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Abstract. The Goursat representation formula in the complex plane, ex-
pressing a real–valued biharmonic function in terms of two holomorphic
functions and their anti–holomorphic complex conjugates, is generalized
to Euclidean space, expressing a real–valued polyharmonic function of
order p in terms of p so–called monogenic functions of Clifford analysis.

Mathematics Subject Classification (2010). 30G35.

Keywords. Goursat decomposition, polyharmonic functions.

This paper is dedicated to the memory of Professor J. Keller

1. Introduction

In classical complex analysis it is well–known that harmonic functions and
holomorphic functions are intimately related. If Ω is a simply connected re-
gion in the complex plane and u(x, y) is a real–valued harmonic function in Ω,
then there exists a second real–valued harmonic function v(x, y), called a har-
monic conjugate to u in Ω, such that f(z) = u(x, y)+ iv(x, y) is holomorphic
in Ω, i.e. a null solution of the Cauchy–Riemann operator ∂z = 1

2 (∂x + i∂y).
It follows that u(x, y) = 1

2

(
f(z) + f(z)

)
= Ref(z), in other words: any real–

valued harmonic function in Ω can be decomposed as a sum of a holomorphic
function and its complex conjugate, the latter being anti–holomorphic, i.e.
a null solution of the conjugate Cauchy–Riemann operator ∂z = 1

2 (∂x − i∂y).

Already in 1898 Goursat [10] obtained a representation of a biharmonic
function, i.e. a null solution of ∆2, in terms of two holomorphic functions
and their anti–holomorphic complex conjugates: if u(x, y) is a real–valued
biharmonic function in Ω, still a simply connected region in the complex
plane, then there exist holomorphic functions ϕ(z) and ψ(z) in Ω such that

u(x, y) = ϕ(z) + ϕ(z) + zψ(z) + zψ(z) = 2Re (ϕ(z) + zψ(z)) (1)
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Note that ϕ ∈ Ker∂z, ϕ ∈ Ker∂z, zψ ∈ Ker∂2
z , zψ ∈ Ker∂2

z . It follows that

u(x, y) = γ(x, y) + xα(x, y) + yβ(x, y) (2)

with γ(x, y) = 2 Reϕ(z), α(x, y) = 2 Reψ(z) and β(x, y) = 2 Imψ(z), in
other words: any real–valued biharmonic function in Ω may be decomposed
in terms of three harmonic functions, two of them being conjugate harmonic.

In [11] and [9] the number of harmonic functions needed for this kind of
representation was reduced to two: given a real–valued biharmonic function
u(x, y) in Ω, there exist harmonic functions g0, h0, g1, h1, g2, h2 such that

u(x, y) = g0(x, y) + (x2 + y2)h0(x, y) (3)

or
u(x, y) = g1(x, y) + xh1(x, y) (4)

or
u(x, y) = g2(x, y) + yh2(x, y) (5)

In fact, (3) is a decomposition of the so–called Almansi type. In [1] Almansi
obtained a decomposition in three–dimensional Euclidean space of a real–
valued polyharmonic function U(x) satisfying ∆kU = 0 in a star domain, in
terms of harmonic functions h0, h1, . . . , hk−1 and powers of |x|2:

U(x) = h0(x) + |x|2h1(x) + . . .+ |x|2(k−1)hk−1(x) (6)

In its turn (6) was a generalization to polyharmonic functions of the Gauss
decomposition of a polynomial in terms of harmonic polynomials and powers
of |x|2. This classical result can be expressed by saying that (|x|2,∆) is a
Fischer pair for the space of all polynomials; the pair (P,Q(D)), consisting
of a polynomial and a differential operator, is called a Fischer pair if for each
polynomial p there exist unique polynomials q and r such that Q(D)r = 0
and p = Pq+r. In [8] Fischer proved that for every homogeneous polynomial
P , the pair (P (x), P ∗(D)) is a Fischer pair, where P ∗ denotes the polynomial
obtained from P by conjugation of its coefficients.

