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Abstract. Addressing the bandwidth inefficiency problem of current IP over
DWDM backbone switching, Optical Packet/Burst Switching (OPS/OBS) pro-
vide viable solutions, capitalizing on statistical multiplexing gain, through
packet-oriented scheduling. To resolve packet/burst contention, the involved
photonic switches contain wavelength converters and fiber delay lines, con-
trolled through a channel and delay selection (CDS) algorithm. Recently pro-
posed CDS algorithms all rely on heuristics, of which the optimality is unex-
amined to date.

This paper presents an in-depth analysis of the optimality of CDS algo-
rithms. Methodologically, we rely on Markov chain analysis for performance
evaluation, combined with a discrete Markov Decision Process formulation of
the optimization problem, optimized for fast calculation, allowing to determine
the exact optimum of a specific given setting of the switch, through numerical
algebra solution techniques. Results point out that, for the basic switch setting
assumed, of all known CDS algorithms, an algorithm called MING (MINimal
Gap) is close to optimal, but never strictly optimal. Various graphs support
this, showing that an algorithm optimal for any traffic load cannot (in gen-
eral) be devised. Results for several other switch settings further confirm this,
showing how known CDS algorithms might be modified, to attain improved
control robustness.

1. Introduction.

1.1. Context. To realize the vision of ubiquitous broadband connectivity, the next-
generation network has to be ready for the ever-growing bandwidth hunger of its
users. The widespread interest in new web applications like High Definition on-
demand video streaming is rapidly pushing the current network to its capacity
limits. While the current backbone provides transport capacities of well beyond 10
Tbit/s per fiber, this capacity is only available for transmission from node to node.
Current end-to-end communication suffers capacity loss from inflexible switching
in intermediary nodes, urging for a more flexible approach to optical switching.
Addressing this need, both optical burst switching (OBS) [7, 16] and optical packet
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switching (OPS) [17, 29] provide future-proof alternatives for the next-generation
network.

Following a packet-based approach, OPS and OBS allow to expand connection ca-
pacity by relying on the statistical multiplexing gain brought about by resource shar-
ing for both switching and transmission. This however implies that packets/bursts
potentially contend for the same channel at the same time, thus requiring a con-
tention resolution scheme. Since random access memory (RAM) is not available for
optical data, light is buffered by sending it through a piece of fiber delay line (FDL)
of sufficient length. Since the number of available delay lines is limited to, say, 2
to 5 delay lines per node, the number of corresponding delays is also limited. The
resulting contention resolution scheme comes down to a channel and delay selection
(CDS) algorithm that has no counterpart in the electronic domain, in which the
delay could be chosen arbitrarily, so that the issue is reduced to a channel selection
algorithm.

Contention resolution schemes have been studied first in a network scenario with
fixed-length packets, which is a usual assumption for OPS [9, 13]. Since the advent
of OBS, also the counterpart with variable-length packets/bursts is studied, and of-
ten contrasted with the fixed-length case [1, 3–6, 8, 10, 11, 15, 20–22, 24, 28, 30]. The
most common description of contention resolution, as discussed in [30], is done along
three different dimensions, namely (i) wavelength (wavelength conversion), (ii) time
(optical buffering) and (iii) space (deflection or alternate routing).

Firstly, wavelength conversion is enabled by Dense Wavelength Division Multi-
plexing (DWDM) technology, as it exploits the presence of multiple available wave-
lengths on the same fiber. The method consists in converting contending pack-
ets/bursts from an unavailable wavelength to an available one, with either no re-
striction (full conversion, so that all available wavelengths can be reached [3, 22])
or a restriction on either wavelength conversion range [14, 15] or number of avail-
able converters [8]. Secondly, optical buffering consists in delaying packets/bursts
that find a resource unavailable by sending it through a piece of fiber of sufficient
length, so that the resource is available again when the packet/burst leaves the
delay line [1, 2, 9, 10, 20, 21, 24]. Thirdly, in a multi-fiber setting, deflection or al-
ternate routing consists in routing packets/bursts that find a resource unavailable
to another node through an different, available output fiber [5, 12]; this is done
preferably topology- and congestion-aware [30]. The interplay of these dimensions
is discussed extensively also in [5].

While deflection (or alternate) routing is a matter at network level, both wave-
length conversion and optical buffering operate at the level of an individual node.
As a result, wavelength conversion and optical buffering can (and should) be inte-
grated consistently in a single contention resolution strategy. This integration has
been referred to earlier as wavelength allocation in optical buffers [3, 26, 28], later
as the channel and delay selection (CDS) problem [5], and is also the topic of the
current paper.

1.2. The CDS problem. The core of the CDS problem is the discrete number of
assignable delays. Due to this, on a given wavelength, it is in general not possible
to schedule a packet/burst just after the transmission of a previous one. Therefore,
on each outgoing wavelength, gaps occur, which are time periods during which no
transmission takes place on the outgoing wavelength, even though packets/bursts
are awaiting transmission in the optical buffer [25–28]. These periods are also
referred to as voids, and can be considered as a strict capacity loss, with an effect
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that can be best compared to an increase in traffic congestion [1, 10]. In principle,
these gaps can be filled up by means of a void-filling strategy [26], by scheduling
later-arriving bursts within the gaps that occur in the schedule. However, since
this requires to maintain the relative position of each packet/burst present in the
buffer, implementation is costly in terms of hardware. Furthermore, it has poor
scalability, since the hardware complexity grows along with the maximal number of
packets/bursts that can be processed simultaneously. For these reasons, a horizon-
based algorithm is preferred, maintaining only real value per channel, namely the
scheduling horizon [3, 4, 6, 15, 22, 25, 27, 28], and is also assumed here.

For horizon-based schedulers, a prime performance measure is the loss proba-
bility, since lower loss yields better overall performance. In a very similar setting
(an inter-node reservation algorithm, instead of the CDS algorithm), Turner [25]
already pointed out that horizon scheduling should be done gap-aware in order to
minimize loss. The same observation is reported independently in [27], and termed
LAUC (latest-available unused channel). For the setting we consider in this paper,
however, Callegati and his co-authors [3] were the first to propose the CDS algo-
rithm minimal gap (MING), always converting packets/bursts to the wavelength
which results in the minimal gap size. In [3], it is shown that MING outperforms
classical delay-oriented (or, queue-size-oriented) algorithms like Join-The-Shortest-
Queue. In more recent work [4–6], taking into account other requirements such as
preservation of packet/burst order resulted in “softer” versions of this algorithm,
referred to as gap-oriented algorithms. However, always, it has been reasonably as-
sumed that MING minimizes packet/burst loss, and so maximizes the throughput
of the switching matrix.

