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Abstract. A self-contained set of algorithms is proposed for the fast evaluation of Legendre
polynomials of arbitrary degree and argument ∈ [−1, 1]. More specifically the time required to
evaluate any Legendre polynomial, regardless of argument and degree, is bounded by a constant,
i.e. the complexity is O (1). The proposed algorithm also immediately yields an O (1) algorithm for
computing an arbitrary Gauss-Legendre quadrature node. Such a capability is crucial for efficiently
performing certain parallel computations with high order Legendre polynomials, such as computing
an integral in parallel by means of Gauss-Legendre quadrature and the parallel evaluation of Legendre
series. In order to achieve the O (1) complexity, novel efficient asymptotic expansions are derived and
used alongside known results. A C++ implementation is available from the authors that includes
the evaluation routines of the Legendre polynomials and Gauss-Legendre quadrature rules.
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1. Introduction. The Legendre polynomials are given by

Pl (x) =
1

2ll!

dx

dlx
(x2 − 1)l. (1.1)

They are orthogonal with respect to a constant weight function, such that

∫ 1

−1

Pl (x)Pl′ (x) dx =
2

2l+ 1
δl,l′ . (1.2)

Legendre polynomials are used in a great variety of numerical techniques and appli-
cations in physics. For example, Legendre polynomials are used in spectral methods
to solve various kinds of differential equations [1]. In principle, one could use any
polynomial basis for this. However, many of these alternative polynomial bases (such
as the monomials) are insufficiently linearly independent to allow a numerically stable
use in spectral methods.

In physics, Legendre polynomials naturally appear when the Laplace and Helmholtz
equations are solved in spherical coordinates by means of separation of variables. For
the same reason, they are used in the solution of the hydrogen atom in quantum
mechanics. Because of their intimate link with the spherical coordinate system, it
is not surprising that Legendre polynomials also feature prominently in the addition
theorems of the Multilevel Fast Multipole Algorithm (MLFMA) [2, 3, 4]. Indeed, the
translation operator in the MLFMA for high frequencies is given by

T (γ) =
L
∑

l=0

alPl (cos γ) . (1.3)
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The exact nature of the coefficients al will not be detailed here. For more information,
we refer to [2]. What is important in (1.3) is the fact that L can be huge. Sums of
the type (1.3), where the coefficients al are not necessarily related to the MLFMA,
will be called Legendre series throughout this paper.

Another application of Legendre polynomials is in the construction of Gauss-
Legendre quadrature rules. Because of their orthogonality, the zeros of the Legendre
polynomial of degree l constitute a set of l Gauss-Legendre nodes that, when sup-
plemented with appropriate weights, forms a quadrature rule that integrates exactly
all polynomials of degree up to 2l − 1. If one wants to compute the integral of a
very oscillatory function, l can become very large. One such instance is again in the
MLFMA, where highly oscillatory radiation patterns are integrated with the transla-
tion operator introduced earlier.

The key motivation for this paper is that up till now, fast algorithms for the
evaluation of Legendre series or Gauss-Legendre quadrature rules are all inherently
sequential. Indeed, when evaluating the Legendre series (1.3), one usually starts with
P0 (x) = 1, P1 (x) = x and applies the recurrence

(n+ 1)Pn+1 (x) = (2n+ 1)xPn (x)− nPn−1 (x) , (1.4)

to eventually compute all the Pl (x). The complexity of this computation is clearly
O (L). However, since the complexity of the summation is also inherently O (L), this
is not problematic. Recursive computation of the Legendre polynomials only becomes
a problem when a parallel paradigm is adopted. Indeed, suppose the coefficients al
are approximately evenly distributed over the P computational nodes (CNs). These
CNs can for example be the different cores of a multi-core CPU or even the large
number of cores in a cluster. Then each CN only needs to calculate L

P
Legendre

polynomials to finish its share of work. However, for the CN containing aL, the
recursive computation of PL (x) requires O (L) operations, no matter how large P is.
Therefore, increasing the number of CNs does not decrease the time required for the
computation, i.e. the algorithm has a very poor parallel efficiency. It is clear that
this problem is immediately resolved if an algorithm is available that evaluates PL (x)
in O (1) time. In light of the recent shift towards parallelism in computer hardware,
such an algorithm definitely has great value.

A similar argument holds for the computation of Gauss-Legendre quadrature
rules. Arguably, one of the best algorithms to compute these rules was given in [5],
where the differential equation of the Legendre polynomials is leveraged to compute a
Gauss-Legendre node from the previous one. This process requires L steps to compute
all the L Gauss-Legendre nodes, hence the complexity is O (L). In a computational
environment consisting of a single CPU, this algorithm is optimal. However, its
inherently sequential nature again prevents an efficient parallel implementation. In
order to be able to efficiently compute Gauss-Legendre quadrature rules, one needs
to be able to compute every node on its own. In [6, 7], an approach satisfying this
requirement is proposed. First, an asymptotic formula for the nodes is used to obtain
a coarse estimate. A few Newton-Raphson iterations are then used to get the node
with machine precision. However, this procedure requires the repeated evaluation of
a Legendre polynomial, which makes the complexity for computing any node O (L)
if the recurrence (1.4) is used. Computing L

P
nodes in this fashion is therefore an

O
(

L2

P

)

process. This is again reduced to O
(

L
P

)

if any Legendre polynomial can be

evaluated in constant time.



