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Abstract

The Birkhoff’s theorem states that any doubly stochastic matrix
lies inside a convex polytope with the permutation matrices at the
corners. It can be proven that a similar theorem holds for unitary
matrices with equal line sums for prime dimensions.

1 Introduction

Doubly stochastic matrices are square matrices with real entries, all belong-
ing to the interval (0, 1), such that all row sums and all column sums equal
unity [1]. Because the product of two doubly stochastic matrices is again a
doubly stochastic matrix, the doubly stochastic matrices form a semigroup.
They do not form a group because the inverse of a doubly stochastic matrix is
not necessarily a doubly stochastic matrix. Because of their interpretation
as probability distributions, doubly stochastic matrices emerge in several
sections of physics, especially statistical physics. Birkhoff’s theorem [2] says
that any doubly stochastic matrix can be written as a weighted sum of per-
mutation matrices, such that all weights are real and belong to the interval
(0, 1) and the sum of the weights equals unity. So, every doubly stochastic
matrix is contained in a convex set, spanned by the permutation matrices at
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the corners, thus dressing them with a geometric interpretation. The higher-
dimensional solid containing the matrix is called Birkhoff’s polytope [3].

In the present paper, we aim to formulate an equivalent of Birkhoff’s
theorem for unitary matrices. The importance of unitary matrices equally
follows from physics, especially from quantum physics. In contrast to the
n×n doubly stochastic matrices, the n×n unitary matrices form a genuine
group, called the unitary group and denoted U(n). Within this group figures
a subgroup denoted XU(n): the group of n × n unitary matrices with all
row sums and all column sums equal unity [4] [5] [6]. As such, XU(n) acts
as a ‘doubly stochastic’ analogon within U(n). Whereas U(n) is an n2-
dimensional Lie group, XU(n) is only an (n − 1)2-dimensional Lie group,
isomorphic to U(n− 1). Below, we will demonstrate Birkhoff-like properties
for XU matrices, giving them a geometric interpretation.

2 Three theorems

Theorem 1: If a U(n) matrix can be decomposed as a weighted
sum

∑

j mjPj of permutation matrices Pj , then it is, up to a
global phase, member of the subgroup XU(n).

Indeed, let us assume that the matrix M can be written as
∑

j mjPj . Each
of the permutation matrices Pj is a matrix with all line sums equal to 1.
Therefore the matrix mjPj is a matrix with all line sums equal to mj . Hence
the matrix

∑

j mjPj is a matrix with all line sums equal to
∑

j mj . If M is
member of U(n) and has constant line sum, then this constant can only be
equal to a number of the form eiα, where α is an arbitrary real [7]. Hence
M is of the form eiαX with X member of XU(n). �

Thus M belongs to the group of constant-line-sum unitary matrices eiαX, a
group isomorphic to the direct product U(1) × XU(n) and thus isomorphic
to U(1) × U(n − 1).

Before introducing two more theorems, we present and prove two lem-
mas:

Lemma 1: A circulant XU(n) matrix can be written as a weighted
sum of permutation matrices with the sum of the weights equal
to 1.

The proof is trivial, the decomposition consisting of the n circulant n × n
permutation matrices, each with a coefficient equal to one of the entries of
the given XU matrix. �
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Lemma 2: If two matrices can both be written as a weighted
sum of permutation matrices with the sum of the weights equal
to 1, then also the product of the two matrices can.

We consider two n × n matrices with the Birkhoff property, i.e.

a =
∑

u

ma
u Pu and b =

∑

v

mb
v Pv ,

with
∑

u

ma
u =

∑

v

mb
v = 1 .

Here, each Pj denotes an n × n permutation matrix. The product c = ab is

c =
∑

u

∑

v

ma
umb

v PuPv ,

i.e. a matrix of the form
∑

w mwPw. Because, moreover,
∑

w mw =
∑

u

∑

v ma
umb

v

=
∑

u ma
u

∑

v mb
v = 1, we conclude that the product matrix c also has the

Birkhoff property. �

We now are in a position to present and prove the following theorem:

Theorem 2: If a matrix belongs to XU(n), then it can be writ-
ten as a weighted sum of permutation matrices with the sum of
the weights equal to 1.

