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1. Introduction

Quadric Veronese varieties and Segre varieties are classical varieties that be-
come very important combinatorial objects when defined over a finite field.
They are connected with many other geometric objects and in order to easily
recognize these structures, it is important to have a good set of character-
izations for them. In this paper, we survey the most important ones. Our
motivation is a recent common characterization of Veronese and Segre vari-
eties, which is surprising since these varieties have different behaviour: on a
Veronese variety no three points are collinear, whereas a Segre variety can
contain subspaces of large dimension.

1.1. Quadric Veroneseans

The Veronese variety V of all quadrics of PG(n, K), n ≥ 1, and K any
commutative field is the set of points

V = {(x2
0, x

2
1, . . . , x

2
n, x0x1, x0x2,

. . . , x0xn, x1x2, . . . , x1xn, . . . , xn−1xn) ‖
(x0, x1, . . . , xn) is a point of PG(n, K)}

in PG(Nn,K) with Nn = n(n + 3)/2. This set is in fact an algebraic variety
and has, as a variety, dimension n. It is sometimes called the Veronesean of
quadrics of PG(n, K), or the quadric Veronesean of PG(n, K). The variety V
is absolutely irreducible and non-singular. It has order 2n.
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Let ζ : PG(n, K) → PG(Nn,K),

(x0, x1, . . . , xn) $→ (y00, y11, . . . , yn−1,n),

with yij = xixj . Then ζ is a bijection of PG(n, K) onto V. Hence V is rational.
Quadrics of PG(n, K) are mapped by ζ onto all hyperplane sections of V.
Other notations for V are Vn or V2n

n .

Some examples and special cases. For n = 1, V2
1 is a conic of PG(2,K). If

n = 2, then V4
2 is a surface of order 4 in PG(5,K). If n = 3, then V8

3 is a
variety of dimension 3 and order 8 in PG(9,K).
Let πs be any s-dimensional subspace of PG(n, K). Then πζ

s is a quadric
Veronesean Vs. Conversely, if (|K|, s) %= (2, 1) and Vs is a quadric Veronesean
on Vn, then

Vs = πζ
s for some subspace πs

Corollary: if K %= GF(2), then any two points of Vn are on a unique conic of
Vn. The planes generated by these conics will be called conic planes (for any
field K, a conic plane is the plane generated by the image of a line),
Below, we will assume K =GF(q). Some results, however, also hold in the
infinite case, and we will mention this at the appropriate places.

The nucleus subspace. Since a Veronese variety contains a lot of conics, it is
reasonable to wonder, in case q is even, what the structure is of the set of all
nuclei of these conics.
To that end, consider Vn, with q even. Let Gn be the subset of PG(Nn, q)
consisting of all nuclei of the conics on Vn (for q = 2, consider all conics
corresponding to lines of PG(n, 2)).

Theorem 1.1 ((e.g) Thas and Van Maldeghem [9]). The set Gn is the Grass-
mannian of the lines of PG(n, q), hence generates a subspace of dimension
(n− 1)(n + 2)/2 of PG(Nn, q). This space Φ is called the nucleus subspace of
Vn and is the intersection of all hyperplanes of PG(Nn, q) which intersect Vn

in a Vn−1 = πζ
n−1, πn−1 a hyperplane of PG(n, q).

1.2. Segre pairs and Segre varieties

Let Σ and Σ̃ be two families of subspaces of PG(d, q) and assume that the
elements of Σ have dimension m and the elements of Σ̃ have dimension n.
Suppose also that

|Σ| = qn + qn−1 + · · · q + 1
|Σ̃| = qm + qm−1 + · · · q + 1

and that each member of Σ intersects each member of Σ̃ in precisely one point.
Moreover, we assume that distinct members of Σ and distinct members of Σ̃
are disjoint. Finally, assume that both families generate PG(d, q).
Then (Σ, Σ̃) is called a Segre pair with parameters (q;m,n, d). In the infinite
case one deletes the condition on the numbers and requires that both families
of subspaces cover the same points. The parameters are then (K;m,n, d),
where K is the coordinatizing field of the underlying projective space.
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The Segre variety of the spaces PG(n, K) and PG(m,K), n ≥ 1,m ≥ 1,K
any commutative field is the set of points