1.3. Motivation. The aim of this paper is to show that not MING, but a different
CDS algorithm realizes minimal loss in an optical packet/burst switch, and varies
over different settings. As our results point out, the CDS algorithm for minimal
loss hardly ever (if ever) coincides with MING. For the exact same state space size
(and thus, comparable hardware complexity) and same FDL and channel set, the
algorithm we obtain yields better overall performance; in several cases, the loss
reduction is over 10 percent when compared to MING. As such, the main claim of
this paper is straightforward: for the same hardware cost and hardware constraints,
the obtained algorithm yields better performance, and is therefore preferred over
MING as implementation variant. Initial results were presented in [19], but only
under limiting assumptions (fixed burst size, degenerate buffer setting, buffer size
N = 2). Opposed to this, [18] (5 page conference version) and the current contri-
bution (full length version) consider general distribution for inter-arrival times and
burst sizes, general (non-degenerate) buffer setting, and also two novel stochastic
mechanisms that, together with the known technique of preventive dropping (in-
troduced in [11]), allow to further mitigate loss. Both techniques refine the CDS
algorithm by not only taking into account the scheduling horizon of the different
wavelengths (the current best solution), but also the current traffic load and, in
case of varying packet/burst size, the size of packets/bursts awaiting allocation.
Further, we also consider preventive dropping, a third stochastic mechanism that
was introduced for the single-channel case in [11], and now also proves useful in the
multi-channel case. While one would reasonably expect that these additional fea-
tures bring about increased implementation cost, we argue that simple embedding
of a pre-calculated action table suffices to allow for optimized and robust contention
resolution.
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Throughout the paper, we consistently assume two wavelengths, and this because
(i) it is the simplest case of a multi-wavelength system, and (ii) it allows for fast
numerical evaluation (calculation times in the order of 1-10 seconds). Although we
did not include the formulas for more than two wavelengths, it should be feasible
to generalize the model to c wavelengths. Further, the case of two wavelengths is
probably the most interesting case for wavelength allocation, and this because of
the feasibility of its implementation. As explained in detail in [14], wavelength con-
verters with limited range allow converting to adjacent wavelengths only, resulting
in a limited number of wavelengths available for allocation (say, 2 to 4), and this
despite the typically higher number of wavelengths carried over the physical fiber
link (typically 16 to 64). While most studies consider a general number of wave-
lengths for the conversion range [14], the two-wavelength case assumed here was
also studied in [15], with MING as scheduling discipline, but without examining
the optimality of the chosen discipline.

1.4. Methodology. Methodologically, we present two complementary techniques
for performance evaluation: a performance model and anMDP optimization method.
For a given CDS algorithm (a so-called action table) and traffic/hardware setting,
the performance model generates the exact loss probability. On the other hand, for a
given traffic/hardware setting, the MDP method yields the optimal CDS algorithm
(or action table).

As for the performance model, we develop it exactly for a broad class of multi-
wavelength (or, multi-channel) optical buffers, by exact expression of the state
transition probabilities of the embedded Markov chain. The formulas are valid
for general independent and identically-distributed (iid) inter-arrival times distri-
bution and packet/burst size distribution, with the assumption of an upper bound
on the packet/burst size.

As for the optimization, we rely on Markov decision processes. Since this tech-
nique a well-known tool for discrete-time optimization [23], we focus primarily on
the way in which to apply it. More precisely, rather than considering the system
evolution from slot to slot, we consider embedded points, observing the system only
upon arrival instants. This approach allows constructing the action set and involved
probabilities for general independent and identically-distributed (iid) inter-arrival
time distribution and burst size distribution. As such, the assumptions of the
MDP model match those of the performance model. If considered without stochas-
tic mechanisms, we refer to the MDP optimization scheme as basic. If stochastic
mechanisms are considered, we speak of advanced optimization.

1.5. Overview of this paper. In the following, the CDS algorithm boils down
to wavelength allocation among two different wavelengths, with the delay selection
implied by the choice of the wavelength (see further). Within a single system
description framework, introduced in Sect. 2, and including both basic and advanced
optimization, our contribution consists of two complementary techniques. Firstly,
we set out a performance model in Sect. 3, allowing to quantify loss performance
(more precisely, the loss probability (LP)) in an exact manner, as shown in Fig. 1.
Also shown in Fig. 1, we next present the MDP-based optimization technique in
Sect. 4, which stands apart from the performance model, but is valid for the same
system description, and uses some of the expressions obtained in Sect. 3. Note that
we incorporate both basic and advanced optimization within the same model. This
optimization method is applied in Sect. 5 to some specific settings, and allows us to
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CDS Exact Model LP

(a) exact performance model

load ρ
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MDP
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optimal CDS

(b) basic optimization

load ρ (& burst size B)
1 (or 2) parameter(s)

MDP
2 (or 3) possible actions

optimal CDS

(c) advanced optimization

Figure 1: In Sect. 3, a performance model is presented, which allows to calculate
the loss probability of any given CDS (with our without stochastic mechanisms) in
an exact manner (a). Apart from this, Sect. 4 presents an MDP-based optimization
method, allowing to identify an optimal CDS action table. Basic optimization
only takes the traffic load � into account (b). In advanced optimization (c), this
approach is extended by possible burst-size-dependency, and the possible addition
of a preventive drop action.

assess the performance of the optimized algorithm under various conditions of the
traffic load, and compare it to the performance of MING. Special attention goes to
the performance results of advanced optimization, illustrated in Fig. 1. Conclusions
are drawn in Sect. 6. Further, note that we refer to packets/bursts merely as bursts
below.

