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Abstract. The  concept  of  the  atomic  charge  is  extensively  used  to  model  the  electrostatic 

properties of proteins. Atomic charges are not only the basis for the electrostatic energy term in 

biomolecular force fields, but are also derived from quantum mechanical  (QM) computations on 

protein fragments to get more insight into their electronic structure. Unfortunately there are many 

atomic  charge  schemes  which  lead  to  significantly  different  results,  and  it  is  not  trivial  to 

determine which scheme is  most suitable  for  biomolecular  studies.  Therefore,  we present  an 

extensive  methodological  benchmark  using  a  selection  of  atomic  charge  schemes  (Mulliken, 

Natural, RESP, Hirshfeld-I, EEM and SQE) applied to two sets of penta-alanine conformers. Our 

analysis clearly shows that Hirshfeld-I charges offer the best compromise between transferability 

(robustness with respect to  conformational  changes) and the ability  to reproduce electrostatic 

properties of the penta-alanine. The benchmark also considers two charge equilibration models 

(EEM  and  SQE),  which  both  clearly  fail  to  describe  the  locally  charged  moieties  in  the 

zwitterionic form of penta-alanine. This issue is analyzed in detail because charge equilibration 

models are computationally  much more attractive than the Hirshfeld-I  scheme.  Based on the 

latter  analysis,  a  straightforward  extension  of  the  SQE model  is  proposed,  SQE+Q0,  that  is 

suitable to describe biological systems bearing many locally charged functional groups.

Keywords. Proteins,  Electrostatics,  Population  Analysis,  ESP  fitted  charges,  Charge 

Equilibration,  Molecular Dipole.
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1. Introduction

Electrostatic interactions determine many properties of proteins, such as the stability of protein folds,1 the pKa 

shifts of acid and base residues,2 the catalytic activity of enzymes,3 compatibility with ligands or other proteins,4 

and  so  on.  Protein  electrostatics  can  be  modeled  at  different  levels  of  accuracy,  ranging  from  a  quantum-

mechanical (QM) description of the electronic structure5 to a coarse-grained approach where residues are modeled 

with just a few fixed point charges.6,7

Molecular Dynamics (MD) and Monte Carlo (MC) simulations based on force fields are essential tools to 

elucidate  complex processes  such as  transitions  between stable  protein  conformers,8 protein  folding,9 and  the 

interaction  of  proteins  with  various  ligands.10 For  example,  a  straightforward MD simulation  that  follows the 

motion of a protein over a few nanoseconds can be analyzed with the Principal Component Analysis method to 

reveal the essential modes.11 Extreme technological advances make it possible to run micro- and even millisecond 

MD simulations of proteins (with explicit solvent molecules) by following the motion of each atom with steps of 1 

femtosecond. Two compelling examples are the Folding at Home project,9 where distributed computing algorithms 

are used to study the folding of small proteins, and the Anton computer,12 which is built from scratch to run protein 

MD simulations at an unparalleled efficiency. One of the most practical applications of protein MD is the in silico  

investigation of a pharmaceutical substance interacting with the active site of an enzyme, which allows entire 

databases of drug candidates to be screened before they are actually synthesized.13 All  MD applications given 

above require an accurate model for the non-covalent interactions. Hence, a detailed understanding and an accurate 

empirical description of protein electrostatics is of utter importance.

All-atom molecular mechanics force fields such as AMBER,14 CHARMM15 and OPLS-AA16 are the most wide-

spread models that approximate the potential energy surface of proteins. In such a force-field model, electrostatic 

interactions are treated by placing fixed effective point charges at the positions of the nuclei. In these fixed charge 

models, it is possible to approximate screening effects due to the polarizability of the protein and the surrounding 

solvent with a dielectric continuum background, where the dielectric constant inside the protein is different from 

the solvent. The electrostatic energy and nuclear forces in these dielectric continuum models can then be computed 
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with the Poisson-Boltzmann Method and the Boundary Element Method, or approximated with the Generalized 

Born and the Surface Generalized Born models.17,18

Instead  of  using  a  dielectric  background  for  the  protein  and  its  environment,  one  may  also  treat  electronic 

polarization explicitly. This can be done by introducing inducible dipoles at the nuclei of polarizable atoms, and by 

allowing atomic charges to fluctuate due to changes in the electrostatic potential. Recent examples of such models 

are PFF,19?21 CHARMM with fluctuating charges,22,23 polarizable AMBER24 and  SIBFA.25 The main incentive for 

these models is a more accurate computation of the electrostatic interactions. A dielectric background can not take 

into account many-body effects, for example, the polarization of a hydrogen bond acceptor upon the formation of  

the hydrogen bond. For uniform systems such as liquid water, many-body polarization effects can be included in an 

averaged enhanced pair potential by rescaling the atomic charges and dispersion parameters. However, the proper 

amount of scaling is an empirical factor that is hard to determine, and the corrections are not simply transferable to 

non-uniform systems.26 Polarizable force fields avoid these difficulties with a physically justified model.

Given  the  numerous  applications  of  force-field  models  that  use  atomic  charges  to  model  electrostatic 

interactions, a proper assignment of atomic charges is an essential step in the calibration of force field parameters. 

For small model systems, it  is possible to run reliable QM computations, and derive atomic charges from the 

distribution of the electronic density or the electrostatic potential (ESP) surrounding the molecule. Even beyond the 

realm  of  force  fields,  as  QM  computations  become  feasible  on  larger  and  larger  polypeptide  models  (and 

eventually entire proteins), atomic charges derived from QM computations are an important tool to characterize the 

electronic structure. For example, it is shown that Natural27 charges derived from DFT computations on the reduced 

cysteine residue and its direct protein environment correlate well with the pKa shift of the cysteine.28 It is clear that 

atomic charges are often used as a tool to understand and model electrostatic interactions.

Despite the obvious meaning of an atomic charge for an experimental chemist, it is non-trivial to define charges for 

atoms in molecules (AIM) from the quantum-mechanical perspective. Many theoretical schemes were proposed in 

the literature over the past 60 years to derive AIM charges, often leading to incompatible results. Among the most 
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popular schemes, we have Mulliken population analysis,29 Lowdin population analysis,30 Hirshfeld partitioning,31 

Natural  population  analysis,27 Bader's  AIM  scheme,32 and  Hirshfeld-I  partitioning.33 In  addition  to  the  AIM 

schemes, atomic charges can also be fitted to reproduce the electrostatic potential around a molecule,34 with for 

example the Merz-Kollman35, RESP36, REPEAT37 charges. Although ESP fitted charges can accurately reproduce 

the  molecular  multipole  expansion  and  electrostatic  interactions  between  molecules,  they  are  often  showing 

unexpected trends that make no chemical sense.34 For the direct interpretation of the atomic charges, or for the 

calibration charge equilibration models, such unexplainable trends are prohibitive. In addition to charges derived 

from QM computations,  one  can  also  compute  atomic  charges  with  charge  equilibration  models  such  as  the 

Electronegativity Equalization Method38,39 (EEM) and the Split Charge Equilibration40 (SQE). These models are 

calibrated to reproduce QM charges on relatively small molecules, however the transferability of the parameters to 

extended systems such as complete protein models needs to be tested carefully.41,42

Atomic charges derived from quantum-mechanical computations or charge equilibration models should in 

general  satisfy  two  requirements:  (i)  they  should  give  a  reasonable  estimate  of  the  molecular  electrostatic 

interactions, and (ii) the charges should be well-behaved. The latter means that the charges should only depend on 

the actual electronic distribution and should not be sensitive to purely methodological parameters, e.g. choice of 

the basis set, choice of the grid points used for the ESP fit, very small changes in the geometry, and so on. In the 

case of charge equilibration models, one should also carefully check that both requirements are fulfilled with a set  

of parameters that does not depend on the size of the molecule.