Sm;n = Sn;m = {(x0y0, · · · , x0ym, x1y0, . . . , x1ym,
. . . , xny0, . . . , xnym)‖(x0, x1, . . . , xn) is a point
of PG(n, K), (y0, y1, . . . , ym) is a point of PG(m,K)}

in PG(mn + m + n, K).
As an algebraic variety, Sm;n is absolutely irreducible and non-singular, with
order (m+n)!

m!n! .
Fix a point (x0, x1, · · · , xn) ∈ PG(n, K) and fix a point (y0, y1, · · · , ym) ∈
PG(m,K) . By varying the point of PG(m,K), we obtain an m-dimensional
space on Sm;n through (x0y0, , · · · , x0ym, x1y0, · · · , x1ym, · · · , xny0, · · · , xnym).
We denote the family of subspaces thus obtained by Σ. Similarly we also ob-
tain an n-dimensional space on Sm;n containing that point. All subspaces
obtained like that are put in the set Σ̃. Hence (Σ, Σ̃) is a Segre pair.
The elements of Σ ∪ Σ̃ are called the generators of the Segre variety.

Some examples and special cases. If n = m = 1, then S1;1 is a hyperbolic
quadric in PG(3,K). If n = 1, m = 2, then S1;2 is a variety in PG(5,K) with
order 3. If n = m = 2, then S2;2 is a variety in PG(8,K) of order 6.

2. Characterizations using tangent spaces

2.1. Quadric Veroneseans

In the complex case, the Veronese surface V4
2 has a unique tangent plane at

every of its points. The Veronesean V4
2 or one of its projections is charac-

terized by simply requiring that it contains ∞2 many irreducible conics, see
e.g. [3] for references. In order to mimic this characterization for finite fields
of odd characteristic, and generalize this to higher dimensional Veroneseans,
Mazzocca and Melone introduced three axioms, which we will reproduce now
in a slightly more general form.
Let X ⊆ Π = PG(M, q),M > 2, with 〈X〉 = Π. Let P be a collection of
planes of Π such that for every π ∈ P the set X ∩ π is an oval (that is, a set
of points no three of which are collinear and admitting at each point exactly
one tangent line) in π. Consider the following axioms.
(Q1) Every pair of points x, y ∈ X, x %= y, lies in a unique member of P,

denoted [x, y];
(Q2) for every pair of planes π1,π2 ∈ P, we have π1 ∩ π2 ⊆ X;
(Q3) For every point x ∈ X and every plane π ∈ P such that x /∈ π, the

tangent lines at x to the ovals [x, y] ∩ X, y ∈ X ∩ π, are contained in
some plane of Π.

Then we call X a Veronesean cap of index n. This definition is easily extended
to the infinite case, replacing GF(q) by any skewfield K.
Historically, the following results have been proven.
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Theorem 2.1 (Mazzocca and Melone [4]). If q is odd, then a Veronesean cap,
together with its conics, forms the point-line structure of a projective space
PG(n, q), and it is a quadric Veronesean.

It should be noted that Hirschfeld and Thas [3] pointed out that Mazzocca
and Melone forgot to explicitly assume M ≥ n(n + 3)/2. They used this
assumption in their proof. Moreover, Hirschfeld and Thas generalized the
result to the even case as follows.

Theorem 2.2 (Hirschfeld and Thas [3]). Let X be a finite Veronesean cap
in PG(M, q) such that all ovals X ∩ π, with π ∈ P, are conics. Then X,
endowed with all its conics (for q = 2 only those conics that are in some
member of P) forms the point-line structure of a projective space PG(n, q),
and if M ≥ n(n + 3)/2, then it is a quadric Veronesean.

Then, Thas and Van Maldeghem [8] gave a complete classification, deleting
the hypothesis that the ovals must be conics, and removing the bound on M .
Moreover, their proof is independent and shorter than the previous ones.

