
Mathematical Modelling and Numerical Analysis Will be set by the publisher
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Abstract. In vivo visualization of cardiovascular structures is possible using medical images. How-
ever, one has to realize that the resulting 3D geometries correspond to in vivo conditions. This entails
an internal stress state to be present in the in vivo measured geometry of e.g. a blood vessel due to the
presence of the blood pressure. In order to correct for this in vivo stress, this paper presents an inverse
method to restore the original zero-pressure geometry of a structure, and to recover the in vivo stress
field of the final, loaded structure. The proposed backward displacement method is able to solve the
inverse problem iteratively using fixed point iterations, but can be significantly accelerated by a quasi-
Newton technique in which a least-squares model is used to approximate the inverse of the Jacobian.
The here proposed backward displacement method allows for a straightforward implementation of the
algorithm in combination with existing structural solvers, even if the structural solver is a black box,
as only an update of the coordinates of the mesh needs to be performed.
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1. Introduction

In the last decade computational methods, medical imaging techniques and computational power have im-
proved tremendously, leading to an increasing interest in numerical simulations related to the cardiovascular
system. Motivations to perform these numerical analyses and – more importantly – to improve their solution
methods are (i) to give medical researchers a better comprehension and insight into the pathology of cardio-
vascular diseases, (ii) to offer them a computational environment allowing to test new and evaluate existing
medical procedures and (iii) the general belief that patient-specific computational models will eventually be
used in clinical practice.

Nowadays non-invasive imaging techniques such as X-ray computed tomography (CT) and magnetic reso-
nance imaging (MRI) allow for accurate in vivo visualization of 3D patient-specific geometries that are part of
the cardiovascular system. The obtained geometries can be completed by flow, wall thickness and wall motion
measurements gathered by MRI and/or ultrasound to provide data for patient-specific boundary conditions for
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the numerical simulations. Together with pressure measurements there is sufficient data available to include
patient-specific boundary conditions in computational fluid dynamics (CFD), computational structural dynam-
ics (CSD) and even fluid-structure interaction (FSI) simulations. In CFD models the flow-related measurements
can be imposed directly [1] or incorporated into windkessel and/or 1D models [2] at the inlet and outlets. In
CSD models the in vivo data can be used to optimize the constitutive law for the tissue material [3] originally
obtained by fitting ex vivo measurements. Both models can be coupled to take into account the interaction
between the blood flow and the arterial wall in an FSI simulation.

When focusing on the modelling procedure of the arterial system and the arterial wall in particular, it is
important to keep in mind that a physiological pressure load is present at the moment of image acquisition
and therefore a stress and strain field is present in the in vivo obtained patient-specific geometry. Several
authors have shown that neglecting the presence of this physiological pressure load inside blood vessels in
general and inside cerebral or aortic aneurysms in particular results in an inaccurate rating of the stresses and
deformations [4–8]. As (i) the stress distribution throughout the arterial wall can not be measured and (ii) it is
impossible to measure in vivo the zero-pressure geometry of a blood vessel, an inverse problem has to be defined
to solve for this geometry or stress field when the in vivo measured geometry and the corresponding internal
pressure at the moment of medical imaging are known.

This inverse problem and its solution methods are not only applicable in biomechanical models. There are
many engineering applications in which a load free configuration or an initial stress distribution may be useful.
For example in production and design processes it can be used to calculate the yet to be manufactured shape
of gaskets or rubber seals and even the geometry of the manufacturing tools themselves (e.g. the elastomer
puncher in a rubber pad forming process for metal sheets), such that the desired shape is reached under loading
conditions [9,10]. Another example can be found in the design process of a turbine blade where the geometrical
outcome of a CFD optimization study has to be attained when the blade is subjected to pressure and centrifugal
forces [11].

In this paper two methods are presented to solve for the zero-pressure geometry by iteratively updating the
nodal coordinates towards the unknown unloaded configuration. Applying the arterial pressure, present at the
moment of imaging, in a forward analysis fully recovers the in vivo measured geometry and restores its stress
state. This prestressing method allows for a straightforward implementation in combination with existing finite
element solvers, even for black box solvers without access to the source code, since only an update of the nodal
coordinates is required.

