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Abstract
Ectopic mineralization - inappropriate biomineralization in 
soft tissues - is a frequent finding in physiological aging 
processes and several common disorders, which can 
be associated with significant morbidity and mortality. 
Further, pathologic mineralization is seen in several rare 
genetic disorders, which often present life-threatening 
phenotypes. These disorders are classified based on the 
mechanisms through which the mineralization occurs: 
metastatic or dystrophic calcification or ectopic ossifi
cation. Underlying mechanisms have been extensively 
studied, which resulted in several hypotheses regarding 
the etiology of mineralization in the extracellular matrix 
of soft tissue. These hypotheses include intracellular 
and extracellular mechanisms, such as the formation of 
matrix vesicles, aberrant osteogenic and chondrogenic 
signaling, apoptosis and oxidative stress. Though 
coherence between the different findings is not always 
clear, current insights have led to improvement of the 
diagnosis and management of ectopic mineralization 
patients, thus translating pathogenetic knowledge 
(variome) to the phenotype (phenome). In this review, we 
will focus on the clinical presentation, pathogenesis and 
management of primary genetic soft tissue mineralization 
disorders. As examples of dystrophic calcification 
disorders Pseudoxanthoma elasticum, Generalized arterial 
calcification of infancy, Keutel syndrome, Idiopathic basal 
ganglia calcification and Arterial calcification due to CD73 
(NT5E) deficiency will be discussed. Hyperphosphatemic 
familial tumoral calcinosis will be reviewed as an 
example of mineralization disorders caused by metastatic 
calcification. 
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Core tip: Ectopic mineralization disorders represent a 
broad range of phenotypically heterogenous diseases, 
often leading to significant morbidity and mortality. 
Involving a complex interplay between different pro-
osteogenic mediators and inhibitors of calcification, the 
mechanisms of ectopic mineralization are progressively 
being unveiled. Though current knowledge is beyond 
any doubt the tip of the proverbial iceberg, insights 
already have significant implications in the diagnosis and 
daily management of these patients. As such, ectopic 
mineralization diseases are a fine example of translating 
variome data to the clinic. Here, we will discuss prototype 
hereditary ectopic calcification diseases with respect to 
their presentation, diagnosis and management.  
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INTRODUCTION
Physiological biomineralization is a complex multifa­
ctorial metabolic process, which in normal conditions is 
restricted to the extracellular matrix (ECM) of specific 
body structures, namely the bones, teeth, hypertrophic 
growth plate cartilage and calcified articular cartilage[1,2]. 
The intracellular and extracellular mechanisms, 
underlying physiological biomineralization, rely on a 
balanced interplay between mineralization inhibitors 
and propagators (Figure 1)[2,3]. Although in physiological 
circumstances calcium and inorganic phosphate (Pi) 
concentrations exceed their solubility in most human 
tissues, this does not result in mineralization of soft 
tissues, suggesting that these tissues possess regula­
tory mechanisms preventing mineral deposition. 
Mineralizing tissues must be able to modulate these 
mechanisms to enable calcification[2], but should also 
contain anti-mineralizing factors to prevent escalation 
of the calcification process leading to excessive and 
uncontrolled mineral deposits[1,2]. When these regulatory 
mechanisms are inadequate, ectopic mineralization, i.e., 
inappropriate biomineralization in soft tissues, occurs 
and causes a spectrum of ectopic calcification disorders 
(Table 1)[2,4]. 

Uncontrolled mineralization occurs frequently in 
response to tissue injury or a systemic mineral imba­
lance. This leads to the development of a calcified 
lesion, which can occur throughout the body, though 
tissues as articular cartilage, the cardiovascular (CV) 
tissues and kidneys seem particularly prone[3,5,6]. Unlike 
physiological mineralization deposits, which only contain 
calcium phosphate crystals such as hydroxyapatite, 

ectopic mineralization depositions may also contain 
other calcium salts, including calcium oxalates or octaca­
lcium[4].

Regarding the initiation of and pathogenetic mecha­
nisms underlying ectopic mineralization several hypo­
theses have been proposed (Figure 1): (1) increasing 
evidence is found that soft tissue calcification can 
be initiated in matrix vesicles (MVs), extracellular 
membrane particles (approximately 20-200 nm in 
diameter), which have a key role in the normal physio­
logical mineralization process[3]. MVs contain calcium-
binding non-collagenous matrix proteins, such as 
secreted phosphoprotein 1 (SPP1; OMIM*166490), 
which can boost mineralization in vitro[7]. MVs initiate 
mineralization in 2 phases: (1) initial formation of 
hydroxyapatite in the MV itself: after budding from 
the plasma membrane, tissue-nonspecific alkaline 
phosphatase (TNAP; OMIM*171760) activity induces 
an increase of extracellular Pi concentration, which then 
enters the vesicles via sodium-dependent inorganic 
phosphate transporters (PiTs). This is followed by 
calcium influx into the MVs, which is enabled by annexin 
A5 (ANXA5; OMIM*131230) and phosphatidyl serine 
(PS), located at the MV inner membrane leaflet[1,3]; 
and (2) propagation of the calcium salts in the ECM: 
in the MVs hydroxyapatite crystals continue to grow, 
eventually rupturing the MV membrane. As a result, 
the crystals are exposed to the ECM, inducing their 
further expansion[3,8]; pathological calcification can also 
be influenced by ectopic osteogenic and chondrogenic 
signaling, leading to the activation of multiple pro-
mineralization proteins[9]. This conversion of tissue-
specific cells to bone-like cells has been mainly 
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Table 1  Causes of metastatic/dystrophic calcification and 
ectopic ossification

Metastatic calcification Dystrophic 
calcification

Ectopic 
ossification

  Primary Primary 
hyperparathyroidism

Pseudo(pseudo)hypopa
rathyroidism

HFTC

PXE
PXE-like syndrome

GACI
Keutel syndrome

IBGC
ACDC

AI

Fibrodysplasia 
ossificans 

progressiva

  Secondary Sarcoidosis
Vitamin D intoxication
Milk-Alkali syndrome

Secondary 
hyperparathyroidism

Renal failure
Hemodialysis
Tumor lysis

Therapy with vitamin D 
and phosphate

Scleroderma
Dermatomyositis

SLE

Nonhereditary 
myositis 
ossificans

ACDC: Arterial calcification due to CD73 deficiency; AI: Amelogenesis 
imperfecta; GACI: Generalized arterial calcification of infancy; HFTC: 
Hyperphosphatemic familial tumoral calcinosis; IBGC: Idiopathic basal 
ganglia calcification; PXE: Pseudoxanthoma elasticum; SLE: Systemic lupus 
erythematosus.



described in vascular calcification, and is probably 
due to the common mesenchymal origin of vascular 
smooth muscle cells (VSMCs) and bone cells[1]; (3) 
apoptosis or programmed cell death is accompanied 
by the release of apoptotic bodies, which exteriorize 
PS to the outer membrane of the apoptotic body and 
therefore face the ECM. There, PS may bind calcium, 
resulting in an accumulation of calcium and phosphate, 
as is also seen in MVs, thus contributing to physiological 
and pathological mineralization[1,10]. Another potential 
apoptosis pathway includes elevated phosphate levels 
to induce VSMC apoptosis, a process that is possibly 
caused by downregulation of growth arrest-specific 
6 (Gas6; OMIM*600441) and B-cell CLL/Lymphoma 
(BCL2; OMIM + 151430), with subsequent caspase 3 
activation[11,12]; and (4) reactive oxygen species (ROS), 