2. System description.

2.1. Horizon scheduling and stochastic mechanisms. The FDL buffering ar-
chitecture and related CDS control problem is identified already in [9]; however, the
control algorithms of [25, 28] are probably best-known. In [25], Turner introduces
horizon scheduling, a scheduling algorithm which bases its decision upon the c hori-
zon values of the c available channels. For each channel, the scheduling horizon

(or, for short, horizon) value indicates the earliest time at which all previous bursts
on that channel will have left the system. It also referred to as the unscheduled

time, or the future available time. The bulk of research on horizon scheduling has
been done on degenerate FDL buffers, with equidistant lengths, equal to multiples
of a granularity value D. Choosing equidistant values is a natural choice, mainly
because a scenario with non-degenerate FDL lengths failed to demonstrate signifi-
cant performance advantages over an equidistant one. Although it is shown in [11]
that a non-degenerate setting can outperform a degenerate one, the performance
difference was rather small, and only occurred for high traffic load. The results in
this paper are however also valid for non-degenerate buffers, and therefore, also an
example is included further on.
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Opposed to horizon scheduling, a contribution revealing the actual complexity
of the channel and delay selection algorithm is [24], showing that the optimal CDS
algorithm should maintain the position of all voids created on all channels and all
delay lines, in order to exploit the (buffering) capacity that is available within the
voids. The resulting CDS algorithm is called the void-filling scheduling algorithm,
and is rigorously studied in [26], and this for various traffic conditions, buffer sizes
and algorithm parameter settings. As illustrated in Fig. 7–10 in [26], void filling
allows approaching the performance of a strictly synchronized buffer of the same
size (there referred to as synchronous operation) rather close (but not arbitrarily
close) as the FDL lengths increase. Reference [24] (which is referred to in [26])
points out that void-filling with degenerate buffer setting is possible, but even better
performance is enabled by choosing the FDL lengths non-degenerate (not equal to
multiples ofD), so improving performance even further, by creating sufficiently large
voids, which are then filled up by new arrivals. Such a performance benefit should
not be expected from non-degenerate settings for horizon scheduling, mainly because
the voids, once created, can never be filled up, and always constitute capacity loss.

For horizon scheduling, typically, very basic CDS algorithms are considered, bas-
ing the scheduling decision only on the horizon value of the channels. However, the
addition of a stochastic mechanism has been considered earlier in [11] in the case
of a single wavelength, and was referred to as preventive drop. Somewhat paradox-
ically, preventive drop allows to realize performance gain by dropping bursts even
when resources are still available. The underlying idea is that, in case of high load
situations, it is appropriate to “speculate” and drop those bursts that would cause
large gaps, in order to be able to accommodate future bursts with (potentially)
smaller gaps. To the best of the authors’ knowledge, we are the first to consider
preventive dropping now in the multi-wavelength case.

A second stochastic mechanism is load-dependent scheduling, a mechanism which
takes into account the current traffic intensity/load, in order to adapt the CDS al-
gorithm to it. This is discussed and motivated later on by means of examples, in
Sect. 5; to the best of our knowledge, this is the first time such a mechanism is pro-
posed. Thirdly, we introduce a stochastic mechanism we call burst-size-dependent
scheduling. The central idea is to fit bursts within the delay lines in which they
(and not necessarily other bursts) fit best; this is particularly useful in case of
non-degenerate FDL sets, and is also discussed by means of an example in Sect. 5.

All three mentioned stochastic mechanisms are incorporated into the same per-
formance model and optimization method. As such, they are treated as native to
the presented model, rather than as an extension of it.

2.2. Traffic setting. We assume a discrete-time setting, with time divided in time
slots of fixed (arbitrary) size, and all time-related variables and parameters ex-
pressed as multiples of this assumed slot length. Numbering bursts in the order at
which they arrive at the buffer, we consider an arbitrary burst with index k, arriving
some time Tk after the previous burst (burst k + 1), with Tk the inter-arrival time.
We assume the inter-arrival times general independent and identically distributed
(iid) random variables, with values drawn from a discrete probability distribution
function t(n), n ∈ ℕ0, with

t(n) = Pr[Tk = n] , (1)

0 ≤ t(n) ≤ 1,
∑∞

n=1 t(n) = 1 and E[Tk] =
∑∞

n=1 nt(n) < ∞. No further restrictions
are imposed on this distribution. Similarly, the burst size of burst k is denoted Bk,
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and the burst sizes are assumed general iid random variables, with values drawn
from a discrete probability distribution b(n), n ∈ ℕ0. However, we assume burst
sizes upper-bounded by some value Bmax, so that

b(n) =

{

Pr[Bk = n] 0 < n ≤ BM

0 n > BM .
(2)

Further, 0 ≤ b(n) ≤ 1,
∑BM

n=1 b(n) = 1 and E[Bk] =
∑BM

n=1 nb(n) < ∞. For
notational convenience, we also introduce the cumulative distribution of the inter-
arrival times FT , defined as FT (n) =

∑n

i=1 t(n), n ∈ ℕ0.
The traffic load � is defined as

� =
E[Bk]

cE[Tk]
,

where c denotes the number of wavelengths, as further explained below.

2.3. Buffer setting. In this paper, we assume that the FDL set is general, or
non-degenerate [24]. We denote the set by

A = {a0, a1, a2, . . . , aN} ,

with a0 = 0 zero by definition, and line lengths sorted in ascending order, which
results in N lines of non-zero length present in the buffer, so that realizable delays
equal ai, with i = 0, 1, . . . , N . The maximal realizable delay is aN . Further, since it
is used to resolve contention, a useful FDL set never contains the same line length
twice, so that a0 < a1 < . . . < aN . In several practical examples, we will consider
a degenerate buffer setting. In that case, line lengths are equal to multiples of the
granularity D, ai = iD for i = 0, 1, . . . , N , and the FDL set can be written as
function of the granularity, as

A = {0, D, 2D, . . . , ND} .

This buffer we assume located at the output interface of an optical burst (or packet)
switch, and available for contention resolution on two distinct wavelengths �1 and
�2. To enable two-wavelength contention resolution, we assume also that means for
full wavelength conversion are present, together with a switching matrix, allowing
to switch bursts to any of the lines on either �1 or �2. Since we do not consider
void-filling, the only state information to be kept for basic horizon scheduling is the
scheduling horizon of the two wavelengths involved. However, to account for the
possibility of burst-size-dependent scheduling (as introduced in Sect. 2.1), we add
the burst size of the burst that is to scheduling, so obtaining a three-dimensional
state space.

