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ABSTRACT 

 

Road traffic noise propagation through a vegetation belt of limited depth (15 m) containing periodically-

arranged trees along a road is numerically assessed by means of 3D finite-difference time-domain 

(FDTD) calculations. The computational cost is reduced by only modeling a representative strip of the 

planting scheme and assuming periodic extension by applying mirror planes. With increasing tree stem 

diameter and decreasing spacing, traffic noise insertion loss is predicted to be more pronounced for each 

planting scheme considered (simple cubic, rectangular, triangular and face-centered cubic). For 

rectangular schemes, the spacing parallel to the road axis is predicted to be the determining parameter for 

the acoustic performance. Significant noise reduction is predicted to occur for a tree spacing of less than 3 

m and a tree stem diameter of more than 0.11 m. This positive effect comes on top of the increase in 

ground effect (near 3 dBA for a light vehicle at 70 km/h) when compared to sound propagation over 

grassland. The noise reducing effect of the forest floor and the optimized tree belt arrangement are found 

to be of similar importance in the calculations performed. The effect of shrubs with typical above-ground 

biomass is estimated to be at maximum 2 dBA in the uniform scattering approach applied for a light 

vehicle at 70 km/h. Downward scattering from tree crowns is predicted to be smaller than 1 dBA for a 

light vehicle at 70 km/h, for various distributions of scattering elements representing the tree crown. The 

effect of the presence of tree stems, shrubs and tree crowns is predicted to be approximately additive. 

Inducing some (pseudo)randomness in stem centre location, tree diameter, and omitting a limited number 

of rows with trees seem to hardly affect the insertion loss. These predictions suggest that practically 

achievable vegetation belts can compete to the noise reducing performance of a classical thin noise barrier 

(on grassland) with a height of 1 to 1.5 m (in a non-refracting atmosphere). 

Keywords: outdoor sound propagation, vegetation belts, tree belts, scattering, road traffic noise, 

FDTD 
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1. INTRODUCTION 

The acoustical effect of a belt of trees/vegetation near roads has been a popular research topic over the 

past 40 years [1][2][3][4][5][6][7][8][9][10]. The conclusions drawn from such experiments are, however, 

often quite different. Aylor looked at sound propagation through corn, a hemlock plantation, a pine stand, 

and hardwood brush [1], and over dense reeds above a water surface [2]. He concluded that the leaf area 

density should be high, and leaves should be broad and thick to see significant effects. Visibility was 

considered to be a bad predictor of the attenuation capacity of a vegetative stand [1]. Thirty-five tree belts 

were studied by Fang et al. [7]. Multiple linear regression analysis on their data showed that visibility 

through the vegetation and the width of the belt were the major parameters. Other parameters contributing 

to an improved prediction were height and length of the belt. The typical leaf size at the tested locations 

was considered to be rather unimportant in his regression model. Tyagi [9], on the other hand, linked the 

significantly higher attenuation at the 3.15-kHz 1/3-octave band to the dimensions of the plants structures 

in his measurements. Pathak [10] measured that belt width and tree height are positively correlated with 

traffic noise reduction. Pal [6] measured near 12 vegetation belts and found that the average density and 

height of the plants has only a very small effect. Larger plant heights could even be negative, probably 

due to increased downward scattering towards receivers. Vertical and horizontal light penetration were 

found to be major parameters. Kragh [4] stated that the traffic noise reduction obtained by a belt of 

vegetation is rather limited. In his study, sound propagation through belts of vegetation was compared to 

sound propagation over grassland over the same distance. Significant attenuation was provided by the 

vegetation only above 2 kHz. 

In many of the above mentioned publications, the reference situation when assessing the effect of the 

vegetation belts is rather unclear. Furthermore, many effects related to the interaction between sound and 

vegetation were jointly observed. This makes it difficult to derive design rules for vegetation belts. In this 

paper, numerical calculations are used to assess the effect of vegetation belts of limited width along roads. 

In contrast to in-situ measurements, the reference situation can be well defined and the various effects can 

easily be separated out. On the other hand, modeling approaches always induce some idealizations. 

Basically, vegetation is able to reduce sound levels in three ways. First, sound can be reflected and 

scattered (diffracted) by plant elements like trunks, branches, twigs and leaves. Very close to vegetation 

and below tree crowns, this could lead to increased sound levels by downward scattering [11]. In many 

applications, however, sound energy will leave the line-of-sight between source and receiver when 

interacting with vegetation, leading to reduced sound pressure levels. A second mechanism is absorption 

caused by vegetation. This effect can be attributed to mechanical vibrations of plant elements caused by 

sound waves [12][13][14] which lead to dissipation by converting sound energy to heat. There is also a 
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contribution to attenuation by thermo-viscous boundary layer effects at vegetation surfaces. As a third 

mechanism, one might also mention that sound levels can be reduced by destructive interference of sound 

waves. The presence of the soil can lead to destructive interference between the direct contribution from 

source to receiver, and a ground-reflected contribution. This effect is often referred to as the acoustical 

ground effect or ground dip. The presence of vegetation leads to an acoustically very soft (porous) soil, 

mainly by the presence of a litter layer and by plant rooting. This results in a more pronounced ground 

effect and in a shift towards lower frequencies compared to e.g. sound propagation over grassland [15]. 

As a result, this ground dip is more efficient in limiting typical engine noise frequencies (near 100 Hz) of 

road traffic. 

Besides these direct acoustical effects, some indirect effects can be mentioned as well. Forests change the 

refractive state of the lower part of the atmosphere and therefore influence sound propagation as studied 

e.g. in [15][16][17][18]. Near a noise barrier, a row of trees was shown to limit the screen-induced 

refraction of sound by the action of the wind [19][20], and the specific distribution of biomass in the 

canopy plays a role [21]. Fricke [22] measured that sound attenuation is influenced to an important degree 

by the relative humidity inside a forest, in a way that cannot be explained by the action of atmospheric 

absorption or by changes in soil humidity. Another type of indirect effects deals with psycho-acoustical 

effects. Wind-induced vegetation noise can lead to masking of unwanted sounds, and as a result, there has 

been interest in predicting this effect [23][24]. Traffic noise perception is also influenced by visual 

stimuli: with an increasing degree of urbanization (and as a result less vegetation), the perception 

becomes less pleasant [25]. 

In periodic structures, so-called acoustic band gap effects might appear, see e.g. Refs. [26][27]: Waves 

scattered by the components of a lattice (or the elements with a sufficient contrast in density relative to 

the propagation medium) interfere. This could lead to large noise reductions in particular frequency 

bands. The spacing between the scattering elements (lattice constant) determines the stop-band central 

frequencies, the filling fraction their efficiency. Applications and research mainly focus on closely packed 

cylinders [26][27][28]. An interesting question is whether such effects can be achieved by introducing 

periodicity in vegetation belts, keeping in mind realistic plant densities. The latter imply that the 

maximum filling fractions are limited. However, experiments with trees organized in periodic arrays were 

also found to produce attenuation peaks at frequencies below 500 Hz due to band gap effects, and not as a 

consequence of interaction with the ground surface as was discussed in Ref. [29]. Total traffic noise 

shielding was not assessed in this earlier work. 

Numerical calculations with relation to sound propagation through belts of vegetation or forests all start 

from random orderings. In Ref. [30], tree stems were explicitly modeled in 3D with a FDTD model. In 
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Refs. [16][18][31], multiple scattering theory for randomly spaced arrays of cylinders was used to predict 

sound propagation through forests. 

Given the findings in recent sonic crystal research and taking into account the work reported in Ref. [29], 

studying periodic plant organizations seems worth the effort. Periodic planting schemes are also 

beneficial as regards the computational cost. 3D numerical simulations typically need a very large amount 

of computational resources. However, as a result of exploiting periodicity, the computational domain can 

be largely reduced. This is done by using mirror planes in the simulation domain, and only modeling a 

representative strip of the grid. Making advantage of symmetry is a sound approach in acoustical 

simulations, and applications of this concept are numerous. Applications of the mirror plane approach to 

3D time-domain outdoor sound propagation calculations can be found e.g. in Refs. [32] and [33]. 

A drawback of the mirror plane approach in the current context is that only planting schemes that are 

periodic in a direction parallel to the road axis can be modeled. From sonic crystal research, it was shown 

e.g. that some defects in the lattice could be beneficial to broaden the frequency range where sound 

reduction is observed [34]. Orthogonal to the road axis, such effects could be included and will be 

studied. 

As illustrated by the references in the previous paragraphs, the typical ground under vegetation could be a 

major effect in reducing noise. So the positive effect of the ground should preferably be preserved, and its 

interaction with the multiple scattering between vegetation elements should be studied. The interaction 

between the soil effect and the presence of scattering vegetation is not always clear when looking at 

literature. In Ref. [1], it was written that adding the separate effects of leaves, stems and ground to obtain 

the total effect for any combination of these is not unreasonable. The measurements performed in Ref. 

[31] lead to similar conclusions. In Ref. [15], on the other hand, it was stated this interaction is more 

complicated than simply additive. Bullen [35] found that that the largest effects of placing cylinders in his 

scale model of a strip of vegetation were observed above a rigid plane and for a sound frequency of 4 

kHz. For an acoustically absorbing ground, the insertion loss (IL) relative to the same type of ground 

cover in absence of cylinders was much more moderate. Krynkin [36] found that in his calculations of a 

sonic crystal made of rigid cylinders (with their axes parallel to the ground surface), the largest IL values 

were found for sound propagation over a rigid ground. The 3D calculations performed in this study will 

contribute to this discussion. 

In this paper, planting schemes on a typical soil as found under vegetation, in a 15-m wide belt bordering 

a road, are numerically assessed. Focus is on total road traffic noise levels of light vehicles. The 

maximum frequency considered in this study (the 1.6-kHz one-third octave band) takes into account a 

relevant part of the tyre/road interaction noise, and allows a more complete estimation of possible traffic 
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noise reduction than in the related study of Heimann [30] where the maximum sound frequency that could 

be attained was 600 Hz.  

Note that some of the modeled configurations have a tree density that would be very hard to realize in 

practice. However, such simulations could be helpful to reveal trends. Practical aspects will be discussed 

and it is indicated what configuration could be realized. Also, results will be compared to sound 

propagation over a grass-covered land with identical source-receiver configuration. This allows policy 

makers and urban planners to get a global and quantitative idea of the gain obtained by changing a piece 

of grassland into a tree/vegetation belt. Given the rather short propagation distance between source and 

receiver, refraction effects will be very limited and will not be considered here. 