highly reactive oxygen-containing molecules, are formed 
as byproducts of normal oxygen metabolism and 
has important roles in cell signaling and metabolism. 
Nonetheless, if ROS concentration surpasses a critical 
threshold, oxidative stress, accompanied by important 
cell damage, can occur[13]. Potential sources of ROS 
in soft tissues are nicotinamide adenine dinucleotide 
(phosphate) (NAD(P)H) oxidase, nitric oxide synthase 
(NOS), xanthine oxidase, cytochrome P450 and cyclo­
oxygenase; in addition, mitochondrial dysfunction may 
also lead to the formation of ROS. ROS possibly causes 
soft tissue mineralization through either the IκB-NF-κB 
pathway (inhibitor of kB - nuclear factor kappa-light-
chain-enhancer of activated B cells), upregulation of the 
pro-osteogenic bone morphogenetic protein 2 (BMP2; 
OMIM*112261) pathway and/or osteogenic conversion 
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Figure 1  Schematic representation of the pathophysiological mechanisms leading to ectopic mineralization. Hepatocyte: Impairment of ABCC6 function leads 
to upregulation of pro-osteogenic pathways (MSX2-WNT, TGFβ-Smad 2/3, BMP2-Smad-RUNX2), upregulation of their downstream targets and eventually to ectopic 
mineralization. GGCX carboxylates and hence activates multiple targets, such as coagulation factors and MGP, the latter being a potent BMP2-inhibitor and hence 
mineralization inhibitor. When GGCX function is impaired, these targets stay inactive, leading to increased mineralization. ENPP1 converts ATP to AMP and PPi, 
the latter being a mineralization inhibitor. Impairment of this conversion and hence a decrease in the PPi level leads to increase in ectopic mineralization. Peripheral 
cell: After glycosylation by GALNT3, FGF23 forms a complex with FGFR1 and KL (coreceptor) which leads to increased renal excretion of Pi, a pro-mineralizing 
agent and decreased 1,25 dihydroxyvitamin D3, causing a decrease in intestinal Pi absorption. NT5E converts AMP to Pi and adenosine, which inhibits the pro-
mineralizing TNAP. Impairment of NT5E function leads to increased TNAP activity and decreased PPi concentration, hence leading to ectopic mineralization. Pi is 
internalized into the peripheral cell by PiT2 and leaves the cell through apoptotic bodies, which cause ectopic mineralization through apoptotic pathways (not shown). 
In MVs an influx occurs of Pi via PiT2 and of Ca2+, which is facilitated by A and PS. This leads to an accumulation of growing hydroxyapatite crystals, eventually 
causing the MVs to burst and the crystals to grow in the extracellular matrix. A: Annexin A5; ABCC6: Adenosine triphosphate-binding cassette, subfamily C, member 
6; ADP: Adenosine diphosphate; AMP: Adenosine monophosphate; ATP: Adenosine triphosphate; BMP2: Bone morphogenetic protein 2; C: Carboxyl; Ca2+: Calcium 
2+; ENPP1: Ectonucleotide pyrophosphatase/phosphodiesterase 1; FGF23: Fibroblast growth factor 23; FGFR1: Fibroblast growth factor receptor 1; G: Glycosyl-; 
GALNT3: UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 3; GGCX: Gamma-glutamyl carboxylase; HA: Hydroxyapatite; KL: 
Klotho; MGP: Matrix gla protein; MMP9: Matrix metalloproteinase; MSX2: Muscle segment homeobox, drosophila, homolog of, 2; MV: Matrix vesicle; NT5E: Ecto-
5-prime nucleotidase or CD73; OC: Osteocalcine; Pi: Inorganic phosphate; SLC20A2: Solute carrier family 20 (phosphate transporter), member 2; PPi: Inorganic 
pyrophosphate; PS: Phosphatidyl serine; RUNX2: Runt-related transcription factor; Smad: Mothers against decapentaplegic, drosophila, homolog of; TGFβ: 
Transforming growth factor β; TNAP: Tissue-non-specific alkaline phosphatase; VEGF: Vascular endothelial growth factor; WNT: Wingless-type MMTV integration site 
family; II, VII, IX, X: Vitamin K-dependent coagulation factors; 1,25 (OH)2 Vit D3: 1,25-dihydroxyvitamine D3 (calcitriol).
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of soft tissue cells[1]. 
These pathophysiological mechanisms are how­

ever not mutually exclusive and display significant 
crosstalk[1]. 

Ectopic soft tissue mineralization is a common finding 
in aging and several common disorders, including 
atherosclerosis, hypertension, diabetes, chronic kidney 
disease and autoimmune diseases, and can be related 
to significant morbidity and mortality in each of these. 
It has been shown that vascular calcification correlates 
with an increased risk of myocardial infarction and that 
it is an independent risk factor for death in patients with 
coronary artery calcification[14,15]. However, in these 
complex, multifactorial disorders, multiple genes are 
likely to contribute, with each gene having only a small 
effect[16]. Contrary, in primary genetic mineralization 
disorders mutations in a single gene or few genes can 
cause an often extreme and life-threatening phenotype. 
Though individually rare, as a group they affect a consi­
derable number of patients with important impact on 
quality of life and high morbidity and mortality rates. 

Ectopic mineralization disorders are conventionally 
classified based on the mechanism through which the 
mineralization takes place: i.e., metastatic or dystrophic 
calcification or ectopic ossification (Table 1)[14]: (1) 
metastatic calcification, due to hyperphosphatemia 
and/or hypercalcemia; (2) dystrophic calcification, 
which occurs in diseased (metabolically impaired or 
dead) tissue under normal calcium and phosphate 
homeostasis[1]; and (3) ectopic or heterotopic ossifi­
cation, leading to true bone formation[1,4,17,18].

For many of these disorders, important advances 
have been made in defining their clinical presentation 
(phenome), their (molecular) etiology (variome) and the 
correlation between both. This has led to novel insights 
and perspectives for the management and treatment 
of the patients, but also supports the complexity of the 
pathophysiology of soft tissue mineralization.

This review will focus on the clinical presentation, 
pathogenesis and management of primary genetic 
soft tissue mineralization disorders due to dystrophic 
(Pseudoxanthoma elasticum, Generalized arterial 
calcification of infancy, Keutel syndrome, Idiopathic 
basal ganglia calcification, Arterial calcification due to 
CD73 deficiency) or metastatic calcification (Hyperpho­
sphatemic familial tumoral calcinosis).

PSEUDOXANTHOMA ELASTICUM
Pseudoxanthoma elasticum (PXE; OMIM#264800) 
is a rare, autosomal recessive connective tissue 
disorder, resulting from ectopic mineralization and 
fragmentation of elastic fibers. The prevalence of PXE 
is estimated between 1/25000 and 1/100000 with a 
carrier frequency of 1/80, although this may be an 
underestimation due to the variability of the phenotype, 
which in some cases may hinder the diagnosis[19-21]. 

Clinical characteristics
PXE primarily affects 3 organ systems, i.e., the skin, the 
eyes and the CV system, albeit with important inter- 
and intrafamilial variability in severity[19,21,22]. Usually the 
skin symptoms are the first to arise, though they are 
not present in all patients, presenting as soft yellowish 
papules in flexural body areas (i.e., neck, axilla, elbow, 
groin and knees) (Figure 2A-E)[19]. These solitary papu­
lar lesions can coalesce into larger plaques. Loss of 
resilience may give the skin a wrinkled aspect and can 
cause an esthetic burden[1,19]. Less frequently, mucosal 
lesions (usually at the inner lower lip) are present (Figure 
2F)[19]. The emergence of additional inelastic skin 
folds[1], especially in neck (and thigh) area(s) can also 
cause functional problems, e.g., when sleeping or riding 
a bicycle[1,19]. 

The most common ocular features in PXE patients 
are peau d’orange and angioid streaks (AS), which 
themselves cause no functional impairment (Figure 2G). 
In later stages choroidal (subretinal) neovascularization 
(CNV) occurs and these neovessels may rupture, 
causing retinal hemorrhage (Figure 2I). Symptoms will 
include metamorphopsia and vision loss, which can be 
permanent if left untreated. More recently, chorioretinal 
atrophy, subretinal fluid independent from CNV, pattern 
dystrophy-like changes, debris accumulation under 
the retinal pigment epithelium, reticular drusen and 
a decreased fluorescence on late phase indocyanine 
green angiography were described[23].

