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Abstract
I present a complete list of hypersurface homogeneous space–times admitting
a non-null valence two Killing spinor, including a new class admitting only
exceptional Killing tensors. A connection is established with the classification
of locally rotationally symmetric or boost symmetric space–times.

Keywords: Killing spinors, hypersurface homogeneity, classification of space–
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PACS number: 04.20.Jb

1. Introduction

This paper is a continuation of the results on homogeneous KS space times obtained in [14]. KS
space–times were defined [8] as non-conformally flat space–times  g( , ), admitting a non-null
valence two Killing spinor X or, equivalently, as the Petrov type D conformal Killing–Yano
space–times. The square of their conformal Killing–Yano two-form is a conformal Killing
tensor K of Segre type [(11)(11)]. In the conformal representant in which the Killing spinor is
of modulus one, the so called unitary representant, K is necessarily an exceptional Killing
tensor, i.e. a non-trivial ( ∼K g) Killing tensor possessing two constant eigenvalues. The clas-
sification of the corresponding space–times depends crucially on the existence of conformal
representants admitting regular or semi-regular Killing tensors (these being defined as Killing
tensors admitting two non-constant eigenvalues or a single non-constant eigenvalue respec-
tively), as then the eigenvalues can be used to set up a preferred coordinate system. The regular
case, which includes a wide range of physically interesting metrics, was dealt with successfully
in [6], where also a classification of the KS space–times was presented, based on the properties
of the spin coefficients in a Weyl-aligned Geroch–Held–Penrose (GHP)-tetrad for the unitary
representant: they were said to be of class 1, 1N , 2, 3, 3N or 4 according to whether ρρ ττ′ ′ ≠ 0
(class 1), ρττ ρ′ ≠ = ′0 (class 1N ), ττ ρ ρ′ ≠ = = ′0 (class 2), ρρ τ τ′ ≠ = = ′0 (class 3),
ρ ρ τ τ≠ = ′ = = ′0 (class 3N) or ρ ρ τ τ= ′ = = ′ = 0 (class 4). As a conformal
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transformation affects the imaginary parts of ρ and ρ′ only by a rescaling, the conformal
representants of classes 1N, 2, 3N and 4 belong to the Robinson–Trautman or Kundt families of
algebraically special space–times; for classes 1 and 3 the real principal null directions always
have a non-vanishing twist. Semi-regular and exceptional Killing tensors can only occur [8] in
classes 1N or 1. The possibility of semi-regular Killing tensors in class 1N was first noticed in
[8], the resulting space–times being hypersurface homogeneous or homogeneous [14]. Class 1
space–times with semi-regular Killing tensors were presented in [13] and all admitted at most a
one-dimensional isometry group. Introducing the functions ϕ ϕ′, defined by

τ Φ ρττ ρϕ τΦ ρ ττ ρ ϕ′ = − ′ − = − ′ ′ − ′ ′3 2 , 3 2 , (1)01 21

class 1 was further sub-divided in classes KS1 and KS2, characterized by1

ϕ ϕ ϕ ϕ+ = ′ + ′ =KS : 0, (2)1

ϕ ϕ+ ′ =KS : 0 : (3)2

the regular class 1 metrics discussed in [6] made up the set ∩KS KS1 2, while the metrics of
[13] exhausted the symmetric difference ΔKS KS1 2. The existence of KS space–times
belonging to ∪⧹ KS KSclass 1 ( )1 2 (hence admitting only exceptional Killing tensors) was
demonstrated in [2]. They were found by investigating the purely Weyl-electric metrics in the
class ⊃KS KS3 2, characterized by

ϕ ϕ− ′ =IKS : ( ) 0. (4)3

Note that ∩ ∩=KS KS KS KS3 1 2 1. In section 2 it will be shown that the extra elements
of ⧹KS KS3 2 are precisely the hypersurface homogeneous2 members of class 1 (including the
homogeneous sub-family discussed in [2]), the metrics of which will be explicitly constructed
in section 3. The present work completely exhausts class KS3. Whether any KS space–times
exist in which condition ϕ ϕ− ′ =I( ) 0 does not hold, is at present still an open question.

KS space–times of classes 2, 3, 3N and 4 are [6] conformally related to Killing–Yano
space–times. All these have been described in [4] and their hypersurface homogeneous
members can in principle be found by suitably restricting the Killing–Yano metrics. However
it is more convenient to construct the complete family of hypersurface homogeneous KS
space–times in a coordinate invariant way and the resulting hypersurface homogeneous
metrics are presented in sections 5–7.

It turns out that the hypersurface homogeneous members of classes 3 and 4 are precisely
given by the locally rotationally (or boost) symmetric space–times (13.1), (13.2) and (13.14)
of [9] (see also [12]).

Notations and conventions follow [2], which is based on the GHP [5] and NP formalisms
[10], as presented in [9]: the GHP weighted operators ′ ′þ, þ , ð, ð generalize the NP operators

Δ δ δD, , , , corresponding to the basis one-forms k ℓ m m( , , , )a a a a , while the GHP variables
κ σ ρ τ′ ′ ′ ′, , , replace the NP variables ν λ μ π− − − −, , , . All calculations were done with the
aid of the Maple symbolic algebra package3 and the properties of the obtained metrics were
checked with Mapleʼs differential geometry package [1].