2. Methods

2.1. Problem description

Before defining the inverse problem, a general forward problem is formulated. Therefore, we define a stress
free reference configuration by

Ω(X,0) (1)

in which X denotes the material coordinates of the undeformed reference geometry, and where the second
argument of the configuration Ω refers to the zero stress state that corresponds to this unloaded reference
configuration. Then, a forward analysis can be defined as the calculation of the equilibrium configuration

Ω(x,σ) (2)

with x the coordinates of the deformed geometry and σ the second-order stress tensor. As shown in Figure 1,
this deformed configuration results from a pressure load p, applied at the inner surface of the undeformed blood
vessel wall,

p = −τ .n = −(σ.n).n

with n the outward unit normal vector, and a zero traction vector (τ = 0) at the outer surface of this undeformed
reference state (1). Furthermore, the nodes at the ending cross sections of the model in Figure 1 are only allowed
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Figure 1. Schematic representation and notations of the forward problem.

to move in radial direction with respect to the local centerline{
Uθ = 0

Uz = 0
(3)

However, if the axial residual stress has to be taken into account, one can set Uz 6= 0 or define an additional
axial pressure load.
To be in equilibrium, the equilibrium conditions, the compatibility requirements and the presence of an ap-
propriate material model, which sets the relation between the stress field and the strain field, are satisfied.
The equilibrium configuration (2) can be computed by a structural solver, which we denote by S. Using these
definitions, we define the forward analysis by

Ω(x,σ) = S(Ω(X,0), p) (4)

The deformation can be defined by the forward mapping Φ : X 7→ x and the deformation gradient tensor F

x = Φ(X) (5a)

F =
∂x

∂X
=
∂Φ(X)

∂X
(5b)

The inverse or backward problem calculates the undeformed reference geometry that corresponds to a given
geometry, which is deformed due to a pressure load, see Figure 2. Therefore, in contrast to Figure 1, we now
assume {

X = X∗

σ = σ∗ ,

{
x = xm

p = pm

where X∗ and σ∗ are the zero-pressure geometry present in the undeformed reference configuration and the
stress state present in the in vivo configuration, i.e. the unknown variables of this inverse problem. The in vivo
geometry xm and the internal pressure load pm are the known input parameters for the inverse problem, where
the subscript m refers to (in vivo) measurements. Then, the backward problem can be formulated as follows:
Find the in vivo configuration

Ω(xm,σ
∗) (6)

which is yet unknown as only xm is known and σ∗ is not, and which is in equilibrium with the measured
internal pressure load pm, the zero traction at the outside and the kinematic Dirichlet boundary conditions (3).
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Figure 2. Schematic representation and notations for the inverse problem.

Therefore, find the corresponding undeformed reference configuration

Ω(X∗,0) (7)

so that the in vivo equilibrium configuration (6) can be found by imposing the in vivo measured pressure pm
onto the zero-pressure reference configuration (7) in a forward analysis (4)

Ω(xm,σ
∗) = S(Ω(X∗,0), pm) (8)

Equation (8) results in the stress tensor field σ∗ which is defined as the prestress introduced by the forward
analysis or the in vivo stress accompanying the in vivo image-based geometry. The unloaded reference geometry
can be written as

X∗ = φ(xm) = Φ−1(xm)

in which φ : x 7→ X denotes the inverse deformation mapping. This allows to obtain the original in vivo
geometry at the moment of imaging xm using the in (5a) proposed forward deformation of the zero-pressure
geometry X∗

Φ(X∗) = Φ(φ(xm)) = Φ(Φ−1(xm)) = xm

2.2. Backward displacement method

To solve the backward problem of section 2.1, this paper proposes the backward displacement method (BDM).
The method computes the zero-pressure geometry of an in vivo measured structure iteratively by subtracting
nodal displacements from the corresponding coordinates of the in vivo measured geometry. These nodal dis-
placements are updated every iteration; they are the result of a forward structural simulation in which the
approximation of the zero-pressure geometry is inflated by the in vivo measured pressure. The in vivo stress
present in the in vivo measured structure can be calculated by inflating the computed zero-pressure geome-
try to the in vivo measured pressure. In this paper, the BDM is solved using two numerical methods. The
first method proposed in Section 2.2.2 solves the backward displacement problem using fixed point (FP) iter-
ations. The second method presented in Section 2.2.3 accelerates the backward displacement method using a
quasi-Newton (QN-ILS) algorithm. Both algorithms make use of a forward structural analysis to update the
approximate zero-pressure geometry, evaluating the residual vector as the distance that is still present between
the image-based geometry and the geometry resulting from this forward problem. When convergence is reached
(i) a zero-pressure geometry is found and (ii) the resulting in vivo measured geometry is recovered and in equi-
librium with an in vivo stress field and the in vivo load. Furthermore, only the nodal coordinates of the mesh
need to be updated before every iteration, allowing for a straightforward implementation in combination with
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existing structural solvers, even if the solver is a black box and no access is granted to the source code (as is
the case with most commercial packages).

2.2.1. Definitions

The backward displacement function B is defined as

B(U) = xm −U

= X̃ (9)

where the output coordinates X̃ ∈ R3N×1 are found by subtracting a displacement variable U ∈ R3N×1 from
the in vivo measured geometry xm ∈ R3N×1. With N the total number of nodes in the three dimensional model,
the variables are represented by column vectors as this notation is required for the quasi-Newton formulation
of Section 2.2.3.