In this work, we conduct a series of critical tests, which will be referred to as benchmarks hereafter, to validate in  

how far a selection of charge schemes and charge equilibration models fulfill the two requirements given above. 

Ideally,  such benchmarks should validate  to what extent  each atomic charge model  is  capable of reproducing 

experimentally  observed electrostatic  properties  of  proteins,  taking into  account  the  effect  of  the  surrounding 

solvent. However, for reasons outlined below, results from MP2/Aug-cc-pVDZ//B3LYP/6-31G(d) computations on 

isolated penta-alanines, i.e. without surrounding solvent, will be used as a reference. A direct comparison of the 

atomic charge models with computational (as opposed to experimental) results allows a more in-depth analysis, 
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because a large amount of detailed information can be used for comparison. These reference computations do not 

include any solvent to simplify the analysis. The main effect of a solvent on the electrostatic interactions, e.g. 

dielectric screening and increased dipole moments, can be described in terms of charge transfer and polarization 

effects, which are included in all charge models in this work, except for contributions from induced atomic dipoles 

and higher-order multipoles. For example, the penta-alanine charges derived from the MP2 computations will show 

a response when explicit water or a dielectric continuum is added, because of the response of the MP2 electronic 

structure. Similarly, the EEM and SQE models also describe how atomic charges change when an external field is 

applied. Therefore, all these charge models should work for both gas-phase and condensed phase computations. 

However, in this study we limit the benchmarks to gas-phase computations because these already reveal several  

insights  and problems that  do not  depend on the presence  of  a  solvent,  and need to  be resolved first  before 

performing more in depth studies on proteins in condensed phases.

The structure of the paper is as follows. The following section discusses all methodological aspects of the 

benchmarks: the generation of the penta-alanine conformers, the selection of charge models, and the specification 

of the benchmarks. In the third section we compare the performance of all charge schemes with respect to various 

benchmarks. Because the charge equilibration models show very specific errors observed for the first time, these 

errors are analyzed in detail, leading to an improved version of the SQE model. The last section summarizes the 

main conclusions.

2. Computational Methods

2.1. Penta-alanine model systems

The penta-alanine molecular system is used to conduct our methodological benchmarks. The limited number of 

atoms in this system makes it possible to perform an extensive sampling of the conformational space, and run 

MP243 single-point energy computations to properly take into account electron correlation effects. On the other 

hand, the system is sufficiently large to exhibit internal hydrogen bonds and polarization effects. Hence it features 

all types of electrostatic interactions that are found in larger polypeptides or proteins with thousands of atoms. Two 
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forms of the penta-alanine system are studied: the terminally blocked and the zwitterionic form, which will be 

referred to by shorthands TB and ZI in the remainder of the text. Both are shown in Figure 1. The ZI form has two 

charged residues at the end points, whereas the TB form has only neutral residues. Each structure is divided into 

fragments, which consist of a single residue each. In the TB form, the terminal blocks are also put in separate 

fragments.

For both the TB and ZI form of penta-alanine, more than 100 distinctive conformers were generated to 

examine how the electrostatic properties and the charge distribution depend on the geometry of the polypeptide. 

Both sets of conformers were generated with an autonomous algorithm that does not rely on any subjective human 

intervention. It consists of the following three steps:

1. A large set of trial geometries is generated, starting from a linear peptide chain, by randomly rotating the φ 

and ψ in the backbone over the interval [0, 2π]. Structures in which non-bonded atom pairs have an inter-

atomic distance below 0.6 times the sum of their Van Der Waals radii, are excluded.  Non-bonded atom 

pairs within the same molecule are defined as those pairs that are separated by at least four covalent bonds.

2. Each geometry is optimized at the B3LYP/6-31G(d)44,45 level to the nearest local energy minimum. If the 

bond graph changes  during  the  optimization,  e.g.  due  to  a  proton transfer,  the  geometry  is  discarded. 

Duplicate geometries are also excluded.

3. On the remaining geometries MP2/Aug-cc-pVDZ43,46 single-point computations are carried out. Geometries 

are rejected when the corresponding MP2 computation shows convergence problems in the Hartree Fock 

part.

At each step, this algorithm rejects some samples because they have an unrealistic geometry. Therefore, one has to  

start with a sufficiently large set of random geometries in the first step to obtain at least 100 samples for the two 

penta-alanine forms. In this specific application, using 109 and 1538 starting structures for the B3LYP/6-31G(d) 

optimizations,  we  ultimately  ended  up  with  103  and  134  successful  samples  for  system TB and  system ZI, 
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respectively.  Cartesian coordinates for all conformers are provided as additional information. Gaussian0947 was 

used for all B3LYP and MP2 computations in this work.

Internal hydrogen bonds are formed during the B3LYP/6-31G(d) optimization of the randomized structures. 

Because of the polarity and the dynamic nature of hydrogen bonds, they are an excellent tool to study internal  

polarization effects: when the donor (H) and the acceptor (O or N) approach, they can lower their potential energy 

by increasing the absolute value of their partial charges. To study such effects systematically in our dataset, we 

introduce a formal definition of all non-bonded O-H pairs that are prone to such a polarization. All pairs that have 

an interatomic distance below 2.5 Å, are called nearby non-bonded O-H pairs in the remainder of the text. The TB 

and ZI forms count on average 4.17 and 4.45 nearby non-bonded O-H pairs, respectively. An upper limit of 2.5 Å 

is chosen because it corresponds to a minimum in the histogram of the non-bonded O-H distances present in the 

samples of the two penta-alanine systems. (See Figure 2.)

2.2. Atomic charge models

Two types of atomic charge models are used: (i) a selection of atomic charge schemes applied to the MP2 single-

point  computations  and  (ii)  charge  equilibration  models  (EEM  and  SQE)  that  can  be  applied  without  prior 

electronic structure computation.

The  first  class  of  charge  models  derive  atomic  charges  from the  electron  density,  or  the  electrostatic 

potential, based on a quantum-mechanical electronic structure computation. We will refer to these methods in the 

remainder of the paper as QM charges. Such approaches have the advantage that the underlying quantum-chemical 

computation is accurate and transferable to a wide variety of chemical systems. Unfortunately, many algorithms for 

QM charges exist and they lead to very different results. Moreover, the scaling of the computational cost of an 

electronic structure computation in terms of the number of electrons limits the use of this approach on full proteins. 