Theorem 2.3 (Thas and Van Maldeghem [8]). Let X be a Veronesean cap
in PG(M, q), M > 2, with set of planes P, as above. Then X together with
the ovals π ∩X, π ∈ P, is a PG(n, q). Also, there exists a PG(n(n + 3)/2, q)
containing PG(M, q), a subspace Γ of PG(n(n + 3)/2, q) skew to PG(M, q),
and a Veronesean Vn in PG(n(n + 3)/2, q) with Γ ∩ Vn = ∅, such that X is
the (bijective) projection of Vn from Γ onto PG(M, q). If M ≥ n(n + 3)/2,
this means that M = n(n + 3)/2, Γ = ∅ and X = Vn.

Ferrara Dentice and Marino claim in [1] to have generalized the above theo-
rem. However, they state as a fact that (Q3) implies that the tangent lines
in that axiom fill a plane. Using this, they can follow very closely the proof
of Thas and Van Maldeghem [8], essentially noting that everything remains
valid in the infinite case. In particular, the fact that X endowed with the ovals
π∩X, is the point-line geometry of a projective space, is a direct consequence
of the assumption that in (Q3) the tangent lines fill the whole plane.
Recently, Schillewaert and Van Maldeghem proved in a direct way that, in
the infinite case, X endowed with the ovals π ∩X, is the point-line geometry
of a projective space, thus extending the result verbatim to the infinite case.

Theorem 2.4 (Schillewaert and Van Maldeghem (unpublished)). Let X be a
Veronesean cap in PG(M,K), M > 2, K any skewfield, and with set of planes
P, as above. Then K is a field, and X together with the ovals π ∩X, π ∈ P,
is a PG(n, K). Also, there exists a PG(n(n + 3)/2,K) containing PG(M,K),
a subspace Γ of PG(n(n + 3)/2,K) skew to PG(M,K), and a Veronesean
Vn in PG(n(n + 3)/2,K) with Γ ∩ Vn = ∅, such that X is the (bijective)
projection of Vn from Γ onto PG(M,K). If M ≥ n(n + 3)/2, this means that
M = n(n + 3)/2, Γ = ∅ and X = Vn.

Hence the problem is solved completely.
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2.2. Segre varieties

A very similar characterization of Segre varieties is due to recent work of
Thas and Van Maldeghem.
Let H be a hyperbolic quadric in a 3-dimensional projective space Σ. For
every point x ∈ H, the unique plane π through x intersecting H in two
intersecting lines contains all lines through x that meet H in only x. The
plane π is called the tangent plane at x to H and denoted Tx(H).
Let X be a spanning point set of PG(N,K), with K any field and N ∈ N,
and let Ξ be a nonempty collection of 3-dimensional projective subspaces
of PG(N,K), called the hyperbolic spaces of X, such that, for any ξ ∈ Ξ,
the intersection ξ ∩ X is a hyperbolic quadric X(ξ) in ξ; for x ∈ X(ξ), we
sometimes denote Tx(X(ξ)) simply by Tx(ξ). We say that two points of X
are collinear in X if all points of the joining line belong to X. A maximal
subspace π of X is a subspace of PG(N,K) on X not contained in a subspace
π′ ⊇ π, π′ %= π, on X. We call X a Segre geometry if the following properties
hold:
(S1) Any two points x and y lie in an element of Ξ, denoted by [x, y] if it is

unique.
(S2) If ξ1, ξ2 ∈ Ξ, with ξ1 %= ξ2, then ξ1 ∩ ξ2 ⊆ X.
From (S2) it follows that the element of Ξ in (S1) is unique as soon as x and
y are not collinear in X.
(S3) If x ∈ X and L is a line entirely contained in X such that no point on

L is collinear in X with x, then each of the planes Tx([x, y]), y ∈ L, is
contained in a common 3-dimensional subspace of PG(N, K), denoted
by T (x, L).

Now we have the following result.

Theorem 2.5 (Thas and Van Maldeghem [14]). Let X be a Segre geometry in
PG(N,K), N > 2, K any field. Then the set of maximal subspaces on X can
be partitioned into two families defining a Segre pair, say with parameters
(K;m,n,N). Also, there exists a PG(nm + n + m,K) containing PG(N,K),
a subspace Γ of PG(nm + n + m,K) skew to PG(N,K), and a Segre variety
Sm;n in PG(nm+n+m,K) with Γ∩Sm;n = ∅, such that X is the (bijective)
projection of Sm;n from Γ onto PG(N,K). If N ≥ nm + n + m, this means
that M = nm + n + m, Γ = ∅ and X = Sm;n.

