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Abstract

We consider an extension of the real Lie algebra su(2) by introducing a parity operator P
and a parameter c. This extended algebra is isomorphic to the Bannai-Ito algebra with two
parameters equal to zero. For this algebra we classify all unitary finite-dimensional represen-
tations and show their relation with known representations of su(2). Moreover, we present a
model for a one-dimensional finite oscillator based on the odd-dimensional representations of
this algebra. For this model, the spectrum of the position operator is equidistant and coincides
with the spectrum of the known su(2) oscillator. In particular the spectrum is independent of
the parameter c while the discrete position wavefunctions, which are given in terms of certain
dual Hahn polynomials, do depend on this parameter.

1 Introduction

Finite oscillator models were introduced and investigated in a number of papers, see e.g. [1–6]. The
standard and well-recognized example is the su(2) oscillator model [1, 2]. In brief, this model is
based on the su(2) algebra with basis elements J0 = Jz, J± = Jx ± Jy satisfying

[J0, J±] = ±J±, [J+, J−] = 2J0, (1)

with unitary representations of dimension 2j + 1 (where j is integer or half-integer). Recall that
the oscillator Lie algebra can be considered as an associative algebra (with unit element 1) with
three generators Ĥ, q̂ and p̂ (the Hamiltonian, the position and the momentum operator) subject
to

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, [q̂, p̂] = i, (2)

in units with mass and frequency both equal to 1, and ~ = 1. The first two are the Hamilton-
Lie equations; the third the canonical commutation relation. The canonical commutation relation
is not compatible with a finite-dimensional Hilbert space. Following this, one speaks of a finite
oscillator model if Ĥ, q̂ and p̂ belong to some algebra such that the Hamilton-Lie equations are
satisfied and such that the spectrum of Ĥ in representations of that algebra is equidistant [2, 5].

In the su(2) model, one chooses

Ĥ = J0 + j +
1

2
, q̂ =

1

2
(J+ + J−), p̂ =

i

2
(J+ − J−). (3)

These indeed satisfy [Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, and in the representation (j) labeled by j the
spectrum of Ĥ is equidistant (and given by n + 1

2 ; n = 0, 1, . . . , 2j). Clearly, for this model the
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position operator q̂ = 1
2(J+ + J−) also has a finite spectrum in the representation (j) given by

q ∈ {−j,−j+1, . . . ,+j}. In terms of the standard J0-eigenvectors |j,m〉, the eigenvectors of q̂ can
be written as

|j, q) =
j
∑

m=−j

Φj+m(q)|j,m〉. (4)

The coefficients Φn(q) are the position wavefunctions, and in this model [1, 2] they turn out to
be (normalized) symmetric Krawtchouk polynomials, Φn(q) ∼ Kn(j + q; 12 , 2j). The shape of the
these wavefunctions is reminiscent of those of the canonical oscillator: under the limit j → ∞ they
coincide with the canonical wavefunctions in terms of Hermite polynomials.

Following the ideas of the seminal papers on the su(2) oscillator model, some alternative finite
oscillator models were introduced [5–7]. The interest in these different models stems from several
facts: in these new models additional parameters could be introduced, leading to wavefunctions
with potentially more applications; the underlying algebras have a richer structure than su(2);
the wavefunctions are related to other classes of discrete orthogonal polynomials, and to new
properties of these polynomials. In particular, we observed that in our models the wavefunctions
were related to some “doubling process” of known orthogonal polynomials. A peculiar property of
the wavefunctions in the new models of Refs. [5–7], which could be considered as a disadvantage,
is that the support of the discrete position wavefunctions (which is the spectrum of the position
operator) is no longer equidistant.

So far, the introduction of new finite oscillator models looked rather arbitrarily. The mentioned
relation to a “doubling process” for orthogonal polynomials, however, raised the question in how
many ways the classical discrete orthogonal polynomials can be doubled, and whether these give
rise to interesting models. In a recent paper [8], we investigated and classified all doubles for Hahn,
dual Hahn and Racah polynomials, which are the standard discrete orthogonal polynomials one
level up from the Krawtchouk polynomials in the Askey scheme [9]. We not only classified all
possible doubles; additionally we showed that each double is essentially a Christoffel-Geronimus
pair [8].

Following the classification of [8], it is worthwhile to investigate the oscillator models correspond-
ing to Hahn or dual Hahn doubles that have not yet been studied before. We are in particular
interested in models in which also the position operator spectrum is equidistant. This is how the
present paper originated: from our classification [8] it is clear that there is one case (referred to as
“Dual Hahn I” in [8]) giving rise to a natural equidistant position spectrum. The model related to
this case is the subject here.

Rather than introducing this new model via the dual Hahn double, it is – in the finite oscillator
context – more natural to start from the underlying algebra. This is the line followed here: in
section 2 we introduce the algebra su(2)P , an extension of su(2) by a parity operator P . The
extension is close to a “central extension”, with parameter c, but P is not a central element (it
commutes with J0 but anticommutes with J+ and J−). This algebra is interesting on its own, and
we also classify all irreducible unitary finite-dimensional representations of su(2)P . These repre-
sentations can be understood as deformations of the common su(2) representations of dimension
2j + 1, except that not all of these can be deformed (which representations appear depends on
the value of c, the parameter of the extension). In section 3 we discuss the finite oscillator model
related to su(2)P . In particular, we show that (for odd dimensions) the spectral problem for the
position operator is of type dual Hahn I (according to the classification [8]), and we construct the
orthonormal eigenvectors of the position and momentum operator. The following section deals with
some properties of the corresponding position wavefunctions. The expressions of the wavefunctions
are quite simple dual Hahn polynomials. We also discuss some plots of the wavefunctions, and state
some natural limits (in particular to the canonical quantum oscillator). The paper ends with some
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concluding remarks: in particular, we clarify the connection/difference between the algebra su(2)P
and previously used extended algebras u(2)α [5] and su(2)α [6] in the context of “Hahn oscillators”,
and we discuss a reflection differential operator realization of su(2)P .