3

In this paper a collection of formulas will be given that, when patched together,
allows the O (1) evaluation of Legendre polynomials of arbitrary degree. For low
degrees, a direct polynomial evaluation based on the tabulated zeros of the Legendre
polynomials is used. For high degrees, two distinct asymptotic formulas are used to
cover the range x ∈ [−1, 1]. All these formulas have been implemented in a C++
software package called FastLegendre that is available from the authors. We do not
claim that FastLegendre is faster than existing methods for abitrary degree. Indeed,
the algorithms in FastLegendre are sometimes considerably more complicated than
for example the recurrence (1.4), which means that the constant hidden in the O (1)
complexity can still be substantial. However, for sufficiently high degree, FastLegendre
should be faster than existing methods. To ensure the applicability of this software
package in parallel computing, much attention has been payed to the robustness and
numerical stability of all these formulas, especially when the degree is extremely large.
This is the subject of Section 2. One of the measures taken to improve numerical
stability is to compute Pl (cos θ) with θ as the double precision argument instead of
Pl (x) with x stored in double precision. In [7], it is intuitively explained why this is
effective. In this paper, a numerical stability study is performed to provide heuristic
error bounds for both Pl (x) and Pl (cos θ). This convincingly shows that the latter is
indeed much better than the former, through the availability of better error bounds.
In Section 3, the evaluation formulas to actually compute the Legendre polynomials
are given. One of these formulas is a newly derived asymptotic expansion. In Section
4, techniques are developed for computing arbitrary Gauss-Legendre nodes and their
associated weights. Finally, in Section 5, some numerical results are presented to
demonstrate the accuracy and O (1) complexity of the algorithms. These results
show that the accuracy of the Legendre polynomials remains bounded by the derived
bounds for degrees as high as 251 = 2251799813685248. The numerical results also
show that the Gauss-Legendre nodes are evaluated to machine precision for degrees
as high as 246 = 70368744177664.

2. Error Control. When evaluating the error-controllability of a computational
scheme, it is natural to look at the relative accuracy of the obtained result versus some
exactly known reference result. However, since the Legendre polynomials have many
real zeros in the evaluation interval x ∈ [−1, 1], the relative error can be very large
even though the absolute error is small. This is a problem that also occurs for example
in the sin and cos functions in standard libraries and is very hard to avoid in fixed-
precision floating-point arithmetic. Given that no easy solution to this problem exists,
we will instead use an error measure based on Bernstein’s inequality [8]

|Pl (x)| ≤
2

√

π(2l + 1)
√
1− x2

. (2.1)

The right hand side turns out to be a very good approximation for the envelope of
the Legendre polynomials, and is a strictly positive real function. However, it has a
singularity at x = ±1. This singularity can be avoided by using the well-known fact
that |Pl (x)| ≤ 1 and introducing a new upper bound gl(x)

|Pl (x)| ≤ gl(x) = min



1,
2

√

π(2l + 1)
√
1− x2



 . (2.2)
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The switch between the two upper bounds occurs at

x = ±xl = ±
√

1− 16

π2(2l+ 1)2
. (2.3)

In the rest of this paper, with a mild abuse of the term ‘relative error’, the absolute
error on the numerically evaluated Legendre polynomials divided by gl(x) will be
called the relative error.

Another aspect of floating-point arithmetic is the fact that the precision is un-
avoidably limited by the roundoff error on the input. Indeed, the floating-point rep-
resentation fl(x) of the input x only limits the absolute error of the input to [9]

δ = |fl(x)− x| ≤ |x| ǫ, (2.4)

where ǫ is the machine precision (for double precision ǫ = 2.2204 × 10−16). Put in
another way, the input is already contaminated with error as soon as it is passed as
a floating-point argument of a function. In many circumstances this input error is
negligible when compared to other error sources. However, in the case of the Legendre
polynomials, this can lead to problems because the zeros of the Legendre polynomials
are quadratically clustered around the points x = ±1. This means that the distance
between the zeros of the Legendre polynomials nearest to x = ±1 is, in the limit
of large l, proportional to 1

l2
. Therefore, in the extreme case where 1

l2
becomes of

the order of ǫ, the precision of the input is not even good enough to tell between
which two zeros of the Legendre polynomial the input falls. Clearly, this precludes
obtaining any precision on the output. If l is large but smaller than this extreme
case, the output will be inaccurate. This problem is a more dramatic version of the
problem encountered when trying to evaluate for example cos

(

1017
√
2
)

by means of
double precision floating-point operations. In Matlab, the result 0.611536661466470
is obtained, while the correct result is −0.06981231488858282216... Since this paper
is explicitly aimed at very-high-degree Legendre polynomials, this problem needs to
be addressed. In [7], it was proposed to compute Pl (cos θ) with θ ∈ [0, π] instead of
computing Pl (x) with x ∈ [−1, 1]. In the following, a mathematical treatment of the
output error incurred by the input error will be given, and it will be shown that the
substitution x = cos θ allows the derivation of much stronger error bounds for the
error on the Legendre polynomial.

2.1. Error Incurred by the Input. To estimate the influence of the input error
on the value of the output, i.e. the Legendre polynomial, we will assume that the
input error is small enough such that the Legendre polynomial can be approximated
as a linear function in the neighborhood around the input argument. It is then easily
shown that the absolute error is approximately

|Pl (fl(x)) − Pl (x)| ≈ δ |P ′
l (x)| ≤ ǫ |xP ′

l (x)| , (2.5)

where

P ′
l (x) =

d

dx
Pl (x) =

1

2
(l + 1)P 1,1

l−1(x). (2.6)

Here Pα,β
ν (x) denotes a Jacobi polynomial [10]. To bound the absolute error, it would

be useful to have an upper bound like (2.2) for the Jacobi polynomial P 1,1
l−1(x). How-

ever, as can be read in [8], upper bounds of this type are still the topic of mathematical
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research. Therefore an approximate upper bound for P 1,1
l−1(x) is proposed in equation