Due to these limitations, our methodological assessment of a selection of charge schemes is limited to penta-

alanine models. In this work we compute the Mulliken charges,29 the Natural charges,27 restrained electrostatic 

potential (RESP) fitted charges,36 and Hirshfeld-I33 charges for the MP2/Aug-cc-pVDZ single-point computations 
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on the 103 TB structures and 134 ZI structures. For the first two schemes Gaussian09 was used. RESP charges 

were computed with the RESP program from the Antechamber package,48 using the default hyperbolic restraint on 

the heavy-atom charges with amplitude of 0.0005 a.u. For the Hirshfeld-I population analysis, we used our in-

house code, HiPart.49

Charge  equilibration  models,  on  the  other  hand,  can  be  applied  to  entire  proteins  with  very  modest  

computational requirements. The charge equilibration models considered in this work are the Electronegativity 

Equalization Method (EEM) and the Split Charge Equilibration (SQE). We will refer to the EEM and SQE charges 

in the remainder of the text as EQ charges. Parameters for both models were calibrated in a previous paper50 based 

on Hirshfeld-I charges derived from MP2/Aug-cc-pVDZ computations on 500 small organic molecules. We use the 

HETS [Hirshfeld-I, EEM, Trivial atom types, Static cost function] parameters for the EEM model and the HSFF 

[Hirshfeld-I,  SQE,  Force-field  atom types,  Full  cost  function]  parameters  for  the  SQE model.  Both  sets  of 

parameters were calibrated with a non-linear least squares procedure using the Hirshfeld-I charges from the 500 

small molecules as reference data. An extensive analysis revealed that the introduction of force-field atom types 

does not lead to a significant improvement of the EEM model,51,50 while it does make SQE model much more 

accurate. The EEM calibration relied only on the equilibrium charge distribution of the 500 molecules (Static cost 

function) and did not include the response of these charges to perturbations in the external field, simply because the 

EEM is not capable of reproducing response data. For the SQE calibration, both static and response data were used  

for the calibration (Full cost function). EEM and SQE charges are computed for all penta-alanine conformers, and 

two protein models:  human HIV-2 protease52 and bacterial 3 alpha, 20 beta-hydroxysteroid dehydrogenase.53 The 

latter  two  protein  structures  were  taken  from  the  protein  data  bank  (accession  codes  1HSG  and  1HSD, 

respectively), and  protonated corresponding to a neutral pH. The generated initial structures were then optimized 

with the CP2K program54 using the CHARMM force field.55

The MP2/Aug-cc-pVTZ level of theory was used in a previous paper for the calibration of the EEM and SQE 

models,  and was reused in  this  work for the single-point  computations on the penta-alanine conformers.  This 
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facilitates the comparison of the EEM and SQE charges with the Hirshfeld-I  charges. Such comparison is also a 

good test for the transferability to proteins of EEM and SQE calibrations based on small molecules.

2.3. Benchmark protocols

In order to answer the question posed in the title of this paper, two general benchmarks are carried out on the QM 

and the EQ charges of penta-alanine. A third specific benchmark is only applied to the EQ charges.

The first benchmark consists of a comparison of the MP2 dipole moments of the penta-alanine structures 

with the dipole moments derived from the atomic charges. Despite the simplicity of this test, it is a very effective 

tool to measure the electrostatic performance of an atomic charge scheme. The molecular dipole moment is the 

leading term in the multipole expansion of the molecular charge distribution, and is therefore the most significant 

quantity  to  determine  the  electrostatic  interactions  that  the  pentapeptide  chain  could  have  with  other  protein 

fragments or a solvent. Because both the TB and ZI set contain very different conformers - penta-alanine is very  

flexible - the dipole moment fluctuates heavily. Each conformer represents an alternative superposition of dipole 

moments and charges in the quasi rigid residues. Hence, an atomic charge scheme that can reproduce all the penta-

alanine dipole moments, is an effective model from the electrostatic point of view.

In the first place, the dipole moments are compared by making scatter plots of the X, Y and Z components of the  

MP2 dipole moment versus the dipole moment components derived from the atomic charges. (The Cartesian frame 

axes  will  be specified  below.)  Second,  for  each charge  model,  each  component  of  the dipole moment   of 

conformer , and each penta-alanine form, the following statistical parameters are derived:

• The root-mean-square error (RMSE): , where  is the number of 

conformers of the TB or ZI form, and  stands for the X, Y or Z component.
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• The relative error:  , where  is the root-mean-square value 

of the MP2 reference dipole components.

• Slope  and intercept:  estimates  for  the  parameters   (slope)  and   (intercept)  obtained  solving  the 

following set of equations in the least-squares sense:

The first two error measures are based on the hypothesis , which corresponds to what one would 

expect from the charge models: they should give a correct prediction of the dipole moment. The linear regression is 

only used to describe to nature of the errors, and is not used to compute the first two error measures. An additional 

advantage of this choice is that the error measures are not over-sensitive to larger values of the dipole moment in 

the dataset. The definitions of RMSE and Relative error only depend on difference between MODEL and MP2 

values for the dipole moment. Data corresponding to relatively high or low values for the MP2 reference data have 

the same weight in these error measures. Because the slope and intercept are obtained from the least  squares 

analysis, they tend to be more sensitive to those datapoints that correspond to the highest and the lowest values of  

the MP2 reference dipole moments. Therefore, the robustness of these parameters is verified, i.e. all fits were 

repeated without using the lowest and highest 10% of the reference data. In case the second fit results in similar 

parameters and Pearson R2 values, one can conclude that the least squares analysis is robust.

In a second benchmark we investigate the geometry dependence of the charges. Although some fluctuations 

in the charges due to internal polarization are to be expected, such variations should remain limited because all 

structures have virtually the same bond lengths and valence angles. When the charges on a given atom vary to a 

large extent between different conformers, it is more likely a methodological issue, rather than a genuine trend.

Because  the  EEM  and  SQE parameters  in  this  work  are  based  on  Hirshfeld-I  charges  derived  from 

MP2/Aug-cc-pVDZ computations on 500 small molecules, one expects that the EEM and SQE charges for the 
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penta-alanine molecules should correlate well with the corresponding Hirshfeld-I charges computed in this work. 

In the third benchmark, we investigate the deviations of the EQ charges from  the Hirshfeld-I charges.

2.4. Propagation of errors

In the first benchmark, dipole moments based on atomic charges are compared to the MP2 dipole moments. In  

order to analyze the origin of the errors on the dipole moments computed with the atomic charges, it is helpful to 

derive the propagation of errors on atomic charges to errors on the components of the molecular dipole moment. 

The error analysis assumes that the computed penta-alanine charges are perturbed by some random normal error (in 

practice caused by a numerical problems and the neglect of atomic dipoles) such that the correct molecular dipole 

moment is not reproduced. As a side-effect, this analysis also provides a unique Cartesian reference frame for each 

penta-alanine structure, and facilitates the comparison of the MP2 dipole moments with the charge-based dipole 

moments.

The dipole moment is computed from the partial charges as follows:

(1)

where  are the partial charges and  are the position vectors of the atoms. If the errors on the charges would be 

independent, the covariance matrix would take the following form:

, (2)

where  is the standard error on an atomic charge, e.g. 0.05e,  is the identity matrix. However, the errors on the 

charges can not be uncorrelated due to the total  charge constraint.  All  charge schemes in this paper correctly 

reproduce the total charge, hence errors cancel out when taking the sum over all charges. Therefore we adopt the 

following covariance matrix for the partial charges:
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(3)

where  is a column vector with  elements all equal to one. The diagonal elements of this matrix are identical to 

those in eq 2, but the off-diagonal elements are modified such that the variance of the sum of all charges becomes 

zero. One could also construct other forms for the covariance matrix such that the covariance on the total charge is 

zero. However, this form is preferable because its spectrum is very similar to that of eq 2. One can show that vector 

 is the eigenvector of eq 3 with eigenvalue zero, and that all other eigenvalues are equal to . The individual 

elements of the covariance matrix take the following form:

(4)

The covariance of the components of the dipole vector can be derived from the covariance on the charges as 

follows:

(5)

After some trivial substitutions, one gets:

(6)

where   and   are  Cartesian  components  of  the  geometric  center  of  the  atomic  coordinates.  The 

diagonalization of this dipole covariance matrix yields three eigenvalues (  <  < ) and three orthogonal 

eigenvectors that will be used as the new X, Y and Z axes. The direction of each basis vector is chosen such that  

the vector from the N to the C terminus of penta-alanine has positive coordinates in the new axes frame. Note that 
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the new axes must be computed for each conformer separately. All the dipole moments in the remainder of the  

paper are given with respect to the new axes.

