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Abstract

Hardy spaces of solutions of generalized Riesz and generalized Moisil–Teodorescu
systems in half space Rm+1

+ , and of their non–tangential L2–boundary values in Rm

are characterized.

1 Introduction

In the mid 1980’s, the classical Hardy spaces on the real line and the upper half plane
were generalized to the Euclidean space Rm and the upper half space Rm+1

+ , within the
framework of Clifford analysis. Clifford analysis is a multidimensional function theory on
functions defined in Euclidean space and taking values in a Clifford algebra or subspaces
thereof, which is at the same time a generalization of the theory of holomorphic functions
in the complex plane and a refinement of classical harmonic analysis. The Hp–spaces of
several real variables as considered by Stein and Weiss in [40], could be fully incorporated
in this Clifford analysis generalization, and, even more, this new approach enabled the
study of Hardy spaces on Lipschitz domains. For an account of this theory of Hardy
spaces in Euclidean space we refer to the monographs [28, 35, 18], to the lecture notes [34]
and the papers [14, 16, 2, 29]. In the same context, the Hilbert transform, as well as more
general singular integral operators, have been studied in higher dimensional Euclidean
space (see [38, 30, 20, 21, 5]), in particular on Lipschitz hypersurfaces (see [36, 33, 32])
and also on smooth closed hypersurfaces, in particular the unit sphere (see [19, 6, 13, 12]).

The so–called analytic signals in the Hardy space H2(Rm) appear as the non–tangential
L2–limit functions of the monogenic functions in the Hardy space H2(Rm+1

+ ). Monogenic
means that the considered function is a null solution of the Dirac operator ∂x or, equiv-
alently, the Cauchy-Riemann operator Dx, in Rm+1. Depending on the value space this
equation gives rise to specific systems of first order differential equations. Classical choices
for the value space are the whole Clifford algebra R0,m+1 (or its complexification Cm+1)
and its complex spinor space. Recently there has arisen a lot of interest in the study
of monogenic functions with values in a subspace of the Clifford algebra consisting of r-
vectors (0 < r < m + 1) or a direct sum of such Grassmann multivector subspaces, the
corresponding system of equations being termed generalized Riesz systems or generalized
Moisil–Teodorescu systems, respectively (see [22, 31, 1, 3, 4, 15, 23, 25, 37, 41]).

In this paper new classes of analytic signals on Rm are introduced and characterized,
which are the non–tangential L2–limit functions of the solutions in the half space Rm+1

+

of those generalized Riesz systems (Section 4) and generalized Moisil–Teodorescu systems
(Section 5). In order to make the paper self–contained, some basic notions from Clifford
analysis (Section 2) and from the higher dimensional Hardy spaces in this framework
(Section 3) are recalled.
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2 Clifford analysis basics

Let R0,m+1 be the real vector space Rm+1 (m ≥ 1) provided with a non-degenerate
quadratic form of signature (0,m + 1) and let e = (e0, . . . , em) be an orthonormal ba-
sis of R0,m+1. Then e generates the universal Clifford algebra R0,m+1 over R0,m+1 and,
embedded in R0,m+1, e = (e1, . . . , em) generates the universal Clifford algebra R0,m over
R0,m. The multiplication in the Clifford algebra R0,m+1 is non–commutative; it is governed
by the rules {

e2
i = −1, i = 0, . . . ,m;
eiej + ejei = 0, i 6= j, i, j = 0, . . . ,m

A basis for R0,m+1 is given by (eA)A⊂{0,...,m} where for A = (i1, . . . , ir) with 0 ≤ i1 < i2 <
. . . ir ≤ m, we put eA = ei1ei2 . . . eir , while e∅ = 1 is the identity element. Conjugation in
R0,m+1 is defined as the anti–involution a→ a for which ei = −ei, i = 0, 1, . . . ,m.