The aim of this paper is to generalize, in a first step, the Goursat repre-
sentation formula for biharmonic functions in the complex plane to polyhar-
monic functions in the whole of Euclidean space; the case of polyharmonic
functions in an open region of Euclidean space is a topic for further research.
This, naturally, necessitates a generalization to higher dimension of the no-
tion of holomorphy. For that we can use the framework of Clifford analysis,
more in particular the notion of monogenic function, i.e. a null solution of a
generalized Cauchy–Riemann operator acting on functions defined in Euclid-
ean space Rm+1 and with values in the Clifford algebra Rm+1 constructed
over Rm+1, or subspaces thereof. In this context it should be mentioned that
a generalization of the Goursat representation formula to R3 in the frame-
work of quaternionic analysis was obtained in [3], and a similar generalization
to C2 in [4].
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The structure of the paper is as follows. In section 2 we briefly recall
the basics of Clifford algebra and Clifford analysis. In section 3 we prove
some elementary but useful results on polyharmonic functions which will be
exploited in the sequel. Section 4 is devoted to the Goursat representation
formula for biharmonic functions in Euclidean space. This paves the way for
the general case of polyharmonic functions in Euclidean space in Section 5.

2. Clifford algebra and Clifford analysis: some basics

Let R0,m+1 be the real vector space Rm+1 (m > 1) provided with a non-
degenerate quadratic form of signature (0,m + 1) and let e = (e0, . . . , em)
be an orthonormal basis of R0,m+1. Then e generates the universal Clifford
algebra R0,m+1 over R0,m+1 and, embedded in R0,m+1, e = (e1, . . . , em) gen-
erates the universal Clifford algebra R0,m over R0,m. The multiplication in
the Clifford algebra R0,m+1 is non–commutative; it is governed by the rules{

e2i = −1, i = 0, . . . ,m
eiej + ejei = 0, i 6= j, i, j = 0, . . . ,m

A basis for R0,m+1 is given by (eA)A⊂{0,...,m} where for A = (i1, . . . , ir)
with 0 ≤ i1 < i2 < . . . < ir ≤ m, we put eA = ei1ei2 . . . eir

, while e∅ = 1 is the
identity element. Any a ∈ R0,m+1 may thus be written as a =

∑
A aA eA with

aA ∈ R or still as a =
∑m+1

k=0 [a]k where [a]k =
∑

|A|=k aA eA is the so–called
k–vector part of a (k = 0, 1, . . . ,m+ 1). If we denote the space of k–vectors
by Rk

0,m+1, then the Clifford algebra R0,m+1 decomposes as
⊕m+1

k=0 Rk
0,m+1.

Conjugation in R0,m+1 is defined as the anti–involution a → a for which
ei = −ei, i = 0, 1, . . . ,m+ 1. For the Clifford algebra R0,m the construction
of a basis and the decomposition into subspaces of k–vectors (k = 0, 1, . . . ,m)
is completely similar.

The Euclidean spaces Rm and Rm+1 are identified with the subspaces
of 1-vectors in the respective Clifford algebras R0,m and R0,m+1, by putting
x =

∑m
j=1 ejxj and x =

∑m
i=0 eixi. It follows that x = x0e0 + x. For further

use we also introduce the new variable

z = e0x = x0 + e0x

and its conjugate z = x0 − e0x. The multiplication of any two vectors x and
y is given by

x y = x ◦ y + x ∧ y
with

x ◦ y = −
m∑

j=0

xjyj =
1
2
(x y + yx) = Scal [xy]

x ∧ y =
∑
i<j

eij(xiyj − xjyi) =
1
2
(x y − y x)
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being a scalar and a two–vector (also called bivector), respectively. In par-
ticular, one has that x2 = −|x|2 = −

∑m
i=0 x

2
i and also that x2 = −|x|2 =

−
∑m

j=1 x
2
j . Note that for vectors x and x we have x = −x and x = −x .

The Dirac operator in R0,m+1 is the first order vector valued differential
operator

∂x =
m∑

i=0

ei∂xi
= e0∂x0 + ∂x

associated to x, where ∂x denotes the corresponding Dirac operator in R0,m,
associated to x. Similarly, we may associate the so–called Cauchy–Riemann
operator

D = e0∂x = ∂x0 + e0∂x

and its conjugate D = ∂x0 − e0∂x, to the new variable z. With respect to
any of these respective operators, a notion of monogenicity may be defined.
In Rm+1 we consider functions taking values in R0,m+1. We say that such a
function f is left monogenic in the open region Ω of Rm+1 if and only if f is
continuously differentiable in Ω and satisfies in Ω the equation ∂x f = 0, or
equivalently, the equationDf = 0. For an account of the theory of monogenic
functions we refer the reader to e.g. [5, 7]. Observe however that ∆m = −∂2

x

and ∆m+1 = −∂2 = DD, where ∆m and ∆m+1 denote the respective Laplace
operators in Rm and in Rm+1. In these factorizations lies the origin of the
statement that monogenic functions constitute a refinement of harmonic ones.