On a given wavelength �1 or �2, the scheduling horizon is defined as the earliest
time at which all previous bursts will have left the system. As said earlier, the CDS
algorithm boils down to wavelength allocation among two different wavelengths,
with the delay selection implied by the choice of the wavelength. This is so because,
given a horizon value n on a certain wavelength (and no further information), there is
only one meaningful selection for the delay value, namely ⌈n⌉A. Here, for notational
convenience, we introduced the operator notation

⌈n⌉A = inf{ai ∈ A : ai ≥ n}, n ∈ ℕ , (3)

which one could call a discrete generalization of the ceiling operation. It reflects the
main feature of an optical buffer: rather than providing delays of n time slots, an
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optical buffer provides somewhat larger delays ⌈n⌉A, that correspond to the lengths
of the fiber delay lines present in the optical buffer. The difference ⌈n⌉A−n accounts
for the time during which the outgoing wavelength remains unused, even though the
scheduled burst (and possible later-arrived bursts) is still present in the buffer and
awaiting transmission on that wavelength. This time period constitutes capacity
loss, and is exactly the void [24] or gap [3] mentioned earlier. If ⌈n⌉A ≤ aN , the
required delay can be realized; if not, the burst cannot be accommodated (which is
reflected in the fact that the operator (3) returns +∞. In the below, we assume in
that case that the given burst is dropped; note however that one could also send
the burst to another contention resolution interface (such as another fiber), if such
an interface is available.

In case of a degenerate FDL set, the operator becomes

⌈n⌉A =

{

⌈

n
D

⌉

⋅D 0 ≤ n ≤ ND

+∞ n > ND .

3. Exact performance model. Given the assumptions on arrival process, burst
sizes and FDL buffer structure, the system can be analyzed in terms of the transition
probabilities of a two-dimensional Markov chain. From these, we can extract an
exact value for the loss probability (LP) by numerical means.

3.1. Actions. The system description is in terms of the scheduling horizon, as seen
by an arbitrary arrival k with burst size Bk. Associated with the two wavelengths �1

and �2 are the scheduling horizon values H1
k and H2

k , gathered in a two-dimensional
scheduling horizon vector Hk = (H1

k , H
2
k). Upon the arrival of burst k, wavelengths

are indexed in order of increasing horizon value, such that H1
k ≤ H2

k . As such, the
index i in Hi

k refers to the relative length of the horizon, and not to the index of
the wavelength to which the horizon is associated when burst k arrives. The total
state space vector Sk is equal to the combination of the horizon vector Hk, and the
burst size of the burst that is to be scheduled,

Sk = (H1
k , H

2
k , Bk) .

The reason to include Bk in the state space is to enable burst-size-dependent sched-
uling, as defined in Sect. 2.1. The process of burst arrival and transmission is
governed by the CDS algorithm. More precisely, a scheduling algorithm in this
context can be grasped by an action table, associating with each possible Sk an
action ck. In this paper, we consider three actions: ck = 1, consisting in choosing
the wavelength with shortest horizon; ck = 2, consisting in choosing the longest
horizon; and ck = 3, consisting in dropping the burst. Note that, if both horizon
values exceed the maximum delay aN , the only possible action is action 3, but that,
on the other hand, it may be useful to perform action 3 also if this is not the case,
which is the motivation of preventive drop, as defined in Sect. 2.1.

The actions {1, 2, 3} suffice to characterize any CDS algorithm considered, re-
gardless whether or not stochastic mechanisms are used. As an example, consider
the two CDS algorithms known from literature: MINL (minimum length) (intro-
duced in [28] and named MINL in [3]) and MING (introduced in [3]). Both are
burst-size-independent, and do not involve preventive dropping. As a CDS, MINL
consists in choosing, of both horizons, the horizon with shortest length n. How-
ever, given that not n but ⌈n⌉A is assigned as delay (assuming n ≤ aN ), MINL
exploits this to choose the horizon with shortest ⌈n⌉A, and, as a second criterion,
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Figure 2: Each CDS algorithm can be represented by an action table, with an
action for each combination of longest horizon (x-axis) and shortest horizon (y-
axis). The actions {1 (join shortest), 2 (join longest), 3 (drop)}) are indicated by
{∙, ∘,×}, respectively. A degenerate buffer is assumed, with N = 2, A = {0, 5, 10},
a Bernoulli arrival process, and B fixed to 6. The CDS algorithms (c-e) are optimal
in the indicated interval, regardless of whether preventive drop is considered or
not. The CDS algorithm (f) is optimal for 0.48 ≤ � ≤ Cf , with Cf = 0.65 if
preventive drop is considered, and Cf = 1.00 if no preventive drop is allowed. The
CDS algorithms (g-h) are optimal in the indicated interval only if preventive drop
is allowed.

with smallest ⌈n⌉A−n, as explained in detail in [3]. Given the horizon indexing rule
we assumed, MINL can be formalized as Fig. 2a, there in the case of a degenerate
buffer with N = 2, A = {0, 5, 10}, and B = 6.

Different from this, MING does not focus on the horizon length, and limits its
selection criterion to choosing the horizon n with smallest ⌈n⌉A − n. This can be
formalized in an action table as given in Fig. 2b, also in the case of a degenerate
buffer with N = 2, A = {0, 5, 10}, and B = 6. More formally, an action table or
policy is given by an action table or policy matrix P, conditioned on the state space
(i, j, n) as seen upon arrival of an arbitrary burst k, with entries

pijn =

⎧



⎨



⎩

1 or 2 or 3 0 ≤ i ≤ j ≤ aN

1 or 3 i < aN + 1 ≤ j < aN +BM

3 aN + 1 ≤ i ≤ j < aN +BM .

and 0 < n ≤ BM . If the possibility of preventive drop is excluded, the range of
possibilities narrows to
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pijn =

⎧



⎨



⎩

1 or 2 0 ≤ i ≤ j ≤ aN

1 i < aN + 1 ≤ j < aN +BM

3 aN + 1 ≤ i ≤ j < aN +BM .

Given this, it is insightful to consider the two-dimensional matrices Pn, which
describe the action table to be followed, given a system state Sk = (i, j, n), and
conditioned on the assumption that a burst k of size Bk = n is to be scheduled.
Each of these matrices can be split up in block matrices, as

Pn =
Pn

123 Pn
13

0 Pn
3 , (4)

with the super-indices {123, 13, 3} referring to the actions available from that state
if preventive drop is available. Matrices P123

n and P3
n are upper-triangular (the

latter, with only “3” as entries), whereas P13
n is a dense stochastic matrix. This

block structure can also be distinguished in the case of MINL Fig. 2a and MING
Fig. 2b, for which the scheduling is independent of the burst size Bk, and therefore,
P1 = P2 = . . . = PBM

. However, in the case of burst-size-dependent scheduling, all
matrices (BM in number) in general differ, so allowing for a more refined channel
and delay selection. Finally, note that, in the case that no preventive drop is allowed,
P123

n only contains actions 1 and 2, and P13
n only action 1.