The structural solver was introduced in Equation (4) by the function S(Ω, p) to emphasize that the solver
can be treated as a black box. When one is interested in the displacement resulting from the forward analysis
(4) in which all input variables except for the coordinates of the reference geometry X ∈ R3N×1 are known, we
can define the displacement output of the structural solver by the function SU

SU (X) = x−X = S(Ω(X,0), pm)−X
= U (10)

The by x ∈ R3N×1 represented deformed geometry, and thus the nodal displacement output U ∈ R3N×1 of the
function SU can be found by solving the forward structural problem (4).

Using these definitions, the inverse problem can be described by

X̃ = B(SU (X)) (11)

where a tilde was introduced to distinguish between the output variable of B(SU ) and its input variable, as both
are in general not the same. However, when the backward problem of Section 2.1 has been solved, Equation (8)
has to be satisfied, i.e. a forward analysis of the zero-pressure reference configuration Ω(X∗,0) has to result
in the in vivo configuration Ω(xm,σ

∗) when applying the internal pressure load pm present during medical
imaging. When this constraint is met, Equation (11) yields the fixed point problem

X̃ = X = X∗ (12)

with X∗ ∈ R3N×1 the final zero-pressure geometry. The prestress tensor σ∗ results from the same forward
analysis and can be used as an initial stress tensor in consecutive simulations. The corresponding root finding
formulation can be described by

RX(X) = B(SU (X))−X = X̃ −X = 0 (13)

with RX the residual operator in function of the unloaded material coordinates.

2.2.2. Fixed point strategy

Equations (11) and (12) suggest that a backward displacement method based on fixed point iterations can be
used to solve for the zero-pressure geometry. The fixed point algorithm to recover this zero-pressure geometry
and the in vivo stress tensor field is shown in Algorithm 2.1. It starts by initializing an approximation for the
zero-pressure geometry Xi=0. As initial guess, the original image-based geometry xm is chosen. Then, a fixed
point based iterative procedure is performed until convergence is reached. First, the structural solver calculates
an equilibrium configuration Ω(xi,σi) from the intermediate reference configuration Ω(Xi,0) loaded with the
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full in vivo pressure load pm. The displacements of the material points in the forward analysis are denoted by
U i. Afterwards, the approximation of the zero-pressure geometry (Xi) is updated by subtracting the nodal

displacements U i from the original image-based coordinates xm. Finally, this procedure leads to an update
of the mesh Xi+1 = X̃i used in the next iteration (step 13 in Algorithm 2.1) or, if convergence is reached,
to the zero-pressure geometry X∗. Furthermore, the forward analysis calculates the stress state σi (step 9 in
Algorithm 2.1) which is left unused throughout the algorithm but represents the in vivo stress tensor σ∗ present
in the in vivo measured geometry upon convergence. During the iterative process, a residual vector ri ∈ R3N×1

is calculated

ri = X̃i −Xi = (xm −U i)−Xi (14a)

= xm − (xi −Xi)−Xi (14b)

= xm − xi (14c)

This residual vector is a measure for the distances that are still present between the image-based geometry
and the deformed geometry resulting from the ith forward analysis. Convergence is reached when the relative
residual

rirel =
‖ri‖2
‖r0‖2

< ε (15)

is smaller than the convergence criterion ε. Where ‖ri‖2 stands for the L2-norm of the residual vector in the
ith iteration.

Algorithm 2.1 (FP BDM). Fixed point algorithm to recover the zero-pressure geometry and the in vivo stress
tensor field.

1: i = 0
2: Initialize X0 = xm
3: U0 = SU (X0)

4: X̃
0

= B(U0)

5: r0 = X̃
0 −X0

6: X1 = X0 + r0 = X̃
0

7: while rirel ≥ ε do
8: i = i+ 1
9: Ω(xi,σi) = S(Ω(Xi,0), pm)

10: U i = SU (Xi) = xi −Xi

11: X̃i = B(U i) = xm −U i

12: ri = X̃i −Xi

13: Xi+1 = Xi + ri = X̃i

14: end while
15: Zero-pressure reference geometry X∗ = Xi

16: In vivo stress tensor for the in vivo measured geometry σ∗ = σi

2.2.3. Quasi-Newton strategy with an approximation of the Jacobian’s inverse from a least-squares model

To accelerate the convergence of the backward displacement method, a quasi-Newton iterative method with
an approximation for the inverse of the Jacobian from a least-squares model (QN-ILS) can be used. This method
uses similar principles as the QN-LS method in which the Jacobian is approximated from a least-squares model
and then inverted. The QN-LS method was analyzed for linear problems by Haelterman et al. [12]. The interface
quasi-Newton method with an approximation of the inverse of the Jacobian from a least-squares model (IQN-
ILS) was introduced by Degroote et al. [13] to couple the interface variables of the flow solver and the structural
solver in a partitioned fluid-structure interaction simulation. This method was also analyzed for linear problems
by Haelterman et al. [14] in a more general framework, where the method was called QN-ILS. In this paper we
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also call the method QN-ILS as the position is computed for all material points and not only for those lying on
the interface. The implementation for a nonlinear problem with black box solvers and with the least-squares
QR-factorization is as described in [13] and has proven to need less (coupling) iterations compared with other
schemes such as Aitken relaxation and Interface-GMRES(R) [15].