1 There was a print error in equation (40) of [13].
2 Obviously hypersurface homogeneity is not a conformal property, but the name ‘hypersurface homogeneous KS
space–times’ appearing in the title may be justified as follows: if a Petrov type D conformal representant is
hypersurface homogeneous then (because of the alignment of the Killing spinor with the Weyl spinor) the modulus of
the Killing spinor is a geometric invariant and is therefore constant on the surfaces of homogeneity, such that also the
unitary representant is hypersurface homogeneous. Vice versa, when the unitary representant is hypersurface
homogeneous then any conformal factor which is constant on the hypersurfaces of homogeneity will generate a
conformal representant which is hypersurface homogeneous too.
3 A set of special purpose routines for the GHP and NP formalisms can be obtained from the author.
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2. Main equations

I first present the main equations describing a KS space–time; for the details the reader is
referred to [6, 13].

Choosing the spinor basis such that

= ι( )X Xo , (5)AB A B

the Killing spinor equation

=′ X 0, (6)A A BC( )

reduces to

κ σ= = 0 (7)

and

ρ= −X Xþ , (8)

τ= −X Xð . (9)

These equations are accompanied by their ‘primed versions’, namely (as ′ =X X )
κ σ′ = ′ = 0 and ρ′ = − ′X Xþ , τ′ = − ′X Xð . The Weyl tensor is then of Petrov type D (or O)
and k ℓ m m, , , 4 are its principal null directions (Ψ Ψ Ψ Ψ= = = = 00 1 3 4 ).

In the unitary representant X| | is constant and hence

ρ ρ τ τ+ = + ′ = 0. (10)

Herewith one obtains

(a) the integrability conditions expressing the existence of the Killing spinor:

ρ ρ τ τ τ ρ′ − ′ = ′ − ′ = ′ − ′ =þ þ 0, ð ð 0, þ ð 0, (11)

(b) the GHP equations:

ρ =þ 0, (12)

ρ ρτ Φ= +ð 2 , (13)01

τ ρτ Φ= +þ 2 , (14)01

τ =ð 0, (15)

ρ τ ρρ ττ Ψ′ − ′ = − ′ − − − Rþ ð
1

12
, (16)2

Φ ρ Φ τ= − = −, , (17)00
2

02
2

4 ι ι ι= = =k o o ℓ m o, ,a A B a A B a A B˙ ˙ ˙ .
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ρρ ττ= − − ′ + ′E
R

12
, (18)

E being the real part of Ψ = +E Hi2 , and
(c) the Bianchi equations:

Φ ρ Φ τρ= − +( )þ 4 5 , (19)01 01

Φ ρ Φ ρΦ τ Ψ ττ Φ Ψ Φ′ = ′ − + + − + − +⎜ ⎟⎛
⎝

⎞
⎠( ) R

þ 3 2 ð
24

, (20)01 01 12 2 11 2 11

Φ τ Φ τρ= − +( )ð 4 5 , (21)01 01

Φ τΦ τΦ ρ Ψ ρρ Φ Ψ Φ′ = − − − + ′ + − − −⎜ ⎟⎛
⎝

⎞
⎠( ) R

ð 3 2 þ
24

, (22)01 01 10 2 11 2 11

μ ρ Ψ Ψ τΦ τΦ Ψ Ψ Φ= ′ − − − + ′ − + −⎜ ⎟
⎛
⎝

⎞
⎠( ) ( ) R

þ 3 3 3 þ 4 2
24

, (23)2
2 2 12 21 2 2 11

τ τ Ψ Ψ ρ Φ ρΦ Ψ Ψ Φ= − + ′ − − ′ + + +⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) R

ð 3 3 3 ð
24

. (24)2
2 2 10 21 2 2 11

All these equations must be read as being accompanied by their ‘primed’ and complex
conjugated analogues. They can be simplified by introducing the (real) 0-weighted quantities
U and V , defined by

ρρ= − − ′R U V8( ) 16 , (25)

Φ ρρ= + − ′U V 2 , (26)11

( ′ =U U , ′ =V V ). One has then, by (18)

Ψ ρρ ττ= ′ − + + ′ +U V H
1

3
( 2 2 ) i . (27)2

3. Hypersurface homogeneous KS space–times of class 1

3.1. General properties

It is advantageous here to define, besides ϕ and ϕ′, new 0-weighted variables w (real) and ζ
(complex), with ′ =w w and ζ ζ′ = , by

ρ ρ′ = ′ = − wþ þ i , (28)

ϕ ρ ϕϕ
τ

ζ ϕ
ρ

′ = ′ ′ + +
⎛
⎝⎜

⎞
⎠⎟

w
þ 2 i . (29)

2

Herewith one rewrites the Bianchi equations in the following form:

ϕ ρ
τ

τ ϕ= −( )þ
2

, (30)
2

4 2

ϕ
τ

τ ϕ ϕ= −
′

+ − −( )w Hð
1

2 i ( ) 2 , (31)4 2
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ϕ
ϕ

τ
τ ϕ ϕ ρρ

ρ
′ = − − ′ + + ′ − +

⎛
⎝⎜

⎞
⎠⎟V Hð 2 2 2 2

i

2
þ , (32)

2

ρ ϕ ϕ= − −( )U Hþ 3i , (33)

ρρ
τ

ϕ ϕ τ= ′
′

− ′ + +( )V H wð i ( 2 ), (34)

τ τ ρρ ρρ
τ

ϕ ϕ ζ= + − ′ − ′
′

+ ′ +( ) ( )H Uð 2i 2 4 2i 2 2 , (35)2

together with their primed and complex conjugated analogues (taking into account ρ ρ′ = −
and τ τ′ = − ). Applying the commutators involving ρ′þ and using (28) yields two further
relations, namely

ρ ρρ ϕ ϕ τ= ′ + + − −( )w Vþ 2i 2 2 2 2 , (36)2

ρρ
τ

τ ζ= − ′
′

+( )wð 2i 2 . (37)2

Herewith all ‘first level’ integrability conditions on ρ ρ τ τ′ ′, , , are identically satisfied. It is
now easy to investigate the relation between hypersurface homogeneity, the electric and
magnetic parts of the Weyl tensor and the functions ϕ ϕ′, .

First note that in a hypersurface homogeneous space–time all 0-weighted GHP quantities,
such as ρρ ττ′ ′ U V w, , , , and H are functions of the 0-weighted scalar5 X. This suggests to
define real and 0-weighted scalars r and m ( >r m, 0) by

ρρ= ′ = ±r Q Q( 1), (38)2

τ=m . (39)2 2

Expressing that = =r X m X 0a b a b[, , ] [, , ] implies

ϕ ϕ− + − =( )H w 2i 0, (40)

ϕ ϕ− − ′ =( )Qm w r2i 0, (41)2 2

ϕ ϕ− − =( )Qm w r2i 0, (42)2 2

from which one immediately infers ϕ ϕ′ = . Denoting with i the set of hypersurface
homogeneous space–times of class i ( =i 1, 1 , 2, 3, 3 , 4N N ), it follows that ⊂ KS1 3.

We now show that ⧹ ⊂ KS KS3 2 1: evaluating the imaginary part of ð (4) with (20, 21),
one finds

ϕ ϕ ϕ ϕ− + − ′ + =( )( ) ( )H w 2i 0, (43)

such that, provided solutions do not belong to KS2, again (40) follows. Herewith (36) implies

ρ ϕ ϕ ϕ= + + + − −
⎛
⎝⎜

⎞
⎠⎟H m

Q
r V

m
þ 4i

2

2
, (44)2 2

2
2

together with a similar equation for ′Hþ , with which the real part of ð (4) simplifies to
ϕ ϕ ϕ ϕ′ + ′ − =( )( ) 0 and hence

5 By (8, 9) X is a constant in class 4 only.
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ϕ ϕ′ = . (45)

Acting with the operators ′þ, þ on (45) gives then

ϕ ϕ= − + −( )H
Qr m

m
2i , (46)

2 2

2

ζ ϕ= −( )
m

m
2

2 , (47)
2

4 2

the ′ð, ð derivatives of which lead to

ϕ ϕ ϕ= + − + −( )U Qr m
Qr

m m
3

3

2
2 , (48)2 2

2

2

2

2

ϕ ϕ ϕ= − − + + +V Qr m
Qr

m

3

2
2 . (49)2 2

2

4
2

All 0-weighted quantities (and hence all invariants) become then algebraic functions of m r,
and ϕ, with

ϕ ϕ ϕ ϕ ϕ ϕ=
−

= − = −( )
r

r

m
X m

m
X

m

m
Xd dlog , d dlog , d 2 dlog , (50)

2

2 4

2

implying that the corresponding space–times are hypersurface homogeneous.
Herewith we have demonstrated that the hypersurface homogeneous members of class 1

are precisely the solutions for which ϕ ϕ ϕ ϕ− ′ = ≠ ′ +I( ) 0 , together with the hypersur-
face homogeneous members of the regular family ∩KS KS1 2. Denoting the latter as  r1,

we have:
Property 1

∪= ⧹ ( )KS KS .r1 3 2 1,

In [14] we showed already that the purely Weyl-electric members of KS3 are (space–
time) homogeneous. It is easy to see now that a stronger result holds:

Property 2
Purely Weyl electric KS space–times of class 1 belong to KS3 and are homogeneous.

Proof. Substitute H = 0 in (35), to obtain an expression for ζ

ζ ϕ ϕ= − + − + ′( ) ( )m Q
m

r
U m4 2 2 . (51)2

2

2
2

This enables one to simplify the ϕ′[þ, þ ] commutator relation to

ϕ + =( )m E m 0, (52)2 2

implying, for non-conformally flat space–times, that ϕ is real. Similarly ϕ′ is real and the KS3
condition (4) holds trivially.