In addition, a simple scattering model is proposed to assess the effect of small ground-covering 

vegetation, shrubs, and tree crowns. One has to keep in mind that scattering by vegetation is mainly a 

high-frequency phenomenon since most structures in e.g. a tree crown are very small compared to the 

dominant wavelengths in a road traffic noise spectrum. Furthermore, the density of the scatterers (volume 

fraction) is limited. Martens [37] e.g. stated that scattering by vegetation is rather unimportant when 

looking at total traffic noise level reduction. Measurements behind a noise barrier with and without the 

presence of a row of trees in Ref. [19] showed that scattering by the trees can be significant at very high 

frequencies (+5 dB at 10 kHz). At the 1.6 kHz one third octave band, which will be the maximum 

frequency considered in this study, the amount of scattering was only near +1 dB. As a result, most 

important effects are expected from the presence of stems of trees (in combination with soil as appears 

under vegetation) which is the main concern in this paper. However, including these additional effects 

allows for a more complete assessment of the noise reducing effects of vegetation belts. 

This paper is organized as follows. The FDTD model is briefly described in Sect. 2. In the next section, 

the choice of the simulation parameters is discussed. In Sect. 4, the scattering approach is presented, for 

the case of sound propagation through shrub layers and for tree crown scattering. In Sect. 5, 3D-FDTD 

calculation results are presented for road traffic noise shielding by vegetation belts of limited depth. In 

Sect. 6, some practical considerations concerning the feasibility of the modeled tree stands are made. In 

Sect. 7, conclusions are drawn. In the appendices, approaches aiming at reducing the computational cost 

are checked, and a summary of all simulations performed in this study is presented. 

2. THE FINITE‐DIFFERENCE TIME‐DOMAIN MODEL 

The following equations describe sound propagation in air: 

0p
t

 
  


0

v
,          (1) 
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In the linear Eqs. (1) and (2), p is the acoustic pressure, v is the particle velocity,  is the mass density of 

air, c0 is the adiabatic sound speed, and t denotes time. A homogeneous and still propagation medium is 

assumed. Viscosity, thermal conductivity, molecular relaxation, and gravity are neglected.  

The interaction between sound waves and the soil in this study is simulated by means of the Zwikker and 

Kosten phenomenological model [38]: 

,         (3)  

.        (4) 

 

In Eqs. (3) and (4), R is the flow resistivity of the porous medium, φ its porosity and ks the structure 

factor. These equations describe sound propagation in a porous rigid-frame medium. 

The finite-difference time-domain (FDTD) method is used to solve Eqs. (1)-(4). The efficient staggered-

in-time and staggered-in-space discretisation approach is chosen [39]. The advantages of this numerical 

scheme were described elsewhere [39]. Implementing the Zwikker and Kosten model does not induce 

additional difficulties compared to Eqs. (1) and (2) [20][40]. The validity of this model to simulate the 

interaction between sound waves and different types of outdoor soils has been discussed in Ref. [41]. 

Rigid surfaces are easily modelled by setting the normal component of the particle velocity to zero. Tree 

barks are modelled as a frequency-independent real-valued surface impedance as shown in [42]. The 

validity of this simplification is discussed in Sect. 3.4. 

The FDTD method has been validated by comparison with measurements, analytical solutions and other 

numerical methods, over a wide range of acoustical applications [43][20][44][45]. 

3. SIMULATION PARAMETERS 

3.1 BASIC FDTD PARAMETERS 

The spatial discretisation step is chosen to be 0.02 m, which is a compromise between limiting the 

computational cost and sufficiently capturing the road traffic noise frequency range. This means that 

calculations can be performed up to 1700 Hz (with a sound speed of 340 m/s), when demanding that at 

least 10 computational cells per wavelength are needed for accuracy reasons. A staggered, cubic spatial 

2
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discretisation grid is used. The temporal discretisation step is taken so that the Courant number equals 1, 

leading to minimal phase errors, numerical stability and minimum computing times [39]. 

3.2. SIMULATION SETUP 

An overview of the grid setup with dimensions is shown in Fig. 1. A line source at a height of 0.3 m 

(typical engine noise source height for light vehicles following the Harmonoise/Imagine road traffic 

source power model [46]) is placed above a rigid plane. A rigid plane is e.g. representative for a road 

surface top layer like concrete. Sound propagation in the soil layer itself (with a thickness of 0.5 m) is 

included in the simulation domain. A receiver plane is placed at 19 m from the source. A zone of 15 m in 

between the source and the receiver plane will be used to investigate the effect of various planting 

schemes. Perfectly matched layers are used to simulate an unbounded atmosphere at the left, right and 

upper boundary. Rigid planes are applied at x=0 and x=wrs to model periodic extension of both the line 

source and the planting scheme considered. The width of the representative strip wrs that is modeled 

depends on the chosen planting scheme, and is at minimum 1 m and at maximum 3 m. The validity of the 

mirror plane approach is checked by the 2D numerical example in Appendix A. 

[FIG. 1] 

3.3 SOIL PARAMETERS 

In Ref. [41], reasonably accurate fits to measurements were found using the Zwikker and Kosten 

phenomenological model in case of sound propagation over forest floor and over grass-covered land. For 

these types of soil, very similar errors were found when using the slit-pore frequency-impedance model. 

For grass-covered ground, 26 sites were considered in Ref [41], ranging from “lawns” to “pastures”. 

Based on these data, an (effective) flow resistivity of 300 kPas m-2 and a porosity of 0.75 have been used 

to represent grassland in the current calculations. Measurements of the ground effect at pine stands and 

beech forests were considered as well in Ref. [41]. A flow resistivity of 20 kPas m-2 and a porosity of 0.5 

have been used to simulate the soil appearing under vegetation. The relation between porosity and 

tortuosity as described in Ref. [41] is applied.  

Note that the main interest in these simulations is modelling reflection from a typical soil as found under 

vegetation. When there is interest in predicting the attenuation inside the porous medium itself, for the 

specific case of high sound frequencies and low flow resistivities, adaptations to the Zwikker and Kosten 

model should be made as proposed e.g. in Ref. [47]. 

In this numerical study, the influence of a specific tree stand (tree species, tree spacing, presence of 

shrubs, etc.) on soil properties is not considered. 
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3.4 ACOUSTICAL PROPERTIES OF TREE BARK 

Sound absorption of tree bark was studied by Reethof [42] in an impedance tube (normal incident sound 

waves). Samples of the bark of species like Quercus, Tsuga, Pinus, Fagus, and Carya were considered. 

The absorption coefficients were mainly between 0.05 and 0.10 for sound frequencies between 400 Hz 

and 1600 Hz. For most species, effects were rather frequency independent in this range. Some species like 

Carya (Mockernut) gave significant higher absorption values, ranging up to 0.25 at 1.6 kHz. Based on 

these findings, an average frequency-independent value of 0.075 (normal incidence) can be justified for 

modelling reflection on the tree barks. This lead to a real-valued impedance of 51 times the impedance of 

air. 

3.5 PLANTING SCHEMES 

In this study, four different tree planting schemes are considered, namely a simple cubic scheme (SC), a 

simple rectangular (SR) scheme, a face-centred cubic scheme (FCC) and a triangular scheme (T). The 

basic parameter to represent a certain scheme is the minimum distance between adjacent tree stem axes. 

This minimum distance is indicated by d in the SC, FCC and T scheme, and by d1 (parallel to the road 

axis) and d2 (normal to the road axis) in the SR scheme. In this representation, the SC and FCC have the 

same tree density per unit area (=1/d2), while the planting scheme T is somewhat more dense (factor 

2/ 3 ). The SR schemes have a tree density of 1/(d1
.d2).  

In Fig. 2, a representative strip is shown for each grid element. In case of a SC or SR scheme, such a strip 

is symmetric. In case of a FCC and T scheme, the computational cost can be further reduced by 

considering an asymmetric strip, cutting the stems at the borders in two. 

[FIG. 2] 

4. APPROXIMATION FOR SMALL SCATTERING ELEMENTS 

Explicitly modeling each element in vegetation imposes difficulties, especially in a volume discretisation 

technique employing a uniform grid as FDTD. The smallest structure that can be easily modeled is the 

computational cell. A meaningful representation of a small twig is usually not possible in a 3D grid 

without using techniques as grid refinement, conformal grids or subgrid-scale modeling which in all cases 

leads to more complex calculation schemes and a higher computational cost. A valuable approach is 

subgrid-scale modeling [48], as illustrated by means of the PSTD (pseudo-spectral time-domain) model 

where scattering was modeled near a small tree based on a detailed geometrical representation of it [49]. 

A main problem with using full geometrical details is access to such data, and the loss of the naturally 

occurring variation in such structures. Therefore, a more practical and easy-to-apply approach is proposed 
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here. It is based on a statistical spatial distribution of (basic) filled grid cells, imitating the interaction 

between vegetation structures and sound waves, while preserving the inherent randomness. Besides 

modeling of multiple scattering and a high portion of transmission through the vegetation, the effect of 

absorption by branches and twigs can be included by making these filled cells partly absorbing. Focus is 

on scattering by woody material. Important interactions between leafs and sound waves are expected to 

occur at sound frequencies beyond the range that is modeled here [19], and is considered to be of limited 

importance when looking at total A-weighted road traffic noise [37]. 

4.1 LOW GROWING VEGETATION AND SHRUBS 

Firstly, this approach will be used to model the interaction between sound and shrubs and other low, 

ground-covering vegetation. Near full ground cover is possible for many species or combinations of 

species. As a result, a uniform distribution of scatterers will be assumed. The above-ground woody 

biomass volume taken by the shrubs is then evenly distributed over the artificial scatterering cells in 

FDTD. Given the absence of more detailed data on the acoustic surface properties of the branches and 

twigs for this type of vegetation, the same data as for tree bark is used (see Section 3.4). The addition of 

(some) absorption will not only account for the interaction between the surface of plant material and 

acoustic waves, but also for damping by sound-induced vibration of plant elements. 

For the FDTD calculations, the input parameter in the above described approach is 1 minus the porosity 

of the shrubs, which equals the chance of making a grid cell a scattering cell. Information on this 

parameter is not directly available in relevant literature. The basic parameter that is found is the above-

ground total dry biomass per unit area. In combination with typical shrub height, mass distribution over 

leafs and woody parts, mass density of dry wood in shrubs, and the typical water content of woody parts, 

the above-ground shrub porosity can be estimated. 

A wide range of values for above-ground (oven-dried) total biomass per unit area can be found in 

literature. The measurements in Ref. [50] for different shrub type ecosystems reported values from 0.5 to 

2 kg/m2, for shrubs heights lower than 1.5 m and ground coverage ranging from 42% to 97%. 

Furthermore, an overview is given in [50] for some Mediterranean species, showing values in the range 

from 1 kg/m2 to 6.68 kg/m2, for shrub heights ranging from 1 m to 4.5 m. The average value for low trees 

and shrubs (12 species) reported by Harrington [51] was 5.4 kg/m2. Navar [52] found an average of 

above-ground total biomass per unit area of 4.44 kg/m2. Top heights of the various species involved in the 

latter ranged from 1.9 m to 5 m. 

The distribution of biomass over leafs, branches and stems was measured to be 5.6%, 61.5%, and 32.8%, 

respectively, in Ref. [52]. Measured values for the ratio leafs to total above-ground biomass ranged 
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between 3% and 34%, with a median at 18% as reported in Ref. [51]. Navarro-Cerrillo [50] gives an 

overview of photosynthetic-to-total phytomass values for many species; most of the data fell in the range 

12% and 19%. 

