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Abstract

We present a description of maximal partial ovoids of size q2−1 of
the parabolic quadric Q(4, q) as sharply transitive subsets of SL(2, q)
and show their connection with spread sets. This representation leads
to an elegant explicit description of all known examples. We also give
an alternative representation of these examples which is related to
root systems.
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1 Introduction

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P,B, I)
in which P and B are disjoint non-empty sets of objects called points and
lines (respectively), and for which I ⊆ (P × B) ∪ (B × P) is a symmetric
point-line incidence relation satisfying the following axioms:

(i) each point is incident with 1 + t lines (t > 1) and two distinct points
are incident with at most one line;

(ii) each line is incident with 1+ s points (s > 1) and two distinct lines are
incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there is a unique
pair (y,M) ∈ P × B for which x I M I y I L.
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The integers s and t are the parameters of the GQ and S is said to have
order (s, t). If s = t, then S is said to have order s. If S has order (s, t),
then |P| = (s+ 1)(st+ 1) and |B| = (t+ 1)(st+ 1) (see e.g. [11]).

If we interchange the roles of points and lines in a GQ we obtain a new
GQ (B,P, I) which is called the dual of the original.

An ovoid of a GQ S is a set O of points of S such that every line is
incident with exactly one point of the ovoid. An ovoid of a GQ of order (s, t)
has necessarily size 1 + st. A partial ovoid of a GQ is a set K of points such
that every line contains at most one point of K. The difference ρ = st+1−|K|
between the size of an ovoid and the size of a particular partial ovoid K, is
called the deficiency of K. (Hence ρ = 0 if and only if K is an ovoid.)

A partial ovoid K is called maximal if and only if K∪{p} is not a partial
ovoid for any point p ∈ P \ K, in other words, if K cannot be extended to a
larger partial ovoid.

It is a natural question to study extendability of partial ovoids, i.e., for
what values of ρ can a partial ovoid of deficiency ρ be guaranteed to extend
to a full ovoid? The following theorem is a typical result in this context.

Theorem 1 ([11, 2.7.1]) Let S = (P,B, I) be a GQ of order (s, t). Any
partial ovoid of size st − ρ, 0 ≤ ρ < t

s
is contained in a uniquely defined

ovoid of S.

Remark that if no ovoids of a particular GQ exist, then Theorem 1 implies
an upper bound on the size of partial ovoids. The following theorem deals
with the limit situation, and will be of use in Section 2.

Theorem 2 ([11, 2.7.2]) Let S = (P,B, I) be a GQ of order (s, t). Let K
be a maximal partial ovoid of size st − t/s of S. Let B′ be the set of lines
incident with no point of K, and let P ′ be the set of points on at least one
line of B′ and let I′ be the restriction of I to points of P ′ and lines of B′.
Then S ′ = (P ′,B′, I′) is a subquadrangle of order (s, t/s).

Consider the parabolic quadric Q(4, q) in the 4-dimensional projective
space PG(4, q). This quadric consists of points of PG(4, q) that are singular
with respect to a non-degenerate quadratic form on PG(4, q), which is, up to
a coordinate transformation, unique.

The points and totally isotropic lines of Q(4, q) constitute an example of a
generalized quadrangle of order q. Any elliptic quadric contained in Q(4, q),
obtained from a hyperplane section, is an example of an ovoid of Q(4, q).
These are the only ovoids when q is a prime, [2]. When q = ph, h > 1, other
examples are known, see e.g. [7] for a list of references.
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Applying Theorem 1 to the GQ Q(4, q) implies that a partial ovoid of size
q2 cannot be maximal. In this paper we shall be concerned with the next
case, that of maximal partial ovoids of size q2 − 1. It is shown in [6] that
maximal partial ovoids of Q(4, q) of size q2−1 do not exist when q is odd and
not prime. When q is odd and prime, examples of maximal partial ovoids of
this size are known for q = 3, 5, 7 and 11, but none for q > 11, [12]. In this
paper we will give detailed descriptions of exactly these examples. It was
also shown in [9] that q = 3, 5, 7 and 11 are the only values permitted under
the additional assumption that (q2 − 1)2 divides the automorphism group of
the maximal partial ovoid.

For the sake of completeness, we mention that for q even and q > 2,
maximal partial ovoids of size q2 − 1 are excluded, and more is known, by
the following theorem.