The proof is by induction on n: we assume that the theorem is valid for
n = N and consider an arbitrary matrix X from XU(N + 1). It can be
written as follows [8]:

X = F

(

1
U

)

F−1 , (1)

where F is the (N + 1) × (N + 1) discrete Fourier transform and U is a
matrix from U(N). The matrix U can be written as follows [5] [9] [10]:

U = aZ1xZ2 ,

where a is a member of U(1), i.e. a complex number with unit modulus,
where x is a member of XU(N), and where both Z1 and Z2 are member of
ZU(N). Here, ZU(n) is the (n−1)-dimensional subgroup of U(n), consisting
of all diagonal n×n unitary matrices with upper-left entry equal to unity [4]
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[5] [6] and thus isomorphic to U(1)n−1. Because of our induction assumption,
the matrix x can be written as

x =
∑

j

mjpj ,

where all pj are N ×N permutation matrices and
∑

j mj = 1. We conclude
that

X = F

(

1
aZ1

∑

j mjpjZ2

)

F−1 ,

such that we have the matrix decomposition

X = X1Y X2

with

X1 = F
(

1

aZ1

)

F−1

Y = F
(

1
P

j mjpj

)

F−1

X2 = F
(

1

Z2

)

F−1 .

First, we note that both
„

1

aZ1

«

and
„

1

Z2

«

are members of ZU(N +

1). For any member Z of ZU(N + 1) holds the property that FZF−1 is a
circulant XU(N + 1) matrix. Thus, because of Lemma 1, both X1 and X2

can be written as a weighted sum of permutation matrices (i.e. obey the
theorem-to-be-proved). Hence, by virtue of Lemma 2, to proof the theorem
for X, it suffices to prove it for Y . For this purpose, we note that, because
of
∑

j mj = 1, we have

(

1
∑

j mjpj

)

=

( ∑

j mj
∑

j mjpj

)

=
∑

j

(

mj

mjpj

)

=
∑

j

mj

(

1
pj

)

.

We thus have

Y = F
∑

j

mj

(

1
pj

)

F−1 =
∑

j

mj F

(

1
pj

)

F−1 .

One can easily verify that any product of the form F
(

1

pj

)

F−1 is a

unitary matrix with upper-left entry equal to 1. Because F
(

1

pj

)

F−1 is

of the form F
(

1

U

)

F−1, this product is also an XU(N + 1) matrix [8].
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A matrix with these two properties is necessarily of the form
(

1

yj

)

with
yj a member of XU(N). Because of the induction hypothesis, we may put

Y =
∑

j

mj

(

1
∑

k my
kpk

)

.

Taking into account that 1 =
∑

k my
k, we find

Y =
∑

j

mj

∑

k

my
k

(

1
pk

)

.

Hence, Y is of the Birkhoff form: a weighted sum of (N + 1) × (N + 1)
permutation matrices with sum-of-weights equal to 1. Hence, X is. Thus
the theorem holds for n = N + 1.

All XU(2) matrices are of the form

X =
1

2

(

1 + eiα 1 − eiα

1 − eiα 1 + eiα

)

.

They can be written as a weighted sum of the two 2×2 permutation matrices:

X =
1 + eiα

2

(

1 0
0 1

)

+
1 − eiα

2

(

0 1
1 0

)

(2)

and the sum of the two weights m1 and m2 equals 1.
Because the theorem holds for n = 2 and the theorem holds for n = N+1

as soon as it holds for n = N , the proof of Theorem 2 is complete. �

Whereas the Birkhoff decomposition (2) of an XU(2) matrix is unique,
the decomposition of an XU(n) matrix with n > 2 is not unique. We now
investigate whether, among the many possible decompositions

∑

j mjPj ,

there is one or more that satisfies not only
∑

j mj = 1 but also
∑

j |mj |2 = 1.
This is a slightly stronger formulation of the |mj | < 1 constraints of the
original Birkhoff theorem on doubly stochastic matrices. We start with the
case where n is a prime:

Theorem 3: If a matrix belongs to XU(n) with prime n, then it
can be written as a weighted sum of permutation matrices with
the sum of the squared moduli of the weights equal to 1.