3.2. Transition probabilities. For any action table assumed, the system evolu-
tion can be gathered in a single Markov chain description. The transition is initiated
by the arrival of burst k, and terminated by the arrival of burst k+1, Tk slots later.
The Markov chain has a three-dimensional state space Sk, and the transition ma-
trices Mℎ, ℎ ∈ 1, 2, 3, with probabilities mℎ describing the transition from Sk to
Sk+1, as

mℎ(l,m, p ∣ i, j, n) = Pr[Sk+1 = (l,m, p) ∣Sk = (i, j, n), ck = ℎ] ,

with 0 ≤ i ≤ j < aN + BM , 0 ≤ l ≤ m < aN + BM , 1 ≤ n ≤ BM , 1 ≤ p ≤ BM ,
ℎ ∈ 1, 2, 3. Depending on whether the first, second or third action is taken, the
transition probabilities take on a different form.

1. ck = 1. In this case, regardless of the horizon j of wavelength 2, the horizon
of wavelength 1 as seen upon arrival is sufficiently small, i ≤ aN , so that
burst k can surely be buffered on the wavelength with horizon 1. Allocating
burst k pushes horizon 1 to ⌈i⌉A + n slots just after arrival, whereas horizon
2 remains unaltered, at a value of j slots. Associated is the (six-dimensional)
transition matrix M1, with probabilities m1 that can be written as the sum
of m+

1 and m−

1 , conditioning on whether the new scheduling horizon of �1,
⌈i⌉A + n, remains below j, or not, respectively. In case that ⌈i⌉A + n ≤ j,
wavelength indexing remains unchanged for arrival k + 1, and transitions are
made with associated probability m+

1 (l,m, p ∣ i, j, n) defined as

Pr[Sk+1 = (l,m, p) ∣Sk = (i, j, n), ck = 1, ⌈i⌉A + n ≤ j] .
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Given the assumptions on inter-arrival and burst size distribution, the prob-
abilities m+

1 (l,m, p ∣ i, j, n) are obtained as
⎧







⎨







⎩

t(q)b(p) 1 ≤ q < j

l = [⌈i⌉A + n− q]+

m = j − q

(1− FT (j − 1))b(p) (l,m) = (0, 0) ,

and zero elsewhere. In the opposite case, ⌈i⌉A + n > j, the index of the
horizons is swapped in order to have H1

k+1 ≤ H2
k+1. The associated transition

probability is m−

1 (l,m, p ∣ i, j, n and represents

Pr[Sk+1 = (l,m, p) ∣Sk = (i, j, n), ck = 1, ⌈i⌉A + n > j] ,

with values
⎧







⎨







⎩

t(q)b(p) 1 ≤ q < ⌈i⌉A + n

l = [j − q]+

m = ⌈i⌉A + n− q

(1− FT (⌈i⌉A + n− 1))b(p) (l,m) = (0, 0) ,

(5)

and zero elsewhere.
2. ck = 2. In this case, the horizon value j of wavelength 2 as seen upon arrival

is sufficiently small, j ≤ aN , so that burst k can be buffered on the wavelength
associated with horizon 2. Allocating burst k pushes the horizon 2 to ⌈j⌉A+n,
while horizon 1 remains at i. Since i ≤ j, a fortiori, i ≤ ⌈j⌉A+B and therefore,
the index of the wavelengths is never switched in case of action 2, and the
associated probability m2 entirely characterizes the corresponding transition,
with the expression directly related to (5), through

m2(l,m, p ∣i, j, n) = m−

1 (l,m, p ∣ j, i, n) .

3. ck = 3. The buffer is found in blocking state, with both i and j larger than
aN . Since the burst size is upper-bounded by BM , and the minimal inter-
arrival time is assumed equal to 1, the scheduling horizon value is smaller
than or equal to aN + BM − 1, resulting in aN < i ≤ j < aN + BM . Action
three corresponds to discarding arriving burst k, or forwarding it to another
contention resolution interface. The scheduling horizon remains unaltered by
the arrival, and the involved transition probabilities m3(l,m, p ∣ i, j, n) are as
follows,

⎧







⎨







⎩

t(q)b(p) 1 ≤ q < j

l = [i− q]+

m = j − q

(1− FT (j − 1))b(p) (l,m) = (0, 0) ,

and zero elsewhere.

As such, all transition probabilities are known as soon as one assumes a certain
CDS (and corresponding policy matrix P). From there, one can calculate the sparse
transition matrix M associated with them. From the obtained M, using standard
numerical means (for instance, the linear equation solving command “∖” in Matlab),
one can extract the left eigenvector associated with eigenvalue 1, known as the
Perron-Frobenius eigenvector, yielding the steady-state distribution of the system
state as seen upon arrival. Denoting these probabilities by Pr[H1 = i ,H2 = j, B =



738 WOUTER ROGIEST ET AL.

n] = s(i, j, n), 0 ≤ i ≤ j < aN + BM , 1 ≤ n ≤ BM , one obtains the probability
that an arbitrary arriving burst is lost by evaluating the probability that action 3
is taken. The loss probability (LP) is thus obtained as

LP =

BM
∑

n=1

aN+BM−1
∑

i=0

aN+BM−1
∑

j=i

s(i, j, n)�pijn,3 ,

where �pijn,3 denotes the Kronecker delta, which equals one if pijn = 3, and zero
elsewhere.

While the above allows to calculate the loss probability in an exact manner, it
is important to bear in mind that the computational burden of calculating tran-
sition and steady-state probabilities grows with O((aN + BM )2BM ), and there-
fore, feasible calculations require to keep the involved parameters small, to val-
ues for which aN + BM is smaller than, say, 100 slots. Note, however, that a
more sophisticated modeling approach would allow to limit numerical complexity
to O(N(aN + BM )BM ), by considering a heterogeneous Markov state space, con-
sisting of the last-assigned waiting time of one wavelength, completed with the
scheduling horizon of the other wavelength. This is discussed in more detail in [15]
but is considered out of the scope of the present contribution.

4. Markov decision process. In principle, the MDP optimization stands apart
from the analysis of the previous section; however, the “actions” introduced there
fittingly bear the name of a classic ingredient of MDP optimization. More precisely,
we apply an MDP technique to determine a policy matrix P, in a way that is similar
to the one described in [23], as it is based on the policy iteration algorithm described
there. Each policy matrix is obtained for a given value of the traffic load �, which
can be varied through the parameter p = 1/E[Tk].

