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Abstract. Supporting different services with different Quality of Service (QoS)
requirements is not an easy task in modern telecommunication systems: an effi-
cient priority scheduling discipline is of great importance. Fixed or static prior-
ity achieves maximal delay differentiation between different types of traffic, but
may have a too severe impact on the performance of lower-priority traffic. In
this paper, we propose a priority scheduling discipline with priority jumps to
control the delay differentiation. In this scheduling discipline, packets can be
promoted to a higher priority level in the course of time. We use probability
generating functions to study the queueing system analytically. Some interest-

ing mathematical challenges thereby arise. With some numerical examples, we
finally show the impact of the priority jumps and of the system parameters.

1. Introduction. Modern integrated telecommunication systems are designed to
offer a wide variety of services, such as telephony, data transfer, and video confer-
encing. Different services, however, have extremely diverse Quality-of-Service (QoS)
requirements. Real-time services, like video conferencing or internet telephony, do
not tolerate delay but can sustain some loss, while non-real-time services, like send-
ing data files, allow for some delay but are quite vulnerable to loss. In this paper,
we focus on delay as QoS measure. Regarding their different delay requirements,
we categorize real-time traffic as delay-sensitive and non-real-time traffic as delay-
tolerant in the remainder.

To support different types of traffic in modern telecommunication systems, many
priority scheduling disciplines have been proposed over the years. Priority schedul-
ing can be implemented in two ways, i.e., on queue level or on packet level. In the
first case, different types of packets are stored in different queues, and each queue is
provided a different priority level. Then either the highest non-empty priority queue
is always chosen to be served next (see e.g., [9, 12, 13]), the queues are served in a
weighted, fixed order (see e.g., [5, 11]), or the order of service is determined by the
contents of the queues (see e.g., [6, 10]). In the second case, all packets are stored
in one queue, but each packet is assigned a different priority level. Then priority is
always given to the packet with the highest priority level. Individual priority levels
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can, for example, be based on the deadlines of packets (see e.g., [4]), on the trans-
mission times of packets (see e.g., [2]), or on a relative weight and the content of
the queue (see e.g., [16]). However, this second category of implementations may
involve heavy processing as in each time period the priority level of each packet
has to be checked and possibly updated. That is the reason why in practice usually
(combinations of) priority scheduling disciplines of the first category are used.

In the fixed or static priority scheduling discipline, delay-sensitive packets al-
ways have priority over delay-tolerant packets, i.e., delay-tolerant packets can only
be transmitted when there are no delay-sensitive packets in the system. Static pri-
ority provides low delays for the delay-sensitive traffic, but the performance of the
delay-tolerant traffic can be degraded severely. In particular, when the network is
highly loaded and a large portion of the network traffic consists of delay-sensitive
packets, static priority scheduling may cause excessive delays for the delay-tolerant
traffic. Although the delay-tolerant traffic tolerates a certain amount of delay, ex-
treme values obviously have to be avoided as much as possible. The Transmission
Control Protocol (TCP), for example, could consider a delay-tolerant packet with
a too big delay as being lost, and would consequently decrease its transmission
rate. This decreases the throughput, which is detrimental to data transfer. The
decrease of the transmission rate, however, is unnecessary, since the delay-tolerant
packet is not lost.

In this paper, we consider a queueing system in which delay-tolerant packets
can promote or jump to the high-priority level in the course of time. Jumped delay-
tolerant packets are treated as if they are delay-sensitive, i.e., they have transmission
priority over newly arriving delay-sensitive packets. From the transmission channel’s
point of view, nothing changes in comparison with static priority: the packet at the
head of the highest non-empty priority queue is chosen for transmission. Scheduling
disciplines with so-called priority jumps thus build upon the simplicity and efficiency
of static priority, but they prevent delay-tolerant packets from starving out in the
system. Scheduling disciplines with priority jumps are the subject of many papers
in the recent literature. A nice overview of these priority scheduling disciplines and
an in-depth performance comparison between them can be found in [9].

Here, we opt for a model that we can study analytically. Specifically, we introduce
a parameter � which is defined as the probability that the full content of the low-
priority queue jumps (or, is swapped) to the high-priority queue. This model is based
on an earlier model (see [7]), but it eliminates a major limitation of that model as we
will describe in the next section. By using probability generating functions (pgfs), we
derive the joint distribution of the queue contents and the distributions of the packet
delays of both types of traffic. These distributions can lead to some interesting
performance measures (such as mean values), which are used to determine the
impact of priority jumps and to show the influence of various system parameters.

The contribution of the paper concerns the scheduling discipline that is studied,
as well as the solution technique that we have used and the specific analytical results
that we find with this technique. First, introducing a jumping parameter has the
benefit that the delay differentiation between the different types of traffic can be
controlled and adjusted if necessary. The value of � namely can be chosen in such a
way that the delay-tolerant traffic stays within its delay requirements: for example,
the more stringent the delay requirement, the larger the value of �. Secondly, this
paper demonstrates that a queueing analysis based on pgfs is very suitable for
studying this type of queueing systems. In particular, some boundary functions
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need to be determined during the solution process, and it is generally known that
this can be a very hard task in priority systems (see e.g., [12, 15]). The pgf technique
provides an efficient and fast method for the determination of these functions.