The errors on the components of the dipole vector due to the errors on the partial charges are uncorrelated in the  

new coordinates, with the largest error along the Z axis and the smallest error along the X axis. This covariance 

matrix also has a geometrical interpretation: when the factor  is set to one, eq 6 becomes the covariance of 

the atomic coordinates with respect to the geometric center. This means that the molecule is the most elongated 

along the new Z axis and the most compact along the new X axis.

3. Results and Discussion

3.1. General benchmarks

The first two benchmarks outlined in the previous section are applied to both the terminally blocked (TB) and the 

zwitterionic  (ZI)  penta-alanine.   The  first  benchmark compares  the  dipole  moments  derived from the  atomic 

charges, using different charge schemes, with the MP2 dipole moments. The second benchmark tests the sensitivity 

of the atomic charges to conformational changes of the penta-alanine model.

For the first benchmark, the X, Y and Z components of the charge-model dipole moment are plotted versus 

the MP2 dipole moment in Figure  3, for all charge models considered in this paper: Mulliken, Natural, RESP, 

Hirshfeld-I, EEM and SQE. The statistical parameters of the scatter plots are given in Table  1. The root-mean-

square error of the dipole moment components derived from different charge schemes varies over two orders of 

magnitude. In order of increasing RMSE we get: RESP, Hirshfeld-I, Natural, SQE, EEM, and Mulliken. The results 

for the ZI system are comparable to the TB system, except for the SQE model where the errors on the dipole  

moment of system ZI are clearly larger than for system TB. Considering the relative errors, only the RESP and the 

Hirshfeld-I schemes give a quantitative description of the penta-alanine dipole moment in terms of atomic partial  

charges.
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The least squares analysis of the errors in Table 2 reveals similar results. The intercepts are somewhat ill-defined 

for the Mulliken scheme, which is due to the magnitude and the unpredictable nature of the errors. For all other 

schemes, the parameters do not change significantly when only the central 80% of the data is used, confirming the 

robustness of the corresponding least squares parameters. The most important observation for further analysis is 

that the Natural scheme systematically overestimates the dipole moments (slope > 1), while the EEM and SQE 

schemes underestimate the dipole moments (slope < 1). Table 2 also shows that the Pearson R2 value is close to 

100% for all fits related to the Natural, RESP and Hirshfeld-I data, and also for some fits based on the SQE data.  

This does not imply that all these models predict the dipole moments with the same accuracy, but rather that their 

errors can all be explained to a comparable extent with a linear model.

Mulliken charges manifestly fail in reproducing the electrostatic properties of the penta-alanine, which is 

not surprising. The method has known weaknesses,27,56 which will be illustrated in detail in the second benchmark. 

Natural charges slightly overestimate the dipole moment, which is in line with earlier work,50 where it was found 

for  a  set  of  500 small  organic  molecules  that  Natural  charges  overestimate  the  amplitude of  the  electrostatic 

potential. The RESP charges perfectly reproduce the dipole moment. This is not surprising as these charges are 

fitted to reproduce the ESP on a set of grid points surrounding the penta-alanine, and these ESP grid data are  

mainly determined by the first terms in the multipole expansion of the molecular system at hand. It is therefore  

trivial that any type of ESP-fitted charges will reproduce the molecular dipole moment.36 The Hirshfeld-I charges 

are only slightly worse than the RESP charges in this test. This observation conforms to earlier work,57 where it 

was found that Hirshfeld-I gives in general a good prediction of the ESP surrounding the molecule. This can be 

understood  as  follows:  the  Hirshfeld-I  scheme  partitions  the  molecular  electron  density  into  nearly-spherical 

atomic contributions. Due to their sphericity, the atomic densities have relatively small dipoles and higher order 

multipoles, which results in a good reproduction of the ESP by truncating each atomic multipole expansion after 

the monopole.

The dipole moments predicted by both the EEM and SQE model underestimate the MP2 reference data. 

The correlation is clearly worse compared to the RESP and Hirhsfeld-I dipoles. The EEM and SQE parameters are 
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derived from Hirshfeld-I charges from a set of 500 small molecules, and are shown to be transferable to similar  

small molecules.50 However, the results in Table  1 and Figure  3 show that these parameters are not suitable to 

compute dipole moments on larger systems such as the penta-alanine models in this work. Especially the large 

errors of the SQE model for the Zwitterionic system prompt for a detailed analysis, which will be given in the 

following subsections.

The EEM model has one major weakness that is reported extensively in the literature: it dramatically overestimates 

the polarizability in the limit of large molecules.40,41,58  One of the side effects is that the EEM scheme allows (in 

large systems) a metallic internal polarization that pushes the leading multipole moments towards zero. This issue 

is illustrated with an example in Figure 4, where the electrostatic potential due to the EEM and SQE charges are 

visualized  for  two  proteins:  the  human  HIV-2  protease  and  the  Bacterial  3  alpha,  20  beta-hydroxysteroid 

dehydrogenase, which will be referred to further on by their pdb accession codes, 1HSG and 1HDC. In order to  

visualize the trends in the ESP at the nanometer scale,  local effects due to individual atoms are blurred by a 

convolution of the ESP with a Gaussian function with . The blurred ESP function is plotted with a color 

scale on the cartoon visualization of both proteins. This visualization shows that the ESP due to the EEM charges is 

virtually constant, except for local atomic fluctuations. Such behavior is typically associated with metallic objects, 

while proteins are conventionally modeled as insulators with a relative dielectric constant between 2 and 20.59 This 

discrepancy shows that the EEM is clearly not applicable to large molecular systems. The SQE model is proposed 

to overcome this metallic behavior,40 which is clearly visible in Figure 4. The gradient of the electrostatic potential 

in  the  alpha  helices  due  to  the  alignment  of  hydrogen  bonds  is  correctly  reproduced. Nevertheless,  the 

discrepancies  between the SQE dipole moments  and the  MP2 reference data  in  figure  3 imply  that  the SQE 

potential maps in figure 4 still contain other qualitative errors that would hamper a direct comparison with MP2 or 

experimental reference data.

The purpose of the second benchmark is to determine the robustness of the charges obtained with various 

schemes with respect to conformational changes. Because the conformers of systems TB and ZI do not show large 

variations in bond lengths and valence angles, we do not expect very large differences in the net atomic charges. If 
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one of the charge schemes does show such excessive fluctuations, these are rather due to methodological issues 

instead of genuine changes in the electron distribution.60 Figure 5 depicts the variations in charge for each atom in 

the systems TB and ZI. The figures immediately reveal that the Mulliken and RESP charges show an exorbitant 

geometry dependence, which can be seen in the large range of the fluctuations on the charges. All other charge 

schemes, are much more well-behaved in this test.

The lack of robustness of the Mulliken and RESP charges are detrimental for further statistical applications. 

For  example  the  calibration  of  EEM  or  SQE parameters  based  on  such  poorly  defined  charges  can  not  be 

successful, simply because the noise on the reference data will result in noise on the estimated parameters. Also a  

direct  (chemical)  interpretation  of  such  charges  is  simply  impossible  and  not  reproducible:  a  change  of 

conformation can result in completely different charges without a clear physical explanation.