2 An extension of su(2) and its representations

The real Lie algebra su(2) [10, 11] can be defined by three basis elements J0, J+, J− with com-
mutators [J0, J±] = ±J± and [J+, J−] = 2J0. The non-trivial unitary representations of su(2),

corresponding to the star relations J†
0 = J0, J

†
± = J∓, are labelled [10, 11] by a positive integer or

half-integer j. These representations have dimension 2j+1, and the action on a set of basis vectors
|j,m〉 (with m = −j,−j + 1, . . . ,+j) is given by

J0|j,m〉 = m |j,m〉, J±|j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉.

The Lie algebra su(2) can be extended by a parity operator or involution P , whose action in
these representations is given by P |j,m〉 = (−1)j+m |j,m〉. On the algebraic level, this means that
we extend the universal enveloping algebra of su(2) by an operator P that commutes with J0, that
anticommutes with J+ and J−, and for which P 2 = 1. Moreover, by means of this operator P
the standard su(2) relations can be deformed introducing a real parameter c. This gives rise to an
extension of the Lie algebra of su(2) which itself is not a Lie algebra (nor a Lie superalgebra). This
extension will be denoted by su(2)P and is defined as follows.

Definition 1 Let c be a parameter. The algebra su(2)P is a unital algebra with basis elements J0,
J+, J− and P subject to the following relations:

P 2 = 1, [P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0, (5)

and the su(2) relations which are deformed as follows:

[J0, J±] = ±J± (6)

[J+, J−] = 2J0 + cP . (7)

The star relation for this algebra is determined by:

P † = P, J†
0 = J0, J†

± = J∓. (8)

For c = 0 the deformed relation (7) reduces to the regular su(2) relation. Note that this extension
is very similar to a central extension; the only relation that violates this is the anticommutator
in (5).

The appearance of both a commutator and an anticommutator in (5) also implies that one is
not dealing with a Lie algebra nor with a Lie superalgebra. The algebraic structure defined here
is not new, however. The algebra su(2)P is in fact isomorphic to a special case of the Bannai-Ito
algebra where two parameters are equal to zero [12, 13]. Indeed, putting

K1 =
1

2
(J+ + J−), K2 = −1

2
(J+ − J−)P, K3 = J0P (9)

we have
{K1,K2} = K3 +

c

2
, {K2,K3} = K1 {K3,K1} = K2 .

The star relations (8) correspond to K†
i = Ki for i = 1, 2, 3. Moreover, this algebra can also be seen

as a special case of the so-called algebra H of the dual −1 Hahn polynomials, see [14, 15], where
one of the parameters equals zero.
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Using (6) and (7), one easily shows that the Casimir element of su(2), given by Ω = 2J2
0 +

J+J−+J−J+, remains central for the universal enveloping algebra of su(2)P . By means of (7), the
Casimir element can also be written as

Ω = 2J+J− + 2J2
0 − 2J0 − cP = 2J−J+ + 2J2

0 + 2J0 + cP . (10)

Our purpose is now to determine all finite-dimensional unitary representations of su(2)P , cor-
responding to the star conditions (8).

Let (W,ρW ) be a representation of su(2)P . We consider W as an su(2)P module by setting
G ·v = ρW (G)v for G ∈ su(2)P and v ∈W . Take v0 ∈W to be an eigenvector of J0 with eigenvalue
λ. We will construct the su(2)P invariant subspace containing v0. If W is irreducible this space
must be either W or trivial. The trivial case results from v0 being the zero vector, so from now on
we assume that v0 is not the zero vector.

From (5) follows that J0Pv0 = PJ0v0 = λPv0, hence Pv0 is also an eigenvector of J0 with
eigenvalue λ. We distinguish between two cases, Pv0 is either a multiple of v0 or not. If Pv0 is
linearly independent of v0 and also has λ as eigenvalue for J0, the vectors v+0 = v0 + Pv0 and
v−0 = v0 − Pv0 are also eigenvectors of J0 and we have Pv+0 = v+0 and Pv−0 = −v−0 . The vectors
v+0 and v−0 will then generate two different invariant subspaces, hence the representation W is not
irreducible. We may thus assume that v0 is also an eigenvector of P .

If J0v0 = λv0, then for a positive integer k, the vector (J±)
kv0 is also an eigenvector of J0.

Indeed, using [J0, (J±)
k] = ±k(J±)k, which follows from (6), we have

J0(J±)
kv0 =

(

(J±)
kJ0 + [J0, (J±)

k]
)

v0 = J±J0v0 ± k(J±)
kJ±v0 = (λ± k)(J±)

kv0 . (11)

Moreover, the vectors
{

(J+)
kv0
∣

∣ k ∈ N
}

must be linearly independent because they have distinct
eigenvalues as eigenvectors of J0. If we impose W to be finite-dimensional, then (J+)

kv0 = 0 for
some k ∈ N. Without loss of generality we may assume that J+v0 = 0, making v0 the highest
weight vector, i.e. the eigenvector of J0 with the highest eigenvalue, with corresponding highest
weight λ.

Following the same reasoning, the sequence
{

(J−)
kv0
∣

∣ k ∈ N
}

is also linearly independent and
must terminate. We thus have J−(J

n
−v0) = 0 for some n ∈ N and we may assume without loss of

generality that n is minimal in this aspect, i.e. Jn
−v0 6= 0. We will now show that the set

{

vk = (J−)
kv0
∣

∣ k = 0, . . . , n
}

(12)

forms a basis for the su(2)P invariant subspace containing v0. IfW is irreducible this space must be
all ofW . So far, we have (12) being invariant under the action of J0 and J−, with J0vk = (λ−k)vk.
We now look at the action of P and J+ on (12).