The outline of the paper is as follows. In Section 2, we describe the mathematical
model. In Sections 3 and 4, we derive the joint pgf of the system content and study
the delays of both types of packets, respectively. Numerical examples are presented
in Section 5. Finally, we formulate some conclusions in Section 6.

2. Mathematical model. We consider a discrete-time (i.e., time is assumed to be
slotted) queueing system with two queues of infinite capacity and one transmission

channel. Two types of packets arrive at the system: type-1 packets, representing
delay-sensitive traffic, and type-2 packets, which are delay-tolerant. The numbers
of arrivals of both types of packets during slot k are denoted by a1,k and a2,k,
respectively. We assume that the a1,ks and a2,ks are independent and identically
distributed (i.i.d.) from slot to slot. Within one slot, however, a1,k and a2,k can be
correlated. The joint pgf of a1,k and a2,k is defined as A(z1, z2), i.e.,

A(z1, z2) ≜ E
[

z
a1,k

1 z
a2,k

2

]

. (1)

Then the marginal pgfs of the numbers of type-1 and type-2 arrivals per slot are
given by A1(z) ≜ A(z, 1) and A2(z) ≜ A(1, z), respectively. Furthermore, we denote

the total number of arrivals during slot k by aT,k; so aT,k ≜ a1,k + a2,k. Its pgf is

given by AT (z) ≜ A(z, z). The corresponding arrival rates, i.e., the mean number

of arrivals per slot, are indicated by �j ≜ A′

j(1) (j = 1, 2) and �T ≜ A′

T (1) (=
�1 + �2). The transmission times of all the packets are deterministically equal to
one slot. Throughout the paper, we assume that �T < 1, so that the system reaches
a steady state.

Following their delay requirements, arriving type-1 packets enter the high-priority
queue, while arriving type-2 packets are originally stored in the low-priority queue.
The packets of the two queues are transmitted according to a Head-Of-Line (HOL)
priority rule: when there are packets present in the high-priority queue at the
beginning of a slot, the HOL-packet of this queue is transmitted. Only when the
high-priority queue is empty at the beginning of a slot, the HOL-packet of the
low-priority queue can be transmitted. Note that within both queues, packets are
transmitted according to a First-In-First-Out order.

In the course of time, however, packets of the low-priority queue may jump to
the high-priority queue. In [7], we have studied a new priority scheduling discipline
with priority jumps. At the end of each slot, specifically, the whole content of the
low-priority queue jumps to the high-priority queue with probability �. Or in other
words, the contents of both queues may be merged at the end of each slot. That is
why we call this the Merge-By-Probability (MBP) mechanism. Numerical examples
in [9] show that when the system is highly loaded and a large portion of the system
traffic consists of type-1 packets, this mechanism avoids excessive delays for type-2
packets. However, these numerical examples also illustrate that when the traffic mix
mainly consists of type-2 traffic, the few type-1 packets may suffer from unnecessary
delays. Indeed, since the contents of both queues can be merged even when the high-
priority queue is empty, a rare type-1 arrival possibly finds earlier jumped type-2
packets in front of it at entrance.
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To avoid this detrimental situation for type-1 packets, we propose a variant
of the MBP mechanism in this paper: a merge is only possible when the high-
priority queue is non-empty at the beginning of a slot. Packets thus stay in the
low-priority queue as long as the high-priority queue is empty. This variant is called
the MBP∗ mechanism. Special attention has to be made to the case in which there
are no packets present in the low-priority queue at the beginning of the slot. Two
alternative models are being considered here: when type-2 packets arrive in an
empty low-priority queue, either they jump with probability � (model A) or they
cannot jump (model B). As we will see in the next section, both models are much
harder to analyse than the original model of [7].

3. System content. In this section, we derive expressions for the joint pgfs of the
system content at the beginning of a random slot in the steady state, for the two
models. In the assumption that the packet in transmission (if one) is part of the
queue that is “served” in that slot, we denote the contents of the high- and low-
priority queue at the beginning of slot k as uH,k and uL,k, respectively. Then the
system content at the beginning of slot k can be described by the pair (uH,k, uL,k). It
is easy to see that (uH,k, uL,k) is a suitable Markovian description of the system
state at the beginning of slot k. First, we express the evolution of the system state
from slot to slot (i.e., the so-called system equations), thereby clearly indicating the
differences between both models. Secondly, these equations are transformed into
pgfs, with all its consequences.

3.1. Establishing the system equations.

3.1.1. uH,k = 0. When the high-priority queue is empty at the beginning of slot k,
a packet of the low-priority queue (if any) is transmitted during slot k. The arriving
packets are queued according to their priority level and no packets jump from the
low-priority queue to the high-priority queue. So we find that

{

uH,k+1 = a1,k
uL,k+1 = [uL,k − 1]

+
+ a2,k

, (2)

where [⋅ ⋅ ⋅ ]
+
denotes the maximum of the argument and zero.