(A.5) in Appendix A. It is approximate in the sense that it is not a strict upper bound.
However, it closely tracks the behavior of P 1,1

l−1(x) and is more than good enough for
our estimation purposes. Using this approximate upper bound, the relative error can
be approximately bounded by

|Pl (fl(x))− Pl (x)|
gl(x)

/ ǫ
|x|√
1− x2

l(l + 1)

l + 1
2

. (2.7)

for all −x
1,1
l−1 ≤ x ≤ x

1,1
l−1 with x

1,1
l−1 defined in Appendix A. The maximum error

occurs when x = ±x
1,1
l and for large l becomes

ǫl(l+ 1)
3
√
π

2
≈ 0.7322959437 ǫl(l + 1). (2.8)

The same maximum error is found for the range [x1,1
l−1, xl], while for [xl, 1] the maxi-

mum error is 1
2ǫl(l+1). Apparently, when the argument x is stored as a floating-point

number and is sufficiently close to ±1, all precision is lost when ǫl2 becomes of order
unity. This is consistent with the reasoning made earlier about the clustering of the
zeros of the Legendre polynomials.

The picture dramatically improves when Pl (cos θ) is computed instead of Pl (x).
Repeating the analysis done for Pl (x), the absolute error on the result becomes

|Pl (cos fl(θ))− Pl (cos θ)| ≤ ǫ |θ sin θP ′
l (cos θ)| , (2.9)

For −x
1,1
l−1 ≤ cos θ ≤ x

1,1
l−1, the relative error becomes

|Pl (cos fl(θ))− Pl (cos θ)|
gl(cos θ)

/ ǫ |θ| l(l + 1)

l + 1
2

, (2.10)

which is ǫθl for large l. The same maximum error is found for the range [x1,1
l−1, xl],

while for [xl, 1] the maximum error is

ǫ |θ| 1
π

l(l + 1)

l + 1
2

. (2.11)

Clearly, for all θ ∈ [0, π] and for large l, the relative error approximately satisfies

|Pl (cos fl(θ))− Pl (cos θ)|
gl(cos θ)

/ ǫ |θ| l. (2.12)

This is a factor l better than if x is used as the argument, which can be huge if
very high degrees are used. It should be pointed out that the algorithms to actually
compute the Legendre polynomials should also be constructed such that they do not
throw away this extra accuracy. In addition, they should keep other sources of errors
(e.g. series truncation, etc.) in check. This will be handled in the next section.

3. Evaluation Formulas. In this section, four different formulas for the com-
putation of Pl (cos θ) will be given. The parameter ranges in which the four formulas
are used are presented graphically in Figure 3.1. The first formula is a more or less
direct evaluation of the polynomial and is used whenever l ≤ 100. When l is larger
than this bound, the functional equation

Pl (cos θ) = (−1)lPl (cos (π − θ)) , (3.1)
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is used to map θ values in [π2 , π] onto [0, π
2 ]. Therefore, the only remaining parameter

range is θ ∈ [0, π2 ] and l > 100. Two asymptotic expansions are leveraged to cover this
range: the first is an asymptotic expansion found in [11] and is used when (l+1) sin θ ≥
25. The second is a novel asymptotic expansion, derived in Subsection 3.3. It is
used when the first asymptotic expansion is not applicable. In the following, the
various expansions are introduced and analyzed. In addition, criteria will be derived
to determine which formula eventually gets used, depending on l and θ.
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Fig. 3.1. The patchwork of functions to evaluate Pl (cos θ).

3.1. Direct Evaluation for small l. For small l, there are a number of options
for the evaluation of Pl (cos θ). One option is using the recurrence relation (1.4).
Another option is using the zeros of the Legendre polynomials, which leads to an
evaluation method that leverages the following product representation

Pl (cos θ) =







Cl

∏
l
2

n=1

(

1− cos2 θ
x2

l,n

)

=
∏

l
2

n=1

(

1− sin2 θ
1−x2

l,n

)

: l even

Cl cos θ
∏

l−1

2

n=1

(

1− cos2 θ
x2

l,n

)

= cos θ
∏

l−1

2

n=1

(

1− sin2 θ
1−x2

l,n

)

: l odd
(3.2)

where xl,n is the nth positive zero of Pl (x). The factor Cl is pre-computed using

Cl =

{

√
π

Γ( l
2
+1)Γ( 1−l

2 )
: l even

lCl−1 : l odd
, (3.3)

and tabulated. Evaluating (3.2) using pre-computed and tabulated values for 1
x2

l,n

and 1
1−x2

l,n

requires fewer multiplications than the recurrence (1.4). In addition, it

allows freedom in the sense that one can make the choice to use the product form
based on the sines in certain circumstances, whereas the product form based on the
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cosines can be used in other circumstances. In the current version of FastLegendre,
the sine-based form is used whenever

∣

∣θ − π
2

∣

∣ ≥ π
4 . The cosine-based form is used

otherwise. This choice is motivated by the fact that the sine is more sensitive to the
value of θ than the cosine in this region. Therefore, one can expect a higher accuracy
in the final result. Another way to look at it is that using the cosine-based form is
essentially the same as evaluating Pl (x), i.e. the extra precision that was contained
in the floating-point value of θ is lost by taking the cosine. Therefore, this evaluation
method is best avoided when θ is near the boundaries of the range [0, π].