As v0 is an eigenvector of P and P 2 = 1, we necessarily have Pv0 = ǫ v0 with ǫ = ±1. Moreover,
as P anti-commutes with J− (5), we find the action of P on (12) to be

Pvk = ǫ(−1)kvk . (13)

For the action of J+, we have J+v0 = 0, while for k ≥ 0 we can write

J+vk+1 = J+J−vk =

(

1

2
Ω− J2

0 + J0 +
c

2
P

)

vk

where Ω is the Casimir element (10) whose action is constant on W . Using J+v0 = 0 the action of
Ω on v0 is given by

Ωv0 = (2J−J+ + 2J2
0 + 2J0 + cP )v0 = (2λ2 + 2λ+ cǫ)v0
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We thus find

J+vk+1 =

(

(k + 1)(2λ− k) + c ǫ
1 + (−1)k

2

)

vk ≡ A(k)vk , (14)

so (12) forms the basis for a su(2)P invariant subspace.
Now, the value of the highest weight λ follows from the action of J0 and P on the basis (12).

Indeed, taking the trace of both sides of (7) acting on W , we get

0 = tr
(

[J+, J−]
)

= 2 tr(J0) + tr(cP ) = 2(n+ 1)λ− n(n+ 1) + c ǫ
1 + (−1)n

2
. (15)

From which we find

λ =
n

2
− c ǫ

2(n+ 1)

1 + (−1)n

2
. (16)

Note that the deformation parameter c appears in the value of the highest weight only when n is
even, that is for odd-dimensional representations.

Substituting (16) for λ in (14) we arrive at

A(k) = (k + 1)(n− k) + c ǫ

(

1 + (−1)k

2
− 1 + (−1)n

2

(k + 1)

(n+ 1)

)

. (17)

For n even, this reduces to

A(k) =







(k + 1)
(

n− k − c ǫ
n+1

)

, if k is odd;
(

k + 1 + c ǫ
n+1

)

(n− k), if k is even,
(18)

while for n odd

A(k) =

{

(k + 1)(n− k), if k is odd;

(k + 1)(n− k) + c ǫ, if k is even.
(19)

Next, we require that the representation W is unitary under the star conditions (8). Hereto,
we introduce a sesquilinear form 〈·, ·〉 : W ×W → C such that

〈vk, vℓ〉 = hk δk,ℓ ,

where we can put h0 = 1 or 〈v0, v0〉 = 1. In order to be an inner product we need hk > 0 for k ≥ 0.

For k ≥ 1 we have, imposing the star condition J†
− = J+,

hk = 〈vk, vk〉 = 〈J−vk−1, vk〉 = 〈vk−1, J+vk〉 = A(k − 1)〈vk−1, vk−1〉 = A(k − 1)hk−1 . (20)

This is strictly positive if A(k) > 0 for 0 ≤ k ≤ n − 1. Distinguishing between n even and odd,
we find that (18) is strictly positive for −(n + 1) < c ǫ < n + 1, while (19) is strictly positive if
c ǫ > −n.

The star conditions P † = P , J†
0 = J0 are satisfied as P and J0 have real eigenvalues on vk.

Putting j = n/2 and introducing the orthonormal basis

|j,m〉 = vj−m

‖vj−m‖ (m = −j,−j + 1, . . . , j − 1, j)

where ‖vk‖ =
√

〈vk, vk〉 =
√
hk, we find using (20)

J−|j,m〉 = J−
vj−m

‖vj−m‖ =
vj−m+1
√

hj−m

=
√

A(j −m)|j,m− 1〉

and
J+|j,m〉 = J+

vj−m

‖vj−m‖ = A(j −m− 1)
vj−m−1
√

hj−m

=
√

A(j −m− 1)|j,m+ 1〉 .

We summarize this in the following result:
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Proposition 2 For a given real parameter c and choice of ǫ = ±1, we have the following irreducible
unitary finite-dimensional representations of su(2)P , corresponding to the star conditions (8):

For every positive integer j such that 2j + 1 > |c|, we have an odd-dimensional representation
of dimension 2j+1. The action of the su(2)P operators on a set of basis vectors |j,−j〉, |j,−j+1〉,
. . ., |j, j〉 is given by:

P |j,m〉 = ǫ(−1)j+m |j,m〉, (21)

J0|j,m〉 = (m− c̃/2) |j,m〉, (22)

J+|j,m〉 =
{

√

(j −m+ c̃)(j +m+ 1) |j,m+ 1〉, if j +m is odd;
√

(j −m)(j +m+ 1− c̃) |j,m+ 1〉, if j +m is even.
(23)

J−|j,m〉 =
{

√

(j +m− c̃)(j −m+ 1) |j,m− 1〉, if j +m is odd;
√

(j +m)(j −m+ 1 + c̃) |j,m− 1〉, if j +m is even.
(24)

where c̃ = c ǫ/(2j + 1). Note that 2j + 1 > |c| is equivalent to |c̃| < 1.
For every positive half-integer j such that 2j > −c ǫ, we have an even-dimensional representation

of dimension 2j+1. The action of the su(2)P operators on a set of basis vectors |j,−j〉, |j,−j+1〉,
. . ., |j, j〉 is given by:

P |j,m〉 = ǫ(−1)j+m+1 |j,m〉, (25)

J0 |j,m〉 = m |j,m〉, (26)

J+|j,m〉 =
{

√

(j −m)(j +m+ 1) |j,m+ 1〉, if j +m is odd;
√

(j −m)(j +m+ 1) + c ǫ |j,m+ 1〉, if j +m is even.
(27)

J−|j,m〉 =
{

√

(j +m)(j −m+ 1) + c ǫ |j,m− 1〉, if j +m is odd;
√

(j +m)(j −m+ 1) |j,m− 1〉, if j +m is even.
(28)

We can write the actions of J+ and J− in the above result more compactly. For j an integer

J±|j,m〉 =
{

√

(j ∓m± c̃)(j ±m+ 1) |j,m± 1〉, if j +m is odd;
√

(j ∓m)(j ±m+ 1∓ c̃) |j,m± 1〉, if j +m is even;

while for j a half-integer

J±|j,m〉 =
{

√

(j ∓m)(j ±m+ 1) |j,m± 1〉, if j ±m is odd;
√

(j ∓m)(j ±m+ 1) + c ǫ |j,m± 1〉, if j ±m is even.