We imagine an agent that has at its disposition the set of three actions {1, 2, 3},
and desires to maximize a reward function by choosing appropriate actions. Each
action constitutes a way to handle arriving bursts, and the choice for a given action
is conditioned on the scheduling horizon as seen by the arriving bursts. Since we
aim to minimize the loss probability, the rewards are negative, and we associate a
reward that is proportional to the size of the burst that is lost, namely −B (or,
equivalently, a cost of B) to each lost burst with burst size B, and a reward of zero
to each accepted burst. This reward function trivially maps on the set of actions:
action one and two correspond to zero reward, action 3 yields a reward of −B.

The policy iteration algorithm now consists in choosing an arbitrary initial (three-
dimensional) policy array P, with an arbitrary choice among the actions possible
in a given state. In the case that preventive drop is allowed, conditioned on burst
size n, the allowed actions are 1,2 or 3 for P123

n , 1 or 3 for P13
n , and 3 for P3

n. In
the case no preventive drop is allowed, the allowed actions are 1,2 for P123

n , 1 for
P13

n , and 3 for P3
n.

Given the (three-dimensional) policy P, a value is determined for each state
S = (i, j, n), consisting of the immediate reward, and all rewards to be earned
in the future, taking into account the possible state evolution (as dictated by the
probabilities m+

1 , m
−

1 , m2 and m3 obtained in Sect. 3). Then, each policy iteration
consists in (i) determining the new policy P′ that maximizes the expected reward,
given the computed values of the previous steps and the probabilities m+

1 , m−

1 ,
m2 and m3; and next (ii) computing the new values, given the new policy P′.
The policy is reiterated until no change takes place in the policy in step (i). We
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refer to [23] for further details, noting the difference in our approach: while [23]
suggests basing the description on transitions from time slot to time slot, we prefer
to consider embedded transition points. In our approach, each arrival triggers an
iteration, which yields the advantage that our approach is immediately applicable
to the case of general inter-arrival time distribution t(n) and general burst size
distribution b(n), whereas a slot-based iteration would only allow applicability to
the case of a Bernoulli arrival process.

5. Optimization examples. In this section, we apply the optimization techniques
developed in the previous sections. As outlined earlier, and illustrated in Fig. 1,
we first consider basic optimization Fig. 1b (without stochastic mechanisms), to
then contrast its output with results from advanced optimization (with stochas-
tic mechanisms). A variety of parameter and traffic settings is considered in the
following: deterministic and non-deterministic burst size distributions, degenerate
and non-degenerate FDL sets, smaller and larger buffer sizes, and this first without
and then with the application of stochastic mechanisms. To further limit the vast
amount of possible combinations, we assume only one arrival process: a Bernoulli
arrival process, which is the discrete-time counterpart of a Poisson arrival process.
This arrival process is often assumed for performance modeling of backbone net-
work traffic. At the beginning of each slot, either one or no arrival occurs, with
probability p or 1 − p, respectively. Given this, the inter-arrival time Tk between
the arrival of burst k and burst k + 1 (as introduced in general in (1)) follows a
geometric distribution, with probability density function

t(n) = p ⋅ p̄n−1 , n ∈ ℕ0 , (6)

cumulative distribution function FT (n) = 1 − p̄n, n ∈ ℕ0, and expected value
E[Tk] = 1/p. In the below, different values of the traffic load � = pE[Bk]/c (with
c the number of wavelengths, c = 2) are considered; the difference is obtained by
varying p, with the burst size distribution unaltered.

5.1. Deterministic burst size distribution. Probably the simplest instance of
the CDS problem is obtained for deterministic burst size distribution, with burst
sizes fixed to some integer value of B slots, and corresponding burst size distribution
(as introduced in general in (2)),

b(n) = �n,B ,

(where �i,j again denotes the Kronecker delta), BM = B, and E[Bk] = B. This
distribution, combined with geometric inter-arrival times (6), is an often-studied
combination in case of single-wavelength optical buffers. Previous studies revealed
that a degenerate buffer setting, with D = B − 1 is almost always (but not always,
see [11]) the optimal choice if the load � remains below some threshold load �tℎ ≈ 0.6
[20]. For multiple wavelengths, fewer results are available; for a degenerate setting
however,D = B−1 is also an advantageous choice in terms of performance, see [22].
As such, we also consider this choice here, in several specific setting of modest
numerical complexity, and B = 6 slots. Using the formulas of the previous sections,
for each load value � = i ⋅ 0.01, i = 1, . . . , 100, we performed an independent MDP
optimization, each yielding a separate policy matrix P, optimized for minimal loss
at exactly the load assumed. Given the limited set of states, (ND +B − 1)(ND+
B)/2 = 136, each with a maximum of three possible actions (or less), it comes as no
surprise that several load values yielded exactly the same policy as optimal policy.
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Figure 3: The loss performance of the CDS algorithms obtained as function of the
traffic load, without allowing preventive drop. When compared to MING, four CDS
algorithms (belonging to group (2)) consistently outperform MING, showing that
MING is never strictly optimal.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10
performance gain
(%)

(1)

MING

load

(3)

(2)

Figure 4: The loss performance of the CDS algorithms obtained as function of the
traffic load, without allowing preventive drop. Of the algorithms, only the ones
belonging to group (3) apply preventive drop.

First, we consider the case of N = 2 and D = 5 (and thus, A = {0, 5, 10}),
and a basic optimization, without the possibility of preventive drop. As said, even
though we performed a total of 100 MDP optimizations, only 8 non-identical CDS
algorithms were obtained, typically optimal for certain intervals of the traffic load,
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Figure 5: When compared to MING, a load-dependent mechanism yields much bet-
ter loss performance when the load is low (zone (1) in the figure). For intermediary
load (0.12 ≤ � ≤ 0.65, zone (2)), loss reduction is limited to 1–2 %, whereas for
high load (zone (3)), the performance gain is again larger.

rather than for a single value. The following intervals for the load � are obtained
as output of our optimization:

(1)[0.01, 0.04][0.05, 0.06][0.07][0.08, 0.11] ,

(2)[0.12, 0.39][0.40][0.41, 0.47][0.48, 1.00] . (7)