In what follows we will also need the Euler operators in R0,m and
R0,m+1, which are respectively given by

Em = −x ◦ ∂x = −Scal(x ∂x) =
m∑

j=1

xj∂xj

and

Em+1 = −x ◦ ∂x = −Scal(x ∂x) =
m∑

i=0

xi∂xi
= x0∂x0 + Em (7)

3. Polyharmonic functions: some basics

A function h(p) ∈ C2p(Ω) is called polyharmonic of finite degree p, or (p)–
polyharmonic for short, in the open region Ω ⊂ Rm+1 if and only if ∆ph(p) = 0
in Ω. It is well–known that polyharmonic functions are real–analytic. There
is, quite naturally, an extensive literature on the theory of polyharmonic func-
tions, a good reference being [2]. Polyharmonic, and in particular biharmonic
(p = 2), functions are indeed essential in the study of boundary value prob-
lems of mathematical physics, especially from elasticity theory. Let us recall
some of their basic properties.

Proposition 1. If the function h(p) is (p)–polyharmonic in Ω, then xj
0 h

(p) is
(p+ j)–polyharmonic in Ω.
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Proof. (by induction)
It is easily seen that the commutator [∆, x0] equals 2∂x0 . It is also clear
that ∂x0h

(p) is (p)–polyharmonic in Ω. First we prove that x0h
(p) is (p+ 1)–

polyharmonic. Indeed, we consecutively have in Ω:

∆p+1
(
x0h

(p)
)

= ∆p
(
∆x0h

(p)
)

= ∆p
(
x0∆h(p) + 2∂x0h

(p)
)

= ∆p
(
x0∆h(p)

)
= ∆p−1

(
∆

(
x0∆h(p)

))
= ∆(p−1)

(
(x0∆ + 2∂x0)∆h

(p)
)

= ∆p−1x0∆2h(p)

= . . . = ∆x0∆ph(p) = 0

Now assume that xj−1
0 h(p) is (p+j−1)–polyharmonic in Ω, then the following

computation holds:

∆p+j
(
xj

0h
(p)

)
= ∆p+j−1

(
∆

(
x0x

j−1
0 h(p)

))
= ∆p+j−1 (x0∆ + 2∂x0)

(
xj−1

0 h(p)
)

= ∆p+j−1
(
x0∆

(
xj−1

0 h(p)
))

= . . . = ∆x0∆p+j−1
(
xj−1

0 h(p)
)

= 0

from which the result follows by induction. �

Proposition 2. (see also [2])
If the function h(p) is (p)–polyharmonic in Ω, then Em+1h

(p) also is (p)–
polyharmonic in Ω, where Em+1 is the Euler operator (7) in R0,m+1.

Proof.
The fundamental commutator here is

[∆, Em+1] = 2∆

We then consecutively have

∆p
(
Em+1h

(p)
)

= ∆(p−1) (Em+1∆ + 2∆)h(p)

= ∆p−1Em+1∆h(p) + 2∆ph(p)

= ∆p−2 (Em+1∆ + 2∆)∆h(p) = ∆p−2Em+1∆2h(p)

= . . . = Em+1∆ph(p) = 0

yielding the statement. �

Proposition 3. (see also [2])
If the function h(p) is (p)–polyharmonic in Ω, then ρ2kh(p) also is (p + k)–
polyharmonic in Ω, where ρ2 denotes |x|2.

