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We propose a simple, quick, and cost-effective method for nondestructive eddy-current testing
of metallic cables. Inclusions in the cross section of the cable are detected on the basis of certain
global data: hysteresis loop measurements for different frequencies. We detect air-gap inclusions
inside the cross section using a homogenized model. The problem, which can be understood as an
inverse spectral problem, is posed in two dimensions. We consider its reduction to one dimension.
The identifiability is studied. We obtain a uniqueness result for a single inclusion in 1D by two
measurements for sufficiently low frequency. We study the sensibility of the inverse problem
numerically. A study case with real data is performed to confirm the usefulness.

1. Introduction

In [1], a homogenized model is derived for nondestructive testing (NDT) of heterogeneous
magnetic structures (cables). In this contribution, we employ the model for actual NDT.

NDT can be based on eddy currents or on magnetic properties.
In case of eddy current testing, the imposed field has a sufficiently high frequency so

that eddy currents are induced in the device under test. Cracks can be detected because they
change the path of the eddy currents. The frequency of the excitation determines—via the
penetration depth—the thickness of the scanned region: in case of high frequencies, mainly
the surface is scanned; in case of lower frequencies, also cracks deeper inside the material will
be detected. The paper [2] explains the principle of eddy current sensors and investigates the
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effect of inhomogeneity of the target material. In [3, 4], computational techniques are given
to solve the magnetic field problem in eddy current testing. Both papers also present eddy
current testing experiments: Cardelli et al. consider benchmark problems of an aluminium
plate with different cylindrical defects; Li et al. apply the eddy current testing technique to
multilayer conductive structures.

In case of NDT based on magnetic properties, there are techniques that exploit the
magnetic reluctance variation and techniques that measure magnetic flux leakage. Here, the
frequency of excitation can be very low; even excitation with permanent magnets is possible.
In [5, 6], these two techniques for magnetic analysis of NDT are studied for ferromagnetic
ropes. The cable is modelled in a 3D numerical model as one solid object with uniform
properties. The individual strands are not modelled and—as the magnetic NDT in the cited
paper is static—the considered static numerical model has no eddy currents.

Themodel of the ferromagnetic cable that we derived in [1] is useful for NDT of cables,
both for excitation at low frequency (where changes in magnetic properties are investigated)
and at higher frequency (eddy current testing). It is valid for a wide range of amplitudes and
frequencies.

The motivation of the work in this paper is to improve the performance of
nondestructive testing techniques by exploiting information in the magnetic behaviour of
the target material. We show that by solving an inverse problem based on the model and on
measured hysteresis loops at several frequencies a broader range of defects in the cable can
be detected.

In Section 1.2, we recall shortly the model derived in [1]. In Section 2, we introduce the
problem we study, which can be classified as a 2D inverse spectral problem. We consider its
reduction to 1D. Subsequently in Section 3 we study an inverse problem using the 1D model.
It results in a simple two-parameter determination problem. We validate the method in a real
data experiment in Section 4.

1.1. Detection Setup

Let us have a heterogeneous cable consisting of many thin strands. Usually, the strands are
not isolated separately. A coating can be applied to the cable to avoid corrosion. We consider
NDT of such a cable based on magnetic hysteresis and eddy currents. The detector has a very
simple design. It is made of a single excitation coil and a single measurement coil, which
are wound around the cable, see Figure 1. When an alternating current flows through the
induction coil, the corresponding alternating magnetic field is induced. Consequently, eddy
currents are induced in the cable.

Due to the heterogeneous nature of the problem, very fine space discretizations,
for example, very fine meshes for finite element models (FEM), are required to obtain a
feasible accuracy of a model. A certain model reduction has to be applied to avoid extensive
computational costs.

1.2. Model

The facts presented in this section are direct consequences of the results obtained in [1].
Let the circular cross section of a cable be the computational domain Ω. The outer

circular boundary of Ω is denoted by ΓE. We introduce into the cable an inclusion ΩI . For a
multiplicity of exposition, we assume that ΩI is simply connected, that is, that we have only
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Figure 1: (a) uncoated cable with 7 bundles of strands, (b) 2D scalar model, (c) experimental setup: a part
of the excitation and the measurement winding around the coated cable. The coating is removed on the
left of the figure to clearly show the individual strands, (d) cable where one bundle of strands is removed
over a length of 1 cm. To make the defect visible, the coating is removed and the “defect” bundle of strands
is folded in radial direction. Evidently, the method for NDT does not require the defect to be visible.

one inclusion. ΩI is filled with nonconductive material (air), that is, σ = 0. The boundary of
ΩI is denoted by ΓI . Let us define Γ := ΓE ∪ ΓI and ΩC := Ω \ΩI . We suppose thatΩC is filled
with a conductive material (metal). Further, we assume that the inclusion is buried inside,
that is, dist(ΩI , ΓE) > 0 (ΓE ∩ ΓI = ∅). Otherwise it could be detectable by visual inspection,
see Figure 2.