For each r = 0, 1, . . . ,m+ 1 we define the space of r–vectors R(r)
0,m+1 by

R(r)
0,m+1 = spanR (eA : |A| = r)

Clearly R ' R(0)
0,m+1 = R1, R0,m+1 = R(1)

0,m+1 and

R0,m+1 =

m+1⊕
r=0

R(r)
0,m+1

An element a ∈ R0,m+1 may thus be written as a =
∑m+1

r=0 [a]r, where [a]r is the projection

of a on R(r)
0,m+1, also called the r–vector part of a. A norm | · | on R0,m+1 is defined by

|a|2 = [aa]0, a ∈ R0,m+1.
By singling out the basis vector e0, the Clifford algebra R0,m+1 clearly admits the

splitting
R0,m+1 = R0,m ⊕ e0 R0,m (1)

The Euclidean spaces Rm and Rm+1 are identified with the subspaces of 1-vectors in
the respective Clifford algebras R0,m and R0,m+1, by putting x =

∑m
i=0 eixi and x =∑m

j=1 xjej . It follows that x = x0e0 + x and also e0x = x0 + e0x, the latter expression
being in accordance with the splitting (1).

Observe that if x ∈ R(1)
0,m+1 and v ∈ R(r)

0,m+1 (0 < r < m+ 1), then the Clifford product
xv splits into a dot and a wedge product:

xv = x • v + x ∧ v (2)

where
x • v = [xv]r−1

and
x ∧ v = [xv]r+1

Now let Ω ⊂ Rm+1 be open, let S be a subspace of R0,m+1, and let F ∈ E(Ω;S) be an
S–valued smooth function on Ω. The function F is said to be an S–valued (left) mono-
genic function in Ω if ∂xF = 0 in Ω or, equivalently, DxF = 0 in Ω, where ∂x =

∑m
i=0 ei∂xi

and Dx = e0∂x = ∂x0 + e0∂x are the Dirac and the Cauchy–Riemann operators in Rm+1,
respectively. From ∂2

x = −∆x or DxDx = DxDx = ∆x, it follows that S–valued (left)
monogenic functions in Ω are harmonic. For a full account on this function theory we refer
e.g. to [7, 26].
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The Dirac operator ∂x =
∑m

i=0 ei∂xi is an example of a Clifford vector operator the
components of which, in casu the partial derivatives, are mutually commuting. More
generally, let V =

∑m
i=0 eiVi be a Clifford vector operator, its components Vi being scalar

operators. When acting, from the left, on a Clifford algebra valued function, the Clifford
multiplication is tacitly understood. As the Clifford product splits into a dot and a wedge
part (see (2)), it is always possible to define two associated operators

V+ = V ∧ and V− = V•

such that
V = V+ + V−

As

V2 = −
m∑
i=o

V2
i +

∑
j<k

ejek(VjVk − VkVj)

we observe that, on condition that the scalar operators Vi, i = 0, . . . ,m, are mutually
commuting, V2 becomes a scalar operator:

V2 = −
m∑
i=0

V2
i

In the case of the Dirac operator, this is the well–known relation

∂2
x = −

m∑
i=0

∂2
xi = −∆m+1

Still under the same condition of mutual commutativity of the scalar components of V,
we have, on purely algebraic grounds, that

(V+)2 = 0 and (V−)2 = 0

and hence

V2 = −
m∑
i=0

V2
i = V+V− + V−V+

For the Dirac operator ∂x = ∂x ∧+∂x• = ∂+
x + ∂−x this means (see also [9])

(∂+
x )2 = 0 and (∂−x )2 = 0

and
∂2
x = −∆m+1 = ∂+

x ∂
−
x + ∂−x ∂

+
x

As has been observed in [9], through the natural isomorphism Θ between, on the one
side, smooth multivector functions and, on the other, differential forms in open regions of
Euclidean space:

Θ : E(Ω;R0,m+1) −→ E(Ω;
∧
Rm+1)

the action of ∂x on E(Ω;R0,m+1) corresponds to the action of d+d∗ on E(Ω;
∧
Rm+1), more

precisely the operator ∂+
x corresponds to the exterior derivative d, while ∂−x corresponds

to the coderivative d∗. In such a way, the theory of (left) monogenic functions in Ω is
equivalent to the theory of so–called self–conjugate differential forms in Ω (see [9, 17])
and, putting ω = Θ(F ), there holds:

∂xF = 0 ⇐⇒ (d+ d∗)ω = 0
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In particular, for Fr =
∑
|A|=r F

r
AeA (0 ≤ r ≤ m + 1) and ωr = ΘFr =

∑
|A|=r ω

r
Adx

A,

where for all A = (i1, . . . , ir) ⊂ {0, 1, . . . ,m}, ωrA = F rA and dxA = dxi1 ∧ . . . ∧ dxir , we
have that