Proof.
The fundamental commutator here is

[∆, ρ2] = 4Em+1 + 2(m+ 1)
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First we prove that ρ2h(p) is (p+ 1)–polyharmonic in Ω. We have

∆p+1
(
ρ2h(p)

)
= ∆p

((
ρ2∆ + 4Em+1 + 2(m+ 1)

)
h(p)

)
which, in view of Proposition 2, reduces to ∆pρ2∆h(p). Proceeding in the
same way, we arrive eventually at ∆ρ2∆ph(p), which is zero indeed. Assume
now that ρ2k−2h(p) is (p+ k− 1)–polyharmonic in Ω. Then we consecutively
have:

∆p+k
(
ρ2kh(p)

)
= ∆p+k−1∆ρ2

(
ρ2(k−1)h(p)

)
= ∆p+k−1

(
ρ2∆ + 4Em+1 + 2(m+ 1)

) (
ρ2k−2h(p)

)
= ∆p+k−1ρ2∆

(
ρ2k−2h(p)

)
= . . . = ∆ρ2∆p+k−1

(
ρ2k−2h(p)

)
= 0

which proves the statement. �

For the sake of completeness let us mention the following Almansi type
decomposition theorem; for a proof we refer to [2].

Theorem 1. If the function h(p) is (p)–polyharmonic in a star shaped region
Ω centred at the origin, then there exist unique functions h0, h1, . . . , hp−1,
each harmonic in Ω, such that in Ω holds:

h(p) = h0 + ρ2h1 + ρ4h2 + . . .+ ρ2p−2hp−1

4. Biharmonic functions: the Goursat decomposition

The Goursat decomposition formula for biharmonic functions in Euclidean
space is obtained through a series of lemmata.

Lemma 1. Given a real–valued harmonic function h on Rm+1, there exists a
real–valued harmonic function h0 on Rm+1 such that h = ∂x0h0.

Proof.
Take an arbitrary point x∗0 on the x0–axis and put

h0(x0, x) =
∫ x0

x∗0

h(t, x) dt+ α(x)

with α(x) a real–valued smooth function on Rm+1. It is clear that ∂x0h0 = h.
In order for the function h0 to be harmonic, the function α(x) should satisfy

∆h0 = ∂x0h0 −
∫ x0

x∗0

∂2
xh(t, x) dt− ∂2

xα = 0 (8)

Since h is supposed to be harmonic on the whole of Rm+1, it holds that
∂2

xh = ∂2
x0
h, which turns (8) into

∆mα(x) = −∂x0h(x
∗
0, x) (9)
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with ∆m the Laplace operator in Rm. This equation (9) indeed is solvable
for α(x) due to the well–known surjectivity of the Laplace operator ∆m on
C∞(Rm). �

Remark 1. With the notations of Lemma 1, consider the function

H = h− e0∂xh0

and compute

DH =
(
∂x0 + e0∂x

) (
h− e0∂xh0

)
= ∂x0h− e0∂x∂x0h0 + e0∂xh− e0∂xe0∂xh0

= ∂x0h− e0∂xh+ e0∂xh+ ∆mh0

=
(
∂2

x0
+ ∆m

)
h0 = ∆m+1h0 = 0.

This means that the function H is monogenic in Rm+1, which, in its turn,
implies that (−e0∂xh0) is a conjugate harmonic function to h in Rm+1 in the
sense of [6]. Similarly it is shown that DH = 0, in other words: the function
H is anti–monogenic in Rm+1. Moreover

Dh0 =
(
∂x0 − e0∂x

)
h0 = ∂x0h0 − e0∂xh0 = H

which means that the function h0 is a harmonic D–primitive or potential of
the monogenic function H. Evenso Dh0 = H implying that h0 is a harmonic
D–primitive of the anti–monogenic function H.

The above considerations immediately lead to the following results.

Lemma 2. Given a real–valued harmonic function h in Rm+1, there exists
a monogenic function H in Rm+1 with values in R ⊕ e0R(1)

m , such that h =
Scal(H) = Scal(H).

Lemma 3. Given a real–valued harmonic function h in Rm+1, there exist
monogenic functions G and H in Rm+1 with values in R⊕ e0R(1)

m , such that

x0h =
1
2
Scal [G+ zH] =

1
2
Scal

[
G+ zH

]
with h = Scal(H) = Scal(H).