Before proving Theorem 3, it is interesting to investigate some low-
dimensional examples. The theorem is trivial for n = 2. Indeed, above,
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we have shown that m1 = (1 + eiα)/2 and m2 = (1 − eiα)/2, such that
|m1|2 + |m2|2 = 1.

The theorem is also valid for n = 3. In fact, there exist an infinity of
decompositions of X as a weighted sum of the n! = 6 permutation matrices,
all satisfying

∑6
j=1 |mj |2 = 1. Indeed, any member X of XU(3) can be

written as (1), with F the 3 × 3 discrete Fourier transform and U a 2 × 2
unitary matrix. Hence

X =
1√
3





1 1 1
1 ω ω2

1 ω2 ω









1
U11 U12

U21 U22





1√
3





1 1 1
1 ω2 ω
1 ω ω2



 ,

where ω is the primitive 3 rd root of unity, i.e. ei2π/3 = −1
2 + i

√

3
2 . The

entries of X therefore look like

X11 = ( 1 + U11 + U12 + U21 + U22 ) / 3

X12 = ( 1 + ω2U11 + ωU12 + ω2U21 + ωU22 ) / 3

X13 = ( 1 + ωU11 + ω2U12 + ωU21 + ω2U22 ) / 3

X21 = ( 1 + ωU11 + ωU12 + ω2U21 + ω2U22 ) / 3

...

X33 = ( 1 + U11 + ωU12 + ω2U21 + U22 ) / 3 .

Each product ωaUrs (∀a = 0, 1, 2 and ∀r, s = 1, 2) appears exactly once in
every row and exactly once in every column of X. Therefore it is staight-
forward to check that X can be written as

X =
1

3
[ (U11 + U22)P1 + (U12 + U21)P2 + (ωU12 + ω2U21)P3 +

(ω2U11 + ωU22)P4 + (ωU11 + ω2U22)P5 + (ω2U12 + ωU21)P6 ] + W3 ,

where

P1 =

(

1 0 0

0 1 0

0 0 1

)

, P2 =

(

1 0 0

0 0 1

0 1 0

)

, P3 =

(

0 1 0

1 0 0

0 0 1

)

,

P4 =

(

0 1 0

0 0 1

1 0 0

)

, P5 =

(

0 0 1

1 0 0

0 1 0

)

, P6 =

(

0 0 1

0 1 0

1 0 0

)

,

and W3 is the doubly stochastic matrix with all entries identical, i.e. equal
to 1

3 . We call W3 the 3 × 3 van der Waerden matrix [11]. It can be written
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both as a sum of the circulant matrices and as a sum of the anticirculant
matrices:

W3 =
1

3
(P1 + P4 + P5) =

1

3
(P2 + P3 + P6) .

Here, we apply the following decomposition:

W3 =
1

3
[ p (P1 + P4 + P5) + (1 − p) (P2 + P3 + P6) ] ,

where p is an arbitrary complex number.
Writing

X = m1P1 + m2P2 + m3P3 + m4P4 + m5P5 + m6P6 ,

straightforward computations lead to
∑

j mj = 1 and

∑

j

mjmj =
1

3
[ (U11U11+U12U12 )+(U21U21+U22U22 )+pp+(1−p)(1−p ) ] .

Taking into account that U is a 2 × 2 unitary matrix leads to

∑

j

mjmj = 1 +
1

3
(2pp − p − p ) .