Four of the eight obtained CDS algorithm are displayed on Fig. 2, more precisely
Fig. 2c (0.01 ≤ � ≤ 0.04), Fig. 2d (0.12 ≤ � ≤ 0.39), Fig. 2e (0.41 ≤ � ≤ 0.47) and
Fig. 2c (0.48 ≤ � ≤ 1.00). The load intervals fall apart in two groups (1) and (2),
which correspond to a low-traffic regime (1), with 0.01 ≤ � ≤ 0.11, and a moderate-
to-high-traffic regime (2), with 0.12 ≤ � ≤ 1.00. The rationale of this grouping can
be best understood when considered along with the performance output, as it can
be obtained exactly, by using the 8 policies as input to the exact model of Sect. 3,
as depicted in Fig. 1c. In Fig. 3, the performance of these 8 policies is compared in
an exact manner to that of MING (Fig. 2b). Clearly, the four CDS algorithms of
group (2) outperform MING for any value of the load, but the performance gain is
only moderate (1–2%). This contrasts with the situation for low load, for which the
algorithms of group (1) realize a loss reduction of over 30 %. One of the algorithms
(the one optimal for 0.1 ≤ � ≤ 0.04) is displayed in Fig. 2c. One can see that the
policy is different from MING (Fig. 2b) in several ways; for instance, when finding
horizon (0, 5) or (0, 10), it prefers to join the wavelength with longest horizon, even
though the gap size is equal for both wavelengths.

In other words, in the case of Fig. 2c, counter-intuitively, the optimal policy is to
join the longest queue even if the shortest queue is empty. This can be understood
as follows. Assume horizon Hk = (0, 5), and burst k (with burst size fixed to 6
slots) joins the shortest queue. Then, upon arrival, burst (k + 1) will find Hk+1 =
([5 − Tk]

+, [6 − Tk]
+), which in general will result in non-zero gap size for burst
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(k + 1). Opposed to this, if burst k joins the longest queue, burst (k + 1) will find
Hk+1 = (0, [11− Tk]

+), which always allows for zero gap size for burst (k + 1), by
joining the shortest queue. As such, striving for minimal average cost (and thus,
minimal average gap size) yields a counter-intuitive decision. However, it is optimal
in this specific setting, since it is generated by an exact optimization method.

Returning to Fig. 3, note that part of the curve for (1) is not shown to avoid
improper scaling: for � = 0.01, the performance gain rises to 37.9%. Further,
note that the results for group (1) would have been hard to obtain with sufficient
accuracy through simulation, whereas they can be calculated instantly and exactly
with our method. For instance, for � = 0.01, the LP for MING is 3.76 ⋅10−14, while
it is 2.33 ⋅ 10−14 for the CDS policy displayed in Fig. 2c.

We reconsider the case of N = 2 and D = 5 (A = {0, 5, 10}), now allowing the
MDP optimization to generate policies with preventive drop if they realize minimal
loss. The MDP optimization was again performed independently for each load
value � = i ⋅ 0.01, i = 1, . . . , 100, and now yields 21 different CDS algorithms. The
corresponding intervals for the load � are as follows,

(1)[0.01, 0.04][0.05, 0.06][0.07][0.08, 0.11] ,

(2)[0.12, 0.39][0.40][0.41, 0.47][0.48, 0.65] ,

(3)[0.66, 0.73][0.74, 0.76][0.77, 0.81][0.82, 0.83]

[0.84][0.85, 0.89][0.90][0.91, 0.93], [0.94]

[0.95][0.96, 0.97], [0.98, 0.99][1.00] . (8)

Closer inspection of the results showed that 8 of the 21 algorithms obtained without
preventive drop were also obtained for the optimization without preventive drop.
More precisely, the CDS algorithms of (8) in group (1) and (2) coincide with those
reported in (7) ( and, with one exception, also the load intervals); opposed to this,
the 13 algorithms in group (3) are new, and all involve some preventive drop. Two
of the 13 algorithms are displayed on Fig. 2: Fig. 2g (0.85 ≤ � ≤ 0.89), and Fig. 2h
(� = 1). In this regard, the optimization with preventive drop allows for “‘richer”
results than an optimization without preventive drop, since it finds 13 additional
algorithms for � ≥ 0.66, instead of none. The loss performance of all 21 algorithms
is set out as a function of the load in Fig. 4. While the curves of group (1) and
(2) are identical to those of Fig. 3, the curves of group (3) show that, for high
traffic load (� ≥ 0.66), preventive drop does allow for additional loss reduction. As
can be seen on the plots of some of the corresponding policies, on Figs. 2g and 2h,
this performance gain is mainly due to actions of preventive drop, the “‘speculative”
technique mentioned earlier, which is typical for high load situations, dropping those
bursts that would cause large gaps, in order to be able to accommodate future bursts
with (potentially) smaller gaps. When comparing 2g and Fig. 2h, note that, while
the number of preventive drop actions increases, the other actions remain largely
the same as in the policy of Fig. 2f.

Finally, as introduced in Sect. 2.1, the stochastic mechanism of load-dependent
scheduling enables to reduce loss probability even further. Assumed that we have a
perfect estimation of the current traffic load, and schedule bursts accordingly, one
can obtain an improved loss performance curve, as displayed in Fig. 5. While this is
the ideal case, inspection of Figs. 3 and 4 shows that it should suffice to dynamically
switch between three algorithms, in order to approach the loss performance curve
of Fig. 5 rather close. The three algorithms would be drawn from group (1), (2) and
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� 0.20 0.40 0.60 0.80 1.00

N = 2 1.69 1.37 0.86 3.55 8.54
N = 4 5.36 2.92 1.49 6.31 17.86

Table 1: The loss reduction (in %) of an optimized load-dependent CDS algorithm
over MING is assessed, for N = 2 and N = 4, and with preventive drop enabled.
A larger number of delay lines allows for refined optimization, and therefore, the
performance improvement over MING grows as the number of delay lines increases.
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(c) for 0.81 ≤ � ≤ 0.82

Figure 6: While the algorithms in Fig. 2 were obtained for N = 2, these are three
CDS algorithms obtained for N = 4. As in Fig. 2, the actions {1 (join shortest), 2
(join longest), 3 (drop)}) are indicated by {∙, ∘,×}, respectively. Clearly, the larger
number of possible actions better reveals the symmetry of the CDS algorithm, and
this in the case of both low and high traffic load.

(3), in order to deal with low, medium and high traffic load, respectively. Note that
such a dynamic algorithm can be used in practice on the same hardware as MING,
by adapting the action tables of the CDS algorithm to the currently measured traffic
load. The implementation aspects of such setting however go beyond the scope of
this contribution. Further, note that the comparison of such a dynamic algorithm
with the (static) MING algorithm is not strictly fair, and merely serves to show the
potential performance gain enabled by a stochastic mechanism like load-dependent
scheduling.