∂xFr = 0 ⇐⇒ (GR)

{
∂+
x Fr = 0
∂−x Fr = 0

(3)

The system (3) is called a generalized Riesz system of type (r); its solutions are called
monogenic r–vector functions (see also [24]). Through the isomorphism Θ, we also have

(GR) ⇐⇒
{
dωr = 0
d∗ωr = 0

(4)

As is well–known, the latter system (4) is called the Hodge–de Rham system for r–forms
and its solutions are called harmonic r–forms.

3 The Hardy spaces H2(Rm) and H2(Rm+1
+ )

We briefly recall some basic results from Hardy space theory on Rm and Rm+1
+ in the

Clifford analysis context. The fundamental solution C(x) of the Cauchy–Riemann operator
Dx in Rm+1 being

C(x) =
1

am+1

x0 − e0x

|x|m+1

with am+1 = 2π
m+1

2

Γ(m+1
2

)
the area of the unit sphere in Rm+1, for a function f ∈ L2(Rm;R0,m+1),

its Cauchy transform C[f ] is defined by

C[f ](x) =

∫
Rm

C(x0, x− y)f(y)dy, x ∈ Rm+1 \ Rm

It shows a number of important properties.

Property 1. For f ∈ L2(Rm;R0,m+1), its Cauchy transform C[f ] is (left) monogenic in
Rm+1 \ Rm.

Property 2. For f ∈ L2(Rm;R0,m+1)

C+[f ](x) ≡ lim
x0→0+

C[f ](x) =
1

2
f(x) + e0

1

2
H[f ](x)

where the limit is taken nontangentially and where

H[f ](x) =
2

am+1
Pv

∫
Rm

x− y
|x− y|m+1

f(y)dy =
m∑
j=1

ejRj [f ](x)

is the Hilbert transform on Rm, Rj(j = 1, . . . ,m) denoting the j–th Riesz transform on
Rm given by

Rj [f ](x) =
2

am+1
Pv

∫
Rm

xj − yj
|x− y|m+1

f(y)dy

This Hilbert transform enjoys the following properties.

Property 3. The Hilbert transform H is a translation and dilation invariant, bounded
and norm preserving linear operator on L2(Rm;R0,m+1), which is moreover invertible since
H2 = 1.
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Property 4. The scalar Riesz transforms Rj , j = 1, . . . ,m, are mutually commuting, and
defining

H+[f ](x) = H ∧ [f ](x) =
2

am+1
Pv

∫
Rm

(x− y) ∧ f(y)

|x− y|m+1
dy =

m∑
j=1

ej ∧Rj [f ](x)

and

H−[f ](x) = H • [f ](x) =
2

am+1
Pv

∫
Rm

(x− y) • f(y)

|x− y|m+1
dy =

m∑
j=1

ej • Rj [f ](x)

one thus has
(H+)2 = 0 and (H−)2 = 0

while

H2 = H+H− +H−H+ = −
m∑
j=1

R2
j = 1

Remark 1. These associated Hilbert transforms H+ and H− in fact originate by taking
the non–tangential limit for x0 → 0+ in the Cauchy transform where the multiplication
operator x is decomposed as x = x∧+x•, with (x∧)2 = (x•)2 = 0 and x2 = x∧ x•+x• x∧ =
−|x|2 (see also [9]).

Remark 2. It is known (see e.g. [10]) that the convolution kernel H∂x = ∂xH is nothing
else but the scalar convolution kernel − 2

am+1
Fp 1
|x|m+1 , leading to the scalar Hilbert–Dirac

operator which equals the ”square root of the negative Laplace operator”:

H∂x[f ] = ∂xH[f ] = (−∆)1/2[f ]

In terms of the associated wedge and dot operators it is then obtained that

H+∂+
x = ∂+

x H+ = 0 and H−∂−x = ∂−x H− = 0

while

H+∂−x +H−∂+
x = ∂+

x H− + ∂−x H+ =
m∑
j=1

Rj∂xj =
m∑
j=1

∂xjRj = − 2

am+1
Fp

1

|x|m+1

The Hardy space H2(Rm) is the closed subspace of L2(Rm;R0,m+1) characterized by
either

H2(Rm) = {g ∈ L2(Rm;R0,m+1) : e0H[g] = g} (5)

or
H2(Rm) =

{
g ∈ L2(Rm;R0,m+1) : C+[g] = g

}
(6)

As for each f ∈ L2(Rm;R0,m+1),

e0H[C+[f ]] = e0H[
1

2
f + e0

1

2
H[f ]] = e0

1

2
H[f ] +

1

2
f = C+[f ]

the next property follows at once.

