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Abstract

New parameters for the electronegativity equalization model (EEM) and the split-charge

equilibration (SQE) model are calibrated for silicate materials, based on an extensive training

set of representative isolated systems. In total, four calibrations are carried out, two for each

model, either using iterative Hirshfeld (HI) charges or ESP grid data computed with Density

Functional Theory (DFT) as a reference. Both the static (ground state) reference quantities and

their responses to uniform electric fields are included in the fitting procedure. The EEM model

fails to describe the response data, while the SQE model quantitatively reproduces all the train-

ing data. For the ESP-based parameters, we found that the reference ESP data are only useful

at those grid points where the electron density is lower than 10−3 a.u. The density value cor-

relates with a distance criterion used for selecting grid points in common ESP fitting schemes.

All parameters are validated with DFT computations on an independent set of isolated systems

(similar to the training set), and on a set of periodic systems including dense and microporous

crystalline silica structures, zirconia, and zirconium silicate. Although the transferability of

the parameters to new isolated systems poses no difficulties, the atomic hardness parameters

in the HI-based models must be corrected to obtain accurate results for periodic systems. The

SQE/ESP model permits the calculation of the ESP with similar accuracy in both isolated and

periodic systems.

1 Introduction

The knowledge of the electronic distribution in a molecular system and the variation of the dis-

tribution upon a perturbation is a key-point to the understanding of the system behavior at the

atomic level. This issue is commonly addressed by quantum-chemical computations, which de-

spite the significant progress in both the computer hardware and computational algorithms, remain

an expensive task, especially when studying complex disordered systems. Consequently, signifi-

cant attention is paid to the development of simplified parametric models that allow the quantities

related to the electronic distribution to be computed with a modest cost, while keeping transfer-
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ability and/or precision of quantum-chemical calculations. Besides the proper utility, such models

can further be used as a part of polarizable force fields, thus permitting realistic studies of large

complex systems (yet) inaccessible to quantum-chemical calculations. An additional advantage of

parametric models is that they provide much more transparent relation between obtained results

and the underlying physics, whereas the outcome of a quantum-mechanical model is harder to

interpret due to the complexity of the electronic wavefunction.

The concept of atomic charges provides a tangible means of relating the electronic distribu-

tion in the system with its structure and reactivity at the atomic level. Consequently, a wealth of

efforts was and is concentrated on the development of models and methods capable of reliable

computation of atomic charges and by making use of this information, of getting new insight into

the reactivity or structural and dynamical characteristics. Models based on the chemical potential

equalization (CPE) or electronegativity equalization (EE) concept appear to be among the most

promising candidates to predict the charge distribution in molecules and solids. A number of CPE-

based models have been proposed over the past two decades,1–6 in which atomic charges are varia-

tional degrees of freedom and the electronic ground state corresponds to an energy minimum under

a total charge constraint. The latter is equivalent to the condition that all atomic chemical potentials

(or electronegativities) must be equal. This concept was generalized to s- and p-type density basis

functions,7 effectively extending the CPE approach with atomic inducible dipoles. CPE models

were applied to different systems such as dense and microporous inorganic solids,8–10 water,11–16

ionic liquids,17 organic liquids,18–20 other organic molecules,21–27 biomolecular systems,28,29 and

heterogeneous systems.30–32 Furthermore, CPE models were also used to study various properties

of electronic systems, including exchange-polarization coupling,13,14 intermolecular charge trans-

fer,20 charge transfer during bond dissociation,25,27 non-linear polarizability15,24 and optical linear

response properties such as IR and Rahman intensities.22

The earliest CPE model is the Electronegativity Equalization Method (EEM).1 Although this

model was later modified with more realistic electrostatic interactions2,33 or by adding more inter-

action sites,5 EEM and these early extensions predict that the dipole polarizability scales cubicly
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with system size, while in the macroscopic limit, one observes a linear relation for dielectric ma-

terials.3,34 The latter weakness is problematic when one tries to apply parameters based on small

molecules to larger (dielectric) systems.35 A few ad-hoc improvements were proposed to over-

come this fundamental error.4,22 We are mainly interested in a recent extension of the EEM, the

Split Charge Equilibration (SQE),4 which fixes this polarizability scaling issue34 and is capable of

properly describing electronic dielectric screening effects in condensed matter.36 It is especially

encouraging that the SQE model exhibits a transition between the EEM-like polarizability scaling

for small systems to the linear scaling for extended systems,34,36 as is often observed in computa-

tional studies.13,37–40

Since the primary goal of all CPE-based models is the fast and reliable computation of charge

distribution in large systems, the parameterization of such a model is done by fitting atomic charges

produced by the model to those derived from quantum-chemical calculations. The problem is that

the atomic charge is not a quantum-chemical observable41 and consequently, many electronic den-

sity partitioning schemes can be used to produce the reference charge values. The first parametriza-

tions employed atomic charges resulting from the Mulliken population analysis.1 More recently,

atomic charges fitted to the electrostatic potential (ESP) fits,33,42,43 Natural charges,26,43 Bader’s

Atom In Molecule (AIM) charges29 or charges produced by Stockholder partitioning (Hirshfeld43

or Hirshfeld-I26) were used for this purpose.

Since the beginning of the development of CPE-based models, oxide materials ((alumino)silicates,

in particular) were one of important application fields of the corresponding methods.8–10 A CPE-

based model is also an essential component of a polarizable force field for silicates. Nevertheless,

to our knowledge, an extensive calibration and validation of the EEM1 or the SQE4 for oxide

crystals based on a large set of representative cluster models is not yet carried out. (For organic

systems, such extensive calibrations can be found in the literature.19,23,26) In general, it is not clear

yet whether parameters for the EEM or SQE model are simply transferable from small clusters to

extended or periodic systems. In this paper, we derive parameters for both models based on DFT

computations on a large number of silicate clusters, and use the results to answer the following
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research questions:

(i) How well do different CPE-based models reproduce the electronic density distribution, the

electrostatic potential, and electronic linear response properties of oxide systems?

(ii) Which types of input data are needed in a reliable parameter calibration protocol for two

frequently used CPE models (EEM and SQE)?

(iii) To what extent are the parameters derived from cluster computations transferable to systems

of different size and density, in the view of the development of a polarizable force field for

condensed matter simulations? Especially the transferability of the parameters to periodic

systems is extensively tested.

The paper is organized as follows. Section 2 briefly discusses the EEM and SQE models and

presents parameters entering the basic EEM and SQE equations. It goes on to describe the sys-

tems used for the calibration and testing of parameters and provides details of quantum-chemical

calculations used to obtain reference quantities employed in the parameterization. The final part

of the second section deals with the criteria and strategy of the parameter calibration. Results

of the calibration of different CPE-based models are reported in the first part of Section 3 which

also illustrates the performance of the models in reproducing different characteristics of molecu-

lar systems. The second part of the third section deals with the transferability of EEM and SQE

parameterizations to periodic systems. The last part of the manuscript provides the conclusions of

the work and gives answers to the questions listed in the above paragraph. Additional information

that might be of interest for the reader is given in Appendices and as Supplementary Information

to the paper.
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2 Theoretical models and computational details

2.1 EEM and SQE models

In the framework of CPE models, a general expression for the charge-dependent energy E(u) of a

system can be written in a matrix form

E(u) = xT u+
1
2

uT Hu, (1)

where u is a vector of charge variables, x a vector with first-order parameters, and H is the so-called

hardness matrix built of second-order parameters and containing information about the electro-

static interactions in the system. Following the variational principle the charge variables ui can be

obtained as a solution of equation

u =−H−1x. (2)

The dependence of elements of the matrix H on the interatomic distances makes the charge vari-

ables dependent on the geometry and on the environment of atoms in the system.