To verify whether the optimization for deterministic burst size distribution for
N = 2 is representative also for larger FDL sets, we performed the same calculations
for the case of N = 4, B = 6, D = 5 and A = {0, 5, 10, 15, 20}. Apart from being
similar, the optimization is somewhat richer, since the set of possible actions is
larger. With preventive drop allowed, this resulted in 46 different algorithms, which
realize somewhat more performance gain over MING than in the case of N = 2.
Rather than repeating the same figures, we choose to sum up the performance
gain over MING in a load-dependent scenario (with preventive drop allowed), and
gather results in Table 1. Further, in Fig. 6 we display the optimal CDS algorithm
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(c) for 0.49 ≤ � ≤ 0.59

Figure 7: Opposed to the algorithms in Fig. 2 and Fig. 6, these algorithms were ob-
tained for a non-degenerate FDL set A = {0, 6, 10, 16, 20}, which alters the shape of
MING to (a) (instead of the shape in Fig. 2b). In (b) and (c), burst-size-dependent
algorithms are considered. Still, the actions {1 (join shortest), 2 (join longest), 3
(drop)}) are indicated by {∙, ∘,×}, respectively; but this only for the conditioned
policy matrix P1. The policy matrix P2 contains the same actions as P1 except for
the actions marked with a “□”; a marked “∙” implies action 1 for P1 and action 2
for P2; a marked “∘” vice versa. As can be seen, the policy matrices P1 and P2

differ substantially, and in a non-trivial manner.

for � = 0.01 (Fig. 6a), 0.33 ≤ � ≤ 0.39 (Fig. 6b), and 0.81 ≤ � ≤ 0.82 (Fig. 6c)
(the latter, with preventive drop). Especially in the case of very low traffic load,
(Fig. 6a), more symmetry is revealed than for the case of N = 2. However, it is not
possible/obvious to extract a simple rule from this.

Finally, for deterministic bust size distribution, burst-size-dependent scheduling
does not allow further loss mitigation. To examine the latter possibility, we consider
a non-deterministic distribution in the next section.

5.2. Non-deterministic burst size distribution. For varying burst sizes, the
number of possible optimal scheduling algorithms increases spectacularly, as the
possibility of burst-size-dependent allows for further refinement of the CDS algo-
rithm, especially when considered in combination with preventive drop and load-
dependent scheduling. Intuitively, it seems that such burst-size-dependent schedul-
ing algorithms are of crucial importance in case of non-degenerate buffers. There-
fore, rather than an exhaustive optimization study, we limit ourselves here to stating
a clear example with a non-degenerate buffer setting, that motivates the usefulness
of burst-size-dependent scheduling.

The specific setting we assume has a burst size distribution

b(n) = 0.5 ⋅ �n,B1
+ 0.5 ⋅ �n,B2

,

(with �i,j again the Kronecker delta), B1 < B2, BM = B2, and E[Bk] = (B1+B2)/2.
We assume B1 = 5 and B2 = 7. Further, rather than choosing a degenerate
FDL set, we choose a non-degenerate FDL set A = {0, 6, 10, 16, 20} with thus
N = 4. Note that this set is by no means optimized for this purpose; rather, it is
composed of values that are sufficiently near to a degenerate buffer setting (with
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� 0.20 0.40 0.60 0.80 1.00

loss reduction (%) 44.65 21.00 11.86 5.59 1.70

Table 2: The loss reduction (in %) of an optimized burst-size-dependent (and load-
dependent) CDS algorithm over MING is assessed, in case no preventive drop is
applied. Clearly, the performance improvement over MING is significant, especially
for low values of the load.

A = {0, 5, 10, 15, 20}), as it can be expected that non-degenerate FDL sets with
large fluctuation in line lengths are of little practical relevance (at least in the case
of horizon scheduling, as opposed to void-filling [24]).

In a non-equidistant FDL set, also the MING algorithm looks different; its shape
for A = {0, 6, 10, 16, 20} is displayed in Fig. 7a. Further, Figs. 7b and 7c provide the
optimal CDS algorithm for � = 0.01 and 0.49 ≤ � ≤ 0.59, respectively. Further, we
recall that, for burst-size-dependent scheduling, the policy matrices are conditioned
on the burst size, see (4). As such, Figs. 7b and 7c each display both P1, the policy
matrix in case a burst of size B1 = 5 is scheduled, and P2, in case a burst of size
B2 = 7 is scheduled. Further, burst-size-dependent optimization without preventive
drop yields the results listed in Table 2. It illustrates that burst-size-dependent
scheduling performs much better than MING in a non-degenerate setting, especially
for low traffic loads. Note that the introduction of preventive drop (not applied here)
would also enable to realize loss reduction for high traffic load; this would however
not have a direct connection with the benefits of burst-size-dependent scheduling.
Other (initial) results not included here confirm that the large improvement reported
in Table 2 is less pronounced in degenerate buffer settings, but can still be significant.
This question is however beyond the scope of the current contribution, in which we
limit ourselves to introducing the concept of burst-size-dependent scheduling, and
connecting it to non-degenerate settings, for which it seems particularly relevant.

6. Conclusions. In this paper, a CDS performance model and optimization method
were presented. By means of a Markov decision process modeling, it is possible to
generate CDS algorithms that outperform MING, as well as all other commonly
studied heuristic algorithms for CDS. If we assume a static CDS algorithm, some of
the obtained CDS algorithms outperform MING for any value of the load, showing
that MING is never strictly optimal for the given setting, and is thus in general
suboptimal. By combining the obtained policies in a load-dependent algorithm, it
is possible to obtain much better overall loss performance, for the same hardware
requirements as MING.

Further, the performance evaluation of CDS algorithms with preventive drop
shows that this mechanism allows for a richer optimization process, and allows to
further mitigate loss, but only when the load is high. Finally, also the notion of
burst-size-dependent scheduling was introduced; initial results point out that the
loss probability for non-degenerate FDL settings is lowered significantly by means
of this stochastic mechanism, especially when the traffic load is low.

Concluding, an algorithm optimal for any traffic load cannot (in general) be de-
vised, but a load-dependent CDS algorithm should allow to attain improved control
robustness. Further research is needed in order to study (and potentially, develop)
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algorithms that take into account the (instantaneously varying) traffic load, so being
more robust to its variations.
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