3.2. Asymptotic Expansion for (l+ 1) sin θ ≥ 25. Formula (8.21.5) in [12] is
an asymptotic formula for the Legendre polynomials (this formula can also be found
in [13] and [14]). After some manipulations, this formula can be rewritten as

Pl (cos θ) =

(

2

π sin θ

)
1

2
M−1
∑

m=0

Cl,m

cosαl,m(θ)

sinm θ
+ ξl,M (θ), (3.4)

with the residual ξl,M (θ) and

Cl,m =
Γ2

(

m+ 1
2

)

Γ (l + 1)

π2mΓ
(

l +m+ 3
2

)

Γ (m+ 1)
, (3.5)

αl,m(θ) =

(

l +m+
1

2

)

θ −
(

m+
1

2

)

π

2
. (3.6)

The coefficients Cl,m can be cheaply computed by means of

Cl,m+1 =

(

m+ 1
2

)2

2 (m+ 1)
(

l+m+ 3
2

)Cl,m, (3.7)

with starting value

Cl,0 =
Γ (l + 1)

Γ
(

l+ 3
2

) . (3.8)

In Appendix B, a simple way to evaluate Cl,0 in O (1) operations is given, such that
(3.4) can be evaluated in O (M) computations. To limit the number of computations
to O (1), the parameter range in which (3.4) is used must be chosen such that the
value of M is bounded by a constant M0 whilst attaining accurate results. Here, this
parameter range is defined by

(l + 1) sin θ ≥ R0, (3.9)

with R0 a positive real constant. It will now be proven that the parameter R0 can
be chosen such that the error is controlled. To do this, the following upper bound on
the magnitude of ξl,M (θ) will be used (see formula (8.21.6) in [12]):

|ξl,M (θ)| < 2

(

2

π sin θ

)
1

2 Cl,M

sinM θ
. (3.10)

Leveraging this upper bound, the relative error (as defined in Section 2) can be com-
puted as

|ξl,M (θ)|
gl(cos θ)

<
Cl,M

sinM θ

√
4l+ 2 < (l + 1)M

Cl,M

RM
0

√
4l + 2. (3.11)
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In the above, it was assumed that R0 > 4
π
, such that gl(cos θ) is simply given by the

upper bound in Bernstein’s inequality (2.1). Substituting the explicit expression (3.5)
for the coefficients Cl,M yields

|ξl,M (θ)|
gl(cos θ)

< (l + 1)M
Γ2

(

M + 1
2

)

Γ (l+ 1)

π2MΓ
(

l +M + 3
2

)

Γ (M + 1)

1

RM
0

√
4l + 2. (3.12)

Using inequality (C.1) from Appendix C, the following upper bound on the relative
error is easily obtained

|ξl,M (θ)|
gl(cos θ)

<
2

π

Γ2
(

M + 1
2

)

2MΓ (M + 1)

1

RM
0

= ∆1(M,R0). (3.13)

The right hand side of (3.13), seen as a function of M , first converges and then
starts to diverge when M becomes larger than approximately 2R0. Therefore, to get
an accurate result from the asymptotic series (3.4), the minimum of the curve must
simply reach below the wanted precision ǫ. Figure 3.2 shows the behavior of the
curve for some choices of R0. As can be seen, R0 must be at least 17.3645 for double
precision. In order to have fast convergence, it makes sense to choose a somewhat
larger R0 than this lower bound. In FastLegendre, the choice R0 = 25 is made for
this reason. In addition, this choice ensures that the asymptotic expansion derived
in the next section also converges using only a limited number of terms. Given the
curve in Figure 3.2 for R0 = 25, it is clear that no more than around 17 terms are
required to get double precision accuracy using (3.4). Since each term only requires
O (1) work, the total complexity of evaluating (3.4) is also O (1).
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Fig. 3.2. The convergence and subsequent divergence of ∆1(M,R0) as a function of m. To
obtain sufficient precision with this expansion, ∆1(M,R0) must at some point become smaller than
the machine precision. This requirement leads to the condition R0 > 17.3645.

3.3. Asymptotic Expansion for (l + 1) sin θ < 25. Inequality (3.9) gives a
sufficient condition for applicability of (3.4) in the evaluation of Pl (cos θ). If this con-
dition is not satisfied, another asymptotic expansion is required. In [15], an asymp-
totic expansion is given that converges uniformly for 0 ≤ θ ≤ 2π(

√
2 − 1) − χ0 with

0 < χ0 < 2π(
√
2 − 1). However, the terms in this expansion exhibit problematic

numerical behavior when θ is close to zero, which is the case we are interested in.
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Therefore, a novel expansion will be derived to handle this. Like the asymptotic ex-
pansion in [15], the novel expansion is a generalization of the well-knownMehler-Heine
formula [16]

lim
l→∞

Pl

(

cos
z

l

)

= J0 (z) . (3.14)

This basically means that

Pl (cos θ) ≈ J0 (lθ) , (3.15)

when θ becomes small enough and l large enough.
Although approximation (3.15) is only accurate for very small values of lθ, it is

possible to find more accurate generalizations. To derive these, we will start from the
Legendre differential equation

sin θ
d2

dθ2
Pl (cos θ) + cos θ

d

dθ
Pl (cos θ) + sin θl(l+ 1)Pl (cos θ) = 0. (3.16)

It will become clear later on that it is advantageous to do the substitution l = v − 1
2 ,

such that

l(l+ 1) = v2 − 1

4
. (3.17)

After this substitution, the Legendre differential equation only depends on the square
of v. Subsequently, the substitution θ = y

v
is done, which results in

v2 sin
(y

v

) d2

dy2
Pv− 1

2

(

cos
y

v

)

+ v cos
(y

v

) d

dy
Pv− 1

2

(

cos
y

v

)

+ sin
(y

v

)

(

v2 − 1

4

)

Pv− 1

2

(

cos
y

v

)

= 0. (3.18)

Now, in order to find an asymptotic expansion for small θ, the magnitude of y will be
understood to be bounded by a constant y0. A solution of the form

Pv− 1

2

(

cos
y

v

)

=

N−1
∑

n=0

fn(y)

vn
+O

(

v−N
)

, (3.19)

is proposed. Because y is bounded, the following Taylor expansions converge very
quickly

sin
(y

v

)

=
P−1
∑

p=0

(−1)p

(2p+ 1)!