Theorem 3 ([4, Corollary 1]) Let K be a maximal partial ovoid of Q(4, q),
q even. Then |K| ≤ q2 − q + 1.

For the case q = 2 it is easily seen that here exist maximal partial ovoids
of size q2 − 1 = 3, see e.g. [14].

In Section 2 we shall restrict ourselves to q odd, and show that maximal
partial ovoids of size q2−1 can be represented as sharply transitive subsets of
the special linear group SL(2, q) and show how this representation naturally
leads to a uniform description of the known examples (cf. Theorem 5). In
Section 3 we illustrate the connection between these partial ovoids and spread
sets, and hence with partial spreads of the symplectic geometry W(3, q).
Finally, in Section 4 we present another (and quite different) way to construct
the known examples, in terms of root systems.

2 The geometry of Q(4,q) and SL(2,q)

From now on we shall assume that q is odd.
If a maximal partial ovoid O of Q(4, q) has size q2 − 1, it follows from

Theorem 2 that the lines of Q(4, q) not meeting O constitute a subGQ of
order (q, 1), which is necessarily a hyperbolic quadric Q+(3, q) contained in
the intersection of a hyperplane π∞ and Q(4, q).

It is therefore natural to consider the geometry Q∗(4, q) that consists of
the points of Q(4, q) that do not belong to π∞ (the ‘affine points’) together
with the lines of Q(4, q) that do not lie entirely inside π∞ and therefore
intersect π∞ in exactly one point (the ‘affine lines’). There are q(q2 − 1)
affine points and (q+1)(q2− 1) affine lines. Each affine line contains q affine
points and each affine point lies on q + 1 affine lines.
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A maximal partial ovoid O of Q(4, q) of size q2 − 1 is then precisely a set
of affine points such that each affine line contains exactly one point of O.
Such a set may as well be dubbed an ‘affine ovoid’.

Without loss of generality we may choose the equation of Q(4, q) to be
X2

0 = X1X4−X2X3 and the equation of π∞ to beX0 = 0. With this notation,
the affine points can all be given normalized coordinates with X0 = 1, and
hence are in one–one correspondence with the quadruples (X1, X2, X3, X4)
such that X1X4 − X2X3 = 1. In other words, the points of Q∗(4, q) are in
one–one correspondence with the 2×2 matrices of determinant one, i.e., with
the elements of SL(2, q). It is this correspondence and the group structure
of SL(2, q) which can be exploited to better understand the ‘affine ovoids’.

We are certainly not the first to identify the points of Q∗(4, q) with group
elements of SL(2, q). Indeed, this representation is related to the much more
general interpretation of so-called span-symmetric GQs as group coset geome-
tries [11, Theorem 10.7.8]. Fortunately, for the particular case of Q∗(4, q) we
can derive the necessary properties in a much simpler setting.

The following lemma shows that there is a wide variety of ways to express
collinearity in Q∗(4, q). We write I for the 2× 2 identity matrix.

Lemma 4 Let q = ph, p prime, p odd. Let X, Y ∈ SL(2, q) such that X 6= Y .
Then the following are equivalent
(i) X and Y are collinear in Q∗(4, q),
(ii) (1− k)X + kY ∈ SL(2, q) for all k ∈ GF(q),
(iii) (1− k)X + kY ∈ SL(2, q) for at least one k ∈ GF(q)− {0, 1},
(iv) Y −X is singular, i.e., det(Y −X) = 0,
(v) TrXY −1 = Tr Y −1X = 2,
(vi) Tr Y X−1 = TrX−1Y = 2,
(vii) XY −1 (and hence Y X−1) has multiplicative order p,
(viii) Y −1X (and hence X−1Y ) has multiplicative order p.

Proof. Write X =

(

X1 X2

X3 X4

)

. Because detX = 1, the inverse X−1 of X

is the same as the adjoint X#, hence X−1 = X# =

(

X4 −X2

−X3 X1

)

.

Note that the adjoint operator is linear on 2 × 2 matrices. Also the
trace of the adjoint of a matrix is the same as the trace of the original.
As a consequence TrM = TrM−1 for all M ∈ SL(2, q), and in particular
TrXY −1 = Tr Y X−1 and this again is equal to Tr Y −1X = TrX−1Y .

Consider Z = (1 − k)X + kY for some k ∈ GF(q). We have Z# =
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(1− k)X# + kY # = (1− k)X−1 + kY −1 and therefore

(detZ)I = ZZ# = [(1− k)X + kY ][(1− k)X−1 + kY −1]

= (1− k)2I + k(1− k)XY −1 + k(1− k)Y X−1 + k2I

= (1− 2k + 2k2)I + k(1− k)(XY −1 + Y X−1).