3.1.2. uH,k > 0 and uL,k > 0. On the other hand, when the high-priority queue
is non-empty at the beginning of slot k, a packet of the high-priority queue is
transmitted during slot k. When, at the beginning of slot k, the low-priority queue
is non-empty as well, the whole content of this queue is swapped to the high-priority
queue with probability �. This possible swap takes place at the end of slot k, so
type-2 packets that have arrived during slot k jump along. This yields the following
equations:

∙ with probability �:
{

uH,k+1 = uH,k − 1 + a1,k + uL,k + a2,k
uL,k+1 = 0

, (3)

∙ with probability 1− �:
{

uH,k+1 = uH,k − 1 + a1,k
uL,k+1 = uL,k + a2,k

. (4)
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3.1.3. uH,k > 0 and uL,k = 0. As mentioned in the previous section, special at-
tention has to be made to the case in which the high-priority queue is not empty
at the beginning of a slot while the low-priority queue is. Two alternatives are be-
ing considerd here: the type-2 packets that arrive during the slot also jump with
probability � (model A) or they do not jump at all (model B). For model A, we get

∙ with probability �:

{

uH,k+1 = uH,k − 1 + a1,k + a2,k
uL,k+1 = 0

, (5)

∙ with probability 1− �:

{

uH,k+1 = uH,k − 1 + a1,k
uL,k+1 = a2,k

. (6)

For model B, this amounts to just (6), with probability 1. Note that the difference
between both models is the queue (high- or low-priority) in which arriving type-2
packets may be stored at the end of slot k if they enter an empty low-priority queue.

3.2. Determining the functional equation. Next, we introduce pgfs in the sys-
tem equations. This yields a relationship between Uk+1(z1, z2) and Uk(z1, z2), with

Uk(z1, z2) ≜ E
[

z
uH,k

1 z
uL,k

2

]

. (7)

For model A, we find that

Uk+1(z1, z2) =A(z1, z2)
(z2 − 1)Uk(0, 0) + Uk(0, z2)

z2

+ �AT (z1)
Uk(z1, z1)− Uk(0, z1)

z1

+ (1− �)A(z1, z2)
Uk(z1, z2)− Uk(0, z2)

z1
. (8)

This can be arranged as

Uk+1(z1, z2) =A(z1, z2)
z1(z2 − 1)Uk(0, 0) + (1− �)z2Uk(z1, z2)

z1z2

+A(z1, z2)
(z1 − (1− �)z2)Uk(0, z2)

z1z2

+ �AT (z1)
Uk(z1, z1)− Uk(0, z1)

z1
. (9)

Letting k → ∞ to reach the steady state and isolating U(z1, z2) afterwards produces
the functional equation for the joint pgf of the queue contents:

U(z1, z2) =
z1(z2 − 1)A(z1, z2)U(0, 0) + (z1 − (1 − �)z2)A(z1, z2)U(0, z2)

z2(z1 − (1− �)A(z1, z2))

+
�z2AT (z1)[U(z1, z1)− U(0, z1)]

z2(z1 − (1− �)A(z1, z2))
. (10)
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In a similar way, we obtain the functional equation for model B:

U(z1, z2) =
(z1z2 − z1 − �z2)A(z1, z2)U(0, 0) + �z2A(z1, z2)U(z1, 0)

z2(z1 − (1− �)A(z1, z2))

+
(z1 − (1− �)z2)A(z1, z2)U(0, z2)

z2(z1 − (1− �)A(z1, z2))

+
�z2AT (z1)[U(z1, z1)− U(z1, 0)− U(0, z1) + U(0, 0)]

z2(z1 − (1− �)A(z1, z2))
. (11)

In (10), there are three quantities yet to be determined, namely the constant U(0, 0)
and the functions U(0, z) and U(z, z); in (11), also the boundary function U(z, 0)
appears. This can be explained as follows. In model A, a possible swap does not
depend on the content of the low-priority queue at the beginning of a slot. Indeed,
whether the low-priority is empty or not, a swap occurs with probability �. In
model B, on the contrary, there have to be packets in the low-priority queue at the
beginning of a slot to make a swap possible. This condition on the content of the
low-priority queue yields an additional boundary function and thus leads to a more
complex solution process.

3.3. Calculating the function U(z, z) and the constant U(0, 0). Let us first
calculate the function U(z, z) and the constant U(0, 0). The function U(z, z) is the
pgf of the total system content. The transmission times of all packets are equal
to one slot and the system is assumed to be work-conserving, so the total system
content is independent of the chosen scheduling model. By replacing z1 and z2 by
z in (10) as well as in (11), we find that

U(z, z) = U(0, 0)
AT (z)(z − 1)

z −AT (z)
. (12)

Then the constant U(0, 0) can be derived by applying the normalisation condition
U(1, 1) = 1. By using l’Hôpital’s rule, we obtain the probability of having an empty
system:

U(0, 0) = 1− �T . (13)

3.4. Calculating the boundary functions U(0, z) and/or U(z, 0). Further-
more, we compute the boundary functions U(0, z) and/or U(z, 0). This is always the
hardest task in this type of two-dimensional queueing systems (see e.g., [12, 15]). We
start with model A. With Rouché’s theorem, it can be shown that for a given value
of z2 inside the unit circle (∣z2∣ < 1), the equation z1 − (1− �)A(z1, z2) = 0 has one
solution inside the unit circle for z1 (∣z1∣ < 1). This solution is denoted by Y (z2),
with

Y (z) ≜ (1− �)A(Y (z), z). (14)

Since Y (z2) is a zero of the denominator in (10), and since U(z1, z2) - as a pgf -
remains finite inside the unit circle, Y (z2) must also be a zero of the corresponding
numerator. This results, by exploiting the definition of Y (z), in

U(0, z) =
(1 − �T )Y (z)A(Y (z), z)(z − 1)

Y (z)(z −A(Y (z), z))

+
�zAT (Y (z))[U(Y (z), Y (z))− U(0, Y (z))]