Property 5. For f ∈ L2(Rm;R0,m+1), C+[f ] ∈ H2(Rm).
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According to the decomposition (1) of R0,m+1, f ∈ L2(Rm;R0,m+1) admits the splitting

f = u+ e0v (7)

where u, v ∈ L2(Rm;R0,m); we put Ref = u, Imf = v. We also introduce the operators

A = 1 + e0 H and B = H+ e0 1 = A H

Property 6. Each function g ∈ H2(Rm) may be written as

g = Re g + e0 H[Re g] = A[Re g]

and
g = H[Im g] + e0 Im g = B[Im g]

Conversely, for any u and v in L2(Rm;R0,m), the functions

A[u] = u+ e0 H[u] and B[v] = H[v] + e0 v

belong to H2(Rm).

Corollary 1. The spaces H2(Rm) and L2(Rm;R0,m) are isomorphic.

In engineering sciences the functions in the Hardy space H2(R) are termed analytic
signals, since they are the non–tangential boundary values of holomorphic (or analytic)
functions in the upper half complex plane. In the same order of ideas we speak of the
functions in H2(Rm) as analytic signals. The pairs (u,H[u]) and (H[v], v) are called con-
jugate pairs or Hilbert pairs in Rm.

On the half space Rm+1
+ = {(x0, x) : x0 > 0}, the Hardy space H2(Rm+1

+ ) is defined as
the space of (left) monogenic functions F in Rm+1

+ satisfying the estimate

sup
x0>0

∫
Rm

|F (x0, x)|2 dx < +∞ (8)

Through the Cauchy transform C, the Hardy spaces H2(Rm) and H2(Rm+1
+ ) are intimately

related as is apparent from the following properties.

Property 7. For F ∈ H2(Rm+1
+ ), the non-tangential limit function

lim
x0→0+

F (x0, x) = F+(x) (9)

belongs to H2(Rm), and, conversely, F ∈ H2(Rm+1
+ ) is recovered from its boundary value

F+ by the Cauchy transform, i.e. F = C[F+]. In conclusion: the spaces H2(Rm+1
+ ) and

H2(Rm) are isomorphic.

Property 8. For a function f ∈ L2(Rm;R0,m+1) one has C[f ] ∈ H2(Rm+1
+ ) and

C[f ](x) = P
[
C+[f ]

]
(x) =

1

2
(P[f ] + e0P [H[f ]]) (x) (10)

where P is the Poisson transform given by

P[g](x) =
1

am+1

∫
Rm

2x0

|x− y|m+1
g(y)dy, g ∈ L2(Rm;R0,m+1)

Property 9. For a function g ∈ H2(Rm) one has C[g] = P[g].
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4 The Hardy spaces H2
(r)(R

m) and H2
(r)(R

m+1
+ )

We recall that R(r)
0,m+1 is the space of r–vectors in R0,m+1 (see Section 2), and we define

the following subspaces of the Hardy spaces H2(Rm+1
+ ) and H2(Rm).

Definition 1. The space H2
(r)(R

m+1
+ ), 0 < r < m+1, consists of all functions in H2(Rm+1

+ )

which are R(r)
0,m+1–valued. The space H2

(r)(R
m), 0 < r < m+ 1 consists of all functions in

H2(Rm) which are R(r)
0,m+1–valued.

Take a function Fr ∈ H2
(r)(R

m+1
+ ), in other words a function Fr satisfying

(i) ∂xFr = 0 in Rm+1
+ ;

(ii) supx0>0

∫
Rm

|Fr(x0, x)|2 dx < +∞.