CV symptoms, usually arising when patients are 
30-40 years old, include accelerated coronary and 
peripheral artery disease (hypertension, myocardial 
infarction, intermittent claudication), diastolic cardiac 
dysfunction and gastrointestinal hemorrhage[24]. In 
15% of PXE patients ischemic stroke may occur, at an 
average age of 49[1,24]. Heterozygous carriers usually 
develop neither skin nor eye symptoms but can suffer 
from accelerated atherosclerosis and (mild) diastolic 
dysfunction of the heart[24].

To date, no correlation has been established between 
the PXE phenotype and mutations in the main causal 
gene adenosine triphosphate (ATP)-binding cassette, 
subfamily C, member 6 (ABCC6; OMIM*603234), which 
complicates the prediction of the evolution and severity 
of the symptoms in an individual patient[19,25]. The 
absence of a reliable genotype-phenotype correlation 
suggests that other genes, so-called modifier genes, 
may play an important role in influencing the disease 
course, apart from other factors such as lifestyle, 
environmental factors and - although less probable - 
dietary habits[19]. Thus far, only one promising modifier 
gene, vascular endothelial growth factor A (VEGFA; 
OMIM + 192240) has been identified for the PXE 
retinopathy[26].

Pathogenesis
PXE is caused by mutations in the ABCC6 gene, enco­
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ding an ATP-binding efflux transporter, the substrate 
and (patho)physiological role of which are yet to 
be elucidated[27]. The ABCC6 transporter is mainly 
expressed in the liver and kidneys while only minimally 
present in the organs affected by PXE[28,29]. This led to 
the hypothesis that PXE is a metabolic disorder in which 
a defective transporter causes inefficient transport of 
one or multiple substrates into the bloodstream[28,29]. As 
a result, a deficiency of vitamin K (VK) -dependent and 
-independent mineralization inhibitors occurs, favoring 
ectopic soft tissue mineralization[23,30,31]. The metabolic 
hypothesis was reinforced several times, until very 
recently Ziegler et al[32] reported that a conditional, 
liver-specific Abcc6-/- mouse model does not develop 
ectopic mineralization and concluded that mineralization 
in PXE occurs through a liver-independent mechanism. 
This would correspond with a second, so-called cellular, 
hypothesis which states that the local environment in 
the affected organ systems is altered; in this respect 
it was shown that PXE fibroblasts suffer mild chronic 
oxidative stress because of overexpression of oxidative 

stress-favoring mediators[31,33].
More recently, 3 pro-osteogenic pathways, i.e., 

BMP2-Smad (mothers against decapentaplegic, dro­
sophila, homolog of; OMIM*601366)- runt-related 
transcription factor 2 (RUNX2; OMIM*60021) and trans­
forming growth factor β2 (TGFβ2; OMIM*190220)-
Smad2/3 pathways and the MSX2 (muscle segment 
homeobox, drosophila, homolog of, 2; OMIM*123101)-
canonical WNT (wingless-type MMTV integration site 
family; OMIM*164820) pathway which are associated 
with vascular mineralization, were found to be upregu­
lated in the skin and eyes of PXE knock-out mice 
and in PXE patients (Figure 1)[34]. The relevance of 
BMP2-Smad-RUNX2 signaling was alluded on by 
previous observations in PXE, including the low levels 
of carboxylated (active) matrix gla protein (MGP; 
OMIM*154870)/gamma-carboxyglutamic acid, a potent 
inhibitor of BMP2, the upregulation of several target 
genes of RUNX2 such as SPP1, osteocalcin, matrix 
metalloproteinase (MMP9; OMIM*120361), TNAP 
and VEGFA, the influence of oxidative stress on BMP2 
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Figure 2  Dermatological (A-F) and ophthalmological (G-I) manifestations of pseudoxanthoma elasticum. A, B: Flexural areas can show papular lesions (°) and 
coalesced plaques of papules (arrow); C: Cutaneous peau d’orange; D, E: Additional skin folds; F: Yellowish, reticular pattern on the mucosae of the lip (arrowed); G: 
Ocular fundi show peau d’orange (circle) and angioid streaks (arrowed); H: Comets and comet tails (arrowhead); I: Choroidal and subretinal hemorrhage.
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expression and the overexpression of RUNX2 in calcified 
cardiac tissue of the Abcc6-related dystrophic cardiac 
calcification mouse[34-36]. Furthermore, apoptosis was 
identified as an important process in PXE contributing 
to mineralization, by activation of BCL2 and multiple 
caspases[34].

Some insights in the dysfunction of pro- and anti-
mineralizing factors in the PXE pathogenesis, have 
been described in the PXE murine model and/or PXE 
patients. Several local pro-mineralizing factors seem 
to be upregulated in vitro and/or in vivo (TNAP, BMP2) 
while mineralization inhibitors, such as ecto-5-prime-
nucleotidase or CD73 (NT5E; OMIM*129190), SPP1, 
ankyrin (mouse, homolog of) (ANKH; OMIM*605145) 
and VK-dependent calcification inhibitors, were found to 
be less expressed[37-39]. 

Besides local factors, systemic inhibitors of minera­
lization such as Fetuin A and more recently inorganic 
pyrophosphate (PPi), were shown to be less abundant 
in PXE. PPi is a potent endogenous inhibitor of vascular 

calcification, both in vitro and in vivo, which was 
already shown to be downregulated in PXE fibroblasts, 
thus promoting pro-calcifying stimuli leading to tissue 
mineralization[40,41]. Jansen et al[42] found low PPi 
serum levels in both Abcc6-/- mice and PXE patients, 
and concluded that an impaired ABCC6 transporter 
negatively influences PPi efflux from hepatocytes to 
the hepatic circulation, though the exact mechanism is 
poorly understood. 

Diagnosis
The diagnosis of PXE is a clinical one to begin with, 
based on the presence of typical skin and/ or fundus 
changes. While the skin lesions of PXE can be mimicked 
macroscopically by other disorders (Table 2), the 
presence of peau d’orange and/or AS in the ocular 
fundus can be considered pathognomonic. Diagnostic 
confirmation can be obtained by skin biopsy, showing 
shortened, fragmented elastic fibers as well as mineral 
deposits in the mid-dermis using H&E (hematoxylin 
and eosin) and von Kossa staining. Molecular analysis 
of the ABCC6 gene detects both causal mutations 
in approximately 95% of patients[1,33,43,44]. Sanger 
sequencing is still the gold standard, but should be 
complemented with multiplex ligation-dependent 
probe amplification, to detect larger deletions and 
insertions[45]. If no or only one ABCC6 mutation can be 
identified, it is worthwhile to screen for gamma-glutamyl 
carboxylase (GGCX; OMIM*137167) mutations as 
digenic inheritance has been described[46]. Furthermore, 
the initial presentation of the GGCX-related PXE-
like disorder with coagulation factor deficiency (see 
below) can be identical to PXE[47,48]. Sequencing of the 
ectonucleotide pyrophosphatase/phosphodiesterase 
1 (ENPP1; OMIM*173335) gene is useful when no 
ABCC6 mutations can be detected in a patient with 
a histologically confirmed diagnosis of PXE; digenic 
inheritance of an ABCC6 and ENPP1 mutation has so 
far not been reported[49]. This increasing number of 
genes which may cause PXE as well as the potential 
importance of modifier genes, brought about a gradual 
shift from Sanger sequencing towards the more recently 
introduced next generation sequencing[26,47,50-52]. 

Differential diagnosis
The differential diagnosis of PXE manifestations is 
summarized in Table 2.