Y (z)(z −A(Y (z), z))
. (15)
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After the use of Expr. (12) to calculate U(Y (z), Y (z)), we can arrange this as

U(0, z) = a(z) + b(z)U(0, Y (z)), (16)

with

a(z) =
�(1 − �T )zAT (Y (z))2(Y (z)− 1)

Y (z)(Y (z)−AT (Y (z)))(z −A(Y (z), z))
+

(1− �T )(z − 1)A(Y (z), z)

z −A(Y (z), z)
,

(17)

b(z) =
�zAT (Y (z))

Y (z)(A(Y (z), z)− z)
. (18)

Eq. (16) describes a relation between U(0, z) and U(0, Y (z)). We show how this
relation can be used in an iterative procedure to compute U(0, z) for any z inside
the unit circle. Therefore, we recursively define Yi(z):

Yi(z) ≜ Y (Yi−1(z)), (19)

with i ≥ 1 and Y0(z) = z. Based on [1], it can be shown that for i → ∞ and ∣z∣ < 1,

Yi(z) → C, where C ≜ (1 − �)AT (C). Then, by successively applying Eq. (16), we
obtain that

U(0, z) = a(z) + b(z)U(0, Y1(z))

= a(z) + b(z)a(Y1(z)) + b(z)b(Y1(z))U(0, Y2(z))

= a(z) + b(z)a(Y1(z)) + b(z)b(Y1(z))a(Y2(z))

+ b(z)b(Y1(z))b(Y2(z))U(0, Y3(z))

= ⋅ ⋅ ⋅

=

∞
∑

k=0

a(Yk(z))

k−1
∏

l=0

b(Yl(z)) + U(0, C)

∞
∏

l=0

b(Yl(z)). (20)

It remains for us to calculate the constant U(0, C). Again with Rouché’s theorem,
we can prove that the equation z −A(Y (z), z) = 0 has one solution inside the unit

circle (∣z∣ < 1). This solution is denoted by F1, with F1 ≜ A(Y (F1), F1), and is a
zero of the denominator in (15). Since ∣F1∣ < 1 and U(0, z) must be bounded inside
the unit circle, the corresponding numerator must also vanish for z = F1. This
yields

U(0, Y (F1)) =
(1 − �T )Y (F1)A(Y (F1), F1)(F1 − 1)

�F1AT (Y (F1))

+
(1− �T )AT (Y (F1))(Y (F1)− 1)

Y (F1)−AT (Y (F1))
. (21)

The values of F1 and Y (F1), which can be calculated numerically (e.g., via the
Newton-Raphson method), lead to a value for U(0, Y (F1)). The replacement of z
by Y (F1) in (20), however, also gives us U(0, Y (F1)) as a function of U(0, C). This
equation thus can be used to determine a value for U(0, C). Note that the calculation
of U(0, z) here is much more complex than in [7]. In [7], specifically, exploiting
the bounded character of U(z1, z2) inside the unit circle was sufficient to find an
expression for U(0, z) (i.e., we did not need any iterative procedure).

Let us now proceed with model B. As already mentioned, here we need to cal-
culate two boundary functions. By taking the limit of (11) for z1 → z and z2 → 0,
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and solving the result for U(z, 0), we first find that

U(z, 0) =
A(z, 0)

[

(z − 1)U(0, 0) + zU (2)(0, 0)
]

z −A(z, 0) + �AT (z)

+
�AT (z) [U(z, z)− U(0, z)− U(0, 0)]

z −A(z, 0) + �AT (z)
, (22)

where U (2)(0, 0) is defined as
∂U(z1, z2)

∂z2

∣

∣

∣

∣

z1=z2=0

and denotes the probability of

having an empty high-priority queue and one packet in the low-priority queue at the
beginning of a random slot. It is easy to see that the function U(z, 0) is expressed
in terms of the other three initial unknowns. However, a new unknown quantity
arises, namely the constant U (2)(0, 0). We determine this unknown later on. First,
we follow the same procedure as we did for model A. Y (z2) is, as a solution of
z1−(1−�)A(z1, z2) = 0 inside the unit circle, a zero of the denominator in (11). Then
the bounded character of U(z1, z2) inside the unit circle results in

U(0, z) =
(Y (z)z − Y (z)− �z)A(Y (z), z)U(0, 0) + �zA(Y (z), z)U(Y (z), 0)

Y (z)(z −A(Y (z), z))

+
�zAT (Y (z))[U(Y (z), Y (z))− U(Y (z), 0)− U(0, Y (z)) + U(0, 0)]

Y (z)(z −A(Y (z), z))
.