We know from Section 3 that F+
r = limx0→0+ Fr(x0, x) belongs to H2(Rm), implying

that e0H [F+
r ] = F+

r = C+[F+
r ]. Obviously F+

r is R(r)
0,m+1–valued and thus belongs to

H2
(r)(R

m). Conversely let gr ∈ H2
(r)(R

m). Then C[gr] ∈ H2(Rm+1
+ ), and clearly C[gr] =

P[gr] is R(r)
0,m+1–valued, and so C[gr] ∈ H2

(r)(R
m+1
+ ). These considerations lead to the

following result.

Property 10. The spaces H2
(r)(R

m+1
+ ) and H2

(r)(R
m) are isomorphic.

Now, denoting ReF+
r = ur ∈ L2(Rm;R(r)

0,m) and ImF+
r = vr−1 ∈ L2(Rm;R(r−1)

0,m ), there
holds, in view of Property 6, that

F+
r = ur + e0 H[ur] = H[vr−1] + e0 vr−1

from which it follows that

H+[ur] = 0, H[ur] = H−[ur], H+H−[ur] = ur

and
H−[vr−1] = 0, H[vr−1] = H+[vr−1], H−H+[vr−1] = vr−1

So we have proven the following result.

Proposition 1. The non–tangential boundary value F+
r ∈ H2

(r)(R
m) of the r–vector func-

tion Fr ∈ H2
(r)(R

m+1
+ ) may be written as

F+
r = Re F+

r + e0 H−[Re F+
r ]

with
Re F+

r ∈ L2(Rm;R(r)
0,m) and H+[Re F+

r ] = 0

or, alternatively,
F+
r = H+[Im F+

r ] + e0 Im F+
r

with
Im F+

r ∈ L2(Rm;R(r−1)
0,m ) and H−[Im F+

r ] = 0
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Conversely, assume that ur ∈ L2(Rm;R(r)
0,m) is such that H+[ur] = 0, and that vr−1 ∈

L2(Rm;R(r−1)
0,m ) is such that H−[vr−1] = 0. Put

gr = A[ur] = ur + e0 H[ur] = ur + e0 H−[ur]

and
hr = B[vr−1] = H[vr−1] + e0 vr−1 = H+[vr−1] + e0 vr−1

Then, in view of Property 6, the functions gr and hr both belong to H2(Rm) and thus to

H2
(r)(R

m), since they are R(r)
0,m+1–valued. Putting

L+
2 (Rm;R(r)

0,m) = {ur ∈ L2(Rm;R(r)
0,m) : H+[ur] = 0}

and
L−2 (Rm;R(r−1)

0,m ) = {vr−1 ∈ L2(Rm;R(r−1)
0,m ) : H−[vr−1] = 0}

we thus have proven the following result.

Proposition 2. Let ur ∈ L+
2 (Rm;R(r)

0,m) and let vr−1 ∈ L−2 (Rm;R(r−1)
0,m ). Then the func-

tions
Ã[ur] = ur + e0 H−[ur] and B̃[vr−1] = H+[vr−1] + e0vr−1

both belong to H2
(r)(R

m).

Note that when ur ∈ L+
2 (Rm;R(r)

0,m) then H−[ur] ∈ L−2 (Rm;R(r−1)
0,m ), and that vr−1 ∈

L−2 (Rm;R(r−1)
0,m ) impliesH+[vr−1] ∈ L+

2 (Rm;R(r)
0,m). MoreoverH+ H− = 1 on L+

2 (Rm;R(r)
0,m),

while H− H+ = 1 on L−2 (Rm;R(r−1)
0,m ).

Corollary 2. The spaces L+
2 (Rm;R(r)

0,m), L−2 (Rm;R(r−1)
0,m ) and H2

(r)(R
m) are isomorphic:

H2
r (Rm) = Ã

[
L+

2 (Rm;R(r)
0,m)

]
= B̃

[
L−2 (Rm;R(r−1)

0,m )
]

Remark 3. In [27, Theorem 13.3.5], a characterization was obtained of all boundary
values ωr+ ∈ H2(Rm;

∧rRm+1) of functions ωr ∈ H2(Rm+1
+ ;

∧rRm+1), i.e. harmonic r–
forms ωr in Rm+1

+ satisfying

sup
x0>0

∫
Rm

|ωr(x0, x)|2 dx < +∞

A straightforward analysis shows that this characterization corresponds to the one given

in Proposition 1 for the boundary values F+
r of functions Fr ∈ H2(Rm+1

+ ;R(r)
0,m+1).