The action of the Casimir (10) is indeed scalar on these representations, and given by

(

2J2
0 + J+J− + J−J+

)

|j,m〉 =
{

2j(j + 1) + c ǫ if j is a half-integer;

2j(j + 1) + c̃2

2 if j is an integer,

again with c̃ = c ǫ/(2j + 1).

Remark 3 For j a half-integer, these representations correspond precisely to those of the uni-
tal algebra u(2)α [5], which contains moreover an extra central operator C with diagonal action
C|j,m〉 = (2j + 1)|j,m〉. Indeed, substituting c ǫ = (2α + 1)2 + (2α + 1)(2j + 1) we find the same
action as in [5]:

(j −m)(j +m+ 1) + (2α+ 1)2 + (2α+ 1)(2j + 1) = (j −m+ 2α+ 1)(j +m+ 2α+ 2),

(j +m)(j −m+ 1) + (2α+ 1)2 + (2α+ 1)(2j + 1) = (j −m+ 2α+ 2)(j +m+ 2α+ 1).
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For this reason, only the representations with j integer are new in the context of finite oscillator
models. And therefore, only the odd-dimensional representations will play a role in the following
sections.

Remark 4 In [12] the finite-dimensional unitary representations of the Bannai-Ito algebra [16,17]
corresponding to a realization in terms of Dirac-Dunkl operators were determined (see also [18] for
a more general approach). Since the algebra su(2)P is isomorphic to a special case of the Bannai-Ito
algebra, we should observe a correspondence between the representations in Proposition 2 and those
of [12]. One difference, however, is that in our case the parameter c is the basic parameter, and its
value determines the existence of representations of certain dimensions.

Returning to [12], the general Bannai-Ito algebra with three parameters ω1, ω2, ω3 is character-
ized by three real numbers µ1, µ2, µ3 appearing in the Dunkl operators, and a positive integer N
(with N + 1 the dimension of the representation). For even N , i.e. N = 2j with j integer, the
following choice for µi:

µ1 = µ2 = −N + 1 + c̃

4
, µ3 = −N + 1− c̃

4
(29)

in [12, eq. (48)] leads to the same (matrix) representation for K1,K2,K3 as our representation (21)–
(24) used in (9). Note that with |c̃| < 1, the above µi-values are negative. Strictly speaking, only
nonnegative values for µi were considered in [12]. It is clear, however, that for the values (29)
the matrix elements Uk appearing in [12, eq. (48)] are still positive and thus these values are also
allowed.

For odd N , i.e. N = 2j with j half-integer, the correspondence is not so simple. For that case,
the basis vectors |N, k〉 of [12] are not the same as our basis vectors |j,m〉 for a particular choice
of µ1, µ2, µ3. So the correspondence between the matrix representations becomes complicated and
we do not include it here.

3 A one-dimensional oscillator model

We now consider a model for a one-dimensional finite oscillator based on the odd-dimensional
representations of the algebra su(2)P , that is for j an integer. We will see that for this model the
spectrum of the position operator is independent of the parameter c, equidistant and coincides with
the spectrum of the su(2) oscillator [2]. The eigenvectors (and thus also the position wavefunctions)
do depend on the additional parameter c.

Following the notation and ideas of section 1, we have to choose a position, momentum and
Hamiltonian operator (q̂, p̂, Ĥ) from the algebra su(2)P such that the Hamilton-Lie equations are
satisfied, and such that the spectrum of Ĥ in a representation is equidistant. Given su(2)P with
parameter c, and the representation of dimension 2j + 1 (j integer) determined in Proposition 2,
with 2j + 1 > |c| and ǫ = 1, the following choice is natural and follows [5, 6]:

q̂ =
1

2
(J+ + J−), p̂ =

i

2
(J+ − J−), Ĥ = J0 + j +

c̃

2
+

1

2
, (30)

where c̃ = c/(2j + 1) and thus the parameter c̃ satisfies −1 < c̃ < +1.
It is easy to verify that the first two equations of (2) are satisfied and moreover from (22) it

follows that on |j,m〉 the spectrum of Ĥ is indeed linear and given by

n+
1

2
(n = 0, 1, . . . , 2j). (31)
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From the actions (23)–(24), one finds for even j +m

2q̂|j,m〉 =
√

(j +m)(j −m+ 1 + c̃) |j,m− 1〉+
√

(j −m)(j +m+ 1− c̃) |j,m+ 1〉 ,

while for odd j +m

2q̂|j,m〉 =
√

(j +m− c̃)(j −m+ 1) |j,m− 1〉+
√

(j −m+ c̃)(j +m+ 1) |j,m+ 1〉 .

The action of 2ip̂ is similar. For the representation space, denoted here by Wj , we choose the
following (ordered) basis:

{|j,−j〉, |j,−j + 1〉, . . . , |j, j − 1〉, |j, j〉}, (32)

and then the operators 2q̂, 2ip̂ take the matrix forms

2q̂ =

















0 M0 0 · · · 0
M0 0 M1 · · · 0

0 M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 M2j−1 0

















≡M q, (33)

2ip̂ =

















0 M0 0 · · · 0
−M0 0 M1 · · · 0

0 −M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 −M2j−1 0

















≡Mp, (34)

with

Mk =

{

√

(k + 1− c̃)(2j − k), if k is even;
√

(k + 1)(2j − k + c̃), if k is odd.
(35)

For these matrices, the eigenvalues and eigenvectors are known explicitly: the system is of type
“dual Hahn I” [8, Proposition 2] (with γ + δ+1 = 0 in the notation of [8]). The expressions of the
eigenvectors involve dual Hahn polynomials, so let us first recall some notation.