(23)

After using Exprs. (12) and (22) to calculate U(Y (z), Y (z)) and U(Y (z), 0), respec-
tively, this can be organised as

U(0, z) = a(z) + b(z)U (2)(0, 0) + c(z)U(0, Y (z)), (24)

with

a(z) =
�(1 − �T )z(1−A(Y (z), 0))(AT (Y (z))−A(Y (z), z))

(z − A(Y (z), z))(Y (z)− A(Y (z), 0) + �AT (Y (z)))

+
�(1 − �T )zY (z)−1(AT (Y (z)))2(Y (z)− 1)(A(Y (z), z)−A(Y (z), 0))

(z −A(Y (z), z))(Y (z)−AT (Y (z)))(Y (z)−A(Y (z), 0) + �AT (Y (z)))

+
(1− �T )(z − 1)A(Y (z), z)

z −A(Y (z), z)
, (25)

b(z) =
�zA(Y (z), 0)(A(Y (z), z)−AT (Y (z)))

(z −A(Y (z), z))(Y (z)−A(Y (z), 0) + �AT (Y (z)))
, (26)

c(z) =
�zAT (Y (z))(A(Y (z), 0)−A(Y (z), z))

Y (z)(z −A(Y (z), z))(Y (z)−A(Y (z), 0) + �AT (Y (z)))
. (27)

Eq. (24) can be used in an iterative method to compute U(0, z). In a similar way
as for model A, we find that

U(0, z) =

∞
∑

k=0

a(Yk(z))

k−1
∏

l=0

c(Yl(z)) + U (2)(0, 0)

∞
∑

k=0

b(Yk(z))

k−1
∏

l=0

c(Yl(z))

+ U(0, C)

∞
∏

k=0

c(Yk(z)). (28)

It remains for us to determine the constants U (2)(0, 0) and U(0, C). F1, previously
defined as A(Y (F1), F1), is a zero of the denominator of U(0, z). This zero lies inside
the unit circle, which implies that the corresponding numerator must be zero for z =



CONTROLLING DELAY DIFFERENTIATION WITH PRIORITY JUMPS 665

F1 as well. This produces an equation for U(0, Y (F1)) in terms of U (2)(0, 0). Then,
replacing z by Y (F1) in (28) leads to a second equation for U(0, Y (F1)), not only
in terms of U (2)(0, 0) but also in terms of U(0, C). With Rouché’s theorem, further-
more, we can show that the factor Y (z)−A(Y (z), 0)+ �AT (Y (z) of the denomina-
tor of U(0, z) also has one zero inside the unit circle. This zero will be denoted by
F2. Similarly as with F1, we can find two equations for U(0, Y (F2)), one in terms of
U (2)(0, 0) and one in terms of U (2)(0, 0) and U(0, C). In this way, we get a system
of four linear equations in four unknown quantities. By repeatedly eliminating the
unknowns, we obtain values for U (2)(0, 0) and U(0, C) at the end.

3.5. Bringing everything together. Now all unknown quantities in (10) and
(11) are calculated, so we can derive semi-analytic expressions for the joint pgfs of
the system content. These expressions, however, are rather cumbersome, so they are
omitted here. As we have noticed during this section, seeming small details between
jumping models cause an important shift in the solution process (and sometimes
also in the performance, as we will demonstrate later on).

3.6. Calculating marginal characteristics. For the sake of convenience, we
start from the functional equations to determine the marginal pgfs UH(z) ≜ U(z, 1)

and UL(z) ≜ U(1, z) of the contents of the high- and low-priority queue, respec-
tively. For model A (for model B, we can follow the same procedure), we get

UH(z) =
(z − (1− �))A1(z)U(0, 1) + �AT (z)(U(z, z)− U(0, z))

z − (1 − �)A1(z)
, (29)

UL(z) =
(z − 1)A2(z)(1− �T ) + (1− (1− �)z)A2(z)U(0, z) + �z(1− U(0, 1))

z(1− (1− �)A2(z))
.

(30)

The functions U(z, z) and U(0, z) have been calculated (see Expr. (12) and (20));
the constant U(0, 1), which denotes the probability of having an empty high-priority
queue at the beginning of a slot, can be computed numerically by making use of
(20). Finally, by invoking the moment generating property on UH(z) and UL(z),
we can find expressions for the moments of the involved quantities. For the mean
values, for example, we obtain

E [uH ] =U ′

H(1)

=
(1− ��2)(U(0, 1)− 1) + �1 + �E [uT ]− �U (2)(0, 1)

�
, (31)

E [uL] =U ′

L(1)

=
(1− ��2)(1 − U(0, 1))− �1 + �U (2)(0, 1)

�
, (32)

with E [uT ] the mean total system content and U (2)(0, 1) ≜
dU(0, z)

dz

∣

∣

∣

∣

z=1

. E [uT ] is

easily calculated via (12); U (2)(0, 1) can be computed by using (20).

4. Packet delay. The second performance characteristic that we study is the
packet delay, which is defined as the total amount of time that a packet spends
in the system (i.e., the number of slots between the end of the packet’s arrival slot
and the end of its departure slot). Assuming that the system is in the steady state,
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we denote the delay of a type-j packet as dj . In this section, we show how to com-
pute pgfs of d1 and d2 for model A. The same procedure can be followed for model
B. The computations for model B, however, are omitted because they are not more
complicated than for model A. Moreover, both scheduling models yield comparable
results.