Remark 4. Let r = 1 and consider the real–valued function v0 ∈ L−2 (Rm;R(0)
0,m). According

to Proposition 2, the function

F+
1 = H+[v0] + e0 v0

belongs to H2
(1)(R

m) and

C[F+
1 ] = P[F+

1 ] = e0 P[v0] +

m∑
j=1

ej P[Rj [v0]]

belongs to H2
(1)(R

m+1
+ ). The (m + 1)–tuple (P[v0],P[R1[v0]], . . . ,P[Rm[[v0]]) is then a

system of conjugate harmonic functions in Rm+1
+ in the sense of Stein and Weiss (see [40,

§4.2]).
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Now we turn our attention to the concept of conjugate harmonic r–vector functions.

Definition 2. The space Harm2
(r)(R

m+1
+ ;R(r)

0,m), 0 < r < m + 1, consists of all functions

in the Hardy space Harm2(Rm+1
+ ) which are R(r)

0,m–valued.

Take a function Ur ∈ Harm2
(r)(R

m+1
+ ;R(r)

0,m), i.e. a harmonic R(r)
0,m–valued function

satisfying the estimate

sup
x0>0

∫
Rm

| Ur(x0, x) |2 dx < +∞

It possesses a non–tangential L2–boundary value ur ∈ L2(Rm;R(r)
0,m), from which Ur may

be recovered by means of the Poisson transform, i.e. Ur = P[ur]. It was shown in [1],

Theorem 3.1, that Ur admits in Rm+1
+ an R(r)

0,m–valued conjugate harmonic, in the sense
of [8], if and only if ∂+

x Ur = 0, but this conjugate harmonic does not need to be in

Harm2(Rm+1
+ ;R(r)

0,m). Now we can prove the following.

Proposition 3. If the function Ur belongs to the Hardy space Harm2
(r)(R

m+1
+ ;R(r)

0,m) and

shows the non–tangential L2–boundary value ur ∈ L2(Rm;R(r)
0,m), then Ur admits a conju-

gate harmonic belonging to Harm2
(r)(R

m+1
+ ;R(r)

0,m) if and only if H+[ur] = 0.

Proof.
It is clear that e0 V = e0 P[H[ur]] is conjugate harmonic to P[ur] = Ur, and moreover

belongs to Harm2(Rm+1
+ ). If H+[ur] = 0, then V clearly takes its values in R(r−1)

0,m ,

implying that the conjugate harmonic e0 V belongs to Harm2
(r)(R

m+1
+ ;R(r)

0,m). Conversely,

if e0 Vr−1 is a conjugate harmonic to Ur, which is in Harm2
(r)(R

m+1
+ ;R(r)

0,m), then the

monogenic function Ur + e0 Vr−1 belongs to the Hardy space H2(Rm+1
+ ) and shows the

boundary value ur + e0 vr−1 which belongs to the Hardy space H2(Rm). It follows that
H[ur] = vr−1, implying that H+[ur] = 0.

Remark 5. In the setting explained above, the condition H+[ur] = 0 implies the condition
∂+
x Ur = 0, but not conversely.

5 The Hardy spaces H2
(r,p,q)(R

m) and H2
(r,p,q)(R

m+1
+ )

Take 0 < r < m+ 1 fixed, take p, q ∈ N such that p < q and r + 2q ≤ m+ 1 and put

R(r,p,q)
0,m+1 =

q⊕
j=p

R(r+2j)
0,m+1

Then we define the following subspaces of the Hardy spaces H2(Rm+1
+ ) and H2(Rm).

Definition 3. The space H2
(r,p,q)(R

m+1
+ ) consists of all functions in H2(Rm+1

+ ) which are

R(r,p,q)
0,m+1–valued. The space H2

(r,p,q)(R
m) consists of all functions in H2(Rm) which are

R(r,p,q)
0,m+1–valued.

Take a function W =
∑q

j=pWr+2j ∈ H2
(r,p,q)(R

m+1
+ ), i.e. a function W satisfying

(i) ∂xW = 0 in Rm+1
+ ;

9



(ii) supx0>0

∫
Rm

|W (x0, x)|2dx < +∞.