(y

v

)2p+1

+O
(

v−2P−1
)

, (3.20)

cos
(y

v

)

=

P−1
∑

p=0

(−1)p

(2p)!

(y

v

)2p

+O
(

v−2P
)

. (3.21)

When (3.19), (3.20) and (3.21) are substituted into (3.18), the left hand side can be
written as a polynomial in v−1. Making this polynomial zero means making all of its
coefficients zero. It is easily proved that this leads to a set of differential equations
given by

B [fn(y)] =

⌊n
2 ⌋

∑

j=1

(−1)j+1Uj [fn−2j(y)] , (3.22)
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with the operators B and Un defined as

B [g(y)] = y
d2

dy2
g(y) +

d

dy
g(y) + yg(y), (3.23)

Un [g(y)] =
y2n+1

(2n+ 1)!

[

d2

dy2
g(y) + g(y)

]

+
y2n

(2n)!

d

dy
g(y) +

y2n−1

4(2n− 1)!
g(y). (3.24)

The operator B can also be interpreted as U0 since (−1)! = Γ (0) = ∞. Equations
(3.22) can be recursively solved. To do this, note that yB is the operator occurring
in Bessel’s differential equation with the index equal to zero [11]. Therefore, all the
equations in (3.22) have the homogeneous solution

Homogeneous [fn(y)] = cnJ0 (y) + dnY0 (y) . (3.25)

For n ∈ [0, 1] the particular solution is zero. In this case, the Weber function Y0 (y)
can be ruled out to represent the smooth Legendre polynomials, since it has a loga-
rithmic singularity for y = 0. Note that the Weber function would be required if an
asymptotic expansion of Legendre functions of the second kind was sought (see for
example equation (14.15.12) in [11]). The coefficient c0 can be determined to be 1
because of the fact that for θ = y = 0

Pl (cos 0) = 1, ∀l ∈ R. (3.26)

Therefore f0(0) = 1, hence c0 = 1 and

f0(y) = J0 (y) . (3.27)

Note that this is compatible with the Mehler-Heine formula (3.14). A similar reasoning
shows that c1 = 0. As a consequence

f1(y) = 0. (3.28)

This shows that the differential equation for f3(y) is homogeneous which, using (3.26),
leads to f3(y) = 0. This reasoning can be repeated such that

f2n+1(y) = 0, ∀n. (3.29)

This result can be traced back to the substitution l = v − 1
2 that was done earlier.

Indeed, it can be checked that the functions f2n+1(y) are nonzero if the substitution
is not done, i.e. if an asymptotic expansion in l is attempted instead of in v.

The functions with even index are more complicated because of the presence of
the particular solution. However, it is still possible to compute them analytically. Up
to twelfth order, these functions have been computed as

f2(y) =
1
8h1(y)− 1

12h2(y), (3.30a)

f4(y) =
11
384h2(y)− 7

160h3(y) +
1

160h4(y), (3.30b)

f6(y) =
173h3(y)
15360 − 101h4(y)

3584 + 671h5(y)
80640 − 61h6(y)

120960 , (3.30c)
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f8(y) =
22931h4(y)
3440640 − 90497h5(y)

3870720 + 217h6(y)
20480 − 1261h7(y)

967680 + 1261h8(y)
29030400 , (3.30d)

f10(y) =
1319183h5(y)
247726080 − 10918993h6(y)

454164480 + 1676287h7(y)
113541120 − 7034857h8(y)

2554675200

+ 1501h9(y)
8110080 − 79h10(y)

20275200 , (3.30e)

f12(y) =
233526463h6(y)
43599790080 − 1396004969h7(y)

47233105920 + 2323237523h8(y)
101213798400 − 72836747h9(y)

12651724800

+ 3135577h10(y)
5367398400 − 1532789h11(y)

61993451520 + 66643h12(y)
185980354560 , (3.30f)

with

hn(y) = ynJn (y) , ∀n. (3.31)

Using equations (3.30) in (3.19) with N = 14 yields the desired asymptotic expansion
for small θ. This expansion will be used whenever l > 100 and (l+1) sin θ < R0. This
means that

y = vθ =

(

l +
1

2

)

θ <

(

l +
1

2

)

arcsin

(

R0

l + 1

)

. (3.32)

In the limit of high l, the right hand side goes to the constant R0. For finite l, it is
slightly bigger than this limit and it attains its maximum for the minimal l, i.e. 101.
Therefore y < y0 = 25.1336 whenever (3.19) is used. To show that this expansion
yields sufficiently accurate results, the difference

∆2(v, y) =

∣

∣

∣

∣

∣

Pv− 1

2

(

cos
y

v

)

−
6

∑

n=0

f2n(y)

v2n

∣

∣

∣

∣

∣

, (3.33)

was computed using Maple, with 120 digits of precision. It is plotted for various values
of v in Figure 3.3 and for y ∈ [0, y0]. Half-integer values of v are chosen because these
correspond to integer values of l. In the figure, it can be clearly seen that the error
is significantly below the machine precision for the entire y-range, which means that
expansion (3.19) is sufficiently accurate. Also, this expansion becomes more and more
accurate as l increases.