The water content and water distribution between woody biomass and leafs depend on many variables 

like plant segment, stand location, age etc. [53]. The water content in the woody parts was found to be 

typically 40% according to the measurements in [53]. This is consistent with the typical range of water 

content of leafs in deciduous shrubs ranging from 50% (older full-size leafs) to 65% (lush new leafs) 

according to Ref. [54]. In Ref. [53], measurements showed values between 50% and 60%. 

Mass density of (dry) wood in shrubs falls in the range from 400 to 1100 kg/m3 [55]. These values depend 

largely on shrub species. The median value on this data is close to 650 kg/m3. 

The in-situ shrub porosity shrubs of woody plant elements can then be calculated as follows: 

 

,     (5) 

 

With mtot,dry the total, dry above-ground biomass (in kg/m2), Hshrubs the average height of the shrubs (in m), 

fwood,dry the mass fraction taken by the dry wood, wood,dry the mass density of dry wood (in kg/m3), water 

the mass density of water, and wwood the fraction of water present in woody parts of the shrubs in-situ. 

When using typical values from the literature review as discussed above (mtot,dry=4 kg/m2, fwood,dry=0.9, 

wood,dry=650 kg/m3, water=1000 kg/m3, wwood=0.4) and by taking Hshrubs=1 m, this leads to an in-situ shrub 

porosity of near 0.99, meaning that 1% of the volume is taken in-situ by water-containing woody plant 

material. Values of 0.98 and 0.995 are modeled as well to study the range of possible effects given the use 

of default values only. Note that such values could be representative for many combinations of the above 

described parameters. 

4.2 SCATTERING FROM TREE CROWNS 

Including tree crowns is mainly intended to estimate the negative effect of downward scattering in the 

simulations. The tree crown is – in a first approximation - represented by a sphere. The upper half of this 

sphere is neglected to limit the computational domain in the y-direction. The use of small, scattering 

elements is applied here as well. It is assumed that near the centre of the crown, most woody material is 

present leading to a higher chance of filling a given computational cell. Such a larger chance will lead to 

clustering of filled grid cells, which could be representative for bigger structures in the crown like a 

tot ,dry wood,dry wood,dry wood
shrubs

shrubs wood,dry water wood

1
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prolongation of the stem, or bigger branches. At the surface of the sphere representing the tree crown, a 

very small change that a grid cell becomes a scattering cell is applied. Note that since the frequency 

content in the current simulations is limited to 1700 Hz, effects by the presence of leafs will be rather 

limited and this effect is neglected. Since the exact distribution of biomass in a tree crown is not known, 

various approaches were tested as regards the distribution of scattering elements to have an idea on the 

sensitivity of the conclusions on such choices. 

5. 3D NUMERICAL CALCULATIONS 

The 3D numerical results are depicted in different ways in the remainder of this paper. In a first 

representation, (total) traffic noise insertion loss values (in dBA) are linearly averaged over all receivers 

in the plane at z=19 m and shown by means of bar plots. A light vehicle (vehicle type 1 following the 

Harmonoise/Imagine road traffic source model, representative for a passenger car) at a vehicle speed of 

70 km/h is modeled. Separate bars are shown for receiver heights ranging from ground level up to 3 m, 

and for receiver heights from 1 to 2 m (height of human ear for both children and adults). Averaging over 

a range of receivers summarizes results. As a reference, the same type of ground has been used (although 

hypothetical, the typical soft ground only develops under vegetation). In this way, the effect of the ground 

is singled out, and the effect of the presence of the stems and vegetation only is assessed. An alternative 

reference situation is sound propagation over grassland. As discussed in the introduction, these results 

give a global estimate of what can be expected when replacing an existing piece of grassland by a 

vegetation belt. Furthermore, insertion loss spectra are shown at a single receiver height along the 

representative strip, or as (linearly) averaged results over the receiver plane in function of vehicle speed in 

case of a more detailed analysis. 

A single source at a height of 0.3 m is considered (following the Harmonoise/Imagine road traffic source 

model), and both the engine and rolling noise source power is assigned to that source height. The effect of 

also considering sound propagation from a source at a height of 0.01 m, relative to the road surface, was 

shown to be limited in the current setup and averaging approach (see Appendix B). Unless otherwise 

stated, the stems have a length of 2.5 m, stem diameters are constant in the tree belt, and the full area 

assigned for vegetation as shown in Fig. 1 is used. The acoustic effects of the various layers in the 

vegetation belt (shrub zone, stem zone, and crown zone) are considered separately to study their 

individual effect, unless stated otherwise. Furthermore, a coherent line source is modeled. In Appendix C, 

the effect of source type (coherent versus incoherent line source) is studied for some configurations. An 

overview of the 3D simulation performed can be found in Tables D.1 and D.2 in Appendix D. 

5.1 EFFECT OF SOIL 



13 

 

The effect of the presence of a typical soil as found under vegetation is compared to sound propagation 

over grassland, for total traffic noise (light vehicles) at different vehicle speeds in Fig. 3. With increasing 

height above the ground surface, the effect of a different soil becomes less pronounced. Traffic noise 

insertion losses at low vehicle speeds are dominated by low frequencies and lead to less variation with 

height. Measurements of sound propagating over acoustically soft ground from a source at limited height 

show similar behavior [56]. Close to the ground, differences between the two types of soils at the higher 

vehicle speeds may exceed 7 dBA. The average effect for a vehicle speed of 70 km/h equals 3.3 dBA 

(with a standard deviation of 1.2 dBA) for receivers between y=0 m and y=3 m, and 3.2 dBA (standard 

deviation of 0.5 dBA) for receivers between y=1 m and y=2 m. For comparison, results are also 

referenced to sound propagation over a rigid ground in Fig. 3, showing a large decrease in traffic noise 

insertion loss. 

[FIG. 3] 

5.2. ANALYSIS OF BANDGAP EFFECTS 

In this section, the presence of band gap effects is examined for both 2D and 3D calculations for the SR 

1m/2m scheme, for cylinders/tree stems with diameters of 22 cm and 44 cm. In the first case, a coherent 

plane wave and infinitely long cylinders are modeled in absence of a ground plane (and referenced to free 

field sound propagation). In the second case, a coherent line source is modeled and 2.5m-high stems 

above an absorbing ground (and referenced to sound propagation over the same ground in absence of 

stems). Both fully rigid stems and partly absorbing stems are considered. Results are represented as 1/9 

octave bands to have a more detailed look at the insertion loss spectrum. For each receiver position, the 

insertion loss is calculated. Next, the insertion losses over all receiver positions are linearly averaged. A 

receiver height of 2 m is considered in case of the 3D simulations. 

The lowest-order insertion loss peaks at 85 Hz and 170 Hz in Figs. 4 and 5 correspond to interference of 

scattered waves for inter-stems distances of 2 m normal to the road (for a speed of sound equal to 340 

m/s). These peaks correspond to Bragg’s law for normal incident waves. It can be observed that such 

peaks are more pronounced for plane wave sound propagation than for sound propagation over an 

absorbing ground surface, which is consistent with findings in [36]. At these low frequencies, only the 44-

cm diameter stems provide a sufficient amount of scattering. For the 22-cm diameter stems, only a very 

small insertion loss is observed at these same frequencies. For the latter, higher order band gaps will make 

the more important contributions to overall IL. Modeling an incoherent line source does not seem to 

affect the frequency and magnitude of these peaks (not shown). Further analysis confirms that mainly the 

spacing normal to the road determines at what frequencies insertion loss peaks are found. On the other 

hand, decreasing the spacing along the road increases the magnitude of the insertion loss peaks due to the 
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increased filling fraction. A sufficient amount of back scattering is needed, given the limited depth of the 

vegetation area considered. E.g., a SR 2m/3m 44 cm gives similar low-frequency insertion loss peaks as 

SR 1m/3m 44 cm (easy-to-identify peaks are situated at 57 Hz, 113 Hz, 170 Hz, 227 Hz), but the 

magnitude of these is more pronounced with a spacing along the road of 1 m (not shown). 

At higher frequencies, both interference corresponding to higher-order harmonics of the basic lattice 

spacing, and direct shielding by the tree stems is observed, yielding complex insertion loss spectra. At 

very low frequencies, uniformity over the modeled strip is observed. At higher frequencies, on the other 

hand, there is significantly more variation in insertion loss along the representative strip, clearly shown by 

the larger values for the standard deviation: The exact location relative to the position of the stems plays a 

more important role. 

Including the absorption characteristics of tree bark seems to broaden the low-frequency peaks to a 

limited extent. At higher frequencies, including absorption increases the insertion loss relative to the rigid 

stems, although frequency independent impedances are modeled at the surfaces. While the 2D insertion 

loss values are positive over the full frequency range considered, an increase in the sound level is 

observed near 300 Hz for the 3D case and rigid stems. Such negative effects are somewhat less 

pronounced when applying typical absorption values for tree bark. 

It can be concluded that the presence of the typical soil appearing under vegetation, or source 

representation (coherent line source, incoherent line source, or plane wave) does not affect the possibility 

to exploit periodicity. Tackling engine noise (near 100 Hz) by using the periodicity in tree belts seems 

difficult. Large stem diameters are needed to yield a sufficient amount of scattered energy at these low 

frequencies. Furthermore, this condition is enhanced since in case of a larger spacing a sufficient filling 

fraction still has to be obtained. For practical combinations of tree stem diameter and tree spacing (see 

discussion in Sect. 6), pronounced band gap effects will therefore be mainly expected in case of limited 

spacings (e.g. SC 1m 11 cm), so at frequencies where we can also expect direct shielding effects. 

[FIG. 4] 

[FIG. 5] 

5.3 EFFECT OF STEM DIAMETER AND PLANTING SCHEME 

The effect of the tree diameter and the choice of the planting scheme become clear from Fig. 6. Three 

stem diameters were considered, namely 11 cm, 22 cm, and 44 cm, and for a passenger car at a vehicle 

speed of 70 km/h. The simulation results at vehicle speeds of 30 km/h and 110 km/h can be found in 

Table D.1. Many of the planting schemes with the 44 cm tree diameters, and some of the 22 cm tree 
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diameters, will be hard to achieve in practice, but were retained as they allow a better evaluation of the 

importance of some parameters. Remarks on practical aspects can be found in Sect. 6. 

With increasing tree stem diameter, traffic noise insertion loss is more pronounced for each planting 

scheme considered. Furthermore, with increasing distance between the stems, traffic noise insertion loss 

becomes smaller and the importance of the stem diameter decreases, illustrated by the decreasing slopes 

in Fig. 6. 

The FCC 2m, T 2m and SC 2m have the same minimum planting distance and can therefore be compared. 

For the 11-cm and 22-cm diameter stems, the effect of the scheme considered is unimportant. For the 44-

cm diameter stems, there is a light preference for T upon FCC and SC. 