Management
To date, PXE management is mainly symptomatic, 
focusing on prevention and treatment of complications[19]. 
For ophthalmological complications, preventive mea­
sures include wearing glasses and avoiding sports and 
activities with a (relative) high risk of (head) trauma or 
increased pressure[19,21,60]. Once fundus changes have 
appeared, an annual control by an ophthalmologist is 
important, as well as weekly self-examination using the 
Amsler Grid. If distortion or metamorphopsia occurs, 
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Table 2  Differential diagnosis of pseudoxanthoma elasticum 
manifestations[1,19,47,49,53-59]

  Disease Distinct differences with PXE

  Beta-thalassemia 
  (PXE phenocopy) 

Severe anemia
Reduced production of hemoglobin 

  PXE-like syndrome 
  (AR; GGCX gene)

More severe cutaneous phenotype not restricted 
to flexural areas

Vitamin K-dependent coagulation factor 
deficiency

  GACI 
  (AR; ENPP1 gene)

Onset in infancy or early childhood
Arterial stenosis 

Early-onset severe myocardial ischemia 
High mortality rate in early childhood

  Fibroelastolytic 
  papulosis, Treatment 
  with D-penicillamine

No ophthalmological or CV phenotype

  Buschke-Ollendorf 
  syndrome 
  (AD; LEMD3 gene)

Skeletal manifestations (osteopoikilosis, stiff 
joints, osteosclerosis)

No ophthalmological or CV phenotype
No mineralization

  Solar elastosis Dermatological features (lentigines, mottled 
pigmentation, actinic keratoses, telangiectasias, 

xerotic texture)
No ophthalmological or CV phenotype

No mineralization
  Late-onset focal 
  dermal elastosis

Onset in 7th to 9th life decade
No ophthalmological or CV phenotype

  Cutis laxa No ophthalmological or CV phenotype
Histopathology: scarce and mottled elastic 

fibers, no mineralization
  A(R)MD (age-related 
  macular degeneration)

No AS
No CV or dermatological phenotype

Less unique lesions (outer retinal tabulation or 
Bruch’s membrane undulation)

  Presumed ocular 
  histoplasmosis

No AS
No CV or dermatological phenotype 

AD: Autosomal dominant; AR: Autosomal recessive; A(R)MD: Age-related 
macular degeneration; AS: Angioid streaks; CV: Cardiovascular; ENPP1: 
Ectonucleotide pyrophosphatase/phosphodiesterase 1; GACI: Generalized 
arterial calcification of infancy; GGCX: Gamma-glutamyl carboxylase; 
LEMD3: Lem domain-containing protein 3; PXE: Pseudoxanthoma 
elasticum. 

De Vilder EYG et al . Variome to phenome: Ectopic mineralization disorders 



the patient should contact his/her ophthalmologist 
immediately[20,23]. Timely treatment with anti-VEGF 
antibodies, such as bevacizumab or ranibizumab, were 
shown to be successful in forcing back neovessels 
and preserving visual acuity[1,20,30]. Prophylactic anti-
VEGF therapy has however not been proven to be 
advantageous[19]. 

The prevention of CV complications consists of 
controlling traditional CV risk factors (e.g., smoking, 
obesity, hypercholesterolemia and diabetes)[1]. Upon 
diagnosis, a baseline screening should be performed 
with measurement of blood pressure, assessment 
of biochemical CV risk factors, echocardiography, 
determination of the ankle-brachial index and duplex 
ultrasound of the arteries of the neck and lower 
extremities. If hypertension is found, further assessment 
with 24-h blood pressure monitoring and an exercise 
test should be done. Further CV management is 
tailored based on the results of this screening, usually 
comprising an annual checkup by a cardiologist and if 
necessary initiation of secondary prevention[24]. Since 
heterozygous carriers suffer CV complications more 
frequently compared to the general population, they 
should also undergo a baseline CV screening and 
regular checkups by a cardiologist[24]. Furthermore, the 
use of anticoagulants, aspirin and nonsteroidal anti-
inflammatory drugs should be avoided as they may 
elevate the risk of gastrointestinal bleeding[1]. When 
complications do occur, standard interventional or 
surgical procedures can usually be applied[24,61]. 

For the skin problems no prevention is possible 
and therapeutic options are scarce. When functional 
problems arise, mainly due to excessive skin folds, 
plastic surgery can be attempted[61]. Possible post-
surgery complications include slower wound healing 
and apparition of skin lesions in the scars[61-63]. Recently, 
Salles et al[64] described a PXE patient in which skin 
lesions in the neck were successfully treated with 
fractional carbon dioxide laser therapy. The post-laser 
reaction - redness, pain, swelling and crusting - was 
the same as seen in normal skin. After a follow-up of 
2 years, the treatment showed an overall satisfactory 
esthetic result, showing improvement of the skin 

texture, irregularity, volume and distensibility. Moreover, 
lipofilling to reduce esthetically disturbing skin folds, 
especially in the neck region, is being evaluated in an 
experimental setting[65].

PXE-LIKE SYNDROME WITH MULTIPLE 
COAGULATION FACTOR DEFICIENCY
In 2007, Vanakker et al[1,47] described a new autosomal 
recessive disorder which was closely related to PXE 
and coined it the PXE-like syndrome with multiple 
coagulation factor deficiency (OMIM#610842). To 
date, the disorder has been described in 12 patients, 
8 of which had molecular confirmation of the clinical 
suspicion[47,48,66-68].

Clinical characteristics
The initial presentation of the PXE-like syndrome is 
nearly identical to that of PXE, making it often difficult 
to distinguish the two diseases in young adults. The 
natural evolution of the PXE-like disorder is however 
completely different and characterized by severe 
cutaneous symptoms with the development of thick and 
redundant skin folds, not restricted to flexural areas but 
variably expanding toward limbs and abdomen (Figure 
3), a mild retinopathy and a deficiency of the VK-
dependent coagulation factors (coagulation factors II, 
VII, IX, X)[1,47,48]. Furthermore, subclinical atherosclerosis 
and cerebral aneurysms have been described[47].

Pathogenesis
Biallelic mutations have been described in the GGCX 
gene, encoding a gamma-carboxylase enzyme which 
performs an essential post-translational modification 
step of a number of so-called VK-dependent proteins, 
including clotting factors and mineralization inhibitors 
(Figure 1). It was shown that the PXE-like mutations 
result in a reduced activity of the enzyme, thus leading 
to inadequate carboxylation (or activation) of these 
VK-dependent proteins. This causes a deficiency of 
coagulation factors and creates an environment which 
favors ectopic mineralization[1]. 

Diagnosis
The diagnosis of PXE-like syndrome is relatively 
straightforward when typical skin lesions are seen in 
combination with a deficiency in the VK-dependent 
clotting factors. Biochemically, a prolonged prothrombin 
time can be found, though the coagulation factor 
deficiency can be very mild[47]. In young individuals, 
the diagnosis should be considered in every patient 
suspected of having PXE in whom no ABCC6 mutations 
are found. Histopathology shows fragmentation and 
calcification of the mid-dermal elastic fibers, being 
located in the periphery of the fiber[69]. Light microscopy 
will not allow differentiating with PXE, but on electron 
microscopy the elastic fibers are more ragged and the 
calcification is located in the periphery of the fibers 

July 16, 2015|Volume 3|Issue 7|WJCC|www.wjgnet.com 562

Figure 3  Cutaneous features of a pseudoxanthoma elasticum-like patient 
with increased amount of generalized thick leathery skin folds.
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(compared to fiber core mineralization in PXE). The 
diagnosis can be confirmed by GGCX sequencing[47].

Differential diagnosis
The differential diagnosis of PXE-syndrome is 
summarized in Table 3.

Management
The management of PXE-like patients is similar to that 
of patients with classic PXE. In most, treatment of the 
coagulation deficiency is not necessary, though the 
use of anticoagulants is not advised. In rare cases, 
supplementation with VK may be useful[47]. 

GENERALIZED ARTERIAL CALCIFICATION 
OF INFANCY
Generalized arterial calcification of infancy (GACI; 
OMIM#20800) is an early-onset, autosomal recessive 
disorder, which has only been described in approxi­
mately 100 mostly Caucasian patients[1,70]. The disease 
typically affects infants of less than 6 mo of age[71,72].