Taking the trace of both sides of this equation and dividing by 2, yields
detZ = 1 − 2k + 2k2 + k(1 − k)TrXY −1. Hence detZ = 1 if and only if
k(1− k)(TrXY −1 − 2) = 0.

The matrix Y −X is singular if and only if Y X−1 − 1 is singular. Write
U = Y X−1, t = TrU . Note that detU = 1. U satisfies its own characteristic
equation, and therefore U2 − tU + 1 = 0. If t = 2, this means (U − 1)2 = 0
and hence U − 1 is singular. Conversely, U − 1 is singular if and only if 1
is an eigenvalue of U . Because detU = 1, this means that also the other
eigenvalue of U is 1 and hence TrU equals the sum of the eigenvalues, which
is 2.

Finally, for any M ∈ SL(2, q) we have (M − I)p = Mp − I. Hence, if
Mp = I, then the minimal polynomial of M must divide (x − 1)p and be
either x − 1, in which case M = I, or (x − 1)2 = x2 − 2x + 1, and then
TrM = 2. Conversely, if TrM = 2, then (M − I)2 = 0 and hence also
(M − I)p = 0. �

The interpretation of the combinatorial problem of partial ovoids as sub-
sets of group elements immediately provides us with natural examples of
affine ovoids in the following theorem.

Theorem 5 Let G denote a subgroup of SL(2, q) of order q2 − 1. Then G is
an affine ovoid of Q∗(4, q).

Proof. Let X, Y ∈ G, X 6= Y . Because p does not divide the order of G,
no element of G can have order p. In particular XY −1 cannot have order p
and therefore by Lemma 4 X and Y cannot be collinear. �

The subgroup structure of SL(2, q) is well known [13, Chapter 3,§6].
When q is odd, SL(2, q) contains a subgroup of order q2 − 1 if and only
if q=3, 5, 7 or 11, as listed in the following table

Group Subgroup
SL(2,3) Q8

SL(2,5) SL(2,3) = 2 · A4

SL(2,7) GL(2,3) = 2 · S4

SL(2,11) SL(2,5)
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As mentioned before, these are the only known examples of affine ovoids to
date (up to equivalence, cf. below).

We conjecture that also the converse of Theorem 5 is true — that every
affine ovoid must be (equivalent to) a subgroup of SL(2, q), and hence that
all affine ovoids are already known.

Two subsets of Q(4, q) are called equivalent if there exists an automor-
phism of the generalized quadrangle Q(4, q) that maps the one set to the
other. The following lemma describes some of these automorphisms that
also leave the hyperplane π∞ invariant.

Lemma 6 Consider M,N ∈ GL(2, q) such that detM = detN . Let σ be a
field automorphism of GF(q). Then the following maps are automorphisms
of the geometry Q∗(4, q).

X 7→ MXσN−1, X 7→ M(X−1)σN−1 (1)

Proof. For each of the maps in (1) the image of a matrix X of determinant
1 again has determinant 1. Each map therefore preserves the point set of
Q∗(4, q). Also, TrXY −1 is mapped to either (TrXY −1)σ or (TrY X−1)σ, and
hence by Lemma 4 (v–vi), collinearity is preserved. �

In particular, multiplication on the left or right by a fixed element of
SL(2, q) is an automorphism of the geometry. And hence, from Theorem 5
it follows that not only every subgroup G of the appropriate size, but also
every coset of that group, is an affine ovoid of Q∗(4, q), be it equivalent to G.

If we are only interested in point subsets O up to equivalence, then it
follows from Lemma 6 that we may as well assume that I ∈ O. Moreover, if
X ∈ O \ {I,−I} has TrX = t, then we may always find an automorphism
of type (1) with M = N that leaves I invariant, and maps X to a chosen
matrix of trace t (and determinant 1) different from ±I.

This technique can be used to describe the (affine) lines in an elegant
way.

Lemma 7 The lines of Q∗(4, q) are precisely the cosets of the Sylow p-
subgroups of SL(2, q).