For the SR schemes, the orientation relative to the road axis is important. Although the filling fraction for 

SR 1m/2m is much smaller than for SC 1m, effects are more or less similar for the modeled diameters of 

22cm and 44cm. At a vehicle speed of 70 km/h, SR 1m/2m becomes even better than SC 1 m for a stem 

diameter of 44 cm. Similarly, SR 2m/3m shows a behavior that is much closer to SC 2m than to the 

average between SC 2m and SC 3 m for 22-cm and 44-cm diameter stems. On the other hand, SR 2m/1m 

(i.e. scheme SR 1m/2m rotated over 90 degrees) gives a traffic noise shielding equivalent to SC 2m for 

the 22cm and 44cm stem diameters. This means that SR 1m/2m clearly outperforms SR 2m/1m. It seems 

that the spacing, parallel to the road is the main parameter to predict road traffic noise shielding. For the 

low diameter of 11cm, SR 1m/2m is very close to the average between SC 1m and SC 2m. The same 

holds for SR 2m/3m, which is the average of SC 2m and SC 3m. Furthermore, the acoustic behavior of 

SR 2m/1m is equivalent to SR 1m/2m, and SR 2m/3m is equivalent to SR 3m/2m for low stem diameters. 

The reason for this behavior is that the spacing parallel to the road axis should be limited to provide 

sufficient scattering in case of a line source. This is needed to prevent sound arrival at the receiver 

without interacting with the trees, and to have a sufficiently scattered sound field early in the first rows to 

be able to exploit periodicity, as discussed in Sect. 5.2. 

[FIG. 6] 

The effect of vehicle speed can be illustrated by Fig. 7 for SR 1m/2m 22 cm. A receiver line at a height of 

y=2 m is considered, and the total traffic noise insertion loss over the modeled strip is shown with 

increasing vehicle speed. For the higher vehicle speeds, the effect of the planting scheme is clearly more 

pronounced. Above 100 km/h, the effect of vehicle speed becomes very small. While for the lower 

vehicle speeds a more uniform insertion loss is observed over the receiver line, for higher vehicle speeds 

there is more variation. At higher vehicle speeds direct shielding is more important, and the location along 

the receiver line, relative to the position of the trees, becomes relevant. 
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[FIG. 7] 

5.4 EFFECT OF NUMBER OF ROWS AND STEM HEIGHT 

In Fig. 8, the effect of the number of rows is considered for the SR 1m/2m scheme, for a tree stem 

diameter of 22 cm and 44 cm. An increasing number of tree stems were removed, starting from the 

receiver plane. The vegetation soil was replaced by grass-covered soil accordingly. In case of 2 rows, 

only close to the road trees are present. In case of 22-cm diameter trees, a near-linear behavior is found 

when increasing the number of rows of trees, referenced to an identical soil without trees. In case of a 

diameter of 44 cm, a large improvement is observed when going from 0 to 2 rows, which then becomes 

linear when further increasing the number of rows. 

With increasing tree height, the traffic noise shielding increases. However, the effect of stem height is 

rather unimportant, once a height of 1 m is reached. Averaged over receiver heights from ground surface 

to 3 m, a difference of about 1 dBA is observed for a stem height of 1 m high compared to 2.5 m, and for 

a stem diameter of 22 cm. Even low stems perform well due to the presence of a source close to the 

vegetation area and close to the ground surface. Note that tree crowns were absent when evaluating the 

importance of number of rows and stem height. The presence of crowns below or at receiver height could 

be beneficial, compared to scattering from crowns above the receiver height (see introduction). 

[FIG. 8] 

5.5 EFFECT OF CROWN SCATTERING 

Since the exact distribution of biomass in a tree crown is not known, various approaches were tested as 

regards the distribution of scattering elements to estimate the sensitivity of results on this choice. In the 

first 3 approaches, a 3rd order power-law is used to relate the probability of filling a cell in function of the 

normalized distance towards the stem-axis. The maximum probabilities at the stem axis are 0.5 

(approach1), 0.33 (approach 2) and 0.2 (approach 3). Next, a 5th order (approach 4) and 7th order 

(approach 5) power law is applied, for a maximum probability of 0.5 at the stem axis. The minimum 

probability at the sphere surface is 0.01 in all representations. Calculations are made for the lower half of 

spherical tree crowns, starting at a height of 2.5 m, in absence of stems, above vegetation soil. Crowns 

organized as a SR 2m setup are considered. 

Scattering from tree crowns leads to an increase in sound pressure level and consequently a decrease in 

insertion loss. The calculated insertion loss values, (linearly) averaged over the receiver plane at heights 

between 1 m and 2 m, are -0.8, -0.5, -0.3, -0.6 and -0.4 dBA for approaches 1 to 5 (lower half of the tree 
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crown only). It was numerically tested for approach 1 that also including the upper half of the crown 

results in 0.2 dBA additional scattering. 

Measurements of sound scattering by tree crowns behind a highway noise barrier (in a still atmosphere) 

[19] fall within the range of the values predicted here. Simultaneous measurements were performed 

behind part of the noise barrier with and without a (single) row of trees behind it. A log-linear relationship 

between sound frequency and level difference between these two locations was measured (from +0 dB at 

1 kHz to +5 dB at 10 kHz because of the crowns). When applied to a light vehicle road traffic power 

spectrum at 70 km/h, this leads to an insertion loss value (of the tree crowns) of -0.8 dBA. It can be 

concluded that the global effect of crown scattering is in qualitative agreement with measurements, 

although scattering by leafs is not specifically addressed in the proposed numerical model. 

 

5.6 EFFECT OF SHRUBS 

Two approaches were followed for comparing the effect of the presence of shrubs. First, the same amount 

of above-ground biomass per unit area is modeled, distributed over shrubs with a height of 0.5 m, 1 m, 

1.5 m and 2 m. This corresponds to shrub porosities of 98%, 99%, 99.33% and 99.50%, respectively. 

Secondly, two fixed shrub porosities were modeled, namely 99% and 99.5%. In the latter, the total 

amount of above-ground biomass increases with shrub height. 

For an equal amount of biomass, there is a preference for dense low vegetation as shown in Fig. 9. The 

minimum performance that is observed for traffic noise shielding is for shrubs with a height near 1 m or 

1.5 m, depending on the receiver height zone considered. For a 2-m high shrub with the same amount of 

above-ground biomass, the traffic noise shielding increases again. Note that the standard deviation when 

considering receiver heights from 0 to 3 m can be quite high. More detailed analysis shows that for the 

more densely packed shrubs, positive effects for total traffic noise are mainly observed for receivers 

above the shrub height. Zones with negative effects, mainly for the higher vehicle speeds, were observed 

below the shrub height. For the 2m-high shrubs, such zones with negative effects do not appear. 

For fixed shrub porosity, there is a preference for the 2-m high shrubs. For receiver heights between 1 m 

and 2 m, the difference between 0.5 m, 1 m and 1.5 m shrubs is very similar, although there is 3 times as 

much vegetation mass for the 1.5-m shrubs compared to the 0.5-m shrubs. 

A 2-m high shrub zone with a length of 15 m, for total above-ground dry biomass of 4 kg/m2, gives an 

average traffic noise insertion loss of 4.7 dBA for a light vehicle at 70 km/h at typical ear heights (relative 

to sound propagation over grassland). The positive effect of the presence of the ground is included here, 
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accounting for 3.2 dBA. The effect of a soft ground (developed by the presence of the shrubs) is therefore 

the major contribution to the traffic noise shielding. 

Effects of different random realizations of the shrub layer are very minor (<0.1 dBA) when considering 

averaged results over the receiver planes for total traffic noise insertion loss. 

[FIG. 9] 

5.7 COMBINING SHRUBS, CROWN SCATTERING AND THE PRESENCE OF STEMS 

In this section, the acoustical effect of combinations of low (understorey) vegetation, crown scattering, 

and the presence of stems are shown. Crown scattering approach 1 is applied. Shrubs of 0.5 m high with a 

porosity of 98% are used. SC 2 m tree planting schemes are applied, with diameters of 22 cm and 44 cm. 

Identical realizations are used for the crowns and low vegetation in the different combinations. 

In Fig. 10, explicitly modeled combinations are shown and compared to the result of adding the insertion 

losses of single effects (i.e. stems only with a diameter of 22 cm or 44 cm, shrubs only, and tree crowns 

only). Effects of crown scattering and low vegetation can be considered as more or less additive based on 

these simulations, when considering sound propagation referenced to the same type of soil. Adding 

insertion losses of separate effects, and comparing the results to explicitly modeling combinations, yield 

differences of at most 0.7 dBA (averaged over receiver heights from 1 to 2 m). It is clear that additivity 

does not hold when referenced to sound propagation over grassland, since the positive ground effect is 

included in all parts. These findings show that the different parts in vegetation belts only interact to a 

limited extent when considering typical road traffic noise spectra. As a result, it does not seem necessary 

to perform simulations of combinations of understorey vegetation, different stem schemes and crown 

representations to have an adequate estimate of the global effect. 

This additivity of scattering by vegetation and the sound-soil interaction is consistent with the findings in 

Refs. [1] and [31], and could potentially lead to simplified and less computationally intensive approaches 

than the one used in this study.  

Note that the shrub mass density per unit area assumed here exceeds what would be practically possible 

as an understorey in a (dense) tree stand. However, the main purpose of this section was checking 

possible interactions between the different layers in a vegetation belt. 

[FIG. 10] 
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5.8 RANDOMISATION AND LATTICE DEFECTS 

The presence of (some) randomness in the stem centre location and stem diameter will be inherent in 

practical realizations of tree belts. Secondly, sonic crystal research showed that positive effects could be 

expected by inducing lattice defects in densely packed cylinders, leading to a broadening of insertion loss 

peaks [34]. Since road traffic noise spectra are characterized by a broad frequency range, this effect is 

worth studying. 

The use of the reflecting plane approach as applied in this numerical study can only lead to periodic 

planting schemes along the road axis. Only the effect of random shifts orthogonal to the road can be 

studied. 

5.9.1 SHIFTS IN STEM CENTRE LOCATION 

In a first step, the effect of random shifts in stem centre location is studied for some schemes with a 

spacing of 2 m normal to the road. It is clear that complete randomness is not of practical use, since it 

conflicts with the minimum planting distance needed for development of neighboring trees. Random 

shifts up to 0.75 m were allowed normal to the road and in both directions, compared to a constant 

spacing. Three random realizations are considered in each case and the insertion losses were linearly 

averaged afterwards. 

Inducing some (pseudo)randomness in the location of the stem centre is predicted not to decrease traffic 

noise insertion loss as illustrated in Fig. 11. In the more densely packed SR 1m/2m 44 cm scheme, an 

increase in traffic noise insertion loss near 0.5 dBA is observed. For the SC 2m scheme, the additional 

positive effect of randomness in stem centre location is very limited. 