For a positive integer N , the dual Hahn polynomial of degree n (n = 0, 1, . . . , N) in the variable
λ(x) = x(x+ γ + δ+ 1), with parameters γ > −1 and δ > −1 (or γ < −N and δ < −N) is defined
by [9, 19, 20]:

Rn(λ(x); γ, δ,N) = 3F2

(−x, x+ γ + δ + 1,−n
γ + 1,−N ; 1

)

(36)

in terms of the generalized hypergeometric series 3F2 of unit argument [21, 22]. Dual Hahn poly-
nomials satisfy a (discrete) orthogonality relation [9]:

N
∑

x=0

w(x; γ, δ,N)Rn(λ(x); γ, δ,N)Rn′(λ(x); γ, δ,N) = hn(γ, δ,N) δn,n′ , (37)

where

w(x; γ, δ,N) =
(2x+ γ + δ + 1)(γ + 1)x(N − x+ 1)xN !

(x+ γ + δ + 1)N+1(δ + 1)xx!
(x = 0, 1, . . . , N),

hn(γ, δ,N) =

[(

γ + n

n

)(

N + δ − n

N − n

)]−1

. (38)
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We have used here the common notation for Pochhammer symbols [21,22] (a)k = a(a+ 1) · · · (a+
k − 1) for k = 1, 2, . . . and (a)0 = 1. As w is the weight function and hn(γ, δ,N) the “squared
norm”, orthonormal dual Hahn functions R̃ are determined by:

R̃n(λ(x); γ, δ,N) ≡
√

w(x; γ, δ,N)Rn(λ(x); γ, δ,N)
√

hn(γ, δ,N)
. (39)

From [8, Proposition 2], using the substitution γ = (−c̃− 1)/2 and δ = (c̃− 1)/2 = −γ − 1, we
have:

Proposition 5 The 2j+1 eigenvalues of the position operator q̂ in the representation Wj are given
by

− j,−j + 1, . . . ,−1, 0, 1, . . . , j − 1, j . (40)

The orthonormal eigenvector of the position operator q̂ in Wj for the eigenvalue q, denoted by |j, q),
is given in terms of the basis (32) by

|j, q) =
j
∑

m=−j

Uj+m,j+q|j,m〉. (41)

Herein, U = (Ukl)0≤k,l≤2j is the (2j + 1)× (2j + 1) matrix with elements

U2r,j = (−1)rR̃r(λ(0); (−c̃− 1)/2, (c̃− 1)/2, j), U2r+1,j = 0,

U2r,j−s = U2r,j+s =
(−1)r√

2
R̃r(λ(s); (−c̃− 1)/2, (c̃− 1)/2, j), (r ∈ {0, . . . , j}; s ∈ {1, . . . , j});

(42)

U2r+1,j−s−1 = −U2r+1,j+s+1 = −(−1)r√
2
R̃r(λ(s); (1− c̃)/2, (c̃+ 1)/2, j − 1), (r, s ∈ {0, . . . , j − 1})

(43)

where the functions R̃ are normalized dual Hahn polynomials (39).
The matrix U is an orthogonal matrix, UUT = UTU = I, hence the q̂ eigenvectors are or-

thonormal:
(j, q|j, q′) = δq,q′ .

Moreover,
M qU = UDq,

where Dq is a diagonal matrix containing the eigenvalues (40).

This is the same spectrum as that of q̂ in the su(2) oscillator model [2]. For the latter model the
eigenvectors could be expressed in terms of the Krawtchouk orthogonal polynomials. Now, the
eigenvectors of the position operator have components proportional to dual Hahn polynomials with
parameters (−c̃ − 1)/2 and (c̃ − 1)/2 when the component has even index, and with parameters
(1 − c̃)/2 and (1 + c̃)/2 when the component has odd index. With the condition |c̃| < 1 (see
Proposition 2), the weight functions of the dual Hahn polynomials are positive.

The matrix Mp of the momentum operator p̂ is up to signs the same as the matrix M q. It has
the same spectrum (40) and for the eigenvectors we have the following result.

Proposition 6 The orthonormal eigenvector of the momentum operator p̂ inWj for the eigenvalue
p, denoted by |j, p), is given in terms of the basis (32) by

|j, p) =
j
∑

m=−j

Vj+m,j+p|j,m〉. (44)
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Herein, V = (Vrs)0≤r,s≤2j is the unitary (2j + 1)× (2j + 1)-matrix, V V † = V †V = I, defined by

V = JU,

where J = −i diag(i0, i1, i2, . . . , i2j) and U is the matrix determined in Proposition 5.

Remark 7 The recurrence relation for the pair of polynomials appearing in (42) and (43) comes
from M qU = UDq. By the form (33), this recurrence relation has zero diagonal term. This is
because the corresponding polynomials can be seen as an example of Chihara’s construction [23,
Section 8] of symmetric orthogonal polynomials, but applied to discrete orthogonal polynomials.

4 Oscillator wavefunctions and their properties

The position (resp. momentum) wavefunctions are the overlaps between the normalized eigenstates
of the position operator q̂ (resp. the momentum operator p̂) and the eigenstates of the Hamiltonian.
So the wavefunctions of the su(2)P finite oscillator are the overlaps between the q̂-eigenvectors
and the Ĥ-eigenvectors (or equivalently, the J0-eigenvectors |j,m〉). We will denote the position

wavefunctions by φ
(c)
j+m(q) and the momentum wavefunctions by φ

(c)
j+m(q), where m, q and p assume

one of the discrete values −j,−j + 1, . . . ,+j. Concretely, following the notation of the previous
section:

φ
(c)
j+m(q) = 〈j,m|j, q) = Uj+m,j+q, (45)

ψ
(c)
j+m(p) = 〈j,m|j, p) = Vj+m,j+p. (46)

Let us examine the explicit form of these functions in more detail, first for the position variable.