For this sum to equal 1, it suffices that

(

p − 1

2

)(

p − 1

2

)

=
1

4
,

i.e. that, in the complex plane, p is located on the circle with center 1
2 and

radius 1
2 . For the particular choice p = 1, we obtain:

m1 = (1 + U11 + U22)/3

m2 = (U12 + U21)/3

m3 = (ωU12 + ω2U21)/3

m4 = (1 + ω2U11 + ωU22)/3

m5 = (1 + ωU11 + ω2U22)/3

m6 = (ω2U12 + ωU21)/3 .

We are now in a position to prove Theorem 3 for an arbitrary prime. We
will suffice by demonstrating the existence of one appropriate decomposition.
Any member X of XU(n) can be written as (1), where F is the n×n discrete
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Fourier transform and U is a matrix from U(n−1). Hence, the matrix entries
can be written

Xkl =
1

n
[ 1 +

n−1
∑

r=1

n−1
∑

s=1

ω(k−1)r−(l−1)s Urs ] ,

where ω is the n th root of unity. Thus, given the numbers r and s, each
number Urs appears in the expression of every entry Xkl. Therefore, we can
write X as a sum of 1 + (n − 1)2 matrices:

X = Wn +
1

n

∑

r

∑

s

UrsMrs ,

where Wn is the n × n van der Waerden matrix, i.e. the doubly stochastic
matrix with all entries equal to 1

n . We call Mrs the transfer factor of Urs.
It is an n × n matrix with all entries equal to some ωa:

(Mrs)kl = ω(k−1)r−(l−1)s

and with all line sums equal to 0.
As n is prime, a given number ωa appears only once in every row and

only once in every column of Mrs. Moreover Mrs has the structure of a
‘supercirculant’ matrix. A square matrix A is called supercirculant if there
exist two integers x and y, such that, for all {k, l}, we have both Ak+1,l+x =
Ak,l and Ak+y,l+1 = Ak,l (where sums are modulo n). The numbers x and y
(with 1 ≤ x ≤ n − 1 and 1 ≤ y ≤ n − 1) are called the pitches. They are
interdependent, as

xy = 1 mod n .

If x = 1, then y = 1 and A is simply called circulant; if x = n − 1, then
y = n − 1 and A is called anticirculant. The matrix Mrs is supercirculant
because the difference l(K + 1) − l(K) in column number, in which ωa (for
a given a) occurs for two consecutive rows K and K + 1, is a constant
(modulo n) independent of K. Indeed, applying ω(k−1)r−(l−1)s equal to ωa

for both k = K and k = K + 1 yields

(K − 1)r − [ l(K) − 1 ] s = Kr − [ l(K + 1) − 1 ] s modulo n

and thus
sl(K + 1) − sl(K) = r modulo n ,
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such that l(K + 1)− l(K) is a constant, say x. Analogously, for a given ωa,
k(L+1)−k(L) is a constant, say y. We can summarize that the two pitches
x and y follow from

sx = r mod n

ry = s mod n . (3)

Because n is prime, x and n are coprime and so are y and n. Therefore, ωa

does not appear more than once in a column or row of Mrs. As an example,
for n = 5, the eqns (3) yield the following functions x(r, s) and y(r, s):

s \ r 1 2 3 4

1 1 2 3 4
2 3 1 4 2
3 2 4 1 3
4 4 3 2 1

and

s \ r 1 2 3 4

1 1 3 2 4
2 2 1 4 3
3 3 4 1 2
4 4 2 3 1

,

respectively. From the table, one can read that the pitches of M12 for n = 5
are x = 3 and y = 2, respectively, leading to the explicit form

M12 =













1 ω3 ω ω4 ω2

ω ω4 ω2 1 ω3

ω2 1 ω3 ω ω4

ω3 ω ω4 ω2 1
ω4 ω2 1 ω3 ω













,

with ω equal to the 5 th root of unity, i.e. ei2π/5 = (
√

5−1+i
√

10 + 2
√

5 )/4.
We thus can conclude that any transfer matrix can be written as

Mrs =
n
∑

l=1

ω−(l−1)sCl,x(r,s) .