The root finding problem described by Equation (13) can be solved using Newton-Raphson iterations. By
writing the Jacobian matrix of the residual operator RX as

dRX
dX

= JX

the equations that have to be solved are given by

JX |Xi ∆Xi = −ri (16a)

Xi+1 = Xi + ∆Xi (16b)

with the ith residual vector, as shown in Equation (14), calculated by

ri = RX(Xi) = B(SU (Xi))−Xi = X̃i −Xi (17)

Convergence of the Newton-Raphson iterations is reached when the relative residual satisfies Equation (15).

Unlike what happens using the fixed point iterative procedure, the values for B(SU (Xi)) are not passed on

to the next backward displacement iteration. Xi+1 gets computed instead using Equation (16a)

∆Xi = ĴX
−1

∣∣∣∣
Xi

(−ri) (18)

in which the hat indicates an approximation. However, the exact Jacobian of RX is unknown as we do not know
the Jacobian of S. We will now go into more detail on how the product of this approximation for the inverse
of the Jacobian with the vector −ri can be calculated, making use of information obtained during previous
backward displacement iterations.

∆ri = 0 − ri represents the difference between the desired residual vector and the current one. ∆ri is
approximated by a linear combination of the known δrj ∈ R3N×1 (for j = 0, ..., i− 1)

∆ri ≈ V ici (19)

with ci ∈ Ri×1 the coefficients of the decomposition in iteration i and a matrix V i ∈ R3N×i

V i = [δri−1 δri−2 . . . δr1 δr0] (20a)

δrj = rj+1 − rj (j = 0, · · · , i− 1) (20b)

Then, the assumption is made that ∆X̃i, corresponding to ∆ri, can be written by the same linear combination
of the, in previous iterations, computed δX̃j ∈ R3N×1 (for j = 0, ..., i− 1)

∆X̃i = W ici (21)
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with a matrix W i ∈ R3N×i

W i = [δX̃i−1 δX̃i−2 . . . δX̃
1
δX̃

0
] (22a)

δX̃j = X̃j+1 − X̃j (j = 0, · · · , i− 1) (22b)

Both V i and W i are updated at each iteration by the difference between the vectors from the current iteration
(ri and X̃i) and the vectors from the previous iteration (ri and X̃i). Remark that if the tildes would be omit-

ted in Equations (21) and (22), ∆Xi(= W ici) would become a linear combination of the previously calculated

δXj(j = 0, · · · , i − 1), with as result that the rank of W i+1 will be the same as the rank of W i. This means

that the rank of the matrices W i would always be equal to one, what would prohibit the convergence of the
method since then the rank of the approximation of the inverse of the Jacobian will also become at maximum
one. However, for a linear system it has been proven that the use of Equations (21) and (22) returns an exact
Jacobian – and thus a converged result – in at most n+1 iterations, with n the number of degrees of freedom of
the problem [14]. Remark, however, that in practical applications the convergence rate is much higher.

Considering that the number of columns in V i is generally much smaller than the number of rows, deter-
mined by the number of nodes in the mesh times the spatial dimension of the problem, Equation (19) is an
overdetermined system with respect to the elements of ci. Hence, the residual ∆ri = −ri is decomposed as a
linear combination of the set of ∆rj = rj+1 − rj (for j = 0, ..., i− 1) by solving the least-squares problem

ci = arg min
ci
‖∆ri − V ici‖2 (23)

The coefficients of the decomposition, ci, are given by the normal equations

ci = (V iTV i)V iT∆ri (24)

However, to be less sensitive to rounding errors introduced during the computations, the least-squares problem
is solved by a so-called economy size QR-decomposition of V i

V i = QiRi

with Qi ∈ R3N×i an orthogonal matrix and Ri ∈ Ri×i an upper triangular matrix. Because both matrices V i

andW i are updated at each quasi-Newton iteration the QR-decomposition has to be recalculated. Nevertheless,
the cost of the QR-factorization is small compared to the cost of one forward calculation performed by the
structural solver SU (Xi).