If the induction coil is sufficiently uniform, it induces the magnetic field H
perpendicular to the cross section of the cable. Let e1, e2, e3 be the Cartesian coordinate system
and let an infinitely long cable be aligned along e3. We have

H = He3. (1.1)

In [1], we assumed that the diffusion of electromagnetic fields in the heterogeneous
cable can be described by the Maxwell equations with periodically oscillating coefficients.
An accurate and computationally efficient model can be then derived. The idea behind is
to replace the heterogeneous material in the cross section by a fictitious homogeneous one,
whose behaviour at themacroscopic level is a good approximation of the one of the composite
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Figure 2: Problem setting.

material. We obtained such a homogenized (asymptotic) model employing the two-scale
convergence. We validated the model on real steel cable data. In the isotropic case the model
reads in the terms of H :

−ΔH + iωσhμhH = 0, in ΩC, (1.2)

H = HE, on ΓE, (1.3)

H −HI = 0, on ΓI , (1.4)

iωσhμ0|ΩI |HI +
∫
ΓI
∇H · n = 0, (1.5)

where μ0 is the permeability of the vacuum, ω is the angular frequency in rad/s, n is the
normal outer unit vector with respect to ΩC and HE is the prescribed Dirichlet boundary
condition on the exterior boundary ΓE.HI is an a priori unknown boundary condition on the
cavity (interior) boundary ΓI . From physical reasonsHI is a complex andHE a real constant.
(1.5) is an nonlocal boundary condition on ΓI obtained considering Ampère’s law in ΩC and
the Faraday’s law inΩI and using the continuity of tangential components of the electric and
magnetic field intensities, together with the fact that the conductivity is zero inΩI . This extra
condition is sufficient to determineHI .

The homogenized conductivity σh and homogenized permeability μh are scalar,
generally complex, constants. They are given by certain integral expressions on Y , the so-
called Y -cell, from repetition of which ΩC is made. Let us recall here, that, we assume that
the heterogeneous cable has a periodic structure. For details, see [1]. Let us remark that σh is
a scalar only in the isotropic case.

The homogenized system has an identical form as the original multiscale system.More
importantly, we obtain exactly the system (1.2)–(1.5) if we consider a homogeneous cable
made from a material with the permeability μh and the conductivity σh, that is, μh and σh

preserve their physical interpretation. Consequently, the results we obtain in this paper are
valid for the homogeneous case as well.

If the periodic permeability and the conductivity are bounded and coercive, the
homogenized μh, σh are bounded and coercive as well. We obtain a unique solution H ∈
H1(ΩC) to (1.2)–(1.5), see [1].
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We define the permeability in Ω by

μ =

⎧⎨
⎩
μh, in ΩC,

μ0, in ΩI ,
(1.6)

where μ0 is the vacuum permeability, and the conductivity by

σ =

⎧⎨
⎩
σh, in ΩC,

0, in ΩI .
(1.7)

2. Inverse Spectral Problem

In this section, we study the problem of detection of inclusions buried inside the circular cross
section of the cable as described in Section 1.2. We want to acquire as much information as
possible about the inclusions based on the measurement for different frequencies.

The problem is closely related to the inverse conductivity problem [7], where one
wants to determine an inclusion ΩI , that is, the characteristic function χΩI , on the basis of
Dirichlet-to-Neuman data on ΓE. Let us prescribe certain Dirichlet boundary condition on
ΓE and then let us solve the governing (elliptic) equation. We can take the Neuman trace
of the solution, if this one is regular enough. In this way we define the so-called Dirichlet-
to-Neuman operator. The inverse conductivity problem lies in determining inclusions on
the basis of one pair or more pairs of the corresponding Dirichlet-to-Neuman data. This
problem is well studied, particularly in two-dimensions, see [7, 8] and references therein.
In [8] the authors obtain uniqueness results in 2D for convex polygonal inclusions by two
measurements.

Using the Dirichlet-to-Neuman approach for NDT of cables has two disadvantages.
First, it is quite expensive to obtain local measurements of the magnetic field and the
induction on ΓE: it requires to build quite complicated sensors for local magnetic field and
induction measurements [9], and the gathering of the measurements is a fairly slow process.
However, it is the only way to obtain full topological information, that is, the support of an
inclusion. Sometimes such a complete information is redundant, for example, it can only be
important how big the inclusion is and how deep it is buried inside the cable. The second
disadvantage of the Dirichlet-to-Neuman approach is that it does not exploit symmetry.

Let the macroscopic electromagnetic behaviour be described by (1.2)–(1.5), that is, the
homogenized model which was validated in [1]. We can define to the solution H to (1.2)–
(1.5) the corresponding operatorHwhich maps to ω andΩI this solution, that is,H(ω,ΩI) :
� × τ → H1(Ω), where τ is a certain topological space.

We cannot reach the solution H directly, we can only measure some global quantity
dependent on H , for example, the magnetic energy. Consequently, we consider a certain
functional F(H(ω,ΩI)) : � × τ → � . The question is what information can be obtained over ΩI

from the range R(F) of functional F forω ∈ [0,∞). This question is very general and vague. The
answer is certainly dependent on functional F, topological restrictions of τ and the governing
equation.