4. Computation of Quadrature Rules. The evaluation routines of the Legen-
dre polynomials can be used to construct Gauss-Legendre quadrature rules. Suppose
we want to construct a Gauss-Legendre quadrature rule consisting of l point-weight
pairs {xl,k, wl,k}, ∀k ∈ [0, l − 1]. Such a rule exactly integrates any polynomial of
degree 2l− 1 [11]. It is well-known that the points xl,k satisfy

Pl (xl,k) = 0, (4.1)

i.e. they are the l zeros of the Legendre polynomial of degree l. The weights associated
with these points are given by (see 15.3.1 [12])

wl,k =
2(1− x2)

[(n+ 1)Pl+1 (xl,k)]
2 . (4.2)

Clearly, once a zero is known, computing the associated weight is a computation with
O (1) complexity if the Legendre polynomial is evaluated using the strategy from
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Fig. 3.3. The error between the exact Legendre polynomial of degree v − 1

2
and the asymptotic

expansion (3.19).

Section 3. Therefore, the only challenge remaining is the computation of xl,k. In
FastLegendre, this is done by first computing the θl,k-values for which Pl (cos θl,k) = 0.
Then, optionally, the cosine is taken to compute xl,k. For l ≤ 100, the zeros θl,k are
tabulated. For l > 100, initial values

θl,k ≈ π
4k + 3

4l + 2
, (4.3)

are polished with a few Newton-Raphson iterations to obtain the true value of θl,k with
near machine precision. This approach is similar to the approaches from [6, 7] and
requires only the evaluation of the Legendre polynomial and its derivative. Because
the derivative of the Legendre polynomial is easily reduced to another evaluation of
a Legendre polynomial

(1− x2)P ′
l (x) = lPl−1 (x)− lxPl (x) , (4.4)

the computation of any single point-weight pair {xl,k, wl,k} is an operation with O (1)
complexity.

Due to the simple form of the initial values (4.3), a remarkable trick can be played
which allows the computation of θl,k with an accuracy which is, in some ways, better
than the machine precision. To show how this trick works, assume that (l+1) sin θ >

25. Then the evaluation will be done using asymptotic expansion (3.4). If we now
define

∆θ = θ − π
4k + 3

4l+ 2
, (4.5)

then (3.4) can be rewritten into

Pl (cos θ) ≈ (−1)k+1

(

2

π sin θ

)
1

2
M−1
∑

m=0

Cl,m

sin
[(

l + 1
2

)

∆θ +m
(

θ − π
2

)]

sinm θ
. (4.6)
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It can be seen that the argument of the sine in the numerator inside the summation is
O (1) if ∆θ remains small enough, which is the case if one is searching for the Legendre
zero θl,k. Therefore, the Legendre polynomial will be evaluated with a precision close
to the machine precision in this neighborhood. If we denote ∆θl,k = θl,k − π 4k+3

4l+2 ,

this means that ∆θl,k, which is a small O
(

1
l

)

correction to the usually much larger

π 4k+3
4l+2 , will be computed with a precision close to the machine precision. The relative

error on this partly symbolical representation of θl,k is therefore

|∆θl,k| ǫ
π 4k+3

4l+2 +∆θl,k
≈ O

( ǫ

k

)

, (4.7)

which can be significantly better that ǫ. Of course, from the moment that θl,k is
actually computed by summing the correction ∆θl,k with π 4k+3

4l+2 and storing it in a
double precision floating-point number, the extra accuracy is thrown away. However,
all the complicated operations (i.e. the evaluation of the asymptotic expansion and
the Newton-Raphson iteration), are finished by the time this summation is done.
The fact that this summation is a very simple operation gives confidence that the
computed θl,k will be very close to the best possible floating-point approximation.

5. Numerical Results. First the accuracy of the Legendre polynomials is in-
vestigated. Three values for θ were selected: π

3 , 10
−9 and π − 10−9. The value π

3
demonstrates the accuracy of asymptotic expansion (3.4), while the value 10−9 is
aimed at probing the accuracy of (3.19). Finally, the value π − 10−9 is meant to
show the influence of mapping (3.1) on the accuracy. Using these values as argu-
ments, the relative error on P2p (cos θ) was computed for p ∈ [0, 51]. Note that the
highest degree Legendre polynomial that was checked, has the extremely high degree
251 = 2251799813685248. The exact values of the Legendre polynomial were com-
puted in Maple using 50 digits of accuracy and then converted to double precision
floating-point numbers for comparison with the values from FastLegendre. The re-
sults can be seen in Figure 5.1. The relative error on the Legendre polynomials was
computed as proposed in Section 2, i.e. as in the left hand side of (2.12). The black
curves in Figure 5.1 are the approximate upper bounds, given in the right hand side
of (2.12), for θ = π

3 and θ = 10−9. As can be seen, the relative error on the Legendre
polynomials for these two θ values nicely stays below the corresponding error bound,
except when the precision is bounded by the machine precision. For θ = π − 10−9,
a similar error bound could also be plotted. However, this was omitted because the
relative error for this θ value is already below the upper bound for θ = π

3 , hence it
is surely below the bound for θ = π − 10−9. A curious phenomenon in the curve for
θ = π−10−9 is that, for low p, it remains close to machine precision and then increases
quadratically until it hits its upper bound. This is easily explained by realizing that
the Legendre polynomial is approximately

Pl (cos θ) = 1− 1

4
l(l+ 1)θ2 +O

(

θ4
)

. (5.1)

for θ << 4
l+ 1

2

. When the argument is θ = π−10−9, mapping (3.1) is used to reduce the

argument to 10−9. However, this reduced value is contaminated with O (πǫ) roundoff
error. Therefore, the error on the Legendre polynomial can be estimated as

(

1− 1

4
l(l+ 1)θ2

)

−
(

1− 1

4
l(l+ 1)(θ + πǫ)2

)

≈ 1

2
l(l + 1)πǫθ (5.2)