4.1. Type-1 packet delay. Let us first consider a random but “tagged” type-1
packet. We mark the arrival slot of the packet as slot I. Since a possible jump of
the content of the low-priority queue to the high-priority queue takes place at the
end of a slot, the type-1 packets that arrive during slot I are stored in front of
the type-2 packets that possibly jump in slot I. As a consequence, the delay of the
tagged type-1 packet only depends on the content of the high-priority queue at the
beginning of slot I (i.e., uH,I) and the number of type-1 arrivals during slot I. If
f1,I represents the number of these arrivals that have to be transmitted before the
tagged packet, we find the following equation for d1:

d1 = [uH,I − 1]+ + f1,I + 1. (33)

Due to the i.i.d. arrivals from slot to slot, uH,I and the content of the high-priority
queue at the beginning of an arbitrary slot have the same distribution. For the same
reason, uH,I and f1,I are mutually independent. The pgf of f1,I , furthermore, can
be calculated by observing that an arbitrary packet is more likely to arrive in a
larger bulk (see e.g., [3]):

F1(z) =
A1(z)− 1

�1(z − 1)
. (34)

The pgf of the delay of a random type-1 packet thus can be easily expressed in
terms of UH(z) and A1(z), i.e.,

D1(z) =
A1(z)− 1

�1(z − 1)
{UH(z) + (z − 1)UH(0)} , (35)

with UH(0) = U(0, 1). From this expression, we easily obtain that

E [d1] =
�11

2�1
+ E [uH ] + UH(0). (36)

4.2. Type-2 packet delay. Secondly, because of the priority scheduling, it is not
straightforward to determine an expression for the pgf D2(z) of the delay of a
random type-2 packet (see also e.g., [14]). Moreover, we have to take into account
the possibility that type-2 packets may jump to the high-priority queue during their
waiting time (see e.g., [7]). Let us tag an arbitrary type-2 packet that enters the
system, and again denote its arrival slot by slot I.

The packets that are in the system at the end of slot I and that have to be
transmitted before the tagged packet, are referred to as primary packets. The tagged
type-2 packet can only be transmitted when all primary packets and all type-1
packets that arrive while the tagged packet is waiting in the low-priority queue,
are transmitted. Indeed, new type-1 packets can arrive while a primary packet is
transmitted. As long as the tagged packet is in the low-priority queue, these type-
1 packets get priority over and are scheduled for transmission before the tagged
packet. We say that the primary packet adds a so-called sub-busy period to the
delay of the tagged packet (see e.g., [14]). A sub-busy period initiated by a packet

starts at the beginning of the slot in which the packet is transmitted, and ends at
the beginning of the slot where – for the first time – the number of packets that
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have to be transmitted before the tagged packet, is one less than at the beginning
of the sub-busy period. When the tagged packet arrives, three possible situations
may occur: no packet is in transmission, a packet of the low-priority queue is in
transmission, or a packet of the high-priority queue is in transmission. Following
equations for d2, the delay of the tagged type-2 packet, can be derived for the three
cases:

∙ no packet is in transmission during slot I
(uH,I = uL,I = 0)

d2 =

f1,I
∑

m=1

vm +

f2,I
∑

m=1

wm + 1, (37)

∙ a packet of the low-priority queue is in transmission during slot I (uH,I =
0, uL,I > 0)

d2 =

f1,I
∑

m=1

vm +

uL,I−1+f2,I
∑

m=1

wm + 1, (38)

∙ a packet of the high-priority queue is in transmission during slot I (uH,I > 0)

d2 =

uH,I−1+f1,I
∑

m=1

vm +

uL,I+f2,I
∑

m=1

wm + 1, (39)

where uH,I and uL,I give the contents of the high- and low-priority queue at the
beginning of slot I, where f1,I and f2,I represent the type-1 and type-2 packets that
arrive during slot I and that have to be transmitted before the tagged packet, and
where vm and wm denote the lengths of the m-th sub-busy periods initiated by a
packet residing in the high- and low-priority queue in slot I, respectively. Since the
contents of both queues are not allowed to merge when the high-priority queue is
empty, vm and wm have different distributions. We determine these distributions
later on. The introduction of pgfs in these equations first yields

D2(z) ≜E
[

zd2
]

=E
[

zd2{uH,I = uL,I = 0}
]

+ E
[

zd2{uH,I = 0, uL,I > 0}
]

+ E
[

zd2{uH,I > 0}
]

= zE

[

z
∑f1,I

m=1
vm+

∑f2,I
m=1

wm{uH,I = uL,I = 0}

]

+ zE

[

z
∑f1,I

m=1
vm+

∑uL,I−1+f2,I
m=1

wm{uH,I = 0, uL,I > 0}

]

+ zE

[

z
∑uH,I−1+f1,I

m=1
vm+

∑uL,I+f2,I
m=1

wm{uH,I > 0}

]

, (40)

with E [X{Y }] ≜ E [X ∣Y ] Prob [Y ]. By conditioning on the possible jumping in-
stants, furthermore, we can consider three cases for a sub-busy period: the tagged
packet is still in the low-priority queue at the beginning of the sub-busy period and
no jump occurs during the sub-busy period, the tagged packet is still in the low-
priority queue at the beginning of the sub-busy period and a jump occurs during
the sub-busy period, or there was already a jump before the sub-busy period so
that the tagged packet is already in the high-priority queue. In the last case, new
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arriving type-1 packets are queued behind the tagged packet and it takes only one
slot to decrease the number of packets in front of it by one. This leads to sub-busy
periods of length one, i.e., vm = wm = 1. For the other cases, we define partial pgfs:

V1(z) ≜ E [zvm{t.p. does not jump during vm} ∣ t.p. does not jump before vm] ,
(41)

V2(z) ≜ E [zvm{t.p. jumps during vm} ∣ t.p. does not jump before vm] , (42)

W1(z) ≜ E [zwm{t.p. does not jump during wm} ∣ t.p. does not jump before wm] ,
(43)