We categorize the problem as an inverse spectral problem (ISP) [7]. The question which
ISP asks is if a domain Ω can be determined by the eigenvalues λ (resonance frequencies) of
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Figure 3:What can be determined?

an elliptic PDE with a homogeneous Dirichlet boundary condition on ∂Ω. The problem, we
study does not strictly belong to this category. We do not consider only the eigenvalues but
ω ∈ [0,∞). We do not try to recover the domain Ω itself, but only its inclusion ΩI . Also the
boundary conditions are nonhomogeneous, and the solution has to fulfill (1.5). The data are
not the eigenvalues but certain global measurements F(H(ω,ΩI)). But the main goal is the
same: to determine the geometry based on measurements for different frequencies.

2.1. Reduction of the Model to 1D

We will not solve the problem in two dimensions, but we will exploit the symmetry of the
circular cross section and obtain a one-dimensional problem in radial direction. The reduction
will be quite accurate. We will show numerically, that almost all the 2D spectral information
can be described by the resulting 1D model.

Let us assume that the total magnetic flux through the cross section

F(ω,ΩI) :=
∫
Ω
μH (2.1)

is the global information available. This is one of the reasonable and physically relevant
choices. Another one is the total magnetic energy inside the cross section.

First, the volume of the inclusion |ΩI | is uniquely determined by a single measurement
for ω = 0. ThenH = HE is the unique solution to (1.2)–(1.5). The permeability inside ΩI is μ0

and μ = μh /=μ0 inΩC. Consequently, |ΩI | is indeed determined by F(0,ΩI). (It it not possible
to obtain measurements for ω = 0. By measurements for ω = 0, we mean measurements for
sufficiently low frequency.)

Second, since we hold a constant magnetic field HE on ΓE, we cannot distinguish
two identical inclusions with different angular positions buried at the same radial position
(depth), see Figure 3(a).

Third, the penetration depth of the magnetic field decreases if ω increases. Intuitively,
inclusions deep inside can be identified based on low-frequency measurements. Inclusions
close to ΓE will alter F(ω,ΩI) also for high ω.
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Figure 4: Symmetrization of inclusion: (a) the inclusion, (b) its symmetrization, and (c) Re(H(r)).

Based on the above heuristic, only the distribution of the “mass” along the radial
direction is important. It seems, that there should exist a 1D model, which approximates the
2D case quite accurately.

We employ a simple idea to replaceΩI by an auxiliary radial symmetric inclusion—a
ring RI , see Figure 4. Let a be the inner and b be the outer diameter of the ring inclusion. We
ask |ΩI | = |RI | to be able to copy the caseω = 0 and that the mass is buried at the same depth.
The physical properties of RI , that is, σ = 0, μ = μ0 are the same as for ΩI , that is, we replace
ΩI by an isolating ring. In such a way, ΩI is described by only two-parameters, its surface
and its depth, that is, the diameter of the ring s = (a + b)/2.

Another possible approach is to try to derive a model based on averaged physical
properties along the radial direction. One could integrate the governing equations in polar
coordinates, make some simplifying assumptions on the solutionH(r, θ) (as (∂H(r, θ)/∂θ) =
0), and attempt to derive an approximative model using only averages in angular direction.
The approach we use is more simple and illustrative.

Equation (1.2) in polar coordinates reads

−1
r

∂H

∂r
− ∂2H

∂r2
− 1
r2

∂2H

∂θ2
+ iωμhσhH = 0. (2.2)

Recalling that we have constant Dirichlet boundary condition H = HE on ΓE and that the
geometry is as depicted in Figure 4(b)we immediately argue thatH is function of r only. Let
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c be the radius of Ω and let RI = {(r, θ) | a < r < b, 0 < θ ≤ 2π}. Then (1.2)–(1.5) becomes

1
r

dH

dr
+
d2H

dr2
∀ ≡ × = iωσhμhH, in ΩC, (2.3)

H(c) = HE, (2.4)

H(a) = H(b) = HI, (2.5)

dH

dr
(0) = 0, (2.6)

iωμ0σ
h
(
b2 − a2

)
HI = 2

[
b
dH(b+)

dr
− a

dH(a−)
dr

]
. (2.7)

The solution of (2.3)–(2.7), depicted for a = 0.001m, b = 0.0015m, c = 0.0025m, σh =
4.1e6 S/m, μh = 100μ0, HE = 1000A/m (physical example) in Figure 4(c), can be computed

explicitly. Let us define k :=
√
−iωμhσh. We obtain

H(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1J0(kr), r ∈ [0, a),

c1J0(ka), r ∈ [a, b),

c2J0(kr) + c3K0(−ikr), r ∈ [b, c],

(2.8)

where J0 is the Bessel function of the first kind of order 0 and K0 is the modified Bessel
function of the second kind of order 0. Condition (2.6) was used to rule out the fundamental
solution K0 on interval [0, a), since (d/dz)K0(z) = −K1(z) andK1(z) has a singularity in z =
0. The constants c1, c2, and c3 are determined from (2.4) and (2.5). In (2.5), HI is determined
from (2.7), see the proof of Theorem 3.1 in Section 3.1.