Here, Cl,x, with 1 ≤ l ≤ n and 1 ≤ x ≤ n−1, denotes the n×n supercirculant
permutation matrix1 with a first-row unit entry in column l and a pitch equal
to x. In other words: we have (Cl,x)1,l = (Cl,x)2,l+x = 1.

We thus obtain the following decomposition:

X =
1

n

n−1
∑

r=1

n−1
∑

s=1

Urs

n
∑

l=1

ω−(l−1)sCl,x(r,s) + Wn

=
1

n

n
∑

l=1

n−1
∑

x=1

Clx

n−1
∑

s=1

ω−(l−1)sUr(s,x),s + Wn , (4)

1Note that Clx is a permutation matrix if and only if x and n are coprime.
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where we thus sum over all n(n − 1) supercirculant permutation matrices
Clx. We note here that, because of eqns (3), different values of s in (4) give
rise to different values of r(s, x).

For n 6= 2, we may apply the following decomposition of the van der
Waerden matrix:

Wn =
1

n

n
∑

j=1

Dj ,

where the n permutation matrices Dj are chosen such that they have no 1s
in common and are not supercirculant, e.g. Dj = Qj−1D1, where

Q =























0 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
0 0 0 1 ... 0 0 0
...
0 0 0 0 ... 0 1 0
0 0 0 0 ... 0 0 1
1 0 0 0 ... 0 0 0























and D1 =























1 0 0 0 ... 0 0 0
0 1 0 0 ... 0 0 0
0 0 1 0 ... 0 0 0
...
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0























,

the former being called the shift matrix. Thanks to such choice, the matrix
sets {Clx} and {Dj} do not overlap and the sum

∑

j mjPj consists of two
separate parts:

X =
n
∑

l=1

n−1
∑

x=1

mlxClx +
1

n

n
∑

j=1

Dj .

These parts have the following respective properties:

• The n(n−1) weights mlx of the permutation matrices Clx equal a sum
of n − 1 products:

mlx =
1

n

n−1
∑

s=1

ω−(l−1)s Ur(x,s),s .

Therefore

∑

l x

mlx mlx =
1

n2

∑

l x

n−1
∑

s=1

ω−(l−1)s Ur(x,s),s

n−1
∑

t=1

ω+(l−1)t Ur(x,t),t

=
1

n2

n−1
∑

x=1

n−1
∑

s=1

n−1
∑

t=1

Ur(x,s),s Ur(x,t),t

n
∑

l=1

ω(l−1)(t−s) .
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With
∑n

l=1 ω(l−1)(t−s) = n δst, we obtain

∑

l x

mlx mlx =
1

n

n−1
∑

x=1

n−1
∑

s=1

Ur(x,s),s Ur(x,s),s .

As U is an (n−1)×(n−1) unitary matrix, we have
∑n−1

s=1 Urs Urs = 1.
Hence

∑

l x

mlx mlx =
1

n
(n − 1) .

• The n weights mj of the permutation matrices Dj equal 1
n and there-

fore contribute to
∑

j mjmj with an amount n times | 1n |2 and thus
1
n .

The two parts together thus give rise to

1

n
(n − 1) +

1

n
= 1 . �

We note that the above construction does not work for n = 3 because,
for n = 3, the matrices D1, D2, and D3 are, by coincidence, anticirculant.
Therefore, D1, D2, and D3 coincide with C12, C22, and C32, respectively,
such that the above special-purpose construction for n = 3 was necessary.
As a matter of fact, the proposed Birkhoff decomposition consists of n(n−1)
matrices Clx and n matrices Dj , thus of a total of n2 permutation matri-
ces Pj . Only for n > 3, the relation n2 ≤ n! is valid and there exist enough
permutation matrices to prove Theorem 3 in the generic way.