[FIG. 11] 

 

5.9.2 RANDOMNESS IN TREE DIAMETER 

In a SR 1m/2m scheme, random variations in tree stem diameter are modeled, ranging from 22 cm to 44 

cm, following a uniform distribution. The (linearly) averaged traffic noise insertion loss of 3 such 

realizations (referenced to vegetation soil, for receivers between 0 and 3m) shows a noise reducing 

potential (3.9 dBA) that is closer to the performance of a uniform 44-cm diameter tree stand (5.0 dBA) 

than to the uniform 22-cm diameter tree stand (2.3 dBA). Similarly, for SC 2 m, mixing diameters lead to 

a traffic noise insertion loss of 2.1 dBA, which is again closer to the uniform 44-cm diameter tree stand 

(2.5 dBA) than to the uniform 22-cm diameter stand (1.4 dBA). This shows that randomness in tree 
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diameter is positive from the viewpoint of noise reduction. Selecting for identical trees should therefore 

not be encouraged. 

 

5.9.3 INCLUDING GAPS 

The effect of omitting some rows for planting schemes SR 1m/2m is simulated, with fixed stem diameters 

of either 22 cm or 44 cm. Four different realizations of 2 missing rows (normal to the road axis) were 

simulated and compared to using 8 rows to fill the zone designed for the planting scheme (see Fig. 12). 

Leaving out some rows does not significantly influence the averaged traffic noise insertion loss in the 

receiver plane. Some of such realizations including gaps seem to even improve noise shielding a little 

(realizations a and d: + 0.2 dBA) for the tree diameter of 44 cm (referenced to sound propagation over 

grassland, and receiver heights between 1 m and 2 m). For the 22-cm diameter stems, there is a small 

reduction (at maximum -0.3 dBA) in insertion loss. Similar conclusions could be drawn by considering 

SC 2m. Omitting some rows in between the tree stand is better for noise shielding than e.g. limiting two 

rows at the end, as shown in Fig. 8. It is assumed that near these open spaces, a vegetation soil is 

developed as well, which is not expected in case of limiting the tree belt to 6 consecutive rows. It is 

discussed in Sect. 6 that this finding is interesting for the practical realization of tree stands. 

[FIG. 12] 

 

5.10 SOUND PROPAGATION OVER RIGID THIN NOISE BARRIER 

For comparison, the FDTD model applying mirror planes is used to calculate the insertion loss of a rigid 

rectangular screen with a thickness of 0.1 m, placed at 3 m relative to the source position. In this 

approach, the screen is infinitely long and parallel to the road axis. The screen is placed on grass-covered 

ground, and road traffic noise levels are referenced to sound propagation over unscreened grassland. The 

noise shielding by vegetation belts is referenced to grassland as well. Screen heights of 0.5 m, 1.0 m, 1.5 

m, 2.0 m, and 2.5 m were considered. The insertion losses obtained (for receivers between 1 m and 2 m, 

and a vehicle speed of 70 km/h) are 3.6, 6.2, 8.8, 10.6, and 11.7 dBA, respectively. Some of the 

vegetation schemes that can be practically realized (see Section 6) could compete with a screen of 1 m or 

even 1.5 m. An important reason is the preservation and change of the ground effect when vegetation is 

used. In case of a classical screen, this positive ground effect can be (partly) lost by preventing the direct 

and ground-reflected wave to destructively interfere. Note that the screen calculations are performed for a 

coherent line source. Noise barrier shielding in case of an incoherent line source is expected to be lower 

[57][58] than the results shown here. This fortifies the conclusions drawn. Furthermore, classical noise 
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barriers are sensitive to an important decrease in shielding in case of downwind sound propagation, even 

at short distance [59][60]. In case of a stand of vegetation, such negative effects are expected to a much 

lesser extent since vegetation acts as a windbreak; the strong vertical gradients in the horizontal 

component of the wind speed as observed near the barrier top [21] will not appear. 

6. PRACTICAL CONSIDERATIONS 

Well-established empirical relationships exist between the number of trees per unit area and their stem 

diameter [61]. Based on such relationships, the suggested tree density-tree diameter combinations 

considered in this work are not all realistic in ordinary tree plantings, especially for the stems with a 

diameter of 44 cm. Such results are nevertheless kept in the analysis to reveal trends. Following findings 

in this study are interesting from the practical point of view. 

Firstly, numerical simulations indicated that omitting some rows of trees does not affect the traffic noise 

insertion loss of the tree stand. Trees planted in densely clustered zones followed by open spaces could 

therefore be practically achievable, as this ensures that more resources (light, water and nutrients) are 

available for tree growth and that higher tree densities can be obtained. 

Secondly, there is a preference for rectangular schemes, for stem diameters of 22 cm. The noise reduction 

obtained by scheme SR 2m/3m is close to the one of SC 2m, although SR 2m/3m has a smaller tree 

density (0.17 m-2) than SC 2m (0.25 m-2). It was further shown that the orientation in rectangular schemes, 

relative to the road axis, is important: SR 3m/2m and SR 2m/3m have the same tree density, however, SR 

2m/3m is preferred. The SR 3m/2m scheme has only the acoustic performance of SC 3m. 

Thirdly, pollarded trees are of special interest as they can attain large stem diameters at high densities and 

they have a limited amount of biomass in the canopy due to the cyclic removal of the branches and 

foliage. As a result, the possible negative effects of downward scattering will be limited. Another 

interesting property is that many tree genera suitable for pollarding (e.g. Salix and Populus) are fast 

growing. In case high stem diameters can be realized and one has to deal with high-speed road traffic, a 

FCC scheme should be preferred upon a SC scheme: for a same tree density, a higher insertion loss is 

obtained. 

It is indicated in Fig. 6 whether the combinations of planting schemes, tree spacing, and tree stem 

diameters are practically achievable. Given the complexity in assessing this, three categories were defined 

based on the considerations in previous paragraphs. When the surface taken by the stem cross-sections is 

smaller than 100 m2/ha (equivalent to 1% stem cover), no practical problems are expected (white-filled 

markers). At the other hand, values above 2% are considered to be rather unrealistic (black-filled 
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markers). Between 1% and 2%, tree belts might be achieved when selecting for species that can be 

densely planted or develop large stem diameters. Another option is leaving out some rows to obtain an 

averaged smaller tree base area density (note that the values given here are based on fully populated 

grids). 

The highest total A-weighted road traffic noise insertion loss (on condition that the stem cross-section 

area stays below 1%) is observed when applying a SC 1m 11cm scheme. Another practical solution is a 

SR 2m/3m 22 cm scheme: a performance equivalent to a noise barrier with a height of 1 m on grassland is 

possible, when also allowing for a shrub layer. For a light vehicle at 70 km/h, a traffic noise reduction of 

near 5 dBA can be achieved (without a shrub layer) with a limited belt depth of only 15 m. Such a scheme 

can be realized with common species, and has a basal area of only 63 m2/ha. The FCC 2m 22cm has a 

traffic noise insertion loss which is 0.5 dBA higher, however, the stem base areal density is very close (95 

m2/ha) to the maximum set value here. Tree stems with diameters of 44 cm are less interesting when 

combining acoustical efficiency and practical achievability. 

7. CONCLUSIONS 

In this study, the 3D finite-difference time-domain method is used to simulate sound propagation through 

an infinitely long and 15-m deep vegetation belt along a road. A representative strip of the vegetation belt 

is considered and mirror planes are placed at the simulation boundaries, normal to the road axis. 

Preliminary calculations showed that the latter is a sound approach to model an infinitely wide vegetation 

belt. The computational cost was further reduced by showing that for this specific application and when 

averaging over a receiver zone, assigning the engine and rolling noise source power to the engine noise 

source height only (in the Harmonoise/Imagine road traffic noise emission model) was sufficiently 

accurate. Furthermore, calculations have been performed for coherent line sources. The use of a (partly) 

incoherent line source generally results in a slightly increased road traffic insertion loss by the vegetation 

belt. 

The presence of a forest floor alone, compared to sound propagation over grassland, was found to be 

responsible for a reduction in total traffic noise level for a light vehicle driving at 70 km/h near 3 dBA. 

The noise reducing effects of the forest floor and the optimal tree stem configuration (among the modeled 

ones), taking into account practical achievability, were predicted to be of similar importance. 

With increasing tree stem diameter, traffic noise insertion loss is more pronounced for each planting 

scheme considered. Furthermore, with increasing distance between the stems, smaller values were found 

and the importance of the stem diameter decreases. A tree spacing of 3 m and a stem diameter of 11 cm 

can be considered as the starting point of having positive effects (near 0.5 dBA for a light vehicle at 70 
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km/h). Note that even for such sparse vegetation, positive ground effects could be expected. The spacing 

parallel to the road axis was shown to be most important in predicting road traffic noise shielding. 

To model the interaction between sound and shrubs, a uniform distribution of scattering cells is assumed. 

The porosity taken by woody shrub material is estimated based on typical values for the above-ground 

biomass per unit surface area and allometric relationships. A 2m-high shrub zone with a length of 15 m, 

for total above-ground dry biomass of 4 kg/m2, gives an average road traffic noise insertion loss of 4.7 

dBA for a light vehicle at 70 km/h at typical ear heights when referenced to sound propagation over 

grassland. For an equal amount of biomass per unit surface area, there is a preference for either low 

shrubs (0.5 m) or higher shrubs (2 m). 

Scattering from tree crowns leads to downward scattering of sound, given the low source height and 

receiver height below the canopy, at close distance. Depending on the parameters used for the specific 

distribution of scattering elements in the tree crown, the predicted negative effects range from -0.8 to -0.4 

dBA for a light vehicle at 70 km/h. With increasing vehicle speed, downward scattering increases. 

Measurements of road traffic noise scattering near a highway noise barrier including a row of trees 

(described in another study) fall in the predicted range. 

The effect of the presence of tree crowns, shrubs and tree stems was found to be approximately additive. 

Errors made by adding the insertion losses of the individual layers in the vegetation belt, and thus not 

explicitly modeling combinations, were smaller than 0.7 dBA for receiver heights ranging from 1 m to 2 

m. 

Simulations showed that inducing some (pseudo)randomness, either in stem centre location, tree 

diameter, or by omitting a number of rows (assuming that the same forest floor develops in the open 

zones) hardly affects the insertion loss values. This is interesting from the viewpoint of practical 

realizations of tree stands, given the inherent randomness in working with living material. Note that in the 

current mirror-plane approach, only randomness in a direction normal to the road could be considered. 

Furthermore, omitting some rows in a tree stem grid could allow for local denser zones, still having 

realistic averaged stem base areal densities. It could be concluded that a realistically achievable 15-m 

deep vegetation belts could compete with the traffic noise insertion loss of a thin, classical noise barrier 

(on grassland) with a height of 1 m to 1.5 m in a non-refracting atmosphere. The vegetation belt has 

additional non-acoustic advantages such as being CO2-neutral or positive, having a much higher esthetic 

value, and its potential to improve local air quality e.g. by capturing road traffic-originated fine particles. 
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As a final remark, it has to be stressed that the current study is a purely numerical one. Although a full-

wave 3D numerical model has been used, and input parameters in the model are as much as possible 

based on measured data, validation with measurements at vegetation belts is not provided. 
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APPENDIX 

A. TESTING MIRROR PLANE APPROACH 

The mirror plane approach is checked by means of two dimensional calculations. Insertion loss values for 

1/3-octave bands (with central frequencies ranging from 25 Hz to 1600 Hz) using a representative strip 

only in between two perfectly reflecting planes are compared to the results of explicitly modeling a wide 

strip applying the same scheme. This wide strip is also bordered by reflecting planes at the simulation 

boundaries along the x-axis. In such 2D calculations, coherent plane waves are modeled, parallel to the 

infinitely long cylinders, in absence of a reflecting ground plane. The number of time steps is kept the 

same in both situations to have the same amount of reflected energy. 