The first model used in the present study, the electronegativity equalization model by Mortier

and co-workers,1 employs atomic charges, qi, as the charge variables in Eq. (1). The explicit EEM

form for the energy reads

EEEM(q) = ∑
i

[
χiqi +

1
2

ηiq2
i
]
+

1
2 ∑

i
∑
j 6=i

qiq j J(r ji), (3)

where the sums run over atoms in the system, J(r ji) is the electrostatic potential between the

atoms i and j, and χi and ηi are the first- and second-order parameters known as effective atomic

electronegativity and hardness, respectively. Minimization of this energy under a total charge

constraint yields the equilibrium charge distribution. It is shown that the EEM energy in Eq. (3)

can be deduced from the density functional theory1 and the model is of great help for the prediction

of the charge distribution in large systems and for qualitative understanding of system’s reactivity

6



on the basis of reactivity indices. Furthermore, it is often used as an underlying numerical model

of the conceptual density functional theory.44

In its original formulation the EEM was found to suffer from a number of deficiencies. The

most crucial one limiting the use of EEM in the development of polarizable force fields, is the

strongly non-linear behavior of the dipole polarizability with the system’s size. The SQE model4

circumvents this problem by employing split-charges as the charge variables in Eq. (1). A split-

charge or charge transfer parameter (CTP), pi j, is an amount of charge transfered from atom j

to atom i, when the electronegativities of atoms constituting the system get equalized. The CTPs

satisfy the following condition

pi j =−p ji (4)

and the net atomic charge qi on atom i is then equal

qi = ∑(i)

j
pi j, (5)

where the superscript (i) is used to denote that the sum runs over atoms j to which the charge

transfer from atom i is allowed. It is noteworthy that the condition, Eq. (4), constrains the total

charge of system to be equal to zero.

In terms of the split-charges the expression for the energy reads

ESQE(p) = ∑
i

∑(i)

k
ξik pik +

1
2 ∑

i
∑(i)

k
κik p2

ik +
1
2 ∑

i
ηi ∑(i)

k
∑(i)

l
pik pil

+
1
2 ∑

i
∑
j 6=i

J(ri j)∑(i)

k
∑( j)

l
pik p jl,

(6)

where the sums run over the CTPs and ξik, κik, and ηi are the first-order and second-order param-

eters, respectively. The parameters ξik and κik are the bond electronegativity and bond hardness

from the atom-atom charge transfer (AACT) model,3 respectively. It is worthy of noting that

Eq. (6) is given in a redundant set of charge variables pi j. For the practical applications of SQE

model one has to write Eq. (6) in the unique set of CTPs using the condition Eq. (4) and the implicit
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constraints ξ ji =−ξi j and κ ji = κi j .4

Although several subtly different forms of the SQE model are possible, it is essential that the

bond hardness term (second term in Eq. (6)) is present.4 In the most general case, when the charge

transfers are allowed between all atoms in the system and all the bond hardness parameters are

set to zero, the SQE model is isomorphous to the EEM and the parameters in Eq. (6) can then

be represented via those of Eq. (3). One can, however, limit the number of CTPs by permitting

the charge transfers only between certain atoms. Thus, in the present work only the CTPs for the

nearest neighbors (i.e. bonded atoms) are non-zero. Given the parameters in Eq. (6) are known,

these CTPs can be found by minimizing the energy ESQE(p) with respect to the split charges pi j.

Eq. (3) and Eq. (6) give the charge-dependent energy in the EEM and SQE representations, respec-

tively, for isolated systems. The modification of the equations as well as of the hardness matrix

elements for periodic systems are given in Appendix A. It is worthy of note that the condition of

chemical potential (electronegativity) equalization never appears in the SQE equations because the

total charge is implicitly constrained to be zero. It can, however, be shown that the minimization

of energy, Eq. (6), with respect to CTPs is equivalent to the use of electronegativity equalization

principle in the EEM.4

In Eq. (3) and Eq. (6) J(ri j) stands for an electrostatic interaction potential that is taken as

Coulombic potential 1/ri j between the two point charges in the simplest case. However, a realistic

electrostatic interaction between a pair of atoms significantly deviates from the 1/r dependence

at short distances. Hence, to mimic the interactions between bonded atoms, it is more realistic to

use a potential J(ri j) that describes the interaction energy between distributed charges.2,33 In the

present work the J(ri j) potential function was taken in the form

J(ri j) =
erf(αi jri j)

ri j
, (7)

which corresponds to the interaction potential between two Gaussian charge distributions g(r)
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given by

gi(r) =
(

1
2πR2

i

)3/2

exp(−(r− ri)
2/2R2

i ), (8)

where ri is the position of atom i and the parameter Ri (the standard deviation) can be viewed as

an effective radius of atom i. With this expression the parameter αi j in Eq. (7) is obtained as

αi j =

(
1

2R2
i +2R2

j

)1/2

. (9)

The quantities χi, ηi, ξik, κik, and Ri in Eq. (3), Eq. (6), and Eq. (8) are the model parameters whose

values were obtained in a fitting procedure as described below.

2.2 Computational schemes

The EEM and SQE models are calibrated on two different reference quantities derived from

quantum-chemical calculations. The first calibration scheme follows a common way of parametriz-

ing CPE models and uses atomic charges as reference quantities to obtain the model parameters.

In the present work the reference charges are computed with the iterative Hirshfeld (HI) method.45

Since the atomic charge is not an observable, the choice of population analysis scheme is not

unique and other charge schemes could have been used.42,43 The choice of the HI partitioning

scheme is based (i) on the fact that the computation of HI charges relies on the partitioning of

the electronic density, i.e. a quantum-chemical observable, (ii) on a weak dependence of the HI

charges on the basis set used in the quantum-chemical calculations,46 (iii) on the quality of the

ESP predicted by HI charges,47 and (iv) on the robustness of HI charges with respect to confor-

mational changes.35,48 The second parameterization scheme is based on the reference values of

the electrostatic potential (ESP) in the view of the application of the EEM and SQE models to the

development of polarizable force fields. The combination of model/quantity finally resulted in four

computational schemes employed in the parameterization EEM/HI, EEM/ESP, SQE/HI, SQE/ESP.

The reference data used for the parameter calibration are derived from quantum-chemical calcula-
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tions on isolated molecules. Following procedures outlined below, the isolated systems are divided

into training and validation sets that allowed assessment of the transferability of parameters: the

training set is used for the actual calibration, while the validation set is used to test how well the

parameters would work for molecules not present in the training set. In addition to the validation

set containing isolated molecules, quantum-mechanical computations on periodic systems are used

to test the transferability to crystalline oxides.

2.3 Training and validation sets

The database of isolated molecule structures consists of 207 oxide clusters containing three-coordinated

aluminum cations, and four-coordinated silicon and zirconium cations. The finite clusters are

mostly hydrogen-terminated. Some hydroxyl terminations are present, but none of them form in-

ternal hydrogen bonds that distort the cluster geometry. The chemical formula of these structures

can be written as SixAlyZrzO 1
2 (4x+3y+4z−n−m)Hn(OH)m. The molecular structures are distributed

over a training set (103 molecules) and validation set (104 molecules), such that they are statis-

tically representative for each other. Table 1 gathers the relevant information on each set. The

list and the geometry of clusters in the training and validation sets are available as Supporting

Information.

The database of periodic systems contains crystalline modifications of silicon oxide, tetrago-

nal modification of zirconia (t-ZrO2), and zirconium silicate (ZrSiO4, zircon polymorph). Silica

structures chosen for these calculations were α-quartz, α-cristobalite, and four all-silica zeolite

structures of the JBW, DFT, SOD, and NPO topologies.49 This selection of periodic systems,

which are not used for the calibration of the parameters, permits to test the transferability of pa-

rameters on both dense and microporous materials. Table 2 provides some pertinent characteristics

of the structures; CIF files and images of the optimized structures can be found in Supporting

Information.