3. Characterizations using subvarieties

Here, the central problem is the following. Recall that PG(n, q) gives rise to
the quadric Veronesean V2n

n in PG(Nn, q), Nn = n(n+3)/2. Every hyperplane
of PG(n, q) gives rise to a subveronesean V2n−1

n−1 in a subspace of dimension
Nn−1 = (n − 1)(n + 2)/2 of PG(Nn, q). Such a subspace is called a Vn−1-
subspace of V2n

n or of PG(Nn, q). Let S be a set of subspaces of dimension
Nn−1. Under which conditions is S the set of all Vn−1-subspaces of a quadric
Veronesean Vn?
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The following properties of the set Sn of Vn−1-subspaces of Vn are worth
noting.

(VS1) Every two members of Sn generate a hyperplane of PG(Nn, q).
(VS2) Every three members of Sn generate PG(Nn, q).
(VS3) No point is contained in every member of Sn.
(VS4) The intersection of any nonempty collection of members of Sn is a

subspace of dimension Ni = i(i + 3)/2, i ∈ {−1, 0, 1, . . . , n− 1}.
(VS5) If q is even, then there exist distinct members S, S′, S′′ of Sn with

S ∩ S′ = S′ ∩ S′′ = S′′ ∩ S.

Theorem 3.1 (Tallini [7]). With the above set-up, and in case n = 2, if q odd,
then a set S of q2 + q + 1 planes satisfying (VS1), (VS2) and (VS3) is the
set S1 of conic planes of V4

2 .

The general problem was tackled by Thas and Van Maldeghem [9].

Theorem 3.2 (Thas and Van Maldeghem [9]). Let S be a collection of qn +
qn−1+· · ·+q+1 subspaces of dimension (n−1)(n+2)/2 of PG(n(n+3)/2, q),
n ≥ 2, satisfying (VS1) up to (VS5). Then either S is the set of Vn−1-
subspaces of a Vn, or q is even and S = (Sn∪{Φ})\{S}, with Φ the nucleus
subspace of Vn, Sn the set of Vn−1-subspaces of Vn and S ∈ Sn.
If n = 2, then the statement holds if S satisfies (VS1),(VS2),(VS3) and
(VS5).

Theorem 3.3 (Thas and Van Maldeghem [9]). Let S be a collection of qn +
qn−1+· · ·+q+1 subspaces of dimension (n−1)(n+2)/2 of PG(n(n+3)/2, q),
n ≥ 2, satisfying (VS1),(VS2),(VS3). If q ≥ n, then S satisfies (VS4).

Remarks.

1. In [9], the authors also consider the case q even, |S| = qn + qn−1 + · · ·+
q + 1 and S satisfies (VS1) up to (VS4), or (VS1) up to (VS3) with
q ≥ n, leaving out (VS5).

2. In [9], also the case |S| = qn + qn−1 + · · · + q + 2 is handled (then q is
automatically even).

3. Finally, in [9], a slight generalization of Theorem 3.3 is proved, with
assumptions |S| ≥ qn + qn−1 + · · · + q + 1, the elements of S generate
PG(m, q), m ≥ n(n + 3)/2, and all elements of S have dimension m −
n− 1.

No similar characterizations of Segre varieties are known.

4. Characterizations by intersection numbers

Also here, only characterizations of (finite) Veroneseans are known.
The Veronesean V4

2 is a cap K (that is, a set of points no three of which are
collinear) in PG(5, q) which satisfies :
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(VC1) For every hyperplane π of PG(5, q), we have

|π ∩K| = 1, q + 1 or 2q + 1,

and there exists some hyperplane π such that |π ∩K| = 2q + 1.
(VC2) Any plane of PG(5, q) with four points in K has at least q + 1 points in

K.