Proof.
By Lemma 2 we know the existence of the monogenic function H = h −
e0∂xh0, with values in R ⊕ e0R(1)

m , the scalar part of which is precisely the
given harmonic function h. Let us compute

zH = x0h− x0e0∂xh0 − e0xh+ x∂xh0

and
zH = x0h+ x0e0∂xh0 + e0xh− x∂xh0

from which it follows that

Scal [zH] = x0h− Emh0 = Scal
[
zH

]
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Taking into account that

Emh0 = (Em+1 − x0∂x0)h0 = Em+1h0 − x0h

we eventually find that

Scal [zH] = 2x0h− Em+1h0 = Scal
[
zH

]
By Proposition 2 we know that Em+1h0 is a (real–valued) harmonic function,
and hence, by Lemma 2, there exists a monogenic function G in Rm+1, with
values in R⊕ e0R(1)

m , such that

1
2
Em+1h0 =

1
2
Scal[G] =

1
2
Scal[G]

It then follows that

x0h =
1
2
Scal [zH] +

1
2
Em+1h0 =

1
2
Scal

[
zH

]
+

1
2
Em+1h0

=
1
2
Scal [zH +G] =

1
2
Scal

[
zH +G

]
�

Lemma 4. Given a real–valued biharmonic function h(2) in Rm+1, there exist
real–valued harmonic functions g and h in Rm+1 such that

h(2) = g + x0h

Proof.
Clearly the function ∆h(2) is harmonic in Rm+1, so, in virtue of Lemma 1,
there ought to exist a real–valued harmonic function h0 in Rm+1 such that
∂x0h0 = ∆h(2). Then

∆ (x0h0) = (x0∆ + 2∂x0)h0 = 2∆h(2)

which implies that h(2) − 1
2x0h0 is a harmonic function, say g, in Rm+1. It

follows that

h(2) = g + x0
h0

2
= g + x0h

with g and h real–valued harmonic functions in Rm+1. �

Lemma 5. (Goursat for biharmonic functions)
Given the real–valued biharmonic function h(2), there exist monogenic func-
tions G and H in Rm+1 with values in R⊕ e0R(1)

m , such that

h(2) = Scal [G+ zH] = Scal
[
G+ zH

]
Proof.
By Lemma 4 there exist real–valued harmonic functions g and h such that
h(2) = g + x0h in Rm+1. By Lemma 2 there exists a monogenic function G1

in Rm+1, with values in R⊕ e0R(1)
m , such that

g = Scal [G1] = Scal
[
G1

]
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By Lemma 3 there exist monogenic functions G2 and H, with values in R⊕
e0R(1)

m , such that

x0h = Scal
[
zH +G2

]
= Scal [zH +G2]

with h = 2Scal[H] = 2 Scal[H]. It follows that

h(2) = Scal [G1] + Scal [G2 + zH] = Scal [G+ zH]

or
h(2) = Scal

[
G1

]
+ Scal

[
G2 + zH

]
= Scal

[
G+ zH

]
with H and G = G1 + G2 monogenic functions in Rm+1 with values in
R⊕ e0R(1)

m . �

5. Polyharmonic functions: the Goursat representation

Inspired by the case of biharmonic functions in the foregoing section, we
proceed similarly, through a series of lemmata, to obtaining the Goursat
representation formula for polyharmonic funtions.

Lemma 6. Given a real–valued (p)–polyharmonic function h(p) in Rm+1, there
exist real–valued harmonic functions g, h1, . . . , hp−1 in Rm+1, such that

h(p) = g + x0h1 + x2
0h2 + . . .+ xp−1

0 hp−1

Proof. (by induction)
Recall that, by Lemma 4, the statement holds for p = 2. Now we assume that
the result is valid for a (p− 1)–polyharmonic function in Rm+1. Clearly the
function ∆h(p) is (p − 1)–polyharmonic in Rm+1. So, by the induction hy-
pothesis, there exist real–valued harmonic functions g′, h′1, . . . , h

′
p−2 in Rm+1

such that
∆h(p) = g′ + x0h

′
1 + x2

0h
′
2 + . . .+ xp−2

0 h′p−2

Since the function h′p−2 is harmonic in Rm+1, there exists, in view of Lemma
1, a real–valued harmonic function h′p−2,0 such that ∂x0h