The coefficients of the decomposition ci are then calculated by solving the triangular system

Rici = QiT ∆ri (25)

Using Equation (17), ∆ri can be written as

∆ri = ∆X̃i −∆Xi

Substitution of ∆X̃i by Equation (21) and then ci by Equation (25) results in

∆Xi = W ici −∆ri (26a)

=
(
W i(Ri)

−1
QiT − I

)
∆ri (26b)
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with I the unity matrix. Identification of Equation (26b) with Equation (18) shows that the approximation of
the inverse of the Jacobian can be calculated by

ĴX
−1

∣∣∣∣
Xi

= W i(Ri)
−1
QiT − I (27)

However, the matrix ĴX
−1

∣∣∣∣
Xi

is never calculated nor stored, but the matrix vector product of ĴX
−1

∣∣∣∣
Xi

with ∆ri is computed directly from the calculated coefficients ci, the matrix W i and the residual vector ri

Xi+1 = Xi + ĴX
−1

∣∣∣∣
Xi

(−ri)

= Xi +W ici + ri

so that the required storage for the method is very limited and the calculation time is negligible.

It can be demonstrated that quasi-Newton iterations are performed for the part of ∆ri in the span of the
columns of V i (Proposition 2.2) and that fixed point iterations are performed for the part of ∆ri orthogonal

to the span of the columns of V i (Proposition 2.3). Algorithm 2.4 shows the complete QN-ILS technique to
recover the zero-pressure geometry X∗ and to find the in vivo stress σ∗.

Proposition 2.2. Quasi-Newton iterations are performed for the part of ∆ri in the column span of V i

Proof. Let ∆ri be an element of the column span of V i = [∆ri−1 . . . ∆r1 ∆r0]

∆ri =

i−1∑
j=0

αj∆r
j

with αj the coefficients of the linear combination. Then, the components of the decomposition in iteration i,
Equations (19) and (21), are given by

ci = arg min
ci
‖∆ri − V ici‖2 = [αi−1 . . . α1 α0]T
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Equation (26a) can then be reformulated using Equations (20b), (22b) and (17)

∆Xi = Ĵ −1
∣∣∣
Xi

∆ri = W ici −∆ri

=

i−1∑
j=0

∆X̃jcij −
i−1∑
j=0

αj∆r
j

=

i−1∑
j=0

(
(X̃j+1 − X̃j

) cij − αj(rj+1 − rj)
)

=

i−1∑
j=0

(
(X̃j+1 − X̃j

)αj − αj
(

(X̃j+1 −Xj+1)− (X̃j −Xj)
))

=

i−1∑
j=0

αj(X
j+1 −Xj)

=

i−1∑
j=0

αj∆X
j

Thus, iteration i ends up as a quasi-Newton iteration in which the product of the Jacobian’s inverse with the
vector ∆ri can be calculated by a linear combination of known finite differences ∆Xj (with j = 0, ..., i−1). �

Proposition 2.3. Fixed point iterations are performed for the part of ∆ri orthogonal to the column span of V i

Proof. Let ∆ri be orthogonal to V i. Then, the components of the decomposition in iteration i are given by

ci = arg min
ci
‖∆ri − V ici‖2 = [0 . . . 0]T

∆Xi = W ici −∆ri

= 0−∆ri

= ri

Here, iteration i ends up as a fixed point iteration (see step 13 in Algorithm 2.1)

Xi+1 = Xi + ri = X̃i

�

Algorithm 2.4 (QN-ILS BDM). Quasi-Newton algorithm with an approximation for the inverse of the Ja-
cobian from a least-squares model to recover the zero-pressure geometry and the in vivo stress tensor field.

1: i = 0
2: Initialize X0 = xm
3: U0 = SU (X0)

4: X̃
0

= B(U0)

5: r0 = X̃
0 −X0

6: X1 = X0 + ωr0

7: while rirel ≥ ε do
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8: i = i+ 1
9: Ω(xi,σi) = S(Ω(Xi), pm)

10: U i = SU (Xi) = xi −Xi

11: X̃i = B(U i) = xm −U i

12: ri = X̃i −Xi

13: Construct V i and W i as shown in Equation (20a) and (22a)

14: Calculate QR-decomposition V i = QiRi

15: Solve Rici = −QiTri

16: Xi+1 = Xi + ∆Xi = Xi +W ici + ri

17: end while
18: Zero-pressure reference geometry X∗ = Xi

19: In vivo stress tensor for the in vivo measured geometry σ∗ = σi

Remark 2.5. Information from the previous backward displacement iterations is needed to calculate the
approximation for the inverse of the Jacobian with the vector −ri. Therefore a relaxation with factor ω is
performed in the first backward displacement iteration i = 0. As the same initial guess (X0 = xm) was made
before when performing the backward displacement method using simple fixed point iterations, the values for
the first two relative residuals, found by both methods, will be the identical when ω = 1.