With a bit of extra work we can also demonstrate:
Property 3
Purely Weyl-magnetic solutions of class 1 do not exist.
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Proof. Putting E = 0 in (18) yields

− = −V U m Qr
3

2

1

2
, (53)2 2

which allows one to obtain, together with (33, 34), all derivatives of U and V :

τ= +U H wð
1

2
i (5 ), (54)

ρ ϕ ϕ= − − + −( )( )V H wþ
1

2
8 6i i . (55)

Applying the ′[ð , ð] and [ð, þ] commutators to U leads then to expressions, the imaginary
part of which reduces to the KS1 condition (8) and the real part of which results in

ρ ζ ϕ ϕ ϕ= − − + + ′ − +
⎛
⎝⎜

⎞
⎠⎟( )H Qr m Q

r

m
U

H

m
þ 2i 4 2 2 2 2i . (56)2 2

2

2 2

Taking the þ and ð derivatives of (8) shows that also the KS2 condition (9) holds and that

ζ ϕ= + −m Q
r

H w2 i (3 ). (57)2
2

Herewith the ϕ′[ð, þ ] commutator relation yields an expression for w

ϕ ϕ
ϕ= − − + −

⎛
⎝⎜

⎞
⎠⎟( )w

m
Qr m U

H

m
mi 2 2

i
3 , (58)

2
2 2

2
4 2

substitution of which in (36), (37) leads to an inconsistency, namely
ϕ ϕ+ = − =m m2 2 04 2 4 2 .

3.2. KS3⧹KS2

According to the results of the previous paragraph hypersurface homogeneous KS space–
times of class 1 either admit only exceptional Killing tensors (and are then characterized by
ϕ ϕ′ = and ϕ ≠R 0), or they admit regular Killing tensors and have ϕ ϕ′ = and ϕ =R 0. In
both cases the explicit metrics can be found by first translating the previously obtained
invariant information into Newman–Penrose language. Aligning the tetrad as before, we will
fix a boost and a spatial rotation such that ρ = Qri (hence μ = ri ) and τ = m. From the
Newman–Penrose equations and (17), (18), (25), (26) one immediately obtains then

ε α γ ε= =Q
r

m
Qi , , (59)

β α ϕ= = −( )
m

m
1

2
2 , (60)2

together with

ϕ ϕ ϕ ϕ= + − − +( )( )( )R
m

Qr m m m
4

5 4 2 , (61)
4

2 2 4 2

Ψ ϕ ϕ= + − +( )( )( )
m

m m Qr m
4

3
2 . (62)2 4

2 2 2 2
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Note that by (50) r m and ϕR are constants. We therefore put

=m kr, (63)

ϕ ψ= − +( )k Qk r i , (64)2 2
0
2

with k r, 0 constants ( >k 0 and r0 real or imaginary) and ψ a real function of r. Integrating
(50c) gives then

ψ ψ− + = − −( )( )Q Lr Q Lr r r r k r( )( ) , (65)0
2 2 2 4

0
2

with L a constant of integration, while (50a) gives

ω ω ω ωψ= − + −( )( )r k Qd 2 i . (66)1 2 3 4

As ψ is real, the positivity of the right hand side of (65) implies that only the following cases
can occur:

(a) ≠ r0 0 and L are real and arbitrary, the coordinate domain in which ψ (and hence ) is
real, being the interval − +r r] , [with

= + + ± + + −±
⎡
⎣⎢

⎤
⎦⎥( )( ) ( )r r k L r k L k r2 1 1 4 , (67)2

0
2 4 2

0
2 4 2

2
4

0
4

1 2

(b) ≠ r0 0 is imaginary, ≠ L0 is real and

> + ∈ − +
⎤⎦L r k r r r1 , , [, (68)0

2

(c) ≠ r0 0 is real, ≠ L0 is imaginary and

∣ ∣<∣ − ∣ ∈ − +L r k r r r/ 1 , ] , [. (69)0
2

It is easy to check that < −r r0 if >k 1 and <+r r0 if < <k0 1.The case =r 00 belongs to
∩KS KS1 2: this is the regular situation, which will be dealt with in section 3.3.

Introducing new (real) basis one-forms by

Ω ω ω Ω ω ω Ω ω ω Ω ω ω= − = + = + = −( ) Q Qi , , , , (70)1 1 2 2 1 2 3 3 4 4 3 4

it follows from (66) that Ω Ω+ k4 1 is exact:

Ω Ω
ψ

+ =k r
1

2
d . (71)4 1

The line-element reads now

Ω Ω Ω Ω= + − +( )s Q Qd 2 , (72)2 12 22 32 42

and the Cartan equations become

Ω Ω Ω= ∧Qk
r

r
d 2 , (73)1 2 0

2
3 2

Ω Ω Ω Ω Ω Ωψ= − − ∧ − ∧( ) )k

r
Qkr Qkrd 2 2 , (74)2 2

0
2 3 1 3 4
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Ω Ω Ω Ω Ω Ωψ= − + ∧ − ∧ ⎟
⎞
⎠( )Q

r
r k r

r
d 2 2 , (75)3 2 1 3

0
2 4 2 3 4

Ω Ω Ω= ∧Qk
r

r
d 2 . (76)4 3 0

2
2 3

The fact [14] that in the homogeneous case a closed (constant) linear combination of Ω2 and
Ω3 exists, suggests in the present case to look for a function  r( ) such that Ω Ω+ 2 3 is
closed. This leads to an over-determined set of two differential equations for 