The index j +m ranges from 0 to 2j. For j +m even, say j +m = 2n, φ
(c)
2n (q) is by (42) an even

function of the position variable q. For q = −j,−j + 1, . . . , j we have

φ
(c)
2n (q) =

(−1)n
√

2− δq,0

√

W (n, q; c̃, j) 3F2

( −q, q,−n
(1− c̃)/2,−j ; 1

)

(47)

where

W (n, q; c̃, j) =
w(|q|; (−c̃− 1)/2, (c̃− 1)/2, j)

hn((−c̃− 1)/2, (c̃− 1)/2, j)
,

with w and hn as in (38). For j +m odd, say j +m = 2n+ 1, it is by (43) an odd function of the
variable q. For q = −j,−j + 1, . . . , j we have

φ
(c)
2n+1(q) = (−1)nq

√

(2n+ 1− c̃)(j − n)

(1− c̃)j

√

W (n, q; c̃, j) 3F2

(−q + 1, q + 1,−n
(3− c̃)/2,−j + 1

; 1

)

, (48)

where we used

w(|q|; (1− c̃)/2, (c̃+ 1)/2, j − 1)

hn((1− c̃)/2, (c̃+ 1)/2, j − 1)
= q2

2(2n+ 1− c̃)(j − n)

(1− c̃)2j2
W (n, q; c̃, j) .

For the momentum wavefunctions we find in exactly the same manner

ψ
(c)
2n (p) =

−i
√

2− δp,0

√

W (n, p; c̃, j) 3F2

( −p, p,−n
(1− c̃)/2,−j ; 1

)

(49)

ψ
(c)
2n+1(p) = p

√

(2n+ 1− c̃)(j − n)

(1− c̃)j

√

W (n, p; c̃, j) 3F2

(−p+ 1, p+ 1,−n
(3− c̃)/2,−j + 1

; 1

)

. (50)
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Remark 8 Before we examine the behaviour of these discrete wavefunctions, let us comment on the
distinction with the closely related dual −1 Hahn polynomials considered in [15]. For this purpose,
let us compare the polynomial expressions in (47)–(48), i.e.

3F2

( −q, q,−n
(1− c̃)/2,−j ; 1

)

, q × 3F2

(−q + 1, q + 1,−n
(3− c̃)/2,−j + 1

; 1

)

with equations (4.6) and (4.7) from [15], in which one puts N = 2j, i.e.

3F2

(−x
4 + η, x4 + η,−n
1− α

2 ,−j
; 1

)

, (
x

4
− j − η) 3F2

(−x
4 + η, x4 + η,−n
1− α

2 ,−j + 1
; 1

)

.

For a particular choice of η and α, the even polynomials coincide, but the odd polynomials do not.
The reason is that the dual Hahn double of this paper corresponds to a Christoffel-Geronimus pair
with parameter ν = 0 (see [8, Section 5]) and are of type “dual Hahn I” in the terminology of [8],
whereas the dual −1 Hahn polynomials seem to correspond to a Christoffel transform for dual Hahn
polynomials with a different parameter ν = j, and are of type “dual Hahn II” in the terminology
of [8].

It is interesting to study these discrete wavefunctions for varying values of c̃, −1 < c̃ < 1. For
the special value c̃ = 0, the algebra su(2)P reduces to su(2) and it is known that in this case,

the wavefunctions φ
(0)
n (q) are in fact Krawtchouk functions. Indeed, when c̃ = 0 the dual Hahn

polynomials, which are 3F2 series appearing in (47)–(48), reduce to 2F1 series according to

3F2

(−q, q,−n
1/2,−j ; 1

)

= (−1)n
(

2j
2n

)

(

j
n

) 2F1

(−2n,−j − q

−2j
; 2

)

, (51)

3F2

(−q + 1, q + 1,−n
3/2,−j + 1

; 1

)

= −(−1)n

2q

(

2j
2n+1

)

(

j−1
n

) 2F1

(−2n− 1,−j − q

−2j
; 2

)

. (52)

These reductions have been given in [24] and can be obtained, e.g., from [4, (48)]. The 2F1 series in
the right hand side correspond to symmetric Krawtchouk polynomials (i.e. Krawtchouk polynomials
with p = 1/2 [9]). When j tends to infinity, they yield the canonical oscillator wavefunctions [4] in
terms of Hermite polynomials.

To investigate what happens for other values of c̃ we now choose a fixed value of j, namely

j = 32, and plot some of the wavefunctions φ
(c)
n (q) for various values of c̃. Recall (Proposition 2)

that −1 < c̃ < 1 in order to have a unitary irreducible representation. In Figure 1 we take the
following values for c̃, respectively,

−0.999, −0.8, −0.3, 0, 0.3, 0.8, 0.999 .

We also plot in each case the ground state φ
(c)
0 (q) (left column), some low energy states φ

(c)
1 (q) and

φ
(c)
2 (q) (2nd and 3rd column), and the highest energy state φ

(c)
64 (q) (4th column).

Particularly interesting behaviour is observed when c̃ approaches the boundary values −1 or 1.
These bounds correspond to the disallowed value −1 for one of the parameters γ or δ in the dual
Hahn polynomial (36). When c̃ tends to −1, the components of the highest energy state all tend
to zero except for q = 0 which tends to 1. For all the other states, the value at q = 0 tends to
0. When c̃ tends to +1, it is for the lowest energy state that all components tend to zero and the
component at q = 0 goes to 1. Similarly as for the other limit, for all the other states, the value at
q = 0 tends to 0. It can be verified that in these limits for non-zero q the wavefunctions become
up to signs those of the oscillator model based on the even-dimensional representations of u(2)α,
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see [5], for a specific parameter value in dimension 2j. Recall that these correspond precisely to
the even-dimensional representations of su(2)P obtained in Proposition 2.

The described behaviour happens according to the following relations (for q = 1, 2, . . . , j):

lim
γ→−1

R̃n(λ(q); γ, 0, j) = −R̃n−1(λ(q − 1); 1, 0, j − 1)

lim
δ→−1

R̃n(λ(q); 0, δ, j) = R̃n(λ(q − 1); 0, 1, j − 1)

We now look what happens to φ
(c)
n (q) for general c̃ when j tends to infinity. This is done by

putting q = j1/2x to pass from a discrete position variable q to a continuous position variable x

and taking the limit j → ∞ of j1/4φ
(c)
n (q). The actual computation is similar to the one performed

in [5,6], so we shall not give all details. The limit of the 3F2 function in (47) and (48) is quite easy:

lim
j→∞

3F2

(

−j1/2x, j1/2x,−n
(1− c̃)/2,−j ; 1

)

= 1F1

( −n
(1− c̃)/2

;x2
)

=
n!