Remark 2.6. Definitions from section 2.2.1 and associated solving procedures in sections 2.2.2 and 2.2.3 can
be reformulated in order to solve the inverse problem in function of the displacement. Here, a tilde is introduced
to distinguish between the output variable of SU (B(U)) and its input variable. The fixed point problem can be
described by

Ũ = SU (B(U))

= U = U∗

while the corresponding root finding formulation becomes

RU (U) = SUB(U))−U = Ũ −U = 0

with RU the residual operator in function of the displacement.
When solving for the zero-pressure configuration using Algorithm 2.1 or 2.4 the only variables which get

updated explicitly are the material coordinates of the approximate zero-pressure geometry Xi. However, the
fixed point or root finding problem can perfectly be described in terms of U instead of X. Moreover, both
representations of the inverse problem yield the same theoretical result but with an opposite sign, as shown
here for the root finding formulation

RU (U i) = Ũ i −U i = SU (B(U i))−U i (29a)

= SU (Xi)− (xm −Xi) (29b)

= Xi − B(S(Xi)) = −(X̃i −Xi) = −RX(Xi) (29c)

where Equations (29b) and (29c) are found by using the definition of the backward displacement function B.
RU denotes the residual operator in function of the nodal displacement.

2.3. Existing solution methods and limitations

Besides the backward displacement method, proposed in this paper, there exist other techniques to incor-
porate in vivo stress into computational models of the cardiovascular system, given the in vivo image-based
geometry xm and the internal pressure load at the moment of image acquisition pm.
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The idea to take the zero-pressure geometry into account in a non-invasive way in the numerical modelling
process of a blood vessel was first implemented by Raghavan et al. [16]. Their method can be described as an
optimization procedure for finding the parameter k that approximates the coordinates of the unknown zero-
pressure reference geometry X∗ by (xm − kU). Here, the nodal displacements U result from a single forward
calculation where the lumen pressure load is applied onto the in vivo measured reference geometry xm.

The inverse elastostatic method as described by Govindjee and Mihalic [9] and later extended by the same
authors for nearly incompressible materials [10] was introduced to the field of cardiovascular modelling by Lu
et al. as another way to calculate the zero-pressure state [4]. However, the implementation involves access to
the finite element code, what can be seen as a drawback.

Gee et al. implemented previous strategy as the Inverse Design (ID) method, and compared this prestressing
technique with another method, the so called Modified Updated Lagrangian Formulation (MULF) [6, 17]. The
methodology used, is similar to the Backward Incremental (BI) method introduced by de Putter et al. [5].
In contrast to the backward displacement method, described in this paper, the zero-pressure geometry is not
calculated directly but the equilibrium configuration Ω(xm,σ

∗) is computed instead. By incrementally increas-
ing the pressure load towards the full in vivo pressure pm while discarding the corresponding deformations
(xi = xm) a prestressed (σ∗) and prestrained configuration is generated. The procedure calculates the new
stress tensor field σi that will be used at the next increment by loading the ith non-equilibrium configuration
Ω(xm,σ

i−1) with the incrementally increased internal pressure (pi = pi−1 + δpi). As such, the stress tensor
gets updated towards the in vivo stress tensor and the strain tensor gets implicitly updated by a multiplicative
split of the deformation gradient tensor F 0,i = F 0,i−1.F i−1,i [7, 18]. Afterwards, the zero-pressure geometry
can be constructed by reducing the luminal pressure to 0 Pa [19]. According to [5] the last pressure increment
has to be chosen extremely small to return a final equilibrium configuration. The method allows the use of a
black box structural solver if the finite element code is able to update the initial stress tensor field with each
iteration [19]. A similar approach of prestressing was used earlier by Pinsky et al. to include the internal stress
state in the cornea under the presence of the full intraocular pressure load through a fixed point iteration instead
of increasing the pressure incrementally [20].

Although the above methods only involve a structural model of the arterial system under consideration,
their resulting zero-pressure geometry or in vivo stress state can also be used in FSI models, which take into
account the interaction between the blood flow and the arterial wall, as the effect of viscous forces would
be small. However, Bazilevs et al. report that the effect is not negligible [21] and account for the viscous
traction caused by the fluid when solving the balance of linear momentum for the solid. They obtain the fluid
traction vector from a separate steady flow CFD simulation with rigid walls. The prestress component S0 of
the additive decomposition (S + S0) of the second Piola-Kirchhoff stress tensor is then calculated iteratively
and used afterwards as initial stress in their in vivo geometry based FSI model [22].

3. Examples

This section focuses on two examples. In the first example a simplified model of a small artery is used for
validation purpose and to evaluate the importance of stress incorporation in the in vivo measured geometry.
The second example concerns a mouse-specific abdominal aorta with four side branches to explore the ability
of the backward displacement method to restore a more complex cardiovascular structure at its zero-pressure
state.