Note that

∂xW = 0 ⇐⇒ (GMT)


∂−xWr+2p = 0
∂+
xWr+2j + ∂−xWr+2(j+1) = 0, j = p, . . . , q − 1

∂+
xWr+2q = 0

The system (GMT) is called a generalized Moisil–Teodorescu system of type (r, p, q)
(see also [1]).

We know from Section 3 that W+ = limx0→0+W (x0, x) belongs to H2(Rm), implying

that e0 H[W+] = W+ = C+[W+]. Obviously, W+ =
∑q

j=pW
+
r+2j is R(r,p,q)

0,m+1–valued, and

thus belongs to H2
(r,p,q)(R

m). Conversely let w ∈ H2
(r,p,q)(R

m). Then C[w] ∈ H2(Rm+1
+ ),

and clearly C[w] = P[w] is R(r,p,q)
0,m+1–valued, and so C[w] ∈ H2

(r,p,q)(R
m+1
+ ). These consider-

ations lead to the following result.

Property 11. The spaces H2
(r,p,q)(R

m+1
+ ) and H2

(r,p,q)(R
m) are isomorphic.

Now, denoting ReW+ = u ∈ L2(Rm;R(r,p,q)
0,m ) and ImW+ = v ∈ L2(Rm;R(r−1,p,q)

0,m ),
there holds, in view of Property 6, that

W+ = A[u] = u+ e0 H[u]

and also
W+ = B[v] = H[v] + e0 v

from which it follows that

H−[ur+2p] = vr+2p−1 (11)

H+[ur+2j ] +H−[ur+2j+2] = vr+2j+1 (j = p, . . . , q − 1) (12)

H+[ur+2q] = 0 (13)

and

H−[vr+2p−1] = 0 (14)

H+[vr+2j−1] +H−[vr+2j+1] = ur+2j (j = p, . . . , q − 1) (15)

H+[vr+2q−1] = ur+2q (16)

So we have proven the following result.

Proposition 4. For the non–tangential boundary W+ ∈ H2
(r,p,q)(R

m) of the function

W ∈ H2
(r,p,q)(R

m+1
+ ) there exist functions ur+2j ∈ L2(Rm;R

(r+2j)
0,m ), j = p, . . . , q − 1 and a

function ur+2q ∈ L+
2 (Rm;R

(r+2q)
0,m ) such that

W+ = (ur+2p + · · ·+ ur+2q−2 + ur+2q) + e0

(
H[ur+2p] + · · ·+H[ur+2q−2] +H−[ur+2q]

)
At the same time there exist functions vr+2j+1 ∈ L2(Rm;R

(r+2j+1)
0,m ), j = p, . . . , q − 1 and

a function vr+2p−1 ∈ L−2 (Rm;R
(r+2p−1)
0,m ) such that

W+ =
(
H+[vr+2p−1] +H[vr+2p+1] + · · ·+H[vr+2q−1]

)
+e0 (vr+2p−1 + vr+2p+1 + · · ·+ vr+2q−1)

Moreover the functions ur+2j and vr+2j−1, j = p, . . . , q are intertwinned by the relations
(11),(12),(15),(16).
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In a similar way as for Proposition 2 the converse result is obtained.

Proposition 5. Let ur+2j ∈ L2(Rm;R
(r+2j)
0,m ) and vr+2j+1 ∈ L2(Rm;R

(r+2j+1)
0,m ), j =

p, . . . , q − 1 and let ur+2q ∈ L+
2 (Rm;R

(r+2q)
0,m ) and vr+2p−1 ∈ L−2 (Rm;R

(r+2p−1)
0,m ). Then the

functions
q−1∑
j=p

A[ur+2j ] + Ã[ur+2q]

and

B̃[vr+2p−1] +

q−1∑
j=p

B[vr+2j+1]

both belong to H2
(r,p,q)(R

m).