ψ + − + =  ( )( )k r Q r k r 0,r,
2 2

0
2 2

ψ − − + =  ( )( )r Qk r k r 0, (77)r,
2 2 2

0
2

which, remarkably, under (65) has a unique solution, determined by

ψ− + + − = ( )k r r Qk k r r2 0, (78)2 2 2
0
2 4

0
2 2

or, as L in (65) is only defined up to sign, by

ψ
ψ

= +
−

≡
−

−


( )
Q Lr

k r r

r k r

k Q Lr( )
(79)

0
2 2

2 4
0
2

and hence

− + + − = ( )k r r kLr r k r2 0. (80)2 2 2
0
2 2 4

0
2

Further integration depends on whether  is real or complex:

3.2.1.  real.  real can only occur in the cases (67), (68) above: L is real and r0 is real or
imaginary. Introducing real functions x y, such that Ω Ω+ = y xd2 3 , the second Cartan
equation becomes

Ω

ψ

ψ ψ

− ∧ −
−

× + − + ∧ − ∧ =




 ( )
( )

( )

Qkr
y

r
r x

y

r k

k Qkr k x x y

d d 2
1

1 d d d 0. (81)

0
2

2 2

2 2
0
2 4 4

When the coefficient of Ω∧xd 4 is non-vanishing (which happens precisely when ≠L 0), Ω4

can then be calculated easily. Proceeding in the same way with (76) to find Ω3, we finally
obtain

Ω
Σ

− = + +
−


L Qk z x Qk r

r
r

Q

y
y2 d 2 d d , (82)4 2 2

0
2

2

Ω− =
−

− + −
  ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
L

y r k r

kr

kr z

r y

Qr

ky
W x

r

kr y
z2

4
d

2
d , (83)3

2 4
0
2 2

0
2

0
2

with the auxiliary functions Σ± defined by

Σ = ± ± ∓±  ( )k r r r k r (84)2 2 2
0
2 2 4

0
2
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and with W a function, which by (75) is restricted to be independent of r y, and z: =W W x( ).
However, as (1) the curvature components and the spin coefficients depend only on r, (2) the
null tetrad is invariantly defined and (3) (71) holds, the function W cannot appear in the
classification algorithm [7] and6 one can put, without loss of generality, W = 0. The
corresponding expressions for Ω1 and Ω2 read then

Ω
Σ
Σ

− = − − −+

−
L Qkz x

Q

kr
r

Q

ky
y2 d d d ,1

Ω− =
−

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
L

k r r

r
y

krz

r y
x

r

kr y
z2 d

2
d . (85)2

2
0
2 2

0
2

0
2

When, on the other hand, L = 0 (which requires r0 to be real), the construction of the
tetrad basis vectors demands the explicit integration of the Cartan equations. The procedure is
standard and after repeated use of a Cartan–Karlhede argument to eliminate free functions,
one obtains

Ω

Ω

Ω

= − − − − −

= − − + − + −

= − − +

− −

−

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

k C y z
Qk r

k r r r r r

k QS r r y k Qz r r r k r r r

k k r r Qkz x
QS

k
y

d d
2

d ,

d 2 d ,

2 d d ,

1
4

0
2

4
0
2 2 3 2 2

0
2 1 2

2 2
0
2 1 2 2 2

0
2 1 2 4

0
2 2 1 2

3 4
0
2 2 1 2

Ω = + + − −
− −

k kC y k z
kQ

r k r r r r rd d
2

d , (86)4 2 4
0
2 2 3 2 2

0
2 1 2

with =S k r xsin (h)2 2
0
2 and =C k r xcos (h)2 2

0
2 if <k 1 ( >k 1).

Note that, because of (80) k = 1 is only allowed if ≠L 0; then also Q = 1, as otherwise
the space–time is conformally flat (Ψ = 02 ).

3.2.2.  not real. As remarked above, this is the case where r0 is real and ≠ L0 is
imaginary. In a way, this is easier than the real case, as the one-forms Ω2 and Ω3 are
determined by taking the real and imaginary parts of Ω Ω+ = + P x y( ) (d id )2 3 (P
complex and x y, real). The second and fourth Cartan equation allow then to find P and Ω4.
With ψ defined by (65), the solutions become

Ω

Ω

Ω

λ ψ

λ
λ λ

λ λ λ ψ λ

λ λ ψ λ

= − − − −
−

=
− − −

= − +

+ −

−

  





⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )( )Q

k
x y

k
z

r

k r r
r

k r r k
Q z x z y

k r r r z z x

Q r z z y

2
d d

1
d

2
d ,

sgn ( 1)
( sin 2 d cos 2 d ),

1
(( cos 2 sin 2 )d

( sin 2 cos 2 )d ),

y x
1

, ,

2

0
2 2

2 0
2 2

1 2

3
0
2 2

1 2

6 This argumentation will be referred to henceforth as a ‘Cartan–Karlhede argument’.
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Ω
λ ψ

= − + +
−  

( )( )Q
x y z

r

r r
r

2
d d d

1

2
d , (87)y x

4
, ,

0
2

0
2 2

where λ = L| | and − log ( =  x y( , )) is an arbitrary solution of the Liouville equation

λ+ + − =Z Z k k r esgn ( 1) 0. (88)xx yy
Z

, ,
4

0
2 2

Although the general solution of (88) is defined up to an arbitrary analytic function, again the
Cartan–Karlhede argument allows one to put

λ= − − + ( )k k r x y1 sgn ( 1) . (89)3
0
2 2 2

3.3. 1;r

Having found all the exceptional hypersurface homogeneous KS space–times we now
investigate, in view of property (1), the regular family  r1, . The relevant equations can be
obtained by putting =r 00 in equations (64)–(79). By (65) L (and hence also ) is then
necessarily real and ∈r L]0, [, while, by (73), (76), Ω1 and Ω4 are exact. This guarantees
that the first term of (82) can be absorbed in the last term ( =z z x( )) and hence

Ω− =L
Q

y
y2 d . (90)4

The fourth Cartan equation gives now no extra information and Ω3 has to be calculated by
explicit integration of (75). The resulting expression

Ω ψ
ψ

ψ=
− +

+ +⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟( )

L
r

Ly QL r Qr L
y x

Lr

r
z2 d

4( )
d , (91)

Q
3

2

2 3
2

2

4

suggests the coordinate transformation = −ψ t
r t

2 1
2 . By (65) this implies = +tL

r t

2 1 and, after

→y eQy and a rescaling by L2 , the canonical null tetrad can then be written as follows:

(a) Q = 1:

ω ω

ω

ω

= = − −
+

−

= +
+

+

= − +
+

+

−

−

−

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( )

k

t

t
y

kt

t

e
x e z

y

t
e x t e z

y

t
e x t e z

i

4

d
d

1 2
d 2 d ,

d

4

1

2 1
d 4 d ,

d

4

1

2 1
d 4 d . (92)

y
y

y y

y y

1 2
2

3
2

2

4
2

2

(b) = −Q 1:

ω ω

ω

= = − −
+

−

= − +
+

+

− −

−

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

k

t

t
y

kt

t

e
x

e
z

y

t
e t x

e
z

i

4

d
d

1 2
d

8
d ,

d

4

1

2 1
d

4
d ,

y y

y
y

1 2
2

3
2

2
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ω = − −
+

+−⎛
⎝⎜

⎞
⎠⎟( )

y

t
e t x

e
z

d

4

1

2 1
d

4
d . (93)y

y
4

2
2

For all solutions discussed in the present paragraph, i.e. (86), (87), (92), (93), it is clear
from (71), (72) that the hypersurfaces of homogeneity are space-like when = − <Q k1, | | 1
and time-like in all other cases (note that, by (62) the case = = −k Q| | 1, 1 is con-
formally flat).

4. Hypersurface homogeneous KS space–times of class 1N

When μ = 0 (13’) implies Φ = 012 . There are then always conformal representants [8]
admitting a regular or semi-regular Killing tensor. The semi-regular case was treated in [8]
and [14]: all solutions turned out to be T3-homogeneous of Bianchi class VIII or (space–time)
homogeneous. In the regular case there are no homogeneous solutions [14], but hypersurface
homogeneous solutions do exist: they can be constructed explicitly, along the same lines of
the previous paragraph, and turn out to be precisely the regular limits (i.e. in which the real
part ϕ vanishes) of the space–times considered in [8]. Their canonical (Weyl-aligned) null-
tetrad can be simplified to the following form:

ω ω

ω

ω

= = − − +

= + + −

=

−

−

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠r e k x e z y

k

r

r

k e r x e r z

y

sin 2 d
1

2
d

i

2
d

1

2

d

sin
,

2 (1 cos )d
1

2
(1 cos )d ,

d . (94)

ky ky

ky ky

1 1 2 2 2

3 2 2 2

4

The r x, or z = constant coordinate surfaces are time-like (while the y = constant surface is
clearly null): the space–time is T3-homogeneous, with Killing vectors given by ∂ ∂,x z and

∂ − ∂ − ∂z x2 2z x k y
1 . The Bianchi type is VI0.

In the next sections we briefly consider the remaining regular cases, classes 2, 3, 3N

and 4.