(a)n
L(a−1)
n (x2), (53)

lim
j→∞

3F2

(

−j1/2x+ 1, j1/2x+ 1,−n
(3− c̃)/2,−j + 1

; 1

)

= 1F1

( −n
(3− c̃)/2

;x2
)

=
n!

(a+ 1)n
L(a)
n (x2), (54)

where a = (1− c̃)/2 and L
(α)
n is a Laguerre polynomial [9, 25].

The final result is:

lim
j→∞

j1/4φ
(c)
2n (j

1/2x) = (−1)n

√

n!

Γ(a+ n)
|x|a−1/2e−x2/2L(a−1)

n (x2), (55)

lim
j→∞

j1/4φ
(c)
2n+1(j

1/2x) = (−1)n

√

n!

Γ(a+ n+ 1)
x|x|a−1/2e−x2/2L(a)

n (x2). (56)

Note that for c̃ = 0 or a = 1/2, one indeed finds the canonical oscillator wavefunctions

lim
j→∞

j1/4φ(0)n (j1/2x) =
1

2n/2
√
n!π1/4

Hn(x)e
−x2/2, (57)

where Hn(x) are the common Hermite polynomials [9, 25].

The functions in (55) and (56) are familiar: they are in fact the wavefunctions Ψ
(a)
n (x) of the

parabose oscillator with parameter a > 0 (see the appendix of [5] for a summary). So we have:

lim
j→∞

j1/4φ(c)n (j1/2x) = Ψ(a)
n (x) (a =

1− c̃

2
). (58)

So the current model is an appealing model for a finite one-dimensional parabose oscillator with
equidistant position spectrum. This also explains the shape of the discrete wavefunctions plotted
in Figure 1. For −1 < c̃ < 0, the shape typically reproduces the continuous wavefunctions of the
parabose oscillator with 1

2 < a < 1: see the plots for c̃ = −0.8 and those for a = 0.9 in Figure 2.
For 0 < c̃ < 1, the shape of the wavefunctions is similar to those of the parabose oscillator with
0 < a < 1

2 : compare the plots for c̃ = 0.8 with those for a = 0.1 in Figure 2.

12



5 Concluding remarks

Deformations or extensions of su(2) or u(2) as algebras underlying finite oscillator models have
already been considered by one of us [5,6], so let us explain the difference with the algebra su(2)P
appearing here. For this, it is best to return to the classification of so-called dual Hahn doubles
in [8], where it is shown that three such doubles or pairs exist. From [8, Propositions 1–3] one
can see that only the cases “dual Hahn I” and “dual Hahn III” can give rise to an equidistant
position spectrum when used in a finite oscillator model. The case “dual Hahn I” involves the pair
of polynomials Rn(λ(x); γ, δ,N) and Rn(λ(x−1); γ+1, δ+1, N−1), and the corresponding algebra
constructed from the related tridiagonal matrices was determined in [8, eq. (7.4)]. Comparing with
su(2)P , the relations (5)–(6) remain the same, and (7) is of the form

[J+, J−] = 2J0 + 2(γ + δ + 1)J0P − (2N + 1)(γ − δ)P + (γ − δ)I. (59)

Because of the appearance of N and N − 1 in the double, the matrices (and thus also the repre-
sentations) exist in odd dimension 2N +1 only; furthermore the spectrum of the position operator
consists of the values 0,±

√

k(k + γ + δ + 1) (k = 1, . . . , N). For γ = δ ≡ α, (59) coincides
with [6, eq. (5)], so this is what was called the su(2)α extension in [6]. The position spectrum is
not equidistant. Moreover, due to the combination of terms in J0 and J0P in the commutator of
J+ and J−, this algebra cannot be rewritten as a special case of the Bannai-Ito algebra.

For δ = −γ − 1, (59) becomes

[J+, J−] = 2J0 + (2γ + 1)I − (2N + 1)(2γ + 1)P

and after performing a shift for J0, this relation is of the form (7). So this is su(2)P (isomorphic
to a special case of Bannai-Ito), the position spectrum is equidistant and this is the case (with odd
dimensional representations) that was treated in the current paper.

The case “dual Hahn III” involves the pair of polynomials Rn(λ(x); γ, δ,N) and Rn(λ(x); γ +
1, δ − 1, N), and the corresponding algebra constructed from the related tridiagonal matrices was
determined in [8, eq. (7.5)], with relation

[J+, J−] = 2J0 + 2(γ − δ)J0P − ((2N + 2)(γ + δ + 1) + (2γ + 1)(2δ + 1))P + (γ − δ)I. (60)

Because of the appearance of N and N in the polynomials of the double, the matrices (and repre-
sentations) exist in even dimension 2N + 2 only; the spectrum of the position operator consists of
the values ±

√

(k + γ + 1)(k + δ + 1) (k = 0, . . . , N). So – apart from a gap in the middle – it is
equidistant for γ = δ ≡ α, and then the above relation becomes

[J+, J−] = 2J0 − ((2N + 2)(2α+ 1) + (2α+ 1)2)P = 2J0 − (2α+ 1)2P − (2α+ 1)CP,

for some central element C. This was called the u(2)α algebra in [5]. But since C is a constant in a
representation of the algebra, it can be considered as the su(2)P algebra with −c = (2N +2)(2α+
1) + (2α + 1)2 in (7). So su(2)P and u(2)α are essentially the same, and the even dimensional
representations of this algebra are the ones studied in [5].