W2(z) ≜ E [zwm{t.p. jumps during wm} ∣ t.p. does not jump before wm] , (44)

with t.p. an abbreviation for tagged packet. Then, by conditioning on if and when
the tagged packet jumps to the high-priority queue and by subsequently using the
definitions of these partial pgfs, (40) is transformed into

D2(z) = zE

[

V2(z)z
f2,I

a1,I
∑

i=1

(V1(z))
i−1za1,I−i

+ (V1(z))
a1,IW2(z)

f2,I
∑

i=1

(W1(z))
i−1zf2,I−i

+ (V1(z))
a1,I (W1(z))

f2,I
{

uH,I = 0, uL,I = 0
}

]

+zE

[

V2(z)z
uL,I−1+f2,I

a1,I
∑

i=1

(V1(z))
i−1za1,I−i

+ (V1(z))
a1,IW2(z)

uL,I−1+f2,I
∑

i=1

(W1(z))
i−1zuL,I−1+f2,I−i

+ (V1(z))
a1,I (W1(z))

uL,I−1+f2,I

{

uH,I = 0, uL,I > 0
}

]

+zE

[

�zuH,I−1+a1,I+uL,I+f2,I

+ (1− �)V2(z)z
uL,I+f2,I

uH,I−1+a1,I
∑

i=1

(V1(z))
i−1zuH,I−1+a1,I−i

+ (1− �)(V1(z))
uH,I−1+a1,IW2(z)

uL,I+f2,I
∑

i=1

(W1(z))
i−1zuL,I+f2,I−i

+ (1− �)(V1(z))
uH,I−1+a1,I (W1(z))

uL,I+f2,I

{

uH,I > 0
}

]

. (45)

When the high-priority queue is empty at the beginning of slot I, the tagged packet
cannot jump at the end of slot I (first two terms). When there are packets present
in the high-priority queue at the beginning of slot I, on the other hand, the tagged
packet stays in the low-priority queue with probability 1− � or jumps to the high-
priority queue with probability � (third term). In the latter case, the tagged packet
is in the high-priority queue during its entire delay. It has to wait there until all
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primary packets - one per slot - are transmitted. When the tagged packet does not
jump at the end of slot I, three things can happen during its waiting time: it jumps
during one of the sub-busy periods initiated by a packet of the high-priority queue,
it jumps during one of the sub-busy periods initiated by a packet of the low-priority
queue, or it does not jump at all.

Before we further work out (45), we determine expressions for the partial pgfs of
vm and wm. During the first slot of all sub-busy periods, i.e., when the initiating
packet is transmitted, type-1 packets may arrive at the system. These type-1 packets
start sub-busy periods of their own, and these new sub-busy periods are part of the
initial sub-busy period. So the length of the initial sub-busy period equals one (the
first slot) plus the sum of the lengths of the sub-busy periods initiated by those
arriving type-1 packets (possibly none). This yields

vm =1 +

a1
∑

i=1

vm,i, (46)

and

wm =1 +

a1
∑

i=1

vm,i, (47)

with a1 the number of type-1 arrivals during the first slot of the sub-busy period
and vm,i the length of the so-called secondary sub-busy period initiated by the i-th
type-1 arrival in that slot. As one can notice, we have the same equations for vm and
wm. Yet, they have different distributions as we will now see. Let us first compute
V1(z). The tagged packet does not jump during the complete sub-busy period. This
means that it does not jump at the end of the first slot of the sub-busy period (this
happens with probability 1 − �) and not during the various secondary sub-busy
periods. Hence, the vm,is are stochastically indistinguishable from vm, all having
the same pgf V1(z). Since the numbers of type-1 arrivals are i.i.d. from slot to slot,
the vm,is also are independent from a1. We thus obtain that

V1(z) = (1− �)zA1(V1(z)). (48)

To calculate V2(z), we again start from Eq. (46). Now, however, we assume that the
tagged packet jumps during the sub-busy period. This means that the tagged packet
either jumps at the end of the first slot of the sub-busy period (with probability �)
or during one of the secondary sub-busy-periods. From the moment that the tagged
packet is in the high-priority queue, all vm,is are equal to one. This leads to

V2(z) = �zA1(z) + (1 − �)zV2(z)E

[

a1
∑

i=1

V1(z)
i−1za1−i

]

= �zA1(z) + (1 − �)zV2(z)
A1(z)−A1(V1(z))

z − V1(z)
. (49)

By isolating V2(z) in the latter and using Expr. (48) afterwards, we find that

V2(z) =�
A1(z)(z − V1(z))

1− (1− �)A1(z)
. (50)

In a similar way, we find expressions for W1(z) and W2(z). When the high-priority
queue is empty at the beginning of a slot, a packet of the low-priority queue is
transmitted in that slot. This type-2 packet also starts a sub-busy period, with
secondary sub-busy periods, initiated by the type-1 packets arriving during its first
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slot, being part of it. However, at the end of that first slot, the content of the
low-priority queue cannot jump to the high-priority queue, because of the studied
jumping policy (see (2)). For W1(z), we thus have that

W1(z) = zA1(V1(z)). (51)

We follow a similar reasoning for W2(z). The high-priority queue is empty at the
beginning of the first slot of the sub-busy period and no jump occurs at the end
of this slot. Hence, there is an occurrence of a jump during one of the secondary
sub-busy periods. We get that

W2(z) = zV2(z)
A1(z)−A1(V1(z))

z − V1(z)
. (52)

Then substituting (50) in Eq. (52) results in

W2(z) = �
zA1(z)(A1(z)−A1(V1(z)))

1− (1− �)A1(z)
. (53)

So V2(z), W1(z) and W2(z) all can be expressed as a function of V1(z), which in
turn is implicitly defined in (48).