10



2.4 Computational details

Isolated Molecule calculations The calculations on the isolated systems were performed at the

DFT level with the B3LYP exchange-correlation functional.50 The 6-311+(d,p)51,52 all-electron

basis set was used for the H, O, Al, and Si atoms, while the Zr atoms were described with the

LANL2DZ effective core potentials.53 The geometry of molecules was first optimized without any

symmetry constraints and was followed by the calculation of the electronic density and electrostatic

potential values on a three-dimensional grid of points (cubes files). The calculations were done

with Gaussian03 code.54

Periodic calculations The calculations of periodic systems were carried at the same level as the

isolated molecule calculations, i.e. within DFT using the B3LYP50 functional, and they were done

with the CRYSTAL06 code.55 Atoms were described by all-electron basis sets: 976-31d621G for

Zr atoms, 86-311G* for Si atoms, 85-11G* for Al atoms, 6-31G* for O atoms and 8-21G* for H

atoms.56–59 The Brillouin zone integration was carried out over a Monkhorst-Pack grid of 6×6×6

k-points.60 Model structures were optimized under the constraints imposed by the symmetry of

crystalline lattices. These structural optimizations were followed by the computation of cube files

with the electronic density and electrostatic potential.

Computation of Hirshfeld-I charges The computation of the Hirshfeld-I charges is carried out

with HiPart.61 For the isolated molecules, the Hirshfeld-I charges are derived using the procedure

outlined in the work of Bultinck et al.45 For the periodic systems, a slightly modified procedure is

used for technical reasons. Due to the presence of the cusps in the electron density, one should use

spherical atom-centered grids to carry out the numerical integrations required for the Hirshfeld-I

partitioning.62 For the isolated systems, this approach is feasible because the formatted checkpoint

files from Gaussian03 provide sufficient information to evaluate the electron density on arbitrary

grids. However, it is technically infeasible to extract similar grid data from CRYSTAL06 com-

putations in a post-processing analysis. Therefore we used the cubic grids from the density cube
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files to approximate the Hirshfeld-I charges as follows: (i) first the contribution to the density from

the core orbitals is subtracted, using spherically averaged core-densities from atomic computa-

tions, and (ii) the remainder (which is a smooth function that can be integrated on cubic grids) is

partitioned using Hirshfeld-I algorithm.

2.5 Parametrization strategy

Cost functions In line with the calibration of EEM and SQE parameters for organic systems in

earlier work,26 two types of cost functions (X) are used in the calibration procedure: static (XS) and

response (XR) ones. The former is based on the values of the reference quantity itself (HI charge

or ESP), whereas the latter corresponds to the derivatives of the values with respect to an external

perturbation taken in the form of an uniform electric field. For each of the four computational

schemes (EEM/HI, etc.) a series of parameters is calibrated with the cost function

Xλ = (XS +λXR)/(1+λ ) (10)

where the weight λ is scanned over several orders of magnitude. When λ approaches zero, the total

cost approaches the static cost (XS), while the response cost has a minimal effect. The lower bound

of the λ -scan was chosen such that the static cost function converges to a constant value. Similar

considerations were used to determine the upper bound of the λ -scan. Some testing revealed

that the transition from a purely static cost function to a pure response cost function is found for

λ going from 10−6 to 100. The final choice of λ (after performing the scans) is based on the

following criteria:

• Small values of both the XS and XR cost functions,

• Minimum number of constraints (vide infra),

• Small value of the condition number of the Hessian matrix of the cost function in Eq. (10).

This guarantees that the parameters have a minimal sensitivity to "noise" in the reference

characteristics.63
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The static XS and response XR cost functions for each CPE model (EEM or SQE) and for each

reference quantity (HI charges or ESP) are discussed in the Appendix B in detail.

Given that the response cost function (XR) only depends on the second-order parameters, one

could try to reduce the number of independent parameters by splitting the calibration into two

steps: (i) first determine the second-order parameters that minimize XR, (ii) consequently keep

these second-order parameters fixed and find the remaimder of the parameters by minimizing the

static cost function (XS). However, this was not helpful because the second-order parameters found

in the first step were systematically poorly determined and reached unreasonable values, making

it impossible to find useful first-order parameters to complete the model. Only when a linear com-

bination of both cost functions was used, the calibrations became well-conditioned and reasonable

parameters could be obtained.

Constraints There are a series of inequality constraints for the second-order parameters to keep

the matrix of second order coefficient in both the EEM and SQE positive definite:26,34

• The radii of the charge distributions have to be larger than 0.1 Bohr; we do not take zero as

the lower bound due to the next inequality constraint.

• The atomic hardness has to be larger than the self-interaction potential of atomic Gaussian

charge distribution: ηi ≥ (
√

πRi)
−1

• The bond hardness κik has to be positive.

Two additional constraints on the parameters must be introduced because the cost function, Eq. (10),

is not sensitive to deviations from these two constraints.63 Thus, in case of EEM the effective elec-

tronegativity of hydrogen atom is fixed at χ∗
H = 0.0 eV. In case of the SQE model the effective

atomic hardness of hydrogen is kept at the lower bound corresponding the radius Ri of the charge

distribution in Eq. (8), i. e. η∗
H = (

√
πRH)

−1.

Minimizer algorithm Due to the non-linear dependence of the EEM or SQE charges on the

parameters, the calibration is a non-linear least-squares (NLLSQ) problem. A conjugate gradi-
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ent optimizer with a diagonal preconditioner is used to optimize the parameters.64 An active set

algorithm is used to implement the inequality constraints. A inequality constraint only becomes

active when the optimizer tries to push the parameters into the infeasible region. As soon as the

dot product of the gradient of the cost function and the normal of a constraint becomes negative,

the corresponding constraint is deactivated. The initial values for the parameters χ∗
i , η∗

i , ξ ∗
ik, κ∗

ik,

and Ri, are 0 eV, 20 eV, 0 eV, 5 eV and 1 Å, respectively. The optimal parameters are not sensitive

to the initial values. For parameters that have a lower bound, the initial values are set such that all

inequality constraints are satisfied with a considerable margin.

3 Results and discussion

3.1 Choice of the best set of parameters

In order to find an optimal set of parameters for each computational scheme (model/quantity com-

bination) the coefficient λ in Eq. (10) was varied over several orders of magnitude in the [0, 1]

interval and a set of parameters minimizing Xλ was found in a NLLSQ fitting procedure for each

value of λ . The best set of parameters was then chosen using the above criteria, i.e. the values of

the static and response cost functions, the condition number, and the number of constraints.

Figure 1 presents the dependence of the total (Xλ ), static (XS), and response (XR) cost functions

(left panel), the number of constraints, and the condition number (right panel) on the weight λ

for the EEM/HI scheme. The blue and red horizontal lines indicate “worst-case” values of the

static and response cost functions, respectively. This “worst-case” value corresponds to the value

of the cost function when the model would predict zero values for the target quantities, i.e. when

there are no electrostatic interactions or the charges are not sensitive to an external electric field.

In principle, the cost function may become higher when the predicted values have the wrong sign.

However, in the latter case it is more “accurate” not to model electrostatic interactions at all, i.e. use

the “worst-case” limit. Therefore the “worst-case” values of the cost function indicate a threshold

below which the use of the corresponding quantity in the calibration procedure starts to make
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Figure 1: Dependence of EEM/HI total Xλ , static XS, and response XR cost functions on the weight
λ , Eq. (10). Horizontal blue and red lines indicate “worst-case” values of static and response cost
functions, respectively (see text for discussion).

sense.