Now, we compare numerically how well the 1D model (2.3)–(2.7) approximates the
results of the 2Dmodel for different inclusionsΩI from the point of view of F(H(ω,ΩI)). Real
measurements, which are at least two-dimensional, have to be reproducible by the model.
Good approximative properties are very important.

The 2D problem is solved by the finite element method. A very fine mesh is used, thus
the solution is quasiprecise. To solve the resulting linear problem, a Cholesky solver with
accuracy ε = 10−12 is employed. F(ω,ΩI) for ω = 2π2i, i = 1, . . . , 14 is computed. We compare
the resulting F(ω,ΩI) with the corresponding results of 1D model with the ring inclusion,
that is, F(ω,RI). First, let ΩI to be a circular inclusion. This case is the most probable in
real world applications. It represents a single strand of a cable. Figure 5 shows that visually
the results of 1D and 2D model are indistinguishable. The relative error of F(ω,ΩI) is only
0.724%. Let us note, that the parameters a, b, c, HE, σh and μh are here the same as by
Figure 4(c), see the corresponding text above.

In Figure 6, there are results for square and box inclusions. For the square inclusion,
the relative error of F(ω,ΩI) is 1.217%. For the box inclusion, the relative error becomes
4.55%. The mass of the box is not concentrated around a point but is more spread along the
radial direction. In this case a two-parameter approximation by a ring becomes questionable.
However, even in this case the representation error is smaller than the modelling error, see
Section 4.4 of [1]. As before, all the parameters are the same as by Figure 4(c), except a and b,
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Figure 5: Accuracy of 1D model for circular inclusion; 0.724% relative error of F(ω) between 1D and 2D
model for f ∈ [2, 214].

which are computed so that the masses of the object and of the corresponding ring are equal
and that (a + b)/2 coincide with the center of mass of the object.

3. One-Dimensional Inverse Problem

In the previous section, we have shown that quite general inclusions can be reasonably well
approximated by a ring inclusion. It means if one has real world data, these can be described
by a very simple explicitly solvable model (2.3)–(2.7) with only two-parameters a and b. In
the case of two disjunct inclusions, we could consider two rings. Let us suppose that a, b are
unknown parameters, that is, we do not know if there is an inclusion and if yes where the
inclusion is buried. We study the following inverse problem.

Problem 1. Determine constants a and b in (2.3)–(2.7), that is, determine the ring inclusion,
based on measurements of F(ω,RI) for different frequencies ω.

F(ω,RI) given by (2.1) can be computed explicitly, see [10]. We obtain

F(ω,RI) =
∫2π

0

∫ c

0
rμH(r) = 2π

∫ c

0
rμH(r)

(2.8)
= 2π

{
μhc1

∫a

0
rJ0(kr) +

∫b

a

rμ0HI + μh

∫ c

b

r[c2J0(kr) + c3K0(−ikr)]
}

= 2π

(
μhc1

aJ1(ka)
k

+ μ0HI
b2 − a2

2
+ μh

[
c2
rJ1(kr)

k
− c3

rK1(−ikr)
−ik

]c
b

)
.

(3.1)
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Figure 6: Fingerprints of 1Dmodel for (a) square inclusion −1.217% relative error of F(ω); (b) box inclusion
−4.55% relative error of F(ω).

3.1. Uniqueness

Theorem 3.1. The ring inclusion, that is, a ∈ �, b ∈ �, such that a > 0, c > b > a can be uniquely
determined by two measurements of �(F(ω,RI)) for ω = 0 and for ω = ε, where ε is sufficiently
small.

Proof. The proof is quite technical, but the main idea is simple. The area S = |RI | of the ring
inclusion is uniquely determined by a single measurement for ω = 0. Thus it is sufficient
to obtain the uniqueness for one of the parameters a, b, say a. Then b =

√
S/π + a2.

Consequently we can consider F(ω,RI) to be a function of a only. We would like to show
that if �(F(ω, a = a1)) = �(F(ω, a = a2)) for an ω > 0, then a1 = a2. This seems to be,
working directly with Bessel functions, quite difficult.

The idea is to exploit the asymptotic behaviour of Bessel functions when ω → 0. We
consider the Taylor expansion of F(ω, a) with respect to ω at ω = 0, that is,

F(ω, a) = F(0, a) +
∂F(0, a)

∂ω
ω +O

(
ω2
)
. (3.2)
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The F(ω, a) is an analytic function inω, since it is an integral of a linear combination of Bessel
functions, which are analytical (except for the origin in the case of K0) [10]. The coefficients
ci, i = 0, . . . , 2 of the linear combination are dependent on ω via (2.7), but are also analytical.
We can indeed use (3.2).