14

This error is smaller than ǫ whenever

θ <
2

πl(l+ 1)
, (5.3)

which matches with the results shown in Figure 5.1. When 4
l+ 1

2

> θ > 2
πl(l+1) , the

error is larger than ǫ and rises quadratically. When θ is larger than the upper bound
of this range, the error estimate (5.2) is no longer valid because the Taylor series
(5.1) requires more terms to capture the behavior of the Legendre polynomial. Sum-
marizing, Figure 5.1 shows that the behavior of the relative error can be completely
described by reasonings based only on the error on the input, and the fact that the
output precision is limited to machine precision. This can be interpreted as clear
evidence that the algorithms used in FastLegendre do not add significant error to the
error incurred by the rounding of the input θ, i.e. it is not possible to substantially
improve the accuracy by improving the algorithms. The total loss of precision for
degree 251 cannot be solved without improving the error on the input.
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ǫπ3 2
p

ǫ2p10−9

Fig. 5.1. The relative error on P2p (cos θ), evaluated using FastLegendre, for θ ∈ {π
3
, 10−9, π−

10−9}. The black curves are the approximate upper bounds for the relative error caused by the error
on the input. Clearly, the error only increases proportionally with l. Also, the only circumstance in
which the actual error is larger than the approximate upper bound is when the precision is bounded
from below by the machine precision. Also note that the degree of the tested Legendre polynomial
reaches the extremely high value 2251799813685248 when p = 51.

Secondly, the accuracy on the Gauss-Legendre quadrature nodes will be investi-
gated. To do this, the correction ∆θl,k will be computed for l = 2p, ∀p ∈ [2, 51], and
k ∈

{

0, l
4

}

. The zero with k = 0 is always in the parameter range in which (3.19) is

used. The l
4 th zero is computed using the trick described in Section 4. The correc-

tion was also computed to high precision using Maple. The relative error between the
two results is shown in Figure 5.2. Clearly, for the case k = l

4 , the relative error on
the correction ∆θl,k is O (ǫ). This allows us to immediately conclude that the error
on θl,k will also be O (ǫ). When k = 0, the error starts increasing when p > 46 or
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l > 246 = 70368744177664. This increase can be traced back to the fact that equation
(4.4) starts to become numerically unstable for very high l. In principle, this could
be solved by writing dedicated routines for computing the derivative of the Legendre
polynomial. However, at this time, quadrature rules with l > 246 are not exactly
commonly used, which is why such a solution has not been implemented.
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Fig. 5.2. The relative error on the correction ∆θ2p,k for k ∈
{

0, l
4

}

.

Finally, the Legendre polynomials and Gauss-Legendre quadrature rules are tested
together by applying a quadrature rule with r points to the Legendre polynomial of
degree 3

2r

Ir =

∫ 1

−1

P 3

2
r (x) dx =

r
∑

k=0

wr,kP 3

2
r (cos θr,k) = 0. (5.4)

In the test cases, only even r will be involved, such that 3
2r is always an integer.

When no numerical error is present, the result of both the integral and the discrete
summation is exactly zero, due to the orthogonality of the Legendre polynomials.
However, in the finite precision case, any error on the Gauss-Legendre nodes or weights
will result in a nonzero value for Ir, which makes the computation a suitable test for
the accuracy of both the Legendre polynomials and the Gauss-Legendre quadrature
rule. This test is exactly the same as the one used in [5] to test the accuracy of
the quadrature rule. Table 5.1 shows the computed results for r = 10p ∀p ∈ [0, 9].
Clearly, the integration is done very accurately and appears to be even more accurate
than the results in [5]. The fact that Ir drops below the machine precision can be
attributed to the fact that the magnitude of the Legendre polynomials in (5.4) drops
with increasing r. This effect can be removed by multiplying Ir with the normalization

factor
√

2r+1
2 (see equation (1.2)). The third column of Table 5.1 shows the result of

this multiplication. The time required to compute the Gauss-Legendre nodes and do
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r |Ir| |Ir |
√

2r+1
2 Computation time

10 2.296 10−17 7.441 10−17 < 0.01s
100 2.206 10−16 2.211 10−15 < 0.01s
1000 2.502 10−16 7.916 10−15 < 0.01s
10000 1.356 10−16 1.356 10−14 0.02s
100000 8.107 10−17 2.563 10−14 0.04s
1000000 6.142 10−17 6.142 10−14 0.39s
10000000 1.481 10−17 4.684 10−14 2.37s
100000000 4.502 10−18 4.502 10−14 22.08s
1000000000 5.687 10−18 1.798 10−13 200.41s

Table 5.1

The computed values for Ir and the time required for computing the Gauss-Legendre quadrature
rule and performing the integration.

the integration is also given and shows that the complexity for computing a Legendre
polynomial and Gauss-Legendre node is O (1). The computation was done on a laptop
with an Intel(R) Core(TM) i7-2630QM CPU@2GHz. The availability of four cores
with hyperthreading allowed the computation to be parallelized using simple multi-
threading. Eight threads were used for the data in Table 5.1. This allowed a Gauss-
Legendre quadrature rule with one billion points and the corresponding test integral
Ir to be computed in under four minutes.