Figure 1 shows that at low values of λ (pure static case) the response cost function is above

the threshold level. An increase of λ does not lead to an improvement of the situation: when the

response cost function drops below the “worst-case” value, the static cost function has already

increased by more than an order of magnitude. At even larger values of λ , the total cost function

becomes ill-defined and a large number of constraints needs to be used to get the minimization of

Eq. (10) converged (see Figure 1, right panel). It is also noteworthy that regardless the λ value

the response cost function remains close to the “worst-case” value. Such a behavior points to

the fact that the EEM with HI charges only makes sense when the static cost function is used. No

improvement is possible by including response information. The EEM/ESP scheme reveals similar

behavior. (Figure of λ -scan is included in the Supporting Information.) The main difference

between the EEM/HI and the EEM/ESP calibrations, is that in the latter case the optimal value of

the static cost function is merely 0.18 times the “worst case” value, while for EEM/HI this ratio is

as low as 1.4×10−4. Because of this poor result, we do not consider the EEM/ESP model for the

validation in the remainder of the paper.

The above results allow to conclude that the electronegativity equalization model is only use-
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ful for computing static characteristics, such as the charge distribution and (to lesser extent) the

electrostatic potential, whereas it fails to mimic the response of these quantities to an applied ex-

ternal perturbation. Consequently, sets of parameters corresponding to pure static cost functions in

Eq. (10) were chosen for the EEM-based schemes.

The SQE-based schemes behave differently. The best parameter set for the SQE/HI scheme

can be found at λ = 10−3.4, where both the static and response cost functions increase by 60 %

above their minimum values, whereas the total cost function is still close to its optimum value.

(Figure of the λ -scan is included in the Supporting Information.) It should also be noted that, in

contrast to the EEM/HI scheme, the parameters obtained in the limit of high values of λ can be

useful because both the partial cost functions remain significantly below their respective “worst-

case” values, while a small value of the condition number points to the stability of the NLLSQ

solution with respect to “noise” in the training set.

Figure 2 displays the values of the total, static, and response cost functions (left panel), the

number of constraints and value of the condition number (right panel) as a function of the weight

λ in Eq. (10) for the SQE/ESP scheme. Again, in contrast to the EEM/HI model (Figure 1), both

the static and response SQE/ESP cost functions lie always below their respective “worst-case”

values and a compromise between the static and response characteristics can be found for the

value of λ = 10−5 with only one half-open constraint active (ηO = (
√

πRO)
−1) and a small value

of the condition number. Note that an increase of λ value leads to errors in the static characteristics

that cannot be compensated by the decrease of the error in the response data. Furthermore a larger

number of constraints needs to be used to converge the function, Eq. (10), to the minimum.

We can conclude that the SQE parameters can be calibrated to reproduce both the static and

response data, either using atomic charges or the ESP as target data. This is a distinct improvement

compared to the EEM where only the EEM/HI calibration in the static limit behaves satisfactory.

Table 3 gathers the best sets of EEM and SQE model parameters that were chosen according

to the criteria mentioned above after the analysis of each of four model/quantity combinations.
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Figure 2: Dependence of SQE/ESP total Xλ , static XS, and response XR cost functions on weight
λ , Eq. (10). Horizontal blue and red lines indicate “worst-case” values of static and response cost
functions, respectively (see text for discussion; vertical dashed lines indicate the selected point.

3.2 Charge calculation with EEM and SQE models

Isolated systems. Despite the ambiguity of the atomic charge and the existence of many charge

partitioning schemes, atomic charges provide an extremely useful guidance for the understanding

of many properties of system at the atomic level. Consequently, models permitting a fast and

reliable computation of charge distribution are of significant interest. The EEM was such a scheme

from the very beginning of its development.

Figure 3 shows the correlation of charges computed by the EEM or SQE models with the

reference iterative Hirshfeld charges derived from the results of DFT calculations on molecules

of the validation set. Both models perform remarkably well. The root mean square deviation

(RMSD) between the SQE/HI and DFT/HI charges, 0.0213 e, is slightly lower than the RMSD

between the EEM/HI and DFT/HI charges, 0.0284 e. These relatively small RMSD values testify

the transferability of both the CPE models for the computation of charge distribution in isolated

systems of modest (up to 20-30 atoms) size.

Periodic systems. In what follows, we will validate to what extent the EEM/HI and SQE/HI

calibrations can reliably predict the atomic charges in periodic systems. After all, the parameters
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Figure 3: Correlation between the reference DFT HI charges and those predicted by the EEM and
SQE models for molecules in the validation set. For the sake of clarity the EEM and SQE data
were equally shifted down and up, respectively, along the y-axis.

are based on a training set containing only isolated systems. The left-hand part of Table 4 reports

the atomic charges computed with EEM/HI and SQE/HI schemes for the periodic structures of the

validation set and compares the charges with those obtained by applying the HI procedure to the

electronic density from periodic DFT computations (DFT/HI column). The performance of the

schemes in the prediction of the charge distribution in periodic systems is not that good as one

might expect. One sees that the semi-empirical models largely overestimate charge transfer from

metallic cations to the oxygen atoms making the systems more ionic than they are according to the

results of iterative Hirshfeld analysis of quantum-chemical data.

Results of the SQE/HI model for the zirconium silicate and zirconia are worth a special remark.

The model yields a charge for the Zr cation in the zirconium silicate that is larger than the formal

ionic charge. The reason for such an artifact is the following. The Zr cations in the structure are

eight-fold coordinated with four O atoms at a distance of 2.163 Å and four O atoms at a distance

of 2.287 Å, whereas the SQE/HI parameters were calibrated on isolated systems having four-fold

coordinated Zr cations. Consequently, the use of the bonding-specific parameters together with

the explicit charge-transfer channels in the SQE scheme leads to an overestimation of the charge

flow from the zirconium to oxygen atoms. In the case of zirconia the cations have four oxygens
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at a distance of 2.096 Å and four at 2.371 Å. The coordination number of the cations used in the

SQE calculation was then taken to be four and the computed value of Zr atomic charge is below the

formal ionic charge. Allowing the charge transfer also to the four next-nearest oxygens at the 2.371

Å distance leads to the zirconium atoms charge qZr = 4.3212 |e|, that is, like in the case of ZrSiO4,

larger than the formal ionic charge of the cation. Note that the problem does not occur with the

EEM scheme because it has only atom-based first-order terms in Eq. (3). A way of improving the

SQE model is the use of distance-dependent bond electronegativities ξ ji(r ji), as it was suggested

by Chen and Martínez.6 Indeed, an attempt of introducing such a parameter for the Zr-O bond in

the form

ξi j(ri j) =
ξi j

1+ exp(a(ri j −b))
(11)

with ad hoc parameters a = 18.0 Å−1 and b = 2.38 Å resulted in a decrease of charge of eight-fold

coordinated Zr atoms in ZrSiO4 to qZr = 3.9821 |e| without a significant change of charge of the

four-fold coordinated zirconium in the tetragonal zirconia.

For the crystalline silica polymorphs both semi-empirical schemes give similar precision in the

estimation of Hirshfeld-I charges in the periodic systems with the mean relative errors of 27 %

and 22 % for the EEM/HI and SQE/HI models, respectively. It is not immediately clear why

the transferability of the EEM/HI and SQE/HI to the periodic systems is only qualitative and not

quantitative. There are several plausible explanations, some of which listed below:

1. The B3LYP XC functional in Gaussian03 package is slightly different from the B3LYP used

in CRYSTAL06 code: the programs employ VWN3 and VWN5 LDA correlation function-

als, respectively. However, we think that the difference can hardly account for the discrep-

ancy between the semi-empirical and DFT HI charges.

2. Different basis sets are used for the periodic and cluster computations. Given a weak depen-

dence of Hirshfeld-I charges on the basis set, this effect is expected to be small, although it

may still contribute to the discrepancy.

3. The molecules in the training set are yet too small to capture the characteristics of atoms in
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the solid state. This explanation is the most plausible, as we show below, despite the fact

that no notable sensitivity of the iterative Hirshfeld charges to the size of isolated molecules

can be inferred from Figure 3. The difference between the reference and model charges are

so small that it is impossible to deduce some dependence of the errors on molecule size.