Corollary 3. The following decompositions of H2
(r,p,q)(R

m) hold:

H2
(r,p,q)(R

m) =

q−1⊕
j=p

A
[
L2(Rm;R

(r+2j)
0,m )

]
⊕ Ã

[
L+

2 (Rm;R
(r+2q)
0,m )

]

=

q−1⊕
j=p

A
[
L2(Rm;R

(r+2j)
0,m )

]
⊕H2

(r+2q)(R
m)

and

H2
(r,p,q)(R

m) = B̃
[
L−2 (Rm;R

(r+2p−1)
0,m )

]
⊕

q−1⊕
j=p

B
[
L2(Rm;R

(r+2j+1)
0,m )

]

= H2
(r+2p)(R

m)⊕
q−1⊕
j=p

B
[
L2(Rm;R

(r+2j+1)
0,m )

]

6 The Hardy spaces H2
E(Rm) and H2

E(R
m+1
+ )

Considering functions taking their values in the even subalgebras

R+
0,m+1 =

⊕
k even

R(k)
0,m+1

and
R+

0,m =
⊕
k even

R(k)
0,m

of the respective Clifford algebras R0,m+1 and R0,m, we may introduce the following sub-
spaces of the Hardy spaces H2(Rm+1

+ ) and H2(Rm).

Definition 4. The space H2
E(Rm+1

+ ) consists of all functions in H2(Rm+1
+ ) which are

R+
0,m+1–valued. The space H2

E(Rm) consists of all functions in H2(Rm) which are R+
0,m+1–

valued.

It is clear that these spaces fit into the framework of Section 5 by making the appro-
priate choices r = 0, p = 0 and q = bm+1

2 c. In view of Property 11 the following result is
then immediate.

Property 12. The spaces H2
E(Rm) and H2

E(Rm+1
+ ) are isomorphic.

11



Now observe that when m + 1 is even, then the space L2(Rm;Rm+1
0,m ) is the null

space. When m + 1 is odd, then the condition H+[um] = 0 is trivially fulfilled for

um ∈ L2(Rm;R(m)
0,m), in other words L+

2 (Rm;R(m)
0,m) = L2(Rm;R(m)

0,m). The result of Corol-
lary 3 now takes the following form.
When m+ 1 is even:

H2
E(Rm) =

m−1
2⊕
j=0

A
[
L2(Rm;R(2j)

0,m)
]

= A
[
L2(Rm;R+

0,m)
]

When m+ 1 is odd:

H2
E(Rm) =

m
2
−1⊕

j=0

A
[
L2(Rm;R(2j)

0,m)
]

+ Ã
[
L2(Rm;R(m)

0,m)
]

= A
[
L2(Rm;R+

0,m)
]

This leads to the following conclusion, which is a refinement of [26, Theorem 5.33] for
L2–spaces.

Property 13. The spaces H2
E(Rm) and L2(Rm;R+

0,m) are isomorphic.

In the particular case where m + 1 = 3, the Hardy spaces H2
E(R3

+) and H2
E(R2) are

obtained. It was shown in [3] that the space of solutions to the classical Moisil-Teodorescu
system in Ω, Ω open in R3, is isomorphic to the space of (left) monogenic R+

0,3– valued

functions in Ω. Taking Ω = R3
+, the space H2

E(R3
+) thus consists of all solutions W to the

classical Moisil-Teodorescu system in R3
+ satisfying the condition

sup
x0>0

∫
R2

|W (x0, x)|2dx < +∞

Its corresponding space of non–tangential boundary values H2
E(R2) is thus characterized

by

H2
E(R2) = A

[
L2(R2;R+

0,2)
]

=
{
u+ e0H[u] | u ∈ L2(R2;R+

0,2)
}

The latter space was called in [3] the space of analytic signals on R2.

Finally notice that in the particular case where m + 1 = 2, there holds R+
0,2 ' C,

R2
+ = C+ and R+

0,1 ' R, so that the classical Hardy space in the upper half complex plane

H2(C+) and the Hardy space H2(R) of analytic signals on the real line are reobtained.

References

[1] R. Abreu, J. Bory, R. Delanghe, F. Sommen, Generalized Moisil–Théodoresco Sys-
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[2] S. Bernstein, L. Lanzani, Szegö projections for Hardy spaces of monogenic functions
and applications, Int. J. Math. Math. Sci. 29(10), 2002, 613–624.

[3] J. Bory Reyes, R. Delanghe, On the solutions of the Moisil–Théodoresco systems,
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