Proof. By the above, it is sufficient to prove that a line that contains I
is a Sylow p-subgroup of SL(2, q). Moreover, without loss of generality we

may assume that the line contains the matrix M(1)
def
=

(

1 1
0 1

)

. It follows

that the points of the line are of the form M(k)
def
= (1 − k)I + kM(1) with
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k ∈ GF(q). We have M(k) =

(

1 k
0 1

)

and the set {M(k)|k ∈ GF(q)} is a

Sylow p-subgroup of SL(2, q), isomorphic to the additive group of the field
GF(q). �

The next result shows that affine ovoids are connected to so-called transi-
tive subsets of SL(2, q). A subset S of SL(2, q) is called transitive if and only
if for any two non-zero vectors u, v ∈ GF(q)2 there exist an element X ∈ S
such that uX = v. S is sharply transitive if and only if the element X is
always unique.

Theorem 8 Let q be odd. Let O ⊆ SL(2, q). Then O is an affine ovoid of
Q∗(4, q) if and only if O is a sharply transitive subset of SL(2, q).

Proof. Let O be sharply transitive and take X, Y ∈ O, X 6= Y . Then, for
any u ∈ GF(q)2, uX and uY must differ, and hence u(X − Y ) 6= 0, for all
u 6= (0, 0). It follows that X − Y is non-singular, and hence X, Y are never
collinear, by Lemma 4, making O an affine ovoid.

Conversely, let O be an affine ovoid. For every X, Y ∈ O, X − Y is non-
singular, and hence the set V = {uX|X ∈ O} has size |O|. Because |O| ≥
q2 − 1 the set V must contain every non-zero vector of GF(q)2. Therefore O
is transitive, and because |O| is exactly q2 − 1, it is even sharply transitive.

�

For t ∈ GF(q) we define the discriminant δ(t), as follows:

δ(t) =







−1, when t2 − 4 is not a square in GF(q),
0, when t2 − 4 = 0,
1, when t2 − 4 is a non-zero square in GF(q).

The quadratic equation λ2 − tλ + 1 = 0 has exactly 1 + δ(t) solutions for
λ ∈ GF(q). (This is the characteristic equation of a matrix X ∈ SL(2, q)
with TrX = t.)

Proposition 9 Let t ∈ GF(q). Let St denote the set of all elements X of
SL(2, q) such that TrX = t. Then St = Ht \ π∞ where Ht is a hyperplane
section of Q(4, q) whose type depends on δ(t) as follows:
(i) If δ(t) = −1, then Ht is an elliptic quadric of type Q−(3, q).
(ii) If δ(t) = 1, then Ht is a hyperbolic quadric of type Q+(3, q).
(iii) If δ(t) = 0, then Ht is a quadratic cone.
In all cases |St| = q(q + δ(t)).
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Proof. Let X =

(

X1 X2

X3 X4

)

as before. The condition TrX = t translates

to X1 + X4 = t, or in projective coordinates, X1 + X4 = tX0 which is the
equation of a hyperplane Ht of PG(4, q). Such a hyperplane intersects Q(4, q)
in either a cone, an elliptic or a hyperbolic quadric. It remains to determine
which values of t lead to which type of intersection.

Combining the equation of Ht with the equation of Q(4, q) yields

X1(tX0 −X1)−X2X3 −X2
0 = 0.

The corresponding quadratic form has the following associated determinant :
∣

∣

∣

∣

∣

∣

∣

∣

−1 t/2 0 0
t/2 −1 0 0
0 0 0 −1/2
0 0 −1/2 0

∣

∣

∣

∣

∣

∣

∣

∣

= (1− t2/4)(1/4) =
1

16
δ(t).

The type of the hyperplane section is determined by whether this determinant
is a square, a non-square or zero, yielding the classification in the statement
of this theorem.

It remains to determine the value of |St|. Note that the size of the hyper-
plane section is equal to q2+1, q2+q+1 or (q+1)2 depending on the type of
the hyperplane section, i.e., equal to q2+q+1+δ(t)q. From this size we need
to subtract the size of the intersection St ∩ π∞. This intersection consists of
the points satisfying X0 = 0 and −X2

1 − X2X3 = 0, i.e., a non-degenerate
conic. A conic has q+1 points, and therefore |St| = q2+q+1+δ(t)q−(q+1) =
q(q + δ(t)). �

Lemma 10 Let O denote an affine ovoid of Q∗(4, q). Then
(i) O either contains I or else exactly q + 1 elements of trace 2 different

from I,
(ii) O either contains −I or else exactly q+1 elements of trace −2 different

from −I,
(iii) O contains exactly q+1 points of trace t, for every t such that δ(t) > 0.
Every point of Q∗(4, q) outside O is collinear with exactly q + 1 points of O.