Clinical characteristics
GACI is characterized by arterial stenosis, resulting 
from myointimal proliferation of muscular arteries, 
and early-onset severe myocardial ischemia due to 
extensive deposition of hydroxyapatite in the inner 
elastic lamina of medium- and large-sized arteries[1,70,73]. 
Complications include myocardial infarction, hyper­
tension and congestive heart failure, leading to early 
demise[1]. Other possible manifestations include derma­
tological and ophthalmological findings typical of PXE, 
extravascular (mostly periarticular) calcifications, 
hearing loss and development of hypophosphatemic 
rickets after infancy[49,70,71,74-77]. The majority of patients 
die before the age of 1, with the highest fatality rate 
in the first six months of life, most commonly due to 
myocardial infarction, congestive heart failure, multiple 
organ failure or persistent arterial hypertension[71,72]. 
Recently, Rutsch et al[71] reported a mortality rate 

of 55%, with a marked decrease in the mortality of 
patients, which survived the first 6 mo. In some of 
these, spontaneous resolution of the mineralization was 
seen[78,79].

Pathogenesis
GACI is caused by inactivating mutations in the ENPP1 
gene, which encodes ectonucleotide pyrophosphatase/
phosphodiesterase 1. Under normal conditions, ENPP1 is 
associated with the outer plasma membrane of VSMCs 
in arteries and generates extracellular PPi through 
hydrolysis of ATP to adenosine monophosphate (AMP)[2]. 
PPi is a potent calcification inhibitor, which was already 
shown to hinder mineral crystal growth by binding to 
the crystal surface in osteoblast cultures[1,2,17]. 

Diagnosis
Neonates with GACI can present with rather aspecific 
symptoms, such as poor feeding and respiratory distress. 
Consequently the diagnosis is often only established by 
detecting arterial calcification using plain radiography, 
ultrasound or computed tomography. Typically, diffuse 
vascular and periarticular ectopic mineralization is 
found. GACI should be considered antenatally when 
ultrasonographic anomalies include arterial calcifications, 
hydrops, abnormal cardiac contractility and/or hyper­
echoic kidneys[80]. Confirmation of the diagnosis is 
possible through molecular analysis of the ENPP1 gene 
which detects mutations in approximately 70% of 
cases[49,71,81,82]. When no mutations can be found in 
ENPP1, ABCC6 sequencing should be performed, due 
to an overlap in the phenotypes of both diseases[70,73]. 
An arterial biopsy shows fragmentation in the integral 
elastic lamina with calcium deposition and fibrointimal 
hyperplasia causing luminal narrowing, which can occur 
in places devoid of mineralization[72,83]. Conversely, 
mineralization can occur without luminal narrowing[84]. 
Apart from calcium, the depositions also contain iron and 
mucopolysaccharides[84,85]. The lesions are surrounded 
by a giant cell reaction[86]. 

Differential diagnosis
The differential diagnosis of GACI is summarized in 
Table 4.

Management
The treatment options in GACI are limited and rely 
mostly on the use of bisphosphonates, such as etidro­
nate and pamidronate, which are analogs of PPi. These 
bisphosphonates possibly act through decreasing bone 
turnover, inhibiting further growth of mineralized crystals 
and/or providing an alternative form of PPi that may 
influence the regulation of mineralization[91]. Vascular 
calcifications have been reported to disappear under 
bisphosphonate therapy within a variable time period (2, 
5 wk to 2 years). Calcifications do not tend to reappear 
after cessation of the therapy, although arterial stenosis 
persists[92,93]. Since prolonged etidronate use in GACI 
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Table 3  Differential diagnosis of the pseudoxanthoma 
elasticum-like syndrome[19,47]

  Disease Distinct differences with PXE-like syndrome

  PXE
  (AR; ABCC6 
  gene)

More severe CV and ophthalmological manifestations
Skin lesions are less severe and restricted to flexural areas

No coagulation factor deficiency associated 
EM: mineralization in the core of the EF

  Cutis laxa No retinopathy 
No deficiency of coagulation factors

Atherosclerosis and cerebral aneurysm are infrequent
Histopathology: scarce and mottled elastic fibers, no 

mineralization

ABCC6: Adenosine triphosphate-binding cassette, subfamily C, member 
6; AR: Autosomal recessive; CV: Cardiovascular; EF: Elastic fiber; EM: 
Electron microscopy; PXE: Pseudoxanthoma elasticum.
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patients has been linked to severe skeletal toxicity, 
bisphosphonate therapy should be closely monitored 
and according to some, should be stopped as soon as 
the calcifications have disappeared[94]. Nevertheless, 
the prognosis of patients remains poor with only few 
long-term survivors, the oldest GACI patient being 
25[1,71,79,95]. Recently, Towler et al[96] suggested that 
restoring PPi levels by inhibition of alkaline phosphatase 
(ALP) and/or upregulation of vascular ENPP1 or ANKH-
mediated secretion of intracellular PPi may serve as 
possibilities to limit vascular calcification.

KEUTEL SYNDROME 
Since its first identification by Keutel et al[97] in 1971, 
approximately 30 cases have been described of Keutel 
syndrome (OMIM#245150), which is an autosomal 
recessive multisystem disease with an age of onset in 
childhood (5-15 years)[97,98].

Clinical characteristics
Keutel syndrome is mainly characterized by peripheral 
pulmonary stenosis, abnormal cartilage ossification 
or calcification of typically (para)tracheal, bronchial 
and rib cartilages as well as auricular and nose 
cartilage[99]. Less frequently soft tissue calcification, 
i.e., of blood vessels, brain and kidneys, occurs[1]. 

Other clinical features include CV (ventricular septal 
defect, pulmonary artery hypoplasia, hypertension) 
respiratory (recurrent respiratory infections), skeletal 
(brachytelephalangism, typically sparing the 5th distal 
phalanx, height below the 25th percentile), neurological 
symptoms (subnormal intelligence quotient (IQ) in 
multiple cases) and recurrent otitis media causing inner 
ear or mixed deafness. Patients have a typical facial 
gestalt with mild midface hypoplasia, a depressed nasal 
bridge, small alae nasi and a deep philtrum[100-104]. A 
long-term follow-up of 4 sisters with Keutel syndrome 
showed that all clinical manifestations were progressive. 
Further, these patients developed skin lesions, i.e., 
multiple erythematous, irregularly bordered macular 
lesions without induration, typically after the age of 30. 
Skin biopsy of these lesions failed to show calcification 
or ossification and loss of elastic fibers was only seen 
in the papillary dermis[99]. Nevertheless, the prognosis 
of Keutel syndrome is good in the majority of patients, 
with life expectancy mainly depending on the severity of 
the pulmonary complications[99].

Pathogenesis
Keutel syndrome is caused by loss-of-function mutations 
in the MGP gene, encoding matrix gla protein[1]. MGP is 
an inhibitor of the pro-osteogenic BMP2-Smad-RUNX2 
pathway, by inhibiting BMP2 to bind to its receptor. 
Consequently, MGP, expressed in chondrocytes, functions 
as a local mineralization inhibitor under physiological 
conditions (Figure 1)[105,106]. Impairment of its inhibitory 
function favors pro-mineralizing signaling, leading to 
ectopic mineralization[98]. Moreover, Cranenburg et al[107] 
reported a patient in whom the levels of carboxylated/
uncarboxlated MGP were very low, unresponsive 
to VK supplementation, but in whom high levels of 
phosphorylated MGP were found. Phosphorylation is a 
VK-independent posttranslational modification of MGP 
which may allow binding of calcium crystals in the 
absence of optimal carboxylation. It was hypothesized 
that this phosphorylation-dependent residual MGP 
activity might be sufficient to prevent development of 
arterial calcification[108].

Diagnosis
The majority of Keutel syndrome patients are diagnosed 
during childhood based on clinical presentation and 
radiographic examinations, with abnormal cartilage 
calcification and brachytelephalangism as major signs. 
The clinical diagnosis can be confirmed by sequencing 
of the MGP gene, in which to date 7 loss-of-function 
mutations have been reported[98,104,109].

Differential diagnosis
The differential diagnosis of Keutel syndrome is sum­
marized in Table 5.