Both examples cover the comparison of the convergence resulting from the fixed point method and the quasi-
Newton method with an approximation of the Jacobian’s inverse from a least-squares model. All structural
calculations were performed using the commercial finite element analysis software Abaqus/Standard (Simulia).
However, as stated earlier, any other structural mechanics solver can be used.
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3.1. Example 1: In vivo stress incorporation in a thick-walled cylinder

A small unloaded artery is modelled using a straight cylindrical tube with a length of 10 mm, an inner
radius of 0.5 mm and a wall thickness to diameter ratio of 0.15. The boundary conditions only allow a radial
displacement at the ending cross sections. The geometrical model is discretized using 64× 32× 4 quadratic
hexahedral elements with reduced integration and a hybrid formulation. The vessel wall behaviour is modelled
by an incompressible isotropic hyperelastic material using the polynomial strain energy density function

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C11(I1 − 3)(I2 − 3) (30)

where I1 and I2 are the first and the second invariant of the left Cauchy-Green deformation tensor, and where
Cij are empirically determined material constants for a human artery according to [23].

3.1.1. Numerical validation of the backward displacement method

To validate the backward displacement method a zero-pressure geometry is pressurized in a forward analysis
by applying a uniformly distributed pressure load of 80 mmHg to the inner surface of the vessel wall. The
resulting geometry is taken as the in vivo measured geometry at the diastolic phase and serves as a starting
point for the backward problem. This inverse problem is then solved using the backward displacement method
in order to restore a zero-pressure geometry which is eventually compared to the original zero-pressure geometry.
Therefore, the residual vector ri ∈ R3N×1 is reshaped into the distance vector di ∈ RN×3. Then, the error
that is still present after iteration i can be defined as the mean distance between the nodes of the original
image-based geometry xm and the corresponding nodes of the ith deformed geometry xi.

dimean =
1

N

N∑
j=1

‖dij‖2

with dij row j of matrix di. Upon convergence, the in vivo measured geometry is fully recovered, with a mean

distance error dimean which is more than a factor 104 lower than the convergence criterion.
The evolution of the relative residual (15) throughout the iterative process is shown on a logarithmic scale

in Figure 5 for both FP and QN-ILS iterations. This allows evaluation of the rate of convergence, when solving
for the zero-pressure geometry, using the backward displacement method. For a convergence criterion set at e.g.
10−4, the logarithm of the relative residual decreases linearly during consecutive iterations of the fixed point
method. The quasi-Newton residuals however, reduce about one and a half times faster. As the additional cost
of the QR-factorization is small compared to the cost of one forward calculation performed by the structural
solver, the QN-ILS strategy can be used to accelerate the backward displacement method.

3.1.2. Evaluation of the effect of in vivo stress incorporation

To evaluate the effect of in vivo stress incorporation, a simulation is performed in which the internal pressure
is first set to the end-diastolic pressure (80 mmHg) and subsequently increased to the end-systolic pressure
(120 mmHg). This is done for three different set-ups:

(1) The in vivo measured geometry is assumed to be the unloaded geometry. In the forward simulation
the in vivo measured geometry is inflated using the physiological pressure values (80 mmHg diastolic
pressure; 120 mmHg systolic pressure). The results are visualized in quadrant I.

(2) The in vivo measured geometry is assumed to be the geometry at end-diastole, but neglects the exis-
tence of prestress at the diastolic phase. In the forward simulation the in vivo measured geometry is
only inflated to 40 mmHg, the end-systolic minus end-diastolic pressure difference. To allow for a fair
comparison of the calculated stresses with the other two cases, the stress tensor field was corrected,
adding an approximation of the stress field at diastole. The latter resulted from a simulation in which
80 mmHg was applied onto the diastolic geometry. The results are visualized in quadrant IV.
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(3) The proposed strategy in which the forward simulation towards the physiological pressure values starts
from the restored zero-pressure geometry. This results in a prestressed in vivo geometry at diastole.
The results are visualized in both quadrant II and III.

Figure 3(a) presents the maximum principal or circumferential stress at end-systole (120 mmHg). The contour
plots are shown on the undeformed geometries from which the forward analysis was started. Figure 3(b)
visualizes the radial displacement when the internal pressure load is increased from end-diastolic to end-systolic
pressure. The red line and the grey dashed line are outlines of the corresponding deformed geometries. Note
that the red outline of the diastolic geometry in quadrant IV coincides with the undeformed geometry.

(a)

(b)

Figure 3. Contours of (a) the max. principal stress [Pa], and (b) the distance map between
the geometries at end-diastole and end-systole [mm]. For more information about the different
quadrants the reader is referred to the corresponding text in section 3.1.2.
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Compared to quadrant II and III, the results in Figure 3(a) clearly show the overestimation of the maximum
principal stress when the in vivo measured geometry is assumed to be the unloaded geometry (quadrant I).
Furthermore, the outlines of the cross sectional areas at end-diastole and end-systole are a better approximation
when the in vivo geometry is assumed to be the geometry at diastole (quadrant IV). However, the corresponding
displacement contours in quadrant IV are overestimated due to the nonlinear material law and the absence of
prestress and prestrain at the start of the inflation process.

