084194576530 1.081656490042 1.055263630655
6 1.121951219512 0.3 1.104020768326 1.102948002054 1.077404642357
8 1.116279069767 0.1 1.111018197772 1.110989967865 1.099654929738
9 1.113636363636 0.05 1.111109639324 1.111109020127 1.105282554417
10 1.111111111111 0.01 1.111111111100 1.111111111106 1.109878832698
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Figure 8: Influence of batch-size dependent service times; Poisson arrivals, geometric
services, c = 10, l = 3, β = 0.01
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