The noisy nature of the Mulliken and RESP charges is illustrated in more detail in Figure  6. For this figure, a 

relaxed potential energy surface scan was performed along the ψ angle of the alanine dipeptide molecule, using the 

B3LYP/6-31G(d) level. At each stationary point of the relaxed scan, independent MP2/Aug-cc-pVTZ single-point 

computations were carried out. The charge on the α carbon (obtained with each of the six atomic charge schemes in 

this work) is plotted as function of the dihedral angle ψ in the top panel of Figure 6. The Mulliken charge exhibits 

large fluctuations and the RESP charge shows a stochastic behavior, which renders both schemes useless for a 

direct interpretation. All four other charge schemes show much smaller and more deterministic variations with the 

dihedral angle. The small fluctuations in the α carbon charge can be correlated with large geometric changes at 

three points along the relaxed scan. In the bottom panel in Figure 6, the Cartesian RMSD between two subsequent 

stationary  points  is  plotted  as  function  of  ψ.  RESP charges  may  still  be  useful  if  one  is  only  interested  in  

reproducing the electrostatic potential for a fixed geometry.

The weaknesses  of  the Mulliken  and RESP charges  are  well-known,  although the relation with an erroneous 

geometry dependence is  rarely demonstrated.61,62 The problem of the Mulliken scheme is  that  the charges  are 

directly derived from the expansion coefficients of the density matrix in an atomic orbital basis. The so-called net 
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atomic charges are trivial to assign, but the contributions to the density due to pairs of basis functions on different 

atoms are divided over both atomic populations by an ad hoc 50/50 rule.29 When diffuse basis functions are present, 

degeneracies easily occur in the expansion of the density matrix. This means that two virtually equivalent ground 

states may be written with different expansions, and hence result in different Mulliken charges.63

ESP-fitted charges are typically ill-defined due to the rank-deficiency of the ESP cost function. This results in a  

large sensitivity of ESP fitted charges to small influences such as the choice of the grid points, the orientation of the 

molecule with respect to the grid, and (as we also observe here) the molecular geometry.34

Only the Hirshfeld-I scheme has a good performance in both benchmarks: these charges both reproduce the 

dipole moments and are robust with respect to geometrical changes.  With the Hirshfeld-I  scheme it  is  indeed 

possible to rationalize protein electrostatics in terms of atomic charges: these charges give a quantitatively correct  

picture of the ESP and are suitable for a chemical interpretation. The latter is possible because Hirshfeld-I charges  

are less affected by methodological defects which are present in the RESP and Mulliken schemes. It is noteworthy 

that RESP is still extensively used for the calibration of atomic charge parameters in the AMBER force field.64 

Using the RESP scheme, one has to fit charges using ESP grid data from a large number of conformers of a given 

target molecule in order to obtain a set of charges that work for all these conformers,65 while Hirshfeld-I charges 

only need to be computed for one conformer and are inherently transferable to other conformers. We conclude, 

based on the above benchmarks, that the Hirshfeld-I scheme is to be preferred over the RESP scheme to determine 

atomic charge parameters in force-field models.

Despite the good performance of the Hirshfeld-I method, it is not generally applicable to full proteins with current-

day  computing  power,  because  Hirshfeld-I  depends  on  an  accurate  quantum-mechanical  electronic  structure 

computation.  The EQ models,  which can be applied to proteins, are also robust but do no give quantitatively 

correct dipoles. In addition to the obvious computational advantages of EQ charges, they are also valuable because 

they explain the charges in terms of constant and local parameters such as the atomic electronegativity, the atomic 

hardness and the bond hardness. We must understand why the EQ models fail to reproduce the dipole moment 
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correctly. While the EEM has some missing ingredients that may explain the observed errors, the SQE model (an 

extension of the EEM) should normally perform better. Although the SQE dipole moments correlate better with the 

MP2 data for the TB penta-alanine, the correlation becomes worse for the ZI form. This striking aberration in 

performance is most likely a fundamental limitation of the SQE model. The main differences between the TB and 

ZI  form is  that  the  latter  bears  two opposite  charges  in  the  end  groups.  Apparently  the  SQE model  fails  to 

reproduce the charge distribution when such locally charged groups are present. The relation between the large 

observed errors and the split charge formalism will be analyzed carefully in the remainder of the paper. Such 

analysis is essential for further advances in the field of charge equilibration models.

3.2. Specific benchmark for charge equilibration models

In order to gain more insight into the poor description of the penta-alanine dipole moment by the EEM and SQE 

model, we conduct a specific benchmark that is only applicable to the EQ models. Figure 7 shows the difference 

between the EQ and Hirshfeld-I charges. The color coding is the same as in Figure 5. Three trends are immediately 

visible: (i) the EEM charges deviate more from the Hirshfeld-I charges than the SQE charges, (ii) the data for the 

SQE model show that the average error on the charge for each atom is generally larger than the spread on the error, 

(iii) the errors in the ZI system are more pronounced at the terminal residues, while the TB system does not show 

this  trend.  The last  observation is  even more pronounced when plotting the error on the total  charge of each 

fragment, as depicted in Figure 8.

The improved accuracy of the SQE model compared to the EEM in terms of atomic charges is in line with 

the benchmarks performed earlier.50 It is somewhat disappointing that, despite the small root-mean-square error 

(RMSE) between the EQ and Hirshfeld-I charges (given in the first row of Table  3), the EQ dipole moments in 

Table  1 show large errors. The three last rows in Table  3 contain RMSE estimates on the EQ dipole moments, 

derived with eq  6 from the RMSE between the EQ and Hirshfeld-I charges. The order of magnitude of these 

estimates is in line with the corresponding numbers for EEM and SQE in Table 1. Hence, the deviation of the EQ 

from Hirshfeld-I charges must be further reduced in order to get quantitatively correct dipole moments.
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The errors on the EQ charges are mainly geometry independent, which can be fixed by calibrating very specific 

first-order parameters for the penta-alanine system. The current calibration, which is applicable to a very broad set 

of  molecules,  does  not  contain  sufficiently  specific  atom  types  when  one  is  only  interested  in  describing 

polypeptides.

The absolute values of the total charge on the terminal residues of the ZI penta-alanine are underestimated by the 

EEM and SQE model. Apparently, both models can not effectively describe systems that are locally charged. In 

case of the EEM, the metallic polarization causes charged functional groups to be neutralized by opposite charges 

in surrounding atoms. Although the SQE model solves the metallic problem with split charges that have a bond 

hardness, the split charges also introduce a new artifact. When a functional group is locally negatively charged, a  

series of split charges must be present to connect this group with a locally positively charged group. As will be  

discussed below, the SQE model can not handle such situations with parameters that are transferable from small to 

large molecules.

3.3. Statistical Breakdown of the errors on the SQE charges

Thus far we observed quite serious deficiencies in the SQE results, both in terms of the dipole moment of the 

penta-alanine system and the atomic partial charges. In this subsection, the relation between both types of errors is  

examined. Below, ad hoc (non-transferable) corrections are added to the SQE charges to see how such corrections 

could  fix  the  errors  on  the  dipole  moments.  The  proposed  ad  hoc  corrections  are  not  meant  as  an  actual 

improvement to the SQE model, but are rather used to provide useful feedback for an improved SQE model.