Management
No etiologic treatment exists for Keutel syndrome, 
hence management is merely symptomatic, including 
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Table 4  Differential diagnosis of generalized arterial 
calcification of infancy[73,78,87-90]

  Disease Distinct differences with GACI

  PXE
  (AR; ABCC6) 

GACI-like phenotype possible, however 
infrequent

CV phenotype usually less severe
No onset in infancy

Dermatological and ophthalmological 
phenotypes more prominent

  Singleton-Merten 
  Calcification 
  (AD; unknown causal gene)

Dental anomalies (delayed eruption and 
early loss of permanent teeth, alveolar bone 

erosion)
Osteopenia

Acroosteolysis 
  Metastatic calcification 
  due to hypervitaminosis D, 
  hyperparathyroidism or 
  end-stage renal disease

Different distribution of extravascular 
calcification (renal tubules, bronchial walls 
and basal mucosa and muscularis mucosae 

of the stomach)
Microscopic vascular changes in media 

instead of intima 
  Congenital syphilis Only calcification of the (ascending) aorta

Diagnosed mainly in adults
Hutchinson teeth, interstitial keratitis, saber 

tibiae, saddle-shaped nose
Histopathology: endarteritis obliterans of 
vasa vasorum with perivascular plasma 

cells, lymphocytic cuffing and adventitial 
fibrosis

  Iliac artery calcification in   
  healthy infants

Only calcification in the common and 
internal iliac arteries

ABCC6: Adenosine triphosphate-binding cassette, subfamily C, member 6; 
AD: Autosomal dominant; AR: Autosomal recessive; CV: Cardiovascular; 
GACI: Generalized arterial calcification of infancy; PXE: Pseudoxanthoma 
elasticum. 
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(angiographic) dilatation of peripheral artery stenosis 
and bronchodilating agents for respiratory symptoms 
(dyspnea and wheezing); the latter however can be 
inefficient in certain patients[99,108]. Most patients develop 
hypertension before the age of 20, which can be treated 
with antihypertensive medication such as perindopril, 
amlodipine or nifedipine[99].

IDIOPATHIC BASAL GANGLIA 
CALCIFICATION 
Idiopathic basal ganglia calcification (IBGC) is a rare 
neurodegenerative disorder with unknown prevalence. 
The disease is sometimes referred to as Fahr’s disease, 
although the  the patient Fahr described primarily had 
mineralization in blood vessels of the white matter of the 
brain[113]. IBGC affects young to middle aged adults, with 
an average onset in the 3rd or 4th life decade; however 
the disease has also been described in childhood[114-116]. 

Clinical characteristics
IBGC is characterized by bilateral and (almost) sym­
metrical basal ganglia calcifications (Figure 4)[116]. 
Ectopic mineralization may also occur in other brain 
regions, including the nucleus dentatus, thalamus, 
cerebral cortex and centrum semiovale[116,117]. Neurolo­
gical symptoms include neuropsychiatric (cognitive 
impairment, depression, hallucinations, delusions, 
manic symptoms, anxiety, schizophrenia-like psychosis, 
personality changes) and movement disorders (a.o. 
parkinsonism, ataxia due to cerebellar involvement, 
tremor and paresis), as well as headache, vertigo, 
stroke-like events, orthostatic hypotension, dysarthria, 
seizures and papilledema due to raised intracranial 
pressure[116,118]. Both sporadic and familial IBGC cases 
have been reported, the latter predominantly with 
autosomal dominant inheritance[116]. 

Pathogenesis
To date, mutations in 3 genes have been associated 
with IBGC, i.e., solute carrier family 20 (phosphate 

transporter), member 2 (SLC20A2; OMIM*158378), 
the beta polypeptide of platelet-derived growth factor 
(PDGFB; OMIM*190040) and platelet-derived growth 
factor receptor, beta (PDGFRB; OMIM*173410). So far, 
no genotype-phenotype correlation has been found[119]. 
The SLC20A2 gene, encoding a Pi transporter (also 
known as PiT2 which belongs to the type III sodium-
dependent phosphate transporter family), is expressed 
abundantly in a variety of tissues and likely plays a 
housekeeping role in cellular phosphate uptake (Figure 
1)[119,120]. Mutations in the gene have been described 
in more than 40 IBGC families worldwide and in vitro 
resulted in impaired Pi transport, leading to accumulation 
of this pro-mineralizing factor[119,121,122]. 

More recently, a few IBGC patients were reported 
harboring mutations in PDGFB or PDGFRB[123-128]. In 
animal models, Pdgfrb has been identified as an essential 
mediator in the development of pericytes in brain 
vessels, which have a key role in the maintenance of 
the blood-brain barrier (BBB). The BBB is hypothesized 
to be defective in IBGC[123]. Moreover, Villa-Bellosta et 
al[129] found that the PDGFB-PDGFRB pathway seems 
to be involved in phosphate-induced calcifications in 
VSMCs by downregulating SLC20A2. All these data 
suggest that cerebral phosphate homeostasis plays a 
role in the development of vascular mineralization[129]. 
The mineralization generally develops within the vessel 
wall and in the perivascular space, ultimately extending 
to the neuron. Upon progression, the calcifications start 
to compress the vessel lumen, which causes impaired 
blood flow, starting off a vicious circle with further neural 
tissue damage and mineral deposition. The mineral 
depositions tend to vary in composition according to 
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Figure 4  Transverse computed tomography of the brain displaying 
symmetrical bilateral ganglia calcification in an idiopathic basal ganglia 
calcification patient.

Table 5  Differential diagnosis of Keutel syndrome[98,110-112]

  Disease Distinct differences with Keutel Syndrome

  X-linked 
  chondrodysplasia 
  punctata
  (XL; ARSE gene)

Ichtyosis
Cataracts 

Microcephaly, intellectual disability
ASD, VSD, PDA

Failure to thrive in infancy
Age at diagnosis: usually infancy 

  Warfarin embryopathy Pectus carinatum
Congenital heart defects different from 

those seen in Keutel syndrome (ASD, PDA, 
ventriculomegaly) 

  Combined Vitamin 
  K-dependent 
  coagulation factor 
  deficiency

Easy bruising, mucocutaneous bleeding
Osteoporosis with normal serum markers 

  Relapsing polychondritis Age at diagnosis: 40-60 yr
Cartilage inflammation, possibly progressing 

to destruction
Aortic or mitral valvular disease

Facies: saddle nose deformity, multifocal, 
tender chondritis, including variably floppy or 

calcified auricles
Cranial neuropathies, hemiplegia

ARSE: Arylsulfatase E; ASD: Atrial septal defect; PDA: Patent ductus 
arteriosus; VSD: Ventricular septal defect; XL: X-linked.
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their anatomical site and the proximity to vasculature 
calcifications, containing components such as calcium 
phosphate and carbonate; other compounds including 
glyconate, mucopolysaccharide and metals (iron, copper, 
magnesium, zinc, aluminum, silver and cobalt) may 
also be found[116]. Abnormal iron metabolism in IBGC 
has been described in a single case, showing elevated 
serum ferritin, reduced levels of serum iron and iron-

binding capacity. At autopsy iron depositions were 
found in the liver, the spleen, the bone marrow and the 
brain[130]. More recent reports confirm abnormalities 
in metal metabolism (iron, copper, zinc), although 
there is no consensus whether the metal levels are 
elevated (cerebrospinal fluid) or reduced (hair) in IBGC 
patients[131,132].

Diagnosis
IBGC diagnosis is supported by the following criteria: (1) 
bilateral calcification of basal ganglia; (2) progressive 
neurologic dysfunction; (3) absence of biochemical 
abnormalities; (4) absence of infectious, traumatic or 
toxic cause; and (5) a significant family history (although 
sporadic IBGC cases have also been described)[116]. 

However, the diagnosis can only be established by 
obtaining a computed tomography (CT) or magnetic 
resonance imaging (MRI) scan of the brain, show­
ing bilateral, almost symmetric calcifications of one 
or more of the affected brain regions, and ruling out 
other abnormalities (showing bilateral basal ganglia 
calcifications, and developmental defects)[116,133-136]. 
Other possible investigations, which are typically 
normal in IBGC patients, include blood and urine 
testing for hematologic and biochemical (ALP, serum 
creatinine, osteocalcin, serum lactic acid at rest and after 
exercise, 1,25-dihydroxyvitamin D3, serum calcium, 
phosphorus, magnesium, calcitonin, heavy metals 
and parathyroid hormone (PTH)) parameters and an 
Ellsworth Howard test (showing a 10-20 fold increase 
of urinary 3’-5’-cyclic AMP (cAMP) after stimulation with 
200 U of PTH)[116,137-139]. Neurological tests are usually 
normal (electroencephalography, nerve conduction 
studies, pattern shift visual-evoked potential studies) 
or show mild abnormalities (brainstem auditory-evoked 
potentials)[116].