For the Lie algebra su(2), there is of course the well known Schwinger boson realization. In
this realization, for a positive integer or half-integer j, the 2j +1 basis vectors can be expressed as
follows

|j,m〉 = xj+myj−m

√

(j +m)!(j −m)!
, (61)

and the su(2) operators take the form

J0 =
1

2
(x∂x − y∂y), J+ = x∂y, J− = y∂x. (62)
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For the algebra su(2)P , there exist similar reflection/differential operator realizations, one of which
follows from the Bannai-Ito algebra realization and can be found in [13]. Since our basis ele-
ments (5)–(7) of su(2)P are closely related to the standard basis of su(2), it is natural to expect
other operator realizations. These do indeed exist.

As a first possibility, consider the following operators, acting on functions f(x, y) of two variables
x and y:

Tx = ∂x +
µ

x
(1−Rx)

Ty = ∂y −
µ

y
(1−Rx). (63)

Herein, Rxf(x, y) = f(−x, y). Note that Tx is a Dunkl operator, but Ty is not. Putting

J0 =
1

2
(x∂x − y∂y + 2µ), J+ = xTy, J− = yTx, P = Rx, (64)

it is easy to verify that the defining relations (5) and (6) are satisfied. For (7), one finds:

[J+, J−] = 2J0 − 2µP (1 + x∂x + y∂y). (65)

So when acting on homogeneous polynomials in x and y, like on the basis vectors (61), the last
relation coincides with (7) for µ = −c̃/2. For a proper action on homogeneous polynomials, one
should take care of the factor 1/y in (63): the action of Ty on x2j should vanish. This is the case
only for integer j-values, thanks to the factor (1 − Rx) in (63). Thus, the realization (63)–(64) is
consistent with the basis realization (61) for j integer only. Note that on the space of homogeneous
polynomials of degree 2j, spanned by (61), the action of Ty does coincide with the action of a Dunkl
operator ∂y − µ

y (1−Ry), where Ryf(x, y) = f(x,−y).
As a second possibility, let us take

Tx = ∂x +
µ

x
(1−Rx)

Ty = ∂y +
µ

y
(1 +Rx). (66)

and

J0 =
1

2
(x∂x − y∂y), J+ = xTy, J− = yTx, P = −Rx. (67)

Once again, (5) and (6) are satisfied, and for (7) one finds:

[J+, J−] = 2J0 + P
(

(2µ)2 + 2µ(1 + x∂x + y∂y)
)

. (68)

In this case, acting on homogeneous polynomials in x and y like on the basis vectors (61), the last
relation coincides with (7) for c = (2µ)2 + 2µ(2j + 1) (in agreement with Remark 3). Also here,
one should take care of the factor 1/y in (66), and the action of Ty on x2j should vanish. This is
now the case only for half-integer j-values, due to the factor (1 + Rx) in (63). The conclusion is
similar: the realization (66)–(67) is consistent with the basis realization (61) for j half-integer only.
For more fundamental examples in which such realizations with Dunkl operators play a role, see
the Schwinger-Dunkl algebra sd(2) in [26].

To summarize, in this paper we have developed a new and interesting model for a finite quantum
oscillator. This model preserves all the nice and essential properties of the original su(2) model, in
particular the equidistance of the position spectrum. It has, however, an extra parameter c̃ that
can be used to modify the shape of the discrete position (and momentum) wavefunctions. The
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original interest in finite oscillator models comes mainly from optical image processing and signal
analysis [4]. In signal analysis on a finite number of discrete sensors or data points, one-dimensional
finite oscillator models have been used in [27–29]. For such purposes, it is an advantage if the sensor
points of the grid are uniformly distributed, according to the equidistant position spectrum of the
model. For our original Hahn oscillator in even dimensions [5] or in odd dimensions [6], this
equidistance did not hold. In the current model, based on a dual Hahn double, we do recover this
important property of the spectrum (in odd dimensions). We hope that the extra parameter c̃
opens the way to more sophisticated techniques in the analysis of signals.

The model presented here has the algebra su(2)P as underlying structure. This algebra is an
extension of su(2) by cP , where P which is not central but satisfies P 2 = 1 and either commutes or
anticommutes with the standard basis elements of su(2). We have shown that su(2)P is a special
case of the general Bannai-Ito algebra. For su(2)P , we have classified all unitary finite-dimensional
irreducible representations. These depend on the central element c. Once the algebra and its
representations have been analysed, the construction of the corresponding finite oscillator model is
similar to that of [5]. The position wavefunctions are expressed in terms of dual Hahn polynomials
(with different parameters for even and odd wavefunctions), and depend on the dimension of the
representation (2j+1) and the parameter c̃ with |c̃| < 1. For c̃ = 0, the model and its wavefunctions
coincide with the standard su(2) finite oscillator model in terms of symmetric Krawtchouk poly-
nomials [4]. Symmetric Krawtchouk wavefunctions can interpreted as a finite-dimensional version
of the canonical Hermite wavefunctions, to which they tend when the dimension paramater j goes
to infinity. There is a similar interpretation here. For c̃ 6= 0, the wavefunctions can be seen as a
finite-dimensional version (with equidistant spectrum) of the parabose wavefunctions.
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Figure 1: Plots of the discrete wavefunctions φ
(c)
n (q) in the representation with j = 32 for the values

c̃ = −0.999, c̃ = −0.8, c̃ = −0.3, c̃ = 0, c̃ = 0.3, c̃ = 0.8, c̃ = 0.999 from top to bottom. The
wavefunctions are plotted for n = 0, 1, 2 and n = 64.
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Figure 2: Comparing the plots of the discrete wavefunctions φ
(c)
n (q) with the continuous wave-

functions Ψ
(a)
n (x) of the parabose oscillator, for n = 0 (left column), n = 1 (middle column) and

n = 2 (right column). In the top row one finds φ
(c)
n (q) for c̃ = −0.8, to be compared to the plots of

Ψ
(a)
n (x) in the second row for a = 0.9. In the third row one finds φ

(c)
n (q) for c̃ = 0.8, to be compared

to the plots of Ψ
(a)
n (x) in the fourth row for a = 0.1.
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