Now, we evaluate F(0, a) and ∂F(0, a)/∂ω from (3.2). We obtain immediately that

F(0, a) = HE

[
μ0|S| + μ

(
πc2 − S

)]
(3.3)

since limω→ 0H = HE. To evaluate ∂F(0, a)/∂ωwe employ the asymptotic behaviour of Bessel
functions. We have

lim
x→ 0

n!
(
2
x

)n

Jn(x) = 1, n = 0, . . . ,

lim
x→ 0

(
− ln
(x
2

))−1
K0(x) = 1,

lim
x→ 0

xK1(x) = 1.

(3.4)

The solution H to (2.3)–(2.7) can be expressed as H = H1 + αH2 + βH3 whereHi, i = 1, . . . , 3,
are the solutions to the following problems

1
r

dH1

dr
+
d2H1

dr2
= iωσhμhH1, in ΩC,

H1(c) = HE,

H1(a) = H1(b) = 0,

dH1

dr
(0) = 0,

1
r

dH2

dr
+
d2H2

dr2
= iωσhμhH2, in ΩC,

H2(c) = 0,

H2(a) = H2(b) = 1,

dH2

dr
(0) = 0,

1
r

dH

dr
+
d2H

dr2
= iωσhμhH3, in ΩC,

H3(c) = 0,

H3(a) = H3(b) = i,

dH3

dr
(0) = 0.

(3.5)
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α and β are determined by (2.7). Using this, (3.1) can be alternatively expressed as

F(ω, a) = 2πμ
{∫ c

0
rH1(r) + α(ω, a)

∫ c

0
rH2(r) + β(ω, a)

∫ c

0
rH3(r)

}
. (3.6)

We differentiate the right-hand side of (3.6) with respect to a and take the limit for ω → 0.
By a tedious computation we obtain

∂�(F(0, a))
∂ω

= lim
ω→ 0+

∂�(F(ω, a))
∂ω

= πHEμ
2c2 ln(c/b) + b2 − c2

2 ln(c/b)
. (3.7)

Let us differentiate (3.2) with respect to a. We obtain

∂�(F(ω, a))
∂a

=
∂�(F(0, a))

∂a
+

∂

∂a

(
∂�(F(0, a))

∂ω

)
ω +O

(
ω2
)
, (3.8)

where we employ (3.3) and (3.7) and obtain

∂�(F(ω, a))
∂a

= πHEμa
2b2 ln(c/b) + b2 − c2

2ln2(c/b)b2
ω +O

(
ω2
)
. (3.9)

We obtained that for ω small enough we can approximate ∂�(F(ω, a))/∂a by a simple
expression. This expression is always negative, since 2b2 ln(c/b) + b2 − c2 is always negative
for b < c. To see this just we use substitution x = b/c. We obtain

2b2 ln
(c
b

)
+ b2 − c2 = c2

(
−2 ln(x) + x2 − 1

)
, (3.10)

where −2 ln(x) + x2 − 1 is negative for x < 1. We obtained that �(F(ω, a)) is decreasing in a,
which gives the uniqueness.

Remark 3.2. One of the parameters in the above proof is identified on the basis of the
measurement at zero frequency. Let us note, that the second one could be roughly identified
using the skin depth

ρ =

√
2

ωσμ
(3.11)



Mathematical Problems in Engineering 13

0 0.0005 0.001 0.0015 0.002 0.0025

3

0

−3

−6

×10−14

a

R
e(
F
(a
))

(a)

6

4

2

0

l(
a
)

×10−14

0 0.0005 0.001 0.0015 0.002 0.0025

a

(b)

Figure 7: (a) plot of F for f = 0.1Hz as a function of a shifted by −1.97885562 · 10−6 (b) the corresponding
l(a) (optimal a = 0.0010m, b = 0.0015m).

as long as a defect much deeper than ρ cannot be detected. The higher the frequency, the
smaller the skin depth. We have the following estimates based on the asymptotic expansions
of Bessel functions of a very large argument (see, e.g., [10]):

|Jν(z)| ≤
∣∣∣∣∣(2 + α)

(
2
πz

)1/2
∣∣∣∣∣,

|Kν(z)| ≤
∣∣∣∣(1 + α)

( π

2z

)1/2
e−z
∣∣∣∣,

(3.12)

where ν ∈ � is the order of the Bessel function, α is any positive real number and |z| is
sufficiently large. Thus we have thatH , given by (2.8), relatively quickly drops in amplitude.
The parameter k in the argument of the Bessel function in (2.8) is inversely proportional to
the skin depth: |k| =

√
2ρ−1. Consequently, when using a sufficiently high angular frequency

ω, skin depth ρ is small, the field penetrate not deep enough and we are not able to see a
difference in the flux F for a cable with and without an inclusion as long as this inclusion is
buried much deeper than ρ. This can be observed in Figure 5.