Theorem 4.1 (Ferri [2]). If K is a cap in PG(5, q), q odd, q %= 3, satisfying
(VC1), (VC2), then it is isomorphic to V4

2 .

Theorem 4.2 (Hirschfeld and Thas [3]). If K is a cap in PG(5, 3) satisfying
(VC1), (VC2), then it is isomorphic to V4

2 .

Theorem 4.3 (Thas and Van Maldeghem [10]). If K is a cap in PG(5, q), q
even, satisfying (VC1), (VC2), then either it is isomorphic to V4

2 , or q = 2
and K is an elliptic quadric in some subspace PG(3, 2).

A generalization to higher order Veroneseans has been found by Schillewaert,
Thas and Van Maldeghem [6].

Theorem 4.4 (Schillewaert, Thas and Van Maldeghem [6]). A set K of qn +
qn−1 + · · · + q + 1 points generating PG(Nn, q), Nn = n(n + 3)/2, q ≥ 5,
n ≥ 2, is a V2n

n if and only if the following conditions (i), (ii) and (iii) hold.
(i) If a plane of PG(Nn, q) intersects K in more than three points, then it

contains exactly q+1 points of K. Any two distinct points are contained
in plane containing q + 1 points of K.

(ii) If a solid Π3 of PG(Nn, q) intersects K in more than four points, then
there are four points of Π3 ∩K contained in a plane of Π3. By (i), this
implies that if |Π3 ∩K| > 4, then |Π3 ∩K| ≥ q + 1.

(iii) If a 5-dimensional subspace Π5 of PG(Nn, q) intersects K in more than
2q + 2 points, then it intersects K in exactly q2 + q + 1 points.

Remark. There are counterexamples to the previous theorem for q = 2, 3.
A k-arc, k ∈ N, k ≥ 4, of a 3-dimensional projective space is a set of k points
no four of which are coplanar.

Theorem 4.5 (Schillewaert, Thas and Van Maldeghem [6]). A set K of qn +
qn−1 + · · · + q + 1 points generating PG(Nn, q), Nn = n(n + 3)/2, q ≥ 5,
n > 2, is a V2n

n if and only if the following conditions (i), (ii) and (iii) hold.
(i) For any plane π of PG(Nn, q), the intersection π ∩ K contains at most

q + 1 points of K.
(ii) If a solid Π3 of PG(Nn, q) intersects K in more than four points, then

|Π3 ∩K| ≥ q + 1 and Π3 ∩K is not a (q + 1)-arc.
(iii) If a 5-dimensional subspace Π5 of PG(Nn, q) intersects K in more than

2q+2 points, then it intersects K in exactly q2+q+1 points; furthermore,
any two distinct points of K are contained in a 5-dimensional subspace
of PG(Nn, q) containing q2 + q + 1 points of K.

Remark. For n = 2, any q, there are counterexamples to the previous theorem.
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5. Characterizations as incidence structures

Here, there are many recent results. We start with an older result, though,
on Veroneseans.

5.1. Quadric Veroneseans

Theorem 5.1 (Thas and Van Maldeghem [9]). Let X be a set of points in
PG(m, q), m ≥ n(n + 3)/2, n ≥ 2, q > 2, spanning PG(m, q), let O be a set
of ovals on X, and assume that (X,O) is the design of points and lines of a
projective space of dimension n. Then m = n(n + 3)/2, X is a Vn, and O is
the set of all conics on Vn.

Remark. The condition q > 2 is necessary since any spanning set of 2n+1− 1
points of PG(2n+1 − 2, 2) can be given the structure of PG(n, 2) by selecting
appropriate triples of points, which automatically form plane ovals.

This theorem has been generalized to the infinite case by Schillewaert and
Van Maldeghem (unpublished).

Theorem 5.2 (Schillewaert and Van Maldeghem (unpublished)). Let X be a
set of points in the projective space PG(d, K), with K any skew field of order
at least 3. Suppose that

(V1*) for any pair of points x, y ∈ X, there is a unique plane denoted [x, y]
such that [x, y] ∩X is an oval, denoted X([x, y]);

(V2*) the set X endowed with all subsets X([x, y]), has the structure of the
point-line geometry of a projective space PG(n, F ), for some skew field
F , n ≥ 3, or of any projective plane Π (and we put n = 2 in this case);

(V3*) d ≥ 1
2n(n + 3).