Let us finally go back to (45). By exploiting the uncorrelated nature of the
arrival process from slot to slot, by using some standard mathematical (z-transform)
techniques, and by making use of the relations of the partial pgfs with V1(z), we
produce

D2(z) =
�

1− (1− �)A1(z)
F (z, z)

[

(z − 1)A1(z)U(0, 0) + (A1(z)− 1)U(0, z)

+ U(z, z)
]

+
�(1 − �)zA1(z)(A1(z)− 1)

(1 − (1− �)A1(z))((1 − �)z − V1(z))
F (V1(z), z)

[

(z − 1)U(0, 0)

+
V1(z)− (1− �)z

V1(z)
U(0, z) +

(1 − �)z

V1(z)
U(V1(z), z)

]

+
(A1(z)− 1)(�z(1− (1 − �)A1(z))− z + V1(z))

(1 − (1− �)A1(z))((1 − �)z − V1(z))
F

(

V1(z),
V1(z)

1− �

)

×

[

z
V1(z)− (1− �)

V1(z)
U(0, 0) +

(1− �)z

V1(z)
U

(

V1(z),
V1(z)

1− �

)

]

. (54)

The pgf F (z1, z2) is found in [8]:

F (z1, z2) =
A(z1, z2)−A1(z1)

�2(z2 − 1)
. (55)

The quantities related to the system content are computed in the previous sec-
tion. From D2(z), it is possible to obtain expressions for the moments of the delay
of a type-2 packet. The mean value, for example, is calculated as D′

2(1), whereas
D′′

2 (1) +D′

2(1)− (D′

2(1))
2 would give the variance.

5. Numerical examples. In the previous section, we have described procedures
to obtain expressions for the mean packet delays of both types of traffic. These
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expressions can be used to illustrate the differences between the merging mecha-
nisms. We consider the following arrival process:

A(z1, z2) =

(

1−
�1

16
(1 − z1)−

�2

16
(1− z2)

)16

, (56)

with �1 and �2 the arrival rates of type-1 (delay-sensitive) and type-2 (delay-
tolerant) traffic, respectively. This is the arrival process to a queue in an 16x16
output-queueing switch with Bernoulli arrivals at its inlets and with independent
and uniform routing towards the outlets. Furthermore, we define � as the fraction
of type-1 traffic in the overall traffic mix (i.e., � = �1/�T , with �T = �1 + �2).
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Figure 1. Mean type-1 packet delay versus �, with � = 0.4 and �T = 0.9
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Figure 2. Mean type-2 packet delay versus �, with � = 0.4 and �T = 0.9

Figs. 1 and 2 show the mean packet delays of both types of traffic as functions
of �, with � = 0.4 and the total arrival rate �T equal to 0.9, for the original MBP
mechanism and the two variants studied in this paper. For the sake of completeness,
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we have also depicted the curves for the static priority and FIFO scheduling disci-
plines. We see that the choice between the merging mechanisms is nearly irrelevant
with respect to E [d2]. For E [d1], however, it is easy to notice that MBP∗ performs
better than MBP when � is small, i.e., when the traffic mix mainly consists of type-
2 traffic. When � is small, an exceptionally arriving type-1 packet probably enters
an empty high-priority queue in the case of MBP∗, so the packet is transmitted
within a short time period. With MBP, on the other hand, there might be a merge
just before the rare type-1 packet arrives. In that case, this packet suffers from an
unnecessary delay. When � = 0.01, for example, E [d1] decreases from about 3.9 for
the original MBP mechanism to 1.7 for MBP∗. Figs. 1 and 2 finally illustrate that
the two MBP∗ models basically have the same performance. This is confirmed by
numerous other examples. In the next figure, we therefore only consider model A.
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Figure 3. Mean packet delays versus �, with �T = 0.9

In Fig. 3, we again show the mean packet delays of both types of traffic as
functions of �, but now with �T = 0.9 and for different values of �. A larger value
of � implies more jumps and consequently a lower E [d2]. The price to pay is a
higher E [d1]. The value of � can be chosen according to the delay requirements of
both types of traffic. A low �, for example, will highly favour the type-1 (delay-
sensitive) traffic, while choosing � higher will achieve a limited delay differentiation
between both types of traffic. This is practical if there is little difference in their delay
requirements. Most importantly, the parameter � can be fine-tuned to accommodate
a required delay differentiation.

6. Conclusions. In this paper, we have considered a scheduling discipline with
priority jumps. Priority jumps allow for a less drastic delay differentiation between
different types of traffic compared to static priority. The introduction of a jump-
ing parameter, moreover, provides a mechanism to control the delay differentiation
and to adjust it if necessary (something static priority lacks as well). We have
used probability generating functions to analytically study a two-priority queue-
ing system with one server and generally distributed, structured arrivals. We have
derived probability generating functions of the system content and of the packet
delays. Some mathematical challenges, like the determination of boundary func-
tions and the study of the delay of a low-priority packet, are thereby efficiently
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overcome. Probability generating functions, furthermore, are useful in the calcu-
lation of important performance measures, such as the mean values of the packet
delays. These performance measures have been used to show the impact of the
priority scheduling discipline and of some system parameters.
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