In Fig. A.1, the insertion loss spectrum is shown in the middle of the minimal representative strip of an 

SR 1m/2m 44 cm scheme consisting of partly absorbing cylinders (bark impedance). The corresponding 

data in case of an explicitly modeled wider strip is shown as well. The results are in good agreement. 

Only at higher frequencies, small differences are observed. Receiver patterns of insertion losses are also 

repeated when a wide strip is modeled (not shown). 

[FIG. A.1] 

B. CALCULATIONS WITH TWO SOURCE HEIGHTS VS SINGLE SOURCE HEIGHT 

The Harmonoise/Imagine (H/I) source power model needs calculations for two source heights. However, 

since this doubles the number of calculations needed to assess traffic noise insertion loss, it is checked 

whether the total traffic noise source power (which is the energetic frequency-dependent sum of rolling 

noise and engine noise) could be assigned completely to the highest source position. For comparison, the 

H/I model is applied as prescribed, namely sound propagation from both the rolling noise height and 

engine noise height is explicitly modeled, and the dedicated source power level is assigned to the 

corresponding source heights, and finally results are energetically summed. 

Fig. B.1 shows the average IL in the receiver plane for a type 1 vehicle (light vehicles) as a function of 

driving speed, calculated with one and two source heights respectively. When referenced to grassland, 

taking into account calculations at two source heights, results in slightly higher insertion losses (< 0.5 

dBA), especially at the higher vehicle speeds. The single source height approach is therefore considered 

as sufficiently accurate and is applied in this numerical study, and will result in a slight underprediction of 

traffic noise insertion losses. Averaging over a range of receiver heights is a possible reason that relaxes 

the need to explicitly model multiple source heights. 
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[FIG. B. 1] 

C. EFFECT OF SOURCE TYPE 

An incoherent line source is a better representation of a traffic line source. Therefore, the effect of 

introducing incoherence in the source is compared to a fully coherent line source for some planting 

schemes. This is modeled in FDTD by assigning a random phase at each point source constituting the line 

source. In case of a coherent line source, on the other hand, all these pressure points are in phase. In the 

representative strip approach, however, only incoherence in the representative strip can be modeled. 

Giving the fact that both the source and planting scheme are mirrored by the reflecting planes at x=0 and 

x=wrs, a partly incoherent line source is actually modeled. The mirrored part of the line source is again in 

phase with the explicitly modeled part of the line source. However, this approach allows studying the 

importance of source type. 

Given the random nature involved, each simulation for the partly incoherent line source is performed for 

5 realizations and (linearly) averaged afterwards. The influence of source type has been investigated for 3 

different planting schemes, each time for a stem diameter of 22cm and 44cm. The difference in average 

insertion loss between a coherent and (partly) incoherent line source, in function of vehicle speed, is 

shown in Fig. C.1. 

It can be concluded that an incoherent line source does not result in overall lower insertion loss values 

when compared to the same type of ground, in contrast to what is observed e.g. near noise screens 

[57][58]. In most cases, the incoherent line source representation gives a somewhat higher traffic noise 

insertion loss. Furthermore, this difference is vehicle-speed dependent. Only for the SR 1m/2m 22cm 

scheme, a coherent line source gives a slightly higher insertion loss at vehicle speed exceeding 70 km/h. 

The averaged differences are mostly limited to within 1 dBA. Modeling a coherent line source as is 

performed in this paper will typically lead to a slight underprediction of the traffic noise insertion loss. 

When analyzing band gap behavior in case of an incoherent line source (not shown), the magnitude of the 

(low-frequency) peaks corresponding to the basic grid spacing are hardly affected. Source incoherence 

does not destroy the presence of band gap effects in the current setting. 

[FIG. C.1] 

D. OVERVIEW OF SIMULATION RESULTS 

The simulation results appearing in this paper are summarized in Tables D.1 and D.2. 

[TABLE D.1] 
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[TABLE D.2] 
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TABLE CAPTIONS 
 

Table D. 1. Overview of simulation results for total traffic noise reduction (in dBA) of different tree stems 

orderings and parameters, for light vehicle speeds of 30 km/h, 70 km/h, and 110 km/h, referenced to 

sound propagation over the same type of soil (vegetation soil) or grassland, in absence of tree stems. The 

values in between brackets are the standard deviation on the data in the receiver zones considered. A 

coherent line source is used. Stem diameters are constant, and shifts of the stem axis from the planting 

scheme considered are absent unless explicitly indicated. Details on the exact locations of the gaps are 

found in Fig. 12; the parameter choice as for the randomness in stem centre location and diameter can be 

found in Sect. 5.9. 

 

Table D. 2. See caption of Table D. 1, but now for different shrub parameters and noise walls (with a 

thickness of 0.1 m, at 3 m from the line source). 
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FIGURE CAPTIONS 
 

Figure 1. Basic 3D grid setup ((a) cross-section, (b) plan view), showing the zone reserved for the 

evaluation of a specific planting scheme, the location of the line source and receiver plane, and the 

location of the perfectly matched layers (PML). The distance between the two mirror planes is indicted by 

wrs and depends on the planting scheme. 

 

Figure 2. Simple Cubic (SC, d1=d2=d) (a), Simple Rectangular (SR, characterized by d1 and d2) (a), Face-

Centered Cubic (characterized by its minimum distance d between stems) (b), and Triangular scheme 

(characterized by its minimum distance d between stems) (c). The representative strip is bordered by the 

dashed rectangles. 

 

Figure 3. Traffic noise insertion loss with height for various vehicle speeds ((a) 30 km/h, (b) 70 km/h, (c) 

110 km/h), in case of sound propagation over uncovered vegetation soil. Results are referenced to sound 

propagation over grass-covered and rigid ground. 

 

Figure 4. Plane wave IL spectra for SR 1m/2m schemes, averaged over the width of the representative 

strip, for stem diameters of 22cm and 44cm, and for rigid and partly absorbing stems. The error bars have 

a total length of two times the standard deviation. The reference is free field sound propagation. 

 

Figure 5. Line source IL spectra for SR 1m/2m schemes, averaged over the width of the representative 

strip at a height of 2 m above vegetation soil, for a stem diameter of 22cm and 44cm, and for rigid and 

partly absorbing stems. The error bars have a total length of two times the standard deviation. The 

reference is sound propagation over the same soil in absence of stems. 

 

Figure 6. Average traffic noise IL (for a light vehicle at 70 km/h) in the receiver plane, in function of tree 

stem diameter, referenced to sound propagation over grassland (receiver heights from 1 to 2 m). Different 

schemes were considered. The filling of the markers indicate whether the planting scheme is realistic with 

ordinary tree plantings (white), if special measures needs to be taken (grey), or if the planting scheme will 

be hard to realize (black). See Sect. 6 for discussion on this topic. 

 

Figure 7. Traffic noise IL (dBA) along a representative part of planting scheme SR 1m/2m 22cm (at y=2 

m), for light vehicles at speeds ranging from 30 to 120 km/h. The reference situation is sound propagation 

over vegetation soil. 
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Figure 8. Total traffic noise IL for a light vehicle at 70 km/h, averaged over the receiver plane, in function 

of number of rows ((a) and (b)) and stem height ((c) and (d)). Results are referenced to sound propagation 

over vegetation soil (at heights between 0 and 3m, and at heights between 1 and 2m), and to sound 

propagation over grassland (at heights between 1 and 2m). The total lenght of the errorbars equals two 

times the standard deviation. In (a) and (c), planting scheme SR 1m/2m 22cm is considered; in (b) and (d) 

planting scheme SR 1m/2m 44cm. 

 

Figure 9. Total traffic noise IL for a light vehicle at 70 km/h, averaged over the receiver plane, for shrubs 

above vegetation soil. Results are referenced to sound propagation over vegetation soil (at heights 

between 0 and 3m, and at heights between 1 and 2m), and to sound propagation over grassland (at heights 

between 1 and 2m). The total lenght of the errorbars equals two times the standard deviation. 

 

Figure 10. Total traffic noise IL for a light vehicle at 70 km/h, averaged over the receiver plane, for 

combinations of shrubs (H=0.5m, por=0.98), stems (SC 2m 22cm and SC 2m 44cm), and tree crowns 

(approach 1) above vegetation soil. Explicitly simulated combinations are compared to the result of 

adding the insertion losses of single effects. Results are referenced to sound propagation over vegetation 

soil (at heights between 1 and 2m). The total lenght of the errorbars equals two times the standard 

deviation. 

 

Figure 11. Total traffic noise IL for a light vehicle at 70 km/h, averaged over the receiver plane, for 

different schemes, including random shifts in stem centre location (indicated by “R”). Results are 

referenced to sound propagation over vegetation soil (at heights between 0 and 3m, and at heights 

between 1 and 2m), and to sound propagation over grassland (at heights between 1 and 2m). The total 

lenght of the errorbars equals two times the standard deviation. 

 

Figure 12. The 4 realizations considered (shown as representative strips) in case of 2 missing rows out of 

8, normal to the road axis (a)-(d). The fully populated grid is shown in (e). S and R indicate the source 

and receiver side, respectively. 

 

Figure A.1. Coherent plane wave insertion loss spectrum of a representative strip (using the mirror plane 

approach) and an explicitly modelled wide SC 1m/2m 44cm grid. Absorbing cylinders were considered. 

 

Figure B.1. Difference in averaged traffic noise IL (referenced to grass-covered soil) for a simulation 

using a single source height and two source heights as prescribed by the H/I road traffic source power 

model. The SR 1m/2m 44cm scheme is considered, with receiver heights between 1 m and 2 m. The 
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dashed lines show the minimum and maximum IL found in the receiver plane. The errorbars have a total 

length of two times the standard deviation. 