′
p−2,0 = h′p−2. It

then follows, by a straightforward computation, that

∆
(

1
2(p− 1)

xp−1
0 h′p−2,0

)
=
p− 2

2
xp−3

0 h′p−2,0 + xp−2
0 h′p−2

and hence

∆h(p) = g′ + x0h
′
1 + . . .+ xp−3

0 h′′p−3 + ∆
(
xp−1

0 hp−1

)
where we have put

h′′p−3 = h′p−3 −
p− 2

2
h′p−2,0

and

hp−1 =
1

2(p− 1)
h′p−2,0
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Since h′′p−3 is a real–valued harmonic function in Rm+1, there exists, again
by Lemma 1, a real–valued harmonic function h′′p−3,0, such that ∂x0h

′′
p−3,0 =

h′′p−3. It then follows that

∆
(

1
2(p− 2)

xp−2
0 h′′p−3,0

)
=
p− 3

2
xp−4

0 h′′p−3,0 + xp−3
0 h′′p−3

and hence

∆h(p) = g′ + x0h
′
1 + . . .+ xp−4

0 h′′p−4 + ∆
(
xp−2

0 hp−2

)
+ ∆

(
xp−1

0 hp−1

)
where we have put

h′′p−4 = h′p−4 −
p− 3

2
h′′p−3,0

and
hp−2 =

1
2(p− 2)

h′′p−3,0

Proceeding in a similar way we eventually arrive at

∆h(p) = g′ + x0h
′′
1 + ∆

(
x3

0h3 + . . .+ xp−2
0 hp−2 + xp−1

0 hp−1

)
with real–valued harmonic functions h′′1 , h3, h4, . . . , hp−2, hp−1 in Rm+1. Since
h′′1 is a real–valued harmonic function in Rm+1, there exists, once more by
Lemma 1, a real–valued harmonic function h′′1,0 in Rm+1 such that ∂x0h

′′
1,0 =

h′′1 and for which

∆
(

1
4
x2

0h
′′
1,0

)
= x0h

′′
1 +

1
2
h′′1,0

leading to
∆h(p) = g′′ + ∆

(
x2

0h2 + x3
0h3 + . . .+ xp−1

0

)
with g′′ and h2 real–valued harmonic functions in Rm+1. Finally, and again
by Lemma 1, there exists a real–valued harmonic function g′′0 in Rm+1 such
that ∂x0g

′′
0 = g′′, and for which

∆(x0g
′′
0 ) = 2g′′

leading to
∆h(p) = ∆

(
x0h1 + x2

0h2 + . . .+ xp−1
0 hp−1

)
where we have put h1 = 1

2g
′′
0 . This implies that the function

h(p) −
(
x0h1 + . . .+ xp−1

0 hp−1

)
is a real–valued harmonic function, say g, in Rm+1, from which the desired
result follows. �

Lemma 7. For each j ∈ N one has, for the monogenic function H of Lemma
2, that

Scal
[
zjH

]
= Scal

[
zjH

]
= 2jxj

0h+ g(j)

with h = Scal [H] = Scal
[
H

]
and g(j) a real–valued (j)–polyharmonic func-

tion in R(m+1).
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Proof.
First note that the result in the case where j = 1, already has been obtained
in the proof of Lemma 3. For the sake of simplicity we introduce the notations

α = e0x and β = e0∂x

and we have
α2 = −|x|2 = x2

0 − ρ2

and also
Scal [αβ] = Scal

[
x ∂x

]
= x ◦ ∂x = −Em

Now we assume that j is even, say j = 2k, and we compute

z2k = (x0 + α)2k =
2k∑
i=0

�
2k
i

�
x2k−i

0 αi

= x2k
0 +

�
2k
2

�
x2k−2

0 α2 + . . .+
�

2k
2k−2

�
x2

0α
2k−2 +

�
2k
2k

�
α2k

+
�
2k
1

�
x2k−1

0 α+
�
2k
3

�
x2k−3

0 α3 + . . .+
�

2k
2k−1

�
x0α

2k−1

= x2k
0 +

�
2k
2

�
x2k−2

0 (x2
0 − ρ2) + . . .+

�
2k

2k−2

�
x2

0(x
2
0 − ρ2)k−1 +

�
2k
2k

�
(x2

0 − ρ2)k

+
(�

2k
1

�
x2k−1

0 +
�
2k
3

�
x2k−3

0 (x2
0 − ρ2) + . . .+

�
2k

2k−1

�
x0(x2

0 − ρ2)k−1
)
α

= 22k−1x2k
0 +

(
a1x

2k−2
0 ρ2 + a2x

2k−4
0 ρ4 + . . .+ akρ

2k
)