Two corrections are proposed. The major correction is atom-specific, but geometry-independent. These corrected 

charges will be referred to as SQE' charges. After making the first correction, an additional minor correction is  

useful on the TB system, which is related to a small error in the polarization of nearby non-bonded O-H pairs 

(including but not limited to hydrogen bonds). For statistical reasons outlined below, we can not test the second 

correction on the ZI form. The combination of the first and the second correction will be referred to as the SQE'' 

charges.
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The specific benchmarks on the charge equilibration models show that a large part of the error on the partial 

charge of an atom is due to an average error between the SQE charge and Hirshfeld-I charge, while the geometry 

dependence of the error is limited. The first correction consists of a geometry-independent set of atom-specific 

parameters that will be added to the SQE charges. For each atom, the correction is such that the average SQE'  

charge is equal to the average Hirshfeld-I charge. The fluctuations on the SQE' charges due to changes in geometry 

are still the same as in the original SQE charges.

Figure 9 shows the correlation between the MP2 and SQE' dipole moments, which is greatly improved compared 

to the original SQE dipoles. The statistical parameters of the comparison are given in Table 4. As mentioned above, 

this ad hoc correction can be implemented in the SQE framework by calibrating improved first-order parameters. 

Note that the major correction is much larger for the zwitterionic system. The errors related to charged functional 

groups in the SQE model are also fixed in this step.

After the first correction, there are still some deviations left between the MP2 and SQE' dipole moments. 

After some testing it was found that the residual error on the dipole moment correlates well with the sum of vectors 

connecting O and H atoms in nearby (<2.5Å) non-bonded O-H pairs. A linear fit reveals that an ad hoc transfer of 

+0.066e from the donor (H) to the acceptor (O) yields an optimal correction to the SQE' dipole moments, which 

corresponds to a reduction of the polarity of the O-H pairs. This correction has only noticeable effects in the TB 

system. We assume that the correction is also useful for the ZI form, but that it  is too small compared to the 

statistical errors on the first correction.

The sum of the major and the minor correction leads to the SQE'' charges. The correspondence between the MP2 

and SQE''  dipole  moments,  shown in Figure  9 and Table  4,  is  again improved compared to  the SQE'  dipole 

moments. This correction is geometry dependent, and is therefore related to a small error in the polarization of non-

bonded O-H pairs in the SQE model. It is recommended to pay special attention to the calibration of the second 

order SQE parameters related to hydrogen bond donors and acceptors, e.g. in the form of very specific training data 

and hydrogen-bond specific benchmarks.
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Although these corrections lead to a satisfactory correspondence between the SQE'' with the MP2 dipole 

moment,  we stress  again  that  they  are  only  used  to  gain  more  insight  in  the  errors  in  the  SQE results.  The 

corrections are not simply transferable to other systems.

3.4. SQE model with reference charges

It is not yet clear why charged functional groups can not be treated properly with the SQE model, and how this 

issue can be fixed. In this subsection we introduce a coarse-grained charge-equilibration model of a zwitterionic 

system to facilitate the analysis.

Consider a linear chain, as depicted in Figure  10a. The intermediate beads are neutral and the end points of the 

chain  are  oppositely  charged functional  groups,  each  bearing  a  formal  integer  charge.  The  formal  charge  is 

typically the result of an ionic dissociation reaction. In the case of the penta-alanine model (or any conjugate base 

or acid group in the sidechain of a residue in a protein in general), the charged moieties are formed by proton 

addition and abstraction, and are not caused by charge transfer from a positively to a nearby negatively charged 

group.

The scheme depicted in Figure 10a is an idealized representation of the chain molecule with integer formal charges 

to facilitate the description of this zwitterion in terms of split charges in figure 10b. Effective charges in a realistic 

system are not fundamentally different: due to the finite hardness of the charged functional groups, a small amount 

of  charge  may 'leak'  to  neighboring  beads.  Figure  10b shows the split-charge representation of  this  idealized 

zwitterion, in which each bond between the terminal beads is polarized. It is questionable whether such a split-

charge configuration is reasonable in the SQE model. After all, the amount of energy required to polarize all bonds 

is proportional to the chain length, and the SQE model does not contain any other chain-length dependent terms to 

compensate for this. In order to get a better understanding of the energetics and behavior of zwitterions in the SQE 

model, the linear chain model is treated numerically below. We expect that the following intuitive properties should 

be reproduced by a proper charge equilibration model:
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1. In the limit of long chains, the net charge on each terminal bead should converge to the integer formal 

charge. Some charge may leak to neighboring beads due to the finite hardness of the beads. Therefore one 

should always consider the sum of the charge on the terminal bead and its neighbors to recover the formal 

charge.

2. The parameters of a charge equilibration model should not depend on the chain length, i.e. they should be 

transferable between different chain lengths.

Below we show that EEM and SQE both fail to meet these expectations. A straightforward extension of the SQE 

model, SQE+Q0, is proposed that meets both intuitive expectations.

In order to compute partial charges in the coarse-grained zwitterion model, we introduce an SQE model for 

the linear chain. Let   be the number of beads,   the hardness of the beads, and   the distance between two 

neighboring beads. All beads have an electronegativity parameter of , except for the first and last bead, which 

have electronegativity  and , respectively. All bonds between the beads have the same bond 

hardness, . The  charges in this model are linked with  split charges through the following equations (see 

figure 10b):

(7)

The energy of the coarse-grained charge equilibration model becomes:40

(8)

When  is set to zero, the model reduces to the EEM. The last term represents the Coulomb interaction between the 

beads. The equilibrium charge distribution is found by minimizing the energy, using the split charges,  , as 
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independent degrees of freedom. There is no need to constrain the total charge with a Lagrange multiplier because 

the total charge constraint is satisfied implicitly by eq 7.

The charge distribution is computed in a series of linear zwitterions for  going from 2 to 100. Table 5 contains 

the parameters for the EEM and SQE model that were used to compute the charge distributions. These parameters 

were chosen in an attempt to reproduce the behavior of a Zwitterion, while still keeping the numbers in a realistic 

order of magnitude. One may use other parameters, but they lead to essentially the same observations. Figure 11a, 

b and c depict the essential results. In Figure 11a, the dipole moment is plotted as function of the chain length. In 

Figure  11b,  the  sum of  the  charge  in  the  second  half  of  the  chain  is  shown.  Figure  11c  depicts  the  charge 

distribution in the last 10 beads of a chain that consists of 100 beads.

The dipole moment of the chain computed with the EEM scheme scales sublinearly in Figure 11a, i.e. the slope in 

the loglog plot converges to 0.9 for large , which is due to internal polarization effects. Figure 11a also shows 

that the dipole moment derived with the SQE model becomes constant for large N, which is completely wrong for  

the zwitterion model. Both trends can be easily understood when studying the charge distribution over the beads as 

function of the chain length in Figure 11b. The total charge in the second half of the chain decreases with larger  

(slowly in the EEM case and rapidly in the SQE case) instead of converging to the formal charge. Figure 11c shows 

that the partial charge of the last bead is compensated by opposite charges in nearby neighboring beads in both the 

EEM and SQE model. In the case of EEM, this is due to excessive internal polarization. In the case of SQE, the  

electronegativity of the terminal beads is not sufficient to polarize all split charges over the entire chain. Instead, 

only the first and last few split charges can be polarized, which forces the chain molecule to be locally neutral.

The deficiencies of the SQE that are apparent in the linear chain model explain why the SQE parameters calibrated 

in earlier work on a set of 500 small organic molecules (including some molecular ions and zwitterions) 50 can not 

simply describe locally charged functional groups in much larger systems such as the zwitterionic penta-alanine. 