Genetic testing can confirm the IBGC diagnosis. 
Sequencing of SLC20A2 is the first choice, as well as 
deletion/duplication analysis if no mutation is found, 
with a mutation detection rate of 40%. If no mutations 
are found, PDGFRB and PDGFB sequencing can be 
performed; the precise mutation detection rate is 
currently unknown. If no molecular confirmation can be 
obtained, other (genetic) causes of brain calcification 
should be considered (Table 6), before establishing a 
clinical diagnosis of IBGC[116].

Differential diagnosis
Symmetrical calcifications of the basal ganglia are not 
specific to IBGC and a variety of familial and non-familial 
conditions should be considered. It should be noted that 
these calcifications can also be incidental findings on CT 
scan, especially in older individuals (Table 6)[116,140].

Treatment
Since no etiologic treatment is available, manage­
ment and treatment options focus on symptomatic 
relief[116,117,120]. Pharmacologic treatment (e.g., anxiolytics 
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Table 6  Differential diagnosis of idiopathic basal ganglia 
calcification[116,140-143]

  Disease Distinct differences with IBGC

  Basal ganglia calcification as 
  incidental finding on CT scans/  
  aging

In 1% of CT scans
Usually benign

No clear etiology, especially when in 
older patients 
Asymptomatic

  Hypoparathyroidism Early onset: childhood/adolescence
Hypoparathyroidism, hypocalcemia, 

hyperphosphatemia
Alopecia, dry hair

Dental dysplasia, caries
Moniliasis

Albright osteodystrophy symptoms 
(short stature, round facies, obesity, 

short metacarpals/metatarsals)
  Pseudohypoparathyroidism
  (AD/maternal imprinting; 
  GNAS, GNASAS1 and STX1A 
  gene)
 

Early onset: childhood/adolescence
Hyperparathyroidism, hypocalcemia, 

hyperphosphatemia
Baseline cAMP in urine low; after 
Ellsworth Howard test subnormal

Intellectual disability
Albright osteodystrophy symptoms

  Pseudo-
  pseudohypoparathyroidism
  (AD/paternal imprinting; 
  GNAS gene)

Similar phenotype as 
pseudohypoparathyroidism

Normal serum PTH, calcium and 
phosphorus

Intellectual disability (more obvious 
than in PHP)

  Kenny-Caffey syndrome, type 1
  (AR; TBCE gene)

Growth delay
Cortical thickening of long bones

Hypocalcemia, hypoparathyroidism
  PKAN
  (AR; PANK2 gene)

Early onset (10% > 10 yr) 
Pigmentary retinopathy

  DRPLA
  (AD; CAG expansion in DRPLA 
  gene)

Phenotype similar to IBGC

  Neuroferritinopathy
  (AD; FTL gene)

Dysphagia

  PLOSL
  (AR; TYROBP and TREM2 gene)

Radiography: polycystic osseous 
lesions

Frontal lobe syndrome
  Cockayne syndrome; Aicardi-  
  Goutières syndrome

Onset in infancy/early childhood

AD: Autosomal dominant; AR: Autosomal recessive; CAG: Cytosine, 
adenine, guanine; cAMP: 3’-5’-cyclic adenosine monophosphate; CT: 
Computed tomography; DRPLA: Dentatorubropallidoluysian atrophy; FTL: 
Ferritin light chain; GNAS: GNAS complex locus; GNASAS1: GNAS complex 
locus, antisense transcript 1; IBGC: Idiopathic basal ganglia calcification; 
PANK2: Panthothenate kinase 2; PHP: Pseudohypoparathyroidism; PKAN: 
Panthothenate kinase-associated neurodegeneration; PLOSL: Polycystic 
lipomembranous osteodysplasia with sclerosing leukoencephalopathy); 
PTH: Parathyroid hormone; STX1A: syntaxin 1A; TBCE: Tubulin-specific 
chaperone E; TREM2: Triggering receptor expressed on myeloid cells 2; 
TYROBP: Tyro protein tyrosine kinase-binding protein. 
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and antidepressants) for the psychiatric and movement 
symptoms can be attempted[117,120]. Possibly, an early 
causative treatment may reverse the calcification 
process, causing complete recovery of mental functions, 
which was already described in hypoparathyroidism, 
another basal ganglia causing disorder, provided that an 
intervention target can be identified[116]. 

ARTERIAL CALCIFICATION DUE TO 
CD73 DEFICIENCY
Arterial calcification due to CD73 deficiency (ACDC), 
also referred to as calcifications of joints and arteries, is 
an autosomal recessive disease, which usually takes an 
onset in young adulthood[16,144]. 

Clinical presentation
ACDC is mainly characterized by prominent and often 
symptomatic calcification of the large arteries of the 
lower extremities (iliac, femoropopliteal and tibial 
arteries), typically sparing the coronary circulation[16,144]. 
Furthermore, periarticular calcifications of (large and 
smaller) joints of the lower extremities have been 
described[144]. Typical symptoms include claudication, 
hemodynamically significant peripheral obstructive 
artery disease of the lower limbs, joint swelling and 
pain[144]. The disease seems relatively rare, being only 
reported in 3 Caucasian families[144,145]. 

Pathogenesis
To elucidate the molecular etiology of ACDC, genome-
wide homozygosity mapping was performed in three 
families, revealing homozygous and compound heterozy­
gous loss-of-function mutations in the NT5E gene[144,145]. 
NT5E encodes the glycosyl phosphatidylinositol (GPI)-
linked plasma membrane CD73 ecto-enzyme, which 
has 5’ ectonucleotidase activity and thus converts AMP 
to extracellular adenosine and Pi[146]. The enzyme is 
located on the plasma membrane of vascular cells, 
supplying adenosine to cell surface receptors[145]. Adeno­
sine is produced immediately downstream of ENPP1 
in the extracellular ATP-degradation pathway on the 
surface of vascular cells, and a lower adenosine level 
leads to impaired inhibition of TNAP[16,144]. St Hilaire 
et al[144] hypothesized that increased TNAP activity 
reduces PPi levels, allowing calcification to occur (Figure 
1). Since the vascular calcification in ACDC seems 
to be limited to the lower extremities, it is likely that 
members of other ectonucleotidase families, such as 
ectonucleoside triphosphate diphosphohydrolase 1 or 
CD39 (ENTPD1; OMIM*601752) and its isoforms or 
cardiac ectonucleoside triphosphate diphosphohydrolase 
6 or CD39L2 (ENTPD6; OMIM*603160) (members of 
the ectonucleoside triphosphate diphosphohydrolase 
(E-NTPDase) family), may compensate NT5E activity 
in other vascular beds[16,147]. An alternative explanation 
for this predilection may be the particular distribution of 
adenosine receptors in these vascular beds[148].

Diagnosis
An ACDC diagnosis can be established based on clinical 
presentation and a full radiographic workup of the 
patients, as well as determination of the ankle-brachial 
index, which should be reduced. Plain radiography can 
visualize the vessel calcifications; magnetic resonance  
angiography and especially CT angiography can show 
diffuse and gross calcification of obstructing lesions. 
Biochemical indices, including serum electrolytes, 
cholesterol and vitamin D-levels, PTH, C-reactive protein, 
rheumatoid factor and erythrocyte sedimentation rate 
should all be normal. The clinical suspicion can be 
confirmed by NT5E sequencing[144]. 

Differential diagnosis 
Other - often not - hereditary causes of vascular 
calcification have to be excluded, e.g., diabetes mellitus 
type 2 and impaired renal function[144]. Since joint 
swelling and pain was present in all three described 
families, rheumatologic diseases should also be 
excluded[144]. 