6. Conclusion. A patchwork of formulas has been proposed to allow the eval-
uation of the Legendre polynomial Pl (cos θ) ∀l ∈ N, ∀θ ∈ [0, π] in O (1) complexity.
The argument cos θ is chosen to improve the numerical stability of the evaluation.
One of these formulas is a novel asymptotic expansion, which is derived in this paper.
Rigorous or heuristic error bounds have been derived for every formula in this patch-
work, and these bounds have been confirmed by numerical results comparing a C++
implementation with high-precision Maple results. This comparison was done for de-
grees as high as 251 = 2251799813685248. The capability to compute Pl (cos θ) in
O (1) complexity also yields an algorithm for computing an arbitrary Gauss-Legendre
quadrature node (and its associated weight) in O (1) complexity. In addition, a tech-
nique has been devised to compute a Gauss-Legendre quadrature node as a small
correction to a large analytically known quantity. Remarkably, it is possible to ob-
tain this correction with a precision close to the machine precision. This algorithm
has also been implemented and numerically validated. The fact that the algorithms
presented in this paper are suitable for parallelization has allowed the computation
of a Gauss-Legendre quadrature rule with one billion points in under four minutes on
modest hardware. The C++ implementation, which includes the evaluation routines
of the Legendre polynomials and Gauss-Legendre quadrature rules, is available from
the authors.

Appendix A. Here, an approximate upper bound of P 1,1
n (x) will be proposed.

It is inspired by an upper bound for Jacobi polynomials given in [8]

∣

∣Pα,β
n (cos θ)

∣

∣ ≤
Γ(q + 1)

(

n+q
n

)

[

n+ α+β+1
2

]−q− 1

2

√
π sinα+

1

2

(

θ
2

)

cosβ+
1

2

(

θ
2

)
, (A.1)
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where q = max(α, β). Unfortunately, this inequality is only valid for |α| ≤ 1
2 and

|β| ≤ 1
2 , which is not the case here: α = 1 and β = 1. However, numerical experiments

indicate that the right hand side of (A.1) still provides a very good approximation of
the envelope of P 1,1

n (x). Therefore, we propose the approximate upper bound

∣

∣P 1,1
n (cos θ)

∣

∣ /
n+ 1√

π

[

2
(

n+ 3
2

)

sin θ

]
3

2

. (A.2)

whenever −x1,1
n ≤ cos θ ≤ x1,1

n with

x1,1
n =

√

√

√

√1−
[

2
(

n+ 3
2

)

3
√
π

]2

. (A.3)

Outside of this range, the easily proved upper bound

∣

∣P 1,1
n (cos θ)

∣

∣ ≤ n+ 1, (A.4)

is used to avoid the singularity. Summarizing these results, the following approximate
upper bound is obtained

∣

∣P 1,1
n (cos θ)

∣

∣ / min



n+ 1,
n+ 1√

π

[

2
(

n+ 3
2

)

sin θ

]
3

2



 . (A.5)

Figure A.1 shows the magnitude of the Jacobi polynomial P 1,1
27 (cos θ) and its as-

sociated approximate upper bound. Clearly, equation (A.5) provides a very good
description of the global behavior of the Jacobi polynomial.

Appendix B. Here, a method to compute

Cn,0 =
Γ (n+ 1)

Γ
(

n+ 3
2

) , (B.1)

with an O (1) complexity will be given. First introduce an auxiliary function τ (x) as

τ (x) =
√
xCx− 3

4
,0 =

√
x
Γ
(

x+ 1
4

)

Γ
(

x+ 3
4

) . (B.2)

Numerical experiments show that this auxiliary function converges to 1 when x → ∞,
i.e. it does not go to infinity. It is therefore reasonable to attempt to construct an
asymptotic series for τ (x) by computing the Taylor series of τ

(

1
t

)

around t = 0. This
procedure has been performed with the symbolic mathematics package Maple, and it
turns out that all the computed Taylor series coefficients are finite. The final result is

τ (x) ≈ 1− 1

64x2
+

21

8192x4
− 671

524288x6
+

180323

134217728x8

− 20898423

8589934592x10
+

7426362705

1099511627776x12
+O

(

1

x14

)

. (B.3)

Note that only the even powers of x occur, which is nice from a computational point
of view.
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Fig. A.1. The magnitude of the Jacobi polynomial P
1,1
27

(cos θ), and its approximate upper
bound, as proposed in equation (A.5). Only the range [0, π

2
] is shown because the rest of the range

is just a mirrored version of this plot.

It is clear that, since equation (B.3) is a series around x = ∞, (B.3) will only be
accurate for sufficiently large x. Numerical tests show that for all x > 10.09475, the
relative error on τ (x) is below the double precision accuracy ǫ = 2.2204×10−16. This
means that Cn,0 can be evaluated as

Cn,0 =
1

√

n+ 3
4

τ

(

n+
3

4

)

, (B.4)

whenever n > 9. Since n is an integer, the values of Cn,0 for n ∈ [0, 9] can be simply
tabulated.

Appendix C. The following inequality will be proved

(l + 1)M
Γ (l + 1)

Γ
(

l+M + 3
2

)

√
4l+ 2 < 2, (C.1)

for l,M ∈ N. It is convenient to start with proving (C.1) for M = 0. Indeed, by using
Gautschi’s Inequality (formula (5.6.4) from [11]) with x = l+ 1

2 and s = 1
2 , it is easily

shown that
√

l +
1

2
<

Γ
(

l + 1
2 + 1

)

Γ
(

l + 1
2 + 1

2

) . (C.2)

From this, it immediately follows that

Γ (l + 1)

Γ
(

l + 3
2

)

√
4l + 2 < 2. (C.3)
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Also, by means of the functional equation of the Gamma function, it is easily shown
that

(l + 1)M

Γ
(

l +M + 3
2

) =
1

Γ
(

l+ 3
2

) · l + 1

l + 3
2

· l + 1

l + 5
2

· · · · · l + 1

l +M + 3
2

<
1

Γ
(

l + 3
2

) . (C.4)

Using inequalities (C.4) and (C.3), inequality (C.1) is proved:

(l + 1)M
Γ (l + 1)

Γ
(

l +M + 3
2

)

√
4l+ 2 <

Γ (l + 1)

Γ
(

l + 3
2

)

√
4l + 2 < 2. (C.5)
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