The formal charges in figure  10a can only be obtained with the SQE model by polarizing all intermediate split 

charges, as shown in figure 10b. Because the energy required to polarize all intermediate beads is proportional to 
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, a correct dipole moment for long zwitterions is only possible when the electronegativity parameters of the 

terminal  beads  are  also proportional  to  .  The numerical  example also shows that  deviations from local 

neutrality are nearly impossible in the SQE model, while this is still possible with the EEM. This chain model 

explains the very poor reproduction of molecular dipoles by the SQE model for the ZI form of penta-alanine in the 

first benchmark.

A simple  extension  of  the  SQE  model,  hereafter  called  SQE+Q0, can  easily  overcome  the  observed 

shortcomings of the SQE model. The current form of the SQE model assumes that atoms in a molecule can only  

obtain a partial charge by transferring this charge (over covalent bonds) from nearby atoms. This assumption is 

inherently present in the relation between the atomic charges and the split charges:

(9)

where  is the charge of atom ,  is the charge transferred from atom  to atom , and the sum runs over the 

atoms  that are bonded to atom . (We refer the reader to ref. 50 for more details.) However, charge transfer over 

bonds is not the only physical route for an atom to become partially charged. Another major mechanism, which is 

missing in the SQE model, is that charged functional groups originate from an ionic bond dissociation reaction. We 

propose an additional term, a constant integer, in the relation between atomic charges and split-charges:

(10)

The reference state of the atoms in the molecule, when all split charges are zero, consists not only of neutral atoms; 

we allow some atoms to bear an integer charge in the reference state. This reference atomic charge corresponds the 

conventional notion of a formal charge in chemistry. Reference charges are similar to the precharges, which are 

used to augment bond-charge-increments (BCI's) in fixed-charge models, and are also needed in that context to 

allow local deviations from neutrality.66 Note that this  extension is not meant to describe ionic reactions as a 

process. The extension can only handle the products of such reactions.
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The SQE+Q0 model can be applied to the coarse-grained zwitterion model by rewriting the relation between 

the charges and the split charges:

(11)

where  and  are the reference charge for the first and the last atom, respectively. As shown in Figure 10c, 

one may set reference charges equal to the formal charges of the terminal groups in the chain molecule such that no 

split charges are required anymore to recover the charge distribution of the zwitterion. The SQE+Q0 parameters are 

given in the last column of Table 5. In order to turn the chain into a zwitterion, a reference charge of +1 and -1 is 

assigned to the terminal beads. This configuration is similar to the zwitterionic form of the penta-alanine, where the 

terminal  groups  bear  a  formal  charge  caused  by  proton  abstraction  or  addition  in  the  end  groups.  The 

electronegativity parameters of the terminal beads are set to zero in the SQE+Q0 approach because they are no 

longer needed to induce charge transfer between the end points.

The corresponding results  are plotted in red in Figure  11a, b and c.  Figure  11a and b show that the SQE+Q0 

reproduces the expected behavior: the dipole moment scales linearly with the chain length, and the total charge on 

the second half of the chain converges to unity. Figure 11c shows that the formal charge on the terminal bead may 

leak to some extent to neighboring beads.

4. Conclusions

Our benchmarks on two sets of penta-alanine conformers show that the Hirshfeld-I scheme is the most attractive 

method to derive atomic charges from quantum-mechanical computations on organic systems. These charges are 

chemically  intuitive,  reproduce electrostatic  properties  and are robust  with respect  to  conformational  changes. 

Several other charge schemes (such as Mulliken, RESP, EEM and SQE) show serious deficiencies, which have 

severe consequences on the development (polarizable) force fields for polypeptides.
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To support these conclusions, we conducted two  general benchmarks of several atomic charge schemes. 

Each scheme was applied to a set of 103 terminally blocked (TB) and 134 zwitterionic (ZI) stable isolated penta-

alanine conformers. A solvent model is not included to simplify the analysis and because profound insight in the 

gas  phase  systems  is  prerequisite  before  conducting  more  elaborate  studies  in  a  more  complex  molecular 

environment. The investigated charge schemes can be divided into two categories: (i) quantum mechanical charges 

(Mulliken, Natural, RESP and Hirshfeld-I) based on MP2/Aug-cc-pVTZ electronic densities, and (ii) equilibration 

charges (Electronegativity Equalization Method [EEM] and Split Charge Equilibration [SQE]) for which no prior 

electronic  structure  computation is  required.  The first  benchmark illustrates  how well  each  charge model  can 

reproduce the MP2 dipole moments for the sets of the TB and ZI penta-alanine conformers. The second benchmark 

tests the robustness of the charges in the same set of conformers. Although one should ultimately test how well 

each charge model is capable of reproducing experimental observations on proteins, taking into account solvent 

effects, our current investigation (in which high-level gas-phase computations are used as a reference) already 

reveals  several  insights  and  weaknesses.   Only  the  Hirsfheld-I  scheme  gives  satisfactory  results  in  both 

benchmarks: it reproduces the MP2 dipole moments quantitatively, and the charges have a minimal sensitivity to 

conformational changes. We conclude that Hirsfheld-I charges are transferable between different conformers, and 

that they do not exhibit unrealistically large fluctuations like Mulliken or RESP charges. The latter amenity implies 

that Hirshfeld-I charges are more suitable for the development of biomolecular force fields compared to e.g. the 

RESP charges, which are currently used for the development of AMBER.

Although the Hirshfeld-I method performs well in the two general benchmarks, it is not simply applicable 

to  large  biosystems  such  as  proteins  with  a  surrounding  solvent.  Hirshfeld-I  charges  depend  on  an  accurate 

electronic structure computation, which is computationally not attractive or even feasible for systems with many 

thousands of atoms. Because charge equilibration models are a computationally feasible alternative with current 

computer hardware, we investigated in detail the origins of the errors on the dipole moments derived from EEM 

and  SQE  charges.  The  poor  performance  of  the  EEM  can  be  traced  back  to  the  incorrect  scaling  of  the  

polarizability. Although the SQE model should fix this issue, both the mathematical form of the SQE model and the 
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calibrated  parameters  must  be  improved  to  reach  quantitative  accuracy.  For  a  correct  description  of  charged 

functional  groups,  an  extension  of  the  standard  SQE model  is  proposed,  SQE+Q0,  which  introduces  atomic 

reference charges for atoms bearing a formal charge. Furthermore, one has to calibrate first-order parameters that 

are specific for peptides,  and one must carefully test  the polarization of weakly covalent  interactions such as 

hydrogen bonds. The proposed SQE+Q0 model offers a reliable model to optimize the correlation between the 

quantummechanically obtained dipole moments and those predicted by the computationally more attractive charge 

equilibration models for use in extended biosystems.
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Tables

Table 1. Error measures for the reproduction of the MP2 dipole moments of the penta-alanine samples with atomic  

charges obtained with several charge models.

Terminally 
blocked (TB)

Zwitterion (ZI)

σp#

[D]
Rel. Err.

[%]
σp#

[D]
Rel. Err.