Corrections for periodic systems. Below we show how the parameters derived from the iso-

lated systems in the training set can be corrected to accurately reproduce the DFT/HI charges in

condensed phase, and how this correction can be rationalized. Let us consider the EEM model and

write two equations (cf. Eq. (2))

qEEM =−H−1x (12)

qDFT/HI =−H∗−1x∗, (13)

where we introduced H∗ and x∗ as (hypothetical) more accurate descriptions of the hardness matrix

and the electronegativity vector, respectively, in periodic systems, which result exactly in the DFT

Hirshfeld-I charges. The last equation can be rewritten so that the H∗ matrix also includes the

difference between the x and x∗ vectors,63 i.e.

qDFT/HI =−H∗−1x. (14)

It needs to be validated how the hardness matrix needs to be adapted to get more accurate pre-

dictions for the charges in periodic systems. Let us first assume that the main difference between

the H and H∗ matrices is due to the diagonal elements. We will further test if this assumption is

consistent with the observed errors. Eq. (12) and Eq. (13) then become

qEEM =−H−1x (15)

qDFT/HI =−(H+G)−1x, (16)
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where G is a diagonal matrix of corrections to the hardness matrix that should reduce the observed

errors. Straightforward elimination of x from both equations can be used to estimate the corrections

to the diagonal elements of the EEM hardness matrix H :

H(qEEM −qDFT/HI) = GqDFT/HI. (17)

Table 5 reports elements of the G matrix for the Si and O atoms in some of silica structures

of Table 2. Clearly, the values are structure dependent, but the difference is not very large and we

can compute mean values which are GO = 0.7668 (0.0958) eV and GSi = 0.4216 (0.0354) eV.

Making use of these values, we now calculate the HI charges of atoms in all our silica polymorphs

by modifying the diagonal elements of the hardness matrix. The results are gathered in Table 6 that

shows a nice performance of EEM/HI model modified for the solid state computations (EEMS/HI

column): the mean relative error for the charges on oxygens drops from 27 % to 1 %. Interestingly,

the use of the same Gii parameters in the SQE/HI scheme leads to similar spectacular improvement

of HI charges whose mean relative deviation from the reference DFT values decreases to 1 %

(Table 6, SQES/HI column).

The above results can be rationalized in the following way. Table 5 shows that Gii parameters

are positive, which represents an increase of the effective hardness of atoms in solids as compared

to atoms in molecules. The inverse of the hardness is the softness, which is related to the polariz-

ability.44,65 Therefore the increase of atomic hardness needed to mimic HI charges in solids, can

be interpreted as an evidence of decrease of polarizability of atoms, when going from molecules

to solids. Indeed, the crystalline field in solids confines the electrons, which then have a reduced

ability to respond to an external perturbation in comparison to a molecule. A generalization of

the above correction scheme can provide a way of obtaining EEM and SQE charge-based models

transferable among a large palette of systems of different size and densities.

Although this correction scheme is very effective, it is clear that this problem must be analyzed

in more detail in future work. For example, it is not yet clear how this correction scales from
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zero to the values given above when going from the isolated molecules in the training set to infi-

nite periodic systems, i.e. starting from which size the system cannot be considered anymore as

isolated.

3.3 Electrostatic potential

Isolated systems As it was mentioned above, the EEM/ESP scheme is useful only for computing

the static characteristics and therefore, the following presentation and discussion are focused on

the ESP calibrated SQE model that is capable of modeling both static and response ESP values.
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Figure 4: Relative error in ESP values and correlation coefficient between reference and model
ESP values vs electronic density for molecules in validation set; results obtained with SQE/ESP
parameters of Table 3. Vertical dashed line corresponds to the threshold density value.

Initially we investigate how well the SQE/ESP model reproduces the reference ESP values

from the DFT computations on the isolated systems. Figure 4 shows the relative RMS error and the

correlation coefficient between the SQE/ESP predictions and DFT/ESP reference data as function

of the electronic density computed in the same point. One sees that the model reproduces the

ESP around the molecules with the minimum mean error of ca 13 % and with the value of 0.99

for correlation coefficient. One observes a significant increase of the error accompanied by a

decrease of the correlation coefficient for the values of the density above 10−3 a.u. This value

can therefore be taken as a threshold beyond which the results obtained with the SQE/ESP model

become unreliable. These results can be understood by analyzing the Poisson equation (in atomic
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units),

∇2V (r) =−4πρtotal(r), (18)

where V is the electrostatic potential and ρtotal represents the complete charge density. In the case

of a DFT computation, ρtotal consists of the nuclear plus electronic charge density. In the charge

model used for the ESP fit, ρtotal just contains the Gaussian charge densities from Eq. (8). Only

at the points r where the right-hand side of the Poisson equation is almost the same in both the

DFT description and the charge model, one can expect the charge model to work. This condition

is fulfilled at those distances from the nuclei, where the nuclear charge screened by the electronic

density is well approximated by the spherical Gaussian charge distribution, Eq. (8), i.e. sufficiently

far from the nuclei. For that reason, one can only use grid points “outside” the molecule, when

computing ESP-fitted charges.

Singh and Kollman66 found that grid points for fitting ESP charges need to be chosen at shells

of at least 1.2 times of atomic Van der Waals radii, which is a quick method for selecting points

where the electron density is low. The correlation between the distance from the oxygen atoms

and the electron density in a given point is shown in Figure 5. This plot is based on data from

all molecules in the training and validation set. Interestingly, the threshold density value of 10−3

roughly corresponds to the distance of 1.8 Å that is ca. 1.2 times the Van der Waals radius of an

O atom,67 in agreement with the finding by Kollman et al.66 The spread of the electron density

for a given distance, however, shows that it is safer to rely on the actual electron density (instead

of fixed radii) to determine the grid points for the ESP fitting procedure. It is also questionable

to what extent such radii are transferable between different oxidation states of a given element.

The volume of an atom, and hence also its radius, depends on the population, which can only be

deduced once the charges are fitted.

It is also of interest to test the ability of the SQE/ESP model to mimic other properties than the

ones used in the calibration procedure, i.e charges and the electrostatic potentials. Two such prop-

erties were chosen: the dipole moment and the dipole polarizability.7 Figure 6 and Figure 7 present

the comparison of the dipole moment components and of the principal components of the dipole
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Figure 5: Plot of electronic density value in a given point as a function of distance from closest
oxygen atom. Dashed lines indicate coordinates for ρ = 10−3 a.u.

polarizability tensor computed with SQE/ESP model with those obtained in the quantum-chemical

calculations for molecules of the validation set. The agreement between the model predictions

and the reference data is very satisfactory. Again, the current SQE/ESP model uses spherically

symmetric atomic density basis and consequently, the model is not capable of predicting the out-

of-plane polarizability component of plane molecules (points on the x-axis in Figure 7).
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Figure 6: Comparison of the dipole moment components for the molecules in the validation set,
obtained with the reference DFT method and with the SQE/ESP model.
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Figure 7: Comparison of all principal components αi of the polarizability tensors for the molecules
in the validation set, obtained with the reference DFT method and with the SQE/ESP model.

Periodic models. The transferability of the SQE/ESP parameters to periodic systems was tested

by comparing the electrostatic potential on a cubic grid computed with the SQE/ESP model and the

DFT computations for the structures listed in Table 2. According to the results reported above, the

ESP values should be comparable in those points of the 3D grid where the value of the electronic

density does not exceed the threshold 10−3 a.u. This issue, however, complicates the comparison

in dense structures because only a relatively small number of points fulfill the criterion. Figure 8

(left pannel) shows those volumes in the crystallographic unit cell of α-quartz structure, where the

value of the electronic density is below the threshold value ρ = 10−3 a.u. One sees that only a

small part of the volume (ca. 5 %) can be used to compute the values of the ESP for the structure.

Consequently, all dense structures (t-ZrO2, ZrSiO4, α-cristiobalite) provide a hard test for the

predictive power of the model. The situation is markedly different for zeolitic structures. Thus, the

electronic density is below the threshold value in ca. 36 % of grid points in the sodalite structure

(Figure 8, right pannel). Therefore, to asses the transferability of the SQE/ESP model we have

chosen to present two extreme cases of the most and least dense structures: α-quartz and sodalite

(SOD), respectively (cf. Table Table 2).