If n is not prime, then not all transfer matrices Mrs are supercirculant
and the key feature of the decomposition, proposed in the proof, is not
fulfilled. If both r and s are coprime with n, then Mrs is supercirculant.
The other transfer matrices consist of identical blocks of size b × c with

b =
n

gcd(n, r)
and c =

n

gcd(n, s)
.

E.g., for n = 4, the 4 × 4 matrix M12 has two identical blocks of size
b × c = 4 × 2:

M12 =









1 ω2 1 ω2

ω ω3 ω ω3

ω2 1 ω2 1
ω3 ω ω3 ω









, (5)

where ω here is the 4 th root of unity, i.e. i.
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Whether Theorem 3 is also valid if n is a composite number, is left for
further investigation. At least it is valid for the smallest non-prime, i.e. for
n = 4. This can be verified by checking that the decomposition

X =
24
∑

j=1

mjPj

where the weights mj have the values as in the Appendix.

3 A consequence

As already mentioned in Section 2, any n × n unitary matrix U can be
decomposed as

U = eiα Z1XZ2 ,

where eiα is an overall phase factor, X is an XU(n) matrix, and both Z1

and Z2 are ZU(n) matrices. Applying the fact that X can be written as
a weighted sum of permutation matrices, we can conclude that U can be
written as a weighted sum of complex permutation matrices. Here, we define
a complex permutation matrix as a unitary matrix having one and only one
non-zero entry in every row and every column [12] [13] [14].

4 Conclusion

We have demonstrated that all matrices of the group eiαXU(n) can be writ-
ten as a weighted sum of permutation matrices and that, among the U(n)
matrices they are the only ones that can be decomposed that way. The sum
of the weights equals eiα. We prove that the sum of the squared moduli of
the weights can be made equal to unity whenever n is prime, giving a convex
geometric interpretation to the decomposition, as in the standard Birkhoff
theorem. The case of non-prime n is left for further investigation.
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Appendix

An arbitrary member X of XU(4) may be written as
∑24

j=1 mjPj with

m1 = (U11 + U22 + U33)/4

m2 = 1/4

m3 = (U12 + U21 + U23 + U32 + iU12 − iU21 + iU23 − iU32)/8

m4 = (U21 + U23 + iU21 − iU23)/8

m5 = (U12 + U32 − iU12 + iU32)/8

m6 = (U13 + U31)/4

m7 = 1/4

m8 = (iU13 − iU31)/4

m9 = (−U12 − U32 + iU12 − iU32)/8

m10 = (−U22 − iU11 + iU33)/4

m11 = (−U12 + U21 + U23 − U32 − iU12 − iU21 + iU23 + iU32)/8

m12 = (−U21 − U23 − iU21 + iU23)/8

m13 = (−U21 − U23 − iU21 + iU23)/8

m14 = (U12 − U21 − U23 + U32 + iU12 + iU21 − iU23 − iU32)/8

m15 = (−U13 − U31)/4

m16 = (U12 + U32 − iU12 + iU32)/8

m17 = (−U11 + U22 − U33)/4

m18 = 1/4

m19 = (−U22 + iU11 − iU33)/4

m20 = (−U12 − U32 + iU12 − iU32)/8

m21 = (U21 + U23 + iU21 − iU23)/8

m22 = (−U12 − U21 − U23 − U32 − iU12 + iU21 − iU23 + iU32)/8

m23 = 1/4

m24 = (−iU13 + iU31)/4 ,

where the condition
∑

j |mj |2 = 1 is fulfilled. Here, the n! = 24 permutation
matrices have been ordered ‘lexicographically’ as follows:

P1 =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






, P2 =







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0






, P3 =







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1






, ... ,
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P23 =







0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0






, P24 =







0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0






.

In this ordering, the supercirculant permutation matrices are C11 = P1,
C13 = P6, C21 = P10, C23 = P8, C31 = P15, C41 = P19, and C43 = P24.

15