To confirm numerically Theorem 3.1 we computed F(ω, a) for small f = 0.1Hz. The
inclusion is given by a = 0.0010m and b = 0.0015m. F(ω, a), depicted in Figure 7(a), is indeed
a decreasing function of a. Let us define a least square problem by the following functional:

l(a) :=
n∑
i=0

(
�(F(ωi, a)) − F̃i

)2
, (3.13)

where F̃i, i = 1, . . . , n, aremeasurements of the real part of the magnetic induction through the
cross section of the cable for different frequencies fi, i = 1, . . . , n. In Figure 7(b) we depicted
l(a) corresponding to F(ω, a) of Figure 7(a). We have two exact measurements for f0 = 0Hz
and f1 = 0.1Hz, that is, n = 2. We see that l(a) really achieves its minimum at a = 0.0010m.
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Figure 8: Sensitivity of parameters a and b − a in the case of two measurements to: (a) frequency choice f1
(f0 = 0Hz), (b) noise; c = 0.0025m, b−a = 0.0005m in all experiments; in (a) noise is 1%; in (b) f1 = 500Hz.

3.2. Stability Analysis

Relation (3.9) from the proof of Theorem 3.1 could be used to analyze the sensitivity of
Problem 1 for very low frequencies. But since the problem is ill-posed, one usually tries to
sample for a very broad range of frequencies to ensure stability. We will analyze the stability
of Problem 1 numerically.

To calculate a and b on the basis of measurements we use a hybrid minimization
algorithm. First we run a global search on a rough grid. Then we employ the Levenberg-
Marquardt [11, 12] algorithm to find the local minimum. We implemented the problem in
C++ using [13]. The global search on a rough grid is computationally feasible since the
evaluation of the explicit function (3.1) takes only approximately 0.3ms on a regular PC (Intel
Core2 Duo CPU T7250 @ 2.00GHz).

First, we will consider only two measurements, one for f0 = 0Hz and one for a
variable frequency f1. We want to see how the choice of f1 influences the accuracy. We
consider uniform distributed noise of 1%. In the global searchwe take a uniformly distributed
grid of 20 × 20 points. The maximum number of iterations for the Levenberg-Marquardt
algorithm is set to 100. We compute the relative standard deviation s for samples ofN = 1000
computations, that is, for example for a

s =

√∑N
1 (ai − a)2

a2N
, (3.14)

where a is the known value (not average) and ai, i = 1, . . . ,N, are the sampled values.
The results are depicted in Figure 8(a). We consider two gaps a = 0.0006m and a =

0.0011m with the same width b − a = 0.0005m.
The first observation is that only the measurements for a quite narrow interval of

frequencies yield the best possible accuracy. The second observation is that for two mea-
surements with 1% level of noise s never falls under 5% level, that is, two measurements are
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Figure 9: Standard deviation of parameters a = 0.0011 and b − a = 0.0005 (as a function of noise) for
different numbers of measurements (N = 2, 4, 6, 8): (a) s(a); (b) s(b − a).

certainly not enough. And the third observation is that the inclusions buried deeper inside,
that is, a = 0.0006m, are recovered less accurately than the inclusions close to the surface.

Now, let us take a fixed frequency f = 500Hz, which lies in the optimal interval
according to the above experiment. We consider the sensitivity of the inverse problem with
twomeasurements for different levels of noise. The global search is performed on a uniformly
distributed grid of 50× 50 points. The relative standard deviation s for recovered parameters,
computed for samples of N = 100, is depicted in Figure 8(b). The results again confirm that
the inclusions buried deep inside are much more sensitive to the noise in the measurements
than those close to the surface. Even for very low levels of noise is the accuracy of the recovery
of a deep buried inclusion quite poor.

Let us analyze how the number of measurements influences the accuracy. We
considered N = 2, 4, 6, 8 measurements where f0 = 0Hz in all the cases and fi = 500 +
100(i −N/2)Hz, i = 1, . . . ,N − 1, that is, the measurements are regularly distributed around
“optimal” value f = 500Hz. We again sample 100 times and we also take a uniformly
distributed grid 50× 50 for the global search as before. Figure 9 depicts standard deviations s
of a and of b − a for different numbers of measurements as a function of noise. Considering
more measurements improves the accuracy significantly. For N = 8 and the noise level of 5%
which is our expected modeling error, see Section 4.3 of [1], s(a) is around 10% and s(b − a)
even drops under 10%. Slightly better accuracy for b − a with respect to a is due to the fact
that b − a is computed based on all the measurements, but the position a is indifferent to the
measurement f0 = 0Hz.

Figure 10 depicts the averages a and b − a. Let us recall we sample 100 times. The error
of recovery lies for N = 8 within 10% error band for both a and b − a. Notice, that the corre-
sponding s(a) and s(b − a) are around 0.3. We see that the averages a and b − a are biased
estimators of a and b − a, respectively. We assume that the reason is of algorithmic nature.

4. Real Data Experiment

We present a real case study to confirm the usefulness of the proposed inclusion detection
method.
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Figure 10: Average values of parameters a = 0.0011m and b − a = 0.0005m (as a function of noise) for
different numbers of measurements (N = 2, 4, 6, 8): (a) a; (b) b − a.

4.1. Experiments

The experimental setup is identical to the setup from [1]. The considered cable has 7 bundles
of strands, each bundle consists of 19 wires with a diameter of 0.3mm: Figure 1(a). The
inspection of the cross section of the cable shows that the center s of all bundles except the
central one is situated at a radial distance of approximately 1.6mm.