Then d = 1
2n(n + 3) and X is the point set of a quadric Veronesean of index

n. In particular, F ∼= K if n ≥ 3, and Π is isomorphic to PG(2,K) if n = 2.

Now, Thas and Van Maldeghem [12] generalize both theorems and include
projections of V2n

n from subspaces spanned by subveroneseans of V2n

n . These
objects are natural generalizations of normal rational cubic scrolls. In [12]
even more complex objects are characterized, namely, unions of such projec-
tions.
The main idea of this characterization is to replace the axiom that the lines of
PG(n, q) form ovals in planes of PG(m, q) by the assumption that the points
of these lines are just planar sets.
So let θ : PG(n, q) → PG(d, q) d ≥ n(n + 3)/2, be an injective map such that
the image of θ generates PG(d, q), and such that θ maps the set of points of
each line of PG(n, q) onto a set of coplanar points of PG(d, q). We call the
image of θ a generalized Veronesean, and θ is called a generalized Veronesean
embedding.
Now we construct such an embedding θ. Let α : PG(n, q) → PG(d, q) be
the ordinary quadric Veronesean map, So d = n(n + 3)/2. Let U be an i-
dimensional subspace of PG(n, q), with −1 ≤ i ≤ n− 1. Put d′ = i(i + 3)/2.
Then the image of U under α spans a d′-dimensional subspace V of PG(d, q).
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Let W be a (d − d′ − 1)-dimensional subspace of PG(d, q) skew to V and
let θ′ : U → V be a generalized Veronesean embedding of U in V . Define
θ : PG(n, q) → PG(d, q) as θ(x) = θ′(x) for x ∈ U , and θ(x) = 〈α(x), V 〉 ∩W
for x ∈ PG(n, q) \ U .
Such a θ is called an (i + 1)-Veronesean embedding, and U is called the lid
of the embedding. Note that a 0-Veronesean embedding is just an ordinary
quadric Veronesean embedding (with empty lid).
If θ is an i-Veronesean embedding, we say that its image is an i-Veronesean.
We now have the following theorem.

Theorem 5.3 (Thas and Van Maldeghem [12]). Let S = (P,L,I) be isomor-
phic to the point-line geometry of PG(n, q), n ≥ 2, q > 2, with P ⊆ PG(d, q),
〈P〉 = PG(d, q), d ≥ n(n + 3)/2, and such that the point set of every member
of L is a subset of a plane of PG(d, q). Then P is an i-Veronesean, for some
i ∈ {0, 1, · · · , n}.

Remark. The case q = 2 is a true exception.
This can be further generalized to finite dimensional infinite projective spaces.

Theorem 5.4 (Thas and Van Maldeghem [12]). Let S = (P,L, I) be isomor-
phic to the point-line geometry of PG(n, K), K a skew field, n ≥ 2, |K| > 2,
with P ⊆ PG(d, K), 〈P〉 = PG(d, K), d ≥ n(n+3)/2, and such that the point
set of every member of L is a subset of a plane of PG(d, K). Assume also
that for each L ∈ L and each point x ∈ L, whenever the map y $→ 〈x, y〉,
y ∈ L\{x}, is injective, then there is a unique line T of PG(d, K) in 〈L〉
through x such that T ∩ L = {x}. Then P is an i-Veronesean, for some
i ∈ {0, 1, · · · , n}.

Remark. If K is noncommutative, then there is no notion of Veronesean, and
in this case only an n-Veronesean embedding of PG(n, K) exists, which is
defined inductively as follows : choose an AG(n, K) in PG(n, K), embed it in
a natural way in a new n-dimensional projective space over K, and take the
“direct sum” of the latter affine space with an (n−1)-Veronesean embedding
of the (n− 1)-dimensional projective space PG(n, K) \ AG(n, K).