Figure 9 and Figure 10 present the relative error and the correlation coefficient for the ESP

values computed as a function of the electronic density in the α-quartz and sodalite structures.
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Figure 8: Left: image of α-quartz structure showing the region, where electronic density value
is below 10−3 a.u. (in yellow color); silicon and oxygen atoms are shown as cyan and red balls,
respectively. Right: image of sodalite unit cell with the isodensity surface corresponding to ρ =
10−3 a.u. The images were generated with XCrySDen program.68

Despite the difference in the number of points employed in the electrostatic potential calculations,

the ESP is reproduced in both structures equally well. The relative error does not exceed 20 %

with the correlation coefficient above 0.98, at the grid points, where the electronic density value

remains below the threshold 10−3. These confidence values are close to those obtained for isolated

molecules and indicate a good transferability of the SQE/ESP parameters from isolated to periodic

systems.

Figure 11 presents the ESP and the ESP gradient obtained for the sodalite structure along

the <100> direction (lines connecting the centers of opposite 4R rings) in the DFT computation

and with the SQE/ESP model. The agreement between the semi-empirical and ab initio data is

remarkable. It is noteworthy that the electronic density in the regions with the coordinate less than

1 Å and more than 8 Å is above the threshold value 10−3 and thus, the SQE results in this regions

can not be considered as reliable.

Because the SQE/ESP model successfully reproduces the ESP derived from the DFT compu-

tations, one would expect that the SQE/ESP charges correlate with ESP fitted charges from the
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Figure 9: Relative error in ESP values and correlation coefficient between reference and model
ESP values vs electronic density in α-quartz structure; results obtained with SQE/ESP parameters
of Table 3. Vertical dashed line corresponds to the threshold density value ρ = 10−3 a.u.
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Figure 10: Relative error in ESP values and correlation coefficient between reference and model
ESP values vs electronic density in sodalite structure; results obtained with SQE/ESP parameters
of Table 3. Vertical dashed line corresponds to the threshold density value ρ = 10−3 a.u.
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Figure 11: ESP (upper panel) and ESP gradient (lower panel) obtained in periodic DFT and
SQE/ESP computations along the <100> direction in sodalite structure (lines connecting the cen-
ters of opposite 4R rings). The electron density in the region between the dashed lines is below the
threshold value ρ = 10−3 a.u.

DFT computations. The right-hand part of Table 4 reports ESP charges for the periodic structures

predicted with the EEM/ESP and SQE/ESP schemes and compares the values with ESP charges

derived from the DFT calculations. The EEM model generally overestimates, while the SQE one

underestimates the ESP charges. It is notable that both models do reproduce the trends in the

magnitude of charges from one structure to another. There are, however, a few difficult cases.

Thus, the variation of ESP charges predicted by SQE model between the atoms in the α-quartz

and α-cristobalite structures is significantly smaller than that obtained from the DFT results. Fur-

thermore, one can note that the EEM scheme fails to reproduce the ESP charge distribution in the

zircon polymorph of ZrSiO4: the EEM/ESP charge on the Si atom is larger than that on Zr one,

whereas the DFT/ESP charges show the inverse trend. Morover, the decrease of the oxygen charge

as compared to the pure silica is absent in the EEM/ESP model, while the SQE/ESP predicts this

trend qualitatively.

There are large discrepancies in the comparison of ESP fitted charges and the corresponding

values computed with the SQE/ESP and EEM/ESP models. However, such differences do not

mean that the results of ESP-based models are unreliable. It is well known that large changes in
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atomic charges can lead to only small changes in the ESP surrounding the atoms. This also means

that two sets of charges that give a fair reproduction of the ESP may be manifestly different.69 This

lack of sensitivity of ESP fitted charges results in unpredictable contributions, i.e. apparent as noise

on the charges, which makes it hard to use them for a direct comparison.35 The right-hand part of

Table 4 contains three sets of charges that attempt to give a good description of the electrostatic

potential in the interstitial regions of crystalline structures, but that does not imply these charges

should be equal or show the same subtle trends.

Recently, Campanã and co-workers proposed a method for generating ESP charges for periodic

systems from results of periodic-quantum-chemical calculations.70 The authors noted that in the

calculations employing the plane-wave basis set and pseudo-potentials, the ESP values are defined

up to a constant offset and thus the cost function should be based on the difference of potential

values in the grid points rather than on the values themselves. Making use of their approach and

of different plane-wave codes (VASP, CPMD, and SIESTA), Campanã et al. reported ESP charges

for the Si atoms of sodalite structure in the range 1.151 to 1.389 |e|. These values have the same

order of magnitude as qSi = 1.7335 |e| obtained in our all-electron DFT calculations with localized

basis set; probably by chance the SQE/ESP predicted charge qSi = 1.3824 |e| nicely fits the data

of ref.70

Magnitude of Hirshfeld-I charges. A general observation in the Hirshfeld-I results is that the

absolute values of HI charges are significantly larger than the corresponding absolute values of

the ESP fitted charges. This finding is markedly different from earlier studies where a reasonable

correspondence between HI and ESP fitted charges was found for a set of organic molecules.47

We suspect that this is a deficiency inherent to the Hirshfeld-I procedure when applied to (nearly)

ionic systems. The oxygen charges in the oxide clusters are mostly between -1.0 and -2.0 |e|,

which means that the corresponding proatoms in the Hirshfeld-I scheme are a linear interpolation

between the isolated oxygen anion and dianion. The density profiles of these anionic pro-atoms are

mostly determined by the limitations of the 6-311G+(d,p) basis set, which may lead to artifacts in
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the Hirshfeld-I partitioning. In contrast, the charges on oxygen atoms in organic molecules are the

range from 0 to -1.0 |e| and therefore the basis set limitations are expected to be less important for

constructing the pro-atoms.26 This issue should be analyzed in detail in future work, potentially

leading to an improved Hirshfeld-I scheme that also gives ESP-quality charges for oxides and ionic

systems.

4 Conclusions

An extensive parametrization of the electronegativity equalization model (EEM) and split-charge

equilibration (SQE) model was performed for silicate materials on the basis of quantum-chemical

calculations of oxide clusters containing aluminum, silicon, and zirconium cations. The calibration

of the parameters in these models was done using the iterative Hirshfeld (HI) charges and the

electrostatic potential (ESP) as the reference quantities. The total cost function used in the non-

linear least squares minimization procedure was a linear combination of a static cost function

based on HI charges or ESP grid data, and a response cost function that included changes of

these reference quantities upon an applied external electric field. The transferability of parameters

was assessed by a comparison with HI charges and ESP grid data for a validation set of isolated

molecules and a number of crystalline structures.

The outcome of the parametrization procedure allows us to conclude that the EEM model is

capable of mimicking static characteristics only, while it fails to reproduce the response of the

electronic distribution and ESP to an external electric field. The SQE model performs well for

both static and response properties and also provides correct results for properties that were not

explicitly included in the parameterization procedure, i.e. the dipole moment and the dipole polar-

izability.

Both the EEM and SQE calibrations can be used for a fast and reliable calculation of HI charges

in isolated molecules that were not included in the training set, but they reveal a limited transfer-

ability to periodic systems. It is however possible to propose a correction to the atomic hardness
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parameters of each element based on the differences between the EEM/HI and the DFT/HI charges

for the periodic systems. This correction amounts to an increase of the atomic hardness in the solid

state, which can be related to decrease of atomic polarizability due to the confinement by the crys-

tal field. These corrections were found to be transferable between the EEM and SQE models. The

corrected EEM/HI and SQE/HI schemes reproduce the reference DFT HI charges in the periodic

systems with the mean relative error of less than 2 %.