To obtainmeasurements for validating the model, three ring core sensors for hysteresis
loops were made by winding an excitation and a measurement winding around the material
to test.

(i) For the first ring core, the material to test is a set of 18 strands that were electrically
insulated by giving them an acryl coating.

(ii) For the second ring core, the material to test is a piece of undamaged coated cable:
Figure 1(c).

(iii) For the third ring core, the material to test is the same cable where one bundle of
strands is removed over 10mm length: Figure 1(d).

To make the ring cores, firstly the strands (for the first ring core) or the cable (for the second
and the third ring core) were folded to a ring (toroid) with 300mm circumference. A ferrite
core was added around the connection of the cable ends to close the magnetic lines. This
simulates an infinitely long cable. Then, an excitation and a measurement winding were
added, uniformly distributed along the circumference. Finally, an isolating tape was added:
see Figures 1(c) and 1(d).

Let us note that it is also possible to make a straight sensor that can be moved over a
cable to continuously scan new sections of a long cable.

We measured on each ring core on the one hand 40 quasistatic BH-loops (0.5Hz)
between 0 and 5150A/m, and on the other hand dynamic BH-loops and corresponding
losses for four levels of magnetic induction (50mT, 100mT, 200mT, 500mT) and for
frequencies f of 50, 100, 200, 300, 500, 1000, 2000, 3000, and 5000Hz. Generating the current
for the excitation winding is done by a National Instruments PCI-6110 data acquisition card
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in combination with a Kepco 50V/8A linear amplifier. The voltage waveform induced in
the measurement coil—proportional to dφ/dt—is integrated via an analog integrator. For
each induction level and for each frequency, this integrated waveform obtained from the
measurement coil is sampled simultaneously with the enforced current waveform in the
excitation coil. The sampling is done by the same data acquisition card at a sampling rate of
200 samples per period for the loops at 3 and 5kHz, and at a rate of 1000 samples per period
for the other frequencies (0.05 to 2 Megasamples per second). In the LabVIEW software, the
integrated waveform of the measurement coil is converted to an induction waveform B(t)
and the current waveform is converted to the externally applied field waveform H(t) via
Ampère’s law. This results in the dynamic BH hysteresis loops, used by the inverse problem.
The LabVIEW program has a feedback control algorithm on the waveform shape of the
induction: it adjusts the excitation current waveform in order to obtain a sinusoidal induction
waveform.

4.2. Identification of the Parameters for the Homogenized Models

The homogenized models used in the inverse problem, see Section 4.3, require the
homogenized permeability μh, and the homogenized conductivity σh.

The homogenized permeability is a function of the magnetic induction. It is found via
quasistatic (0.5Hz) hysteresis loop measurements on ring core 1, that consists of individually
isolated strands. The modelling of the hysteresis loops is done using a complex magnetic
permeability. In a time harmonic model, this complex permeability produces ellipses in
the BH-plane. The determination of the complex permeability for a given frequency and
amplitude is done by a least squares fitting of the ellipses on the measured quasistatic
hysteresis loops. Evidently, the ellipses are only an approximation of the experimental
hysteresis loops: the deviation between the ellipses and the measured loops is small if
the material is not saturated (Figure 11(a)); the shape of the experimental hysteresis loops
deviates more from the fitted ellipses if the material is saturated (Figure 11(b)). Once the
complex permeability is found for a broad range of induction values, the homogenized
permeability is found using the homogenization result—Theorem 3.1 in [1]. We obtained
μh(50mT) = (8.43799 · 10−5,−9.72202 · 10−6), μh(100mT) = (0.00010495,−2.79189 · 10−5),
μh(200mT) = (0.000160883,−9.77414 · 10−5), and μh(500mT) = (0.000318907,−0.00028671).

The homogenized conductivity σh is found for each of the models via an inverse
problem with as input the measured dynamic loops on ring core 2 (the cable without an
inclusion), as explained in [1]. See Section 4.3 for the values of σh for a particular model from
that section.

The physical electrical conductivity (not the homogenized conductivity σh) is found
to be 4.1MS/m by enforcing a DC current in a strand and by measuring the voltage over a
well-known length of the strand.

4.3. Identification of Defects by Solving the Inverse Problem

In [1] we derived three successive versions of the homogenized model. All the models
incorporate magnetic hysteresis via the complex homogenized permeability μh.

In the case ofModel 1, σh is a real function of the induction level.Model 2 considers σh to
be a complex function of the induction level. Consequently, it can describe electric hysteresis
effects as well. The most accurate model, Model 3, assumes that σh is a complex function
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Figure 11: (a) Quasi-static BH-loops (0.5Hz) for H ≈ 1000A/m and B ≈ 0.2 T is a good approximation of
the measured loop; (b) ellipse forH ≈ 3000A/m and B ≈ 1.5 T is a worse approximation.

Table 1: Fitted homogenized conductivity ofModel 1.