Proof. By Proposition 9 (iii), the points of trace 2 consist of q + 1 (affine)
lines through the common point I. Because O is an affine ovoid, each of these
lines must contain exactly one point of O. Either this is the point common
to all these lines, i.e., I, or else a different point for each line. This proves
the first part of this lemma. The second part is proved in the same way, by
considering the points of trace −2 instead of 2.
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Now, let t be such that δ(t) > 0. By Proposition 9 (i) Ht is a hyperboloid
and its point can therefore be partitioned into q + 1 lines (in two different
ways). Each of these lines must contain exactly one point of O.

Finally, consider a point outside O. Without loss of generality we may
assume this point to be I. The first part of this lemma then proves that this
point is collinear to exactly q + 1 points of O. �

Lemma 11 Let A,B ∈ SL(2, q) such that A 6= B. Then A and B are
collinear to the same points of π∞ if and only if A = −B.

Proof. Let A =

(

A1 A2

A3 A4

)

, B =

(

B1 B2

B3 B4

)

. The points (X0, X1, . . . , X4)

of π∞ that are collinear to A (resp. B) are the points of the 3-dimensional
subspace of π∞ with equation X0 = 0 and A2X1+A1X2−A4X3−A3X4 = 0
(resp. B2X1 + B1X2 − B4X3 − B3X4 = 0). These two 3-spaces are the
same if and only if the corresponding quadruples (A2, A1,−A4,−A3) and
(B2, B1,−B4,−B3) are equal up to a multiplicative factor. In other words,
if the matrices A and B are equal up to a multiplicative factor. From
detA = detB = 1 it follows that this factor can only be 1 or −1. �

Pairs of points A,−A that satisfy the conditions of Lemma 11, shall be
called antipodal. Note that antipodality is preserved by the automorphisms
of Lemma 6.

Theorem 12 If the affine ovoid O is a subgroup of SL(2, q) then it is the
disjoint union of 1

2
(q2 − 1) antipodal pairs.

Proof. Assume the contrary, and let A ∈ O such that −A /∈ O. Without
loss of generality we may set A = I. By Lemma 10 (ii) O must contain at
least one element X with TrX = −2 but X 6= −I. Such X must satisfy
its characteristic equation X2 + 2X + 1 = 0. Hence (X + 1)2 = 0 and then
Xp + 1 = 0 (see the proof of Lemma 4). It follows that X has order 2p,
and hence that 2p must divide the order q2 − 1 of the group O. This is a
contradiction. �

(In [9] this theorem was proved for the special case q = 5.)

3 Spreads of W(3,q) and spread sets

In this section we shall describe an interesting correspondence between the
points of Q∗(4, q) and certain lines of the 3-dimensional projective space
PG(3, q).
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A spread S of PG(3, q) is a set of lines which partition the point set of
PG(3, q). A spread necessarily contains q2 + 1 lines. A partial spread of
PG(3, q) is a set of mutually non-intersecting lines. It follows that a partial
spread is a spread if and only if it has size q2+1. A partial spread is maximal
if it cannot be extended to a larger partial spread.

Every partial spread that is sufficiently large can always be made into a
full spread by adding appropriate lines, as stated in the following theorem.

Theorem 13 ([5]) Let S be a partial spread of PG(3, q) of size q2 + 1− δ.
If δ ≤ ǫ, such that q + ǫ is smaller than the smallest non-trivial blocking set
of PG(2, q), then S is extendable to a spread.

(A lower bound for ǫ is
√
q, and this lower bound is sharp when q is a square.)

One way to construct spreads is by means of so-called spread sets (see [8]
for more information). A spread set is a collection C of 2 × 2-matrices over
GF(q) which satisfies the following three conditions:
(i) |C| = q2;
(ii) C contains the zero matrix and the identity matrix;
(iii) If X, Y ∈ C, X 6= Y , then det(X − Y ) 6= 0.