The ESP-based parametrizations were found to provide reliable results only in those regions

of space, where the electronic density values are lower than a threshold value ρ = 10−3 a.u. The

density criterion was found to be consistent with the distance criterion used in the Merz-Kollman

ESP charge fitting scheme for a quick selection of grid points. The SQE/ESP model shows a good

transferability from molecular to periodic structures, if the regions for computing ESP were chosen

according to the criterion above. The EEM/ESP scheme was found to perform the worst among all

models studied and hence the use of EEM method for computing the ESP-related characteristics

should be avoided.

As an indirect result of this work, we observed very large differences between ESP fitted

charges and iterative Hirshfeld charges. Future work should clarify the origin of the overesti-

mation of the charge transfer in partially ionic systems by the iterative Hirshfeld scheme. Ideally,

such work could lead to an improved iterative Hirshfeld scheme, whose charges satisfactorily ap-

proximate the electrostatic potential of silica clusters.
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Appendices

A Hardness matrix elements of the EEM and SQE models for

periodic systems

For periodic systems, the electrostatic interactions are generally treated with the Ewald sumation.71

A combination of the method with a screened Coulombic potential, see for example Eq. (7), results

in the following expression for the electrostatic interaction energy:72

Eel =
1
2 ∑

i
∑
j 6=i

qiq j

[
J(ri j)−

erf(β ri j)

ri j

]
+

2π
V ∑

k6=0

e−|k|2/4β 2

|k|2 ∑
i

∑
j

qiq j eık·(ri−r j)− β√
π ∑

i
q2

i ,

(A.1)

where J(r) is the screened electrostatic potential, and β controls the convergence of the Ewald

sums in the direct and reciprocal space. For periodic systems Eq. (A.1) replaces the last term in

Eq. (3) and Eq. (6).

Making use of Eq. (3), Eq. (6), and Eq. (A.1) the charge-dependent energy of periodic system

in the EEM and SQE models can be rewritten as

EEEM(q) = ∑
i

[
χiqi +

1
2

η̃iq2
i
]
+

1
2 ∑

i
∑
j 6=i

qiq j J′(r ji), (A.2)

ESQE(p) = ∑
i

∑(i)

k
ξik pik +

1
2 ∑

i
∑(i)

k
κ̃ik p2

ik +
1
2 ∑

i
η̃i ∑(i)

k
∑(i)

l 6=k
pik pil

+
1
2 ∑

i
∑
j 6=i

J′(ri j)∑(i)

k
∑( j)

l
pik p jl,

(A.3)

where the superscript (i) is used to denote that the sum is limited to those atoms that are “allowed”
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to exchange charge with atom (i). The quantities η̃i, κ̃i and J′(r ji) stand for

η̃i = ηi +
4π
V ∑

k6=0

e−|k|2/4β 2

|k|2
− 2β√

π
(A.4)

κ̃ ji = κ ji + η̃i (A.5)

J′(r ji) = J(ri j)−
erf
(
β ri j

)
ri j

+
4π
V ∑

k6=0

e−|k|2/4β 2

|k|2
eık·(ri−r j) (A.6)

As before, a generic formula for hardness matrix element H( ji)(lm) in SQE model can be obtained

by the differentiation of Eq. (A.3) with respect to the CTPs p ji and plm

H( ji)(lm) = δ jlδim
(
κ̃ ji + κ̃i j −2J′ji

)
+
[
δim(1−δ jl)η̃i −δilη̃i −δ jmη̃ j +δ jl(1−δim)η̃ j

]
+
(
1−δ jlδim

)[(
1−δ jl

)
J′jl −

(
1−δil

)
J′il −

(
1−δ jm

)
J′jm +

(
1−δim

)
J′im
]
,

(A.7)

where J′ji ≡ J′(r ji) and δ ji is the Kronecker symbol.

B Static and response cost functions

External perturbation. In addition to the static quantities (A), such as HI charges and electro-

static potential, a their response to an external perturbation Vext was computed and the resulting

response characteristics were then employed in constructing the corresponding response cost func-

tion. The external perturbation was given by

Vext = Exx+Eyy+Ezz (B.1)

where Eα (α = x,y,z) is an applied uniform electric field in x,y and z directions. The derivative of

quantity A with respect to the perturbation Eα was obtained by the finite differences as

A′
α ≈ A(Eα =+ε)−A(Eα =−ε)

2ε
. (B.2)
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A value of ε = 0.0019 a.u. is used, which is equal to the default value in Gaussian03 code when a

numerical differentiation is carried out with respect to external electric field.

Static HI cost function. The static HI cost function uses the iterative Hirshfeld charges and it

has the following form

XS,HI =

M

∑
m=1

Nm

∑
n=1

wmn
[
q0

mn −qMODEL
mn

]2
M

∑
m=1

Nm

∑
n=1

wmn

, (B.3)

where the sums in the numerator run over M molecules and Nm atoms in a given molecule, re-

spectively; the superscript “0” denotes the reference value and MODEL stands for value obtained

with either EEM or SQE model. The weight wmn associated with a certain atomic charge is inverse

proportional to the prevalence of the corresponding chemical element in the training set (Table 1).

This choice compensates for the fact that some chemical elements are more abundant than others.

The cost function (Eq. (B.3)) can be seen as a weighted average of the individual squared errors.

Response HI cost function. The response cost function related to the HI charges takes the fol-

lowing form:

XR,HI =

M

∑
m=1

∑
α=x,y,z

Nm

∑
n=1

wmn
[(

q0
mn
)′

α −
(
qMODEL

mn
)′

α
]2

M

∑
m=1

Nm

∑
n=1

3wmn

(B.4)

The derivatives of the model HI charges towards the external field are computed analytically. The

weights are identical to those of the static HI cost function (Eq. (B.3)).

Static ESP cost function. For every molecule m, a set Gm of grid points rm,g (g ∈ Gm) with

their associated weights wm,g was defined. At these grid points the DFT and model electrostatic
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potentials are computed and used to construct static ESP cost function as follows:

XS,ESP =
1
M

M

∑
m=1


Gm

∑
g=1

wm,g
[
V 0

m(rm,g)−V MODEL
m (rm,g)

]2
Gm

∑
g=1

wm,g

 . (B.5)

The grid consists of an uniform 3D grid whose edges are separated by at least 5 Å from the nearest

atom. The spacing between the grid points is 0.2 Å. The part between brackets in eq (Eq. (B.5))

represents an ESP cost function for a molecule m. The evaluation of this molecular cost function is

made more efficient by reducing it to a simple quadratic function of charges prior to the calibration

procedure.

The weight function wm(rm,g) is smooth, becomes one in a shell surrounding the molecule and

decays to zero inside the molecule and at large distances, i.e. at the edges of the grid. This weight

function is constructed as the product of two switching functions:

w(r) = switch [−α(log10(ρ(r))− log10(ρ0))]× switch [−β (d(r)−d0)] (B.6)

where switch(x) and d(r) are defined as

switch(x) =


0 if x <−1

(1+ sin(πx/2))/2 if −1 < x < 1

1 if x > 1

(B.7)

d(r) =−a0 log

[
N

∑
j=1

exp(−‖R j − r‖/a0)

]
. (B.8)

The first factor in the weight function switches to zero inside the molecule. The second factor

switches of the weight function at long distances. The function d(r) is a smooth function that

approximates the distance to the closest atom. The parameters are fixed to α = 1.0, ρ0 = 3 ·

10−4 a.u., β = 0.5 Å, d0 = 4.0 Å, and a0 is the Bohr radius.
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The smoothness of the weight function guarantees that a small rotation of the molecules with

respect to the grid only leads to small changes in the cost function. A second advantage of this

approach is that it never includes grid points in the fitting procedure where the electron density is

significantly non-zero.