 

Figure C.1. Difference in traffic noise IL (light vehicle) between a coherent line source and a (partly) 

incoherent line source, averaged over the receiver plane (for receivers between 1 m and 2m), with 

increasing vehicle speed. The errorbars have a total length of two times the standard deviation. The 

reference situation is here sound propagation over ground as appears under vegetation. Schemes 

considered: (a) T 2m 44cm, (b) T 2m 22cm, (c) SR 1m/2m 44cm, (d) SR 1m/2m 22cm, (e) SC 2m 44cm 

and (f) SC 2m 22cm. 
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30 km/h 70 km/h 110 km/h

Scheme spacing

stem 

diameter 

(cm)

stem 

height (m)

number of 

rows additional information

veg. soil (0‐

3m)

veg. soil (1‐

2m)

grass (1‐

2m)

veg. soil (0‐

3m)

veg. soil (1‐

2m)

grass (1‐

2m)

veg. soil (0‐

3m)

veg. soil (1‐

2m)

grass (1‐

2m)

FCC 2m 11 2.5 11 0.2 (0.1) 0.3 (0.1) 3 (0.1) 0.8 (0.3) 1 (0.2) 4.2 (0.4) 1.1 (0.4) 1.4 (0.3) 4.7 (0.7)

FCC 2m 22 2.5 11 0.5 (0.2) 0.5 (0.1) 3.3 (0.1) 1.5 (0.6) 1.9 (0.3) 5.1 (0.4) 2.2 (0.8) 2.8 (0.5) 6.1 (0.7)

FCC 2m 44 2.5 11 0.8 (0.6) 0.9 (0.2) 3.6 (0.1) 2.5 (1.1) 2.9 (0.4) 6.1 (0.2) 3.8 (1.3) 4.5 (0.4) 7.8 (0.5)

SC 1m 11 2.5 16 0.6 (0.1) 0.7 (0.1) 3.4 (0.1) 1.6 (0.6) 2.1 (0.2) 5.3 (0.4) 2.4 (0.8) 3.1 (0.3) 6.4 (0.7)

SC 1m 22 2.5 16 1.1 (0.5) 1.1 (0.2) 3.8 (0.1) 2.6 (1.1) 2.8 (0.3) 6.1 (0.4) 3.7 (1.3) 4.2 (0.5) 7.5 (0.8)

SC 1m 44 2.5 16 2.5 (1.8) 2.4 (0.7) 5.1 (0.5) 4.7 (2.7) 4.8 (0.8) 8 (0.4) 6.6 (3) 6.9 (0.7) 10.2 (0.3)

SC 2m 11 2.5 8 0.2 (0.1) 0.3 (0.1) 3 (0.1) 0.7 (0.5) 0.9 (0.5) 4.1 (0.6) 1 (0.7) 1.3 (0.7) 4.6 (0.9)

SC 2m 22 2.5 6 gaps, realisation a 0.5 (0.2) 0.5 (0.1) 3.3 (0.1) 1.3 (0.5) 1.6 (0.3) 4.8 (0.4) 1.8 (0.6) 2.2 (0.4) 5.5 (0.7)

SC 2m 22 2.5 6 gaps, realisation b 0.5 (0.2) 0.5 (0.1) 3.2 (0.1) 1.2 (0.6) 1.5 (0.4) 4.8 (0.5) 1.7 (0.8) 2.1 (0.6) 5.5 (0.9)

SC 2m 22 2.5 6 gaps, realisation c 0.5 (0.2) 0.5 (0.1) 3.2 (0.1) 1.2 (0.5) 1.5 (0.3) 4.7 (0.5) 1.6 (0.6) 2 (0.4) 5.3 (0.7)

SC 2m 22 2.5 6 gaps, realisation d 0.5 (0.2) 0.5 (0.1) 3.3 (0.1) 1.3 (0.6) 1.6 (0.4) 4.8 (0.5) 1.8 (0.8) 2.2 (0.7) 5.5 (0.9)

SC 2m 22 2.5 8 stem centre shifts 0.6 (0.3) 0.6 (0.1) 3.3 (0.1) 1.5 (0.6) 1.9 (0.4) 5.1 (0.4) 2.1 (0.8) 2.6 (0.5) 5.9 (0.8)

SC 2m 22 2.5 8 0.6 (0.2) 0.6 (0.1) 3.3 (0.1) 1.4 (0.6) 1.8 (0.3) 5 (0.4) 2 (0.7) 2.5 (0.5) 5.8 (0.7)

SC 2m 44 2.5 6 gaps, realisation a 1.3 (0.3) 1.4 (0.1) 4.1 (0.1) 2.4 (0.8) 2.7 (0.4) 6 (0.5) 3.2 (0.9) 3.6 (0.7) 6.9 (0.9)

SC 2m 44 2.5 6 gaps, realisation b 1.3 (0.3) 1.4 (0.1) 4.1 (0.1) 2.5 (0.8) 2.8 (0.4) 6 (0.5) 3.3 (0.9) 3.7 (0.7) 7 (0.9)

SC 2m 44 2.5 6 gaps, realisation c 1.4 (0.4) 1.4 (0.2) 4.1 (0.1) 2.5 (0.9) 2.8 (0.6) 6 (0.7) 3.3 (1.1) 3.7 (1) 7 (1.2)

SC 2m 44 2.5 6 gaps, realisation d 1.4 (0.3) 1.4 (0.1) 4.1 (0.1) 2.5 (0.8) 2.8 (0.5) 6 (0.5) 3.3 (1) 3.7 (0.8) 7 (0.9)

SC 2m 44 2.5 8 stem centre shifts 1.4 (0.4) 1.5 (0.2) 4.2 (0.1) 2.6 (0.9) 2.9 (0.6) 6.2 (0.6) 3.5 (1.2) 3.9 (1) 7.2 (1.2)

SC 2m 44 2.5 8 1.5 (0.4) 1.5 (0.2) 4.3 (0.1) 2.5 (1) 2.7 (0.7) 6 (0.8) 3.2 (1.3) 3.5 (1.2) 6.9 (1.3)

SC 2m 22‐44 2.5 8 random stem diameter 1 (0.3) 1 (0.1) 3.8 (0.1) 2.1 (0.8) 2.4 (0.5) 5.6 (0.5) 2.8 (1) 3.2 (0.8) 6.6 (1)

SC 3m 22 2.5 6 0.3 (0.1) 0.3 (0.1) 3 (0.1) 0.7 (0.4) 0.9 (0.4) 4.1 (0.6) 1 (0.6) 1.2 (0.7) 4.6 (0.9)

SC 3m 44 2.5 6 0.8 (0.2) 0.8 (0.1) 3.5 (0.1) 1.5 (0.9) 1.6 (1) 4.9 (1) 2 (1.4) 2.3 (1.6) 5.6 (1.7)

SC 3m  11 2.5 6 0.1 (0.1) 0.1 (0.1) 2.9 (0.1) 0.3 (0.2) 0.4 (0.2) 3.7 (0.5) 0.5 (0.3) 0.6 (0.2) 3.9 (0.7)

SR 1m/2m 11 2.5 8 0.4 (0.1) 0.5 (0.1) 3.2 (0.1) 1.1 (0.4) 1.4 (0.2) 4.7 (0.4) 1.6 (0.5) 2 (0.3) 5.3 (0.6)

SR 1m/2m 22 2.5 2 0.5 (0) 0.5 (0) 1.5 (0) 1.1 (0.2) 1.1 (0.1) 3.1 (0.1) 1.4 (0.2) 1.5 (0.2) 3.9 (0.2)

SR 1m/2m 22 2.5 4 0.7 (0.1) 0.6 (0.1) 2.2 (0.1) 1.7 (0.4) 1.7 (0.2) 4.4 (0.2) 2.4 (0.5) 2.5 (0.3) 5.6 (0.4)

SR 1m/2m 22 2.5 6 gaps, realisation a 0.9 (0.2) 1 (0.1) 3.7 (0.1) 2.2 (0.8) 2.7 (0.3) 5.9 (0.3) 3.2 (1) 3.9 (0.4) 7.2 (0.6)

SR 1m/2m 22 2.5 6 gaps, realisation b 0.8 (0.2) 0.9 (0.1) 3.6 (0.1) 2.1 (0.7) 2.5 (0.3) 5.8 (0.4) 3 (0.9) 3.7 (0.5) 7 (0.7)

SR 1m/2m 22 2.5 6 gaps, realisation c 0.8 (0.2) 0.9 (0.1) 3.6 (0.1) 2 (0.7) 2.4 (0.3) 5.7 (0.4) 2.8 (0.9) 3.4 (0.5) 6.8 (0.8)

SR 1m/2m 22 2.5 6 gaps, realisation d 0.9 (0.2) 0.9 (0.1) 3.7 (0.1) 2.1 (0.7) 2.6 (0.3) 5.8 (0.4) 3 (0.9) 3.7 (0.4) 7 (0.7)

SR 1m/2m 22 2.5 6 0.8 (0.2) 0.8 (0.1) 2.7 (0.1) 2 (0.6) 2.2 (0.3) 5.1 (0.2) 2.8 (0.7) 3.3 (0.4) 6.4 (0.4)

SR 1m/2m 22 0.5 8 0.3 (0.2) 0.4 (0.1) 3.1 (0.1) 0.9 (0.3) 1.1 (0.1) 4.4 (0.4) 1.2 (0.4) 1.6 (0.1) 4.9 (0.6)

SR 1m/2m 22 1 8 0.6 (0.4) 0.7 (0.1) 3.4 (0) 1.5 (0.8) 2 (0.3) 5.2 (0.3) 2.1 (1) 2.8 (0.3) 6.2 (0.6)

SR 1m/2m 22 1.5 8 0.7 (0.4) 0.8 (0.2) 3.5 (0.1) 1.8 (1) 2.2 (0.5) 5.4 (0.2) 2.5 (1.2) 3.2 (0.6) 6.5 (0.4)

SR 1m/2m 22 2 8 0.8 (0.4) 0.8 (0.2) 3.6 (0.1) 2 (0.9) 2.3 (0.4) 5.5 (0.4) 2.9 (1.1) 3.3 (0.5) 6.6 (0.7)

SR 1m/2m 22 2.5 8 stem centre shifts 1 (0.3) 1 (0.1) 3.8 (0) 2.6 (0.9) 3.1 (0.3) 6.3 (0.3) 3.8 (1.2) 4.6 (0.4) 8 (0.6)

SR 1m/2m 22 2.5 8 1 (0.3) 1 (0.1) 3.8 (0.1) 2.3 (0.8) 2.8 (0.3) 6 (0.4) 3.2 (1) 4 (0.5) 7.3 (0.7)

SR 1m/2m 44 2.5 2 1.9 (0.1) 1.9 (0.1) 2.9 (0.1) 2.9 (0.3) 3 (0.3) 5 (0.3) 3.6 (0.5) 3.7 (0.5) 6.1 (0.5)

SR 1m/2m 44 2.5 4 2.5 (0.2) 2.5 (0.1) 4 (0.1) 3.8 (0.6) 3.9 (0.3) 6.5 (0.2) 4.8 (0.7) 5 (0.5) 8 (0.4)

SR 1m/2m 44 2.5 6 gaps, realisation a 3.2 (0.4) 3.2 (0.2) 5.9 (0.1) 4.9 (1.1) 5.3 (0.4) 8.6 (0.2) 6.3 (1.3) 7 (0.4) 10.4 (0.6)

SR 1m/2m 44 2.5 6 gaps, realisation b 3.1 (0.5) 3.2 (0.2) 5.9 (0.1) 4.8 (1.1) 5.2 (0.4) 8.4 (0.3) 6.2 (1.3) 6.7 (0.4) 10.1 (0.6)