Let X =

(

X1 X2

X3 X4

)

denote a general 2 × 2 matrix (not necessarily of

determinant 1) and define L(X) to be the line of PG(3, q) that connects
the points with coordinates (1, 0, X1, X2) and (0, 1, X3, X4). Recall that the
line L through the points (x1, x2, x3, x4) and (y1, y2, y3, y4) can also be repre-
sented by its Plücker coordinates p(L) = (p01, p02, p03, p23, p31, p12), satisfying

p01p23 + p02p31 + p03p12 = 0, where pij
def
=

∣

∣

∣

∣

xi xj

yi yj

∣

∣

∣

∣

. The Plücker coordinates

of L(X) are easily computed to be

p(L(X)) = (1, X3, X4, detX,−X1, X2). (2)

It is not so difficult to prove that the lines L(X) and L(Y ) have a non-
empty intersection if and only if det(X−Y ) = 0. Hence, if C is a spread set,

then the set of lines L(C) def
= {L(X) | X ∈ C} is a partial spread of PG(3, q)

of size q2.
Theorem 13 guarantees that we can find one more line L′ such that L(C)∪

{L′} is a full spread of PG(3, q), and indeed, in this case it is easily verified
that the line connecting the points with coordinates (0, 0, 1, 0) and (0, 0, 0, 1)
satisfies this role. In fact, every spread of PG(3, q) is equivalent to a spread
which is obtained from a spread set in this way.

Now, affine ovoids of SL(2, q) yield a natural way to construct spread
sets. Indeed, it follows immediately from Lemma 4 that extending an affine
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ovoid O with the zero matrix yields a spread set C def
= O ∪ {0}. The fact

that every X ∈ O has detX = 1 makes this spread set (and the associated
spread) rather special. Indeed, by (2), every line of the partial spread L(O)
(i.e., every line of the full spread, except two) satisfies the identity p01 = p23.
In other words, every such line is an isotropic line for the symplectic form

∣

∣

∣

∣

x0 x1

y0 y1

∣

∣

∣

∣

−
∣

∣

∣

∣

x2 x3

y2 y3

∣

∣

∣

∣

. (3)

If we denote by W(3, q) the geometry where the points are the points
of PG(3, q) and the lines are those lines of PG(3, q) that are isotropic with
regard to the symplectic form (3), then it follows that L(O) is a partial spread
of W(3, q)

It is well known, see e.g. [11], that W(3, q) is a GQ which is equivalent
to the dual of Q(4, q). Hence, (maximal) partial ovoids of Q(4, q) are equiva-
lent to (maximal) partial spreads of W(3, q). The Plücker coordinates in (2)
demonstrate the explicit correspondence between L(X) and X for our rep-
resentation of Q∗(4, q). (This correspondence is linear because detX = 1.)

We could equally well choose to present the theory developed in Section 2
in the framework of partial spreads of W(3, q) and spread sets. The extra
condition that I ∈ C is not really a restriction, and is related to the fact that
by Lemma 6 we can also require I ∈ O without loss of generality.

4 Another explicit description

In this section we give another explicit description of the known examples of
affine ovoids of Q∗(4, q), although it is not directly related to SL(2, q).

We now choose a different representation of the parabolic quadric Q(4, q),
i.e., as the quadric with equation X2

1 +X2
2+X2

3+X2
4 = X2

0 . Two points X, Y
on this quadric are collinear if and only ifX1Y1+X2Y2+X3Y3+X4Y4 = X0Y0.

For π∞ we again take the hyperplane with equation X0 = 0. The affine
points of the quadric then satisfy the property X0 6= 0, and again we may
normalize their coordinates by setting X0 = 1.

We shall consider several sets of vectors of norm 1 in a 4-dimensional
real Euclidean space with the property that the number of mutual inner
products among the vectors is relatively small. As a first example, consider
the following set of 8 vectors :

K8
def
= {(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1)}.

Each vector in this set has norm 1 and inner products between different
elements of K8 can only take the values 0 and −1, i.e., never 1. It fol-
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lows that the set O of points with coordinates (1, X1, X2, X3, X4), where
(X1, X2, X3, X4) ∈ K8, is a set of 8 points of the (real) parabolic quadric
where no two points are collinear. Hence, if we reduce this set modulo 3, we
obtain an affine ovoid for the case q = 3.

The set K8 is a root system of rank 4 of type A4
1. Root systems have the

property that they allow only few different values for inner products. It is
therefore natural to investigate whether they can lead to affine ovoids also
for other values of q.

Indeed, consider the following root system (of type D4) :

K24
def
= K8 ∪ {(±1

2
,±1

2
,±1

2
,±1

2
)}.

Possible values for inner products of different elements are now 1
2
, 0, −1

2
and

−1. Hence, reducing modulo 5 yields an affine ovoid (of size 24) for q = 5.
The same root system has an alternative representation.