+
(
22k−1x2k−1

0 + b1x
2k−3
0 ρ2 + . . .+ bk−1x0ρ

2k−2
)
α

where all coefficients a1, . . . , ak, b1, . . . , bk−1 are natural numbers. Next we
compute, using the monogenic function H = h− e0∂xh0 of Lemma 2,

Scal
[
z2kH

]
= Scal

[
z2k(h+ βh0)

]
= 22k−1x2k

0 h+
(
a1x

2k−2
0 ρ2 + a2x

2k−4
0 ρ4 + . . .+ akρ

2k
)
h

+
(
22k−1x2k−1

0 + b1x
2k−3
0 ρ2 + . . .+ bk−1x0ρ

2k−2
)
(−Em)h0

= 22kx2k
0 +

(
(a1 + b1)x2k−2

0 ρ2 + . . .+ (ak−1 + bk−1)x2
0ρ

2k−2 + akρ
2k

)
h

−
(
22k−1x2k−1

0 + b1x
2k−3
0 ρ2 + . . .+ bk−1x0ρ

2k−2
)
Em+1h0

= 22kx2k
0 h+ g(2k)

where g(2k) is a real–valued (2k)–polyharmonic function in Rm+1 in virtue of
the Propositions 1,2 and 3.
The case where j is odd proceeds along similar lines. Also the computations
for Scal

[
zjH

]
are similar. �

Proposition 4. (Goursat for polyharmonic functions)
Given the real–valued (p)–polyharmonic function h(p) in Rm+1, there exist
monogenic functions H0,H1, . . . ,Hp−1 in Rm+1, with values in R ⊕ e0R(1)

m ,
such that

h(p) = Scal
(
H0 + zH1 + z2H2 + . . .+ zp−1Hp−1

]
= Scal

(
H0 + zH1 + z2H2 + . . .+ zp−1Hp−1

]
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Proof. (by induction)
We assume that the stated Goursat representation formula is valid for (p−1)–
polyharmonic functions in Rm+1. Note that the result for p = 2 has been
obtained in Lemma 5. By Lemma 6 we know the existence of real–valued
harmonic functions g, h1, h2, . . . , hp−1 in Rm+1 such that

h(p) = g + x0h1 + x2
0h2 + . . .+ xp−1

0 hp−1

or
h(p) = g

(p−1)
1 + xp−1

0 hp−1

where g
(p−1)
1 = g + x0h1 + x2

0h2 + . . . + xp−2
0 hp−2 clearly is a (p − 1)–

polyharmonic function in Rm+1. Since hp−1 is a real–valued harmonic func-
tion in Rm+1, there exists, in view of Lemma 2, a monogenic function

Hp−1 = hp−1 − e0∂xhp−1,0

with values in R⊕ e0R(1)
m , such that hp−1 = Scal [Hp−1] = Scal

[
Hp−1

]
, and,

by Lemma 7, we know that

Scal
[
zp−1Hp−1

]
= Scal

[
zp−1Hp−1

]
= 2p−1xp−1

0 hp−1 + g
(p−1)
2

with g(p−1)
2 also a (p− 1)–polyharmonic function in Rm+1. It follows that

h(p) = g
(p−1)
1 +

1
2p−1

Scal
[
zp−1Hp−1

]
− 1

2p−1
g
(p−1)
2

or

h(p) = g(p−1) + Scal
[
zp−1 1

2p−1
Hp−1

]
with g(p−1) = g

(p−1)
1 − 1

2p−1 g
(p−1)
2 a (p− 1)–polyharmonic function in Rm+1,

for which, by the induction hypothesis, the proposition holds. So there exist
monogenic functions H0,H1, . . . ,Hp−2 in Rm+1, with values in R ⊕ e0R(1)

m ,
such that

g
(p−1)
1 = Scal

[
H0 + zH1 + . . .+ zp−2Hp−2

]
and the result follows. �
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