Management
Because of the rarity of the disease, no treatment 
guidelines are available. Bisphosphonates, which were 
proven to be successful in GACI, possibly by restoring 
PPi levels, may also be a good treatment option in 
ACDC[91,144]. Adenosine deficiency could be addressed 
using dipyridamole, which inhibits its cellular reuptake 
in vitro and in vivo. Other possible therapeutic options 
include adenosine receptor agonists or direct TNAP 
inhibitors (e.g., lansoprazole), all of which need to be 
further investigated[144]. 

HYPERPHOSPHATEMIC FAMILIAL 
TUMORAL CALCINOSIS 
Contrary to the disorders described above, autosomal 
recessive hyperphosphatemic familial tumoral calcinosis 
(HFTC; OMIM#211900), is characterized by metastatic 
mineralization[1,149]. Patients usually show first signs in 
the first or second decade of life[150]. 

Clinical characteristics
The most prominent clinical manifestation of HFTC is 
periarticular mineralization of the skin and subcutaneous 
tissue, mainly affecting the upper limbs and hip regions, 
although involvement of other localizations (spine, 
temporomandibular joints, metacarpals/metatarsals 
and popliteal space) have also been reported[151]. The 
calcium salt depositions usually present as firm painful 
tumorlike masses, which may gradually enlarge over a 
period of years, causing functional problems including 
restricted joint mobility[149,151]. Complications of the 
overlying skin, including pain, infection and ulceration, 
can cause scarring and deformity[1,149,151]. Other possible 
manifestations of the disorder are dental abnormalities 
and retinal AS[152].
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Pathogenesis
HFTC can be caused by mutations in UDP-N-acetyl-
alpha-D-galactosamine: polypeptide N-acetylga­
lactosaminyltransferase 3 (GALNT3; OMIM*601756), 
fibroblast growth factor 23 (FGF23; OMIM*605380) 
or klotho (KL; OMIM + 604824), all of which are key 
regulators of the phosphate metabolism[1]. GALNT3 
protects intact FGF23, a phosphaturia-causing protein, 
from proteolytic processing by O-glycosylation of 
Threonine residue 178 in a subtilisin-like proprotein 
convertase (SPC) recognition sequence motif. In this 
way, FGF23 is activated and enabled to secrete from 
the cell, while this glycosilation also competitively 
inhibits proteolytic FGF23 cleavage by proteases. 
Hence, this glycosylation step is proposed to be a post­
translational regulatory model. In the presence of 
(nonsense/missense/splice-site) GALNT3 mutations, 
intact FGF23 is cleaved prior to secretion which leads to 
an accumulation of fragmented FGF23 and a reduced 
amount of active FGF23, causing hyperphosphate­
mia[153,154]. In physiological conditions FGF23 binds to 
the FGF receptor 1, of which KL, a β-glucuronidase, is an 
important co-receptor, inducing high affinity interaction 
between FGF23 and its receptor. This activates the 
further downstream effects of this pathway, including 
the maintenance of serum phosphate levels within 
the normal range by increasing renal phosphate 
excretion and both a reduction of synthesis rate and 
acceleration of the degradation of 1,25-dihydroxyvitamin 
D3 to reduce intestinal phosphate absorption (Figure 
1)[155,156]. Moreover, KL works independently from 
FGF23 as an enzymatic inhibitor of renal NaPi-2a 
(sodium/phosphate cotransporter) transporter activity 
- which requires glucuronidase activity, subsequent 
proteolytic degradation and possibly internalization of 
the transporter - eventually leading to reduced renal 
expression of the transporter[157]. FGF23 fulfills its 
biological functions in a tissue-specific way, which is likely 
to be regulated by the limited local distribution of KL[155]. 
Inactivating mutations in FGF23 as well as missense 
mutations in KL cause FGF23 deficiency. Consequently 
renal phosphate reabsorption and 1,25-dihydroxyvitamin 
D3 synthesis is increased, leading to elevated serum 
concentrations of phosphate, 1,25-dihydroxyvitamin D3 
and calcium and ectopic mineralization[155]. 

Diagnosis
Next to clinical examination and family history, the 
diagnosis of HFTC is mainly based on a full radio­
graphic workup: (1) Plain radiographs show the 
typical appearance of periarticular amorphous, multilo­
bulated and cystic calcifications[158]; (2) CT, showing 
cystic loculi with fluid-fluid levels caused by calcium 
layering; (3) MRI imaging, showing lesions of inhomo­
geneous intensity, help to document the extent 
and interconnectivity of individual lesions and can 
help to determine possible surgical approaches; (4) 
scintigraphy, using a phosphate compound radiolabel 

(technetium-99m methylene diphosphonate) is helpful 
in determining the activity level of the disease;  and (5) 
ultrasonography can help to localize fluid collections[149]. 
A typical feature of HFTC is the absence of erosion/
bone destruction by adjacent soft-tissue masses[149]. 
Biochemically, hyperphosphatemia with normocalcemia, 
normal or slightly elevated 1,25-dihydroxyvitamin D3, 
hypoparathyroidism and low intact FGF23 proteins levels 
can be found[152]. A biopsy should be avoided, because 
of the risk of an infection and should only be done as 
a last resort. Histopathology shows that mineralization 
depositions fill up the cystic loculi (active stage), which 
causes them to become encapsulated by fibrous tissue, 
eventually ending the mineralization process (relative 
latent stage)[150].

Differential diagnosis
The differential diagnosis of HFTC is summarized in 
Table 7.

Management
HFTC should be treated according to the location, 
size of the lesion and its relations to its environment. 
A first treatment option is medically reducing hyper­
phosphatemia through phosphate depletion, by dietary 
phosphorus restriction and/or the administration of 
phosphate binding chelating agents such as aluminum 
hydroxide. This method has a variable success rate, 
both in normo- and hyperphosphatemic cases. When 
combined with acetazolamide, which induces phos­
phaturia, a synergistic effect occurs, especially in the 
hyperphosphatemic form of familial tumoral calcinosis[149]. 

A second treatment option is early surgical resection 
of the lesions; however a considerable recurrence rate 
of the lesions, which have the tendency of growing 
faster, poses a major problem. Therefore it is very 
important that resections contain the lesion, and 
preferably should contain a wider perilesional area/
band, including the hypervascular region beyond the 
periphery of the lesion. Broad resections can cause 
problems in case of voluminous lesions, which may 
require extensive reconstructive surgery[149]. Surgery is 
indicated when lesions are painful, recurrently infected, 
ulcerated or when functional impairment occurs[149]. 
Surgical complications include: (1) prolonged drainage 
of the wound, possibly leading to delayed wound healing 
and sinus tract formation; (2) secondary infections 
due to chronic wound problems, especially when the 
disease is extensive or when resection is incomplete; 
and (3) recurrence, which is more frequently seen after 
incomplete resection[167]. 

During the active stage of the disease, primary 
medical treatment of HFTC is justified and may even be 
recommended, because the postresection recurrence 
rate of lesions is even higher in this stage. In the relative 
latent stage, encapsulation occurs which hinders ion 
exchange, thus making surgery more advantageous[149]. 
Alternative treatment options, including steroids, 
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bisphosphonates, calcitonin and radiotherapy, have not 
been proven to be effective[149].

CONCLUSION
Ectopic mineralization disorders comprise a wide range 
of heterogeneous diseases, which can affect a variety 
of tissues, causing important health problems. Insights 
in the mechanisms that cause these diseases have led 
to the observation that many - if not all - are closely 
related to one another from a mechanistic point of view. 
The considerable differences in clinical presentation 
and natural course however suggest that our current 
knowledge is merely the proverbial tip of the iceberg 
and that the subtle mechanisms which render each 
disease to be unique are still largely to be uncovered. 
Nevertheless, the pathophysiological knowledge to date 

has already led to several successful treatment options 
and a number of promising targets for the future. As 
such, ectopic mineralization diseases are a fine example 
for the interaction between the variome and the 
phenome.
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