[%]

Mulliken Mulliken

X 7.98 259 12.24 298

Y 5.02 142 6.65 113

Z 8.00 136 9.90 57

Natural Natural

X 1.08 35 1.07 26

Y 1.11 32 1.02 17

Z 1.53 26 1.04 6

RESP RESP

X 0.03 1 0.04 1

Y 0.03 1 0.05 1

Z 0.04 1 0.09 1

Hirshfeld-I Hirshfeld-I

X 0.46 15 0.60 15

Y 0.28 8 0.26 4

Z 0.36 6 0.38 2

EEM EEM

X 1.59 52 3.11 76

Y 2.21 63 4.33 73

Z 4.39 75 14.66 85

SQE SQE

X 0.86 28 3.96 96

Y 1.15 33 6.18 105

Z 2.58 44 19.40 113

page 30



Table 2. Results from the least squares analysis of the errors between the MP2 dipole moments of the penta-alanine 

samples and the dipole moments obtained with several atomic charge models. (A=slope, B=intercept)

Terminally blocked (TB) Zwitterion (ZI)

All data 80 % of the data All data 80 % of the data

A [1] B [D] R2 [%] A [1] B [D] R2 [%] A [1] B [D] R2 [%] A [1] B [D] R2 [%]

Mulliken Mulliken Mulliken Mulliken

x 1.54 2.10 29.80 1.43 2.08 27.45 1.69 3.75 22.18 1.96 3.94 29.27

y 0.97 0.29 31.51 1.04 -0.22 37.62 0.86 -3.34 60.97 0.87 -2.74 59.37

z 1.40 -1.97 58.36 1.41 -2.02 57.73 0.84 -0.45 70.32 0.75 -1.93 65.67

Natural Natural Natural Natural

x 1.32 -0.18 99.15 1.32 -0.16 99.11 1.20 0.34 97.48 1.19 0.34 97.45

y 1.27 -0.12 98.53 1.26 -0.07 98.22 1.17 0.48 99.25 1.18 0.49 99.40

z 1.20 -0.71 99.44 1.20 -0.74 99.48 1.07 0.88 99.85 1.07 0.82 99.84

RESP RESP RESP RESP

x 1.00 0.00 99.99 1.00 -0.01 99.99 1.00 0.00 99.99 1.00 0.00 99.99

y 1.00 0.01 99.99 1.00 0.01 99.99 1.00 0.01 99.99 1.00 0.01 99.99

z 1.00 0.01 100.00 1.00 0.00 100.00 1.00 0.01 100.00 1.00 0.01 100.00

Hirsfheld-I Hirsfheld-I Hirsfheld-I Hirsfheld-I

x 0.99 0.01 97.80 1.00 0.02 97.66 0.99 -0.16 98.05 0.97 -0.17 98.08

y 1.02 0.05 99.42 1.02 0.06 99.43 1.02 -0.03 99.84 1.02 -0.03 99.84

z 1.02 0.08 99.68 1.02 0.06 99.67 1.01 -0.10 99.96 1.01 -0.06 99.96

EEM EEM EEM EEM

x 0.55 0.32 86.89 0.54 0.31 86.66 0.44 0.86 58.71 0.46 0.88 61.06

y 0.40 0.20 86.75 0.40 0.18 85.81 0.33 0.48 82.21 0.33 0.51 83.68

z 0.27 0.20 79.91 0.27 0.26 80.77 0.19 0.76 70.90 0.17 0.58 68.89

SQE SQE SQE SQE

x 0.74 0.00 98.24 0.73 0.00 98.03 0.47 1.82 48.61 0.51 1.86 51.68

y 0.68 -0.08 98.49 0.69 -0.08 98.41 0.33 2.72 61.53 0.37 2.91 66.54

z 0.64 -1.57 97.80 0.64 -1.56 98.02 0.13 5.19 70.49 0.13 5.09 71.88
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Table  3.  Estimate  of  the RMSE between the  EEM/SQE and MP2 dipole  moments  based on RMSE between 

EEM/SQE and Hirshfeld-I charges. This estimate assumes that the errors on the charges are uncorrelated, except 

for the total charge constraint.

Terminally blocked Zwitterion

EEM SQE EEM SQE

σq [e] 0.07 0.04 0.08 0.08

σp1 [D] 3.69 2.34 3.50 3.80

σp2 [D] 5.25 3.33 5.63 6.12

σp3 [D] 10.68 6.79 8.43 9.16

Table  4. Error measures for the reproduction of the MP2 dipole moments of the penta-alanine samples with the 

corrected SQE charges.

Terminally 
blocked (TB)

Zwitterion (ZI)

σp#

[D]
Rel. Err.

[%]
σp#

[D]
Rel. Err.

[%]

SQE ' SQE '

X 0.70 23 1.41 34

Y 0.80 23 1.45 25

Z 1.63 28 1.88 11

SQE ''

X 0.75 24

Y 0.52 15

Z 0.66 11

Table 5. Parameters for the computation of the charge distribution in the coarse-grained zwitterion model.

EEM SQE SQE+Q0

 [eV] 5 5 0

 [eV] 10 10 10

 [eV] 0 5 5

 [e] - - 1
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Figures

Figure  1.  The two penta-alanine forms studied in this  paper:  (a)  terminally blocked and (b) zwitterionic.  The 

numbering of the atoms and fragments, as they are used in the remainder of the paper, is indicated in both cases.

Figure  2. Histogram of the O-H distances in all  generated penta-alanine conformers. All  pairs with a distance 

below 2.5 Å are referred to as nearby non-bonded O-H pairs in this paper.
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Figure  3.  Scatter  plots  showing  the  correlation  between  the  MP2  dipole  moments  and  the  dipole  moments 

computed with the charge-models. The colors red, green and blue are used for the X, Y and Z components of the  

dipole moment, respectively. Linear fits are included through each dataset. The first bisector is plotted in gray. All 

dipole moments are given in units of Debye [D].
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Figure 4. Visualization of the electrostatic potential (ESP) for two proteins: 1HDC (only one of the four symmetry-

related chains is shown) and 1HSG. The protonation of acid and base groups is done at pH=7. Geometries are 

optimized with NAMD, using the CHARMM force field. The ESP is derived from EEM and SQE charges for both  

systems. The cartoon representation is colored according to the ESP convoluted with a Gaussian function with 

. Protein images are rendered with VMD67 and POVray.68
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Figure  5.  Distribution of  the  atomic  charges  obtained with different  charge  models  for  all  conformers  of  the 

terminally blocked and zwitterionic penta-alanine. The atom indices and colors correspond to the labels in Figure 

1: gray = H, cyan = C, dark blue = N and red = O. Dashed lines separate atoms belonging to different fragments.  

Each charge inside one conformer is plotted as one colored dash. A thick black dash corresponds to the average of  

an atom charge over all geometries.
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Figure 6. Variation of calculated charge as a function of conformational change. The top panel contains the charge 

on the α carbon in alanine dipeptide computed with different schemes during a relaxed scan along the ψ angle. The 

dashed vertical lines correspond to large geometric changes during the scan, as can be seen in the RMSD between 

subsequent structures plotted in the lower panel.

Figure  7.  Distribution  of  the  differences  between  the  EEM  or  SQE  and  the  Hirshfeld-I  charges.  The  same 

conventions are used as in Figure 1: gray = H, cyan = C, dark blue = N and red = O.
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Figure 8. Distribution of the differences between the EEM or SQE and the Hirshfeld-I fragment charges.

Figure 9. Scatter plots showing the correlation between the MP2 dipole moment and the dipole moment computed 

with the corrected SQE charges. The colors red, green and blue are used for the X, Y and Z components of the 

dipole moment, respectively. Linear fits are included through each dataset. The first bisector is plotted in gray.
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Figure 10. A coarse-grained model of a linear zwitterion. The formal charge distribution in the zwitterion is written 

with two models: SQE and SQE+Q0. (See text.)
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Figure 11. Effective charge distribution in the coarse-grained model of the linear zwitterion, computed with three 

charge equilibration models: EEM, SQE and SQE+Q0. (See text.) (a) The dipole moment of the chain as function 

of the chain length. (b) The total charge in the second half of the chain as function of the chain length. (c) The  

charge on the last 10 beads in the chain that consists of 100 beads.
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