K′

24

def
=

1√
2
{(±1,±1, 0, 0), (±1, 0,±1, 0),

(±1, 0, 0,±1), (0,±1,±1, 0), (0,±1, 0,±1), (0, 0,±1,±1)}.

This representation cannot be used in GF(5) because 2 is not a square modulo
5. However, in GF(7) we may write

√
2 = 3.

It turns out that there are also only a small number of possibilities for
inner products between elements of K24 and K′

24, viz. ±1/
√
2 and 0. As a

consequence, the set K48
def
= K24 ∪ K′

24 only admits the inner products −1,
±1/2, ±1/

√
2 and 0. Modulo 7 all of these are different from 1, and hence

we may use K48 to obtain an affine ovoid when q = 7.
Note that K48 can be obtained from the root system of type F4 by nor-

malizing the short and long vectors to become the same length. This is the
largest root system of rank 4, hence for the case q = 11 we shall have to look
elsewhere.

In that case the 600-cell, a 4-dimensional polytope of type H4, comes to
the rescue. The set K120 of coordinates of the 120 vertices of this polytope
can be constructed by extending K24 with the 96 coordinates of the form
1
2
(±1,±ϕ,±1/ϕ, 0), with ϕ = 1

2
(1+

√
5) (the golden ratio), where we allow all

even permutations of the coordinates. Inner products among these vertices
have values −1, −ϕ/2, −1/2, −1/(2ϕ), 0, 1/(2ϕ), 1/2, ϕ/2 or 1, where the
latter value only occurs when both vectors are the same. In GF(11),

√
5 = 4

and hence ϕ reduces to 8. In other words, K120 provides an example of an
affine ovoid for q = 11.
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Root systems have been used in the past for constructing other types of
combinatorial object, e.g., (partial) flocks of hyperbolic quadrics by Bader et
al. [1].

5 Concluding remarks

It was already mentioned that we are convinced that the four affine ovoids
discussed in this paper constitute the full set of existing examples when q
is odd, although so far a proof of this result has completely eluded us. We
think that the representation of affine ovoids within SL(2, q) provides the
most natural setting for such a proof, as it allows the use of both group
theoretical and combinatorial techniques for tackling the problem. On the
other hand, the setting of Section 4 is probably the best way to look for
counterexamples.

By Theorem 8 our conjecture is equivalent to the statement that every
sharply transitive subset of SL(2, q) is a coset of a subgroup. The analogous
statement for PGL(2, q) is true, cf. [10], and equivalent to the classification of
flocks of the hyperbolic quadric of PG(3, q), as was first observed by Bonisoli
[3]. Unfortunately, the techniques used to prove this statement do not readily
carry over to our case.

If our conjecture turns out to be too strong, then at least we expect all
affine ovoids to consist of antipodal pairs (although again, we had no success
in proving this weaker result). In that case, the problem of classifying all
affine ovoids of SL(2, q) can be reduced to the same problem for the smaller
group PSL(2, q), an affine ovoid then being defined as a set of size 1

2
(q2 − 1)

of elements X, Y of PSL(2, q) such that TrXY −1 6= ±2.
The problem can also be approached through the theory of association

schemes. With SL(2, q) we may associate a scheme that consists of the rela-
tion of antipodality (X = −Y ) together with q relations Rt for t ∈ GF(q),
where X Rt Y if and only if TrXY −1 = t (and X 6= ±Y ). It is not so difficult
to compute the various intersection numbers for this association scheme. The
use of standard methods from the theory of association schemes is however
somewhat hindered by the fact that the number of classes varies with q.

This setting is closely related to the group representation theory of SL(2, q).
Indeed, the conjugacy classes of SL(2, q) correspond to the sets of matrices
of given trace, where extra provision should be made for the singleton classes
{I} and {−I}. In this context it would also be nice to extend Lemma 10
with a non-trivial result for δ(t) < 0.

Yet another alternative is to employ a computer to at least tackle the
smaller cases. We have proved by computer that for q = 3, 5, 7 and 11
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the affine ovoids are indeed unique and that for q = 9 none exist (which
confirms the result of [6]). For q = 9 our program takes only a few minutes
of CPU time while for q = 11 already three weeks were needed. We fear that
for larger values of q the problem may already be intractable by standard
methods. Again a stronger version of Lemma 10 might be of help.
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