5. Hypersurface homogeneous KS space–times of class 2

When ρ μ= = 0 the NP tetrad can be fixed, modulo a remaining boost, by requiring τ to be
real. By (8), (9) hypersurface homogeneity implies then that the operators ΔD, and δ δ+ are
identically 0 (when acting on invariantly defined quantities). From the Bianchi and NP
equations it follows then that ε and γ are real and β α τ= − Hi (2 ), with

δτ δ τ τ δ τ= − = + =( )H H U V Hi 2, 2i 2 , i . (95)2

Hence

τ+ = =V V constant (96)2
0

and

ω ω τ− =
H

2i
d , (97)1 2
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with τ=H H ( ) an arbitrary function. The Cartan equations show then that ω3 and ω4 are
closed, allowing to partially fix a boost such that ω3 is exact. We have then ε = 0 and
α τ τ= − H2 i (4 ) and the remaining Cartan equations become

ω ω ω ω ω ωτ τ+ = − ∧ + ∧( ) Hd i 4 , (98)1 2 1 2 3 4

ω ω ωγ= − ∧d 2 , (99)4 3 4

while the NP equations reduce to γ =D V2 0 and δγ δγ= = 0. Like for the (space–time)
homogeneous situation (occurring for H = 0, i.e. when τ is constant), ω ω2 3 4 is then the metric
of a two-space of constant curvature. Distinguishing the flat ( =V 00 ) and non-flat ( ≠V 00 )
cases, one obtains the following solutions:

(a) ≠V 00 :

ω ω τ+ = + −⎛
⎝⎜

⎞
⎠⎟V

x
y z

y2
d

d d
, (100)1 2

0

ω ω= = −z
V y

z yd ,
1

8
(d d ) (101)3 4

0
2

(the τ x, or y = constant surfaces are time-like and the Killing vectors are ∂ ∂ ∂ + ∂y z, ,z x y z and

− ∂ + − ∂ − ∂z y y z y z( ) ( 2 )x y z
2 .

(b) =V 00 :

ω ω τ+ = +x z y4 (d d ), (102)1 2

ω ω= =z yd , d (103)3 4

(the τ or x = constant surfaces are time-like and the Killing vectors are ∂ ∂ ∂ − ∂y z, ,x y y z and
∂ − ∂y x z).

In both cases we have a boost-isotropic space–time, with, by (97), a G4 on T3.

6. Hypersurface homogeneous KS space–times of classes 3 and 3N

Solutions of class 3N cannot be hypersurface-homogeneous, without being also space–time
homogeneous. This can be easily seen by substituting the 3N conditions ρ ρ τ τ≠ = ′ = = ′0
(and hence, by the GHP equations, Φ Φ Φ Φ= ′ = = ′01 01 02 00) in the Bianchi equations, to
derive that = ′ =U Uþ þ 0 and =V 0. Imposing hypersurface homogeneity by putting

=U U X( ) implies then by (9) that also = ′ =U Uð ð 0, such that U is constant. All 0-
weighted quantities are then constants and we find ourselves again in the space–time
homogeneous case, which was treated in [14].

The class 3 space–times can be obtained along the same lines as in class 2 (the two being
related by a Sachs transform). We begin by fixing the NP tetrad, modulo a rotation, by
requiring ρ = Qti and μ = ti , with t real and = ±Q 1. By (9) and hypersurface homogeneity
we have δ Δ= + =I D Q I( ) 0 for all invariantly defined quantities I.

From the Bianchi and NP equations one finds β α= − , together with the analogues of
equations (96), namely γ ε= =R RQ QH t and
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= = − =( )Dt H DH t QV t DU QtH2, 2 2 , , (104)2

implying

− = =U Qt U constant (105)2
0

and

ω ω− =Q
H

t
2

d , (106)4 3

with =H H t( ). The Cartan equations show that ω1 and ω2 are closed, enabling one to
partially fix the rotation such that ω ζ= −P d1 1 with P real and ζ complex. From the NP
equations it follows then that ζ ζ=P P ( , ) and

δα δβ αβ− + − =U4 2 0, (107)0

implying that ω ω2 1 2 is the metric of a two-space of constant curvature and suggesting to
introduce coordinates x and y by

ω ω= = +
+

≡( )x x y

kx
k U

d i d

1 4
8 . (108)1 2

2 0

With H an arbitrary function of t, the one remaining Cartan equation

ω ω ω ω ω= ∧ + ∧Qr
H

t
d 2i

2
, (109)3 2 1 4 3

can be integrated to yield

ω =
+

+
( )

Qtxy

x
x t r

4

1
d d . (110)

k

3

4
2 2

Note that the t = constant surface is time-like when Q = 1 and space-like when = −Q 1. The
x y, or r = constant surfaces are always time-like. The Killing vectors are ∂r, ∂ + ∂

+
k

y
Q

kx r32 42

and

+
− ∂ − + ∂ − − ∂

+
+ ∂ − + ∂ + − ∂

Qx

kx
y y y

kx
y

kx
y

Qx

kx
y y y

kx
y

kx
y

4
( cos sin )

4

64
cos

4

64
sin ,

4
( sin cos )

4

64
sin

4

64
cos .

r x y

r x y

2

2 2

2

2 2

Clearly we have a locally rotationally symmetric (LRS) space–time, admitting a G4 on T3
or S3.