3.2. Example 2: In vivo stress incorporation in a mouse-specific abdominal aorta

In a second example, a more complex cardiovascular structure was created based on contrast-enhanced
micro-CT images of the abdominal aorta of an in-house bred male ApoE -/- mouse on a C57BL/6 background
(age: 5 months, body weight: 29 g). A mouse-specific 3D geometry of the aortic lumen containing four side
branches was obtained in vivo, by segmentation of micro-CT (Triumph, Gamma Medica) images in Mimics
(Materialise). In order to obtain sufficient contrast during the imaging process the mouse was intravenously
injected with Aurovist (Nanoprobes), a contrast agent which provided satisfying results in earlier studies [1].
Using pyFormex [24] a structured grid was projected onto the from segmentation resulting outer surface yielding
a hexahedral mesh for the aortic wall, Figure 4(a), according to the method of De Santis et al. [25]. The mesh
for the aortic wall consists of 80640 elements with 5 elements to represent the wall thickness, 48 elements in the
circumferential direction and local refinements in the bifurcation regions, Figure 4(b). The wall thickness was
assumed to be 20 percent of the local radius and thus varies throughout the structure.

The element type, the free radial displacement boundary condition at the ending cross sections (3) and the
polynomial hyperelastic material model (30) were adopted from the first example (section 3.1). For example
purpose only, identical material parameters as in the example of the human vessel were used for the constitutive
material law.

(a) (b)

Figure 4. Hexaedral mesh for the arterial wall of the abdominal aorta of a mouse (length
sample about 20 mm) and its side branches (a), and a detail of the mesh at the trifurcation
region (b).

To further evaluate the backward displacement method this more complex geometry was brought to its
zero-pressure state, assuming the internal pressure load at the moment of medical imaging to be 80 mmHg.
Afterwards, in vivo stress was computed by reapplying this pressure load in a forward calculation.

The rate of convergence is plotted for backward displacement simulations using both the fixed point and
the quasi-Newton approach, Figure 5. In comparison with the fixed point convergence rate of the simplified
artery in example 1, the logarithm of the relative residual now follows a linear decline after the second iteration.
Although the geometry is much more complicated, a convergence criterion set at e.g. 10−4 would slow down
the convergence only 3.33 (FP) and a 2.75 (QN-ILS) times. The quasi-Newton approach returns a converged
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solution twice as fast and thus shows an even more significant acceleration of the backward displacement method
when using a complex geometry. Remark that the wall clock time of the overall calculation varies linearly with
the number of iterations. The proportionality constant is the time required to perform one forward calculation.

Figure 5. Rate of convergence when solving for the zero-pressure geometry of a thick-walled
cylinder (example 1) and a mouse-specific abdominal aorta (example 2) using the backward
displacement method. Results are shown for both the fixed point (FP) and the quasi-Newton
(QN-ILS) approach.

Figure 6 depicts the contour plots of the maximum principal stress and the displacement field present in the
in vivo measured geometry at the moment of medical imaging. This is the result of applying the end-diastolic
pressure on the restored zero-pressure geometry of the more complex cardiovascular structure.

4. Conclusion

In conclusion, this paper presents a method to restore the original geometry of a structure in absence of its
loading state, and to recover the stress field of the final, loaded structure. This inverse problem can be formulated
using a backward displacement function and a function which represents the outcome of the structural solver. To
solve this backward displacement problem, a fixed point algorithm and a quasi-Newton algorithm are proposed
in sections 2.2.2 and 2.2.3. The backward displacement method is validated in section 3.1.1, concluding that
it is ideally suited to restore the zero-pressure geometry of in vivo measured cardiovascular structures (section
3.2). To emphasize the importance of prestress in this field of research, the example in section 3.1 shows
that incorporation of in vivo stress in arteries is necessary to properly estimate stress and displacement in the
physiological blood pressure range. The convergence rate of the proposed techniques is high and decreases
only slightly for a much more complex structure using the same constitutive material law. Furthermore, the
convergence rate of the fixed point iterative strategy is compared to the quasi-Newton algorithm with a least-
squares approximation for the inverse of the Jacobian. As shown in Figure 5, the use of information from previous
iterations, as is done in the QN-ILS algorithm, accelerates the backward displacement method significantly.
Finally and most importantly, the backward displacement method allows for a straightforward implementation
of the algorithm in combination with existing structural solvers as only an update of the coordinates of the
mesh needs to be performed.
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(a)

(b)

Figure 6. Contours of (a) the max. principal stress [Pa], and (b) the displacement [m]. Both
after applying the internal pressure load, present at the moment of medical imaging, onto the
restored zero-pressure geometry.
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