Response ESP cost function. The response ESP cost function takes the following form:

XR,ESP =
1

3M

M

∑
m=1

∑
α=x,y,z


Gm

∑
g=1

wm,g
[(

V 0
m
)′

α(rm,g)−
(
V MODEL

m
)′

α(rm,g)
]2

Gm

∑
g=1

wm,g

 . (B.9)

The derivatives of the model ESP towards the external field was computed numerically. The

weights were identical to those in the static ESP cost function (Eq. (B.5)). Similar to the static

ESP cost function, the part between brackets was first reduced to a quadratic function of charges

for each molecule to lower the computational cost of the calibration procedure.
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Table 1: Number of atoms of each element in training and validation sets for molecular
systems.

Atom Training Validation
H 747 747
O 534 533
Al 57 57
Zr 65 65
Si 230 231
Total 1633 1633
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Table 2: Structural characteristics of periodic systems.

Structure Space group No. of atoms V0 (Å3)a FDb

per unit cell
α-quartz P3221 9 113.007 26.6
α-cristobalite P41212 12 171.104 23.4
JBW (SiO2) Pmma 18 321.279 18.7
DFT (SiO2) P42/mmc 24 456.609 17.5
NPO (SiO2) P6̄2c 18 350.960 17.1
SOD (SiO2) Im3m 36 725.049 16.6
t-ZrO2 P42/nmc 6 67.810
ZrSiO4 (zircon) I41/amd 24 269.620

a Unit cell volume after geometry optimization. b Framework density (number of Si atoms per
1000 Å3).
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Table 3: EEM and SQE parameters obtained in the NLLSQ fits.

Parameter EEM-HI EEM-ESP SQE-HI SQE-ESP
χH (eV) 0.0000 0.0000
χO (eV) 4.1441 3.7764
χAl (eV) −7.0722 −5.9772
χSi (eV) −5.4968 −0.1682
χZr (eV) −17.3596 −221.4566

ηH (eV) 13.7726 16.7508 11.9294 14.4867
ηO (eV) 15.0954 17.5301 11.9075 10.6047
ηAl (eV) 12.1315 15.0322 10.4054 10.0619
ηSi (eV) 11.8331 9.4161 10.2542 9.2006
ηZr (eV) 13.7565 153.5238 10.7434 8.5684

ξH-O (eV) −2.7666 −1.9923
ξH-Al (eV) 3.1308 2.3323
ξH-Si (eV) 2.0820 0.4558
ξH-Zr (eV) 5.9027 1.6812
ξO-Al (eV) 7.7564 4.6836
ξO-Si (eV) 5.8791 1.6479
ξO-Zr (eV) 8.3020 2.3925

κH-O (eV) 5.1124 3.1167
κH-Al (eV) 3.1262 1.0450
κH-Si (eV) 3.7648 1.3472
κH-Zr (eV) 2.5118 0.1420
κO-Al (eV) 6.1704 5.8499
κO-Si (eV) 6.1868 4.1075
κO-Zr (eV) 4.0558 2.9940

RH (Å) 0.7724 0.4850 0.6810 0.5608
RO (Å) 0.5382 0.4634 0.6823 0.7661
RAl (Å) 0.7230 0.5405 0.7833 1.0523
RSi (Å) 0.8082 0.8913 0.7923 0.8924
RZr (Å) 0.8551 0.0529 0.9414 1.0305
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Table 4: Atomic charges in periodic systems obtained with different schemes.

Structure EEM/HI SQE/HI DFT/HI EEM/ESP SQE/ESP DFT/ESP
O atoms

α-quartz −1.6417 −1.5750 −1.2840 −0.9800 −0.6833 −0.7741

α-cristobalite −1.6281 −1.5715 −1.2762 −0.9634 −0.6839 −1.0512

JBW −1.6605 −1.5902 −1.2933 −0.9681 −0.6924 −0.8167
−1.6894 −1.6122 −1.2974 −0.9801 −0.7047 −0.7978
−1.6114 −1.5620 −1.2846 −0.9588 −0.6742 −0.7622
−1.6337 −1.5825 −1.3001 −0.9811 −0.6858 −0.8705

DFT −1.6273 −1.5708 −1.2805 −0.9581 −0.6814 −0.8818
−1.6941 −1.6184 −1.3081 −0.9877 −0.7093 −0.9121
−1.5624 −1.5245 −1.2615 −0.9284 −0.6531 −0.7805

SOD −1.6526 −1.5912 −1.2966 −0.9733 −0.6911 −0.8667

NPO −1.6060 −1.5549 −1.2594 −0.9401 −0.6759 −0.6574
−1.5641 −1.5239 −1.2591 −0.9204 −0.6549 −0.5393

t-ZrO2 −1.7224 −1.7095 −1.5542 −0.7721 −0.9574 −1.7357

ZrSiO4 −1.6363 −1.8660 −1.3914 −0.8453 −1.0227 −1.2971
Si atoms

α-quartz 3.2834 3.1500 2.5680 1.9600 1.3667 1.5482

α-cristobalite 3.2562 3.1430 2.5524 1.9268 1.3678 2.1024

JBW 3.2648 3.1522 2.5707 1.9020 1.3684 1.5716
3.3373 3.1945 2.6118 2.0110 1.3869 1.6829

DFT 3.2555 3.1422 2.5654 1.9161 1.3626 1.7281

SOD 3.3052 3.1824 2.5932 1.9466 1.3822 1.7335

NPO 3.1701 3.0788 2.5185 1.8605 1.3308 1.1967

ZrSiO4 3.0416 3.1342 2.4133 1.8404 1.5285 2.1799
Zr atoms

t-ZrO2 3.4447 3.4190 3.1084 1.5442 1.9148 3.4714

ZrSiO4 3.5037 4.3298 3.1525 1.5409 2.5622 3.0086

33



Table 5: Elements of G matrix (cf. Eq. (17)) computed for the oxygen and silicon atoms in
crystalline silica structures using the parameters of EEM/HI scheme.

Structure GO (eV) GSi (eV)
α-quartz 0.8827 0.3761
α-cristobalite 0.8196 0.4215
NPO 0.6264 0.4729
SOD 0.7388 0.4313
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Table 6: Hirshfeld-I atomic charges computed with the molecular EEM/HI and SQE/HI
models, and with the models corrected for solid state calculations (EEMS/HI and SQES/HI);
the right-hand column reports the reference Hirshfeld-I charges obtained in periodic DFT
computations (DFT/HI).

Structure EEM/HI EEMS/HI SQE/HI SQES/HI DFT/HI
O atoms

α-quartz −1.6417 −1.2739 −1.5750 −1.2956 −1.2840

α-cristobalite −1.6281 −1.2881 −1.5715 −1.2932 −1.2762

JBW −1.6605 −1.2869 −1.5902 −1.3068 −1.2933
−1.6894 −1.3081 −1.6122 −1.3239 −1.2974
−1.6114 −1.2518 −1.5620 −1.2846 −1.2846
−1.6337 −1.2663 −1.5825 −1.2998 −1.3001

DFT −1.6273 −1.2644 −1.5708 −1.2927 −1.2805
−1.6941 −1.3141 −1.6184 −1.3293 −1.3081
−1.5624 −1.2185 −1.5245 −1.2570 −1.2615

SOD −1.6526 −1.3153 −1.5912 −1.3065 −1.2966

NPO −1.6060 −1.2544 −1.5549 −1.2833 −1.2594
−1.5641 −1.2263 −1.5239 −1.2595 −1.2591

Si atoms
α-quartz 3.2834 2.5478 3.1500 2.5912 2.5680

α-cristobalite 3.2562 2.5762 3.1430 2.5864 2.5524

JBW 3.2648 2.5319 3.1522 2.5908 2.5707
3.3373 2.5880 3.1945 2.6249 2.6118

DFT 3.2555 2.5307 3.1422 2.5858 2.5654

SOD 3.3052 2.6306 3.1824 2.6131 2.5932

NPO 3.1701 2.4807 3.0788 2.5428 2.5185
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