Induction (mT) σh (S/m) Relative error
50 20808 15.24%
100 28585 14.94%
200 83014 17.99%
500 274716 19.43%

of frequency, particularly that σh = σh
1 + ωσh

2 , where σh
1 and σh

2 are only functions of the
induction level. The models achieve accuracies around 15%, 10%, and 5%, respectively. In
Tables 1, 2, and 3 we present the homogenized σh for all the models as obtained in [1]. The
achieved modeling errors are therein presented as well.

We test how the models can comply with a real data inclusion detection problem
described above. The results are summarized in Table 4. Two numbers are presented:

(i) N—the number of wires detected defined by

N :=
π
(
b2 − a2)

(π0.000152)χ
, (4.1)

where 0.00015m is the radius of the small wire and χ is the fill factor, that is, how
much from the cable area is occupied by the wires. We have

χ = 7 · 19 · π0.00015
2

π0.00252
= 0.4788, (4.2)

(ii) s—the center of the ring, that is, s = (a + b)/2.

We expect that the optimal values are approximately N = 19 and s = 1.6mm.
Each row of Table 4 represents a different set of measurements which is taken into account.



Mathematical Problems in Engineering 19

Table 2: Fitted complex homogenized conductivity ofModel 2.

Induction (mT) Re(σh) (S/m) Im(σh) (S/m) Relative error
50 30410 −73968 8.66%
100 34044 −56107 8.22%
200 86895 −116639 9.80%
500 333436 −187726 14.33%

Table 3: Fitted complex homogenized conductivity ofModel 3.

Induction (mT) Re(σh
1 ) (S/m) Im(σh

1 ) (S/m) Re(σh
2 ) (S/m) Im(σh

2 ) (S/m) Relative error
50 49411 −155675 −0.213612 0.944442 5.76%
100 58097 −112239 −0.284609 0.654771 5.04%
200 173886 −174930 −2.33445 1.7578 5.98%
500 512867 −151052 −14.3317 −0.206326 8.90%

Table 4: Real experiment;N: the number of detected wires; s: the center of the ring; (a) all measurements;
(b) low frequencies: all measurements for f ∈ [0.5, 300]Hz; (c) middle frequencies: all measurements for
f ∈ [100, 1000]Hz; (d) high frequencies: all measurements for f ∈ [500, 5000]Hz.

Model→ 1 2 3
Sample ↓ N s [mm] N s (mm) N s (mm)
(a) 23.03 1.5979 17.90 1.5897 11.82 1.9204
(b) 17.80 2.3876 16.09 2.3989 11.60 2.4213
(c) 24.83 2.3698 22.39 2.3900 16.38 1.9177
(d) 42.35 0.7179 24.47 0.5750 13.26 1.2940

We have altogether 40 measurements for 4 different induction levels. We consider all the
measurements (N = 40), low frequency measurements for f ∈ [0.5, 300]Hz (N = 20), middle
frequencies for f ∈ [100, 1000]Hz (N = 20) and only the high frequency measurements for
f ∈ [500, 5000]Hz (N = 20).

From the results of the first two models, that is, Model 1 and Model 2, we conclude
that the measurements for the complete spectrum of frequencies have to be included to
obtain accurate results. Taking all the measurements yields very good agreement with the
expected values.Model 1 found that 23.03 small wires were removed from the radial position
r = 1.5979mm. Model 2 found that 17.90 small wires were removed from the radial position
r = 1.5897mm. There is very good agreement of the recovery between the models, especially
of the position.

Model 2 recovers the number of removed wires more accurately. It suggests that this
model is better in predicting low frequency behaviour of the problem. The low frequencies
(magnetic effects) are responsible for accurate recovery of the removed mass.

The results of the most accurate Model 3 are not consistent even for the whole set of
the measurements, see Table 4(a). Based on the good results of the other two models, we can
conclude that there are two possible reasons for the behaviour. First, probably 4 parameters
per induction level are too many to fit. Let us note, the problem of finding σh

1 and σh
2 is ill-

posed. A sufficient number of measurements and/or some kind of regularization are needed
to get feasible σh

1 and σh
2 . Second, the results of the model from Figure 10 in [1] show that the
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losses are not monotonically decreasing, which we think is not physical. One probably has to
enforce some constraints on σh

1 and σh
2 to correct the model.

5. Conclusions

We considered a problem of detection of inclusions in a metallic cable using a homogenized
model derived in [1] and global magnetic hysteresis loops measurements for both low and
high frequency (up to 5000Hz).

We reduced the original 2D problem to a one-dimensional problem by symmetrization
of a possible inclusion to a ring. We showed numerically that this reduction is rather accurate
with respect to the flux through the cross section. At the same time, the inclusion is described
by only two-parameters. The resulting 1D model has a piecewise analytical solution, which
allowed us to evaluate explicitly the flux through the cross section of the cable. Thus the
model is very fast.

We studied an inverse problem of detection of the ring inclusion. We obtained a
uniqueness result, studied sensibility and considered a real data experiment.

The results show that—despite of its simplicity—the model is applicable in real world
conditions. The most accurate adaptation of the model achieves an accuracy around 5%when
estimating the number of defect strands and the radial position of the defect.
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