A further generalization, getting rid of the technical condition involving the
line T in the previous theorem, is proved by Akça, Bayar, Ekmekçi, Kaya,
Thas and Van Maldeghem [13]. The precise formulation is rather technical,
so we content ourselves with mentioning that these authors classified in an
explicit way the point sets P having the property that S = (P,L, I) is isomor-
phic to the geometry of points and lines of PG(n, K), K a skew field, n ≥ 2,
with P ⊆ PG(d, F ), F a skew field, 〈P〉 = PG(d, F ), d ≥ n(n+3)/2, and such
that every member L of L is a subset of points of a plane of PG(d, F ).
As a byproduct in the research leading to a proof of Theorem 5.3, Thas
and Van Maldeghem [11] obtain the classification of all affine and projective
planes S = (P,L, I) of order q2, q > 2, where P ⊆ PG(d, q), d ≥ 4, the
elements of L are coplanar sets of PG(d, q), and I is the incidence of PG(d, q).
They prove that d = 4, that in the affine case there are three possibilities
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and that in the projective case there is just one possibility. This yields a
characterization of the André-Bruck-Bose representation of affine planes.

5.2. Segre varieties

Here, the basic result is due to Zanella [15].

Theorem 5.5 (Zanella [15]). Consider a Segre pair (Σ, Σ̃) in PG(d, q), with
max(m,n) ≥ 2. Consider any π1,π2 ∈ Σ, π1 %= π2, and assume that Σ̃ defines
a collineation from π1 onto π2; consider any π̃1, π̃2 ∈ Σ̃, π̃1 %= π̃2, and assume
that Σ defines a collineation from π̃1 onto π̃2. Then the set of points covered
by the Segre pair is the projection of some Segre variety Sm;n of PG(mn+m+
n, q) ⊇ PG(d, q) onto PG(d, q) from some subspace PG(mn+m+n−d−1, q)
of PG(mn + m + n, q) skew to PG(d, q). Also Σ and Σ̃ are the projections of
the systems of generators of Sm;n.

The proof of this theorem relies on results of Melone and Olanda [5]. The
result also holds in the infinite case.
The following results are due to Thas and Van Maldeghem [14].

Theorem 5.6 (Thas and Van Maldeghem [14]). Let q ≥ min(m,n) and d ≥
mn + m + n. Then the set of points covered by a Segre pair with parameters
(q;m,n, d) is a Segre variety (and hence d = mn + m + n).

Theorem 5.7 (Thas and Van Maldeghem [14]). Let (Σ, Σ̃) be a Segre pair
with parameters (q;m,n, d), q > n and m ≥ n. Assume that the following
conditions (i), (ii) and (iii) hold.
(i) If πi,πj are distinct elements of Σ, then the subspace ∆ij = ∆ji =

〈πi,πj〉 contains exactly q + 1 elements of Σ.
(ii) The set Σ together with the spaces ∆ij is a PG(n, q) (denoted by ∆) for

the natural incidence.
(iii) If τ, τ ′ are distinct independent subsets of ∆ with τ ⊆ τ ′, then they

generate distinct subspaces of PG(d, q).
Then the set of points covered by the Segre pair is the projection of some Segre
variety of PG(mn + m + n, q) ⊇ PG(d, q) onto PG(d, q) from some subspace
PG(mn + m + n− d− 1, q) of PG(mn + m + n, q) skew to PG(d, q).

Remark. There are also interesting variations on Theorem 5.7 proved in [14].
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[7] Tallini, G.: Una proprietà grafica caratteristica delle superficie di Veronese negli
spazi finiti (Note I; II). Atti Accad. Naz. Lincei Rend. 24, 19–23; 135–138 (1976)

[8] Thas, J.A., Van Maldeghem, H.: Classification of finite Veronesean caps. Eu-
ropean J. Combin. 25, 275–285 (2004)

[9] Thas, J. A., Van Maldeghem, H.: Characterizations of the finite quadric
Veroneseans V2n

n . Quart. J. Math. 55, 99–113 (2004)

[10] Thas, J. A., Van Maldeghem, H.: On Ferri’s characterization of the finite
quadric Veronesean V4

2 . J. Combin. Theory Ser. (A) 110, 217–221 (2005)

[11] Thas, J. A., Van Maldeghem, H.: André embeddings of affine planes. In: Bruen,
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