7. Hypersurface homogeneous KS space–times of class 4

When ρ ρ τ τ= ′ = = ′ = 0 the only non-vanishing curvature components are ΨR, 2 and Φ11,
while X is constant. The Bianchi identities immediately give = ′ =U Uþ þ 0 and

= ′ =V Vð ð 0, such that hypersurface-homogeneity implies that either U or V should be
constants (or both, in which case we have space–time homogeneity). From the Cartan
equations it follows that the four basis one-forms are closed, enabling us to partially fix a
boost and rotation such that

ω ω ωζ= = =− − −P Q s Q td , d , d , (111)1 1 3 1 4 1
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with P and Q real. The Cartan equations immediately imply then ζ ζ=P P ( , ) and
=Q Q s t( , ), with

α β ε γ= − = = − =ζP Q Q
1

2
,

1

2
,

1

2
. (112)t s, , ,

The surviving Newman–Penrose equations are

γ Δε εγ− + =D V4 2 , (113)

δα δα αα+ − = U4 2 , (114)

showing that the space–time is a product of an arbitrary two-space 1 and a two-space 0 of
constant curvature (the latterʼs metric being ω ω =2 1 2 if U is constant and ω ω2 3 4 if V is
constant). Hypersurface-homogeneity implies

that also 1 should admit a Killing vector and hence the space–time is locally rota-
tionally or boost symmetric (BS), with metric given by

= − + + +

+ +
= ±⎡⎣ ⎤⎦

( )( )
s e t A t x

y z

y z
ed d ( )d

d d

1
, ( 1) (115)

k

2 2 2 2
2 2

4
2 2

2

or

= + +
+( )

s x A x y
u v

uv
d d ( )d

d d

1
. (116)

k

2 2 2 2

4

2

8. Discussion

A complete classification is obtained of the (non-conformally flat) hypersurface homogeneous
space–times admitting a non-null Killing spinor of valence two, i.e. of the hypersurface-
homogeneous Petrov type D conformal Killing–Yano space–times. In this classification two
new families appear of space–times for which the associated Killing tensor is exceptional,
namely those determined by the metrics (86) and (87). Both belong to class 1 and admit a G3

on S3 for = − <Q k1, | | 1; for all other values of Q and k they admit a G3 on T3. The regular
members of class I (forming a subclass of the Carter [3] metrics discussed in [6]), are given by
(92), (93). The causal character of the hypersurfaces of homogeneity is identical to that of the
exceptional metrics. In all cases the isometry group has Bianchi type VI0. Semi-regular
Killing tensors only appear in class 1N and were discussed in [8], with all solutions being T3
homogeneous of Bianchi type VIII. The regular members of class 1N are given by the metrics
(94): all are T3 homogeneous of Bianchi type VI0. The hypersurface homogeneous members
of class 2, 3, 3N and 4 all admit isometry-groups of dimension >3. The 3N solutions in
particular are homogeneous and were discussed in [14]. The metrics of class 3, given by
(108)–(110), turn out to be LRS, admitting a G4 on T3 (when Q = 1) or on S3 (when = −Q 1),
while the class 2 metrics (100)–(103) are their BS analogues, admitting a G4 on T3. Finally the
class 4 metrics are either LRS or BS and admit a G4 on S3 or T3.

All this pertains to the metrics of the unitary representants, in which the Killing spinor
has modulus 1 ( =K| | 1), but, the existence of a Killing spinor being a conformally invariant
property and hypersurface-homogeneity being preserved under suitable conformal transfor-
mations, stronger conclusions hold. First note that it can be easily verified that the LRS
metrics (13.1) and (13.2) of [9], namely
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Σ= − + + +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦s e t A t x B t y y k zd d ( )d ( ) d ( , ) d , (117)2 2 2 2 2 2 2 2

and

σ Σ= − + + + +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦s e t A t x y k z B t y y k zd d ( )(d ( , )d ) ( ) d ( , ) d , (118)2 2 2 2 2 2 2 2

( = ±e 1; Σ =y k y y( , ) sin , sinh or y and σ =y k y y( , ) cos , cosh or y 22 according to
whether = −k 1, 1 or 0) both admit a Killing spinor, with (117) belonging to class 4 and
(118) to class 3. It follows that the LRS metrics (117) (and their BS counterparts, namely
(13.14) in [9]) completely exhaust the hypersurface homogeneous class 4 space–times, while
the LRS metrics (118) and their BS counterparts exhaust the hypersurface homogeneous
classes 3 and 2 respectively. On the other hand, the third family of LRS space–times (of
Bianchi type V or VIIh), given by the metrics (13.3) in [9]

= − + + + = ±⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦s e t A t x B t e y z ed d ( )d ( ) d d , ( 1) (119)x2 2 2 2 2 2 2 2

does not7 admit a Killing spinor: using a Weyl-adapted null tetrad the spin coefficients ρ and
μ will be real in all conformal representants, contradicting the condition (10) which should
hold in the unitary representant.

What remains to be done is to investigate the possible physical interpretation of any of
the conformal representants of these solutions. While this has been partially successful
[2, 14, 15] in the homogeneous case and for the regular and semi-regular families [6, 11],
close to nothing is known so far about the exceptional metrics.
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