SR 1m/2m 44 2.5 6 gaps, realisation c 3.3 (0.5) 3.3 (0.2) 6 (0.1) 4.7 (1.1) 5 (0.4) 8.2 (0.3) 5.8 (1.2) 6.2 (0.5) 9.6 (0.7)

SR 1m/2m 44 2.5 6 gaps, realisation d 3.3 (0.4) 3.3 (0.2) 6 (0.1) 5 (1.1) 5.3 (0.4) 8.6 (0.3) 6.4 (1.3) 7 (0.4) 10.3 (0.6)

SR 1m/2m 44 2.5 6 2.9 (0.5) 2.9 (0.2) 4.9 (0.2) 4.3 (1) 4.5 (0.5) 7.4 (0.2) 5.3 (1.3) 5.9 (0.6) 9 (0.4)

SR 1m/2m 44 0.5 8 1.1 (0.3) 1.2 (0.1) 3.9 (0) 2 (0.6) 2.5 (0.1) 5.7 (0.4) 2.8 (0.7) 3.4 (0.1) 6.8 (0.7)

SR 1m/2m 44 1 8 2.2 (0.7) 2.4 (0.3) 5.1 (0.2) 3.8 (1.3) 4.6 (0.4) 7.8 (0.2) 5 (1.6) 6.4 (0.3) 9.7 (0.5)

SR 1m/2m 44 1.5 8 2.8 (0.9) 3 (0.4) 5.7 (0.3) 4.5 (1.7) 5.3 (0.7) 8.5 (0.3) 5.8 (2.1) 7.1 (0.9) 10.4 (0.5)

SR 1m/2m 44 2 8 3.2 (0.9) 3.2 (0.4) 5.9 (0.3) 4.8 (1.7) 5.1 (0.7) 8.3 (0.4) 6 (2) 6.5 (0.9) 9.8 (0.5)

SR 1m/2m 44 2.5 8 stem centre shifts 3.3 (0.7) 3.3 (0.3) 6.1 (0.2) 5.4 (1.5) 5.7 (0.5) 8.9 (0.1) 7.1 (1.7) 7.8 (0.4) 11.1 (0.3)

SR 1m/2m 44 2.5 8 3.5 (0.7) 3.5 (0.3) 6.2 (0.2) 5 (1.4) 5.2 (0.5) 8.4 (0.3) 6.1 (1.6) 6.5 (0.6) 9.8 (0.6)

SR 1m/2m 22‐44 2.5 8 random stem diameter 2.1 (0.5) 2.2 (0.2) 4.9 (0.1) 3.9 (1.2) 4.2 (0.4) 7.5 (0.2) 5.1 (1.4) 5.8 (0.4) 9.2 (0.5)

SR 1m/3m 11 2.5 6 0.3 (0.1) 0.4 (0.1) 3.1 (0.1) 0.9 (0.4) 1.2 (0.2) 4.4 (0.4) 1.3 (0.5) 1.7 (0.3) 5 (0.7)

SR 1m/3m 22 2.5 6 0.8 (0.2) 0.9 (0.1) 3.6 (0.1) 2.1 (0.7) 2.5 (0.3) 5.8 (0.4) 3 (0.9) 3.8 (0.4) 7.1 (0.7)

SR 1m/3m 44 2.5 6 2.6 (0.4) 2.6 (0.2) 5.3 (0.1) 4.3 (1) 4.7 (0.4) 8 (0.5) 5.9 (1.3) 6.6 (0.6) 9.9 (0.8)

SR 2m/1m 11 2.5 8 0.4 (0.1) 0.5 (0.1) 3.2 (0.1) 1.1 (0.5) 1.5 (0.3) 4.7 (0.5) 1.6 (0.7) 2.1 (0.5) 5.4 (0.8)

SR 2m/1m 22 2.5 8 0.7 (0.3) 0.7 (0.1) 3.4 (0.1) 1.6 (0.8) 1.8 (0.6) 5.1 (0.7) 2.2 (1.1) 2.6 (1.1) 5.9 (1.2)

SR 2m/1m 44 2.5 8 1.3 (0.8) 1.2 (0.3) 4 (0.2) 2.3 (1.4) 2.5 (0.9) 5.7 (0.9) 3.1 (1.7) 3.5 (1.4) 6.8 (1.5)

SR 2m/3m 11 2.5 6 0.2 (0.1) 0.2 (0.1) 2.9 (0.1) 0.5 (0.4) 0.7 (0.4) 3.9 (0.6) 0.8 (0.6) 1 (0.6) 4.3 (0.8)

SR 2m/3m 22 2.5 6 0.5 (0.2) 0.5 (0.1) 3.2 (0.1) 1.2 (0.6) 1.5 (0.4) 4.8 (0.5) 1.7 (0.7) 2.1 (0.6) 5.5 (0.9)

SR 2m/3m 44 2.5 6 1.2 (0.3) 1.2 (0.1) 3.9 (0.1) 2.4 (0.8) 2.7 (0.5) 5.9 (0.6) 3.2 (1.1) 3.7 (0.9) 7 (1)

SR 3m/1m 11 2.5 16 0.3 (0.1) 0.3 (0.1) 3 (0.1) 0.7 (0.5) 0.9 (0.5) 4.2 (0.6) 1 (0.7) 1.3 (0.8) 4.6 (1)

SR 3m/1m 22 2.5 16 0.5 (0.3) 0.5 (0.2) 3.2 (0.2) 1.1 (1.1) 1.2 (1.2) 4.4 (1.2) 1.5 (1.7) 1.7 (1.9) 5.1 (2)

SR 3m/1m 44 2.5 16 0.9 (0.5) 0.9 (0.3) 3.6 (0.3) 1.6 (1.5) 1.7 (1.5) 4.9 (1.5) 2.2 (2.2) 2.4 (2.4) 5.8 (2.4)

SR 3m/2m 11 2.5 8 0.2 (0.1) 0.2 (0.1) 2.9 (0.1) 0.4 (0.3) 0.6 (0.3) 3.8 (0.5) 0.6 (0.4) 0.8 (0.3) 4.1 (0.7)

SR 3m/2m 22 2.5 8 0.4 (0.2) 0.4 (0.1) 3.1 (0.1) 0.9 (0.6) 1.1 (0.6) 4.3 (0.7) 1.2 (0.9) 1.5 (1) 4.8 (1.2)

SR 3m/2m 44 2.5 8 1 (0.3) 1 (0.2) 3.7 (0.2) 1.6 (1.1) 1.7 (1.2) 4.9 (1.3) 2.1 (1.7) 2.3 (1.9) 5.6 (2)

T 2m 11 2.5 11 0.2 (0.1) 0.3 (0) 3 (0.1) 0.7 (0.3) 0.9 (0.1) 4.2 (0.4) 1 (0.3) 1.3 (0.2) 4.6 (0.6)

T 2m 22 2.5 11 0.5 (0.2) 0.6 (0.1) 3.3 (0.1) 1.4 (0.6) 1.7 (0.3) 5 (0.4) 2 (0.7) 2.4 (0.4) 5.7 (0.7)

T 2m 44 2.5 11 1.2 (0.6) 1.2 (0.2) 3.9 (0.1) 2.8 (1.2) 3.2 (0.5) 6.4 (0.4) 4 (1.4) 4.7 (0.6) 8 (0.7)

Table D.1



30 km/h 70 km/h 110 km/h

shrub 

height (m)

shrub 

porosity

noise screen 

height (m)

veg. soil 

(0‐3m)

veg. soil 

(1‐2m)

grass (1‐

2m)

veg. soil 

(0‐3m)

veg. soil 

(1‐2m)

grass (1‐

2m)

veg. soil 

(0‐3m)

veg. soil 

(1‐2m)

grass (1‐

2m)

0.5 0.98 ‐ 1.6 (0.2) 1.8 (0) 4.5 (0.1) 2.1 (0.5) 2.5 (0) 5.7 (0.5) 2.4 (0.8) 3.1 (0.1) 6.4 (0.7)

1 0.99 ‐ 1.3 (0.2) 1.4 (0.1) 4.1 (0.1) 1 (0.9) 1.4 (0.4) 4.7 (0.2) 0.9 (1.5) 1.6 (0.6) 4.9 (0.2)

1.5 0.9933 ‐ 1.2 (0.1) 1.1 (0.1) 3.8 (0.1) 1.1 (0.3) 0.8 (0.2) 4 (0.4) 1.2 (0.5) 0.6 (0.3) 3.9 (0.5)

2 0.995 ‐ 1.2 (0.1) 1.2 (0.1) 4 (0.2) 1.3 (0.3) 1.5 (0.4) 4.7 (0.8) 1.5 (0.4) 1.7 (0.5) 5 (1.2)

0.5 0.99 ‐ 0.8 (0.1) 0.9 (0) 3.6 (0.1) 0.9 (0.4) 1.1 (0.1) 4.3 (0.4) 0.9 (0.7) 1.3 (0.1) 4.6 (0.5)

1.5 0.99 ‐ 1.8 (0.1) 1.7 (0.1) 4.4 (0) 1.7 (0.4) 1.2 (0.4) 4.4 (0.2) 1.7 (0.7) 1 (0.6) 4.3 (0.3)

2 0.99 ‐ 2.3 (0.2) 2.4 (0.2) 5.1 (0.3) 2.5 (0.5) 2.7 (0.7) 5.9 (1.2) 2.8 (0.8) 3 (1.1) 6.4 (1.7)

0.5 0.995 ‐ 0.4 (0.1) 0.4 (0) 3.1 (0.1) 0.4 (0.2) 0.4 (0.1) 3.7 (0.4) 0.3 (0.4) 0.5 (0.1) 3.8 (0.5)

1 0.995 ‐ 0.6 (0.1) 0.6 (0.1) 3.3 (0.1) 0.4 (0.5) 0.5 (0.3) 3.7 (0.2) 0.3 (0.7) 0.4 (0.4) 3.8 (0.3)

1.5 0.995 ‐ 0.9 (0) 0.8 (0) 3.5 (0.1) 0.9 (0.2) 0.6 (0.1) 3.8 (0.4) 0.9 (0.4) 0.5 (0.2) 3.8 (0.6)

‐ ‐ 0.5 ‐ ‐ 1.1 (0.1) ‐ ‐ 3.6 (0.1) ‐ ‐ 5.2 (0.1)

‐ ‐ 1 ‐ ‐ 3.3 (0.1) ‐ ‐ 6.2 (0.1) ‐ ‐ 8.3 (0)

‐ ‐ 1.5 ‐ ‐ 5.9 (0.2) ‐ ‐ 8.8 (0.2) ‐ ‐ 10.7 (0.2)

‐ ‐ 2 ‐ ‐ 7.6 (0.3) ‐ ‐ 10.6 (0.4) ‐ ‐ 12.8 (0.5)

‐ ‐ 2.5 ‐ ‐ 8.6 (0.3) ‐ ‐ 11.7 (0.5) ‐ ‐ 14.2 (0.7)

Table D.2




